
SESSION

DOMAIN-SPECIFIC LANGUAGES +
REQUIREMENTS ENGINEERING + OBJECT

ORIENTED SYSTEMS, REAL-TIME SYSTEMS,
AND FORMAL METHODS

Chair(s)

TBA

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 1

ISBN: 1-60132-446-4, CSREA Press ©

2 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

��������	
���	����
��
��������
�����������
������
��

����	�
����	����������
�������

�
���� �
!"����#$
%���
&"'����(

�������	
�
�	�
���	����	���
�����������	���
�
	�
�����
����������������������
���������
 ������	
�
�	���������	���
�����
��
�������������������������
���������

�
�

�

������	� - Software modernization is needed to perform the
evolution of a system when conventional practices can no
longer achieve the desired evolution goal. In their initiative
called architecture-driven modernization (ADM), the Object
Management Group proposes to use MDA to perform this
modernization. However, ADM needs new tools and techniques
to migrate systems developed on a non-model-driven
environment to a model-driven environment. To enable this
migration, we need to discover two kinds of models from the
implementation of a legacy system: a platform independent
model (PIM) and a platform description model (PDM). In this
paper, we propose an automatic approach to discover a PIM
from an object-oriented system source code. The PIM is
expressed in a UML class diagram. The approach uses two
analysis techniques and was validated on several systems
written in Java and gives good results for a number of them.

!��)����*� !��	"��
�
#�$�	����� ���	"��
� ��
���%�	�����
��
$&��#
��
����

������ �
#
��
�
����

������ ���	"��
�
�����
�
������'�

#� �������	����

�������	�����
�
���
�#�$(����	�
������	"��
��(�	
�������

	�
��� ��$(� ��
��	����'� �
�
�	
� �����
�� 	�� 	�
�� �
��$	� ��� ��
����$
)� �����
� ��
�� "����� ����$���	
�� 	�
�
#�$�	����
����
��'� *���� ����
��� ���� �
� �#�
� ��	�� 	��

� ��	
����
�+�
����	
����
�� �
�$��
�
�	� ��� ��
���%�	���'� *�
�
��
���%�	���� ���
#�$#���� �� �(�	
�� "�
�� ���#
�	����$�
����	��
���������$���
������
#
�	�
�
���
�
#�$�	�������$�,�-'�
.�� ���
���� ����$
)� $
���(� �(�	
���������������
�	�	�����
��
���%�	���������	
��	�
���$(�����	����$
���$�	���'�

/�
���%�	��������	��
����(�������$��
��$�	����������
��
�����
� ��
� 	����$�	����� �	���	���$� �����#
�
�	��
���$���%�	����� ��� �	�� �

����

����� ,�-'� 0#
�� ���
��
���%�	�������
�����������
�$���$�	������	������	����(�	���'�
*�
���
��	������� �	�� ������������	�� ���������$	'�*�����
� 	����
����$
��� 	�
�1�2
�	�/����
�
�	�3�����41/35�������
�	
�
�����	
�	��
&���#
��/�
���%�	����4��/5'�.	���������2
�	�#
�
���	�����$����
	�����	������	������$��(�	�
���	
���
����$�	(����
��
���%�	���� 	��$�� , -'� ��/� ������
�� ��
���%�	���� �(�
������/�
$&���#
�������	
�	��
�4/��5'�

���
��1/3���
��	�
�	
����$�	�������
$'�

/���������������������
#
$���
�	�"�
�
�	�
���������$�

$
�
�	����
�	�
���
$���
��
�
�	����	�
�#����������
�	�����	�
�
���	"��
� �(�	
�� �	� ���
�
�	� $
#
$�� ��� ���	���	���'� *�
�

#
$���
�	� ����
��� ��� ���
� ��� ����
���#
� ��
$�
	���������	����� �
��$	���� ��� 	�
� �����
� ��
� ,6-'� /���
��	�������
��������	���
���
$���	"�������	��	+�	�
��$�	�����
��
�
�
�	� ��
$� 47./5� ��� 	�
� �$�	����&��
������ ��
$�
47!/5'� *�
� 7./� ��� �� �(�	
�� ��� �	�� #�
"� ����� 	�
� �$�	�����
��
�
�
�	�#�
"����	������	��7!/��
��
�
�	���	��#�
"������
	�
�����	����#�
"���������	���$������$
�
�	�	�����$�	����'����
��	
�
�	�������
�	����	�
�/������	��	�#
����	�
���
$&	�&��
$�
4/ /5�	���������	�������$����$
�	����7./�	����	������7!/'�
*���� ���� ��� 	���������	���� �
����
�� �� ��
$� ��$$
� 	�
�
�$�	�����
�����	���� ��
$� 47�/5�� "����� ���	��
�� 	�
�
���"$
�
����	�
����$
�
�	�	�����$�	����'�

�� 7�/� ���#�
��� ���� ��
� ��� �� �$�	����&��
������ ��
$��
����
�	���
��
�
�	����	�
����
�
�	���������
$
�
�	��	����
���(�
	�
���
����	�
��$�	������(�������$���	����,6-'�8������	���
��	�
�
��
$� ��� 	�
� 09:� �$�	����� ���#�
�� ����
�	�� $��
�Bean� ���
Home�������
�	�'�1/3��
����
���	����
��/;������$
������
���	������ 7�/�'� �/;� �����$
�� ���#�
� �� �
�
����
)	
������
�
�������� 4�	
�
�	(�
��� 	���
����	������ ��� ����	����	�5� ����
���	���%�����/;���
$��	�����	���$��������������$�	�����'�
*�
(���
�
)��
��
�����/;��$�����������'�

1��� ��
���%�	���� ����
��� ��� �� $
���(� �(�	
�� "�	����
��/�����
)��
��
����8����
�� '�.	����	�
������	����������(�	
��
����� �� ���&��
$&��#
��
�#�����
�	� 	�� �� ��
$&��#
��

�#�����
�	'�*��������
������$�
��	"���	��
�'�*�
�����	��	��
�
��
�� �
#
��
�
����

����� 	�� ����#
�� ���	���	� ��
$�� ��� 	�
�
$
���(��(�	
��'�/��
���
������$$(��"
���#
+�

�� ��*
)	&	�&/�
$�4* /5�����#
�(�	���
	���7!/������	�
�
�����
���
<�

�� ��/ /�����#
�(�	���
	���7�/��������7!/<�

�� ��/ /�����#
�(�	���
	���7./��������7!/������7�/'�

*�
� �
���� �	��
� ��� 	�
� ��
���%�	���� ����
��� ��
��
	���	����$����"���
����

�����	����	����	�
������
���
����	�
�
�
"��(�	
��������/ /����/ *�	���������	����'�=
�������
�
	��
�����
���7�/����	"����������#�
"�'�*�
�����	�#�
"������
�/;� �����$
� ��� 	�
� �(�	
���� ���$
�
�	�	���� �$�	����'� *�
�
�
����#�
"�������
	����	���������	����	
��$�	
��
)��
��
����

 �*�
��
������$$��	��	����	�
���
���%�	��������
���"�	��������
���
����������
������,�-'�

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 3

ISBN: 1-60132-446-4, CSREA Press ©

�>*� 4��
�(?>�
"?*���������	���5� ,@-'� *���
� 	
��$�	
�� ��
�
�����
	
��%
� ��
$�� ���	������ 	�
� �����
� ��
� ��� 	�
�
�(�	
�������$
�
�	�	�����$�	����'�

�

� *�
���
���%�	��������
���"�	������/�

*������$��(� 	�
�����#
�(���� 	�
���
$�� �
��
�
�	���� 	�
�
$
���(��(�	
���"
���
�
�	
����,A-�������������	������#
��	�
�
����	�#�
"������7�/������	�
������
���
������$
���(���2
�	&
���
�	
��(�	
��������,B-��	���
����#�
"'�.��	�������
���"
�
������
����
"����������	������#
��	�
�7./����	�
��(�	
�'�1���
���������	��
���������	�	�
������
���
����	�
�$
���(��(�	
��
���	�
��/;������$
�����	�����$
�
�	�	�����$�	����<������#
��
�����	��	� 	�
�7./���� 	�
� �(�	
�'�*�
�7./� ���
)��
��
� �����
�/;� �$���� ������'� 1��� ��������� ��
�� 	"�� ���$(����
	
������
�� ��������#
����� 	�
�7./������ $
���(��(�	
�+��	��
�$�"����$(����������$(��������
�	���
��'�

*���� ���
�� ��� ������%
� ��� ��$$�"�'� !
�	���� � ��#
�� ���
�#
�#�
"����	�
����������	�����������������
)���$
'�!
�	����
6���
�
�	��	�
�#�$��	�����������"���'�!
�	����@�������
�����
�
�
$�	
� "����'� 8���$$(�� �
�	���� A� ���#�
�� ���
� ����$�����
�
�����'�

(� ���	�������
��
�"�
������	"

(+#� �����������

=
��	��	��(��$����(�������
�	
����	��	�"
�"�$$���
����	�
�

�����	�������������������'�

*�
�vocabulary of a legacy system ���	�
��
	����	�
�"����
���	���
� ��� �	�� �����
� ��
� 4����
�	��
)�$�
5'� *����
#�����$��(� 4
��	
� �(� �5� ������	�� ��+� ���4	�
� #�����$��(�
��	����
��(�	�
�����$
�����������	�
�
���
��	�������$�	�����
��
�
�
�	5�� ����4	�
� #�����$��(� ��	����
� �(� 	�
�
���$
�
�	�	�����$�	��������	�
�
���
��	�������$�	�������
�����5�
��� ���4	�
� #�����$��(� ��	����
� �(� 	�
� ������������
$������
'5�=
���#
�� � ��� 	 ��� 	 ���'�

�� pattern of an identifier� ��� �� "��� 4��� �� �������	���5�
���	���
������ �����	����� ��� �	�����
'�=
���	������		
�����(�
��$�		���� �
�	���
��� ���
$���	
��� $��
� ���
����
� $
		
��� ���
��
�$��
��(���$�'�8���
)���$
��	�
��
�	���
��AccountEntity�
���	�����	��

���		
���+�Account��Entity����AccountEntity'�

;
	� V1� ��� V2� �
� 	"�� #�����$
�� ��� 	�
� �����
� ��
� ��� ��
�(�	
�'�V2�����
$�	
��(��	�&�$�"�	��V1����	�
��8�����	�
������
�
��
�����#
���	��	�V2�	��
��	�
�#�$�
����V1'�

��concept�����������$�	����������(�	
�����
����
�
�	������
	�
� ����$
�� ������ ��� ����� 	�
� ��$�	���� ������ ��� ���
�
�	���
��(��	��name'�=
���	��������	"��������������
�	�+�
platform independent concept (PIC) ��� platform-specific
concept (PSC). ��7.�����������
�	������	�
�����$
���������
�����7!�����������
�	������	�
���$�	���������'��

��7.���
$����� 	����� ���� �	� �����
���
���� 	�
� ��$$�"����
	(�
�+� classifier 4class� ��� interface5�� attribute� operation� ��
parameter. .	������	
�����������
$
�
�	��

�	��������	���
�
����
�
�	������	�
�����$
�������'�

��7!���
$�����	����������	������
���
����	�
���$$�"����
	(�
�+�classifier,�attribute, operation��� parameter.�.	������	
��
���������
$
�
�	��

� 	�� ������	� �� �
����
�
�	� ����� 	�
�
��$�	���������'�

������
�	���(���#
���
�����
#
��$�����
�	(�����
�	�'���
property concept� 47�75� �
$��� �	�� ���
�	� ����
�	� ��� 	�
�
�����$�	���� ��� �� �(�	
���� �
����
�
�	�� "�
	�
�� ����� 	�
�
����$
�� ��� ����� 	�
� ��$�	���� �����'� �� 7�7� ���� 	"��
�		����	
�+�name����value.

*��������	

�	�
���	
���	(����������$
�
�	�	�����$�	������
��constraint�����
)��	��
	"

��	"��7!���C1����C2���������
�
��
����	�
���$$�"����	(�
�+�

�� ��dependency constraint��������"�
��	�
����$
�
�	�	����
���C1��
����
��	�
����$
�
�	�	�������C2<�

�� ��compatibility constraint��������"�
��	�
����$
�
�	�	����
���C1���������	��$
�"�	��	�
����$
�
�	�	�������C2<�

�� ��incompatibility constraint��������"�
��C1����C2 �����	�
�
����$
�
�	
�	��
	�
�<�

�� ��refinement constraint��������"�
��	�
����$
�
�	�	�������
C2���
�
�	�����
�
�	�#����	���������	�
����$
�
�	�	�������
C1������
����	�
�
�#����	����'

������������$������
���4��
��	������
��
�	�#
$(5�������
	����
�$������
���4�
��
�	�#
$(���
��	����5������
���������	
����'�*��

��
�	�
�
�����	���������������������"
������
�	��	���������
�$"�(�� ���	����� �	� $
��	� 	"��
$
�
�	��� �	�
�"��
� �	� ��� ��	� ��
�����'������	
������	����
�	
���
����	�
�
����������(��
���
����
	�
���$$�"���+�

�� pattern-based�� �	� �$$�"�� 	�
� ��������� ��� �$������
��� ���
��
��	�����"�	�������������		
������	�
������
<�

�� relationship-based�� �	� �$$�"�� 	�
� ��������� ��� �$������
���
���$
�
�	����������� ��	
����
���� ���
��	�������������
�$������
�'�

4 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

�������������
��#�
���	���������������������	����
����
	�
� ���	
����
���
� ���#
'� 1�� �����
�� ��� ��
��	���� ��� ��
�$������
�� ���� �
$���� 	�� ���
�
�	� ������� ��� ���������'� 8���

)���$
�� ����� 	�
� �$������
��� $��	
� ��� *��$
� ��� 	�
������� ���
�$������
��� ���
� ��� 	�
� ��		
��� Bean� ���	����� 	�
�
� �	
��+�
AccountBean�� BankManagerBean�� BankTransactionBean��
CheckingAccountBean�� CustomerBean�� DepositBean��
SavingAccountBean �� WithdrawalBean'�

(+(� �����)

*���$$��	��	
���������������"
���
���C	�(D����������(�	
��

���	�������@E��$������
������
�����
����*��$
��'�=
������

�

���$(� ��� 	���� 	��$
� �(� 	�
� �$������
���� ���
�� ���
� 7.��� $��
�
Account� ��� Customer ��� ���
� 7!��� $��
� Bean �� Home'�
8����
� �
�����
�� �� ���	� ��� 	�
� �/;� �����$
� ��
$� ��� 	�
�
�(�	
���� ���$
�
�	�	�����$�	��������8����
�6�
�����
�� �	��
7./�"��������	�
��
��$	����������������'��

*�
� �/;� �����$
� 4�

� �����
� 5� ���"�� 	�
� ���
�
�	�
����
�	�� ��
�
�	� ��� 	�
� ���$
�
�	�	���� �$�	����'� F�	
� 	�
�
���
�
�	���
��)
������	������	�
�������������
�	����#
��

��

�
�	��
����
������
��
�	���
����$���
�����	�
��/;������$
'�
=
� �$��� �

�
)���$
�� ���
)��	���� ����	����	�� �
	"

�� 	�
�
�
����
�	�'�8������	���
����
������

����	�
������
�	��	�"
������
�������	�
����	��	��$$��$������
���	��	����$
�
�	�	�
�����
�	����
�$������
��Entity��$������$
�
�	�	�
�get���
��	��������
�	'�

*��$
��'��$������
�����
��

������	� ������	:
��� ������	�/7�
������	��	�� ������	G��
� ������	�	�$�
:���/����
�� :���/����
�:
��� :���/����
�G��
�
:���/����
�!
������ :���/����
��	�$� :���*������	����
:���*������	���:
��� :���*������	����/7� :���*������	�����	�
:���*������	���G��
� :���*������	����	�$� ��
�����������	�
��
�����������	:
��� ��
�����������	�/7� ��
�����������	��	�
��
�����������	G��
 ��
�����������	�	�$� ���	��
��
���	��
�:
��� ���	��
��/7� ���	��
���	��
���	��
�G��
� ���	��
��	�$� �
����	�
�
����	:
��� �
����	�/7� �
����	��	��
�
����	G��
� �
����	�	�$� !�#���������	�
!�#���������	:
��� !�#���������	�/7� !�#���������	��	��
!�#���������	G��
� !�#���������	�	�$� =�	���"�$�
=�	���"�$:
��� =�	���"�$�/7� =�	���"�$��	��

�

�

� �����	����	�
��/;������$
���
$����	�
��(�	
�������$
�
�	�	�����$�	�����

�

� *�
�7./����	�
��(�	
��

�������	
��������	����
�������������������
������	����������

�������

����	���
��������	����
������������	����
��������	����

	�
����

�����������	����
����������

����
��

������	������������
���	����������	���
�	������	���
��������	����

�������
������

���������
����!���	����	����

	��������������
���	��	"�	����	����

�������������

������	
#

#
#

��$�����	
#

���	���

#

���!�������	���

%

���!�������	���

%��$�����	

#

���	���

#

#

������	
#

#

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 5

ISBN: 1-60132-446-4, CSREA Press ©

*�
�7./�4�

�8����
�65���
�
�	��	�
��������$���
�����	�
�
�(�	
�� ��� 	�
� �
$�	��������� �
	"

�� 	�
�'� �� ��������
	������	��������
�����
�������������	������������(��������
��
4BankManager5'� *"�� 	(�
�� ��� ������	�� ��
� �#��$��$
+�
CheckingAccount����SavingAccount'�*"��	(�
�������������
	������	�������
��
�	���
+�Deposit����Withdrawal'�

1��� ��������� ��� ���
� ��� 	�
� �(��	�
���� 	��	� 	�
� ��
�
�
$�	
� 	�� ��� ���$
�
�	�	���� �$�	����� ���� �� ���	���$���
������	
���	���	��	���	�������
���	�������	�
��+��	� ����
�
	�	�#
�
��� �
��&�
�
	�	�#
'� *���� ������	���� "��� 	�
� ������ ��� ����
��
#�����"����	��	�������
��	�
�����#
�(����	�
��/;������$
�
��
$� ��� 	�
� �(�	
���� ���$
�
�	�	���� �$�	����� ,A-'� !��� �	�
�
���
�� ������$
� 	�� �
�	��(� 	�
� �����
��� #�����$��(� �(�
��$	
����� ��	� 	�
� ���$
�
�	�	���� �$�	����� �
$�	
� ��
'� *�
�
�����
���#�����$��(�
)	���	
�"�$$�
���$
�	�
�����#
�(����	�
�
7./������$
���(��(�	
�'�

1���7./�����#
�(��������������#�
�����$(���	��A��	
��'�

(+(+#� ���	������
	����
��&�

*�
� ����	� �	
�� ����#
��� �$���� 7.��� �(� $������� ��� 	�
�

�(�	
����7!/�����"�����
��
�
�	����	�
�'�*�����	
����
��	�
�
��$
���'�*������$
������
��	��	����$����7.�����$
�
�	���	�$
��	�
	"������
�	�����	�
����$
�
�	�	�����$�	����'�

,���
#
-,#.'����$������
��C����	�
�7!/�����
$�	
�	�����$����
7.��P�"���
����
����	��	����C����"�������(�������
��
����	�
�
���
� ��� �� �$������
�� 7!�� ���� �

�� �
��#
'� *���� $���� ���
���#�
����P���������	�����
�	������
��$������
��7!/'�

.������ 	�(��(�	
���"
�����#
�� 	�
� ��$$�"�����$����7.���
�
$�	
� 	�
� �$������
��+� Account�� BankManager��
BankTransaction�� CheckingAccount�� Customer�� Deposit��
SavingAccount� ��� Withdrawal'� 8���
)���$
�� "
� ����#
��
	��	�	�
�Account��$����7.����������	���	�$
��	�	"���$������
���
4AccountBean����AccountHome5���	
���
��#�������	�
������
��
������
��
�����	�
����
����Bean����Home��$������
��7!��'�

(+(+(� ���	������
���������
��&�

*�
��
�����	
�����	�
�7./�����#
�(������	������#
�������

���� 7.�� �$����� �		����	
� 7.��� ����� 	�� �	� �(� �
�������� ����
"�������	�
�#�����$��(����	�
�7!/�	��	����$��
��
�
�	�	�
�'�
*�����	
��������
����	�
���$
�� '�*�
���	����$
����	������$
����
	��	� ��� �		����	
� ��� ��� ���$
�
�	�	���� �$�	����� "�$$� �
�
�
�
	�	�#
$(���
�
�	���������������7!/��$������
������$
�
�	����
�������
����	�
��$�	����'�

,���
(
-,(.'�����		����	
�������$������
��7!/������	����
7.�� �$���� ��� �
$�	
� 	�� �� �����(����� �		����	
� 7.�� ��� ���
�		����	
����	�
����
����
��
����	��
$����	��
�����$������
�����
��
����	�
�����������������$������
��7!���������
�	����"�	����
���	
����� ��� 	�
� ���$
�
�	�	���� ��� ��� ��	
����
� ��� �$������
��
���
��	���
'�

.������	�(��(�	
���	�
��		����	
�accountNumber����	�
�7!/�
�$������
��AccountData� ����� 	�� 	�
��$����7.��Account� ��� ���
	���� �
$�	
� 	�� 	�
� �		����	
� 7.��accountNumber�� �
����
� ���
��������� ��� �� �$������
�� 7!�� �

�� �	�� �$������
��� ����
� ��
�����(����� �		����	
'� *���� ��$
� ����#
��� 	��	� 	�
� �		����	
�
cachedRemoteHome ��� 	�
�7!/��$������
��AccountUtil� �$���
�����	�
��$����7.��Account������	�����		����	
�7.���
����
��$$�
�$������
��������������������	�
��$������
��7!��Util ���	�������
�		����	
����	�
����
����
'�

(+(+/� ���	������
���������
��&�

*�
� 	�����	
����� 	�
�7./�����#
�(������ 	�� �
�	��(�� ����

���� 7.�� �$����� ��
��	���� 7.��� ����� 	�� �	� �(� �
�������� ����
"�������	�
�#�����$��(����	�
�7!/�	��	����$��
��
�
�	�	�
�'�
*�����	
��������
����	�
���$
��6'�*�
���	����$
����	������$
����
	�
����
����	�
���
#�������
'�

,���
/
-,/.'������
��	����������$������
��7!/������	����
7.�� �$���� ��� �
$�	
� 	�� �� �����(����� ��
��	���� 7.�� ��� ���
��
��	�������	�
����
����
��
����	��
$����	��
�����$������
��
�����
����	�
�����������������$������
��7!���������
�	����"�	��
�����	
�������� 	�
����$
�
�	�	������������	
����
�����$������
��
���
��	���
���� 	�
����
���� 	������
��	���� �����	������ 	����
7!�� ��
��	���'� 0���� ������
��
� ��� �� ���
� ��� �� 7!�� ��� 	�
�
���
����	(�
����
���������
	
�����	������
��	��������
��#
'�

.������	�(��(�	
�������
��$$��$������
������	�
������������
	��	�
��$������
��7!��Bean���#
�	�
���
��	����ejbAcivate��	����
��
��	���������	������
��	����7.�������	��	�
��$����Account'�
:�	�� 	�
� ��
��	���� saveTransaction� ��� 	�
� �$������
�� 7!/�
BankManager��
��
�
�	�������
��	����7.���
$�	
�	��	�
��$����
7.��BankMananger� �
����
� ��� ��������� ��� �� �$������
�� 7!��
�

���	���$������
�������
��������(�������
��	���'�

(+(+0� ���	������
���������
��&�

*�
�����	���	
�����	�
�7./�����#
�(������	���
�	��(������

���������
��	����7.��������
	
�������	���	��(��
������������
"�������	�
�#�����$��(����	�
�7!/�	��	����$��
��
�
�	�	�
�'�
*�����	
������
��
�
�	
��(�	�
���$
��@'�

,���
 0
 -,0.'� �� �����
	
�� P1� ��� ��� ��
��	���� O1� ��� ��
�$������
��7!/�C1��"�
�
�O1� ��� ����
�	
� 	�� �������(�����
��
��	����O2������7./��$����C2���
��
�
�	���������
	
��7.�����
P1���������	�����
$
�
�	����	�
�7./���(�����	����	�
���$$�"����
����	��������$(+�

�� ��� 	�
�
� �������		����	
�A1����C1�"�
�
�A1� �������� 	�����
�		����	
�A2 4�
��
�	�#
$(�����������	����
��AE5����C2����
A1����$���
�	��P1��(��	���$�"����$(�����	�
��P1����$���
�
	��A2�4AE��
��
�	�#
$(5<�

�� ��� 	�
�
� �������		����	
�A1����C1�"�
�
�A1� �������� 	�����
�		����	
� A2 4�
��
�	�#
$(� ��� �������	����
�� AE5� ��� C2
"�
�
�	�
����
����	�
�$���
�	���		
������	�
����
����P1��
	�
��P1����$���
�	��A2�4AE��
��
�	�#
$(5<�

�� ���	�
����
����C2 ���	�
�$���
�	���		
������	�
����
����P1��
	�
��P1����$���
�	��C2'�

6 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

.�� ���� 	�(� �(�	
��� 	�
� �����
	
�� amt� ��� 	�
� ��
��	����
credit����	�
��$������
��7!/�Account���������	��	�
���
��	����
7.��credit����	�
��$����7.��Account'�*���������
	
���
���
��
�������
	
��7.���
����
��	����������(��	���$�"����$(����	��
	�
��		����	
�balance����	�
��$����7.��Account'�

(+(+1� ���	������
���������"���
���)���
��&�

*�
�$��	��	
�����	�
�7./������#
�(�����
����	������#
��	�
�

�
$�	����������
	"

��	�
�����#
�
�7.��'�*�����	
��������
�
���	�
���$
���A���B�����E'�

,���
1
-,1.'�.��	�
�	(�
��������		����	
��
$�	
�	�����$����7.��
C1�7.��������	�
��7.���$����C2�	�
��	�����		����	
�����
�$��
��(�
����������	�����
	"

��C1����C2'�

.������	�(��(�	
���	�
��		����	
�7.��customer��
$�	
�	��	�
�
�$����7.��Account�������	(�
�	�
�7.���$����Customer��	�
�����
�������	�����
	"

��	�
�
�	"��7.��������
�	
����customer����
���$���
������		����	
�7.�����	�
��$����7.��Account'�

,���
2
-,2.'�.���	�
)��	��������
��	���
��
$�	���������
	"

��
��7!/��$������
��C1������	�����$����7.��P1�������	�
��7!/�
�$������
�� C2� ����� 	�� �� �$���� 7.�� P2�� 	�
�� ��� ���
��	���
�
�
$�	������������
��
	"

��P1���P2 ���	�
�7./'�

.�� ���� 	�(� �(�	
��� ��� ���
��	���
� �
$�	�������� ��� ��
�	
�
�
	"

��	�
��$����7.���CheckingAccount����Account��
����
�
��� ���
��	���
� �
$�	��������
)��	�� �
	"

�� 	�
��� �
$�	
�
�$������
��7!/�'�

,���
 3
 -,3.'� .�� �	�
)��	�� ���
)�
�	���� E� 	���"�� �(� ���
��
��	���������7!/��$������
��C1�$���
�	�����$����7.��P1����
	�
�	(�
����E������7!/��$������
��C2��
$�	
�	����7.���$����P2��
	�
����
�
�
��(��
$�	������������
������P1�	��P2'�

F��
)���$
�����
���	
��������	�(��(�	
�'�

/� 4���������
��
������	"

.�� 	���� �
�	����� "
� ��	����
� ���� #�$��	���� ����
"���'�

*�
��"
���
�
�	�	�
��
��$	����	���
��(�	�
�#�$��	��������
��'�
*��#�$��	
���������������"
���#
�
#
$��
���	��$�	��������	�
�	'�=
����$
�
�	
������	���$�"����$(�����(�������	�
�$�����(�
���
�
��(�!��	6�������������$(���'�

1��� ����
�	� ���	�	(�
� 	��$� ������	�� 9�#�� �����
� ��
'� .	�
�
�� ��	� ����
�	$(� ������	� �	�
�� ����� ��� �(�	
���� ��	����	��
��������
�$�(�
�	�
�����	�����$
�'�*�
�
���
�����
�����
�	��
���	�
�7./����$���	��
�����#
�
����	�
(���
���$(���
�
�	����
	���
�����������������	
���	����	�'�1������������������$��$
�
	�� ������	� $���
� �(�	
��� ��� 	�
� ��
�$(���� �$����	��� ���� ��
��$(�����$�����$
)�	('�

/+#� 4���������
�����)��5

*�����#
�	�
��
$
#���
������������������"
���#
����$�
�

����	��$�	����#
��(�	
��+�

���
6��		�+??���$
'��	���'��?���	?��HA& H& H�A�

@�"""'�����
���
'�����HI& E& H�H�

�'� ����	�(��(�	
����
�
�	
����	�������
�<�
 '� �� !�$
�� /����
�
�	� !(�	
�� 4!3>5� �
�
��	
� ����� ��

�/;���
$�������	�
�/���	��$�!����
���
@<�
6'� �����������(�	
�����������������9�:��4:9�:�5�,E-<�
@'� ��>��	��$�!��������/��$�4>!/5��(�	
�������1���$
�A<�
A'� ��� 1*F� 8�������$� :���
���
� !
�#��
� 418:!5� �����

1���$
B<�
B'� 	�
�"
$$&���"��!�����09:�7
	�!	��
E'�

*�
� ���$
�
�	�	���� �$�	����� ��� 	�
� ����	� 	"�� �(�	
��� ���

)�$���#
$(����
����09:'�*�
����$
�
�	�	�����$�	��������	�
�
�(�	
���@��A����B�������	��$$(����
����09:'�*�
�	�����(�	
��
��
������&�������$
�
�	�	�����$�	����'�F�	
��$���	��	�
#
�����
	�
�����	�	"���(�	
�����
����
�
)�$���#
$(����09:��	�
(�����	�
���	����
)��	$(�	�
����
��
	����7!�������
�
������
�������
�
�	�
���$
�
�	�	�������09:'�

*�
� �
����� ���� �	
��� �(� �
#
��
�
����

����� ���� $
�� 	��
	��

�������$
���	���
��,J-'�����	
���
�	���
��(�	�
��
�
�����
�
��$	�������K	��
�����	�#
K�����	�������	����	�
�
)�
�	
��
��$	�'�.	�
��� �� K��$�
� ����	�#
K� ��� �	� ��� ��	� ���	� ��� 	�
�
)�
�	
� �
��$	�'�
8���$$(����K��$�
��
��	�#
K�������
	�����	��	�����$��
��������	�
�	� ��� ��	'� :��
� ��� 	�
�
� �
��$	��� �	� ��� ������$
� 	��
#
$���
�
	����'� .�� ���� ���
�� "
� ��
� 	�
� ��$$�"���� 	"�� �
	����+�
precision����recall'�

=
���$$
�	�	�
���$$�"�����	�+�����
������	
�������#
�
�
����
�$(� 4	��
� ����	�#
5�� ����
�� ��� "����$(� ����#
�
�

$
�
�	��4��$�
�����	�#
5��������
�����������#
�
�
$
�
�	��
4��$�
��
��	�#
5'�=
���
�	�
����$��$�	
�	����$��$�	
��
	����'�

*�
�����	��
	�������	�
���
������'�.	����
��
�����	�
��
�	���
�
�	
�����
�#�$�'�*�
� �
�����
	����
#�$��	
� ��� 	�
� �
��$$'� .	�
���
��
��"��	��
��
�	��
����	�
�
)�
�	
��	
�����
��
�	���
'�

=
���#
���	���	
�	�
�����
������#�$��	���'�*�
�
$
�
�	��

)�
�	
���� �$$� 	
�	
��(�	
���"
�
�
)	���	
������$$(���	
��
���$(%���� 	�
��� �����
� ��
'� *�
� �#��$���$�	(� ��� 	�
� 09:�
����
�	�	���� ��� ����$����	(� ��� 	�
� �����
��� ��
�� ��� 	�
�
�
�(�	
��� ��#
� �
$�
� 	���� ���$(���'� G�"
#
��� ��� 	���� 	���� ���
�����$� ��� ��	
�� ��� ���$
�
�	�	���� �$�	����� ��� ��	� �$"�(��
��������$(����$
�
�	
��"
������	��������	��	�	�
��������	����
����HHL�����
�	��������$
	
'�*�
�
�
$
�
�	����
��$��
������
��$
'� =�
�� ���� ���	�	(�
� ������
�� ���� "����� �	� ������
�� �	��
�
��$	��"�	��	�
����	
�	�����	������$
'�����
�
�	�	���
����
��$���
�
�
��	
�����
��������������
�'�

/+(� 4���������
�������

*��$
� ��������%
��
��
�	�#
$(�	�
��
��$	����	���
������

	�
� #�$��	���� ��� ���� ��������'� F�	
� 	��	� 	�
� ���$�	(� ��� 	�
�
�/;������$
����	�
�����	�������������	����	�
��
��$	�'�.�����	��
���
���������
��(�	�
�
����
��������#
�(����	�
��/;������$
�
�����������	�
��
���������	�
�7./�����#
�(�����
��'���
	��$
�
�������������	��������
�����	�
��������
�����������	
������$�
�
���	�,I-'�

A�"""'����$
'���?	
����$��(?����$
M��
?	�	����$�?#���'6��HI& E& H�H�

B�"""'����$
'���?	
����$��(?����$
M��
?	
��?2�#�?2

?����H���HI& E& H�H�

E�2�#�'���'���?
#
$��
�?�
$
��
�?�
	�	��
��H@&�6& H� �

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 7

ISBN: 1-60132-446-4, CSREA Press ©

*��$
� '��
��$	�����	�
�#�$��	�������	�
�7./�����#
�(�
����
���

� ��
�

��
�

	

�	

�

��

�
�	
�

��
�

>7��$����7.� J @ �@ �H B

87��$����7.� H H B �B @ �B

8F��$����7.� H H 6 A A 6�

�
��$$��$����7.� �HH�HH �HH�HH @H�HH E6�BJ BB�BE �B�

7�
��������$����7.� �HH�HH �HH�HH A�HH @B�BE E��@6 E� E

>7��		����	
�7.� �� � A @ @ @

87��		����	
�7.� H H @@ �� J

8F��		����	
�7.� H � 6 A EI

�
��$$��		����	
�7.� �HH�HH IA�@A B �AH BA�B6 @J�IJ @�J

7�
��������		����	
�7.� �HH�HH I��6H H�HH @J�J@ BJ�AE @�BA

>7���
��	����7.� � H @ �B �H �

87���
��	����7.� �B 6B �I E6

8F���
��	����7.� H H H EE @@ �E

�
��$$���
���	���7.� �HH�HH �HH�HH �HH�HH �E� H �J�A A�AB

7�
���������
��	����7.� 66�66 H�HH H�HH 6H�EE 6@�@J ��6A

>7������
	
��7.� H H 6 H � H

87������
	
��7.� H H � E H @

8F������
	
��7.� H H A 6H @B �I

�
��$$������
	
��7.� �HH�HH �HH�HH 6E�AH H�HH ��6 H�HH

7�
������������
	
��7.� �HH�HH �HH�HH EA�HH H�HH �HH'HH H�HH

>7��������	����7.� @ H � � 6

87��������	����7.� H H A I E

8F��������	����7.� H 6 �6 �@ �HB

�
��$$��������	����7.� �HH�HH H�HH 66�66 E��@ � �AH �EA

7�
��������������	����7.� �HH�HH �HH�HH 66�66 �B�BE �J��J 6H�HH

>7����
������
�7.� @ H H H H H

87�����
������
�7.� H H �H H 6

8F�����
������
�7.� H H H H H H

�
��$$�����
������
�7.� �HH�HH �HH�HH �HH�HH �HH�HH �HH'HH �HH�HH

7�
�����������
������
�7.� �HH�HH �HH�HH H�HH H�HH �HH'HH H�HH

>7�
�
�
��(�7.� H H H � H

87�
�
�
��(�7.� H H � H B

8F�
�
�
��(�7.� H H � H 6 �

�
��$$�
�
�
��(�7.� �HH�HH �HH�HH H�HH �HH�HH @H�HH H�HH

7�
�������
�
�
��(�7.� �HH�HH �HH�HH H�HH E�BI �HH'HH H�HH �

0� ,������
)��5

����
�
�	���������
����#
��

��������
�������
$&��#
��

�����	�����	��	�
��
�	�����������"$
�
�����"��������	��
�	��
���� �� 7./� ��	���	���$$(� �(� ��	����������� �
	"

�� 	�
�
����
�	�� ��
������ 	�� ��� ���$
�
�	�	���� �$�	����� ��� 	���
�

�
�
�	����	�
������
��������������$
���(��(�	
�'�:
$�"��
"
���
�
�	����
����	���
���������
�'�

/������� ,�H-� ��� ���
)	
����$
� ����
"���� 	��
#
$���
��
$&��#
�� 	��$�� 	�� ������	� ��
���%�	���� ��� $
���(�
�(�	
��'� *��
���$
� 	�
� �
��
� ��� ������
�	�� �
	"

��
��
���%�	������$�	�������	�������	
�	��
����������%
����	��

�
$�(
��+� ��
&���
��� 	
����$���
�� ��� ������	���	��
'� *�
� ����	�
$�(
��������	����#�����	��$����������
��������
���%�	������
&
���
'� *�
� �
���� $�(
�� ���
��� ��
������ ������
�	�� ���� ��
�

$
���(� 	
����$��(�� ��� 	�
� $��	� $�(
�� ���#�
�� �
�
����
������
�	����
�
�
�	��������(�$
���(�	
����$��('�

.�� ,��-� ��� ,� -�� 	�
� ��	�����
�����
� �� ����
"���� 	��
�
#
��
�
����

�����/�����
$���������2
�	����
�	
���
'�
*�
� ����
"���� ���� 	��

� ���	���	���� $
#
$�+� ��
$���
�
	���
$�� ��� �����$� ��
������	����'� ��� �������"����� 	�
(�
�$�������	��
)	���	���7./������$
���(���2
�	&���
�	
��(�	
��'�
G�"
#
��� 	�
� 7./�
)	���	
� ��� ���	��
� ��� ��
� ���
� ���
�
��
��
� ��
$�'� 8��� ���	���
�� ��� ,��-�� 	�
(� ��
�
�	� ���
�$����	��� ���� ����#
����� ��
� ���
� ��
$�'� *�
(� �	��	� �����
���$��� �
	���� 	�� �
������ 	�
���
)	���	���'� *�
� ��
$�
�
�
��	
����	�
���	�#
�(�$�"&$
#
$�����	����$�#�
"�
#
�����	�
���
��������� 	��
�� 	�� �$��	
�� 	�
� ��
� ���
�'� .�� ,� -�� 	�
� ��	�����

�����
�������������	��
)	���	��
��
��
��������������9�#��
��
��(�������	�
�/��������$�	�����,�H-'�.���������������	�
�
����#
�
� ��
$�� �� ��	� �
�$$(�
�����
� �� 7./� ����
� 	�
���
"����� �� ��	� �
������ ��(� ��	���	���� �
	"

�� �$�	�����
��
�
�
�	�����$�	�����
�
�
�	�����
�	�'�

;��
	��$'�,�6-�
�����
����������������������#
�������
����
�
��
$������	�
������
���
��(��������
�$
�	�������	���
�	�	����
	
������
�� ������ 	�
�
)
��	���� ��� �� �(�	
�� ��
�� ���$(���'�
*�
��
$�	�������������
����
����
����
����������
	������$
�'�
�������	
� ��
� ���
�� ��
� �$��� ���$	� �(� ������ 	�
�
)	���	
�
�
$�	����'��

7��
%&���	�$$��
	� �$'� �
���	�� �� ���
� �	�(� ��� �����
���
����
����
��#
�(������$
���(��������	�����(�	
���,�@-'�*�
���
�
��#
�(� ����
��
� ��� ���
� ��� 	�
��� ����
"���� ��$$
�
/��:;0�4/�
���%�	������������������
��#
�����:����
���
����
��
�������;0���(��(�	
��5'�*�
�����
"������
����/�
����	����������	���	����$
#
$��	���
��#
�������
������"$
�
�
�����$
���(��������	�����(�	
��'�*�
�����
�	����	���	����$
#
$�
�
��
�
�	��	�
������
�������
�����
$'�*�
�	�����	�����������
�
$
#
$�	�����	�
�������
�	���������
$�	���������	����'�.������
��������� 	�
� ���$�	(� ��� 	�
� �
��$	���� �����
��� ����
��� ���
��
�	�����$
'� *���� ��� "�(�� 	�
(� ������
� 	��	� 	�
� $��	�
	���������	��������$��
�������	
��(�	�
������$���	
�#
�	����
��������
���
)�
�	��	���
���
�	�
������
�������
��
����	���
'�

!��#(���
	� �$'� ,�A-� �
���	� �� �
�$� ���
� ��� ��
���%�	����
��������/��������$
���(��NN��(�	
��	��9�#�'�*�
���
�	�������
	�
���7!/�������
����������
)�
�	��"�����#
�	��
��
�"�����
���	� ��� 7!/� ��� �
$�	
� 	�� 	�
� ����$
�� ������ ��� "����� ���
�
$�	
� 	�� 	�
� ��$�	���� �����'� *�
(� �$���� 	��	� �	� ��� �
�$$(�
������$	�	����	���	
�	������	���	�����
����
��	��

��	�
�����	�
�����
)�
�	�����	�
�����$
�������$�	����������'�

8$
��
(�
	� �$� ,�B-���
�
�	� �� �
��&��	���	��� ��������� ����
��
$&��#
�� �����	���'� *�
(� ��	���	���$$(�
)	���	� �� 7!/�
����� �� $
���(� �(�	
�� ��� ��
� 	���������	����� 	�� �
�
��	
� ��
7./� ��� �� 7!/� ��� 	�
� �
"� 	���
	� �����	
�	��
'� *�
�
�
	���������	�������
�
���
������$$('�

��
��
	� �$'� ,�E-� ��
�
�	� ��� ��������� "����� ���$(%
��
���
��$
�������
���
�	��
)	���	����
	������
$���
��
�
�	����
	�
� ���	"��
� ������
�	��� ��� �	�� �����	
�	��
�
�����
� ��� ��
�����$�$������
'�8���	����7!/������
�	
������	�
������
���
�
���	�
�$
���(��(�	
�'�*�
���
�������	����	
������
����
���
�
	���
�	���	��
�	�
�7!/'�F
)	�����	���	������$
����
����$�
�	��

8 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

��
�	
� �� 7./� ����� 	�
� �
�	���	��
� 7!/'� *�
� ���������
��
�
�	��	"��$���	�	����'�8���	��	�
����	���	������$
����#
�	���
�

���
������$$('�!
�����	�
�
)	���	
�7./������	��
��
��
�
����
�	�
����
����� �	����
$�
$
�
�	����
���	��
�������$����
	�
������
����
)	���	�������������
��$
�������
���
'�

1� &��	������

.�� 	�������
���"
�������
����
"���������� 	��
���$
� 	�
�

��
���%�	���� ��� $
���(� ��2
�	&���
�	
� �(�	
��� 	������� ��
��
$&��#
�������	���'�=
���
�
�	
�	�
��
(�
$
�
�	�����	�
�
��������'�=
�
�����
������	���	�������
�����������#
�����
	�
�7./����	�
�$
���(��(�	
�'�*����7./����
)��
��
�������/;�
�$���� ������'� =
� ����$$(� ��
�
�	
� 	�
� �
��$	�� ��� ����
#�$��	��������
��'�

*�
���������	����	��������������������$�
����	�
���	���	����
������	� ����� �(� 	�
�
�$�(
� �$����	��� ��� 	�
� ����#
�(�
����
��� ��� 	�
� �
�
����(� ��
$� ����� 	�
� �����
� ��
� ��� ��
$
���(� ��2
�	&���
�	
� �(�	
�'� *���� ����#
�
� ��
$� "�$$�
����
#
��
		
��	�
������	�������	����$
���(��(�	
��	������
$&
��#
��
�#�����
�	'�

2� ,������	��

,�-� �'� �'� !
������ �'� 7$������� ��� 3'� �'� ;
"����

Modernizing Legacy Systems: Software Technologies,
Engineering Processes, and Business Practices+�
������=
�$
(�7���
������$�� HH6'�

, -� 1/3�� K�����	
�	��
&���#
�� /�
���%�	���� *����
8���
'������	
�	��
&���#
��/�
���%�	������
�������K�
 HHB'�

,6-� 9'�/�$$
�����9'�/��
�2���K/���3��
�>
�������'H'��K�
1�2
�	�/����
�
�	�3��������? HH6&HB&H��� HH6'�

,@-� 1/3�� K/18� �>*� 8���$� ���	
� !�
������	����K�
 HHA'�

,A-� 3'� �������� .'� O������� ��� �'� !�$���� K*�"���� 	�
�
�����#
�(� ��� .��$
�
�	�	���� 7$�	����� �
�����	����
/�
$�� ��� ;
���(� 1�2
�	&1��
�	
� !(�	
���K�
��
�
�	
��	�	�
�=�����������7���
��
������!��	"��
�
0#�$�	���� ��� /���	
����
� 4=�7!0/� H�H5�
/��������
		������	
�!	�	
��� H�H'�

,B-� 3'� �������� .'� O������� ��� �'� !�$���� K*�"���� 	�
�
��	���	��� �����#
�(� ��� 7$�	����� *���������	����
*
��$�	
�����;
���(�1�2
�	&1��
�	
�K���
�
�	
��	�
	�
� /�
$�� ��� 0#�$�	���� 4/05� H� � "�������� ��
��	
$$�	
�
#
�	��	�/��0;!� H� ��.������������	����
��
 H� '�

,E-� 3'� �

�
�� Database Programming with JDBC and
Java, Second Edition+� 1P�
�$$(� Q� �������	
��� .��'��
 HHH'�

,J-� .'� 7��$����"�� �'� !	�
�	�
�	�� /'� ��
������� ��� !'�
F�������� K��� ��������� ���� �
#
��
�
����

����� ���

�������		
����K�Software and Systems Modeling, #�$'�
@����'�AA&EH�� HHA'�

,I-� .'�O���������3'���������K���
"����������������
$&
��#
�� ��
���%�	���� ��� $
���(� ��2
�	� ���
�	
�
�(�	
���K����#
���	��������
��R���������� H�B'�

,�H-� G'�:���
$�
�
��9'�����	��9'�8�����������/'�8��������
K/������+� �� �
�
���� ���
)	
����$
� ����
"���� ����

��
$� ��#
�� �
#
��
�
����

�����K� ��
�
�	
� �	� 	�
�
7���

����� ��� 	�
� .000?��/� ��	
���	����$�
����
�
��
� ��� ��	���	
� ���	"��
�
����

������
��	"
����:
$������ H�H'�

,��-� 7'� �$������ /'� ;�$������ ��� 8'� ;�$������ K�
��#
�����
��
����
���������������1�2
�	�1��
�	
���
+����
/��&���
����������K� ���Information Technology:
New Generations (ITNG), 2011 Eighth International
Conference on�� H������'�E6E&E@ '�

,� -� ;'� /��	��
%�� �'� 7
�
����� ��� ;'� 8�#�
�� K�
��#
�����
�
��
��
� �������� ����� ��2
�	&���
�	
� ��
+� ���
��/� ���������K� ��� International Conference on
Evaluation of Novel Approaches to Software
Engineering (ENASE), 2014�� H�@����'��&J'�

,�6-� �'� ;��� !'� G��� 7'� ��
��� ;'� =��� ��� ='� ��
���
K�����#
��������/��������
����
�/�
$�����
#
��
�
0����

�����K� ��� Fuzzy Systems and Knowledge
Discovery, 2007. FSKD 2007. Fourth International
Conference on�� HHE����'�@6�&@6B'�

,�@-� �'�7��
%&���	�$$���.'�3���S�&���S��
%�
�3�%�T���/'�
7��		��������U'�!'�7$��
���K�����
��	�(���������
���
����
��� �
��#
�(� ������ ���
&��#
���
�	� �(�	
��K�
Software: Practice and Experience, #�$'�@ ����'��AI&
�JI�� H� '�

,�A-� �'�!��#(����;'�>���
����'�G���������9'�3����������
*'� ��		
��� 0'� 3��
%, et al.�� K�����	
�	��
� ���#
��
/�
���%�	�������7���	��
�&�!	�(��
��$	��K���
�
�	
�
�	� 	�
� 7���

����� ��� 	�
� .000� .�	
���	����$�
����
�
��
� ��� 0����

����� ��� ����$
)� �����	
��
!(�	
����7�	�����3
����(�� HHI'�

,�B-� 8'�8$
��
(��0'�:�
	����:'�:���(���'�F���$�������9'&
/'� 9�%���
$�� K/�
$&���#
�� 0����

����� ����
!��	"��
� /����	���� ��� �� ;���
� .���	���$� ���	
)	�K�
��
�
�	
� �	� 	�
� 7���

����� ��� 	�
� ��	
���	����$�
����
�
��
����/�
$����#
��0����

�����;������
��
���!(�	
����F���#�$$
�����	
�!	�	
��� HHE'�

,�E-� 8'� ��
��� G'� V����� :'� ������ ��� ='� �'&�'� ����� K��
8����$� /�
$� ���#
�� ��������� 	�� �
�
���$
�
!��	"��
�0#�$�	����K���
�
�	
��	�	�
�7���

��������
	�
�.�	
���	����$������	
��!��	"��
�������$���	�����
����
�
��
��������������	
�!	�	
��� HHB'�

�

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 9

ISBN: 1-60132-446-4, CSREA Press ©

Domain Modelling and Language Issues for Family History and Near-Tree

Graph Data Applications

C.A. Maddra and K.A. Hawick
Computer Science, University of Hull, Cottingham Road, Hull HU6 7RX, UK.

Email: {c.maddra, k.a.hawick }@hull.ac.uk
Tel: +44 01482 465181 Fax: +44 01482 466666

April 2016

ABSTRACT

Domain-Specific Modelling is a powerful software engineer-

ing approach to building complex software systems. Domain-

Specific Languages provide a powerful way of capturing and

encapsulating the applications vocabulary and central ideas for

whole families of software applications. We describe some

domain-specific modelling approaches and techniques based

around the application domain of family history or genealogy

systems where the central data model is a near tree-like struc-

ture. We discuss how: querying; modification; and aggregation

patterns of operation can be implemented in a number of ways

for this domain application. We explore the scalability of the

DSL approach and discuss wider issues in model and language

development.

KEY WORDS
software design; tree data; genealogy applications; domain-

specific languages.

1 Introduction
Domain specific modelling [23, 39] provides an important soft-

ware engineering approach to formulating software designs

based upon important features such as data models and key data

structures for specific application areas. In this article we focus

on the application area of family tree storage and analysis soft-

ware.

Domain Specic Languages (DSLs) [13, 34] are little program-

ming languages, that are often customizable [4] and are typically

designed for use around exclusively around a chosen domain.

Current popular general purpose languages such as C, C# and

Java all focus on the implementation level [6, 18] of software at

machine or virtual machine level. DSLs aim to provide what

can be seen as a suitable compromise between hard to express

concrete machine executions at implementation level and hard

to execute vague human conversation at the solution level. The

holy grail of a DSL project is to capture the essence of a family of

applications within a DSL to allow separation of concerns from

the implementation boilerplate and the solution creativity. This

then allows multiple applications to be created without having to

waste intellectual capital on the code intelligently automated by

the DSLs back end. The separation can also allow for portability

across different architectures through using different back ends.

Popular examples of DSLs include CSS, Regex, Flex/Bison,

Blitz++, Make and JMock expectations. DSLs are not a mere

set of libraries allowing you to plug other peoples algorithms

into your solution at implementation level but a language which

allows writing new algorithms and reusing others in the domains

level of abstraction. This is code automation rather than just

manual reuse. DSLs allow the user to work at the correct level of

abstraction for writability, readability and maintainability. Writ-

ing at this level of abstraction captures the intention of the pro-

grammer rather than the byproduct of their intention in the form

of an implementation [30].

The DSL approach has found uses in applications areas includ-

ing: automatic structural optimisation for agent-based models

[19]; operating systems development [7]; tile assembly in bio-

logical applications [8]; image processing [14]; wireless sensor

nets [29]; and network systems configuration [36]. DSLs also

find use more directly in development of software tools and soft-

ware itself such as software version conversions [12]; code gen-

eration [24]; and program generation [27].

Generally DSLs are implemented as a user interface over a se-

mantic model to maintain separation of the user interface and

back end logic. A semantic model is an executable implementa-

tion of a domain generally in the form of one or more libraries

implemented in a high level programming language. The DSL

acts as the user interface to this semantic model, shielding the

user from the technical implementation and allowing them to fo-

cus on the solution space. There may be many DSLs over a sin-

gle semantic model allowing programmers to only concern them-

selves with the sub-domains they want to while retaining all code

in a single base. Although there is no explicit extra functional-

ity, a convenient way of populating the semantic model allows

for more complicated systems to be created without concern of

the underlying implementation. In other words, a DSL can allow

the programmer to spend their intellectual capital on the prob-

lem domain rather than the solution space. The enhanced lever-

age on the underlying semantic model allows greater efficiency

of thought and thus more functionality for the same work. This

can be likened to the increase in productivity the manufacturing

industry has seen from their progressive increase in automation

and componentisation.

10 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

The definition of what makes a language a DSL is a blurry one,

with languages being more or less of a DSL rather than a direct

cut-off. This is especially true for internal DSLs which can be

classed as a separate language to their host or merely a feature

of it. The underlying point is not if a language is a DSL but if

it can reduce the abstraction gap between the problem and solu-

tion domain compared to its general purpose counterparts. The

successful use of DSLs relies on the mindset and practices of the

programmers as much as the languages themselves. The way a

language is used in a project can dene whether it is a DSL in that

project or not as much as the features of the language.

There are a number of DSL tools and frameworks available

[10, 11, 33]. Generally, a DSL generally conforms to this check-

list of desirable features: 1) Clearly Identifiable Domain; 2) Lim-

ited Expressiveness; 3) Fluent Language Structure. It is helpful

to look at DSLs though a concrete domain so patterns can be

mapped directly to a set of related example implementations,

which also allow us to show the compound nature of improve-

ments in language. It is hard to display the advantages of domain

specificity in a vacuum. Small changes in the level of abstraction

can simply be mapped onto a library call or macro apparently

removing the benefit of DSLs over GPLs, the advantage of these

small changes in abstraction adds to a large change in the over-

all abstraction because it changes the level that the programmer

needs to think. Working with macro’s and library calls locks the

programmer into the implementation level of a solution, and can

quickly become clumsy in a comment littered solution. Domain

specific solutions lock a user into thinking at the intention level

rather than the implementation.

Our chosen domain of genealogy is suited to domain specific lan-

guages because it is well established with domain jargon which

can be used in DSLs and is a firm domain which has guaranteed

future work making a DSL worth the initial effort. Genealogical

analysis is a new area which is becoming more important as we

get more data and DSLs have a strong role to play in this as sci-

entists realise it’s not just about how much data you have but also

the ease in creating novel ways to analyze this data. DSLs can

be used as a method of input for genealogical analysis which can

improve the quantity and quality of work possible given similar

circumstances [26, 31]. Genealogy is a useful domain because

it’s a concrete application of directed graphs which link multiple

genetic families together into a collection of blood lines forming

tree-like graphs. Graphs are an exciting area for computer sci-

ence because of their applicability as network oriented databases.

Genealogy file types can also be used to create single records of

people which are not interlinked but stored merely for the record-

ing of a persons information. For this report this is ignored as it

is not important for genealogy research unless used to merge into

trees and is a subset of the use of DSLs for full tree creation and

modification.

We want to investigate the issues for using domain specific lan-

guages in graph like environments, with the concrete example of

genealogy. Currently the genealogy area is filled with graphical

applications to edit, view and share data because it is suitable for

the layman market. We want to consider the useful techniques

for and create a case study of the use of textual internal DSLs

in this area to see what can be performed without the use of a

graphical user interface.

Our article is structured as follows: In Section 2 we review back-

ground ideas on the genealogical application domain. We focus

on technical aspects we have explored in our present project in

Section 3 and in Section 4 we provide some case study details on

our approach. In Section 5 we give a discussion of the implica-

tions of using Python and other tools for this sort of system and

offer some conclusions and areas for further r work in Section 6.

2 Genealogy Domain Review
Genealogy is one of the oldest hobbies in the world. Whether

people are drawn to it because of intrigue from a blank slate or

tradition in the family technology is making finding, storing and

sharing your ancestors far easier [3, 35]. Historically Genealogy

has been done through paper based systems such as census data

and birth records which are reasonably difficult to gain access

to. With the advent of cloud oriented genealogy services such

as ancestry.com and familysearch.org anybody can access these

records to build their own family trees. These cloud oriented

systems also remove the problem of scale as huge amounts of

records can be searched through at a speed far faster than a hu-

man could search through even a few pages of paper records.

Digital searching allows for complex searches including wild

cards, conditionals and inferred missing data which are time con-

suming and difficult to perform by a human because of man-

ual calculation and problems with remembering combinations of

conditions.

Currently the genealogy market is dominated by on-line services

because of the convenience of the cloud for storage and social

networking. Big providers such as ancestry.org are active in im-

proving the amount of data available to genealogists and the level

of analytics which can be performed on this data [2].

One of the biggest offline suites is the gramps project, which is

an open source python genealogy IDE which focuses not only

on GEDCOM but also it’s own Gramps XML format. The main

concept behind Gramps’ features is to allow the user to focus

on their genealogical research in as much or as little detail as

they want with peace of mind that it’s all safely stored, search-

able and sharable whenever they want. This is done using a GUI

with limited options for extension, fitting its goal audience of

hobbyist family tree researchers. Gramps is officially released

for Linux with community supported windows and mac releases,

this means different operating systems will give a different expe-

rience.

A long running genealogy suite is LifeLines which has been

maintained as an open source project after the creator Tom Wet-

more stopped working on it in 1994. Lifelines is based com-

pletely around GEDCOM but not any particular standard. It al-

lows you to extend the default GEDCOM standard to suit your

needs although this will cause comparability issues and data loss

when sharing your genealogy data. Importantly for us lifelines

pioneered the idea of using a report generation language to pro-

duce all the reports of the program rather than relying on pre-

set report types. This DSL based approach allowed lifelines to

perform any reasonable report generating task which could be

imagined leaving it the choice of GenWeb and GenServ for their

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 11

ISBN: 1-60132-446-4, CSREA Press ©

backend This report generation language is covered further in

similar genealogy DSLs.

GEDCOM (Genealogical Data Communication) is a specifica-

tion designed to pass genealogical data between parties. It was

developed by the Church of Jesus Christ of Latter-day Saints to

aid genealogical research. GEDCOM is widely supported by

genealogy software and has a simple reference based lineage-

linked structure to link families together. [1].

For cross platform sharing to work the Genealogical Data Com-

munication (GEDCOM) standard must be consistently followed.

Sadly when big players such as Family Tree Maker do not follow

the GEDCOM standard by adding in new tags it means software

which uses GEDCOM has started to accept non-officially valid

GEDCOM as good input to appease users. This makes it im-

possible to create a gedcom parser which will accept all ’GED-

COM’ and clarifications on the subset accepted must be made.

GRAMPS solves this problem with a third party add on called

GEDCOM-extensions which supports pervasive changes to the

gedcom standard. We focus on GEDCOM in this project be-

cause it is the current de-facto standard for sharing genealogical

data.

The GRAMPS project setout with the goal of making a portable,

machine and human readable format which can be read and writ-

ten without data loss. The GRAMPS documentation alludes

to XMLs compatibility with source control software when un-

compressed and small file size when compressed. For perfor-

mance reasons the XML representation is not used as the internal

database for GRAMPS but as an export format. This format has

not been used by this project because of it’s limited compatibility

with software suites aside from GRAMPS. Including GRAMPS

XML as an extension to this project would be possible as the

domain specific language layer would not need changing as the

semantic models interface could remain the same.

The file format of Family tree maker, Ancestry.com’s flagship

software and claimed to be the number 1 selling genealogy soft-

ware. The format is called FTW because Family Tree Maker

was called Family Tree Maker for Windows in previous version.

This format is proprietary and requires the Family Tree Maker

software to convert to other formats. There have been complaints

about the poor conversion to other formats as well [22]. This for-

mat is not suitable for this projects research because it’s not open

and it’s associated tool is paid software aimed towards editing in

a graphical setting.

Zandhuis presents the “Semantic web” as a way of storing ge-

nealogical data in an open and extensible way rather than the cur-

rent file formats used. It presents a first attempt at a genealogical

ontology to start the discussions for a standardized ontology with

direct goals towards improving the current problems in exchang-

ing genealogical data and automating it’s processing. Integrity

checks and intelligent processing can be performed on the ge-

nealogical data to check for constancy and potential errors. The

ontology formalizes things such as events timing before, after or

during a time period making automation of searching and analy-

sis possible. This work could be complimented by a DSL which

allows the input and manipulation of the semantic web in the

same way this project deals with gedcom. Given that satisfac-

tory APIs are provided by the ontology the DSL could give rich

feedback based only on interfaces with the extensible ontology.

Displaying Genealogical data is an issue related to what the user

needs to ascertain from the data. The traditional family tree is

a generational graph starting from a single person as the root,

but this method of notation does not show people in relation to

time and poorly scales as descendants have families of their own

causing excessive growth [25].

Mass scale genealogy is made possible by crowd sourcing many

peoples research into combined files to aid everybody’s research.

The quick and successful merging of analogue genealogy data

such as paper records relies on new copies being made and hand

checking through existing records. This is tedious and error

prone but has the advantage of interactions between researchers

and knowledge known by the researcher but not stored in records

may be combined with the existing information to aid merging

or add new information. This process can be aided through dig-

itized records because much of the tedious comparing work can

be automated, leaving the researcher to merely confirm assump-

tions by the merging program. Unfortunately this can lead to

errors in false-positive merges and false-false misses of merges

which could be avoided by a human’s intuition, errors due to in-

correct records on either side are hard to avoid aside from com-

mon sense checks such as timeliness and location. The full auto-

matic merging of digital files is also an issue, especially without

strong standardization on what information is to be included in

records (even if this requirement is just a method for saying if a

field is not available) and how to format these records to make

digital searching and sorting possible in all cases. Domain spe-

cific languages and enforced underlying models allows these to

be enforced and inform the user where input does not meet the

standard which is not possible in analogue or pure file-format

input.

The semantic model idea allows the data to be stored in any for-

mat which matches the DSLs interfaces, this can be combined

with other research areas such as work in aiding the automated

process of using graph algorithms to merge family trees have

been developed [38].

There are a number of established Genealogy DSLs available.

We describe some of these and their features.

Life lines [37] has a reports language which you can specify any

type of report you would like, with common reports programs

given with the distribution as examples. This gives flexibility

in comparison to the common solution of pre-made templates

which you merely provide input to at the cost of the removal of

simple GUI modifications of pre-made templates. The LifeLines

language is implemented as many function calls in C. The deci-

sion to use C reduces the potential for internal DSL tricks as C

has low language extension and tinkering support, this leaves the

lifelines language close to the implementation level rather than

bringing the user up to their solution level of abstraction.

This language has been used during undergraduate dissertation

at the University of Hull but without success because of not be-

ing able to get to grips with the language referring to the simple

examples and lack of an active online community. The documen-

tation for the language is example based with the most common

reports already having programs written up. Sadly the complex-

ity of the reports language still makes it difficult for a novice to

12 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

understand how the reports are generated from the given code,

this would be solved with an intention level approach. This ex-

ample from the Lifelines language documentation [37] prints the

ancestry of an individual. The individual is specified at runtime

using the terminal.

p roc main ()

{
g e t i n d i (i n d i)

l i s t (i l i s t)

l i s t (a l i s t)

enqueue (i l i s t , i n d i)

enqueue (a l i s t , 1)

whi le (i n d i , dequeue (i l i s t)) {
s e t (ahnen , dequeue (a l i s t))

d (ahnen) ” . ” name (i n d i) n l ()

i f (e , b i r t h (i n d i)) { ” b . ” long (e) n l () }
i f (e , d e a t h (i n d i)) { ” d . ” long (e) n l () }
i f (par , f a t h e r (i n d i)) {

enqueue (i l i s t , p a r)

enqueue (a l i s t , mul (2 , ahnen))

}
i f (par , mother (i n d i)) {

enqueue (i l i s t , p a r)

enqueue (a l i s t , add (1 , mul (2 , ahnen)))

}
}

}

Another DSL similar to our case study was written in 2013 by

Paul Johnson [21]. This DSL is implemented in perl which has

good support for extension by internal DSLs and Johnson has

taken advantage of this to provide a good object oriented domain

specific experience for the user. This DSL’s distribution includes

an unfinished ’lines2perl’ program which converts lifelines pro-

grams into the DSL. This DSL fulfils the same role as the family

tree manipulation DSL from this project and is extremely similar

once the differences between a pearl internal DSL and python

internal DSL are mitigated.

open a GEDCOM file and print out the names and birth dates of

all individuals.

my $ged = Gedcom−>new (

g r a m m a r v e r s i o n => ” 5 . 5 ” ,

g e d c o m f i l e => $ g e d c o m f i l e ,

r e a d o n l y => 1) ;

f o r my $ i ($ged−>i n d i v i d u a l s)

{
f o r my $bd ($i−>g e t v a l u e (” b i r t h d a t e ”))

{
p r i n t $ i−>name , ” was born on $bd\n ” ;

}
}

3 Building Domain Specific Languages
The central idea of the DSL community is to create a language

which works at the correct level of abstraction for a chosen fi-

nite domain, generally moving towards a more declarative en-

vironment to express solutions. Having a defined grammar for

the domain means problems with overlap between domains, for

example ’agents’ having separate meanings for artificial intelli-

gence and agent based modelling are explicitly dealt with as the

domain of the language sets the context and semantics for the

jargon within the language.

Writing languages in their interpreter allows us to perform in-

teractive programming as is talked about in early 4th genera-

tional languages literature as monologue vs. dialogue [28]. With

a concrete domain, 2-way conversations between the program-

ming language and the programmer are useful because repercus-

sions of a statement on an unknown dataset cannot be known

before execution. An example of this is when asking for a per-

sons mother, if they have more than one mother a simple ques-

tion from the language run time environment will notify the user

while allowing the syntax for regular events clean. In our case

study this problem is solved by using mother() which selects the

only available mother or if a conflict exists requests the user

which they would like to use. If the user knows which mother

they would like to use before performing the statement they can

specify their chronological index or name.

How a DSL is related to it’s host language denotes whether it’s

internal or external. Internal DSLs are hosted within an existing

GPL and implemented using there language features. Internal

DSLs are popular within the functional community because of

the extensibility of languages like LISP and Ruby. Early lan-

guages such as C don’t offer much support for internal DSLs

because of their lack of extendable features. Recent imperative/-

functional mixed languages such as SCALA and Python are a

mix between these two extremes. The internal DSL code is gen-

erally mixed in with standard GPL code seamlessly and compiled

or executed during the same process.

External DSLs are an explicitly different language to their host

language which has it’s own parser. As external DSLs have a

separate parser to their host language they have complete control

of their syntax and semantics rather than just what’s afforded

by the extensibility of the host. This extra control lends itself

to domains where the model of execution or order of operations

cannot be elegantly expressed using standard GPL syntax such

as database querying. external DSLs can be intended for use as

stand alone files e.g. configuration files or as explicit sections

within GPL code eg regex.

An additional definition of “active libaries” [5] can be made for

DSLs which although they are treated as internal DSLs they play

a role in the compilation or execution of their code allowing

for compile and/or run time domain specific optimization to be

performed. Active libraries are popular with the extensible lan-

guages communities such as LUA and have been used in projects

such as Husselmann’s [20]. For this project we have created a set

of internal python DSLs. Internal DSLs have been chosen be-

cause they allow seamless inter-operation between not only the

DSLs themselves but also any other python code which is appro-

priate for the graph data created by the DSLs from the gedcom

files. Generally speaking internal DSLs also have a lower imple-

mentation time to their external counterparts. Creating multiple

languages each with a niche allows for a unique and appropriate

view for each different sub-domain, layering these over the same

semantic model helps code re-use.

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 13

ISBN: 1-60132-446-4, CSREA Press ©

In the traversal DSL, we use fluent interfaces for traversing the

family tree. These allow a user to start at any person in the tree

and move through their relatives in a single command. This is

compatible with the use of run-time dialogue within the language

as mentioned earlier so the fluent interface can be guided where

they’re are conflicts or multiple options.

Figure 1: Fluent Interface to system.

It is considered good practice to separate the implementation of

a DSL from it’s front end [9]. Our DSLs are layered over a sin-

gle semantic model because they are all based around the same

software family and using the same boilerplate. Using the same

backbone for each DSL allows code reuse and DSL inter opera-

tion without extra implementation time from re-writing code and

creating interfaces. A semantic model is the semantics of a do-

main area in code, generally as a library or a set of libraries.

The semantic model is perfectly capable of being used by itself

without the intervention of the DSLs, the DSLs are merely a level

of abstraction above the semantic model allowing for better com-

munication in that domain. We have chosen to have several DSLs

over the same model so they can be different ’looking glasses’

into the sub domains of our choice. Different users want to see

different things from the same domain and this can be solved by

using different languages for different purposes.

The downside of this is for people who wish to use multiple sub

domains will have to learn multiple DSLs, although this is a di-

rect trade with having to learn more language features from a sin-

gle bloated language. There’s an argument that by learning the

principles large general purpose languages in general you learn

the principles of how to program in any similar language.

Figure 2: System architectural model.

Figure 2 shows how Python can be integrated into the model ar-

chitecture.As mentioned previously one of the benefits of using

an internal DSL is access to the host language’s existing ecosys-

tem. Python is a particularly strong candidate for this because of

the large amounts of scientific libraries and frameworks available

such as Seaborn, Bokeh and Pygal for visualisation. Pre-existing

tools to communicate with external languages and toolkits make

this advantage even stronger because external interoperation with

status-quo tools is dealt with out of the box. An example of this

would be a user of our case study using Pymatlab to send the

results of a query from our DSL into MATLAB for a pre-made

script to produce graphs on the members connectivity.

4 Python Internal DSL
This project’s back-end implementation expands on work by

Nikola Skoric [32] (which itself was expanding on work by

Daniel Zappala of Brigham Young University) who has created

a GEDCOM parser which implements a subset of the GEDCOM

5.5 specification. Expanding on an existing GEDCOM parser

saved time in picking the tags to implement and implementing

them. This parser allows us to the the GEDCOM information

and ingest it into an object oriented language representing it as

a graph stored within a dictionary. This back end forms our se-

mantic model of the family tree area, this semantic model can

perform all our supported tasks in our domain even without the

use of our front end DSLS.

The front-end DSLs have been created to allow sub-domains of

genealogy to have a distinct DSL each which use the dominant

data type of that sub domain as the basis for actions with sub-

domain specific jargon. Doing this allows us to work around the

essence of each sub-area for example the traversal DSL is based

around a tree and the family tree DSL is based around individuals

and families. You can use the jargon of a family tree or data

type tree in these DSLs interchangeably because the difference

between in the DSLs is merely the users framing because the

underlying representation is the same.

The DSLs are intended to be used within the python interpreter

so the user can receive feedback as they program. The DSLs

can also be used to create python scripts for re-use (for example

doing common operations on multiple files at different times)

or writing a new program or language as a level of abstraction

above these DSLs. An example of a simple further level of ab-

straction over these DSLs such as a check box GUI are useful

for people who do not wish to program at the expense of depth

of expression. An interesting further level of abstraction would

be a visual family tree manipulation language designed towards

touch screens because it could provide intuitive manipulation of

family trees which requires no computing knowledge at all.

As this project has been built on top of an existing GEDCOM

parser project the handling of additional known and emerging

data formats isn’t ideal to implement. This implementation de-

cision was an error at the start of the project which cannot be

changed without re-writing the projects software. Using parsing

technology such as Pyparse or funcparlib to filter GEDCOM data

into a custom made, extensible model for the area of genealogy

would have been a better solution because further work could be

done with other back-end models and different input/output data

types.

GEDCOM files store genealogy data using a lineage linked data

format, this forms one or more graphs containing all the nodes.

Order within the file itself is insignificant as the people and fam-

ilies are identified using reference tags.

The storage of the data in python is inherited from Nikola Sko-

14 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

ric’s parser which this project builds upon. GEDCOM files are

stored as individual lines which contain all the data and as con-

taining objects for people and families which serve as encapsu-

lating references.

5 Discussion
There are a number of advantages of using a DSL over that of

using a model directly. Given that software reuse through a se-

mantic model (in this case a framework) is beneficial because of

the inherent benefits of software reuse we can ask: as a seman-

tic model can be used directly, why is using a DSL beneficial.

The theory behind using a DSL is to improve the programmers

leverage on a certain domain, whereas the semantic model is

merely designed to encapsulate business logic and facilitate soft-

ware reuse. The separation of a back end model and a front end

DSL aids the maintainability and scale-ability of the solution.

This projects DSLs can provide a case study to this question.

Determining a qualitative measure such as leverage on a domain

is a difficult task and has been tackled by many authors. A quan-

titative method of grading code is lines of code, they’re issues

with this method although for these purposes it is a viable indi-

cation [15–17]. The Lines of code metric can only be considered

viable if both examples are written in good faith to be the most

appropriate code for the task. For example not splitting state-

ments into several lines to effect results or vice versa.

Traditionally genealogy data has been dealt with through word

of mouth and paper records. The growing adoption of digital

storage has opened up the question for how can we digitally store

and manipulate genealogy data with at least the same amount

of expression, compatibility and longevity as the previous paper

records. To challenge this we must ask: where does paper excel

and fail and how can a digital system improve upon the current

situation.

Paper records are extremely flexible because the owner has com-

plete control of what to write without needing any skills aside

from reading and writing. This also leads to a problem because

with flexibility comes increased chance for non-standardised, il-

legible or inconsistent records. Paper is also a long term storage

solution depending on the type of paper used, environment it’s

stored in and the organisation of the storage system. (MORE)

The main candidates for digital user interfaces are:

• Direct file format editing e.g. GEDCOM

• Text based programmatic editing e.g. through a program-

ming language

• Graphical editing e.g. manipulating a visualisation of a tree

• Form based applications e.g. GRAMPS

• Web based applications e.g. familysearch.org

These different strengths and weaknesses mean different audi-

ences can benefit from different user interfaces. For example

for quick viewing and editing of genealogy data applications are

suitable for all audiences including those without programming

knowledge, for more complex or repetitive tasks then a program-

ming language can save time, effort and reduce mistakes. The

benefit of the domain specific language over a semantic model

approach we have taken in this project is different forms of user

interface can all work on the same model. This means once you

have spent the time developing the DSL developing graphical or

form based interfaces above this DSL could be faster and cross-

compatible with code written in the DSL.

6 Conclusion
In summary the intent-level communication lets the domain ex-

pert communicate in the language of the domain and their in-

tention to be automatically moved to the implementation level

by the DSL environment. We have found this reduces the time to

implement manipulations, analysis and traversals of a GEDCOM

file in relation to directly using the GEDCOM files or writing

your own algorithms in python directly.

Using an internal DSL allows the project to nativity inter-operate

with existing python libraries. This would be useful if for ex-

ample the manipulation DSL was used with modifications per-

formed by some existing graph analysis library.

The DSLs created for this project can be used as the backbone

of future projects to reduce their workload. This goes with the

extensible software philosophy of kernel and configuration being

separate to allow malleable, reliable software. A future project

in the genealogy DSL area could be a visual DSLs for modifying

family trees. This project would be angled towards the applica-

bility of visual DSLs where the domain especially lends itself

to tactile manipulation and a case study for the use of a domain

specific language to aid in the creation of another domain spe-

cific language in the same software family.

A possible future project could investigate the related area of

graph-oriented DSLs, this could be considered a level of abstrac-

tion up from this project which focus a certain sub domain of

graphs (family trees).The graph domain is exciting because of

current developments in the graph database community bring-

ing new, difficult problems to be solved into the space. Example

projects could be graph manipulation languages, graph database

languages and quantitative experiments based around these lan-

guages.

We believe the software engineering approach of developing

DSLs that implement ideas embodied in models has consider-

able potential, and that this potential has not yet been widely

exploited for many applications domains, particularly those with

complex underpinning features.

References
[1] Allen, J.: Gedom(future direction) announced by family history

(May 1998), https://listserv.nodak.edu/cgi-bin/
wa.exe?A2=ind9805A&L=GEDCOM-L&P=R2&I=-3&T=0

[2] Baker, P.: How ancestry.com uses big data. Fierce Big

Data (2014), http://www.fiercebigdata.com/story/
how-ancestrycom-uses-big-data/2014-08-04

[3] Burton, J.: Genealogy issues paper. In: AITSIS Workshop on Ge-

nealogies (2002)

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 15

ISBN: 1-60132-446-4, CSREA Press ©

[4] Cong, J., Sarkar, V., Reinman, G., Bui, A.: Customizable

domain-specific computing. IEEE Design & Test of Computers

March/April, 6–14 (2011)

[5] Czarnecki, K., Eisenecker, U.W., Glück, R., Vandevoorde,

D., Veldhuizen, T.L.: Generative programming and active li-

braries. In: Selected Papers from the International Seminar

on Generic Programming. pp. 25–39. Springer-Verlag, London,

UK, UK (2000), http://dl.acm.org/citation.cfm?
id=647373.724187

[6] Czarnecki, K., O’Donnell, J.T., Striegnitz, J., Taha, W.: Dsl imple-

mentation in metaocaml, template haskell, and c++. In: Domain-

Specific Program Generation. pp. 51–72 (2003)

[7] Dagand, P.E., Baumann, A., Roscoe, T.: Filet-o-fish: practical

and dependable domain-specific languages for os development.

In: Proceedings of the Fifth Workshop on Programming Lan-

guages and Operating Systems. pp. 5:1–5:5. PLOS ’09, ACM,

New York, NY, USA (2009), http://doi.acm.org/10.
1145/1745438.1745446

[8] Doty, D., Patitz, M.J.: A domain-specific language for program-

ming in the tile assembly model. In: Proc. Fifteenth Int. Meeting

on DNA Computing and Molecular Programming. pp. 8–11 (Mar

2009)

[9] Fowler, M.: Domain-Specific Languages. No. ISBN 0-321-71294-

3, Addison Wesley (2011)

[10] de Geest, G.: Building a framework to support Domain-Specific

Language Evolution using Microsoft DSL Tools. Master’s thesis,

Software Engineering Research Group, Delft University of Tech-

nology (2008)

[11] de Geest, G., Savelkoul, A., Alikoski, A.: Building a framework

to support domain-specific language evolution using microsoft dsl

tools. In: Proc. 7th OOPSLA Workshop on Domain-Specific Mod-

eling (DSM’07) (2007)

[12] de Geest, G., Vermolen, S., van Deursen, A., Visser, E.: Gener-

ating version convertors for domain-specific languages. In: Proc.

15th Working Conf. on Reverse Engineering (2008)

[13] Ghosh, D.: Dsl for the uninitiated - domain-specific languages

bridge the semantic gap in programming. Communications of the

ACM 54(7), 44–50 (2011)

[14] Guenter, B., Nehab, D.: Neon: A domain-specific programming

language for image processing. Microsoft Tech Report MSR-TR-

2010-175, Microsoft Research (2010)

[15] Hawick, K.A.: Engineering domain-specific languages for com-

putational simulations of complex systems. In: Proc. Int. Conf. on

Software Engineering and Applications (SEA2011). pp. 222–229.

No. CSTN-123, IASTED, Dallas, USA (14-16 December 2011)

[16] Hawick, K.A.: Engineering internal domain-specific language

software for lattice-based simulations. In: Proc. Int. Conf. on Soft-

ware Engineering and Applications. pp. 314–321. IASTED, Las

Vegas, USA (12-14 November 2012)

[17] Hawick, K.A.: Fluent interfaces and domain-specific languages

for graph generation and network analysis calculations. In:

Proc. Int. Conf. on Software Engineering (SE’13). pp. 752–759.

IASTED, Innsbruck, Austria (11-13 February 2013)

[18] Hemel, Z.: Methods and Techniques for the Design and Imple-

mentation of Domain-Specific Languages. Ph.D. thesis, Delft Uni-

versity of Technology (2012), iSBN 978-90-8570-794-3

[19] Husselmann, A.V., Hawick, K.A.: Automatic high perfor-

mance structural optimisation for agent-based models. In: Proc.

14th Int. Conf. on Software Engineering Research and Prac-

tice (SERP’14). pp. 1–7. WorldComp, Las Vegas, USA (21-

24 July 2014), http://www.hull.ac.uk/php/466990/
csi/reports/0010/csi-0010.html

[20] Husselmann, A.: Data-Parallel Structural Optimisation in Agent-

Based Modelling. Ph.D. thesis, Computer Science, Massey Uni-

versity, Albany, North Shore, New Zealand (May 2014)

[21] Johnson, P.: Gedcom 1.19 (August 2013), https://
metacpan.org/pod/Gedcom

[22] Jones, T.: Ftw gedcom (March 2009), http://www.
tamurajones.net/FTWGEDCOM.xhtml

[23] Karlsch, M.: model-driven framework for domain specific lan-

guages demonstrated on a test automation language. Master’s

thesis, Hasso-Platner-Institute of Software Systems Engineering,

Potsdam, Germany (2007)

[24] Kelly, S., Tolvanen, J.P.: Domain-Specific Modeling: Enabling

Full Code Generation. Wiley (2008)

[25] Kim, N.W., Card, S.K., Heer, J.: Tracing genealogical data with

timenets. In: Proceedings of the International Conference on Ad-

vanced Visual Interfaces. pp. 241–248. ACM (2010)

[26] Ledford, H.: Genome hacker uncovers largest-ever family tree.

Nature (October 2013), http://www.nature.com/news/
genome-hacker-uncovers-largest-ever-family-\
\tree-1.14037

[27] Lengauer, C., Batory, D., Consel, C., Odersky, M. (eds.): Domain-

Specific Program Generation. No. 3016 in LNCS, Springer (2003),

ISBN 3-540-22119-0

[28] Martin, J.: Fourth Generation Languages: Principles. Pretice Hall

(1985)

[29] Sadilek, D.A.: Prototyping and simulating domain-specific lan-

guages for wireless sensor networks. Tech. rep., Humboldt-

Universitat zu Berlin, Institute for Computer Science (2007)

[30] Simonyi, C.: The death of computer languages, the birth of inten-

tional programming. Tech. rep., Microsoft Research (1995)

[31] Singer-Villalobos, F.: Computer scientists at ut austin crack

code for redrawing bird family tree. Texas Advanced Comput-

ing Center (2014), https://www.tacc.utexas.edu/-/
computer-scientists-at-ut-austin-crack-code\
\-for-redrawing-bird-family-tree

[32] Skoric, N.: simplepyged (February 2014), https://github.
com/dijxtra/simplepyged

[33] Sprinkle, J., Karsai, G.: A domain-specific visual language for

domain model evolution. Journal of Visual Languages and Com-

puting 15, 291–307 (2004)

[34] Taha, W.: Domain-specific languages. In: Pro. Int. Conf. Com-

puter Engineering and Systems (ICCES). pp. xxiii – xxviii (25-27

November 2008)

[35] Veale, K.J.: A doctoral study of the use of internet for genealogy.

Historia Actual Online 7 pp. 7–14 (2009)

[36] Voellmy, A., Agarwal, A., Hudak, P., an Sam Burnett, N.F.,

Launchbury, J.: Don?t configure the network, program it! domain-

specific programming languages for network systems. Tech. Rep.

YALEU/DCS/RR-1432, Yale University, USA (July 2010)

[37] Wetmore, T.: The lifelines programming subsystem and re-

port generator (2005), http://lifelines.sourceforge.
net/manual.3.0.39/ll-reportmanual.html

[38] Wilson, R.: Graph-based remerging of genealogi-

cal databases. In: Workshop on Technology for Fam-

ily History and Genealogical Research. vol. 1 (2001),

http://dagwood.cs.byu.edu/fht/workshop01/fht2001prog.php

http://dagwood.cs.byu.edu/fht/workshop01/final/Wilson.pdf

[39] Zschaler, S., Kolovos, D.S., Drivalos, N., Paige, R.F., Rashid,

A.: Domain-specific metamodelling languages for software lan-

guage engineering. In: Proc. Software Language Engineering

(SLE 2009). LNCS, vol. 5969, pp. 334–353 (2009)

16 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

Real-Time Requirements Engineering (RTRE) as Extended to Hard
and Soft Real-Time Analysis

Ahmed Tarek1, and Ahmed Farhan2

1Engineering, Physical and Computer Sciences, Montgomery College, Rockville, Maryland, United States of America
2College of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America

Abstract— Real-Time Systems (RTSs) have more stringent
temporal requirements as compared to classical software.
Requirements analysis for RTS is more complex compared
to traditional software. Flowcharts as purely sequential tools
are not sufficient for concurrent real-time systems. Besides,
the requirements analysis leading to real-time software de-
sign varies from system to system contingent upon software
needs, which has progressed into the relatively new disci-
pline of Real-Time Requirements Engineering (RTRE). RTRE
uses additional tools and techniques besides the traditional
ones, such as, Process Activation Table, Decision Table,
Decision Matrix, and so in the Structured Analysis leading
to robust and secured software design. In this paper, we
address some of the essential RTRE tools and techniques,
and their significance to real-time analysis as extended to
Hard and Soft RTS. Hard and soft RTS are not required
to be embedded software systems. However, time still plays
a crucial role in their operation. This extended approach
yields with better design, coding and software reliability.

Keywords: Real-Time System, Real-Time Requirements Engi-

neering, Structured Analysis, Hard Real-Time Systems, Soft Real-

Time Systems, Embedded Real-Time Systems

1. Introduction
There exists a wide variety of tools and techniques for

requirement analysis of strictly sequential systems. For in-

stance, Jackson System Development (JSD) [4] covers the

complete technical development of a wide class of systems

that are strictly sequential. Concurrency imposes additional

restrictions to system development [1]. A real-time system

needs to respond to stimuli that occur at different points

in time. Therefore, it is necessary to organize its archi-

tecture so that, as soon as a stimulus is received, control

is transferred to the correct handler. Hence, the system

architecture must allow for fast transfer to the appropriate

handler. This is impractical in sequential programs. As a

result, real-time systems are designed as a set of concurrent,

cooperating processes, with a real-time executive controlling

the processes [3]. Based on the sensitivity to temporal

requirements, there are two categories - soft and hard real-

time systems. With real-time systems, programŠs control

flow is the most important part Ű as concurrency and

control comes together and plays a vital role in the system

operation. Therefore, there are two critical things to consider

- the actions the program should take, and also the order

of taking those actions. These two factors are related to

Structure of the Code Ű how the code would look like.

For classical software, simple, straight forward flowcharts

are sufficient, where as for Real-time systems, programs

are concurrent, and flowcharts are not enough as they are

used to represent sequential control flow. This gave rise

to the Real-Time Requirements Engineering (RTRE). The

requirements engineering of real-time software deals with

how requirements should be expressed, and also determines

final formats of requirements specification.

In Section 2, specific terms and notations used in this

paper are briefly deliberated. Section 3 explores RTRE.

Section 4 considers the real time software design steps.

Section 5 surveys the tools and techniques used for Real-

Time Structured Analysis. Section 6 is the conclusion based

on models of RTRE discussed in this paper, which also

explores the future research avenues.

2. Terms and Notation
Following terms and notations are used all throughout this

paper.

Soft Real-Time Systems: Time is of utmost importance

but a little deviation from time bound does not lead to

disastrous effects but only degrades the system performance.

An example is an online banking system.

Hard Real-Time Systems: Time is the most critical factor,

and a small deviation from time bound could be disastrous.

An example is the real-time system used with a chemical

processing plant.

Real-Time Requirements Engineering (RTRE): The re-

quirements engineering for real-time software deals with

how requirements for soft and hard real-time systems should

be expressed. RTRE also determines final formats of require-

ments specification.

RTA: Real-Time Analysis.

PSPEC: Process Specification.

CSPEC: Control Specification.

DFD: Data Flow Diagram.

CFD: Control Flow Daiagram.

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 17

ISBN: 1-60132-446-4, CSREA Press ©

DD): Data Dictionary.

STD: State Transition Diagram.

PAT: Process Activation Table.

DT: Decision Table.

DM: Decision Matrix.

FSM: Finite State Machine.

FSA: Finite State Automata.

AID: Architecture Interconnect Diagram.

IP: Input Processing.

OP: Output Processing.

UIP: User Interface Processing.

MSTP: Maintenance and Self-Testing Processing.

CD: Context Diagram.

CCD: Control Context Diagram.

3. Real Time Requirements Engineering
Explored

For real-time systems, program’s control flow is the most

important part, as concurrency and control come together

and plays a vital role in system operation. This incorporates

but is not limited to the the following:

1) Actions of the Real-Time Software: The actions

that the real-time program is supposed to take, when

certain event occurs. For example, shut down the

chemical processing plant in times of an emergency.

2) The Order of Taking Actions: The order in which

actions are required to be performed is of paramount

importance for real-time concurrent systems. This is in

order to avoid any mishap. For instance, boiler needs to

be shut down before stopping the plant operation. User

information is required to be saved before logging out

of an online account.

All these determine the structure of the code, which is

how the code is to be designed, and how the code would

look like. Therefore, for classical software, simple, straight

forward flowcharts are sufficient. With real-time software

operating in concurrent mode, flowcharts are not sufficient,

as flowcharts are used to represent Sequential Control Flow.

This has advanced the Real-Time Requirements Engineering

(RTRE) for real-time system design and operation. The

requirements engineering of real-time software (RTS) deals

with how requirements should be expressed for designing

concurrent, real-time systems. RTRE also determines the

final formats of the requirements specification.

RTSs are almost always related to the surrounding en-

vironment with which the system interacts. As a result,

for RTS, the requirements are grouped into categories as

follows:

1) Input requirements relating to input signals or data.

2) Output requirements relating to output signals or data.

3) Joint I/O requirements. These are related to input and

output data simultaneously.

4) Processing requirements relating to internal function

of software.

In addition to the above functional requirements that relate

to the functionality of real-time software, there is a group of

other requirements relating to certain attributes of software

such as, performance, safety, reliability, security, etc. The

discussion in this research paper on RTRE will highlight

and illustrate these diverse issues that come naturally with

real-time system design and construction.

3.1 Advantages Rendered Through RTRE
Real-Time Requirements Engineering offers added tools

and techniques for robust analysis that ensures safety, se-

curity and system reliability. Following are the advantages

rendered through RTRE.

Advantages of RTRE:
For Hard and Soft Real-time Systems, with RTRE:

1) Flow control analysis for software becomes easier.

2) Yields better software architecture.

3) Less chance of errors in Real-time Software Design.

4) RTRE provides with a robust analysis leading into

robust and reliable software design.

5) As the design is robust, there is less chance of chang-

ing the software design or requirements later resulting

in reduced cost of development.

6) Eventually, this robust process results in better real-

time software testing strategies.

From Software Analysis to Software Testing with RTS, itŠs

a complete process known as the Structured Approach.

4. Real Time Software Design Steps
The Hatley & Pirbhai approach as articulated in [1] is

one of the best approaches to real-time software design. The

modified Hatley and Pirbhai approach starts designing the

software with the Context Diagram, and follows through

seven design steps.

1) Perform Data Flow Decomposition using Data Flow

Diagrams (DFDs).

2) Perform Control Flow Decomposition through Control

Flow Diagrams (CFDs).

3) Develop Process Specifications (PSPECs) in Struc-

tured English.

4) Develop Control Specifications (CSPECs) using State

Transition Diagrams (STDs).

5) Develop Response Time Specifications (RTSs) for

timing thresholds.

6) Develop Data Dictionary (DD).

7) Produce Architecture Interconnect Diagrams (AIDs).

The key to developing real-time software is understanding

the relationship of software with the surrounding environ-

ment, with which, the software interacts. For instance, for

Airline Ticket Reservation software, the real-time software

interacts with the customers, who are trying to buy the

18 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

tickets. The principal ways of expressing these interactions

are:

1) A Physical Diagram (PD), representing all physical

entities, including a computer system or systems, if

applicable. This leads to Physical Diagram.

2) A Context Diagram (CD) is a refinement of a Physical

Diagram that represents the Real-Time Software as

a single bubble (circle), and all external devices as

rectangles. There are arcs connecting the circle, and

the rectangles representing connections, data flow, and

also the directions of data flow.

The key elements in the design with this approach are based

on the following:

1) Deriving DFDs and CFDs using the template of the

architecture.

2) Relies on the main characteristics of the system as

captured by DFDs and CFDs.

3) But the design refines DFDs and CFDs into a physical

representation.

The real-time software design template is based on 5 com-

ponents.

1) Functional and Control Processing (FCP), which con-

stitutes the Central Box of the design template. This

part is based on Process Model (PM) and Control

Model (CM) of the real-time software.

2) Input Processing (IP), constituting the left of central

box.

3) Output Processing(OP), which makes up the right of

central box.

4) User Interface Processing (UIP), shown as the top of

central box.

5) Maintenance and Self-Testing Processing (MSTP),

represented as the bottom of central box.

Following figure is representative of these five different

components and their relative positioning in the design

template.

Fig. 1: Software Design Template.

Whenever it comes to the actual system implementation

with the real-time embedded software, following notations

and symbols play major roles. Following figure is representa-

tive of different notations used during this phase. Following

Fig. 2: System Implementation Symbols.

represents the ideal scenario in real-time embedded system

design and development.

1) Software Engineers meet with the Client to collect and

gather the System Requirements(SRs).

2) Based on the collected SRs, Real-Time Requirement

Analysis (RTRA) takes place.

3) Once RTRA is complete. Real-time Software Design

Engineers pursue the System Design.

4) Once the Real-Time Software Design (RTSD) be-

comes available, both the Hardware Development

(HD), and the Software Development (SD) phases

progress in parallel.

Following are the typical sub-phases during HD phase.

a) Hardware Requirements Analysis (HRA)

b) Preliminary Hardware Design (PHD)

c) Detailed Hardware Design (DHD)

d) Hardware Fabrication (HF)

e) Hardware Testing (HT)

Following are the standard sub-phases during real-time

embedded software development.

a) Real-Time Requirements Analysis (RTRA)

b) Preliminary Software Design (PSD)

c) Detailed Software Design (DSD)

d) Real-Time Software Coding and Unit Testing

(CUT)

e) Real-Time Software Integration Testing (IT)

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 19

ISBN: 1-60132-446-4, CSREA Press ©

5) Once both the hardware and software becomes avail-

able, System Integration (SI) is performed.

6) Once SI is complete, System Integration Testing (SIT)

and System Testing (ST) are done to ensure safety,

security and reliability.

5. Tools and Techniques for Real-Time
Structured Analysis

Whereas the Classical Software Engineering (CSE) typ-

ically uses Data Flow Diagrams (DFDs), the Real-Time

Requirements Engineering (RTRE) includes, but are not

limited to the following tools and techniques. This is due

to the nature and criticality of the real-time system design,

implementation and physical operation.

1) Data Flow Diagrams (DFDs)

2) Control Flow Diagrams (CFDs)

3) Decision Tables (DTs)

4) Decision Matrices (DMs)

5) Process Activation Tables (PATs)

6) State Transition Diagrams (STDs)

7) State Transition Tables (STTs)

This paper mostly focuses on the current tools and tech-

niques pertaining to RTSE. Using Structured Approach for

RTA yields with added benefits. Some examples of real-time

systems include Vending Machine, On-line Banking web

sites, etc. These are soft real-time systems. With hard real-

time systems, timing factor is crucial, such as the chemical

processing plants.
The Structured Analysis Model (SAM) uses the following

core concept: Following constitutes the basic components of

Fig. 3: Structured Analysis Model (SAM).

SAM.

1) Data Dictionary (DD): DD represents core of the

model. DD is a repository containing a description of

all data objects.ă

2) Entity Relationship Diagram (ERD): ERD depicts

relationships between data objects formulating data

attributes.

3) Data Flow Diagram (DFD): DFD serves two different

purposes.

a) DFD describes how data is transformed as it

moves along the system.

b) DFD depicts the functions for transforming the

data flow.

4) Process Specification (PSPEC): The description of

each transform function for data flow is contained in

PSPEC.

5) State Transition Diagram (STD): STD describes how

the system responses to external events.

6) Control Specification (CSPEC): CSPEC contains de-

scription on the control aspects of software.

5.1 Real-Time Analysis (RTA)
Following are important segments of Real-Time Analysis

(RTA).

1) Data Flow Analysis (DFA): Done through Process

Specification (PSEC).

2) State Transition Analysis (STA): Performed through

Control Specification (CSPEC).

3) Data Dictionary (DD): A repository of data items

useful for DFA and STA.

Following implies how the Analysis Model (AM) maps into

a hierarchy referred to as the Design Model (DM).

1) Component Level Design (CLD): CLD constitutes the

Highest Level (HL) in the entire hierarchy. CLD is

derived from Process Specification (PSPEC), State

Transition Diagram (STD), and Control Specification

(CSPEC).

2) Interface Design (ID): ID is derived from State

Transition Diagram (STD), and Control Specification

(CSPEC), as well as the Data Flow Diagram (DFD).

3) Architectural Design (AD): AD is the next lower level

in the hierarchy. It uses the Data Flow Diagram (DFD).

4) Data Design (DD): DD is the Lowest Level (LL) in

the entire hierarchy. It is derived from Data Dictionary

(DD), and the Entity-Relationship Diagram (ERD).

5.2 On Tools and Techniques for RTRE)
5.2.1 Data Flow Diagram (DFD)

Shows how data is transformed as it moves along the real-

time system. DFD is a graphical aid for RTA. DFD uses

following symbols. DFDs start with the Context Diagram

(CD), which represents the entire system as a big bubble and

proceeds through the hierarchical decomposition. Following

illustrates the principle of hierarchical decomposition of

designs.

20 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

Fig. 4: Symbols Used With DFDs.

Fig. 5: Hierarchical Decomposition With DFD.

5.3 Illustration Of Data Decomposition:
To better illustrate the process of data decomposition,

consider the example of a vehicle Cruise Control System

(CCS). Following represents the Context Diagram (CD) of

the CCS. As evident from the figure, the CCS interacts with

Fig. 6: CD of A Vehicle’s CCS.

its surrounding environment, which in this case, consist of,

throttle, cruise buttons, brake, engine, speed sensor, and the

gear assembly.

Next for the control purposes, the Cruise Controller Pro-

cess is decomposed into lower level functions as shown in

the following. As evident from the CCP decomposition, there

are three main functions of the cruise controller process,

which are:

Fig. 7: Decomposition of the Cruise Controller Process.

1) Select Speed: Select a particular speed using the cruise

controller button.

2) Maintain Speed: Maintain the pre-set vehicle speed

selected through the cruise controller button.

3) Maintain Acceleration: Maintain acceleration to pre-

serve the vehicle speed to the pre-set level by control-

ling throttle (fuel injection).

Since all three of these functionalities are related to control,

the entire cruise controller in which, these three control

functions are nested is shown with a broken bubble, which

represents a Control Context Diagram (CCD). The PSPEC

for the above three control functions follow: PSPEC rep-

Fig. 8: PSPEC for Cruise Controller.

resents the textual description of control logic related to

each one of the three control functionalities. The change

of state in the control application is best represented by a

State Transition Diagram (STD). Following represents STD

of the Cruise Controller. In context to STDs, Finite State

Machines (FSMs) play a vital role. Following subsection

discusses FSM in relation to real-time systems.

5.4 Finite State Machine (FSM) in RTRE
Finite State Machine (FSM) plays a major role in RTRE.

Real-time systems have the property of past and present

events. Also, both external and internal events can change

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 21

ISBN: 1-60132-446-4, CSREA Press ©

Fig. 9: STD of the Cruise Controller.

real-time behavior. Real-time systems respond to changes

in their input, and also to events that occur over time with

system appearing as if several different processors from one

instance of time to another. The process model alone fails to

express this type of action. Therefore, FSM combined with

the process model is suited to modeling the change in state

behavior due to internal or external events.

Continuous Machines (CMs) or Analog Machines (AMs)

are capable of processing continuous-valued inputs, outputs,

and internal elements. CMs are also able to receive and

produce discrete-signal values. PSPECs represent continuous

machines in the requirements model.

On the contrary, FSMs can only process discrete signals.

Control specifications (CSPECs) are represented by FSMs.

There are two categories of FSMs.

1) Combinational Machine (CM) Ű Combinational Ma-

chines have no memory. As a result, CM can not hold

or represent the past states. It is capable of representing

only the present states.

2) Sequential Machine (SM) Ű SM has Memory. As a

result, SM is capable of representing both the past

and the present states. SM requires a wide a variety of

tools to show the state transitions. These include, but

are not limited to STD, DT, DM, PAT, etc.

5.5 Decision Table (DT) and Decision Matix
(DM) in RTRE

DTs and DMs are often used in RTRE for structured

analysis. An example follows:

Fig. 10: DT for Employees.

The Decision Table (DT) for organizational employees

helps in making decisions regarding salaries. DTs are two

dimensional and composed of rows and columns. Each of

the columns defines the conditions and actions of the rules.

Decision tables represent a list of causes (conditions) and

effects (actions) in a matrix, where each column represents

a unique rule. The purpose is to structure the logic for a

specific specification feature. It is possible to add new rows

to a decision table and fill in its cells to create new rules.

When the rules are executed, if the conditions are met, the

actions in that column are performed. One can also add

preconditions that apply to all the rules.

5.6 Process Activation Table (PAT) in RTRE
Decision Tables (DTs) that are used to activate processes

are called Process Activation Tables (PATs). Following rep-

resents a CSPEC containing both PAT and DT.

Fig. 11: CSPEC with PAT and DT.

5.7 STDs & DTs In RTRE
Following figure illustrates CFD/DFD (left diagram) and

transitions among states due to the event triggering (right

diagram).

Fig. 12: STD in RTRE.

Fig. 13 is representative of CFD/DFD (left diagram) and

the decisions taken due to different combinations of the

occurring events (right diagram).

Sometimes DFD and CFD are combined in CSPEC to

represent CSPEC as the STD. Fig. 14 is representative of

this scenario.

22 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

Fig. 13: DT in RTRE.

Fig. 14: CSPEC As STD.

6. Conclusion
State Transition Diagram is only suited for a limited

number of states. Alternative representations used with large

number of states are State Transition Matrix (STM) and State

Transition Table (STT). Control Specifications (CSPECs)

consists of FSMs, which map control inputs to control out-

puts. CSPEC combines both Combinational and Sequential

Machines. Block diagram in Fig. 15 is representative of this

scenario. A general real-time system model involves associ-

Fig. 15: CSPEC with FSMs.

ating processes with sensors for data input, and actuators

for data output, which are sent as control signals. Real-

time System architecture is usually designed as a number

of concurrent processes. Real-time system specification in-

volves System Requirement (SR), representing the Logical

Configuration of software, and System Architecture (SA),

representing the Physical Configuration of software. Both

SR and SA are required to be developed in parallel.

After incorporating different components in the Software

Design Template (SDT) for Cruise Controller, following Fig.

16 is the complete software architecture.

Fig. 16: Cruise Controller Software Architecture.

System functionalities are either partitioned to hardware

or to software. Design decisions are made based on Sys-

tem Requirements. Hardware implementation delivers better

timing performance compared to the software counter-part.

However, functional implementation with Hardware incurs

higher costs, potentially longer development time, and less

flexibility for accommodating any future changes.

Due to functional requirements, sometimes RTS may not

be implemented using the Object-Oriented Approach. Real-

Time Requirements Engineering (RTRE) is wide. There are

still unexplored avenues in this engineering domain. We

tried to represent a few of the useful tools and techniques

from the RTRE paradigm in connection to modern real-time

systems. In future, we plan to incorporate RTRE, and the

Structured Approach discussed in this paper for a realistic

Patient Monitoring System (PMS) at hospitals, and also to

an Online Registration Control System (ORCS) for a self-

sustained small academic institution.

References
[1] Derek J. Hatley and Imtiaz A. Pirbhai, Strategies for Real-Time System

Specification, New York, United States of America: Dorset House
Publishing, 1987.

[2] Derek J. Hatley, Peter Hruschka and Imtiaz A. Pirbhai, Process
for System Architecture and Requirements Engineering, New York,
United States of America: Dorset House Publishing, 2000.

[3] Ian Sommerville, Software Engineering, 8th ed. New Jersey, United
States of America: Pearson Education, 2007.

[4] John R. Cameron, JSP & JSD: The Jackson Approach to Software
Development, Maryland, United States of America: IEEE Computer
Society Press, 1983.

[5] Roger S. Pressman, Software Engineering - A Practitioner’s Approach,
5th ed. New York, United States of America: McGraw-Hill Higher
Education, 2001.

[6] Sebastian Altmeyer, Roeland Douma, Will Lunniss, and Robert I.
Davis, "On the effectiveness of cache partitioning in hard real-time
systems," Real-Time Systems, vol. 52, pp. 598–643, Jan. 2016.

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 23

ISBN: 1-60132-446-4, CSREA Press ©

Which Roles Ontologies play on Software Requirements
Engineering? A Systematic Review

J. Valaski, S. Reinehr, and A. Malucelli
joselaine.valaski@pucpr.br,sheila.reinehr@pucpr.br, malu@ppgia.pucpr.br

PPGIa, Pontifícia Universidade Católica do Paraná, Curitiba, Paraná, Brazil

Abstract - One of the main goals of Software Requirements
Engineering is to understand customers’ needs. However,
some of the main flaws of Requirements Engineering are the
lack of a common vocabulary, communications difficulty
among stakeholders and the lack of domain comprehension
of the problem domain in order to solve it. Ontologies have
played a highly versatile role in the solution of these issues.
The aim of this paper is to present a systematic review,
identifying which roles ontologies play are on Software
Requirements Engineering. This systematic review has
identified 2407 distinct papers. Using the application of
exclusion criteria, 60 papers have remained and were
analyzed.

Keywords: Ontology, Requirements Engineering, Software
Requirements Engineering, Systematic Review.

1. INTRODUCTION
The Software Requirements Engineering (SRE) provides the
appropriate mechanisms to understand customers´ needs [1].
SRE can be defined as an iterative process of discovery and
analysis with the purpose of producing a clear, complete and
consistent set of requirements for software [2][3]. The initial
result of the SRE process consists of several not very clear
views whereas the final result consists of a complete
specification of the system, formally represented [4].

In the early stages of SRE, the system to be developed is
often inaccurate and inconsistent [5]. The lack of
understanding of the business by the requirements´ engineers
and the communication breakdowns among the specialists in
the business and in computing, compromise the quality of
information [6]. Furthermore, the lack of consensus regarding
the use of terms in the organization can lead to different
meanings [7]. Considering these matters, some of the main
needs during the development of software are: the use of a
common language, aiding the comprehension of information
obtained from different sources [8]; a broad understanding of
the domain; a conceptual model that uses a common
vocabulary to facilitate the discussion; and the construction
of a sufficiently clear and unambiguous specification.
Ontologies have been an important resource to satisfy these
and other needs that result from problems related to SRE.

The application of ontologies in SRE can be motivated by
different objectives: common shared vocabulary [9]; reuse
and structuring of knowledge [10]; understanding the
problem domain [11]; analysis of the expressivity of the

language [12]; the closest possible representation of the
problem to the real world [13]; and better communication
among specialists from different domains [14]. Ontologies
play an important and diverse role when it comes to handling
problems in SRE. The aim of this study is to understand in a
broader view what the roles of ontologies are on the SRE. It
can be found in the literature some studies about the
application of ontologies on SRE [15][16]. However, this
review has found distinct proposals and answers that increase
the understanding of the use of ontologies on SRE.

The remainder of this paper is organized as follows.
Section 2 presents the main concepts discussed in this work.
Section 3 shows the steps taken during the systematic review.
Section 4 presents and discusses the results. Section 5 brings
the paper to a close.

2. THEORICAL BACKGROUND
In this section, the definitions and objectives of the two main
concepts involved in this systematic review are discussed:
SRE and Ontology.

2.1. Software Requirements Engineering
The development process of a requirements specification is
known as SRE. However, there is no single definition of SRE.
Pohl [17] discusses the SRE in four main tasks: Elicitation,
Negotiation, Specification & Documentation and
Verification & Validation of requirements. The SWEBOK
[18], the guide to a Software Engineering Body of
Knowledge, discusses the SRE in knowledge areas and
presents the following topics related to the SRE area:
Software Requirements Fundamentals, Requirements
Process, Requirements Elicitation, Requirements Analysis,
Requirements Specification, Requirements Validation,
Practical Considerations. On the other hand, Kotonya and
Sommerville [19] state that most Requirements Engineering
process can be described by the activities: Requirements
Elicitation, Requirements Analysis and Negotiation,
Requirements Documentation and Requirements Validation.

As it is a process that occurs during the initial phases of
software development, communication among those
involved are informal and the use of natural language is
common. Therefore, some of the recurring problems in this
process are: the lack of a commonly used vocabulary, the lack
of understanding of the problem domain and the difficulty in
communication among those involved. In this context,

24 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

ontologies are believed to play a fundamental role in the
solution of such problems.

2.2. Ontology
In the field of computing, one of the most known definitions
is that of Gruber [20]: “An ontology is a formal specification
of a conceptualization”. The definition of ontology can also
be based on the complexity of its structure [21]. Ontologies
are used to enable the reuse of domains of knowledge, to
make explicit assumptions of a domain and separate the
knowledge domain from the operational domain [22].

There is a wide range of uses for ontologies, from their
conceptual to an approach for implementation in computers.
Considering these aspects, Guizzardi [23] suggests the need
for two classes of language for representation in ontology
engineering. The first class, referred to in the present study as
“conceptual” has to do with philosophically well-founded
languages that focus on expressivity and conceptual clarity.
The second one, referred to in this study as “computational”
languages, focus on computational-oriented concerns such as
decidability and automated reasoning.

Regardless of the type of ontology, its application has
become a trend in several fields and applications. That being
the case, it is considered important to obtain a more in-depth
and wider view which roles ontologies play on the SRE. To
obtain this view, a systematic review was conducted.

3. METHOD
The research method applied was the systematic review of
the literature (SLR). The main goals of a SLR are to identify,
evaluate and interpret the available and relevant studies on a
single, particular question [24]. This review was conducted
in the following stages.

3.1. Planning the review
In this stage, the protocol was specified, with the processes
and methods for the application of the systematic literature
review. According to Kitchenham [24] one of the reasons to
perform a SLR is to summarize the existing evidences
concerning a treatment or technology. Considering the
versatility of ontologies in the solution of problems regarding
to SRE, there is a need for a SLR to identify and understand
which roles ontologies play on the SRE. To answer this main
question, these research questions have been established:
RQ1: What are the SRE activities in which ontologies are
being applied on?; RQ2: Which are the functions of
ontologies on the SRE?; RQ3: What are the languages being
used by ontologies on the SRE?; RQ4: What knowledge
domains are being represented by ontologies? and RQ5:
What are the contributions of ontologies to SRE?

3.2. Research identification
The main goal of a systematic review is to find the highest
number of primary studies related to the research questions.
For this purpose, keywords were used to identify as many
relevant works as possible. The final string used for the

searches was: (Ontologies OR Ontology) AND (“Requirements
Development" OR "Requirements Engineering" OR "Requirements
Analysis" OR "Requirements Definition" OR "Requirements
Modeling" OR "Requirements Elicitation" OR "Requirements
Inspection" OR "Requirements Management" OR "Requirements
Negotiation" OR "Requirements Process" OR "Requirements
Specification" OR "Requirements Traceability" OR "Requirements
Validation" OR "Requirements Verification" OR "Requirements
Reuse" OR "Software Requirements" OR "Quality Requirements"
OR "Non-functional Requirements" OR "Functional Requirements"
OR "Late Requirements" OR "Early Requirements").

The searches were conducted in the following scientific
databases: Science Direct, Springer Link, IEEE and ACM
Digital, where publications were filtered according to the
type of journal and conference. The study was conducted in
January 2013 and there was no limitation on the time of
publications. In addition to the conferences indexed in the
aforementioned digital bases, the Workshop on
Requirements Engineering (WER) was also considered. As a
result, 2407 papers formed the base for the selection of
primary studies.

3.3. Primary studies selection
The process to select the primary studies followed four steps.
In Step 1 the set of keywords on the defined database was
applied. This returned 2.419 papers. After removing 12
duplicate titles, 2.407 distinct papers remained. Exclusion
criteria were defined in the protocol for suitably selecting the
studies in next three steps. In Step 2, the abstracts of all 2.407
papers were read to eliminate those that clearly did not
discuss ontology. Papers were excluded only when there was
no doubt that the theme was not discussed. Most of the papers
(2.148) were excluded in this second step. In Step 3, with 259
papers remaining, each paper was searched for the keyword
“ontology” or “ontologies”, seeking evidence of its
application to a theme of SRE. This strategy was used
because the term ontology would be more restrictive than all
the other terms used for SRE. In this step, more 123 papers
were excluded.

Finally, in Step 4, the 136 remaining papers were fully
read to confirm the application of the ontology concept in the
area of SRE. During this step, 76 papers were excluded. With
the three steps of exclusion concluded, 60 papers remained.

3.4. Classification
After the papers had been read and selected, they were
classified according to the following categories: SRE activity
[17-19): Elicitation, Analysis, Specification, Validation,
Negotiation, Management, and, Activity undefined;
Ontology function; Language class [23]: Conceptual and
Computational; Knowledge domain: SRE domain, Problem
domain, and Other; Evaluation type [25]: Empirical, Not
Empirical, and Not applied; Empirical Evaluation Context:
Academic and Industry; and Ontology contribution.

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 25

ISBN: 1-60132-446-4, CSREA Press ©

4. RESULTS AND DISCUSSION
The results will be discussed and presented according to the
research questions presented in Section 3.1.

RQ1: What are the SRE activities in which ontologies are
being applied on?
The objective of this question was to identify in which
activities of SRE ontologies are being applied. Table 1
presents the summarized results related to this question.

Table 1 Ontologies application in SRE activities

SRE activity ID Qty. %
Analysis [5][8][14][26-53] 31 51,66
Elicitation [6][15][28][54-64] 14 23,33

Specification [31][56][61][65-72] 11 18,33

Management [73-77] 5 8,33

Validation - 0 0,00

Negotiation - 0 0,00

Activity undefined [78-80] 3 5,00

According to the obtained results, most of the analyzed

proposals (51,66%) have been applied in the analysis activity.
It is possible to observe the expressive application of
ontologies specifically to modeling activity, such as: evaluate
the quality or expressivity of the modeling language [14][44-
48][51][53]; integration/transformation of models [28][32-
33][37][41][49-50]; detect conflicts or inconsistencies in
models [30][39-40][42]; validate the generated diagrams
[27]; represent design rationale during the requirements
modeling [38]; and, modeling of the system to be developed
[8]. In the analysis activity, proposed ontologies have also
been identified in order to: provide the reuse of attributes
[31][34][36]; define the grammar of the language for
requirements representation [5][52]; improve the vocabulary
and the meaning of models elements [35][43]; and, identify
variability in user solicitations [26].

The elicitation activity was the second most proposed one
(23,33%). In this activity, the ontologies have been applied in
a general fashion in order to: support domain understanding
[6][15][54-55][60-62]; improve communications among
stakeholders [15][55][63]; extract an initial list of
requirements [56][58-59][64]; reuse knowledge [57][62];
and, identify the organizational objectives [28]. The third
activity (18,33%) with most proposals was the requirements
specification. Ontologies have been applied in order to: verify
inconsistencies from the requirements document [56][65-
66][69][71]; facilitate integration between specification and
others activities of requirements [71-72]; improve how
sentences are written [61][68]; reuse attributes requirement
specification [67][31]; and structure the quality attributes
[70]. The Management activity was the fourth one with the
most amount in related proposals (8,33%). Ontologies have
been applied in order to: allow traceability among the
produced artifacts[73][75-76]; verify the risks associated
with security requirement [74]; and, search for requirements
artifacts [77]. Proposals have not been found to the
Validation and Negotiation activities.

However, proposals not related to a specific activity have
been identified (5%). In this classification, ontologies have
been applied in order to: represent non-functional
requirements patterns [78]; clarifying the meaning of process
transparency [79]; and, structuring forms of requirements
representation [80]. Most of the analyzed proposals have
been classified in a single activity, except the proposals
[28][31][56][61].

RQ2: Which are the functions of ontologies on the SRE?
A formal classification has not been used. The categories
emerged from the text, after an interactive annotation process
of the functions highlighted by the authors. Functions were
put together and seven generic functions were obtained. A
single proposal presented more than one ontology function.
The results are presented in Table 2.

Table 2. Ontology function on the SRE

Ontology function ID Qty. %
Structuring and recovery of
knowledge

[26][29][32][34][38][63-
64][66-70][75-78][80]

17 28,33

Verification and validation [8][27][30][33][37][39-
40][42][56][65-66][68-
69][71][74]

15 25,00

Support to
understand/identify concepts

[6][15][32-33][43][46-
47][53][60-64][70][79]

15 25,00

Control/share of vocabulary [5][8][32][35][52][54-55][58-
59][61-62][65][68][76]

14 23,33

Integration and
transformation models

[8][28][31-33][37][41][49-
50][66][71-73][75]

14 23,33

Evaluation of representation
language

[5][14][44-48][51-53]

10 16,66

Reuse [8][26][31][34][36-
37][57][62][67][78]

10 16,66

According to Table 2, the most highlighted functionality

is structuring and recovery of knowledge (28,33), whereas
the least identified ones were evaluation of representation
language (16,66%) and reuse (16,66%). However, it is
possible to observe that the percentage among identified
functionalities is well distributed.
RQ3: What are the languages being used by ontologies
on the SRE?
The proposals were put together according to the language
class [23] and the language used on the ontology
representation. In the conceptual language class, some
proposals have not used any specific language. It was
possible to identify the ontological model used. Table 3
presents the summarized results related to this question.

The computational language class was the most applied
to represent ontologies (55%). The conceptual language
class was applied in 41,67% of the proposals. Two proposals
(3,33%) have been found to be applied in both classes.

In the proposals that applied the computational language
class, the OWL language was the most used one. The
inference mechanisms are one of the main resources used in
this class. These mechanisms are mainly applied in order to
provide interoperability, reuse and automatic inconsistency
identification. Some examples that use the computational
language class are as follows: enable interoperability and

26 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

validation of the models generated [8]; eliminate ambiguities
in the document [61]; provide the reuse of attributes of
quality in quality requirement specification [31]; help
stakeholders in the construction of a complete, consistent,
organized, traceable and unambiguous specification [71];
extract knowledge to be reused in the business modeling
process [36]; enable the transformation of conceptual
models into logical models [41]; enable traceability among
the produced artifacts [75]; and, promote a common
structure to facilitate the search for requirements artifacts
[77].

Table 3 Languages used by ontologies

Language class/LanguageModel ID Qty. %
Computational 33 55,00
OWL [8][29][31][36][38- 13
RDF/OWL [27][34] 2
RDF [32][59] 2
Alchoin [42] 1
Not informed [30][37][56-

57][65][67][70][73]
8

FCA (Formal Concept Analysis) [74], FOL (First-order
Logic)[76], Predicate logic[55], Temporal logic[66],
Prolog[6], SIN (Description Logic)[72], XML[68]

7

Conceptual 25 41,67
Bunge Model [43][47-49][51][53] 6
BWW Ontology [14][44-45] 3

UML [28][62] 2

Not informed [5][15][26][35][50][54
][58][63][79 80]

10

AORML[46], DOLCE[52], i*[64], StarUML[78] 4

Hybrid 2 3,33

UML/OWL[33], i*; KAOS/Frame[69] 2

In the proposals that applied the conceptual language

class, the Bunge Model and the BWW ontology were the
most used ones. In these proposals, ontologies are mainly
applied with the goal of evaluating the quality and language
expressivity and the models used for the artifact
representation produced in the RE process. The BWW
ontology has been used, for instance in order to: evaluate the
quality of the AIML [14]; point out improvements in the
information systems modeling, identifying deficiencies in the
language [44]; and, to evaluate the modeling techniques and
how to compare them [45]. The Bunge Model on the other
hand has been applied in order to: suggest accurate meanings
for the elements of the conceptual model and define formal
semantics for the conceptual modeling language [43];
evaluate the syntax of a modeling language [47]; identify
deficiencies in the grammar used in the entity-relationship
diagrams [48]; and, evaluate existing process models [51].

RQ4: What knowledge domains are being represented
by ontologies?
In order to answer this question, proposals were classified
according to the knowledge domain represented by ontology.
In the SRE process, ontologies may represent knowledge
related to: SRE domain (SRE resources, methods, tools,
models etc.), problem domain and other knowledge. Table 4

presents the summarized results relating to knowledge
domain.

Table 4 Knowledge domain represented by ontologies

Domain ID Qty. %

SRE [5][8][14][30-31][34-53][64][66-80] 41 68,33

Problem [6][15][26-29][32-33][54-60][62-63][65] 18 30,00

Other [61] 1 1,67

Most of the analyzed proposals (68,33%) use ontologies

in order to represent resources produced during the SRE
process. In order to present more details of the classified
proposals in the SRE knowledge domain, the resources
represented by ontologies were also identified. The result is
presented in Table 5.

Table 5 SRE domain knowledge represented by ontologies

SRE resource/ Sub-type ID Qty. %
Model 21 51,22
Business model [36][42][44][49][51] 5
General [37][41][47][50] 4
Conceptual model [14][43][46] 3
Activity diagram [30][45] 2
Use case [40][68] 2
Class diagram[53], Collaborative[8], Entity-relationship
diagram[48], Pattern[38], Product family[34]

5

RNF 11 26,83
Quality [31][39][70] 3
Accessibility[67], Confidentiality[69], General[66],
Pattern[78], Security[74], Transparency[79], Trust[35],
Usability[64]

8

General artifact [73][75-77] 4 9,75
SRE core concept [5][52][72][80] 4 9,75
Document [71] 1 2,44

In general terms, the models (51,22%) are the most

represented resources by ontologies. One of the justifications
for an increase of the ontology application in models is that
ontologies and models have the common goal of a formal
representation of knowledge. Some examples of proposals
that have applied ontologies for the modeling representation
are: model for collaborative processes to represent concepts
in business modeling [36]; ontology for MOBMAS, a
methodology for the development of agent-oriented systems,
using several models to be developed from the analysis of an
agent-oriented system to the design and architecture of the
system [37]; ontology to formalize the keywords of
conceptual models [41], ontologies were proposed to
represent exceptional flows in business process models [42];
use of ontological concepts to propose the AORML (Agent-
Object Relationship Modeling Language) [46]; and, ontology
to identify the components of a business model [49].

There are also an expressive number of proposals
(26,83%) for the representation of non-functional
requirements. Ontologies are also used in order to represent
general artifacts (9,75%), with the goal of allowing artifacts
tracking and searching for the artifacts. There are also
ontologies in order to represent the core concepts of the SRE
(9,75%) and just one ontology in order to represent

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 27

ISBN: 1-60132-446-4, CSREA Press ©

requirement specification document knowledge (2,44%).
However, according to Table 4, it is also observed the
relevant use of ontologies to the representation of a problem
domain (30%). The problem domain representation is applied
mainly in the initial phases of the SRE (e.g. elicitation). The
problem domain normally describes the domain to which the
software will be developed.

RQ5: What are the contributions of ontologies to SRE?
Firstly, the proposals were classified according to the type of
evaluation, as can be seen in Table 6.

Table 6 Types of evaluation related to ontologies application

Type ID Qty. %
Not empirical [5][8][26][28-30][32][34-36][38][43-

45][47][50-52][54-55] [57][59][62][64][66-
68][71-72][74][77-79]

33 55,00

Empirical [6][14-15][31][33][37][39-42][48-
49][53][56][58][60-61] [63][65][69-70][75-
76]

23 38,33

Not [27][46][73][80] 4 6,67

Three general evaluation groups were identified: Not

empirical (55,00%), Empirical (38,33%) and Not applicable
(6,67%), when no type of evaluation was presented. This
result indicates that the SRE area still demands more
empirical evaluation works. Among the empirical
evaluations the ontology application context was identified.
According to Table 7, most evaluations (78,26%) were
applied in the academic context, whereas a small percentage
(21,74%) was applied in the industry context.

Table 7 Empirical evaluation context related to ontology application

Context ID Qty. %
Academy [6][14][33][39-42][48][53][56][58][60-61][63]

[69][70][75-76]
18 78,26

Industry [15][31][37][49][65] 5 21,74

To each one of the empirical evaluation proposals, the

ontology contribution to the SRE area was identified. The
most important contributions and how they are related to the
evaluations performed are discussed as follows: 1)
Identifying problems in specification and models: the
contributions were reported as follows: detection of missing
information in scenarios [65]; improvement in incomplete
and ambiguous specifications [69]; identification of
requirements inconsistency [33]; identification of entities in
specifications [33]; identification of omitted details in
models [37][40]; checking of modeling inconsistency [41];
and, identification of specification violations [42]; 2)
Improving communication and building models more
complete: the contribution was reported as follows:
improvement of understanding among software developers
[6]; improvement in communications among stakeholders
[14-15][63], identification of the correct construct language
[14]; building of more precise domain models [60];
performance improvement of domain analysts as far as
accuracy and the covering of conceptual models are
concerned [61]; and, improvement of quality of the models

built by novice analysts [39]; and, 3) Allowing traceability
among artifacts and Quality requirement identification: the
contribution was reported as follows: allowing traceability
among artifacts [75][76]; improvement in the requirement
identification quality [56]; and, support in the analyst quality
attributes [70].

5. CONCLUSION
Ontologies have been playing a versatile role in solving
problems related to SRE. Considering this versatility, a
systematic review of the literature was conducted in order to
obtain a broader view of which roles ontologies play in SRE.
Some of the main results relating to the role of ontologies in
the SRE are discussed as follows.

Ontologies have an effective role in the Analysis,
Specification and Elicitation activities. Although no
proposals were identified to the Negotiation and Validation
activities, it is considered that ontologies have potential to be
also applied in these activities. Ontologies have a more
conceptual application when the focus is not yet the software
implementation, but the understanding of the domain to
which the software will be developed to. On the other hand,
it has a more computational application when the produced
artifacts aim the software implementation. There is an
important concentration of ontology proposals applied to
models (conceptual, business, activity, process etc.). Models
have been an important resource not only to the requirements
analysis, but it is also important to the model transformation
in the software design phase. Although a great number of
ontology proposals have been identified, there is no
universal ontology that integrates all the artifacts produced
in the process.

The most important contributions of ontologies are:
identifying problems in specification and models, improving
communication, building models more complete, allowing
traceability among artifacts and improving the quality of
requirements identification. It has more ontology
contributions in the academic than in the industry context.
This result may be evidence that ontologies are not too
widespread in industry. If ontologies are indeed still not too
applied in industry, this review becomes an import source of
academic research and also a source of knowledge transfer
between the academic and industry context.

References
[1] Thayer RH, Dorfman M (1997) Software Requirements

Engineering, 2d Ed. IEEE Computer Society Press
[2] Robinson W, Pawlowski S (1999) Managing requirements

inconsistency with development goal monitors. IEEE
Transactions on Software Engineering 25(6):816-835

[3] Loucopoulos P, Karakostas V (1995) System Requirements
Engineering. McGraw-Hill

[4] Pohl K (1994) The three dimensions of requirements
engineering: a framework and its applications. Information
systems 19(3):243-258

[5] Jureta IJ, Borgida A, Ernst N, Mylopoulos (2010) Techne:
Towards a New Generation of Requirements Modeling
Languages with Goals, Preferences, and Inconsistency
Handling. In: International Requirements Engineering
Conference pp 115–124

28 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

[6] Oliveira KM, Zlot F, Rocha AR, Travassos GH, Galotta C,
Menezes CS (2004) Domain-oriented software development
environment. Journal of Systems and Software 72:145–161

[7] Garrido JL, Noguera M, González M, Hurtado MV,
Rodríguez ML (2007) Definition and use of Computation
Independent Models in an MDA-based groupware
development process. Science of Computer Programming
66:25–43

[8] Lee SW, Gandhi RA (2005) Ontology-based active
requirements engineering framework. In: 12th Asia-Pacific
Software Engineering Conference (APSEC ’05)

[9] Aranda GN, Vizcaíno A, Cechich A, Piattini M (2008) A
Methodology for Reducing Geographical Dispersion
Problems during Global Requirements Elicitation. In:
Workshop on requirements engineering

[10] Girardi R, Leite A (2008) A knowledge-based tool for multi-
agent domain engineering. Knowledge-Based Systems
21:604–611

[11] Li L (2005) Ontological modeling for software application
development. Advances in Engineering Software 36:147–157

[12] Harzallah M, Berio G, Opdahl AL (2012) New perspectives
in ontological analysis: Guidelines and rules for
incorporating modelling languages into UEML. Information
Systems 37:484–507

[13] Zhang H, Kishore R, Sharman R, Ramesh R (2007) Agile
Integration Modeling Language (AIML): A conceptual
modeling grammar for agile integrative business information
systems. Decision Support Systems 44:266–284

[14] Kilov H, Sack I (2009) Mechanisms for communication
between business and IT experts. Computer Standards &
Interfaces 31:98–109

[15] Castañeda V, Ballejos L, Caliusco ML, Galli MR (2010) The
use of ontologies in requirements engineering. Global
Journal of Researches in Engineering 10(6):2–8

[16] Dermeval, Diego, et al. "Applications of ontologies in
requirements engineering: a systematic review of the
literature." Requirements Engineering(2015): 1-33.

[17] Pohl K (1997) Requirements engineering: An overview. In
Encyclopedia of Computer Science and Technology. A.
Kent, and J. Williams, NY, vol. 36, suppl. 21

[18] Abran A, Moore, J W (2004) Guide to the Software
Engineering Body of Knowledge. Society. IEEE Press.

[19] Kotonya G, Sommerville L. (1998) Requirements
Engineering: Processes and Techniques. John Wiley & Sons.

[20] Gruber TR (1995) Toward Principles for the Design of
Ontologies Used for Knowledge Sharing. International
Journal of Human and Computer Studies 43(5-6):907-928

[21] Guarino N (1998) Formal Ontology and Information
Systems. In the Proceedings of Formal Ontology in
Information Systems, Washington, DC: IOS Press p 3-15

[22] Noy NF, Mcguinness DL (2001) Ontology Development
101: A Guide to Creating your First Ontology, Stanford
Knowledge Systems Laboratory Technical Report KSL-01-
05

[23] Guizzardi G (2007) On ontology, ontologies,
conceptualizations, modeling languages, and (meta) models.
Frontiers in artificial intelligence and applications pp 18–28

[24] Kitchenham B (2004) Procedures for performing systematic
reviews. Keele, UK, Keele University, v 33

[25] Wohlin C, Höst M, Henningsson K (2003), Empirical
Research Methods in Software Engineering, in Empirical
Methods and Studies in Software Engineering, Lecture Notes
in Computer Science, R. Conradi and A. I. Wang, Eds.:
Springer, pp. 7-23

[26] Santana B, Diniz S, Barbosa J, Leite JCP (2008) A
Language-Based Approach to Variability Analysis. In:
Workshop on Requirements Engineering pp 179–190

[27] Chen X, Yin B, Jin Z (2010) Dptool: A Tool for Supporting
the Problem Description and Projection. International
Requirements Engineering Conference pp 401–402

[28] Hilaire V, Cossentino M, Gechter F, Rodriguez S, Koukam
A (2013) An approach for the integration of swarm
intelligence in MAS: An engineering perspective. Expert
Systems with Applications 40:1323–1332

[29] Cañete-Valdeón JM, Galán FJ, Toro M (2009) The
intentional relationship of representation between the
constructs of a language and reality. Data & Knowledge
Engineering 68:173–191

[30] Liu, C (2010) CDADE: Conflict detector in activity diagram
evolution based on speech act and ontology. Knowledge-
Based Systems 23:536–546

[31] Ovaska E, Evesti A, Henttonen K, Palviainen M, Aho P
(2010) Knowledge based quality-driven architecture design
and evaluation. Information and Software Technology
52:577–601

[32] Vongdoiwang W, Batanov DN (2006) An ontology-based
procedure for generating object model from text description.
Knowledge and Information Systems, 10(1):93–108

[33] Pires PF, Delicato FC, Cóbe R, Batista T, Davis JG, Song JH
(2011) Integrating ontologies, model driven, and CNL in a
multi-viewed approach for requirements engineering.
Requirements Engineering, 16:133-160

[34] Lindoso AN, Girardi R (2006) The SRAMO Technique for
Analysis and Reuse of Requirements in Multi-agent
Application Engineering. In Workshop on Requirements
Engineering pp 1–10

[35] Bimrah KK, Mouratidis H, Preston D (2008) Modelling
Trust Requirements by Means of a Visualization Language.
Requirements Engineering Visualization pp 26–30

[36] Rajsiri V, Lorré JP, Bénaben F, Pingaud H (2010)
Knowledge-based system for collaborative process
specification. Computers in Industry 61:161–175

[37] Beydoun G, Low G, Tran N, Bogg P (2011) Development of
a peer-to-peer information sharing system using ontologies.
Expert Systems with Applications. 38:9352–9364

[38] Santos EG, Medeiros AP (2011) Design Rationale
Representation in Requirements Engineering using the
KAOS meta-model In: Workshop on Requirements
Engineering

[39] Bolloju N, Sugumaran V A (2012) Knowledge-based object
modeling advisor for developing quality object models.
Expert Systems with Applications 39:2893–2906

[40] Bolloju N, Schneider C, Sugumaran V (2012) A knowledge-
based system for improving the consistency between object
models and use case narratives. Expert Systems with
Applications 39:9398–9410

[41] Fan S, Zhao JL, Dou W, Liu M (2012) A framework for
transformation from conceptual to logical workflow models.
Decision Support Systems 54:781–794

[42] Ghidini C, Francescomarino C, Rospocher M, Tonella P,
Serafini L (2012) Semantics-Based Aspect-Oriented
Management of Exceptional Flows in Business Processes.
IEEE Transactions on Systems, Man, and Cybernetics, Part
C (Applications and Reviews) 42:25–37

[43] Wand Y, Monarchi DE, Parsons J, Woo CC (1995)
Theoretical foundations for conceptual modelling in
information systems development. Decision Support Systems
15:285–304

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 29

ISBN: 1-60132-446-4, CSREA Press ©

[44] Green P, Rosemann M (2000) Integrated process modeling:
an ontological evaluation. Information systems 25(2):73-87

[45] Rosemann M, Green P (2002) Developing a meta model for
the Bunge–Wand–Weber ontological constructs. Information
Systems 27:75–91

[46] Wagner G (2003) The Agent–Object-Relationship
metamodel: towards a unified view of state and behavior.
Information Systems 28:475–504

[47] Evermann J, Wand Y (2005) Toward formalizing domain
modeling semantics in language syntax. IEEE Transactions
on Software Engineering 31:21–37

[48] Gemino A, Wand Y (2005) Complexity and clarity in
conceptual modeling: Comparison of mandatory and optional
properties. Data & Knowledge Engineering 55:301–326

[49] Etien A, Rolland C (2005) Measuring the fitness relationship.
Requirements Engineering 10(3):184–197

[50] Perez GC, Sellers, BH (2007) Modelling software
development methodologies: A conceptual foundation.
Journal of Systems and Software 80:1778–1796

[51] Dreiling A, Rosemann M, Wil MPA, Sadiq W (2008) From
conceptual process models to running systems: A holistic
approach for the configuration of enterprise system
processes. Decision Support Systems 45:189–207

[52] Jureta IJ, Mylopoulos J, Faulkner S (2008) Revisiting the
Core Ontology and Problem in Requirements Engineering.
In: International Requirements Engineering Conference pp
71–80

[53] Bera P, Evermann J (2012) Guidelines for using UML
association classes and their effect on domain understanding
in requirements engineering. Requirements Engineering

[54] Regoczei S, Plantinga EPO (1987) Creating the domain of
discourse: ontology and inventory. International Journal of
Man-Machine Studies. 27:235–250

[55] Jin Z (2003) Automatically multi-paradigm requirements
modeling and analyzing: An ontology-based approach.
Science in China 46(4):279-297

[56] Kaiya H, Saeki M (2006) Using Domain Ontology as
Domain Knowledge for Requirements Elicitation. In:
International Requirements Engineering Conference pp 189–
198

[57] Girardi R, Marinho LB (2006) A domain model of Web
recommender systems based on usage mining and
collaborative filtering. Requirements Engineering 12(1):23–
40

[58] Breaux, T (2009) Exercising Due Diligence in Legal
Requirements Acquisition: A Tool-supported, Frame-Based
Approach. In: International Requirements Engineering
Conference pp 225–230

[59] Biletskiy Y, Ranganathan GR (2010) A semantic approach to
a framework for business domain software systems.
Computers in Industry 61:750–759

[60] Tacla CA, Freddo AR, Paraiso EC, Ramos MP, Sato GY
(2011) Supporting small teams in cooperatively building
application domain models. Expert Systems with
Applications 38:1160–1170

[61] Bagheri E, Ensan F, Gasevic D (2012) Decision support for
the software product line domain engineering lifecycle.
Automated Software Engineering 19(3):335–377

[62] Cossentino M, Gaud N, Hilaire V, Galland S, Koukam
(2009) A ASPECS: an agent-oriented software process for
engineering complex systems. Autonomous Agents and
Multi-Agent Systems 20(2): 260–304

[63] Aranda GN, Vizcaíno A, Piattini M (2010) A framework to
improve communication during the requirements elicitation

process in GSD projects. Requirements Engineering
15(4):397-417

[64] Cysneiros LM, Kushniruk A (2003) Bringing Usability to the
Early Stages of Software Development Usability Ontology
References. In: International Requirements Engineering
Conference

[65] Kof L (2007) Scenarios: Identifying Missing Objects and
Actions by Means of Computational Linguistics. In:
International Requirements Engineering Conference pp 121–
130

[66] Katz S, Rashid A (2004) From aspectual requirements to
proof obligations for aspect-oriented systems. International
Requirements Engineering Conference pp 43–52

[67] Masuwa-Morgan K, Burrell P (2004) Justification of the
need for an ontology for accessibility requirements
(Theoretic framework). Interacting with Computers 16:523–
555

[68] Cabral G, Sampaio A (2008) Formal Specification
Generation from Requirement Documents. Electronic Notes
in Theoretical Computer Science. 195:171–188

[69] Weber-Jahnke JH, Onabajo A (2009) Finding Defects in
Natural Language Confidentiality Requirements. In:
International Requirements Engineering Conference pp 213–
222

[70] Rago A, Marcos C, Diaz-Pace JA (2011) Uncovering
quality-attribute concerns in use case specifications via early
aspect mining. Requirements Engineering, 18(1):67–84

[71] Castañeda V, Ballejos L, Caliusco ML (2012) Improving the
Quality of Software Requirements Specifications with
Semantic Web Technologies. In Workshop on requirements
engineering

[72] Verlaine B, Dubois Y, Jureta IJ, Faulkner S (2012) Towards
conceptual foundations for service-oriented requirements
engineering: bridging requirements and services ontologies.
IET Software. 6(2):85-102

[73] Richter H, Gandhi R, Liu L, Lee S, Carolina N (2006)
Incorporating Multimedia Source Materials into a
Traceability Framework. In: International Workshop on
Multimedia Requirements Engineering p 5

[74] Gandhi RA, Lee SW (2007) Discovering and Understanding
Multi-dimensional Correlations among Certification
Requirements with application to Risk Assessment. In:
International Requirements Engineering Conference. 231–
240

[75] Zhang Y, Witte R, Rilling J, Haarslev V (2008) Ontological
approach for the semantic recovery of traceability links
between software artefacts. IET Software 2(3) pp 185-203

[76] Assawamekin N, Sunetnanta T, Pluempitiwiriyawej C (2009)
Ontology-based multiperspective requirements traceability
framework. Knowledge and Information Systems 25(3):493–
522

[77] Chicaiza J, López J, Piedra N, Martı́nez O, Tovar E (2010)
Usage of social and semantic web technologies to design a
searching architecture for software requirement artifacts. IET
Software 4(6): 407–417

[78] Supakkul S, Chung L (2010) Visualizing non-functional
requirements patterns. In: International Workshop on
Requirements Engineering Visualization pp 25–34

[79] Cappelli C, Leite JCSP, Oliveira APA (2007) Exploring
Business Process Transparency Concepts. In: International
Requirements Engineering Conference pp 389–390

[80] Kaindl H, Svetinovic D (2010) On confusion between
requirements and their representations. Requirements
Engineering, 15(3):307–311

30 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

On Non Functional Requirements, Their Evolution
and Impact on Safety

Abdelaziz Babiker1, Abd-El-Kader Sahraoui2

1. Sudan University of Science and Technology (SUST) Khartoum Sudan
2. LAAS-CNRS, University de Toulouse, CNRS, UT2J, Toulouse, France

Abstract: The paper is on preliminary work on systems engineering concepts and their deployment. We consider
requirement evolution with a systems engineering approach can be modelled by systems engineering processes at least
for the on development phases of the product. The paper is very technology oriented and wholly based on EIA-632
standards; the paper is extended with requirement evolution issues and a methodological approach is proposed.

Keywords: requirements engineering, systems engineering, requirements change, safety requirements.

1- Introduction
The actual systems are more and more complex,

because they integrate a variety of technologies. The
system need often long period of development. When
we take a change on requirements the objectives are to
improve the functionality, the cost or the delay of
systems; but unfortunately, this modification can be
affect a problem with others requirements those
involved with the safety of the system.

The requirements change occurs in two main
cases. The first concerns revising/updating existing
requirements that led to an actual version of the
systems to adapt to new environment (Larsen and
Buede, 2002). The second is when new technology is
being developed and new requirements are
implemented consequently for reasons of cost or
feasibility.

When we consider the change of requirements, we
focus mainly in this paper to study the effect of the
change on the security of the system; we try to see if
any change cannot harm the system and the risk to
affect the systems security. You have two type of
change for requirements. The first such as the
requirement change and the system is in the phase of
development, the second when we take a modification
for a realize requirements

The main idea in this part is to present the effect of
change on the system if one or many requirements
change, and to present what are the considerations we
must make, and to know the importance of safety
requirements.

A recent survey produced Customer Focus group
(CFG) of an aircraft manufacturer indicated how
airliners keen on the integration of new technologies
as requirement change for more functionalities rather
integrating new technologies that may not be
appropriate for safety issues and show that new

technologies that succeeded in some application may
not do for other application as there was no
assessment of side effects on performance and safety
for the whole system.

Our goals in this paper are to study:

1. The problematic if we take a
modification (on one or many)
requirements, how can be sure that we
have not any problem on safety of the
system?

2. The problematic of How can we take a
study of the effect on safety when we
have a modification?

3. The problematic that how can we know
the requirements have link with safety,
and how can we know the safety
requirements?

4. What type of change (functional
requirements, non-functional
requirements, physical requirements,
operational requirements…) make a
problem of security of the system?

2- Requirements engineering
Requirements Engineering covers all activities

related to the elicitation, modelling, analysis,
specification and management of requirements
throughout the systems development life cycle. RE is
a multi-disciplinary and communication rich part of
software development that utilises a variety of
techniques and tools at different stages of
development and for different kinds of application
domains.

The processes are applicable for the engineering or
reengineering of the end products that make up a
system, as well as the development of enabling
products required to provide life-cycle support to
system end products. The next graphic shows the

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 31

ISBN: 1-60132-446-4, CSREA Press ©

relationships between the processes.

Our context study will, through the system
engineering framework, give importance to end
products aggregation of end products.

 Enabling products are used to perform the
associated process functions of the system develop,
produce, test, deploy, and support the end products;
train the operators and maintenance staff of the end
products; and retire or dispose of end products that are
no longer viable for use. Both the end products and
the enabling products are either developed or reused,
as appropriate. The relationship of these system
elements is shown in Figure 2.

The system forms the basis for a larger structure,

called the building block, shown in Figure 3. The

building block. Effectively, it can be seen the end
product is separated from other enabling product
issues; this framework will help companies to enhance
their RE process development when considering
critical issues that often get mixed up with final
product; the infrastructure for agile development relies
highly on what is often called logistics but in fact they
are the enabling product in systems engineering view:
training, deployment products, test, development,
product etc. as shown in figure 3.

Operational
Products

System

End
Product

Development
Products

• • •

Production
Products

Test
Products

Deployment
Products

Training
Products

Support
Products

Disposal
Products

Subsystem Subsystem

Enabling
Product Sets

Consists of

Figure 3: Building block

For such objective, standard EIA-632 will be
considered as the mostly popular and effective
standard being used; such standard has been deployed
in major space, manufacturing, military and aeronautic
industries.

Errors in requirements specifications can have a
major impact on software costs and project duration. It
is evident that early detection and correction of
potential problems during requirement analysis may
alleviate many much larger problems later on during
testing and maintenance.

Requirements engineering is a process from
system engineering, only active in an upstream phase,
the objectives of this process is to identify the
stakeholders, to capture, to explain, to formalise, to
analyse, to validate, to allocate requirements. One
specification for any system contains a highly number
of requirements. The specification is necessary to
make requirements very coherent, and to control, to
change, to manage requirements.

Many studies in Requirements Engineering show
that 90% of costs are engage in the first phase of
development of System Engineering, and that is better
to change one or many requirements in the first phase
of development of the system. But when we apply a
modification on our specification we have an impact
not only in cost but also in safety. In Concurrent
Engineering (CE) there should be a virtual data bus
communicating between every process so to enable to

Figure 2: System concept

Acquisition
Process

Supply
Process

Acquisition
& Supply

Technical Evaluation

Systems
Analysis
Process

System
Verification

Process

Requirements
Validation
Process

End Products
Validation
Process

Technical Management

Planning
Process

Assessment
Process

Control
Process

System
Design

Requirements
Definition Process

Solution Definition
Process

Product
Realization

Implementation
Process

Transition to Use
Process

Plans,
Directives
& Status

Outcomes
&

Feedback

Requirements

Designs

Products

Acquisition
Request

System
Products

32 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

activate parallel processes when a change is being
made during systems development.

3- Mapping SE to CE

The mapping we prone is how to customise the
SE processes to CE. Such mapping is not systematic
as it depends how CE is deployed in every enterprise.

As stated in European research for the integration
in manufacturing Information technologies already
have a pervasive influence on modern manufacturing
and engineering. This ranges from supporting the
design and engineering process, through production
planning and control, and on the toe control of
manufacturing equipment and distribution systems.
However, there remains enormous scope for IT growth
in the manufacturing sector.

The main topics covered within the Integration in
Manufacturing research area include:

1. Product data exchange and modelling which
deals largely with the internal representation of all
product-related design and manufacturing data.
2. Factory automation, which includes the
development of software tools to support human-
centered production concepts; advanced work in
robotics; and software developments in the field of
simulating products, the manufacturing process,
and the design and layout of manufacturing cells,
assembly work-stations and entire plants.
3. Communications and logistics, to improve the
integration of distributed manufacturing
applications, both within a plant and between
enterprises collaborating in a supply chain.
Unifying processes for the needs until the disposal

cannot be attained sequentially in any product or
service development.

The systems development is based on unified
process. These processes make abstraction of the
systems nature. In [Sahraoui et al, 2004) we prone
numerous research issues related to the subject.

3.1 A Decision focused framework for

Life-Cycle Based Architecting and
design in SE

3.1.1 Definition of the problem
Systems engineering is a multi-disciplinary

problem definition and problem solving process that is
implemented by people. There are as many definitions
of this process as there are systems engineers with no
real agreement on an underlying theory that unifies the

process. Most systems engineers will agree to the
following characterization of systems engineering:

1. Focus: a process and systems management
focus that will result in the engineering of a
trustworthy product or operational system
that will satisfy user and customer
requirements and for which these
stakeholders will pay

2. Scope: entire life cycle of the system,
including the definition of user and customer
requirements, development of the system
products and enabling products, and
deploying them in an operational
environment. These enabling product
systems include test system, deployment
system, training system, operational support
(logistics, maintenance, etc.), refinement
system, and retirement system

3. Products: Systems Engineering Management
Plan, Operational Concept for the product,
hierarchy of requirements documents for each
key system (starting with the system-level
requirements document and following the
physical decomposition of the system),
architectures and hierarchy of interface
control documents that define the interfaces
at each level of the physical decomposition

4. Characteristics of SE Process: Combination
of qualitative, quantitative, and executable
models to examine the behavioral
(functional) and system-wide (non-
functional) characteristics of alternate designs
and architectures.

3.1.2 Research approach
A design process is characterized by a collection

of decisions. In this, we use the fundamentals of
decision analysis in which a decision is characterized
by alternatives (what you can do – designs), values
(objectives hierarchy with a quantitative value model
to describe the trade-offs of the stakeholders across the
key measures of effectiveness), and facts about what is
known and not known. Within this context view
systems engineering as a risk mitigation strategy that
includes architecture, design, and testing. We must
recognize that the entire process must adhere to the
following principles:

1. Coherent value structure across all decisions.
2. Top-down, decentralized (distributed,

asynchronous) decision making.
3. Managed by an adaptive, feedback-control

process for decision making.

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 33

ISBN: 1-60132-446-4, CSREA Press ©

4. Focused, cost-effective, risk management of
both the (life cycle) design and design
process.

3.1.3 Expected results

1. Integration of values across all decisions
for the system’s life cycle

2. Architecture and design framework for an
integrated and coordinated decision-
making framework with a schedule that
identifies serial and concurrent decision-
making activities

3. Structure for reviews of key products that
is based on the principles of feedback-
control systems as well as the coordinated
decision framework and is sensitive to the
uncertainties

4. Framework for risk management that is
sensitive to the integrated values across
the system’s life cycle and the decision
framework.

5. Process that can be generalized to other
problem solving situations.

4- Refining the approach : EIA
Standard application to CE

The EIA 632 as briefly presented in part 1 is
common standard adopted in aeronautics and space
industry and still to be deployed in other sector with
other standard as IEEE –P1220 and ISO-15288.

Our work in such limited only to the design and
verification processes (8 processes from the total 13
processes); the left out processes concern the
management, supply and acquisition processes.

We are concerned also by the products and
enabling products, that is really implicit in concurrent
engineering and recommended in EIA 632.

MIL-STD-499B was intended to be the first
military standard to address systems engineering as a
whole. MIL-STD-499A addressed the management of
systems engineering and, thus, had a different focus,
although MIL-STD-499B was intended to supersede
it. MIL-STD-499B uses a lengthy definition for
systems engineering which concentrates on
integration of disciplines, full life-cycle coverage,
assurance of interface integrity, management of
technical risks, and validation that the system meets
the needs and requirements. The actual work of
systems engineering is clarified only by reading the
full standard. This work tends to lean heavily toward

the Technical Management definition of systems
engineering.

The standard begins with five pages of definitions
and follows that with one chapter on General
Requirements and one on Detailed Requirements. The
General Requirements chapter is ordered by life-cycle
phase, while the Detailed Requirements call out
individual systems engineering work products. These
work products clearly imply a large military contract
environment, calling out numerous customer reviews,
for example, and including things like Survivability
tasks and Integrated Logistics support.

EIA 632
Standard

Policies &
Procedures

Adopted
Process

Requirements

Industry Project
implements

Enterprise
establishes

Application of the standard

While this standard was never released, the May
1992 copy in particular has enjoyed a long applicable
life in that it served as the basis for both the IEEE
1220 standard and the EIA IS 632 standard, both of
which were fairly minor modifications.

4.1 Main Product
The product to be designed: from requirement to

retrieval; such product can be decomposed in sub
products and so on.

4.2 Enabling Product

5- The requirement evolution in CE
context.

Our approach and contribution will focus mainly
on impact of requirement change and development a
methodology for requirements change. This will be
carried on the basis of:

a) traceability model
b) The concurrent processes
c) A formal framework for the

requirement change

5.1 General approach

We are investigating many approaches to such
issue. However, the global approach is thought as an
operational view as illustrated by the following figure.
The formal basis for such approach is not tackled yet
but some items are thought to be useful and to be
discussed in latter section.

34 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

This preliminary approach is systems engineering
context characterised by the interaction by four
models; these involve respective processes. Our
concern is the development of the change model and
its interaction with all other models. We will present
the traceability model dynamics that have been used in
earlier work [Hellouin1 et al.] [Hellouin2], and make
abstraction of the development and system
configuration management models as their basic
characteristics are known for long time. We know that
any requirement change will concern and trigger all
four models. In our first approach we will be
concerned the change, traceability and development
models. However, some principles will guide towards
the deepening of the approach as future work will
focus mainly on refining the approach:

1. Any change request either at any step

of development model suppose the
availability of a traceability model.

2. A change request for an operation
module will necessarily require tracing
back the original requirement

3. Make distinction between functional
and non-function requirements

4. Identify security/safety requirements.
5. Create link between associated function

and safety requirement.

5.2 Traceability model

 As discussed earlier, providing traceability of
requirements to their sources and the outputs of the
system development process can be along several
dimensions. Different stakeholders contribute to the
capture and use of traceability information, often with
different perspectives. A user has a different vision
from an audit specialist, a system designer or a
validation engineer. Some typical questions are often
asked:

What are the systems components that are affected
by a specific requirement?

Why are the components affected by such
requirements?

How are the components affected by such
requirement?

What are the sources of a low level requirement?
Why and how two requirements are related?
And so on …
An object can belong to one of the following

classes: requirement, design, components,
system/subsystem, etc. Attributes and operations
(activities) are associated with each class, subclass.

Sources are all available information as
documents, phone call, E-mail about the object

lifecycle. Traceability concerning specific decision
made can be found through the relation documents.

Figure 3: Traceability at low level

We can use this traceability model to identify any link
that may be subject and constrained by a requirements
change.

 Conclusion

An extension of the approach for key non-
functional requirement is the objecting of future
research.

References

[1] Barry, E.J.; Mukhopadhyay, T.; and Slaughter, S.;
Software Project Duration and Effort: An Empirical
Study, 2002, Information Technology and
Management, vol. 3, pp. 113-136.

[2.] Buren, J.V.; cook, D.; 1998, Experiences in the
Adoption of Requirements Engineering Technologies,
Journal of Defence Software Engineering, December,
pp.3-10.

[3] Hellouin, L.; Beaugrand, J.L.; and Sahraoui,
A.E.K.; 2001, Requirements process and traceability
issues, 11th Annual INCOSE Symposium, Melbourne.

[4] Hellouin, L.; 2002, Contribution à l’ingénierie des
exigences et à la traçabilité, PhD Thesis, LAAS-
CNRS and INPT, LAAS-Report 02074.

[5] El-Jamal, H.M: Requirements evolution and
impacts on safety. IFIP 18th World Computer
Congress, August 2004, Toulouse.

[6] El-Jamal, H.M, Sahraoui, A.E.K: requirements
evolution methodology and impacts on safety. Quality
conference, Bordeaux, Mars 2005.

Model SCM

Traceability
Model

Development
Model

(Requirements)

Evolution

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 35

ISBN: 1-60132-446-4, CSREA Press ©

 [7] Hughes, T.; Cindy, M.; Design traceability of
complex systems. In Human Interaction with Complex
Systems, pages 37–41, March 1998.
[8] Krasner, H.; 1989, Requirements Dynamics in
Large Software Projects, 11th World Computer
Congress (IFIP89), Amsterdam, Netherlands.

[9] LuizMarcio, C.; Julio Cesar, S. d. P.L.,
Nonfunctional Requirements: From Elicitation to
Conceptual ModelsIEEE TRANSACTIONS ON
SOFTWARE ENGINEERING, VOL. 30, NO. 5,
MAY 2004 Engineering, Fort Collins.

[10] Nurmuliani, N.; ZowghiD.; and Fowell S., 2004,
Analysis of Requirements Volatility during Software
Development Life Cycle, proceedings of the
Australian Software Engineering Conference
(ASWEC), April 13-16, Melbourne, Australia.

[11] Sahraoui, A.E.K, Buede, D., Sage, A: Issues in
systems engineering research. Incose Int’l
Symposium, June 2004, Toulouse.

[12] Stevens R;Brook, P.; Systems Engineering -
Coping with complexity. Prentice Hall, 1998
[13] Traoré, I.; El Jamal, M.H.; Yanguo Liu, M.;
Sahraoui, A.E.K.; 2004, UML-PVS for requirements
specification. Incose symposium, Toulouse, France.

[14] Traoré, I.; Sahraoui, A.E.K.; 1997, A
Multiformalism Specification Framework with
Statecharts and VDM, 22nd IFAC/IFIP Workshop on
Real Time Systems,Lyon, France.

[15] Zowghi, D.;Nurmuliani, N.; 2002, A Study of the
Impact of Requirements Volatility on Software Project
Performance, 9th Asia-Pacific Software Engineering
Conference, Gold Coast, Australia.
[Sheard, 2003] SheardS.A : Three types of systems
engineering application. Incose symposium, 2003

36 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

Use Case Mapping vs. Thing-Oriented Modeling of
Software Requirements

S. Al-Fedaghi

Computer Engineering Department, Kuwait University, Kuwait

Abstract - Use case maps (UCMs) have been introduced in
software engineering as a means to bridge the gap between
requirements and design in software development. This
problematic gap originated from ineffective elicitation of
system requirements. A great deal of difficulty in developing
software can be traced to the initial phase of the development
life cycle, when analyzed requirements and design schemata
come together. UCMs relate use cases in a maplike diagram
built from components and associated responsibilities linked
by the path of the scenario they depict. This paper proposes
adopting an alternative to UCM conceptualization that could
contribute to the alleviation of some of the problems posed by
the requirements/design gap. The proposed approach is based
on so-called Thing-Oriented modeling utilizing flow-based
diagrammatic methodology. Accordingly, some examples from
the literature are reformulated using the proposed flow-based
representation. The resultant schemata seem more suitable for
developing structures in the design phase.

Keywords: Software development life cycle, elicitation of
system requirements, use case mapping, conceptual
representation

1 Introduction
 A great deal of difficulty encountered in development of
software can be traced to the initial phase of the development
life cycle, when analyzed requirements and design schemes
are brought together. Low user involvement and participation
as well as improper requirements specifications are the top
causes of more than a third of IT project cancellations and
cost increases. On average, barely more than one in six
software projects are ever completed on-time and on-budget
[1, 2, 3, 4].

Many methodologies have been proposed to handle such
a problem, including the so-called component bus system and
properties [5, 6], study of cognitive challenges of design [7],
text analysis approaches, and natural language processing [8].

Use Case Map (UCM) notation has been used to bridge
the requirements/design gap in software development [9] and
to describe scenario-based aspects at the requirements level.
UCM is a visual standard representation for the
materialization of scenarios including both static and dynamic
aspects of a system [10]. It can be constructed from informal
requirements or from use cases expressed in natural language
and diagrams. UCMs relate use cases in a maplike diagram
built from components and associated responsibilities linked

by the path of the scenario they depict. UCM is used to
describe relationships between responsibilities (e.g., actions,
activities, operations, tasks to perform) and components (e.g.,
objects, processes, databases, servers, functional entities,
network entities, users, actors, processors), which may
potentially be bound to underlying organizational structures of
abstract components [11]. Some works have extended UML
with UCM concepts [12, 13].

UCM notation comprises a set of start-points, filled
circles representing preconditions; responsibilities,
representing the tasks, are denoted by crosses; end-points are
indicated by bars that represent post-conditions; and
components are shown as boxes to represent a software entity
containing responsibilities.

It is claimed that UCMs can clarify the functional
description of a system and eliminate possible errors in user
requirements. They have the advantage of being flexible and
maintainable, and they encapsulate different types of
information in a single view [14].

One of the advantages of using the UCM notation is that it
is easily understandable by any stakeholder of the system,
allowing designers to reduce the gap between client needs
and requirement analysts. [8]

This paper proposes adopting an alternative to UCM
conceptualization that could contribute to the alleviation of
some of the problems encountered in the gap between
requirements and design. The proposed approach is based on
so-called thing-oriented modeling and utilizes flow-based
diagrammatic methodology. The resultant schemata seem
more suitable for developing structures in the design phase.
To substantiate such a claim, the paper contrasts the two
approaches side-by-side by reformulating (a) a UCM from the
literature and (b) its representation. This comparison serves as
evidence of the benefit of the latter methodology.

Thing-oriented modeling is used to model a portion of
reality through things that flow in “river basins,” called flow
systems, that are part of greater “territories” called spheres
and subspheres. Operations on flowing things are categorized
and limited to creation, release, transfer, receiving and
processing. Relationships among spheres are represented in
Venn-like diagrams. Elements of such a model are matched
with elements of the domain system. According to Frigg [15],

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 37

ISBN: 1-60132-446-4, CSREA Press ©

A system is a “compact” and unstructured entity and we
have to carve it up in order to impose a structure on it.
Structures do not really exist until the scientist’s mind
actually “creates” them or, to put it in a less pretentious
way, ascribes them to a system. Structures are not “ready-
made” but result from a way of taking, or demarcating,
the system. (Italics added)

This thing-oriented modeling utilizes a diagrammatic
language called the Flowthing Model (FM). FM has been
used in several applications (e.g., [16, 17, 18, 19, 20]). For
the sake of a complete presentation, the basic notions in FM
are briefly described in the next section.

2 Flowthing Model
 The Flowthing Model (FM) is a diagrammatic language
that uses flowthings to represent a range of items, for
example, electrical, mechanical, chemical, and thermal
signals, circulating blood, food, concepts, pieces of data, and
so on. Flowthings are defined as what can be created,
released, transferred, processed, and received (see Figure 1).
Hereafter, flowthings are referred to as things. Note that what
we call a thing is not necessarily a substance in the
philosophical sense, e.g., heat is a thing that is created,
released, transferred, received, and processed.

FM depicts processes using flow systems that are formed

by up to seven stages (states) depending on the requirements
and details of a system (Figure 1). These stages can be
embedded in a network of assemblies called spheres in which
the processes of flow systems take place.
The stages in Figure 1 can be described as follows:
Arrive: A thing reaches a new flow system.
Accepted: A thing is permitted to enter a machine. If arriving
things are always accepted, Arrive and Accept can be
combined as a Received stage.
Processed (changed): The thing goes through some kind of
transformation that changes it without creating a new thing.
Released: A thing is marked as ready to be transferred outside
the flow system.
Transferred: The thing is transported somewhere from/to
outside the flow system; here, two separate stages of Output
and Input can be defined instead of the single stage of
Transfer, if needed.
Created: A new thing is born (created) in a flow system.

The flow system of Figure 1 is a generalization of the
typical system model of input-process-output used in many
scientific and engineering fields. In general, a flow system is
thought to be an abstract machine that receives, processes,
creates, releases, and transfers things. The stages are mutually
exclusive (i.e., a thing in the Process stage cannot be in the
Create stage or the Release stage at the same time). An
additional stage of Storage can also be added to any machine
to represent the storage of things; however, storage is not an
exclusive stage because there can be stored processed
flowthings, stored created flowthings, etc.

FM also uses the notions of spheres and subspheres.
These are the network environments and relationships of
machines and submachines. Multiple flow systems can exist in
a sphere if needed. A sphere can be a person, an organ, an
entity (e.g., a company, a customer), a location (a laboratory,
a waiting room), a communication medium (a channel, a
wire). A flow system is a subsphere that embodies the flow; it
itself has no subspheres.

FM also utilizes the notion of triggering. Triggering is
the activation of a flow, denoted in FM diagrams by a dashed
arrow. It is a (causative) dependency among flows and parts
of flows. A flow is said to be triggered if it is created or
activated by another flow (e.g., a flow of electricity triggers a
flow of heat), or activated by another point in the flow.
Triggering can also be used to initiate events such as starting
up a flow system (e.g., remote signal to turn on). Multiple
flow systems captured by FM can interact by triggering events
related to other flow systems in their spheres and stages.

3 Applying FM to analyzed
requirements and design schemata
This section is the main contribution of this paper. It

demonstrates that FM can be applied as an alternative to use
case mapping; hence, it could help to alleviate the problem of
failure to effectively elicit system requirements. Such a
demonstration will show two reformulated examples from the
literature.

3.1 Use case mapping utilizing natural
language mining

Casamayor et al. [8] introduce an approach for mining
and grouping functionality starting from informally written
requirements using a combination of natural language
processing and text clustering algorithms. The purpose is to
identify potential software responsibilities and components of
the system to be developed. A set of rules is applied to every
verb phrase in the requirements description to select candidate
responsibilities. An initial partition of the candidate
responsibilities is produced to give the designer some insight
into possible conceptual components of the desired
architecture.

Fig. 1. Flow system

Create

Receive

 Transfer Release

Process Accept Arrive

Output Input

38 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

For example, consider the requirement “Add New
Client,” which can be transcribed as follows:

The manager selects “add new client” from the system
menu. The system displays a blank client form. The
manager enters the social security number of the new
client. The system retrieves the client list and checks that
the client does not exist. The manager enters the required
client information fields: name, date of birth, postal
address and credit card number. The manager selects
“save changes”. The system updates the client information.
[8]

Accordingly, from the sentence The manager selects “add
new client” from the system menu, we can extract:
Noun: the manager, identified as the actor of this requirement
Verb: selects “add new client” from the system menu, where
the verb is considered an external input to the system.

Consequently, the responsibility of the system would be
to wait for user input, i.e., from the manager.

Such a mining process is followed by grouping of the
identified responsibilities, e.g., a cluster, as shown in Figure 2.
A complete description of the method is detailed in [8].

Suppose that we model this “add new client” scenario
using FM. Can the FM diagram accomplish the same aim of
identifying potential software responsibilities and components
of the system to be developed? Figure 3 shows such a
representation.

The manager generates (1) a request for the menu of

tasks that flows to the system (2), where it is processed (3).
This triggers (4) creating such a menu (5) that flows to the
manager (6). The manager processes (7 – e.g., browses) the
menu and triggers the creation (8) of a selection (“Add New
Client”) that flows to the system (9). The system processes the
selection and sends the blank form to the manager (10). The
manager enters the social security number of the new client,
which flows to the system (11).

Manager

Create Process

Create Process

Create Process

Process

Create
Process

Checks that the client does not exist

Request

Menu of tasks

Select add new client

Blank client form

Social security number

Process
Enter other data

Create Process

Name, date of birth, postal address and
credit card number

Create Process
Save

Release Transfer Transfer Receive

Release Transfer Transfer Receive

Release Transfer Transfer Receive

Transfer Transfer Receive

Release Transfer Transfer Receive

Release Transfer Transfer Receive

Release Transfer Transfer Receive

Release Transfer Transfer Receive

System

Fig. 3. FM representation of “add new client”

Create

Release

1

7

8

10

11

2
3

4

5
6

9

12

13

14

15

The system displays a blank client form.
NP: the system
VP: displays a blank client form
→ Candidate responsibility: display blank client form
The manager enters the social security number of the
new client.
NP: the manager
VP: enters the social security number of the new client
→Candidate responsibility: user input (‘‘social security
number of the new client’’)
…

Fig. 2. Grouping of identified responsibilities (partial,
from [8]).

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 39

ISBN: 1-60132-446-4, CSREA Press ©

The system processes the input data to check that the
client does not exist (12). It also sends a message to enter the
other data related to the new client (13). Accordingly, name,
date of birth, postal address, and credit card number are input
and flow to the system (14). Then, the manager saves the
changes (15).

The FM diagram is almost a flowchart of a student
assignment in a programming course. Accordingly, moving to
the design level to identify software components and
procedures is a straightforward task. The FM representation
can be extended to the user’s interface level. For example,
assuming that the manger wants to perform the Add New
Client task, Figure 4 shows a partial view of such an interface
with FM utilized at this level.

3.2 Use case mapping in object-oriented
modeling

Object-Z is a language that facilitates the specification
of systems in an object-oriented style [21]. Dongmo and van
der Poll [14] developed a framework to transform a UCM into
Object-Z to facilitate the construction of a formal
specification.

A correct Z specification could be used in a reverse-
engineering approach that would in turn enhance the original
UCM. A more correct UCM may be vital, since system
designers may prefer to develop a system from a set of UCMs
instead of a formal description. [14]

Dongmo and van der Poll [14] describe a case study to
illustrate their ideas, as follows.

Consider a scenario comprising the following activities:
(1) A company employee (say, Helper) to whom a customer
returns a purchased item receives the item and temporarily
puts it aside, waiting to forward it to the provider.
(2) The Helper forwards the returned item to the provider.
(3) The provider collects the returned item.

Figure 5 shows the corresponding UCM model.

The diagram is constructed with UCM elements that may
be grouped into the categories Paths, Path elements, Path
connectors, and abstract components. A UCM path
indicates the progression route of one or more scenarios in
execution. ... Elements encountered along a path segment
are: Responsibility points, Path connectors, Timers, etc.
[14]

Fig. 5. Partial view redrawn from [14] that illustrates diagramming of the given scenario

Start NetControl returnItem

 Stock Store
forwardItem

Network
Provider

Checkpoint

…

keepItem

Manager

Process Transfer Receive

System

…

Responsibility 1: Client handling

Responsibility 2: Employee handling

MANAGER

CLIENT HANDLING
Create new client

Process client

Send (release/transfer) client

Create Transfer Release

Fig. 4. A glimpse at the design level where FM is used at manager interfaces, with stages create, process, and
release/transfer

40 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

Accordingly, the resultant Object-Z classes are

identified as shown in the hierarchical structuring of schemata
depicted in Figure 6. The arrows pointing to a class indicate
the classes originating from that class.

Such a description realizes our aim of showing the type

of diagramming methodology and some of the results of the
work of Dongmo and van der Poll [14]. We also contrast it
side by side with a model of the same scenario using FM.

Figure 7 shows the FM depiction of our understanding
of this case study. If some details of the scenario have been
misunderstood, the general diagramming methodology is not
affected; the figure can easily be modified.

In the figure, first, the returned item is received by the
helper (1) and processed (2). Such processing triggers the
following:

- Creation of a request to validate the item invoice
(3)

- Creation of an Internet request to initiate
communication (4)

The request to communicate flows to the network (5), where it
is processed (6) to create a permission (7) that flows to the
helper (8).

Upon receiving such permission, the helper releases the
request to validate the item invoice (9) that flows to the
network (10) and is delivered to the provider (11). Processing
the request (12) creates a response (13) that we assume is OK;
this response flows to the network (14) and then to the helper
(15).

ClsHelper

ClsStock ClsNetControl ClsNetwork ClsProvidel

ClsStore ClsTimer

Fig. 6. Structure of classes (partial, redrawn from [14])

Transfer

Create

Helper

Process

Transfer Returned item

Process

Process

Request to validate invoice
Create

Validation OK

Receive

Release Transfer

Stock

Timer

Release

Transfer Release

Transfer

Process

Release

Transfer

Create
Receive Release Transfer Transfer Receive

Provider

Transfer

Receive

Process

Create

Network

Release Transfer

Request to communicate

Create
Communicate OK

(permission)

Transfer

Receive

Release

Release Transfer

Transfer

Transfer

Transfer

Transfer

Transfer

Transfer

Receive

Receive

Release

Receive

Release Transfer

3

2

1

4
5

6

7 8

9 10 11

12

13

14
Release Transfer Transfer Receive

15

17

18

19
20

21

22

23

24 25

26
27

28 29

Fig. 7. FM representation of the case study

16

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 41

ISBN: 1-60132-446-4, CSREA Press ©

Returning to the point when a request to validate the

item invoice (16) is sent, this triggers (17) the generation of
that point in time (18) at which the time is processed (19); if
this time has expired, the returned item is released (20) to be
returned to stock (21).

Now we return to the point where the response
validation OK is received by the helper (15). It is processed
(22), and depending on whether or not the item is in the store,
the following occurs:

- If there is no delay (the item is not in stock), then
the item is triggered (23) to be released (24) to the
network (25), then to the provider (26).

- It the item is in storage (delayed), then this triggers
(27) releasing it (28) from storage to the network
(29), then to the provider (26).

Again, the resultant description is a high-level flowchart that
can be translated into a design schema. Figure 8 shows the
identifying structure of classes shown in Figure 6.

4 Conclusion

This paper contributes to the area of requirements
analysis and design by adopting a new modeling method that
can alleviate some of the problems of lack of user input and
incomplete requirements specifications. The approach
advocates developing requirements analysis and design upon
a thing-oriented foundation that integrates a diagrammatic
representation upon which details of function, structure, and
behavior can be built. The results point to the feasibility of
using this type of modeling as a multilevel diagrammatic
language with simple notions. Its features suggest that it is
also appropriate for the design phase. Its apparent complexity
can be attributed to the details of the specification as applied
in engineering schemata.

Further research would expand the application of the
approach to various theoretical and actual systems.
Furthermore, research could lead to injecting other formalized
modeling techniques (e.g., Petri net) into the method.

Transfer

Create

Helper

Process

Transfer Returned item

Process

Process

Request to validate invoice

Create

Validation OK

Receive

Release Transfer

Stock

Timer

Release

Transfer Release

Transfer

Process

Release

Transfer

Create
Receive Release Transfer Transfer Receive

Provider

Transfer

Receive

Process

Create

Network

Release Transfer

Request to communicate

Create
Communicate OK

(permission)

Transfer

Receive

Release

Release Transfer

Transfer

Transfer

Transfer

Transfer

Transfer

Transfer

Receive

Receive

Release

Receive

Release Transfer

Release Transfer Transfer Receive

Fig. 8. Identifying structure of classes of Figure 6 in the FM representation

Transfer

Create

Helper

Process

Transfer Returned item

Process

Process

Request to validate invoice

Create

Validation OK

Receive

Release Transfer

Stock

Timer

Release

TransferRelease

Transfer

Process

Release

Transfer

Create
Receive Release Transfer Transfer Receive

Provider

Transfer

Receive

ProcessCreate

Network

Release Transfer

Request to communicate

Create

Communicate OK
(permission)

Transfer

Receive

Release

ReleaseTransfer

Transfer

Transfer

Transfer

Transfer

Transfer

Transfer

Receive

Receive

Release

Receive

Release Transfer

ReleaseTransfer TransferReceive

Class

Subclass

Subclass Class

Class
Class

42 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

5 References
[1] M. Liu. “What Makes IT Projects Succeed?”, Keep
Touch News Letter.
 http://www.csb.gov.hk/hkgcsb/eon/183/183_5.html

[2] Standish Group. “Chaos”, The Standish Group Report,
(2014).

[3] Y. Yang, F. Xia, W. Zhang, X. Xiao, Y. Li, X. Li.
“Towards semantic requirement engineering”, in: Proceedings
of the IEEE International Workshop on Semantic Computing
and Systems (WSCS’08), Washington, DC, USA, 2008, pp.
67–71.

[4] E. Hull, K. Jackson, D. Jeremy. “Requirements
Engineering”. Springer-Verlag, 2005.

[5] P. Grünbacher, A. Egyed, N. Medvidovic. “Refinement
and evolution issues in bridging requirements and architecture
– the CBSP approach”, in: Proceedings of the 1st
International Workshop, From Software Requirements to
Architectures (STRAW’01), 2001, pp. 42–47.

[6] P. Grünbacher, A. Egyed, N. Medvidovic. “Reconciling
software requirements and architectures with intermediate
models”; Software and System Modeling, Vol. 3, No. 3, 235–
253, 2006.

[7] J. E. Robbins, D. F. Redmiles. “Software architecture
critics in the Argo design environment”; Knowledge-Based
Systems, Vol. 11, No. 1, 47–60, 1998.

[8] Agustin Casamayor, Daniela Godoy, Marcelo Campo.
“Functional grouping of natural language requirements for
assistance in architectural software design”; Knowledge-
Based Systems, Vol. 30, 78–86, June 2012.
doi:10.1016/j.knosys.2011.12.009

[9] D. Amyot, G. Mussbacher. “Bridging the requirements/
design gap in dynamic systems with use case maps (UCMs)”,
in: Proceedings of the 23rd International Conference on
Software Engineering (ICSE’01), Toronto, Canada, 2001, pp.
743–744.

[10] G. Mussbacher, D. Amyot, M. Weiss, “Visualizing early
aspects with use case maps”; Transactions on Aspect-Oriented
Software Development, vol. 3, Springer, pp. 105–143, 2007.

[11] D. Amyot, A. Eberlein. “An Evaluation of Scenario
Notations for Telecommunication Systems Development”,
Proceedings of the Ninth International Conference on
Telecommunication Systems (9ICTS), Mar. 2001.

[12] R. J. A. Buhr. “Use case maps as architectural entities
for complex systems”; IEEE Transactions on Software
Engineering, Vol. 24, No. 12, 1131–1155, 1998.

[13] Daniel Amyot. “On the Extension of UML with Use
Case Maps Concepts”; 3rd International Conference on the
Unified Modeling Language, York, UK, October 2000.
Lecture Notes in Computer Science, No. 1939, pp. 16-31

[14] Cyrille Dongmo, John Andrew van der Poll.
“Addressing the Construction of Z and Object-Z with Use
Case Maps (UCMs)”; International Journal of Software
Engineering and Knowledge Engineering, Vol. 24, No. 2,
285–327, 2014.

[15] R. Frigg. Models and representation: why structures are
not enough. Measurement in Physics and Economics Project
Discussion Paper Series, DP MEAS 25/02, London School of
Economics (2002).

[16] Sabah Al-Fedaghi. “Scrutinizing UML Activity
Diagrams”; 17th International Conference on Information
Systems Development (ISD2008), Paphos, Cyprus, August
25-27, 2008.

[17] Sabah Al-Fedaghi, “Privacy as a Base for
Confidentiality”, Presented at the Fourth Workshop on the
Economics of Information Security, Harvard University,
Cambridge, MA, 2005.

[18] Sabah Al-Fedaghi, “Scrutinizing the Rule: Privacy
Realization in HIPAA”; International Journal of Healthcare
Information Systems and Informatics (IJHISI), Vol. 3, No. 2,
32-47, 2008.

[19] Sabah Al-Fedaghi. “Conceptualizing Effects, and Uses
of Information”, The Information Seeking in Context
Conference (ISIC 2008), September 17-20, 2008, Vilnius.
Lithuania.

[20] Sabah Al-Fedaghi. “Awareness of Context and Privacy”;
The American Society for Information Science & Technology
(ASIS&T) Bulletin, Vol. 38, No. 2, 2011.

[21] John Derrick, Eerke A. Boiten. “Refinement in Z and
Object-Z”, Springer-Verlag London, 2014.

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 43

ISBN: 1-60132-446-4, CSREA Press ©

Merging Software Specifications Focusing on Different System Boundaries

Lan Lin, Yufeng Xue
Ball State University

Department of Computer Science
Muncie, IN 47396, USA
{llin4, yxue2}@bsu.edu

Abstract

Field application of sequence-based software specifica-
tion has earlier identified the need to address complexity
and scalability both theoretically and practically for larger
and more complex applications. Previous strategies focus
on a clean partitioning of system inputs as dictated by the
application, which is not always easy or possible. In this pa-
per we present a formal and systematic process and work-
flow to merge partial specification products that focus on
different system boundaries. The subsets of inputs entailed
in the partial work products may or may not interact (or
communicate) with each other, as opposed to the previous
clean decomposition. The new approach will prove useful
and effective in field applications towards the construction
of a complete system model that forms a basis for system
level software specification, testing, and certification. We
report five case studies (all the applications are from pub-
lished literature) that we have performed to test out our new
theory and implementation.

Keywords: rigorous software specification, sequence-
based specification, requirements engineering, change
management, Mealy machine

1 Introduction

Modern software development processes for safety- and

mission-critical systems rely on rigorous methods for code

development and testing to support dependability claims

and assurance cases [15] that provide the justified and

needed confidence. Sequence-based software specification
[26, 28, 25], as a rigorous method for requirements anal-

ysis and specification development developed by the Uni-

versity of Tennessee Software Quality Research Labora-

tory (UTK SQRL) in the 90’s, derives a formal model of

a software-intensive system from the original descriptions

of functional requirements through a systematic and con-

structive sequence enumeration process. Since its inception

it has been successfully applied to a variety of industry and

government projects ranging from medical devices to auto-

motive components to scientific instrumentation, to name a

few [7, 6, 14, 27, 8, 28].

Field application of the method has identified one prob-

lem common to all aspects of computing: scalability. To re-

duce the specification to a manageable size, a human spec-

ifier has to clarify the extent to which inputs can be parti-

tioned into subsets that do not interact (or communicate),

and therefore, need not be enumerated together, as sug-

gested by the application. However, this is not always easy

or possible. This paper proposes a formal and systematic

merging process and workflow with tool support, to over-

come this limitation and combine specifications built on

subsets of inputs that focus on different system boundaries.

These subsets of inputs only need to cover but not necessar-

ily partition the complete set of inputs; they may or may not

have interactions with each other. The proposed workflow

improves on current strategies that handle complexity and

scalability, and will prove useful in field applications.

This paper is structured as follows. In Section 2 we in-

troduce the sequence-based specification method. Section 3

elaborates the merging process and workflow with a sym-

bolic example. In Section 4 we report five case studies in

which we applied the merging process to the derivations of

complete system specifications with our observations. Sec-

tion 5 summarizes related work. Finally, Section 6 con-

cludes the paper.

2 Sequence-based software specification

Sequence-based software specification [26, 28, 25] is a

rigorous method that systematically converts ordinary func-

tional requirements of software to a precise specification.

The specification automatically translates to a formal sys-

tem model for both development and testing.

To apply the method, one first identifies a system bound-
ary that defines what is inside and outside the software-

44 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

intensive system. This usually consists of a list of interfaces
between the system and the environment of the software.

From the interfaces one further collects stimuli (inputs) and

responses (outputs). Stimuli refer to events (inputs, inter-

rupts, invocations) in the environment that can affect system

behavior. Responses refer to system behaviors observable

in the environment. Then one explicitly enumerates finite

stimulus sequences (representing scenarios of use), first in

increasing order of length, and within the same length lexi-

cographically. The sequence enumeration process is guided

by a few rules.

As an example let us consider a simple industrial

“cooker” [2]. Requirements for the cooker controller are

collected in Table 1, with each sentence numbered (tagged)

for easy reference. The last three requirements whose tags

begin with “D” correspond to derived requirements not

originally given but identified in the specification process.

We further identify all stimuli and responses in Table 2. No-

tice the last two responses introduced by the theory: the null
response (denoted 0) representing no observable behavior

across the system boundary (the software may only have an

internal state update), and the illegal response (denoted ω)

representing a sequence of inputs not practically realizable

(an instance of this is the power-on event being placed after

other inputs in the sequence).

Table 3 shows a sequence enumeration of the cooker

controller up to Length 3. We start with the empty sequence

λ, and proceed from Length n to Length n+1 sequences (n
is a non-negative integer). Within the same length we enu-

merate sequences in lexicographical order. For each enu-

merated sequence the human specifier makes two decisions

based on the requirements:

1. They identify a unique response for the most current

stimulus given the complete stimulus history. For

instance, the sequence SG corresponds to: software

started, followed by a pressure good reading. By Re-

quirements 1, 2, 3, and 5, the valve should be func-

tioned first and closed, hence the response “cv”. A

sequence is illegal if its mapped response is ω; other-

wise, it is legal.

2. They consider if the sequence takes the system to the

same situation that has been encountered and explored

by a previously enumerated sequence. If so they note

the previous sequence in the “Equivalence” column,

and treat the later sequence as reduced to the earlier

sequence. The two sequences are called Mealy equiv-
alent as they correspond to the same state when the

system is modeled as a Mealy machine. For instance,

the sequence SO corresponds to: software started and

then turned off. This takes the system to the same situ-

ation as the empty sequence as in both cases software

is not started yet, hence SO is reduced to λ. From this

Table 1. Cooker controller requirements
Tag Requirement

0 Consider an industrial “cooker” that is subject to

various factors (external heat, internal chemical

reactions, etc.) that change the pressure in the

cooker. A control unit attempts to keep the pres-

sure near a specific set point by opening and clos-

ing a pressure release valve and turning a compres-

sor on and off, according to the following rules.

1 When started, the controller does not know the sta-

tus of the valve or compressor, and there is no hard-

ware capability to poll their status.

2 Only one output signal can be sent per input signal.

3 If both the valve and the compressor appear to need

changes at the same time, since only one signal can

be sent, function the valve first.

4 If the input signal says the pressure is Low, then

the valve should be closed and the compressor on.

5 If the input signal says the pressure is Good, then

the valve should be closed and the compressor off.

6 If the input signal says the pressure is High, then

the valve should be open and the compressor off.

7 When turned off, the controller does not have time

to generate any output signal.

D1 Sequences with stimuli prior to system initializa-

tion are illegal by system definition.

D2 When started, the controller does not produce any

externally observable response across the system

boundary.

D3 Once started, the system cannot be started again

without being turned off first.

Table 2. Cooker controller stimuli and re-
sponses

Stimulus /

Response

Short Name Description Requirement

Trace

Stimulus S Started 1

Stimulus L Pressure low 4

Stimulus G Pressure good 5

Stimulus H Pressure high 6

Stimulus O Turned off 7

Response ov Open valve 0

Response cv Close valve 0

Response co Compressor on 0

Response cf Compressor off 0

Response 0 Null Method

Response ω Illegal Method

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 45

ISBN: 1-60132-446-4, CSREA Press ©

point on SO and λ will behave the same for any future

non-empty sequence of inputs. A sequence is unre-
duced if no prior sequence is declared for its “Equiva-

lence” column; otherwise, it is reduced. In theory we

also treat an unreduced sequence as reduced to itself.

The enumeration process is constrained by the following

rules:

1. If a sequence (say u) is illegal, there is no need to ex-

tend u by any stimulus, as all of the extensions must be

illegal (i.e., physically unrealizable). For instance, no

extensions of the sequence G are enumerated because

G is an illegal sequence.

2. If a sequence (say u) is reduced to a prior sequence

(say v), there is no need to extend u, as the behaviors

of the extensions are defined by the same extensions of

v. For instance, no extensions of the sequence SO are

enumerated because SO is reduced to λ.

3. When reducing a sequence (say u) to a sequence

(say v), we require v be both prior (in length-

lexicographical order) and unreduced (otherwise we

could follow the reduction chain of v and get to the

sequence that is unreduced). For instance, SGO is re-

duced to λ and not SO.

Therefore, only legal and unreduced sequences of Length n
get extended by every stimulus for consideration at Length

n+1. The process continues until all sequences of a certain

length are either illegal or reduced to prior sequences. The

enumeration becomes complete. This terminating length is

discovered in enumeration, and varies from application to

application. The cooker controller enumeration terminates

at Length 5.

Application of the method is facilitated with two tools

developed by UTK SQRL: Proto Seq [3] and REAL [4].

To produce a specification in either tool, one only needs to

give stimuli and responses short names to facilitate enumer-

ation; no other notation or syntax is required. The tools

enforce enumeration rules by the recommended workflow

and maintain internal files (XML format) current with ev-

ery action.

3 Merging specifications

In sequence-based specification the derived specification

takes the form of a complete sequence enumeration. An

enumeration is complete if every legal and unreduced (also

called canonical) sequence has been extended by every sin-

gle stimulus. Let us consider merging two enumerations fo-

cusing on different system boundaries: E1 with the stimulus

set S1, and E2 with the stimulus set S2, where S1 ∪ S2 = S
(the complete stimulus set). Notice that the two stimulus

Table 3. Cooker controller sequence enumer-
ation up to Length 3

Sequence Response Equivalence Trace

λ 0 Method

G ω D1

H ω D1

L ω D1

O ω D1

S 0 D2

SG cv 1, 2, 3, 5

SH ov 1, 2, 3, 6

SL cv SG 1, 2, 3, 4

SO 0 λ 7

SS ω D3

SGG cf 5

SGH ov SH 2, 3, 6

SGL co 4

SGO 0 λ 7

SGS ω D3

SHG cv SG 2, 3, 5

SHH cf 6

SHL cv SG 2, 3, 4

SHO 0 λ 7

SHS ω D3

sets S1 and S2 do not have to be disjoint (if they are, they

correspond to a partitioning of the complete set of system

inputs), and can share a few stimuli that are common to

the two different system boundaries (for example the power

on input). Let C1 and C2 denote the sets of canonical se-

quences in E1 and E2, respectively. We define the process

for merging in Table 4, with the following assumptions:

- If E1 and E2 share a stimulus, it has the same definition

in both.

- The same holds for a stimulus sequence that is defined

in both E1 and E2.

When merging two specifications that focus on different

system boundaries new enumeration entries (stimulus se-

quences) will need to be added as a result of the enlarged

stimulus set (Steps 2-3 in Table 4). These sequences entail

interactions of stimuli from the different system boundaries,

and need to be defined for the correct system behavior based

on the requirements. Since these sequences are inserted into

all possible places in an ordered enumeration table, defining

these entries requires the application of change algorithms

(Step 6) to automatically compute and enforce the rippling

effect of a single response or equivalence change.

Since the sub-specifications were constructed based on

46 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

Table 4. The process for merging two com-
plete enumerations E1 and E2, with the stim-
ulus sets S1 and S2, and the canonical se-
quence sets C1 and C2, respectively; (H) indi-
cates the step requires human effort; (T) in-
dicates the step has automated tool support.

Step Description

1 Construct E by taking rows of E1 and E2 and re-ordering

them based on the length-lexicographical ordering of

stimulus sequences. (T)

2 Extend each sequence in C1 − C2 by each stimulus in

S2−S1. Map the new extensions to illegal and highlight

these rows (as a reminder to the human specifier that they

need to be re-defined based on the requirements). The

new extensions are inserted in E based on the length-

lexicographical ordering of stimulus sequences. (T)

3 Extend each sequence in C2 − C1 by each stimulus in

S1−S2. Map the new extensions to illegal and highlight

these rows (as a reminder to the human specifier that they

need to be re-defined based on the requirements). The

new extensions are inserted in E based on the length-

lexicographical ordering of stimulus sequences. (T)

4 Check if two canonical sequences in E are Mealy equiv-

alent (i.e., check for redundant states). (H) If so, reduce

the later in length-lexicographical order to the prior one

using an equivalence change algorithm (i.e., eliminate

redundant states). (T)

5 Check if a previously reduced sequence in E should be

declared unreduced considering the combined stimulus

set S (i.e., check if any state needs to be split). (H) If

so, declare the sequence as unreduced using an equiva-

lence change algorithm (i.e., split the state; essentially

the sequence will be extended by every stimulus in S;

the new extensions will be mapped to illegal and high-

lighted, and re-defined by the human specifier based on

the requirements). (T)

6 Define all highlighted rows one after another in the order

they appear in E based on the requirements. Essentially

each highlighted sequence starts from the default defini-

tion of being illegal, and proceeds as follows: (H/T)

6.1 If the sequence is indeed illegal, only fill in the require-

ments trace column. (H/T)

6.2 If the sequence is legal and reduced, define it as so using

a response change algorithm followed by an equivalence

change algorithm, and fill in the requirements trace col-

umn. (H/T)

6.3 If the sequence is legal and unreduced, define the new re-

sponse using a response change algorithm. Check if the

sequence is Mealy equivalent to a sequence that comes

later in length-lexicographical order. If so define the

equivalence between these two sequences using a for-

ward reduction algorithm (another case of eliminating

redundant states; another change algorithm), and fill in

the requirements trace column. (H/T)

a partial system boundary, when they are combined, it is

possible that the merged specification contains redundant

states (Step 4) or states that need to be split considering an

enlarged stimulus set (Step 5). In such cases change al-

gorithms are also needed to automatically enforce all the

comprehensive impact of a single response or equivalence

change.

All the response and equivalence change algorithms have

been developed [18] using state machines as an intermediate

and visualizing tool to comprehend and analyze the impact

of changes. More recently the forward reduction algorithm

used in Step 6.3 was developed [20] along the same line.

Derivation of the algorithms is out of the scope of this pa-

per (for details please see [20, 18]). In all the cases with

one intended response or equivalence definition of a spe-

cific stimulus sequence, the algorithms compute and apply

all the changes that need to be incurred to the specification

and guarantee it still conforms to all the enumeration rules.

Table 5 describes the algorithms that facilitate the merging

process. They were all developed using an axiom system

for sequence-based specification [20, 19, 18], proved to be

correct, implemented and provided with tool support.

Figure 1 shows Steps 1-3 of the merging process with

two symbolic enumerations: E1 with the stimulus set

S1 = {a, b, c}, the response set R1 = {r1, r2, 0, ω},

and the canonical sequence set C1 = {a, c}, and E2 with

the stimulus set S2 = {c, d}, the response set R2 =
{r1, r2, r3, 0, ω}, and the canonical sequence set C2 =
{c, cd}. Three new extensions are added to the merged enu-

meration at the end of Step 3: sequences ad, cda, and cdb.
They are all mapped to illegal by default, and highlighted

(in different shades of orange) as a reminder to the human

specifier for re-definition. Suppose there are no redundant

states after the merge (i.e., the two sequences a and cd are

not Mealy equivalent), the merged enumeration remains the

same after Step 4. Suppose a previously reduced sequence

aa needs to be re-considered for state splitting, an equiva-

lence change algorithm will need to be called on aa to make

it unreduced (Step 5). In defining the three new sequences

if for instance the sequence ad is found to be Mealy equiv-

alent to the future sequence cd which is already extended,

the forward reduction algorithm will need to be called to

define the extensions of ad, as well as their future exten-

sions if needed, based on the extensions of cd, enforce all

the change impacts, and reduce cd to ad in the resulting

specification (Step 6.3).

We have implemented the merging behavior and the for-

ward reduction algorithm in our enumeration tool Proto Seq

[3] that runs on Windows, Linux, and Mac OS X. In Table 4

we specify for each step of the workflow whether it requires

human effort, and/or has automated tool support.

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 47

ISBN: 1-60132-446-4, CSREA Press ©

Table 5. Algorithms that facilitate the merging
process
Algorithm Description

Equivalence change:

for a legal and unre-

duced sequence

Make a previously legal and

unreduced (hence extended)

sequence reduced, and make

all corresponding changes to

the resulting enumeration.

Equivalence change:

for a legal and re-

duced sequence;

make it unreduced

Make a previously legal

and reduced sequence

unreduced, and make all

corresponding changes to

the resulting enumeration.

Response change:

from illegal to legal

Make a previously illegal se-

quence legal, and make all

corresponding changes to the

resulting enumeration.

Forward reduction Simulate the effect of “for-

ward reducing” a prior

legal and unreduced se-

quence to a later legal

and unreduced sequence

in length-lexicographical

order, and make all corre-

sponding changes to the

resulting enumeration. (In

the enumeration after the

change all reductions are

still to prior sequences by

the enumeration rules.)

4 Case studies

We performed case studies on five published applica-

tions:

- An automotive lighting system (ALS) [1]

- A car door mirror electronic control unit (CDMECU)

[6]

- An insulin pump controller software (IPC) [29]

- A mine pump controller software (MPC) [17]

- A piece of the satellite operations software (SOS) [28]

In each case study we applied sequence-based specifica-

tion on two subsets of stimuli focusing on different system

boundaries that cover the complete stimulus set for each ap-

plication, and merged the specifications using the theory we

have developed and the tool support.

�� ��

�� ���

�� ��

�� ��

��� �	� ��

��� �� ��

��� ��� ��

��� �� ��

��� ��

��� ��� ��

�� ��

�� ��

� ��� ��

��� ��� ��

�
� ��

�
�� �� �
�

�

� �	� ��

�� ��

�� ���

�� ��

�� ��

� ��� ��

��� �	� ��

��� �� ��

��� ��� ��

�
� ��

��� �� ��

��� ��

��� ��� ��

�
� ��

�
�� ��

�
�� ��

�
�� �� �
�

�

� �	� ��

��

��

��

��

���������	��
��
���������
��

�����
�����
�����
��
���

Figure 1. An example of merging two sym-
bolic enumerations (table columns are for se-
quences, responses, and equivalences, re-
spectively)

Figure 2 shows the enumeration statistics for the five

case studies before and after the merge. For each of the

two enumerations (sub-specifications) before the merge, we

recorded the number of stimuli, the termination enumer-

ation length (i.e., at which length the enumeration / sub-

specification terminates with completion), how many stim-

ulus sequences are extended (i.e., the number of both le-

gal and unreduced sequences in the enumeration / sub-

specification), and how many stimulus sequences are an-

alyzed (i.e., the total number of enumerated sequences in

the enumeration / sub-specification). For the enumeration

(specification) after the merge (after the consolidation of re-

dundant states but before state splitting and the definition of

any highlighted new extensions) we recorded the number of

stimulus sequences that need to be defined at the top level

(which might get further extended). Merging works cor-

rectly as expected for all the case studies.

Figure 3 details for each case study how we divided up

the system boundary (to determine the inputs that need to

be included in each sub-specification). Selection of the sys-

tem boundary for sub-specifications is in all cases intuitive

and application-specific. It also lists for each case study in

the merging process whether there is any consolidation of

redundant states, state splitting, and application of forward

reductions, and if so how much is handled by the built-

in change algorithms. These steps in the merging process

work correctly as expected for all the case studies, although

the need for such considerations depends on the application.

Figure 4 shows the final enumeration statistics for each

48 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

�
�
�
�
�
�

�

���������	
� ��� ������� ���� ���� ��

�������	
�� ��������
��� �� �� �� �� ���

�������	
����	���� �� �� �� �� ��

���������	���� �� �� �� �� ��

����� 	 �!"��� �#� ��� ��� �� �#��

��$	���	
�� ��������
��� %� �� �� �� ��

�������	
����	���� �� �� %� �� ��

���������	���� �� �� %� ��� ��

����� 	 �!"��� ��� %�� �%� ���� ��

&�������	
�� ���������'��(���
	�)�����	��	���

�*� ��� ��� ��� ���

*�+�����$	���� ��	������
	� 	���� ����

Figure 2. Enumeration statistics for the five
case studies before and after the merge

����������	
� ��� ������� ���� ���� ��

��,���
���-�,	��
��

�	���,�������.�
�	���
	,��������

/�����
�.�-�,,
,�
-
��-����
������

����0��
��
��.�
	��
�-
���
������

1�-	��
�
�,	��
��
,�
���,���
,��
������

2����2,
����
�
��,
�������-��
0
--	���.�
�'
�
	,�������-�
����	����

��0
���
���-�,	��
��

�	���,�������.�
����,����������
������

���������	,�.�
-�,,
,���	�����
�������

����0��
��
��.�
-	��	��-
���
������

����
,������� 3����������.�
�
�������������

�
��
���	��
��
��
,�����	�����	����

4������	�,��
��
,�����	�����	����
���������	���0��
0�	�����

�
�
�
�

��	������������
�
�
�
�
�

�
,�	,��
,���0��
���

�
�
� 4����!��
,�	,��
,���0��
����

�

Figure 3. Details on system boundary selec-
tion, consolidation of redundant states, state
splitting, and forward reductions for the five
case studies

case study after we defined all the new extensions, as well

as their further extensions if needed, based on the require-

ments. For each completed final specification we recorded

the number of stimuli, the termination enumeration length,

how many stimulus sequences are extended, how many

stimulus sequences are analyzed, as compared with how

many stimulus sequences potentially need to be considered

up to the termination enumeration length. It can be ob-

served that sequence enumeration is effective in controlling

the combinatorial growth of the number of input sequences

to be examined in order to specify the correct system be-

havior and construct a formal system model for design, im-

plementation, and testing.

5 Related work

Sequence-based specification emerged from the func-

tional treatment of software as described by Mills [23, 21,

22]. The development was most directly influenced by the

���������	
� ��� ������� ���� ���� ��

"���������	
������ � ��� ��� ��� ���

�������
����
�������
��������
��

�� �� �� �� ��

5�������	�
��
������

�� ��� ��� ��� ���

5�������	������ ��� ��� ��!� ���� �!�� ����

6�
��
����	�������	� �"!�� ���"���"���� ��"���"� ���"���� �#�����$���

Figure 4. Enumeration statistics for the final
specifications for the five case studies

trace-assertion method of Parnas [24, 5] and the algebraic

treatment of regular expressions by Brzozowski [9]. Foun-

dations of the sequence-based specification method were

established by Prowell and Poore in [26, 28, 25]. An ax-

iom system for sequence-based specification was developed

more recently [19] for a formal treatment. The axiom sys-

tem was used in developing a theory and a set of algo-

rithms that manage requirements changes and state machine

changes [18]. The forward reduction algorithm used in the

merging process can be added to that set [20].

The primary distinction of sequence-based specifica-

tion from its nearest neighbors (the trace-assertion method
[12, 10, 11, 16, 24, 5] and software cost reduction [13]) is

that we evolve the discovery and invent the state machine

from requirements through systematic enumeration of in-

put sequences and recording sequence equivalences based

on future behavior. Likewise, the theory underlying the for-

ward reduction algorithm used in the merging, as well as

other change algorithms, differs from the conventional state

change theory in that it is designed for human interactive

sequence enumeration and revision, and targeted at an ap-

propriate subset of Mealy machines that can be obtained

through enumeration.

6 Conclusion and future work

Field application of sequence-based software specifica-

tion has earlier identified the need to address complexity

and scalability both theoretically and practically for larger

and more complex applications. This paper proposes a

merging process and workflow with automated tool support

that combines specifications focusing on different system

boundaries. The subsets of inputs considered in smaller

specifications may or may not have interactions with each

other, as opposed to a clean partitioning of system inputs

(dictated by the application) by the previous strategy. We

present a formal and systematic process to explicitly merge

partial work products towards a complete system model,

forming a basis for system level software specification, test-

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 49

ISBN: 1-60132-446-4, CSREA Press ©

ing, and certification. We report five case studies (all the

applications are from published literature) that we have per-

formed to test out our new theory and implementation.

Future work is along the line of managing complexity

and scalability for larger and more complex systems. Work

is under way that explores an alternative, orthogonal ap-

proach by limiting the number of states being explored in

partial work products.

Acknowledgements

The authors would like to thank Tom Swain (previous

manager of UTK SQRL) for helping set up an environment

for new development and testing, and Xin Guo for earlier

code contribution. This work was generously funded by

Rockwell Collins, Air Force Research Laboratory, and On-

tario Systems through the NSF Security and Software Engi-

neering Research Center (S2ERC).

References

[1] 2007. David L. Parnas. Trace function method: Exercise.
[2] 2010. Jesse H. Poore. Private communication.
[3] 2016. Prototype Sequence Enumeration (Proto Seq). Soft-

ware Quality Research Laboratory, The University of Ten-

nessee. https://sourceforge.net/projects/protoseq/.
[4] 2016. Requirements Elicitation and Analysis with

Sequence-Based Specification (REALSBS). Software Qual-

ity Research Laboratory, The University of Tennessee.

http://realsbs.sourceforge.net.
[5] W. Bartussek and D. L. Parnas. Using assertions about traces

to write abstract specifications for software modules. In Pro-
ceedings of the 2nd Conference of the European Coopera-
tion on Informatics, pages 211–236, Venice, Italy, 1978.

[6] T. Bauer, T. Beletski, F. Boehr, R. Eschbach, D. Landmann,

and J. Poore. From requirements to statistical testing of em-

bedded systems. In Proceedings of the 4th International
Workshop on Software Engineering for Automotive Systems,

pages 3–9, Minneapolis, MN, 2007.
[7] L. Bouwmeester, G. H. Broadfoot, and P. J. Hopcroft. Com-

pliance test framework. In Proceedings of the 2nd Work-
shop on Model-Based Testing in Practice, pages 97–106,

Enscede, The Netherlands, 2009.
[8] G. H. Broadfoot and P. J. Broadfoot. Academia and industry

meet: Some experiences of formal methods in practice. In

Proceedings of the 10th Asia-Pacific Software Engineering
Conference, pages 49–59, Chiang Mai, Thailand, 2003.

[9] J. Brzozowski. Derivatives of regular expressions. Journal
of the ACM, 11(4):481–494, 1964.

[10] J. Brzozowski. Representation of a class of nondeterministic

semiautomata by canonical words. Theoretical Computer
Science, 356:46–57, 2006.

[11] J. Brzozowski and H. Jürgensen. Representation of semiau-

tomata by canonical words and equivalences. International
Journal of Foundations of Computer Science, 16(5):831–

850, 2005.

[12] J. Brzozowski and H. Jurgensen. Representation of semiau-

tomata by canonical words and equivalences, part II: Speci-

fication of software modules. International Journal of Foun-
dations of Computer Science, 18(5):1065–1087, 2007.

[13] C. L. Heitmeyer. Software cost reduction. In J. J.

Marciniak, editor, Encyclopedia of Software Engineering.

Wiley-Interscience, 2001.
[14] P. J. Hopcroft and G. H. Broadfoot. Combining the box

structure development method and CSP for software devel-

opment. Electronic Notes in Theoretical Computer Science,

128(6):127–144, 2005.
[15] D. Jackson, M. Thomas, and L. I. Millett, editors. Software

for Dependable Systems: Sufficient Evidence? National

Academies Press, 2007.
[16] R. Janicki and E. Sekerinski. Foundations of the trace asser-

tion method of module interface specification. IEEE Trans-
actions on Software Engineering, 27(7):577–598, 2001.

[17] M. Joseph, editor. Real-Time Systems: Specification, Veri-
fication and Analysis. Prentice Hall International, London,

United Kingdom, 1996.
[18] L. Lin, S. J. Prowell, and J. H. Poore. The impact of require-

ments changes on specifications and state machines. Soft-
ware: Practice and Experience, 39(6):573–610, 2009.

[19] L. Lin, S. J. Prowell, and J. H. Poore. An axiom system

for sequence-based specification. Theoretical Computer Sci-
ence, 411(2):360–376, 2010.

[20] L. Lin and Y. Xue. An algorithm for forward reduction in

sequence-based software specification. In Proceedings of
the 28th International Conference on Software Engineering
and Knowledge Engineering, pages 309–316, Redwood city,

San Francisco Bay, CA, 2016.
[21] R. C. Linger, H. D. Mills, and B. I. Witt. Structured Pro-

gramming: Theory and Practice. Addison-Wesley, 1979.
[22] H. D. Mills. The new math of computer programming. Com-

munications of the ACM, 18(1):43–48, 1975.
[23] H. D. Mills. Stepwise refinement and verification in box-

structured systems. IEEE Computer, 21(6):23–36, 1988.
[24] D. L. Parnas and Y. Wang. The trace assertion method of

module interface specification. Technical Report 89-261,

Queens University, 1989.
[25] S. J. Prowell and J. H. Poore. Sequence-based software spec-

ification of deterministic systems. Software: Practice and
Experience, 28(3):329–344, 1998.

[26] S. J. Prowell and J. H. Poore. Foundations of sequence-

based software specification. IEEE Transactions on Soft-
ware Engineering, 29(5):417–429, 2003.

[27] S. J. Prowell and W. T. Swain. Sequence-based specification

of critical software systems. In Proceedings of the 4th Amer-
ican Nuclear Society International Topical Meeting on Nu-
clear Plant Instrumentation, Controls and Human-Machine
Interface Technology, Columbus, OH, 2004.

[28] S. J. Prowell, C. J. Trammell, R. C. Linger, and J. H. Poore.

Cleanroom Software Engineering: Technology and Process.

Addison-Wesley, Reading, MA, 1999.
[29] I. Sommerville. Software Engineering. Addison-Wesley,

Harlow, England, 9th edition, 2010.

50 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

Requirements Engineering Practice in Developing
Countries

 Elicitation and Traceability Processes
 Ayman Sadig1, Abd-El-Kader Sahraoui2

1. Ahfad University for Women and SUST Khartoum Sudan
2. LAAS-CNRS, Université de Toulouse, CNRS, U2J, Toulouse, France

Abstract—This is a preliminary work on such new
research topic. The paper is on analyzing requirement
process in developing countries and develop requirement
management methodology and mainly on elicitation,
traceability and validation. We know that requirement
engineering is as stated by Goguen “requirement
engineering reconciliation” from that we can say social
aspect affect the requirement process. We propose an
approach to deal with these issues.

Keywords— requirements traceability, requirement
elicitation.

1. Introduction and problem
statement

The complexity in systems development is observed when
linking artifacts between themselves, these artifacts items
can pieces of requirements, properties, pieces of design
and stakeholders. We address two issues that were used
separately in previous studies. The first issue is part of
requirements engineering as the first sub-process.:
Requirements elicitation to make difference with the
requirements acquisition.

The second concerns part of requirements managements
named traceability. There are two types traceability and
syntactic links between items and the more semantic based
concerns the coverage that item as design does Implement
the re stated requirements.

Elicitation of requirements is a long process that differs
from requirement acquisition as said previously. We want
to link these issues of requirements management and
deploy these by adaptation in the context of developing
countries. Huge project in developing country has start
with only handful of requirement then writing more
requirement as while working on the project. Also
‘requirement cannot be gathered out of the social context’
[1]

- Traceability is a new issue that reinforces the
requirements elicitation as we can always trace backward
and forward to search for rational. Traceability provides
critical function in the development and maintenance of a
software system. Projects using traceability has 21% extra
success [12]. Most middle to large software companies in
developed country uses traceability [11]. It is not the case
in developing countries where a lot more work need to be
done to convince companies that money spend in
traceability is well worth it.

I am doing a poll to to contact institutions and companies
how they do requirements elicitations and traceability in
developing countries. Top IT company in Sudan develops
products then adjusted them to several customers needs
using agile method but that required extensive
communication and collobration where the problems lies.

2. Requirement elicitation approach

Requirements elicitation can be broadly defined as the
activities, typically performed after project initiation and
before system design. They are related to the acquisition
and elaboration of goals, constraints, and features for a
proposed system, by means of investigation and
exploration. Furthermore, it is generally understood and
accepted that requirements are elicited rather than just
captured or collected. This implies both a discovery and
development element to the process. In practice
requirements elicitation is often performed poorly, the
major reasons being inadequate expertise on the part of the
participating requirements engineer, and the insufficient
allocation of time and resources within the larger
development project. The consequences of this situation
frequently include costly rework, schedule overruns,
project failure, poor quality systems, and general
stakeholder dissatisfaction [3]. Failing to gather the right
requirement count for 90% of large software projects
failures [9], “Poor requirements management lead to 71 %
of software projects that fail; greater than implementation

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 51

ISBN: 1-60132-446-4, CSREA Press ©

problem, missed deadlines, and change management
issues. (Lindquist,2005, p. 54)

In response, much of the relevant research performed over
the past two decades has focused on the development of
numerous techniques for requirements elicitation as
surveyed in [1], and more recently in [8]. In developing
country like brazil reason for incomplete requirement was
people 40%, input 20% and issue affecting customer 19%
while in Germany, people 12%, input 6% and no effect for
issuers affecting customer. One of the more successful in
producing quality requirements has proven to be facilitated
workshops [2]. However, most projects typically require
more than one technique to be used for requirements
elicitation [6]. Furthermore, a major problem in
requirements elicitation today is the significant gap
between expert and novice analysts. A lack of awareness
by analysts of the state of the art techniques and tools for
requirements elicitation, combined with a general
unwillingness to adopt them is largely responsible for this
situation. This situation is further aggravated by the
current shortage of systematic guidelines and flexible
methods.

Subsequently the work described in this paper investigates
how an improved approach for the early stages of
requirements elicitation can be developed that combines
various techniques based on a detailed information meta-
model and process framework for collaborative
workshops. The approach was developed based on an
extensive literature review, seven structured interviews
with practitioners widely regarded within the
Requirements Engineering community as elicitation
experts, and a review of requirements related
documentation produced within fifteen successful system
development projects. The paper is therefore structured as
follows. Section 2 describes the information types
contained in the meta-model used as the foundation of the
approach. Section 3 presents the approach with an
overview of the structure, content, and process. Section 4
offers a broad discussion of the approach, and finally
Section 5 provides some general conclusions on the
research.

3. A meta model for requirements
elicitation

The foundation of the proposed approach is based on a
knowledge meta-model consisting of a specified set of
information types with corresponding attributes. As the
name implies, information types are different types or
categories of information or knowledge that must be
addressed during the requirements elicitation phase of the
software development lifecycle in order to collect and
capture all the necessary details to produce a quality

requirements specification document. As can be seen in
Table 1 below, fifteen ‘core’ information types have been
identified from the review of current theory and practice as
being relevant to most application domains, and typically
necessary in most software engineering projects.

Table 1: The Fifteen Core Information Types

No. Title Description

1 Project Problem, mission,
vision, context, and
scope of the project

2 Deliverable Desired result of the
process, its audience,
objectives, and
overview

3 System Background,
perspective, context,
and scope of the system

4 Objectives Objectives of the
business with respect to
the project and system

5 Assumptions Underlying assumptions
upon which the project
and system are based

6 Constraints Constraints that must be
applied to the project
and system

7 Environment Social and physical
environmental
characteristics of the
project and system

8 Opportunities Possible opportunities
for improvements to be
delivered by the system

9 Challenges Possible challenges
which may be
encountered during the
project

10 Risks Potential risks to both
the project and the
system

11 Stakeholders Stakeholders in the
project, and sources of

52 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

system information

12 Processes Detailed work process
which the system must
support

13 Functional Functional aspects
which must be provided
by the system

14 Non-functional Non-functional aspects
which must be provided
by the system

15 Implementation Implementation details
relating to the system
including design
solutions

Information types can have multiple levels of detail, and
relationships between these different information types and
levels, such as linking individual non-functional
requirements to system objectives, are handled by specific
attributes within the template for those information types.
Table 2 provides an example of a template for one of the
core information types. Within the approach, an individual
template has been developed for each of the information
types with specific attributes and instructions

Table 2: Information Type Template Example – ‘4.
Objectives’

Attribute Description

ID Unique numerical identifier for the
objective

Name Unique textual name for the
objective

Description Detailed description of the
objective

Type Classification of the objective
selected from a standard list or
specified by the analyst

Source Source of the objective, possibly a
document, a person, or an
organization

Rationale Justification for the objective in
terms of reasons for its inclusion

Priority Importance of the objective
selected from a standard rating or
specified by the analyst

In order to promote a more rigorous approach and resultant
document from the requirements elicitation process, a
number of additional information types are required to
provide all the necessary support information for the
knowledge elicited for the core types. These can be seen in
Table 3 below.

Table 3: The Seven Support Information Types

No. Title Description

1 Glossary Definition of terms,
abbreviations, and
acronyms

2 Dictionary Data definitions relevant to
the system including type,
size, and format

3 Issues Prioritized list for project
and system related issues

4 Actions Prioritized list for project
and system related actions

5 Ideas Possible suggestions and
potential solutions related
to the project and system

6 References Cited references made to
information in other
documents and sources

7 Appendixes Required appendixes for the
resultant document

The combination of these information types, as well as
additional ones that may be specified by the requirements
engineers based on the needs of the individual projects,
form the information meta-model used as the foundation
for the workshops and guidelines.

A guided requirements elicitation workshop

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 53

ISBN: 1-60132-446-4, CSREA Press ©

The proposed approach consists of three key workshop
phases being 1) Scoping, 2) High-level, and 3) Detailed, as
explained in the following sub sections. As can be seen in
the example of the Scoping phase shown in Figure 1
below, the Execution stage of each phase is divided into
five activities. These activities, as well as the Preparation

and Presentation stages for each phase, are composed of a
set of tasks in a prescribed sequence (100 tasks in total for
all 3 phases). The steps for these tasks, being the next and
final level in the process hierarchy, are determined by
which of the techniques within the approach is selected to
perform that particular task.

1. Scoping 1.1 Preparation

1.3 Presentation

1.2 Execution 1.2.1 Context

1.2.3 Processes

1.2.2 Domain

1.2.4 Functional

1.2.5 Other

Phase Stage Activity

Tasks

and

Steps

Structured Workshop Process Hierarchy – ‘1. Scoping Phase’

Each of the phases may be completed over a number of
sessions depending on the complexity of the project, and
the availability of the relevant stakeholders, facilitated by a
requirements engineer, also referred to as the analyst.
Furthermore, the same information type may be addressed
by more than one task in different stages. In these cases the
level of detail investigated and the attributes elicited are
different but complimentary. Each task has one or more
‘available’ techniques, meaning that established

instructions exist within the approach as a set of sequences
steps for that technique, which can be utilized to perform
that particular task within a workshop environment.

4. A general Traceability model

What is prone here is the separation of concerns principles,
as the model can be made generic for new systems and
enhanced for existing systems. The approach to be
discussed is illustrated with the following figure fig1

Fig1 : Traceability model

Such a reference model is discussed later in the paper. The
main idea behind such a class diagram is to set the main
essence of traceability that covers not only the requirement

models in terms of basic and refined requirements but also
others models as for implementation and design. The other

STACKHOLDER

OBJECT SOURCE

Manages

Documents

Is concerned by

Traces to

54 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

advantage is to ease the traceability implementation in any
tool based on object analysis.

Requirement traceability deals with tracing requirements at
two orthogonal aspects.

traceability at low level

The first aspect is in the requirement refined/derivation up
and down. It means low level requirements (child
requirement) can be traced back to at least a high level
requirement (ancestor or parent requirement). This
traceability is denoted through abstraction. On the
contrary, requirements induced through refinement by a
high level requirement can be traced from it. Every
requirement has an identified origin (source) : it can be
another requirement or coming from the external context
known as stakeholders, standards, accumulated
knowledge, etc.

The other orthogonal aspect concerns links with design
and implementation. Two directions are also distinguished.
The forward direction concerns traceability from a
requirement to design elements and components. This
traceability is denoted development traceability for design
and respectively for implementation. The backward
direction is to trace back from either a designed module or
a component to original requirements. Thus it is denoted
the reverse traceability from design and respectively from
components.

A traditional techniques for surveyed in [13] and more
recently in [14].

As discussed earlier, providing traceability of requirements
to their sources and the outputs of the system development
process can be along several dimensions. Different
stakeholders contribute to the capture and use of
traceability information, often with different perspectives.
A user has a different vision from an audit specialist, a
system designer or a validation engineer. Some typical
questions are often asked :

What are the systems components that are affected by a
specific requirement?

Why are the components affected by such requirements?
How are the components affected by such requirement?
What are the sources of a low level requirement? Why and
how these two requirements are related?

5. A requirements Meta model for an
original approach

5.1 Requirement model

We apply the original requirement model developed and
presented in previous part. Sources are all available
information as documents, phone call, e-mail about the
object lifecycle. Traceability concerning specific decision
made can be found through the relation documents.

Stakeholder represents all actors involved in producing the
source related to an object; Requirements R1 has been
captured by user_1 and being document in requirement file
Doc_R1. All three meta-classes can be used to create
specialized classes in order to adapt the Meta model to any
needs for a traceability model for any requirement process
as the following basic traceability model which shows the
traceability link through refinement/abstraction

5.2 Traceability at low level: An important use of

requirements traceability is to ensure that the system meets
the current set of user requirements. Representing this
information is considered to be critical from a project
management perspective. It is usually accomplished by
creating a link between the set of requirements and a set of
system components that SATISFY them. Such links may
also be indirectly derived. An important concern of the
study participants was the lack of support in many CASE
tools for the automated identification of derived links ("I
don’t have the time to link every requirement with

Syst_components

Verification_proced Requirement Developed_for

Derive Allocated_to

External_System

Performed_on
satisfy

Interface_with

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 55

ISBN: 1-60132-446-4, CSREA Press ©

everything produced at different stages. These links must
be automatically derived whenever possible"). For
example, requirements may be linked to designs that are
intended to satisfy them. Designs, in turn, may be linked to
relevant system components. Then, a derived link is
created from requirements to system components.

Such a model is used to identify all traceability links
related to requirement-requirement, requirement-
implementation (component). A link can be added on
system_component to develop decomposition relation at
the system, subsystem and component level.

High-level traceability can be modelled by integrating
other classes as organization, system mission and
standards. Change proposal can be a specialized class.

5.3 Traceability in requirement elicitation
process

The model can be deployed with respect all sub-processes
mentioned in part 2.

Therefore, what is needed to improve our understanding of
requirements elicitation is a more detailed investigating
into the common and underlying activities of typical
requirements elicitation processes. To this end and to
present our own overview of the requirements elicitation
process, as once again there is very little uniformity in the
research literature and practice concerning the names given
to the activities often performed during requirements
elicitation. Subsequently, we have divided the various
individual requirements elicitation tasks into five
fundamental and interrelated activities as listed below and
described in the following subsections. The five
requirements elicitation activities described are:

1. Understanding the Domains

2. Identifying the Sources

3. Selecting the Methods

4. Eliciting the Requirements

5. Organizing the Information

Traceability customized model

Conclusions and future work

The presented approach takes advantage of the benefits
gained from using facilitated collaborative workshops
whereby all the relevant stakeholders can cooperatively
contribute to the results, and the combination of
complementary techniques used to support the main
activities, as well as within the actual requirements

elicitation workshop environment; traceability remaining
as a tool for managing relations between requirements
artifacts till possible IEEE SRS model for requirements
specification. These strengths are further enhanced by the
integration of the entire process into a prescribed set of
detailed guidelines based on the underlying knowledge
meta-model of information types, thereby ensuring that the
process is systematically performed in order to produce a
high quality requirements document. We are of the opinion
that the resultant approach can produce a requirements
elicitation process that is profitable in terms of offering
value for effort, therefore encouraging its acceptance and
adoption into industry by organizations and analysts.
Organizations and analysts are culture dependent.

This paper can be used anywhere in the world especially as
a template for getting requirement elicitation and
requirement traceability in developing countries.
Prospective work is on identifying case studies to enhance
and adapt such requirement management processes,
elicitation and traceability of requirements with
considering keys factors based on society from
organization aspects as well institutions culture’s key
issues

References

[1] Goguen, J. A., Linde, C. (1993): Techniques for
Requirements Elicitation, International Symposium on
Requirements Engineering, pp. 152-164, January 4-6, San
Diego, CA.

[2] Gottesdiener, E. (2002): Requirements by
Collaboration: Workshops for Defining Needs, Addison-
Wesley: Boston, MA.

[3] Hickey, A. M., Davis, A. M. (2002): The Role of
Requirements Elicitation Techniques in Achieving
Software Quality, International Workshop of
Requirements Engineering: Foundation for Software
Quality, September 9-10, Essen, Germany.

[4] IEEE (1998): Std 830 – Recommended Practice
for Software Requirements Specifications.

[5] IEEE (1998): Std 1362 – Concept of Operations
Document.

[6] Maiden, N. A. M., Rugg, G. (1996): ACRE:
selecting methods for requirements acquisition, Software
Engineering Journal, 11(3), pp. 183-192.

[7] Sahraoui, AEK, Jones D. A framework for
requirements management. Internation conference systems
engineering, Las vegas, Oct 1999

56 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

[8] Coulin C. , Zowghi,D Sahraoui, AEK: A
situational method engineering approach to requirements
elicitation workshops in the software development process.
Software Process: Improvement and Practice 11(5): 451-
464 (2006)

[7] Sahraoui, AEK, Jones D. A framework for
requirements management. International conference
systems engineering, Las Vegas, Oct 1999

[8] Sahraoui, AEK "Requirements Traceability Issues:
Generic Model, Methodology And Formal Basis", ;
International Journal of Information Technology and
Decision Making, 2005, pp.59-80.

[9] Davis, A. M., Dieste, O., Hickey, A. M., Juristo, N., &
Moreno, A. M. (2006). Effectiveness of requirements

elicitation techniques: Empirical results derived from a
systematic review. 14th IEEE International Requirements
Engineering Conference (RE'06).

[10] Lindquist, C. (2005). Required: Fixing the
requirements mess; The requirements process, literally,
deciding what should be included in software, is
destroying projects in ways that aren’t evident until its too
late. Some CIOs are stepping in to rewrite the rules. CIO,
19, 53-60.

[11] Mäder, Patrick, Orlena Gotel, and Ilka Philippow.
"Motivation matters in the traceability
trenches." Requirements Engineering Conference, 2009.
RE'09. 17th IEEE International. IEEE, 2009.

[12] Mader, Patrick, and Alexander Egyed. "Assessing the
effect of requirements traceability for software
maintenance." Software Maintenance (ICSM), 2012 28th
IEEE International Conference on. IEEE, 2012.

[13] Gotel, Orlena CZ, and Anthony CW Finkelstein. "An
analysis of the requirements traceability
problem." Requirements Engineering, 1994., Proceedings
of the First International Conference on. IEEE, 1994.

[14] Rochimah, Siti, Wan MN Wan-Kadir, and Abdul H.
Abdullah. "An Evaluation of Traceability Approaches to
Support Software Evolution." ICSEA. 2007.

[15] Fernandez, Daniel Mendez, et al. "Naming the Pain in
Requirements Engineering: Comparing Practices in Brazil
and Germany." IEEE Software 5 (2015): 16-23.

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 57

ISBN: 1-60132-446-4, CSREA Press ©

Towards a Multi-views Approach for Software Requirement
Engineering: Requirements Management Tools

Omer Salih Dawood1, Abd-El-Kader Sahraoui2

1 Department of Computer Science, College of Arts and Science, Wadi Aldawasir
Prince Sattam Bin Abdulaziz University, KSA

Sudan University of Science and Technology, Khartum, Sudan
o.dawood@psau.edu.sa, omercomail@gmail.com

2 LAAS-CNRS, Université de Toulouse, CNRS,UT2J, Toulouse, France

ABSTRACT
This paper is on Requirements methods and associated
tools. It provides general overview of requirement
engineering approaches and propose a multi-view
approach, and deep comparison on tools and techniques
used to manage requirements. The comparison is based on
five items, requirement traceability, requirements
integration, requirement prioritizing, requirement status,
and customer satisfaction. By this comparison it becomes
easy to assist the requirement tools and techniques. The
paper concentrates on tracing requirement and proposes to
develop a model that can be used to handle and manage
requirement traceability on large and complex systems.

Keywords
Requirement Engineering; Traceability; requirements tools RTM;
DOORS.

1. INTRODUCTION
Requirement engineering is first step in software

development. It has many steps elicitation, analysis, and
requirement management validation. Its aimed to collect
and managed the requirements in a good manner and best
way to ensure that all requirements are gathered and
analyzed in the way that allow to produce both products
and services that satisfying quality attributes [1].
Requirements management (RM) is process of managing
changes in the requirements throughout procedure of
requirement engineering. Requirement management
contains activities related to identification of change,
maintenance of change, traceability and changes
management of requirements [2]. Requirements
management Tools are used to manage the requirements,
and shows the relationship between the requirements, and
so on. The following section introduces a tools and
technologies used to manage the requirements and
performs a simple comparative study between three tools
DOORS, RTM, and Volere, by this comparative study we
want to specify the properties and ability of each, and the
problem of each one so that we can enhance the tools and
methodology to produce a tool that satisfy the all quality
attributes, and we provides multi-views for software
requirement engineering, and idea for research in this area.

The paper concentrates on requirement engineering
traceability.

2. Volere Requirement Specifications:
Volere is used for requirement specifications. It is
developed to manage and trace the requirements using
volere shell. The shell consist from main attribute that
needed when specifying requirement like requirement Id,
type, priority, and dependency between requirements.

Volere divides the requirements to the five types each type
has the sub components as in the flowing figure (1).

1. Functional requirements are the Basic functions of
system that perform core operations of the system. The
concrete means are used to measure these functional
requirements.

2. Non-functional requirements are the properties that the
specify behavior of function such as usability, look and
feel, performance, etc.

3. Project constraints describe how the product delivered
and fit into the world. The constraint in involves many
things like needed interface with existing component
for both software and hardware, practice of business,
and budget defined at starting project or be ready by a
defined date [3].

4. Project drivers are the related forces of business, that
drives or control on the process of project
development. The purpose of the product is project
driver, for all stakeholders in the system in different
levels and reasons.

5. Project issues define the conditions under which the
project will be done[3]

3. Dynamic Object Oriented Requirements
(DOORS)
It is the requirements management tool developed by
Telelogic to support the software engineering lifecycle.
DOORS is mentioned in several papers and is often
referred to as very capable requirements management
tool[4].It allows many Users to work together at the same
time, and enabling access to the database server that
contains information about requirement and links[4].

58 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

DOORs database contains many project and each project
has its own users and information model. The information
model contains a set of module used to keep information
about actual requirements and link. DOORs has main three
modules:

1. Formal modules Requirements has many artifacts, the
artifact contains smaller object. Formal module used to
store information about representation of requirement
artefact.

2. Link module each formal module has relationship; this
relationship is stored in the link module.

3. Descriptive module this module not used .basically to
store actual requirement, but now actual requirement
stored in formal module [4].object consists from the
following [5]

1. General used for describing heading, short text, object
text values for the object

2. Access is manage access right to the object

3. History is used as log for changing in object

4. Attributes: is value of object attributes

5. Links: are used to handle the relationships with other
objects

4. REQUIREMENT TRACEABILITY
MATRIX (RTM)

The requirement engineering has two parts, fist one is
requirement development, this part is responsible for
requirement elicitation, analysis, specification, and
validation. Software Requirement Specification (SRS) is
document that produced as output of the requirement
development. It contains the requirement specification and
it ready to the design phase .The second part of requirement
engineering is requirement management, which is
responsible for managing requirements and it has two part
change management and traceability. Traceability process
produces Requirement Tractability Matrix (RTM) as output
[6]. The RTM handles requirements and relationships
between these requirements in a single document [7].

REQUIREMENT TRACEABILITY
Traceability recognizable association between two or more
logical entities like requirements, verifications, elements of
system, or tasks. The main two types of traceability are
horizontal and vertical traceability but there are other sub
types [6].

Vertical Traceability: it shows the source of items and
traces these items to Work Breakdown Structure (WBS), to
project team and finally to the customers. It insures that the
requirement can be traced till satisfied [6].

Horizontal Traceability: It shows the relationship between
the related item and work group. It is aimed to avoid the
conflicts.

Bidirectional Traceability: It is an association between two
or more logical entities that is discernible in either
direction. It effectively manages the relationship between
requirement sources and requirements of product and its
components. In other meaning bidirectional traceability
happens between requirement to end product and vise versa
[6].

Indirect Traceability: There are two directions for
traceability. Firstly is Forward traceability, trace the
requirements to its source. Secondly is backward
traceability is trace to from product to requirement source
[6]. Requirement Traceability Matrix (RTM): Is matrix that
used to handle the complete user and system requirements,
or a part of the system.

Requirement traceability is helpful in software engineering
activities like validation of requirements, and impact
analysis, also is useful in tracking the logical sequences and
trade-offs for each Requirement.

No
.

Comparison
Topic

Volere DOORs RTM

1 Requiremen
t

Traceability

Known as
dependabili

ty

Support
different

traceabilit
y types

Support
different

traceabilit
y types

2 Requiremen
ts

Integration

No
requirement

s
integration

Support
integratio

n, on
different

levels

Not fully
Supportin

g
integratio

n
3 Requiremen

t
Prioritizing

No priority Support
priority

Support
priority

4 Requiremen
t Status

No
requirement

status

Has
requireme
nt status

Has
requireme
nt status

5 Customer
Satisfaction

Has
customer

Satisfaction

___ Depend
on RTM

Applicatio
n

Table (1): Comparison of requirements tools and
techniques

5. RELATED WORK
Renuka and et al [8] designed a novel methodology to
design traceability of onboard software known as Software
Requirements to Design Traceability Technique
(SoRDeTT). Their methodology is based on two templates,
Software Requirements Specification (SRS) and Software
Design Document (SDD) as input to the methodology.
SoRDeTT represent a common template for both
requirement and design which is used to handle the data
and information from these documents. There are two trace
items; SRS Trace Item (SRSTI) is the template that
populates data from SRS. The other one is SDD Trace Item
(SDDTI) which if filled with data from SDD. This

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 59

ISBN: 1-60132-446-4, CSREA Press ©

methodology applied to satellite system because it’s
complex and contains many subsystems. onboard software
requirements and software design of many subsystems
Represented in SRS and SDD. The main purpose of this
methodology is to ensure the software design is done
according to SRS. The methodology works as follow, data
captured from SRS to build SRSTI, SDDTI, comparing
SRSTI and SDDTI, if one to one mapping is not found then
make tag mismatch, then generate mismatch report, analyze
the inconsistency to make a correction, and finally repeat
SoRDeTT for all new changes.

Filho and et al[9] propose traceability framework. The
model aimed to visualizing the traceability among different
tools , and they assume the models are represented in XML
to support heterogeneity of tools and models, so that XML
is became de facto standard for data interchange, XML
supported by many tools, and they use XQuery as standard
for traceability rules expression. They assume the model is
generated in Native Format Models and converted to
(XML_based Models) by using Model Translator.XML
model and rules used as input to
Traceability_Completeness_Checking Engine.

The traceability relations between the models are generated
by the engine, also the sngine identify missing elements
based on the rules. Engine uses WordNet component to
ensure the identification of synonyms between the of
element’s names in the models.
Traceability_Relations_Missing_Elements document is
used to handle the traceability relationship and identified
missing elements. This document is important because
preserve the original models, to let the use of these models
by other different applications and tools. The document
used as input to Traceability_Completeness_Checking
Engine component that used to support generation of
dependent traceability relations. They developed simple
prototype tool that shows the traceability relations, and they
showed that there are many traceability relations can be
generated .

Fab´ıola and Michel [10] extend the SysML requirements
diagrams concentrating on traceability of both functional
and non-functional requirements. Real-Time Systems can
be modelled by this extension of the requirements. The
metamodel of SysML is extended with new relationships
and stereotypes, and applying the specification of a Road
Traffic Control System using proposed metamodel is
applied to a set of requirements for the specification of a
Road Traffic Control System. SysML is a UML profile and
Class diagram stereotype extended new attributes. It
decomposes the requirements into smaller related elements
in form of hierarchy so that the complexity is managed
early. The hierarchy is based on master and slave who
allow reusing the requirement. They propose seven new
stereotypes to extend the relationships like, copy
relationship is represented by master/slave relationship,
derive relationship (deriveReqt), satisfy requirement shows
how model satisfies requirements, a test case, represented

by verify relationship, refine relationship show how a
model element used to refine a requirement. The trace
relationship act as a general purpose relationship.

6. Ontology for requirements elicitation
Such work based on research roadmap in systems
engineering [11] that will be integrated to partially in our
work as requirement ontology if well defined and
formalised can give rise to better requirements tools . This
can make changes to Volere requirements templates.

Problem Definition It is very important to build
requirements elicitation on the form used for requirements
expression. With the evolution of the Internet and
electronic commerce, future business services will often be
delivered by autonomous and collaborating parts or
software agents inside or across organizational boundaries
through negotiation and information exchange over a
distributed data network. Efforts are needed to develop
collaborative requirement engineering t as an associated
need.

The semantics of different information sources are
collected by their ontologies, i.e., both terms and the
relationships between these sources. In many applications,
the intended meaning of a term is often implicit, and
understanding this in a collaborative environment
necessarily is reliant upon mutual agreements and
understandings. In an open environment mutual agreement
is hard to achieve. Thus it is very important for the
vocabulary, that describes the domain model, to be
specified and maintained in such a way that other systems
can process them with minimum human intervention.
Ontology is used to manage and deal with this task. The
ontology research now has more attention from both
academia and industry.

It is generally very difficult to build a machine-definable
ontology (vocabulary). The semantics of a term varies
from one context to another and across different
stakeholders. Ideally we need an approach that reduces the
problem of knowing the contents and structure of many
information resources to the problem of knowing the
contents of specific domain of ontologies that user familiar
with the domain and easily understands.

Not all requirements are known at starting of the system
development. They cannot be specified completely up front
in one voluminous document. But rather will evolve during
analysis phases of a project and beyond. requirements
elicitation involve all stakeholders: users, developers and
customers; all see their way matured in the way the
requirements are expressed from this step till maintenance;
such acquired added value by the elicitation is used to
improve the system instead of maintaining the myth that
the requirements are to remain static.

Requirement elicitation is one of requirement engineering
process. It represents one of the first critical phases.
Requirement process is the first phase in systems
development. The specific nature of such process is that the

60 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

word “elicitation” is new as a technical term; its equivalent
does not even exist in some natural languages as French;
we use some times the close definition: capture or acquire
requirements. Such phase was often neglected as the
requirements were only expressed; effectively, we
considered were considered to be available and needs only
to be expressed. For long period till the 90’s the research
community was focussing on notation, methods and
languages for expressing requirements. The debate was best
to use for the sake for genuine expression and also for
validation and verification. The debate was transported on
the formal versus semi-formal specification of
requirements. Most RE researchers have been concerned by
such work on taxonomy of methods and adequacy of such
methods and notations for expression requirements for
various types of applications: in formation, systems,

The requirements elicitation is one of the most important
steps in requirements engineering project. Experience over
the last decennia has shown that incorrect, incomplete or
misunderstood requirements are the most common causes
of poor quality, cost overruns and late deliveries. The
ability to use an adequate approach thought a method or
systematic process is therefore one of the core skills in
systems development. The GAO survey is a demonstration
through figures on nine projects totaling about $7 millions.

A terminology (CMU): The procedure of understanding
systems requirements can be defined and described by
many terms. Requirements engineering can be used as a
general terms including all activities related to
requirements. In fact, requirements engineering consists
from four specific processes

Requirement elicitation: Is first process allowed to
understand, discover, reveal, and articulate the
requirements to customers, buyers, users of a system.

Requirements analysis: This process is based on the
requirement elicitation. It is reasoning the elicited
requirements; it involves some activities such as checking
requirements to ensure from both conflicts and
inconsistencies, combining requirements that related to
each other’s, and specify missing requirements.

Requirements specification: In This process the
requirements are recoding in the forms, this including the
may be done in natural language, symbolic, formal, and
diagrammatically representing the requirements, also the
product that is the document produced by that process.

Requirements validation: In this process the requirements
are confirmed with the users of systems, and customers to

ensure that the specified requirements are valid, complete
and correct.

In an actual situation, these four processes cannot be
strictly separated and performed sequentially; they are
interleaved and performed iteratively.

The term elicitation is not universally accepted for the
process described; there are no similar term in other
language, in example French language; the term
acquisition, capture is often used; some companies use
gathering, expressing, formulating. Each term has a
different connotation. Acquisition supposes the
requirements are already there like sensor value acquisition
by I/O system of a computer system. Apart from the term
used, all of these terms address implicitly the elicitation
term.

i. Common domain model: although participating agents
share a common domain that is the basis of their
cooperation, they often have different views of the
domain. In order for them to collaborate, a common
domain model is required to facilitate their
communications.

ii. Different levels of abstraction: different levels of
information abstraction are required by a flexible
enterprise. At the agent level, only high-level business
process and service concepts are needed to form
service level agreements, i.e., contracts. At the task
scheduling level, processes and services must be
viewed in term of individual tasks and task interfaces
(methods and conditions). At the execution level, data
representation must be explicit so that data can be
transformed and fused correctly.

iii. Dynamic information integration: the underlying
information systems are potentially large. New
services may require only parts of the information
systems to be integrated. Dynamic information
integration is required as which parts to be integrated
for what purposes cannot be determined beforehand.

iv. Service and contents description: agent services and
information system contents must be formally
described. The descriptions must be accessible and
meaningful to all participating agents.

v. Information heterogeneity reconciliation: as flexible
enterprises operate in an open environment,
participating agents often use conflicting terms. In
order for them to collaborate, the heterogeneity must
be reconciled.
Expected results. The suggested research should result
in several needed and useful outcomes.

i. Developing a requirements domain ontology
environment for effective and efficient requirements
elicitation will represent a considerable advance in
requirements engineering. This will necessarily
involve identification of appropriate support
environments needed to assist ontology designers with
the tasks involved in ontology management. It is

Research approach. The suggested research approach
involves development of a shared ontology: A shared
ontology can be in the form of a document or a set of
machine interpretable specifications. Among possible
contemporary research projects that deal with ontology-
based approaches to resolving the semantic issues, the
following seem especially appealing.

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 61

ISBN: 1-60132-446-4, CSREA Press ©

envisaged that such an environment would maintain an
ontology repository that can be accessed. During the
design phase to enable this, tools will be available to
browse and reuse the terms from the repository. When
new terms need to be added, checks should be
performed to see that they do not cause inconsistency
in the repository. This environment should also have a
set of tools that help extract ontological information
that is embedded in existing systems.

ii. Develop appropriate methods and tools to support the
integration of process models and information systems
from multiple organisations during requirements
change.

iii. Extending XML in requirements for data sources and
ontology extraction and retrieval. Integrate the
ontology for requirements elicitation into a general
framework and context to support systems engineering
in a computer supported cooperative work
environment.

7. RESEARCH OBJECTIVE
1. Better understanding of requirement management tools

and techniques.

2. Evaluate mentioned tools to become easily when
requirements management tool is needed.

3. Improving software quality by determine each tool
capabilities to minimize the problems risk of
requirement management.

4. Evaluate requirement traceability in each tool and
techniques.

8. RESEARCH PROBLEM
From literature review there are many researches in
requirement traceability but not detailed covered the one of
the important topic in requirements validation and
verification through traceability. It is expected to develop a
requirement traceability model or tool that allows
enhancing and improving software quality through tracing
requirement in a good and best manner.

9. DISCUSSION
Requirement engineering is first step of software
development its aim to collect and document requirements.
The cost of detecting and managing errors in earlier stages
is less than detecting errors in later stages. Traceability is
very important to handle and managing requirements,
because its allows easily tracking requirements. There are
many research covered this area but still some gaps and
missing are found. The previous research concisely covered
the traceability issues and concentrate on small to medium
systems. This research aimed to full the missing points on
the previous studies and develop a model for requirement
traceability that allow handle the traceability in big and
complex system.

By developing the new model its expected to produce
highly and well requirement modeling and techniques that
produce software with high level of quality, and
requirements of the complex system can be managed in
easily way.

10. CONCULISION
This paper covered the concept of requirement engineering
and comparing between some of the current tools and
techniques that used to manage requirements. In the area of
requirements engineering we concentrate to requirement
traceability because it very important to manage and handle
the requirement. Many previous researches are reviewed
and concluded in this paper, and some interested areas are
shown and discussed .this paper introduces some research
problems like requirement traceability and requirement
ontology. Its expected to solve the problem of
requirements elicitations verification and validation
through requirements traceability.

11. ACKNOWLEDGMENTS
The authors and mainly second author are indebted to many
colleagues who contributed directly or indirectly to this
work and mainly Late Professor Andy Sage from Georges
Mason University and Professor Dennis Buede from New
Jersey University.

12. REFERENCES
[1] Hummera, Yasir, Sohail, Muhammad, Asma,
2013.Effective Usage of AI Technique for Requirement
Change Management Practices. 5th International
Conference on Computer Science and Information
Technology CSIT (Aman, 27-28 March 2013).978-1-4673-
5825-5, 2013. DOI: 10.1109/CSIT.2013.6588769

[2] Dhirendra, U. Dhirendra, A. K. Ramani. 2010. An
Effective Requirement Engineering ProcessModel for
Software Development and Requirements Management.
2010 International Conference on Advances in Recent
Technologies in Communication and
Computing(Kottayam. 16-17 Oct. 2010) DOI:
10.1109/ARTCom.2010.24

[3] James and Suzanne Robertson. Volere Requirements
Specification Template. (London, Aachen & New
York).DOI:
http://homepages.laas.fr/kader/Robertson.pdf

[4] B.J.M. Abma. 2009. Evaluation of requirements
management
tools with support for traceability-based change impact
analysis.Master Thesis, University of Twente.

[5] Vassilka Kirova and Darshak Kothari. 2004. Getting the
most out of DOORS for requirements management.
Technical Report. Software Technology Center, BLAT.

62 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

[6] Surachet and Yachai.2010. Enhancement of
Requirements Traceability with State Diagrams. 2010 2nd
International Conference on Computer Engineering and
Technology (ICCET) (Chengdu. 16-18 April 2010) DOI:
10.1109/ICCET.2010.5485417

[7] Software Testing-Requirements Traceability
Matrix.DOI:
http://www.etestinghub.com/requirements_traceability_mat
rix.php

[8] Renuka and et al.2014. NOVEL METHODOLOGY
FOR REQUIREMENTS TO DESIGN TRACEABILITY
OF ONBOARD SOFTWARE. 2014 International
Conference on Advances in Electronics, Computers and
Communications (ICAECC), (Bangalore, 10-11 OCT
2014)DOI:
10.1109/ICAECC.2014.7002386
[9] Fab´ıola and Michel. 2013. A Metamodel for Tracing
Requirements of Real-Time Systems. 16th IEEE
International Symposium on Object/component/service-
oriented Real-time distributed Computing (ISORC 2013)(
Paderborn, 19-21 June 2013).DOI:
10.1109/ISORC.2013.6913189

[10] Gilberto and Maria. 2012. Towards a Traceability
Visualization Tool. 2012 Eighth International Conference
on the Quality of Information and Communications
Technology. (Lisbon, 3-6 Sept. 2012).DOI:
10.1109/QUATIC.2012.60

[11] SAHRAOUI and et al. 2008. SYSTEMS
ENGINEERING RESEARCH. Journal of Systems Science
and Systems Engineering.(16 July 2008). DOI:
10.1007/s11518-008-5083-9

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 63

ISBN: 1-60132-446-4, CSREA Press ©

SysML State Machine Diagram to Simple Promela Verification
Model Translation Method

Takahiro Ando1, Yuya Miyamoto2, Hirokazu Yatsu1, Kenji Hisazumi3, Weiqiang Kong4,
Akira Fukuda1, Yasutaka Michiura5, Keita Sakemi5, and Michihiro Matsumoto5

1Graduate School of Information Science and Electrical Engineering, Kyushu University, Fukuoka, Japan
2DOCOMO Systems Inc., Tokyo, Japan

3System LSI Research Center, Kyushu University, Fukuoka, Japan
4School of Software, Dalian University of Technology, Dalian, China
5Japan Manned Space Systems Corporation, Tsukuba, Ibaraki, Japan

Abstract— In this study, we developed a method for con-
verting SysML state machine diagrams into Promela models
that can be verified using the SPIN model checking tool. The
Promela code generated in our approach is a sequential
verification model that simplifies the verification process
when used in the early stages, and also prevents state explo-
sion in the verification process. Thus, using the sequential
verification model reduces the cost of the overall verification
process. In this paper, we describe the rules used to convert
the SysML state machine diagrams with parallel processes
to a single sequential process in Promela.

Keywords: State Machine Diagram, SPIN, SysML, Model Check-

ing, Formal Method

1. Introduction
Software is embedded in various devices, machines,

and equipment, including smartphones, automobiles, space

equipment. Because this embedded software needs to be very

reliable, at each stage of development, rigorous verifications

are required.

Model checking [1] is a well-known verification technique

for formally analyzing state transition systems. In model

checking, a target system is modeled in a formal description

language and the model is exhaustively explored to check

whether desired properties of the system are satisfied. SPIN

[2], NuSMV [3], and UPPAAL [4] are state-of-the-art model

checkers. To use any of these tools, a state transition diagram

of the target system is first modeled in the formal descrip-

tion languages corresponding to the desired model checker.

Further, the properties to be checked are written in a formal

specification language such as Linear Temporal Logic (LTL)

or Computation Tree Logic (CTL).

In formal verification such as model checking, factors

such as verification costs, time, memory size, human re-

source, are major issues. Therefore, during the early stage

of verification processes, verification with a simple model

to reduce the cost is desired. The quality of the verification

model is dependent on the skill of the verification engineer,

which is often a problem. Therefore, automatic generation

of the verification model, i.e., making it independent of the

engineer’s skill, is desired. In addition, because analysis of

the verification results often tends to be complex, a technique

that simplifies this process is also necessary.

In this paper, we discuss the automatic generation of

simple verification models from the state machine diagrams

in SysML [5]. In particular, we focus on the verification

model used in the SPIN model checker, and propose a

translation method that converts SysML state machine di-

agrams into simple verification models for SPIN. Using our

translation method, the behavior of a state machine diagram

with parallel processes is translated into a simple verification

model with a single process in Promela, the input language

used by SPIN. We demonstrate the efficacy of our proposed

method by applying it to verification of a simple system.

2. Related Work
Much research has been conducted on the application

of formal verification techniques to formally analyze state

machine diagrams. Bhaduri and Ramesh [6] carried out a

comprehensive survey of studies that applied model checking

to state machines, in which various model checkers including

SPIN [2], SMV [7], and FDR [8] were used.

Latella et al. [9] translated state machines into models

written in Promela and then verified them using SPIN.

However, they only dealt with the basic components of state

machine diagrams. Lilius and Paltor [10] proposed a tool

called vUML for verification of UML models using SPIN,

but presented no details of the rules used to translate the

models into Promela.

3. Proposed Translation Method
In this section, we describe our proposed state machine

diagram to verification model translation method. The verifi-

cation model is written as a simple process in Promela. Each

element of the model is lumped using a macro description,

in order to easily recognize the correspondence between the

elements of the original diagram.

64 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

In our verification model, the parallel processes in a

state machine are combined into one sequential process in

Promela. Although, our verification model cannot represent

all the behaviors of the diagram with parallel processes, it is

useful in the early verification stage because a simple model

prevents state explosion and reduces the cost of verification.

3.1 Overview
The inputs to our translation method are the state machine

diagram and information about its variables. Information

about the serialized state machine is stored in an XMI

[5] file, and information about its variables is stored in

a CSV file. The translation rules shown below translate

the components of the diagram into their corresponding

description in Promela.

1) The state names in the diagram are translated into

mtype values in Promela.

2) An mtype variable that represents the current state is

provided for each region in the diagram.

3) The event names in the diagram are translated into

mtype values.

4) An mtype variable that represents the current event

occurrence is provided.

5) On the basis of the input variable information, the

corresponding variables in Promela are provided for

the variables in the statement or guard condition in

the diagram.

6) The initial pseudo state is translated into an inline

macro description.

7) The states, including composite states, are translated

into three types of inline macros.

8) The outgoing transitions of a state are translated into

one inline macro.

9) The regions are translated into two types of inline

macros.

10) The final state in each region is translated into an inline

macro.

11) The event occurrence model is described as an inline

macro.

12) The behavior of the original state machine is described

by one process in Promela.

In the following subsections, we explain our translation

rules in detail along with translation examples. Each of the

following examples are obtained by translating the corre-

sponding element of the state machine diagram shown in

Fig. 1.

3.2 Declaration of Values and Variables
Each state name and event name is translated into an

mtype value in Promela (lines 1–4, 10). Each variable

representing the current state in a region is declared an mtype

variable (lines 6–9), and each variable representing current

event occurrence is declared an mtype variable (line 11).

Each variable in guard conditions and actions in the state

���� ���������������������������� ����������������				����

��������

���� ���� ����

��������

��������

������

����	
	���

�������� ���� ����

���������	����

����������������

����������������

���������	����
��	�������������

����������������				 ����

�������� ����������������				 ����

��������

����������������				 ����

��������

����������������				 ����

��������

���������������������������� ������������������������������������ ����������������

���������������������������� ��������������������
������������ ���� ����������������

������������������������

������������������������

 ������������ ����

Fig. 1: State Machine Diagram for a Simple Air Conditioner

machine diagram is translated into a variable in Promela

using the variables information in the CSV file(lines 13–17).

,
1 mtype = {top_init, top_stop, top_doing,

top_final};
2
3 mtype = {doing_heat_init, doing_heat,

doing_wait};
4 mtype = {doing_humidification_init,

doing_humidifyon, doing_humidifyoff};
5
6 mtype topState = top_init;
7 mtype doing_heatState = doing_heat_init;
8 mtype doing_humidificationState =

doing_humidification_init;
9

10 mtype = {NULL, finish, poweron, poweroff,
when01, when02, humidifyon,
humidifyoff};

11 mtype event = NULL;
12
13 int nowtemp = 25;
14 int maxtemp = 30;
15 int mintemp = 20;
16 bool heater = false;
17 bool tempmonitor = false;

3.3 Translation of Initial Pseudo States
Initial pseudo states are translated into inline macros that

each has an inline macro call for the state entry behavior.

The state is pointed to by the initial pseudo state.

,
1 inline T_init() {
2 S_stop_entry()
3 }

3.4 Translation of States
Each state is divided and translated into three inline

macros: entry part (lines 1–6), do part (lines 8–11), exit part

(lines 13–19). The entry part represents the entry behavior

of the state, the do part represents the do behavior, and the

exit part represents the exit behavior. In addition, when the

state has regions, the entry part has inline macro calls for

the entry behaviors into the regions (lines 4–5), the do part

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 65

ISBN: 1-60132-446-4, CSREA Press ©

has inline macro calls for the behavior in the regions (lines

9–10), and the exit part has inline macro calls for the exit

behavior from the regions (lines 14–15).
These inline macro calls in each part are not parallel

but sequential. Consequently, an execution sequence in our

verification model is also sequential, and the correspondence

between the execution sequence and the lines of the verifi-

cation model code can be easily observed.

,
1 inline S_doing_entry() {
2 topState = top_doing;
3
4 T_doing_heat_init();
5 T_doing_humidification_init()
6 }
7
8 inline S_doing() {
9 R_doing_heat();

10 R_doing_humidification()
11 }
12
13 inline S_doing_exit() {
14 R_doing_heat_exit();
15 R_doing_humidification_exit();
16
17 doing_heatState = doing_heat_init;
18 doing_humidificationState =

doing_humidification_init
19 }

3.5 Translation of Outgoing Transitions
Our transition rules translate all outgoing transitions of a

state into an inline macro in a group. The internal transitions

are dealt with in a manner similar to the outgoing transitions

and they are translated into the same macro as outgoing

transitions. In this macro, the transitions are described as

conditional branches by the trigger event occurrences. The

inline macro call of the exit behavior of the source state is

placed before the actions of each transition. The inline macro

call of the entry behavior of the target state is placed after

the actions. These behaviors are obtained from the semantics

of the state machine diagrams.

,
1 inline T_stop() {
2 if
3 :: (event == poweron) -> event = NULL;
4 S_stop_exit(); S_doing_entry()
5
6 :: (event == finish) -> event = NULL;
7 S_stop_exit(); S_final()
8
9 :: else -> skip

10 fi
11 }

3.6 Translation of Regions
Each region of the state machine diagram is translated

into an inline macro that combines the inline macro calls

of the states and transitions in the region (lines 1–9). The

inline macro represents the behavior in the region. The exit

behavior from the region is translated into a different inline

macro (lines 11–19).

,
1 inline R_doing_heat() {
2 if
3 :: (doing_heatState == doing_heat) ->
4 S_doing_heat(); T_doing_heat()
5
6 :: (doing_heatState == doing_wait) ->
7 S_doing_wait(); T_doing_wait()
8 fi
9 }

10
11 inline R_doing_heat_exit() {
12 if
13 :: (doing_heatState == doing_heat) ->
14 S_doing_heat_exit()
15
16 :: (doing_heatState == doing_wait) ->
17 S_doing_wait_exit()
18 fi
19 }

3.7 Translation of Final State
The final state is translated into an inline macro that

terminates the operations of the behavior in the region.

,
1 inline S_final() {
2 topState = top_final;
3 break
4 }

3.8 The Event Occurrence Model
In our verification model, we adopted the following event

occurrence model. In the model, the events that can occur

are the events that are triggers of the current states, including

inner states.

,
1 inline eventOccur() {
2 event == NULL;
3
4 if
5 :: (topState == top_stop) ->
6 event = poweron
7 :: (topState == top_stop) ->
8 event = finish
9

10 :: (topState == top_doing) ->
11 event = poweroff
12
13 :: (topState == top_doing &&

doing_heatState == doing_heat &&
nowtemp > maxtemp) ->

14 event = when01
15

66 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

16 :: (topState == top_doing &&
doing_heatState == doing_wait &&
nowtemp < mintemp) ->

17 event = when02
18
19 :: (topState == top_doing &&

doing_humidificationState ==
doing_humidifyon) ->

20 event = humidifyon
21
22 :: (topState == top_doing &&

doing_humidificationState ==
doing_humidifyoff) ->

23 event = humidifyoff
24 fi
25 }

3.9 Process for State Machine Behavior
Only one process is present in our Promela verification

model. This process represents the overall operation of the

original state machine diagram. It starts from the inline

macro call of the initial pseudo state and alternates the event

occurrences and the state transitions for the events.

,
1 active proctype stm() {
2 T_init();
3 do
4 :: eventOccur();
5 R_top()
6 od
7 }

4. Case Study
In this section, we confirm the efficacy of our translation

method for SPIN model checking.

We applied our translation method to the state machine

diagram shown in Fig. 1, and generated the corresponding

Promela code. Using the code as the input to the SPIN

model checker, we conducted LTL verification. We uses the

following LTL formula, which states that when the current

state is the doing state, the stop state cannot be reached

forever, as a verification property.

,
1 []((topState == top_doing) ->
2 [](topState != top_stop))

The result of this verification case study is shown in Fig.

2. The figure shows that a transition sequence from the doing

state to the stop state has been found. This is appropriate as

a result for this verification case study, and shows that the

generated model can be used for SPIN model checking.

The counterexample sequence for this case study is shown

in Fig. 3. The figure shows that the complexity due to the

execution order of the parallel behavior has been rectified—

making it easy to observe the correspondence between the

steps in counterexample and the code corresponding the

verification model.

These results show that our proposed method is useful in

the model checking process.

5. Conclusions
In this paper, we described our proposed translation

method that converts state machine diagrams with parallel

processes into simple SPIN verification models with a single

Promela process. In our simple verification model, using

inline Promela macros, we can easily recognize the corre-

spondence between Promela codes and each component of

the original diagram. Our translation rules convert states that

have some regions into inline macros with sequential inline

macro calls for the regions. The verification model alternates

the event occurrences and state transitions for the event.

Thus, a state transition sequence in our model is simple,

and we can analyze the verification results more easily.

In future work, we plan to develop a translation method

similar to the one proposed here, but which translates state

machine diagrams into simple parallel verification models.

We believe that using a one-step complex model, we can

implement stepwise from simple verification to full verifica-

tion, and then we can further reduce the verification cost. In

addition, we plan to develop an automatic translation system

based on our translation method. We are also planning

to apply our method to various examples and refine the

translation rules using feedback.

References
[1] E. M. Clarke, O. Grumberg, and D. Peled, Model Checking. The

MIT Press, 1999.
[2] G. J. Holzmann, “The Model Checker SPIN,” IEEE Transactions on

Software Engineering — Special issue on formal methods in software
practice, vol. 23, no. 5, pp. 279–295, May 1997.

[3] A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri, “NUSMV: A
new Symbolic Model Verifier,” in Proc. of the Eleventh Conference
on Computer-Aided Verification (CAV’99), ser. Lecture Notes in Com-
puter Science, N. Halbwachs and D. Peled, Eds., no. 1633. Trento,
Italy: Springer, July 1999, pp. 495–499.

[4] K. G. Larsen, P. Pettersson, and W. Yi, “Model-Checking for Real-
Time Systems,” in Proc. of Fundamentals of Computation Theory, ser.
Lecture Notes in Computer Science, no. 965, Aug. 1995, pp. 62–88.

[5] OMG, “OMG Systems Modeling Language Version 1.3,” June 2012.
[Online]. Available: http://www.omg.org/spec/SysML/1.3/PDF

[6] P. Bhaduri and S. Ramesh, “Model Checking of Statechart Models:
Survey and Research Directions,” CoRR, vol. cs.SE/0407038, 2004.

[7] K. L. McMillan, “Symbolic Model Checking: An approach to the state
explosion problem,” Ph.D. dissertation, Pittsburgh, PA, USA, 1992.

[8] The Formal Systems website, “FDR2.91,” http://www.fsel.com/,
November 2010. [Online]. Available: http://www.fsel.com/

[9] D. Latella, I. Majzik, and M. Massink, “Automatic Verification of
a Behavioural Subset of UML Statechart Diagrams Using the SPIN
Model-checker,” Formal Asp. Comput., vol. 11, no. 6, pp. 637–664,
1999.

[10] J. Lilius and I. P. Paltor, “vUML: A tool for verifying UML models,”
in Proc. of the 14th IEEE International Conference on Automated
Software Engineering, ASE’99. IEEE, 1999, pp. 255–258.

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 67

ISBN: 1-60132-446-4, CSREA Press ©

Fig. 2: Result of verification case study using the SPIN model checker

Fig. 3: Counterexample of a verification for the system using the SPIN model checker

68 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

SESSION

PROCESS AND PRODUCT LINE IMPROVEMENT
+ AGILE DEVELOPMENT AND MANAGEMENT

Chair(s)

TBA

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 69

ISBN: 1-60132-446-4, CSREA Press ©

70 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

Development of a System for Monitoring and Controlling
Research Projects based on a Framework Integrating

Traditional and Agile Methodologies

C. Gutiérrez1, S. Díaz1, J. De La Rosa1, K. Gómez1, C. Baron2, I. Reyes1, and M. Villanueva1
1Departamento de Ingenierías, Instituto Tecnológico de Toluca, Metepec, Edo. de México, México

2LAAS-CNRS, Université de Toulouse, CNRS, INSA, UPS, Toulouse, France.

Abstract – The information systems used in the educational
sector allow the automatization of tasks and processes, the
reduction of time and effort, as well as the coordination and
management of activities in an efficient manner. This paper
presents the analysis, design and development of an
information system for the monitoring and control of research
projects in the educational sector, and which is based on a
framework led by software engineering. An innovative aspect
of this research consists of the integration of characteristics to
the information system that contribute to the improvement of
the education quality since these permit the supervision and
control of several aspects. Its impact is reflected in the
generation of evidence of the followed process as it complies
with some indicators of the Quality Management System.

Keywords: Information System, Software Engineering,
Framework, Traditional and Agile Methodologies.

1 Introduction
 Nowadays, software development has become more and
more important in regards to quality, for this reason, software
engineering seeks the integration of techniques, methodo-
logies and models in its analysis, design and development
processes to generate highly technological products [1], [2].

 Since 1968, and as a consequence of the NATO
conference where the concept of “software engineering” saw
its first light, [3], the development of programs, started to be
taken more seriously. In this sense, the definition of
requisites, the organization of development and the generation
of documentation of a product are but a few of the aspects
that demand more interest by software engineering, thus, an
application of a series of regulations, common language and a
working discipline is necessary, which allow knowing the real
state of the conception process in each stage of the process.

 Currently, educational systems seek the reduction of the
work load, as well as of the overload of information, as
computers carry out more and more daily activities such as
the management of email, social interactions and
entertainment. However, technological advancements do not
go at the same pace as the way people interact with machines
as almost every system requires an explicit initialization as
well as a monitoring of every event, for this reason, intelligent
systems can make these changes. Such systems seek not only
the improvement of the educational service, but also the

automatization of administrative tasks that allow using the
information easily.

 Information Systems require certain techniques and
characteristics to be successfully developed and implemented.
Software Engineering allows identifying the characteristics
certain information system must have, so it offers methods
and techniques to maintain, develop, produce and ensure
quality software [4], [5] and [6].

 Mexican education systems set as a regulation that the
culmination of higher studies is reached when the
requirements of the institution are met, and with the
conclusion of a research project or dissertation.

 The number of students enrolling in a higher studies
institution grows every year; it is frequent to notice a
correlation between the level of studies and the salary offered
by employers, this relation can be observed in the statistics
obtained by the education institutions that have a follow-up
process with their graduates, and they relate it to their
salaries.

 When considering that a research project or dissertation
is a requirement to obtain a professional degree in higher
studies, this research project began with the analysis of the
number of students who do not conclude with this graduation
process. It was observed that an important aspect lies in the
lack of monitoring, orientation and continuity by the
professors in the projects developed by students. Under this, a
group of researchers [7] and [8], developed an Innovative
Model, which under a multidisciplinary and collaborative
platform, provides a methodological and procedural guide
that facilitates the tasks of the teachers and provides students
with tools, techniques and methodologies to generate products
and their final documents.

 In this way, with the model, every semester between 120
and 240 students are attended to, and these students generate
between 40 and 70 projects. Some of them opt for obtaining
their degree by means of these projects since at the end of
their studies they generate a product or a system, as well as
their final document, which is provided to their administrative
department to continue with their graduation process.

 However, despite the efficacy of the model, it is
complex to oversee the large number of projects presented
and therefore, a centralization and automatization of the

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 71

ISBN: 1-60132-446-4, CSREA Press ©

model for the monitoring of the projects, allows a greater
number of graduated students.

 In order to solve the mentioned problem, the main
objective of this research project was centered in the creation
of an information system, in the educational sector, for the
monitoring and control of research projects using WEB
technologies.

 In this paper it is described how the analysis, design and
development of the system was carried out, following a
Framework that integrates Agile and Traditional
Methodologies defined by the software engineering where
aspects for risk management, requirements compliance and
versions control are considered.

 One of the main contributions of this research project is
the fact that the system integrates characteristics that
contribute to the improvement of the education quality by
allowing the monitoring and control of the necessary elements
for the development of a product, and up to the integration of
teams to provide the project a follow-up. Its impact is
reflected in the generation of evidences, in the followed
process to comply with quality standards as established by the
international norm ISO 9001:2015 [9] and certification
organisms such as the CACEI [10] and CONAIC [11].

 Another contribution of this project, on a social scale,
was focused to create the interest of the student and academic
bodies for adhering themselves to the processes, methods and
techniques established for the monitoring and control of
research projects and to collaborate in the validation of a
process that can develop and strengthen the skills, attitudes
and values of both faculty and student bodies.

2 Related software programs and projects
 There are different projects related to the proposal
described in this paper, these are divided into three topics; 1)
Obtention of a degree through projects; 2) WEB systems for
the obtention of a degree and 3) Software for the obtention of
a degree.

2.1 Obtention of a degree through projects
 Different Universities in the country offer the option of
obtaining a degree through the presentation of research
projects, this modality is convenient for the students to obtain
their degree and to perform better in the academic area.
Broadly speaking, the process is as follows:

1. A research project where at the end a product, system or
software is generated, along with its final document.

2. The aforementioned research report is given to the
Institution (from where the student graduated from).

3. The document or research report is revised by an
assessment committee which examines in detail both the
research and the product.

4. The committee provides feedback.
5. The student makes the necessary changes.
6. The processes is repeated from 3-5 until the committee

issues its approval.

In the paragraphs below are listed a series of universities
where the above mentioned modality is offered.

 Universidad Autónoma de Guadalajara (Autonomous
University of Guadalajara) [12]. This modality is offered as
“Prototypes Project”, where a project is created which will be
later used for the obtention of a degree. In the UAG’s main
webpage the general characteristics the document must
comply with for it to be approved are shown. However, it
does not allow monitoring or controlling the projects.

 Universidad de Sonora [13]. (Sonora University). In
this institution, the Division of Economic and Administrative
Sciences offers the option of presenting a research project to
graduate. In its main web page, the members of the academia
register their research project, initializing with this step the
procedure. The page shows the registration process, however
there is lacking a module where one can upload the
documentation and track the complete process.

2.2 WEB Systems for the obtention of a degree
 There is also software that provides support in the
graduation process, and these were developed in WEB
environments.

 Universidad Autónoma de México [14]. (Autonomous
University of the State of Mexico). The system developed at
this University, specifically in the Faculty of Higher Studies
Acatlán, shows a section identified as Carrera (Career),
which integrates the different degree courses offered by this
Faculty. Syllabii from 1978 to 2015 can be found there, and
also an identification number, which corresponds to the
student’s identification number. It is a complex system which
has been in operation since 2012, according to the
information found in the page. However, this system does not
allow the monitoring and control of the projects developed by
students and assessors.

 Universidad Autónoma de México - Facultad de
Ingeniería [15]. (Autonomous University of the State of
Mexico - Faculty of Engineering). The Faculty has a WEB
system supported by the institutional service of the Faculty of
Engineering, this system integrates an interface with a menu
which provides important information about the process to
obtain a degree such as the guide for graduation, academic
orientation on graduation, amongst others. The system is one
of the most complete systems in the WEB, however, it does
not include aspects for monitoring and controlling the
projects.

 Instituto Tecnológico de Villahermosa [16].
(Villahermosa Technological Institute). This institution has a
WEB system under development, it offers an option for
consultation of the process by providing a control number; a
disadvantage of this product is that it does not provide a level
of security. In its main page are shown courses, formats,
exam modules, graduation options and pre-registration, an
appointment system with user and password.

72 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

2.3 Software for the obtention of a degree
 There are also information systems, of a commercial
nature, that provide support, from the enrollment up to the
obtention of the students’ degree. Among these there is GES
(Gestión Educativa Software - Software Education
Management) [17], developed by HT Mexico, Services and
Consultancy. It provides support for the generation of class
schedules, groups by time, schedule by classroom; it controls
the enrollment and graduation process, social service or
community service, professional practicum and residency; it
also helps with the configuration of the different graduation
options, the administration of the graduation of work for the
graduation, the allocation of assessor and of the board of
examiners, the organization for the professional exam, the
designation of the result, the printing of the professional title
and of the different certificates and minutes necessary.

 Another commercial software analyzed was the Bit
Academic Manager [18]; it consists of a system of academic
and administrative control for the academic world. It is
capable of carrying out the academic control for the
enrollment, evaluation and the issuance of different
documents for the students. Also, it allows professors to
assess and grade online on an everyday basis for a better
control.

 Lastly, software Click [19], is a tool created by Grupo
Index, and it consists of an academic control system. It has a
wide range of functions for the administration of the
academic world and a social service and professional
practicum module. It even has functions for the control for
graduated students. A disadvantage, however, is that it lacks
tools to support the graduation process.

 After analyzing and studying different information
systems, it was determined that none of these products covers
the need of being a support tool for graduation, a tool that
provides monitoring and control to the students’ research
advancement.

2.4 Proposal
 We decided to create a program that is capable of the
automatization of the products development process and
administration of the research projects. With this objective in
mind, in consensus with the team, some characteristics of the
previously described systems were considered; among these
are the generation of schedules, users’ access, generation of
performance graphs, administration of content by the final
user and that it would need to have the function of a
multiplatform system.

 Apart from considering the previous characteristics, the
team decided to add a plus to this information system by
integrating new functionalities and capabilities for the correct
supervision of the procedures. In the Frame Work in section
Three this process is detailed.

3 A Framework as a guide for the
development of the system

 When the activity of the software engineering is
expressed as a multidisciplinary study and allows the
interaction of different areas, it is possible to generate the
development of complete and functional systems following a
model that describes their operation and behavior. The
development of the Sistema de Registro de Proyectos
(Projects Registry System) was based on the Framework [7],
[8]; which follows the recommendations of the software
engineering, using agile and traditional methodologies (See
Figure 1).

 The framework integrates different tools that allow the
coupling of two processes: the development and evolution of
the software products and the management of projects, under
a context that allows collaborative and organized work and, in
a short time frame, results that are concrete and approved by
the client are generated and moreover, these provide an added
value.

 In the first three stages of the Framework a waterfall
model was used [5], [6], useful for the definition of systems
requirements, the analysis and part of the design. After an
incremental-evolutionary model was used for the
development by system increments. Both models belong to
traditional methodologies. Also, some recommendations
defined by the agile methodologies were followed for the
organization of the personnel involved in the project, the
allotment of resources and the management of activities. In
this work SCRUM and Kanban [20] were used.

3.1 Analysis and Design
3.1.1 Information Search

 The first activity was the creation of a multidisciplinary
work team of six people who were asked to deliver
periodically small parts of the system, as well as the search of
current technologies for WEB development, databases
servers, programming languages, and software that would
allow the use of a server. The group carried out the research of
Education Institutions in Mexico in order to study other
systems similar to the one developed in this project; as well as
the research projects registry, control and monitoring
processes followed by other institutions. The collaborators
were assigned different roles.

 The Waterfall Model was of use in the analysis, selection
and optimization of the information, SCRUM in the allotment
of activities and organization of the team.

3.1.2 Analysis, Selection and Optimization of the
Information

 In this stage, the classification of the documents was
carried out in order to determine which information was to be
of use in the development of the product. Here, a feedback
between the present stage and the previous one to determine
whether there was hidden or unknown information at the

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 73

ISBN: 1-60132-446-4, CSREA Press ©

moment of the selection, and to become familiar with the
environment.

Figure 1. Framework.

 The Waterfall Model continued to be used for the
analysis, selection and optimization of the information and
SCRUM for the allotment of activities and the organization of
the team.

3.1.3 Definition of Processes and Requirements
 This stage consisted on the definition of requirements in
natural language in collaboration with the client. The
requirements were analyzed and classified as functional and
non-functional. Later, a document with all the identified
requirements was drafted.

 With the information obtained at this stage, a risk analysis
was carried out in order to reduce the impact in the
development of the system and achieve a more fluent and real
development. Among the risks we can find:

 Technology Risks. The computers which were
originally destined to be the system server did not fulfill the
necessary requirements to provide an adequate performance;
the use of different operational systems for the development
and execution of the program could create lags in the
compatibility and partial execution of the program; the
software used as a server and the database software, in its
open code, were probably lacking all the necessary resources
for housing the system.

 Requirement Risks. The constant increment of
requirements in each module or increment in the system,
would create considerable modifications in the system.

 Personnel Risks. The meetings to test the system proved
to be difficult to schedule due the different activities of each
member.

 Risk Planning. Risk planning needed an analysis of each
one of the risks defined and the proposal of a strategy that
allow their management. In the monitoring and control system
of the research project several strategies were identified, these
can be seen in Table 1.

Table 1. Strategies for Risk Management.

Risk Strategy
The computer equipment
originally destined to be used
as the server for the system
did not comply with the
necessary requirements to
provide a good performance.

New equipment was
considered, clearly one that had
superior characteristics
compared to the original one.

The use of the different
operation systems for the
development and the execution
of the system included some
drawbacks in terms of
compatibility and partial
execution of the system

An intermediary computer was
used to test the system before
uploading it to the server.

The daily meetings of the team
to test the system proved to be
difficult to organize.

Defining short and concise
evening meetings with a
moderator. Daily virtual 15-
minute long meetings.

The constant growth in the
requirement in each increment
included considerable
modifications in the system.

It was tried to obtain all the
possible requirements to
correctly design the system.

 Selection of the software to be used. Based on the
technologies analyzed in the search for information stage, and
the listing of requirements, the software was designed

3.1.4 Design and Modeling of the Requirements
 Once the requirements were clear and the risks analyzed,
it was defined the way to system would be implemented by
means of a General Diagram.

 The general diagram of the Sistema para el seguimiento y
control de proyectos de investigación (System for the
monitoring and control of research projects) is shown in
Figure 2. It comprises eight subsystems; from the information
that manages and controls the server to the user’s interface
that integrates the functionality and behavior of the system.

3.1.5 Development, Testing and Implementation
 It was at this stage that the physical prototype of the
system was created, which approves the manipulation of the
information and the registry of the information in need of
evaluation, from both the process and the collaborative work,
as well as from the software.

 In order to achieve that, the eight subsystems were
divided into three increments so a follow up of the correct
process distribution of the evaluation was possible and that the
client could be given functional versions of each increment. In
the first increment, the base for the administration module was
considered, as well as the installation of the required software,
the creation of the databases and the access menu.

74 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

Figure 2. General Diagram of the System.

 The second increment was mainly focused on the
evaluation module, which complements the administration
one and starts the management module. The third increment
defined to include in the system the functions that allow the
evaluation of the projects results, similarly, it includes the
option that enables uploading files to the system for future
reference. This phase can be seen in Figure 3.

Figure 3. Diagram of the structure of the Projects Registry
System.

 Once the analysis of how the system would be
implemented was done, the proposal with the defined
elements was taken to the client. The access menu is shown in
Figure 4.

Figure 4. Access Menu Design.

 For the evaluation process several formats were created.
As an example, the format for projects proposal designed for
professors and assessors is shown in Figure 5. This format
includes information on who is the person proposing the idea
of the project, the commitments acquired for the completion
of the project timewise and which academic activities will be
carried out during a semester to achieve the objective. This
assessment instrument complies with the function of creating
a database of projects proposals, from which students can
select the project that best adjust to their personal needs and
knowledge.

 Another particularity of the system consists of the graphic
visualization of the results (Figure 6), to generate results
graphs and control tables which promptly show the statistics
and evaluations results using graphs, as well as the
advancements and stages each of the projects currently is,
from the beginning to the end. The information obtained can
be accessed by project, team, group, assessor, subject, etc.,
depending anyone’s needs.

Figure 5. Proposal of the initial questionnaire.

 At this stage different methodologies were used. In each
Subject it was established that in every project the process
would begin following the recommendations of the
incremental-evolutionary life cycle model, which establishes
the definition a set of tasks grouped in small repetitive stages
(or increments), that begin with the analysis and end with the
instauration and approval of a product.

Figure 6. Graphics proposed in the design.

 In each of the increments it was established that the tests
and the necessary documentation must be included,
compulsorily. These tests and documentation would allow
each team to comply with all the objectives proposed from the
beginning of their projects (as established in the questionnaire
in Figure 5). Later, in each project the client and the users had
the responsibility of validating each liberated product (or
increment) in the established period, similarly, they were
responsible of providing the team with feedback to verify and
validate that the product complied with the quality
characteristics previously set.

Besides the incremental-evolutionary model, the
development of the app was controlled applying three more
methodologies: XP (eXtreme Programming) for the
development of the application increments, Kanbam in the
definition, the assignment of roles and of the responsible team
members of every activity and SCRUM for the organization
of tasks and resources allotment.

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 75

ISBN: 1-60132-446-4, CSREA Press ©

4 Testing and Results
 The research projects monitoring and control process has

been automatized, as of today, in 80% in comparison to the
conventional method. Registration of various projects and
tests have been carried out, which allowed confirming the
systems’ functionality as well as its efficacy, compatibility
and performance. The metrics used for comparing the before
and after of the system implementation were the following:
time to register and evaluate the project, time to generate a
schedule, time for the projects search, time required for
storing the registrations, the use of the processor to identify
the response time, simultaneous connections and compatibility
between devises of different platforms. Next are shown some
of the results obtained.

 Time to generate schedules. The time taken for the
generation of an assessment schedule has been reduced;
previously it would take from 1 to 3 hours to generate a
schedule using the conventional method, now it is possible to
generate a schedule in between 1 and 5 seconds (see Figure
7), this is 99% faster.

Fig 7. Time to generate ratings indicated, in seconds.

 Time for the search of projects. The search of projects

is one of the tasks that has been improved in the
automatization of the process, now it is possible to consult a
project more easily and faster. With the conventional method
it was necessary to look up the project manually, which takes
between 1 and 5 minutes, with the automatized method only
between 1 and 15 seconds, which is about 90% faster. To
search for a project, if the user so wishes, filters by subject
can be used, and the results will give several results and
search by reading one by one, or the search engine included
could also be used. Figure 8 shows the result.

Fig. 8. Test time for searching projects, in seconds.

 As it can be observed in Figure 8, the time increases
depending on the number of projects since the user must read

the title of each of the projects until the needed one is found.
The function of the filter along with the search option reduces
considerably the time, however, its real effect can be observed
when the number of projects registered is larger than 30.

Time required to store registrations. With the conventional
method it was necessary to have access to a physical space
where to keep the projects files; with the automatized method
these files are kept digitally, saving space and avoiding paper
waste.

 In this stage some tests related to the amount of storing
memory required for the project were carried out. Figure 9
shows the amount of memory required, it was considered that
each project has all the documents required for its evaluation.

Fig. 9. Megabytes required to store projects

Use of the processor to identify response time. A very
important test was the one that identifies the number of
connections the server may receive before it overcharges the
CPU and hence affect considerably affect the system’s
performance, which directly has an effect on the user’s
experience when using the system. It is important to mention
that a connection is any device connected to the system.
Figure 10 shows the CPU’s performance resulting from the
number of connections.

Fig. 10. CPU performance based on the connections in the

database.
Compatibility between devices using different platforms.
Different compatibility tests between iOS and Android
running mobile devices were carried out. The objective was to
verify that the resolution did not affect negatively the
visibility or resolution; these devices access the server using
Windows 8 only.

 Another compatibility test carried out consisted of
verifying the operation of the system in two operative systems.

For validation reasons, the server was installed in a computer
running under Windows 8, and in another computer running

76 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

under Mac Os X 10.10. The results obtained during the
compatibility tests in the different devices were successful.

 Once the resolution was verified, the correct performance
of each of the system’s functions with the different devices
used was checked. The functions consisted of the registry of
projects, projects consultation, projects evaluation, generation
of schedules, graphing, generation of grades, administration
functions, for instance; adding a new subject or new user, the
allotment of projects, changes authorization, saving projects,
documents consultation previously uploaded in the system and
uploading monitoring files. A survey to the client and the
stakeholders was carried out in order to validate
independently each increment and the results of the
integration of everything in the system. Similarly, when the
term concluded, approximately 400 surveys were done to
professors and students whose main objective was an
evaluation of the system. A report was crafted using the
information from the surveys, the results were compared to
the work model previously used (conventional model),
resulting in a 100% improvement in terms of functionality,
90% in efficiency, 85% in monitoring and control of research
projects, 87% in the documentation of projects and 92% in the
counseling offered to students.

5 Conclusions
 The result of this research shows that after having
validated and ensured the good performance of the system for
the monitoring and control of the research projects, following
a framework aligned to the recommendations set by the
software engineering, different competencies in the students
are also developed, such as researching, reading, writing,
improving oral and written production both in Spanish and in
English. This has allowed to determine the trend to this
activity in the last two semesters, highlighting characteristics
such as the monitoring of the projects in a logic and constant
manner, the obtention of products in less time compared to the
conventional method, from this derived journal publications,
the participation in different events and callings, and more
importantly, the support provided to students in the increase
of the graduation rates. These tools allow the development of
complementary competencies for their working performance.

 As a future project, on this same line, the corpus of
projects will continue to increase until a large number of
projects is achieved to continue studying and perpetuating the
research work.

6 References
[1] Gutiérrez Estrada C. & Díaz Zagal S.: “Methodology to
associate the Product Design and Project Management processes in a
common platform”, The 2010 IEEE International Conference on
Information Reuse and Integration. Las Vegas, Nevada, USA,
ISBN: 978-1-4244-2660-7, (eg.108–122), 2010.

[2] Blanchard B. S., WJ. Fabrycky. Systems Engineering and
Analysis. 2nd Edition, Prentice-Hall, Inc., Englewood Cliffs, New
Jersey. (1999).

[3] Software Engeneering: A Report on a Conference ponsored by
the NATO Science Comité. Naut, P. y B. Randell. NATO, 1969.

[4] Boehm, B. (1998). A spiral model of software development
and enhancement, Computer, 21(5), 61–72.

[5] Pressman R. "Software Engineering: A Practitioner's
Approach". Mc Graw Hill. Hardcover-Part Four Managing Software
Projects. 2005.

[6] Sommerville I. "Software Engineering" (9th Edition). Chapter
2 & Chapter 3. ED Pearson Addison-Wesley. United States Of
America. 2011.

[7] Gutiérrez C. Méthodes et Outils de la Conception Système
couplée à la Conduite de Projet. Thèse de Doctorat. LESIA-INSA.
Toulouse France. 2007.

[8] Gutiérrez C., Díaz S., Reyes I., Baron C., Bartolo R., De La
Rosa J., Villanueva M. "Modelado de los Procesos para el
Seguimiento y Control de Proyectos de Investigación, en el Sector
Educativo, utilizando redes de Petri". Revista de Sistemas y Gestión
Educativa. Vol.2, No.5, p.p. 976-983. Revista trimestral ECORFAN.
ISSN-2410-3977. CONACyT/RENIECYT. 2015.

[9] ISO 9001:2015. ISO 9001 Quality Management Systems. Last
visited October 16th, 2015. Available from http://www.iso.org/iso/
iso9001_revision.

[10] CACEI. Consejo de Acreditación de la Enseñanza de la
Ingeniería Superior, A.C. Last visited 21st September, 2015.
Available from http://cacei.org.mx/

[11] CONAIC Consejo Nacional de Acreditación en Informática y
Computación A. C. Last visited June 4th, 2015. Available from
http://www.conaic.net/

[12] Universidad de Autónoma de Guadalajara (2015).
Características generales de un proyecto de prototipos. Last visited
June 4th, 2015. Available from http://crecea.uag.mx/opciones
/prototipo.htm

[13] Universidad de Sonora (2015). Procedimiento para el registro
de proyectos de investigación. Last visited June 4th, 2015. Available
from: http://www.dcea.uson.mx/? page_id=336

[14] Universidad Nacional Autónoma de México (2015). Gradus.
Last visited June 4th, 2015. Available from:
http://sistemas.acatlan.unam.mx/titulos/ accesolicenciatura.aspx

[15] Universidad Nacional Autónoma de México (2015). Sistema
de Titulación. Last visited June 4th, 2015. Available from:
http://titulacion.ingenieria.unam.mx

[16] Instituto Tecnológico de Villahermosa (2015). Sistema de
control de trámites de titulación. Last visited June 4th, 2015.
Available from http://cc.itvillahermosa.edu.mx /sys/estpro/scott2/.

[17] EscolarHighTech. (2015). GES educativo – Software de
control escolar. Last visited June 4th, 2015. Available from
http://www.escolar hitech.com.mx/geseducativo.php

[18] Bit Technologies (2015). Bit Academic Manager - Software de
control escolar y administrativo para escuelas. Last visited June 4th,
2015. Available from: http://www.bittech.mx/productos/bit-
academic-manager-soft ware-de-control-escolar-y-administrativo-
para-escuelas.

[19] Grupo Inndex (2015). Click-Escolar –Módulos del sistema.
Last visited June 4th, 2015. Available from:
http://www.grupoinndex.com/ControlEscolarModulosSistema.html

[20] Boehm, B. & Turner, R. (2005). Management challenges to
implementing agile processes in traditional development
organizations. IEEE Software, 22(5), 30–39.

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 77

ISBN: 1-60132-446-4, CSREA Press ©

��������	
�������
�����
�������������
�������
������
����������
��������� ������

James A. Crowder and Valerie Bernard

Executive Training Centers

Abstract – The Earned Value Measurement System (EVMS)
has become a mainstay in Commercial and Government groups to
measure progress and success of a project. EVMS is espoused to
be an effective (albeit subjective) measure, but it does not play well
with agile development efforts, due to its requirement of static
schedules and work plans [10]. Here we introduce a new
paradigm for EVMS that will accommodate and be affective in
measuring progress and problems within agile development
efforts. Included is a discussion of human performance
improvement technology to address disconnects between classical
EVMS and Agile Development approaches.

Keywords: Earned Value, Agile Development, EVMS,
Performance Improvement.

1. Introduction
The government instituted the formal practice of Earned
Value in the 1960s as a methodology for program/project
management in terms of scope, cost and schedule. Earned
Value promises to provide accurate measurements of
program/project performance as well as identifying
problems; a crucial component of program/project
management [15]. The basic 11 precepts or elements of the
Earned Value Management system are:

1. Define Authorized Work Elements
2. Identify Program Organizational Structure
3. Integrate the Work Breakdown Structure (WBS) and

Organizational Breakdown Structure (OBS).
4. Schedule the Work
5. Identify Products and Milestones
6. Set Time Phased Budget
7. Record Direct Costs
8. Determine Variances
9. Sum Data and Variances
10. Manage Action Plans
11. Incorporate Changes

By the late 1980s and early 1990s, the EVMS became a
mainstay tool for managing, measuring, and executing
programs/projects among the Department of Defense (DoD)
and their respective Defense Contractors, Department of
Energy (DoE), and NASA [6]. Since then many large
commercial companies have adopted EVMS as well, like
Boeing Commercial Airplane Division [12]. There are
many Earned Value COTS software packages available for

classical Earned Value. Some of the most popular ones are
Microsoft Project©, Open Plan©, and Deltek wInsight©.
These products are geared toward helping to plan, measure,
analyze, and execute the classical waterfall development
methodology [1]. Figure 1 illustrates this process, which
includes measurement and analysis of earned value metrics.

Figure 1. Classical Waterfall Execution

Contrasting Figure 1, Figure 2 illustrates the changes
associated with creating a similar execution plan for agile
development programs/projects. As you can see from
Figure 2, the flow is quite different, and includes the
recursive Sprint development process that continually
refines the requirements as the Sprints progress [14]. The
emphasis at the end of each Sprint is on working software
that integrates together at the end of each Sprint. Customer
input is sought and the Sprint plans and capability plans
adjusted, based on the Sprint perspectives, integration and
test, along with customer input. Included in the agile project
execution process is the ability for the Sprint teams to self-
�������	
���
	��
�������
�	��
�	��	��
������
��
����	�	nt
roles across the Sprints based on their capabilities and
expertise [9].

2. Assessing EVMS & Agile Development
Earned Value and the Earned Value Management System
(EVMS) provides cost and schedule performance metrics
that, if handled carefully and honestly, can be useful in
helping the program/project manager track the progress and

78 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

get early indications of problems. Basically, Earned Value
measures whether you have earned the right to spend that
much money, and whether you have earned the right to
spend that much schedule [59]. Some of the metrics that
Earned Value uses the measure program/project progress
are:

1. BCWS: Budgeted Cost of Work Scheduled. This

represents the “planned” value of the work scheduled
for a given time period.

2. BCWP: Budgeted Cost of Work Performed. This
represents the cost (from the original budget) of the
work that was actually performed during a given time
period.

3. ACWP: Actual Cost of Work Performed. This
represents the actual collected costs over a given time
period for the work that was actually performed. This
may or may not represent the amount of work that was
supposed to be accomplished during a given time
period.

4. BAC: Budget at Completion. This is the total cost of
the program/project at completion, or the BCWS at the
end of the program/project.

5. EAC: Estimate at Completion. This is the ACWP to
date, plus the estimate to complete the remaining work.

6. CV: Cost Variance. CV = BCWP – ACWP, or, the
Budget cost of the work actually performed during a
given time period (what they work should have cost),
minus what the actual costs were for the work
performed during the same time period.

7. SV: Schedule Variance. SV = BCWP – BCWS. Since
both BCWP and BCWS represent the same time period,
a negative SV means there is still work left to do that
was not accomplished during the time period, which
will take more time (i.e., schedule) to work off the
remaining tasks. While it is possible for SV to be
positive, which means there was more progress during
the time period than was scheduled, this is the stuff of
Earned Value folk lore [2].

8. VAC: Variance at Completion. VAC = BAC – EAC.
This represents the complete variance for the
program/project at the conclusion. Again, the goal is to
have VAC as close to zero as possible, for if VAC is
large positive, then the program/project was grossly
over-budgeted, while a VAC that is large negative
indicates a grossly under-budgeted program/project.
Both are hazardous because it calls into question the
company’s budgeting practices.

If you read through metrics 1-8, they seem like reasonable
measures of a program/project. However, the issues with
classical Earned Value is that the entire program/project
must be planned out in detail, often down to 2-4 week tasks,
and detailed budgets put in place for the program/project
schedule. Any variances from this budget or schedule are
considered problems (variances) and variance reports must

�	
�����	�
���
	������	��
��
�����
��
���������
����	�
����	

change is bad and uncertainty is worse [3]. In fact, the
concepts of classical Earned Value can be broken down in to
seven major precepts:

1. Plan all work to completion.
2. Break down the work scope into finite pieces assigned

to responsible persons for control of technical, cost, and
schedule objectives.

3. Integrate work scope, cost, and schedule objectives into
a performance baseline to measure progress against.
Control changes to the baseline.

4. Use actual costs incurred and recorded in
accomplishing the work performed.

5. Objectively assess accomplishments at the work
performance level.

6. Analyze variances from the plan, forecast impacts, and
prepare an EAC based on current performance.

7. Use Earned Value metrics to assess management
processes.

Figure 2. Agile Program Execution

In short, plan every detail of the project, including the work
to be performed at every small increment, and create a
detailed and complete schedule and budget across the entire
project. Manage change carefully, for change is the
hobgoblin of Earned Value. In classical development
efforts, working software is delivered at major milestones.

3. Disconnects between Classical EVMS and

Agile Development
Now let us bounce the precepts of classical Earned Value
against the precepts of agile software development to see if
there may be some issues.

1. The emphasis is on early and continuously working

software deliveries at the end of each of the Sprints.

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 79

ISBN: 1-60132-446-4, CSREA Press ©

2. Constant customer interaction and collaboration that
includes welcoming changes to requirements. This
allows the customer to adapt to changing environment
and user needs to create products and services that are
considered viable by the end users.

3. Business development, management, customers and
developers MUST work together throughout the
project.

4. Sprints teams should be staffed with motivated
individuals who are trained in both agile development
and agile team dynamics.

5. Management needs to create an effective team
environment and support the teams by being a
facilitator and trusting the teams to develop the required
software.

6. The most efficient and effective method of cooperation
and collaboration within an agile development team is
face-to-face conversation – even if it is over a Video
Teleconference (VTC).

7. Working software and team/software entropy are the
primary metrics.

8. Agile development processes promote sustainable
development.

9. Continuous attention to technical excellence and good
design enhances agility and promotes healthy cost and
schedule metrics.

10. Simplicity is essential in agile development – work for
work sake has no place in agile programs/projects.

11. The best architectures, requirements, and designs
emerge from well-trained, self-organizing teams.

12. Teams must reflect at regular intervals (Sprint
introspectives) on how to become more affective. The
team must then tune/adjust its behavior accordingly.

The notion of detailed planning of every task in the
program/project across the entire schedule and striving to
control and drive down changes is completely antithetic to
the precepts of agile software development. In agile
development, change is welcomed throughout the project.
The entire reason agile development was created was to deal
with the reality that requirements and necessary capabilities
change over time, especially for a project that spans years.
In today’s environment where technology, customer needs,
geo-political, and cultural needs change rapidly, the need for
embracing agile will only increase over time. The
successful companies are those that not only embrace the
mechanics of agile development, but are those that
understand the need for management and developers with
the non-technical skills (soft people skills) necessary to
empower and facilitate efficient and motivated agile
development Sprint teams. One of the most important
things to understand in today’s environments, is that it is
possible to come in completely on budget and on schedule
and yet the project fail because the program/project
development did not adapt to changing customer needs. If
no one wants the product once it’s completed, it was not a

success. Likewise, if the program/project comes in on
schedule and on budget and meets customer needs, but your
developers never want to work on a program/project with
that manager ever again, the program/project failed. Table
1 below illustrates classical EVMS verses the concepts for
Agile EVMS.

There are very many factors that can derail agile
development teams and lead th	�
 ��
 ������	�
 �	
 ����

prevalent are those revolving around a lack of management
commitment and training in how to manage an agile
program/project (i.e., how to be an agile manager). Even
more issues arrive when managers must embrace a new
paradigm of how to measure agile programs/projects, or
how to use Agile Earned Value [26].

Table 1 – Classical vs. Agile EVMS

What follows is a discussion of the factors that can most
easily derail an agile development project, from an Agile
EVMS perspective:

1. Lack of accountability: This pertains both to the

members of the agile development teams and the agile
manager. Many managers may feel like they have
nothing to do, given the autonomy and control that the
agile team need to have over the development efforts.
In this case, the manager may feel like they are no
longer accountable for the project, and therefore will
not facilitate the agile teams, becoming apathetic
toward the entire process. In this case, the
program/project has very little chance of being
successful. If the teams are not chosen well, some team
members may feel like they are not individually
accountable and that it’s the teams’ responsibility, not
theirs, to make sure things work well. Individual
accountability to the teams is crucial to the overall
success of agile development.

2. Lack of commitment: to Agile (holding on to classical
EVMS): The manager that insists on using classical
waterfall development Earned Value and management
techniques on an agile development effort will not only

80 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

be unsuccessful, but the manager will be very frustrated
throughout the entire effort. However, this requires
commitment from upper management to provide the
proper management training on agile projects.

3. Poorly trained teams: Just being efficient at writing
software and being adaptable to changes doesn’t mean
agile teams are successful. Agile development Sprint
teams need to be trained in how to collaborate
effectively, how to deal with generational, cultural, and
other differences that can cause mistrust among team
members. Understanding the teams’ personalities can
go a long way toward the teams self-organizing in a way
that allows the team go be effective across multiple
Sprints and multiple programs/projects.

4. Poor documentation: Many developers feel that agile
gives them the freedom to not worry about
�����	��������
���
�����	�������
�	��
��
�	
���
��

their freedom to self-organize and adapt. However, the
right amount of documentation is essential in order for
the team members and teams to understand the end
goals, and to understand what each other is currently
developing, how it fits into the Sprint, and how the
Sprints will integrate together to form working software
at the end of each Sprint.

5. Using unproven collaboration/automation tools: As
we have discussed, providing productivity tools to the
teams is necessary to keep the individual developers
and the Sprint teams running at peak efficiency and can
promote collaboration. However, introducing new
tools into the teams during a development effort may
completely disrupt the rhythm of the agile development
process while each team member comes up to speed on
the tools and how to use them effectively. In addition,
if it turns out the tool is not appropriate for the teams,
additional efficiencies will be lost when teams and
individuals try to re-adopt previous tools.

6. Inaccurate data: It is vitally important that the Agile
Manager gather accurate data concerning the
productivity and effectivity of the teams across Sprints.
Retrospectives are difficult if the teams are not provided
accurate information.

7. Manager holding everything at their level (failure to
communicate issues to the teams): While inaccurate
data causes incorrect decisions to be made among the
teams and between the teams, the lack of information is
more devastating to effective agile development efforts.
There must be complete transparency between the Agile
Manager and the teams, the Agile Manager and
individual developers, and between Sprint teams. The
adaptivity the agile development process promises in
only achievable if there is effective communications all
throughout the program/project.

4. Human Performance Technology
The International Society for Performance Improvement
defines human performance technology as “a systematic

multi-disciplinary approach that stresses rigorous analysis
of present and desired levels of performance, identifies
causes of performance gaps, offers a wide range of
interventions, guides the change management process, and
evaluates the results.” In order to solve costly business
challenges, human performance technology utilizes an
approach with proven models and methodologies which
results in interventions to address the business challenges.
As with the Earned Value Management System process,
before deciding which techniques are appropriate, the
process of human performance technology begins with
analysis to discover multiple intervention opportunities.
Pershing [17] states, “Human performance technology is the
study and ethical practice of improving productivity in
organizations by designing and developing effective
interventions that are results-oriented, comprehensive, and
systemic” (p. 6). The International Society for Performance
Improvement [17] suggested improving the output of a
company contained three components: cause analysis,
performance analysis, and interventions. Stolovitch [16]
defines human performance as “a field of endeavor that
seeks to bring about changes to a system in such a way that
the system is improved in terms of the achievements its
values.” These definitions make clear that Human
Performance Technology aims at improving human
organization results and, therefore, can provide a framework
when it comes to closing the gap in performance.

4.1 Four Principles of Performance Technology
The International Society for Performance Improvement
[18] suggested that human performance technology
provides a guide for “systematically identifying and
removing barriers to individual and organizational
performance.” Utilizing human performance technology
framework as a starting point for EVMS and Agile
Development Projects requires an understanding of the four
principles performance improvement consultants recognize
as a valuable guide and can be expressed as RSVP:

1. R--Focus on results
2. S—Take a system viewpoint:
3. V—Add value:
4. P—Establish partnerships:

Results from a performance consultant view is typically
expressed in valuable, measureable results. Taking a system
viewpoint considers the entire performance system during
analysis. In order to take a system viewpoint, short and long
term change, resource limitations and competition should be
considered. By producing results which impact individuals
and organizations in a positive way, value is added.
Partnerships are a critical component to performance and
bridging the gaps already identified between EVMS and
Agile Development. The key is everyone working toward
the same goal horizontally across the organization. The
challenge remains within organizations who approach

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 81

ISBN: 1-60132-446-4, CSREA Press ©

performance from a vertical viewpoint in separate
functional areas. Human Performance Improvement
consultants understand results are the most critical
component of the value they bring when they look at the
performance system.

4.2 Gilbert’s Behavioral Engineering Model
O’Donohue and Ferguson [19] suggested from Skinner’s
work, “Behavior is best influenced by rewarding acts that
most closely approach the desired behavior.” Thomas
Gilbert was a student of B. F. Skinner. During his research
in the 1960’s and 1970’s, Thomas Gilbert was interested in
further understanding human behavior [20]. Thomas Gilbert
[21] suggested, “For any given accomplishment, deficiency
in performance always has as its immediate cause a
deficiency in behavior repertory (P), or in the environment
that supports the repertory (E), or in both. But its immediate
cause will be found in a deficiency of the management
system (M)” [21]. The Behavior Engineering Model (BEM)
developed by Gilbert [21] provides organizations a way to
identify factors that contribute to improved performance.
Presented in Gilbert’s book, Human Competence:
Engineering Worthy Performance, [21], the Behavior
Engineering Model provides a way to engineer and to
troubleshoot performance for both the individual and the
organization by looking at individual factors and
environmental supports that either increase or decrease
performance. Figure 3 illustrates this.

Gilbert’s [21] BEM focuses on six key factors that are
clustered in two groups: data, resources, incentives
(grouped into Environmental Support), and knowledge,
capacity, and motives (grouped into Person’s Behavior
Repertory) [22]. Gilbert [21] suggested a person’s
repertory of behavior (P) are individual characteristics
of a person that they bring to their jobs.

Figure 3. Gilbert’s Behavioral Engineering Model.

4.3 Behavioral Engineering and EVMS

To reach maximum performance within agile development
teams (i.e., maximize EVMS), Gilbert’s environmental

factors must be provided [21]. The question we must ask
initially when thinking there is a training issue are related to
the organizational factors in Gilbert’ BEM Model:
information, resources, and incentives. While training
programs may address the issue, many questions need
answered first:

1. Are we clear regarding our expectations for our
teams?
2. Are the processes clearly defined?
3. Do we have job-aids in place?
4. Does the environment support the work the
employees are required to do?
5. What do we need to change?

Chevalier [23] goes into greater detail when it comes to
leveraging results from the information, resources, and
incentives factors (see Figure 4).

Figure 4. Behavioral Engineering Model

Human task performance requires highly effective systems,
and EVMS and Agile Development is highly complex and
must take into account human performance. In most cases;
however, human performance is not a result of a
characteristic or behavior flaw but more a consideration of
a poorly designed system. As Rummler & Brache suggested
[24], “if you pit a good performer against a bad system, the
system will win almost every time.” Behind every request
for training and development, there is most generally always
a larger human performance issue.

5. New Agile EVMS Metrics
��
 ��
 ���	�
 ��
 ��	�����
 ������
 !"#�
 $����
 ���	���
 ���

���������
�	�����
��	
���
���
��	
���
���	�����
�������%

&	

��	�
��
��
	������
���
�	
��	
��
�	�����
���	
�������	
$��	�

��
'��	
(�$)'*�
��������
�������
��
+������
�	�����
��	
���

��
	��	���,	
�	����	
��
����	
�	,	����	���
���
���	���	���

���	
�����
�	
���	
��
�	���
��
��
�	
�������	�
��
�	��

��
 �	
 �������	
 �	,	����	��
 ����	���
 ��	
 	��	���,	
 ��

�		����
�	
�		��
��
�	
�������-���.	���
�	
������	��
�	

	��
/�	���
 ���
 �	
 �,	����
 �������	�
 �����	��
 �����
 ���

,������%

0��
 ��	�
 ���
 �	��
 ���
 �	�	
 �	�����
 ��	
 ���
 ��	���

82 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

throughout the program/project to help with the overall agile
development efforts. For instance, complexity measures are
useful in determining which capabilities from the backlog
are scheduled in a given Sprint, and are useful in
determining how to “swap out” one set of capabilities for
another when it is determined that a set of capabilities must
be moved forward or moved out within the overall Sprint
development schedule. However, complexity measures tell
very litt�	
�����
�	
���������������
��
�	
���	�
��
	���
��

it to adapt the code for other purposes (i.e., how agile is the
code). Some very complex code may be written very easy
to understand and structured in such a way that it fits easily
into the agile development style. At the same time some
very simple code can be written in such a convoluted way
that it is almost impossible to understand, modify, or
maintain. Lappo’s view [8] is that these low-level measures
don’t measure or provide insight into higher-level
effectiveness and efficiency measures of the overall
program/project’s agile process.

Agile Earned Value metrics must take into account the entire
agile development life-cycle, which includes assessments of
the software, the program/project agile process, the
environment that has been created for the developers and
development (Sprint) teams, as well as assessment of the
tools utilized in the agile development process. In order to
effectively measure agile development in terms of Earned
Value one must take into all of these factors, for each of them
drives cost, schedule, and quality across the entire agile
development program/project. Assessing software in terms
of complexity may not provide a high-level view of overall
program effectiveness, but according to Abran [2], it is an
essential characteristic of the agile software process and
product and should be measured. According to Cambell [5],
capturing and utilizing context in such measurements is
essential to capture the overall measure of complexity.
Software complexity, combined with context, allows the
Agile Manager to measure the computational, structural,
functional, and representational complexity of the software
throughout the agile development lifecycle. Abran [2]
explains that measuring computational complexity (CC)
provides classical Earned Value measurements of CV and
SV, as it quantifies the time and resources required to write
and test the software. This may be measured in terms of
algorithmic efficiency of the software, coupled with the
efficiency measure of each Sprint. Looking at the
integrated, working software at the end of each Sprint from
high-level dynamic event traces that are required to achieve
the functional requirements of the system allows
measurement of the functional complexity (FC).
Representational complexity (RC) is measured from
systems architecture (DoDAF1) perspective, looking at the
graphical and textual notations for representations of the
System Model (SV-1), System Interactions (SV-3), and

1 Department of Defense Architecture Framework

System Behaviors (SV-4). Based on a measure from zero to
one, the overall Sprint Complexity Factor (SCF) for a given
team for a given Sprint is:

RCFCCCSCF **=

and the overall agile cost and schedule metrics, Agile Cost
Variance (ACV), and Agile Schedule Variance (ASV)
become:

SCFSVASV

SCFCVACV

*

*

=

=

The overall Agile Effectiveness (AE) of a given Sprint for n
number of Sprint teams is:

 �
=

=
n

i
ii ASVACVAE

1

*

The Cumulative Agile Earned Value (CAEV) effectiveness
measure, across m number of Sprints, then becomes:

 ��
= =

=
m

j

n

i
jiji ASVACVCAEV

1 1
,, *

6. Entropy as an EVMS Measure for Agile
Development

While some changes are embraced by the agile design
methodology, it is important to measure those phenomena
that drive uncertainty into agile development and are
indicators of impending problems within the overall
development rhythms of the agile program/project. We will
discuss two of these in the next section:

1. Volatility in Sprint team membership: As was

discussed earlier, it is important to keep the Sprint
teams as stable as possible across the development
program/project in order to keep a stable and
sustainable development rhythm.

2. Volatility or velocity of increase/decrease of Sprint
software defects: As the Sprint teams work together,
get use to each other, understand each other’s strengths
and expertise, and as they gain experience writing
software for this project, one would expect the number
of defects across each Sprint to decrease. One way to
measure this is with Entropy or the measure of change
across Sprints.

Entropy is a concept in information theory proposed by
Shannon [13], and generalized by Rényi [4]. Entropy is
used in information theory to provide a quantitative measure
of uncertainty in systems random variables. A simple way
to describe the use of Entropy is to say that the more
uncertainty there is in a given system, the more potential

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 83

ISBN: 1-60132-446-4, CSREA Press ©

there is for volatility within the system. This is exactly the
case we have with agile development programs/projects.
However, the uncertainty here is not the uncertainty of
requirements change, but the uncertainty of increase in
Entropy of certain factors that drive the efficiency of agile
development teams [7]. In particular we are talking about
the uncertainty of teams (moving people between teams or
bringing new people into teams) and the uncertainty that can
be measured in the software defect volatility.

Earlier, we discussed the problems associated with changing
out Sprint team members during the agile development
program/project. This volatility of team members disrupts
the agile development process and introduces uncertainty
(or entropy) into the development efforts. In order to
adequately measure the effectiveness and productivity of
agile development, the Entropy of Team Volatility (ETV)
must be a factor in the Agile Earned Value metrics. We will
let X be a random variable that describes the probability of
a change in team members across one or more agile teams,
where the probability of team member volatility increases
with the number of people in each team and increases with
the number of teams. As the team size and the number of
teams increases the probability of a change of one or more
personnel increases also. We will assign an exponential
random variable to the probability that there will be
personnel changes, given a number of teams and number of
personnel/team. Also, since removing a team member
means adding a new team member, and changing out
personnel from teams means moving at least two people (or
an even number of personnel), for n number of changes
there are 2n people changed. Therefore the uncertainty (or
entropy) equation becomes:

() XeXp λλ −= , where ()��
�

�
��
�

�
= �

=

)(

1

ln
teamsn

i
iteamsizeX

6.1 Volatility of Software Defects

Volatility of software defects is a measure of whether the
software defects are decreasing over time, given that over
time, as the developers become more familiar with the
overall system being developed and how all the services
play together, and become more comfortable with the teams
and team environment. For a given set of capabilities within
each successive Sprint, if the complexity between the
Sprints is normalized, one would expect the software defects
to be decreasing. An increase in the normalized software
defects over successive Sprints is increasing, this indicates
volatility or Entropy in the development process and must
be measured and remedies determined and put into place
across the Sprint teams [25].

The Software Defect Entropy is determined and measured,
based on the first Sprint, setting the complexity factor for

the first Sprint equal to 1. Then the complexity of each
successive Sprint is measured against the first Sprint and a
complexity factor determined. Based on the software
defects Sprint 1, the Software Defect Factor for Sprint i is:

1,*#

11

>=

=

ifactorcomplexitynormalizeddefectsSDF

defectsSDF

iii

If SDFi+1 > SDFi it indicates Entropy has been introduced
into the software development process and the causes must
be determined and adjudicated in order to get the agile
development effort back on track. The total Software Defect
Entropy (SDE) across the agile development project is then
measured, where we compute the change in normalized
defects/Sprint team across each Sprint, or:

��
= =

=
m

i

n

j
jiSDFSDE

1 1
, ,

where m= #Sprints and n = #teams.

7. Discussion
Adjusting Earned Value metrics for agile development will
be a long paradigm shifting exercise for managers and may
take time to get the Agile Manager use to different types of
metrics and measures than they have been used to. The
emphasis with agile development needs to be on measuring
the agile process, and results (working code), not antiquated
measures like SLOC. Only when we embrace measures that
are effective for agile development will the Agile Manager
be able to truly understand the dynamics and issues with
their agile development programs/projects. Having dealt
with most of the issues surrounding the management of agile
development, we move on to a subject that has been getting
much more visibility in the last few years, and that is the
subject of inclusiveness and diversity as part of the overall
team dynamics for agile development.

References
1. Abba, W. 2000. How Earned Value Got to Prime Time:

A Short Look Back and a Glance Ahead. PMI College
of Performance Management (www.pmi-cpm.org).

2. Abran, A., Ormandjieva, O., and Abu Talib, M. 2001.
Information-Theory-Based Functional Complexity
Measures and Function Size with COSMIC-FFP.
Université du Québec à Montréal.

3. Alleman, G. 2012. Herding Cats: Issues with Deploying
Earned Value Management. http://zo-
d.com/blog/archives/project-management-on-the-
web/-pm-web-001-glen-b-allemans-herding-cats.html.

4. Beck, C, and Friedrich, A. 1993. Thermodynamics of
Chaotic Systems: an Introduction. Cambridge
University Press. ISBN 0521433673.

84 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

5. Campbell, J., Trapnell, P., Heine, S., Katz, E., Lavallee,
L., and Lehman, D. 1996. Self-concept clarity:
Measurement, personality correlates, and cultural
boundaries. Journal of Personality and Social
Psychology, 70, 141–156.

6. Defense Systems Management College. 1997. Earned
Value Management Textbook, Chapter 2. Defense
Systems Management College, EVM Dept., 9820
Belvoir Road, Fort Belvoir, VA 22060-5565.

7. Harrison, W. 2000. An Entropy-Based Measure of
Software Complexity. IEEE Transactions on Software
Engineering, Vol. 18(11).

8. ISO/IEC 19761. 2003. Software Engineering –
COSMIC-FFP-A Functional Size Measurement
Method. In International Organization of
Standardization – ISO, Geneva, Switzerland.

9. Kurian, T. 2006. Agility Metrics: A Quantitative,
Fuzzy-Based Approach for Measuring Agility of a
Software Process. ISAM-Proceedings for the
International Conference on Agile Manufacturing’06
(ICAM-2006), Norfolk, VA.

10. Marshall, Robert. 2007. The Contribution of Earned
Value Management to Project Success of Contracted
Efforts. Journal of Contract Management, pp. 21-331.

11. Pisano, N. 1999. Technical Performance Measurement,
Earned Value, and Risk Management: An Integrated
Diagnostic Tool for Program Management. Defense
Acquisition University Acquisition Research
Symposium.

12. Schulze, E. 2010. "How Earned Value Management is
Limited". Retrieved 2013-04-04.

13. Shannon, C. 1969. The Mathematical Theory of
Communication. University of Illinois Press, Urbana,
Chicago.

14. Sulaiman, T. 2007. "Agile EVM -- Earned Value
Management The Agile Way". Agile Journal.

15. Sumara, J. and Goodpasture, J. 1997. Earned Value --
The Next Generation -- A Practical Application for
Commercial Projects. Retrieved 2006-10-26.

16. Stolovitch, H. 1982. Performance Technology: An
Introduction. Performance and Instruction, 21(3), pp.
16-19.

17. Pershing, J. 2006. Handbook of Human Performance
Technology. International Society for Performance
Improvement. ISBN 978-0787965303.

18. Burkett, H. 2010. Applying an International Focus to
Performance Improvement Opportunities.
Performance Improvement, Vol. 49(7).

19. O’Donohue, W. and Ferguson, K. 2001. The
Psychology of B. F. Skinner. Sage Publictions,
Thousand Oaks, CA. ISBN 0-7619-1758-6.

20. Gilbert, T. 2015. eLearning – The Training Magazine
Network. http://www.elearninglearning.com/thomas-
gilbert/

21. Gilbert, T. 1978. Human Competence: Engineering
Worthy Performance. International Society of
Performance Improvement, ISBN 978-0787996154.

22. Gupta, A., Govindarajan, V., and Malhotra, A. 1999.
Feedback-Seeking Behaviour Within Multinational
Corporations. Strategic Management Journal, Vol.
20(3), pp. 205-222.

23. Chevalier, R. 2004. Human Performance Technology
Revisited. International Society for Performance
Improvement. ISBN 978-1890289188.

24. Rummler, G. and Brache, A. 1990. Improving
Performance: How to Manage the White Space on the
Organizational Chart. Jossey-Bass Publications, San
Francisco, CA.

25. Crowder, J. and Friess, S. 2015. Agile Project
Management: Managing for Success. Springer
International Publishing Switzerland. ISBN 978-3-
319-09017-7.

26. Crowder, J. and Friess, S. 2014. Systems Engineering
Agile Design Methodologies. Publishing Switzerland.
ISBN 978-1-4614-6663-5.

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 85

ISBN: 1-60132-446-4, CSREA Press ©

Configurable Method Model of Agile Methods - for
Creating Project-Specific Methods

Daya Gupta1, Rinky Dwivedi2

1Department of Computer Engineering, Delhi Technological University, Delhi, India
2Department of Computer Science, Maharaja Surajmal Institute of Technology, Delhi, India

Abstract - The research focuses on Agile Method
configuration process that supports an Essentiality attribute
for the agile methods. Since, these methods adhere to a set of
practices it's hard to produce a generic model for the purpose.
It was noted, that software development community has
adopted method configuration to form project-specific method
for agile methodology but have not treated the ‘notion of
essentiality’ in a method. The consequence of this is that - The
relationship between the original method and configured
method is not fully explored. Thus, the extent to which a
method can be configured, remain unanswered. This demands
a full investigation into what can be configured into which
method. The agile values defined in the agile manifesto are
seen to define ‘essentialities’ in these methods. Further to
configure a method for an agile project, each project is
considered individually. The project characteristics provide
support to the method engineer for deciding the ‘variability in
the methods’.

Keywords: Agile Methodology, Scrum, Method
Configuration

1 Introduction
 Now a day’s software companies are extensively using
agile methods. Miller and Lee describes the characteristic of
agile software process as – “modularity, iterative with short
cycles, time-bound, adaptive with possible new risks,
incremental process approach, people-oriented and
collaborative working style” [1]. These characteristics ensure
the fast delivery of software projects within given time-span.
Beck introduced the Extreme Programming method -better
known as XP [3,4]. This is widely acknowledged as the
starting point of various agile software development
approaches. There are also a number of other methods either
invented or rediscovered that belong to the same family of
methods. Scrum [20], Feature Driven Development [6],
crystal methods [7] and DSDM [8], etc are some examples of
these methods or methodologies. Further these methods have
a well-defined structure that includes process, practices, roles
and responsibilities.

� Process-Description of phases in the product-life-cycle. �
� Practices-They are concrete activities and work products

that a method defines to be used in the process. �
� Roles and responsibilities- Allocation of specific roles

through which the software production in a �
development team is carried out.

No single agile method is directly applicable to a particular
project [12, 21]. Industries like Intel Shannon, IBM, Nokia
have been customizing or refining the agile method based on
project in hand.. To ensure that situational method confine to
the principle of agility, a Method Configuration process[5] is
needed where these light-weight methods can be configured
by adapting an existing agile method or extends it by adding
new practice or combine practises of two methods. In our
earlier previous researches , we had presented a fuzzy rules to
evaluate the suitability of practices of agile methods in order
to configure project specific methods [9, 11]. This paper
presents an Agile Method Configuration Process, to form
situation specific method.

The novel contribution in the paper is to develop agile
methods as agile configurable models (see section 2). Similar
to traditional configurable models, agile configurable models
also supports an Essentiality attribute; this essentiality
attribute can take two values either common or variable. The
agile values defined in agile manifesto along with practical
and theoretical experience of various developers and
academicians forms the basis for defining the commonality
and variability in these methods. The organisational
characteristics are used to select the most appropriate agile
method [9]. The method is further configured to form project-
specific methods [10]. The research offers to use project
characteristics for deciding the inclusion of variable
constituents in the configured method (section 3). The process
is illustrated with the help of a case study (section 4).

The next section will define the essentialities in agile methods
and presents the configurable model of various agile methods.

2 Essentialities in agile methods
 A method has two aspects- product and process. The
product aspect provides features for the product development
whereas; process aspect is the route that needs to be followed
to ensure the efficiency of the product development. The
literature survey on various agile methods reveals that there
exist many significant operational differences between the

86 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

process aspects of these methods. Thus it is difficult to
produce a generic model of an agile method configuration
process with sufficient granularity to be useful for the
purpose. This moved the research, to the practices or the
product aspect of these methods.

The agile practices are centred on the Agile values defined in
[2]. To preserve agility, all popular agile methods found in
literature, satisfies these agile values. So the present research
considers these agile values as the basis for defining
essentialities in the agile methods. In the next sub-section the
paper presents agile values defined in agile manifesto and the
corresponding method practices.

2.1 Mapping between agile values and agile
method practices

 The four core agile values defined in the manifesto are
[2]:
� Individuals and interactions over processes and tools. �
� Working software over comprehensive documentation. �
� Customer collaboration. �
� Responding to change. �

The practices of agile methods are divided into four groups
corresponding to the four core agile values. Table 1 adapts
from [17] shows the mapping between the practices of popular
agile methods with the agile values. This mapping shows the
support of agile values by agile methods. The mapping
between the agile values and the practices of agile methods
provide a guideline to define the essentialities in the
method. The guideline is presented below:

Guideline: To satisfy agile values, at least one practice
corresponding to an agile value must be considered as
common to the method.
Since the guideline is defined at a higher level it needs to be
explored further to identify - ‘commonality among the
group of practices corresponding to an agile value’. For
the purpose, the practical and the theoretical experiences of
various software developers and users are gathered and
examined. The next sub-section presents the major outcomes
of the research, used to decide the essentialities in method
practices.

2.2 Determining the essentialities in agile
methods

 The widely accepted agile methods- Extreme
Programming, Scrum and DSDM were introduced in the early
and mid 1990’s and have been found well documented. There
exists a number of literature and experience support for them.
Other methods that are also included in this research are FDD,
crystal and ASD. However, less is known about their actual
usage in real world but these methods have maintained their
own interest and active research by user. Thus, they can be
classified as “active” and are thus included in this research.

These methods have a well defined process and a set of
practices that need to implement the process. To avert a
repetition of arguments in the research and to present the
effort contextually, the paper avoids exhibiting a review of the
process, practices, roles and responsibilities of all the above
methods. However, only the relevant points are briefly
discussed and are presented in a nutshell. Interested readers
are referred to [15] to get a detailed overview on the agile
methods.

Extreme Programming (XP)
XP has evolved from the “problems caused by traditional
development models” [3,4,14,17] to well documented on the
key principles and practices used. The Beck, defined that key
features of XP are - customer driven development, small
teams, daily builds. The special features that makes it distinct
from others is ‘refactoring’and code style. [12] found that
developers at Intel Shannon formed a customized method, of
XP. They took pair programming, testing, metaphor,
collective ownership, refactoring, coding standards and simple
design as the part of the customized method formed. Leaving
behind planning game, small release, continuous integration,
40-hrs week and on-site customer. The customized method
thus, formed behaves extremely well as compared to the
original method. Similarly, in the literature another case study
by [18] was found support the configuration of this method.
Thus, from the practical experiences and the available
literature on XP, the essentiality of this method is defined as:

Common = {pair programming, testing, the planning game,
metaphor, refactoring, coding style}. Variables =
{collective ownership, on-site customer, short releases,
continuous integration, simple design}.
The next method under consideration is scrum. The term
‘scrum’ originally derives from a game strategy of Rug-by
where it denotes “getting an out-of-ball back into the game”.

Scrum
Scrum focus on managing iterative development project
having artifacts such as Sprint, Scrum team and product
backlog etc. [20] identifies that scrum can be adopted for new
project and suggests that practises Sprint, product backlog
and daily Scrum Meeting are common to all projects

By personally interviewing, software developers in the HCL
technologies currently working on the leading projects like
banking and aviation. It was found that they consider practices
like-product backlog, sprint, sprint planning meeting and
daily scrum meeting as common to their process. [19]
conducted a survey to verify the effectiveness of scrum for the
development of mobile application. In their research they
found that sprints, product backlog and sprint backlog as the
most essential practice needed to be address during the
development in this domain.

Thus, from the practical experiences and the available
literature on Scrum, the essentiality of this method is defined
as:

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 87

ISBN: 1-60132-446-4, CSREA Press ©

Common = {scrum teams, sprints, sprint planning meeting}.
Variables = {Daily scrum meeting, sprint review, product
backlog, sprint retrospective, scrum of scrums}. Similarly,
the configurable models of other agile methods like FDD,
ASD, DSDM and crystal can also be developed and depicted
in Table 1.

2.3 Configurable model for agile methods
 The agile values, and the researches, and practical
experiences are examined to decide commonalities in the
method practices corresponding to an agile value. Table 1
defines the commonality and variability in the methods. A ‘C’
corresponding to an agile practice indicates that
essentiality=common for the practice and ‘V’ indicates
essentiality=variable.
Now just as the traditional method configuration process
yields a family of configured methods, so also agile method
configuration process produces a family of methods. For
example two configured model of XP are shown in Table 2.

3 Agile Method Configuration process

 The proposed Agile Method Configuration Process, to
form project specific method, is shown in Figure 1. Firstly the
projects characteristics are gathered in the form of
organisational requirements. These organisational
requirements are then fed to Fuzzy Logic Controller to find
the weight of the agile methods. Here the term ‘weight’ refers
to the degree of applicability of the method for the specified

set of requirements. The highly ‘weighted methods’ or ‘most
suitable methods’ are retrieved from the method base.
Thereafter the most suitable method is selected by method
engineers amongst the retrived methods. Project
characteristics provide guidelines to the method engineers for
deciding the ‘variability in the selected methods’. In this way
the selected method is configured.

Figure 1. Agile Method Configuration Process

Table 1:- Commonality and variability in popular agile methods

Agile Values XP Scrum FDD ASD DSDM Crystal
Individuals and Pair C Scrum C Domain Object C Adaptive C Empowered C Holistic C
Interactions Programming Teams Modelling. Management Teams. Diversity
over processes Collective V Daily Scrum V Individual Class V Model Active User V and Strategy
and tools Ownership Meeting Ownership Collaborative V Involvement Parallelism V

 On-Site V Sprint C Feature Teams V teams and Flux
 Customer Planning Inspection V .JAD by V User V
 The planning C meeting independent Viewings
 game agents
 Customer V
 Focus Group
 reviews

Working Testing C Sprint C Developing By C Developing C Frequent C Monitoring
Software over Short releases V Sprint Review V Feature by Product of a progress C
comprehensive Continuous V Inspection V Components Delivery Revision and V
documentation Integration Regular Builds V Software V Iterative and V Review

 Reporting/Visibility V Inspection Incremental
 of results Project Post V development
 mortem Integrated V
 testing

Customer The Planning C Sprint C Domain Object C Adaptive C Collaboration C Staging C
Collaboration Game planning Modelling Management and User V
over contract .On-Site V meeting Model Cooperation Viewings
negotiation Customer .Product V JAD V among

 Backlog stakeholders
 Requirements V
 are baseline at a
 high level

Responding to Metaphor C Sprint C Domain Object C Adaptive C Reversible C Reflection C
change over Simple V Planning Modelling Cycle Changes workshops
following a plan Design meeting .Configuration V Planning Methodology V

 Refactoring C Sprint V Management Customer C Tuning
 Coding C Review Focus group
 standard Sprint V reviews
 Retrospective
 Scrum of V
 Scrums

88 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

Table 2: Instances of XP configured Method

Configured Methods of XP

1. All XP common concepts, with on-site customer and collective ownership.
2. All XP common concepts, with simple design and continuous integration.

3.1 Selecting the suitable agile method

The method engineer is responsible for eliciting
organisational requirements determined by organisational
environment. Table 3 by [16] shows the set of Organisational
requirements and the corresponding agile methods support
that gives as an input to Fuzzy Logic Controller to find the
membership metrics. Fuzzy rules are used to find the
membership metrics of the methods under consideration. The
purpose is to select the most suitable methods; FLC will assign
membership to the methods depicting the degree of
perfectness for the defined set of requirements. The details of
fuzzy rules and organisational requirements are described in
[10].

Table 3:- Organisational requirements and corresponding
method support

Characteristics Values Methods support

Task extent Small
XP, SCRUM, FDD, DSDM,
Crystal

 Medium XP, SCRUM, FDD, Crystal
 Large FDD, ASD
 Complex ASD
Group Size Less than 10 XP, SCRUM, Crystal
 Multiple Teams SCRUM, DSDM, Crystal
 No limits FDD
Progress
Approach Iterative

XP, SCRUM, FDD,ASD,
DSDM, Crystal

Rapid
Development

XP, SCRUM,ASD, DSDM,
Crystal

Distributed
Development ASD

Code Style
Clean and
Simple XP

 Not Specified
SCRUM, FDD,ASD, DSDM,
Crystal

Expertise
Environment Quick Feedback XP

 Not Specified
SCRUM, FDD,ASD, DSDM,
Crystal

Physical
Environment

Co-located
teams XP, ASD, Crystal

Distributed
teams XP, ASD

 Not Specified SCRUM, FDD, DSDM

Industry
customs

Collaborative
and
Cooperation XP, DSDM

 Not Specified
SCRUM, FDD, ASD,
Crystal

Abstraction
Mechanism Object-oriented

XP, SCRUM, FDD, ASD,
DSDM, Crystal

Component-
oriented ASD, DSDM

3.2 Configuring the agile method

The significant concern regarding agile methods is that –
they lack the factor of ‘Discipline’ [13]. These methods adhere
to a set of practices rather than follow a common process for
the development. Thus it is difficult to produce a generic
model of an agile process with sufficient granularity to be
useful for the purpose.

Further, to configure agile methods and to provide support for
selecting variables in these methods. It would prefer to
consider each agile project individually rather than to
provide a generic mapping between the practices and set of
guidelines as is done in case of traditional methods.

After analysing the project; the important project
characteristics that have impact on agile practises for selected
method are identified. These project characteristics provide
support to the method engineer for deciding the ‘variable
constituents of configured method’. Following section present
a case study.

4 Case study – Software Project for a
Mobile company
To show the practical implementation of the proposed

methodology, case studies are used as a research method.
During the research, it was found that for mobile application
domain agile development methodology is preferred over
traditional methodology. The following case study shows –
how an agile method is configured to form project-specific
method for mobile application domain.

Case Study 1: A large software project developed for a
mobile company to produce a usage analysis tool for
analysing the customer’s requirements in this domain and
intelligently studies the areas for the development in this
domain. It involves a huge and highly experienced team for its
development which are further distributed into small teams.
The project uses the complex technology for the
implementation. The average duration of the project was 1
year. There is a need for documented requirements, to track
the progress of the project and further to help during the
testing phase.

The set of elicited organisational requirements is given in
Table 4.

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 89

ISBN: 1-60132-446-4, CSREA Press ©

Table 4:- Set of elicited Organisation Requirements

 Characteristics Values

R1 Task extent Small
R2 Group size Less than 10
R3 Development Style Rapid Development
R4 Code Style Clean and Simple
R5 Technology Environment Quick Feedback
R6 Physical Environment Distributed teams
R7 Business Culture Collaborative and cooperation
R8 Abstraction Mechanism Object-Oriented

The fuzzy logic controller will calculate the membership of
agile methods, corresponding to the elicited organisational
requirements. For the above set of elicited requirements
SCRUM has membership of 83% and the method XP has
membership degree of 68% and so on. After analysis the
important project characteristics for deciding the key practises
of selected agile method are shown in Table 5. In accordance,
with these characteristics the weights are assigned to the
method practices of Scrum shown in Table 6.

Table 5:- Identified project characteristics for case study 1.

Number Requirements
R1 Large Software
R2 Complex Technology
R3 Experienced teams
R4 Distributed teams
R5 DocumentedRequirements
R6 Iterative Developments

Table 6:- Weighted practices of scrum for the case project 1.

Number Practice Weight
P1 Product Backlog 0.8
P2 Sprint Review 0.4
P3 Scrum teams 0.9
P4 Sprint 0.8
P5 Daily Scrum meeting 0.3
P6 Sprint planning meeting 0.6
P7 Sprint retrospective 0.0
P8 Scrum of Scrums 0.2

These weighted practices will provide a support system to the
method engineer to select the variables in a method. The
scrum process and configurable model of scrum (refer Table
1) are given below:-

The configurable model of scrum,
Common = {sprint, scrum planning meeting, scrum team}
Variable = {product backlog, sprint review, daily scrum
meeting, sprint retrospective, scrum of scrums}

For the case project, the ‘product backlog’ is found heavily
weighted thus, among the set of variable it needs to be add in
the configured method. The less weighted practices ‘sprint
review’ and ‘daily scrum meeting’ and ‘scrum of scrums’ can
be tailored or modified for the purpose. However, ‘sprint

retrospective’ is removed from the configured method. Hence,
the configured method formed for the current project is:

Configured Method Scrum for the case project: All Scrum
‘common concepts’ with ‘product backlog’ and modified
‘sprint review’, ‘daily scrum’ and ‘scrum of scrums’

5 Conclusions

In today’s dynamic market environment producing high
quality software rapidly and effectively is crucial. In order to
allow fast and reliable development process, several agile
methodologies have been designed and are now quite popular.
Software developers find these methods as interesting and are
concentrating more and more on these light-weight methods.
Through their practical experience in the field it was found
that agile processes may individually be incomplete to support
the whole development process well, hence their processes
require to be tailored to meet the requirements.

Therefore, a need arise to apply method engineering
principles and practices to agile methods. As mentioned in the
paper that these methods have a significant difference in their
process thus, it is difficult to produce a generic model for
them. They can only be adapted for the project-specific needs
using configuration process.

The agile method configuration process finds the degree of
veracity of these methods for the specified set of project
characteristics and configures them to form project specific
methods. The method configuration process is based on
configurable model. This model illustrates the essential
component of agile methods and is an attempt to show that
“being agile” is a specific combination of practices only.

This revolutionary approach opens the paths to utilize the
revolution brought by the concept of agility. The process
supports to specify the requirements in laymen language and
finds the suitable agile methods for the same with the
practices that need to be followed. The aim is to deliver
project specific agile method for the current organisation
requirement.

6 References
[1] Miller, D. and Lee J. (2001). The people make the
process: commitment to employees, decision making and
performance. Journal of management (27), 163-189.

[2] Agile Manifesto (2001) Manifesto for Agile Software
Development, [online] http://www.agilealliance.org/the-
alliance/the-agile-manifesto/ (accessed 14 March 2005).

[3] Beck, K. (1999). Embracing change with extreme
programming. IEEE Computer Society Press, Vol. 32, No. 10,
pp.70–77.

90 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

[4] Beck, K. (1999). Extreme programming explained:
Embrace change. Reading, Mass., Addison-Wesley.

[5] Cameron, J., (2002). Configurable development
processes. Communications of the ACM, 45(3), 72–77.

[6] Coad, P., LeFebre, E. and DeLuca, J. (2000). Java
Modeling in Color with UML: Enterprise Components and
Process, Prentice Hall, Inc., Upper Saddle River, New Jersey.

[7] Cockburn, A. (2000). Writing effective use-cases. The
crystal collection for software professionals. Addison-Wesley
professionals.

[8] DSDM consoritium, (1997). Dynamic System
Development Method, version 3. Ashford engineering,
DSDM consortium.

[9] Dwivedi, R. and Gupta, D. (2015). The Agile Method
Engineering: Applying fuzzy logic for evaluating and
configuring agile methods in practice. In International Journal
of Computer Aided and Engineering Technology. (In Press).

[10] Dwivedi, R. and Gupta, D. (2015). Applying machine
learning for configuring agile methods. In International
Journal of Software Engineering and its Application, 9(3), 29-
40.

[11] Gupta, D. and Dwivedi, R. (2015). A frame work to
support evaluation of project-in-hand and selection of
software development method. In Journal of Applied and
Theoretical Information Technology, 73(1), 137-148.

[12] Fitzgerald, B., Hartnett, G. and Conboy, K., (2006).
Customizing agile methods to software practices at Intel
Shannon, European Journal of Information Systems, 15(2),
197–210.

[13] Fuller A. and Croll P. (2004). Towards a generic model
for agile process. In constructing the Infrastructure for the
Knowledge Economy, Springer, (pp 179-185).

[14] Haungs, J. (2001). Pair programming on the C3 project.
Computer 34(2): 118-119.

[15] Abrahamsson, P., Salo, O., Ronkainen, J. and Warsta, J.
(2002). Agile Software Development Methods Review and
Analysis. VIT Publications, Juhani Warsta, University of
Oulu.

[16] Qumer, A. and Henderson-Sellers, B. (2008). A
framework to support the evaluation, adoption and
improvement of agile methods in practice. The Journal of
Systems and Software, 81(11), 1899–1919.

[17] Qumer, A. and Henderson-Sellers, B. (2008). An
evaluation of the degree of agility in six agile methods and its

applicability for method engineering, Information and
Software Technology, (50), 280–295.

[18] Rizwan, M. and Qureshi, J. (2012). Agile software
development methodology for medium and large projects.
IET Software, 6(4), 358–363.

[19] Scharff, C. and Verma, R. (2010). Scrum to Support
Mobile Application Development Projects in a Just-in-Time
Learning Context. In Proceedings of the ICSE Workshop on
Cooperative and Human Aspects of Software Engineering.
Cape Town, South Africa, (pp. 25–31).

[20] Schwaber, K. and Beedle, M. (2002). Agile Software
Development with Scrum, Nouvelle editions.

[21] Vlaanderen, K., Jansen, S., Brinkkemper, S and Jaspers,
E. (2011).The agile requirement refinery: applying SCRUM
principles to Software product management. Information and
Software Technology, 53(1), 58–70.

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 91

ISBN: 1-60132-446-4, CSREA Press ©

92 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

SESSION

TESTING, VERIFICATION, VALIDATION
METHODS AND SECURITY RELATED ISSUES

Chair(s)

TBA

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 93

ISBN: 1-60132-446-4, CSREA Press ©

94 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

Security Evaluation Using Software Diversity Measurement: An
Ecological Approach

Yong Wang
Dept. of Computer Science

Alcorn State University
Lorman, MS 39096, USA
email ywang@alcorn.edu

Qiang Duan
Information Science &Technology
The Pennsylvania State University

Abington, PA 19001, USA
email qduan@psu.edu

Dick Simmons
Dept. of Computer Science

Texas A&M University
College Station, Texas 77843, USA

email simmons@cse.tamu.edu

Abstract
Security evaluation for software ecosystems, which consist
of various software systems interacting with each other
through networks, is an important and challenging re-
search problem. Previous study has shown the relationship
between diversity and security of a software ecosystem;
therefore, quantitative measurement for diversity level of
software systems provides a useful tool for security evalua-
tion. Inspired by the similarity between software ecosys-
tems and ecological systems, in this paper we apply the
Shannon-Wiener index, a typical method used in Biology
for diversity measurement, in software systems to develop a
quantitative method for measuring software system diversi-
ty. Using this method we evaluated the diversity levels of
some important software systems in the Internet-based in-
formation infrastructure and discovered that most of the
measured systems have a low diversity level, which implies
potential weakness in these systems to resist security
threats that may spread over the Internet. One exception
we found is the operating systems for Internet servers,
which currently have a fairly high diversity level. In addi-
tion, our analysis shows that the diversity level of Internet
server OS has increased in the past two years, which is
very encouraging for enhancing security of Internet-based
computing systems.

Keywords

Software, diversity, security evaluation, ecological ap-
proach

Full/Regular Research Paper

1.INTRODUCTION
With rapid development of information and networking
technologies, various software systems are interconnected
through computer networks; thus forming a complex soft-
ware ecosystem in which the performance of each individu-
al software system is strongly influenced by various other
systems. Compared to isolated software, such a networked
software ecosystem faces more security challenges since
security compromise happens at any individual system
component may spread over a large part of the system
quickly through networks. Examples for such challenges are
software virus spread over the Internet that can infect a
huge number of hosts in a short time periods and distributed

deny of service attacks that may generate overwhelming
traffic from various locations in the Internet to block a web
server. What makes the situation even worse is that im-
provement in the software and networking systems, includ-
ing faster CPU, larger memory, and high throughput for
data transmission, also strengthens the impact that security
compromises occur at individual software can make to the
entire ecosystem. Also the emerging Cloud computing par-
adigm and network virtualization technologies enable a
converged infrastructure for data processing and communi-
cations, which may significantly strengthen the influence
among software systems interconnected through networks
[5]. In order to face these new security challenges, we need
new methods to obtain insights about the security of a net-
worked software ecosystem.

Similar situations exist in ecological systems as in software
systems. It has been long appreciated in Biology that mono-
cultures are extremely vulnerable to pests and diseases.
Management practices such as fertilizing and thinning help
maintaining a high plant quality may also facilitate the rapid
development of pest infestations, just like faster networks
help software virus spread more quickly. On the other hand,
researchers have found that multiple culture ecological sys-
tems can effectively prevent pests and diseases outbreak.
Diversity is an important Source of robustness in biological
systems. A stable ecological system contains many different
species. If the diversity is lost, a few species become domi-
nant, the ecological systems become susceptible to infesta-
tion, then pests and diseases outbreak.

Inspired by biology and ecological results, researchers in
computer science recently started investigating the relation-
ship between diversity of a software ecosystem and the se-
curity of the system. Geer pointed out in [6] that a monopo-
ly environment is harmful for computer system security.
Once a host in a monopoly computing environment is in-
fected by worms and virus, the worms and virus can spread
out rapidly. In [13], Geer et al explicitly studied the rela-
tionship of software monoculture and security threat and
specifically presented the risks to cybersecurity post by
dominance of Microsoft products. The authors used Win-
dow32/Blaster worm in 2003 as an example to show danger
from monoculture and claimed that more diverse operating
systems would have limited susceptible systems and thus
reducing the worm infections. More works on enhancing in-
formation security by increasing software diversity have been

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 95

ISBN: 1-60132-446-4, CSREA Press ©

reported in the literature. Forrest et al. have contributed
significantly to apply biological concepts to improving se-
curity in computer systems [7]. They stated that diversity
can reduce the impact of security vulnerabilities and also
proposed some general approaches to increasing diversity
by avoiding unnecessary consistency. In [14] [18], the au-
thors showed that diverse operating systems can statistically
reduce software vulnerabilities and improve intrusion toler-
ance of the information system. Han and his coauthors stud-
ied effectiveness of software diversity for protecting system
security and proposed an approach to choosing optimal
combination of different operating systems.

The aforementioned works indicate that diversity of soft-
ware in an information system, especially the diversity op-
erating systems adopted by the hosts and servers in the sys-
tem, has a significant impact on system security. Therefore,
it is desirable to have a simple method to measure software
(operating system) diversity for a software ecosystem. Such
a measurement provides an indicator that can be used by the
system designers and administrators to evaluate the current
level of diversity; thus obtaining an insight about the toler-
ance that the system may have to security vulnerabilities
and compromise.

In ecological systems, it is common to use Shannon-Wiener
index as a measurement of community diversity and thus
the stability of the ecosystem. The similarity between an
ecological system and a software ecosystem inspires us to
explore the application of Shannon-Wiener index to meas-
ure software diversity in this paper in order to obtain an
indicator for system diversity and obtain some insights
about system tolerance to security vulnerabilities.

Specifically we make the following contributions in this
paper. We explore applicability of the Shannon-Wiener
index method, which was originally for measuring diversity
of ecological systems, to evaluate diversity of software sys-
tems in this paper. Then we apply this method to measure
diversity of typical operating systems, especially for net-
working software ecosystems and uncover insights about
how robust the studied systems are to resist security threats
that are spread across the Internet.

In the rest of this paper, we will first give an introduction to
the Shannon-Wiener method for measuring diversity in Sec-
tion 2. Then in Section 3 we apply the Shannon-Wiener
index to evaluate the diversity of operating systems for var-
ious software ecosystems and discuss the insights we ob-
tain. We give conclusion remark and discuss possible future
work directions in Section 4.

2. DIVERSITY MEASUREMENTS

In ecology, the most popular measurement of species diver-
sity is based on information theory. The objective of infor-
mation theory is to measure the amount of order (or disor-

der) contained in the system. Four types of diversity related
data may be collected in a community: 1) the number of
species, 2) the number of individuals in each species, 3) the
places occupied by individuals of each species, and 4) the
places occupied by individuals as separate individuals. In
most community, only data in type 1 and 2 are obtained.

 s

H’ =-∑(pi)(lnpi) (1)

 i=1

where H’ = information content of sample (bits/individual)

 = index of species diversity

 S = Number of species

 Pi = Proportion of total samples belonging to the i-
th species.

Information content is a measure of the degree of uncertain-
ty; therefore the greater is the value H’, the stronger the
uncertainty is.

The Shannon-Wiener index H’ increases with the number of
species in the community. In theory, it can reach a very
large value. In practice, for biological communities, H’
does not exceed 5.0 (Washington 1984). The theoretical
maximum value is log(S), and minimum value (when
N>>S) is log [N/(n-S)] (Fager 1972).

The true diversity is:

D(s) = exp H(s) = exp -∑i=1s (pi)(lnpi) (2)

D(S) = exp H(s) = exp -∑i=1s (pi)(lnpi) = ∑4
i=1 (1/ pi pi) (3)

The D value is equivalent species number.

The D value is equivalent species number.

Let us look at an example:

Table 1. Species composition in community

Species 1 2 3 4

Community A 025 0.75 0 0

Community B 0.1 0.2 0.3 0.4

Community C 0.25 0.25 0.25 0.25

Following the equation 2, we get then community A

H(A) = - ∑ 4 i=1 p1 ln(p1) = - (1/4)ln(1/4) – (3/4)ln(3/4)

 = 0.34657+0.21576 = 0.56233,

96 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

D(A) = exp 0.5623 = 1.7548

For data in Community C ,

H(C) = - ∑4
i=1 (1/4) ln (1/4) = -ln (1/4) =ln(4),

D(C) = exp ln(4) = 4

We have the value of 4 esn (effective number of species),
which is the maximum number with 4 species.

The community C is much less diverse than community A.

3. DIVERSITY MEASUREMENT FOR DIFFERENT
OPERATING SYSTEMS

In this section we apply Shannon-Wiener index to measure
diversity of operating systems in a few types of typical in-
formation systems.

3.1 Desktop and Laptop Operating Systems
Table 2 gives the percentages of typical operating systems
used for desktop and laptop computers. Based on data in
Table 2 we can calculate the diversity index as

Table 2. Market shares of different operating systems
for desktop and laptop computers (July, 2014) [10]

Operating systems Market share

Linux 1.68%

Windows Vista 3.05%

Mac OS X 10.9 4.12%

Windows 8 5.92%

Windows 8.1 6.56%

Windows XP 24.82%

Window 7 51.22%

Other 2.65%

H = - ∑ 8 i=1 p1 ln(p1) = -0.0168*ln(0.0168)-

 0.0305*ln(0.0305)-0.0412*ln(0.0412)-

 0.0592*ln(0.0592)-0.0656*ln(0.0656)

 –0.2482*ln(0.2482)–0.5122*ln(0.5122)-

 0.0265*ln(0.0265)

 = 0.0687+0.1064+ 0.1314+ 0.1673 +
0.1787+0.3459+0.3427+0.0962 = 1.4373

D = 4.2093

The diversity index is 4.2093, which is much lower than the
optimal value of 8.0. We can see that in this software eco-

system, Windows are the dominating operating systems,
which causes a low diversity level thus presenting a higher
risk for security.

3.2 Web Client Operating Systems

Table 3 gives the market share information about different
types of operating systems for Web clients. The table shows
that there are a variety of operating systems in this area, but
currently Windows 7 is holding the largest market share,
followed by Windows XP. Based on this table we can cal-
culate the diversity index as

H = - ∑ 6
 i=1 p1 ln(p1) = -0.5928*ln(0.5928)-

0.1853*ln(0.1853)-0.1727*ln(0.1727)-0.0286*ln(0.0286)-
0.015ln(0.015)-0.00479*ln(0.00479) = 1.116

 D = e 1.116 = 3.0526

In the web client market, Microsoft Windows is the major
operating system, followed by Linux and Apple operating
systems. The effective diversity index value is 3.0526,
which is much lower than the optimal value of 6.0 (basical-
ly just half of the idea level). The obtained result implies
that the Microsoft dominating market share in this area may
potentially cause a software ecosystem that is fairly vulner-
able to Internet-based security threats due to the low diver-
sity. Therefore, from a security perspective, an organization
might want to consider adopting more diverse operating
system in an enterprise network; although this may implies
more cost in system management.

Table 3. Web client operating systems [10]

Operating systems Percents

Microsoft Windows 7 59.28%

Linux Kernel based 18.53%

Apple 17.27%

Symbian, S40 2.86%

Other 1.5%

Blackberry 0.479

3.3 The Operating Systems for Global Tablet
Computers.

Tablet computers become a significant OS market share
category starting with Apple’s iOS based iPad. There have
been 170 millions iPad sold as of October 2013 with 132
million iPads in 2012 and 2013 combined. There are 174
million Android and 5 million Microsoft based tablet de-
vices at same time period. Table 4 gives data about market
shares of different tablet computers, based on which we can
calculate the diversity index as

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 97

ISBN: 1-60132-446-4, CSREA Press ©

H = - ∑ 6
i=1 p1 ln(p1) = -(0.7181)*ln(0.7181)-

0.2518*ln(0.2518)-0.0253*ln(0.0253)-0.0023*ln(0.0023)-
0.0014*ln(0.0014)- 0.001*ln(0.001) = 0.791

D = e 0.791 = 2.2056

The effective index value is 2.2056, which is much less
than the optimal value 6.0. This is a very low diversity in-
dex value, which is almost just one-third of the idea level.
In this ecosystem, Apple iOS is the dominating one with
71.81% market shares. Such a low diversity level caused by
the Apple dominating market share may cause potential
threat to security of the a ecosystem comprising networked
tablet devices, similar to the issue caused by Microsoft
dominating role in Web client operating systems.

Table 4. Global tablet computer usage (July 2014) [11]

Operating systems Percents

Apple iOS 71.81%

Android 25.18%

Linux 2.53%

Blackberry 0.23%

Win RT (Microsoft) 0.14%

Other 0.1%

3.4. Supercomputer Operating Systems

Table 5 shows the percentages of different operating sys-
tems used by supercomputers in Top 500 project as of July
2014. Based on the data, diversity index can be obtained as

H(C) = - ∑ 5 i=1 p1 ln(p1)

 = -0.964*ln(0.964)-0.022*ln(0.022)-0.008*ln(0.008)-
0.004*ln(0.004) -0.002*ln(0.002) = 0.19247

D = e 0.19247 = 1.2122.

Table 5. Operating systems for supercomputers in Top
500 projects (July 2014) [10]

Operating systems Percentage

Linux 96.4%

Unix 2.2%

Mixed unix and Linus 0.8%

Microsoft Windows 0.4%

BSD based 0.2%

We can see that Linux is the operating system used on most
of the supercomputers, probably because they are realized

as clusters of Linux servers. Such a dominating operating
system share leads to a very low diversity index, approxi-
mately 1.2 out of 5.0, which indicates that the supercom-
puters consisting of almost homogeneous servers might
have fair weak resistance to some security threats such as
virus and worms spreading through networks.

3.4 Mobile Device Operating Systems

Operating systems for mobile devices, such as smart
phones, now form a significant part of the networked soft-
ware ecosystem. Table 6 gives percentage shares of various
typical mobile device operating systems. According to the
data shown in this table, the diversity index is

H = - ∑ 8 i=1 p1 ln(p1)

=-0.4462*ln(0.4462)-0.4419*ln(0.4419)-
0.0419*ln(0.0419)+0.0257*ln(0.0257)-0.0249*ln(0.0249) -
0.0121ln(0.0121)-0.0064*ln(0.0064)- 0.0009*ln(0.0009)

= 1.13195

D = e 1.13195 = 3.1017

Table 6. Mobile operating systems

Operating systems Percentage

Android 44.62%

iOS 44.19%

Java ME 4.19%

Symbian 2.57%

Windows Phone 2.49%

Blackberry 1.21%

Kindle 0.64%

Other 0.09%

The diversity value is 3.1 out of 8.0, which is still fairly
low. This implies that although there are various types of
mobile devices, Android and iOS are apparently the most
popular OS used in most of them (more than 88% market
share); thus still causing low diversity.

3.5 Internet Server Operating Systems

Internet servers, including Web servers, mail servers, and
DNS servers, play a crucial role in Internet service provi-
sioning. Internet servers are the main target of almost all
kinds of security attacks, which are often lunched remotely
through the network. Therefore diversity of Internet servers,
which can reflect the tolerance of Internet servers to the
Internet security attacks, must be carefully examined. The
percentage shares of different operating systems for Internet

98 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

servers are listed in Table 7, based on which we can compu-
ting the diversity index as

H = - ∑ 4
 i=1 p1 ln(p1) = -0.386*ln(0.386)-0.01*ln(0.01)-

0.2777*ln(0.2777)-0.326*ln(0.326)

= 0.3674+0.0461 + 0.3558+0.3654 = 1.1347

D = = e 1.1347 = 3.1102

Table 7 Internet server operating systems (February,
2014)
Operating systems Percentages

Linux 38.6%

BSD 1.0%

Other Unix 27.77%

Microsoft Windows 32.6%

Based on the data given in Table 7 and the obtain diversity
index, we can see that Internet server operating systems
have a fairly high diversity level. The effective number of
species (D values) is more than 3.1 out of 4. This indicates
that Internet operating systems, compared to operating sys-
tems for mobile phone, supercomputers, tablet devices, and
regular desktop/laptop computers, have a higher diversity
level; thus are more robust to resist security attacks spread
through networks. This is an encouraging result because
Internet servers play the most critical role in Internet ser-
vice provisioning; therefore their security level has the most
significant impact on the entire Internet-based software
ecosystems. A relatively high level of diversity (3.1 out of
the ideal 4.0) indicates that the current Internet server sys-
tem potentially has fairly strong resistance to security
threats that may be spread through networks.

4. SOFTWARE DIVERSITY IN OPERATING
SYSTEMS EVOLUTION CROSS TIME

With the rapid development in mobile communications and
Cloud computing technologies, using mobile devices for
accessing Internet servers is becoming the most popular
approaches for consumers to access and utilize Internet
services. Therefore, security of the operating systems for
mobile devices and Internet servers is particularly important
and evaluating diversity of these operating systems is inter-
esting to us. Both mobile computing devices and Internet
servers form very dynamic areas where the market shares of
different operating systems have been changing in the past
few years. Therefore, we want to investigate the diversity of
mobile OS and Internet servers evolve over time recently in
order to obtain an insight of the trend of diversity of these
two very important systems.

 Table 8 gives the market shares of Internet server operating
systems in November 2012 and February 2014. We calcu-

lated the diversity index value based on 2012 data and ob-
tained that

 H(C) = - ∑ 5 i=1 p1 ln(p1)

 = -0.66*ln(0.66)-0.06*ln(0.06)-0.28*ln(0.28)

 = 0.27424 + 0.1688+ 0.3564 = 0.7987

D= e 0.7987 = 2.2227

Table 8. Internet operating systems market shares

Operating sys-
tems

Percent (Novem-
ber, 2012)

Percent (Febru-
ary, 2014)

Linux 66% 38.6%

BSD 6% 1.0%

Other Unix ver-
sions

0 27.77%

Microsoft win-
dows

28% 32.6%

Comparing the above obtained D index value with the di-
versity index value obtained in Subsection 3.5, we are glad
to see that from November 2012 to February 2014 the di-
versity index of Internet server operating systems increased
from 2.2 to 3.1, which indicates that this area is becoming
more diverse. We also calculated normalized diversity in-
dex values, which is the ratio of D index over the optimal
value, for November 2012 and February 2014 data, and the
results are plotted in Figure 1.

The above analysis uncovered that the diversity of Internet
server operating systems, which is one of the most critical
components in the entire Internet-based software ecosys-
tem, has risen from 2.2/3.0 to 3.1/4.0 in the past 14 months.
Such increment in diversity level of Internet server operat-
ing system brings in positive influence on enhancing Inter-
net security.

Figure 1 Normalized diversity index change over time

for Internet server operating systems

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 99

ISBN: 1-60132-446-4, CSREA Press ©

Table 9. Mobile device OS market share in USA [15]

Year and
quarter

IOS Android RIM* WP**

2014 Q1 35.9% 57.6% 0.7% 5.3%

2013 Q1 43.7% 49.3% 0.9% 5.6%

2012 Q1 44.6% 47.9% 2.6% 3.7%

*RIM: Windows phone

**Blackberry operating systems.

The market shares of different mobile operating systems for
the past three years are given in Table 9. Therefore, we can
calculate the diversity index for the past three years as fol-
lows.

For the first quarter of 2012,

H(C) = - ∑ 5 i=1 p1 ln(p1)

 =-0.446*ln (0.446)-0.479*ln(0.479)-0.026*ln(0.026)-
0.037*ln(0.037) =0.9296

D= e 0.9296 = 2.5335

 For the first quarter of 2013,

 H(C) = - ∑ 5 i=1 p1 ln(p1)

 =-0.437*ln (0.437)-0.493*ln(0.493)-0.009*ln(0.009)-
0.056*ln(0.056) =0.9141

D= e 0.9141 = 2.4945

For the first quarter of 2014,

H(C) = - ∑ 5 i=1 p1 ln(p1)

 =-0.359*ln (0.359)-0.570*ln(0.570)-0.007*ln(0.007)-
0.053*ln(0.053) = 0.8759

 D= e 0.8759 = 2.4010

The above obtained data show that although market shares
of different mobile device operating systems have changed,
the overall diversity index value for this area has slighted
dropped from 2.53 to 2.40 out of an optimal value 4.0. This
implies that the diversity of this ecosystem have been stay-
ing at a relatively low level and even become a little less
diverse in the past two years. In order to show the trend
more clearly, we calculated normalized diversity index val-
ues and the obtained results are plotted in Figure 2.

The obtained analysis result regarding lack of diversity of
mobile device operating system and the trend that this area
is even becoming less diverse in the past two years bring in
a serious concern about the vulnerability of mobile devices

to security threats, such as malwares and virus, that are
spreading through the Internet, due to the low diversity of
such software ecosystems. Since mobile computing is be-
coming the main model for regular customers for access
Internet to consume computing services, potential security
weakness caused by lack of diversity deserves close atten-
tion. In addition, mobile devices are typically operated by
users who may not have sufficient knowledge and skills for
configuring their devices with highly secure setting; there-
fore it is relatively easier for hacker to penetrate security
protection on mobile devices, which makes the security
threats more serious.

Figure 2 Normalized diversity index change over time for mo-
bile device operating systems

5. CONCLUDING REMARKS
 Due to the direct relationship between the diversity of a
networked software ecosystem and its tolerance resistance
to Internet security threats, measuring diversity level of
software system becomes an important research topic for
evaluating system security. Inspired by the similarity be-
tween networked software ecosystem and ecological envi-
ronment, in this paper we explored the application of the
Shannon-Wiener diversity index to give a quantitative
measurement for diversity of software systems.

 We analyzed operating systems of various software sys-
tems, including desktop/laptop computers, tablet computers,
supercomputers, mobile devices, and Internet servers and
calculated the diversity index values for these systems. The
obtained results indicate that the operating systems used in
most of the current software systems, including desk-
top/laptop computers, tablet computers, supercomputer, and
mobile devices, all have fairly low diversity level. This im-
plies that these software systems have relatively weak re-
sistance and low tolerance to Internet security attacks. On
the other hand, our analysis showed that the diversity index
value for the operating systems of Internet servers are fairly
high (3.1 out of 4), indicating a quite diverse ecosystem in

100 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

this field. We also studied how the diversity levels of OS
for mobile devices and Internet servers evolved over time in
the past three years. We found that diversity level of mobile
operating systems has slightly dropped, but the Internet
server operating system field has become more diverse
since 2012.

The increasing diversity level of Internet server OS, which
is one of the key software components in the entire Internet
software ecosystem, shows a positive sign in terms of Inter-
net security. More diverse Internet server software has
stronger resistance that prevents security compromise from
quickly spreading over the Internet; thus may mitigate some
security vulnerabilities. On the other hand, the relatively
low diversity index values that we found in our paper for
other software systems urgently call for actions to enhance
diversity level of these systems. It is true that managing
more diverse software systems could imply extra costs in
maintenance and support. There are some options for in-
creasing the diversity of the off-the-shelf components of
software systems without introducing too much extra cost.
Software components reuse may provide less exposure to
vulnerabilities and is beneficial for software system securi-
ty. Other possible techniques for increasing software system
diversity include space layout randomization and N-
variants. We believe that enhancing software system diver-
sity and evaluating its effect on improving system security
is an interesting and challenging research topic that de-
serves thorough study.

REFERENCES
 [1] Elena Gbriela Barrantes, David H. Ackley, Trek S.

Palmer, Darko Stefanovic, and Dino Dai Zovi. “Ran-
domized instruction set emulation to disrupt binary
code injection attacks,” In Proceeding of 10th ACM
conference on Computer and communication security,
pages 281-289. ACM, 2003.

[2] Sandeep Bhatkar, Daniel C DuVarney, and Ron Sekar.
“Address obfuscation: An efficient approach to combat
a broad range of memory error exploits” In Proceed-
ings of th 12th USENIX security symposium, volume
120, Washington, DC. 2003.

[3] “Desktop Operating Systems market Share,”
http://www.netmarketshare.com/operating-system-
market-share.aspx?qprid=10&qpcustomd=0

[4] Qiang Duan, Yuhong Yan, and Athonasios Vasilakos,
“A Survey on Service-Oriented Network Virtualization
toward Convergence of Networking and Cloud Compu-
ting,” IEEE Transactions on Network and Service
Management, 9(4): 373-392 (2012)

[5] E. W. Fager 1972. “Diversity: a sampling study”. Amer-
ican Naturalist 106:293-310

[6] Daniel Geer. Monopoly considered harmful. Security
and Privacy. IEEE 1(6):14-17, 2003.

[7] Stephanie Forrest, Anil Somayaji, and David H. Ackley.
“Building diverse computer systems,” In operating sys-
tems, 1997, the sixth Workshop on Hot Topics, Page
67-72, IEEE 1997.

[8] Charles J. Krebs, Ecological Methodology, 2nd edition,
Addison, Wesley, Longman, 1999.

[9] E. C. Pielou 1966. “The measurement of diversity in
different types of biological collections,” Journal of
Theoretical Biology 13:131-144.

[10] H. G. Washington 1984. Diversity, biotixc and simu-
larity indices: a review with special relevance to ac-
quatic ecosystems. Water research 18:653-694.

[11] Wikipedia, July, 2014 “Usage share of operating sys-
tems,”http://en.wikipedia.org/wiki/Usage_share_of_op
erating_systems

[12] Jun Xu, Zbigniew Kalbarczyk, and Ravishankar K
Iyer, “Transparent runtime randomization for security,
“ In Reliable Distributed Systems, 2003, Proceedings,
22nd International Symposium on, page 260-269, IEEE,
2003.

[13] Daniel Geer, Rebecca Bace, Peter Gutmann, Perry
Metzeger, Charles P Pfleeger, John S. Quarterman and
Bruce Schneier “Cybersecurity: The cost of monopo-
ly,” Computer and Communications Industry Associa-
tion (CCIA), 2003.

[14] Miguel Garcia, Alysson Bessani, Ilir Gashi, Nuno
Neves, and Rafael Obelhearo. “Analysis of operating
systems diversity for intrusion tolerance,” Software:
Practice and Experience, 2013.

[15] Jin Han, DebinGao, and Robert H Deng. “On the ef-
fectiveness of software diversity: A systematic study on
real-world vulnerabilities,” In Detection of Intrusions
and Malware, and Vulnerability Assessment, pages
127-146. Springer, 2009.

[16] Mobile Operating Systems.
http://en.wikipedia.org/wiki/Mobile_operating_system.

[17] Jane Jorgensen, Philippe Rossignol, Masami Takika-
wa, Daniel Upper. “Cyber ecology: Looking to ecology
for insightas into information assurance.”
http://www.pitt.edu/~dtipper/3957/Biology2.pdf, IEEE,
2001

 [18] Julio Hernandez-Castro, and Jeremy Rossman, Meas-
uring software diversity, with Applications to Security,
2013.

 [19] Christian Korner, “Functional plant ecology of high
mountain ecosystem,” http://www.springer.com, 2008

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 101

ISBN: 1-60132-446-4, CSREA Press ©

A Survey of Testing Context-aware Software: Challenges
and Resolution

Songhui Yue 1, Songqing Yue2, and Randy Smith 1

1Department of Computer Science, University of Alabama, Tuscaloosa, AL, USA

Department of Mathematics and Computer Science, University of Central Missouri, Warrensburg, MO, USA

Abstract
Testing is an essential method to ensure the quality of
software. Research of testing context-aware software is
gaining in importance with the rapid development of context-
aware software and the increasing needs to ensure their
quality. Context-aware abilities bring new challenges to
testing context-aware software. This paper investigates this
from the perspective of four categories of challenges: context
data, adequacy criteria, adaptation and testing execution. We
also describe approaches current researchers are using to
solve these challenges. Our contributions in this paper
include the analysis of the relationships between the identified
challenges and an ontology diagram that depicts these
challenges and relationships, which may benefit the
exploration of future research in related areas.

Keywords: Context-aware, Testing, Quality, Challenges,
Resolution

1 Introduction
 Nowadays, our electronic devices become more powerful
in both computing and obtaining information from the
environment. Many new devices employ a multi-core
processor, and with the technological advances in networked
computing environments, new computing paradigms such as
cloud computing have been proposed and adopted [8].
Consumers with mobile devices can access data from a
“Cloud” at any time in a fast speed wherever network
connection is available. Particularly, a modern smart phone
can be equipped with as many as fourteen sensors [9], such as
proximity sensor, ambient light sensor, accelerometer,
magnetometer, and gyroscopic sensor. As a result, a large
variety of information could be used as context to enrich the
functionality of software applications. The extra abilities of
modern devices could be used by applications to process more
information for benefits of users, and this advantage makes
context-aware become more and more popular in ubiquitous
computing area.

 A variety of context-aware applications have already
been developed, such as location-aware systems, hospital
information-aware systems, office-aware applications, and
home-aware applications [4][5][6]. These applications are
deployed on different platforms, such as mobile applications,
web-based applications [10] and embedded applications.
Plenty of concepts and components were introduced for

facilitating the development of context-aware software, such
as context, context-aware middleware, and adaptation rule.
They provide software with context-aware abilities and
meantime bring new challenges to testing, thus should be
considered thoroughly. We will discuss these concepts in
detail in section 2.

 The following sections are organized as follows: Section
2 introduces some key concepts as the background for
understanding our study. Section 3 describes the four
categories of challenges we identify from our survey and
various approaches to solving them. Section 4 analyzes the
relationship between the areas inspired by the challenges and
Section 5 serves as the conclusion.

2 Background
 This section provides detailed explanation of important
concepts that serve as the basis for understanding testing
context-aware software.

2.1 Context
 The context definitions given by researchers are slightly
different from each other because of their different
understanding or application of the term. Schilit and Theimer
[14] first introduced “context-aware” in their work and
defined context as location, identities of nearby people and
objects and changes to those objects (1994). Brown [15]
defined context as a combination of elements of the user’s
environment that the computer knows about (1996). Dey et al.
[16] defined context as the user information and user’s
changing location, the changing objects in the environment,
and the familiarity with the environment (1998).

 Based on all the prior attempts to define context, Dey &
Abowd (2000) [17] provided a comprehensive definition of
context which is used by most of the current related studies as
“any information that can be used to characterize the
situation of entities (i.e. whether a person, place or object)
that are considered relevant to the interaction between a user
and an application, including the user and the application
themselves. Context is typically the location, identity and state
of people, groups and computational and physical objects.”

 In a context-aware application, context data can be
retrieved with the assistance of hardware or software. For
location based context-aware software, context information

102 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

contains discrete data to mark the locations, which are usually
derived from the hardware level [19]. Sensors are widely
utilized to capture changing contextual data and then pass
them to the software [18]. Context data may also be generated
from the software level. For instance, contextual information
can be collected from other applications running in the same
or related devices [18].

2.2 Context-aware Middleware
 Context-aware middleware is widely used for facilitating
development and execution of context-aware software [13].
Middleware refers to software systems, which provide an
abstraction and mechanisms between network operating
system layer and applications layer [20] [21]. Researchers
have developed various middleware systems for building and
rapidly prototyping context-aware services [22] [23]. As the
work in [24] suggests, typical middleware architecture for
developing context-aware software contains two key
components: context manager and adaptation manager.
Context manager captures and manages context from
surroundings, and pushes the context changes to adaptation
manager. Adaptation manager is responsible for reasoning on
the impact of context changes and then choosing proper
reactions for applications behaviors.

2.3 Context-aware Adaptation
 Context-aware adaptation refers to the ability of
computing systems to adapt their behaviors or structures to
highly dynamic environments without explicit intervention
from users, with the ultimate aim of improving the user
experience of these computing systems [35]. Context can be
used by software through triggering the context adaptation
rules. Adaptation rules, which are usually maintained,
evaluated and applied by adaptation manager of a context-
aware system, define a significant portion of an application’s
behavior [13]. We can use an example of a car system to
illustrate how an adaptation rule works. Suppose a car
installed with an autonomous-driving system (ADS) needs to
change lanes. The adaptation rules in ADS need to assure that
the car can take this action only if the current context is safe
for changing lanes. There should be some additional rules to
define what is safe in a real driving environment, which ADS
can use to check the safety. If ADS knows the context is safe,
it will choose a way to react according to some other rules:
changing to left lane or changing to right lane, and in what
speed.

2.4 Boundary testing
 Boundary testing is an important traditional testing
technique, which can also be applied to testing context-aware
software. With boundary value testing, test cases are designed
to take extremes of input domain. The extremes include
values of maximum, minimum, inside/outside boundaries,
typical values, error values, and etc. New challenges emerge
when boundary testing is used in testing context-aware
software, which may require extra attention.

3 Challenges in Testing Context-
aware Software
 Context-aware capacity imposes many new challenges in
developing and testing applications that support context-
awareness. After investigating the state of the art in this area,
we have identified four main categories of challenges in
testing context-aware software: context source, adequacy
criteria, adaptation and testing execution. In this section, we
provide detailed description for challenges in each category.

3.1 Context
 Wang et al. [7] argue that the added capabilities of
context-awareness introduce a distinct input space. Since
context changes can affect software behavior at any point
during the execution, context as testing data should be well
studied and selected. However, context data retrieved from
sensors usually have such characteristics as being inaccurate,
inconsistent, and continuous which may increase the difficulty
in selecting testing data. In this subsection, we mainly discuss
the features of inaccuracy and inconsistency in context data
and briefly introduce how continuous context may affect
boundary testing.

3.1.1 Context Inaccuracy
 Sensor data can be inaccurate [25]. Such data should be
well studied before using for testing. Traditional testing
methods usually use accurate values as test cases. However,
for testing context-aware applications, especially those
obtaining data directly from sensors, it is reasonable for
testing engineers to question the reliability of the data.

 Vaninha et al. [25] illustrate the relationships between
the context sources (sensors or software) and defect patterns.
They show that context sources are closely related to faults of
several types: incompleteness, inconsistency, sensor noise,
slow sensing, granularity mismatch, problematic rule logic,
and overlapping sensors. Each fault type is caused by one ore
more failures in context sources, such a Camera, GPS, or
WiFi. Table 1 (borrowed from [25]) shows the relationship
between context sources and fault types, e.g., ambiguity, as
one form of incomplete, may be caused by errors in the
context source of RFID/NFC, QR-CODE or Clock/Alarm.

 The problem of inaccuracy in context data can cause a
high-level defect called context inconsistency, which may
relate to multiple context sources or is a defect in
interpretation from context [25].

3.1.2 Context Inconsistency
 Context inconsistency occurs when there is at least one
contradiction in a computation task’s context [27]. It can be
caused by sensor errors or sensor data inaccuracy [11] [12]
[25] [26]. Asynchronous updating of context information can
also cause the same problem [13]. As a result of the possible

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 103

ISBN: 1-60132-446-4, CSREA Press ©

Table 1. Context-Sources in Combination with Defect Patterns [25]

Context-Source

Incomplete Sensor Noise

Slow Sensing

Overlapping
Sensors

U
na

va
il

ab
il

it
y

N
ot

 I
nt

er
pr

et
ab

le

A
m

bi
gu

it
y

In
co

rr
ec

tn
es

s

F
al

se
 R

ea
di

ng

In
st

ab
il

it
y

U
nr

el
ia

bi
li

ty

O
ut

-o
f-

D
at

en
es

s

W
ro

ng
 I

nt
er

pr
et

at
io

n

C
on

cu
rr

en
t V

al
ue

s

U
np

re
di

ct
ab

le

Accelerometer X X X X X
Wi-Fi X X X X X
Camera X X X X
RFID/NFC X X X X X
QR-Code X X X X X
GPS X X X X X X
Light Sensor X X X X X
Clock/Alarm X X X X
Calendar X X X X X
Gyroscope X X X

inconsistency of context, the application logic that rely on the
context can lead to wrong behaviors or execution errors.

 We can illustrate context contradiction using the WiFi
access point (WAP) application where WAP can be used to
detect the location of a device connected to it [11]. Suppose in
a location identification service, WAP installed in each room
of a building is supposed to detect the location of a person
who is wearing a smart device. The smart device has a unique
identification for each person. Context inconsistency may
happen in the following situation: if WAP S1 installed in
room R1 detects person P and claims that P is in R1 now and
meanwhile WAP S2 embedded in room R2 detects the same
person P and claims P is in R2. This type of inconsistency can
happen in the following scenarios: rooms R1 and R2 are near
each other or they are in the same coordinates of nearby floor.

 Context-aware applications can get raw data from a
single sensor or several sensors, and they can also get
synthesized context data from middleware [29], which
collects data from sensors as well. Raw data from a single
sensor have great opportunities to exhibit inconsistency
problems, however, data from a middleware, which does not
apply consistency checking, may also experience
inconsistency problems.

 Chang et al. [27] try to solve the inconsistency problem
using a framework for realizing dynamic context consistency
management. Based on a semantic matching and
inconsistency-triggering model, the framework can detect
inconsistency problems. The framework also applies

inconsistency resolution with proactive actions to context
sources.

3.1.3 Continuous Context
 Continuous context is used in many context-aware
applications [29]. Challenges may arise when applying
boundary testing in a continuous context. A straightforward
way of modeling continuous context is to directly convert it
into discrete one by dividing it into different time windows
[29] [32]. Hidasi et al. [32] demonstrate that much
information will be lost if such modeling approach is used.
This missing information can be the boundary values, which
will greatly affect the effectiveness of testing with the
technique of boundary value analysis. To build better models
for continuous context, Hidasis et al. propose fuzzy modeling
approaches. The fuzzy modeling method advocates that
context-state is not only associated with the interval it belongs
to, but is also influenced by its relative location in the interval
and neighboring intervals. Thus, a better understanding of the
event or context-state with respect to a specific interval can be
achieved, in which way the information loss of boundary
values can be complemented.

 For context data collection, Chen et al. [31] define
snapshot as the union of all sensing values at a particular
timestamp. The act of collecting multiple continuous
snapshots is called continuous data collection (CDC) [30].
Their work focuses on challenges of network capacity, while
Nath’s [29] work concentrates on reducing sensing cost using
a middleware approach when continuous context sensing is
required.

104 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

3.2 Adequacy Criteria
 Testing adequacy criterion is usually defined as a rule or
a collection of rules a test set should satisfy [36]. To measure
how well a program is examined by a test suite, usually one or
more criteria are used. A variety of testing adequacy criteria
have been developed for traditional testing while only a few
are suitable for testing context-aware software. According to
the work of Lu et al. [28], there are three kinds of obstacles
that hinder the effective application of standard data flow
testing criteria to testing Context-aware Middleware-Centric
(CM-Centric) software, namely,

1) Context-aware faults: faults in the triggering
logics in the middleware;
2) Environmental interplay: environmental updates
may happen anytime, and test set should be updated
in time accordingly;
3) Context-aware control flow: it is difficult to
enumerate every control flow trace of context
changing for some situations.

 Recent research is using special approaches to generate
testing criteria for context-aware software [26] [28]. For
instance, Lu et al. [28] have applied a data flow method to
generate adequacy criteria for testing middleware-centric
context-aware programs. Different from traditional variables,
a context variable can be defined and updated via either an
assignment or an environmental update. Therefore, a new
definition of “definition (DEF) of variables” and “usages
(USES) of variables” are given, as well as “update-use
occurrences of variables”, which refers to an occurrences of a
context definition due to sensing of environmental contexts
and a context use. Imitating the conventional def-use (DU)
associations, the paper provides definitions of def-use
associations for CM-Centric programs, as well as a definition
for the pairwise DU associations. Using the defined data flow
associations, they generate novel test adequacy criteria to
measure the quality of a test set for a CM-centric program.

3.3 Adaptation
 Adaptation is the core process of using context for
computing in context-aware software. In this subsection, we
introduce testing challenges of context-aware software in
adaptation activities. We explain the challenges in two
perspectives: Erroneous adaptation rules and continuous
adaptation.

 Adaptation rules can be erroneous. Realizing that
adaptation rules play an important portion in middleware
based context-aware applications, the work of Sama et al. [13]
is focused on fault detection in adaptation rules. In their
approach, detection is driven by the requirement that the rules
and its finite state machine satisfy the following properties:
Determinism, State Liveness, Rule Liveness, Stability,
Reachability. For example, determinism requires that for each
state of the finite state machine and each possible assignment
of values to the context variables in that state, the assignment
of the value can only trigger at most one rule.

 Continuous adaptation makes it hard to identify which
adaptation rule have caused the faults, so it is difficult to set
up an effective test oracle [33]. Xu et al. [33] suggest that for
context-aware applications, the adaptation to the
environmental changes may contain defects when the
complexity of modeling all environmental changes is beyond
a developer’s ability. Such defects can cause failures to the
adaptation and result in application crash or freezing. More
importantly, they argue that tracking an obvious failure of the
system back to the root cause in adaptation is generally
difficult [33]. The reasons are as follows. Firstly, a failure is
usually a consequence of multiply adaptations, and it is
difficult to set up an effective test oracle. Secondly, when a
failure happens, it is hard to collect all the context data
because some of the data are from outside sensors. Thirdly, it
is hard to repeat an observed failure. In their work, they
propose a novel approach, called ADAM (adaptation
modeling), to assist identifying defects in the context-aware
adaptation.

3.4 Testing Execution
 Testing execution refers to the process of executing a test
plan, in which all the challenges mentioned in above
categories should be considered. It not only needs to consider
making test plans to resolve aforementioned challenges, but
also to realize them by creating novel tools or mechanisms. In
this subsection, we discuss the challenges of generating
context for testing and introduce an open topic that new
mechanisms are necessary for facilitating testing execution.

3.4.1 Context Testing Data Generation
 Context can be complex and plenty of work has
concentrated on context testing data generation. Two
approaches can be used to provide context test information:
real world testing and simulator testing. Real world testing
means to evaluate an application in real devices with multiple
sensors and network conditions. Repeated real-world testing
can be expensive in time and effort, sometimes even
infeasible when context and environment are complex, e.g.
aerospace. However, real-world testing is still highly
recommended before the acceptance or commercialization of
an application.

 Simulator testing can be an alternative when real-world
testing is expensive or unpractical, and it is a frequently used
approach [2] [3] [18] [34]. Designers need a set of models
and tools that aim to achieve the objective of “design for
reality”. In real world, as we have discussed, context derived
from sensors can be inaccurate, inconsistent, and continuous.
Besides, sensor reading and network connections may
strongly depend on the providers of sensors and networks.
Thus it is very challengeable to build a well-equipped
simulator. Eleanor et al. [18] propose a testing platform for
the user-centered design and evaluation of context-aware
services by using a 3D virtual reality simulation to show the
environment to users and generate the simulated
environment’s context. They recognize that to simulate the
sensors is very difficult.

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 105

ISBN: 1-60132-446-4, CSREA Press ©

3.4.2 Adoption of New Mechanism
 Some new mechanisms have been adopted to facilitate
context-aware software testing. Griebe et al. [1] use model
transformation approach on context-enriched design-time
system models to generate platform specific and technology
specific test cases. For fulfilling testing criteria, Wang et al. [7]
use a component of Context Interleave Generator to form
potential context interleaving that may be of value a context-
coverage criterion requires.

 When an observed failure happens, repeating it is a
common method to track to its original defect. Collecting all
the runtime information can help to achieve this purpose.
However, when data is from outside sensors, the task can be
difficult [33]. Asynchronous updating of context information
can also lead to inconsistencies between external states and
internal states. To our best knowledge, these problems have
not been thoroughly discussed and new methods for resolving
them needs to be explored.

4 Relationships among Challenges
 In this section we give our analysis of the relationship
among the four identified categories of challenges. As shown
in Figure 1, an ontology diagram is built to illustrate these
challenges and their relationships.

 There are two outstanding features in context testing data,
data defects and being continuous, which greatly affect the
generation and usage of testing data. Testing criteria are used

to evaluate how well software can be tested. The criteria can
be used to direct testing data generation and usage, and are
also related to adaptation and testing execution. Adaptation
can be erroneous and continuous. It should consider context-
testing data because continuous context can affect the
adaptation as discussed in section 3. Testing execution should
not only consider all the challenges from aforementioned
categories, but it also needs to consider new mechanisms for
implementation of testing plans, e. g., collecting run time data.

5 Conclusion and Future Work
 In this paper, we study the challenges of testing context-
aware software, divide them into four categories and present
the solutions current researchers use to overcome those
challenges. After analyzing the relationship among the
challenges of the four categories, we developed an ontology
diagram to represent the challenges and their relationships. As
far as we know, there is no automatic testing framework that
considers all of the above challenges. We are currently
building such a framework as an execution platform to ease
the difficulty of testing context aware software. We will
concentrate on addressing the challenges mentioned in the
category of testing execution. Since context plays an
important part in assuring the quality of context-aware
software, we also plan to collect data from context-aware
software testing processes and try to find the fault patterns
that lead to system error or failure with respect to data
inconsistency and adaptation.

Figure 1: The ontology of identified testing challenges and their relationships

106 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

References
[1] Tobias Griebe, Volker Gruhn. “A model-based approach

to test automation for context-aware mobile applications”.
In Proceedings of the 29th Annual ACM Symposium on
Applied Computing (SAC '14). ACM, New York, NY,
USA, 420-427. 2014

[2] Vaninha Vieira, Konstantin Holl, and Michael Hassel. “A
context simulator as testing support for mobile apps”. In
Proceedings of the 30th Annual ACM Symposium on
Applied Computing (SAC '15). ACM, New York, NY,
USA, 535-541. 2015

[3] Minsu Jang, Jaehong Kim, Joo-Chan Sohn. "Simulation
framework for testing context-aware ubiquitous
applications" ICACT 2005. The 7th International
Conference on Advanced Communication Technology,
vol.2, no., pp.1337-1340, 0-0 0. 2005

[4] Hao Yan and Ted Selker. “Context-aware office
assistant”. In Proceedings of the 5th international
conference on Intelligent user interfaces (IUI '00). ACM,
New York, NY, USA, 276-279. 2000

[5] Sven Meyer and Andry Rakotonirainy. “A survey of
research on context-aware homes”. In Proceedings of the
Australasian information security workshop conference
on ACSW frontiers 2003 - Volume 21 (ACSW Frontiers
'03), Chris Johnson, Paul Montague, and Chris Steketee
(Eds.), Vol. 21. Australian Computer Society, Inc.,
Darlinghurst, Australia, Australia, 159-168. 2003

[6] Matthias Baldauf, Schahram Dustdar, and Florian
Rosenberg. “A survey on context-aware systems”. Int. J.
Ad Hoc Ubiquitous Comput. 2, 4 (June 2007), 263-277.
2007

[7] Zhimin Wang, Sebastian Elbaum, David Rosenblum.
"Automated Generation of Context-Aware Tests" ICSE
2007. 29th International Conference on Software
Engineering, vol., no., pp.406,415, 20-26. 2007

[8] Rajkumar Buyya, Chee Shin Yeo, Srikumar Venugopal.
"Market-Oriented Cloud Computing: Vision, Hype, and
Reality for Delivering IT Services as Computing
Utilities" HPCC '08. 10th IEEE International Conference
on High Performance Computing and Communications,
vol., no., pp.5-13, 25-27. 2008

[9] https://blogs.synopsys.com/configurablethoughts/2012/05
/sensing-your-world/

[10] Stefano Ceri, Florian Daniel, Maristella Matera, and
Federico M. Facca. “Model-driven development of
context-aware Web applications”. ACM Trans. Internet
Technol. 7, 1, Article 2 . 2007

[11] Dik Lun Lee, Qiuxia Chen. “A model-based WiFi
localization method”. In Proceedings of the 2nd
international conference on Scalable information systems
(InfoScale '07). ICST (Institute for Computer Sciences,
Social-Informatics and Telecommunications Engineering),
ICST, Brussels, Belgium, Belgium, Article 40 , 7 pages.
2007

[12] Jalal Mahmud, Jeffrey Nichols, and Clemens Drews.
“Home Location Identification of Twitter Users”. ACM

Trans. Intell. Syst. Technol. 5, 3, Article 47, 21 pages.
2014

[13] Michele Sama, David S. Rosenblum, Zhimin Wang, and
Sebastian Elbaum. “Model-based fault detection in
context-aware adaptive applications”. In Proceedings of
the 16th ACM SIGSOFT International Symposium on
Foundations of software engineering (SIGSOFT '08/FSE-
16). ACM, New York, NY, USA, 261-271. 2008

[14] Bill N. Schilit, Marvin M. Theimer, “Disseminating
Active Map Information to Mobile Hosts”. IEEE
Network, 8(5) 22-32. 1994

[15] Brown, P.J. “The Stick-e Document: a Framework for
Creating Context-Aware Applications”. Electronic
Publishing ’96 259-272. 1996

[16] Dey, A.K., Abowd, G.D., Wood, A. “CyberDesk: A
Framework for Providing Self-Integrating Context-Aware
Services”. Knowledge-Based Systems, 11 3-13. 1999

[17] Gregory D. Abowd, Anind K. Dey, Peter J. Brown, Nigel
Davies, Mark Smith, Pete Steggles. “Towards a Better
Understanding of Context and Context-Awareness”.
HUC '99: Proceedings of the 1st international symposium
on Handheld and Ubiquitous Computing. Publisher:
Springer-Verlag. September 1999

[18] Eleanor O'Neill, David Lewis, Kris McGlinn, and Simon
Dobson. “Rapid user-centred evaluation for context-
aware systems”. In Proceedings of the 13th international
conference on Interactive systems: Design, specification,
and verification (DSVIS'06), Gavin Doherty and Ann
Blandford (Eds.). Springer-Verlag, Berlin, Heidelberg,
220-233. 2006

[19] Matthias Baldauf, Schahram Dustdar, and Florian
Rosenberg. “A survey on context-aware systems”. Int. J.
Ad Hoc Ubiquitous Comput. 2, 4, 263-277. June 2007

[20] Licia Capra, Wolfgang Emmerich, Cecilia Mascolo.
"CARISMA: context-aware reflective middleware system
for mobile applications". IEEE Transactions on Software
Engineering, vol.29, no.10, pp.929,945, Oct. 2003

[21] Kristian Ellebæk Kjær. “A survey of context-aware
middleware”. In Proceedings of the 25th conference on
IASTED International Multi-Conference: Software
Engineering (SE'07), W. Hasselbring (Ed.). ACTA Press,
Anaheim, CA, USA, 148-155. 2007

[22] Tao Gu, Hung Keng Pung, Da Qing Zhang, “A service‐
oriented middleware for building context‐aware services”,

Journal of Network and Computer Applications, Volume
28, Issue 1, Pages 1-18, ISSN 1084-8045. January 2005

[23] Qin, Weijun; Shi, Yuanchun; Suo, Yue, “Ontology-based
context-aware middleware for smart spaces”. Tsinghua
Science and Technology , vol.12, no.6, pp.707,713, Dec.
2007

[24] Di Zheng; Hang Yan; Jun Wang, “Research of the
Middleware Based Quality Management for Context-
Aware Pervasive Applications”. 2011 International
Conference on Computer and Management (CAMAN),
vol., no., pp.1,4, 19-21. May 2011

[25] Vaninha Vieira, Konstantin Holl, and Michael Hassel. “A
context simulator as testing support for mobile apps”. In
Proceedings of the 30th Annual ACM Symposium on

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 107

ISBN: 1-60132-446-4, CSREA Press ©

Applied Computing (SAC '15). ACM, New York, NY,
USA, 535-541. 2015

[26] Heng Lu, Chan W.K., Tse T.H.. “Testing pervasive
software in the presence of context inconsistency
resolution services”. ICSE '08. ACM/IEEE 30th
International Conference on Software Engineering, vol.,
no., pp.61,70, 10-18 May 2008

[27] Chang Xu and S. C. Cheung. “Inconsistency detection
and resolution for contextaware middleware support”. In
Proceedings of the 10th European software engineering
conference held jointly with 13th ACM SIGSOFT
international symposium on Foundations of software
engineering (ESEC/FSE-13). ACM, New York, NY,
USA, 336-345. 2005

[28] Heng Lu, W. K. Chan, T. H. Tse. “Testing context-aware
middleware-centric programs: a data flow approach and
an RFID-based experimentation”. SIGSOFT '06/FSE-14:
Proceedings of the 14th ACM SIGSOFT international
symposium on Foundations of software engineering.
November 2006

[29] Suman Nath. “ACE: exploiting correlation for energy-
efficient and continuous context sensing”. In Proceedings
of the 10th international conference on Mobile systems,
applications, and services (MobiSys '12). ACM, New
York, NY, USA, 29-42. 2012

[30] Shouling Ji, Jing (Selena) He, A. Selcuk Uluagac,
Raheem Beyah, and Yingshu Li. “Cell-based snapshot
and continuous data collection in wireless sensor
networks”. ACM Trans. Sen. Netw. 9, 4, Article 47 (July
2013), 29 pages. 2013

[31] Siyuan Chen, Shaojie Tang, Minsu Huang, Yu Wang.
“Capacity of Data Collection in Arbitrary Wireless
Sensor Networks” in INFOCOM, 2010 Proceedings
IEEE , vol., no., pp.1-5, 14-19. March 2010

[32] Balázs Hidasi and Domonkos Tikk. “Approximate
modeling of continuous context in factorization
algorithms”. In Proceedings of the 4th Workshop on
Context-Awareness in Retrieval and
Recommendation (CARR '14). ACM, New York, NY,
USA, 3-9. 2014

[33] Chang Xu, S.C. Cheung, Xiaoxing Ma, Chun Cao, Jian
Lu. “Adam: Identifying defects in context-aware
adaptation”. Journal of Systems and Software, Volume 85,
Issue 12, Pages 2812-2828, ISSN 0164-1212. December
2012

[34] Stefan Taranu and Jens Tiemann. “General method for
testing context aware applications”. In Proceedings of the
6th international workshop on Managing ubiquitous
communications and services (MUCS '09). ACM, New
York, NY, USA, 3-8. 2009

[35] Edwin J.Y. Wei, Alvin T.S. Chan. “CAMPUS: A
middleware for automated context-aware adaptation
decision making at run time”. Pervasive and Mobile
Computing, Volume 9, Issue 1, Pages 35-56, ISSN 1574-
1192. February 2013

[36] Paul Ammann and Jeff Offutt. “Introduction to software
testing”. Cambridge University Press. 2008

�

108 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

Resolving Cyclic Dependencies – Design for
Testability

Yurii Boreisha, Oksana Myronovych

Department of Computer Science, Minnesota State University Moorhead, Moorhead, MN, USA

Department of Computer Science, North Dakota State University, Fargo, ND, USA

Abstract - This paper is dedicated to the issues of
resolving cyclic/circular dependencies in
contemporary software systems. Interface-based and
event-based approaches are the best practices to deal
with dependency problems and provide for creating
software that’s easier to test. The main design patterns
to support these practices are the dependency injection
and observer/listener. It is demonstrated how the C#
mechanism based on events and delegates can be used
to implement the observer/listener design pattern to
resolve cyclic/circular dependencies.

Keywords: Dependencies and layering, design for
testability, acyclic dependencies principle.

1 Introduction
To produce high-quality software, developers

must strive to ensure that their code is maintainable
and testable. The code also should be adaptive to
change. Agile development, the leading trend in the
system development, helps keep system development
projects responsive to change [6, 10].

Agile developers follow these steps to create
contemporary high quality software [3, 4, 8]:

� Detect problems by following agile practices.
� Diagnose problems by applying design principles.
� Solve problems by applying appropriate design

patterns.

SOLID is the acronym for a set of principles,
patterns and practices that, when implemented
together, make code adaptive to change. The SOLID
practices were introduced by Bob Martin almost 15
years ago:

S – Single responsibility principle: “a class
should have only one reason to change”.

O – Open/close principle: “software entities
(classes, modules, functions, etc.) should be open for
extension, but close for modification”.

L – Liskov substitution principle: “subtypes must
be substitutable for their base types”.

I – Interface segregation principle: “clients
should not be forced to depend upon methods that they
don’t use; interfaces belong to clients, not to
hierarchies”.

D – Dependency inversion principle: “higher-
level modules should not depend on low-level
modules; both should depend on abstractions.
Abstractions should not depend upon details; details
should depend upon abstractions”.

Even taken in isolation, each of these principles
are very useful. When used in collaboration, they give
the code a structure that lends itself to change. SOLID
patterns and practices are merely tools for you to use.
Deciding when and where to apply any pattern or
practice is a part of the art of software development.

In the context of software engineering, a broadly
accepted definition for testability is “the ease of
performing testing”. Testing is the process of checking
software to ensure that it behaves as expected, contains
no errors, and satisfies its requirements. The ability to
test software, and in particular to test software
automatically, is an aspect of extraordinary
importance because automated tests give us a
mechanical way to figure out quickly and reliably
whether certain features that worked at some point still
work after we make some required changes. In
addition, tests make it possible for us to calculate
metrics and take the pulse of a project, as well. Testing
is an important part of the change [1, 2, 9].

Testable software is inherently better from a
design perspective. Design for testability (DfT) was
adapted to software engineering and applied to test
units of code through tailor-made programs. DfT
defines three attributes that any unit of software must
have to be easily testable: control, visibility, and
simplicity. When you apply control, visibility, and
simplicity to the software development process, you

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 109

ISBN: 1-60132-446-4, CSREA Press ©

end up with relatively small building blocks that
interact only via contracted interfaces [5, 7, 11].

To keep the code adaptive to change and testable
one must manage dependencies effectively. This
applies at all levels of the software – from architectural
dependencies between subsystems to implementation
dependencies between individual methods.

When the dependency structure is
incomprehensible, a change in one module can cause
a direct side effect in another, seemingly unrelated
module. There are established patterns that help you
arrange your application in the short term so that it can
adapt to changes in the long term. Layering is one of
the most common architectural design patterns, and
MVC, MVVM, Web API, etc., provide examples of
widely used implementations of the layering.

The following design principles also target the
proper dependency management:

� Coupling is a qualitative measure of how closely
the classes in a design class diagram are linked. A
simple way to think about coupling is as the
number of navigation arrows on the design class
diagram. Low coupling is usually better for a
system than high coupling. In other words, fewer
navigation visibility arrows indicate that a system
is easier to understand and maintain.

� Cohesion refers to the consistency of the
functions within a single class. Cohesion is a
qualitative measure of the focus or unity of
purpose within a single class. Classes with low
cohesion have several negative effects. First, they
are hard to maintain. Second, it is hard to reuse
such classes. Finally, classes with low cohesion
are usually difficult to understand, their functions
are intertwined and their logic is complex. High
cohesion is the most desirable.

� Indirection – is a design principle in which an
intermediate class (or component) is placed
between two classes (or system components) to
decouple but still link them. Inserting an
intermediate object allows any variations in one
system to be isolated in that intermediate object.
Indirection is also very useful for many corporate
security systems (for example, firewalls and
proxy servers).

� Acyclic dependencies principle states that the
dependency graph of packages or components
should have no cycles. This implies that the
dependencies form a directed acyclic graph.

There is a strict relationship between coupling
and testability. A class that can’t be easily instantiated
in a test has some serious coupling problems. If the
problem of coupling between components is not

properly addressed in the design, you end up testing
components that interact with others, producing
something that looks more like an integration test than
a unit test. Integration test are still necessary, but they
ideally should run on individual units of code (for
example, classes) that already have been thoroughly
tested in isolation. Integration tests are not run as often
as unit tests because of their slow speed and higher
setup costs.

By keeping coupling under control at the design
phase we improve testability. Conversely, by pursuing
testability, we keep coupling under control and end up
with a better design for the software.

Interface-based and event-based approaches are
the best practices to deal with dependency problems
and provide for creating software that’s easier to test.
The idea of writing code against interfaces rather than
implementations is widely accepted and applied.
There is a number of options to accomplish this, for
example, dependency injection (DI) and inversion of
control (IoC) container [6].

This paper is dedicated to the issues of resolving
cyclic/circular dependencies in contemporary
software systems. We discuss these issues from the
point of view of the event-based approach. It is
demonstrated how the C# mechanism based on events
and delegates can be used to implement the
observer/listener design pattern to resolve
cyclic/circular dependencies.

2 Dependencies and Layering
Layering is an architectural pattern that

encourages you to think of software components as
horizontal layers of functionality that build on each
other to form a whole application. Components are
layered, one on top of the other, and the dependency
direction must always point downward. That is, the
bottom layer of the application has no dependencies,
and each layer upward depends on the layer
immediately below it. At the top of the stack is the user
interface. If the application is a service layer, the top
layer will be the API that clients will use to interact
with the system.

The primary reason for using layers (and tiers) is
the Separation of Concerns (SoC). As an architect, you
determine which layer talks to which layer, and you
have testing, code inspection, and perhaps check-in
policies to enforce these rules. However, even when
two layers are expected to collaborate, you don’t want
them to be tightly coupled. In this regard the
dependency inversion principle (DIP) helps a lot.

DIP is the formalization of a top-down approach
to defining the behavior of any significant class

110 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

method. In using this top-down approach, we focus on
the work flow that happens at the method level rather
than focus on the implementation of its particular
dependencies. At some point, though lower-level
classes should be linked to the mainstream code. DIP
suggest that this should happen via injection.

From the point of view of MS Visual Studio all
classes and interfaces are contained in assemblies.
When correctly organized, your assemblies will
contain classes and interfaces that only pertain to a
single group of related functionality [6].

Groups of two or more interrelated assemblies
form components of the software system that is being
developed. These components interact in a similarly
well-defined and structured fashion. Components are
not physical artifacts of deployment, like assembly
dynamic-link libraries (DLLs), but are logical
groupings of assemblies that share a similar theme.

In dependency management, components are no
different from other programming constructs at lower
levels. As with methods, classes, and assemblies, you
can consider layers to be nodes in the dependency
graphs. The same rules apply: keeping the dependency
graph acyclic and ensuring a single responsibility.

There are several common layering patterns from
which to choose for any project. The differentiating
factor between the layering patterns is simply the
number of layers used. The number of layers required
correlates to the complexity of the solution; the
complexity of the solution correlates to the complexity
of the problem.

The difference between layers and tiers is the
difference between the logical organization and
physical deployment of code. Logically, you could
separate an application in two or more layers, but
physically deploy it into one tier.

With every tier you deploy to, you accept that
you are crossing a network boundary, and with that
comes a temporal cost: it is expensive to cross a
processing boundary within the same machine, but it
is much more expensive to cross a network boundary.
However, deploying in tiers has a distinct advantage
because it allows you to scale your application. If you
deploy a web application that consists of a user
interface layer, a logic layer, and a data access layer
onto a single machine – thus a single tier – that
machine now has a lot of work to do, and the number
of users you can support will necessary be lower. Were
you to split the application’s deployment into two tiers
– putting the database on one tier and the user interface
and logic layers on another – you could actually scale
the user interface layer both horizontally and
vertically.

To scale vertically, you just increase the power
of the computer by adding memory or processing
units. This allows the single machine to achieve more
by itself. However, you can also scale horizontally by
adding completely new machines that perform exactly
the same task. There would be multiple machines to
host the web user interface code and a load balancer
that would direct clients to the least busy machine at
any point in time. Of course, this is not a panacea to
supporting more concurrent users on a web
application. This requires more care with data caching
and user authentication, because each request made by
a user could be handled by a different machine.

3 Navigation Visibility and
Dependency Relationships

Navigation visibility refers to the ability of one
object to interact with another object. When building
navigation visibility we should transform the problem
domain model into the corresponding design class
diagram. Here are a few general guidelines:

� One-to-many associations that indicate a
superior/subordinate relationship are usually
navigated from superior to the subordinate.

� Mandatory associations, where objects in one
class can’t exist without objects of another class,
are usually navigated from the independent class
to the dependent class.

� When an object needs information from another
object, a navigation arrow might be required,
pointing either to the object itself or to its parent
in a hierarchy.

� Navigation visibility arrows may be bidirectional,
for example when an object might need to send a
message to another object as well as the reverse.

To resolve the problem of bidirectional
navigation visibility arrows one can apply the
observer/listener design pattern. It is a design pattern
in which an object, called the publisher, maintains a
list of its dependents, called subscribers (observers,
listeners), and notifies them automatically of any state
changes, usually by calling one of their methods. It is
mainly used to implement distributed event handling
systems. This pattern is also a key part in the familiar
MVC architectural pattern. The observer/listener
pattern is implemented in numerous programming
libraries and systems, including almost all GUI
toolkits.

The observer/listener pattern can cause memory
leaks, known as the lapsed listener problem, because
in basic implementation it requires both explicit
registration and explicit deregistration, as in the
dispose pattern, because the publisher holds strong

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 111

ISBN: 1-60132-446-4, CSREA Press ©

references to the observers/listeners, keeping them
alive.

Herewith we provide an implementation of the
observer/listener pattern based on C# mechanism of
events and delegates. This implementation is free from
the lapsed listener problem.

Let’s create class Account as it’s shown in Figure
1, with the related class AccountEventArgs like in
Figure 2. The Subscriber class interface can look like
in Figure 3. The related Subscriber classes should
implement this interface as it’s shown in Figure 4. The
Publisher class may look like in Figure 5.

This implementation is used to create and
agreement/contract between the Publisher and
Subscriber classes by determining the signature of the
corresponding event handler method. The code in
Figure 6 shows the Main class where a publisher
object and a number of subscriber objects are
instantiated.

From now on all subscribers will be informed
about the changes made by the Publisher to the object
of class Account (they will listen for the related event,
Published, to fire); bidirectional visibility arrows will
disappear.

public class Account {
 public string AccountNumber { get; set; }
 public override string ToString() {
 return string.Format("Account {0}", AccountNumber);
 }
}

Figure 1: Class Account

public class AccountEventArgs : EventArgs {
 public Account MyAccount { get; set; }
}

Figure 2: Class AccountEventArgs

public interface ISubscriber {
 void OnPublished(object source, AccountEventArgs args);
}

Figure 3: Interface ISubscriber

public class Subscriber1 : ISubscriber {
 public void OnPublished(object source, AccountEventArgs args) {
 Console.WriteLine("Subscriber1 getting info about {0}", args.MyAccount);
 }
}

public class Subscriber2 : ISubscriber {
 public void OnPublished(object source, AccountEventArgs args) {
 Console.WriteLine("Subscriber2 getting info about {0}", args.MyAccount)
 }
}

Figure 4: Classes Subscriber1 and Subscriber2

public class Publisher {
 public void Publish(Account account) {
 Console.WriteLine("Working with: {0}", account);
 // To do: some stuff
 OnPublished(account);
 }

112 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

 public event EventHandler<AccountEventArgs> Published;

 protected virtual void OnPublished(Account account) {
 if (Published != null) // any subscribers?
 Published(this, new AccountEventArgs() { MyAccount = account });
 }
}

Figure 5: Class Publisher

class Program {
 static void Main(string[] args) {
 Account account = new Account() { AccountNumber = "12345" };
 Publisher publisher = new Publisher();

 ISubscriber sub1 = new Subscriber1();
 publisher.Published += sub1.OnPublished;

 ISubscriber sub2 = new Subscriber2();
 publisher.Published += sub2.OnPublished;

 publisher.Publish(account);
 }
}

Figure 6: Class Main

The observer/listener pattern is also used to
implement the two-way data binding operations in
Universal Windows Platform applications to resolve
cyclical dependencies between view and domain
layers. The data binding does not know when the data
to which it is bound has been changed. The domain
layer object needs to inform the data binding of any
modifications by sending a PropertyChanged event to
the view layer. This event is part of the interface
named INotifyPropertyChanged, and all object that
support two-way data binding should implement this

interface (it is defined in the System.ComponentModel
namespace) as in Figure 7.

The OnPropertyChanged method raises the
PropertyChanged event. The
PropertyChangedEventArgs parameter to the
PropertyChanged event should specify the name of
the property that has changed. This value is passed in
as a parameter to the OnPropertyChanged method as
it’s shown in Figure 8 for the property EmailAddress.

public class Customer : INotifyPropertyChanged {
 …
 public event PropertyChangedEventHandler PropertyChanged;

 protected virtual void OnPropertyChanged(string propertyName) {
 if (PropertyChanged != null) {
 PropertyChanged(this, new PropertyChangedEventArgs(propertyName));
 }
 }
}

Figure 7: Domain layer class Customer

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 113

ISBN: 1-60132-446-4, CSREA Press ©

private string _emailAddress;
public string EmailAddress {
 get { return this._emailAddress; }
 set {
 this._emailAddress = value;
 this.OnPropertyChanged(nameof(EmailAddress));
 }
}

Figure 8: OnPropertyChanged method call

4 Dealing with Dependencies
UML design class diagram contains the final

definition of each class in the final object-oriented
software system. The primary source of information
for this diagram is the problem domain model. The
navigation visibility graph of the design class diagram
should not contain cycles.

UML package diagram is a high-level diagram
that allows designers to associate classes of related
groups. The classes are placed inside the appropriate
package based on the layer to which they belong.
Dependency relationship is a relationship between
packages, classes, or use cases in which a change in
the independent item requires a change in the
dependent item. Dependency direction must always
point downward.

As we already mentioned above the interface-
based and event-based approaches are the best
practices to deal with dependency problems and
provide for creating software that’s easier to test. The
main design patterns to support these practices are the
dependency injection and observer/listener (described
in the previous section).

UML diagrams free from cyclic/circular
dependencies leverage the software testability. As far
as testing is concerned, one could say that there are the
following main types of dependencies: those that you
want to resolve (like cyclic/circular ones), those that
you want to ignore, and those with which you want to
interact but in a controlled manner. The following
technique is used for the latter case.

According to the concept of the testing in
isolation, it is highly recommended to isolate the class
being tested from all its dependencies. This can
happen only if the class is designed in a loosely
coupled manner. In an object-oriented scenario, for
example, class A depends on class B when any of the
following conditions are verified:

� Class A derives from class B (inheritance).
� Class A includes a member of class B

(aggregation, composition).

� One of the methods of class A invokes a method
of class B.

� One of the methods of class A receives or returns
a parameter of class B.

� Class A depends on a class that in turn depends on
class B.

To neutralize such dependencies we use test
doubles. If the classes under the test support the DI,
providing test doubles is relatively easy [5].

A test double is a class you write and add to the
test project. This class implements a given interface or
inherits from a given base class. After you have the
instance, you inject it inside the object under the test
by using the public interface of the object being tested.

There are two main types of test doubles: fakes
and mocks. A fake object is a relatively simple clone
of an object that offers the same interface as the
original object but returns hardcoded or
programmatically determined values. A mock object
does all that a fake does, plus something more.

In a way, a mock is an object with its own
personality that mimics the behavior and interface of
another object. Essentially, a mock accommodates
verification of the context of the method call. With a
mock, one can verify that a method call happens with
the right preconditions and in the correct order with
respect to other methods in the class. For the level of
flexibility you expect from a mock, you need an ad hoc
mocking framework.

5 Conclusions
There is a strict relationship between coupling

and testability. A class that can’t be easily instantiated
in a test has some serious coupling problems. If the
problem of coupling between components is not
properly addressed in the design, you end up testing
components that interact with others, producing
something that looks more like an integration test than
a unit test. Integration test are still necessary, but they
ideally should run on individual units of code (for
example, classes) that already have been thoroughly
tested in isolation.

114 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

Two major recent contributions to the software
testing area are the definition of new frameworks for
test execution (collectively referred as xUnit) and
promote shorter cycles in the testing process, such as
continuous integration (CI).

The basic idea behind CI is to commit, one or
more times per day, all of the working copies of the
software on which different developers or groups of
developers are working. CI is related to the concept of
automated test execution frameworks, in that a
regression test suite should be automatically run
against the code (ideally, prior to commit it) to help
ensure that the codebase remains stable (i.e., no
regression errors have been introduced) and
continuing engineering efforts can be performed more
rapidly. If some test fail, the developers responsible
for the change must then correct the problems revealed
by the tests. This approach is advantageous because it
can reduce the amount of code rework that is needed
in later phases of development, and speed up overall
development time [9].

This paper is dedicated to the issues of resolving
cyclic/circular dependencies in contemporary
software systems. We discuss these issues from the
point of view of the event-based approach. It is
demonstrated how the C# mechanism based on events
and delegates can be used to implement the
observer/listener design pattern to resolve
cyclic/circular dependencies.

6 References
[1] Boreisha, Y. and Myronovych, O. Genetic

Algorithm and Mutation Analysis for Software
Testing; Proceedings of the 2010 International
Conference on Software Engineering Research

and Practice, SERP2010, 247-252, July, 2010,
Las Vegas, Nevada, USA.

[2] Boreisha, Y. and Myronovych, O. Modified
Genetic Algorithm for Mutation-Based Testing;
Proceedings of the 2009 International Conference
on Software Engineering Research and Practice,
SERP2009, 44-49, July, 2009, Las Vegas,
Nevada, USA.

[3] Cooper, J.W. C# Design Patterns. Addison
Wesley, 2003.

[4] Dasiewicz, P. Design Patterns and Object-
Oriented Software Testing; IEEE
CCECE/CCGEI, 904-907, May, 2005, Saskatoon.

[5] Esposito, D. Programming Microsoft ASP.NET
MVC, 3rd Edition. Microsoft Press, 2014.

[6] Hall, M. G. Adaptive Code via C#. Agile Coding
with Design Patterns and SOLID Principles.
Microsoft Press, 2014.

[7] Khatri, S. and Chhillar, R. Improving the
Testability of Object-Oriented Software During
Testing and Debugging Processes, International
Journal of Computer Applications, V 35, N 11,
24-35, 2011.

[8] Martin, R. and Martin, M. Agile Principles,
Patterns, and Practices in C#. Prentice Hall, 2007.

[9] Orso, A. and Rothermel, G. Software Testing: A
Research Travelogue (2000-2014); Proceedings
of FOSE’14, 117-132, June, 2014, Hyderabad,
India.

[10] Satzinger, J. et al. Systems Analysis and Design
in a Changing World, 7th Edition. Cengage
Learning, 2016.

[11] Suri, P. and Singhani, H. Object-Oriented
Software Testability (OOST) Metrics Analysis;
International Journal of Computer Applications,
Technology and Research, V 4, N 5, 359-367,
2015.

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 115

ISBN: 1-60132-446-4, CSREA Press ©

Enhanced Fault Localization by Weighting
Test Cases with Multiple Faults

Jaehee Lee 1,2, Jeongho Kim2, Eunseok Lee 2

1 Software Engineering Laboratory, Software R&D Center, Samsung Electronics, Seoul, South Korea
2 Dept. of Information and Communication Engineering, Sungkyunkwan University, Suwon, South Korea

Abstract - Fault localization is known to be one of the most
time-consuming and difficult tasks in the debugging process.
Many fault localization techniques have been proposed to
automate this step, but they have generally assumed the single-
fault situation, which reduces the performance when multiple
faults are encountered. This paper proposes new weighting
techniques to improve the effectiveness of spectrum-based fault
localization by using information extracted from failed test
cases that were caused by multiple faults. We evaluate the
performance of our technique with six different metrics using
the Siemens test suite and space with 159 multiple-fault
versions. Based on the experimental study, we observe that our
technique outperforms the baselines, in terms of the average
expense maximum, by 12 %.

Keywords: fault localization, multiple fault, spectrum-based,
weighting, classification

1 Introduction
 In software engineering, debugging is necessary in order
to maintain code quality. However, manually finding the
locations of faults is one of the most costly and time-
consuming tasks that developers must carry out [1]. In attempts
to alleviate this problem, various automatic fault localization
techniques have been proposed.

 Spectrum-based fault localization (SFL) techniques
extract program spectra, which are the execution profiles of
program statements and information about whether tests pass
or fail [2][3][11][18][22]. This information is used with a
ranking metric to rank the program statements according to
how likely they are to be buggy.

 SFL techniques have been widely used by researchers and
developers due to their simplicity, light mechanism, and
accuracy. However, they mostly assume only single-fault
situations. However, most real world programs contain more
than one fault and many failures are caused by multiple faults.
The assumption of a single fault degrades the effectiveness of
the proposed techniques.

 To alleviate this problem, in this paper, we propose a new
weighting technique to improve the effectiveness of spectrum-

based fault localization by using information extracted from
failed test cases that were caused by multiple faults. Our
approach is based on the assumption that, if we identify failed
test cases executing multiple faults, each statement from these
test cases will have a higher likelihood of being buggy than
those from test cases executing only a single fault. The
empirical results from this study indicate that our approach is
promising. The main contributions of this paper are:

1. We propose an enhanced fault localization technique
for multiple-fault environments by using weighting
to improve the effectiveness of SFL; this is done by
including information extracted from failed test cases
that were caused by multiple faults.

2. The performance of our technique is verified
experimentally. We perform experiments on various
types of real programs [16], including the Siemens
test suite and space with various metrics containing
159 multiple-fault versions; these are shipped with
between two and eight faults.

 The remainder of this paper is organized as follows. In
Section II, we introduce the necessary background and related
work on SFL and the previous research. In Section III, we
describe our technique in detail. Section IV goes on to describe
the design of our experiments. Section V reports the results and
analysis. Threats to the validity of our techniques are discussed
in Section VI. Finally, Section VII presents our future work
and conclusions.

2 Background and Related work
2.1 Spectrum-based fault localization
 Fault localization techniques intend to reduce the cost of
debugging by automating the process that is used to find the
location of faults in a program. Among them, spectrum-based
fault localization (SFL) techniques have been widely used due
to their simplicity (i.e., no modeling or complex computation)
and relatively high effectiveness [18].

 SFL techniques assign a suspicious score to each
statement (branches, predicates, and functions can be used) in
the program based on the number of passed and failed test
cases in the test suite that executed the statement. The basic
assumption of SFL is that, if there is failure in a certain

116 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

executed test case, a fault exists among the statements that
were visited in the test during execution. However, we cannot
expect to determine the exact fault location by using only the
failed test case. Therefore, the passed test cases are also used
to narrow down the fault location.

 Table 1 describes some of the notations that are
commonly used in the fault localization field. hi contains
binary information indicating whether the statement was
visited or not.

Table 1 Relation between statement hit and test result

Notation
Value Description

hi ei Statement hit Test result

a11 1 1 O Fail

a10 1 0 O Pass

a01 0 1 X Fail

a00 0 0 X Pass

 ei contains binary information that describes the test
result (pass or fail). If the test case (Ti), which is one of the test
cases in the test pool, was executed during the runtime and the
test result was fail, a certain statement (si) can be described as
either a11 (this line was visited) or a01 (this line was not
visited). In the same way, if the test result was pass, a certain
statement (si) can be described as either a10 (this line was
visited) or a00 (this line was not visited). Therefore, according
to the test result, every statement will be counted with one of
four types of notation (a11, a10, a01, or a00). Table 2 gives
an example with five test cases; of these, the first four fail.

Table 2 Example of program spectra

 T1 T2 T3 T4 T5 a00 a01 a10 a11

Stmt1 1 1 1 0 1 1 1 0 3

Stmt2 1 1 0 0 0 0 2 1 2

Stmt3 1 0 1 1 1 1 1 0 3

Stmt4 0 1 0 1 1 1 2 0 2

Result 1 1 1 1 0

A variety of ranking metrics have been proposed and
studied, including Tarantula [2], Ochiai [3], Jaccard [21],
AMPLE [20], Naish2 [22], GP13 [17], and Hybrid [11]. Each
of these calculates suspicious fault ratios in a different way. We
describe two representative ranking metrics below.

 J. A. Jones et al. developed Tarantula [2], which aims to
show the suspiciousness of every statement. In addition, they
conducted an experimental program based on the language C.

 L. Naish et al. proposed an optimal risk evaluation
formula [22] with respect to their model and performance
measurement. To simulate a single-fault program, a model
program and the average performance over all possible
multisets of the execution paths was used for performance
measure.

2.2 Effectiveness of SFL in the context of multiple
faults

 Many approaches have been proposed in an attempt to
elucidate fault interactions and their repercussions. J. A. Jones
et al. [2] reported that the effectiveness of the techniques
declines for all faults as the number of faults increases. Debroy
and Wong [4] explored the idea of fault interference by
examining the Siemens test suite. N. DiGiuseppe et al.
extended their research by classifying fault interactions into
one of four types: independent, synergy, obfuscation, and
multiple [6]. They also verified the total cost to resolve all
faults as the number of faults increases [5].

2.3 Classifying failing test cases
 In [8], J. A. Jones and colleagues investigated the use of
failure clustering to remove “noise” caused by one fault
inhibiting the localization of another. W. Hogerle et al.
explored various alternative clustering algorithms to increase
parallelism by using algorithms from integer linear
programming [10]. However, as they mentioned, relying on the
fact that each cluster focuses on a single fault does not seem
realistic.

 Yu et al. [9] proposed a technique that can be used to
distinguish failing test cases that executed a single fault from
those that executed multiple faults. To achieve the goal, their
technique uses extracted information from a set of fault
localization ranked lists, each of which is produced for a
certain failing test and the distance between a failing test and
the passing test that most resembles it. They mainly aimed to
separate failing test cases that executed a single fault in order
to apply an existing approach (SFL, automated fault repairing,
failure clustering, etc.). Alternatively, our approach focuses on
failed test cases executing multiple faults.

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 117

ISBN: 1-60132-446-4, CSREA Press ©

2.4 Weighting test cases in SFL
 Naish et al. [12] proposed a weighting strategy for failed
tests. Failed tests that cover few statements provide more
information than other types of failed tests. Thus, they assumed
that the weight of a failed test is inversely proportional to the
number of statements exercised in the test. In [13], they also
proposed an approach where the frequency execution count of
each program statement, executed by a respective test, is used.

 Bandyopadhyay et al. [14] extended the idea of the
nearest neighbor model [18] to utilize the relative importance
of different passing test cases for calculation of suspiciousness
scores. They stated that the importance of a passing test case is
proportional to its average proximity to the failing test cases.

 Y. Li et al. [15] proposed a weight-based refinement for
SFL techniques depending on the execution information and
the test status. They treated test cases as being unequally
important and improved the effectiveness by exploiting
varying weights according to the distribution of the test cases.

 However, all of these weighting techniques assume a
single-fault situation; we expect that their performance will be
degraded in a multiple-fault environment.

3 Proposed Approach
 In this chapter, we explain the detailed mechanism of our
suggested weighting approach. Our approach is based on the
assumption that if we identify failed test cases executing
multiple faults, each statement of these test cases will be more
suspicious than those executing a single fault stochastically.
Hence, we assign more weight to statements visited by multiple
test cases.

3.1 Overall procedure
In Figure 1, we describe the overall procedure of our

proposed approach; this is similar with the general SFL
technique. First, the test suite and target subject program are
inserted as the input data. Next, the spectrum data are extracted
by executing test suites on the subject program. Then, two
additional steps are executed. When classifying the test case,
failed test cases are classified into one of two groups: single-
fault-executing test cases and multiple-fault executing-test
cases. After classifying the test cases, we grant more weight to
multiple-fault-executing test cases. Finally, a ranked list of
each statement, in descending order by the suspicious score, is
calculated according to each ranking metric.

Any ranking metric can be used with our approach. In this
paper, we use Tarantula, Ochiai, Jaccard, AMPLE, Naish2, and
GP13, which are popular in the literature.

Figure 1 Overall procedure of proposed approach

3.2 Classifying test cases
 Basically, we extend Yu’s technique [9] to classify failed
test cases as either single-fault-executing test cases or multiple-
fault-executing cases. This is done by using the pattern of the
spectrum to classify the test cases. We modified their technique
by using the hamming distance to calculate the distance
between the binary coverage information of the test cases. We
checked the accuracy of our results to determine whether this
can be used to classify failed test cases; our results were found
to be similar to theirs, which indicates that the performance is
sufficiently high.

3.3 Weighting test cases
 After the multiple-fault-executing test cases were

classified, proper weights were granted to each statement that
was visited by the test. We used relative weights; for instance,
we assigned a weight = 1 to a11 values in the case of single-
fault test cases, as is done in the general SFL technique.
Alternatively, we assigned a weight (>1) to a11 values
in the case of multiple-fault test cases. The value is
introduced as a parameter to represent different weights to
multiple test cases. We check the performance of each metric
according to variations of the α value.

 To calculate 11 for each statement, we take the sum of
the weights of the failed test cases.

 : the relative weight of each failed test case

N : the number of failed test cases

W : the sum of the relative weights

 As an example, with data from Table 2, the relative
weights for test cases 1-4 are 1.6, 0.8, 0.8, and 0.8 if we assume
that T1 is a multiple-fault-executing test case and α=2 (N=4

118 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

and W=5). Accordingly, the a11 values for statements 1-4 are
changed to 3.2, 2.4, 3.2, and 1.6, respectively. The a01 values
can be computed by using a similar weight sum, or we can
simply use the total number of failed tests minus a11.

 In Table 3, we describe the algorithm of our proposed
approach:

� TC is the set of all test cases devised for the program
being tested;

� TCn is a subset of TC;

� TP is the set of passed test cases;

� TF is the set of failed test cases;

� TFn is a subset of TF and contains one failed test case;

Table 3 Algorithm of proposed approach

 In order to evaluate and compare the effectiveness of our
proposed technique, we investigated the following research
questions:

RQ1. How effective is our proposed weighting technique
compared to existing (unweighted) approaches?

RQ2. Is there any dependency between the performance of the
proposed weighting technique and different subject programs?

RQ3. Is there any dependency between the performance of the
proposed weighting technique and different ranking metrics?

RQ4. Do different weighting parameters affect the result?
What is the optimal threshold parameter?

4 Experimental Setup
 This section presents the experimental setup for the
empirical study.

4.1 Subject programs
 Our empirical study involved eight subject programs,
including the Siemens test suite and space from SIR (Software
Infrastructure Repository) [16], along with their faulty versions
and test cases. Table 4 provides more information about these
subject programs and test cases. Note that, since the test suites
for space are relatively large (13525), we opted to randomly
select a smaller subset of 738 cases.

Table 4 Subject programs and test cases

Subject Versions LOC
Test
cases

Description

print_tokens 7 536 4140 Lexical analyzer

print_tokens2 10 387 4115 Lexical anlayzer

replace 27 554 5540
Pattern
replacement

schedule 4 425 2650
Priority
scheduler

schedule2 9 766 2710
Priority
scheduler

Tcas 41 173 1578
Altitude
separation

tot_info 23 494 1052
Information
measure

Space 38 6445 13525
Array definition
language

4.2 Fault versions
 We created 159 multiple-fault versions of the subject
programs by taking different combinations of the available
faults. We used one-fault version programs, where the fault
was in a single line of source code, and discarded versions with
runtime errors and those with no failed test cases. In each
subject, for each occurrence of multiple faults, we generated
up to the number of faulty versions using the SIR. Therefore,
the exact number of multiple-fault versions for each subject is
the same as the sum of the faulty versions shown in Table 4 (a
total of 159 multiple-fault versions).

4.3 Evaluation metrics
 According to the fault localization literature [8][18], fault
localization evaluation metrics are defined as the percentage of
the program that needs to be examined before reaching the first
statement (when ranking metrics are used to order executable
statements). As Equation (4) indicates, the range of possible
values for the fault localization expense varies, and the
effectiveness of the employed fault localization technique
decreases as the expense value increases. This value is
indicative of the time or effort that a developer spends while
finding/using the ranks computed by the fault localization
technique. This metric, which we refer to as the “expense”, is
computed by the following equation:

1: Run all test cases in TC

2: while TF is not empty do

3: for n=1 to N do

4: TCn = TFn TP

5: Classifying TFn to single or multiple faults

6: Weighting to TFn according to classifying result

7: end for

8: Perform fault localization for each test cases in TF

9: Re-run all test cases in TC

10: end while

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 119

ISBN: 1-60132-446-4, CSREA Press ©

5 Results and Analysis
 In our experiments, we apply the weighted technique to

all of the metrics mentioned in Section III and to all of the
subject programs listed in Section IV. We also investigate its
effectiveness in improving the performance of these SFL
techniques on several subject programs. We present our
experimental results in Figures 2, 3, 4, and 5. In each figure,
the vertical axis (horizontal axis in Figure 2) represents the
average expense required to examine the source code. All of
the experiments were carried out on a Windows 7 machine with
a 3.7 GHz Intel quad-core CPU and 8 GB of memory.

5.1 Effectiveness of the proposed weighting
technique

 Table 5 shows that our weighting technique achieves
better or similar performance than existing unweighted
techniques, with an average improvement of 7 %. These results
are illustrated in Figure 2.

Figure 2 Total average expense (unweighted vs. weighted)

Table 5 Average expense for each subject program

Subject Unweighted Weighted
Improve

ment

print_tokens 2.52 2.27 9.92 %

print_tokens2 2.69 2.47 8.18 %

replace 3.40 2.99 12.06 %

schedule 2.70 2.58 4.44 %

schedule2 2.71 2.61 3.69 %

Tcas 3.33 3.07 7.81 %

tot_info 2.41 2.41 0.00 %

space 1.39 1.26 9.03 %

Total 2.64 2.46 7.02 %

5.2 Different subject programs
 An additional consideration is made by looking into each

subject program separately. Figure 3 depicts the average
expense for each subject program. Our weighting technique
outperforms almost all of the subject programs in terms of the
average expense (with the exception of a single program).
These improvements range between 3.69 % and 12.06 %. Our
technique shows equivalent performance to the tot_info
program. We speculate this range in performances comes from
the characteristics of the program, which affect the results.

Figure 3 Average expense for each subject program

5.3 Different ranking metrics
 Figure 4 visualizes the average expense for each ranking

metric. Our weighting technique outperforms all of the metrics
in terms of the average expense; this improvement ranges
between 3.69 % and 16.30 %. We also speculate that this range
in improvement comes from the characteristic of the various
ranking metrics. Table 6 shows the results in greater detail.

Table 6 Average expense for each ranking metric

Subject Unweighted Weighted
Improve

ment

Tarantula 2.44 2.35 3.69 %

Ochiai 2.31 2.22 3.90 %

Jaccard 2.34 2.24 4.27 %

AMPLE 2.88 2.78 3.47 %

Naish2 1.84 1.54 16.30 %

GP13 1.79 1.53 14.53 %

5.4 Weighting parameter effect
 To determine the best threshold parameterization, which

is the same as finding the optimal weighting value of α, another
experiment was conducted. Figure 5 shows the average

120 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

expense for different weighting values. This indicates that if
the weight is too high the performance can be degraded (as
opposed to reducing the expense). We speculate that the
optimal α value varies according to characteristics of the
subject program and the ranking metric. A study to obtain the
optimum value of α for each program and metric will be
conducted in the future. In this experiment, to generate
preliminary experimental results, we typically fixed the
weighting value at α = 2.25.

Figure 4 Average expense for each ranking metric

Figure 5 Average expense for different weighting values

6 Threats to Validity
 There are a number of potential factors that could threaten
the validity of our experiment. Here, we discuss these one by
one.

 We evaluated only eight small/medium-sized C programs
in our experimental evaluation. However, all of these real-
world programs are widely used and our technique was
evaluated across 159 multiple-fault versions. Hence, we expect
the results from our study to be sufficiently representative.
Additional experiments with large-scale programs will be
conducted in the future.

 We verified our experiment with six ranking metrics. We
expect other suitable fault localization algorithms to deliver
similar results; this will also be studied in our future work.

 Finally, as mentioned in Section III, we created multiple-
fault versions of programs by randomly selecting a number of
available faults. It is possible that these faults could be non-
representative of real faults. However, due to a lack of fault
data for multiple-fault research, many researchers have
manipulated multiple-fault versions of programs by using
mutation-based fault injection. We made multiple faults by
combining existing available faults; this was done because we
believe that it is difficult to minimize problems while
artificially generating multiple faulty versions in order to
simulate realistic faults by the mutant generating process [19].

7 Conclusions And Future Work
 In this paper, we proposed an enhanced technique of fault

localization for multiple-fault environments. This was done by
using weighting to improve the effectiveness of SFL by
incorporating information extracted from failed test cases
caused by multiple faults. Additionally, we experimentally
evaluated the performance of our technique and compared it to
various types of real programs and metrics with multiple-fault
versions. The results show that our proposed weighting
technique can locate faults more precisely than existing
unweighted methods. Furthermore, we investigated the
dependency between the performance of the proposed
weighting technique with different subject programs and
ranking metrics.

 In the future, we plan to conduct more empirical studies
by using large-scale programs, ranking metrics, and multiple-
fault versions. Additionally, as mentioned in Section V, we will
investigate how the optimal α value changes according to the
characteristics of the subject programs and metrics.

8 Acknowledgments
 This research was supported by the Next Generation
Information Computing Development Program through the
National Research Foundation of Korea (NRF), and is funded
by the Ministry of Education, Science and Technology (No.
2015045358) and the MISP (Ministry of Science, ICT &
Future Planning), Korea, under the National Program for
Excellence in Software that is supervised by the IITP (Institute
for Information & Communications Technology Promotion).

9 References
[1] Vessey, Iris. "Expertise in debugging computer programs:
A process analysis." International Journal of Man-Machine
Studies 23.5 (1985)

[2] Jones, James A., and Mary Jean Harrold. "Empirical
evaluation of the tarantula automatic fault-localization

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 121

ISBN: 1-60132-446-4, CSREA Press ©

technique." Proceedings of the 20th IEEE/ACM international
Conference on Automated software engineering. ACM, 2005.

[3] Abreu, Rui, Peter Zoeteweij, and Arjan JC Van Gemund.
"On the accuracy of spectrum-based fault localization."
Testing: Academic and Industrial Conference Practice and
Research Techniques-MUTATION, 2007. TAICPART-
MUTATION 2007. IEEE, 2007

[4] Debroy, Vidroha, and W. Eric Wong. "Insights on fault
interference for programs with multiple bugs." Software
Reliability Engineering, 2009. 20th International Symposium
on. IEEE, 2009

[5] DiGiuseppe, Nicholas, and James A. Jones. "On the
influence of multiple faults on coverage-based fault
localization." Proceedings of the 2011 international
symposium on software testing and analysis. ACM, 2011.

[6] DiGiuseppe, Nicholas, and James Jones. "Fault
interaction and its repercussions." Software Maintenance
(ICSM), 2011 27th IEEE International Conference on. IEEE,
2011.

[7] Abreu, Rui, Peter Zoeteweij, and Arjan JC Van Gemund.
"Spectrum-based multiple fault localization." Automated
Software Engineering, 2009. ASE'09. 24th IEEE/ACM
International Conference on. IEEE, 2009.

[8] Jones, James A., James F. Bowring, and Mary Jean
Harrold. "Debugging in parallel." Proceedings of the 2007
international symposium Fn Software testing and analysis.
ACM, 2007

[9] Yu, Zhongxing, Chenggang Bai, and Kai-Yuan Cai.
"Does the Failing Test Execute a Single or Multiple Faults? An
Approach to Classifying Failing Tests.", ICSE 2015

[10] Hogerle, Wolfgang, Friedrich Steimann, and Marcus
Frenkel. "More Debugging in Parallel." Software Reliability
Engineering (ISSRE), IEEE 25th International Symposium on.
IEEE, 2014.

[11] Jonghee Park, Jeongho Kim, and Eunseok Lee,
“Experimental Evaluation of Hybrid Algorithm in Spectrum
based Fault Localization“, The 2014 International Conference
on Software Engineering Research and Practice (SERP 2014),
July. 2014

[12] Naish, Lee, Hua Jie Lee, and Kotagiri Ramamohanarao.
"Spectral debugging with weights and incremental ranking."
2009 16th Asia-Pacific Software Engineering Conference.
IEEE, 2009.4

[13] Lee, Hua Jie, Lee Naish, and Kotagiri Ramamohanarao.
"Effective software bug localization using spectral frequency
weighting function." Computer Software and Applications

Conference (COMPSAC), 2010 IEEE 34th Annual. IEEE,
2010.

[14] Bandyopadhyay, Aritra. "Improving spectrum-based
fault localization using proximity-based weighting of test
cases." Automated Software Engineering (ASE), 2011 26th
IEEE/ACM International Conference on. IEEE, 2011.

[15] Li, Yihan, Chao Liu, and Zi Yuan. "Exploiting Weights
of Test Cases to Enhance Fault Localization (S)." SEKE. 2013.

[16] Do, Hyunsook, Sebastian Elbaum, and Gregg Rothermel.
"Supporting controlled experimentation with testing
techniques: An infrastructure and its potential impact."
Empirical Software Engineering 10.4 (2005): 405-435.

[17] Yoo, Shin. "Evolving human competitive spectra-based
fault localisation techniques." Search Based Software
Engineering. Springer Berlin Heidelberg, 2012. 244-258.

[18] Renieres, Manos, and Steven P. Reiss. "Fault localization
with nearest neighbor queries." Automated Software
Engineering, 2003. Proceedings. 18th IEEE International
Conference on. IEEE, 2003.

[19] Offutt, A. Jefferson, et al. "An experimental
determination of sufficient mutant operators." ACM
Transactions on Software Engineering and Methodology
(TOSEM) 5.2 (1996): 99-118.

[20] Rui Abreu, Peter Zoeteweij and Arjan J.C. van Gemund,
An Evaluation of Similarity Coefficients for Software Fault
Localization, PRDC 2006

[21] Mike Y. Chen, Emre Kıcıman, Eugene Fratkin, Armando
Fox and Eric Brewer, Pinpoint: Problem Determination in
Large, Dynamic Internet Services, DSN 2002

[22] Naish, Lee, Hua Jie Lee, and Kotagiri Ramamohanarao.
"A model for spectra-based software diagnosis." ACM
Transactions on software engineering and methodology
(TOSEM) 20.3 (2011): 11.

[23] Xie, Xiaoyuan, et al. "A theoretical analysis of the risk
evaluation formulas for spectrum-based fault localization."
ACM Transactions on Software Engineering and Methodology
(TOSEM) 22.4 (2013): 31.

122 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

SESSION

SOFTWARE ARCHITECTURES: INCLUDING HCI,
ENTERPRISE SYSTEMS, SERVICE ORIENTED

ARCHITECTURES, WEB-BASED APPLICATIONS

Chair(s)

TBA

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 123

ISBN: 1-60132-446-4, CSREA Press ©

124 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

A systematic approach to evaluate enterprise ontologies using
testing techniques of software usability

Alessandro Viola Pizzoleto1, and Hilda Carvalho de Oliveira2
1Department of Computer Science Federal University of São Carlos - UFSCar São Carlos, SP, Brazil

2Dep. of Statistics, Applied Mathematics and Computer Science

Univ Estadual Paulista - UNESP Rio Claro, SP, Brazil

alessandropizzoleto@gmail.com, hildarc@unesp.br

Abstract— this paper introduces a systematic for evaluating
the enterprise ontologies using software usability testing
techniques. The objective is to support developers of en-
terprise ontologies to verify if the ontology that has been
developed is easy and simple to use and navigate as well as if
it eases the content addressed understanding. Inconsistencies
in the content can also found. The systematic adapts software
usability testing techniques with the users’ participation in
an organized and objective way. A case study is presented
for the evaluation of an enterprise ontology considering the
processes of the software quality model MPS-SW. The results
contributed for improvements in the ontology, because it
was possible to correct inconsistencies and problems in the
organization and relationships of the content.

Keywords: Enterprise ontology; Usability; Software processes;

Ontology evaluation; MR-MPS-SW

1. Introduction
Researches about ontologies have been significant over

the years, including many types and their applications. In

general, ontologies represent knowledge between different

systems and/or components, improving the collaborative use

of such content. They are semantic models to capture and

represent aspects of a real domain. This work was directed

to a type of ontology known as Enterprise Ontology , de-

scribing concepts and relationships that exist in an enterprise

domain.

An Enterprise Ontology is a concept that is defined

for the Enterprise Project [1], from the inclusion of new

concepts from project TOVE [1]. This project aims at

adapt the methods of ontology modeling for business and

change management, providing a common vocabulary in the

organization. It facilitates the development of systems that

handle the organization’s knowledge, promoting integration

between tools that manipulate knowledge related to ontology,

through the databases sharing created from its ontological

structure.

According to Uschold e King [1], in order to build an

ontology enterprise there are four stages to follow: (1) iden-

tification of the proposal of the ontology to determine the

formality level of the ontology description; (2) construction

of ontology, capturing and coding knowledge, including

integration with other ontologies; (3) ontology evaluation

throughout the process; (4) formal documentation (definition

of constants, predicates and axioms), reviewing the stages of

identification the scope and formalization.

According to Blomqvist [2], an enterprise ontology can

be built following five stages: (1) requirements analysis,

considering scope and use cases; (2) iterative construction,

with middle-out approach to covering the requirements

specifications; (3) implementation with appropriate tool; (4)

evaluation of the clarity, consistency and usability and (5)

maintenance. For the author, the construction of an enterprise

ontology can be manual or automatic.

In this context, this paper covers step (3) of [1] and step

(4) of [2], proposing a systematic to evaluate the clarity and

usability of an ontology with human participation.

For that, the concept of Rubin’s evaluation tests [3]

was considered, which could be applied to any product

development cycle. According to the author, evaluation tests

verify that the conceptual models have been implemented

properly if the user can develop real tasks, identifying the

specific deficiencies of usability. In this type of test, the user

navigates between the screens following a specific sequence.

The data collected by the evaluator must be analyzed, in

order to generate improvements in the system specifications

[4].

Thus, Section 2 presents a short literature review about

evaluation of ontologies. Section 3 presents the systematic

proposed to evaluate enterprise ontologies, composed to six

steps for evaluation. A case study is presented in Section 4,

considering a business ontology about the levels G and F

from the software quality model MPS-SW. The conclusions

about using the systematic approach are presented in Section

5.

2. Literatures reviews
In the last decade, many research related to the evaluation

of ontologies have been found in the literature. Some authors

proposed a systematic of generic evaluation [5] [6] [8],

evaluation focusing on reuse [9] and others defined criteria

and evaluation metrics [10] [8], standards-based methods

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 125

ISBN: 1-60132-446-4, CSREA Press ©

Table 1: Systematic Classification of Evaluation [1]

Level

Approach
(1) (2) (3) (4)

Golden Applicati Data- Humans
Standard on-based driven

(a) Lexical, vocabulary,
X X X X

concepts, data
(b) Hierarchy, taxonomy X X X X

(c) Other semantic
X X X X

relations
(d) Context, application X X

(e) Syntatic X X
(f) Structure,

X
architecture, design

have arisen recently [11]. However, the same approach of

usability tests proposed in this paper was not found.

Felix, Taofiki e Adetokunbo [12] proposed a spectral anal-

ysis of the graph generated by the ontology information. The

authors changed the relationship of classes in a tree structure

where nodes and edges are used to represent the concepts

(classes, objects and entities) and the relationship between

them. The structure and the structural dimension demonstrate

the complexity and help rapid recovery concepts. This pro-

posal requires an ontologiesâĂŹ documentation, to simplify

the tests and which results prove the veracity of knowledge

contained in the ontology.

Poveda-VilalÃşn [13] presents the "OOPS!" tool, with the

purpose of detecting flaws in ontologies. This tool identifies

failures caused by inexperienced developers in building

ontologies. "OOPS!" may be used in any domain ontologies

implemented in any language. This tool can sort the flaws in

three levels of severity: critical, important and less relevant

[13]. The tool is useful for validation process of the ontology.

However, it analyzes and identifies only predefined faults

in a pre-existing configuration. Currently, the tool has 50

preconfigured failures.

Ma et al. [14] propose an approach that examines the on-

tology in search of inconsistencies by using measurement of

axioms and relevant subsets. For each type of inconsistency,

a weight for the calculation of the impact value of each

type is assigned. Some algorithms for the calculation of the

impact value of each inconsistency type are proposed. The

aim is to identify and classify the axioms and subassem-

blies more susceptible to give rise to inconsistencies in the

ontology, as well as the concepts that must be modified [15].

Brank, Grobelnik e Mladenić [15] analyzed some types

of systematic assessment and defined four evaluation ap-

proaches, as well as five levels of expertise about them, as

shown in Table I. The differences of the levels adopted by

the researchers were treated.

Levels from Table I are explained below, (a) to (d).

(a) Lexical, vocabulary, concepts and data: the assessment

verify the concepts included in the ontology and the vo-

cabulary used to represent and identify these concepts.

Documents related to the problem domain processed with

the ontology are used to assist the evaluation; (b) Hierarchy

and taxonomy: the relationships between the concepts are

validated, especially if the relationship is one-to-many; (c)

Other semantic relations: all relations between the concepts

that are not "is-a" are evaluated separately; (d) Context,

application: whereas an ontology can be part of a set of

ontologies or part of a software, the tests should be run

on each usage environment; (e) Syntactic level: manually

created ontologies are validated, whereas the language used

for description of the ontology and its documentation; (f)

Structure, architecture, design: predefined criteria are re-

quired to analyze the ontology structure. This evaluation is

usually made manually.

The approaches to evaluate ontologies presented in Table

I are presented below from (1) to (4). (1) Golden standard:

compares the syntax used in the ontology definition with

the syntax of the language with in which it was written.

(2) Application-based: this approach considers that there

is an integrated application to ontology. Thus, an ontology

can be classified as efficient or not, depending on the part

that the application uses. The ontology is evaluated by the

results of the application, requesting documentation with the

possible results. (3) Data-Driven: compares the information

contained in the ontology with existing data (usually a set

of textual documents) in ontology domain. (4) Humans: the

evaluation is performed by humans, evaluating whether the

ontology introduces a predefined set of criteria, standards

and requirements related to your domain.

Note that the approach (4) Humans is the only one that can

cover all levels of evaluation of an ontology. The systematic

proposal in Section III follows this direction, to allow the

evaluation of a business ontology at all levels, from (a) to

(f). That is because the evaluator has to decide which tests

levels to cover and which profiles the participants will have.

3. Systematic proposal
According to Rubin [3], usability corresponds to the

quality degree of the interface interaction with users. The

quality is linked to the principles: a) ease learning; b) ease

of task memorization in case of intermittent use; c) user

productivity on tasks execution; d) prevention, targeting the

reduction of errors from users; e) user satisfaction. Tests for

evaluation of the degree of usability of a product are usually

used with the participation of potential users.

Thus, this section presents the systematic proposal for

running usability tests with users to evaluate enterprise on-

tologies. The systematic consists of six steps and presented

in subsections from A to F.

Note that the ontology evaluation is generally performed

through a software tool such as ProtÃl’gÃl’, for instance.

In this case, it is important to be clear to the evaluator

and the participants that the tool is not being evaluated.

If the participant fails to meet the tool used, the evaluator

should grant some minutes to present the main tool features

126 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

to the end. This time is not considered in the tests. It is

important not to lose focus in the definition of the tests:

evaluate the structure, navigability, completeness and depth

of knowledge contained in the ontology and as the user

identifies information.

3.1 Definition of participants’ profiles
Efficient tests require that all levels mentioned in Table

I are evaluated. Thus, participants with good knowledge

about the domain of ontology must be selected. However,

it is important that participants with different knowledge

levels and experience are also selected. It is recommended to

classify the degree of knowledge such as beginner, interme-

diate, and expert. Roles can be associated with each class of

knowledge degree. The amount of profiles and participants

in each knowledge degree depends upon the depth you want

to achieve with the test run. However, it is not recommended

a greater number than fifteen participants nor less than five,

for reasons of results and sustainability.

3.2 Preparation of documents to guide the
application of usability testing

Seven documents should be made to guide the application

of the tests in enterprises ontologies:

(1) Test plan: contains information regarding the purpose

of the test, the statement of the problem to be tested, the

methodology to guide the test run, the tasks and respon-

sibilities of the evaluator, the metrics of evaluation and

preparation of the environment for the participants;

(2) Roadmap of the evaluator: contains information to

guide the evaluator or evaluation team, during the tests

running:-the objectives; -the environment and the equipment;

-the evaluation rules; - ontology functionality; -protocols and

procedure; -forms used in the test;

(3) Orientation script for the participant: contains infor-

mation that must be submitted for each participant before

starting the tests: the test objectives and how it will be

conducted. The intention is to help the participant on the

difficulties encountered in operating the software tool of

ontologies used, difficulties in understanding the information

contained in the ontology, etc.;

(4) Task list: it is composed by different tasks to be

performed by the participants, considering increasing levels

of difficulty. A certain degree of difficulty must be associated

with each task. The tasks must be defined with the partici-

pant’s intention to cover all points of enterprise ontology are

verified. It is recommended that the tasks be defined based on

the ten heuristics of Nielsen for software systems [16]. This

is an unusual use form of these heuristics. Nevertheless, they

deal with important aspects to be evaluated in a software and

that can be evaluated on business ontologies. The task list

should be split into two documents: one to be delivered to the

participant that has only the tasks; another for the evaluator,

with the tasks and information on implementation and results

to be obtained, to serve as a guide to the monitoring of the

tasks implementation;

(5) Form for data collection: document used by the

assessor for explanations relating to the execution of each

task by the participant, including their attitudes during the

test. This document can be implemented through a text field

under each task from the task list; in this case, a copy of

the task list with the fields for notes should be used for each

participant;

(6) Evaluation questionnaire: contains questions to be

answered by each participant at the end of the test. The goal

is to evaluate the perception of the participants in relation to

the difficulties they found, their expectations and suggestions

for improvements in the ontology. Examples of information

required from participant: level of ease to find information;

difficulties found during navigation by ontology; positive and

negative aspects regarding the use of ontology, as to the

information contained in it and about the organization of

information; ontology development failures;

(7) Terms of image use: document that must be signed

by the participant to allow the use of his image, in order to

confirm the test. The participant does not need to show his

face.

3.3 Contact with participants and implementa-
tion of usability testing

Whereas the evaluator defined the participants profiles in

step 1 (see subsection A), candidates must be contacted.

This is a process that must provide for refusal of some

candidates due to the lack of time. However, the evaluator

should emphasize that the test should spend approximately

one hour only and the schedule can be adjusted.

The evaluator can act in two ways for carrying out the

tests: go to the location where is the end or invite the

participant to come to a location prepared specifically for the

test. The necessary infrastructure must be provided for both.

However, in the second situation, the laboratory environment

should be pleasing to the end.

It is very important to inform the participant that he is

not being evaluated, but the ontology. He must be aware that

the ontology must satisfy their needs otherwise it should be

adjusted. The participant must also receive a short guidance

on how to use the ontology presentation system.

Specific software tools for the execution and usability test-

ing analyze are recommended. These tools allow recording

all the participant’s actions to performing the tasks. Some

tools allow the evaluator to make notes about participant’s

observations in real time. It is important that the tool support

the evaluator during the tabulation process the results.

It is interesting that the evaluator present a possible usage

scenario for each task, as well as the participant understands

the purpose of that task execution. The intention is that the

participant imagines a real situation of your day-to-day life,

motivating him to the task.

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 127

ISBN: 1-60132-446-4, CSREA Press ©

It should be noted that all participants must perform the

same tests and the conduct of the evaluator must be the same

in all tests. All supporting documents for the tests should

have been adequately provided.

3.4 Analysis of usability testing
After the fourth stage of the tests, the data recorded by the

support tool and documented notes must be analyzed. Over-

all, some examples of facts that can be verified: - Number

of times the mouse was used for a participant to complete

a task; - Sequence of actions for the task (may be different

from that provided by the evaluator sequence); - Participant’s

behavior through their facial expressions and body during

the execution of the task; - Important observations made

by participants during the test; - Difficulties found by the

participant to complete the task; - Unfinished tasks and the

reasons for the participant not finish them.

It is important to consider the time used by each partici-

pant to perform each task. This indicator helps the developer

to make adjustments in the ontology in order to reduce the

time spent and the paths to facilitate obtaining the desired

results.

The evaluator should compare the features of ontology

that the participant used to complete the task with the

resources provided. If the resources used were different,

it is appropriate to examine whether the results were also

satisfactory for the participant.

When there is an occurrence of several errors in the

execution of a task, this can be a sign that the ontology

is not self-explanatory, requiring adjustments. Generally, the

occurrence of many errors is related to the lack of knowledge

about the concepts represented in the ontology - which

impairs its use.

Usability testing is also used to verify the level of ac-

ceptance of the ontology by the participants. The evaluation

questionnaire filled out by participants support this type of

evaluation. The observations and evaluator’s notes help to

identify gaps and necessary improvements that were not

observed in other analyzes.

3.5 Preparation of the recommendations
Following the analysis step, it is important to develop a

list of the ontology strengths as well as a guide of recom-

mendations for improvement of weaknesses. This guide may

contain inferred guidelines between the group of participants

and the evaluator, together or separately. These guidelines

must be clear and objective to ease the implementation.

The ten Nielsen heuristics can help to organize the recom-

mendations. While this form of heuristics use is not usual,

it helps to support the view for user needs to access to the

ontology information [16]. All the participants signed the

"terms of use".

4. Case study
This section introduces the systematic enforcement pro-

posal in section III, whereas a business ontology on the levels

G and F software quality model MPS-SW [17]. The version

of the ontology considered for this work was the v. 1.1-not

yet tested with users. The systematic application is presented

in subsections A to E, where each section corresponds to a

step, with the exception of the steps 3 and 4, which are in

the same subsection.

Fig. 1: Part of the ontology in OWL

The MPS-SW model has well defined rules for people

involved in the process, with the following responsibilities:

(1) execution of the process; (2) monitoring of the evaluation

process; (3) auditor ship (if the process was executed prop-

erly and meet the objectives); (4) validation of the processes

(if the case meets the criteria of the company’s internal

policy).

The MPS-SW model is part of the Brazilian Software

process improvement (MPS.BR) based on CMMI (Capa-

bility Maturity Model Integration) and ISO/IEC 12207 and

15504, 20000. This model includes internationally recog-

nized practices to the implementation and evaluation of

processes associated with the development of software. The

idea is to meet the business needs of the software industry.

The model defines seven levels of processes: G to A (highest

level). G level processes refer to: Project Management and

Requirements management. F level processes are: Mea-

surement, Acquisition, Configuration Management e Quality

Assurance. Each level adds processes to lower levels. The

whole process is composed of attributes, and results of these

attributes (RAP) well defined, which must be documented.

The effective implementation of the processes must meet the

expected results, which are evidenced by a work product or

a significant change in the process state. The certification

can be granted from the G level, including.

128 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

Table 2: Participant’s classification
Level Quantity Experience

Beginners 3
Computer technicians

Developers

Project and/or
4

Project Coordinator
Project Manager

quality managers
Project Leader

Quality Manager
Implementing

2
Consultant

and/or evaluator of
Professor

model

The proposed ontology by Pizzoleto [17] aims at offering

an alternative way to organize the levels G and F of the MPS-

SW model. The intention is to support the understanding

of several guides for implementation and evaluation model.

The ontology adds terms and explanations of the Project

Management Body of Knowledge (PMBOK) and indicators

according to the perspectives of the Balanced Scorecard

(BSC) model among other indicators of processes. It adds

also information provided by experts [17]. Figure 1 presents

a part of ontology in OWL (Web Ontology Language).

4.1 Participant profile
The definition of the test participantâĂŹs profiles consid-

ered different knowledge levels about the MPS-SW model

in theory and practice. Knowledge about the implementation

and evaluation model was also considered. The Knowledge

levels were defined: (1) People with low model knowledge

(Beginners); (2) Project and/or quality managers, with some

experience in the model; (3) Consultant and/or evaluator of

model (high experience in the model). Table 2 shows the

definitions for the quantity and functions of the participants

as to the experience.

The "Profile Questionnaire" was composed of questions

that approached the items proposed on the systematic: educa-

tional background, work experience and experience with the

MPS-SW model. This information helped in data analysis.

4.2 Documents for the testing application
All seven documents proposed in step 2 were system-

atically developed. They have been key so that questions

during the tests were objectively answered. These documents

had the objective to maintain uniformity of treatment for all

participants.

The "Task List" was developed with the amount of four-

teen tasks, with three difficulty levels: low, medium and

high. The sequence of execution was: three tasks with low

difficulty, four tasks with medium difficulty level and seven

tasks with a high difficulty level. The tasks addressed the

following subjects: - Ontology classification; - Composition

of expected results (Planning and schedule project, Docu-

ment requirements); - Information dealt strategic moments of

the MPS-SW model (Milestone review, Project estimation).

It must be observed that the definition of tasks considered

Table 3: Partial view of the relationship between tasks and

Heuristics of Nielsen
Heuristics of Nielsen

Te
st

Ta
sk

s

aspects approached in the ten heuristics of Nielsen. Table II

presents a table used for this purpose. Notes were also made

in the "Form of data collection".

4.3 Contact with participants and test execu-
tion

Nine participants accepted the invitation to schedule the

test, four beginner participants in the study of MPS-SW

model, two participants with the Project Manager role, one

as Quality Manager and two as evaluators/consultants of

MPS-SW. It is important to notice that the amount planned

has been amended in practice according to the participants’

availability. Another important element for the invitation

acceptance by these people was to inform the estimated

time for the tests. Some people could not participate due

to schedule and time problems. Next, the defined date was

important to remember them by e-mail and phone call.

Two participants were from different cities of the evalua-

tor, distant of about 500 km. However, for all participants,

the location selected to do the tests was their own workplace,

considering geographical distance problems, traveling time

and daily activities of participants. For this, a structure of a

mobile laboratory was mounted: two laptops with screens of

15.6" and with the software Morae TechSmith Recorder and

Observer (version 3.3.2) in each one. The computers were

interconnected through network with crossover connection.

Thus, the Morae TechSmith Observer software was used for

notes and comments on what the participant was doing.

On the user’s computer was installed Protégé system and

version 1.1 of ontology, considered alpha version by the

author [17]. The concern with the Protégé system interface

influence in the tests was mitigated, teaching previously the

participant to use the interface before the execution of the

tasks (about five minutes for this). It must be observed that

Garcia [18] mentions that even users without experience

in ontology editors can perform tasks without too much

difficulty (no drastic errors).

The tests were conducted for approximately 45 minutes

in the presence only of the participant and the evaluator on

the place. âĂIJFig. 2âĂİ, illustrates two participants filling

the "Profile Questionnaire". All the tests were performed

according to the recommendations in a uniform manner and

without the need for reviewer interference with the execution

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 129

ISBN: 1-60132-446-4, CSREA Press ©

Fig. 2: Participant during the test sessions

of the task. The evaluator made a scenario to the participant

before the execution of each task.

4.4 Tests Analysis
All collected data with Morae Observer system during the

tests were imported into Morae TechSmith Manager software

(Figure 3). This system provides several types of analyzes,

including the examples mentioned earlier in the subsection

3.4. All events that occurred during the execution of the tests

can be analyzed with the support of graphs generated by the

system. During the tests, videos with the movement made

on the screen and the participant’s picture on the corner

of the screen were recorded. Sound recordings/voice were

also made. This recorded material can be accessed, allowing

insertion of comments.

Fig. 3: Morae TechSmith Manager software screen with

participant data

All participants were able to complete all fourteen tasks.

Some participants asked for help because they were unable

to identify some terms used in the ontology. This happened

Fig. 4: Average number of requests for assistance for each

of the fourteen tasks (x-axis: from 1 to 14)

most often with "beginners" participants due to limited

experience with the MPS-SW model. The other participants

made a few questions. âĂIJFig. 4âĂİ, shows the average help

requests from all participants for each of the fourteen tasks

(x-axis: from 1 to 14). Considering graphs as in Figure 4

and the notes taken by the evaluator, it was possible to verify

that the great majority of requests for assistance was made

when the participant was in a state of navigation and not

knew where to go. While the participant was performing the

task and went through the tree superclasses and subclasses,

the navigation mechanism became clearer as well as the

associated information. Thus, requests for assistance have

been decreasing with the continuity of tasks.

4.5 Preparation of recommendations

The beta version of the ontology developed was adequate

to meet the original purpose. However, some recommen-

dations for changes were presented by the participants and

by the evaluator. These recommendations can be summa-

rized in the following requirements: (1) creation of new

connection properties between superclasses and subclasses;

(2) adjustments on the links between subclasses because

chaining failures were identified; (3) identification of parallel

flows to facilitate users to access the intended purpose; (4)

improvements in the layout of classes; (5) simplification of

terms used in the ontology.

All five recommendations are effected with the

definition of a set of thirteen tasks presented in

Table III. Each task has been performed through

a set of activities. Thus, a new version of the

ontology was made available for use (v.1.2). This

beta version is available in a repository of free ontologies:

http://protegewiki.stanford.edu/wiki/Protege_Ontology_Library.

130 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

Table 4: Tasks for implementation of the recommendations
Recommendations Identified tasks
(1) Creation of new Identification of new properties.

connection Creation of new properties.
Identifying and building connections between

properties
subclasses.

(2) Fault Identification of failures, analyzing the tests.
adjustments on the

links between
subclasses

Fix failures.

(3) Identification of Identification of subclasses for creating parallel
parallel flows to connections.
facilitate users to Definition of links that would be used.

access the intended
purpose

Construction of connections between subclasses.

(4) Improvements Identification of plugins with better graphics
in the layout of Installation and testing of plugins.

classes Creating of the installation manual.
Identification of the terms highlighted by the test

(5) Simplification
participants.

of terms used in the Search for alternative nomenclature.
Replacement of identified and associated

ontology
information terms.

5. Conclusions
This paper showed a new way of evaluating enterprise

ontologies using software usability evaluation techniques

with the participation of users. The approach was presented

in a systematic way, through six well-defined stages. A

case study was presented using a business ontology on the

levels G and F of the MPS-SW software quality model. A

diagnosis of problems and inconsistencies was generated.

The recommendations originated from the analysis and par-

ticipants comments were implemented, introducing several

improvements in the ontology. A beta version of the ontology

has been made available in a public repository.

Another important point of the systematic proposed is

the human-ontology interaction, because the participant’s

point of view is analyzed in the test and their satisfaction

is measured. Furthermore, the methodology proposed to

evaluate business ontologies can be used in other types of

ontologies, if appropriate.

References
[1] U. Mike, K. Martin, Towards a methodology for building ontologies.

In Workshop on Basic Ontological Issues in Knowledge Sharing, held
in conjunction with IJCAI-95., 1995.

[2] B. Eva, On the Move to Meaningful Internet Systems 2005: CoopIS,
DOA, and ODBASE: OTM Confederated International Conferences,
CoopIS, DOA, ODBASE 2005, 1nd ed., Ed.. Berlin, Germany: Springer
Berlin Heidelberg, 2005.

[3] R. Jeffrey, C. Dana, S. Jared, Handbook of Usability Testing: How
to Plan, Design, and Conduct Effective Tests, 2nd ed., Ed.. Wiley
Publishing, 2008.

[4] F. Reinald, Padrões Web em Governo Eletrónico, 1nd ed., Ed.. São
Paulo: Ed. Campos, 2010.

[5] A. Gómez-Pérez, Ontology Evaluation, Handbook on Ontologies,
1nd ed., Ed.. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004.

[6] G. Aldo, C. Carola, C. Massimiliano, L. Jos, Modelling Ontology
Evaluation and Validation. In 3rd European Semantic Web Conference.,
2006.

[7] D. Strasunskas, S. L. Tomassen, The role of ontology in enhancing
semantic searches: the evoqs framework and its initial. In International
journal of Knowledge and Learning., 2008.

[8] A. Duque-Ramos, J. T. FernÃąndez-Breis, R. Stevens, N. Aussenac-
Gilles, OQuaRE: A SQuaRE-based Approach for Evaluating the quality
of ontologies. In Journal of Research and Practice in Information
Technology., 2011.

[9] M. C. SuÃąrez-Figueroa, NeOn Methodology for Building Ontology
Networks: Specification, Scheduling and Reuse. Madrid: Universidad
Politecnica de Madrid., 2010.

[10] A. Burton-Jones, V. C. Storey, V. Sugumaran, P. Ahluwalia, A semiotic
metrics suite for assessing the quality of ontologies. In Data &
Knowledge Engineering., 2005.

[11] R. Djedidi, M. A. Aufaure, ONTO-EVO A L an Ontology Evolution
Approach Guided by Pattern Modeling and Quality Evaluation. In
Foundations of Information and Knowledge Systems., 2010.

[12] A. A. Felix, K. A. Taofiki, S. Adetokunbo, On Algebraic Spectrum of
Ontology Evaluation. In International Journal of Advanced Computer
Science and Applications., 2011.

[13] M. Poveda-Villalón, . M. C. Suárez-Figueroa, M. Á. García-Delgado,
A. Gómez-Pérez, OOPS! (Ontology Pitfall Scanner!): an on-line tool
for ontology evaluation. In International Journal on Semantic Web and
Information Systems., 2014.

[14] Y. Ma, S. Liu, B. Jin, G. Xu, Inconsistent ontology revision based on
ontology constructs. In SciVerse ScienceDirect Journals., 2010.

[15] J. Brank, M. Grobelnik, D. Mladenić, A Survey of Ontology Evalu-
ation Techniques. In 8th Int. multi-conf. Information Society., 2005.

[16] J. Nielsen, Projetando Websites, 1nd ed., Ed.. Rio de Janeiro:
Campos, 2000.

[17] A. V. Pizzoleto, Ontologia Empresarial do Modelo de Referência MPS
para Software (MR-MPS-SW) com foco nos Níveis G e F. Master’s
thesis - UNESP., 2013.

[18] E. B. Garcia, M. A. Sicilia e S. Sánchez-Alonso, Usability Evaluation
Of Ontology Editors. Knowledge Organization., 2005.

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 131

ISBN: 1-60132-446-4, CSREA Press ©

Enterprise Architecture of PPDR Organisations
W. Müller

Fraunhofer IOSB Institute of Optronics, System Technologies and Image Exploitation

76131 Karlsruhe, Fraunhoferstraße 1

GERMANY

Abstract - The growing number of events affecting public
safety and security (PS&S) on a regional scale with potential
to grow up to large scale cross border disasters puts an
increased pressure on organization responsible for PS&S. In
order to respond timely and in an adequate manner to such
events Public Protection and Disaster Relief (PPDR)
organizations need to cooperate, align their procedures and
activities, share needed information and be interoperable.

The paper at hands provides an approach to tackle the above
mentioned aspects by defining an Enterprise Architecture (EA)
of PPDR organisations and a System Architecture of next
generation PPDR communication networks for a variety of
applications and services on broadband networks, including
the ability of inter-system, inter-agency and cross-border
operations.

Keywords: Enterprise Architecture, Public Protection &
Disaster Relief, NAF, OSSAF, System Architecture

1 Introduction
 Public Protection and Disaster Relief (PPDR)
organisations are confronted with a growing number of events
affecting public safety and security. Some of these events
expand from a local to a regional and to an international scale,
while others affect from beginning multiple countries. As a
consequence, the pressure on PPDR organisations to be able
to cooperate in order to respond timely and adequately to such
events increases. The need of cooperation demands for
aligned procedures and interoperable systems which allows
timely information sharing and synchronization of activities.
This in turn requires that PPDR organizations come with an
Enterprise Architecture on which the respective System
Architectures are building. The Open Safety & Security
Architecture Framework (OSSAF) provides a framework and
approach to coordinate the perspectives of different types of
stakeholders within a PS&S organisation. It aims at bridging
the silos in the chain of commands and on leveraging
interoperability between PPDR organisations. In [1] a
methodology was presented, which is based on the Open
Safety & Security Architecture Framework (OSSAF)
framework [2] and provides the modeling vocabulary for
describing a PPDR Enterprise Architecture.

In [3] the process of developing an Enterprise Architecture for
PPDR organisations has been described.

The paper at hand presents the results so far of an on-going
research being conducted by the research project SALUS1

(Security And InteroperabiLity in Next Generation PPDR
CommUnication InfrastructureS) regarding the PPDR
Enterprise Aechitecture and the System Architecture of a next
generation communication system for PPDR organisations.

2 Related work
The goal of Enterprise Architecture design is to describe

the decomposition of an enterprise into manageable parts, the
definition of those parts, and the orchestration of the
interactions between those parts. Although standards like
TOGAF [5] and Zachman [4] have developed, however, there
is no common agreement which architecture layers, which
artifact types and which dependencies constitute the essence
of enterprise architecture.

 [7] defines seven architectural layers and a model for
interfacing enterprise architectures with other corporate
architectures and models. They provide use cases of mappings
of corporate architectures to their enterprise architecture
layers for companies from the financial and mining sector.

 A layered model is also proposed by [10]. The authors
propose four layers to model the Enterprise Architecture: A
Strategy Layer, an Organizational Layer, an Application
Layer, and a Software Component Layer. For each of the
layers a meta-model is provided. The modeling concepts were
developed for sales and distribution processes in retail
banking.

 MEMO [11] is a model for enterprise modeling that is
based on an extendable set of special purpose modeling
languages, e.g. for describing corporate strategies, business
processes, resources or information. The languages are
defined in meta-models which in turn are specified through a
common meta-metamodel. The focus of MEMO is on the
definition of these languages and the needed meta-models for
their definition.

 The Four-Domain-Architecture [8] divides the enterprise
into four domains and tailors an architecture model for each.
The four domains are Process domain, Information /

1 http://www.sec-salus.eu/

132 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

Knowledge domain, Infrastructure domain, Organization
domain. Typical elements for each domain are also provided.
The authors also provide proposals how to populate the cells
of the Zachman framework with architectural elements.

 The Handbook on Enterprise Architecture [9] provides
methods, tools and examples of how to architect an enterprise
through considering all life cycle aspects of Enterprise
Entities in the light of the Generalized Enterprise Reference
Architecture and Methodology (GERAM) framework.

 None of the papers addressing Enterprise Architectures
covers the special needs of PPDR organizations with their
need on timely cooperation, alignment of procedures, and
interoperability needs across different organizations.

3 SALUS EA for PPDR organisations
3.1 The SALUS Enterprise Architecture

development approach
 The SALUS Enterprise Architecture has been designed
based on the OSSAF. The OSSAF [2] provides a framework
and approaches to coordinate the perspectives of different
types of stakeholders within an organisation. It aims at
bridging the silos in the chain of commands and on leveraging
interoperability between PPDR organisations. One can
distinguish the strategic, the operational, the functional, and
the technical perspective.

 The methodology proposed in [1] for the development of
Enterprise Architecture of PPDR organisations, in general and
for SALUS specifically, uses NATO Architecture Framework
(NAF) [6] as the modeling vocabulary for describing the
OSSAF perspectives and views where suitable. The NAF
views are modeled with the different elements of the Unified
Modeling Language (UML).

 The meta-model of the NAF used for the PPDR EA
development, together with a description of the core concepts
and their relationships has been provided in [Mueller,
Reinert]. Also there the tailoring of NAF views for PPDR EA
development has been described; especially the strategic and
operational perspectives of the OSSAF model (see also
Figure1).

 Since SALUS is addressing Security and interoperability
in next generation PPDR communication infrastructures and
not all aspects of PPDR organisations, there is a need for
tailoring the Enterprise Architecture development and its
artifacts to SALUS use cases. For SALUS only those artifacts
of an Enterprise Architecture are relevant which influence the
technical development of communication infrastructures.
Thus, a funding model of the PPDR organisation (the “PPDR
as an Enterprise”) or a specific organisation chart of the
enterprise or a concrete product configuration used by the
PPDR organisation in its daily operations were not in the
scope of SALUS. The Enterprise Architecture Components
addressed in SALUS are the ones highlighted in Figure 1.

Figure 1: Perspectives and views of an OSSAF-based Enterprise Architecture addressed in the SALUS EA.

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 133

ISBN: 1-60132-446-4, CSREA Press ©

Figure 2: PPDR Capabilities relevant with respect to communication infrastructures

3.2 The SALUS Enterprise Architecture
 The methodology proposed in [1] for the development of
enterprise architecture of PPDR organizations is using the
approach of capability based planning. One can understand a
Capability according to [1] as:

 ”An ability that an organization, person, or system
possesses. Capabilities are typically expressed in general and
high-level terms and typically require a combination of
organization, people, processes, and technology to achieve.”

 Using this approach, the following SALUS Enterprise
Architecture Capabilities were identified: the capability to
protect the public and the citizens - Public Protection; the
capability to conduct a mission in an integrated way -
Integrated Mission Conduction; and the capability to protect
the own forces - Force Protection (see also Figure 2).

 The SALUS capabilities also rely on others, like
assessing the development of a crisis or the capability to

coordinate and cooperate, which in turn depend on the
capabilities to generate and maintain the situation awareness.
Indeed, for situation awareness capabilities to exchange and
share information within an organisation or agency and
between organisation and agencies. The exchanging and
sharing information capabilities rely on the capability to
provide communication connectivity, which is the main
capability implemented by the SALUS project.

 The capability providing communication connectivity
enables the various PPDR operational nodes, like the
command and control centers of the different command levels,
such as strategic, tactical, and operational on the field; to
communicate with each other, exchange information and thus
cooperate in order to handle a crisis and to protect the citizens
(see Figure 3).

 From a functional perspective, SALUS provides a series
of services needed for the capabilities to generate and to
maintain situation awareness, to provide access to common
information infrastructure services and to provide

134 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

communication connectivity. These services can be clustered
and grouped into the following service taxonomy, as
presented in the Table 1.

Table 1. Enterprise Architecture service taxonomy

Service Taxonomy

Situation
Awareness

Service

Location and Monitoring Service:
– Indoor Location Service
– Status Monitoring Service
Sensor and Tracking Service:
– Sensor Data Acquisition Service
– Sensor Control Service
– Force Tracking Service

Information
Assurance

Service

Security Service:
– Intrusion Detection Service
– Resource Authentication Service
– Policy Enforcement Service
– Forensics Service

Management
Service

Management Service:
– User Management Service
– Group Communication Management Service
– Mobility Management Service
– Policy Management Service

Network &
Information

Infrastructure
Service

Information and Integration Service:
– Message Brokering Service
Communication Service:
– Voice Communication Service, including

- Push To Talk (PTT)
- Group Call
- 1to1 Call
- Emergency Call
- Ambience Listening

– Data Communication Service
- Streaming Service
- Text Messaging Service

Interaction Service:
– Video Conferencing Service
– Chat Service
Network/Transport Service:
– Mobility service

- WiFi2LTE Mobility Service
- Traffic Management Service

– QoS Monitoring Service
- Network QoS Monitoring Service

– Communication Interworking Service
- TETRA2TETRAPOL IW Service
- TETRA2LTE IW Service
- TETRAPOL2LTE IW Service

Based on the developed Enterprise Architecture, a technical
oriented System Architecture was developed.

4 The SALUS system architecture
 Nowadays, PPDR organisations are using Private
Mobile Radio (PMR) technologies such as TETRA,
TETRAPOL or P25 for their communication systems. These
technologies do not provide broadband capabilities nor is
expected that these technologies will be upgraded in the
future. This presents a major limitation in supporting new

services and information flows, like those designed in the
previous sections. On the other hand, these technologies will
continue to exist for at least the next 15 – 20 years due to
legal commitments and the huge investments made.

 In order to cope with the increasing challenges in day-to-
day, planned or unplanned events, PPDR organisations need
communication systems and technologies capable of
supporting additional capabilities like video and data sharing,
within and between PPDR organisations. New technologies,
such as Long Term Evolution (LTE) for the long range and
Wi-Fi or LTE-U2 in the short range enable broadband
applications and services.

 Since narrowband and broadband PPDR systems will
coexist, according to the migration roadmap presented in [12],
interworking of PMR services between the different wireless
access technologies is a major requirement. The PMR
services to be supported on all access networks can be split
into four main categories: Basic services, PMR supplementary
services, telephony supplementary services, and security
features. The basic services include the minimum feature set
for a conventional PMR network. They consist of
registration/de-registration, group affiliation, group calls, one-
to-many communications with PTT user request to talk;
individual calls, PTT or hook button based; telephony calls
to/from an external telephony network, broadcast call, call
from a dispatcher to all PPDR users in a group; status, such as
predefined set of text messages; and generic text messaging,
binary messaging, as transmit sensor information.

 The PMR supplementary services are the more advanced
services that are essential to PPDR users to operate safely and
efficiently. They include priority calls, pre-emptive priority
calls, emergency calls, late entry, dynamic regrouping,
discreet and ambiance listening from the dispatcher position
and location reporting. The telephony supplementary services
are services related to public access telephony such as call
forwarding features, when busy, or without reply; call hold,
call transfer, call barring, incoming and outgoing; and call
authorized by dispatcher. The security services are features
that are related to the critical use of the wireless
communications for PPDR users. They include mutual
authentication, the ciphering on the air interface, the end-to-
end encryption, the temporary and permanent disabling of a
terminal.

 The design of the SALUS system architecture takes into
account the above mentioned coexistence of narrowband
PMR technologies and emerging broadband technologies. It
designs interfaces and hand-over mechanisms from Wi-Fi to
LTE, TETRA and TETRAPOL to LTE, as well as LTE and
Wi-Fi coverage extensions via Mobile Ad hoc NETworks
(MANETs) (see Figure 4).

2 LTE-U (LTE-Unlicensed), operates in unlicensed spectrum,
typically in the 5GHz band, to provide additional radio spectrum

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 135

ISBN: 1-60132-446-4, CSREA Press ©

Figure 3: PPDR operational nodes and their information exchange need-lines

Figure 4: High-level system architecture of the SALUS platform

136 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

 In accordance with the PPDR Enterprise Architecture,
the Command and Control Centre (CCC) is a central piece in
the system architecture. It is here where meaningful data is
collected, processed and relayed to proper recipients. Besides
voice and video support (including group calls), data-driven
applications are running in the CCC and the PPDR network.
Applications that stream, in real-time, location of PPDR
operatives from their hand-held terminals to applications in
the CCC, applications that provide terrain characteristics and
report measurements to remote geographical information
systems (GIS) applications, or applications that by some
clever means of processing determine whether a PPDR
operative is incapacitated, e.g. is fallen to the ground or report
his location are just a few examples. Such applications are by
their nature distributed: some run on hand-held terminals of
PPDR operatives and some run on computers located at
various locations ranging from the CCC to vehicles (like the
mobile CCC). For these applications an effective and secure
communication means for message exchange is needed.
Furthermore, since such applications will often process
personal data, the communication means should also respect
the privacy of its users.

 A key component to respond to these issues is the usage
of a Message Broker. It establishes connections between and
facilitates the exchange of messages amongst a dynamic
number of distributed applications. It achieves these tasks by
acting as an application level message router. The Message
Broker operates on a well-known network address and accepts
connections from various clients. These can be applications
running on terminals of PPDR operatives connected to the
network via some wireless technology, they can be process-
intensive applications running on super-computers in data
centres connected to the Internet backbone, or plain situation
awareness applications in command and control centres. Once
an application connects, the Message Broker enacts the role of
an intermediary that facilitates the exchange of messages. The
broker provides its own addressing mechanism by which
applications address each other, that is, applications do not
address each other by their network address but rather by their
identities: an identity is an identifier that uniquely determines
a single application. Identities allow applications to address
each other independently of their network addresses and the
translation (or mapping) between identities and the network
addresses is something that is an internal matter of the broker.
As identities, applications use their public keys. Since it sits
between distributed applications, the broker can monitor,
authenticate and authorize all message exchanges. To perform
these tasks, it has an interface with the AAA services

 As depicted in Figure 4, wireless sensor networks and
Wireless Body Area Networks (WBAN) are an integral part
of the communication system. Sensor data is usually collected
by sensors attached to the bodies of in-field deployed PPDR
personnel and then sent via their hand-held terminals (UEs) to
backend application for processing. The first type of used
sensors concern bio-signals, such as the heart rate, blood

pressure, temperature and similar kinds of user information.
Other kind of personnel wireless sensor information are
movement and localization, obtained from accelerometer,
gyroscope and GPS sensors. The body signals are used in
order to interpret current user health state, location and
position allowing an analysis to search for critical events, such
as heart attack and falls of users. These data are aggregated
and contextually shown on an Improved Situation Awareness
application (also known as Common Operational Picture),
running on the CCC.

 In order to ensure a constant security monitoring of the
communication infrastructure, a hybrid network-based
intrusion detection system (NIDS) and host-based intrusion
detection system (HIDS) approach is used. The approach can
either take a signature-based or anomaly-based approach to
detect intrusions. By using a hybrid approach, restrictions that
are imposed by limited host resources can be overcome,
especially when referring to mobile terminals. For example,
lack of centralized connectivity may hinder a NIDS, and
limited resources may make a sole HIDS approach infeasible.
Lastly, the implementation of a hybrid IDS does not create
additional infrastructure requirements, since the HIDS part is
independent of the NIDS and does not interfere with it

5 Conclusions and further work
 An Enterprise Architectures for PPDR organizations
with a focus on capabilities of providing access to common
information infrastructure services and communication
connectivity was presented. The approach is based on the
OSSAF and NAF frameworks. It depicts the main capabilities
needed by PPDR organisations to perform their mission of
ensuring security and safety of the citizens.

 The System Architectures and the solution developed
within our work and presented in the paper at hand provides
the design of a next generation communication infrastructure
for PPDR organisations, which fulfills their requirement of
secure and seamless end-to-end communication.

 The design allows interworking of currently existing
narrowband PMR communication infrastructures like TETRA
and TETRAPOL with the broadband LTE technology.
Furthermore, extensions provided by other wireless
technologies, such as Wi-Fi, Bluetooth or ZigBee for WBANs
and Wi-Fi or LTE-U for extended coverage have been
considered as well.

 The design will be evaluated in June 2016 in a live
experiment with PPDR users.

Acknowledgement: The work described in this paper was
partly funded by the European Commission within the
European Seventh Framework Programme under Grant
Agreement 313296, SALUS - Security And InteroperabiLity
in Next Generation PPDR CommUnication InfrastructureS

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 137

ISBN: 1-60132-446-4, CSREA Press ©

6 References
[1] W. Müller, F. Reinert “A Methodology for Development
of Enterprise Architecture of PPDR Organisations”,
Proceedings of the 2014 International Conference on Software
Engineering Research & Practice (SERP 2014), pp. 259 – 263.

[2] Open Safety & Security Architecture Framework
(OSSAF), http://www.openssaf.org/download

[3] W. Müller, F. Reinert “Development of Enterprise
Architecture of PPDR Organisations”, Proceedings of the 2015
International Conference on Software Engineering Research &
Practice (SERP 2015), pp. 225 – 230

[4] Website Zachman Framework, http://zachman.com/

[5] Website TOGAF, http://www.opengroup.org/togaf/

[6] NATO Architecture Framework Version 3, ANNEX 3
TO AC/322(SC/1-WG/1)N(2007)0004

[7] R. Winter, R. Fischer “Essential Layers, Artifacts, and
Dependencies of Enterprise Architecture”, Proceedings of the
10th IEEE International Enterprise Distributed Object
Computing Conference Workshops (EDOCW'06), IEEE
Computer Society, 2006

[8] B. IYER, R. Gottlieb “The Four-Domain-Architecture:
An approach to support enterprise architecture design”, IBM
Systems Journal, Vol 43, No 3, 2004, pp. 587- 597.

[9] P. Bernus, L. Nemes, G. Schmidt (Editors) „Handbook
on Enterprise Architecture“, Springer, 2003.

[10] Ch. Braun, R. Winter “A Comprehensive Enterprise
Architecture Metamodel and Its Implementation Using a
Metamodeling Platform”, In: Desel, J., Frank, U. (Eds.):
Enterprise Modelling and Information Systems Architectures,
Proc. of the Workshop in Klagenfurt, GI-Edition Lecture Notes
(LNI), Klagenfurt, 24.10.2005, Gesellschaft für Informatik,
Bonn, P-75, 2005, pp. 64-79.

[11] U. Frank, “Multi-Perspective Enterprise Modeling
(MEMO) - Conceptual Framework and Modeling Languages”,
Proceedings of the Hawaii International Conference on System
Sciences (HICSS-35), 2002, p. 3021ff.

[12] H. Marques et al., “Next-Generation
Communication Systems for PPDR: the SALUS
Perspective” In: Camara, D., Nikaein, N. (Eds.):
“Wireless Public Safety Networks”, Volume 1, Elsevier
/ ISTE Press – Elsevier, London & Oxford, 2015, pp. 49
– 94.

138 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

An approach for analysis and flexibility of business rules in legacy
systems

Alessandro Viola Pizzoleto1, and Antonio Francisco do Prado1
1Departamento de Computação, UFSCAR, São Carlos, São Paulo, Brazil

Abstract— The constant inherent variations in the orga-
nizational world, in various domains, require increasingly
frequent and varied changes in the rules of business organi-
zations. Consequently, these must be sufficiently flexible so
that they can easily adapt to scope change from which they
have been designed. This paper presents a service-oriented
approach to flexible business rules based on refactoring of
source code. Case studies in the field of Education were
developed to validate the proposed approach.

Keywords: SOA; Business Rules; Flexibility; Software Re-

engineering; Reverse Engineering

1. Introduction
The inherent challenge in the organizational world in-

creasingly requires agility and innovation so that techno-

logical solutions, software, quickly suite the needs imposed

by the market and the evolution of its processes. To achieve

the goals, this, in turn, should be easy to understand and

maintain, especially in its business rules, as they represent

the activities of the organization. The software used by

organizations today requires great efforts of its responsible

to continue operable due to the complexity with which they

were designed and developed.

Where legacy software is mentioned, there is the notion

that the latter was developed using resources and methods

currently outdated and, very often with missing or outdated

documentation. Maintaining this type of software can be

traumatic, requiring large human effort, and significantly

increased the risks to the business, since the source code

is complex, not standardized and without comment. Thus,

an approach that identifies, classifies, characterizes and

refactors business rules contained in it is necessary in order

to flexibilize them, hence improving its understanding and

reducing the risks in each maintenance, being it evolutionary

or corrective.

The flexibility of business rules is not a recent study and

has been studied by many researchers in the last decade. A

point to note is the main focus of the research conducted

and identified to be directly related to business process

and not specifically the business rules that are part of the

process representing and describing its activities. Some of

the solutions are aimed at setting techniques used in the

definition of business processes allowing them to be already

modeled and implemented with a high level of flexibility

[1]. Others are centered in mechanism whose purpose is

to measure the degree of flexibility of business processes

[2] [3] [4], and there are researches that presuppose the

need to define specific languages to make flexible business

processes, based on the rules as foundations for the processes

to achieve the purpose for which they were created [5] [6].

The remainder of the paper is organized as follows:

Section 2 presents the main concepts and technologies used

in the proposed approach; Section 3 describes the proposed

approach to support the flexibility of business rules in legacy

systems; Section 4 evaluates the approach through a case

study; Section 5 discusses the related work; and finally,

Section 6 concludes.

2. Background
The following subsections introduces the two main con-

cepts to have a better understanding about the proposal: the

Business Rules, Business Process Management, Flexibility

and Service Oriented Architecture.

2.1 Business Rules
Business rules are abstractions of organizational policy

and best practices in an organization, in order to assert their

business structure or to control and influence their behavior,

as well as to describe operations, definitions and constraints

imposed on the organizational business process. In Business

Process Management (BPM), these represent the business

process activities [7].

When formally specified, the business rules are used in the

execution of processes, representing its activities. In software

engineering, it is used to support the development of systems

that use them and respect their standards [8].

The development based on business rules systems presents

some characteristics that facilitate its implementation and

maintenance, among them stand out [8]:

• are externalized and shared by multiple systems;

• changes are implemented quickly and at low risk;

• reducing costs arising from changes in logic processes;

• reduction of development time and implementation

processes.

Such characteristics significantly increase the flexibility

and maintenance of its business rules. Business rules can

be represented with a construction IF (condition) THEN,

comparing variables with a certain value and then performs

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 139

ISBN: 1-60132-446-4, CSREA Press ©

an action when it contains a matching value. Following

presents other sentences in order to represent the rules [7]:

• the total value of the order is equal to the sum of the

totals of order items plus 10% delivery rate;

• a customer of a bank could not withdraw more than

$500.00 per day on his/her account;

• passwords can be at least six characters, including

numbers, letters and symbols;

• to rent a car, the customer must present a valid driver’s

license;

• the maximum number of students per class cannot

exceed 30 students.

2.2 Business Process Management
The Business Process Management (BPM) is a concept

that unites Business Process Management and Information

Technology with a focus on optimization of the organiza-

tion’s results, obtained by improving business processes. To

accomplish its use are used methods, techniques and tools

to analyze, model, publish, optimize and control processes

involving human resources, applications, documents and

other information sources [7].

The BPM aims at improving the management of the busi-

ness environment, providing greater flexibility and autonomy

in the operational performance of transactions through it.

Therefore, every necessity and business objectives must be

met by business processes [8]. According to Kruchten, for a

good understanding of business processes should be consid-

ered some aspects, such as: goals, business rules and non-

functional aspects related to quality, reliability and usability

[9]. As a result, organizations from different domains and

sizes adopt BPM.

The approach of BPM pursues, to say so, two main

purposes: obtaining flexibility in its projects and the formal-

ization of the processes in structured models and diagrams

that improve its control and confer greater predictability to

organizational activities. Nevertheless, if one considers the

needs imposed by the market to the business, it is necessary

to consider increasing criticality to adapt business processes

to new realities [2].

Business models describes the operation of the business

itself, presenting the activities involved, the way they relate

and the way we interact with the necessary resources (As

Is).

The models exactly describe the business need. In this

case, it is necessary to understand the structure and dynamics

of the organization, raising the current problems, identify

improvements and promote common understanding about

the desired situation. These are goals to be achieved.

These targets represent business processes, so that the

requirements for its execution are covered. Thus, emerging

methodologies for modeling in an integrated approach with

existing development methodologies Information System.

The modeling among existing stages, is the most visible

being a formal instrument of representation of business

processes, so that its outcome should be interpreted unam-

biguously. In addition, the modeling is also a graphical repre-

sentation of these processes. Thus, it has resulted in a device

which utilizes a composite graphics language vocabulary to

demonstrate the organization of the workflow.

2.3 Flexibility
The principle of flexibility can be defined as the capacity

of equipment, procedures, materials, and components must

meet the requirements and circumstances of production and

changing needs, without this there are significant variations

in the amount of resources needed, and increased time

required adequacy and/or use.

Flexibility is then a path to achieve ends such as reliability,

cost and speed.

Reliability improves through flexibility, as this helps to

deal with unexpected supply disruptions or software imple-

mentation. Since costs are reduced with better and full use

of equipment, software and resources in general, reducing

effort to ensure that the equipment and software start to run

catering to new requirements imposed on them [9].

The speed increases with cycle time compression through

the elimination of not aggregating activities of value during

the preparation of machinery and understanding and easy

identification of the functions that will be changed so that

the software can perform the changes made or implemented

in its activities. It is considered that this generates a major

source of competitive advantage, as the company becomes

more rapid in its delivery system and the development of

new products [9].

2.4 Service Oriented Architecture
The Service Oriented Architecture (SOA) is a design

approach that promotes better alignment of information

technology with organizational needs. It refers to a style of

planning strategy of information technology directly related

to the organization’s business objectives enabling the trans-

lation of the functionality of the applications on standardized

services and interrelated [10].

The principle that governs SOA assumes that a large and

complex application must be avoided and replaced by a set

of small and simple applications, or an application becomes

physically composed of several small and specialized mod-

ules known as Service, which have features as the ability to

be distributed, accessed remotely, interoperable and reusable

[11] [12].

The service is defined as the smallest unit of an SOA

application representing the completion of a task in a busi-

ness process upon receiving an input, performs an operation

and produces an output [10]. The service is the ability to

perform tasks that form a coherent functionality viewpoint

of requesters and providers entities. For a service to be

performed, there must be used a provider [11].

140 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

The advantages found with the use of SOA can be ana-

lyzed on two levels: - tactical advantages: focus on software

reuse, thus increasing productivity and greater flexibility; -

Strategic advantages: focus on the global architecture, which

are improved when aligned with the business [13].

3. Proposed Aproach
Sistemas de software jÃą construÃ dos e implantados

requerem manutenÃğÃčo periÃşdica e grande parte dessas

manutenÃğÃţes tem origem nas mudanÃğas frequentes das

regras de negÃşcio.

Based on presented concepts and technologies, this paper

proposes an approach to flexibilize business rules from

source-code. The approach aims at providing a practical way

for the easing of business rules in the source-code of in-

formation systems, identifying duplications and similarities

between them. Furthermore, the approach using predefined

heuristic identifies the degree of complexity, the need for

flexibility and better software engineering concept of being

employed to perform the same easing.

The Figure 1, shows an overview of the proposed ap-

proach described in Business Process Model and Notation

(BPMN). The process consists of three activities: Extract

business rules, Refactor business rule and Validate refactor-

ing.

The approach used as input the source-code of information

systems. From the source, the Extract Business Rules activity

generates a document containing the identified rules and its

dependencies. From this document, the Refactor Business

Rule activity applies a set of heuristic rules to select the busi-

ness rule that needs to be refactored becoming more flexible

and makes use of software engineering concepts for this. In

this activity, if required, adjustments to the database will be

realized. The next activity Validate Refactoring applies the

concepts verification and software validation to prove that

the business rule refactored maintains its functionality and

performance. Finally, we have as a result a new source-code.

3.1 Business Rules Extraction
The activity of extracting business rule will use the source-

code of the System. An analysis will be conducted to identify

and extract the business rules contained in the system code.

For this process it is being used the tool case JBrex that

meets the needs of this study. The tool is a static analysis of

source code, identifying the business rules, its occurrences

and generates resources that allow tracing them [14].

The Figure 2, illustrates an example containing the infor-

mation that is returned by JBrex. This example illustrates

the identification of the business rule "ProximoPerfil". In

addition to returning the operations for the business rule file

also shows the granularity of the functions that make use of

the same [14].

The JBrex has a feature that permits to maintain trace-

ability with the source code. Upon analysis of the code and

detection of the rules, annotations are included which allows

for the traceability between the generated document and the

corresponding part of the code. The Figure 3, illustrates how

is the identification [14].

3.2 Refactoring Business Rules
Each business rule identified will be analyzed by verifying

the need for flexibility. This analysis will be supported

by pre-defined heuristics. For this project were defined 17

heuristics. Among the heuristics it can be mentioned that

analyzes the complexity of the rules and analyzing the

number of parameters defined for the rule.

A list of rules is generated, one-by-one the rules will be

reviewed by heuristics in order to determine the best method

to use in relaxation. These heuristics have been defined

following the standards used in software engineering. For

this project were defined 10 heuristics of flexibilization, this

number may increase during project execution. Among the

heuristics, one can cite that include: parameterization of all

fixed values and rule of outsourcing, through the use of SOA,

when it is used in many different points of system.

3.3 Validate refactoring
Once the refactoring stage of business rules is completed,

tests should be performed in order to verify and validate that

the change made in the code is functional and, especially if

the features of the rules have not changed.

For this approach were set to be executed such inspection.

These tests serves to verify the new code written in refactor-

ing. This type of testing work statically and allows various

defects can be found in a single inspection. Not having the

need to run the system and test of refactorings that did not

undergo this type of testing becomes less costly as it will

be applied only in artifacts that have changed [15] [12].

After complete inspection tests and corrected the faults

found, the approach provides verification and validation tests

must prove that the system has confidence and is ready for

use. The verification is to check whether the system meets

the functional and non-functional requirements specified,

since the validation aims to ensure that the system meets

expectations and customer requirements [15] [12].

Even as the aim of easing of business rules, a point

that should be tested is the improved performance of the

business rule, then tests should be performed comparing the

performance of the previous version with the new refactored

version of the business rule. To meet this objective perfor-

mance tests will be performed and the performance in the

implementation of the rules will be measured and compared

[12].

To prove the improvement in performance tests will be

load testing compounds - it will check whether the new

routines support a given desired load; estres test - that will

determine the maximum capacity of the new routines of the

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 141

ISBN: 1-60132-446-4, CSREA Press ©

Fig. 1: Overview of the Proposed Approach

Fig. 2: Business rules identified

system, and stability test - which will check if the routines

degrade performance over time [15].

Fig. 3: Granularity identification and traceability in the

source code

For this approach some cases automated tests have been

developed, but not in the case study presented in Section 5.

4. Case Stusy
This section presents a case study to evaluate the ef-

fectiveness of the proposed approach. The case study was

performed in academic domain of Academic Management

142 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

364System (ProGradWeb) into the Federal University of

So Carlos (UFSCar). The system was developed in Java and

consists of 60.9 KLOC, organized into 7 packages and 167

classes.

This study sought to evaluate the efficiency and effective-

ness of the implementation of the proposed approach. The

extraction of business rules, making use of returned JBrex

95% as a result of these, in amounts from 987 of the 1039.

Making use of heuristic analysis, it was concluded that 51

rules need to go through the process refactoring [14].

This was achieved quantity of rules making use of only

two of the 17 defined heuristic analysis. The two heuristics

used are: a) Duplicate rules - which rules identifies duplicate;

b) similarity rules - which identifies the similar rules, namely

rules with the same functionality but different codes as.

Among the rules for this study was selected to rules which

serves to calculate the "student profile". This rule was found

in duplicity in six points of the code (Figure 4) and has three

other similarities (Figure 5), totaling nine occurrences.

Continuing the proposed process, it is necessary to use

the heuristics of easing. They were defined for this step 15

heuristics to help. In working with this rule were used two:

a) Outsourcing - whose goal is to outsource the rule, and

may be in a system class or even becoming the rule in a

WebService; b) parameterization - which aims to parameter-

ize all fixed values contained in the rule. The new business

rule code is shown in Figure 6.

Aided by the tracking code provided by JBrex is possible

to identify all modules of source code where the business

rules are located and the duplicate or similar code was

replaced by the function call as shown in Figure 7 [14].

Completed the necessary adjustments in the source code,

validation and verification tests were performed. The purpose

of the tests is to identify faults that might have been inserted

with the change in the code, check if the functionality of the

system has not changed because of the changes and measure

the efficiency of the implementation, ie if the changes do not

become sluggish System.

In order to prove that refactoring the system was properly

executed and demonstrate the gain with the use of the

approach, when maintenance is needed, a new test was

performed. For its execution had to the aid of four users

(developers), two working on the original System Code (1

and 2) and two in the refactored code (3 and 4).

A simple task was requested to replace a parameter in the

business rule and the inspection of code running on proving

that maintenance works. The results can be seen in Table 1.

Front shown in Table 1, it can be concluded that by

making use of the proposed approach we obtain significant

results. Comparing using the time to perform the mainte-

nance task and testing the 90% gain in performance, thus

allowing organizations to readily suited to the requirements

imposed on them.

Table 1: Change, Resources and Testing Time

Users Implementation Test
Points Time Points Time

1 9 00:31 9 01:03
2 9 00:37 9 01:08
3 1 00:02 1 00:09
4 1 00:02 1 00:07

5. Related Work
As mentioned above, the problem in flexible processes

and business rules is not new. For years researchers have

been seeking effective and possible solutions to the problem

presented in this paper. In the academic literature, several

authors have different methods that can be used to derive

the flexibility of business processes [16] [4] [17]. Regev

developed a taxonomy for relaxation processes in BPMN

(Business Process Management Notation) with three orthog-

onal dimensions [16]:

• Abstraction level of change: this dimension assumes

the existence of two levels of processes: - setting level

or process model (process type), and level of practical

implementation of the model (process instance); and -

evaluates how changes to a level implies another level

of abstraction;

• subject of change: refers to the different perspectives

involved in the process, for example: - Functional

perspective: describes what must be accomplished by

the process; - Operational perspective: it focuses on

activities that are performed in the process;

• properties of change: refers to the specific characteris-

tics of the changes (duration, extent, etc)

Thus, the authors analyze how the characteristics of these

mentioned dimensions imply on flexibility degree. Schonen-

berg evaluates a set of automation process tools, from this

analysis, develops an alternative taxonomy that classifies the

kind of flexibility based on completeness degree of process

definition with respect to its configuration, that is, sets the

process in design time (design-time) or at run time (run-time)

[18].

Wesker emphasizes the existence of flexibility both in

explicit representations in models of business processes as

the software tools that support process automation [17].

In all the approaches described flexibility is defined as a

technical artifact attribute, which could be achieved mainly

through settings or changes the artifact showing a techno-

logical view of flexibility. While such approaches are useful

for the development of new tools and techniques to support

the process, there remains a need for empirical studies

on how flexibility can be obtained in practical situations

organizations.

The technological approaches are not able to analyze how

organizational and practical BPM models can be combined

to assist in changing the rules nor the types of resources

required to achieve the flexibility.

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 143

ISBN: 1-60132-446-4, CSREA Press ©

Fig. 4: Duplicate code for the business rule identified

Fig. 5: Source-code similar to business rule identified

Fig. 6: Refactored source-code and outsourced

Fig. 7: Changing the source-code to use the function

The flexibility of business rules can be classified in some

dimensions:

• business rules: increase adaptability towards new lines

of business, mergers, acquisitions and opportunities;

• exceptions: easy exception handling, allowing rapid

adaptation to new reality of the organization.

For dealing with the flexibility of business rules, there is

a need for methods to be used to measure the degree of

flexibility. For that reason were extracted and modified from

the literature some methods, such as those presented by Kasi,

which makes use of three mechanisms: the time, cost, and

adaptability [3].

• time: is directly related to the time required to obtain

a satisfactory response to the business rule context of

change;

• cost: cost is directly linked to the need for implementing

the changes and adaptations to be carried out in the

business rule;

144 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

• adaptability: is directly linked to the ease with which

changes are made in the business rule.

According Kasi, by meeting these mechanisms, one can

say how flexible is the business rule, since a change can be

performed quickly, at low cost and high adaptability. This

allows greater efficiency in business rule change of context

without the need for additional actions [3].

6. Conclusions
This paper presents an approach to support refactoring

business rules making them flexible. The proposed approach

makes use of JBrex tool, which extracts by static analysis,

business rules system source code. Furthermore, the ap-

proach is based on heuristic that uses software engineering

concepts to define which rules will be refactored and how

will be performed refactoring.

The approach consists of three activities: Extracting Busi-

ness Rules, refactor Business Rules and Validate Business

Rule. Refactored Business rules become more flexible, so

spends less time for the organization fits the new internal

requirements or imposed by the market, thereby reducing

risks and costs in maintaining the system. The approach

helps to increase the useful life of information systems and

thus helps to improve the ROI.

The feasibility of the approach was confirmed by the case

study applied to a real system in the academic domain,

showing success by making flexible the business rules.

This review allowed verifying the scalability of the pro-

posed approach to large information systems, i.e., informa-

tion systems with more than 100 KLOC.

As future work, will be developed a Domain Specific

Language (DSL) to describe the heuristics. Thus, the ap-

proach becomes refinable and easily maintained, since it

would allow the inclusion and/or exclusion of new rules.

Furthermore, the case study will be replicated for systems

developed to other platforms or languages in order to com-

pare the results.

References
[1] W. v. d. Aalst, A. t. H. B. K. e A. B., Workflow Patterns, Distributed

and Parallel Databases., pp. 5-51, 2003.
[2] T. v. Eijndhoven, M. E. Iacob e M. L. Ponisio, Achieving Business

Process Flexibility with Business Rules, in 12th International IEEE
Enterprise Distributed Object Computing Conference, pp. 95-104,
2008.

[3] V. Kasi e X. Tang, Design attributes and performance outcomes: A
framework for comparing business processes, Southern Association for
Information Systems., pp. 226-232, 2008.

[4] A. Schnieders e F. Puhlmann, Variability mechanisms in e-business
process families, in International Conference on Business Information
Systems, 2006.

[5] BRG. (2000). Defining business rules what are they really?. [Online].
Available: http://www.businessrulesgroup.org/first_paper/br01c0.htm

[6] OMG. (2014). Business Process Modeling Notation
v1.2 - Final Adopted Specification. [Online]. Available:
http://www.omg.org/docs/formal/09-01-03.pdf

[7] OASIS. (2014). OASIS Web Services Business Process Execution
Language (WSBPEL) TC. [Online]. Available: https://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=wsbpel.

[8] M. Milanovic, D. Gasevic e L. Rocha, Modeling Flexible Business Pro-
cesses with Business Rule Patterns, in IEEE International Enterprise
Distributed Object Computing Conference, pp. 65-74, 2011.

[9] J. Becker, K. Bergener, Mueller e F. Mueller-Wienbergen, Documen-
tation of Flexible Business Processes - A Healthcare Case Study, in
AMCIS 2009 Proceedings, 2009.

[10] M. P. Papazoglou, Cloud blueprints for integrating and managing
cloud federations, in Software Service and Application Engineering,
pp. 102-119, 2012.

[11] M. P. Papazoglou, P. Traverso, S. Dustdar e F. Leymann, Service-
Oriented Computing: State of the Art and Research Challenges, in
Computers, pp. 38-45, 2007.

[12] R. S. Pressman, Engenharia de Software - Uma Abordagem Profis-
sional, 7nd ed., Ed. MCGRAW HILL, 2011.

[13] M. P. Papazoglou, P. Traverso, S. Dustdar e F. Leymann, Service-
oriented computing: A research roadmap, in International Journal of
Cooperative Information Systems, pp. 223-255, 2008.

[14] V. Cosentino, J. Cabot, P. Albert, P. Bauquel e J. Perronnet, A model
driven reverse engineering framework for extracting business rules out
of a Java application, in Rules on the Web: Research and Applications,
pp. 17-31, 2012.

[15] I. Sommerville, Engenharia de Software, 9nd ed., Ed. Rio de Janeiro:
Pearson Education, 2011.

[16] G. REGEV, P. SOFFER e R. SCHMIDT, Taxonomy of Flexibility
in Business Process, in International Workshops on Business Process
Modeling, Development and Support, pp. 90-93, 2006.

[17] M. Weske, Business Process Management: Concepts, Languages,
Architectures, 2nd ed., Ed. Berlin: Springer, 2012.

[18] M. H. SCHONENBERG, R. S. MANS, N. C. RUSSEL, N. A.
MULYAR e W. M. P. van der AALST, Towards of Process Flexibility,
in International Conference on Advanced Information Systems Engi-
neering, pp. 81-84, 2008.

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 145

ISBN: 1-60132-446-4, CSREA Press ©

Systemto locate job opportunities for graduating
students

Suhair Amer and Fei Shen
Department of Computer Science,

Southeast Missouri State University, One University plaza, Cape Girardeau, MO, USA 63701
samer@semo.edu

Abstract – this paper explains the analysis, design,
implementation and evaluation of web-based
prototype that lists computer science and computer
information system job opportunities to graduating
students from these degrees. It is not a search engine
but a non-traditional website that lists links to all
search engines that perform specifically this task.
The average time to complete this task is 11.20min.
The mode is 11min, and the middle is also 11min.
The standard deviation is 2.68. The average score
they give for interface appeal is 8.0/10.00.

Keywords- interaction design, finding a job

1. Introduction
It used to be that when designing a system, a lot

of time and code is devoted to the user interface. This
had changed with modern windows mangers,
interface builders and toolkits. It used to be that the
user interface portion of code was between 29% and
88% [Sutton and Sprague 1978]. Artificial
intelligence applications it was about 40% to 50% of
code [Fox 1986][Mittal et al. 1986]. It is believed
that user interface software is more difficult than
creating other kind of software because it requires
iterative design, need to apply software engineering
techniques and sometimes multiprocessing is
required to deal with asynchronous events [Myers
1992]. Interaction among users and devices have
evolved from one-to-one to many-to-many
interaction relationship [Grguric et al. 2016]. Many
tools have been created to ease interface
programming [Hartson and Hi 1989][Myers 1992].
For example, MacApp tool from Apple can reduce
development time by a factor of five [Schmucker
1986]. User-centered design and having effective
user engagement is an important component to a
successful system [Smith and Dunckley 2016]. This
paper explains the analysis, design, implementation
and evaluation of a non-traditional web-based
prototype that locates, specifically, computer science

(CS) and computer information systems (CIS) job
opportunities for graduating students. The techniques
used to analyze, design and evaluate the system were
adopted from [Rogers et al. 2011].

2. Analysis and design

First we identified design goals by asking questions
similar to the following:

� Does the interface allow people to search
CS/CIS related job opportunities?

� How long does it take for users to search
CS/CIS related job opportunities, and can
people maintain high productivity by using
this interface?

� What happens when an error occurs?
� Does this interface provide all functions

needed to search for CS/CIS related job
opportunities?

� How long will take the user to learn how to
use the interface?

� What kind of support is provided?
� Will user enjoy their experience using the

interface?
� Do they feel this interface helpful?

Next, based on a couple of scenarios 2, use cases
were developed. In use Case 1:

� Systems displays the options for input job
keywords

� Systems displays the options for frequent
job search keyword tags for selection

� Users input the job search keywords in the
search box

� Users click the “Search Button” for search
� System displays all the results list about

related job opportunities
� Users click the bookmark symbol to

bookmark the intended job opportunities.

146 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

In use Case2:
� System displays the options for CS/CIS job

search tags
� Users click the tag to search the CS/CIS job

opportunities
� Systems display several checkboxes for

several frequently used job search websites
� Users press enter key to find all the websites

they choose
� Systems display all the results related to the

website they choose, showing the CS/CIS
job opportunity search

Next the Volere Shell [Figure 1] shows requirement.

Figure1: Showing requirements using Volere shell.

With regard to the Mental Model, we
understand that when people want to find something,
they initially know what they are looking for. They
have some basic information about the product,
usually a name or some keywords. They usually
assume that the platform they will use will have
functionalities they want available and it will be
simple as just providing the term they are looking for.
They also assume that this will be completed fast.
This is not always true, results provided may not be
all relevant and may take time to list. The erroneous
mental model may lead to some restrain on the
interactive design and some learnability issues.

With regard to the enhanced conceptual
model, two conceptual models were examined. The
first one uses a traditional search process where the
users input the searched keyword to an information
center which finds related information and displays it.
The second locates and searches all other websites
and displays a summary of the information to the user.
In this model, the information center is only a media
to connect source databases with the users. When
both models are compared, the first is more

traditional and is close to users’ mental model for a
search process. But in perception, memory, and
problem solving aspects, the second conceptual
model has more advantages because it does not
require lots of memory and location to store the data.
It is only a media that connect the sources and users.
It also provides more possible results.

When designing the interface, several design
issues and principles should be applied such as
visibility, feedback, constraints, consistency and
affordance.

The first design issue is concerned with

WIMP and GUI issue. Icons sometimes will become
the pervasive feature of the interface. Icons should be
very consistent and should bring positive feelings to
users especially for functions that are not familiar to
users. The second design issue is visualizing
information. It is very important to decide on how
search results should be displayed which we think
will be through a list. The third design issue is
related to web design. Some general design principle
can be applied, such as visibility, feedback,
constraints, consistency and affordance.

 Two designs were investigated. The first design
uses a traditional search process interface, which has
its own database. This will require more
implementation time and efforts, requires allocating
memory storage and can’t provide enormous data
results. However, it will be easy to use. The second
design is a non-traditional web-based search interface
which integrates the results gathered from other job-
search websites. At first it will not be easy to
understand for first-time users. This will required us
to provide help to users. Also, the interface can’t
directly show all results. Users have to click each
individual URLs to check out the results. For this
project, the second design was chosen because it was
different.

3. Implementation

Figure 2 shows the main interface of the system
which lists different URLs that are used to search for
CS and CIS job opportunities. The user can choose
among three options: main /home page, help page
(figure 3), and contact me page (figure 4). HTML
and CSS were used to implement the web-based
application. The Home page, lists all job search
websites together having already the results of the
search. The user then selects a link to access each
websites’ search results (figure 5). The major
obstacle in developing such a web-based application

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 147

ISBN: 1-60132-446-4, CSREA Press ©

was dealing with style compatibility of the different
browsers because each had its own style in displaying
their results.

Figure 2: home page of the system.

Figure 3: help page of the system

Figure 4: Contact us page of the system

Figure 5: Sample of output page when the user
searches for “CS or CIS” job which is placed in the
keywords input box.

4. Evaluation and results

Ten test subjects/users were asked to test and
evaluate the system. We were evaluating their
attitude towards the different pages and how they
interact with it. We asked them to provide their
opinion and we observed their reactions while using
it. We were mainly focusing on identifying any
problems with this interaction model. Questions
asked: What are the issues? What’s the value of this
nontraditional interface? can it compete with other
job-search websites? Will this interface fulfill the
requirement of finding the CS/CIS job opportunities?
Will it produce complete results? Is it going to
perform the required task fast? Will users trust the
results? Are the search engines chosen trust-worthy
and acceptable by the users? Will users find it easy to
use? How long will it take them to learn to use this
interface? Since this interface will be compared
against other search engines that perform the same
task, it was important to ask the users if they will
prefer using ours against the rest? Is the style of this
interface acceptable and appealing? Is it distinctive?

First, we evaluated the interface with regard to
how long will it take a new user to get familiar with
the interface and use it to obtain desired results using
a mathematic method analyze. The second
evaluation was concerned with the appearance of the
website and how users feel about this website. We
used a questionnaire. In this questionnaire, there are
questions about the general appearance, the basic
functions, and the convenience.

148 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

The third evaluation asks the users to give feedback
regarding their experience using this interface when
compared to other types (using open-ended
questions).

Several practical issues were identified
regarding this evaluation. Subject/users have
different backgrounds. They may not want to search
only CS/CIS job opportunities. They were informed
that the website or model is for searching CS/CIS
jobs, but they still wanted to change the keyword
unconsciously. So it is very important to make sure
they understand what the task is.

Subjects also have different computer and
network usage knowledge. As a result, the time spent
to complete the same task varies accordingly. They
also have different ideas about how a website should
be functional and how to be arranged.

To make sure that subjects will not take into
consideration the feelings of the developer, the
developer decided not to inform them that they are
testing her system to remove any bias that may occur.

We also considered the urgency of needing
to use such a search. It is different between having to
test the system and to really wanting to find a job.
This is very hard to resolve at this point as the users
may require more functionalities later on when they
really need to use the website.

Since we know that each person has his/her
own taste regarding style and preference regarding
appearance, we prepared very specific questions to
make sure that bias will not affect the results

Ten subjects were asked to complete the
task of searching for 10 possible CS/CIS job
opportunities using our interface. This includes them
using the interface for the first time and using help
link (if needed). We recorded the time taken to
complete this task. Table 1 summarizes the findings.
Average time was 11.20 minutes.

Then the subjects were asked to complete
questionnaires on their own and no one was
proctoring them. Table 2, table 3 and table 4 are
summaries of their answers. In general, most of them
had positive attitude regarding the functionality of the
interface, appearance and style and ease of use.

Table 1: Time taken to complete the search task
User Min
1 11
2 17
3 12
4 6
5 9
6 10
7 12
8 11
9 11
10 13
Avg. 11.20

Table 2: Summary of the Questionnaire’s questions
regarding system functionalities
Functionalities:

D
is

ag
re

e

N
eu

tr
al

A
gr

ee

T
ot

al

Provides enough search
possibilities

1 3 6 10

Provides enough links to
other websites

2 4 4 10

Have instructions for how
to use it

0 2 8 10

Can leave feedback 0 0 10 10

Have basic contact
information

0 0 10 10

Feel helpful about how the
functions work

0 3 7 10

Feel good to do the search
in this way

0 1 9 10

Total 3 13 54 70

Finally, the subjects were asked to give their
opinion regarding the interface and an overall score.
Table 5 summarizes the overall score regarding the
use of the interface. The average is 8.0/10.
The users also provided feedback regarding the
interface. They stated that they liked the design. They
liked that they did not have to search many websites
to get this information. It was simple to use. They
wanted to be able to search other jobs and other
locations and allowing narrowing job options. One
person pointed out that there should be a way to
verify websites.

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 149

ISBN: 1-60132-446-4, CSREA Press ©

Table 3: Summary of the Questionnaire’s questions
regarding appearance and style
Appearance and Style

D
is

ag
re

e

N
eu

tr
al

A
gr

ee

N
/A

The website is easy to
follow

0 1 9 10

The color scheme makes
me feel good

0 0 10 10

The font/size is good to
distinct

0 2 8 10

The layout/arrangement in
this website is good

0 0 10 10

The figure/image in this
website is good

0 1 9 10

This website has a good
style

0 2 8 10

Total 0 6 54 60

Table 4: Summary of the Questionnaire’s questions
regarding Ease of use
Easy to use

D
is

ag
re

e

N
eu

tr
al

A
gr

ee

N
/A

I know how to use this
website to search job

0 3 7 10

The instruction is easy to
follow

0 2 8 10

I think this method of
search can be accepted

0 0 10 10

Total 0 5 25 30

Table 5: Summary of the overall score regarding
interface use

User Overall score regarding interface 0..10
1 8
2 8
3 9
4 9
5 8
6 7
7 6
8 9
9 8
10 8
average 8.0

The final step was to evaluate the collected

data. Ten subjects were asked to use the system and
then provide feedback. All of them were

undergraduate students from different majors. 5 of
them are males and 5 of them are females. All of
them had previous experience using a search engine.

Each subject conducted the search
individually and without interruption with us
observing their behavior and recording time. We did
not provide any help or instructions while they are
doing the search.
Their first task was to search for 10 possible jobs and
we recorded the time needed to complete the time
and noticed that some of them tried to change the
search option. The questionnaires were, then,
completed by the subjects without our presence. The
first one was checking if the interface provides the
basic functionalities that we promised the interface
would provide. Other questionnaires asked about the
visual effects and appearance of the interface and
about how easy or how much confusing was it to use
the interface.
The open-ended questions which asked the subjects
to provide feedback regarding how to improve the
interface provided valuable information and
suggestions for future work.

5. Conclusion

The system is designed for graduating students at

our university looking for CS/CIS jobs. Analysis,
design, implementation and evaluation were
performed. 10 subjects evaluated the system and
provided feedback. The overall satisfaction rate is
about 8%, which is corresponded to the overall score
they give. The time they used to finish the search task
is faster than searching several websites. The users
were happy with the interface design and the idea of
the project. The average time to complete the search
task is 11.20min. The mode is 11min, and the middle
is also 11min. The standard deviation is 2.68. So the
data varies very little, all data is in the 99.9%. Most
of them use the interface during a very reasonable
time. The average score they give is 8.0 / 10.0 for
design.

6. References

[Fox 1986] Mark Fox. Private Communication.

Carnegie Group, Inc. Pittsburgh, PA. 1986.
[Grguric et al. 2016] Grguric, Andrej, et al. "A

Survey on User Interaction Mechanisms for
Enhanced Living Environments." ICT
Innovations 2015. Springer International
Publishing, 2016. 131-141.

[Hartson and Hi 1989] H. Rex Hartson and Deborah

150 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

Hi. “Human Computer Interface Development:
Concepts and Systems for its Management”.
Computing Surveys 21, 1 (March 1989), 5-92.

[Mittal et al. 1986] Sanjay Mittal, Clive Dym, and
Mahesh Morjaria. “Pride: An Expert System for
the Design of Paper Handling Systems.” IEEE
Computer 19, 7 (July 1986), 102-114.

[Myers 1992] Brad Myers. State of the Art in User
Interface Software Tools. In H. Rex Hartson and
Deborah Hix Ed. Advances in Human Computer
Interaction, Volume 4, Ablex Publishing, 1992,
pp.

[Rogers et al. 2011] Yvonne Rogers, Helen Sharp,
and Jenny Preece. Interaction Design: Beyond
Human-computer Interaction. Chichester, West
Sussex, UK.: Wiley, 2011. Print.

[Schmucker 1986] Kurt Schmucker. “MacApp: An
Application Framework”. Byte 11,8 (Aug. 1986),
189-193.

[Smith and Dunckley 2016] Smith, Andrew, and
Lynne Dunckley. "HUMAN FACTORS IN
SOFTWARE DEVELOPMENT-CURRENT
PRACTICE RELATING TO USER." Human-
Computer Interaction: Interact'95 (2016): 380.

[Sutton and Sprague 1978] Jimmy Sutton and Ralph
Sprague, Jr. A Study of Display Generation and
Management in Interactive Business
Applications. Tech. Rept RJ2392, IBM Research
report Nov. 1978.

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 151

ISBN: 1-60132-446-4, CSREA Press ©

The Relationship Between AIC and The Quality Product
 Lina khalid Ahmed

!��	"��
�0����

���� Researcher, Amman, Jordan
lenaalhafed@gmail.com

Abstract - one of the main goals of software architecture is
to build a software product with high quality and then
improve this product according to the quality and the
business goals of the product. Architecture influence cycle
(AIC) has the impact on building any product with high
quality by introducing the factors that influence software
architecture and those that are influenced by software
architecture then presenting the overall cycle that affects the
goal of the product. Architects need to know the basis, the
nature as well as the priority of these influences as early in
the cycle as possible.

Keywords: Software Architecture, Quality Attribute, Business
Goal, Architecture Influence Cycle, Architecture Significant
Requirements, Architectural Design Decisions.

1 Introduction
Software architecture is a set of structures that are built

for a reason, which comprise software elements, relations,
and properties of both. All software systems are built to
satisfy the goals of organizations (business goals), so the
software architecture is described as a bridge between those
business goals and the final resulting system. The good thing
is that software architecture is built upon known techniques
that ensure achieving these business goals [1].

Business goals and qualities are the basis on which software
architecture is built, so the main goal of the architect is to
identify the requirements that affect the quality of the
business goals which ultimately affect the overall structure of
the system. We must classify quality attributes as the system
properties, and they are separate from the functionality of the
system.

This paper introduces the relationship between the
architecture influence cycle and building a product with high
quality by introducing factors that affect the architecture as
well as factors affected by it. It also describes the meaning of
Architecture Significant Requirements (ASR) and their role in
this cycle.

This paper is classified as follows: Section 2 describes the
related works and includes all the authors who have worked
in this area. Section 3 defines AIC with all the details of the
factors that influence and others that are influenced by
software architecture. Section 4 defines relationships between
software architecture, business goals and qualities. Section 5
describes the results which present how AIC affects software

architecture in building high quality products. Here,
Architectural Significant Requirement (ASR) is defined and
its role in the cycle is presented.

2 Related works
Many researchers work on Architectural design and explain

how to achieve high quality with a variety of techniques.
Many papers also apply the effects of certain factors on case
studies. [2] Presents both practical and theoretical benefits
from a case study using Architectural Business Cycle (ABC)
to understand how to manage software architecture in
automotive manufacturing. It represents the role of ABC in
modifying the environment and defining the context of the
interviewer. So both the theoretical framework and the
Interview methodology that used in this case should be
possible to be used for studies at other organizations.
A comparison between software architectures of five

industries is done in [3] and from the comparison, authors
extracted a general software architecture design approach.
Moreover, this paper finds an ideal pattern and from this
pattern, the author derives an evaluation that can be used for
further method comparisons.
Enterprise Architecture (EA) is one type of software
architecture which describes the business structures and it is
the most important technology that is being used today in
business organizations. [4] Defines and describes the
fundamental Business Rule Life Cycle (BRLC) by integrating
Enterprise Architecture with Enterprise Decision Management
(EDM). It starts by defining the business rule and its qualities
then shows its function. Another study is [5], it presents how
architectural design decisions affect achieving the goal that
the software is built upon. This is done through a design
fragment concept and the quality control on these fragments.
This paper presents the relationship between AIC and
producing a system with high quality.

3 Architecture Influence Cycle
There are factors that influence building architectures and

these factors have an effect on the architect and ultimately on
the entire system. This is called an Architecture Influence
Cycle [1]. From this definition we conclude that the
architecture itself has some factors that influence it as well as
other factors that are influenced by.

152 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

3.1 Factors influencing software architectures
The architect is influenced by several factors when building
the architecture of the system, including:

� Stakeholders: a stakeholder is anyone who has a
stake in the success of the system. The problem is
that each stakeholder has his own goal and concern
when building the system. Documenting the
requirements and capturing the system’s qualities is
beneficial for the stakeholder. Here, the role of the
architect is to capture all the requirements that do not
explicitly appear and referee all the conflicts that
frequently appear. Early engagement of stakeholders
allows the architect to understand the constraints of
the task, manage expectations, negotiate priorities,
and make tradeoffs. So the most valuable advice that
should be given to the architect is: know your
stakeholder [1].

� The development of business environment: the
architecture of the software can be formed by the
business/mission concerns such as: time to market,
use of legacy system, cost, plans for long-term
infrastructure and many other factors that influence
the organization, so the architect must know these
factors [6].

� The technical environment: here, the technical
environment means all the technical parts that exist
at the time the architecture is to be designed. These
technical parts are what determine the new
technology to be assembled and added to the
infrastructure and that is why this particular factor is
always changing. Technical parts include: patterns
and styles, social networking, and aspect–oriented
programming [6].

� Professional background and experience of the
architecture: architects always make choices
according to their past experience that is why
architects must have certain knowledge and skills
and this is why an architect’s choices might be
influenced by experience and training [1, 6].

3.2 Factors influenced by software architectures
Once the architecture is completed and the system is built,
both will affect the technical environment, the business goals
and social experience.
The architecture also affects the requirements of the
stakeholder by giving the customer the chance to receive a
more reliable system and certainly with a fewer defects so the
requirement must have a way of being negotiated rather than
just being an order.
All in all, it must be noted that the architect is affected by the
architecture he built. If the architect built the architecture for
any system and it worked, he will repeat it again on the future.
On the other hand, he will avoid it if it failed. This shows that

the architecture will affect the experience and knowledge of
the architect and in some cases it will affect the technical
environment that is used to improve the system.
That is what is called the cycle of influence. All the factors
that affect the architecture when building the system get
affected by the architecture when the system is finally built.
Figure 1 represents the Architecture Influence Cycle (AIC).

Figure 1. Architecture Influence Cycle as defined by
Kazman et al. [1]

To summarize, architecture is more than the technical
environment and the functional or non functional
requirements. All factors that were described earlier must work
as a unit that affects the architecture and the system architect
must be aware of that in order to be a competent architect.

The two principles in building any software architecture are
[7]:

� The quality attributes that drive the software
architecture

� Architecture centric activities, a method of software
architectural design. The main goal of it is helping the
software development team to build the architecture
of the entire system in an iterative way through its life
cycle.

4 Software architecture, Business Goal and
Requirements

Software architecture or any solution of it cannot be designed
well without the understanding of the business goals, qualities
and the relationship between them, which makes the
relationship a very critical part in designing any system.

4.1 Software architecture and requirements

The requirements for any software system come in different
forms, but all these forms encompass the following types [1]:

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 153

ISBN: 1-60132-446-4, CSREA Press ©

� Functional requirements: these requirements state what
the system should do, and how to react at runtime events.
� Quality attribute requirements: this type of requirements
determines the qualification of the functional requirements of
the overall system.
� Constraints, which are the architect's design decisions
such as the specific programming language that is used
through building the system.

According to these types of requirements, the architecture
has its response to each type of them as follows:

� Functional requirements are satisfied by assigning
responsibilities throughout the design or to specific
architectural elements. Assigning responsibilities means
building the early design decisions.

� Quality attribute requirements are satisfied by various
structures designed to the system, and the behaviors and
interactions that populate that structure.

� The constraints are satisfied by accepting the design
decisions.

The architectural design is affected by three types of
requirements described in figure 2.

Functional
requirements

Architectural design Design constraints
Quality attribute

requirements

Software system
architecture

Figure 2. Influences of requirements on Architectural
design.

The main point is, structuring the architecture needs these
three types of requirements, not just the functionality
requirements.

4.2 Business goals and software architecture

Business goals shape the architecture. The architect makes
sure that the system architecture has high performance,

reliability and security which are suitable to the business goals
that are built upon them [8].
The architect needs to know the system's business goals
because these goals are what determine the quality attribute
requirements of the system and that helps architect to design
the architectural decisions of the system. This will be defined
later on in this paper. Knowledge of business goals enables
the architects to know the tradeoffs and discard the
requirements that are useless for the system.
Each organization has its own business goals for the system
under development. Ideally, the system will satisfy the
business goals and it is the responsibility of the architect to
design a system that is able to do that.
Building a design based on business goals is done through a
method that is used to generate, prioritize and refine the
quality attribute scenarios before the software architecture is
completed. This is what is called QAW (Quality Attribute
Workshop). The scenarios in this method help us to better
describe quality attributes [1].
The stakeholders are connected to the QAW early in the life
cycle in order for the stakeholders to discover quality
attributes. This method increases the communication between
stakeholders, clarifies quality attributes and decides the early
design decisions which are applied to the system. Design
decision concepts play an important role in designing any
software architecture and they are applied on the architecture
design processes. For instance, the main decisions are: the
main approach for structuring the system, the strategy that is
going to be used to control the system, the style that is going
to be used to build the software architecture, how to evaluate
the architecture, and how it should be documented. [6].

4.3 Business goals and qualities

Business goals are quality attributes the system is expected to
achieve such as cost, schedule, and time-to-market.
For example, time-to-market can be achieved by reusing some
elements or deploying a subset of the system, while the goal
cost can be achieved through having a budget for the
development effort which must not be exceeded.
The idea is that different architectures will need different
development costs. For instance, an architecture that needs
technology that does not exist in the organization will be more
costly than one that takes advantage of assets already in
house. An architecture that is highly flexible will typically be
more costly to build than one that is strict [9].

5 RESULT
The factors that affect the entire system and its quality are
decrbied in previous section. This section describes the
relationship between AIC and quality attribute (which is the
result of this work). Figure 3 concludes this relation; it
describes how the architect receives these factors and operates
on them to achieve high quality products.

154 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

Figure 3' The relationship �
tween AIC and quality
attributes

Regardless of the methodology he uses to build the system,
the architect should know the basic goals of the system,
understand ASR (Architecture Significant Requirement), and
choose the important design decisions to put them into the
process of building the architecture.

Important definitions that appear in this cycle are:

ASR and Architecture Design Decisions (ADD).

ASR can be defined as a set of requirements for a software
system which drive the architectural design; that are why they
are significant. This means that these requirements have a
deep effect on the architecture of the system. There are many
techniques for gathering requirements from the stakeholders;
for example, object oriented analysis uses use-case and its
scenarios [10, 1]. Furthermore, ASR can be gathered by
understanding the business goals because quality attribute
requirements can often be derived from business goals

Any technique used to extract ASR should be helpful to
record them in one place so that that can be reviewed,
referenced, used to justify design decisions, and revisited over
time if changes are to be made on the system [1].

ADD can be defined as a set of decisions and considered
alternatives that directly influence the design of software
architecture. The important thing is that these decisions are
achieved through set of reputations which ultimately affect
building a system of high quality.

ADD is positioned in the first step of architectural activities,
but these decisions are modified through these activities until
they are appropriate.

These two important concepts are used by the architect
through architectural activities. These activities, which are
shown in figure 4, include:

� Architectural analysis
This is the first step of the cycle which defines the problem of
the system and models the user’s requirements for the system
to do.

� Architectural synthesis
This step is the core of the cycle; it processes the ASR and
finds new requirements that influence the architecture. The
main advantage of this step is moving the requirements from
the problem space to the solution space.

� Architecture evaluation
This activity ensures that the architecture is according to the
ASR that are proposed and that it certainly achieves the
specific goal the system is built upon. This must be the basic
part of every development methodology because it has many
advantages of which the most important is to validate the
functional and quality attribute requirements. Another
important advantage is to improve the architecture. One
important technique that is used to evaluate the architecture is
ATAM (Architecture Tradeoff Analysis Method); it is the best
known scenario-based evaluation method. The main purpose
of this technique is to assess the consequences of architectural
decisions according to the business goals and quality attribute
requirements. This paper did not go in details with this
technique; first because the evaluation is not the core and
second because there are variety of techniques for performing
architecture evaluation, and each has a different cost and
provides different information. However, according to this
paper, ATAM is the most appropriate technique.

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 155

ISBN: 1-60132-446-4, CSREA Press ©

Figure 4. Architectural design activities

Figure 4 shows that the ASRs go through architectural
evaluation in which they are evaluated against candidate
solution architectures.

After completing the architectural process, the architect can
build a system according to its architecture and this system
will certainly be a high quality product. If the architect need to
develop the capabilities of the system, he can go back to the
business goal and the methodology and in some cases he
judges the technical environment to have a new system
environment.

The relationship between AIC and the quality attributes
appears through building the architecture and through
improving the capabilities of the system.

6 Conclusion
The idea of this paper is building a software system with high
qualities. This work shows that the factors that influence the
architect and their relationship with producing systems with
high qualities needs to introduced and defined. Moreover, it
shows that sometimes we need to go back through cycle to
improve the quality and that achieves the goal of the system.
That is the reason of changing the environment of technical
support or negotiating with stakeholders about the
requirements of the system.

7 References

[1] Bass L., Clements P., Kazman R., “Software Architecture
in practice”, 3rd edition, Addison-Wesley, 2013.

[2] Eklund U,Olsson C,” A Case Study of the Architecture
Business Cycle for an In-Vehicle Software
Architecture,”IEEE,2009.

[3] Christine H., Philippe K. b, Robert L., Nord, Henk O,

Alexander R., Pierre A., “A general model of software
architecture design derived from five industrial approaches,”
The Journal of Systems and Software 80, PP: 106–126, 2007.

[4] Tortolero A,” Enterprise Architecture and the Business
Rules Life Cycle,” Innovations Software Technology, 2008.

[5] Khaled L., Achieving Goals through Architectural Design
Decisions, and Journal of Computer Science (JCS)
.ISSN:1549-3636, PP: 142-1429, 2010.

[6] Software Architecture: Principles and practices. An on line
training, SEI, Carnegie Mellon university, 2016.

[7] Nortrop L.,”Architecture Business Cycle Ensuring Product
Qualities,”SEI,Carnige Mellon University,2004.

[8] Khaled L., Driving Architectural Design through
Business Goals, International Journal of Computer Science
and Information Technology.Vol.8. No.3. ISSN: 1947-
5500,2010, PP:68-71.

[9] http://etutorials.org/Programming/Softwarearchitecture in
practise 2nd edition.

[10] Khaled L., Architectural Design Activities for JAS,
International Journal of Computer Science and Information
Technology, Vol.6. No.2, ISSN: 1947-5500, 2009, PP: 194-
198.

156 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

The process of developing a system to find tutors
Suhair Amer and Kolton Benoit
Department of Computer Science,

Southeast Missouri State University, One University plaza, Cape Girardeau, MO, USA 63701
samer@semo.edu

Abstract- This paper describes the process of
developing a system to find tutors. This was a project
required in a Human Computer Interaction
undergraduate course where analysis, design,
implementation and evaluation are required.

Keywords: HCI, analysis, design, tutor

1. Introduction

The amount of information stored and to be
retrieved is massive. Information can be retrieved
from the internet using specialized tools known as
search engine. This is viewed as a simple software
program that searches for the needed information
based on keywords supplied by a user. A search can
be performed using syntactic or semantic analysis. A
large number of Semantic Web search engines have
emerged recently which are based on different design
principles and provides different levels of support for
users and/or applications. There are more advanced
techniques used for retrieving information. More
information regarding semantic search can be found
at [Liu and Zhang 2010] [Miller 2008][Spivack 2009]
[Madhu 2011] [Sudeepthi 2012] [Ding et al. 2004]
[Radhakrishnan 2007] [Bhagdev et al. 2008] [Chiang
et al. 2001] [Bhagwat and Polyzotis 2005] and[Zou
2008]. This paper describes the experience of an
undergraduate student who attempted to develop a
simple system utilizing human computer interaction
concepts.

2. Analysis and Design

The first step was to identify usability and
user experience goals such as keeping track of tutors
for CS and CIS courses, encouraging contact between
tutor and the user (the student), being able to easily
find tutors in subject user is searching for, being able
to easily navigate the interface, and providing an “I
don’t know” option to help users find a tutor. The
system should be helpful, motivate the user to contact
a tutor, and be useable under high stress.

Then usability and user experience questions
were formulated. Examples of such questions are:
� Can the system store/keep the information on the

tutors?
� Can it search for appropriate tutors depending on

what the user needs?
� What if it can’t find a suitable tutor?
� What if the use doesn’t know what they need help

for?
� How easy is it to navigate the interface? Can the

user be lost in it too easily?
� How does the system allow the user to contact the

tutor(s) it found?

Then user’s needs, requirements and main
tasks are formulated. The user needs to be able to
search for a tutor to help them with their class. Upon
finding a potential tutor, the user needs to be
presented with multiple methods of contacting them.
These methods could be more formal, such as
through email or telephone, or less formal, such as
various social media outlets. The system should also
provide a picture of the tutor to facilitate the old-
fashion communication method: face-to-face.
If the system cannot find a suitable tutor, due to a
lack of such a tutor or poor search criteria, the system
should direct user to a group of default or “trusted”
tutors; people who may be able to help, or point them
to someone who can help, regardless of what criteria
are provided. An “I don’t know” option would
provide the user with the trusted tutors list. Table 1
relates user intention to the system’s responsibility.

Table 1: relating user intention to the system’s
responsibility
User Intention System Responsibility

Access system. Welcome the user.

Search for tutors. Obtain criteria from user.

Find suitable tutors. Find tutors based on criteria
and present them to the user.

Select a single tutor
from suitable tutors.

Display tutor profile,
including contact info.

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 157

ISBN: 1-60132-446-4, CSREA Press ©

4. Scenarios and Use Cases

 Based on several scenarios some use cases were
created. Next is an example of a use case:

1. The system displays a welcome message to the

user, also identifying the system itself.
2. The system provides the user with a search prompt.
3. The users chooses the general subject they need

help with and clicks the submit button.
4. If the system finds at least one tutor that matches

the criteria:
a. The system presents the user with the list of

tutors.
b. User selects a tutor, go to 7.

5. If the system cannot find at least one tutor:
a. Display error message to the user.
b. Display list of “trusted” tutors.

6. If no criteria (or the “I don’t know” option) was
selected:

a. Display error message to the user.
b. Display list of “trusted” tutors.

7. Display tutor’s profile.

 The requirements are also presented in a
Volere Shell format (tables 2 to 12).

Table 2: Requirement 1 in Volere Shell format
Requirement # 1 Use Case 1, step 1
Description: Display a welcome message,

identify system.
Rationale: Welcome the user, make sure they

know that they are accessing the
system they are looking for.

User
Satisfaction:

3

User
Dissatisfaction:

2

Priority: Low
Dependencies:

Table 3: Requirement 2 in Volere Shell format
Requirement # 2 Use Case 1, step 2
Description: Provide the user with a working

search feature.
Rationale: Allows the user to search for tutors

based on the class they have or the
subjects that they have selected.

User
Satisfaction:

5

User
Dissatisfaction:

5

Priority: Highest
Dependencies:

Table 4: Requirement 3 in Volere Shell format
Requirement # 3 Use Case 1, step 4a
Description: System searches for and displays to

user a list of applicable tutors.
Rationale: The user generated criteria

gathered needs to be used to find
an applicable tutor.

User
Satisfaction:

5

User
Dissatisfaction:

5

Priority: Highest
Dependencies: Requirement 2

Table 5: Requirement 4 in Volere Shell format
Requirement # 4 Use Case 1, step 5
Description: Display a list of “trusted” tutors if

the system cannot find an
applicable tutor with the given
criteria.

Rationale: Poor criteria may result from a
stressed or unsure user; this
shouldn’t derail their search for a
tutor.

User
Satisfaction:

4

User
Dissatisfaction:

4

Priority: Mid
Dependencies: Requirement 3

Table 6: Requirement 5 in Volere Shell format
Requirement # 5 Use Case 1, step 6
Description: A catch-all “I don’t know” option,

skips to “trusted” tutor list.
Rationale: If the stressed user can’t provide

good criteria, this also shouldn’t
prevent them from finding
someone who can help.

User
Satisfaction:

4

User
Dissatisfaction:

4

Priority: Mid
Dependencies: Requirement 3

Table 7: Requirement 6 in Volere Shell format
Requirement # 6 Use Case 1, step 7
Description: Display the selected tutor’s contact

profile.
Rationale: Show the user the contact

information they are searching for.
User
Satisfaction:

5

User
Dissatisfaction:

5

Priority: Highest
Dependencies: Requirement 3

Table 8: Requirement 7 in Volere Shell format
Requirement # 7 Use Case 1, step 2,

backend function
Description: Allow instructors/administration to

158 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

add tutors to the system.
Rationale: Tutors added solely through the

source code make it difficult to add
tutors; it would require changing
the source code and recompiling
anytime a new tutor was needed.

User
Satisfaction:

3

User
Dissatisfaction:

3

Priority: Mid to high
Dependencies:

Table 9: Requirement 8 in Volere Shell format
Requirement # 8 Use Case 1, step 7,

backend function
Description: Do not display a tutor if it is after a

certain date.
Rationale: Tutors are students too: they

graduate and leave. The former
tutor shouldn’t be contacted by
new users after a date that is
specified when the tutor is added to
the system. The function could also
be configured to remove the tutor
entirely.

User
Satisfaction:

3

User
Dissatisfaction:

3

Priority: Low
Dependencies: Requirement 3

Table 10: Requirement 9 in Volere Shell format
Requirement # 9 Use Case 1, step 7,

backend function
Description: Only display a tutor’s phone

number (if it was provided) during
a certain time frame.

Rationale # 9 Prevents new users from finding a
tutor’s phone number and calling
or text messaging them at an
inappropriate time. Cannot affect
users who already have the tutor’s
phone number (obviously).

User
Satisfaction:

3

User
Dissatisfaction:

1

Priority: Low
Dependencies: Requirement 3

Table 11: Requirement 10 in Volere Shell format
Requirement #
10

 Use Case 1, step 1,
additional features

Description: Show recently viewed tutors on
homepage.

Rationale: Keep users from needing to re-
search for a tutor they have viewed
before.

User
Satisfaction:

4

User
Dissatisfaction:

2

Priority: Low
Dependencies: Requirement 7

Table 12: Requirement 11 in Volere Shell format
Requirement #
11

 Use Case 1, step 4a,
backend function

Description: Sort tutors in a “queue” style.
Rationale: Reorder the tutors as users view

their profile; prevent a single tutor
being at the top of the page,
hopefully balancing the load of
users across all tutors.

User
Satisfaction:

3

User
Dissatisfaction:

5

Priority: Low
Dependencies: Requirement 3

 Regarding the conceptual model, the
system’s main design aspect is to keep it simple, and
provide the user with limited options to work with.
Since the system’s task is to provide a student user
with contact information of a tutor, it should be kept
fairly simple to accomplish. The method for finding a
tutor would be similar to an Advanced Google
search: selecting specific criteria to narrow down the
results of a query.

 Regarding the mental model, ideally, the
user’s mental model will be almost as simple as the
conceptual model. Requiring an unnecessarily
complex mental model would put undue stress on a
student that is potentially stressed. The user should
only need to know how to navigate to the system is
and what class they want help in. After arriving to the
page, the user should select their criteria to the best of
their abilities and choose a tutor from the resulting
list. They then can choose how to contact the tutor
based on the information that is presented to them.

 Upon analysis of the above information, the
conceptual model should be tweaked to allow the
user a fail-safe way of finding a tutor. A user needing
to find a tutor is probably going to be stressed out,
not being able to find one in the system would add to
that stress.
In addition to the primary method explained in the
original conceptual model, a secondary method for
finding a tutor would be a list of “trusted” tutors, to
act as a “hub” of sorts. This list would be comprised
of tutors who are more experienced, thus more likely
to be able to help the student or know the criteria

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 159

ISBN: 1-60132-446-4, CSREA Press ©

needed to find someone that can help. An “I don’t
know” option, would take advantage of this “hub.”
This “hub” could also be used as a last resort, should
the system not be able to find a tutor with the
specified criteria.

 Then we identified potential interface design
problems such as the following:
� The system may not be able to scale well:

o Number of courses supported:
� More courses mean more options a user
would need to search through.

o Difficulty (100, 200 levels, etc.):
� The higher difficulty of the courses will
mean that we are less likely to have
knowledgeable tutors available.
� Knowledgeable tutors may not be
available as the tutors may graduate,
transfer, etc.

� Tutor’s contact information:
o A tutor may not be willing to share any

contact information other than their
University provided email address, due to
privacy concerns.

o A tutor may not have any other methods of
contacting them, aside from their email
address.

o A tutor may not check their email or other
contact methods for new messages.
� A method of contact built into the system
would have the same problem.

 Two initial designs were investigated. The
first design is a combination of search and results. It
does not require a search or an “I don’t know” button
because the list is to update automatically as the user
changes the information in the list boxes. It would be
implemented using AJAX in VB (or C#) ASP.NET.
The second design is very similar to the first, but
splits the search and results sections into 2 pages.
This lessens the chance of information overload on
the user and makes it simpler to implement. It could
be implemented in VB (or C#) ASP.NET or a WCF
Windows form VB (or C#) application. Both use a
server to host the tutor data. Both designs share the
same tutor profile. It lists the name, a picture (if
available), contact information, a quote (if available),
their CS, CIS, and other technology courses taken
and skills that they are known to have. The
administration portal page is not shown. Both designs
will work, however, the first design does have the
risk of the user becoming lost in the mass of
information. This is, obviously, a bad situation to put
a stressed student in. The second design solves that
problem by splitting them up into more than one
page, at the cost of slightly more complexity. Due to

the development time constraints of this project, the
second design using ASP.NET would be faster to
implement into a working system chosen.

3. Implementation

 The system was developed using Visual
Basic. Figure 1 to 7 show different forms that are
used by the system and output produced when testing
the system.

Figure 1: Main form

Figure 2: More information form

Tutor’s
picture if
available.

160 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

Figure 3: output of Test 1: Search for CS155 tutors.

 Figure 4: output of Test 2: Search for IS130 tutors.

Figure 5: output of Test 3: Search for CS 380 tutors.

Figure 6: output of Test 3 continued

Figure 7: output of Test 4: Error handling; no course
selected.

Figure 8: output of Test 5: Error handling; no tutor
selected.

4. Evaluation

List of
student
names

List of
student
names

List of
student
names

List of
student
names

The
selected
student
info

The
selected
student
info

The
selected
student
info

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 161

ISBN: 1-60132-446-4, CSREA Press ©

 The goal of this evaluation is to test the
effectiveness of the developed program The
program’s main task was to provide a way for
students to find tutor’s for their course. The goal of
the evaluation is to have at least 90% of test
participants successfully use the program and find a
tutor.
Some of the explored questions are:
� Does the user find the interface simple?

Complex?
� Does the user seem to get lost?
� Does the user find a tutor?
� Does the user find the information provided

useful?
� If this system (or a similar system) were fully

implemented, would they use it? (Or have used it
in lower level courses?)

� If this system (or a similar system) were fully
implemented, would they be interested in being
one of the available tutors?

� Are there any complaints about the system?

 The evaluation method involved going to the
Lab and asking random students there to use the
program and ask their opinions on it. This field test
presents a situation that many students may find
themselves in: they have access to a computer, the
software they need for their courses, are surrounded
by other students, and have network connectivity to
use the program. The test participants would
anonymously search for a predetermined course and
choose a tutor from the results. They would need to
use the program in a corner of the room with as few
other participants as possible; so as to prevent the
next participants from having an unfair advantage on
how to use the program.

 Despite the evaluation method being simple,
it still presents a few practical issues. The first
problem is, of course, time. There was (officially) a
total of 4 weeks for the project, 1 week was for
planning and design, 2 weeks for implementation,
and finally the last week is for evaluation. Another
issue was that participants are proficient enough that
they can either find help on their own or are at a
certain course level were there would be few to no
tutors available. Those same participants, being
students with majors focusing on programming, are
also likely to try to break the program. Bug testing is
important, but not when the concepts behind the
system need to be tested!

 The next step was to collect data. The
participants were asked to use the prototype program
to search for a tutor in a defined course. Any

problems observed by the handler or reported by the
user were noted. Participants were also asked about
their thoughts on the program (what did they like,
dislike, etc.) and if they would have used such as
system (either in the future or the past, whichever is
more applicable). 8 subjects provided the following
information:

 Problems encountered while testing the
system included comments such as that they did not
use the drop-down list correctly, they tried typing the
course data into the box, they attempted to use the
“More Info” button before clicking the submit button,
some had no problems, but found the warning for “no
tutors found” too vague.

 When they were asked about “What do you
like / dislike” answers included comments such as
“The program is really quick to access.” “I like how
simple it is.”, “It is simple.” “The window is small; it
doesn’t take up the whole screen.”, “That warning
does not make sense. It doesn’t find any tutors, but
then shows tutors?”, “I don’t like having to click
more than once to access the data.” “It’d be nice if
the [tutor contact info] screen would show the other
courses they have knowledge of.”, “I like the
simplicity.” “I wish the list auto updated.”, “I think
it’d be better if it showed the tutor information in the
same window.”, “The quotes in the tutor information
seem useless.”

 When they were asked about “Would you
use the system” answers included comments such as
“I would probably use it and wouldn’t mind if I were
a tutor that could be found using it.”, “I would use
it.”, “I probably would have been a tutor 2, 3 years
ago. But, I wouldn’t have use it to look for tutors.”, “I
don’t know.”, “Yes.”

 The validity of the evaluation is difficult to
determine; the evaluation was to let people use the
program to find any problems with it, this openness
allows for anything to happen. Unfortunately, this
instance of this evaluation was biased by the test
subjects themselves: they were all mid to upper level
CS/CIS students. They were experienced enough to
know how to use the various interface elements,
where a low level student may not. The tests show
the program mostly works as designed. It does show
that there are few problems with the interface, but the
concept behind it works well enough. The test
participants were not recorded with an electronic
device in any way. They were also not asked to give
their name or any other information in regards to
them. They were not asked to sign a release.

162 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

5. Conclusion

 For the student developing this system, the
implementation was harder than he originally
planned for within the time limit. He decided to not
develop it as web-based, but as a Visual Basic
Windows Form desktop application. When testing
the prototype all of the test subjects managed to find
a tutor. The tests show the program mostly works as
designed. Subjects’ comments do show that there are
a few problems with the interface that would improve
performance.

6. References

[Bhagdev et al. 2008]Ravish Bhagdev, Sam

Chapman, Fabio Ciravegna, Vitaveska
Lanfranchi, and Daniela Petrelli. Hybrid search:
effectively combining keywords and semantic
searches. In Proceedings of the 5th European
semantic web conference on The semantic web:
research and applications, ESWC'08, pages 554–
568, Berlin, Heidelberg, 2008. Springer-Verlag.

[Bhagwat and Polyzotis 2005] Deepavali Bhagwat
and Neoklis Polyzotis. Searching a file system
using inferred semantic links. In Proceedings of
the sixteenth ACM conference on Hypertext and
hypermedia, HYPERTEXT '05, pages 85–87,
NY, USA, 2005. ACM.

 [Chiang et al. 2001] Roger H. L. Chiang, Cecil Eng
Huang Chua, and Veda C. Storey. A smart web
query method for semantic retrieval of web data.
Data Knowl. Eng. , 38(1):63–84, July 2001.

 [Ding et al. 2004] Li Ding, Tim Finin. Anupam
Joshi, Yun Peng, R. Scott Cost, Joel Sachs, Rong
Pan, Pavan Reddivari, Vishal Doshi "Swoogle: A
Semantic Web Search and Metadata
Engine". CIKM ’04

[liu and Zhang 2010] Zhusong Liu and Yuqin Zhang.
Research and design of e-commerce semantic
search. In Information Management, Innovation
Management and Industrial Engineering (ICIII),
2010 International Conference on, volume 4,
pages 332–334, 2010.

[Madhu 2011] G. Madhu, Dr.A. Govardhan, Dr.T.V.
Rajinikanth "Intelligent Semantic Web Search
Engines: A Brief Survey" International journal of
Web & Semantic Technology (IJWesT) Vol. 2,
No. 1, January 2011

 [Miller 2008] Paul Miller. Powerset shows semantic
search solution. http://www. zdnet.
com/blog/semantic-web/ powerset-shows-
semantic-search-solution/141, May 2008.

[Radhakrishnan 2007] Arun Radhakrishnan,
"Semantic Search Lexxe : Search Engine that

Answers Exact Queries", Search Engine Journal
July 20, 2007.

 [Spivack 2009] Nova Spivack. The road to semantic
search the twine. com story. http://www.
novaspivack. com/uncategorized/ the-road-to-
semantic-search-the-twine-com-story, December
2009.

[Sudeepthi 2012] G. Sudeepthi, G. Anuradha,
Prof.M. Surendra Prasad Babu, "A Survey on
Semantic Web Search Engine", IJCSI
International Journal of Computer Science
Issues, Vol. 9, Issue 2, No 1, March 2012

[Zou 2008] Guobing Zou, Bofeng Zhang, Yanglan
Gan, and Jianwen Zhang. An ontology-based
methodology for semantic expansion search. In
Fuzzy Systems and Knowledge Discovery, 2008.
FSKD '08. Fifth International Conference on,
volume 5, pages 453–457, 2008.

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 163

ISBN: 1-60132-446-4, CSREA Press ©

164 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

SESSION

EMBEDDED SYSTEMS + SOFTWARE
COMPLEXITY AND QUALITY ISSUES

Chair(s)

TBA

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 165

ISBN: 1-60132-446-4, CSREA Press ©

166 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

���	
����	�������	���	�����	�	
���	����	���
��������������
���

��
�������������������
�	����	������������	�
!�����������	�"���	���#�

!������$%'*�+�-�
�
�������<������>@���
<����

\������^�	�_��%�
�����
�	����	������������	�
!�����������	�"���	���#�

!������$%'*�+�-�
�
`@��
��>�	
<{��

�

�
�

|��	�����������!	��	�
�	����	������������	�
!�����������	�"���	���#�

!������$%'*�+�-�
�
���	���<������
	��	>@���
<���

�
�

�������������������	
	���	������	������������	�������	����
���� ������ �������
�� ��� ���� ������ ��� ��� ��� ���� ��� ���� ��������
����		�	� ��� ����� ����� ����� ���������� ��� �����������	� ��� ���	�
�
������������ ��������	������������������
�������������	
	���	��
��� �	� ������� ��� ����� ����� ��� �������� 	
	���	� �� �!���������
��"��#� ���� ��	���#� ���	�� ����#� ���� ������������ ����		� ���
������� ����������� $��	� ����	��� 	��"	� ��� ���� ������������
�����#�	�� ������� %����� &����� &������������ ��	�� "����� �	�
%&&� ���� %&'� (%����� &����� '���������)�� '#���	�� ���	�
���"����� ���	� ��"� ���	� ��� �	�����	�� �� ����		� ��� ��	��
�����������	
	���*	�������������������������	
	���	����������
��� �������� �
� ���	�� ����������	� ���� ��������� ���	�� ����
�	���������	�	

�������	��������	��������	�������	��������	�������	
�����������	����	

}<� �}~�'��"��}�~��

��	� �����������@� ������#� 	���	�� �� ��@�� �#������� ���
	
	��	�� ��� �	�� �������� ����� ����		�����	�� �	���	�� ����
���������
���	���	�	����@������	���_	���	��������<���	���#�
����

#������	������		����	�	�	���	�	�����������	�	������@��
���
�����������	
	������������	�{	��	����������@�����������
������������{����	������������������#��������<�

���	�	*��	����	���	�	������*���{
	��������	�	�������	����
��#� 	��
�� ��� ��@�� ������ �����@� ���� 	��

�*� ����@	� ���
������	� ���@	��� ���	��	�	����	�*� �����#� ����	� �	���{
	�

���	�� ��� ���� ��	�<� ����*� �	����@� ��� ��� ��������� ��	�� ��� ��	�
���	��� ��� �	�	
���	��� ��� ������	� 	�{	��	�� ��� ��	�	�
�������<����	�	��	����@���������	���	�������	�-	��{#�{	��@�
�� �	#� �
��*� ����
#� ���� 	�	�����	� ����	� ��� ��	� �	�	
���	���
���	��<�%�
�� ���� ����	�� ����� �	����@���������	������	�	�	������
�����������

� ��	�	��������������������� ������	��	�	
���	���
��`	��<�

���	��������������	����*��������@����%�
�����*��	���	�����
^����� ���� ���� ���� +���	*� ���
#��@� �������	�� �	��� �	������
���� �����{��	� ��@��������
#� ��� ���	� ���	� ���� ���	� 	����	��
��	�� �����	�� ��� �����
� �	����@� ���	��	�*� ����	� ��� �

����
����_
#� ��	������������ ��� ���
��*� �@�
��#� ��� ��	� �	{�@@��@�
���	��*������	��������
#�������	��
����������	��
#�������������
��� ����
����	� ��	� 	�	������� ��� 	@	������ �	���� ����@����� ��	�
�	�	
���	��� ���	��<� ~	�	��	
	��*� �	����	� �

� ��� ��	�
�������@	�������	������{#���	�������*���	��
#������������	����
���� ���	��	��� ������� ������	� �	�	
���	��� �������	�� ���<�

����@���	������������������{��	���������������������	���	������
�������	��	�	
���	���������	��	����	���@�������	��������������
����
�	�� ���	
�� �� �	�	
���	��� �#�
	*� ������ ��� ���#� ���	��
����
�	�� �� ��@�� ����� ��� ���
	�	�������� ���� �����	����	� ���
��	�	�������������#��	����������<�

}�� �����	� �	��	����	*� 	�	���	�� ���� ���	� ���������	��
��	��	�� ��� �����	� ���	��	�� ���� �	�����
�@�	�� �����	�� ���
��	� �	�	
���	��� ��� ������	� ���	� {		�� 	�	@	�*� ����� ��� ��	�
������
�����$���	
$���	���	�	
���	����������$���	
�
���	�������	���	*� ��	�
���	�{	��@�������
	�	����������� ��	�
���� �	�	��	�� ���� ��������	�� {#� ��	� ��^� �� �{`	���
����@	�	���^���<�

�������_� ����@���-	����� ��

����� �	���������������	�� ��	�
��������	���*�������	��	����@��������	���	�	����
�����	����
�������

������	���	���	�	����
�{����������	���{`	��<��	��������
�	�	���� ��	� ������
� ��� ����� ����#*� ������ ��� �	�	
����@� ��
���	������������������	
��������	����������
��	��������������
�#��	���{��	��������<��	���������	�	������	����
#����	��
���
����� �	��{����	�� ���� ��� 	��	��	���
� �	��� ���� {�{
��@���#<�
����

#�����	����������	�����
�����������������_��	��	�	��	�<�

}}<� ����'��}��!���"~���}�~����

�	�����������	���	��	�	��� ��� ��	��	�	
���	������	��	�����
��#� ������*� ���� {	��@� ����		��� ��� ������	� �������<�
���	�	*�����@� ��	����	������������	��	�	
���	��*� �	����@�
��������	�� �	� @	�	�

#� 	��	����	� ��� �	��� ��� ���	� ���� ����*�
	�	�	����@� {	��		�� ���� ��� ���� ��� �

� ������ ��� �� ��`	���
�	�	����@������	�������
��#���������
	���#��������<�

��������������������� �	���� �������`	��� ������	��{#��	�	�
�
����������������������
�����������	�	�������������	�	����	�	�
�������*���� ������������ �	����
�@�	������ ���
�� ��������������
��� �	���� ���	� {		�� �����	�� ���� �	�	
��	�� ��	� ���	*� ��� ��	�
�	����
�@�	�� ��� �����	� ���� 	�
�#*� �"���� ���	��_�� ����
��������������
����� �	����@���������{�����������<����	�	*� ���
���	
	�����������	��������	��	����������������������_������@�	�����
{	#��������
	����
������������	������ �	����
�@#������
<���	�
�	�	
���	��� ��� ��� 	�����	��� ����������� �#��	�� ����
�	�� ���
���� �	�	
���	��� �#�
	� ���	��@� ������� ����	�*� ����
�
�����@*� ���	
��@*� �����@� ���� ���
	�	����������� �������	��
�	�����������<�

}�� ����� ��� ����� ��	����*� ��� ��� �������	�� ��	� ����	���� ���
���	
$���	�� �	�	
���	��$���<� ��	� ���� ��� ��

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 167

ISBN: 1-60132-446-4, CSREA Press ©

�	�����
�@#�����������	������	����@����	
�������	�������
����
���������������������	��	�	
���	�������<���	����������	��
@���	
��	�*�
��@��@	�*� �	�����*� ������������� ���	
�� ����
���
�� ��� ������� ��	� 	�	�	�������� ��� 	���	�	���� ����
��{�	��	��� �������������� ����� �

��� ��	� @	�	������ ��� ��
����
	�	� �	����
�@#� ��
������ ��� ��	� 	��� ��� ��	� ���	��� ����<�
��	����	
����	�������	���	$�������������
	�	�����������
��	� ���� �����	�� {#� ��^� ����� 	������-	�� �����
#� ��	�
�������������� {	��		�� ���	
�*� {	��@� ������	���

#�
������	�� {#� �	����
�@�	�� ���� ��������� ��������	�� {#� ��	�
��^����"�!*�����������}<�

��� ����		�	�
�
���
�
�������@�����	���������	�{	��	���#��	����	��	���	�����

�#��	��� �	�	
��	�� ��� �����
� �� ��������� �� �	�� ��� ���������*�
{��	�� ��� �������	����*� ������ �	� ���� �	��@�	�� ��� {	�
��@���	������	����
�������	�<�

�� {�������� ��������
� �������#� ����� ��_	�� �	��	��� ��	����
	�{	��	���#��	�����������������������	����������	��	���<����
	����
	� ��� ���
�������� ��� ��	�	� �#��	��� �	� ��	� ��"���
��
	������� �����
� "����� ������ �	� �����

	�� ��� �������
����
	���#�	���������		���
����������������*�{	��@�	������{
	�
��� ���	���� ���_�� ����� ��*� 	
	������� ��`	������ �����
*�
���������������{�
��#������
� ���_��@�	��<��������@� ���+�#�
	�<� �
� ����*� ��� ��� 	������	�� ����� ��	��
#*� �� ��� ���� �{���� �	��
�	�������������������
��	����������@�	�{	��	�<�

��	� �	�	
���	��� ��� ���������	� 	�{	��	�� �#��	��� ��� ��
���
#� ����
	�� ���_� �	�	����@� ����
#� ��� ��	�
�����������
�	�����	�� �{��	� ��� �	

� ��� ��	� ��@�� �	@		� ��� �	����� ���
������_	���������������@���
�������	������������	������
�	��� ��� ���
��#� ���� 	
��{�
��#� ��� ���� �������*� �����@� ����
���	����@� �	����� ��*� ������*� ���	�#� ���� ���
��#� ��� ����
������	�<�

�� �����������
�������	���
�������������
�������@����%	�������������	��	����@���������	�������������

�� �����

	�� 	�	������� ��� ������	� ��� ��	� ��� ����� ��� 	�<�
����*� ��� ���������		�������������
�	
	�	������������	����
��#�
�������	*� 	�	�	����@� ��	� ����
� 	��	�� ��� ��	� ��	����������*�
�	��@����������	�@	�	�����<�

����*� ���#� �������	�� ���	� �����	�� ��	�� 	������ ���
����	�	���	�����
	�	�	�������	���������	�����	������	������{
	*�

	����@��������������������	��	�����������	������<�������������	���
��	��	���������������������������*�����@	�	�������	�	�������
��� �	��� ��������	�*� ���
����@� ��	� �	�	
���	��� ���� 	�	������� ���
�	��� ������� ���� �	���������� ��� �	��� 	���	�	���� ����@��
�������	�����
�<�������
��	��������������������	��������������
��� ��� �������#� ��� ������ ��	� �		_�� ��� �	��	� �� �	�������

#�
���	�	��{
	� 	�	�	������������������
� �	������	<� }����������*�
������	������������� ����� ��	�	�	���	�����	������������� ��	�
������	� 	�@��		��@� ��	
�� ���	� ���� ����#� �{`	����	���
	�������� ��� ���������� ������ ���� ���	����@� ��	� ���
��#� ���
������	� �������<� ���	� ��	� ������	� �	����@� ��������	��
	�	�	������
	����@	�����������	������	�	�������	������*���	�
���	� ���
	�	�������� ��� ����������� ��� ������	� �	����@�
���	��	�� ���� ���	
#� 	��{
	� ��� ���		����@� ���{�������� ���
��	�	�����@��
�<�

����������������������	���������������������@�	�{	��	��
�#��	��� ��� 	
��	�� ��� ��	� ����
������ ��� ��	� 	������	��� ���

������ ��	� �"�$� �#��	�� "��	� �	��� ����� ���*� ��� �	

� ��� ��	�
�����
�� �����	�� ��� ��	� �"�� ��� ����� ����
��	�� 	������	��<�
��	� �����	�� ����*� ����*� ����� ���� ����� ���	��� ��	� ��{`	��*�
�������@� ��#�� ��� ���
	�	��� ����� ����
������*� ��������
���	�	��	���������	����	
��@������	�	�	������	���<�}��
��������*��

���	�	����	��������
��������������	������{����	������
������ ��	� 	�{	��	�� �#��	��� �	� �	�	��*� 	��	���

#� ��	�
���������	��	���<�

��� ��	����������������������������
��	��������������������	�����������������������{`	����	*� ���

	������ ��
�	� ���� ���	
�� ���� ���	
��@� ���	��	�*� �����
�������@� �� ��#� ��� �	�
� ����� ��	� ��@�� ����
	���#� ����
���	�	�	��	���	�� ����� 	����� ��� ������	� �#��	��<� ����*� ��	�
���� �������� �����	�� {#� ��^� �����	�� ����� ��		� �	�
�	�	�
� ��#�� ��� ���� ��
�	� ��� �� �	�	
���	��� ���	��� ���	
�*�
������������������@����	
��������	����������	�������������*�
�����������	���������������	
����������������*�����
����������
���
	�	��������������	
�������������	��	���������������	
 ��
����������<�

��	� ����� �	���	� ��� ��	����� �����	����� ��������������
{	��		�� ���	
�<� ��	� ����������� ��� ��	� �������������� ���
��@�$
	�	
����	
�����	�	����{
	�������������#��	��������	����
���{	� ��� �������@	�*� �����@� 	���	�� ��� ����*� ���	*� ��_�� ���
���������� ���� �����	����	� ��� �� �#��	�*� �����@� ��� ��	� ���	�
���	������	�	���	�	��������	��#��	�������	���	����������������
��	� ��{
	�� ����<� ���	�	*� ���� �

� ���	
�� �	� �����{
	� ���
���������� �������������<������	
��		��� ���{	�����
	�	�����
�	���	�	���@������	���{	���	�����������������	��#��	�<�

��	����$�	����{`	�������
��#��������	����������������	��
{#� ��	� ��^� ��� ��	� ��� �	��	� �� {	������
� ����	�� ����� ����
������	������������	
�������@�{	��		���������������������
�
���
������<�

��	� ���	
�� ���� 	
����������� {	��		�� ���	
�� �	� ��	� ���
��	� ����� ������� ��� ��	� ���� �	�	
���	��� �������<� }�� �����
�������*� ��		����	@��	��������	
���	����{
���	�*��������@�
�����	������	�������������	��������	�¡���	�����¡������	����	
��

������������ }��	�	��	��� ���	
� ��}���� ����� ���	
�
	�	�	������������������	��#��	�������������	����	�������@����
���	�	��	��� ��� ������	� _���
	�@	<� ��	� 	���	�	����
���	
��@� ��� �� �#��	�� ��� ����

#� ������
���	�� {#� ����@� ��
������	$���	�	��	��� ���	
*� �������@� ��� ��	� �
	� ��� ��	�
�#��	�� ��� ��	� 	������	��� ��� ������ ��	� �#��	�� ��

� ��	��	�
����<�

%
���������	�	��	������	
��%}������	�%}��������
�����$
���	�	��	��� �#��	�� ���
	�	�������<� ��	� %}�� �����	��
����
���	���
#� ��� ��	� �	��������� ��� ��	� ��	������ ��� ��	�
�#��	�� ���� ���	� �	���	�� 	
��	�� ��� �� ������
�� �
�����*� ����
���������{	�	��	������������		����
�����������<�

%
��������	���������	
��%�������	�%��������������������	�
�#��	�� ����� ������	�� ��	������ �	���
�� ��� ��	� �	�	
���	���
�
�����<� }�� ��� �	��	�� ���� ��	� �
�����$���	�	��	��� ���	
�
�%}��� ����<� �� %��� ���� �
	��#� {	� 	@��	�� ��� ���
���
	�	�������� ��� ��	� �#��	�� ���� ����
�� �����	� �

� ��	�
����������� �		�	�� ��� ��	� ������������ ���� ��	������ ��� ��	�
�#��	������<�

168 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

}��������������������	���	��������
�#������	�	�
�-�����������	�
����������������������������}�����%}�*���		��	���
#��	��
��_���������������������#�	����������������<���	�������������
���
#-	�� ���	�� �����	� ��
#� ��	� %}�$%��� ������������*�
��_��@�������}�����%}������������������������
���#<������
��� ��	� ��� ��	� ���$	����	��	� ��� ��������� ���¢�� ��	������ �
	��
�	�����@� ������ 	
	�	���� ����
�� {	� ��	�� ��� ��	� �}�� ����
����	��	��
#���		���������������-���������������@��}�$%}��
�������*� ����� ���� {	� �{�	�	�� ��� �	�	�
� ��_�� ����*� ����*�
����*�����<�

}}}<� %'�%���!�����~�������'���|�!�%��~����������

�"�����}�~��£�����

}�� ����� ��_*� �� �#��	�� ��� �	��� ����������� ��� 	�{	��	��
�#��	��� ��� �����	�<� �	����@� ��������	�� ��� 	�{	��	�� �#��	����
�	� ����

#� �	���	�� {#� �	���� ��� �����
�� ��������� ����� �	�
�����	�� {#� ������ ������	���*� ��	�� ��	� �"�� ��	�_�� ��� ��	�
�	���	�	���������	���{	������	������	�*��<	<������	��"���	�	����
��	��	��	���������������	�	��	����	��������������	��<������	�
������
� ��� ��� �	���� �������	�� �	����@� �������� ����@� ��	�
�������	��	�*��������
����	�	���#������	����#�������	�����	���
�	� 	���	�� ��� �	���� ��	� �����	� ��� �������� ����������

#*�
���������	����	���������	��	��	��������*���	�	�	
	�	�����	�
���	�	���������	��#��	�������		����	�������	�������	���<�

����*� ��	� �����	� ��� ����� ��_� ��� ��� �	��	� �� ���	��� ���
�	�	
����@� ���������
� �	��� ����������� �#��	��� ��� 	�{	��	��
�#��	��*� 	���{
�����@� �	���� ��� ����������

#� 	�	���	� ��	� �	���
���	�*��
���	���{
�����@���#�� ��� ���	�� ��	�������	���¢	�����	��
	������{
	� ��� �������@� ��	�����	���� ��	��	���	����	� �	��� ���
��	����	
<�

��	�����	�����������_����	��	����	����	�����������������
��� ��	� �	���*� ���� ���	��@� ��	� �	������ ��� �	��� ���	�<�����*� ��	�
������
�������������#��������������@��������	��	����	����
	��#�
�����������	����������	�������������	�	���#�����	������	�
�	���*��������	�����

#����	�����������

#<�

�����@�	�����@���	�@���{	��		����	��}������%}�*���������
��_*���������	�	
��	�����#�����������

������{	��	������@�����
�@���-����������	������	�*������
��*�	��{
	������������-���������
�	��� �����	���*� ��_��@� �����{
	� ��	� ���
�������� ��� ����������
�������������������}�����%}������������	�����������
��	����
���	�{	��	���#��	��<�

}�� ����� ��#*� ����	� ��	� ����������� ����
#� ��	�"�!���� ��

���	
��@�
��@��@	*� ��� ����� ��_� �		� 	��
�#	�� ��� ��@	��
���	
�� ��� �}�� ��� %}�� �������������� ��	� "�! �� �
����
���@��� ��� �������
� ���	
��@� ���� ��	� �	��	��	� ���@��� ���
��	����	
��@���������������������<���	�	�	
	�	�����	��	��	��
�����	������{������	������������������������������������
�#��	� �����	�@	�	�����<�

����*� ��� ���� �����	�� ���	�	
���	��� ���	��� ��� �	����@�
�	�����������������
��{��	�������	�@���	
��	�������	���������
��	��������#����@����	�	��	�������@�	��<�}����	��	����	�����*�
�����

�{	����	���{�	��	��
�����������	�����������#��	�	������
��	� ���@��<� ��	� ����
	�	�	��� ��� �

� ��	�	� ��������	�� ���
�	���{	����������������<�

��� ��� ��������!�	� ��	������	���"�!��
�}�� ���	
���	� 	
��	�� ��� ��	����
������� ��������<������

������
� ����� ��� ������-	� ��	� @��� {	��		�� �}�� ���� %}��
�{�	�	�������*�������������������_���������	��	����������
�
������
#�����������	�	�����������	��������	���������	��{
	���	�
�	������ ��� �� ����� ���� ����� �	���{	�� ��	� ��{
	�� ����@� ��
�	���	���#����<��

��� ��� ��� �	�	���#� ��� ��

� ��	� ���� ����� ��	� ��

����@�
����������� 	�����	�� ���� ��	� �	���� �����	���� �
���� }���
�
������������� ��� ������ ������	���¤� ������	���� }���
������	���� 	������{
	� ��� �������@� �����
�� ��� ��	� �"�¤�
+	������ }��� {	������� �	�	��	�� �� �	���	�� ��� ������
������	���¤� ����	�� }�� ������ �� ������
�� ����	�� ������
������	��� ���� ��_	� ����@� ��	�� ��	�����¤� %���	�	���
%����{
	���������������	���@	���������#�{	������	�������	�
�"���������������	���	¤��
���	��������
�����������������������
������	���¤� ������	���� ����� ������	���� 	������{
	� ���
�������@� �� {	������ ���� ��	� �"�¤� +	������ �����
������	����	������{
	�����	�����@���{	���������	�����	�
�����@��	�������¤�����	�����������	���������@��	��������	������
������� ���� �����	¤� �
���	�� ����� �
������������� ��� �����	�
������	���¤� � ������	���� ����� ������	���� 	������{
	� ���
�������@���{	������ ������	��"�¤�+	�����������{	�������
�������������������{	��	���	��{#���������	��<��

}����@�	��� ����	���{	�� ��	�{��	��#������	��	������@���	�
+�~�$�+��_��$~������*�����������	��	����
��#�{�
�<������
�#������	
���	���{
�����@�����������-����������	����	��������*�
���	� �	���� �	� �#����

#� ����	�� ��� �����
�
��@��@	� ���� ���
����		��� ��#�� �	�	����@� ��� ��	� �	���� ���� ����	�� ��<� �����
�#����� ��������-	�� �	��� �����	���*� ��_��@� �����{
	� ��	�

��@�	����%����	���	�	
���	������	�������<�

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 169

ISBN: 1-60132-446-4, CSREA Press ©

���
�������� ��� ���������� �������������� ��� �}�� ��� %}��
������� ��	� ������� ��� ���
��������� ��� ���������@� ���������
�
�	�������	�{	��	���#��	��<�

#$� �����
�
����%�
�����������
����� ������
� ������ ����� �� �	���
	�� ���
#���� ��� ��	� �	���

���	�*� ������ �	� ���	�	��	��� ��������@� �����	���� ��}��<�
����@�� ��	� �������
�#� �{�	�	�� ��� 	�	���	� ����������
�������������� ��� �	��� �����	��� ���� �}�� ��� %}�� ��� ��	�
���� �������*� ��� ���� ������	�� �� ���	��� ��� ���	�	�������
���� ���
#���� ��� ����� �����	��� ��� ��	� ��� 	��{
	� ����������
�����������������}�����%}�<�

��	��	
	��	�� �	���� ������������������
�� ��	��{	� 	��	�	��
������	���

����@����������������
��{	���	�����	���

�� ����� �	� ��	� ������� �����	�� ��� ��	� �"�� ���� ��	�
������	����	������{
	������	�	����	�������¤�

�� ����� �	� ��	� �������� �� 	��	��	�� {	������� ���
	�����	� ��� �� �����	�� 	��#� ���� ��	� ������	����
	������{
	������#��@�������	�	�{	������<�

����� ���
#���� ��������� ��� ��� 	��
������� ��� �

� �	��� ���	��
�������	�������	������	�����	�{#���	*��	
	����@�����	���������	�
@	��	� �����{�
��#¢� �	���{�
��#� ��� ����������� ��

����@� ���	���
������ ���
��	���	� 	��	�� ��� ����*� ����*� ����� ���� ����� ����
�	������
������	��
��	���������<�

���	� ��	�����	�� ���� �	
	��	�*� ��	� �	��� ���	�� ����
�� {	�
�@���-	�� ���� ��	�� ��� ��

��@� ���� �� ���� ����� ��������� ���
��������� ��� ��	� ������������
	��#�	��
���	�*����	� ���������
����������������	������{
	�����	�����	����������	���������#�
�	���@	��������	�	�����������{	�����
�	������"�<�

&$� '�(�������

����������
���	���	���������	$����
��	�*������

���	��{	���{����	�����

�� 	�����@� ���	��� ��� ������ 	
��	�� ����� ��� ��	� ��	
��� ���
������	������

�{	����	���������@�����������������	�������
���� {	������<� }�� ��� ��������� ��� ���	� �		� ����� ��	�	� �����

	�	�	��� ����	� �{`	���� ����� ��

� {	� ���� ��� ��	� �����������
�#��	�*���������������
����������������������������������	�����	�
�����

��	�	���	����	������������
���	�����
��{	��	��	���������
��	��
�������@��������	��	���������������#��	�<�

���	� ����� �
������������� ��� ������	�*� ��	� 	���{
���	�� �
���	��
����
�� {	�
���	�� ��� ��	� ��	
��� �
���	�� }�*� �
���	�� ���� ����
�
���	������������	����<�

)$� �����*���� ������������������
����
�
�
���	���

��@�������	����*���	��	����������#������	��{#���	�

���	����	���{	�� �����@�	��� ��� 	
��	�� ��� ��	�@	�	�����������
�����	��� ����� ��

��� �� ����
� �#����� ���� �	���	�� ����@� ��
@��������+~�<���	������	������	���	������	�+~��
��@��@	�
���� ����
#� {	����	� ����� ��� ��	�
��@��@	� �����	�� ��� �#�����
��	������������{#� ��	���^���� ��	� ����
� ��	�������������� ��	�
"�!<����	���	������	�{��������
������	�������	��������������#�
��� ��� ��	� ���� ��������� ��	� ��������� ���� 	����	������������
��	���^� ��� ���	
��@� �������*� ��� ���� ���	� ��	�������� ���
��	���	�+~��
��@��@	<�

��� ����� �����*� ��� ��� �	�	���#� ��� ������� ��	��	������������ ��	�

��@��@	����{	������	�����	�����	������	*���	��	����
��#�{�
��
��� ��	� �#����� ��� ��@�	� �� ��

� {	� �	���	�� {��	�� ��� ��	� �����
�	�	��� ��� ��	� ���<� ��	�
�{	
� ��� 	���� ��	
�� ��� ��	� ����
��	���������������$�	����
��#�{�
�����	������
�	�
���	�����
�������	
��	�	�	�������	����
�	
	�	��������	��#����<�

+$� %���
��� �����������
����
�
�
���	���	�����
	����������	��#�������������
	�	�����������

��
�	�� ��� �	����
� 	
	�	���� �������@� ��� ��	� ����	��� ����
������	������� ��� ��	� �"�*� ����� �#����� ��

� {	� ��	�� ���
�����������������	��	�������	�������	������	���	�	��������	��	��<�

}���������#*���		���

�{	���		���{���������	�������������@	��

�� ��	��	������	����

�{	���_	��������	� �	�����	�{#���	�
���� ��

� {	� �������	�� ���� �	����
� �	��������� ���
�����
�
��@��@	� ��� �� ����
� �	��������� ����@� ��	�
�#������	���	�¤�

�� }�� ��������� ��� ��	� ��������������� ��	� ��	��� 	��
����
#�
�	�	���������	��	���*� �����

�{	����	�������	��	������	��
��	���	������� 	
��	�� ��� ��	� �����	� ���	��	����� ��	�
{	������������	��"�¤�

�� }�� �	�	���#*� ��	� �	��� ���	�� �{��	� @	�	��	�� ���� {	�
@���	�� ����� ��	� ���	� �	��� ����	*� ��� �������	� ��	��
	�	������<�

����

#�������������	�������@���	������������

��	������	������
{	��{
�@����
#��������������	�����	���*�	�	������@��������	�������	�
��������������@
	��	������	<�

�� ,��������!�	� ��	������	�����,!��
��	� %}�� ���	
�� ��� ������ ������
� �	� ���	
�� �����

�@@	@��	� ������������
� ����	���� ���� ����������� ��� ��	�
���	
�<�����*� ��	����	
��@���� ��	�%}����

�{	����	� ����@��
��	� �
���	�� ���� �	��	��	����@�������"�!*� ���{	��@� ���� ���
��	� ��	� ����

#� ��	�� ���@���� ��� �#��	��� ���	
��@<� }��
��������*��������
�������{
	���	������
�������������#�����@���	�	�
���@���*� ������ �����	�� �� �������
� ���� {	������
�
�	��������� ��� �� ������	*� ���
����@<� ����*� ����� �	������ ���

+����	����,���¥�+����	����	����,�-�.��	������ �¦�§� ��+����	����,��������������������
��¦¤ ��¨�¦�©�¤ ��
�
+����	 ����,� ��¥� +����	 ����	 ����,� -.*� +����	 ����	 � ���,� ¦§� � +����				
����!,������¦¤ �����+����	���!,�¦¤ ��¨�¦�©¤ �
�
+����	����!,���¥�¦��	�����§� ���¦��¦���+���!�����	"�	����,�+���!�����	
"�	� ���,��¦� ������	�¥� +�����,��� ��¨�¦�� � ª� ��¦��� +���!�����	#��	����,�
+���!�����	#��	� ���,��¦�������	�¥� +�����,�����¨�¦�� ª�¦��� ��$���!�����	
��!	����%	$���!�����	��!	� ���,��¦�������	�¥� +�����,���¦�� ����¨�¦�©¤ �
�
+����	���!,� ��¥�+���!	����,� ¦��§ ��� �� ¦�� � +���!	 "�,� � � � ��¨����� �� ¦� �� �� �
+���!	#��,�¦�� ���¨��������¦����� �+���!	��!,�¦�� ��¨����¦���� �+������,� ���¤ �
�
+���!	"�,���¥�+&�'�(���	"�,�-(-��+)���������,�¨���*�)*�¦�*� �+���!�����	
"�	�����,�¦¤ �+/����0��,���¥�+&�'�(���	��!,�¦� ����+)���������,��¨���
 � �¦�*� ���+���!�����	��!�1���,�¦¤ ��
�
+���!	 #��,� ��¥� +&�'�(���	 #��,� -(*� �� �� +)��������� ,�� ¨�� � � ¦� *� �
+���!�����	#����1���,���¦��� �+�����,��¦¤ ��
�
«������¬� ��¥� ¦§����	���§� �«���!�����	#��	����¬�¦�©*�§ �«���!�����	
��!	����¬�¦�©��*� �«����	����	����¬�¦�©¤ �

��@�	�����#�����������
������

170 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

�	�����	�� ��� ��	� 	��
�������� ��� ��	� ��������	�� ����
�	�� ��� ��	�
�	�����������	�	����@���<�

#$� ���

������������������
��� ��	��	�	
���	��� ��� ��	� �
�������@��� ����� ��

� ���	
�

��	� 	�����	�� ��� ��	� �������	�� ���������
� �	����@� ���
*� ��� ���
�	�	���#������_	����	�������	��������{������	�������	�����
�����	������������@��<���	��
���	�����{	��	��	���������
��	��
�����������@������������ �������	������		����	@��	������
���	��
�	�����
#��	���	��� ��	� ����� ���	@�#���� �
���	����

� 	�	�	���
��	� ������	���� ��� {	� �	��	�� ��� ��	� �"�*� ����� ��*� ���	
��
	�	�	����@���	��	���	����{	��	��	�¤����	��������	@�#*���

�{	�
��	�� ��� ���	
� ���	� 	�����	��� ���� �	���	�� ��� ���� ��	� �	���
	�	�������*� 	��	���

#� 	@����@� ��� ��	� ���	������� ����
{	�����¢����	� �����	� �	�	��	�� {#� ��	� ��#����
� �"�¤� ����
����

#�����������	@�#�����������
���	����

�{	�	������{
	����
������@� ���� 	�	�����@� ��	� ����	�� ���� �	��� ���	�<� ��	� {�����
������	� ��� ��	� ���@��� ��� �	�	��	�� ��� ��@�	� �<� ��	� �	��
�
���	�� ����� �	� ���	�	�� ��� ����� ������	� ����� {	� ���	�	��
	��
����	
#� ����@�� ���	�����	*� ���
	�	��������� ����
��	���������	�	��<���*������������	��������������	��_*����
������ {����� ���������
��#� �	�	���#� ��� ��	� 	�	������� ��� ��	�
�	�������	��
	��#�{		�����
	�	��	�<�

�
��@�	��<�����	�������
�������	������	��
�������@�������<�

}����������*������	����������	
	����	������	���������������
��	��	������� ��������	���	�{	�������	�	��	��{#���	��"�<���	�
{	������ ��� ��	� 	�{	��	�� �#��	�� ���	�� �������@� ��� ����
���
�������� ���� �����	*� ���� ��#� ��_	� �� ���	� ��@	� ���
�����{�
���	�*� ����� ��� ��	�
�@����@� ��� ��� ���������	�
�@��*� ��
�	���@	� ��� ��� !��� ����
�#*� ���������� ��� ���
�@� �����	�*�
��@@	��@� ������� ��������� ���� ��� ��<� ����*� ��� ��� ��� @	���
��������	��������	�{	�����������	�	�{	��	���#��	������{		��
��

#����	�����������	��	��������������	�������	����	��<�

&$� ��-�������������
�
��	�"�!��	��	��	����@�������	
���	��	��	��	����	�	����

��� �	

� ��� ��	� ���	������� {	��		�� ������� �{`	���� ����@��
�	���@��@� ���� ����������� ��� �	������ ����@� ��	�� ����<� }��

�@��� ��� ��	�	� ������
����	�*� ��	� �	��	��	� ���@��� ���� �	#�

��	��
��	���	��������	
��@�����	������	�*�������
�@	
#���������
��� �	��	��	�� ��� ��������	�� ��� {	� ���	�� ���� ��� ��	� ��� �	��#�
������
����	�{	�������������#��	�<�

����� ��	� �	��	��	� ���@��� ���� ����	�� ��� {	������
�
���	
��@�����	������	����������������
<��������{$�
�����	��	��
���� ��	� �	�����	� �
���� ���	
	�� ��� �	������ �������#� �����
���
	�	��� �� �	����� ��

	�� ����*� 	������{
	� ��� 	�	���	� ��	�
�	��� ���	*� ���� ��	� ���	
��@� ��� ��	� ���	��
� {	������ ��� �����
�	�������

�{	����	�{#��	����������	��	��	����@��<��������*�
�����

�{	���	����	�������������	�	��������	��	������	������	��
����@���	�+~���#����������	������������_<��������*�	�������
«��	������	�¬���¥�«��	������	�~��	�¬������«��	������	��
����¬���
§��«��	����	����¬��¤����«��	�����	��¬��¤����¨��©¤�����

�{	����	�������
���	��	��	����@��*���������������@�	��<�

�
��@�	��<���������������!��	
��	������������	��������@�������<�

��� ,��������� ���������	�����,���
"���
� ��	� �	�	��� ���	��*� ��� �		� ���	�� ��	� ��������	��

	
��	��������	
��@������	��	�����������������
�������	����������
��_*����������	��
�������	�	���������	�*�����		�@	�	��	���
����
���� �	��	��	� ���@���� ������ �	���{	� ��	� ������	� ����
{	������������#��	���������������	�	�������������������
��	����
���	�{	��	���#��	��*������	��������%}�����	
�<�^��	������*�
���� ��

����@� ��	� ������
� ��� ��	� ���*� ����� �	������ ��

� {	�
�	�����	��������	�����	���	���	
��	�������	������������������
%}�����%������	
�<�

#$� � ������������������������	�����
���������
�������

�
	������
���	���-������	������
�

���	� ��	������	�����@�������	
��@����	�{		��������	�*�
��	� ���	
	�� ���@���� ���

� {	� ��{����	�� ��� ����
������������������%}�����%������	
�<�����*������������@	����
����	�	���#�����	���	���	��	��	����@	��
��@��@	������	����
<�

��	� �������������� ���� %}�� ��� %��� ���	
�� �	�
�	���	������@����	�������@������	�	
	�	�����������_	������
"�!����	
������	�
��@��@	�{��	�������	������	��$���	
<�
����� ������@� ����� 	���{
���� �� 	
���������� {	��		�� 	
	�	����
��� ��	� ��@	�� ���� ����	� ���	
�<� ��	� ��������� ��� �� ��������
���������	�	�	�	�������������	�	
	�	������������	
���������
��	� ��}� $� ��!� ��������� }~��'���~^�*� �

����

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 171

ISBN: 1-60132-446-4, CSREA Press ©

{	���	�� ��	� ���	����@	�{�
��#� ��� ���	
�� {	��		�� ����		���
���	
��@� ���
�� ���� ���	����@*� ��	� ��	������������ ��� 	����
	
	�	��� �	�	��� ��� ��	� ����	� ���� ��@	�� ���	
�� ���� ��	� ��@�
������	� 	���{
���	�� ��� ��	� "�!<� ����� ��*� ��	� ������ ���
���	
�� �����@� ��}*� �

���� 	���� 	
	�	��� ��� �� ���	
� ��� {	�
����	������
��	��������	���������		����
������<����	�	*�
�������
��{	����	������������������
���	��������������	��	���	�
������@������	�"�!����	
���������	�������
�����*�{������
#�
	������@� ������@�� ��	�� ��� ���
�� �	��	�� ���� ��������	�� {#�
�������	����������	���������	���^<�

��������		��	*�����@� ��	� ������	�	���{
���	��{#� ��	���^����
������ ��	� �	�	���#� �
	�� ��� ������@�� ���� ��������������
�	��	���	�������
�������@� ��	���}� ������ ������@���-	�� �

�
����� ��� �� ���	
� ����@�� ���� ������	� ��@�*� ���
�� ������ ���	�
������� ������*��
	��#� ���
	�	���������@����� ��	����	
��
	
	�	���� ��� ����		��� �
������<� ��� ��^ �� �	{� ��@	� ��� ���
�����{
	� ��� ����� ��
���� ��� ���
�� ���� ����	� �������	�� �����
������� ��	� ���*� ����� ��� ����� ���
�� ���	���	� �����	���
����������#��	���������#*�'������
�������	������	���{#�
}+�*������
\��#��������	�����@����	�<�

�����	��
���	� ��	����
#�������� ��������@���� ��	��}�� ���	
������

��	� �������������� ��� �}�� ��� %}�� ���� %}�� ��� %��*� ��	�
�	��� ��	�� ��� 	
��	�� ��� ��	� ������������� ���� ��	� �
�����$
��	������ ���	
� ��� ��	� ����	� ���	� ��� ��	� ��	����	��
��@��@	<�
����*����������	�������	����		����	���������	�������	������	��
���	��� 	
��	�� ��� ����� ������������*� ���	
#�� ���������@�
���	
�%���������	*����
	�	�������������	�{	������
����	����
�
���	�� ���� ����

#*� ��	� �����
������ ���� 	�	���������� ��	� �	���
��������������
<�

�
#$� %���
���������������,��������	��

}�� ��� ���������������	����������@���	��
���	�����	
	������
���	@���@� �������������� ��� ��*� ����	� ����� 	�	�	���
������	������������*��������������	��"� ��{	������������	*�
��

����	���
#������������
����	�@	�	��	������������

#<���	�
�	�����	��
���	�������	������� ��� ������

�{	� �������	������
��

� ���	� ��	�� �������
� ���� {	������
� ���	�� @	�	��	��
����������

#�{#������������������<���	�{	������
��	���	�
��� 	���� ��� ��	�	� �
���	�� ��� 	�	�	��	�� {#� ��	� ����� �	����*�
��������

����	��������	�{��	����������	��	��	����@��<�

�������

#*� ��	� ���� �	�	���� �

� �
	�� ���� �����������
�	�	���#� ��� ���� ��� ���	
� 	
	�	���� ��� ���	� 	
	�	���� ��� ��
��	������ ��@�����@�
��@��@	<� }�� ��� ����	�	�� {#� ��	� �	�	�
�

�#	�� ��� ���	
�� ���� �	�$���	
�� �	���	�� ��� ���� �������<�
���	�	*� ��	� ����� ������� ������@�� ���� ��������������
���
	�	��	�� {#� ���� ���
�� ������ ��� ������� ���@���� ����
�������
� �������������� ��� ��	� �
���� ���@��<� +	������
�
���@�������������������	����

����
#�������	��������
�<�

���	�	*� ���	� ��	� �	��	��	� ���@��� ���	
	�� ��� �����
������
������������	���	����������������������	��	����@*�������
�����{
	� ���@	�	��	������@�������������	����
#����������
��
{	� �	�	��� ��� ��	� ����
� ���	<� ����*� ��	� ������@� ���	��� ����
���
��	��

� ��	�	
	�	���������	��	��	��	����@������{
�����@���
	
���������� {	��		�� ��	�	� ���	
� 	
	�	���� ���� ��	� ���	�
	
	�	��������@����	�������������	�	��������	���}��	��������

��	� ���	
� ����� �	���{	�� �

� ��	� @������ ������	���� ��	�� ���
���	
���	����@��<�

&$� ������������	��!� ������������
���	��

� ��	� �����������������%���������	������	��{#�

��	� ���� ���	� {		�� ������	�*� �

� �������
� ���	� ���� ���� ���
��	� {	������
� ���	� ��� ��	� �	��� ����������� ���
� ��� ����
	�	<�
���	�	*� ��� ����
�� ���

� {	� �	���	�� {	������
�
���
	�	��������� ��� ��	� �	������ ��� ��	� ��{� �
���	�� ���
������	����
���	�<���	�	����
	�	��������������{	����	������
{#� �� ��@���	*� ���	� ��	� ���	
��@� ��� ��	�	� �	������ ����
	��
������	#�����
	�����	
�<��

�
)$� ��� ��������	������������� �������

����

#*� ���	� ��	� ����
	����� ��� �

� ��������	�� �	�����
#�
�	���{	�*���	������	�����	�����������	�	������	��<���	����	�
�����
��������� ��	����	�����@������������	������
	� ��� ��	�
��@	��
��@��@	������{	��	���	�*�	��{
��@���	������@������	�
���
�	������{
	��������������

#�	�	���	��	������	�����	
	�<�

}|<� '��"!����~�!£�}��

������
#-	���	�	��
�����������������
*���������������	�����
	��	��	���
� �	��*� ��� ������ �		� ��	�� �� �	��� ���	� ��� ���
�������������������	��	��
���������
��#��	�*������

	�������

�@��� �	���� ���� �� ��		$��������� _	#*� ��*� ���� ���� ����������
�����	������+��@�����������	�����¤� }�������
��������	��
��	��������
����	���	������	�����������	
��@����
<���	���

�
	��	��	������������{	���������������������<�

}�� ���� �{�	�	�� ����� �	�� ��_�� �	�
� ����� ��	� ����������
������������� ��� �}�� ��� %}�*� {	��@� ����� ����� �{�	�	�� ��� ��
@	��� �������
�#� 	
��	�� ��� ��	� ���� �������<� ����� ��� ��	�
���
#-	�� ��_�� �	�
� ����� ��	� %}�$%��$���	� ������������*�
	�	�����@� �}�� ��� %}�� ������������� �����

#<� ����� ����� ���
��	������	�
��_������	�������
	���������������������	���	�������
	
	�	��������
��{	���	�������	��}����������	��	��
#���		����
��� ��������-������ ��� ������@� �}�$%}�<� ����� ���� {	�
�{�	�	������	�	�
���_������*�����*�����*�����<�

}�� ����� ��� ����� ����*� ��	� �	������ ��� ��	� 	��	��	���
� �	���
���� ���� ��	� +~�� �#����� �	�������	�� ��	� �	���{�
��#� ���
����	���@� �}�� ��� %}�� ��� �� ��	������ �	��� ���	*� ������ ���	�
�����{
	� ��� ��_	� �� ������@� ��� 	
	�	���� �����@� ��	�
���������������� ��	��}�����	
� ���%}�����	
������
��������
�	��	��	� ���@���<� }�� ����� ��#*� ��� ��� �����{
	� ����*� ���� ��	�
�}�� ���	
*� ���������� �������������� {	� ���	�� ���� ���� ��
������@���� ��	�+~�� �#����� 	
	�	�����	���	�� ��� ����� ����#� ���
��	� ��@�� ��� ��� ��}� �����	��� ��� �
���	�¢�	��	��	� ���@���<�
��������_�����
��{	����	�{#��	�������������������������
������
�{	#�� ��	� �
	�� ���{
���	�� ��� ��}� �������� ���� ��	� �#�����
�	���	��������������#<�

}�� ��������*� ��	� �	��� ����������� ���	��� ��� 	
��	�� ��� ��	�
����
��������� ��	� 	������	��� ��������� ��	��"������� ���*� ���
�	

� ��� �����
�� �����	�� {#� ����� 	������	��<� ��	� ��_�� ���
����*�����*������������������	������������	�*���@@	����@���#�����
���
	�	��� ����
�����*� �������� ���	�	� �	���� ���	�
���	
��@� ��� ��	�	� 	������	���<� }�� ��������*� �

� ��	�	� ��_��
�����	���
��������������	������{����	��������������	�	�{	��	��
�#��	����	��	�	��*�	��	���

#���	����������	��	���<�

172 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

��	�������
��	�	��	���		�����	���������������	���	��
��� ��	� ���@���� �{��	*� ����� ���	� ��� ����
	�� ��	� 	���	��
���	
��@� �����	�� 	������	��� ���� ���� ��
#� ��	�
���
	�	����������������	���_�����	�<�

|<� ��~�!"�}�~�

��	� ������������� ��� �}�� ��� %}�� �	� ����

#�
���
	�
���	��	�� ��� ��_�� 	
��	�� ��� ���� �������*� ����	� ��	� ����
��^� ��	�� ���� �	�� �� �������� ��� ��	� �}�<� }�� ����� ��� �����
��	����*��������_������	����+~���#����������������-������
��� �	��� �����	���*� ������	�� {#� �� ������	�� ����� ����
	������{
	� ��� ����	��	� ��	������ ����������� �{���� ��	� �	����
��� {	� �������	�<� ����*� �� �}�� ���¢�� �	��� �����	���� ����	��
����@�������#�����	��{
	����	��	������������
��������������	���	�
�����������������}�$%}�*����	� ���	��{
	����	�	���{
����	���
�����������@�{	��		������	�������@	�����	
�	
	�	���<�

��	� �����������������%}�����	
�� ���%�������%������
���	� �
��� �		� ���	��	�� ��� ����� ����#*� ��	� �������
� ���	
��
���������������
	��#�	����������������
����������	��������
�����	������������<����{	������
����	
���������������*�
������	*���	��	��	��	����@��*��������������

#��������������	��
{#���������
�*��������_������	���	��	��	����@������	����
�	��� ���	� ����� ���� {	� �������	�� ��	��
#� ����� ���	� ��������
	�����@����������
�����*�����@���	���}������	��<�

���	�	*�	�	������@����	����	�@	�	��	��{#���

����@���	�
@���	
��	�������	��������

�	���	�������

#����	������������
	@����@� ��� ��	�����	��������	����������
���	�� �������	���
�-	�
��	� �
���	�� ��� ������	���*� ��	�	� �	������ �	� 	���
#�
���
	�	��	�*� ����	� ��� ��	�� ���� ����
�	� ��	�
�@���
���
	�	����������� ��	��"�*������� ����� ��� ��{
��_�{��� ��� ��	�
���	��<� ��	�	� �	������ �	� @	�	�

#� 	������{
	� ��� �	����@�
������ ��@��
�� ��� ��	� �"�� �� �����	� ��� 	��	��	�� {	������ ���
	�����	� ��� ����� 	��#<� ���	�	*� ��	�	� ���
	�	���������
�	���	�������

#������	����	�����{	�	��	���������		����	���
���	�*���� �����
��@$�	���	��	����	*� ��� ��������{
	� �������	���	�
��� ��	� ���	��� �����	�� ��� ����� ��_� ���	� ��� �� ������*� ��
	������#� ��� ���	
�� ���� ���	�*� ������ ��

� �

���� �� @����
�
	�������� ��� ��	� �		�� ��� ����$�����@� ��� ��	� ���	��*� ��� ��	�
������ ��		� �	��� ����������� �#��	��� ���� {	� @	�	��	��
����
	�	
#������	��
��	������	��	�������	�������	���<������
������	�����*� ���{��	�� ����� ��	� ���		��� �������@	�� ��� ��	�
���� �������� �

���� �	����� �������@	�� ��� ��	� ���	��� ���
�	�	
���	����������
	�	������������������	���	����@����
�����
	�{	��	��������	����	���	����	
��@��	���	����@��������
#�
�����	�������	������������	����@<�

'���'�~����
���� �����*� ^�{�*� 	�� �
<� ¡���
���@� 	�{	��	�� �#��	��¡*� ������	� ��<��

����������$��<��

���� ��
�����_�*� �
	_����	*� ���� ���� £�<� ¡���������� ��� 	�{	��	��
�#��	���	��@�� ��� ��������
� ���
��������<¡� }�������
� }���������*� }����
����������������<�������������$���<�

���� +�*� ������� �<*� '	{	���� �����*� ���� ������ '���	<� ¡�	��@�� ����
���
	�	��������������	�{	��	���#�������$���	��#��	�<¡�%	�	��	�����
���������	������"��~}�������
��	������
�����		��	��"��~}������
���<�����<�

���� %�
�*��<�	���
<��	�������������®<���<
<���}����������	*��<���*�����<�

���� �	���	*� ��_*� ���� �����#� ^����<� ������	� �	��� ������������
	��	����	� ��	� ��� �	��� 	�	������� ���
�®*� ���� %	��¢�������$�	�
	#�
%�{
�����@���<*�����<�

���� +���	*�'<� |<� ¡�	����@��{`	��$��	��	�� �#��	�������	
�*�%���	��� ����
���
�<�����<¡������������<�

���� ������	�*� \����*� ����� �����
	*� ���� ���� ���
���	<� ¡������	� �	���
����������� ��� ������	�� 	������
� �{�	�������<¡� ������	�� ��� ������	�
��@��		��@������������<��

���� ������*� �<*� '���_�*� \<*� %��
*� \<� �������	�� ������	� �	����@��
}����������*�����@	�	��*�����%	������	®<���¯<�	�<�+��������������$
�	�
	#*������

���� '°�-����*� ����	�*� ���� �
������ �	� £���@<� ������	� �	����@� ����
}��	�������
�-�����®<�!	����	�}��	�������
�}�������	������<�

����� |��*� \���� ����	
*� ���� ���	��-�� �����<� ¡�� ���	��_� ��� ���	
$
���	�� �	�	
���	��� ��� ����������� �#��	���� �	������
� �	�������� ����

	������
	��	�<¡�\����
�����#��	�������������	���<���������������$
����<�

����� �	���
�*� �������*� %°���� %������	�*� ���� \���� ��_�
�<� ¡���

	�@	�� ���
�	�
�#�	��� ��� ���	
� ���	�� �	�	
���	��<¡� ������	� ��@��		��@�
������	�*�����<� }�������<������� }��	�������
�����		��	���<� }���*�
����<�

����� �	���*� �<®� ��{	��	�� �#��	��� �	��@�®<� �¯<� 	�<� +�
��@����� ~	��	�*�
�����

����� +�#*�����	�*�	���
<�¡��@��		��@����������	�������	<¡�%��		���@�����
��	�}������<�������������$���<�

����� %	�����*�'�@	��<�¡������	���@��		��@¡�������<�

����� '��
	*� '���
�*� ���� �
���� ��
����	<� ¡��������� �	��	����	�� ��� �	���
������������ {�
�����@� �������	�� ���� �����
� �	����@� ����� ���������#�
����<¡�%��		���@�������	���������	�������
���_����������������������
������	��	��<����*�����<�

����� ������
��	���*���	��*� 	�� �
<� ¡���������@� �	��� ����������<¡�������	�
��@��		��@� �}����*� ����� ����� }��	�������
� ����		��	� ��<� }���*�
����<�

����� +��@����*� ��_��*� ���� ���	��� ���	<� ¡���	
${��	�� �	����@� ���
���������	� �#��	��<¡� ������	� �	����@*� |	���������*� ���� |�
�������*�
���������}��	�������
�����		��	���<�}���*�����<�

����� ����@*�£��@���@*�	���
<�¡�	��@����
���������	����@�����	���
	�������	���
�
���	� ����@� ������	� ������� ���� �����	$��$��	$
���<¡� |	����
��
�
	�������� ���� ���	�#*� ����<� }�|��� ����<� }���� }��	�������
�
����		��	���<�}���*�����<�

����� £��@�	�@*� £��*� !��� +��*� ���� ±�	�@� +	����<� ¡��� �	��� ������ �	������	�
��	��	�� ����������� ��� 	�{	��	�� ������	� ����
������ �	����@<¡�
������	� ���	��	� ���� }���������� ��@��		��@*� ����� �'}� ��
��
���@	�����<�|�
<��<�}���*�����<�

����� ����*� ��������*� 	�� �
<� ¡����������� �	��� �	����� ��� ���������	�
	�{	��	�� ������	� {��	�� ��� �"����'<¡� ������	� ��@��		��@�
������	�*�����<� }�������<������� }��	�������
�����		��	���<� }���*�
����<�

����� ��^<�����^���	<���^<�+�����<�����<�

����� ��^<���� .�¢¢���<��@<�@¢���¢<���<
<�����<�<�*�����<�

����� ��^<�����^���	<���<
<�����<�<�*�����<�

����� ��
��*� ������*� �	@��� �����
�*� ���� ���@��� �@{	�<� ¡���
�� ��� ����
������	��	�	
���	�������
����������	��������	������	���{
	��	���	�<¡�
}���������� �	����
�@#�� ~	�� ^	�	������*� ����<� }�~^� ����<� ������
}��	�������
�����		��	���<�}���*�����<�

����� ^��

���*�^²@�#*�	���
<�¡�����������
	�	
����	

��@������������
�����
������	� �	���	�� ����� ���	����� ���� �
������� %}�¢%��<¡�
%��		���@�������	�����		��	�����	��@�*�����������������	����������	<�
�������������*�����<�

����� ^������*������	
*� ���� \����%����<�'	�
$
��	������ ��
���@�{����	���
��{
	�����������	
����	�������	���	<®���@���_�������*�����<�

����� �
�	�*��<�!<�^<¤��������*�%<��<�!<¤�'���
��*��<�����������@	�	������
��� {��
�$��� �������� �	��� ���	�®<� ������	� ���� �#��	��� ���	
��@�
\����
<�*�~	��£�_*��<���*�����<�

����� ��}'���*� �<� �<� ���	
� ���	�� �	�	
���	��� ��� ���������
� �	���
����������� �#��	��� ��� ��{	��	�� �#��	��®<� ����<� ����	 �� ��	����
�����	��	@		�������	��	� ���������	����	��	��������	�"���	���#����
!������*�!������$%'*�����<�����{
���	�

����� ^�	�	�*�^�

	��	����<�¡"�!��$���%������
��������®� *������������<¡�
������<

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 173

ISBN: 1-60132-446-4, CSREA Press ©

���	���
������
��
�����������
�����

�

,��
&������$
������"
%���"�

�����	
��!��
��
��
���	�
�	��/����	���$$
�
��7�����

���
��FV�����	
�!	�	
��

�

������	� - The literature on how to write programs with good
style is extensive but it contains almost no references to
measuring sensori-emotional or aesthetic values in source.
We study this problem and propose source beauty can be
measured with a simple, relativistic model based on the
fractal dimension. We hypothesize the model is statistically
related to yet different from software complexity. Experiments
using GNU/Linux source as the test bed indicate the model is
only weakly or moderately correlated with software
complexity yet in directions consistent with anecdotal
prescriptions for good style. The data further indicates
removing comments do not improve source beauty but neither
does adding them, a finding at odds with advice in some style
guides. Yet mnemonics are correlated with software
complexity, which comports with model predictions and some
style guide recommendations to make code “self-
documenting.” These results suggest the model may help
developers craft and maintain beautiful codes as a best
practice.

!��)����*� 7����������� �	($
�� ����	�$� ���$(����� ���	"��
�
����$
)�	(���
����$�	(�

�

#� �������	����

.�� �IE@� ����$� O��	��� ��	���� ��� The Art of Computer

Programming� ,�-�� ��#
� �� 	�$�� ��� �����	
�� ������������ ���
�����	�, -'�G
���	
�	��	� ����IAI��"�
��	�
�Communications
of the ACM� ����	� �
���� ���$���	����� 	�
�
�	���� ��� ���
�
���
�(�	���

�C��	�����	�����������������������������	�	����
�����$��
� ���
��
'D� , -� *�
� ���$���	����� O��	�� ���
�#
��
"��� 	��	� C	�
�
� ��� ���
	����� ��
�����$
� ����	� ��� ��
�� ���
������ ��	�#�	(� 	��	� ��� �$������
� ��� ��� ¹��	�<� �	� ���� 	�� �
� ��
!��
��
��
���
� �	�������(��
�$� �	�	��
'D�8���O��	�����	� ��� 	�
�
���	
)	� ��� ������������ "��� �(���(����� "�	�� 	�
� �$������$�

����	���� ��� ��	�� ���
$(�� ���$$� ��� ���$���	���� ��� ���"$
�
'�
C=�
�� .� ��
��� ����	� �����	
�� ������������ ��� ��� ��	�D� �
�
����� C.� ��� �������$(� 	�������� ��� �	� ��� ��� ��	� ������ ��� ���
�
�	�
	��� �
��
'� *�
� ���
�� ���$� ��� �(� "���� ���
���	��� ���
��	���� ��� 	�� �
$�� �
��$
� $
���� ��"� 	�� "��	
� beautiful
programsD�4����
�������5'��

O��	�� "��� ��	� ��
������ "��	� ��� �
��	(� ��� 	�
� ��	�$�����$�
�
��
� ��	� ��	�
�� "��	� ��� ���"��$
� ����	� ����� �
��	(� ��� 	�
�

���	
��$�����$� �
��
� 	��	� �
� ���$� ���$(� ��� 	
�����
'�'��
�����������������	($
'�G
�����	���#
�
	��$
����	���	�����
��	� ���	
�� �
�
��
� 	�� The Elements of Programming Style�
,6-�� "����� �'� !��	"��
�
����

��� �	� �*Q*� :
$$� ;����
��	���	
����
����	�
�
��
������cb��	�
����
��	���
��,@-��	�
�
����	� �������� 	���
��	��(��	�
����������� ��� ��������
�"�	��
"��	� "��� ���"�� ����	� �
$���$
�� "
$$&"��		
�� ��
�� ��� 	����

���
��	�
�OQ���	($
�,@-'�*�
���
�������
���������������	�
�
;���)�
�#�����
�	� ��� indent�� "����� ���� �
�
��	
� OQ�� ���
"
$$����3F���:!������;���)��	($
��,B-'�V
	���
�	����	�
�
���(��	�
���	�$�	�
��$��
��	���#
�	"�����������	�������'�8���	��
	�
(� ��$(� �
�����	� ��
<� 	�
(� ���	� �
���	��� �	'� !
����� 	�
�
�	�$�	�
�� �� ��	� ����	��(� 	�
� #�$�
� ��� 	�
��� �
��	��(����
	�
�	�
�	��� $
�#���� ��������
��� 	�� �
����� ����	� �
�	�
	���
��	���
��"�	�� ������ �����
�	�� �����
��"���� ��	�
�� 	����
�
	����'� ��$
���� ��� 3����� ,E-� �(��	�
��%
� 	��	�
�������������	($
�����	��
��
$�	
�����	�$������
�����	�$����
�
��	
���������	
�"�	���
��	(� ,J��I-'�*�� 	
�	� 	�
����(��	�
�����
	�
(��	��
�����������������	�
�3F�?;���)��
����	��(����
���"
� 	��	� �����
�� ��� �	($
� "
�
� �(�	
��	���$$(� ����
$�	
�
"�	�� �����
�� ��� ����	�$� ��
������ ,�H-'� *�
� ��	����� �� ��	�
������
�	�
�����	�$���
������"����	�
$�����
����
�����
��	(�
��	���	
����	
����"
�������
$�	����"�	��$��
�������
'�

.��	�������
���"
�
)	
��	�
�"���������$
�������3�����,E-�
��� ������
� �� ����$
�� �
$�	�#��	��� ����	�$� ��
$� ��� �����
�
�
��	(� �����
� ��$$
� 	�
� beauty factor'� =
� �(��	�
��%
� 	��	�
	�
���
$�����	�	��	���$$(��
$�	
�	��(
	����
�
�	���������	"��
�
����$
)�	('�*��	
�	������(��	�
�����"
���
�	�
����
�	
�	��
�
��� ��$
���� ��� 3����� ,E-'� =
� ���"� 	��	� �
��	(� ���	����
�����
&�
��	��(��������
��	��(����	�
�	�
�	����
�����
$�	
�
"�	�� ���	"��
� ����$
)�	(� ���
)�
�	
� ��
�	����� ��� ��
�
���	$(�������	
�	�"�	����
�����	���������	($
����
�'�G�"
#
���
	�
�����
$�	�������
�"
��?��
��	
'�.���	�
��"��������	"��
�
����$
)�	(�����
��	(����	������
���

��
$�	
���	�	�
(���
�
��	����)�
��������
����	�
�'�:
��	(����	�������
���	���
����
�
�	�
�� #�$�
�� ��� �����
� 	��	� ��(� ��� ��� ����	���� ���
����	��������
��	���$���
�'�

(� ,������
)��5

� �$	������ 	�
� $�	
��	��
� ��� ������������ �	($
� ���

)	
���#
� ,6�� B�� ���� � �� �6�� �@�� �A�� �B-�� �	� ��#
�� #
�(� $�		$
�
�		
�	���� 	�� �
�������� �
�	�
	��� #�$�
�� ��� �����
� ��
'� *�
�
2��	�����	����� ���� ���� �	($
� ��
� ��
��
�	$(� �
����$�	(� ���
C
�
���#
�������������D��$	������	�
��
$�	���������
	"

��
�
����$�	(� ���
�
�	�?���$��
�� ��� ���	��#
����$� ,�E�� �J�� �I��
 H-'�*�
�������	�������	��	��
�������
��������$���	���
�����
����
�, �-'�*������
����$�	(��������	���
��	��������
�, -�
����
�	�
	���������
���	�����	�,E-'�*
���
����;��	
��, 6-�����
�
����� ��
� ��
�

�� "��	���� �	<� "
� ����	� $������� �	� ��
�
��
�

��
#
�� ��
��	������ �	� ��� 	��	� ��	� ���� #�$�
'� ���

)���$
����Distellamap� , @-����#����$�%�	������� 	�
�Pac-Man�
��
� ����� ��� ��� �	���� BHH� ���	���
� , A-'� =��$
� ���
�
���#���$�� ��(� �����
�
�� BAHE� ���
��$(� ��
�� "����� ���
��	����"�������	�������
��

�����
����$�	(��	��	�	��	���
����
���
)����	� �	� 	�
� /��
��� ��� /�
��� ��	� ��� ������ ����
�

#�
��
� ��� �	�� �
�	�
	��� #�$�
'� Beautiful Code� , B-� �	��
��

174 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

����
�	��$��
��	(� ��� 	�
�
��������
�����
��(�����$����	����
��� �	�� �	���	��
��� 	
�	���� ���
�������<� 	�
(� ��
� ��	�
�����
����� �	($
'� O���$��
	� �$�� �
���	
�
#�
��
� ��� ����	�$�
�	���	��
� ��� $���&����
� ����
$�	����� ��� �����
� , E�� J�� I��
6H-<���"
#
��� 	�
(�"
�
� ��#
�	���	������	� �	($
���	� ���	"��
�
����$
)�	(� ������ $
)���$� ���$(���� ��� �� ���$$� ����$
� ���
�����$(� �
�
��	
� 7����$� ��������'� ��$
���� ��� 3�����
,E-���
�8���	��� ,6�-���� ������	���������
$�	������
	"

��
�	($
� ��� ����	�$� ��
�����'� *�
(� �$��� �
�	���
� "
���
����
$�	�����"�	��$��
�������
��"�����	�
���	�������	
���
	
�
���
#�
��
���������	�
������	�
�����	�$��
����
'�.��	�������
���
"
� ��
� 	�
� ���
� 	
�	� �
� ��� ��@� �� ��$
�� ��� ��$
���� ���
3�����,E-�
)�
�	�"
��	����	�
���$
��������&����	����$��(�	�)�

)	
���$�	������	���������
�
��	
��
����	
���$
��
����"�	����
�
����	����� "����� ����
��
�� 	�
� ����
�� ��� ��$
�� 	�� ���$(%
� �(�
�$���	� 	
���$'� 1��� "���� ��� ����$��� 	�� ,6 �� 66�� 6@-�
)�
�	�
	�
�
�
����	�� "
�
� �
�������� �
�	�
	��� ���
�$� ��� ��	������$$(�
��	
$$��
�	� ��	�������� ��� #�
����
�'� =��$
� ���� ������ ���
���	"��
�
#
$���
�	�� ���� ��������� ���$�
�� ��������� ��
�
"����� ��� ��	� ��� 	����� "
� �����"� ����
�	��$$(� ����� �	�
���
"�����#
�"���
����	������
����#
�	���	��������	�$����$(�������
����	����� ��� ���	
���
�
�� ,6A-�� ��� ���	���$��� 7�$$������
C��	��������	����D�,6B��6E��6J��6I-'

/� ���"���

/+#� ����
)��5���
�����������

� 8��� 	�
� ������
�� ��� 	���� ���
��� "
�
���
� style� ��� 	�
�
$
)���$����������	���	��
���������
���
'���$
�������3�����
,E-� ���#
(
� ���
�
�	� �	($
� ���
�� ��� ����� �
�
��$�
���

�
�	����	��

���$
��	�
(���$$
�	�
�C������	
�
	�D+�

�5���
�"��	
�����
'�
 5������
��
�������$������
���������
�'�
65�.��$�
�����
�	�	���'�

=
�
���
�beauty����	�
��
����
�����	($
'�*�
���
$�"
���#
�
�
$�"���������������	�	�	�#
�#�$�
'��

*�
�
�����������
��������"��	�software complexity� ���"�����
��(�
)�$����"�(� 	�
�
���
����
� 	�����HH����
�
�	����	"��
�
����$
)�	(� �
	����� ,@H-'�*���� ��� �� �	��	��������	��"
�
���
�
���	"��
� ����$
)�	(� ��� $��
�� ��� ��
� 4;1�5� ��� /����
���
�(�$���	�������$
)�	(��/�,@�-'�G�		��� ,@ -� �����;1�����
/���
��	����$(�����
$�	
'�

/+(� ����������

*�
�����	��	
����	
��
)	���	����	�
�����$
������	�
��	����
�

���	��������$�	
��	���	($
�	���������
����	�
�
&�
��	��(�������
�
��	��(�����
���
���
$�"'�

*��$
���!����
���
�	�
�	�
�	��

*�
�	�
�	� *(�
� *
�
	�
F��
� :��
$��
� �
�
�
&�
��	��(�

�
��#
���
�	�� ��
������%
���
�	�� ��
F��&��
�������
���	������ �
�
&����
�	� 6�

�
:
��	��(�

3F��,@6-��OQ��,6-��:!��,@@-��
;���)�,@A-��	($
��

��

/�
�������
���	������ �
�
&����
�	� 6�

�
��#������
�	�	�����	������$$�"��	
�����
����	�
�$
�	���
����

����$��
'�������%������
�	�	�������
�	�� H&@H�������%
�
����
�� ��� $
�	� ��
� ���
���� $��
'� �
&����
�	� �
��#
�� �$$�

)	
���$� 4	�� �� ����	���5� ����
�	�<� ��	
���$� ����
�	�� ��
�
��	� ���
�	
'� F��&��
������ �
���	������ �����
�� 	�
�
������
��
� ��� ����� ��
��
��(� ���
�� 	�� �
� $
��� ��
�����'�
!

���$
�������3����� ,E-� ���� 	�
��$����	��'�*�
� ��
�	�
������� ���$�
�� ��
� ��� 3F��� OQ��� :!��� ��� ;���)�
4
#��
� ��#
�5� �	($
�� 	�� �� ��$
'� /�
������ �
���	������
�����
��	�
�������
��
�����������
��
��(����
��	���
����
�
��
�����'� ������� �

� ��$
���� ��� 3����� ,E-� ���� 	�
�
�$����	��'� �
&����
�	�� ���
�	�� �	� $
��	� ��
� �����$(�
�
$
�	
� ����
�	� ����� �� �	����
� ��� ����
�	�� �����$
�
�����	�
�	
�	��
'�

/+/� ������	��

��	
��������$�	���� 	�
� �����
� �	($
��"
��
�
��	
� ��� ��	
���	��
"����� ��� ��� ��&�
���(� ��	���� �
��
�
�	�	���� ��� 	�
� �����
�
��
'�.	����
���
����	"��"�(�+�$�	
��$���	
���	��
	���4;�/5�
��� �$���� ��	
���	� �
	��� 4:�/5'� ;�/� ���$�� �� C$�	
��$D�
�
��
�
�	�	����� 	��	� ������� �	�"��$����
�����(�� ����� 	
)	�
�	���
"�	����)
�"�	�����	'������
��hello.c����	�
������
��
$�"'�
*��������	��;�/�
�����������	�"
�
�"��		
��	���������
���$
'�

#include <stdio.h>
int main(int argc, char** argv) {
 printf("Hello, world!");
 return 0;
}

8����
��'��
$$�'��"�	��;�/�
�������

:�/� ���$�� �� C�$���D� �
��
�
�	�	���'� .�� 	���� ���
��
����
������	
���
)�
�	���������
������
��
�
�	
��(����������������$$
�
�
�	����$����$���'�!���
����
��$�����"�	���	��$����'�*��	������	�
��$�	
��	
�� 	�
� 	
)	� ��� ��#��� ��� 	�
�
� ��������'� *�
� ���
�
hello.c���$
�:�/�
�������������"�����	�
������
��
$�"����
�	�"
�
�"��		
��	���������
���$
'�

�

8����
� '��
$$�'��"�	��:�/�
�������

:�/� �
��#
�� $������
�
�
�
���
�� ��� 	�
� ������������
$������
� ��� ����$
�
�	�� 	�
� ��
������ �
���	������ ���
����
�	�	���� ���$(���� "��$
� ��
�
�#���� 	�
� $�(��	'� 8���$$(��
�	�� ����� ��$
���� ��� 3����� ,E-� ���"�� ;�/� ��� :�/�

�������� ��
� IAL� ����
$�	
'� *����� "
� ��
� ��$(� :�/�

����������������#
�	���	�����
�
'�

/+0� ����)���
	���������

;1����� 	�
�����$
� $��
&�(&$��
�����	�� ���$���������
�	�� ���
��('�/��/����
����(�$���	�������$
)�	(��,@�-������#
���(�	�
�

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 175

ISBN: 1-60132-446-4, CSREA Press ©

��$$�"����
���	���+��
/�º�»�N��� 4�5�

"�
�
�»� ��� 	�
�����
�����
�����������	�� ��� 	�
�����	���'�8���
	�
���$������
��	�
�
�����������	����
�if���"�	��&case��for��
while��do-while��	�
���
��	�����&&���||�����?:'�
�

/+1� ���	���
���������

� *�
� ����$� ����
� �
����
�� 	�
� ����	�$� ��
������ ��� 	�
�
��	
���	�� "����� ��� ����	� 	�� :�� 	�
� �
��	(� ��
$� 4�

� �
$�"5'�
/��
$���	� ,�H-�
�����
� ����	�$�� ��� �
��
	���� ��2
�	���
"�������
���&"�
�
����
�
�	���$
�����
$�&����$����	����
�
�	�
���$
�'�=
���
�	�
��
��
	������	
���
	�	�������
�����
	���$���
�
$$�����	�������	�
���)�����	������
�����'�/��
$���	��$���
��������	�$���2
�	����#
�����	����$���
���������������&"��$
�
����
��� ��$$
� 	�
� ����	�$� ��
�����'� /�	�
��	���$$(�� �� ���
��#
���(�	�
�G����������
������,@B-+�

��� � ���
���

��� ����

��� ���
�

4 5�

"�
�
� !� �
��
�
�	�� �� �
	� ��� ����	�� ��� �� ������
� 4�'
'�� ����	�
$��
��� ������ �	���
��� ��� ��� ���� ���
�� �����
� $��
�� ��� ��
� ���
��	
���	�����5��¼����	�
���%
����	�
��
��������	��$�����N�(S)����
	�
� ����
�� ��� ��2
�	�� ��� ���������
�	�� ��#
�
� �(� 	�
�
�
�������� 	��$'�8��� ����	�$���2
�	��� log N�(S)�"�$$��
���
�	
��
	���� log 1/�� �(� �� ����	����$� �����	'� .�� 	�
� 	��$� ��� ����������
������������
��
$$���	�
�����	�����	�$��
�����
��	�������	"��
�
������(��
$$�����	�
��
$$�$
��	������
��
��(������	������	"�'�
�� ����	�$� ��2
�	� ����
�� 	������� ���
� 	���� 	"��
� ��� ���(�
�
$$�'�*�
���	
���	����!����0���	���� '�8���¼��"
���
�������%
��
��� ��6��@��B��J��� ���B��6 ��B@�� ���� J��
����
� �����)
$���
"�������
�	�
�
���$	��
		��������8���	���,6�-'�

0� ������
�����

� ;
	�!��
����
������
���
��	�
�C���
$��
�D��
���
�	�
�	�
�	'�
;
	�*��
���	�
�	�
�	������	��	�*�4!5�º�!����������
�"�
�
�!�����
����	����$$(��
�	���$�	��!'�=�
��*º���	�
��!º!���������	����
��� "
$$� ��� �	($
'� 8���$$(�� $
	� �� 4!5� �
� 	�
� ���
$��
� ����	�$�
��
�������
���
������		����!� 	�� 	�
�	�
�	�*�����4*4!55�º�
�4!�5����	�
�����	�$���
��������	
�������		����!�	��	�
�	�
�	�
*'� *����� "
�
���
�� :4!½!�5�� 	�� �
� 	�
� �
��	(� ���	��� 4���
C�
��	(D5����!��
$�	�#
�	��!��"�
�
�:�¼��'�F��
$(��

������ � ��� !"#�

���

����
�

465�

*�
����	����
�
���
$�'�=
���#
�	�
���$$�"������	
���
	�	�����
���:+�

�'�.��:�¾�H��	�
��
��	(����!������#
����#
�������
�����$�
�
�(�*'�

 '�.��:�¿�H��	�
��
��	(����!��
����	������#
���#
�������
��
���$�
��(�*'��

=�
�� :ÀH�� 	�
� �
�	�
	��� ���
�$�
��
��
�� ������ *�� ��� �	�
��
"�����	�����������������	�������(�"����������	�	�
���
��
2��	����	���$�		$
�"�
��:¾H'�*����������
��������(��	�
$�������	�
�
�
�����$(� �� �
����
� ��� �
��	('� 8��� ���	���
�� ���
� ���
7�$$���������	
���
�
����#
������'@A�	���'E ������	��
�	����

����
��
��
�
�	�	������
���
�����
�����$(��
�
$(�$��
�������&
	
)	��
� ������
�� ,6J-'� =�
�� :ºH�� 	�
� �
��	(� �
������
�������
��(�*��	��	�����!º!�'�

*�
� ��
$� ��
��	�� ����	�#
� ����
$�	����� "�	�� ;1�� ��� /�
"�
�� *�
&�
��	���
�� 	�
� ��
� ��������� 	�� 	�
� ������ 	
�
	�'�
*�
� ��
$� ���	�
�� ��
��	�� �
��	�#
� ����
$�	����� "�	�� ;1��
���/�"�
��*��
��	���
��	�
���
'�.���	�
��"�����
��
������
:�����������	��	�"�	��$���
������
�����$���	
���
�����	�
�
������	
� ���� ����
������ :'� !
����� *� 	��	� �����$(� ��	��	��
	�
��	($
����������������	�"�(��
��$	�����$�		$
�����������
$�	����
���:�"�	��;1����?���/'�

1� ������������
������

� =
� ��
� ��@� ��$
�� ��� 	�
� 3F�� ���
� �	�$�	�
�� #
������ J'�H�
,@E-�
)�
�	� "
� �
��
�
���� ��$
� 	��
)��	$(� ��
� ����	���� ���
����
��
� ��� ��	
���$� ����
�	��� ��� ��(�� "����� �
�
��	
�� ��
	�	�$� ��� ��H@6� ��$
�'� =
� �
����
� ;1�� ��� /� ���
� ����
����
��$
� ��� �� ��� :� ����
���� 	�
�	�
�	� ��� *��$
� �'� *�
�
O�$������#&!�����#� 	
�	� ,@J-� �����	
�� 	�
� ��	����	����� ���
	�
�
� #�$�
�� �#
�� �$$� ��$
�� ��
� ���&3�������� ��� 	����� "
�
���
��� �$$� ����
$�	����� ���&�����
	����$$(� ������ !�
��������
�������Á�,@J-'�!����
���
���
�	������
���	�
���$
���������	�
�

)�
���
�	�������
��������$��
�,@I-'�

2� ,������

� .��	�����
�	����"
���#
�	�
��
��$	�����
)�
���
�	�����	�
�	
�	�
�
��������$
�������	�
�3F�����
��	�$�	�
�'�

2+#� ��&$
�$
���
�

� *�
� 	��$
� �
$�"� ��#
�� 	�
� ����
$�	���� ��	��)� ���� ;1���
/�������4!5'�

*��$
� �����
$�	������	��)����;1���/�������4!5�

� ;1�� /� ��4!5�
;1�� �'HH� H'JB� H'6A�
/� H'JB� �'HH� H'�B�
��4!5� H'6A� H'�B� �'HH�

*�
������
��
$�"���#
��	�
����		
��$�	����;1��#�'�/'�

�

8����
�6�!��		
��$�	����;1��#�'�/�

�

$�

���

�$�

%��

%$�

� $�� ����

�

��&

176 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

*�
�	"�������
���
$�"���#
����		
��$�	�������4!5�#�'�;1�����
��4!5�#�'�/'�

�

8����
�@�!��		
��$�	����;1��#�'���4!5�

�

8����
�A�!��		
��$�	����/�#�'���4!5�

2+(� ������
��������

� .�� 	�����
�	����"
���#
��
��$	����� 	�
��
��	(����$(����������
	�
��
��	(����	����:'�*�
�	��$
��
$�"���#
��	�
���
��
���
�����
	�
� ���
�
�	� �
��	(� ���	���� "�
��
&�
��	��(���� ��� 	�
���
����
$�	�����"�	��;1�����/'�

*��$
�6�:
��	(����	��������
&�
��	��(����	�
�	�
�	��

� 8�
��
���
�� Á�
�
*�
�	�
�	�

�
:¾H�

�
:ºH�

�
:ÀH�

:�#'�
;1��

:�#'�
�����/�

������ ��
�	��
Fº H�

 A� �� ��H�E� &H'H � &H'H6�

������ ��
�	��
Fº@H�

��� H� ��H6 � H'H6� H'H �

�
��#
���
�	�� II�� � � @H� &H'A@� &H'AE�
�
&����
�	� �6E� �E� BJI� H' H� H'H@�
F��&��
������ �H6� �JJ� EA � H'@�� H'@A�
�
��#����� :¾H� ��� :¿H� ��� :
����$$�� 	���$�� ��������� 	��
��	
���
	�	����� ��� 	�
� �
��	(� ��
$� ��� !
�	���� @��
����
	�
�	�
�	�����	�	��	���$$(�����������	�"�	��P¾�H&B'�

*��$
�@�:
��	(����	���������
��	��(����	�
�	�
�	��

� 8�
��
���
�� Á�
�
*�
�	�
�	�

�
:¾H�

�
:ºH�

�
:ÀH�

:�#'�
;1��

:�#'�
�����/�

3F���	($
� J� � � �� ��H� &H'@@� &H'@I�
OQ���	($
� I � H� � �� &H'@ � &H'@I�
:!���	($
� E� � H� 66�� &H'@ � &H'@E�
;���)��	($
� IAA� H� JJ� &H'@A� &H'A@�
�
&����
�	� @@J� H� AIA� H'H � H'H@�
/�
������ BIE� AA� I�� &H' I� &H' J�
�
0���� 	�
�	�
�	� �
�
� ��� ����$��$(� �	�	��	���$$(� ����������	� "�	��
P¾�H&B'�*�
�
)�
�	��������
&����
�	��"������
����	������#
�
	�
��
�	�
	������
�$�"�	��PÂ�H&B'��

3� ���	������

3+#� &����������
������

*�
� ����
$�	���� ��	��)� ��� *��$
� � ��� 	�
� ���		
��$�	� ���
8����
�6���������	��	�;1�����/���
��	����$(�����
$�	
�"�	��

�����	�
�����G�		���,@�-��������'�G�"
#
���	�
�
���
���$(�
"
�������
$�	��������;1��"�	�������/�"�	���'�.�

��	�
�
���		
��$�	�� ���8����
�@� ���8����
�A� ��
��
�
��$$(� �$�	'�*����
����
�	��;1�����/���
��
$�	
�	������	�	�
(���
���	����)�
��
���� �'� =
� ��	
� ���	�
����
� 	��	� ����
� ����	�$�� ��
� �(�

����	�������$
���#�����	����$��
�;1�����/��	�
��
����
���
������
���	�#
�	����$
���%
'�.���	�
��"�����*��$
� �����
�	��	��	�
����������
������	��
����
�	����;1�����/'�

3+(� ��������������
����������

�
�
������ 	�� *��$
� 6�� 	�
� �	�� ���"�� 	��	�
&�
��	��(����
	�
�	�
�	�� �
�
��$$(� �
�� ��	� �����#
� 	�
� �
�	�
	��� ���
�$�
����
� �
�
��$$(� :¿H'� *�
�
)�
�	���� ��� �
��#���� ��
�	�	����
"�
�
� :¾H'� G�"
#
��� ��� ��$
���� ��� 3����� ,E-� ������
�
��#������
�	����������	������������	������	������
��#����
��
�	�	�����
����	����
�	�
	������
�$'�

�������	�
�����
$�	��������*��$
�6��	�
��	�������	
��	��	�:�#�'�
;1�� ��� :� #�'� /� ��#
� #��	��$$(� ��� �
$�	���� "�
��
������%���� ��
�	�	���'� *���� ���

�� "�	�� �������
��
�
����
��(�
����	���� 	�
�
� ��������		
��� 	����������
�	�	���'�
G�"
#
����
��#�$������
�	�	���������
��	
$(���	�&����
$�	
�
�����	��;1�����/�����
$�	����	��:'�*��������	����� 	�����"
�
�
�
�� 	�� G��$
�� 3���
(�� ��� G�$	� ,AH-� "��� ���"
� 	��	�
��
�	�	���� ��� �	����$(� ����
$�	
� "�	�� /'� .�� �	�
�� "�����
����
�� /� ���$�
��

�
�� �
�	���� ��� ����
��
�	$(�� ���
�
��
�	�	���� 	�� �
��#
'� ����
��
�	$(�� ��� ��
�	�	���� ���
�
�	�
	������
�$�	
��	��"�������������	
���
�	������"��������
������	
�	�"�	��
)�
��
��
������
��	�$���
�����	���������	($
�
���
�� ,E-'� *��$
� 6� ���
��� �	�	��	���$� ������	� ���� 	����
����$�����'�

*�
��
�	�
	������
�$�����
��#��������
�	�������	�����
$�	
�
"�	��/��"�����"
�"��$�
)�
�	� ����
� 	�
�
� ������ ����	����$�
��
� ��� ����
�	�'�G�"
#
��� �
��#���� ����
�	�� ��� "
��$(�
����
$�	
� "�	�� ;1�'� =
� ���	� �
$�
#
� 	���� ���
�
��
�
�
	"

��;1�����/�����
�������$���������	���$�������
�'�V
	�
"
���	
������
�
�
��
�	��	����
	��
��	�
�
������
������
���
��
��������
�	��� 	��	� ������
��	��	���#
��

������
�	
&
��	�����
��������	�
������
���������
�	�	������?���$
���(�
������
�'�

�&'

�&$

�&(

�&)

�&*

�&+

� $�� ����

D
(S
)

LOC

�&'

�&$

�&(

�&)

�&*

�&+

� ��� %�� ,��

D
(S
)

M

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 177

ISBN: 1-60132-446-4, CSREA Press ©

F��&��
�������
���	������������	"��
�����$
)�	(�4	�
� $��	�
��"����*��$
�65���
���
��	
$(�����
$�	
�"������

�
�	�����
���	��$$(�����������'�V
	�"
�"��$�
)�
�	����
�
�����������	��
	
�� 	�� ��#�$#
� ���
� ���
�� 4�'
'�� #�����$
�5'� .�� �	�
��"�����
	�
�
���
����
��������
��
��(�$�������
��	������	
����� 	�
�
�
��
� ���
�
�������<� �
��
� 	�
� ��
� ����	� �
� ���
�
�
�	�
	���$$(� ���
�$���� ��� 	���
� ���
�� "
�
� ���
� ��
������
4
'�'��$���
�5'�

3+/� �����������
����������

�
�
������ 	�� *��$
� @�� "
� ����	� ��	
� 	��	� :� ��� �
��	�#
$(�
����
$�	
� "�	�� ;1�� ��� /�
)�
�	� "�
�� ����� ����
�	��
4�'
'�� �
&����
�	5�� "����� "
� ������� �
$�"'� .�� �	�
�� "�����
"��$
� ����
������ �
�	�
	��� ���
�$� �
���	� �
�
�����$(� �
��
�
���	"��
� ����$
)�	(�� 	�
� �
��	�#
� ����
$�	����� ��� "�	�� ;1��
��� /� "�	�� 3F��� OQ��� :!��� ;���)�� ��� ��
������ �	($
�
�����
�� ����
�	� �
��	(� ��� ���	"��
� ����$
)�	(� ��
�
�������	��$
'�*����������	��"�	��$����	�������#��
�����	($
�
���
�<����
$(��	�
�
����#��	�
������
#�	(��������$���	(�,6-'�

F��&��
������ �
���	������ 4*��$
� 65� ��� ��
������
�
���	������4*��$
�@5���
�#��	��$$(�������	
�������
����	�
�����
	
��������
��	(��"��������"��	�	�
���
$���
��	�'�*��	�	�
�
�
��
� ���
� ����	�� "�
�
� :ºH� ���� ��
������ ����
�	�� 	�
�
���$(���� �
�	���
� ���
� $���
�� ���
�� 	��
&�
��	��(� 	����
����	
�� ���
�� 	�� �
��	��('� G�"
#
��� 	�
� ���
�
��
� 4 �E� #�'�
 AA5������	��	�	��	���$$(�����������	�47ÂH'I 5'��

*�
� �	�
�� ���
� "�
�
� 	�
�
� ��� :ºH� ��
��
��(� ����	� ��� 3F��
�	($���'� .	� ���

�� "�	�� ����
)�
�	�	����� ����
� 	�
� 3F�� ���
�
�	�$�	�
�� ��� �� 3F�� ���2
�	� ��
�����$(� ��$$�"���� 	�
� 3F��
�	($
� ���
'� *����� "
� "��$�
)�
�	� !º!�� ��� ����
��
�	$(��
:ºH'� *��	� 	���� ��� �����
� ������ 	�
� ��
�	� �	($
�� ���
��������	���� 	��	��
��	(� ���	����
	
�	� 	�
�3F���	($
�"�
�
�
"
�
)�
�	� 	�� ���� �	'�V
	�� �����)���	
$(�EJL���� ��$
������	�
�������� 	�� 3F�� �	($
� "����� ��� ���
	����� �

���� ���	�
��
�����
��	���'�7
������	�
�����
��������		
�����
��

����"�����
:�������$$
������3F���	($
�������
�	��	�
��	�
���	($
������"
�
"��$�
)�
�	'�.�

�� 	���� ���"��	� 	�
��	�����"�����*��$
�A�
�
$�"+�	�
��
����:�4���
���
$�5�����3F���	($
�����$��
�	�	��
%
���	����	�
��	�
���	($
�'�

*��$
�A�/
����:��(��	($
����
���
$��

!	($
� :�
3F�� &H'H6@�
OQ�� &H'HIB�
:!�� &H'H@��
;���)� &H'� E�

�
�� ���	�
�� ��	
���
	�	�������:�����	��
����������	�	�	�#
� �	($
�
��
��
�'� =��$
� ��
	��$
� ����������� ��� 3F��� OQ��� :!��
��� ;���)� �	($
�� ��� �
(��� 	�
� ����
� ��� ���� �	�(�� *��$
� A�
����
�	��	�
�3F�����
��	�$�	�
���#
��
�$
��	������	�
�3F��
�	($
�� "����� ������ ��� "��	� "
�
)�
�	'� 8��	�
����
�� 	��	�
���
�#
� �	($
� �����	��$� �����
���
���� 	�
� 	
�	��
��#
��
��
���	������	�
�;���)��	($
����$
��	������	�
�:!���	($
��

��
	�����������	
�	�"�	���
�
��$���	��
������$
���	
���
	�	��������
�
����
��	��������	�
��
��
�	�#
��	($
������$��,@6��@@��@A-'�

�����������
�	����
��#����	�
���
����	����
���	�������#
�
�����
��
��	(�4*��$
�65���	��
�	�
���
������� 	�
��4*��$
�
@5'� *���� ������� ��� �	� ��� "�	�� �#��
� ��� ���	� �	($
� ���
�'�
V
	� �	� ��� ������	
�	� "�	�� ��
$� ��
��	����'� F��
$(��
����
�	��	
��	�����
�	���
�$�(��	����������������
���2��	�
�����������
�	�	���'�8����	����"
�����$�
��5��
�������
�
��� ����
���	���� �	� ��
� ��	� 	�
� ���
<� ��� 5� �� ���
� �
$���$
�
"�(�	�������#
��
�	�
	���#�$�
���(��
�	���������
����������
C�
$�&����
�	���D� �	($
�� "����� *��$
�� 6� ��� @� ���"� ��
�
����
$�	
������������
��
���
�	�����"�	��;1�����/'�

�� &��	�������

=
���#
����"�� 	��	����	"��
�����$
)�	(�����
$(��;1�����
/����
��
$�	
�	���
��	(����	������	�	�
(���
��$������
�
�	'�*�
�
��
�	���� �
������ ����	� �
����$�	(� ��� �
��	('� .��
������$�	���� ����
�	��� "
� �
�	���
� ����
�	�
#�
��
� 	��	�
�
���$
���
�����
��	���$���
����
���	��
�
�����$(�	�
����
�
	�����'� 8�	��
� �
�
����� �

�� 	�� ��#
�	���	
� 	���� ��
�	���'�
8�	��
�"��������	��$���$������	��	�
��$	
���	
���	
���
	�	�����
��� �
��	(� ���	���'� =
� ��$(� $���
� �	� 	�
� �� $������
� ��� �	�
	��	�� 	�
� 3F�?;����� �
����	��('� 8�	��
� �
�
����� "�$$� �	�(�
�	�
��$������
������
����	���
��	����
��	�����"�	�
�����	�$�
��
����������
��	(����	�����
$�	
�	��	�
�'�
�

�� ,������	��

,�-� ����$�0'�O��	�'� �The Art of Computer Programming��
>�$���&@��������&=
�$
(�� H���

, -� ����$�0'�O��	�'�C�����	
��7�������������������	�D�
Communications of the ACM���E�4� 5���IE@�

,6-� :����� O
�������� ��� 7'9'� 7$���
�'� The Elements of
Programming Style��/�3��"�G�$$���IEJ�

,@-� 1���$
�� .��'� C��� Ã� �� �������� �
��	���
�D��
�		��+??���'����$
'���?�?0 @@AEMH�?�	�$?0 HH6?��'�'�	�
$���
	��
#
� J�����$� H�B�

,A-� :����� O
�������� ��� �
����� ��	���
'� The C
Programming Language��7�
�	��
�G�$$���IEJ�

,B-� ���$��=����9��
������
�
��)��9���O����������
��#��.����
$$�'�C.�
�	D��
�	���� ' '�H������.�
�	�>
������
 ' '�H�� 6�9�$(� HHJ��
�		��+??"""'���'���?���	"��
?��
�	?�����$?��
�	'����
�
	��
#
� J�����$� H�B�

,E-� ������$
�������7��	
���3����'� C8���	�$����$(�������
3���7�����������!	($
D��Proceedings Second International
Conference on Computer Science & Engineering�� �������
��0�� J& I����� H�A�

,J-� G
��%&1		�� 7
$	�
�� ��� 7'G'� ����	
�'� The Beauty of
Fractals��!�����
����IJB�

178 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

,I-� 9
����
�� 1�
$$
		
'� C7�$$������ 8���	�$��D� Discover
Magazine����F�#
��
�� HH�'�

,�H-� :
��Ä	� /��
$���	'� Fractal Geometry of Nature��
8�

������IJ �

,��-� 3���$
�� .��'� C3���$
� �	($
� ���
D��
�		��+??��	���'���?����$
?�	($
���
�� �
	��
#
� 6� F�#
��
��
 H�A�

,� -� *"�		
��� .��'� C0��
�	�#
� !��$��D�
�		�+??	"�		
�'��	���'��?
��
�	�#
���$�?�� �
	��
#
� 6�F�#
��
��
 H�A�

,�6-� F1��'�C3
�
��$�!��	"��
��
#
$���
�	�!	���������
3��
$��
��D� F1���� F�	����$� =
�	�
�� !
�#��
� 1����
� ���
G(��$������
#
$���
�	'�F1���� HHJ�

,�@-� !	
#
�1�$$��
'�C Elements of Style: The Programmer’s
Style Manual for Elegant C and C++ Programs��/Q*���II �

,�A-� *�
#��� /���
$	�� 3�
���(� :������
��� ���
"� 3��(��
��� ;��� Å��������� The Elements of C++ Style�� �������
��
 HH@�

,�B-� �$$���>
��
�$
�����!��		�='����$
�'�The Elements of
Java Style���������
�� HHH�

,�E-� >���
�	�V'�!�
���*%
&9�
�V���!	
��
��/'�*�
���	�����
;����� �'� 7��$�
�'� C.
�	��(���� 0����&7���
� !��	"��
&&���
0�������$� !	�(�D� IEEE Transactions on Software
Engineering��>�$��
�����.���
�@������$��IJA�����
��6�E&6 @'�

,�J-� =�$$���� *'� =��'� C!��	"��
� �
�
�	� 7�
#
�	���� ������
/����
P�� ����$
)�	(� /
	����D� Hewlett-Packard Journal��
�IJI���B@&BJ�

,�I-� F������ 0'� 8
�	��� ��� /��	��� F
$$'� C�� ���	���
� ���
���	"��
�
�
�	� ��
��	���� ��
$��D� IEEE Transactions on
Software Engineering���III��>�$��
� A��.���
�A���!
�	��III��
�BEA&BJI�

, H-� ���
���Æ
$$
�'�C:�����
��
��������$
)���
�D������
/(��� ��� !��	"��
� 0����

������
�		�+??"""'�$�
����
'�
	?���
��'%
$$
�?�(��&��&���	"��
&

����

�������
	��
#
�����$� J�� H�B�

, �-� ���$��8$
��'�C���
"��
����$�	(�(���	����D�Journal of
Applied Psychology���I@J��6 �465��� �& 66'�

, -� ���($�7���
		��������G��$
��7�
��������
#����'�C��
����$
�� ��
$� ��� ���	"��
� �
����$�	(�D� Proceedings of the
8th Working Conference on Mining Software Repositories�
4/!��P��5�� H�����E6&J �

, 6-� ������ *
���
� ��� ��(���� ;��	
�'� C7����������+�
�
������ "��	���� ��� �
#
������D� ITiCSE ’14 Proceedings of

the 2014 conference on Innovation & technology in computer
science education�� H�@��� JA& IH�

, @-� :
�� 8�('� Distellamap�� HH6� /��
��� ��� /�
��� ��	��
FV���FV�����	
�!	�	
��

, A-� :
��8�('�Visualizing Data�� HHJ�1P�
�$$('�

, B-� ��(� 1���� ��� 3�
�� =�$���� 4
�'5'� Beautiful Code:
Leading Programmers Explain How They Think�� 1P�
�$$(��
 HHE�

, E-� 7
	
��O���$'�C!
����������������	�$��	���	��
���������	
��
���������D�SIGPLAN notices�� I�4�5���II@�

, J-� 7
	
�� O���$�� ��� 9��
%� :�
�	'� C8���	�$� �	���	��
� ���
���������������D�SIGPLAN notices��66�4B5���IIJ�

, I-� 7
	
�� O���$�� 9��
%� :�
�	�� ��� >�$2
�� Æ��
�'� C;���&
����
� ����
$�	����� ��� �����	
�� ���������D� Cybernetics and
systems�� J�4�5��@6&AE���IIE�

,6H-� 7
	
�� O���$�� >�$�� 7����
$
��� ��� 9��
%� :�
�	'� C��
"�����$�����$
)�	(��
	����D� ���G'�����
�� 4
'5��FESMA���'�
 6A& @B�

,6�-� ��#�� �������	��� G
��
�	� 9
$��
��� ��� ;
�� 7
���$'�
C8���	��+� �� *��$� ���� ��	���	
� :��$�����$� .���
�
�$��������	����D� Proc. Sixth Australia-Japan Joint Workshop
on Intelligent and Evolutionary Systems�� HH ����&J�

,6 -� ���� ��$
���'� C8���	�$� ���$(���� ��� 7�	��������
�
�	�
	����D� International Journal of Simulation Modeling��
>�$��
�E��F���
�� �� HHJ�

,66-� ���� ��$
���'� C8���	�$� ���$(���� ��� !	
�$	�(�
7�	��������D� International Journal of Computer Games
Technology�� HHI'�

,6@-� ���� ��$
���'� C;���&/
���(� ��� 7�	��������
�
�	�
	����D� International Journal of Computer Games
Technology�� HHI'�

,6A-� 7
	
�� 3
�$�� ����$�� !��Ç�$�
��� ��� O���� ���
�� =���'�
C*�
���
����8���	�$����
�����������	�����$(����D�Harmonic
and Fractal Image Analysis�� HH@���EH&E6�

,6B-� 9��� �����	���� 9���� 0$	���� ����
$� �������
�� ���
V���� =���'� C/�$	�����	�$� ���$(���� ��� ��	�
�	���	���� ���
9�������7�$$���� ����	�����D�Proc. Computer Image Analysis
in the Study of Art� 4!7.0� BJ�H5�� HHJ�� ��+�
�H'���E?� 'EBAH�A�

,6E-� �'7'�*�($�����'�3�%�����*'7'�/��	����3'�'�'�G�$$���'7'�
/���$����� �'� 9������ :'�'� !����
$$�� /'!'� 8���������� �'�'�
/��$�"'� C��	�
�	���	���� 7�$$���� ����	����� ������ ����	�$�
�
��
	�(�D�Pattern Recognition Letters��>�$��
� J��.���
�B��
 HHE���BIA&EH �

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 179

ISBN: 1-60132-446-4, CSREA Press ©

,6J-� ������� 7'� *�($���� ���� 7'� /���$����� �'�� ��� ��#��
9����'� C8���	�$� ���$(���� ��� 7�$$������ ��������	�����D�Nature�
6II��@ �46�9��
��III5����+�H'�H6J? HJ66�

,6I-� /������� .����� ��� ��#�� !	���'� C/�$	��$
� #����$�
�
�	��
������	�
������	
����	�
�	���	�������9�������7�$$������
���� ����	����+� :
(��� ��)� ����	���� ��� ����	�$��D� Proc.
SPIE 7251�� .���
�7���
�����+�/�����
�>���������$���	�����
..��E A�H��� HHI�

,@H-� �
� *���&����� 3���$���� ;�#
���
�� ��� 9
��&3�(�
/
���
�'�C��8�
$�!	�(����!��	"��
�8���	����$�����$
)�	(�
/
����
�
�	�D� Proc. 14th International Workshop on
Software Measurement�� HH@�

,@�-� *������ /����
'� C�� ����$
)�	(� /
����
�D� IEEE
Transactions on Software Engineering��!0& �4@5���IEB�

,@ -� ;
�� G�		��'� C*�
� ��$
� ���
���������� ��� �����#���� 	�
�
�
$����$�	(� ��� ��	��
� ���	"��
�D� Proc. Practice and Research
Techniques�� HHJ'� *�.�� 7��*� PHJ'� *
�	���+� ���
���� Q�
.���	���$�����
�
��
�

,@6-� �!	�$$������'� 4 H�A5'�GNU Coding Standards��!�������
/
���;���	
�� H�A�

,@@-� 8�

:!�'� C8�

:!�� O
��
$� �
#
$��
�P�� /����$�D�
�		��+??"""'��

��'���?���?���'���È��
�(º�	($
Q�
�	���ºI��
�
	��
#
�E�/�(� H�B�

,@A-� ;����� *��#�$�'� C;���)� O
��
$� ������ !	($
�D�
�		�+??�$���'���
�'���?�����M�	($
'�����
	��
#
�E�/�(��

,@B-� :
��Ä	� /��
$���	'� CG�"� $���� ��� 	�
� ����	� ��� :��	���È�
!	�	��	���$� �
$�&����$���	(� ��� ����	����$� ��
������D� Science��
�AB�46EEA5���IBE��B6B&B6J�

,@E-� 8�

� !��	"��
� 8����	���'� 4 H�A�� F�#
��
�� 65'�
���
�	�$��Ã�3F�����
��	�$�	�
�'��
	��
#
�F�#
��
�� 6�� H�A��
����� 8�

� !��	"��
� 8����	���+�
�		�+??"""'���'���?���	"��
?���
�	�$�?���
�	�$�'�	�$�

,@J-� ='9'� ����#
�'� Practical Non-Parametric Statistics��
=�$
(���III�

,@I-� ������$
���'��		��+??��	���'���?�����$
���� A?7�
		(��
�
	��
#
�F�#
��
�� 6�� H�A�

,AH-� ������ G��$
�� /����
$� ='� 3���
(�� ��� ������� �'�
G�$	'� C�
����� �
��
� 	�
� $��
�+� .�
�	�	���� ��� �� ���)(� ����
����$
)�	(�D� Proc. 16th IEEE International Conference on
Program Comprehension��.�7�� HHJ��.000����66&�@ �

180 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

Comparing An Object Oriented Runtime Complexity
Metric To Depth First Search Complexity with Mobile

Agents in a Mobile Autonomous Environment
J. McKinney Young1, L. Etzkorn2

1,2Department of Computer Science, University of Alabama in Huntsville, Huntsville, Alabama, USA
300 Technology Hall

University of Alabama at Huntsville
Huntsville, AL 35899

1julienmckinneyyoung@mac.com, 2EtzkorL@uah.edu

Abstract - Software complexity metrics provide a way to
describe and predict the resources needed to maintain and
update code. Complexity metrics derived statically from
source code describe the complexity of the software’s code.
Complexity metrics derived at run-time describe the
complexity of the software’s behavior. In this paper, we use an
object oriented runtime complexity metric that describes the
group complexity of mobile agents working atop mobile
autonomous platforms. The agent/platform pairs use the
Depth First Search algorithm to walk a graph in order to
search for colored balls. We extend the experiment by studying
the mobile agents/mobile platform’s behavior complexity in
three scenarios of differing difficulty. We then compare the
run-time derived complexity metrics with the algorithms
theoretical worst-case complexity estimation.

Keywords: Software Complexity, pathfinding, cellular
automata

1. Introduction
 Software complexity metrics traditionally have been
computed statically using the software’s source code. This
provided a descriptive means of evaluating the entire
collection of code. Recently, the capture of dynamic
complexity metrics of code during execution has allowed
study of software behavior at runtime [3,4,5,6,7,8,9]. This
view into the actual behavior of the executing code allows the
software professional to better understand and predict the
software’s actions. Runtime complexity metrics are especially
useful with object oriented code because dynamic behavior
such as inheritance and polymorphism can be hard to predict
from a static source code-only review [9].
 In this paper, we use an object oriented runtime
complexity metric that measures the group complexity of
mobile agents as they work atop mobile autonomous
platforms to complete a basic walk and search task in a
simulated environment. The compiled complexity data
highlights the surprising ways in which actual complexity
metrics gathered during execution in real world scenarios
differs from theoretical static code complexity estimations.

2. Related Work
 Software professionals have long noticed the
relationship between a software applications code complexity
and the resources required to adequately test and maintain it.
The higher the complexity, the higher the level of resources
required. T.J. McCabe addressed the issue in 1976 with his
article, “A Complexity Measure.” In this article, McCabe
presents a way to measure code complexity statically by
counting all possible paths of execution that could potentially
be exercised. McCabe specifies that complexity depends not
on the size of the program but only on the decision structure
of a program. [10]
 Another method of measuring code behavior was proposed
by Chidamer and Kemerer in 1994 in [1]. They proposed that
coupling between objects (CBO) was a useful object-oriented
metric. Coupling is defined as the manner and degree of
relationship between software modules - when methods in one
class use methods or instance variables defined in another.
They found that the higher the amount of coupling in the
code, the higher the amount of complexity is present [1].
 In 2005, Mitchell and Power extended Chidamer and
Kemerer’s metric, CBO in [11]. They applied it at run-time to
examine coupling behavior of the actual running code. They
believed that the static CBO measure did not provide an exact
look at what really happened when the code actually executed.
“...CBO cannot capture all the dimensions of object-oriented
coupling because features of object-oriented programming
such as poly-morphism, dynamic binding and inheritance
render CBO imprecise in evaluating the run-time behavior of
an application.” [11] Their studies showed that objects from
the same class can behave differently at runtime “from the
point of view of coupling” than could be described from a
static analysis of the source code [11].
 Five years later, Mathur and Keen proposed a different
metric to study run-time complexity. Just as Mitchell and
Power extended Chidamer and Kemerer’s CBO to the run-

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 181

ISBN: 1-60132-446-4, CSREA Press ©

time environment, Mathur and Keen extended McCabe’s idea
of cyclomatic complexity to the run-time boundary. They
introduced a metric that is based on the number of decision
points evaluated by the running code [9]. The authors make
the distinction between “potential” complexity - the code at
compile time - and “actual” complexity - the code that
actually executed. They calculated the runtime complexity of
objects by counting the number of decision points that were
accessed at runtime. Selection structures like if...then,
if..else..then, case statements and do...while, for...while
structures added to the count as executed per object. Each
decision point was counted once - iterative calls were not
counted. The authors, like McCabe, write that the decision
points alter the control flow of the program and can affect the
complexity of the running code. The authors then compared
the count-generated metric of complexity against the
complexity ratings given by a panel of experienced
programmers who analyzed the subject source code and static
complexity measures derived from the source code. They, like
Chidamer and Kemerer, found that the runtime metric
measured a “different aspect of complexity” than did static
complexity metrics [9].
 Desouky, after Mathur and Keen, examined runtime
complexity expressed by decision points. Desouky extended
Mathur and Keen’s decision-count metric to include iterative
decision calls [5]. The author studied the metric using an open
source application Rhino 1.7R4. The results were compared to
bug reports because software quality is inversely related to the
number of bugs found [5]. A code module that has a very low
number of bugs found is considered to be of a higher quality
and contain lower complexity than a module of that is found
to contain a large number of bugs. The study found that the
derived complexity values correlated with the number of bugs
found in the code modules under test [5].

3. Background
 In [6] and [7], Keen takes McCabe’s idea of complexity
as a function of decision structure and combines it with the
idea that run-time metrics could give a more accurate view of
complexity as represented by the running code. This
represents a shift in focus away from static code complexity to
dynamic behavior complexity. Keen introduced the metric
KeenintRM to describe the amount of complexity in a program
as it executed. It is a descriptive metric that allows the
software professional to compare different approaches and
implementations for accomplishing the same task. The better
approach is the approach that accomplishes the task with the
least amount of complexity [6].

KeenintRM = 1/complexity for some particular task [6].

 The metric is very similar to a runtime version of McCabe’s
cyclomatic complexity [6]. It is the sum of decision points
encountered by the running code plus one is added at every
method invocation even if no decision structures are
encountered. This represents the idea that some level of

complexity is represented by the activity of processing the
method even without the greater work of processing a control
structure.
 In [6], Keen compares the behavior of two programming
approaches by implementing the approaches as agents - static-
vs-mobile - running on simple mobile systems fitted with
infrared sensors. The mobile systems had a task to perform -
to move about a grid in search of three colored balls in a
particular order. The “agents” directed the mobile systems and
processed the “visual” (infrared) data that the mobile systems
perceived.
 In the Three-Mobile System Scenario, which compared the
activity of three mobile systems with static agents and then
three mobile systems with mobile agents, starting at the same
start points searching for the same balls in the same location,
the data suggested that the mobile agent approach showed
lower complexity than the static agent approach [6]. Keen’s
work also demonstrated that the mobile agent approach
showed greater resiliency in the face of obstacles than the
static agent approach. When one mobile system got stuck in a
corner and couldn’t turn enough to remove the wall/obstacle
from its view, the mobile agent resident on the “stuck” mobile
system was able to jump to another mobile system (that had
already completed its agent’s task) and continue searching for
it’s colored ball. In the static agent approach, both the “stuck”
mobile system and its resident static agent where unable to
complete their task.
 We implemented Keen’s experiment in a simulation. The
simulation was validated against the original data. The mobile
platforms use the DFS pathfinding algorithm to walk the
graph. In this paper, we discuss our findings when we used the
simulation to compare the run-time complexity of the mobile
agents/mobile platform teams walking a graph with DFS’s
Order of Complexity. The comparison provides additional
data to describe the aspects of complexity that the KeenintRM
metric captures.

4. Case Study
4.1. Simulation Description

 The simulation is implemented in the form of a cellular
automaton (CA) using Microsoft Access. The researcher may
observe the progress of the running code (written in Visual
Basic) through the graphical user interface (GUI). The
persistent datafiles in which the rules, the geography, and the
intermediate and final results are stored are used to derive the
results of each run.
 The formal definition of a CA is expressed by four things:
the array dimensionality d, the set of states (the number of
cells) S, the neighborhood vector (the definition of what is a
neighborhood) N, and the local rule (how local neighbor states
are evaluated) f [2].
CAi = (d, S, N, f).
 At time quanta zero, an initial start state is assigned to each
cell. The collection of all cells’ states is called the

182 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

configuration of the cellular automaton at that time. The
passing of each time quanta causes the states of all the cells to
change (according to the cellular automaton’s rule) and a new
configuration describes the cellular automaton at that instant
in time.
 The CA expresses a 2-dimensional array(d) representing
geographic direction (x,y). The simulation models mobile
systems that are capable of moving only “wheels on the
ground.” There is no vertical component (z) to their
movement. The cells (S) of the automaton comprise a 7x7
grid which has a total of 49 possible location states. The
neighborhood vector (N) is made up of 4 possible cells at the
North, East, South, West sides of the cell under analysis. The
array of local rules are as follows:
Rules of CA behavior
1. There is a central clock.
2. Time only flows in one direction - forward.
Rules of Mobile System Behavior
1. Mobile Systems can only do one activity at each time tick:

a. Start
b. GoToSleep
c. FindObject
d. Walk
e. Turn
f. Lose Agent
g. Receive Agent

2. Mobile Systems can only turn 90 degrees in one time tick.
3. A mobile system cannot revisit a node that it has already

visited - unless the system is in “Fallback” mode and the
already-visited node is the just-prior node.

4. Only one mobile system at a time may occupy a node.
5. A mobile system will go to “Fallback” state on the 4th time

tick after it has turned a complete circle (4 turns in 4
consecutive time ticks) and has not been able to move out
of its current node.

6. A mobile system will “go to sleep” on the 4th time tick
after it has turned a complete circle in the “Fallback” mode
(4 turns in 4 consecutive time ticks) and has not been able
to move out of its current node to its “origin” node (the
node it occupied right before it moved to its current node.)

7. Each Mobile System starts the simulation with one
assigned Agent.

8. Mobile Systems possess the attribute of “handedness” (left
or right) - when a mobile system turns, it will turn in the
direction as specified by its “handedness” setting.

9. Mobile Systems “find” a ball by stepping into a cell that
contains a ball.

10.Mobile Systems walk a self-selected path using the DFS
algorithm.

Rules of Agent Behavior
1. Agents can only do one activity at each time tick:

a. DoNothing
b. GoToSleep
c. FindObject
d. Jump

2. When a mobile system dies so also does its agent.

3. An agent is assigned a particular colored ball (red, blue,
green) to find.

4. It can only “find” that one ball.
5. The agent “checks” if the ball is in the cell during the same

time tick that the mobile system has moved into a new cell.
6. After the agent finds its ball, it goes to sleep.
7. A different agent who is still active (has not found it’s ball)

can jump to a mobile system with a “sleeping” agent.
8. A different agent who is still active (has not found it’s ball)

can jump to a mobile system without an agent.
9. A “jumping” agent may only leave one mobile system and

arrive at another mobile system in one time tick. (The
mobile system will “wake up” in the next time tick.)

4.2. Depth First Search (DFS) Description
DFS is an algorithm for traversing a graph. It was described in
the 19th century by Charles Pierre Trémaux, a French
mathmematician [12]. In the algorithm, the search begins at
some arbitrary node of the graph and “walks” or explores
down as far as possible along every branch before
backtracking. When an obstacle is encountered or the branch
ends, one “falls back” to the next higher node and selects
another node/branch down which to explore. In other words,
the algorithm visits children nodes before it visits sibling
nodes [12]. It’s order of complexity is defined as Ɵ|V|+|E|),
where V is the number of vertices (or nodes) in the graph, and
E is the number of edges. As an actor “walks” a graph using
the DFS algorithm, the DFS order of complexity represents
the fact that the actor must make decisions at each node about
where to go next.

4.3. Scenario Design Description
 The mobile agent/mobile platform simulation is modeled
after a real-world case study using mobile agents running atop
real robots who walked a graph taped on a floor in a real
building. The real-world scenario forced the agent/robot teams
to interact with an uncertain environment that included each
other, temperature and changing light conditions based on the
position of the sun. The advantages of this approach are that
the agent/robot pairs interacted with and potentially overcame
unexpected conditions just like software and hardware must
do once they are deployed on real-time, real-world systems.
Metrics collected in this environment are more realistically
descriptive to what would be experienced at actual
deployment. The simulation includes the causal factors of the
real-life case study. It allows expansion of the study to include
questions that might prove too arduous and time-consuming to
be studied with the real robots.
 In this case study, we wanted to examine the KeenintRM
metric as it captured simple graph traversal activity in order to
better understand the aspects of complexity that the metric
describes. Since the agent/platform pairs represent actual
entities who must move “wheels on the ground” in linear time,
our hypothesis was that the agent/platform pairs would

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 183

ISBN: 1-60132-446-4, CSREA Press ©

experience more complexity than what a theoretical
estimation would describe.
 For that purpose, we compare the values of KeenintRM
collected for the group of agent/platform pairs while
traversing a graph with the theoretical values proposed by the
DFS algorithms order of complexity for the same traversed
graph.
 The three agent/platform pairs walk autonomously the
graph searching for colored balls. The presence of three pairs
interjects uncertainty with regards to path openness. Even
though the mobile agents do check if the mobile platform has
“found” the appropriate ball, that decision structure is not
counted for this experiment. In the three mobile system/
mobile platform teams, the start states are described below.
Scenario 1 - Length: 120 time quanta
B1: red, at 2,2
B2: green, at 4,5
B3: blue, 1,6
R1, agent1 - read ball, 7,1, left-handed
R2, agent2 - green ball, 7,2, right-handed
R3, agent3 - blue ball, 1,7, right-handed

Figure 1. Scenario 1 Start

Scenario 2 - Length: 120 time quanta
B1: red, at 2,4
B2: green, at 5,3
B3: blue, 6,6
R1, agent1 - read ball, 7,1, left-handed
R2, agent2 - green ball, 7,2, right-handed
R3, agent3 - blue ball, 1,7, right-handed

Figure 2. Scenario 2 Start

Scenario 3 - Length: 120 time quanta
B1: red, at 1,4
B2: green, at 1,6
B3: blue, 7,3
R1, agent1 - read ball, 7,1, left-handed
R2, agent2 - green ball, 7,2, right-handed
R3, agent3 - blue ball, 1,7, right-handed

Figure 3. Scenario 3 Start

Scen-
ario

Ɵ|V|
+|E|

KeenintRM Nodes
Visited

Fall-
back

Nodes

Balls
Found

1 161 433,476 81 9 3

2 129 280,562 65 3 3

3 61 34,063 31 1 3

Table 1: KeenintRM Aggregate Data (120 sec run) by Scenario

As Table 1 describes, the placement of the balls and the start
location of the mobile platforms in Scenario 1 makes this
scenario the most arduous for three agent/platform pairs.
They visit 81 nodes in the 120 sec experiment. (And then
revisit 9 of those nodes in “fallback” mode.) Comparing
Scenario 2 data with Scenario 1 data, one sees a 24% increase
in the number of nodes visited from Scenario 2‘s 65 nodes to
Scenario 1‘s 81 nodes but there is a 54.5% increase in the
KeenintRM value. The difference between Scenario 2‘s
activity and Scenario 3’s activity is more dramatic. The
number of nodes visited more than doubles from Scenario 2 to
Scenario 3 but the KeenintRM value increases by a factor of 7.
In comparison, the Order of Complexity given by the DFS
algorithm shows only an arithmetic increase between the three
scenarios related to the number of nodes and edges visited.

184 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

5. Conclusion and Future Work
 Implementing the DFS algorithm as a path finding strategy
in a simulation where the moving objects are specifically
designed to mimic real, autonomous, mobile platforms
highlighted several critical differences between how the
algorithm models movement and time and how real objects
experience movement and time as described by KeenintRM.
The Order of Complexity given by the DFS algorithm shows
only an arithmetic increase between the three scenarios related
to the number of nodes and edges visited while the KeenintRM
values show a greater than arithmetic growth between the
scenarios. In Scenario 1, the agent/platform pairs visit a total
of 90 nodes in the 120 second experiment (81 nodes in
normal mode and 9 in “fallback” mode.) Comparing Scenario
2 activity with Scenario 1 activity, there is is a 24% increase
from Scenario 2’s 65 nodes to Scenario 1’s 81 nodes visited in
normal mode. However, there is a 54.5% increase in the
KeenintRM value from Scenario 2 to Scenario 1. Comparing
Scenario 3 with Scenario 1 shows that the agent/platform pairs
visited almost 2 1/2 times more nodes in “normal” mode in
Scenario 1 then they did in Scenario 3. KeenintRM , however,
shows an almost 12-fold increase between Scenario 3 and
Scenario 1.
 What is the difference between what the DFS order of
complexity represents and what the KeenintRM captures?
First and foremost, in the DFS algorithm, an actor will
“fallback” to its prior node instantaneously and effortlessly.
Revisiting a “fallback” node does not add any complexity to
the DFS algorithm’s estimation. As the algorithm is written,
an actor who is blocked from moving forward to the next
unvisited node will drop out of the “next step” subroutine and
return to the calling routine with all position data either
updated or still available. DFS implemented recursively with
a real mobile platform has many more actions to complete
before it is back at it’s prior location. First, the real object
does not fly. It must move wheels on the ground. And it must
be able to “see” where it’s going. That means that platform
must turn before it can “fallback” to its prior node. It can only
turn 90 degrees in a time interval so it may take several time
intervals before it is facing back the way it came. Then,
because it takes the whole time interval to turn, it “walks”
back to the prior node in the next time interval. Also, one must
keep in mind that the platform has direction. It must then turn
in order to evaluate possible “next steps” from the current-on-
the-way-to-the-“fallback” node. At each time interval during
the “fallback” exercise, the platform makes decisions on how
to move (turn or walk) and what is the correct node to walk to
(it can’t walk to just any open node - it’s in fallback mode, so
it can walk only to its preceding node.) Once, the platform
does determine that it is facing the proper fallback node, it
then must decide if the node is empty. These determinations
are represented by decision structures in the running code that
are NOT part of the DFS algorithm. As the data in Table 1
shows, each node visited (or revisited), regardless of mode,
adds to the complexity of the system.

 Another logical difference between theoretical DFS and
implemented DFS is that when the platform turns to
“fallback”, it still has the capability to evaluate other open
nodes. What if the platform must turn 180 degrees in order to
“fallback” to its prior node? That would take it two time ticks
and two turns. Once the platform turns 90 degrees and is
facing an adjacent node (that was evaluated as occupied
several time ticks ago - and thus ineligible for moving to),
what if that adjacent node (which is not the fallback node) is
now open? In real life, if an actor were traversing a graph, it
may be a more effective rule for the mobile platform to move
into the now open, unvisited, adjacent node and skip the
remainder of the “fallback” exercise. As DFS does not
include interim steps between the decision to fallback and the
actual fallback arrival at the calling routine, there is no
mechanism to describe interim steps and how best to handle
them in terms of the traversal exercise.
 The complexity metric KeenintRM in implemented DFS
captures more decision making with regards to WHY a node
may be ineligible to visit than the theoretical DFS algorithm
does. In theoretical DFS, each node is checked once to see if it
is open to be visited. In implemented DFS, however, an
additional nested case statement is added to the algorithm to
handle node evaluation when the platform is in “fallback”
mode rather than “normal” mode. The additional condition
checks represent decisions made by the platforms executing
code and add to the complexity value. The case study shows
that intermittently accessing different levels of nested control
structures will affect the complexity metric in a way that is not
represented by theoretical DFS’s time complexity metric of Ɵ
|V| + |E|). Theoretical DFS time complexity value should
increase at an arithmetic rate with the addition of nodes and
edges to the walked path. The KeenintRM metric shows a
greater than arithmetic increase in complexity with the
addition of nodes and edges to the path as shown between
Scenario 2 and Scenario 1.
 Additional study could further discriminate between
“normal” mode complexity values and “fallback” mode
complexity values. An interesting question would be, is the
greater than arithmetic growth in KeenintRM due solely to
“fallback” mode behavior? Or does the metric represent
additional actual traversal exercise complexity that is not
captured in the theoretical DFS estimation?
 Another follow-on project to this paper may be to study
how the complexity metric, KeenintRM, compares to another
pathfinding order of complexity such as A*. A* is commonly
used in mobile platform pathfinding exercises. It may offer a
better fit between the theoretical algorithm and the behavior of
actual executed code for a real-life autonomous mobile
platform.

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 185

ISBN: 1-60132-446-4, CSREA Press ©

6. References
[1] S. Chidamer, C. Kemerer, “A metrics suite for object oriented

design,’ IEEE Transactions on Software Engineering, Vol. 20,
No. 6, June 1994, 476-493.

[2] Brooks, Richard R., Orr, Nathan, 2002. “A Model for Mobile
Code Using Interacting Automata,” IEEE Transactions on
Mobile Computing, Vol. 1, No. 4, October-December 2002. pp.
313-325.

[3] A. Desouky, L.H. Etzkorn, “Object oriented cohesion metrics: a
qualitative empirical analysis of runtime behavior,” In
Proceedings of the 52nd ACM Annual Southeast Regional
Conference (ACM SE ’14). ACM, New York, NY, USA, Article
58, 5 pages.

[4] A. Desouky, M. Beard, L.H. Etzkorn, A qualitative analysis of
code clones and object oriented runtime complexity, 2014 IEEE
International Conference for Convergence of Technology (I2CT
2014), Pune, India, April 6-8, 2014.

[5] A. Desouky, L.H. Etzkorn, An object oriented runtime
complexity metric based on iterative decision points. The 2013
International Conference on Software Engineering Research and
Practice (SERP’13), Las Vegas, NV, July 22-25, 2013. 468-472.

[6] K. Keen,. Measuring and Comparing Group Intelligence of
Mobile and Intelligent Agents on a Mobile Robotics Platform.

[7] K. Keen, R. Mathur, L. H. Etzkorn, L., “Towards a measure of
software intelligence employing a runtime complexity metric,”
Software Engineering and Applications, SEA 2009, November,
2009.

[8] R. Mathur, K. Keen. L.H. Etzkorn, “Towards a measure of
object oriented runtime cohesion based on number of instance
variable accesses,” In Proceedings of the 49th Annual Southeast
Regional Conference (ACM SE ’11). ACM, New York, NY,
USA, 255-257.

[9] R. Mathur, K. Keen. L.H. Etzkorn, “Towards an object oriented
complexity metric at the runtime boundary based on decision
points in code,” In Proceedings of 48th Annual Southeast
Regional Conference (ACM SE ’10). ACM, New York, NY,
USA, Article 77, 5 page.

[10] T.J. McCabe, “A complexity measure,” IEEE Transactions on
Software Engineering, Vol. SE-2, No. 4, December 1976, 308–
320.

[11] A. Mitchell, J.F. Power, “ Using object-level run-time metrics to
study coupling between objects,” In Proceedings of the 2005
ACM Symposium on Applied Computing (SAC’05), ACM,
New York, NY, USA, 1456-1462.

[12] Wikipedia, https://en.wikipedia.org/wiki/Depth-first_search, last
visited: March 14, 2016.

186 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

Principles of Continuous Integration (CI) in Practice

Kaushik Bhalerao and Ning Chen
Department of Computer Science

California State University, Fullerton
{kaushikbhalerao, nchen}@fullerton.edu

Abstract - Continuous Integration (CI), an
extreme programing practice, is popular in
the modern software development
community. This practice promotes the
continuous delivery of quality product,
effective change management, early defect
detection and correction that lead to cost
reduction and promises on time delivery.
Implementation of CI in the real world,
however, is not free of hurdles. It is not
unusual for smaller organizations to struggle
with paying high CI maintenance and
implementation cost. One strategy to make
CI small-organization-friendlier is to fine-
tune the original principles. In this work, we
propose a set of improved CI principles that
aim at low-cost CI maintainability.
Keywords: software engineering, continuous
integration principles, open source tools,
software configuration management, CI
training

I. INTRODUCTION
Nowadays, almost all software projects
become huge in terms of its size and
complexity as a response to the market’s
demands on features and quality. As a result,
the software industry turned to Agile
software development methodologies that

promise improved software quality, early
defect detection and correction, and on time
delivery, etc. Large software products have
many components that need to be
developed, tested and maintained by many
teams and this kind of coordination cannot
be achieved without the use of automation
[1]. Continuous Integration (CI) is one of the
key aspects of Agile software development
methodologies that promotes “a fully
automated and reproducible build, including
testing, that runs many times a day. This
allows each developer to integrate their
work daily, thus reducing future integration
problems [2].”

II. RELATED WORK

Although CI, in particular, refers to special
CI tools, for example, CruiseControl,
Hudson/Jenkins, BuildBot, that build and
test pieces of software component in their
integrated form, the term itself, in general,
represents the whole automated software
engineering process. This CI process
involves other automated tools in addition to
specific CI tools alone. The automated tools
fall into three categories as follows:

1. Software configuration management
(SCM), 2. Issue tracking, and 3. Continuous

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 187

ISBN: 1-60132-446-4, CSREA Press ©

integration. SCM tools are used to maintain
software change history. Examples are
Concurrent Versions System (CVS),
Revision Control System (RCS),
Subversion, Perforce and ClearCase. Issue
tracking tools are software products that
manage and maintain lists of issues. For
example, Bugzilla is a web-based general-
purpose bug tracking and testing tool
originally developed and used by the
Mozilla project [3]. CI tools promote the
idea of integration early and often to avoid
the so-called integration hell [4]. One
popular open-source CI tool is Jenkins [5].
The CI process, sometimes called CI system,
or simply CI, is adopted as part of extreme
programing. In CI developers merge all their
working copy to the centralized repository
several times a day and expect system
should automatically build and test the code.
The original/traditional principles of CI are
[6]:

1. Maintain a code repository
2. Automate the build
3. Make the build self-testing
4. Everyone commits to the baseline every
day
5. Every commit (to baseline) should be
built
6. Keep the build fast
7. Test in a clone of the production
environment
8. Make it easy to get the latest deliverables
9. Everyone can see the results of the latest
build
10. Automate deployment

III. ANALYSIS of CI PRINCIPLES
Although the traditional principles of CI are easy
to comprehend, in a real-world practice, it is
hard to adopt every principle correctly.

After studying every principle and analyzing the
practices that enforce these principles, we first
come up with the pros and cons observations
and then provide our recommendations. All our
recommendations aim to improve
maintainability as well as to increase robustness
of the CI infrastructure.

Principle 1: Maintain a code repository:
This principle says that the build should be
done using latest checkouts without
dependencies. Avoid Excessive branching
i.e. code should be in mainline trunk and
considered as current version

Practice in reality: Even very big
organizations with plenty of resources,
maintain only one repository for automatic
builds, it is difficult to maintain all changes
in one branch. As a result, the organization
ends up maintaining multiple branches in
one repository, which, in turns, increases the
complexity and maintainability.

Disadvantage: We can’t proceed with red
builds from even one branch. During the time
one team is fixing its build, we cause delay for
other teams. Even with green builds we may
end up delivering Releases that are unacceptable
to customers. Customers may demand old build
to be fixed first and discard new builds even if it
is a successful build.

Recommendation: Branching is inevitable
therefor we need a tool to support this kind of
management. The challenge for branching is
“merge-hell” where development and release
code try to synchronize. To alleviate the
branching proliferation in one code repository,
we recommend a short release cycle. It will
decrease the wait time and reduce the chances of
unacceptable release.

Principle 2: Automate Build and
Deployment: This principle dictates that

188 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

single command should build the software
and initiate next command to deploy on
production environment or designated
environment with creation of necessary
artifacts (Documents and distribution
media).

Practice Reality: Once a build is complete,
system should deploy required artifacts to
the designated network location.
Nevertheless, when a change in the
environment occurs, people need to get
involved. Does this count as a clear
automation? We have some tools (for
example, Jenkins) which build software for
different platforms but we need to manually
place and deploy that software to designated
platform. If we have different platforms and
for that we have different build
configurations, then this again leads to
branching and the result is a complex
infrastructure where errors are common and
involves manual intervention. Deployment
is not just placing files, but checking if the
environments is ready for deployment or
not.

Recommendation: Make sure the build
system can handle all the variations for the
same build processes and their shared
components independent of whether the
build system is aware of target machine
requirements. Confirm that build system
handles orchestration of deployment and
testing in a visible and simple manner.
Keeping things sorted and manageable is the
key to smooth automation.

Principle 3: Make the build self-testing:
This principle demands clear automation in
testing. Once software is built, it should run
all the tests and report the test result.

Practice Reality: Build runs at different
stages and it is impractical to run all types of
tests for every test. Many tests require
deployment on production.

Disadvantage: Test results are not useful
when we run all tests on one build. This
build may respond differently depending on
the production environment.

Recommendation: 1) Plan the prioritize
testing and perform particular tests
according to a particular environment. 2)
Maintain different configurations for
different tests (e.g. UI, Basic tests, etc.). The
build engine should provide separate
environments and allow corresponding
management.

Principle 4: Fast build with most recent
changes:
This principle covers the practice of CI. The
developers should check in their changes
daily. As a result, the build should run every
day to root the defects early and one can
solve the conflicts as soon as they are found.
The changes should be transparent to the
respective team. This principle revolves
around the concept of rapid feedback.
 Practice Reality:
We want to run every test on a production-
like environment. This makes build-to-load
time-consuming. The task of maintaining
environment is complex when you have
different entry attributes for running the
build and test. We can run easy tests
frequently and quickly. Nevertheless, tests
that are useful or needed for teams to
proceed are much harder since they need
production-like environment.

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 189

ISBN: 1-60132-446-4, CSREA Press ©

Disadvantage: We need automation to
achieve this principle and for that we need to
invest in scripting which will increase the
cost when the environment changes happen.

Recommendation: Always check whether
the selected automated system is easy to
setup and highly customizable for
automation and it can quickly adapt to the
changes in the infrastructure.

Principle 5: Testing in clone environment:
This principle focuses on maintaining
quality of the software from early stage of
development. CI should able to test code in
a pre-production environment which should
be scalable.

Practice Reality: Most organizations
maintain a pre-production environment and
it adds some extra cost. Although we do not
need exactly the same hardware or realistic
load conditions to simulate a pre-production
environment, maintaining a prep-production
environment does require manual effort and
resources.

Disadvantage: Cost and efforts with no
100% promise of success in production.

Recommendation: It is not possible to
create an exact production environment for
development and testing lifecycle. CI should
able to support the deployment of complex
environments easily. Make sure you are
ready to create a VM close to production on
the go without putting too much effort. Plan
ahead and make this ability ready.

Principle 6: Make it easy to get the latest
deliverable: Build should be easily and
quickly available to stakeholders and QA
teams. Early testing should be done on latest
builds.

Practice Reality: In modern development
this is done easily. Builds can be easily
pushed to the artifact repository.
Nonetheless, when a build fails, everyone
stops and fixes that build. Red flags bring
the entire development team to a screeching
hold [7], [8].
Recommendation: When we encounter a
build fail, there should be a synchronization
to fix that build while continuing to
development. Making deliverable easy to get
will not solve the problem of “development
pause.” Instead, we need strong parallel
development and testing strategy for higher
productivity.

Principle 6: Build transparency: A build
failed should be trackable enough so that we
can point out where, who and when the
change is made. Track should be accessible
to the respective teams.
Practice Reality: Most complex and
important tests are done manually. The
manual tests make that build out of the
automated feedback loop. The QA team
responsible for testing, then need to notify
the result to the development team
Recommendation: Try to collaborate
separate testing with the CI loop, even
manual testing should be reported back to CI
regarding the result. This will allow the
development team to get feedback easily
from a single point of contact

IV. PROPOSED CI PRINCIPLE

MODIFICATIONS
We summarize our proposed CI principle
modifications in the following table.

190 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

Traditional Vs. Modified Principles

Traditional
Principles

Modified
Principles

1. Maintain a code
repository

[RE1] maintain
repository which
supports the
development
strategy, for
example, short
release cycle.

2. Automate the
build

[RE2] Automate
build as well as
deployment

3. Make the build
self-testing

[RE3] Make the
build self-testing
and prioritized for
different stages

4. Everyone
commits to the
baseline every
day

[RE4] Recent
changes should be
built quickly and
transparent

5. Every commit
(to baseline)
should be built

6. Keep the build
fast

7. Test in a clone
of the
production
environment

[RE5] Ready
integration to
production
environment
replica

8. Make it easy to
get the latest
deliverables

[RE6] Automation
to get the
deliverable at the
proper location

9. Everyone can
see the results
of the latest
build

(merged in other
proposed
principles)

10. Automate
deployment

V. LESSONS LEARNED AND
DISCUSSIONS

A. Experiments

 We have considered CI systems and their
implementation from global service
companies and several banking software
departments. We also setup up and ran CI
Lab for education and training purpose at
California state university, Fullerton. Based
on our direct observations on some global
service organizations and our own CI Lab
setup, we generalize common problems and
made our recommendations. We also found
that some non-ideal CI setups that follow
our proposed recommendations, work
satisfactorily for a given requirement.

B. Software configuration management
(SCM) Strategy

We are in the process of implementing a
complete CI solution where testing pause
will not be an issue and it enforces the
parallel and smooth development without
stopping for one particular build [9]. We
have implemented all our recommendations
in our CI Lab.

We have implemented hierarchical
structures of the code repository (Stream/
Branch / Trunk) where code is automatically
transferred from development to
maintenance to integration stream.

Here we build code separately and find the
exact module for defect. The only
responsible development team will work on
correction and other teams can proceed
forward. The goal is that we can eventually
build corrected code and maintain versions
at top level and consider only that build
result for calculating build health.

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 191

ISBN: 1-60132-446-4, CSREA Press ©

For SCM strategy and CI jobs we need
planning. This plan needs to be feasible and
should support scalability for new streams
and CI jobs.

It is always a good idea to maintain this
hierarchy in such a way that it supports only
one product line. The logic behind this
recommendation focuses on keeping
branching separate and achieving easy
tracking and maintaining.

C. Tool Selections

Choosing a tool seems straightforward. We
check a) compatibility with software
technology we are building, b) which SCM
system or tools we are using and c) platform
support. In addition, one also needs to
consider technical feasibility between the
tools and our policies and environment. For
example, we ask the following questions:
Are we sure about the compatibility with the
practice that we are following? Are we just
adopting to the tool’s policies and change
our practice method accordingly? Have we
decided on keeping the existing practice
through tools? Which tool can enforce agile
naturally? Which configuration speeds up
our existing development environment?
How much time do we need to train our

stakeholders? Asking these questions before
making your decision will surely help.

D. Rules to follow while using this system

� Set the priorities of the development
environment’s requirements

� Match Principles to the needs of the
environment

� List high priority principles for your
environment

� Try to achieve the suggested
recommendation for high priority
principles.

� These principles and
recommendations are the guidelines
and there is no need to force them to
match the environment as we all
know that it’s an art of engineering.

E. Case studies
We have studied market’s pioneers in this
field such as Facebook release process,
Google release cycle and Netflix API
deployment. All pioneers are doing
extremely well, i.e. development of quality
product in a cost and time effective way.
Our study showed that all cases are
congruent to the recommendations proposed
in this paper.

Facebook Release process
(The number in the brace [] is our proposed
CI principle)
Strong culture of development and release
process, e.g. “Friday Small, Daily Push” that
fits into the proposed [RE 1]. Keep synch
with other teams as you are not the only one
who is pushing code live [RE 7].
Maintaining build transparency follows [RE
2, 3, 4]. One example is that 23 Facebook
front-end teams know that where each team
is working and which team is deploying
what. Each developer is aware of the fact
that his/her code is getting tested on a daily

192 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

basis. Well defined preproduction
environment in which developers and testers
can access and test upcoming flavor of
Facebook [RE 5]. Testing of actual binary
instead of relying on artifacts from the CI
server [RE 6].

Continuous delivery at Google
 Every day the team receives feedback from
CI server. On Friday they don’t release any
new changes, but make sure whether all
checkouts are proper or not. Every Monday
they complete one release cycle. Google is
doing its best in this practice due to a
modular approach of development. Strong
Integration infrastructure makes it possible
for google to develop features separately.
Each change is like plugin device one can
add and remove without affecting the entire
product. They maintain optimization
separately and in parallel to the
development, but behind one release cycle.
So every week Googles product is getting
better and updated. In a worst case, when
Google wants to roll back, it is just a matter
of few changes. A rollback simply means
pointing server to the previous optimum step
i.e. one release behind (five days back). In
our opinion the above real-world case
studies provide good indications that the
proposed CI principles are on the right track.

REFERENCES

[1] T. Bruckhaus, N.H. Madhavii, I. Janssen,
and J. Henshaw, “The Impact of Tools on
Software Productivity”, IEEE Software, vol.
13, no.5, Sep. 1996, pp. 29-38
[2] M. Fowler and M. Foemmel. Continuous
Integration.
http://www.thoughtworks.com/ContinuousIn
tegration.pdf, 2006.
[3]https://wiki.mozilla.org/Bugzilla:Home_P
age
[4] M. Flower and M. Foemmel,
“Continuous Integration”, Online:
http://martinfowler.com/articles/continuousI
ntegration.html.
[5]https://en.wikipedia.org/wiki/Jenkins_(so
ftware)
[6] W. Pedia, "Comparison of continuous
integration software," Wiki Pedia, 2016.
[Online]. Available:
https://en.wikipedia.org/wiki/Comparison_o
f_continuous_integration_software.
[Accessed 2016].
[7] P.M. Duvall, Continuous Integration:
Improving Soft-ware Quality and Reducing
Risk, Addpison-Wesley, Boston, USA,
2007.
[8] R. W. Ade Miller, "A Hundred Days of
Continuous Integration," Agile Conference,
Microsoft Corp, 2008.
[9] E. H. Kim, N. Corp., J. C. Na and S. M.
Ryoo, "Test Automation Framework for
Implementing Continuous Integration,"
IEEE, April 2009.

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 193

ISBN: 1-60132-446-4, CSREA Press ©

�

Abstract— This is an ongoing research study work. The
objective of this study is to build an intelligent plant watering
system for rural farmers. The study considered the availability of
water supply in specific regions for five years. Also vital
parameters statistics necessary for proper growth of each plant are
stored in the system data base over the same period. Our study is
primarily being guided by observations made in the rain fall
pattern, different weather conditions, and environmental situation
across the regions in the Northern and Southern parts of Nigeria.
The target farmers are very poor. Therefore, our task is to produce a
system that is affordable and reliable to these farmers. The
complexity and stability of the system notwithstanding, overall, this
study “Intelligent Plant Watering System for Rural Farmers” is
being carried out to provide the rural farmers with a cheap, durable,
power efficient, affordable, reliable, flexible, efficient and high
performance intelligent plant watering system. Although this study
is divided into three major groups, however, in this paper we try to
present a subgroup that deals with soil moisture and fertility. The
system based on its available statistics sets the various limits for the
soil moisture, temperature and fertility. These features in the system
ensure that water for irrigation is effectively managed and allowed
to flow during specified temperature range. Also the soil fertility is
properly regulated. This paper discursion focuses on the soil
moisture and temperature.

Keyword: Irrigation, soil moisture, environmental
temperature, microcontroller, artificial watering

I. INTRODUCTION

The required soil moisture is dependent on the type of plant.
This is due to the fact that plants depend on water amongst
others to survive. Water is extremely important to the
existence of all living things. As simple as it is, the unique
properties of water and its ability to appear in various forms
makes it very essential in the many chemical reactions that
take place, here on earth. One of these reactions is
photosynthesis, the most important chemical reaction to
physical life [1]. The basic process of photosynthesis can be
represented as follows:

CO2 + H2O light > C6H12O6 + O2

Carbon Water Glucose Oxygen
Dioxide (sugar)
Plants need water, with other compounds and under certain
circumstances, to produce energy. Almost every other living
thing depends on this simple process of plant nutrition to
survive [2].
To produce enough energy, plants synthesize the chemical
compounds derived from the soil in the presence of Carbon
dioxide, water and sunlight. It means that this process,
photosynthesis, cannot take place without the presence of
water. Thus, the soil around the plant should be wet regularly
for the plant to produce energy regularly [3].
There are two basic methods of watering namely:

- The natural method
- The artificial method (Irrigation)

The main source of natural watering is the rainfall. During
rainy seasons, plants rely comfortably on the availability of
rainfall. But plants cannot solely rely on this system of
watering as there is no rainfall every day throughout the year.
Moreover, there are regions in Nigeria where there is very
little rainfall throughout the year. Such regions are known as
arid regions or zones [4].
It is important to note how climate has varied and changed in
the past twenty years. An idea of the monthly mean historical
rainfall and temperature data is necessary in order to
understand the baseline climate and seasonality by month,
for specific years, and for rainfall and temperature. In this
study, the observation was that the mean historical monthly
temperature for Nigeria during the time period 1995-2015
was lowest at 22oC in January and highest at 30.6oC in April.
Equally, within this period the mean historical monthly
rainfall was lowest at 7.1 mm in February and highest at
232mm in August [5 - 9].
A good way to provide adequate irrigation through artificial
means is the automated irrigation system using a
microcontroller to supervise the process. This system is also
efficient in saving water, as the microcontroller ensures that
the exact amount of water needed to saturate the soil when
dry is provided. This is done by the help of a moisture sensor
which ensures that water is supplied to the soil when the soil

INTELLIGENT PLANT WATERING SYSTEM FOR RURAL
FARMERS

John Samuel N.1, Okonigene Robert E.2, Samuel Peters C.3, Okokpujie Kennedy4
samuel.john@covenantuniversity.edu.ng1, robokonigene@aauekpoma.edu.ng2,
sampet_halle09@yahoo.com3, kennedy.okokpujie@covenantuniversity.edu.ng4

1,3,4Department of Electrical and Information Engineering, College of Engineering, Covenant

University, Ota, Ogun State, Nigeria
2Department of Electrical and Electronics Engineering, Faculty of Engineering and Technology,

Ambrose Alli University, Ekpoma, Edo State, Nigeria.

194 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

moisture goes below a certain fixed level. The moisture
sensor sends information about the soil moisture to the
microcontroller. The microcontroller then receives the
information, and then turns the solenoid valve on or off
based on the information signal received.
The aspect of the study discussed the plant watering system
that provides water in stipulated quantity when needed by the
soil. With this system in place, the farmer, gardener or
caretaker does not have to involve much effort in ensuring
that the plant(s) are well watered. In the process it also
determines the soil temperature. Temperature sensors are
placed into the soil and configured with the microcontroller.
The system during irrigation allows water flow only at low
temperatures. This reduced the water loss due to
evaporation. [10].
Irrigation is the artificial application of water to the land for
various purposes which may include crop cultivation, re-
vegetation of disturbed soils in dry areas and during periods
of inadequate rainfall, and maintenance of landscapes.
With the invention of sensors and transducers, a great
opportunity has been achieved for the application of
electronics to solving physical day to day problems. Through
the invention of soil moisture sensors and transducers, the
real –time soil moisture status can be electronically
monitored and same information can be used to determine
the water requirement and through actuators, induce
irrigation. Different approaches have been undertaken to
manage irrigation using electronics. The task also includes
the use of soil moisture sensor basic operating principles to
produce a cheaper irrigation system for rural farmers.

II. PROCEDURE FOR DATA COLLATION

This part of the system is designed to manage irrigation
based on response to the real-time status of the soil moisture.
The system will cause the soil moisture to always be in a
certain range suitable for proper crop development.
The underlying principle in this case is simple. It consists of
the moisture and temperature sensors, the microcontroller,
the Liquid Crystal Display, and the solenoid valve. The
microcontroller converts the analog signals sent by the
moisture sensor buried in the soil into digital values. It then
compares this value with the accustomed value that
represents the lowest allowable moisture content in the soil.
For different plants the system reads the sensor value. Below
the minimum set value, the microcontroller sends a “HIGH”
signal to the solenoid valve to trigger it on. Also, when the
sensor reads a value above the set value representing the
maximum allowable moisture content in the soil, the
microcontroller sends a “LOW” signal to the solenoid valve
thereby causing the valve to be turned off. The temperature
sensor ensures that the soil is watered when the temperature

of the environment is below a preset value. All the reference
information regarding the data that will be required by the
microcontroller to make feature decisions about the soil
moisture, temperature and fertility are stored in the database.
The data are from the five years studies.

III. THE IRRIGATION CONTROL SYSTEM

Figure 1: Block diagram description of the watering system

A. The Sensing Unit

Figure 1 is the block diagram of the circuit for irrigation
system. The sensing units are responsible for the detection of
the presence of the physical parameters and converting same
to electrical form for processing. The physical parameters of
interest are the soil moisture, and the ambient temperature.

B. The Soil Moisture Sensor

The soil moisture sensor utilized has its voltage output
proportional to the quantity of water in the soil. Its specified
supply voltage is from 3.3V to 5V and with this supply, it
gives an output voltage of between 0V to 2.3V for the full
range of complete dryness to submersion in water. Its rating
for maximum operating current is 0.15A. Its output is fed
into the analog-to-digital converter (ADC) input of the
microcontroller.

C. The Temperature Sensor
The temperature sensor used in this circuit is the LM35
temperature transducer. It is a precision temperature
transducer with a linear voltage output over the range of -55
oC to 150oC [13]. Its favourable property is its linearity and
step-wise sensitivity. It has a sensitivity of 0.01V/oC starting
from 0oC hence its temperature can easily be calculated. The
output of the transducer is applied to the ADC segment of
the microcontroller for processing.

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 195

ISBN: 1-60132-446-4, CSREA Press ©

D. The Control Unit

This unit is basically the section that provides the control of
the whole system. It consists of a microcontroller IC chip
plus peripheral components and the control logic (firmware)
which the chip functions with. The microcontroller chip is
the central hardware component while the program/code
written in Mikro-C language is the firmware component. The
microcontroller used in this project is the PIC18F452 shown
in Figure 2. The PIC18F452 is a 40-pin, 8-bit
microcontroller [14]. The features of the PIC18F452
microcontroller make it a suitable choice for use in this
automatic irrigation controller system.

Figure 2: Pin arrangement of PIC 18F452 Micro-controller

E. The Display Unit

The display unit is simply an output unit used for the purpose
of giving the user required information. The display unit is a
simple 16x4 LCD module. The information displayed is the
current soil moisture, the current temperature and the state of
the system.

F. The Switching Unit
The switching unit consists of the BC108B transistor, the
relay, and the solenoid valve.
The solenoid valve is a 12V DC solenoid valve. The
solenoid valve is connected to the normally-open contact of
the relay. When sufficient current enters the base of the
transistor, current is allowed to flow through the coils of the
relay (which is an electromagnetic switch). This sets up a
voltage in the coils of the relay causing the normally-open
contact to become a normally-closed contact [16]. When this
occurs, current flows through the solenoid valve from the
12V DC supply and the solenoid valve is turned on.

IV. TEST RESULTS

Several tests and observations were made to ensure the
proper functioning of the system. The physical model was
tested and the overall response and performance of the
system were checked. This covers the testing of various
physical parameters of the system. Tests were done on the
soil moisture sensor’s natural response to pure water in order
to ascertain its output voltage. Also, several soil samples
were tested to determine the output voltage from the sensor
at dry and saturated soil conditions. The sensor was
connected to a 5V DC power supply. The ground terminal
was grounded, and the output voltage was evaluated with the
aid of a good voltmeter. The output of the sensor was
connected to the micro-controller and the response of the
micro-controller was observed. The sensor was placed in
pure water giving the observed typical values shown in Table
1.

Table 1: Showing results obtained from moisture sensor test

IN
PU

T
 IN

T
O

SE

N
SO

R

T
E

ST

C
O

N
D

IT
IO

N

O
U

T
PU

T

FR
O

M

SE
N

SO
R

M
IC

R
O

-
C

O
N

T
R

O
L

L
E

R
 R

E
SP

O
N

SE
 REMARKS

5V In Air 0V - Expected
5V In

Pure
Water

2.3V Gives no
output,
hence no
watering
is done.

Expected

The soil moisture sensor was placed into a sandy soil sample
(due to its ease of availability). The output of the sensor was
then determined in dry and wet soil conditions. The results
obtained are shown in Table 2.
The temperature sensor used in this test circuit is LM35
temperature sensor. The temperature sensor was connected
similar to the soil moisture sensor. The testing of the
temperature sensor was done to determine the voltage output
of the sensor to different changes in temperature. The sensor
output was measured at room temperature (29oC) and outside
on a sunny afternoon (32oC). The outputs of the sensor were
0.285V and 0.318V respectively. These measured values
correspond with the calculated values of 0.29V and 0.32V.

196 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

Table 2: Table showing the output of the sensor with respect
to different soil conditions

IN
PU

T

IN
T

O

SE
N

SO
R

SO
IL

C

O
N

D
IT

IO
N

O
U

T
PU

T

FR
O

M

SE
N

SO
R

M
C

U

R
E

SP
O

N
SE

R
E

M
A

R
K

S

5V Dry 0.8V Gives a high
output, hence
watering should
be done

Expected

5V Wet 2.2V Gives a low
output to
indicate that
watering should
stop

Expected

The Figure 3 and Figure 4 are the flowchart used for the
control of the solenoid valve and the display unit
respectively.

Figure 3: Flowchart of the solenoid valve control process

Figure 4: Flowchart representing the display unit of the
system

MAJOR ACHIEVEMENTS

- A system was designed that measures the surrounding
soil humidity and atmospheric temperature at a
relatively very cheap cost. Most of the components
are available local shops. To reduce the cost of
production further we need to replace the soil
moisture with very cheap models without losing the
sensitivity and reliability of the overall system.

- The designed device reduced water used for
irrigation by 62% as compared to what is currently
being used by the rural farmers and accurately

waters the plant at the right times.
The Figure 5 shows the tested circuit diagram for the
automated irrigation system.

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 197

ISBN: 1-60132-446-4, CSREA Press ©

Fig 5 The circuit diagram used to test the automated irrigation system

V. CONCLUSION

The system was developed successfully, meeting the aims of
workability low-cost design and simplicity of operation.
Hence irrigation can be automatically controlled by rural
farmers resulting to greater productivity of crops and
efficiency of irrigation management. It is our desire that the
entire final system will meet the set objectives for rural
farmers use.

REFERENCES

[1] Michael McDarby, “ Section 2 Chapter 1:

Photosynthesis”
http://faculty.fmcc.suny.edu/mcdarby/Animals&PlantsB
ook/Plants/01-Photosynthesis.htm, 2014.

[2] Shmoop Editorial Team. "Ecology: Organisms and
Their Environments Terms." Shmoop. Shmoop
University, Inc., 11 Nov. 2008. Web. 20 Mar. 2016...

[3] “10 most common herb garden mistakes”
http://herbgardens.about.com, 2014.

[4] “Criteria and options for appropriate irrigation
methods”,

[5] Cardenas-Lailhacar, B. and M.D. Dukes. 2014. Effect of
Temperature and Salinity on the Precision and Accuracy

of Landscape Irrigation Soil Moisture Sensor
Systems. Journal of Irrigation and Drainage
Engineering, 0401407.

[6] Davis, S. and Dukes, M. (2015). "Methodologies for
Successful Implementation of Smart Irrigation
Controllers." J. Irrig. Drain Eng., 141(3), 04014055.

[7] Cardenas-Lailhacar, B. and Dukes, M. (2015). Effect of
Temperature and Salinity on the Precision and Accuracy
of Landscape Irrigation Soil Moisture Sensor
Systems. J. Irrig. Drain Eng., 141(7), 04014076

[8] Dukes, M. D., B. Cardenas-Lailhacar, and G. L. Miller.
2005. Residential Irrigation Based on Soil
Moisture. Resource Magazine, June/July. American
Society of Agricultural and Biological Engineers, St.
Joseph, MI.

[9] Haley, M. B., M. D. Dukes, and G. L. Miller.
2007. Residential irrigation water use in Central
Florida. Journal of Irrigation and Drainage
Engineering 133(5):427-434.

[10] “Water plants in the morning”
http://www.goodhousekeeping.com/home/gardening/wat
er-plants-morning, 2014.

[11] Elias Awili: “Design and Construction of an Automatic
water sprinkler for small scale gardens,” Covenant
University, 2013.

198 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

[12] Purna Prakash Dondapat, K. Govinda Rajulu: “An
Automated Multi Sensored Green House Management,”
International Journal of Technological Exploration and
Learning (IJTEL), 2012

[13] G. K. Banerjee, Rahul Singhal: “Microcontroller Based
Polyhouse Automation Controller”, International
Symposium on Electronic Systems Design (ISED),
Bhubaneswar, 2010

[14] “Transformers - Faysal Electric Company” http://faysal-
electric-co.com/transformer/

[15] John Bird: “Electrical Circuit Theory and Technology,”
Elsevier Ltd. Publishers, 2007.

[16] Illinois Capacitors Inc: “Filtering,” Electronic
Components Assemblies and Materials Association
(ECA), 2012.

[17] “Voltage-regulator”,
http://www.britannica.com/EBchecked/topic/632467/vol
tage-regulator, 2014.

[18] Texas Instruments: “LM35 Precision Centigrade
Temperature Sensors”, TI publications 2013.

[19] Dogan Ibrahim: “Advanced PIC Microcontroller
projects in C”, Newnes publishers, 2008.

[20] “CrystalFontz America”,
http://www.crystalfontz.com/product/CFAH1604BNGH
ET, 2014.

[21] Madeline Bullock, “ How Relays Works”,
http://electronics.howstuffworks.com/relay.htm, 1998.

[22] Otarelli, L., J. M. Scholberg, M. D. Dukes, and R.
Muñoz-Carpena. 2008. Fertilizer residence time affects
nitrogen uptake efficiency and growth of sweet
corn. Journal of Environmental Quality 37(3):1271–
1278.

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 199

ISBN: 1-60132-446-4, CSREA Press ©

200 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

SESSION

SOFTWARE SYSTEMS, TOOLS, FRAMEWORKS +
NOVEL SOFTWARE APPLICATIONS

Chair(s)

TBA

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 201

ISBN: 1-60132-446-4, CSREA Press ©

202 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

Applying EM3: Handover Framework in a Project Parking
Context

Ahmad Salman Khan 1, Mira Kajko-Mattsson 2

1Department of Computer Science & IT, University of Lahore, Lahore, Pakistan
2School of ICT, KTH Royal Institute of Technology, Stockholm, Sweden

Abstract - A well-defined handover process model is
imperative and critical for succeeding with the transfer of a
software system from one party to another. Despite this, there
still do not exist any up-to-date handover process models.
Recently, however, we have developed EM3: Handover
Framework aiding organizations in constructing their own
handover process models. In this paper, we evaluate it in one
Swedish software organization via participatory observation.
Our goal is to examine the framework’s applicability and
usefulness in a real-world industrial scenario. The handover
process studied was of a self-to-self type and it was conducted
in a project parking context. Our results show that our
framework is fully applicable in an industrial setting.

Keywords: self-to-self software transfer; participatory
observation.

1 Introduction
 A well-defined software system handover process model
is imperative and critical for planning and managing a
software handover and for alleviating many handover
problems. Failing to transfer a system from developer to
maintainer may lead to serious consequences such as loss of
productivity, loss of maintainer credibility, loss of system and
maintenance process quality, and sometimes, even loss of
business. Despite this, there still do not exist any up-to-date
handover process models that designate important process
features that are necessary for conducting a systematic and
disciplined software system transition. Regrettably, software
handover is still an under-researched and neglected domain.
The published handover models are either too old or they are
defined on a very general level [1] [2] [3] [4] [5] [6].
 Lack of appropriate software system handover process
models leads to the fact that companies do not have any
process models to follow while performing their handover, or
if they do have them, then they still may feel insecure whether
their models appropriately reflect the complexity of the
handover process domain. One such a company is E-Identity,
a company that has commissioned us to conduct software
system handover. Although the company has developed its
own handover process model, they still felt very insecure in
conducting it in one of their very unique and intricate
handover contexts, that is, in the project parking context.

In this paper, we report on the results of conducting a
handover process at E-Identity using our recently developed
handover process model – EM3: Handover Framework. EM3

stands for Evolution and Maintenance Management Model.
Our goal was to observe the implementation of our framework
and examine its applicability and usefulness in an industrial
setting. The handover process studied was of a self-to-self
handover type, it was conducted in a project parking context
and its evaluation was made via participatory observation [7].

Parking implies that the project gets deactivated for some
known or unknown period of time, teams working on the
project get dissolved, and probably with time, the project will
get reactivated (resumed), however, with new team members.
Parking is also a type of self-to-self handover. The company
(the first self) transfers a partially developed system to itself
(the second self).

The remainder of this paper is as follows. Section 2 briefly
presents the company and its handover process. Section 3
describes our research process and Section 4 briefly describes
EM3: Handover Framework. Section 5 reports on results of
the framework’s implementation within the company studied
and Section 6 rounds up the paper.

2 Company Description
 E-Identity is a Swedish company based in southern
Sweden. It develops a product for digital identity
authentication. It has encountered a financial crisis which did
not allow it to continue developing its product. However, the
company was strongly determined to continue with its
development as soon as it recovered from the crisis. To be
able to continue with the project, the company had to park it.
 As shown in Figure 1, the company’s system consisted
of two parts. These were API infrastructure and Digital
Identity Authentication Product. Different teams were
responsible for these parts. The API infrastructure
development team was responsible for developing the API
infrastructure and for establishing a platform for the
application development. The application development team
then used the APIs to develop the digital identity
authentication product for the end-user. Here, the application
development team was an internal customer to the
infrastructure development team.

Before the crisis, the company employed about 25 people.
At the moment of writing this paper, the company had to
dismiss about 15 people and dissolve the teams. Out of the ten

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 203

ISBN: 1-60132-446-4, CSREA Press ©

Figure 1. The handover context at E-Identity

people who stayed, four people were involved in the handover
process. These were the following (1) development team lead
responsible for documenting the system knowledge and
generating a stable infrastructure development API release,
(2) project manager responsible for managing the handover
project, (3) product owner responsible for the product to be
handed over, and finally, (4) researcher responsible for
monitoring and supervising the handover process.

At E-Identity the handover process activities are classified
under three categories. As shown at the bottom of Figure 1,
these are handover planning, handover implementation and
handover closure. Project parking stage mainly comprises
activities dealing with handover planning and a few activities
dealing with handover implementation. Project resumption
comprises the handover closure activities and the rest of the
handover implementation activities.

3 Research Process
 We followed the participatory research where we played
the role of an active participant [7]. This means that through
participating in the process, we tried to understand the
handover process studied by actively observing the process.
We also provided support to the company while
implementing EM3. In this way, we gained a close familiarity
with the process and the people performing the process.
 To get as much intimacy with the handover process as
possible, we used a wide range of data collection methods
such as direct observation, active participation, collective
discussions, brainstorming sessions, documentation study,
and informal interviews. In this way, we could identify
similarities and discrepancies between the EM3 practices and
the handover process studied.
 The project parking phase took three weeks to perform.
During this time, we conducted four major steps that were
typical of a participant observation method [7]. These were
(1) Establish Rapport, (2) Acting in the Field, (3) Recording
Observations, and (4) Analyzing Data.
 The first phase, the Establish Rapport phase, lasted for
only one day. We visited the company studied, we acquainted
ourselves with the company’s employees and acquired some
introductory information about the company’s situation.
 In the Acting in the Field phase, we tried to act just as
the company’s “local” member with some minor exceptions

[7]. We had to get a thorough understanding of the company,
its product and processes. For this reason, we studied all the
organizational documentation that was relevant and available.
Just because not much documentation was in place, we
continued our study via informal discussions.
 The third phase, the Recording Observations phase, ran
in parallel with the Acting in the Field phase. While doing
our work, we matched it against EM3, compared the
framework’s activities with the company’s handover activities
and evaluated their applicability. Wherever it was relevant,
we suggested improvements. This helped the company to
cover the gaps in their handover process and helped us gain
feedback for improving our model.
 Some EM3 activities could not be implemented in the
process studied. Being such a case, we first asked whether the
company conducted them in other handover contexts and
inquired about their usefulness.
 Finally, in the Analyzing Data phase, we studied each of
the EM3 activities in order to find out whether it was fully or
partially implemented and to find out reasons for their non-
adherence to the executed handover process. It is these
findings that constitute the contribution of this paper.

4 EM3 : Handover Framework
 EM3: Handover Framework provides a skeletal structure of
six different parts that are necessary for creating handover
processes. It is a result of an explorative study made in 61
companies [8]. As shown in Figure 3, its central part is EM3:
Handover Taxonomy – a set of component practices including
the activities that play a significant role in executing a
handover process. The taxonomy activities may be used for
orchestrating handover processes using the framework’s other

Figure 3. EM3: Handover Framework

204 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

five parts such as (1) Handover Types designating types of
software handover, (2) Handover Contexts placing handover
within software lifecycle, (3) Handover Roles identifying the
main responsibilities in the handover process, (4) Handover
Lifecycle Roadmap designating time spaces in the handover
lifecycle phases, and (5) Handover Guidelines providing
support in the handover endeavors.

4.1 EM3: Handover Taxonomy

EM3: Handover Taxonomy comprises eight practices
important for implementing software system handover. They
constitute an improved version of the initial taxonomy of
handover activities [11]. In this section, we briefly describe
them and their constituent activities. To be able to follow our
descriptions, we strongly advise our reader to follow the EM3
activities in Table 1.

4.1.1 Management and Administration

The Management and Administration (MA) practice
includes the activities required for handling and controlling
the handover process. The success of the overall process
strongly depends on it. As shown in Table 1, the practice
contains activities starting from planning a handover process,
to managing it, to finally, evaluating it postmortem.

Before starting transition, organizations should identify its
type and complexity. Transition might be self-to-self or it
might be an external one where transitioners and transitionees
are separate organizations. Transition might be of high
complexity implying a handover of a large safety critical
system among several parties or it might be as simple as a
self-to-self handover of a system version.

As a next step, the transition team should create a
transition plan and assure that important management plans
are in place. Being guided by parameters such as, for instance,
transition deadline, resource constraints and the like, the
transition plan should define transition manpower resource
requirements, budget and schedule. The management plans,
on the other hand, should plan for the processes that interact
with the transition process such as development, maintenance
processes, to mention a few. A communication model should
be in place for interacting and for transferring knowledge
between different parties. Throughout the handover, the
handover process should be continuously monitored and, at its
end, it should be evaluated postmortem.

Determining the transition type and complexity is a
prerequisite for defining a transition strategy, for establishing
a transition team, for defining a transition process, and for
designating a transitionee. A transition team should from now
on manage and administer the transition process. It should
enlist all its core activities, and the activities that are part of
other processes, the processes that either impact or are
impacted by the transition. Failing to identify them may
jeopardize the whole transition. Finally, all the stakeholders
involved, including the transitionees, should agree upon the
design of the transition process to be executed.

4.1.2 Maintenance Environment

The transitionee has to have the environment that is right
from the beginning. Hence, as shown in Table 1, the
Maintenance Environment (ME) practice includes the
activities that are required for determining the needs for
hardware suites, software suites and maintenance support
suites and activities required for their installation.

The needs should be determined in advance in cases one
transfers a newly developed system. In other cases, the current
suites should be assessed whether they still fulfill their
function. Here, one should identify their potential adequacies
and deficiencies and assure that they are compatible across all
the environments, that is, the environments of the
transitioners, transitionees and of the customers. If the suites
are not determined or assessed in advance, then there is a risk
that they will not be delivered on time, that the transitionees
will not get enough time for learning them or that they may
face compatibility problem.

4.1.3 Version and Configuration Management

The Version and Configuration Management (VCM)
practice includes the activities required for keeping track of
changes made to a software system before, during and after
handover. This practice is critical for assuring that the system
that has been handed over includes the right components. As
shown in Table 1, it deals with placing the system under
version and configuration management and baselines.

It goes without saying that it is significant to baseline the
software system to be handed over. In the context of a system
handover, at least two groups of baselines are relevant. These
are test and postdelivery baselines. The test baselines are
created before the system delivery during different testing
phases. They constitute platforms for identifying and tracking
all the changes made to the system and for making important
decisions on handover. The postdelivery baselines, on the
other hand, are created just after the system delivery. They
constitute important platforms for synchronizing the changes
across the development, maintenance and operational
environments and for assuring that they have identical or as
identical as possible system copies.

4.1.4 Training

People involved in handover must be trained so that they can
work from the first day after handover. As shown in Table 1,
the Training practice focuses on training planning, creating
training material and on providing training. To ensure that the
training is effective, the practice designates roles responsible
for the training process.

4.1.5 Deployment

Deployment is a critical prerequisite for commencing
software operation and maintenance. As shown in Table 1, the
Deployment practice includes activities starting from defining
a release scope and contents to preparing for installation, to

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 205

ISBN: 1-60132-446-4, CSREA Press ©

Table 1. EM3: Handover Taxonomy practices
+ stands for observed and performed, +(i) stands for inquired about and performed, -- stands for not performed, P stands for
partially performed and NA stands for not applicable. Plan stands for handover planning, Impl stands for handover
implementation and Clos stands for handover closure.

206 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

installing and deploying the system, to finally, closing the
deployment and planning for future releases.

4.1.6 Documenation

The Documentation practice focuses on establishing a
system documentation repository and mechanisms for
controlling its status. Both developers and maintainers need a
central location for storing software system documentation
and for assuring that nothing gets lost while handing over a
software system. As shown in Table 1, the practice includes
(1) activities for establishing a system documentation
repository, (2) activities for subjecting the documentation
repository to SCM, and (3) mechanisms for controlling the
status of the system repository.

4.1.7 Maintainability Management

The Maintainability practice includes assessment of two
types of maintainability: (1) system maintainability referring
to the ease with which one changes the system, and (2) data
maintainability referring to data integrity, correctness and
consistency. If the system is not maintainable, then it becomes
difficult for the maintenance team to understand, and thereby,
difficult to evolve and change. If the data is defective, then
the company may encounter the problem of a data loss.

 Both maintainability types must be assessed before
system handover. As shown in Table 1, one must define
appropriate system and data maintainability attributes, define
rules for adhering to them, identify milestones for assessing
them, and finally, assess them. After finalizing the handover
process, one should assess their procedures for managing and
controlling data and system maintainability.

5 Status
In this section, we present the results of implementing

EM3: Handover Taxonomy activities at E-Identity. Due to
space restrictions, we cannot report on the implementation of
all of them. We only report on the most important activities.
For more information, interested readers are welcome to study
[8]. Finally, while participating in the handover process, we
observed that not all the EM3 activities were implementable
in the project parking context. To evaluate them, we inquired
about their applicability and usefulness in other handover
contexts within E-Identity. To distinguish them from the
observed ones in Table 1, we mark them with +(i) standing
for “inquired about and performed”.

5.1 Management and Administration

E-Identity has implemented almost all the activities listed
in the Management and Administration practice. As shown in
Table 1, we could observe that all except for two activities
were implemented. At the moment of writing this paper, the
company could not evaluate the transition process

postmortem due to the fact that the transition project had not
yet been finalized. Neither could it define any additional
manpower resources required for the whole transition process.
Due to financial reasons, their resources were restricted to
simply what they had.

E-Identity experienced a self-to-self type of handover and,
due to the unavailability of the transitionee, it deemed the
transition process to be of a very complex nature. For this
reason, their transition strategy focused on the following four
strategies: (1) Strategy 1 determining the future transitionees,
(2) Strategy 2 designating a future transition team, (3)
Strategy 3 designing the transition process, and (4) Strategy 4
establishing ways of transferring knowledge.

Regarding Strategy 3, the company decided to structure
handover into two phases: (1) the project parking phase and
(2) the project resumption phase. At the moment of writing
this paper, the project parking phase got finalized and the
resumption phase had not yet started.

According to Strategy 2, not the whole transition team
could be designated in advance. Right now, they had a team
for conducting the project parking phase. This team will get
dissolved. New team will be created in the project resumption
phase. According to Strategy 1, the future transitionees will
be consultants instead of fixed-term employees. This will
substantially reduce project restart time and cost.

Regarding Strategy 4, concerning the transfer of
knowledge between the transitioners and transitionees, the
company was aware that the two teams would not be able to
communicate with each other. For this reason, Strategy 4
dealt with creating a documentation of the company’s
products, processes, and technology. The documentation
would constitute the main channel of communication.

5.2 Maintenance Environment

E-Identity has implemented all but one activities listed in
the Maintenance Environment practice. The activity of
granting the transitionee permission to access
hardware/software suites was not implemented. This is
because the transitionee has not yet been designated.

The implementation of all the Maintenance Environment
activities went very smoothly, mainly thanks to the fact that
the transition took place within one and the same company.
The hardware and software suites and maintenance support
suites were already determined and installed. The company
did not need to determine any new suites. Neither did they
need to assure that the suites matched each other. They all did
by default.

5.3 Version and Configuration Management

The company has implemented all except two EM3
activities for managing version and configurations. The two
activities concerned the identification and tracking of the
customizable configuration items. The reason for not

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 207

ISBN: 1-60132-446-4, CSREA Press ©

implementing them was that the company had only one
customer. They did not experience any customization needs.

Regarding the activities that got implemented, we only
had the opportunity to observe the accomplishment of their
subset. As indicated in Table 1, we observed the complete
accomplishment of the activities concerning the management
of versions, configurations and baselines (Activities VC1 and
VC 2.1). Due to the specific context of the handover process
studied, we did not have however the opportunity to observe
the establishment of post-delivery baselines (Activity VC2.2).

The company establishes four baselines: developer test,
system test, acceptance test, and deployment baselines. While
following the handover process at E-identity, we observed an
additional baseline that we had not recognized in our model.
It is a release baseline. It is a separate release branch that is
created during deployment. It includes all the changes made
to the software system during deployment.

5.4 Training

Training was regarded as one of the most important
practices of the company’s handover process. Hence, all the
EM3 training activities had been implemented. However, as
shown in Table 1, at the moment of conducting this study, the
company only implemented the training activities from T1 to
T5.1, the activities focusing on the designation of roles.
Regarding the remaining activities, the company will perform
them in the project resumption phase. Its trainees are the
transitionees and the planning for their training focused on
creating a thorough system and process documentation on
different granularity levels.

The transitionees will be highly responsible for self-
educating themselves by studying the documentation that has
been created during the handover process.

5.5 Deployment

All the deployment activities as defined in the
Deployment practice have been implemented E-identity. The
company has defined and planned the scope and type of the
releases, defined installation procedures, installed the system,
closed the deployment and planned for future releases. At the
moment of our study, we did not have the opportunity to
experience the full deployment process to an external
customer. We only observed the internal deployment process.

The company had two types of deployment: (1) internal
deployment of infrastructure API transferred from the
infrastructure development team to the application
development team, and (2) external deployment of a ready
application from the application development team to its
external end-user customers. The main reason for conducting
the internal deployment during handover was to provide an
updated and stable version of API to the application
development team before freezing the system. The
application development team would then continue their
work on developing the application after project parking.

The steps in the internal deployment process studied were
(1) establish a deployment branch for the release, (2) compile
and verify the deployment branch by performing deployment
readiness tests, (3) make changes to the deployment branch
code to solve the problems encountered during testing, (4)
integrate those changes in the main branch, (5) de-install the
former system version, (6) install the new system version,
and, (7) install the operational data. Finally, the company
closed the deployment by reviewing the whole deployment
process and by making sure that it ended in a correct manner.

5.6 Documentation Practice

The company had implemented all the activities in the
Documentation practice. As indicated in Table 1, some of the
activities were however partially accomplished. These
concern defining organizational policies for developing
documentation standards and creating mechanisms for
controlling the quality of system documentation. The reason
is that before handover the development team gave priority to
meet the delivery deadlines, and hence, they put less
emphasis on documentation quality. The documentation was
of low quality before starting project parking. As a result, the
company decided to develop the documentation standards to
be used in the future.

Some other activities could not be observed while
conducting our study. These concern sharing documentation
standards and documentation repository with the transitionee.
The reason is the fact that the transitionee has not been
identified yet. However, in normal handover cases, the
company shares the repository by default due to the fact that
the transitioner is the same as the transitionee.

5.7 Maintainability Management

The company has not fully fulfilled the Maintainability
practice. As indicated in Table 1, it has not defined any
procedures for assessing data maintainability. They claim that
the reason is that the system is not yet fully operationalizable.
Hence, it does not have any operational data to consider.

The company has only partially defined procedures for
assessing system maintainability. This means that it has
defined various quality attributes concerning mainly
architectural design and coding standards, however, it has not
documented them.

Finally, at the moment of conducting our study, the
company realized that one important maintainability attribute
was missing. It concerned the traceability between the system
documentation and code. The system documentation played
the most important role in the company’s handover process. It
was a prerequisite for resuming system development and it
was the only source of information for the project resumption
team. For this reason and for the reason of attending to the
traceability problem, the company revised all the
documentation.

208 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

5.8 Software System Transfer

The Software System Transfer practice was added to EM3:
Handover Framework during this study. Hence, its activities
mirror the activities that were conducted at E-Identify. It is
worth mentioning that the company distinguished between
three types of system components. There were (1) stable
components ready to be used , (2) components under testing,
and (3) components under development.

6 Final remarks
In this paper, we have reported on the results of

implementing the taxonomy activities inherent in EM3:
Handover Framework. Our goal was to observe their
implementation and examine its applicability and usefulness
in a real-world industrial scenario. The handover was of a
self-to-self handover type and it was conducted in a project
parking context.

A quick scan through Table 1 shows that almost all of the
EM3 activities have been implemented at E-Identify. Not all
of them, however, were directly observable due to its specific
handover case. The activities that could not be observed
either concerned general prerequisite handover activities or
the activities to be performed in the project resumption
phase; the phase that the company has not performed yet. Out
of the total of EM3’s activities, 66% could be directly
observed and 21/% were inquired about. Only 6% were
partially performed and as few as 4/% were not performed at
all. Finally, 2% of the activities were not applicable and 1%
of the activities was not relevant.

Except for a new component practice, Software System
Transfer, and its activities, our study has not led to any
additions of new activities. It has rather led to the
confirmation that almost all the EM3’s activities were easily
applicable in the handover context studied. It has also helped
us identify a new context of a handover process where
transitioners will never learn to know the transitionees.
Finally, it has learned us the following lessons:
� In all transition contexts, one should designate a transition

team including the representatives from the transitioners and
transitionees. In the context when the transitionee is not yet
known and the transition team only includes the transitioner
representatives the only communication channel that is
possible is a very detailed documentation of the company’s
products, processes, and technology.

� The specific context of the handover process studied forces
the transitionee to be both the trainer and trainee. This
means that the new hires will be responsible for self-
educating themselves using the documentation created
during the project parking phase.

� During handover, it is important to keep track of the
software system and the health and progress of its
components. For this reason, one needs to clearly
distinguish between (1) stable components, (2) components
under testing, and (3) components under development. Only
then one may make decisions on their handover.

Even though EM3: Handover Framework has been
originally explored within sixty one companies and has
shown to be useful in this study, we strongly advise the
software community to continue to explore the handover
domain and evolve our framework. More handover contexts
need be explored and more studies need be done to evaluate
EM3: Handover Framework. We believe however, that this
study has already provided evidence that EM3: Handover
Framework is on the right path towards providing a fully-
fledged support for creating handover process models.

7 References
[1] T. Pigoski. “Practicle Software Maintenance: Best
Practices for Managing Your Software Investment”, John
Wiley & Sons, 1996.

[2] T. M. Pigoski och C. S. Looney. ”Software
Maintenance Training: Transition Experiences,” Proceeding
of Conference on Software Maintenance (CSM), 1993.

[3] T. M. Pigoski och J. Sexton, ”Software Transition: A
Casestudy,” Proceedings of International Conference on
Software Maintenance ICSM, 1990.

[4] I. O. Standardization. ”ISO/ IEC 15288, Systems and
software engineering- System life cycle processes,” IEEE,
2008.

[5] I. O. Standardization, ”ISO/IEC 14764:2006, Standard
for Software Engineering- Software Life Cycle Processes-
Maintenance,” IEEE, 2006.

[6] T. Vollman. “Transitioning from development to
maintenance”, Proceedings of Conference on Software
Maintenance, 1990.

[7] J. T. Howell. “Hard Living on Clay Street: Portraits of
Blue Collar Families”. Prospect Heights, Illinois, Waveland
Press, Inc, ISBN 0881335266, 1972.

[8] A. S. Khan. “A Framework for Software System
Handover”, Stockholm: KTH, Software and Computer
systems, SCS, ISBN:978-91-7501-739-6, 2013,
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-122270.

[9] JBoss. ”JBoss Applicaiton server,” JBoss, 2013.
[Online]. Available: http://www.jboss.org/.

[10] G. Hub. ”Git open source distributed version control
system,” Git, 2013. [Online]. Available: http://it-scm.com/.

[11] A. S. Khan, M. Kajko-Mattsson. “Taxonomy of
Handover Activities”, in Proceedings of the 11th
International Conference on Product Focused Software, 2010.

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 209

ISBN: 1-60132-446-4, CSREA Press ©

Teaching Undergraduates Unix/Linux Shell Design
and Implementation at Cameron University

M. Estep, C. Zhao, and J. Carroll
Computing and Technology Department, Cameron University, Lawton, OK, USA

Abstract – Operating Systems is a required core course in
the Computer Science degree curriculum [1]. In this article,
the authors discuss using a shell project to teach how
operating systems interact with a user and execute user
commands. The shell project contains four small projects:
execute a single command with or without arguments,
execute two commands separated by a pipe, execute a
command with input file and/or output file, and run a
command in the background. This practice provided students
an opportunity using the stepwise technique to complete their
shell project. Students learned some basic system techniques
and skills, and therefore their learning outcomes were
enhanced.

Keywords: Operating Systems, Shell, System Programming,
C and C++, Java

1 Introduction
Operating Systems (OS) is a required core course in

the Computer Science (CS) B.S. curriculum at Cameron
University. This course is designed to provide CS students
with an overview of hardware and OS, process management,
processor management, interprocess communication, storage
management, and auxiliary storage management. To improve
the quality of an OS course, many different methods can be
used in teaching practice at different universities [1, 2, 3]. At
Cameron University, specific projects were used to help
students understand basic OS concepts and principles, such
as shell design and implementation, CPU Scheduler,
interprocess communication, and parallel processing. In this
article, the authors only focus on shell design and
implementation. It is a basic function of an OS to offer the
user an interface to communicate with a computer system.
Through completing this project, students may have a better
and deeper understanding on how an OS interacts with the
user, how the user commands are executed, and why the shell
is separated from the kernel.

2 Initial Methods
2.1 Project Arrangement

The shell project was divided into four subprojects:
execute a single command with or without arguments,
execute two commands separated by a pipe, execute a
command with input file and/or output file, and run a
command in the background. Each subproject is a
continuation of prior subprojects except the first one. Each
subproject was to be completed in one and half weeks.

2.2 Forming Teams
At the beginning of the semester, students were

divided into teams. Each team consisted of a captain and one
or two members. The captain was in charge of team
activities, such as team meetings, programming assignments,
and project integration and testing. Team members worked
together to complete their project.

3 Procedures
3.1 Requirements

Each team was required to complete project
documents and an executable file. The project documents
had to include, at minimum, a readme file, analysis file, and
design file. Implementation languages were chosen from C,
C++, or Java, and the executable file had to run under a
Unix/Linux environment.

3.2 Analysis and Design
3.2.1 Single Command

The resulting program accepts a single command
with or without arguments. For example if the user types ls at
prompt, then the program should list all the files except
hidden files. If the user types ls –a, and then all files should
listed. In either case, the program will come back to prompt
after executing the command. An example of an analysis
diagram is shown in Figure 1.

210 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

Figure 1. Analysis Diagram of Single Command

3.2.2 Two Commands Separated by a Pipe

The user types two commands separated by a pipe
(Case 1). The project forks a child process to execute the first
command, and sends the execution results to the pipe. Then
the project forks again to execute the second command while
reading the execution results from the pipe as input. For

example, if the user types ls –al | wc, the first child process
executes ls –al and stores the execution in the pipe. Then the
second child process runs wc while taking the execution
results from the pipe to output word count results. Figure 2
shows an analysis diagram of two commands with a pipe.
The pipe redirection function flow chat is shown in Figure 3.

Figure 2. Analysis Diagram of Two Commands with a Pipe

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 211

ISBN: 1-60132-446-4, CSREA Press ©

Figure 3. Analysis Diagram of Pipe Redirection Function

3.2.3 Executing a Command with Input File and/or
Output File

If either or both redirection operators are used, the
system parses the commands accordingly and places them
into corresponding vector(s) to more easily facilitate
executing the commands later. Redirection operations

include two different functions, in_file (Case 2) and out_file
(Case 3) as well as a both_file (Case 4) function which is
used to handle commands where both redirection operators
are being used. Figure 4 shows the analysis and design of
input redirection.

212 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

Figure 4. Analysis of Input Redirection

3.2.4 Running a Process in the Background (Case 5)

A background flag is set to true if parsing finds an
& operator in the command string. If this flag is set to true,
the simulated shell circumvents the wait(NULL) as part of

the fork() process to enable the command to run in the
background, otherwise the fork() proceeds as normal. Figure
5 shows analysis of running a process in the background.

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 213

ISBN: 1-60132-446-4, CSREA Press ©

Figure 5. Analysis of Running a Process in the Background

214 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

3.3 Implementation
Once analysis and design were completed, implementation
took place using C, C++, or Java. The key parts were

parsing, executing commands, and piping. The code segment
in C++ is shown in Figure 6.

void pipe_redirection(vector<string> path, vector<string> cmd1,
vector<string> cmd2)
{
// Initialize variables
int filedes[2], pid, f1, f2, status;

// Create a pipe
pipe(filedes);

// First command
if((f1 = fork()) == 0){
close(1);
dup(filedes[1]);
close(filedes[1]);
close(filedes[0]);

// Attempt to execute the command
execute_command(path, cmd1);

_exit(0);
}

// Second command
if((f2 = fork()) == 0){
close(0);
dup(filedes[0]);
close(filedes[1]);
close(filedes[0]);

// Attempt to execute the command
execute_command(path, cmd2);

_exit(0);
}

close(filedes[0]);
close(filedes[1]);

do{ //waiting for two child processes’termination
pid = wait(&status);
if(pid == f1)
f1 = 0;

if(pid == f2)
f2 = 0;

}while(f1 != f2 && pid != -1);
}

Figure 6. Code Segment of Pipe Redirection

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 215

ISBN: 1-60132-446-4, CSREA Press ©

3.4 Testing
After completion of the shell project, the students

were required to create a test plan and test their project to
insure: (1) all functions were working properly, (2) after
each execution, the program was back to the parent process
prompt to enable the user to execute another command, and
(3) fix all logical errors if any.

4 Discussion
� Shell development is a software engineering process.

During developing software, the students practiced
generally five work flows – requirement, analysis,
design, implementation, and testing [5]. However, one
work flow may be dominant over others in a special
software development phase. Seeing this in the shell
project can help students truly understand the
complexity of the software development process.
Meanwhile this project also offered an opportunity to
develop and manage a relevant complex project.

� Improving Communication skills. To complete the
shell project, much oral and written communication has
to take place between the instructor and student
development team and within a student team. This offers
students a chance to improve and enhance their
professional communication skills.

� Enhancing Student learning. Student learning is one of
the core values at Cameron University. The students
worked together as a team and not only learned
operating system concepts [4] and programming skills
and techniques from each other, but also learned how to
work with others, which will benefit them in their future
profession.

5 Conclusion
The shell project provides the students with an

opportunity to design and implement the interface part of a
Unix/Linux Operating System, thereby allowing the students
to understand how the OS interacts with users and why the
OS always forks a child process to execute a user
command(s). It also creates an attractive learning
environment that motivates the students to go further and dig
deeper in the OS field step-by-step. Furthermore this practice
can improve the quality of OS and student learning
outcomes.

6 References

[1] Computer Science Curricula 2013 Curriculum
Guidelines for Undergraduate Degree Programs
in Computer Science December 20, 2013. The
Joint Task Force on Computing Curricula
Association for Computing Machinery (ACM)
IEEE Computer Society Computer Science
Curricula 2013.

[2] Teaching Operating Systems Using Code Review,
Christoffer Dall, Jason Nieh
Proceedings of the 45th ACM Technical
Symposium on Computer Science Education, March
2014

[3] Teaching Operating Systems Using Android,
Jeremy Andrus, Jason Nieh
Proceedings of the 43rd ACM Technical
Symposium on Computer Science Education
(SIGCSE 2012), February 2012

[4] Teaching Operating Systems as How Computers
Work, Peter Desnoyers Northeastern University,
May 12, 2011.
http://www.ccs.neu.edu/home/pjd/papers/fp144b-
desnoyers.pdf

[5] Operating System Concepts, 8th Edition,
Silberschatz, Galvin, and Gagne. John Wiley & Son
INC. 2009.

[6] Object-Oriented and Classical Software
Engineering, 8th Edition, Stephen R. Schach,
McGraw Hill, 2011.

216 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

A Framework Based on Image Processing Techniques
for Providing Synchronization in Smart TV

Cédrick Bamba Nsimba1 and Alexandre luis Magalhães Levada2

1Department of Computer Science, Federal University of São Carlos, São Carlos, São Paulo, Brazil
2Department of Computer Science, Federal University of São Carlos, São Carlos, São Paulo, Brazil

Abstract—In smart TV, we can naturally observe a lack of
connection between applications and the content of the
tuned programming on TV set and TV broadcasters have
fully control over the transmitted content. Based on the fact
that computer vision and machine learning tools can
provide that synchronized information by, respectively,
processing the image frame of TV content and then
classifying them, new opportunities will be opened up for
developing a bunch of new interesting applications aiming
to promote the user interaction level in TV. Moreover, with
the extensive use of mobile devices and computers in today’s
life, it will have new user interaction possibilities and a new
business model will be emerged. In this paper, the smart TV
framework is presented and evaluated. The objective of this
study is to facilitate the developers to implement
applications in this area without being concerned about
low-level implementation details.

Keywordst: TV channels monitoring, image
classification, multimedia synchronization, detection of TV
channel logos, smart TV

Type of the submission: Regular Research Paper

1 Introduction
Smart TV is changing the way that people watch

television and providing to the user a possibility to interact
with TV contents. However, unlike this type of interaction,
most of the time, the audiovisual content of programs in the
smart TV does not communicate with the native TV
applications and other TV platform features. The only basic
interaction is the possibility to switch between the things are
displaying on the TV screen either program or TV
applications.

Bachelet [1] conducted a research in five European and
North American countries in May 2013 and found out that
only less than the half of 6115 smart TV owners who were
interviewed, connected their TVs to the Internet. According
to his research, two elements are the reasons that why the
smart TV has not yet become popular and been widely
accepted by consumers as much as smartphones: (a) The
lack of content and interesting applications: although the
majority of smart TVs offer a wide range of content and
applications, most of them are irrelevant and are not
interesting to users; and (b) The Poor User Interface: a lack

of rich user interface that can integrate TV applications with
its audiovisual contents.

Schofield [12] mentioned, “If TVs are going to be truly
smart they must do more than offer a wide variety of online
video services. Instead they must add advanced
functionality including voice control, motion control,
advanced advertising, attractive user interfaces and two-way
communications with other smart devices –so-called
‘second screens’– allowing these devices both to send video
to the TV and know what is being watched. Manufacturers
should focus less on adding more content and more on
improving how users can interact with that content”.

This suggests that new synchronization mechanisms,
also interaction with TV environment can help to improve
the user experience. Information related to the channel being
watched by the user can be retrieved automatically through
a clear approach using TV channel logo detection, for
example. Then, this information can be used to notify all
connected devices, in the environment of smart TV, about
the channel being watched by the user. Channel logos are
visual objects (name, symbol or trademark) designed with
the purpose of easy recognition and are important to assess
the identification of a TV channel.

One of the finding mentions that innovative interactivity
has not been promoted and used adequately in smart TV
platforms. In addition, they show that the lack of facilities
that allow the integration of Smart TV applications with
their own audiovisual content is a major reason for its
limited use. Consequently, the current proposed paper uses
image processing to promote the development of smart TV
applications synchronized with TV program contents.

2 Related Work
Several authors reported some results of building

frameworks designed to support TV applications
development. However just few of them focus on reuse in
smart TV applications, specifically those ones synchronized
with television programming.

Group Share-TV [6] proposes a framework called share-
TV used for the development of converged applications
centered on TV for GoogleTV and Ginga-J platforms. The
share-TV allows the development of TV applications that
include a generic mobile application. Ever since this generic
application get downloaded from a given available TV IP,

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 217

ISBN: 1-60132-446-4, CSREA Press ©

installed and run on mobile device, the communication with
the TV convergent application will be initiated
automatically in order to register and receive shared objects.
While the objects are being received, the device show them
on the screen allowing interaction on them. Compared to the
work reported in this paper, share-TV also provides
communication services and reuse, however, this framework
is limited to applications based on Google TV and Ginga-J
platforms. The main difference is that share-TV is used to
develop TV convergent applications while the work
reported in this paper focuses on building smart TV
applications synchronized with the content of TV programs.

Samsung Smart TV [11] presents a framework called
AppsFramework. This framework encapsulates reusable
modules for scene management, video playback / music,
and so on. This makes it easier for the developer of smart
TV applications to avoid performing complicated sequences
of calls to the operating system in order to manage scenes
(focusing, showing and hiding events) of an application, for
instance. Some of these modules were used in the
framework proposed in this paper.

Freitas and Teixeira [5] proposed an architecture for
supporting the development of ubiquitous applications in
home networks focusing on Digital TV. The proposed
architecture consists of communication interface with home
devices, a protocol layer for automatic service discovery,
and so on. Although the architecture is designed to be
implemented in iDTV middleware, some of its reusable
artifacts such as the aforementioned ones were used and
implemented in the framework proposed in this paper.

The framework for building synchronized smart TV
applications with TV programs presented in this paper is
different with all the aforementioned works from the scene
that it uses image processing for synchronization purpose
and it is a reference framework that allows more efficiency
and less cost in building multi-platform applications in this
field.

3 Synchronization
Teixeira et al. [13] studied the synchronization in the

context of multimedia applications and considered that
synchronization is a mechanism to guarantee that actions
can happen according to the defined time reference set by a
clock or established by the occurrence of events. It
considers the tolerances that vary according to the type of
application. In case of TV program, the characteristic of
event is to be considered as a reference that is one of the
important aspects of synchronization in the context of this
study.

In order to provide synchronized applications with
television programming, it is essential to know which
channel the viewer is watching and what is being presented
to the audience every moment. Then this information can be
published to stakeholders and used to promote
synchronization between program and application through
notification services implemented in this work.

Notifications addressed in this work have various types such
as channel identification, start and end of trading blocs,
start, pause and end of the TV programs, sex scenes,
violence, crime and some notifications generated by the
events triggered by the user.

The synchronization module of this framework have
API's that allow applications to access notifications related
to events occurring in TV programs. All these
synchronization signals are generated by image and audio
processing techniques. In this paper, only that
synchronization mechanism is discussed which
implemented by SURF, K-NN, K-Means and template
matching techniques for channel identification.
3.1 Synchronization based on SURF

The main idea of this part is to, automatically, figure out
what is the content of extracted frame from smart TV video.
Although this problem of object detection and recognition in
videos are seen as the frames sequence analysis, it can be
simplified to single image analysis. Consequently, the main
issue related to this task is how to compare two images
(video frame and TV channel logo). We need to know if the
logo image is present in the video frame. To do so, and after
a research in the literature, we decide to use the SURF [7, 8]
(Speed-Up Robust Features), an image features detector and
descriptor inspired by SIFT [4] (Scale-Invariant Feature
Transform). This decision took in consideration a precision
and fast computation speed of SURF achieved by: (a) use of
integral images for image convolutions; and (b) use of
hessian matrix-based measure for detector and a
distribution-based descriptor. Given an input image (video
frame) and its extracted SURF features and corresponding
descriptors, we need to match its descriptors with the logo
images in the collection. With the huge number of logo
descriptors in the collection, we need to avoid comparing
with entire collection. For this, we use some segmentation
techniques to divide all the features in sub-groups by
common properties.

The process entails two sub-tasks: (1) data collection
(Fig. 1(c)), a set of TV channel logos pick up from LyngSat
[9] logo collection where for each logo class we defined the
number of logo images and frames for training and testing
phase; and (2) the real application (Fig. 1(e)). The first part
contains the following tasks: (a) feature extraction: key-
points are extracted from all logos (and all test frames)
using SURF. These key-points are used for comparison; and
(b) feature segmentation: receives large set of key-points as
data features, extracted from TV channel logo collection,
and segments all of them to obtain groups of common
features.

The second part (Fig. 1(e)) is retrieving the logo (s)
from an input image. This procedure has the following
steps:
(a) features extraction: extracting the key-points of a video
frame using SURF; (b) classifying the features: with all the
features of a frame, we need to find which logo segment

218 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

Fig. 1. Real Time TV Channel Logo Recognition

matches the key-point better. All the logos point in those
segments are possible candidates; (c) ranking the
candidates: with all the candidates presenting some
common key-points with the video frame, we need to rank
these key-points by a determined threshold and keep only
the similar ones; and finally (d) selecting the logo: after
ranking the candidates, we have all the information to
decide whether there is a logo inside the video frame or not
and which one is contained.

3.1.1 Features Extraction

To extract features from each video frame, we used
SURF algorithm implemented with OpenCV [3]. SURF is
sufficiently fast for real time object recognition. For feature
vector matching purpose, as showed in Fig. 3, we used K-
Nearest Neighbors, Fast Library for Approximated Nearest
Neighbors, distance ratio rule for finding all good matches
and a threshold used to verify if the number of good
matches found is enough to recognize a presence of the logo
inside the frame. Some results of our experiments are shown
in Fig. 4.

3.1.2 Collection Segmentation

After applying SURF algorithm and collecting a large
dataset composed with TV logo vectors, we used K-Means
clustering method to split this dataset in sub-groups
containing common properties. K-means is a clustering
method, widely used for partition problem, where given a
dataset of n points, the objective is to divide this dataset in k
groups finding k centroids. In this work, we partitioned the
logo dataset in k vectors called centers or centroids. To
obtain these centroids, we calculated the distance of all logo
vectors to each k initial centroid during each iteration. Then,
each logo vector belongs to its nearest centroid. We repeat
this operation for a number of iterations where in each loop
the groups are more balanced. By achieving the
convergence, the process finishes. By convergence, we
mean having no more change in the distribution of each
group.

Fig. 2. Example of TV logo detection with τ (distance ratio) parameter
equal to 0.95

Fig. 3. Different minimum determinant of Hessian values with
corresponding number of detected interest points and corresponding
computational time of feature detector and descriptor tasks are shown.
Settings used are det(H) = 2000, τ = 0.95 and good_matches = 6.

After computing all the centroids, the TV logo collection
is segmented in a way that for each SURF vector there is a
corresponding centroid, which can be accessed directly
through the indexing mechanism shown in Fig. 5. For
training the model, we used the data in Fig. 2 and more data
encountered in LyngSat logo collection.

3.1.3 Classification and Ranking

The objective of this section is to use the K-Means and
the relative segmented logos collection to classify the input
video frame. To do so, we extracted the SURF vector from
the frame and defined which the best group that contains
elements more similar to the input SURF vector.

After applying the K-Means technique in the
segmentation step, the result was a list of centroids that are,
simply, the vectors which represent each group. Then, as it
is shown in Fig. 6, we matched each frame SURF vector to
all centroids in the K-Means model and we only kept the
most similar one with the highest value of match.

Once we have these classes, all the candidates are
ranked using the distance metric between the SURF points.

3.2 Synchronization based on template-
matching technique

Multimedia synchronization, especially in smart TV
environment, is tightly related to a synchronization of TV
program video with smart TV applications. Through the
image processing, anchors – associated with image
transmitted by TV or parts of it - linked to the content can
be defined. This technique allows realizing an image

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 219

ISBN: 1-60132-446-4, CSREA Press ©

Fig. 4. K-Means segmentation and classification processes

processing, trying to find a similarity between images.
Consequently, in the context of this study, it was possible to
perform a more optimized search, trying to find points of
synchronization inside the video frame, for example a TV
channel logo, in our case.

With the extensive research on new and innovative
techniques for multimedia indexing, actually we can find an
OpenCV library, widely used in computer vision
applications, which implements some of these algorithms.
In this work, we used the CV_TM_CCORR_NORMED
OpenCV method to compare smart TV video frame (query
image) with the TV channel logo (reference image). This
process is shown in Fig. 5.

4 Framework Architecture
Bosch et al. [2] report that framework development is

different from a common application development. This is
because of that framework's design needs to cover all
relevant features of a particular domain and not just those
ones of specific application. This is why it is important to
consider the following when developing framework for
smart TV integrated applications. Generally, there are six
issues to consider. First, How to synchronize the TV content
with Smart TV applications (Fig. 6(1)), Second, how mobile
devices (smartphones, tablets, and others), which are in the
same space with TV can interact with it (Fig. 6(2)). Third,
how connected mobile devices in the TV environment can
detect the presence of available TV service for use (Fig.
6(3)). Forth, how Smart TV applications can act over the
TV controls such as changing channels, controlling volume
and so on (Fig. 6(4)). Fifth, how ticker applications must
share the remote control with the TV (Fig. 6(5)). Finally
how a Smart TV application can identify the channel, which
is being watched by the user (Fig. 6(6)). This last module
was implemented using the TV channel logo detection
presented in the section 3.

5 Framework Validation

To validate the framework proposed here we first
developed a set of tools to implement test with developers
and then used the experimental method proposed by Wohlin
et al. [14]. The set is composed of two main parts: the Back-

Fig. 5. Template-matching steps

Fig. 6. Framework Architecture

end (Fig. 7(a, b, c)) used to store the information of users
and devices and to allow communication and sharing of
media content among different components of the set; and
the Front-end (Fig. 7(d, e)), which contains applications
executed on mobile devices and Smart TV platforms.

The Back-end of this work provides web services for
smart TV discovery services and for managing the users of
social TV systems. The aforementioned services were
developed using the Grails framework (Fig. 7(a)).
Moreover, the Back-end allows communication and sharing
the media content among the different applications g ppp

Fig. 7. Framework Instantiation Architecture where M1: Mobile
Application 1; M2: Mobile Application 2; Sm: Smart TV Application; P:
PHP Server; D: Discovery; S: Synchronization; C: Communication; K:
Keymanagement; Ch: Channel identification and T: TV.

220 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

respectively using Apache ActiveMQ message broker (Fig.
7(b)) and PHP server (Fig. 7(c)).

The Front-end is based on client-side (PC, smart TV,
Tablet, smart Phone, etc.) that was developed using Apache
Cordova + HTML5 + JQuery (Fig. 7(d)) and JavaScript-
based smart TV framework API’s.

The objective of our experiment was:
o To analyse the use of the proposed framework in

the construction of smart TV applications
synchronized with television programing;

o With the purpose of evaluation
o Regarding the efficiency in terms of time spent

and productivity;
o From a point of view of software developers;
o In the context of undergraduate and graduated in

computer science and computer engineering. It is
important to point out that in this experiment twelve
(12) developers and one object were considered
(TVMonitor: standard synchronized smart TV
application).

The experiment consisted of a comparative study of the
development processes of two versions of a standard
synchronized smart TV application, one built with the reuse
approach using the proposed framework and other built
without this approach. We formulated three hypotheses and
considered some metrics during the experiment.

For the formulation of the three hypotheses, the
following metrics were considered:
 - Total time spent by the team for developing smart TV

application synchronized with the TV program;
 Þ - Team Productivity in terms of produced lines of code
(LOC) per unit time (Þ = LOC /);
 μ - Average of the spent time by the teams for
developing smart TV application synchronized with the TV
program;
 μÞ - Average productiveness of the teams in the
development of smart TV application synchronized with the
TV program.
 We have a null hypothesis and its two corresponding
alternatives:
� Null Hypothesis (H0): There is no difference between

teams who used the proposed framework and teams that
did not use while developing TVMonitor application
regarding the efficiency (ε) of the team.
H0: εframework = εwithoutframework => μ framework =
μ withoutframework e μÞframework = μÞwithoutframework

� Alternative Hypothesis (H1): Teams who use the
proposed framework for building TVMonitor application
are generally more efficient than those ones who
developed without the use of framework.
H1: εframework > εwithoutframework => μ framework < μ withoutframework

e μÞframework > μÞwithoutframework

� Alternative Hypothesis (H2): Teams using the approach
“without framework” for building TVMonitor application

are generally more efficient than those developing with
the use of framework.
H2: εframework < εwithoutframework => μ framework > μ withoutframework

e μÞframework < μÞwithoutframework.
For conducting our experiment, we prepared effectively

the material needed to support the process, that means, the
set of objects manipulated during the experimentation and
some documents that allowed the experimenter to exchange
information with the participants.

The organization of the data collected during the
experiment in Fig. 8 is done according to the two
development approaches used in this experiment:
development with and without the use of the framework
reported in this paper.

An initial analysis was done on the data collected in Fig.
8. It is important to note that the distribution efforts of the
groups in the design and test phases of TVMonitor
development was constant. However, there is a great
discrepancy of development efforts for the groups that used
the proposed framework during the implementation of
TVMonitor. While groups which have not used the proposed
framework, in average they spent 4 hours and 59 minutes
but those who used the framework spent 2 hours and 08
minutes (a decrease of 57, 2%).

Finally, we tested our hypotheses using the t-test [10]

which aims to verify that a variable differs between two

independente samples, based on the arithmetic average and

considering variability of its data items. Then with some

degree of significance (), reject the null hypothesis (H0)

and choose one of the alternative hypothesis (H1 or H2). The

t-test formula is given by equation (1), where
are the variances of each sample; Sp is the dispersion; and n
and m are the numbers of data items that each sample

contains. In equation (2), n+m-2, typically noted by gl is

called the degree of test’s freedom.

t0 = (1)

a))

 (2)

Once you have calculated to, and gl, you can check the

value of the standard t in t-test distribution to see if t0 is so
significant.

If | t0 |> standard t = t / 2 gl → REJECT H0,
Otherwise, → H0 NOT REJECTED and no
conclusion is drawn from the experiment.

As the dependent variable of the experiment (efficiency
of teams) has two treatments (total time () and productivity

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 221

ISBN: 1-60132-446-4, CSREA Press ©

Fig. 8: Data Collected

(Þ)), the application of t-test was performed in two steps too.
During this process, we calculated the variance using the
following equation:

 (3), with n = 3

Step 1: t-test (Total Time)

After calculating the variance of each group, we have:

 (withoutframework)= 2,97723 (withframework)= 1,5325
= 0,2 Sp = 1,501620791012165

t /2, gl = t0,1000, 4 = 2,1318 t0 = -2,498498775014366

Then we have |t0| > t0,1000, 4 REJECT the null hypothesis H0
with 20% of significance.

Step 2: t-test (Total Productivity)
After calculating the variance of each group, we have:

 (withoutframework)= 15951 (withframework)= 179347
= 0,02 Sp = 130,1691207621838

t /2, gl = t0,01, 4 = 4,6041 t0 = 5,475964737075994

Then we have |t0| > t0,01, 4 REJECT the null hypothesis H0
with 2% of significance.
6 Final Remarks

The proposed framework can be offered to developers in
form of a semi-complete source code skeleton that integrates
synchronization, notification and TV controls functions. A set
of tools that were developed in section 5 can provide to a
developer more facilities in the process of building Smart TV
synchronized applications. In addition, the experiment

conducted in this paper could prove statistically that the
proposed framework can be considered as an important tool to
support the developers of applications in this field. In addition,
all functional requirements that were established while
planning the development of this framework were
implemented and used during the instantiation of the proposed
framework.

Regarding future work, we plan to: (a) add mechanisms of
synchronization through local audio/video processing of TV
content to framework; (b) explore and add adjustment
mechanisms of synchronization with the purpose of
minimizing the delay difference that exists among various
forms of television content transmission (radio broadcasting,
cable, satellite, etc.); and (c) offer more notification API’s for
supporting the development of social TV systems with the
purpose of improving the user experience quality in Smart TV
environment.

7 References

[1] Bachelet, C. Most smart-TV owners do not connect their TVs to
the Internet: manufacturers must respond. Analysys Mason
2013. Available at: <http://www.analysysmason.com/About-
Us/News/Insight/smart-TV-May2013/>. Accessed on: march.
2014.

[2] Bosch, J; Molin, P; Mattsson, M; Bengtsson, P; Fayad, M.
Framework Problems and Experiences. In: Fayad, M.; Johnson,
R.; Schmidt D. Building Application Frameworks: Object-
Oriented Foundations of FrameworkDesign.Nova Iorque : John
Willey and Sons, p. 55-82, 1999.

[3] Bradski, G.; Kaehler, A. Learning OpenCV: Computer vision
with OpenCV library. 1. Ed: O’Reilly Media, 2008.

[4] D.G. Lowe, “Distinctive Image Features from Scale-Invariant
Keypoints,” International Journal on Computer Vision.2004.

[5] Freitas, G; Teixeira, C. Uma arquitetura de serviços para
aplicações ubíquas em redes domésticas centrada em TV digital.
In: XVI Simpósio Brasileiro de Sistemas Multimídia e Web
(Webmedia 2010), 2010, Belo Horizonte - MG. Anais do XVI

222 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

Simpósio Brasileiro de Sistemas Multimídia e Web (Webmedia
2010). Porto Alegre: SBC, 2010.

[6] Group Share-Tv. Share-TV: Um framework para
desenvolvimento de aplicativos convergentes centrados na TV
para as plataformas GoogleTV e Ginga-J. Webmedia '12. São
Paulo, 2012.

[7] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-up
robust features (surf)”, Comput. Vis. Image Underst., vol. 110,
no. 3, pp. 346-359, 2008.

[8] H. Bay, T. Tuytelaars, and L. J. V. Gool, “Surf: Speeded up
robust features.,” in ECCV (1) (A. Leonardis, H. Bischof, and
A. Pinz, eds.), vol. 3951 of Lecture Notes in Computer Science,
pp. 404-417, Springer, 2006.

[9] LyngSat. TV Logotypes by Country. Available at: <http://www.
lyngsat-logo.com/tvcountry/tvcountry.html >. Accessed on:
may. 2015.

[10] Montgomery, D.C. Design and Analysis of Experiments. 5 ed.,
Wiley, 2000.

[11] Samsung Smart Tv. AppsFramework. Available at:
<http://www.samsungdforum.com/Guide/art00017/index.html>.
Accessed on: may. 2014.

[12] Schofield, J. Smart TVs may be taking off, but they're still not
smart enough. ZDNet, 2012. Available at:
<http://www.zdnet.com/smart-tvs-may-be-taking-off-but-theyre-
still-not-smart-enough-7000008042/ >. Accessed on: march.
2014.

[13] Teixeira, C.A.C.; Cédrick, B.N; Santos, C.A.S, Melo, E.L.
Mechanisms of synchronization for multimedia applications.
2015.

[14] Wohlin, C; Runeson, P; Host, M; Ohlsson, M.C; Regnell, B;
Wesslén, A. Experimentation in Software Engineering: an
introduction. Kluwer Publishers, 2000.

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 223

ISBN: 1-60132-446-4, CSREA Press ©

A Meeting-Oriented Process for Streamlining Business
Collaboration: A Conceptual Example of Software

Development Case

Chung-Yang Chen 1, Kuo-Wei Wu2, Jung-Chieh Lee1
1 Department of Information Management, National Central University, Tao-Yuan, Taiwan, ROC

2 Department of Industrial Engineering, National Taiwan University, Taipei, Taiwan, ROC

Abstract - Human beings play a critical role
in any collaborative business activities,
including software development. People and
people-derived issues such as communication
and teamwork efficiency and effectiveness are
critical to their success. However, managing
teamwork and stakeholder’ involvement is a
challenging work, especially when we often see
that a technical job may be easily done, it
requires substantial efforts for relevant
stakeholders on brainstorming with people,
reviewing the work, explaining and convincing
the work to clients/reviewers, etc. To help
resolve this human-side collaboration and
communication issue, this paper focuses on
software development project as an example
and draws an attention on project meetings,
and illustrates a meetings-flow approach. In
this preliminary study, we would show you the
innovative definition on meetings in order to
help model and streamline the collaborative
proceeding of software development.

Keywords: business collaboration, project
meetings, software development

1. The Human Side of Software
Development
Contemporary software development (SD)

heavily requires the participation of various
stakeholders and parties in accomplishing
ad-hoc project tasks. Project activities such as
feasibility analysis, presentation rehearsal,
requirements exploration, critical artifact
review and acceptance, project monitoring and
control, change control, conflict resolution, etc.
are performed in the form of group discussion
and social presence to announce, brainstorm,
negotiate, reach consensus, leverage peer
pressure, and present or report works under
public scrutiny. Stakeholders' involvement in
software development, though not technical,
contributes to the success of a project.

The importance of stakeholder
involvement has been evidenced by many
studies, e.g. (Faraj and Sambamurthy, 2006;
Natale and Ricci, 2006; Marchewka, 2010;
Standish Group, 2007). Unfortunately,
managing people is not easy, and it gets more
difficult in software development that
particularly requires teamwork among the
stakeholders (Crocitto and Youssef, 2003;
Dennis and Garfieldll 2003; Faraj and
Sambamurthy, 2006; Hong et al., 2004; Natale
and Ricci, 2006; Probert, 1997). According to
Standish Group's chronicle reports, the
stakeholder involvement problem continues to
majorly cause software projects to fail
(Marchewka, 2010; The Standish Group, 2007).
These human-side issues of stakeholder
involvement in collaborative software
development should be emphasized and further
integrated into mainstream methods and tools
(FinstAM, 2003).

In a collaborative project that develops
integrated products and processes, since it
involves complex people configuration and
participation, the stakeholder participation
become the critical path (Chen, 2011; Roberts
et al., 2002). From the process aspect, known
project management and software process
standards, such as the Project Integrated
Management in the PMBOK and the Integrated
Project Management process area in CMMI,
suggest this kind of people issue be handled by
proper planning and institutionalizing various
group involvements throughout the
development of a project (SEI, 2010; PMI,
2008). Hence, software projects ought to have a
communicative venue for people to effectively
distribute information and collaborate, and
should sustain the communication venue
throughout the development. This “people”
refers to project stakeholders of the project

224 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

team, the software organization, the suppliers,
and the project customers and users.

2. Managing the
Human-centered SD: A
Focus on Meetings
Meetings are conceivable in serving as

this communicative venue. In the integrated
and cooperative software development
environment, stakeholders’ participation and
communication are usually done in the form of
meetings (Verner and Evanco, 2005; Gallivan
and Keil, 2003; Teasley et al., 2002; Rising and
Janoff, 2000; Davision, 1999). According to
many reports, meetings enable and facilitate
participation in sharing inspiration, leveraging
expertise and consolidating information (Hass,
2006; Newell, 2004; Gorse and Emmitt, 2007;
Hass, 2006; Wenger et al., 2002). Meetings are
also helpful in codifying and preserving
substantial group or team actions (Orlikowski
and Yates, 1994). The codification (i.e.
meeting minutes and subsequent supporting
information and documents) becomes the group
memories that support the collaborative
development of a project.

The study of meetings has been a major
topic in project management or information
technology related literature. Much literature
focuses on the subject of joint application
development, group support systems
(GSS/GDSS). They are mostly administrative
and internal behavioral studies of effectively
operating group action inside a meeting, or
building computerized tools for running a
meeting. In other words, although many studies
and tools promote the contribution of meetings
to ad-hoc group actions; these isolated
meetings are at the micro level in meeting
management. A more holistic and collective
perspective with regard to the
interconnectedness of previous, current, and
future meetings may be further needed in order
for forming the “group flow (Csíkszentmihályi
and Csíkszentmihályi, 1992; Martin, 2010)”
that streamlines the collaborative development.
In this regard, some researchers take a macro
approach with an innovative treatment on
project meetings for managing stakeholder
involvement. Such an approach suggests
treating meetings as mutual interdependent
entities, and interconnecting them to form
meetings flow, a macro group process that
represents the collaborative proceeding of
software development.

3. The Meetings-flow Approach
The meetings-flow (abbreviated as MF)

study is an emerging research. The concept was
seen in conducting students’ software capstone
projects and engineering projects (Chen and
Teng, 2011; Chen and Chong, 2011; Chen,
2009). According to these studies, the
serialized manner of meetings forms the
temporal meetings-flows, indicating how the
collaborative development proceeds; the
interdependent information sets among the
meeting entities form the contextual flows,
indicating the evolving of group knowledge.

Chen and Chong (2011) pointed out that
the Meeting-Flow Approach had made a step
further and extended the application fields into
the software engineering (SE) education field.
Besides, it had successfully implemented a
senior PIMIS (Project Issues Monitoring
Information System) project from the CEUIM
(Computing–Engineering Undergraduate
Program) at NCU (National Central University)
in Taiwan. In this project, an external party
ESNE, a CMMI-based company, sponsored the
project and played the external stake-holder’s
role as well. This project implemented the MF
in PPQA, VER and PMC process areas of
CMMI and examined how MF encouraged
team work. It formalized and streamlined
stake-holder participation, and show how to
monitor students’ work as well as sustain their
desired collaborative effort throughout the
development. MFA have also shown the
technical benefits of monitoring product quality
and students’ work.

Furthermore, Chen et al., (2014)
implemented MFA in an undergraduate science,
technology, engineering, and mathematics
(STEM) project, which emphasized team and
project-based learning. The results of this study
revealed that the MFA had significantly
improved the team communication,
coordination and balanced the contribution of
the members through giving mutual support
and efforts to each other. Its impact is relatively
small to the student team cohesion.

In addition, Chen (2011) reported the
usage of the MF in managing a multi-party
large-scale engineering project. In the report,
the project client used the MF to monitor and
participate in the development. The MF
synergizes the interconnectivity of project

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 225

ISBN: 1-60132-446-4, CSREA Press ©

functional meetings and institutionalizes a
continuous method and a more natural way of
intervention. Such a meeting-oriented process
was also recognized in the study as a new type
of project's critical path—a path of showing the
people and communication bottleneck of the
project. This communication critical path
differs from the traditional CPM (Critical Path
Methodology) that solely focuses on the
technical work path. According to Chen's
argument (p.12) in the report, while a technical
job may be easily done, it often requires
substantial efforts to brainstorm the ideas prior
to the work, taking considerable time for
reviewing the work, and spending much effort
on convincing the clients to accept the work.

Due to there are gaps between the
students’ projects and the business projects in
the real-world, such as, students lack
experience in, and knowledge of the complete
development of long term projects. (Hassan,
2008; Chamillard and Braun, 2002). Students
may not be as fully committed to the project or
assume as much liability as do those in industry
(Sancho-Thomas et al., 2009). Chen, et al.,
(2013) had out-reached the MFA and implied
in a contract-based outsourced engineering
projects to see how were these processes
shaped in contract-driven projects, and if there
was an alternative approach that could improve
inter-organizational control of coordination
processes (CPs) from the client perspective.
The survey results showed that the CP
requirements by the client to enable the
integration and institutionalization of the venue
through the effective management of different
organizations related to the project activities.
CP is the shape of the client and the contractor,
and they can be improved and maintained
through MFA.

Based on the aforementioned review on
project meetings and current development of
the MFA, we explore the applicability of the
approach in software project development.
Specifically, in this paper we preliminarily
introduce how the approach is used in a
software project and the benefits of the
approach may contribute in streamlining the
collaborative development of the project.

4. A Software Company Case
Introduction
Founded in 1985, Environmental Science

and Engineering Inc. (abbreviated as ESNE
hereafter) is a system integration company in
New Taipei City, Taiwan. ESNE develops
ad-hoc meteorological software systems for its
clients such as Central Weather Bureau,
Taiwan Air Force, and other government
agencies. In ESNE, the development of
meteorological system projects requires various
stakeholders or parties to participate in
continuous and intensive validation and
verification. Therefore, starting in 2008, the
company conducted a research project (Liu,
2009) of using the meetings-flow approach for
managing and streamlining project's critical
collaboration and group communication path.

ESNE’s projects are managed in
waterfall-like phases: presale (i.e. preparation),
development, and transition and maintenance.
Therefore, this paper summarizes the
company’s MF framework as Figure 1. For
simplifying the presentation due to the page
limitation, in the following MF report we use
only a phase (the “presale” phase) of a project
example.

In TKE, meeting entities are identified
from any work item on a project’s WBS that
requires group participation. TKE further

Figure 1: Managing software team processes by managing meetings and their flows

226 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

defines the participation as group behaviors of
brainstorming, review, announcement,
reporting, presentation, and negotiation. The
meetings are then characterized into various
meeting types (classes) with the generic agenda,
attending roles, participating roles, degrees of
participation, etc. Once identified, the meeting
classes are further linked up, according to their
corresponding positions on the WBS. The
upper part in Figure 2 below demonstrates such
a temporal flow.

As the lower part of Figure 2 shows, the
project uses DSM (design structure matrix) and
a simple DFD-like diagramming tool to frame
the information context for the planned
meeting entities. The underlying multi-layered
communication channel, visualizes the
relationship and linkage between meetings
(thus participants too) and levels of
management. Such meeting-oriented
collaborative proceeding, in both the temporal
and contextual representations, is regarded as a
macro-level group process of the project’s
development, and the generic content of the
meeting types in the flow becomes a reusable
group process model for similar projects to
follow.

5. Discussion
Streamlining the collaborative software

development: Due to a functional organization
structure, employees of ESNE work on
technical tasks of individual domains.
Previously they argued about the lack of a
whole picture regarding the shared vision of the
project. The meetings-flow was found to fit in
this gap. In a follow-up interview, participants
replied that the project’s meetings-flow enabled
a shared track for people to join in together,
streamlining the collaborative development by
bringing the right information to the right
people at the right time and venue.

One practical issue pertinent to such a
collective planning manner was raised in the
case company. Participants recalled that in the
beginning, the planning of meetings-flow was
challenging, because they tended to regard
meetings as unpredictable and nondeterministic
events, e.g. how can the MF determine all the
unexpected meetings and handle the change of
previously concluded agenda in a meeting? But

(a) The temporal meetings-flow in the preparation phase of the project case

(b) A DFD like contextual presentation of the meetings-flow model

Figure 2: The meeting-oriented group processes in the case company

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 227

ISBN: 1-60132-446-4, CSREA Press ©

later they realized that the MF was not to cover
all the meetings that happen or pop up during
the development of a project. In TKE, meetings
were defined based on the project’s WBS,
highlighting a collaborative path through the
development. They are different from the
communication events on demand.

Increasing meeting effectiveness:
According to the company, project members
felt that, by modeling collaboration into
meetings, the MFA helped reduce the number
of meetings overall. We further questioned
whether project’s communication was hindered
due to the reduction of meetings. The responses
were positive in two. The first benefit referred
to the increased control inside a meeting.
Because of the understanding of the contextual
relationships (Figure (b)), participants in
current meeting were able to track the
information from previous meetings. Secondly,
they became more careful in producing the
meeting’s outputs, which would be fed to other
meetings.

Handling the dynamics of software
development: a future study: As far as this
paper presents, the MF approach was used to
model the critical group path of the reported
project. However, software development is
inherently unique due to the characteristics e.g.
different lifecycle modes, durations,
participants, etc. The MF model in Figure 2
may not entirely fit into other projects.
Moreover, due to the dynamic nature and the
people factor, collaboration in software
development may not go as planned. Although
the members in the reported project expressed
positive responses as mentioned above, they
also concerned the effort devoted to follow the
planned flow model as the project deployed. In
this regard, the planning of project’s
meetings-flow should also consider the
flexibility of dynamically adjust the flow to
meet a project’s specific dynamic needs. This
echoes to the software process tailoring needs
recommended in CMMI (SEI, 2010). This
becomes one of our studies in the future
development of the MF approach.

6. Conclusion
This paper is preliminary and conceptual

in nature; it introduces an innovative treatment
on project meetings and describes the concept
of the MF approach to address the stakeholder
involvement issue in software development.
While the existing PM methods and software

tools mostly present a discrete way to manage
project development process, here suggests a
new concept, a focus on meetings and meeting
flows, to manage and streamline the
stakeholder involvement in collaborative
software development. In the future, the MF
would be continually introduced to the society.
This would include the methodological
development of applying the MF in software
development. Specifically, we would focus on
how to align and tailor the flow model to meet
individual project’s needs.

Acknowledgement

We thank the Taiwan National Science
Council for financially supporting this research
(NSC-94-2213-E-182-004). We thank
Environmental Science & Engineering
Corporation for providing the needed operating
environments of this research.

References

[1] Artail, H. (2008). A methodology for
combining development and research in
teaching undergraduate software engineering.
International Journal of Engineering Education,
24(3), 567-580.
[2] Bailetti, A.J., Callahan, J.R., and
DiPietro, P. (1994) A coordination structure
approach to the management of projects, IEEE
Transactions on Engineering Management,
41(4), pp.394-403.
[3] Crocitto, M. and Youssef, M. The human
side of organizational agility, Industrial
Management & Data Systems 103, 6 (2003),
388-397.
[4] Ceschi, M., Sillitti, A., Succi, G., and
DePanfilis, S. (2005 May/June) Project
management in plan-based and agile
companies, IEEE Software, 22(3), pp21-27.
[5] Chamillard, A. T., & Braun, K. A. (2002).
The software engineering capstone: structure
and tradeoffs. ACM SIGCSE Bulletin, 34(1),
227-231.
[6] Chen, C. Y., & Chong, P. P. (2011).
Software engineering education: A study on
conducting collaborative senior project
development. Journal of systems and Software,
84(3), 479-491.
[7] Chen, C.Y. and Teng C.K. (2011) The
Design and Development of a Computerized
Tool Support for Conducting Senior Projects
in Software Engineering Education,
Computers & Education, 56(3), pp.802-817.

228 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

[8] Chen, C.Y. (2011). Managing projects
from a client perspective: the concept of the
meetings-flow approach, International Journal
of Project Management, 29(6), pp.671-686.
[9] Csíkszentmihályi, M. and
Csíkszentmihályi, I.S. (Eds.) (1992) Optimal
experience: Psychological studies of flow in
consciousness, The University of Cambridge
Press.
[10] Damian, D., Izquierdo, L., Singer, J. and
Kwan, I. (2007) Awareness in the wild: why
communication breakdowns occur, The 2007
International Conference on Global Software
Engineering (ICGSE).
[11] Dennis, A.R. and Garfield, M.J. (2003)
The adoption and use of GSS in project teams,
toward more participative process and
outcomes, MIS Quarterly, 27(2), pp.289-323.
[12] Faraj, S. and Sambamurthy, V. (2006)
Leadership of information systems
development projects, IEEE Transactions on
Engineering Management, 53(2), pp.238-249.
[13] FinstAM, T.D. (2003) Project
management, an integrated approach, The
British Journal of Administrative Management,
34(January), pp.24-25.
[14] Gallivan, M., and Keil, M. (2003) The
user-developer communication process: a
critical case study, Information System Journal,
13(1): pp.37-68.
[15] Hass, M.R. (2006) Knowledge gathering,
team capabilities, and project performance in
challenging work environment, Management
Science, 52(8), pp.1170-1184.
[16] Heller, T. (2000) If only we’d known
sooner: developing knowledge of
organizational changes earlier in the product
development process, IEEE Transactions on
Engineering Management, 47(3), pp.335-344.
[17] Hong, P., Nahm, A.Y. and Doll, W.J.
(2004) The role of project target clarity in an
uncertain project environment, International
Journal of Operations & Production
Management, 24(12), pp.1269-1291.
[18] Hudson, V.F. (2007) The human side,
Industrial Engineer, 39(9) pp.40-44.
[19] Humphrey, W.S. (2007) Managing the
Software Process, Addison-Wesley.
[20] Liu, H. (2009) A study of the
meeting-flow through the software project
development in ESNE. Master Thesis,
National Central University, Taiwan
[21] Marchewka, J.T. (2010). Information
Technology Project Management, John Wiley
and Sons Inc., New Jersey, USA.
[22] Martin, P. (2010) Better Business,
Pearson Publishing Inc., Upper Saddle River:
NJ, USA.

[23] Natale, S. and Ricci, F (2006) Critical
thinking in organizations, Team Performance
Management, 12(8), pp.272-277.
[24] Probert, G. (1997) Projects, people, and
practices, Engineering Management Journal,
June 1997 pp141-146.
[25] Project Management Institute (PMI)
(2008) Project management body of
knowledge (PMBOK)
[26] Rising, L. and Janoff, N.S. (2000) The
scrum software development process for small
teams, IEEE Software.
[27] Roberts, T.L., Cheney, P.H. and
Sweeney, P.D. (2002) Project Characteristics
and group communication: an investigation,
IEEE Transactions on Professional
Communication, 45(2), pp.84-98.
[28] Sancho-Thomas, P., Fuentes-Fernández,
R., & Fernández-Manjón, B. (2009). Learning
teamwork skills in university programming
courses. Computers & Education, 53(2),
517-531.
[29] Schwartzman, H. B. (1989). The meeting.
In The Meeting (pp. 309-314). Springer US.
[30] Software Engineering Institute (SEI)
(2010) Capability Maturity Model®
Integration (CMMISM) Version 1.3 for DEV,
CMU Press, Pittsburgh: PA.
[31] Steele-Johnson, D. (2000) Goal
orientation and task demand effects on
motivation, affect, and performance, The
Journal of Applied Psychology, 85(5),
pp724-7238
[32] The Standish Group (2007). CHAOS
Summary for 2006, West Yarmouth, MA,
USA,
http://www.standishgroup.com/press/article.ph
p?id=2
[33] Teasley, S.D.; Covi, L.A.; Krishnan,
M.S.; Olson, J.S (2002) Rapid software
development through team collocation, IEEE
Transactions on Software Engineering, 28(7),
pp671 – 683.
[34] Verner, J.M., and Evanco, W.M (2005
Jan/Feb) In-house software development: what
project management practices lead to success?
IEEE Software, 22(1), pp86-93.

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 229

ISBN: 1-60132-446-4, CSREA Press ©

Development of “Multiple Sightseeing Spots �� �
Scheduling System” and Comparison with � � � � �

The Existing Sightseeing Methods

Kazuya Murata1, Takayuki Fujimoto1
1Graduate School of Engineering, Toyo University, Saitama, Japan

Abstract - Recently, foreign tourists and travelers coming to
Japan is increasing explosively. In 2004, the number of the
foreign visitors was approximately 6.1 million people, and it
became approximately 20 million people in 2015. One of the
backgrounds includes various Japanese sightseeing policies
such as “Visit Japan Project” and “Cool Japan”. As a result,
Japan’s travel and tourism competitiveness of 2015 was the
ninth place, a high rank in the world. However, a problem is
still left in the current Japanese sightseeing situation. For
example, there are not so many stores with foreign language
correspondence. And also there are not so many places where
they can pay with a credit card. Furthermore, the traffic such
as the subway or the buses is complicated. In current Japan,
those kinds of problems are left. But, it is difficult for foreign
tourists and travelers to accept them without stress. We saw if
there was any way to solve the problems and uneasiness. In
this research, we have developed totally a new form of
sightseeing application “Multiple sightseeing spots scheduling
system” as a solution for these problems and uneasiness. In
this paper, we developed the application prototype, and
performed the comparison experiment with the existing
sightseeing methods and verified superiority of this
application.

Keywords: Sightseeing, Tourist, Application, Sightseeing
Information

1 Introduction
 T Recently, foreign tourists and travelers coming to
Japan is increasing explosively. In 2004, the number of the
foreign visitors was approximately 6.1 million people, and it
became approximately 20 million people in 2015, 10 years
later [1]. The background includes recent Japanese
sightseeing policies. For example, they are “Visit Japan
Project”, “Cool Japan Policy” and “Relaxation of the visa
acquisition for Middle Eastern countries”.
 Japan Tourism Agency plans “Visit Japan Project” and
Japan National Tourism Organization performs promotes it.
“Visit Japan Project” is one of “Strategy to increase the
number of foreign tourists visiting Japan”. In “Visit Japan
Project”, Japan establishes 20 important point markets abroad
to attract foreign tourists. And promotion of Japan in those

countries and areas are performed. This promotion includes
two methods of “Public appeal in overseas markets” and
“Promotional programs for travel agents”. In “Public appeal
in overseas markets”, activities such as “Transmitting charms
of the Japan sightseeing by newspapers, magazines and
websites, etc.” and “Inviting the local media to Japan and
encouraging them to deliver charms of Japanese sightseeing”
are carried out. In “Promotional programs for travel agents”,
an activity mixing “Promotion of Japan sightseeing by Japan
National Tourism Organization” with “The advertisement of
Japan sightseeing product of the travel agency” is held. Like
these, Japan sightseeing is promoted by various methods.
 “Cool Japan Policy” is a policy of Ministry of Economy,
Trade and Industry. Current Japan has the famous industries:
the car industry; the electric appliances industry and etc. In
addition, Japan has special culture including contents such as
“Anime”, “Manga”, fashions and Japanese food. The
foreigner appreciates them as so-called “Cool Japan”. These
kind of Japanese unique culture can be expanded to the
business deployment properly and it enables people to be
interested in Japan more. At the same time, Japan can get
foreign demand. Attracting foreign tourists is the activity
which can be connected with economic growth of Japan.
Examples are “Effective transmitting of Japanese charms”,
“Platform construction to make money locally”, and
“Bringing bark consumption to Japan”.
 In “Effective transmitting of Japanese charm” is an
activity to raise interest in Japan. For Example, for the
overseas development promotion of “Anime” and “Manga”,
there is the localization such as subtitles and dubbing. In
addition, there is the promotion activity to an international
trade fair and running the advertisement. In “Platform
construction to make money locally”, There is an activity
such as the securing of the channel for exclusive use of
Japanese contents and the allied product sale in commercial
facilities. Through this activity, the matching support is
practiced for local company and Japanese company with
materials based on unique Japanese technique and culture. In
2014, it carries out eight times of trade fair exhibition and
business matching were held in various countries. In
“Bringing bark consumption to Japan”, Japanese attractions
are dispatched as “Cool Japan” to acquire share in overseas
markets. It also promotes “Visit Japan Project”. For example,
an activity to attract foreign people to Japan is practiced by

230 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

spreading information on Japanese traditional craft arts
abroad and also casting the tours for foreigners to experience
Japanese traditional craft arts at the same time. In this way,
the policies targets to deliver Japanese various contents to the
foreign countries and encourage foreign people to come to
Japan.
 In “Relaxation of the visa acquisition for Middle Eastern
countries”, relaxation of the acquisition of the visa is carried
out for Middle Eastern countries such as Indonesia,
Philippines, Vietnam and China.
 By these sightseeing policies, the current Japanese
sightseeing competitiveness becomes the high rank of the
ninth in the world [2]. In 2020, “Tokyo Olympics” will be
held. From these, the sudden increase in number of foreign
tourists and travelers are expected in the future.

2 Purpose
 Current Japanese travel and tourism competitiveness is a
high rank of the ninth in the world. However, a problem is
still left in the Japanese sightseeing situation. It is a problem
with the information environment on sightseeing spots and
the stores in Japan. For example, there are not so many places
with the foreign language correspondence. Of course, there
are a lot of stores with the foreign language correspondence,
but the stores with no foreign language correspondence still
exist. In addition, there are few places where the credit card
payment is possible, and the credit card payment is a basic
means of payment in the foreign counties. Furthermore, the
traffic such as the subway or the buses in Tokyo is
complicated and hard to understand. Regarding sightseeing of
Japan, these problems are left. However, it is difficult for the
foreign tourists and travelers who don’t know much about
Japan to accept those problems without stress. Of course, it is
difficult for them to find the places which are other than
famous sightseeing spots and stores on the guidebook.
 Thesedays, most of foreign tourists and travelers are
interested in Japanese local spots more than Japanese famous
sightseeing spots. However, it is not easy to find those places.
The tourists and travelers can use websites for Japanese
sightseeing information, but they are just digitized version of
the guidebooks basically. To increase the number of the
tourists and travelers to Japan more, visits to the places other
than sightseeing spots on the guidebooks are indispensable.
 Therefore we thought if there was any way to solve this
kind of problem by a casual tool, which is other than Japanese
policies, but enables foreign tourists and travelers to come to
Japan more. And we devised “Multiple sightseeing spots
scheduling system based on inversed operation method” that
enabled a guidance of new sightseeing to suggest in this
research.

3 Purpose
� In this research, we have proposed and created the
prototype of “Multiple sightseeing spots scheduling system
based on inversed operation method” enabling guidance for

new type of sightseeing. This application consists of the
following five components.

�Settings for the “current place” and the “place to return”

�Settings for time to return

�Selection from “sightseeing categories”

�A list of sightseeing information

�Use or disuse of the credit card payment

� � In this chapter these five components are described in
detail.

3.1 Setting for the “Current Place” and the

“Place to Return”
 This application requires the user to set the current place
and the place to return, unlike common sightseeing
applications. From the current place and the place to return,
the application determines some range of the tourist route or
sightseeing plan to suggest.

3.2 Setting for Time to Return
 The common sightseeing applications display time
required to the destination on the search results. But, for the
application of this research, the user needs to set “time to
return”. Using the settings, the system suggests possible
tourist route and sightseeing plan by calculating time
allowance available for sightseeing from current time to “time
to return”.

3.3 Selection from “Sightseeing Categories”
 For the common sightseeing applications, the user inputs
a destination and searches routes to the destination. But for
this application, the user decides a sightseeing place to go by
selecting “sightseeing categories” without setting the
destination. In this application, we set “sightseeing
categories” such as table 1

Table 1. List of “Sightseeing Categories”

Tourist spot Cafe
Temples
Shrines

Museum
Japanese
sweet

History

Aquarium Japanese food Souvenir

Archives
Center

Western food Garden

Art Museum Chinese food Park

Memorial Hall
Traditional
Craft

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 231

ISBN: 1-60132-446-4, CSREA Press ©

 In this application, using this “sightseeing categories”,
the system shows appropriate sightseeing spots for
“sightseeing categories” from the area determined by
calculation based on the current place, the place to return, and
time to return.

3.4 List of Sightseeing Information
 This application displays information on the suggested
sightseeing spots as well as the suggestions of the tourist
route and the sightseeing plan. For this application, we made
a list of sightseeing information to be viewed by the user. In
that list of sightseeing information, we list information on
table 2.

Table 2. List of Sightseeing Information

 The users choose sightseeing spots using “sightseeing
categories” from this sightseeing information. By the search
results of this application, the use of the system can read
sightseeing information from the search results.

3.5 “Use or Disuse of the Credit Card
Payment”

 One of the target of development of the application in
this research aims to enable foreign tourists and travelers to
do sightseeing without stress. To solve the problem, the users
can choose use/disuse of “Credit card payment” when
searching a tourist route. The system excludes the sightseeing
spots and stores where the credit card payment is unavailable
form the results and it can suggest a more comfortable tourist
route and sightseeing plan.
 With these five components, first, the system “calculates
a range from the current place and the place to return”.
Second, it “calculates time allowance for sightseeing by back
calculation from time to return”. At last, it “searches
appropriate sightseeing spots for the specified sightseeing
categories”. That is how the system suggests possible tourist
route and sightseeing plan in specified time.

4 Example of Operation Method “Multiple
Sightseeing Spots Scheduling System”

 In this chapter, an operation method of “Multiple
sightseeing spots scheduling system” is described.

4.1 Setting for the Current Place, the Place to
Return, and Time to Return

 In this application, firstly, the users input a current place
and a place to return. User input a current place as a starting

point and a place to return into “current place” and “place to
return” columns of the input form in figure 1. In the former
prototype system, “current place” was specified only by the
station. However, the current system enables guidance using
GPS by the “Current place” input in the “Present place”
column. Also, the users are required to input “Time to return”
into the “Time to return” column. For example, in the case of
a plan to return to Tokyo Station at 18:00, the user inputs
“1800” in the column. From this, the application calculates
time form “present time” to “time to return” by back
calculation and suggests a tourist route and sightseeing plan
in specified time.
� � An example of these operations is indicated in figure 1.

Fig 1. Settings for Current Place, Return Place, and Time to
Return

4.2 Selection from “Sightseeing Categories”
 In this application, the user sets “sightseeing categories”
that is connected with “list of sightseeing information”. The
system suggests appropriate sightseeing spots for “sightseeing
categories” by this selection. Also the user can set plural
“sightseeing categories” and can suggest a tourist route and a
sightseeing plan to the multiple sightseeing spots.

Fig 2. Selection from “Sightseeing Categories”

Sightseeing
Categories

Store
Name

Address
Opening

Hours
TEL

Regular
Closing

Day

Need
Time

Need
Money

Use or Disuse
Credit Card payment

232 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

4.3 Use or Disuse of the Credit Card Payment
 With this application, we aim to suggest more
comfortable tourist route and sightseeing plan s for a foreign
tourists and travelers. Therefore in this application, at the time
of tourist route search, the user choose s “use or disuse of the
credit card payment”.

Fig 3. Setting for “Use or Disuse of the Credit Card Payment”

4.4 Search Results
 When the user sets five components: “current place”,
“place to return”, “time to return”, “sightseeing categories”,
and “use or disuse of the credit card payment”, and then
carries out a search, the screen image in figure 4 will be
displayed. In the search results, the application displays the
tourist route and a sightseeing plan with the map in the upper
part. At the same time, it displays a tourist route and a
sightseeing plan with the text. In a sightseeing plan with the
text, names of sightseeing spots and stores are displayed. The
user can view sightseeing information by tapping those names
of sightseeing spots and stores. This sightseeing information
will be displayed using the information list that we made in
“list of the sightseeing information”.

Fig 4. Search Results Example

Fig 5. Example of the Store Information

 In addition, this application has “Change button” beside
names of a sightseeing spots or stores. The user can change
the route to the different sightseeing spot or store in the same
“sightseeing categories” by tapping “Change button”. The
operation example is indicated in figure 6. By this system, the
user thinks about one’s favorite sightseeing and can make the
user’s original sightseeing route or the sightseeing plan. This
application enables guidance of the sightseeing that is very
high diversity.

Fig 6. Example of the Change of Sightseeing Spot

5 Comparison Experiment between
Existing Sightseeing And Application of
This Research

 In this research, we are developing a new application to
guide sightseeing by a method totally different from the
existing guidebooks and applications. As a beginning of the
comparison experiment, we actually saw the sights by three
methods: “Sightseeing using a guidebook”; “Sightseeing
using a smart phone”: “Sightseeing using the application of
this research”, and carried out a comparison experiment.
 In this chapter, we will review an experiment method
and experiment results.

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 233

ISBN: 1-60132-446-4, CSREA Press ©

5.1 Experiment Method
 In this research, we carried out the comparison
experiment for the three sightseeing methods: “Sightseeing
using a guidebook”; “Sightseeing using a smart phone”;
“Sightseeing using the application of this research”. We set
almost same conditions and carried out sightseeing by three
methods. And we compared each sightseeing method from
experiment results and considered superiority and a
refinement of this application.

5.2 Setting of the Sightseeing Condition
 Sightseeing conditions are indicated in table 3.

Table 3. Sightseeing conditions in this experiment

 We set those conditions and saw the sights by each
method, and considered the experiment results.

5.3 Experiment Results
 Experiment results on “Sightseeing using a guidebook”,
“Sightseeing using a smart phone”, and “Sightseeing using
the application of this research”, are indicated in table 4, table
5, and table 6.

Table 4. Sightseeing using guidebook

Table 5. Sightseeing using smart phone

Table 6. Sightseeing using application of this research

 Through this experiment, the remarkable difference that
we felt was “Difference of the required time before deciding
a sightseeing spot”. For “Sightseeing using a guidebook” and
“Sightseeing using a smart phone”, at first the user has to
decide where oneself goes to. In this experiment, we spent
considerable time to decide the first sightseeing spot. On the
other hand, regarding “Sightseeing using the application of
this research”, at first we targeted the sightseeing spots that
one wants to go in “sightseeing categories” and then a rough
plan of the tourist route was displayed. In regards to the
application of this research, the user could change the
sightseeing spot that oneself wants to go to from the first
tourist route for the decision. Therefore it did not take time
before deciding a tourist route.
 There was also a problem about “required time for
sightseeing”. Regarding “Sightseeing using the application of

Condition
1

Sightseeing area form Ikebukuro to Tokyo
Station

Condition
2

Sightseeing time from 13:00 to 17:00

Condition
3

Add lunch (Japanese food) in the
sightseeing route

Order Tourist route Area

1 Sunshine city aquarium (aquarium) Ikebukuro

2 Unagi Kappo IZUEI (Japanese food) Ueno

3
Ameya-yokocho market �

(sightseeing spot)
Ueno

4
Tokyo Sweet Land� � �
(sightseeing spot)

Tokyo

5 Tokyo Station (Souvenir) Tokyo

Order Sightseeing route Area

1 Sushi Mamire�Japanese food� Ikebukuro

2
Namco Namja town
�Sightseeing spot�

Ikebukuro

3 Gokoku-jinja Shrine (Shrine) Ikebukuro

4 Senso-ji (Tenmple) Ueno

5
Nakamise Shopping Street

(Sightseeing spot)
Ueno

6 Tokyo Station (Souvenir) Tokyo

Order Sightseeing route Area

1 Manmaru (Japanese food) Ikebukuro

2
Ancient Orient Museum �

(Museum)
Ikebukuro

3
Nakamise Shopping Street

(Sightseeing spot)
Ueno

4 Radio Center (Souvenir) Akihabara

5 Kanda Shrine (Shrine) Akihabara

6
Red-brick Tokyo Station

(Sightseeing spot)
Tokyo

234 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

this research”, transferring time and required time for
sightseeing are displayed for search results. With the system,
we saw the sights checking the time. As a result, we finished
planned sightseeing smoothly and arrived back at Tokyo
Station on time. But, we need to decide the tourist route by
ourselves, in regards to “Sightseeing using a guidebook”.
Therefore we had to think about required time for the
sightseeing route and had to practice the plan. Also, we had to
transfer while always watching the guidebook. it was difficult
to do sightseeing while being conscious of time. As a result,
we were just able to see the five spots without enough time
though planned to go to six spots. On the other hand, in
regards to “Sightseeing using smart phone”, transferring time
to a sightseeing spot was displayed, but required time for
sightseeing was not displayed. Time lag occurred and it was
not sightseeing on schedule.
 From these results, the application of this research has
higher performance for time comparing with a common
sightseeing methods, and it is thought that there is superiority.
 Regarding “Sightseeing using a guidebook”, we visited
a sightseeing spots and stores listed in the guidebook
basically. Therefore the sightseeing information is limited.
However, this application can display local sightseeing spots
and stores, which are not on the guidebook.
 And also, in regards to “Sightseeing using a smart
phone”, famous stores are displayed as search results mainly.
With the smart phone, we could research the local sightseeing
spots, but it took much time.

5.4 Problem point of this application
 From these experiment results, “Multiple sightseeing
spots scheduling system” being developed in this research has
high cost-performance for the time in particular. On the other
hand, we discovered the problems with this application.
 “Change button” for the sightseeing spots or stores that
we implemented newly has the problem. In “sightseeing using
the application of this research” by this experiment, we
intended to change the sightseeing spot from a suggested
sightseeing spot displayed initially. But, it was hard to
understand where a displayed sightseeing spot was at all
when we tapped the “change button” and the alternative was
displayed. As a result, a sightseeing route was displayed in a
strange way when we changed it into one in far-off area. Also,
all sightseeing spots in the specified “sightseeing categories”
was displayed. As a result, it was very difficult to change a
sightseeing spot.
 It is necessary for us to revise a system to change the
sightseeing spots. As the solution, we think about a system
possessing “priority ranking” in “sightseeing categories”. In
the current system, “sightseeing categories” require the user
to choose all the categories that one wants to go for
sightseeing. We also think about letting this system display
only an appropriate sightseeing spots by possessing priority
ranking such as “ The spots that user wants to go most” or
“The category that user want to go second most”.

6 Conclusion and Future Research
 In this research, we are developing “Multiple
sightseeing spots scheduling system” enabling guidance of
new sightseeing. In this paper, we have carried out the
comparison experiment for three sightseeing methods:
“Sightseeing using a guidebook”; “Sightseeing using a smart
phone”: “Sightseeing using the application of this research”.
From the experiment results, we considered superiority of this
application, discovered problems with this application and
aims at future improvement. We carried out the experiment
only by the authors without enough time. The next
experiment would be the examinee test in which more people
do sightseeing using this application actually. We will verify
the difference from other styles of sightseeing in more
detailed way and discover problems for further improvement
of this application.

7 References
[1] Japan National Tourism Organization, “Trend of the

number of the visit to Japan foreign visitors”,
http://www.ww.jnto.go.jp/jpn/reference/tourism_data/visitor_trends/

[2] The World Economic Forum “The Travel & Tourism
Competitiveness Report 2015”,
http://www3.weforum.org/docs/TT15/WEF_Global_Trav
el&Tourism_R eport_2015.pdf

[3] Japan Tourism Agency, “Inbound Travel Promotion
Project (Visit Japan Project)”,
http://www.mlit.go.jp/kankocho/en/shisaku/kokusai/vjc.html

[4] Ministry of Economy, Trade and Industry, “Cool Japan /
Creative Industries Policy”,
http://www.meti.go.jp/english/policy/mono_info_service/
creative_indust ries/creative_industries.html

[5] K. OGAWA, Y. SUGIMOTO, K. NAITO, T. HISHIDA,
T, MIZUNO, “Basic design of a sightseeing
recommendation system using Characteristic Words”,
IPSJ SIG technical reports 2014-MBL-71(14), 1- 6, 2014-
05-08

[6] M. URATA, S. NAGAO, F. KATO, M. ENDO, T.
YASUDA, “Photo Rally System to Support Tourists in
Tourism Areas [In Japanese]” Journal of the Japan
Information-culture Society 21(2), 11-18, 2014-12-25

[7] Jalan, “Introduction of the tour guide application -Jalan net-“,
http://www.jalan.net/jalan/doc/howto/iphone_kankou.html

[8] Shigeo Kuroda, “TABIMARU Tokyo”, Shobunsya
Publications, Inc. , August 2015

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 235

ISBN: 1-60132-446-4, CSREA Press ©

A Conceptual Data Model for Health Information
Systems

André Magno Costa de Araújo1, Valéria Cesário Times1, Sérgio Castelo Branco Soares1
1 Center for Informatics, Federal University of Pernambuco, Recife, Pernambuco, Brazil

Abstract - The development of Health Information Systems
based on dual models allows modifications to be conducted in
the layer of archetypes, reducing dependencies on software
developers. However, we identified a lack of conceptual
models to represent two-level database entities. This paper
proposes a novel conceptual data model, called ArcheER,
which is a dual modeling approach and aims to reduce
redundant entities and guarantee the creation of unique
electronic health records. ArcheER is an extension of the
Entity-Relationship model and is based on archetypes. A
CASE modeling tool based on ArcheER is outlined. Finally, to
illustrate the key features of the proposed model, an ArcheER
conceptual schema built for a legacy system is discussed, and
results collected from a test with 18 human subjects are
reported. Results indicated a reduction of 83,35% in the
representation of redundant entities and a gain of 78,9%
concerning the modeling of entities characterizing knowledge.

Keywords: Novel Software Tools, Conceptual Data
modeling, Health Information Systems, Archetypes.

1 Introduction
 Conceptual modeling is an important activity for

designing a database. The conceptual scheme is a concise
description of data requirements specified by the application
designer, including detailed descriptions about types of
entities, relationships and constraints [1]. Thus, the artifacts
generated from the conceptual data modeling are important
elements in building database systems. Currently, most Health
Information Systems (HIS) are built using traditional database
modeling technologies [2], in which both information and
knowledge concepts are represented in single level computer
systems using conventional data models. However, HIS must
handle a large number of concepts that often change or are
specialized after a short period of time and, consequently,
HISs based on such models are expensive to maintain.

Several research projects and many applications have
been developed from the specifications of the openEHR
system architecture and the concept of archetypes [3-8]. The
Open Electronic Health Record (openEHR) software
architecture for HIS is aimed at developing an open,
interoperable and computational platform for the Health
domain [9]. This architecture separates generic information
that represents the structures of the Electronic Health Records
(EHR) and demographic characteristics of the patients of a
reference model, from the constraints and standards
associated with the clinical data of a given specific domain,
which composes the knowledge model. An archetype consists
of a computational expression that is based on the reference

model and is represented by domain constraints and
terminologies [3] (e.g. data attributes of a blood test), while
templates are structures used to group archetypes for allowing
their use in a particular context of application, and are often
associated with a graphical user interface. On the other hand,
some authors have already proposed extensions of traditional
conceptual modeling techniques to represent HIS
applications. However, these extensions do not model EHR,
do not provide dual modeling constructors and are not based
on archetypes. In fact, little attention has been devoted to the
investigation of the following issue: which conceptual
constructors are needed to model the two-level database
entities of HIS applications?

This paper proposes a novel conceptual two-level data
model, named ArcheER, for helping database designers with
the modeling of HIS applications. ArcheER is an extension of
the Entity-Relationship (ER) model [1] and is based on the
openEHR definitions [3]. It also comprises a set of modeling
constructors with graphical representations for building health
information conceptual schemas and a set of knowledge-level
constructors that are based on archetypes. The ER model was
chosen because it is simple and widely used in both academia
an organizations for the development of DB applications, and
because it is capable of providing an abstraction of
implementation details as well as being easily mapped to
DBMS logical data models. Another contribution of this paper
is related to the development of a modeling tool for ArcheER.
The main goal of such tool is to provide application designers
with computer support to assist in the database modeling
activities of healthcare applications.

The dual modeling approach has been used by several
researchers and is not unique to archetypes [10]. However, in
this paper the focus lies on the use of dual modeling based on
the concept of archetypes, since [8],[11],[12] reported the use
of this approach as essential to achieve interoperability and
standardization of EHR.

2 Related work and motivation
Späth and Grimson [8] used the openEHR specification

to map the structure of an EHR into a proprietary database
system. They examined the reuse of archetypes available in
the repository of openEHR by specializing some of them and
then proposing a new set of archetypes to support biomedical
knowledge discovery. To achieve this, they studied the
database schema to reorganize it according to the concept of
archetypes, by mapping each field of the database to an
archetyped element. Some difficulties were reported while
doing so, including a lack of consolidated modeling tools and
lack of mechanisms to determine overlapping archetypes as

236 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

well as solve the semantic conflicts that may appear when
archetypes are mapped to the chosen DBMS.

Bernstein et. al [6] conducted a study in Denmark about
the patterns of the development of healthcare computer
systems. This research indicated that the Danish healthcare
systems were based on several information models and
heterogeneous technology platforms, developed by different
software vendors. Besides, it showed the need for replacing
traditional standards of software development in the Health
domain, and reported the importance of the openEHR
architecture as a new pattern for the development of computer
systems for healthcare.

Despite the development of HIS based on the openEHR
specifications being a multidisciplinary research area, (there
are already varied studies published by the scientific
community [13-15]) there is a consensus that the openEHR
architecture definitions have to evolve and address some open
problems [8]. This paper points out that the difficulty in
applying the openEHR concepts to a given problem domain
for enabling the two-level data modeling is due to the lack of
a methodology to express which are the data requirements
requested by users and how these might be modeled.

This paper goes one step beyond previous works by
specifying an ER-based conceptual data model enabling the
definition of which archetypes, patient demographic
properties, hospital administrative information and clinical
data are important and should be taken into account during the
conceptual modeling of a healthcare database application. The
main concepts of the ArcheER modeling proposal are detailed
in the following section.

3 The ArcheER conceptual model
ArcheER is a conceptual data model that aims to allow

the specification of a health application domain using the
concepts of dual modeling. The proposed set of ArcheER
modeling constructors extends the basic ER modeling
elements with a set of archetyped components listed in Figure
1. ArcheER represents entity types alongside their
relationships and properties, and a conceptual schema is
composed of hospital administrative data and archetyped
information. An archetyped entity denotes a set of entities that
must have a set of generic data structures. Each of those
structures is defined as an attribute of those entities, and
organizes data through data structuring elements that are
neither dependent of the DBMS storage format nor of the
application development technology.

In order to model relationships between archetyped
entities, and a relationship between a conventional entity and
an archetyped entity, ArcheER proposes a new relationship
type, called Party Relationship. It is worth noting that an
administrative entity may not be modeled as an archetyped
entity, i.e. it may not be represented as an entity type with a
set of generic data structures, therefore not being able to have
party relationship associations with other entity types.
However, this must not be mandatory and an administrative
entity may benefit from the use of generic data structures as
well.

Figure 1. The Main Modeling Components of ArcheER

One of the advantages of ArcheER is the elimination of
data redundancy by defining a uniqueness constraint based on
the concept of roles played by the actors being modeled.
According to this constraint, every instance of a relationship
involving the demographic information of an actor and an
entity of the type clinical care or administrative must be
modeled as a relationship between a role played by the actor
and the entity type clinical care or administrative. Observe
that the use of openEHR definitions requires an understanding
of which actors should be considered while modeling an
application domain, how they relate to each other, how they
play their roles and which capabilities they have. This
understanding is important and must not be neglected.
However, this cannot be enforced automatically by the
DBMS nor can it be seen as a data model constraint to
guarantee a unique EHR.

The ArcheER constructors inherited from ER are mostly
used for modeling the operational aspects of a hospital
organization (i.e. entity type Administrative), while the
archetyped entity types are mainly concerned with the
representation of (i) metadata and the context of the
application being modeled (i.e. entity type Structuring); (ii)
patient’s demographic information (i.e. entity type
Demographic.); (iii) clinical data (i.e. entity type Clinical
Care) and (iv) constraints, terminologies of health area,
internal coding of vocabulary and textual information given
by a domain specialist (i.e. entity type Knowledge). While the
first three entity types represent the information level of the
dual modeling approach, the last type of entity and its
specializations compose the second level and are useful for
generating knowledge at runtime. The definition of each type
of constructor is given below.

3.1 Structuring constructors
 The ArcheER data model provides the following

modeling constructors for structuring health care information:
Composition, whose attributes represent the metadata of an
ArcheER conceptual schema; and Section, which organizes
the remaining modeling constructors of ArcheER into themes

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 237

ISBN: 1-60132-446-4, CSREA Press ©

or subjects that represent the context of the application being
modeled.

3.2 Demographic constructors
 The modeling of demographic information requires the

identification of actors who compose the hospital application
domain, and the definition of their roles and capabilities in the
health area. For modeling actors, ArcheER specifies the
following set of constructors of demographic entities that
represent the specialization of an actor in a Health domain.
The definition of each type of demographic entity is given
below:

� Agent: Expresses a software agent or any device that
communicates with the healthcare application.

� Person: Corresponds to an entity type that represents
a generic description of people who are part of the
context of the application being modeled.

� Group: Models parts of the real world that interact
with each other and are grouped to represent the
purpose of being together.

� Organization: Denotes an abstraction of all
companies involved in a health application domain.

� Role: Represents a generic description of a role
played by a given actor.

� Capability: Models the qualification of an actor to
play a certain role in a healthcare domain.

� Party Identity: Indicates how an actor is identified in
a healthcare application, and allows an actor to be
identified in several ways.

� Contact: Expresses the possible ways of contacting
an actor.

� Address: Indicates how the contact information of
actors is formatted.

3.3 Health care constructors
The ArcheER modeling constructors that represent

health care information are in charge of defining all the
semantics of EHR - hence, the information they model
represent the main target to be archetyped. For the modeling
of clinical care information, ArcheER proposes the following
entity types:

� Admin Entry: Expresses all the administrative
information of patients in the modeling of EHR.
Note that this entity type concerns the modeling
requirements of the patient´s administrative
information that compose the EHR of the patient and
does not refer to administrative aspects of a service
provider organization in health. In this work, for the
modeling of these administrative issues of a health
service organization, we assume that the use of
traditional ER constructors will suffice, thus, in fact,
only clinical care and demographic information are
modeled using archetypes.

� Observation: Represents any event or clinical status
associated with the patient.

� Instruction: Expresses all future actions to be
administered to the patient.

� Activity: Specifies the activities of an instruction.
� Action: Specifies the actions of an instruction.
� Evaluation: Represents general information about

the clinical care of patients, based on diagnosis,
assumptions, risk assessments and observations.

3.4 Knowledge constructors
 The entity type Knowledge expresses the terminology

and constraints related to attributes, also called generic data
structures. This entity allows the second level of dual
modeling to be displayed in an ArcheER schema.
Furthermore, ArcheER adds a new constructor of
relationships, called Knowledge Relationship, to express
associations between generic data structures and instances of
the entity type Knowledge.

 ArcheER extends the definition of ER relationship types
to enable the creation of direct relationships between the
generic structure attributes of archetyped entities and the
entity type Knowledge. The following relationship
cardinalities are considered by our ArcheER proposal: 1:1, 1:
N and M: N.

The entity type Knowledge is specialized in the
following entity types: Free Text, Internal Code and
Terminology, which are directly related to the generic data
structures through the Knowledge-type relationship. These
specializations model knowledge of a given Health domain –
in other words, they represent the second level of ArcheER
dual modeling. The entity type Free Text represents free text
information given by the domain specialist, while the entity
type Internal Code denotes codes of a health vocabulary (e.g.
procedures, billing tables, international classification of
diseases) used for the exchange of information between EHR
applications. Lastly, the entity type Terminology represents
terms and concepts designed to standardize, promote and
disseminate health knowledge.

3.5 Data entry constructors
 The ArcheER modeling constructors used to define

attributes are called data entry constructors, since such
attributes comprehend entries with any kind of data that are
represented by generic data structures. Hence, generic data
structures are defined as attributes of archetyped entities of
ArcheER. For each element of these data structures, a data
type must be specified. An entry may have a single clinical
statement (e.g. a short description about the history of the
current illness), or otherwise contain a large amount of data
(e.g. the list of values of a laboratory test, tabular data
reporting a hospital infection, a hierarchical structure
containing all procedures, materials and medications of a
patient's hospital bill, an entire microbiology result or a
psychiatric examination note). An entry defines the semantics
of multiple formats of data which are properties of the
archetyped entities of ArcheER.

238 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

For modeling generic data structures, the ArcheER
model provides the following types of attributes:
ITEM_SINGLE: represents a data structure with a single
element; ITEM_LIST: represents a list of data items or values,
where each element of this list may assume a value or not,
may be referenced by a name and may have an index to
indicate its position within the list; ITEM_TREE: models a
data structure that is logically represented as a tree; and
ITEM_TABLE: defines a data structure with lines and
columns, where the line represents the specification of an
element, and the column the information value.

3.6 ArcheER constraints
 A set of constraints aiming at ensuring the uniqueness

of the EHR is specified in Object Constraint Language (OCL)
[16] notation. Thus, the relationship between demographic
and clinical care entities and the relationship between
demographic and administrative entities of the patient are
restricted by two constraints, respectively: Context Clinical
Care inv: Health->forAll (oclType=Role) and Context
AdminEntry inv: Health->forAll (oclType=Role or
OclType=Administrative). Consequently, each instance of
entities CareEntry and AdminEntry is related with
demographic information of patients only by means of the
roles played by the actors. The benefit of defining constraints
over these relationships using the concept of roles is that,
while actors of a Health domain are modeled as generic
entities, their specific characteristics are represented as roles.
This ensures the conceptual modeling of the uniqueness of
demographic information, since new instances of a given actor
are created only through the roles played by him.

In order to model actors, roles and capabilities, we
propose four constraints, which are aimed at enforcing the
uniqueness of EHR and explained as follows. Constraint
Context Actor inv: Actor.allInstances->forAll (ar | self.Actor
< > ar.Actor implies self < > ar) specifies the actors'
uniqueness constraint and enforces that each instance of an
actor entity of ArcheER is unique. The constraint Context
Actor inv: self.Actor_Role->notEmpty() implies
self.Actor_Role->forAll (r1 | self.Role < > r1.Role implies
self < > r1) indicates that each actor is not allowed to have
two instances with the same role, while constraint Context
Role inv: self.Actor_Role-> includes (self.Actor) guarantees
that in order to create a new instance of a given role, a
corresponding instance of an actor must exist. In addition, the
constraint Context Capability inv: self.Role_Cap-> includes
(self.Role) defines that, for each instance of the entity
Capability, a corresponding instance of the entity Role must
exist. Entity Address models the details of each instance of the
entity Contact; thus, an instance of entity Address can exist
only if there is a corresponding instance of entity Contact.
This is enforced by the constraint Context Address inv:
self.address-> includes (self.Contact).
The entity Administrative may be related to demographic
information (i.e. to instances of the entity Demographic) and
to clinical concepts as well (i.e. to instances of the entity
ClinicalCare). For relationships with demographic

information, a constraint is specified to ensure that this
relationship is always established through instances of the
entity Role, while for the relationship with a clinical care
entity, there must be an entity AdminEntry. The constraint
Context Administrative inv: demographic-> forAll
(oclType=Role or oclType=AdminEntry) guarantees this.

3.7 The ArcheER case tool
 ArcheERCASE is a computational modeling tool that

builds conceptual data schemas based on ArcheER. It is a
graphic design software, not a technology-oriented tool, since
both the data schema elaborated using this tool and the
configuration metadata of this tool are stored in XML format.

Figure 2. The ArcheERCASE Tool

The main goal of ArcheERCASE is to provide
application designers with computer support to assist in the
database modeling activities of healthcare applications.
Details about ArcheERCASE, including the system prototype
architecture, the ArcheERCASE Data Dictionary and the
Graphic Module of ArcheERCASE can be found at
www.r2asistemas.com.br/ArcheER. Figure 2 depicts the
graphic environment of this tool alongside graphic notations.

4 Results
4.1 Experimental design

To validate ArcheER, we conducted two data modeling
experiments with two distinct set of human subjects. In both
experiments, nine Brazilian professionals with at least two-
year experience in conceptual modeling and database design
were asked to build two conceptual schemas to model a
problem domain. The experiment is based on a hospital
scenario located in Northern Brazil, for urgency care. The full
description of the problem domain is available at
www.r2asistemas.com.br/archeER.

 The goal of this research is not to determine the best
conceptual data model for HIS applications, but to better
understand some important differences between ArcheER and
ER conceptual models.

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 239

ISBN: 1-60132-446-4, CSREA Press ©

To accomplish that, we computed the time each
participant took to complete a given modeling task. Also, for
each conceptual data schema generated, we observed whether
the uniqueness of EHR was represented, and whether
terminologies used in health standards were identified and
modeled. Observing the software artifact produced by the
ArcheER approach (i.e. each ArcheER conceptual scheme),
our experiments measure the difference with respect to the ER
model in the following aspects: (i) elapsed time for building a
conceptual data scheme; (ii) number of redundant entities
produced by each conceptual data schema; and (iii) number of
entities that represent terminologies and standards in health of
each conceptual data schema produced.

To perform our experiments, each selected participant
received the following support instruments: a) instruction
about the ER model, b) instruction about the ArcheER
approach, c) record sheet, and d) description of the problem
domain. In our experiments, the following hypotheses were
considered: Hypothesis 1 (H1): The use of the ArcheER
approach reduced the time needed to build a conceptual data
scheme of a problem domain. Hypothesis 2 (H2): The use of
ArcheER warrants the uniqueness of EHR. Hypothesis 3 (H3):
ArcheER allows the identification of terminologies and health
standards used in a given problem domain.

The variables considered in our experiments are: F1 –
Conceptual Modeling Technique for building data schemes;
Level of factor T1: Conceptual scheme designed with the ER
model (F1→T1); Level of factor T2: Conceptual scheme
designed with the ArcheER model (F1→T2). The metrics
collected in our experiments are TSB – Time spent for
building the conceptual data scheme, QRE – Quantity of
redundant entities and QEK – Quantity of entities
characterizing knowledge (terminologies and standards). The
subjects selected to take part in this study were divided into
two working groups (i.e. G1 and G2), chosen by lottery. To
eliminate the influence of previous experience of the selected
subjects, we used the design of Latin Square experiment 2x2.
Considering that Exp1 and Exp2 correspond to the
experimental objects that were randomly attributed by lottery
to the variables, the experiment design is described in Figure
3a.

Figure 3. Design and statistical results

For interpreting the raised hypothesis, we have used the t
distribution test. This test is often chosen when the average
population is less than 30 and there is a normal (or
approximately normal) distribution. For this work, the
distribution of t sampling with n-1 degrees of freedom was
adopted. Figure 3b has the values of each metric computed
after the application of statistical tests.

Figure 4. Results of experimental design

Results indicated that the time for building a conceptual
data scheme is similar for both modeling approaches.
However, for the other two metrics, it is possible to say that,
as shown in Figure 4a, the quantity of redundant entities in
conceptual schemes designed by the ER Model is greater than
the respective number of redundant entities in schemes
designed using ArcheER. Moreover, the quantity of redundant
entities was reduced in 77.5 % for group 1 and in 89.2 % for
group 2 with the adoption of ArcheER approach. Actually, in
conventional modeling, for each new role an actor plays in a
health domain, new instances are created to represent it, which
possibly generates data redundancy in the DBMS – i.e., if a
doctor needs to be represented as a patient, a new instance of
patient is created by storing information about this person
redundantly in the EHR.

Regarding the quantity of entities that denote knowledge,
the ArcheER approach identified more entities than the ER
approach, as shown in Figure 4b. This increase represents a
gain of 75.7% for group1 and 82.1% for group 2. As the use
of health terminologies and standards is common in the Health
domain, the previous identification of terminologies and
standards during the conceptual modeling phase can provide a
better understanding of which archetypes are needed for an
application to generate knowledge during runtime.

4.2 Modeling an outpatient emergency with
ArcheER

 In this section, we describe the main difficulties
encountered in modeling HIS using traditional approaches,
and later we comment on the advantages of modeling HIS
using ArcheER. For the sake of didactics, we present in
Figure 5 a data schema extracted from a HIS produced by
manufacturers of a Health Software in Brazil. This HIS
concerns an ambulatory emergency that is performed daily at
a Hospital located in Northern Brazil.

240 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

Observing the data schema, it is possible to see that the
initial difficulty is due to the variety of roles played by the
actors in a Health domain, such as workers of a hospital,
physicians responsible for patient care, nurses, and other
health professionals that sometimes act as health care
providers, but occasionally might be seen as a patient who
receives care themselves. Besides, the current approaches for
database modeling do not provide any constraints to limit this
redundancy. Actually, in conventional modeling, for each role
played by an actor in a Health domain, new instances are
created to represent it, and thus data redundancy may be
added to the DBMS.

Figure 5. Legacy Data Schema

 It is possible to see, in Figure 5, that entities
representing demographic information (i.e. Doctor, Hospital,
Hospital_Staff, Patient and Nursing_Staff) reflect this
modeling practice. In other words, if an actor plays a role,
new instances are created for each entity, making their
information redundant in the EHR.

In the ArcheER model proposal, actors are modeled in
their more generic way, with new instances being created
from the roles played. Therefore, an actor may have several
roles in an organization and still keep its record unique. As
shown in Figure 6, the entity Person_EHR represents the most
generic characteristics of the actor, while entities
Hospital_Staff, Patient, Nursing_Staff and Doctor represent
the roles played by this actor in EHR. To play a role, the actor
must have training that qualifies them to perform the referred
role – in this case, the Council entity illustrated in Figure 6
represents the professional record that the actor needs to have
in order to play the role of a physician.

Besides the roles played in a Health domain, an actor
may take the form of an organization that provides health
services, or that is directly involved in the application context.
In this sense, the entity Hospital of Figure 6 represents the
organization responsible for providing services to the patient.
This case shows that the advantages of the ArcheER model go
beyond the input of demographic information into the EHR
modeling: due to the specified constraints, a demographic
entity may only be related to other concepts of EHR (i.e.

clinical care, administrative) by means of a role played. In this
case, if necessary, only new instances of the roles played by
an actor are created, keeping its most generic characteristics
preserved, thus ensuring the uniqueness of EHR. As Figure 6
shows, all relationships having an entity that represents patient
care (i.e. OutPatient) are established by means of the roles
identified in the described application.

Figure 6. Demographic Conceptual Schema

Figure 7 portrays entities that model clinical care,
administrative and knowledge information. Entities Snomed,
List_Presc and ICD show the knowledge modeled in the
ArcheER conceptual schema. The first entity expresses the
terminology and constraints of health care regarding the
construction of laboratory examinations, while the entity
Item_Presc models an internal coding that standardizes the
prescription items of a hospital. Finally, the entity ICD
represents the terminology used to define the patient diagnosis
internationally.

Fig. 7.Clinical Conceptual Schema

For modeling clinical care information, ArcherERCASE
provides the following entities types: Admin_Entry,
Observation, Evaluation, Instruction, Action and Activity. All
those types represent abstractions of clinical concepts found in

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 241

ISBN: 1-60132-446-4, CSREA Press ©

a Health domain. One can see in Figure 7 that the entities
denoting the concepts of patient clinical care are Exams,
Prescription, History, Evolution and Clinical_Information.
The importance of having modeling constructors that
represent such concepts is justified by the following aspects:
firstly, it helps in the understanding of how to identify and
classify EHR clinical information, and secondly, each instance
of a clinical care entity represents a potential archetype that
may be reused.

5 Conclusions
 This paper proposed a novel conceptual data model,

named ArcheER, based on archetypes and dual modeling. The
benefits of using dual modeling constructors in the conceptual
modeling of health information systems have not been studied
so far. The modeling constructors that compose ArcheER and
the modeling technique selected for diagrammatic
representation were chosen from openEHR specifications.

ArcheER is an extension of the ER data model because
this model has been recognized in literature as a simple and
efficient approach for the elicitation of data requirements,
providing the abstraction required for representing the
concepts of archetypes through its graphical notation. As
main contributions, we highlight a reduction in the
representation of redundant entities and a gain concerning the
modeling of entities characterizing knowledge. Also, a CASE
modeling tool based on ArcheER was presented and a set of
OCL constraints was specified, illustrating how the ArcheER
model provides uniqueness to the EHR. The specification of
semi-automatic generation of archetypes in ADL from the
data requirements modeled by an ArcheER conceptual
schema is a possibility for future research.

Acknowledgment
This work was partially supported by Fundação de

Amparo à Ciência e Tecnologia do Estado de Pernambuco
(FACEPE), under the grants APQ-0173-1.03/15 and IBPG-
0809-1.03/13.

6 References
[1] Elmasri R, Navathe S. B. “Fundamentals of Database
Systems”. Addison-Wesley, 6th ed, 2011.

[2] Marco E, Thomas A, Jorg. R, Asuman D, Gokce L. “A
Survey and Analysis of Electronic Healthcare Record
Standards”; ACM Computing Surveys, pp. 277–315, 2005.

[3] Mu-Hsing K, Tony S, Andre W.K, Elizabeth M.B,
Daniel K.G. “Health big data analytics: current perspectives,
challenges and potential solutions”; Int. J. Big Data
Intelligence, pp.114-126, 2014.

[4] Späth M. B, Grimson J. “Applying the archetype
approach to the database of a biobank information
management system”; International Journal of Medical
Informatics, pp. 1-22, 2010.

[5] Chen R, Klein G. O, Sundvall E, Karlsson D, Åhlfeldt H.
“Archetype-based conversion of EHR content models: pilot
experience with a regional EHR system”; BMC Medical
Informatics and Decision Making, pp. 9-33, 2009.

[6] Garde S, Hovenga E, Buck J, Knaup P. “Expressing
clinical data sets with openEHR archetypes: A solid basis for
ubiquitous computing”; International Journal of Medical
Informatics, pp.334–341, 2007.

[7] Lezcano L, Miguel A. S, Rodríguez S. C. “Integrating
reasoning and clinical archetypes using OWL ontologies and
SWRL rules”; Journal of Biomedical Informatics, pp. 1-11,
2010.

[8] Oriol X, Teniente E, Tort A. “Fixing Up Non-executable
Operations in UML/OCL Conceptual Schemas”; In: LNCS.
Vol.8824, pp. 253-496, 2014.

[9] Dinu V, Nadkarni P. “Guidelines for the Effective Use
of Entity-Attribute-Value Modeling for Biomedical
Databases”; International Journal of Medical Informatics, pp.
769-779, 2007.

[10] Bernstein K, Bruun R. M, Vingtoft S, Andersen S. K,
and Nøhr C. “Modelling and implementing electronic health
records in Denmark”; International Journal of Medical
Informatic, pp. 213-220, 2005.

[11] Jeffrey A. L, Jeffrey L. S, Blackford M. “Method of
Electronic Health Record Documentation and quality of
primary care”; J Am Med Inform Assoc, pp.1019-1024, 2012.

[12] Georg D, Judith C, and Christoph R. “Towards plug-
and-play integration of archetypes into legacy electronic
health record systems: the ArchiMed experience”; BMC
Medical Informatics and Decision Making, pp.1-12, 2013.

[13] Bernd B, “Advances and Secure Architectural EHR
Approaches”; International Journal of Medical informatics,
pp.185-190, 2006.

[14] Martínez C. C, Menárguez T. M, Fernández B. J. T,
Maldonado J. A. “A model-driven approach for representing
clinical archetypes for Semantic Web environments”; Journal
of Biomedical Informatics, pp.150–164, 2009.

[15] Buck J, Garde S, Kohl C. D, Knaup G. P. “Towards a
comprehensive electronic patient record to support an
innovative individual care concept for premature infants using
the openEHR approach”; International Journal of Medical
Informatics, pp.521-531, 2009.

[16] Arlow J, Neustadt I. “UML 2 and the Unified Process:
Practical Object-Oriented Analysis and Design”. Addison-
Wesley, 2nd ed, 2005.

242 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

Classroom Attendance Detection using a Wi-Fi
Positioning Algorithm

Mao Zheng1, Sanhu Li2, and Hao Fan3

1Department of Computer Science, University of Wisconsin-La Crosse, La Crosse, WI, USA
2Department of Computer & Information Science, University of Delaware, Newark, DE, USA

3School of Information Management, Wuhan University, Wuhan, Hubei, China

Abstract – Wi-Fi positioning plays an increasingly important
role in indoor positioning techniques since it is possible to
locate the position of almost every Wi-Fi compatible device
without installing extra software or manipulating the
hardware. It will make use of existing Wi-Fi infrastructure,
although it was never designed to do so. This paper discusses
the design and implementation of a Wi-Fi position algorithm
that is used to detect the classroom in a class attendance
mobile application. The results are promising.

Keywords: Wi-Fi, WLAN, Wireless Indoor Positioning,
Indoor Location Sensing, Wireless Localization.

1 Introduction
 In 1978 the first GPS satellite was launched [1] and in 1995
GPS worked to full capability for the first time [2].
Unfortunately, the satellite signals were not strong enough to
work indoors. In 1997 IEEE Standard 802.11 was set and the
first version of Wireless Local Area Network (WLAN) was
born.

 WLAN, Wi-Fi and IEEE 802.11 all mean the same thing:
they determine the industrial standard for wireless data
transmission. The latter is the most used expression. Wi-Fi
uses electromagnetic waves to transmit data over the
airwaves. The electromagnetic waves spread out evenly and
lose more and more of their signal strength with increasing
radius. This loss of signal strength is due to energy
transformation because, in physics, energy is never lost, but
instead converted. Consequently the amplitude of the signal
becomes smaller and smaller. In summary, if the distance to
the station is increased in any direction, the signal strength
will decrease steadily.

Nowadays Wireless Local Area Network technology can be
found in almost every building. This widespread infrastructure
offers the possibility to locate mobile devices in an
economical way. Position determination using Wi-Fi
technology has the advantage that it can perform indoors and
outdoors, in a different way to GPS. And, although Wi-Fi was
never made for positioning, it is more accurate than a Global
System for Mobile Communications (GSM) indoor
positioning [3]. In some cases, it is also more accurate for

positioning an object outdoors. By using Wi-Fi Positioning
Systems it is possible to locate the position of almost every
Wi-Fi compatible device without installing extra software or
manipulating the hardware. In the course of time many
methods that were initially used with other positioning
technologies were applied to Wi-Fi positioning. Wi-Fi
positioning also allows the use of location-based services
(LBS) indoors, which allows for different industrial uses.
Useful applications of this technology are, for example, for
indoor navigation at shopping malls or finding a lost child in
an indoor area. Lost devices or items can also be found with
this technology. Additionally, this technology is especially
useful for hospitals because sometimes when staff move
certain pieces of equipment it can be hard to find these items
again right away.

 The indoor environment has many disruptive factors like
walls, windows, doors, and so on. If a wave bumps into a
different material, it converts more energy than in the air.
During this process, the signal strength is decreased more
rapidly, because the energy is transferred to the material as
heat. Furthermore, the signal is also reflected from the
material. An additional problem is the wireless overlay. In an
office or apartment building, there are several dozen wireless
stations that provide interference. A positioning system must
be able to handle these problems and deliver good results. A
higher accuracy is also required for indoor usage because it is
important to locate a user in the right room. A few meters can
make a big difference. Wi-Fi is especially useful in an indoor
setting because there are no other positioning services
running.

 We are interested in exploring the Wi-Fi positioning
algorithm in a class attendance mobile application to detect if
the student is physically in the classroom. The testing result of
our algorithm is promising.

 The paper is organized as follows: In section 2, we
introduce the class attendance mobile application. In section
3, we present our Wi-Fi positioning algorithm. In section 4,
we discuss the results of our algorithm implementation.
Section 5 concludes the paper and outlines the directions of
our ongoing research.

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 243

ISBN: 1-60132-446-4, CSREA Press ©

2 Class Attendance Mobile Application
 Recording classroom attendance by hand for large classes
can be a time consuming task. We have developed a mobile
application and registration system that allows for the
automatic collection of attendance information. The
information is collected with mobile devices and transferred
and stored in a web-based student registration system. Both
the mobile application and the registration system are part of
this project. The registration system serves as a test-bed for
the recorded data and can be used to analyze the data.

 There are two main challenges when recording class
attendance. Firstly, it is important to be certain the student
physically comes to the classroom. Secondly, the application
needs to verify the recorded data is for the correct student.
The current solution provided in this project is to let the
instructor generate a QR-code during class time, in the
classroom. The student will use his/her mobile device to scan
the QR-code and submit the scanned data along with his/her
student ID to the registration system during the recording
time period. Only students who are enrolled in the class are
able to submit the scanned data and this data can only be
recorded once during a valid time period. The system also
checks whether the student is actually in the right classroom
for this class. The instructor can view the recorded class
attendance information and each student can verify that
his/her attendance was recorded correctly.

3 Proposed Wi-Fi Positioning Algorithm
 Indoor positioning is a difficult problem our project needed
to slove. Compared to other locating methods, GPS does not
locate the position of an object well indoors. Using specially
designed hardware is costly and hard to maintain. Wi-Fi
positioning is the best solution because it supports indoor
positioning and it can easily distinguish objects on different
floors. Moreover, the Wi-Fi sensor is built into every mobile
device nowadays.

 There are currently two major types of algorithms to do Wi-
Fi positioning: the triangle algorithm and the position
fingerprint algorithm. Both of these algorithms are too
complex and hard to implement. Different applications may
require different types of location information. In this project,
we are interested in campus classroom location and we
propose an indoor Wi-Fi positioning algorithm based on the
idea of the position fingerprint algorithm but in a simpler
version. We made some assumptions to simplify this
algorithm. It is assumed that when doing the scanning
process, if the student is close to the correct classroom, the
student should be in that classroom. We made this assumption
because the Wi-Fi sensor in smart phones may not give an
accurate result.

The proposed Wi-Fi positioning algorithm is described below
in a number of steps:

1. Establishing a profile for each classroom.

This step is a manual process to configure the classroom. For
each classroom, we scan and record the routers whose signals
can reach to this classroom. We need to repeat this process a
number of times in order to select the top K routers that has a
signal strength greater than N and is always available, where
K and N can be fine tuned in the implementation. In the
database, each classroom has a table stored with the top K
routers’ MAC addresses and SSID.

2. Identify the classroom where the student is in:

a) Scan the signal strength at the object point, sort
the routers by the signal strength and record the
top K routers’ MAC addresses at that moment.

b) Search all the records in the database that have
the same MAC address with one of the scanned
routers’ MAC address.

c) Group the records in every classroom and count
the number of records in every group.

d) The classroom with the most records (the
number should be greater than M) is the nearest
classroom.

Through above steps, we can obtain the nearest classroom.

 In our project, we also require the instructor generate a
random QR code in the classroom during the class attendance
recording time. The student will need to scan the QR code
and submit the scanned record via one of the Wi-Fi signals in
the classroom. The recording system will check the received
information and verify if the student is currently enrolled in
the class, and if the class attendance recording time is valid.
The class attendance recording time must be within the range
of class time existed in the system. Only when a student
currently enrolled in the course submitted the scanned QR
code during the valid recording time via one of the classroom
Wi-Fi signals, the class attendance is properly recorded in the
system.

Figure 1 is the screen shot of a location’s routers’ information
obtained by our WiFiScan app. All the Wi-Fi signal strengths
and BSSID are listed.

244 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

Figure 1 Using a Mobile Device to Scan Wi-Fi Signals

The sample Java source code for scanning through all the Wi-
Fi signals in a mobile device is shown in Figure 2.

Figure 2 Source Code for Getting Wi-Fi Signals

After each classroom’s Wi-Fi profile is established in the
system, the student can locate him/herself once he/she arrives
at the classroom. Figure 3 is the screen shot of the location
result in an Android device.

Figure 3 Locating the Student

4 Related Work
 There are many different approaches for locating a mobile
device using Wi-Fi technology. In general, the methods need
to know the position of the Wi-Fi stations (access points) as a
reference point. Afterwards, the approximate position of the
mobile device can be obtained [4]. A prerequisite for having a
good-working Wi-Fi positioning system is adequate coverage
of the access points. This coverage is called the Basic Service
Area (BSA). The expression of the BSA determines which
positioning method is the most suitable. The methods differ in
the minimum required number of stations and its accuracy.
This varies between building part accuracy and room accuracy
to an accuracy of a few meters difference.

1) Methods based on proximity sensing are among the
simplest and fastest, but they are also imprecise. A
position calculation can be done with just a single
station.

2) Methods based on trilateration needs at least three fixed
points to determine a position. The challenge for a
trilateration method lies in the best possible
determination of the distance between the station and
the device. Methods that are based on time
measurements have to guarantee a good
synchronization on the stations or mobile devices. On
the other hand, methods that are based on the signal
strength have problems with interferences and
reflection. Therefore, they are probably better suitable
for outdoor detection than for indoor detection.

3) Methods based on triangulation use geometry to
determine the angle of the arriving signals. It requires at
least two stations and the modification of the hardware
[5].

4) Methods based on pattern recognition uses a previously
created database of signal patterns, which need to be
matched for positioning only. Fingerprinting, also
called location patterning [6], does not need
modification of the hardware. Furthermore, no time
synchronization is necessary between the stations.
Before a position can be determined, the entire area in
which the positioning is supposed to work must be
recorded.

Our Wi-Fi positioning algorithm is based on the idea of a
fingerprint algorithm. We established a set of Wi-Fi BSSID
data for every classroom and stored the information in the
database. This information will be used in the locating
phrase. The sample Java code for locating the classroom is
shown in Figure 4.

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 245

ISBN: 1-60132-446-4, CSREA Press ©

Figure 4 Sample Source Code for Locating the Classroom

5 Conclusions
 Wi-Fi has become a wide spreading technology. However it
is a technology that was never designed for localization.
Nevertheless, Wi-Fi positioning performs well in comparison
to other positioning technologies, and has the favorable
advantage that it is based on an existing infrastructure. When
indoors, positioning fingerprinting delivers the best results.
However, a lot of effort is required to develop a good
fingerprint position algorithm.

 For this project we created an automated class attendance
system where instructors can use the system to record
students’ attendance. The Wi-Fi positioning algorithm checks
whether a student is physically in the classroom. It was very
exciting when a simplified positioning algorithm was
developed.

 Our positioning algorithm is sufficient for the attendance
checking task. We recorded the routers’ MAC addresses that
were giving out a strong signal for the test classroom, in the
database. When locating our position, we compared the strong
signal routers with the ones stored in the database. If more
than three of the routers are the same, we believed the user
was close to that classroom. Based on our assumption, we
consider the user is in the classroom.

 So far, we finished the Android mobile application for the
attendance checking application, and the web-based student

information system. We used the http protocol in our clients to
communicate with the server, which means it’s very easy to
build clients for other platforms, such as IOS.

 In the next step, more work can be done to automatically
upload the Wi-Fi information into the database after the data
is collected. Currently, we are scanning the Wi-Fi signals in
every classroom and manually entering the information into
the database. Figure 5 shows the screen result after scanning
the routers’ information. Figure 6 is the screen shot that we
manually added of the scanned information information into
the database.

 We have conducted testing for ten classrooms at the
University of Wisconsin-La Crosse. The results are promising.

Figure 5 Routers’ Information Shown on the Screen

246 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

Figure 6 Storing Information into the Database

6 References

[1] Wilfried Ley, Klaus Wittmann and Willi Hallmann
Handbook of space technology 2009 John Wiley and Sons,
Ltd

[2] Elliott D. Kaplan, Christopher J. Hegarty Understanding
GPS: principles and applications, 3rd ed. London, England:
Artech House, 2006.

[3] Heikki Laitinen, Jaakko Lahteenma ̈ki, Tero Nordstro ̈m
Database Correlation Method for GSM Location, VTT,
FINLAN, 2001.

[4] Jami,I., Ali,M., Ormondroyd,R.F, Comparison of
Methods of Locating and Tracking Cellular USA: Dept. of
Aerosp. Power & Sensors, Cranfield Univ., Swindon, UK
2010.

[5] Dipl.-Wirtsch.-Ing. Rene Dnkler AoA - Angle of Arrival,
Online: http://www.iis.fraunhofer.de/bf/ln/technologie/aoa/
last access: 01/18/2012

[6] IshratJ, Quade,BinghaoL, Wendi(Patrick)Peng, Andrew G.
Dempster, Use of Fingerprinting in Wi-Fi Based Outdoor
Positioning, 1st ed. The University of New South Wales,
Sydney, Australia, 2007.

[7] Rui Ma, Qiang Guo, Changzhen Hu, and Jingfeng Xue,
An Improved WiFi Indoor Positioning Algorithm by Weighted

Fusion, Sensors (Basel, Switzerland), 15(9): 21824-21843,
Sep. 2015.

[8] Hui Liu, Houshang Darabo, Pat Banerjee, and Jing Liu,
Survey of Wireless Indoor Positioning Techniques and
Systems, IEEE Transactions on Systems, Man and Cybernetics
– Part C: Applications and Reviews, vol. 37, No. 6, November
2007.

[9] Robin Henniges, Current Approaches of Wifi Positioning,
Service-Centric Networking, Seminar WS2011/2012.

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 247

ISBN: 1-60132-446-4, CSREA Press ©

Development of an Idol Entertainment Application with
Focus on “ Hagashi” Act

Yosuke Kanai 1, Takayuki Fujimoto2

Kujirai 2100, Kawagoe-City, Saitama, Japan
kanaip@icloud.com, me@fujimotokyo.com

Abstract - Videogames and Idols are typical contents in our
country. In Japan, there are many contents such as games and
idols. Since the 1980s, they have become very popular and
have been exported to the other countries in the world.
However, they are similar and stuck in a rut. Therefore, most
of the people feel that they are not interesting. This study
created the combination of the game and the idol; not only just
an idol but also fans and staff. The theme of this study is “the
problem between idols and fans”. Based on them, we have
developed an entertainment application which makes the users
interested in the

Keywords: apps, game, idol, OTAKU, HAGASHI

1 Introduction
 The app by this study was developed in for free
uploading because free apps have more distribution than paid
apps.� It is often the case to obtain a profit in the advertising
with free apps comparing with getting the sales of paid apps.
More free apps are downloaded than paid apps. The popular
apps are often free. Therefore, the business model that earns
an income by clicks on an ad or by sales of the additional
contents with charge is more general than the model of the
paid apps. We investigated the elements of possibility related
to a hit app. This analysis is based on the reference to the
famous web site, “the apps download ranking: Game genre”
(It is provided from the APPANNIE.)

It is a statistical review of that ranking for the top ranked apps.
The following factors were scooped. (We focused on only the
factors, which account for over 5 percent of the total.).

 “It is suitable for playing in the boring time”

It means that a lot of people are playing the game in boring
time on the train or in the class of the university.

�It can be some refreshment for the stress”

Achievement of clearing the game leads to this feeling.

From these, it was found that the ideal game app has a lot of
goals, and provides immediate judgements at loss and gain.

 “Control is simple.”

Smartphones are not appropriate for complex controls.
Therefore, smartphone apps are preferred to require a simple
operation.

 Our app is classified as an idol game. There are many
idol game lovers in Japan because its characters are highly
appreciated. However, the theme of this study is not just an
idol. We focused on “today’s problem between idols and
fans”

 In recent years, Japanese idol market has changed
greatly because CD sales is no longer big as before. Therefore,
the idol business was shifted to obtain a profit by sales of
promotion items in lives and events. As an alternative, the
idol industry is pushing purchase of a ticket that comes with a
CD. It is a ticket that allows a handshake with an idol at the
event. However, a problem occurred. That is “the problem of
the handshake events”. A CD contains one ticket. Therefore,
fans buy the surprising number of the CDs. Actually, each
and every one of some fans bought more than 5000 CDs. CD
sales went up in this business. Handshake events with idols
were successful, however most of fans began to seek direct
contacts because by handshakes they can feel that they are
most close to the idols. Handshaking with idols made fans
want more direct contacts As a result, fans have started
buying the CDs just to get a ticket for legalized and direct
contacts. This was taken up by each media the idol business
was changed. It has become a social problem of today. In the
indie idol industry, some groups dare to dive into crowds of
fans to obtain popularity, using more direct contact.
Touchable Idols mean the decline of the idol business.

2 Purpose
 In this study, we devised and developed the app that
includes the quite new elements described in the previous
chapter. The Developed app is a game that combines an idol
game and a falling block game. Main characters of the most
idol games are idols, and they are the subject of actions.
However, the main character of the developed app in this
study is “an event staff”. There are two new factors in this
study.

248 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

 One is the fact that the player character is the staff. The
target of the game is to stop the Otaku approaching to the idol
(Otaku is a popular name for enthusiastic fans in japan).
Achievement is judged by how secure the user can protect the
idol within the time limit.� The number of caught Otakus
becomes the score.

 The other is incorporated �Hagashi� as a game action.�
When the Otaku touches the idol, the staff (player) will pull
away the Otaku from the idol. This action is called
�Hagashi�.� This act has been actually carried out by the
staff at the handshake events. As far as I know, there is no
game in which HAGASI is the main character.

 By incorporating Hagashi in the game, we targeted the
new game design. In the normal action games, to recover
from the bat status, it is necessary to wait for the lapse of time
or to use some items. In our app, the bad status is restored by
Hagashi, which is the player's action. Players need to
perform two actions, “Blocking contacts" and "Pulling the
Otaku from the idol". We were aiming to parody a social
phenomenon: the problem between the idols and the fans
through the entertainment app. to get the attention of the users.
The following are the reasons why Hagashi became the
necessary action.

 Hagashi has become indispensable at the idol handshake
events. Hagashi is the idol’s bodyguard and has a role to pull
the fans away preventing a handshake over time Also pulling
fans away aims to protect the idols, in order to manage the
events smoothly. Presence of Hagashi has become a
necessary change with the times. This means that they are the
“symbol of today's idol culture”.

3 Precedent

3.1 Falling block game
 The app developed in this study is classified as a falling
block game. Falling block game has been a popular game for
a long time.

3.2 Idol game
 In the game genre, there is an idol game in which a
fictional idol or an animated character of a real idol appears.
Both still are popular in Japan.

�The high school life with Miho Nakayama” (1987), in this
game a real popular idol "Miho Nakayama" was featured Idol
games in which the real idol is used as a character, was a
major genre in the early idol games.

� “HIKARI GENJ Roller Panic” (1989) is a game in
which male idols are featured. After this game idol games
with motif of real idols were not developed

� “Idol HAKKENDEN” (1989) is a game in which a
fictional idol appears. Idol adventure games and idol-
producing games with a fictional main characters have been a
main stream.

4 Proposed application
 The app developed in this study is classified as a falling
block game. In the Falling block games, the user will get a
score by catching the items falling from the top of the screen,
targeting a high score. We changed a point of view in this
study and applied "falling items" to "approaching Otakus",
and “getting items” to “catching Otakus”. Score is determined
by the number of the caught Otakus. If the user wants to get a
high score, he or she must catch more Otakus.

4.1 App mechanisms
The App has been developed as an application for iPhones.

It has been developed by using cocos2d-x in Xcode.
Development language is C ++. The application is comprised
of three screens at the present stage of the development. They
are the "title", "main game", and "collection".
 From the title screen, the user can move to each screen.
Currently, iOS devices in the market have a wide variety with
different screen sizes. Therefore, to cope with different
resolutions, the image and buttons to be displayed are adapted
to multi-devices by getting a resolution in advance, and
setting/displaying them along the relative coordinates from the
screen size with implementation of hard coding.
 Incidence of the character (the idol fan), which is an
important element to enhance the entertainment, is at random.
However, the game is designed to compete by the score count
of the items. Therefore, large variations of the appearance
ratio would occur. So we had to create a random number
generator in order to adjust the quality of the random number.
Appearance ratio has been set so as to increase exponentially
with the lapse of time to play the game. Thus it prevents the
game from monotonicity.
 In this study, we have linearly changed the appearance ratio
of items by the remaining number of seconds.
 “Initial Appearance ratio (%) + Increase of the Appearance
ratio (%) ×elapsed seconds”
 We have set the appearance ratio in this equation. Too large
number of occurrences of the item is prevented by setting the
maximum value.

4.2 The start-up screen
It is shown in Fig 1. When you tap the button in the

"Collection", and you can move to the collection screen. A

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 249

ISBN: 1-60132-446-4, CSREA Press ©

variety of Otakus who appears in the game is recorded in the
collection.
By tapping the "Start", the game will be started. (Fig.2)

Fig1: Start-up screen Fig2: Game-start screen

4.3 Game-playing screen
 Displayed on the top of the screen is the "enthusiastic
fan (Otaku)”. (Fig3) They appeared at random from the top of
the screen, comes approaching toward the idle at the bottom
of the screen. Girls that displayed at the bottom of the screen
is "idle". Character of the man wearing a hat is the "player
character (he called HAGASHI)".

Fig3: game-playing screen

You can move the player character by tapping and dragging.
It follows your dragging from the tapped point of the screen.
 Like a real Hasashi staff, his movement is limited. The player
character can be moved only to the horizontal direction. The
idol on the bottom of the screen starts to move to side to side
just after the game start. If you can stop the Otaku, the score
will increase. (Fig4)
If the Otaku is in contact with the idol, the score will be
reduced. (Fig5)

Fig4: Increase of score Fig5: Decrease of score

When the Otaku touches the idol, Otaku will keep sticking
to the idol. This state is referred to “crash"(Fig. 6)

Fig6: State of crash

250 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

If you go to the state of “crash”, the player character will be
uncontrollable. The cancellation of the crash, you need to pull
away the Otaku. Pulling away, "Hagashi" can be done by
tapping and sliding the idol. Out of the approaching
characters, there is a "producer". If you catch the "producer",
the score will be reduced. If you catch he idol producer, the
score will be reduced. (Fig7)
He is an important character in order to make the idol more
popular. If you catch him, score will be decreased. Therefore,
you need to avoid catching him.

Fig7: idle producer

 Information on the game will appear on top of the screen
(Fig8). The highest score ever will be shown under "High
score”. The remaining time will be displayed under "Time”.
The score of the game which you are playing will be
displayed under "score".

Fig8: information on game

4.4 The collection screen.
 You can move to the collection mode screen by tapping
the "collection" button on the start-up screen, You can enjoy
the collection book, which records details and remarks of
"Otakus" which you have already caught in the collection
mode. These will be acquired by the number of times playing
with the high score in the game. The looks and personalities

of the "Otakus" are striking and unique. You can enjoy some
types of typical "Otakus", if you are interested in subcultures.

5 Conclution and future research
 In this study we found the common points of the
hit game apps, and have developed a simple game
application for "short time”. The new element, the
“idol” was incorporated into the falling block game, to
avoid "boredom”. In addition, by obtaining a novelty
with focus on Otakus, a social phenomenon is parodied.

 Regarding future tasks, the adjustment of the game
balance is needed. Since there is no limitation with
respect to the operation of the player, the player
character can move to the tapped position too easily.
Also, the collision detection for each character is done
rather roughly, and consequently protecting the idol is
currently very easy. Setting the speed limit for the player
character’s move to the touch position and reconsidering
the collision detection are required for improvement.
By introducing new operations or gimmicks in addition
to “stopping” or “avoiding”, the app is expected to
enhance the entertainment with these improvements, we
would like to bring better distribution to the app.

 The app developed in this study contains a
metaphor about the Japanese idols. The idol culture is
very active in Japan. It is difficult to become a popular
idol in the presence of a large number of idols. However,
the number of young people who dream of becoming the
idols has not been reduced. They are intended to collect
customers in a variety of events in this society. These
events are successful most of the cases, but instead the
idols turn out to lose the essence as idols. Indie idols has
started being the idols just to work for the events. This
means that the concept as the idol is collapsed as a
whole. The current state of Japanese idols is referred to
in this study. This issue should be paid more attention.

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 251

ISBN: 1-60132-446-4, CSREA Press ©

6 References
[1] Akira Aizawa, “Game Theory Training”,Kanki
Publication, Inc, 2003

[2] Takahiro Wahanabe, “Game Theory (Illustrated
Trivia)”,Nathumi Publication, Inc, 2004

[3] Koji Fukada, “Why social game is addicting? Customer
satisfaction Gamification is change”,Softbank creative, Inc,
2011

[4] Kouyo Mathuura, Eji Furuki, Kenji Saito, “Recipe of
cocos2d-x development”,Syowa System Publication, Inc,
2013

[5] Kouki Miki, “Smartphone game development in the
cocos2d-x”, Gizyuthu Hyoron Publication, Inc, 2015

[6] Kosho Mori, “Gently start school in the development of
the iPhone app”,MyNavi Publication, Inc, 2012

[7] Scott Rogers , Yosuke Shiokawa, “Game design of
"level-up"”,Olayly Japan Publication, Inc, 2003

[8] Kazuya WADA, Masanori TAKANO, Ichiro
FUKUDA“Analysis Of User Playing Continuance On
Smartphone Game.”, Entertainment Computing
Symposium2014 (EC2014), pp 304-306, 2014-9

[9] Tomoe SEKINE�How use the internet long time in 20s
and 30s.�, Broadcast research and survey 63(4)�pp 32-43,
2015

252 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

An Approach for Generating Class and Sequence Models

Márcio A. Miranda2,3, Marcos G. Ribeiro4, Renan D. Tavares3, Thiago H. B. Dias3,
Humberto T. Marques-Neto3, Mark A. J. Song1,3

1Department of Computer Science / Centro Universitário UNA / Belo Horizonte, MG, Brazil
2Department of Computer Science / Federal Institute of Minas Gerais / Ouro Branco, MG, Brazil

3Department of Computer Science / Pontifical Catholic University of Minas Gerais / Belo Horizonte,

MG, Brazil
4Department of Computer Engineering / Federal Center of Technological Education of Minas Gerais / Timóteo,

MG, Brazil

marcio.assis@ifmg.edu.br, marcos.ribeiro.timoteo@cefetmg.br, {rdtavares, thdias}@sga.pucminas.br,

{humberto, song}@pucminas.br, mark@prof.una.br

Abstract— The use of domain-specific languages has been
gaining traction in the requirement analysis and discovery
process due to features such as establishing standardized
team communication, allowing the automation of certain
stages of the process, and bringing productivity gains
without compromising quality. In this paper we proposed
and implemented the Language of Use Cases to SEquence
Diagram (LUCSED), a domain-specific language for the
textual specification of use cases and, through our LUCSED-
tool, automatically generate use case, sequence and class
diagrams. To assess the viability of our solution, we carried
out several tests aiming to cover a diversity of scenarios
found in software development. Our approach can be useful
in requirement analysis and modeling, and seeks to min-
imize problems present in natural language specifications,
such as: uncertainty, ambiguity, complexity and an intense
dependence on domain knowledge by specialists.

Keywords: Automatic Generation, Class Diagram, Domain-

Specific Language, Sequence Diagram, Use Case Specification.

1. Introduction
Currently, there are many different ways to analyze and

specify software requirements, such as user stories, mod-

els and formal languages. To [1], capturing and mapping

requirements is mostly done through textual use case spec-

ifications, so that even laymen are able to understand them.

However, the inherent use of natural language can negatively

affect artifact quality, due to difficulties such as ambiguity,

redundancy, inconsistency and incompleteness [2], [3].

According to [4], representing requirements in a standard-

ized way which is easily understood by all participants of a

project can mitigate the problem, and even bring a certain

level of automation to the process [5]. Thus, to reach this

goal, it is necessary to formalize structural and behavioral

aspects of use case specifications [2], [6], [7].

One of the resources that have been generating interest

are Domain-Specific Languages (DSL). Although limited

in scope, they define a communication standard between

engineers and domain specialists. They can also help mini-

mize natural language uncertainty and ambiguity. Readabil-

ity, understandability and productivity are also fundamental

characteristics to justify the use of DSL to describe use cases

[8], [9], [10].
In this paper we propose and implement an external

DSL called Language of Use Cases to SEquence Diagram
(LUCSED), which defines standards of a language which

allows requirement analysts to specify textual use cases. We

also propose a tool called LUCSEDTool which comprises

automatic generation of use case, class, and sequence di-

agrams from the specification. The tool maps the specifi-

cation following language rules for the Extensible Markup

Language Metadata Interchange (XMI) input standard, sup-

ported by Unified Modeling Language (UML) modeling

software, such as Astah [11] and others.
The remainder of this article is structured as follows.

Section 2 briefly describes some of the relevant related work

developed in the last two decades. Section 3 presents our

proposed approach, highlighting the main grammar rules in

LUCSED, the sentence patterns supported by the language

and the artifact generation process. We present and discuss

our results in Section 4. Finally, we conduct a conclusive

analysis and state our final considerations.

2. Related Work
In the beginning of the past decade, [12] proposed a set of

rules to normalize textual use case specification. Following

this standard, analysts can infer which classes, objects, asso-

ciations, attributes and operations belong to a use case and

generate sequence diagrams from this information. However,

this is done manually instead of automatically, since no tool

to test the proposed standard has been implemented, relying

instead on specialist knowledge.

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 253

ISBN: 1-60132-446-4, CSREA Press ©

A few years later, [13] proposed a solution to explore

the most common problems in use case modeling, showing

inconsistencies between use case models and their textual

specifications. Later, [14] presented a meta-model to de-

scribe textual use cases. It defines a textual representation

of use case behavior, easily understood by readers who do

not have full command the subject. To model use cases nar-

ratives, they developed the Narrative Use Case Description
Toolkit for Evaluation and Simulation (NaUTiluS) tool.

The work [15] proposed and implemented a tool called

Procasor to automatically generate executable code from use

case specifications. Similarly to our work, they defined a

standard to specify textual use cases in a format recognized

by their tool, but they did not generate UML models,

and LUCSEDTool does not generate executable code. In

[4], authors present a language for use case specification

based on Xtext and called SilabReq. From use cases, the

tool generates domain models, a list of system operations,

a UML use case model, and state, activity and sequence

diagrams. In the following year, the same author proposed

dividing specifications into different abstraction levels, since

use cases are used by people in different roles with different

needs during software development, from end users, require-

ment engineers and business analysts, to project engineers,

developers and testers.

In the papers [16], authors proposed and implemented

a tool to automatically generate sequence diagrams from

use case specifications written in the English language. The

solution uses the natural language parser Stanford Parser

[The Stanford Natural Language Processing Group] [17] to

identify objects and interactions among them from use case

specifications. The parser analyzes sentences and classify

words into adjectives, adverbs, articles, pronouns, nouns,

verbs, etc. Therefore, the solution ignores situations in se-

quence diagrams such as combined fragments and messages

to self, and does not generate other UML models.

In the following year, the work [18] proposed an approach

called aToucan, based on existing solutions, to automatically

generate UML analysis models comprising class, sequence

and activity diagrams from a use case model. They also used

natural language specifications (English) and used Stanford

Parser [17] to map specifications.

However, natural language is free, ambiguous and defines

no team communication standard, making automatically

generating artifacts, and consequentially traceability between

specification, model and source code, very difficult.

Conversely, properly designed domain-specific languages,

unlike natural languages, establish a common language to be

used by all team members, and their formality standardized

communication between stakeholders [19], [20].

Additionally, DSL allows solutions to be expressed at

application domain level, enabling business analysts to un-

derstand, validate, change, and even develop features using

the language. We can also highlight that domain specialists

and software engineers are already used to programming

language formality, and this reduces language learning time

and optimizes resource reuse [5], [21].

3. Proposed Solution
Our proposed DSL (LUCSED) contemplates use case

detailing and along with LUCSEDtool enables the automatic

generation of UML diagrams in requirement-oriented soft-

ware processes, following object orientation principles and

the Model-View-Controller (MVC) architectural model.

LUCSEDtool is a support tool used to map relevant

information in use case detailing into an XMI input stan-

dard, recognized by UML modeling software. It is also

able to generate artifacts directly in the .astah format, and

if users already have Astah installed in their computers,

they can choose to open the diagram in Astah in the

correct format. LUCSEDtool is available for download at

https://github.com/assismiranda/LUCSEDTool.
The conversion of use case specifications into UML

diagrams follows the process shown in Figure 1. The process

consists in mapping textual use cases written in the LUCSED

language into object oriented models, specifically use case,

classes and sequence diagrams. Note that a possible sub-

sequent stage is the automatic generation of model source

codes, since most modeling tools are capable of generating

source code from UML models.

Fig. 1: LUCSED-to-UML transition

When designing the DSL, we sought to follow a set of

relevant requirements, to achieve features like simplicity and

objectivity, in order to offer a clear and self-explanatory

syntax which would help reduce language learning time.

LUCSED use case detailing was based on the tem-

plate proposed by the unified software development process

OpenUP (Open Unified Process) [22]. Thus, the specification

is composed by the following attributes: use case name, brief

description, actors, basic and alternate flows, main scenarios,

pre-conditions, post-conditions, and special requirements

and extension points, as shown in Figure 2. The highlighted

words are reserved words in the proposed DSL.

The original template was focused on natural languages,

which do not require any standardization and usually are

not bound by any restrictions. They also present syntactic

phenomena which would culminate in semantic imprecision,

making use case process automation more difficult. So, to

correctly map detailed use cases into class and sequence

254 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

Fig. 2: LUCSED template

diagrams, it was necessary to adapt the base template

to accommodate necessary and sufficient DSL information

required to automate the generation of software artifacts

supported by LUCSED.

Some of the necessary adaptations were: making class

attributes and methods explicit; in addition to primary and

secondary actors, it is necessary to inform the name of the

system actors will interact with; for sequence diagrams, it

is also necessary to state the combined decision, repetition

and concurrency fragments (if, loop and concurrency respec-

tively), according to the DSL syntax.

LUCSED has mechanisms to describe several situations in

which an actor interacts with a system in order to perform a

certain action. The standardization proposed by the language

makes it easier to map information present in a use case

detailing into the appropriate classes, such as relationships,

attributes and methods.

The main LUCSED grammar rules in Extended Backus-
Naur Form (EBNF) notation are presented and explained

below, organized in 5 parts.
In the first part of the grammar we have the rules that

compose the main structure (skeleton) of use case detailing.

• LUCSED ::= UseCaseHeader UseCaseFlows UseCase-
Footer

• UseCaseHeader ::= UseCaseName UseCaseBriefDe-
scription SystemName PrimarySecondaryActors

• UseCaseFlows ::= MainFlowName MainFlowScope [Al-
ternateFlows]

• UseCaseFooter ::= Key Scenario {KeyScenario}
PreConditions PosConditions SpecialRequirements
ExtensionPoints

In the second part, we have rules responsible for

generating specification headers. We can highlight rules

UseCaseName, SystemName, PrimaryActorName and

SecondaryActorName, since the name of the control class,

system name, and primary and secondary actor names are

respectively mapped through these rules.

• UseCaseName ::= “Use Case: ” ControlClassID POINT
• UseCaseBriefDescription ::= “Brief Description” [Text]

POINT
• SystemName ::= “System: ” SystemID POINT

• PrimarySecondaryActors ::= “Primary and Secondary
Actors ” PrimaryActorName [SecondaryActorName]

• PrimaryActorName ::= “Primary Actors: ” ActorID {“,”
ActorID} POINT

• SecondaryActorName ::= “Secondary Actors: ” ActorID
{ “,” ActorID} POINT

The most important LUCSED rules, the rules that make
up the main flow of the use case specification, are presented
below.

• MainFlowName ::= “Main Flow: ” MethodControlClas-
sID POINT

• MainFlowScope ::= [ActorID “ starts Use Case” POINT]
MainFlow [ActorID “ finishes Use Case” POINT]

• MainFlow ::= MainFlowElements {MainFlowElements}
• MainFlowElements ::= MainFlowCore | FlowIf |

FlowLoop | FlowConcurrency
• FlowIf ::= “If ” Condition MainFlow [“Else ” MainFlow

]“EndIf”
• FlowLoop ::= “Loop ” Condition MainFlow “EndLoop”
• FlowConcurrency ::= “StartConcurrency ” MainFlow

“concurrent” MainFlow “EndConcurrency”
• MainFlowCore ::= ((ActorID | SystemID) (Main-

FlowTabTransVerb | TABINTRANSVERB) POINT)
| ReturnMessage

• MainFlowTabTransVerb ::= TABTRANSVERB
[“MethodBoundaryID”] (MainFlowAttibutes | “on”
MainFlowBoundaryClass)

• MainFlowAttibutes ::= [[“the”] TABNOUN [“(” [At-
tributeTypeID] AttributeID {, [AttributeTypeID] At-
tributeID}“)”]] ((“on” MainFlowBoundaryClass | (“of”)
MainFlowEntityClass)) | MainFlowsActorClass)

• MainFlowBoundaryClass ::= BoundaryClassID
• MainFlowActorClass ::= ("for" | "to") ["the"] ActorID
• MainFlowEntityClass ::= EntityClassID [“on” Main-

FlowBoundaryClass | “by” MainFlowCommunication |
MainFlowsActorClass)]

• MainFlowCommunication ::= CommunicationID
• ReturnMessage ::= (SystemID TABTRANSVERB

SimpleReturnMessage (“to” | “for”) ["the"] ActorID |
SystemID)

The part of the grammar that contemplates alternate flows

is quite simple, because its main rule (AlternateFlowCore)

derives to the most important main flow rule (MainFlow).

This means that the same specification pattern defined for

the basic flow is also accepted for alternate flows.

• AlternateFlows ::= “Alternate Flows ” AlternateFlowS-
cope { AlternateFlowScope}

• AlternateFlowScope ::= “Alternate Flow ” NUM “: ”
MethodControlClassID POINT AlternateFlowCore

• AlternateFlowCore ::= MainFlow

Through these rules, it is possible to map boundary and

entity classes, their attributes and methods. In order for class

attributes and their types to be mapped, the analyst must

explicitly state them in the specification, otherwise they will

not appear on the diagram. The rules that represent class

attributes and their types are AttributeID and AttributeTypeID

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 255

ISBN: 1-60132-446-4, CSREA Press ©

respectively. The name of the control class is generated from

the use case name, through rule ControlClassID. Conversely,

the names of boundary and entity classes are generated

through rules BoundaryClassID and EntityClassID respec-

tively. Control class methods are generated from the names

of each flow (main and alternate), through rule MethodCon-
trolClassID. Boundary class methods are identified by rule

MethodBoundaryID.
A key point in the process is the ability to identify a cer-

tain class and its type. Note that in addition to the adaptations

made to the base template and the aforementioned rules, we

defined another set of rules based on the prepositions that

precede the names of each class in the sentence. Such rules

are specified in Table 1.

Table 1: Rules with prepositions
Previous Preposition Type Class

Of Entity
On Boundary

To/For Actor
By Communication

In addition to mapping classes and their attributes and

methods, LUCSEDTool also stores action execution flows

and consequentially messages exchanged between objects,

thus enabling the automatic generation of sequence di-

agrams. Rules FlowIf, FlowLoop, FlowConcurrency and
Condition, defined in the grammar, were specifically created

to map combined fragments present in these diagrams, as

per Figure 7.
To identify interactions between classes in the sequence

diagram, we defined a syntactic structure for each sentence

pattern supported by LUCSED. Thus, it is possible to

identify who is the sender, who is the receiver, and what

is the message to be sent. The main rules are defined in

table 2.
The sentences contained in the specifications written in

the LUCSED language must conform to the patterns defined

in the aforementioned rules, so the parser can correctly

map interactions for the automatic generation of sequence

diagrams without compromising quality.
Following the same order as the rules presented in Table 2,

we provide a sample sentence conforming to each of these

patterns:

1) Patient tells the attributes to the Clerk.
2) Clerk selects "MaintainPatient" on MainForm.

3) Clerk enters attributes (...) of Patient.
4) System returns "Input mode screen" to Clerk..
5) System sends the notification by e-mail.
6) System searches for the Patient.
7) System retrieves the attributes of Patient.
8) System saves the attributes of Patient.
9) System validates attributes of Patient.

10) System verifies the attribute (condition) of the Patient.
11) System displays the attributes of Patient on MainForm.

Table 2: Class interaction rules
Nº Syntactic Structure Sender Receiver Operation
1 ActorS Verb Noun

Preposition ActorR
ActorS ActorR Verb+Noun

2 Actor Verb
Noun/Method Prep.
Boundary

Actor Boundary Verb+Noun/Method

3 Actor Verb Noun
Preposition Entity

Actor Boundary Verb+Noun+Prep.+Entity

4 System Verb
Noun/Message Prep.
Actor

Controller Boundary Verb+Noun/Message

5 System Verb Noun
Preposition Commu-
nication

Controller Controller Verb+Noun+Prep.+Commun.

6 System VerbEntity-
WithReturn Noun
Prep. Entity

Last
Receiver
Class
(LRC)

Entity Verb+Noun+Prep.+Entity

7 System VerbEntity-
WithReturn Noun
Prep. Entity

Entity Controller Return+Noun+Prep.+Entity

8 System VerbEnti-
tyWithoutReturn
Noun Prep. Entity

Controller Entity Return+Noun+Prep.+Entity

9 System VerbValida-
tion Noun Prep. En-
tity

LRC LRC VerbV.+Noun+Prep.+Entity

10 System VerbProcess-
ing Noun Prep. Entity

Controller Controller VerbP.+Noun+Prep.+Entity

11 System VerbReturn-
InBoundary Noun
Prep. Boundary

Controller Boundary VerbReturn+Noun

Rules 6 and 7 are identical, therefore we have a type of

pattern that generates two operations, namely having two

different behaviors. For example: When the user searches

for something (verb searches), the message must be relayed

from the Boundary class to the Entity class. The same thing

happens when the system retrieves the data being searched:

a message is sent from the Entity class and is replicated

until it gets to the Controller class. In some cases, messages

originate from Controller classes, which is why we defined

the Last Receiver Class (LRC) time, because during the

flow it is necessary to control in which class a method was

last invoked. Such a situation can be seen in the sequence

diagram presented in Figure 8.

Still pertaining to the generation of sequence diagrams,

it is important to highlight that the core of the parser

(LUCSEDTool) contains two fundamental methods, namely

identifySentence() and identifyMessage(). The first method

analyzes each word in a sentence and assigns it a grammat-

ical class, such as verb, preposition, noun or other terms in

the specification. After classifying the words in all sentences,

the identifyMessage() method is called, identifying message

description, and origin and destination class of a message,

based on the grammatical class of words from the sentence

passed as parameter.

Some verbs are rule exceptions due to needing special

treatment going beyond a direct message between two

sentence elements, that is, these verbs behave differently

than the others. Verbs such as validates and verifies, which

validate input restrictions or business rules having a message

256 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

to self behavior in the sequence diagram are treated by a

class called ClassVerbsValidation. Other verbs that signal a

return to the control class, like searches and retrieves are

identified by class ClassVerbsEntityReturn.

In an effort to achieve simplicity and more user in-

teractivity, we created three special terms that reference

sets of words previously registered in LUCSEDTool. Term

TABTRANSVERB refers to a set of transitive verbs and term

TABINTRANSVERB refers to a set of intransitive verbs.

These terms are implemented in LUCSEDTool in the form

of tables, with a list of pre-registered verbs that are used

to semantically verify sentences used in use case detailing,

according to rules presented in Table 2. This verification

is done through validating some grammatical rules, for

example, some verbs only make sense in the context of a

phrase if they are related to an actor. Conversely, other verbs

only make sense if they are related to the system.

Nouns included in the LUCSED dictionary are also ex-

tremely important. We therefore created the term TABNOUN,

representing a list of nouns pre-registered in LUCSEDTool,

in order to increase the possible number of sentences users

can write in the proposed DSL. The list can easily be edited

using the tool, just like pre-existing verbs in the transitive

and intransitive verb tables.

Finally, we have the rules responsible for specification

footers.

• KeyScenario ::= “Key Scenario ” NUM “: ” MethodCon-
trolClassID POINT

• PreConditions ::= “Pre Conditions ” [Text] POINT
• PosConditions ::= “Post Conditions ” [Text] POINT
• SpecialRequirements ::= “Special Requirements ” [Text]

POINT
• ExtensionPoints ::= “Extension Points ” [Text] POINT

4. Results
In this section, we present some of the results we obtained

when using LUCSEDTool in tests carried out in software

from different fields, such as e-commerce, cellulose, mining,

school management and medical software. We gathered doc-

umentation developed by specialists from several companies,

which had detailed use cases and UML diagrams generated

from them. The original specifications had to undergo some

changes to adequately satisfy LUCSED grammar rules.

The tests presented here were done in the software system

of a medical company which has subsidiaries in several

cities. The use case presented as a result is CRUDPatient,
which has the clerk as primary actor. For this requirement,

the cited actor has the privileges of inserting a new client,

editing existing information, disabling a client’s subscription,

and searching for existing clients. To have access to these

features, users must be logged into the system, as stated in

the pre-conditions of the use case detailing.

The following is the header in LUCSED language for the

use case CRUDPatient.

Fig. 3: Header - UC CRUDPatient

The AddPatient main flow of the use case is shown in

Figure 4. This flow occurs when there are no detours in the

basic flow, because if there are any detours, alternate flows

or exceptions will be executed. The main flow describes the

Fig. 4: Main Flow - UC CRUDPatient

process of registering a new client in the system, where

the user selects the desired option and the system shows

the client registration screen. After getting patient data as

input, the system will validate the required fields until all of

them are filled. Then, it will check the database for duplicate

records and notify the user. Finally, it will save the record

and send the user a positive feedback.

As mentioned in the previous section, the Alternate flow

structure is similar to the main flow. The specification of al-

ternate flows ModifyPatient, DisablePatient and ReadPatient
is presented below, as seen in Figure 5. The clerk can modify,

disable and search for patients registered in the clinic.

Based on the presented specification, we generated the

class diagram, containing the relationships between classes

and their attributes and methods, as seen in Figure 6. In the

diagram, we identified a boundary class (MainForm), a con-

trol class (CRUDPatient) and an entity class (Patient). The

name of each class, as well as the names of attributes and

methods, depends directly on what the analyst specification

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 257

ISBN: 1-60132-446-4, CSREA Press ©

Fig. 5: Alternate Flow - UC CRUDPatient

Fig. 6: Class Diagram UC CRUDPatient

was. Note that when comparing the presented specification

and diagrams, the names defined in both specification and

diagrams are the same.

The first sequence diagram presented pertains to the main

flow AddPatient, as seen in Figure 7. We can observe that

this diagram contains the main features present in a sequence

diagram, such as calls to self, return messages and combined

fragments.

The diagram shown in Figure 8 refers to the alternate flow

Fig. 7: Sequence Diagram AddPatient

DisablePatient. It is a simpler diagram representing the flow

of disabling a patient in the company’s system. The flow

basically consists of the user providing the system with

the identification of the patient to be disabled, the system

searching for the data, checking if there are any pendencies

and providing adequate feedback to each situation.

Fig. 8: Sequence Diagram DisablePatient

We deemed the results produced by LUCSEDTool to

be satisfactory, because they came very close to what was

produced by specialists. In some cases, the diagrams auto-

matically generated by the tool were richer in detail than

the original documentation, making it evident that diagrams

created by specialists do not always contemplate everything

that is in the specification, or the other way around.

258 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

5. Conclusions
The LUCSED DSL, along with LUCSEDTool, has fea-

tures that contribute to the standardization of important

stages in software development, such as the requirement

specification and use case modeling stages. Standardization

would open the doors for clear and precise communication

among the entire team, mitigating inherent natural language

problems such as ambiguity, uncertainty and complexity.

The tool is also able to automatically generate software

artifacts such as use case, class and sequence diagrams.

These artifacts can be used to automatically generate source

code. Our solution offers additional benefits like: improved

previously developed artifact reusability; increase in quality

and productivity; more control over each stage of the pro-

cess; mitigation of several errors that can arise from the lack

of standards; and offering a common language to analysts

and users.
One of the challenges in using such as resource is the

effort required by the whole team to learn the language,

since every DSL has syntactic and semantic rules that may

require some training to master. However, the initial efforts

are paid off once the entire team has a good command of

the chosen language and tool [5], [21]. We also conclude

that, when designing a DSL, we must always have users

and their needs in mind, and it is crucial to define simple

grammar rules, be guided by relevant requirements and strive

to achieve premises such as simplicity and objectivity, to

offer a clear, self-explanatory syntax culminating in a more

gentle learning curve and less ignored features.
Our tests led us to find some drawbacks in our tool,

which will consequently inspire future work, such as im-

proving DSL and LUCSED features and incorporating new

features: improving usability (“folding”, “autocomplete”,

“syntax highlighting” and “outline”); implementing version

control for generated artifacts; expanding the DSL to support

additional languages other than English; include support to

generate additional UML diagrams; generate screen proto-

types; and allow users to import specifications generated by

other tools.
To improve automatic consistency between a UML use

case model and its corresponding textual specification set,

textual representations of use case relationships present in

the UML diagram must be created from effective identi-

fications, which is not a trivial task. Enforcing coherence

between a UML model and textual descriptions requires a

certain degree of formality in specifications. Conversely, it

became clear to us that there are many benefits to formal-

ize use case specifications, even considering the inevitable

learning curve [14].

Acknowledgment
The authors acknowledge the financial support received

from FAPEMIG, PUCMinas and Centro Universitário UNA,

Brazil.

References
[1] C. Alistair, Writing Effective Use Cases. Addison-Wesley, 2001.
[2] P. Jayaraman and J. Whittle, “Ucsim: A tool for simulating use case

scenarios,” in Software Engineering - Companion, 2007. ICSE 2007
Companion. 29th International Conference on, May 2007, pp. 43–44.

[3] S. Tiwari and A. Gupta, “A systematic literature review of use
case specifications research,” Information and Software Technology,
vol. 67, pp. 128 – 158, 2015.

[4] D. Savic, I. Antovic, S. Vlajic, V. Stanojevic, and M. Milic, “Language
for use case specification,” in Software Engineering Workshop (SEW),
2011 34th IEEE, June 2011, pp. 19–26.

[5] M. Fowler and R. Parsons, DSL - Linguagens Específicas de Domínio.
Porto Alegre: Bookman, 2013.

[6] M. G. Georgiades and A. S. Andreou, “Formalizing and automating
use case model development,” The Open Software Engineering Jour-
nal, vol. 6, pp. 21–40, 2012.

[7] T. Yue, L. C. Briand, and Y. Labiche, “Facilitating the transition from
use case models to analysis models: Approach and experiments,” ACM
Trans. Softw. Eng. Methodol., vol. 22, no. 1, pp. 5:1–5:38, Mar. 2013.

[8] P. J. Clemente, J. M. Conejero, J. Hernández, and L. Sánchez,
“Haais-dsl: Dsl to develop home automation and ambient intelligence
systems,” in Proceedings of the Second Workshop on Isolation and
Integration in Embedded Systems, ser. IIES ’09. New York, NY,
USA: ACM, 2009, pp. 13–18.

[9] D. Ghosh, DSLs in action. Manning Publications Co., 2010.
[10] M. Freudenthal, “Using dsls for developing enterprise systems,” in

Proceedings of the Tenth Workshop on Language Descriptions, Tools
and Applications, ser. LDTA ’10. New York, NY, USA: ACM, 2010,
pp. 11:1–11:7.

[11] ASTAH, “Astah professional,” Agosto 2015, acesso em: 10 ago.
2015. [Online]. Available: http://astah.net/editions/professional

[12] L. Li, “Translating use cases to sequence diagrams,” 2011 26th
IEEE/ACM International Conference on Automated Software Engi-
neering (ASE 2011), vol. 0, p. 293, 2000.

[13] C. Williams, M. Kaplan, T. Klinger, and A. M. Paradkar, “Toward
engineered, useful use cases.” Journal of Object Technology, vol. 4,
no. 6, pp. 45–57, 2005.

[14] V. Hoffmann, H. Lichter, A. Nyßen, and A. Walter, “Towards the
integration of uml-and textual use case modeling.” Journal of Object
Technology, vol. 8, no. 3, pp. 85–100, 2009.

[15] V. Šimko, P. Hnětynka, and T. Bureš, “From textual use-cases to
component-based applications,” in Software Engineering, Artificial
Intelligence, Networking and Parallel/Distributed Computing 2010,
ser. Studies in Computational Intelligence, R. Lee, J. Ma, L. Bacon,
W. Du, and M. Petridis, Eds. Springer Berlin Heidelberg, 2010, vol.
295, pp. 23–37.

[16] J. S. Thakur and A. Gupta, “Automatic generation of sequence
diagram from use case specification,” in Proceedings of the 7th India
Software Engineering Conference, ser. ISEC ’14. New York, NY,
USA: ACM, 2014, pp. 20:1–20:6.

[17] S. N. Group, “Stanford parser,” 2015, acesso em: 03 ago. 2015.
[Online]. Available: http://nlp.stanford.edu/

[18] T. Yue, L. C. Briand, and Y. Labiche, “atoucan: An automated
framework to derive uml analysis models from use case models,”
ACM Trans. Softw. Eng. Methodol., vol. 24, no. 3, pp. 13:1–13:52,
May 2015.

[19] W. Heijstek and M. Chaudron, “The impact of model driven develop-
ment on the software architecture process,” in Software Engineering
and Advanced Applications (SEAA), 2010 36th EUROMICRO Con-
ference on, Sept 2010, pp. 333–341.

[20] D. Ghosh, “Dsl for the uninitiated,” Commun. ACM, vol. 54, no. 7,
pp. 44–50, July 2011.

[21] G. Gupta, “Language-based software engineering,” Science of Com-
puter Programming, vol. 97, Part 1, pp. 37 – 40, 2015, special Issue
on New Ideas and Emerging Results in Understanding Software.

[22] ECLIPSE, “Openup,” 2015, acesso em: 02 ago. 2015. [Online].
Available: http://epf.eclipse.org/wikis/openup/index.htm

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 259

ISBN: 1-60132-446-4, CSREA Press ©

Proposal of the Killing Time Smartphone Apps for
Optimize the Lifestyle of Smartphone Users

Ziran Fan 1, Takayuki Fujimoto2

1Graduate School of Information Sciences and Arts, Toyo University, Kawagoe, Saitama, Japan
2 Graduate School of Information Sciences and Arts, Toyo University, Kawagoe, Saitama, Japan

Abstract – In this study, we focused the needs that the
smartphone applications to kill time are most needed by
smartphone users. At this point, there is no objective definition
of the killing time applications and the conditions of the killing
time applications have not been disclosed either. Through this
study, we made a survey about the smartphone usage
environment of society and the life styles of smartphone users.
The requirements of the killing time smartphone applications
are established through the consoderation. Then, we show the
objective definition of the killing time applications and the
application prototypes are proposed based on those results.

Keywords: Smartphone Apps, Killing Time, Smartphone
Users’ Needs, Smartphone Users’ Lifestyle, Smartphone
Usage Environment, Application Prototypes.

1 Introduction
 Smartphone has been spreading at high speed recently.
We can see people using smartphone in one hand at
everywhere, for example, in the subway, the bus stations and
the Starbucks. Those scenes are certainly becoming popular.
With the functions of smartphone such as telephone call, E-
mail, surfing the Internet, game and SNS really have been
making our life more convenient.

 For the most of smartphone users, the purpose of the
smartphone use is to spend free time in life. For example, the
time you are waiting for a date, boredom when you are taking
bus, rest between works. Because smartphones are more
portable than wallet or ID card and could be used at all times
and all places freely.

 Regarding the needs of the smartphone users, many
killing time applications, which take advantage of smartphone
features, have been released. The popular applications we are
using have some of the elements of that needs. Most of the
case, they are game applications. Many developers are
planning to make a hot application as killing time applications,
however, there is still no objective definition of the killing
time applications. The idea of the killing time applications is
based on the subjective sensation of the users’ experience. Of
course, if the usage environment changed, the sensation about
the killing time applications also would be changed too.

 Even though the killing time applications are the biggest
needs from smartphone users, the objective definition and the

conditions have not been determined. We could not judge
what the killing time application was.

 The points of this study are survey, analysis and
proposal. First, we made the survey to elucidate the usage
environment in Japan. Then we analyzed the lifestyles of
smartphone users: what they are using and what they want to
use. Finally, we proposed the objective definition of the
killing time applications and tried showing it with a prototype
application in the optimized way for users’ needs.

2 Background
 Today, the number of the smartphones use is high in
Japan. People who have smartphones as their first mobile
phones is increasing mainly among the middle-school and
high-school students. From the consumer confidence survey
of cabinet office in March, 2015, the rate of diffusion with
phone is 94.4% and the rate of diffusion with smartphone is
60.6%. From 2015 Information and Communications Use
Trend Survey of Ministry of Internal Affairs and
Communications, the rate from the age group showed that the
rate of diffusion of twenties is 83.7% the highest and thirties
is 72.1% the second in a series. The rate will also raise at the
base of old people and young generation in the future. It is
expected that the base of the user in Japan will be expanded
with the spread of smartphones.

3 Motivation
 The lifestyles of the smartphone users has been
becoming complicated by the spread of smartphone, the
change of the usage environment and advanced technology
for the development of smartphone and applications.

 From a survey of JustSystem Co.,Ltd which was taken
with 960 smartphone users whose age was between 10 and 70,
game applications are used most often in a day and the
average time is 63.8 minutes. Perusal of Internet contents and
social communication applications such as Facebook and
Twitter are also often used and the average time in a day is
57.1 minutes. Time of use tends to increase at young
generation clearly.

 Smartphones are different from the phones based on the
call function. The number of the usage is as many as the
number of the applications you installed. According to a
survey about the usage of smartphones, spending free time:
watching some interesting videos, net surfing, playing game

260 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

applications and checking the shopping net site, is the most
common and the rate on the whole is 18.5%.

 With those survey results, it is clear that spending free
time (killing time) is the most common purpose for the use at
the lifestyles of smartphone users today. So, there is a
question: what kind of free time do users have and spend?
The survey shows the users tend to use the smartphones to
kill time on a train.

 From survey results we can see that smartphone users
use smartphones to spend their free time most commonly, and
a time when getting on a train is specifically boredom to the
users. It was usual for people to read newspapers or
magazines to spend free time on a train, but with the
significant changes of the information usage environment
from the spread of smartphone, people use the smartphones
instead of books to spend free time on a train.

 This study focuses on spending boring time on the train,
which is the biggest needs from the users and proposes a
smartphone application to meet that demand.

4 Purpose
4.1 Meaning of Killing Time
 Killing time is defined as taking acts and works which
are not requested to spend time when one has spare time.
Definition for spare time is different from the respective
conditions and the standard to make a judgment of spare time
is not absolute. So it is difficult to take an objective definition.

4.2 Smartphone Usage on A Train
 In the previous chapter, the results show that
smartphone users tend to use the smartphones to spend their
spare time on a train. We assume that two main elements are
important.

 One is the social environment. Taking train is the major
mean of transportation in Japan. The Japanese people use the
train to go to the school or work more frequently than other
transportations such as the buses or the cars. Many people
decide their work or school on the basis of the range in which
they can commute by train. Since the train is always crowded
in the rush hours, smartphone’s smallness is suitable to use
with one a hand in the limited place.

 The other is today’s our lifestyles. Nobody would get on
a train every day without a destination, except those who have
a hobby to enjoy to get on a train for nothing. Taking train is
a mean of transportation and people have a certain purpose to
arrive at somewhere they have to go. So we could declare that
they are actually free in a time during which they have to wait
until they arrive at the destination. Unless they meet an
accident, the thing that they should do is just waiting. In fact,
a time when we are getting on a train is the biggest spare time

in our life, and we always have to spend that spare time with
something on purpose on the train.

 In that kind of free time we have to spend, the question
is how we spend it. If we pay attention to the passengers on
the train, we would know that most people use their
smartphones. The things we can do with smartphone on the
train are not only information collection but also playing the
games, chatting with someone on applications, surfing the
Internet and schedule management on that small box. From
these, it could be said that smartphone is a suitable tool to
spend free time on the train.

5 Definition of Free Time
 The killing time applications have a great market value
because of the needs from the users. But there is no objective
definition as long as we investigated. This study is based on
the survey for the smartphones’ usage environment in Japan
and the lifestyles of the users to propose the definition on the
killing time applications.

 As we have described, the meaning of free time is
different from the respective condition which people have.
However it is common for everyone that one is free for transit
time on the train until he/she gets to the destination. Because
the reason why we all have to take train is just to transfer to
the destinations. Using the time effectively to do something
such as remembering a few English words is thought to be a
sensible way of spending free time on the train when you go
to the office or the school. The time on a moving train is a
free time for most Japanese people and it is inevitable. So this
study focus on transit time on the train to plan the killing time
application.

 The sensibility of People to feel a time as free time is
relative, but a transit time is commonly definite. For example,
if the time for which a person gets on the train is 5 minutes,
free time he/she could feel is invariably limited to a range of
5 minutes. Most of the case, he/she has some purposes or
tasks after getting off a train.

 We collected the statistics for the survey to research the
average transit time from one station to the next station of 36
main train lines in Tokyo, and show the result in Tab1 and
Graph2. The result shows that the indicated time is free for
the passengers. The average transit time from one station to
the next station is about 2 minutes and 27 seconds.

 The users would not always get on a train for one
station, but the time we got, 2 minutes 27 seconds, is a
standard value for a time during which the users feel free. If
the user get on a train for three stations, by just adding 2
minutes 27 seconds three times over, we can get the average
value of the user’s free time.

Tab1. Average moving time of lines (1 station) in Tokyo

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 261

ISBN: 1-60132-446-4, CSREA Press ©

Line Station Time

Toei Asakusa Line 20 1.84

Toei Mita Line 27 2.00
Toei Shinjuku Line 8 4.14
Toei Oedo Line 11 2.10
Toden Aragawa Line 30 1.83
TokyoMetro Ginza Line 19 1.78
TokyoMetro Marunouchi Line 25 2.04
TokyoMetro Hibiya Line 21 2.15
TokyoMetro Tozai Line 23 2.32
TokyoMetro Chiyoda Line 19 2.17
TokyoMetro Yurakucho Line 24 2.22
TokyoMetro Hanzomon Line 14 2.31
TokyoMetro Namboku Line 19 2.17
TokyoMetro Fukutoshin Line 16 2.33
JR Yamanote Line 29 2.18
JR Nambu Line 26 2.27
JR Chuuou Line 14 4.54
JR Chuuousobu Line 20 2.58
JR Oume Line [Tachikawa�
Oume]

13 2.67

JR Oume Line[Oume�Okutama] 25 3.00
JR Itukayichi Line 7 2.83
Seibu Ikebukuro Line 13 3.92
Seibu Kokubunji Line 5 2.00
Seibu Seibuen Line 2 3.00
Seibu Shinjuku Line 17 3.81
Seibu Tamagawa Line 6 2.40
Seibu Tamago Line 7 2.83
Seibu Toshima Line 2 2.00
Seibu Yurakucho Line 3 2.50
Seibu Haijima Line 8 3.00
Tobu Kameido Line 5 1.75
Tobu Tojo Line 24 2.22
Tobu Daishi Line 2 2.00
Odakyu Odawara Line 20 4.63
Tokyo Monorail Line 11 2.50
Rinkai Line 8 2.71

Figure2. Average moving time of lines (1 station) in Tokyo

�

 This study assumes that there are two ways to achieve
killing time in transit time on the train regarding the biggest
needs of the users. One is the usual way such as reading
newspapers or magazines, which we have been doing.
Relatively, using the Internet for reading news sites is also a
common way to spend free time on the train. The other is the
way to spend free time on the train by playing the games or
enjoying any kind of the entertainment applications, it is
coming popular with the spread of smartphone.

 Regarding the former way, as there are already many
news sites on the Internet, we did not treat it in this study.
This study tests the latter way: spending free time on the train
unwittingly by the game, which enables the users to get a
kind of fulfillment. It seems that the killing time method with
fulfillment to challenge the user’s gaming mind is the biggest
needs because the rate of diffusion about smartphone is the
highest at twenties who is familiar with the game applications
and other entertainment applications through their everyday
life.

6 Application Implementation
6.1 Apps Summary
 The significant feature of killing time applications must
be simple. Everyone can easily use it everywhere. The
simplicity does not mean uninteresting. We can spend free
time by just gazing steadily at the screen of smartphone. But
the users would not be satisfied with that and it cannot be
expected that the users continuously use it. On the other side,
it does not mean that application must be interesting
unlimitedly. It is necessary to project more functions to make
the applications more interesting. As a result, the users may
spend the time with an addictive joy instead of just spending
free time. It is confuse of natural order of our project if the
users spend more time on playing to enjoy the game with
addiction rather than using it to kill time. So it is very
important to secure the effect of killing time in a proper way
in the limited average transit time of 2 minutes 27 seconds.

 The application proposed in this study has the simple
structure and operability with which the users can play it with
only one finger. And the system sets the play time based on
the average train transit time to meet each user’s needs to
spend free time of the time on the train. The system has been
designed to enable the users to feel fulfillment.

6.2 Design Principle
 To meet the needs from the smartphone users to spend
free time on the train properly, we decided to narrow down to
one train line from 36 lines which we had checked. JR
Yamanote Line is the most famous train line in Japan, and is
also the train route used most frequently. JR Yamanote Line
is the biggest line that connects the main area in Tokyo. JR
Yamanote Line connects the busiest stations in Japan, such as

262 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

Tokyo Station, Shinjuku Station, Shibuya Station and
Akihabara Station.

 We have designed the application based on a motif as
JR Yamanote Line in this study. The application could offer
the users better killing time experience with this motif when
they use it. And we can also collect more accurate data easier
in our study. It is shown in Figure 2 and Figure 3.

 It is important to consider how to apply the purpose of
killing time to the goal of the game in design principle,
because the concept as the application to spend free time is
the prerequisite for this application proposed in this study.

 First, the play time of the application is set based on the
train transit time of the time determined by the departure
station and the arrival station. There will be some inevitable
errors on the time, but the conditions of the time when the
users get on the train are changing. Therefore it will not make
any trouble for the study. The application we proposed has a
function that occurs game over when the play time passes, it
will prevent the users from the overuse which is not supposed
to be the use just for spending free time.

 The operation of the application is designed simply. The
users can play the application with only one finger without
any other operation, so everyone could use it intuitively. And
also it has no functions which is not just for spending free
time. Two elements on the design principle which we have to
prevent are getting tired and becoming absorbed. And we
have also tried some actions to make the applications more
interesting for use: adding more variation of the game design
and reflecting the results for the user’s each use of the game
as a form of score.

 The user’s experience as just spending free time leads to
the long-term use of the application. The point of the users’
continuous use is enabling the users to feel satisfaction. We
assume that satisfaction is achievement for the game in this
study. The most important element of achievement for the
game is the relative difficulty of the game. Users would not
keep up using if the game is too hard, and on the other hand,
if the game is too easy it will make users tired when they play
only once. A clear goal (the ending of game) is specially
should not exist in the application. The reason of that is to
secure the long-term users with the design principle which
makes no finish deliberately. We can find that feature in
many famous social network game applications. So we had to
design the application flexibly to give the users suitable
pressure on playing and to make sure that pressure could be
accepted by people as much as possible.

 But, there is a potential that it will make a wasted
feeling with the endless game. The functions to enhance the
achievement are important. With these functions, the users
could use the application with interest every time when
playing the game. We took that mainly as two elements in
this study.

 One is the user’s feeling that their playing skills are
being improved. Spending free time is not just the
expenditure of time. The results which people get from that
action is important. The design principle of the application is
based on this idea and focus on the change of the relative
difficulty on the game. Users would play easily first and when
the paly time is passing, the users can get used to the
difficulty of the game. So we have designed the application in
which the relative difficulty of the game would be improved
as time passes. We strived for providing a more interesting
game experience to the users by visualizing the change of the
relative difficulty and indicating that process to them.

 The other is a reward that the users can get in the game.
The feeling of skills improvement is not attractive enough for
the users, and if the users cannot get anything as they spend
time for the game, playing will be a tired work. The score
function is added into the application and its form is designed
as the theme of the application and like the trace of users’
playing.

 We thought those design principles could prevent the
users from feeling wasted when using the application, and we
have developed the application based on them.

�

�

�

�

Figure 2. Station-choosing � Figure 3. Stations Selection

6.3 Apps Construction
 The illustrations of the application which we developed
are shown in Figure 4 and Figure 5.

 The purpose of the application is a practice for
validating the theory which we have proposed. And we will
show the explanation of the application at this section.

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 263

ISBN: 1-60132-446-4, CSREA Press ©

 First, the user should touch the title screen (Figure 4) to
open the station-choosing screen (Figure 2). Since this
applications is designed on a motif of JR Yamanote Line, the
user should choose the station from JR Yamanote Line station
list (Figure 3). When both departure station and arrival station
are chosen, the user should press the “Start” button to start
game. The user should tap the game character (player) on the
screen (Figure 5) to play the game.

 The image of the train in the left of the screen is the
game character which the user will operate. The train will be
falling constantly when the user play the game, and it will go
the game over when the train touches the white area on the
bottom. When the user taps the screen, the train will spring up
and the degree of height and intensity will be changed by the
speed of the user’s tap. If the user taps it too quickly, the train
will spring up too high to hit against the top on the screen,
and the white area on the top is same as the bottom, which
will make the game over when train touches it.

 To make the layout of the game useful, the time until
the arrival of the train: the real train on which the user is
getting) is shown in the white area on the bottom and another
white area is showing some information about the game to the
user when they are playing. And the present score (reset when
a game is over) and the total score are also shown on the
upper part, so that the user can always catch the process of
playing.

 The point of the game is that the user should control the
game character’s springing up between the top and bottom
artfully with the apposite power at good timing to advance the
game.

 Two obstructions will be drifting from the right side to
the left side. When the game character touches the
obstructions, it will also go game over. And the size of the
obstructions will be bigger as the playtime passes. So, the
user should control the game character to ward off the
obstructions and it will give the user suitable pressure and
make the playing amusingly not as a boring work.

 Operating the game character to avoid three things: the
bottom area, the top area and two obstructions, and keeping
the game play is the structure of this game.

 Finally, we will take an explanation of the function of
score of this game (Figure 4). The score function, which has
been designed as the results for the user’s play, will raise as
user’s experience stacks. The score, the numbers is not only
the value of the game. Some “new thing” can be opened by
the user if he/she is playing consecutively. This function is
based on “trophy” system. These functions will be useful to
secure the long-term user.

 Figure 4. Title Screen Figure 5. Playing Screen

7 Conclusions
 Spending free time with smartphone is the biggest needs
from the smartphone users. But there is still no objective
definition on killing time applications, and the smartphone
applications optimized for the users’ also do not exist at
present.

 We propose the smartphone application which is
adapted to the purpose for spending free time with the
analysis of the needs from today’s smartphone users, based
on the survey on the users’ lifestyles.

 Game applications are the most frequently used
smartphone applications by the users and there is the most
common trend that smartphone users are usually using
smartphones to spend free time when getting on a train.

 We have fixed the standard value of the time in which
the users use smartphones to spend free time when they get
on the train by the statistics about the average transit time of
the main train lines in Japan, based on the survey of the
smartphone usage environment in Japan. We have tried
proposing the objective definition on the killing time
application. The smartphone application on the
presupposition of time expenditure in which the users could
be satisfied with some results from the use for 2 minutes 30
seconds.

 We considered the development of the application based
on the results of the study for accuracy enhancement. We
could propose the killing time application that is optimized
for the conditions of the smartphone users’ lifestyles.

264 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

 One of the tasks in the future is to take an actual
condition survey for the application. It is necessary to check
how effective the killing time application use is for the users’
lifestyles. We will make an adjustment and improvement
based on the results of the survey.

 This study plans to show new possibility to the trade of
smartphone applications through the proposal of the killing
time applications optimized for the lifestyles of the
smartphone users (it is unexampled). It is also necessary to
consider what kind of influence this study could have
consecutively.

 We examined today’s smartphone users’ life styles in
Japan and it was found that the biggest need from the users is
spending free time. Smartphone is developing strikingly as
the representative of information and communications
technology in the world. For this reason, it is meaningful to
research the smartphone users’ lifestyles internationally, not
only for the users in Japan. The application has been devised
for the users, who live in Japan in this study. Therefore it is
necessary to check if it is efficient in the world range. It is
also beneficial for further research to examine how the
lifestyles of the smartphone users change under the different
social environments, cultural backgrounds and the modes of
daily lives.

8 References

[1] Japan Cabinet office. “Consumer Confidence Survey”;
2014. http://www.esri.cao.go.jp/jp/stat/shouhi/shouhi.html

[2] Ministry of Internal Affairs and Communications. “2015
Information and Communications User Trend Survey”; 2015.
http://www.soumu.go.jp/johotsusintokei/statistics/

[3] AppMarketingLab. Website, 2014.
http://appmarketinglabo.net/appmarket2014/

[4] D2C So.,Ltd. “Multidevice Use Survey”; 2014.
http://www.d2c.co.jp/news/2013/07/04/959/

[5] Appstudioz. “Mobile App trends Worldwide”; 2014.
http://www.appstudioz.com/blog

[6] JustSystem Co.,Ltd. “Questionnaire about the change of
Smartphone and Lifestyle”;2014.http://www.justsystems.com

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 265

ISBN: 1-60132-446-4, CSREA Press ©

266 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

SESSION

LATE BREAKING PAPERS

Chair(s)

TBA

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 267

ISBN: 1-60132-446-4, CSREA Press ©

268 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

A PROPOSAL FOR AN ADAPTATION TO THE UNIFIED PROCESS FOR THE
DEVELOPMENT OF GRP (GOVERNMENT RESOURCE PLANNING) SYSTEMS

Mauro Borges França1, Alexandre Cardoso2 and Edgard A. Lamounier Jr.2
1Instituto Federal de Educação, Ciência e Tecnologia do Triângulo Mineiro (IFTM) Uberaba, MG – Brasil

2Universidade Federal de Uberlândia (UFU) - Uberlândia, MG – Brasil

{mauro}@iftm.edu.br, {alexandre,edgard}@ufu.br

Abstract – To obtain a software process that

adequately affords trustworthy development, along with
providing good compliance and does not overly demand
time for generating artifacts is an excellent response to
market demands, as well as adding strong motivation to
research related to the theme. One of the great challenges
associated with this process is to adapt the proposals
from different methodologies for software development
to the workplace reality and task force of an Information
Technology team (IT). This research study proposes the
suitability of a methodology based on the Unified Process,
aiming its adaption in particular to the development of
software for public office. One of the main motivations
behind this proposal is the fact that there does not exist a
developmental standard in teams of this kind. Therefore,
this research covers the application of a methodology for
the development of systems for the construction of an
integrated system with the features of GRP (Government
Resource Planning). In order to evaluate the proposed
development model, three projects were selected that
commonly hold aspects of complexity and strength.

Key Words -: Software development, Unified Process,
agile methodologies, GRP, productivity.

I. INTRODUCTION

Software Engineering arose from the need to develop,
through use of engineering methods, the production of
computer programs, which involve processes and time
metrics, cost, involvement of people, results and possible
advances (Sommerville 2011).

In this context, it is of no small order to say, the
development of quality software is a great challenge for IT
companies, independent of their size. Besides this, to find the
adequate process for such development is a motivating factor
behind the study of many a researcher. The work developed
by Machado (2000) relates that the appearance of
international standards for software processes, such as the
ISO/IEC 12207 standard and maturity models (CMM,
TRILLIUM, BOOTSTRAP and ISO/IEC 15504) influence
organizations to direct their efforts, not only in process
definition, but also in establishing mechanisms for their
continual improvement. However, this continual
development of software, in many cases being an activity
heavily dependent on the individual abilities of the
developer, leads to many organizations not having defined
processes and little knowledge concerning the maturity of
such processes.

It is important to highlight that the adoption of
developmental methodologies directs software project

members towards activities, actions and tasks necessary for
the development of high quality software. Faced with the
present scenario, it becomes necessary to define the process,
which for the IEEE, is a “sequence of steps executed with a
determined objective”, and for the CMMI, it is “a set of
inter-related actions performed to obtain a specific set of
products, results or services” (PÁDUA FILHO, 2009).

 The research studies of Fuggetta (2000), Pressman
(2006) and Osterweil (1987), affirm that the quality of the
development process impacts directly upon the quality of the
artefacts contemplated for development. Still further,
according to Greer and Conradi (2009), the need for a
defined process is recognized as a strategy towards reducing
risks in project management. The work presented by Bertollo
and Falbo (2003), adds, “the main cause of problems in the
development of software is the lack of a development
process that is clear and effective in its definition”. However,
it becomes evident that to reduce the problems linked to
software development, risk reduction and the delivery of
quality software, the adoption of some type of development
process is of extreme importance when dealing with projects
of this type.

Among the various existing processes, the traditional and
agile methods are given prominence. There are those
enterprises that believe that the software they produce can be
understood simply by reading its source code (agile
methods). Other producers document their artefacts in an
intensive arrangement (traditional method) (SHACH, 2009).

 However, software development centres for public
agencies present problems in the adoption of both traditional
and agile methods. This is due to inherent distinct features,
those of which are commonly found in all other software
industries. Highlighted among such are a reduced number of
professionals, high staff turnover, overly high bidding
process latency, heterogeneous teams, lack of standards, lack
of or incomplete documentation.

In this context, there arises the challenge of choosing one
methodology that guides development systems and which is
followed by its developers. Therefore, allowing agility and
complete updating of the whole development process
attributed to many public agencies.

Under the pretext of working towards an answer to the
problem presented herein, along with proposing feasible
solutions for small teams, this work proposes a set of
computational and management techniques. In this manner,
adapting the methodology behind the Unified Process to the
features of the software development sector environment
associated with public offices.

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 269

ISBN: 1-60132-446-4, CSREA Press ©

II. FUNDAMENTALS

Over the last decades, a number of strategies have been
created for software development, in accordance with
Rasmsin and Paige (2008), which are most commonly
supported upon conventional or agile methodologies.
According to Alves Paim et al. (2011), the complex nature of
software development and the wide variation of already
existing methods generate difficult and imprecise
comparisons between traditional and agile methodologies.
Looking from this perspective, Leffingwell (2006) discusses
these differences, which are summarized on Table I.

TABLE I
Characteristics of the paradigm traditional vs agile, according

to (Leffingwell, 2006)
Point of view Traditional Agile
Measure of
success

Conformity with the
plan

Response to change,
operational code.

Cultural
management

Leadership and control Leadership/
collaboration

Requests and
architecture

Initially large
Continuous/ emergent

Guarantee of
quality test

Large, planned / late
test.

Continuous/
competitor / early test.

Planning and
chronogram

Detailed, fixed scope,
time and resources
limited.

Planning on two
levels, fixed date,
estimated scope.

In a synthetic manner, one observes that while the

traditional paradigm has been recommended for projects of a
large scale and high risk, the agile paradigm has shown itself
as being more appropriate for low risk projects made up of
small teams (Boehm; Turner, 2004; Lindvall; Costa, 2004;
Cohen; Nord; Tomayko, 2006; Ramsin; Paige, 2008). In the
general sense, large and critical projects can be hindered
through the lack of rigor and predictability of the agile
paradigm, while small and low risk projects may incur an
unnecessarily high cost and inadequate time frame. These
occur through the lack of simplicity and flexibility of the
traditional paradigm, which generally imposes procedures of
a complex nature, along with comprehensive documentation.
Given such concepts, the adaptation of methodologies has
become a constant factor, in order that they comply with
software production processes. It is for this reason that
software manufacturers always look to customizing software
processes in accordance with their organizational structure.

III. RELATED WORK

A lot of effort has been made in the sense of adapting both
traditional and agile methodologies, so that they attend to the
specific needs of organizations. The most well-known of
these in the software industry is the RUP – Rational Unified
Process, which contains the same roots as the Unified
Process – UP. However, there exist various other relevant
publications that make use of a combination of traditional
and agile methodologies. (SCOTT, 2003).

 Software development processes always work in
accordance with the environment in which they are applied.
A number of related studies present adaptations to the
processes in conjunction with the applications development
domain, taking into consideration the scenarios inherent to

such domains, such as size and qualification of the
development team, structure of software industry premises
that house the team, management experience and the
artefacts derived from the process. In the following, studies
that focus on the adaptation of these methods is presented.

A. A Proposal for the Agile Development of Virtual
Environments

 In Mattioli et al. (2015), agile development is proposed,
where it is applied in environments that develop Virtual
Reality Systems – VRS. In order to reach this goal, the
authors customized the agile methodology XP to be a process
that adds features of prototyping, iterative and the
evolutionary development of software projects, in a manner
that attends to five key principles in VRS systems: 1) the
evolutionary nature of the VRS; 2) the interactivity of the
construction and the high fidelity of the models; 3) the need
for client feedback; 4) the need for interaction and usability
tests; 5) the modularization of the VRS. As a means to apply
the VRS development process, six basic activities were used,
Planning, Analysis, Project, Codification, Tests and
Integration. All these activities are developed at each
iteration, as seen in Figure 1.

Fig. 1. Full cycle of the VRS agile development [extracted
from (MATTIOLI et al. 2015)].

The planning for an iteration is made, starting from
feedback received from previous iterations, where at each
iteration the system models are updated.

One important aspect is the interactivity requirement
phase, which occupies a high-ranking position among
development processes, due to the fact that in the building of
solutions for Virtual Reality Systems, it is primordial to
contemplate usability and interactivity into the system.
However, to apply this model in public offices for the
building of integrated systems, a limiting factor that needs to
be taken into account is the time needed to design the
interactivity requirement phase, which is unnecessary in light
of the features linked to this project.

A. Characterization of a Software Process for Free Software
Projects
The work put forward by Souza et. al. (2004), presents a

method with the same features as RUP, with the exception
that these are realized not only in the scope of the system, but
also in each subsystem, where there exists a functional
rotation scheme between them (Figure 2). Allowing therefore
that after the transition phase (implementation) of the first
subsystem(s), the knowledge acquired, along with the
artefacts produced in its development are aptly used in the

270 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

remaining subsystems. Besides this it permits that
improvements be made to the evaluation, concerning the
running and estimations involved in the project as a whole,
as a sampling of the system has been acquired, at each of its
phases.

Fig. 2. The RUP development cycle for N subsystems. [Extracted
from (SOUZA et al., 2004)]

As this process uses all the RUP phases over all the

subsystems, this becomes extremely invariable when
applying the features from this case study, which is due to all
the subsystems having to go over the four phases of the RUP
process again. This entails a significant demand on human
resources in terms of assistance across the whole process. To
meet these demands, public offices need to significantly
increase their staff to make teams.

C. Adaptation of the Rational Unified Process (RUP) in
small Distributed Development teams

The work by Rocha et al. (2008) presents a study applied
to adapting the Development Process based on RUP, to a
small team using Distributed Software Development (DSD).

In order to enable the proposals from this work, its
research was integrated into an academic discipline from
Software Engineering, with focus given to its
implementation in software industries, which use Distributed
Software Development (DSD) for realizing real projects.
Through the separation of clients and projects, a simulation
of a software industry environment was sought, to offer
artefacts that were decided in agreement with the client. The
company referred to in this study carries the name of
TechnoSapiens, it was started by nine students, working in a
distributed mode with part of the team active in the same
city, where the others were spread among three other
municipalities. It is worth mentioning that none of the team
members had worked together before, thus working together
for the first time at the start of this project.

Fig. 3. The adaptation process of RUP for DSD [extracted from
(ROCHA et al., 2008)].

Besides the adaptation of the RUP process, this work
highlights the development of distributed systems, this
characteristic causes various problems when it comes to
applying the process proposed herein. These are based on the
demand on aspects for the mitigation of risks, which are
normally higher due to this characteristic. Therefore, this
study is not a viable option for application to the case study
related in this research work.

TABLE II

Table with comparisons made between studies

 Agile SRV RUP – N Sub-

Systems RUP in DDS

Iterations and additions x x x

Client on-site x

Prototyping Interfaces x

Continual Integration x x x

Simplified design x x

Daily meetings x

By analyzing Table II, one notes that none of the systems
studied present all the necessary criteria as an integrated set.
However, it is believed that a methodology that contemplates
all these criteria possesses greater potential for influencing
the productivity of an IT team.

Therefore, this work in the sense of collaborating in the
establishing of a software development methodology, aims at
producing a bond between these characteristics, in order that
it can attend to public office teams that have software
industry characteristics. Details concerning this methodology
are presented in the next section.

IV. PROPOSED METHODOLOGY

This work proposes an integration of the Unified Process
and the agile method, aiming primarily at customizing this
with a considerable reduction in the number of phases and
artefacts. With its focus upon obtaining an improved
management of the software development process in
companies with public office characteristics. The hope
therefore is to contribute to the perspective of the integration
of hierarchical models, conceptually defined in government
corporate projects, such as GRPs.

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 271

ISBN: 1-60132-446-4, CSREA Press ©

The methodology proposed herein will be referred to as
SDM-GRP, which stands for Systems Development
Methodology – Government Resource Planning.

The objective behind SDM-GRP is to direct the public
office development teams in the use of the methodology as a
reference guide for the building of modules and/or sub-
modules, which make up integrated systems compatible with
GRPs. It is important to highlight that although the
methodology can be inspired upon common public office
processes related to education, there does not exist any
reason through investigation or otherwise, as to why it
should not be used in projects of a different nature.

Besides this, SDM-GRP is organized into papers,
artefacts, projects and maintenance, where each project
contemplates a sequence of phases and each phase defines
activity flows that contemplate the realization of planning
meetings, follow-ups and the production of control artefacts.

The SDM-GRP is organized into four phases, inception,
elaboration, construction and transition, in accordance with
that proposed by the UP. However, the nature of each phase
is differentiated in relation to the traditional processes of UP.
In fact, at each phase a development adjustment is proposed,
which was guided through a common necessity of the
development teams in public environments. Such
environments contain in their essence; characteristics close to
those of software development projects.

The idea proposed herein is related to the fact that at each
phase a set of activities are produced, and consequently a set
of artefacts for documenting the development process.
Therefore, at the end of each phase, one hopes to obtain such
artefacts, be they textual or diagrammatic, depending on the
phase in question. Following on, Figure 4 presents the
structure for the phases of SDM-GRP.

Fig. 4 - SDM-GRP Phases.

A. Inception Phase
The Inception phase has as its underlying objective the

formalization of the module for development. This
formalization must be duly registered by the client of the
module, under the pretext of identifying the demand
necessary in order to attend to that area of business. This
registration will be realized by means of the Document of
Official Demand – DOD, which is an official document
within any public institution. After the filling out of the
DOD, an analysis will be made between the acting parties of
Project Manager and the Sponsor to render the initial view of
the project scope, and register into the documentation the
Term of Project Initiation – TPI. This is aimed at starting the
Project Plan that will envisage the planning over the
execution of every production process in the module.

By means of these three documents, the Project is
initiated, together these should provide conditions necessary

for the building of the module ready for development.
Presented in Figure 5 is a clear vision of the Inception phase.

Fig. 5 – Project Inception Phase.

B. Elaboration Phase
The Elaboration phase will be realized by the team

denominated as “Requirements team”, and will have as its
underlying role to inspect the requirements for the demanded
feature. This phase should carry out the approximation and
communication activities among the other teams that work
on other project modules related to the integrated system.
This alignment will occur by means of weekly meetings
between the team Systems Coordinators. Presented in Figure
6 are the processes for the Elaboration Phase.

Fig. 6 – Elaboration Phase of the MDS-GRP.

In order to demonstrate how the iteration should transpire,
the requirements team needs to carry out weekly meetings
with the stakeholders, so that these present the concepts
behind the definitions and flow necessary for attending to the
demand. All requirements should be registered by the
requirements team, and then are transformed into
screen/report prototypes. Apart from the prototypes, the
requirements team needs to draw up the diagrams for Cases

272 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

of Use with the objective of presenting to the module
stakeholders, the understanding behind the conducted
interaction. When inconsistencies occur in the requirements
raised and these are constituted as invalid, new iterations are
performed in order to validate the feature demanded. This
flow continues until the final validation of the requirements
by the applicant. Once the understanding has been obtained it
needs to be formalized through the artefact “Agreement
Acceptance”, which will contain the signature from one of
the stakeholders indicated by the sponsor or by the project
sponsor. Further still, in this phase the requirements team
should always feed the Product Backlog document with the
features registered in the module, as well as the time
estimated for implementing each one.

It is recommended that in order to identify the
requirements, the cycle be divided into three instants, those
being the first for raising the feature requirements, the second
for presenting the prototypes and the diagrams for Cases of
Use and carry out any possible adjustments. Finally, the third
for presenting the realized adjustments, thus closing the
raising requirements phase cycle validated by the client.

C. Construction Phase
The Construction phase refers to the activities for system
architecture, implementation and tests. For this phase, the
team responsible for all the activities is denominated as “The
Development Team”, and has as its responsibility to perform
the codification and the tests of the proposed module. Also in
this phase, the participation of the stakeholder is projected
into the performing of tests on the features that have been
released. Following on, Fig. 7 presents the Construction
phase.

Fig. 7 – Construction phase of the MDS-GRP.

 In this phase, besides the textual artefacts and graphs
being generated, the source code and all the data structure
necessary for the production of the module are also
generated. Highlighted here therefore, is the need for
integrating the already existing modules, along with the data
structures common to the assistance provide to all system

components in an integrated system with GRPs features.
Hence, the development team should try to see that there are
no inconsistencies or redundancies contained in the features
or information.

 Another important point is that the teams should be
aware of, is the standardization in the three-tier development
(model, vision, controller), in order to establish a unit and an
alignment between all the developers from all the teams.
Moreover, the codifications should be directed by artefacts
defined by the requirement team, and these can only be
codified after the acceptance agreement has been signed by
the requesting agent involved in the iteration.

D. Transition Phase
Finally, the Transition phase culminates in the closing of the
development cycle for the module. In this phase, a report is
put together that should register the possible integrations
with other modules, user training for those that will
operationalize the module and the final acceptance
agreement for the module signed by its sponsor. In Fig. 8, the
processes developed in the Transition phase are presented.

Fig. 8 – Transition phase of the MDS-GRP.

V. CASE STUDY

In the interest of defining a proof of concept, the SDM-
GRP was applied to the three teams from the software
manufacturer of a public educational institution known as the
Federal Education Institute, Science and Technology of
Mineiro Triangle (IFTM), in Brazil. The objective therefore
was to evaluate the strong and weak points in the teams to
reach better qualitative results in the process for systems
development within the IFTM ambient.

The IFTM Institute
The Federal Education Institutes were created in December

of 2008, with the objective of attending to the professional
education and technology in the social context of Brazil. In
consequence, the IFTM Institute was established. This institute

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 273

ISBN: 1-60132-446-4, CSREA Press ©

currently counts on 1000 full time staff for serving the 7830
classroom students and 1200 distance learners. As one can see,
there is a meaningful amount of people and procedures to
process all together.

The Teams
In the furtherance of attending to demands from the area

of Information Technology and Communication, the
organizational structure from the institution created a
department called the Board of Information and
Communication Technology. The purpose of this board was
to attend to all the software projects from the IFTM. For this
case study, the collaborators from the system teams were
involved, in accordance with the organization scheme
presented on Table III, which has three teams with a leader
and two developers each. These teams work in line with one
another in order to synchronize the development actions for
the software projects.

TABLE III

 Team Identification
Team Identification Quantity of collaborators

Team1 One coordinator and two developers

Team2 One coordinator and two developers

Team3 One coordinator and two developers

Identification of the specific Case Study problem
The administrative and management models went through

severe changes with the implementation of this new
institution, which demanded emergent solutions concerning
the automatization of these processes.

In addition to all the mapping performed at the inventory
of the existing software at the IFTM facilities, an
investigation was performed into how the systems
implemented at the prior institutions were developed, and
detected that were no formal methodologies registered, only
individual activities and small systems were developed to
meet the specific needs of sectors using the product-code
methodology. Thus, there were no artefacts found, which
existed as documentation only non-structured source-codes
from different software.

In this scenario, the IFTM management flagged various
problems, such as system integration, communication
protocols between people and processes, as well as a
significant amount of time spent in the detection of solutions
to problems in the systems, among other forms of misuse.

The GRP-IFTM project
Under the presented scenario, a project called GRP-IFTM

was created, which has as its aim to integrate all the
administrative and management processes developed in the
IFTM facilities. This project was divided into modules, as
shown in Figure 9.

Administrative
Modules

Acronym: MAD

Academic
Modules

Acronym: MAC

INDICATORS
(Business Intelligence)

GRP-IFTM
(Integrated Information System)

Extension
Modules

Acronym: MEXT

Search
Modules

Acronym: MPES

Planning
Modules

Acronym: MPLAN

VIRTUAL-IF
(Intranet System),
Portais (Sites) and
Education systems
Distance - MOODLE

M
ain axis

Module - Warehouse
Acronym: MAD-ALMOX

Module - Heritage
Acronym: MAD-PAT

 MAD-GA – Indicators
(Business Intelligence)

Administrative Modules - MAD
(Integrated Information System)

Module - Protocol
Acronym: MAD-PROT

Module - Bidding
Acronym: MAD-CLT

Module – Control of
the fleet

Acronym: MAD-
VEICULOS

Module -Production
Control

Acronym: MAD-PROD

Module – People
Management

Acronym: MAD-RH

Module - Information
Technology

Acronym: MAD-TI

Module - Contract
Management
Acronym:MAD-
CONTRATOS

Module - General
Service

Acronym: MAD-SG

M
ain axis

M
ain axis

Fig. 9. Design vision of the project GRP-IFM

For this case study, the following modules MAD-

ALMOX, MAD-GAB and MAC-PROT were separated, in
order to be applied to the proposed methodology. The
distribution of the sub-modules was organized as presented
in Table IV.

TABLE IV.

Distribution of the sub-modules between teams
Team Module Description of the sub-modules
Team01 MAD-ALMOX Inventories Module
Team02 MAC-PROT Academic Protocol Module
Team03 MAD-GAB Office Manager Module

VI. APPLICATION OF THE PROPOSED
METHODOLOGY

The application of the proposed process was initiated
through means of training, incorporating every member from
the three teams. During training, all phases were presented,
the papers and the artefacts that need to be generated.
Besides the training of the proposed process, the
management environment from the Redmine® project was
presented and configured for this case study. In so doing, it
was possible to monitor all the project activities, along with
permitting the storage of the artefacts produced.

In the pursuance of evaluating the methodology in its
varied stages, the Project denominated as MAD-GAB –
(Office Management Module – the module that controls
activities, demands, official documents and other
administrative tasks associated with the IFTM rectory), was
chosen as a case study. This choice is based on the level of
involvement and area of expertise of the team in the referred
project. In the following, the events (steps) associated with
the evaluation of the methodology are presented in
chronological form.

Step 1: the first interaction, planned as an activity in the
design proposal stage, took place between the project
sponsor (usually someone in senior management), with the
Project Manager (Fig.). In this meeting, the outline of the
project was established and its initial scope was set out.
Through this, the first artefact designed for the methodology
was produced and defined as the Document of Official
Demand – DOD. In this same interaction, the macro features
were presented by the sponsor (Private and Public agenda of

274 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

the Rectory, Registration of Demands, Document Emission
and Meetings Manager) in order to attend to the required
demand. These features were used to promote another
forecast artifact: the Project Opening Agreement – POA.

In possession of these two artefacts DOD and POA, it was
possible to elaborate the Project Plan (PP), where an
estimated chronogram was elaborated for the next
interactions. As a task for the Project Manager, it falls upon
the activity organization and project tasks in the Management
environment – Redmine®.

Step 2: the next iterations occur between the requirements
team and the stakeholders responsible for the specific
knowledge of the discussed area (chief of staff, executive
secretary and administrative assistant's office). In the first
team iteration, the previously generated artefacts were
presented (DOD, POA and the Estimated Chronogram) and
the first discussion cycle was initiated for raising the system
requirements, directed by its features, as provided in the
elaboration phase (Fig.). In practice, the implementation of a
feature generates various requests. For example, a feature
from the MAD-GAB module, denominated here as “Demand
Management”, generated various requirements necessary for
its construction. For each feature/requirements identified, the
team responsible registered this information on an
appropriate form. Besides this, as previously stated, the
minutes were taken for the discussions held by all present.

Step 3: Following on, the teams responsible for each
group of requirements, that are using the methodology, go on
to elaborate the screen prototypes and the diagrams for Cases
of Use. To reach an approval for a screen design it is
necessary to get the appropriate release and signature from
the sponsor or a stakeholder designated by the very same
sponsor.

After realizing these activities, it becomes the
responsibility of the coordinator to elaborate the plan for the
next meeting. Once again, the artefacts and the information
resulting from the iterations are registered into the Redmine
management system.

Step 4: Conducive to presenting the work produced, other
iterations were performed in the furtherance of approving the
requirements regarding each feature. In this meeting, the
screen and the Cases of Use were adjusted in accordance
with the understanding of those involved. When there is
reached a mutual agreement and acceptance by the members
of the project, two new artefacts are produced, the Product
Backlog and the Acceptance Agreement. It is important to
highlight that the Product Backlog is built upon and updated
at each iteration. However, in its final version, this document
presents an effort estimate as support to the development
team.

Step 5: Now, in the construction phase, the developer
team uses the requirements (and artefacts) registered in the
Redmine environment, for the elaboration of the Data
Dictionary, the Sequence Diagram and the Class Diagram
(Fig.). Next, the team created the codification artefacts and
definitions for the bank structure for attending to the features.

Step 6: Finally, in the Transition phase (Fig.), the
integration team presents the feature to those teams
responsible for other GRP components, and register the
possibilities for integration with other modules from the

system. The artefact hoped for through this step is the
Integration Report.

Step 7: Still in the Transition phase, the development
team implements the feature from the module on the
production server, under the intention of delivering the
functional component in operation. Thus, it is first necessary
to elaborate the part of the manual that refers to the approved
feature. This step is important for training the users on how
to operate the released feature in an effective and efficient
manner. The last artifact from the cycle is the Final
Acceptance Agreement, duly signed by the stakeholder
involved or by the project sponsor.

VII. CONCLUDING REMARKS

This work presented a proposal for the adjustment of the
Unified Process for the development of software. This was
applied through means of a case study at the Federal Institute
of Education, Science and Technology of Triângulo Mineiro.
The aim herein was to offer a good observance to the
development process, reflecting upon time saving during the
generation of artifacts. Noteworthy, is the fact that the
software producer had no prior methodology to which it
adhered. Therefore, the challenge laid down in this proposal
was to adapt known methodologies to the reality of the IT
teams involved.

In the interest of measuring the result of the methodology
and perform the comparison between the teams, a
questionnaire was put to both the system coordinators and its
developers. In this questionnaire, aspects of relevance were
touched upon to demonstrate the importance of adopting this
methodology. To reach this end, the evaluators were
classified as “Systems Coordinator” or “Developer”, and
went on to answer ten multiple-choice questions, under the
options of “Very Satisfied”, “Satisfied” and “Unsatisfied”.
Further still, for each question, the questionnaire allowed the
evaluator to freely describe opinions and/or possible
improvements for adjustments to the actual version of the
SDM-GRP.

After the application of the questionnaire and by means of
an analysis of the results obtained separately from both
System Coordinators and Developers, these demonstrated the
need for some required adjustments, intended for the advance
of this work.

In terms of conclusions concerning the application of the
methodology, through use of the presented case study, some
highlighted points are addressed and the conclusion drawn is
as follows:

� The application of the SDM-GRP produced improved
results, in aspects concerning communication between
the development teams.

� A revision based on the practice of interface
prototyping for consideration by stakeholders is
required.

� With a view to obtaining improved results from the
activities related to client requirement surveys, it is
pertinent to consider suggestions from evaluators
concerning the artifact Activity Diagram, as this is
grounded on an improved process compliance.
However, the remaining artifacts worked upon were

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 275

ISBN: 1-60132-446-4, CSREA Press ©

considered sufficient for an understanding of the
module.

� The need for the training of some team members for
the mounting of diagrams UML.

� There should be more profound details for the
execution of tests, before the final product release.

Finally, the adoption of methodology had as a result,
better practices in project management for software and
therefore one hopes to contribute in the perspective of the
integration with other hierarchical models from the GRP-
IFTM project.

VIII. FUTURE WORK

This work finds itself in the adaptation phase for
validation of such techniques. Therefore, important points
need to be addressed in future work, as for example, the
raising of qualitative production data, for certifying if the
adoption of this proposal is able to enhance the capacity for
software production of its collaborators. Another relevant
aspect is the application of the IBSP.BR framework
(Improvements to Brazilian Software Processes), in order to
improve the development capacity of the GRP-IFTM.

IX. ACKNOWLEDGMENTS

The authors would like to thank UFU (Federal University of
Uberlandia), IFTM (Federal Institute of Triangulo Mineiro),
CAPES (Coordination for the Improvement of Higher Education
Personnel), CNPq (National Development Council Science and
Technology) and FAPEMIG (Support Foundation Research of the
state of Minas Gerais) for all their financial support given to this
research project.

X. BIBLIOGRAPHIC REFERENCES

ALVES, N., CARVALHO, W., CARDOSO, A.,
LAMOUNIER JUNIOR, E.. Um estudo de caso industrial
sobre integração de práticas ágeis no RUP. Revista
Ciência e Tecnologia, América do Norte, 14, mar. 2012.
Disponível em:http://revistavirtual.unisal.br:81/seer/ojs-
2.2.3/index.php/123/article/view/169. Acesso em: 21 Fev.
2016.

BERTOLLO, Gleidson; FALBO, Ricardo de Almeida.
Apoio Automatizado À Definição de Processos em Níveis.
In: II Simpósio Brasileiro de Qualidade de Software, 2003,
Fortaleza, Ceará. Anais do II Simpósio Brasileiro de
Qualidade de Software, 2003. p. 77-91.

BOEHM, B.; TURNER, R. Balancing Agility and
Discipline: Evaluating and Integrating Agile and Plan-
Driven Methods. International Conference on Software
Engineering. Washington, DC, USA: IEEE Computer
Society. 2004a.

COHEN, D.; LINDVALL, M.; COSTA, P. An Introduction
to Agile Methods. Amsterdam: Elsevier, v. 62, 2004.

FUGGETTA, Alfonso. Software Process: A Roadmap. In:
22nd International Conference on on Software Engineering
(ICSE), Proceedings of the Conference on the Future of
Software Engineering, New York: ACM Press, 2000. pp. 25-
34.

GREER, D.; CONRADI, R.. Software Project Initiation
and Planning: An Empirical Study. Institution Of
Engineering And Technology, Northern Ireland, UK, v. 5, n.
3, p.356-368, 01 out. 2009.

ISO/IEC 12207, 1995, Information Techonology –
Software Life-Cycle Processes

LEFFINGWELL, D. Scaling Software Agility. Reading:
Addison Wesley, 2006.

MACHADO, Luis Filipe Dionisio Cavalcanti. MODELO
PARA DEFINIÇÃO DE PROCESSOS DE SOFTWARE
NA ESTAÇÃO TABA. 2000. 123 f. Dissertação (Mestrado)
- Universidade Federal do Rio de Janeiro, Rio de Janeiro,
2000. Cap. 1.

Mattioli, F. E. R. ; CAETANO, D. ; Cardoso A ; Lamounier,
E. . On the Agile Development of Virtual Reality Systems.
In: Int´l Conf. Software Eng. Research and Practice -
SERP´15, 2015, Las Vegas. The 2015 World Congress in
Computer Science Computer Engineering and Applied
Computing. San Diego, CA, USA: CSREA Press, 2015. v.
01. p. 10-16..

NORD, R.; TOMAYKO, J. Software Architecture-Centric
Methods and Agile Development. IEEE Software, 2006.

PAULA FILHO, Wilson de Pádua. Engenharia de
Software: Fundamentos, Métodos e Padrões. 3ª ed. Rio de
Janeiro: Ltc, 2009.

PRESSMAN, Roger S.. Software Engineering: A
Practitioner's Approach. 6th New York: Mcgraw-hill, 2006.

OSTERWEIL, L.. Software Process Are Software Too. In:
9th International Conference on Software Engineering
(ICSE), Monterey, Estados Unidos, 1987, p. 2-13.

RAMSIN, R.; PAIGE, R. F. Process-Centered Review of
Object Oriented Software Development Methodologies.
ACM Computing Surveys, v. 40, n. 1, 2008.

ROCHA, Rodrigo. et al. Uma Experiência na Adaptação
do RUP em Pequenas Equipes de Desenvolvimento
Distribuído. In: II WORKSHOP DE
DESENVOLVIMENTO DISTRIBUÍDO DE SOFTWARE -
WDDS, 2008, Campinas-SP. Anais do II Workshop de
Desenvolvimento Distribuído de Software -
WDDS. Campinas-SP: Universidade Estadual de Maringá
(UEM), 2008. p.81-90

SHACH, Stephen R.. Engenharia de Software: Os
Paradigmas Clássico Orientado a Objetos. 7ª ed. São Paulo:
Mcgraw-hill, 2009.

SOMMERVILLE, Ian. Engenharia de Software. 9ª ed. São
Paulo: Pearson, 2011.

SOUZA, Francisco Flavio de ; BRAGA, R. T. V. . Um
Método de Desenvolvimento de Sistemas de Grande Porte
Baseado no Processo RUP. In: 1º Simpósio Brasileiro de
Sistemas de Informação, 2004, Porto Alegre - RS. Anais do
1º SBSI, 2004. p. 31-38.

276 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

A Validation Strategy for an Automatic Code Generator using Java
Pathfinder

S. L. M. Barrocas1 and M. V. M. Oliveira1,2
1Departamento de Informática e Matemática Aplicada, Universidade Federal do Rio Grande do Norte

2Instituto Metrópole Digital, Universidade Federal do Rio Grande do Norte

Natal, RN, Brazil

Contact: marcel@dimap.ufrn.br

Regular Research Paper

Abstract— The use of formal methods in software engineer-
ing considerably reduces the number of errors throughout
system developments by enforcing a rigorous specification
and verification before reaching a final implementation. The
translation from a formal specification to executable code
can be automatically achieved using automatic translators.
The correctness of such translators, however, is still an open
issue. This paper proposes an approach to validate such
translators and use it to validate JCircus, a translator from
Circus to Java. The validation encompasses the development
of a strategy to model check executable programs automati-
cally generated from Circus specifications by JCircus. Here,
we focus on refinement model checking; hence, our strategy
checks if the generated code refines its source specification.
Together with coverage-based testing techniques, our strat-
egy validates JCircus, making it a more robust and trustable
automatic translator from a formal specification language to
a programming language.

Keywords: formal methods, model checking, validation, Circus,

code synthesis

1. Introduction
Formal methods are techniques that specify systems using

formal notations underpinned by rigourously defined seman-

tics. Due to the effort required to apply such techniques, their

application usually become expensive. For this reason, their

use have normally been justified only in the implementation

of concurrent and safety-critical systems. An interesting

effort to minimize the costs of applying formal techniques

is the implementation of automatic translators from formal

notations to mainstream programming languages.

Circus [1] is a formal specification language whose syn-

tax combines the syntaxes of Z [2] and CSP [3]. This feature

of Circus allows the representation of concurrent systems

with large amount of data in a non-implicit fashion. Circus
has a refinement calculus [4] with transformation rules that

can be used to refine Circus abstract specifications into

Circus concrete implementations. Circus has been provided

with both, a denotational semantics [4], and also an opera-

tional semantics [5] that contains rules that can be applied

to generate labelled predicate transition systems (LPTS) of

a given specification. A LPTS is a structure that represents

the specification as a graph with nodes that represent the

states of a Circus specification, and arcs that represent its

possible execution paths.

JCircus [6], [7] is a tool that translates Circus spec-

ifications into executable Java code. The generated code

uses JCSP [8], an API that provides abstractions to easily

implement in Java some CSP constructs such as communica-

tion, multi-synchronisation, parallelism and choice. JCircus’

generated code not only contains a JCSP implementation of

each process in the specification, but also a Graphical User

Interface (GUI) that enables the interaction of the user with

the translated process.

The use of automatic translators like JCircus facilitates

the implementation of systems that are based on a formal

specification. These translators, however, are themselves

usually susceptible to implementation errors. This may be

due to errors in the translation strategy or even to simple

implementation errors. Thus, to increase the confidence of

the generated code, a validation strategy is imperative. An

interesting approach is the combined use of software model

checking and testing techniques. In this paper, we propose

a strategy to validate JCircus by verifying, using software

model checking, the correctness of the code generated by

JCircus for a set of Circus specifications whose transla-

tions guarantee maximum Decision-Coverage (DC) of the

JCircus’ source code. This strategy, depicted in Figure 1, is

based on Java Pathfinder (JPF) [9], a software model checker

developed by NASA. The strategy can be summarised as:

1) Generate the Java code that implements the specifica-

tion using JCircus;

2) Generate the LPTS of the specification, which repre-

sents the semantics of the specification;

3) Generate a JPF Model of the LPTS, and analyse its

interaction with the generated code to check if it

correctly implements the original specification;

4) Using EclEmma1, repeatedly apply steps 1 to 3 to the

1http://www.eclemma.org/

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 277

ISBN: 1-60132-446-4, CSREA Press ©

Fig. 1: Overall JCircus Validation Strategy

elements of a set of Circus specifications, ensuring

maximum Decision-Coverage of the JCircus source

code.

This paper is organised as follows. In Section 2, we

introduce the relevant preliminary material. Section 3 details

our strategy for validating JCircus, briefly explaining the

Circus operational semantics and how it is used to generate

the JPF model used to model check the generated Java

code. Finally, Section 4 describes related work and Section 5

summarises our results and future directions of our work.

2. Preliminaries
2.1 Circus

Circus [1] is a formal specification language that com-

bines Z [2], CSP [3] and Dijkstra’s language of guarded

commands [10]. This combination makes Circus suitable to

represent concurrent systems with complex data structures.

Circus has an associated refinement calculus [4] with rules

that allow transformations from a centralised abstract spec-

ification to a concrete distributed implementation.
A Circus specification is defined in terms of paragraphs.

Each of these paragraphs can either be a Z paragraph, a

channel definition, a channel set definition, or a process

declaration. The declaration of a process is composed of its

name (possibly followed by parameters) and its definition.

A process may be explicitly defined, or it may be defined

in terms of other processes (compound processes). When

a process is explicitly defined, besides the definitions of

the state (using Z) and the main action, we have in its

body Z operations on the state and definitions of (possibly

parametrised) actions; they are used to specify the main

action of the process.
An action can be a schema expression, a guarded com-

mand, an invocation to a previous defined action, or a

combination of these constructs using CSP operators. Fur-

thermore, state components and local variables may be

renamed; however, no channel name can be changed.

process CONTROLLER =̂ begin
state ACST == [preferred : N]
INIT =̂ preferred := 25
CTR =̂
μX • switchoff → Skip

� preferredtemp?np → preferred := np; X
� startcycle → getplug?p → getturn?t →

gettemp?tp →⎛⎜⎜⎜⎜⎜⎜⎝
(p = IN ∧ t = ON ∧ preferred < tp)&

cooldown!preferred → endcycle → X
� (p = IN ∧ t = ON ∧ tp ≤ preferred)&

cooldown!tp → endcycle → X
� (p = OUT ∨ t = OFF)&

endcycle → X

⎞⎟⎟⎟⎟⎟⎟⎠
• INIT; CTR
end
process SENSOR =̂ begin

state SensorSt == [memory : N]
INIT =̂ memory := 0
SNSR =̂ μX • readtemp?nt → memory := nt; X

� gettemp!memory → X
� switchoff → Skip

• INIT; SNSR
end
process AIRCONTROLLER =̂

(CONTROLLER |[{| gettemp, switchoff |}]| SENSOR)
\ {| gettemp |}

Fig. 2: The specification of the CONTROLLER

Circus has three primitive actions: Skip, Stop and Chaos.

The action Skip terminates successfully and does not change

the state. The second action deadlocks and Chaos diverges.

The prefixing operator is standard, but a guard construction

may be associated with it. For instance, if a given Z predicate

p is true, the action p&c?x → A inputs a value through

channel c and assigns it to the locally defined variable x,

and then behaves like A, which has x in scope. If, however,

the condition p is false, the same action deadlocks. Such

enabling conditions like p may be associated with any action.

In order to illustrate Circus, we present the specification

of a room controller that regulates its temperature according

to the preference of the user. The room has a controller that

receives the preferred temperature of the user and outputs an

air with a temperature that cools down the room accordingly.

There is a sensor that captures the environment temperature

and communicates it to the controller. In order to work, the

air controller needs to be plugged in and turned on. We

present the specification of the controller in Figure 2.

The process CONTROLLER has a single state component,

preferred, that stores the current preferred temperature. Fur-

thermore, this process has two actions, INIT and CTR. The

278 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

action INIT initialises the variable preferred to 25. Next, the

action CTR initially offers a choice between (1) switching

off the controller (switchoff) and terminating, (2) setting

the preferred temperature (preferredtemp?np), in which case

the value of preferred is updated, or (3) starting a cycle

(startcycle) for cooling down the room. If a cycle is started,

the controller retrieves the status of the plug, the status

of the sensor, and the environment’s temperature. If the

plug is in and it is turned on, it cools down the room by

outputting the minimum between the preferred temperature

and the room temperature, after which it indicates the end

of the cycle through endcycle and recurs. If either the plug

is out or it is turned off, it takes no further action and

simply indicates the end of the cycle before recursing. The

main action of the process is given after the symbol •. It

defines the process behaviour: the CONTROLLER performs

the initialisation INIT and then behaves like CTR.

The controller interacts with a temperature sensor, that

captures the room temperature and sends it to the controller.

After its initialisation, the sensor may either (1) retrieve the

temperature of the environment (readtemp?nt), in which case

it updates its memory, or (2) output its value through channel

gettemp, or (3) be switched off via channel switchoff .

The process AIRCONTROLLER specifies the whole sys-

tem. It is defined as the parallel composition of the

CONTROLLER with the SENSOR, hiding the channel

gettemp from the environment. The air controller and the

sensor synchronise on channels gettemp and switchoff .

Circus has two main tools: CRefine, a tool that supports

the application of the Circus refinement calculus [11]; and

JCircus [6], a tool that translates Circus specifications into

Java code. The generated code uses the JCSP API [8], which

implements most CSP constructs, channels, prefixing, paral-

lel composition, multi-way synchronisation, communication

and choice. JCircus is based on transformation rules of a

translation strategy proposed in [4] and extended in [7].

JCircus has an extremely simple GUI in which the user

simply selects the input specification file and defines the

name of the output java project. Finally, the user is asked

to choose the system’s main process. This choice defines

the behaviour of the program that is automatically generated

for specifications compliant with JCircus’ requirements. If,

however, the specification is not compliant, the translation

aborts and errors messages are displayed.

For each process on the specification given as input, JCir-
cus generates a Java program that implements its behaviour

and a Graphical User Interface (GUI) that allows a direct

interaction between the user and the processes. For example,

Figure 3 illustrates the GUI of the AIRCONTROLLER.

Each button corresponds to a visible channel of the pro-

cess: readtemp, startcycle, preferredtemp, switchoff , getturn,

getplug, cooldown and endcycle. The channel gettemp, how-

ever, is hidden from the external environment and is not part

of its GUI. Each button may be associated with combo boxes

Fig. 3: GUI of the AIRCONTROLLER implementation

that correspond to communication fields. When a button is

clicked, a successful synchronisation on the corresponding

event is logged in the text area. If the event is not being

offered, nothing happens.

2.2 Java Pathfinder
Java Pathfinder (JPF) [9] started as a software model

checker. It, however, currently has various different execu-

tion modes and extensions. All these modes and extension

are commonly used to verify Java programs. In our work,

we focus on JPF’s original feature, software model checking,

which is still what JPF is mostly associated with.

JPF is able to verify the bytecode of a Java program. It

works as a virtual machine that executes a Java program

in all possible ways, searching, for example, for property

violations and deadlocks. Using JPF, we are able to model

check a given Java code by defining the target class, i.e.

the class that we want to model check, and providing a JPF

model that executes the target class in all possible ways.

For example, let us consider the following Java program

that sums two integers.

public class SumIntegers {
int x, y;
public SumIntegers (int x, int y){

this.x = x; this.y = y; }
public int sum () {

return this.x + this.y; }
}

Using JPF, we may defined the following model that gener-

ates values for SumIntegers.

public class SumIntegersModel{
public static void main (String[] args) {

int x = Verify.getInt(1,3);
int y = Verify.getInt(1,2);
SumIntegers si = new SumIntegers(x,y);
System.out.println(si.sum());

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 279

ISBN: 1-60132-446-4, CSREA Press ©

}
}

This model exemplifies the use of the Verify.getInt
choice generator, which generates execution paths for the

given range of values. The execution of this model, for

example, runs SumIntegers.sum() in all possible ways

with x ranging from 1 to 3, and y ranging from 1 to 2.

3. Model Checking Circus Programs
In order to achieve our main goal, the validation of

the automatic translator from Circus to Java, we have

defined a set of Circus specifications whose translations

satisfy coverage criteria described in Section 3.3. For each

specification in this set, we follow a strategy that ensures

that the behaviour of its translation is a valid refinement,

which means that the execution of the Java code behaves in

accordance with the original specification. This strategy au-

tomatically checks the possibility of execution of sequences

of events (traces) and compares this behaviour (acceptance

or refusal) with the original intended behaviour described in

the specification. The strategy consists of using a compiler

we developed (LPTS generator), which receives a Circus
specification and produces the corresponding LPTS. Based

on this LPTS, we automatically generate a JPF model that

is used by JPF to exercise the generated code, checking

the availability of the corresponding events. The LPTS

generation was based on the Circus operational semantics,

which we discuss on the sequel.

3.1 Circus Operational Semantics
Circus operational semantics was first presented in [12].

This semantics consists of a set of transition rules that allows

the transformation of a Circus specification into a LPTS,

which is composed of:

• A set of nodes: each node stores the current values of

the state components (S), the text of the program that

remains to be executed (P), and the constraint (C), a

boolean expression that indicates if the node is enabled

or not;

• A set of arcs: each arc links two nodes, a source node

and a destination node. The arc can be labelled either

with an ordinary event or with the special silent event τ .

Labels with ordinary events indicate that the program

may evolve from the source node to the destination

node if, and only if, it performs this particular event. If

it is labelled with a τ , the program may evolve silently

from the source node to the destination node (silent

transition). This means that, from the environment

perspective, the system can be in either node.

Each of the transition rules links two nodes using an arc. A

transition n1 →a n2 establishes that, if the event a occurs,

the system evolves from state n1 to state n2.

Fig. 4: LPTS of process SENSOR

By way of illustration, the LPTS of the SENSOR is

presented in Figure 4. The initial node n1 is the source

node of the silent τ transition to the destination node n2: it

consumes the content of the call to INIT , which is an

assignment, and then converts it to Skip. From n2 to n3,

Skip is consumed (also silently) on the program text. The

transitions from n3 to n5 are related to the consumption

of the declaration of the mu action (μX) and the first step

of the external choice treatment. The node n5 leads to

three possible paths: gettemp.w3, readtemp.w1, or switchoff .

When gettemp.w3 is consumed, the program text is formed

by the recursive call X, and the program returns silently to

node n4. If readtemp.w1 is consumed, there is a sequence of

consumptions of the remaining sequence (temp := nt; X),

which finishes with a silent transition that consumes X and

leads back to node n4. Finally, if switchoff is consumed,

the program terminates on node n10 with Skip on the

program text. In some transitions like those that consume

gettemp.w3 and readtemp.w1, loose constants like w3 and

w1 are declared on the LPTS. In these cases, constraints on

these constants are also added to the target node.

The output of our LPTS generator is the input given to

our JPF model generator, which generates the JPF model

that is used to validate the Java translation of the Circus
specification. The generation of this model is discussed next.

3.2 JPF Model Checking
The JPF Model generated from the LPTS of a given

specification exercises the code generated by JCircus. This

exercise internally tries to synchronise on all possible com-

binations of events (considering different values) and checks

if the acceptances and refusals correspond to the expected

behaviour. The synchronisation attempts are done by simu-

lating “clicks” on the GUI buttons that correspond to each

280 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

individual event with the desired values.
Our tool exercises all the transitions of all paths of

execution. Basically, branches are originated either from

choices (internal or external) or from the generation of values

for communication, which are represented as loose constants

in the LPTS. Finitely branching is guaranteed by imposing

some restrictions on the domain of the variables.
The treatment of non-τ transitions is different from the

treatment of τ transitions. The non-τ transitions are used

to build the set of accepted events and the set of refused

events at each source node. The former is composed of

events whose transitions lead to destination nodes with

constraints evaluated to true, and the latter is composed of

events that either have no transitions leaving the node or

whose transitions lead to destination nodes whose constraints

evaluate to false. If either a click on an event is accepted and

this event is in the set of refused events or a click on an event

is refused and this event is in the set of accepted events,

the refinement fails. Otherwise, the exercise continues by

examining the target nodes.
The τ transitions do not cause any event click. In these

cases, we just check the constraints of the destination nodes.

If any of them fails, the refinement fails. Otherwise, the

exercise continues by examining the target nodes. This

examination continues until no further non-examined desti-

nation nodes are found. Finally, the refinement is successful

if, and only if, it is successful for all paths.
By way of illustration, let us consider the following

specification of a stateless process that internally chooses

to offer either a or b and stops after communication:

process P =̂ begin • a → Stop � b → Stop end

The first step of our strategy is to translate the specifi-

cation of P into Java (using JCircus). The resulting code

has a non-deterministic choice between both branches. The

refinement analysis of each path is achieved by exercising all

possible sequences of events of the process on the LPTS (if

the arc of the transition is silent), checking if each sequence

is supposed to be accepted or not. A simplified version of

the LPTS of the P process is presented in Figure 5.

Fig. 5: LPTS of the P process

Using our strategy, the refinement of P is successful if,

and only if, it is successful for all possible branches, both

of which, start from n1:

refinement(P) ≡ refinement(n1)

In Figure 5, we can see that n1 is the source node of two

τ transitions, whose destination nodes are n2 and n4. These

nodes are reachable only if their constraints are evaluated

to true. The function constrs(n) returns the constraint of a

given node n). As both transitions are silent, the refinement

is successful for n1 if at least one of them is successful:

refinement(n1)
≡ (constrs(n2) ∧ refinement(n2))

∨ (constrs(n4) ∧ refinement(n4))

In our example, both constraints evaluate to true.

(constrs(n2) ∧ refinement(n2))
∨ (constrs(n4) ∧ refinement(n4))
≡ (true ∧ refinement(n2)) ∨ (true ∧ refinement(n4))
≡ refinement(n2) ∨ refinement(n4)

Following the analysis, the node n2 has an arc labelled

a going to n3, thus it expects a click on a to be accepted

and a click on b to be refused. In what follows we use an

auxiliary function acc(e) that indicates if a given event e has

been accepted by the translated code or not. The resulting

refinement analysis of n2 is presented below. Since node

n3 has no transitions leaving it, refinement(n3) evaluates to

true. Furthermore, no constraints were added and, therefore,

constrs(n3) also evaluates to true.

refinement(n2)
≡ acc(a) ∧ ¬ acc(b) ∧ constrs(n3) ∧ refinement(n3)
≡ acc(a) ∧ ¬ acc(b) ∧ true ∧ true
≡ acc(a) ∧ ¬ acc(b)

Simmilarly, the resulting refinement analysis of n4 is:

refinement(n4)
≡ acc(b) ∧ ¬ acc(a) ∧ constrs(n5) ∧ refinement(n5)
≡ acc(b) ∧ ¬ acc(a) ∧ true ∧ true
≡ acc(b) ∧ ¬ acc(a)

Concluding the refinement analysis for node n1, we have:

refinement(n1)
≡ refinement(n2) ∨ refinement(n4)
≡ (acc(a) ∧ ¬ acc(b)) ∨ (acc(b) ∧ ¬ acc(a))

The translated code randomly offers either a or b. We will

name these possibilities (a) and (b), respectively. Our strat-

egy exercises these two possibilities. A successful refinement

requires both exercises to be successful. First, considering

option (a), we have the event a being accepted and the event

b being refused:

(acc(a) ∧ ¬ acc(b)) ∨ (acc(b) ∧ ¬ acc(a))
≡ (true ∧ ¬ false) ∨ (false ∧ ¬ true)
≡ true

Finally, considering option (b), we have the event a being

refused and the event b being accepted:

(acc(a) ∧ ¬ acc(b)) ∨ (acc(b) ∧ ¬ acc(a))
≡ (false ∧ ¬ true) ∨ (true ∧ ¬ false)
≡ true

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 281

ISBN: 1-60132-446-4, CSREA Press ©

Hence, in both exercises we have a successful refinement.

As a result, we conclude that our code is a successful

refinement of process P.

The refinement analysis of non-recursive processes like P
terminates when we analyse all possible paths of execution

of P based on its LPTS. The analysis of each individual

execution path terminates when a node that has no leaving

arcs (e.g. nodes n3 and n4) is reached.

The verification of recursive processes as those presented

in Figure 2 is achieved by tracking the nodes visited in

the LPTS and the Java methods called during the system

execution. A correct recursive behaviour presents a one-to-

one correspondence between nodes (state values, constraints

and program text) and method calls (and its real arguments).

Hence, revisiting a node in the LPTS successfully terminates

the verification of a particular execution path if, and only if,

it is followed by the same method call in the Java code. The

refinement, however, fails if the one-to-one correspondence

is not respected.

3.3 Decision-Coverage Testing for JCircus
The model checking strategy described in the previous

sections asserts the correction of a single Circus specifi-

cation with respect to the JCircus code generated from it.

It, however, does not guarantee the overall correctness of

our translator. In order to increase the level of confidence

ir our tool, we automatically applied the model checking

strategy to a set of 67 Circus specifications whose trans-

lation requires maximum Decision-Coverage of JCircus’

source code. This set was constructed considering not only

the translatable subset of the Circus syntax [4], but also

specific conditions used in the translation of communication,

parallelism and multi-synchronisation (synchronisation of 3

or more parts). The translation of these constructs exercise

different parts of JCircus’ source code, depending on how

they occur. For example, let us consider the following paral-

lel composition of two actions running independently (also

know as interleaving): (a →Skip) ||| (a →Skip). This

composition must be translated in a special way to avoid the

parallel branches to synchronise on a. In such cases, JCircus
execution flows differently and renames each occurrence a
to avoid the actions to synchronise: (a1 →Skip) |[{| a1, a2 |
}]|(a2 →Skip). Internally, external communications on a are

transformed to communications on either a1 or a2.

Using EclEmma, a free Java code coverage analysis tool

for Eclipse, we analyse the Decision-Coverage of the source

code of JCircus achieved by this exercise. The results are

presented in Figure 6. As expected, our exercises did not

achieve 100% of coverage. There are various acceptable

reasons, described next, for not reaching full coverage.

Some of the code executed by JPF model generator

like jcircus.newutil and jcircus.parallelism
reuse libraries of JCircus that manipulate the AST. Some

of the syntactic categories, like hiding and alphabetised

Fig. 6: Decision-Coverage of JCircus

parallel, are only used by the LPTS generator, but are not

translatable. Therefore, they are not referred by JCircus.

For similar reasons, the package jcircus.exceptions
was not fully covered. This package contains exceptions that

refer to non-translatable syntactic categories. This package

also contains runtime exceptions, which are not expected

to happen since this would indicate an ill-behaviour of

JCircus. Finally, Unmarshal exceptions, which indicate

problems in the parser execution, and IO exceptions,

which indicate problems in the path to the input files

are also exceptions that are not expected to happen in

the translation of well-formed Circus specifications like

those present in our test set. JCircus uses Velocity,

an open source templating tool that generates code. Its

classes are used in the packages jcircus.visitor and

jcircus.translator. Among the referenced classes,

some exceptions indicate missing templates for generating

the JCSP code. These exceptions are not expected to take

place because all templates are correctly available. Finally,

as a good programming practice, at some points JCircus
checks if objects are null before accessing them. Neverthe-

less, these parts of the program are unreachable in a well

constructed program and are not exercised in our case.

4. Related work
Our approach is not the only one for validating a code

generator. In [13], the authors present a strategy for vali-

dating a code generator for the B-method [14]. The strategy

encompasses the automatic generation of inputs by encoding

the grammar of B on an input generator called LGen [15] and

the generation of test cases using BETA 2, which receives

the B specification as input. The work of [13] is similar to

ours because it uses Coverage-Based techniques to construct

the test set of validation. The differences lie on the major

conditions that guide the coverage measurement: while our

work mostly considers inner conditions in JCircus, the ap-

proach of [13] focuses on grammar-based coverage criteria.

Another difference is on the validation mode: while our

strategy model checks the code generated by JCircus, the

2http://www.beta-tool.info/

282 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

strategy described in [13] checks the conformance of the

generated code with the generated test cases.

The work presented in [16] describes a strategy to check

the correctness of a code generator for Programmable Logic

Controllers (PLC). Their approach generates a Timed La-

belled Transition System (TLTS) [17] for both the input

model and the generated PLC, and compares both TLTS

using model checking. We, however, generate the LPTS of

the specification and use it to construct a JPF model, which

is then used to model check the translated code, using JPF

software model checking.

5. Conclusions
The number of errors in a system development may

be considerably reduced by using formal methods in the

specification and verification of the system before reach-

ing its final implementation. From a formal specification,

the executable code may be automatically generated by

translators. However, the correctness of such translators

is still an open issue. This paper presents a strategy to

validate JCircus, a formal translator from Circus to Java.

This strategy focus on checking if the executable programs

generated by JCircus refine their source specification using

software model checking.

Our strategy for model checking involves the generation

of the LPTS of the target specification and the generation of

a JPF model that conducts the generated code. Our tool col-

lects the results of this exercise and analysis the compliance

of the behaviour of the executable code with the specifi-

cation. This validation is done for a set of Circus speci-

fications whose translations guarantee maximum Decision-

Coverage (DC) of the JCircus’ source code. As a result,

by combining software model checking with coverage-based

testing techniques, our strategy validates JCircus, making

it a more robust and trustable automatic translator from a

formal specification language to a programming language.

The approach presented in this paper differs from others

in the literature that also envisage the validation of automatic

translators [13], [16]. As far as we know, the strategies either

use model checking at the level of the formal language or

use testing at the level of the generated code. Here, we

combine software model checking with testing by using

the former to assert the correctness of the translation for

a given specification and the latter to construct the set of

specification to be translated.

The model checking strategy presented in this paper might

be accommodated to validate further automatic translators

from any formal language to Java. By providing an im-

plementation of the components presented in Figure 1, the

LPTS generator and the JPF model generator, developers

may validate their translators by applying our validation

strategy. An empirical study on the adaptation of our strategy

to other formal languages and their code generators is in our

research agenda.

Acknowledgments
This work was [partially] supported by the National

Institute of Science and Technology for Software Engi-

neering (INES), funded by CNPq, grants 573964/2008-4,

560014/2010-4 and 483329/2012-6. We thank Jim Wood-

cock for his suggestions on the implementation of the

operational semantics.

References
[1] J. C. P. Woodcock and A. L. C. Cavalcanti, “A concurrent language for

refinement,” in IWFM’01: 5th Irish Workshop in Formal Methods, ser.
BCS Electronic Workshops in Computing, A. Butterfield and C. Pahl,
Eds., Dublin, Ireland, July 2001.

[2] J. C. P. Woodcock and J. Davies, Using Z—Specification, Refinement,
and Proof. Prentice-Hall, 1996.

[3] A. W. Roscoe, The Theory and Practice of Concurrency, ser. Prentice-
Hall Series in Computer Science. Prentice-Hall, 1998.

[4] M. V. M. Oliveira, “Formal Derivation of State-Rich Reactive Pro-
grams using Circus,” Ph.D. dissertation, Department of Computer
Science, University of York, 2006.

[5] L. Freitas, “Model-checking Circus,” Ph.D. dissertation, Department
of Computer Science, The University of York, 2005, yCST-2005/11.

[6] S. L. M. Barrocas, “JCircus 2.0: Uma extensão da Ferramenta de
Tradução de Circus para Java,” Master’s thesis, Programa de Pós-
Graduação em Sistemas e Computação - Universidade Federal do Rio
Grande do Norte, 2011.

[7] A. Freitas, “From Circus to Java: Implementation and Verification
of a Translation Strategy,” Master’s thesis, Department of Computer
Science, The University of York, Dec 2005.

[8] P. Welch, N. Brown, J. Moores, K. Chalmers, and B. Sputh, “Alting
barriers: synchronisation with choice in Java using JCSP,” Concurr.
Comput. : Pract. Exper., vol. 22, no. 8, pp. 1049–1062, June 2010.
[Online]. Available: http://dx.doi.org/10.1002/cpe.v22:8

[9] W. Visser, K. Havelund, G. Brat, S. Park, and F. Lerda,
“Model checking programs,” Automated Software Engg., vol.
10, no. 2, pp. 203–232, Apr. 2003. [Online]. Available:
http://dx.doi.org/10.1023/A:1022920129859

[10] E. W. Dijkstra, “Guarded commands, nondeterminacy and the formal
derivation of programs,” Communication of the ACM, vol. 18, no. 18,
pp. 453–457, 1975.

[11] M. V. M. Oliveira, A. C. Gurgel, and C. G. de Castro, “CRefine: Sup-
port for the Circus Refinement Calculus,” in 6th IEEE International
Conferences on Software Engineering and Formal Methods, A. Cerone
and S. Gruner, Eds. IEEE Computer Society Press, 2008, pp. 281–
290.

[12] J. C. P. Woodcock, A. L. C. Cavalcanti, and L. Freitas, “Operational
semantics for model-checking Circus,” in FM 2005: Formal Methods,
ser. Lecture Notes in Computer Science, J. Fitzgerald, I. J. Hayes, and
A. Tarlecki, Eds., vol. 3582. Springer-Verlag, 2005, pp. 237–252.

[13] A. M. Moreira, C. Hentz, D. B. P. D. E. C. B. de Matos, J. B. S. Neto,
and V. G. M. Jr, “Verifying code generation tools for the b-method
using tests: A case study,” in Tests and Proofs. Springer, 2015, pp.
76–91.

[14] J.-R. Abrial, The B-book: Assigning Programs to Meanings. Cam-
bridge University Press, 1996.

[15] A. M. Moreira and C. Hentz, “Geração de sentenças para testes a
partir de descrições de linguagens,” in Proceedings of the Brazilian
Workshop on Systematic and Automated Software Testing, 2009.

[16] D. Pollmächer, W. Zimmermann, and H.-M. Hanisch, “Translation
validation for model-based code-generators for plcs,” in Emerging
Technologies and Factory Automation, 2005. ETFA 2005. 10th IEEE
Conference on, vol. 1. IEEE, 2005, pp. 8–pp.

[17] T. A. Henzinger, Z. Manna, and A. Pnueli, “Timed transition systems,”
in Real-Time: Theory in Practice. Springer, 1992, pp. 226–251.

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 283

ISBN: 1-60132-446-4, CSREA Press ©

Technical debt elicitation in text using natural
language processing techniques

Adrian S. Barb
Information Science Department

Penn State University

Malvern, Pennsylvania 19335

Email: adrian@psu.edu

Abstract—In this article we explore a methodology for knowl-
edge elicitation from textual information in software development
communities. Our goal is to evaluate and predict whether techni-
cal depth is addressed in texts related to software development.
Technical debt accumulation is a result of sub-optimal decisions
taken during the life cycle of a software project and it is difficult
to identify in textual information due to its pervasive nature.
Our methodology used natural language processing techniques
to possibilistically evaluate the relevance of a text to several
aspects of software project management such as technical debt,
architecture, code style, testing, design, organization governing,
or documentation. We use data fusion to expand the inferred
knowledge and the Choquet integral to evaluate the relevance of
knowledge of each component of information. Further we identify
a model of predicting technical debt using a linear combination
of the other aspects. To test our approach we use sample text
from IBM Developer Works website.

Index Terms—Technical debt, software development, text min-
ing, data fusion, Choquet integral.

I. INTRODUCTION

A key component of agile software development methods is

refactoring. Refactoring is the primary method to address the

issue of technical debt that is characteristic to agile software

development. Technical debt was originally described as “not-

quite-right code” [1, page 30]. In agile projects, software teams

are able to deliver projects faster by using rather immature

architecture with the expectation that the sub-optimal parts

would be be improved in subsequent releases. However, sched-

ule pressure and developer specialization may lead, in the

long term, to unmanageable and inflexible software projects

[1] which require large amounts of refactoring.

Since its introduction, the concept of technical debt evolved

to encompass any difficulties in the software development

process including new requirements, architectural or code

changes, documentation, or defects. Kruchten et al [2] pro-

posed a theoretical framework for evaluating technical debt

by limiting the scope of technical debt to only the invisible

aspects of the project such as architecture, testing, documen-

tation, or code debt. They define technical debt as “deferred

investment opportunities or poorly managed risks” [2, page

20]. The task of evaluating the relevance of text that relates to

a specific subject is difficult due to issues such as polysemy,

synonymy, or idiosyncrasy of free text. For example, upon

parsing a number of ten textbooks related to software, we

created a dictionary of more than 10,000 different words

related to software development life cycle. To handle such

complexity, we need an effective method to categorize each

evaluates word into more abstract categories that are easier to

handle.

Researchers have developed classification schemes for lin-

guistic events including several criteria for assigning verbs

to classes. Research by Dowty [3] identifies four classes of

verbs: state, activity, achievement, and accomplishment. The

four classes are separated in terms of three characteristics:

dynamicity, telicity, and durativity. A state verb, for example,

differs from an activity verb by its lack of dynamic features.

At the same time, an activity verb does not have a have a

fixed termination point (atelicity) which is one of the main

differences from an accomplishment verb. One of the most

used verb classification system was developed by Levin [4]

who classified over 3,100 English verbs in 47 top level

categories based on their syntactical behavior. Similarly, the

WordNet semantic network [5] was developed at Princeton

University and includes more than 126,000 entries in four parts

of speech: nouns, verb, adjective, and adverb. Each entry is

assigned one or many lexical categories as shown in Table

I. For example, the word “architecture is classified into three

noun categories with different probabilities: artifact, action,

and cognition with different degrees of belonging.

In this article we will assess the relevance of text to several

software development related categories: architecture, code

style, testing, design, governance, requirements, or documenta-

tion using quantitative measures. The models for each of these

categories will include 15 conceptual spaces that correspond

to the WordNet semantic classes of verbs. Each conceptual

space will have 29 dimensions that correspond to the noun,

adjective, and adverb categories. To create these spaces we

extract subject-verb-object triplets from text. For each member

of the triplet, we will determine the semantic class and assign

a possibilistic value in the corresponding conceptual space.

We will provide semantic expansion by identifying contextual

entailments for each word and will aggregate the information

using Choquet integrals. Our experiments will evaluate the

correlation between technical debt and the rest software aspect

models which will be evaluated against the Kruchten et al

[2] proposed a theoretical framework. Then we conclude the

article and provide future extensions to our approach.

284 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

II. METHODOLOGY

The main goal of our methodology is construct a quantita-

tive representation of the input text across 15 verb conceptual

spaces used in WordNet. For example, a sentence like “the

developer anticipated a major refactoring effort” should return

a higher relevance to the cognition space due to the fact that the

“anticipate” verb is mostly used as a cognition verb. WordNet

classifies this verb in the communication and social spaces as

well but with a lower probability.

The methodology in shown in Algorithm 1. First, we parse

a number of textbooks from the specific domain to build a

custom dictionary, as shown in line 1-4 of the algorithm.

Then for each custom text that we want to analyze, we

extract the subject-verb-object triplets and assign them to

word WordNet categories as shown in lines 5-10. Finally, we

compute the relevance of a text to a software development

aspect my computing the correlation between the target text

and a reference text that was previously reviewed by experts.

Details of the procedure are shown in subsequent sections.

A. Building a Software Development Dictionary

In the first step of the procedure is to build a dictionary

for software development. We accomplish this by analyzing

a number of eleven texts related to the software develop-

ment subject as follows: software engineering, object oriented

programming, software testing, project management, patterns,

agile development, architecture, and refactoring [6], [7], [8],

[9], [10], [11], [12], [13], [14], [15], [16]. These books were

indexed using an inverted index [17]. A list of most common

418 stop words was removed from the index and each term was

stemmed using the KSTEM method [18]. Further, the number

of terms was further reduced through lemmatization using the

TreeTagger approach [19]. For each of the resulting terms we

computed the term frequency using the formula:

fw =
1 + log(count(w))

1 + log

(
size(W)∑

j=1

count(wj)

) (1)

In this formula w is a term/word in the set W that appears

count(w) times in the indexed texts. This procedure resulted in

a number of 8,530 words used by the domain specific literature

as shown in Table II.

TABLE I
CLASSES OF VERBS ACCORDING TO WORDNET [5]

Part of speech Semantic Classes

Nouns action, animal, artifact, attribute, body, cognition,
communication, event, feeling, food, group, location,
motive, object, person, phenomenon, plant,
possession, process, quantity, relation, shape, state,
substance, time

Verbs body, change, cognition, communication, competition,
consumption, contact, creation, emotion, motion,
perception, possession, social, stative, weather

Adjectives all, relational
Adverbs all, participial

TABLE II
FREQUENCY OF GENERATED WORDS BY PART OF SPEECH

Type Word Count Maximum Term Frequency

Noun 3,896 1
Verb 2,162 0.953

Adjective 1,860 0.851
Adverbs 612 0.893

Total 8,530 1

Figure 1 shows the term frequency for the top 1,000 words

in each each part of speech category. For example the most

frequent noun in the surveyed literature is “test” with a term

frequency of 1 while the most frequent verb is “object” with

a term frequency of 0.953. This vocabulary will be used to

evaluate the relevance of terms in the free text that we will

analyze.

B. Information Extraction from text

The information extraction procedure is shown in Algorithm

2. First, the text is tokenized into sentences and then each

sentence is processed using natural language techniques. For

each word in a sentence we extract several characteristics such

as lemma, part of speech, and its position in the dependency

tree, as shown in lines 6-10. The dependency tree is used

to to extract subject-verb-object triplets. that will be used in

building our models. We extract triplets from three types of

related words: subject-verb-object, noun-adjective, and noun-

noun combinations. For example, the fragment “the devel-

oper anticipated a major refactoring effort” has the following

triplets: (1) develope-anticipate-effort, (2) effort is major, and

(3) refactoring is effort, which correspond to the three types

of triplets mentioned above.

Below we give a more in-depth example of text processing.

Consider the following sentence about software architecture

from the Wikipedia website: “Software architecture refers to

the high level structures of a software system, the discipline

of creating such structures, and the documentation of these

structures.” After executing steps 6-10 from the Algorithm 2

we obtain the following dependency tree as shown in Figure 2.

Note that the dependency tree shows the type of relationship

Algorithm 1 Information extraction from text

OUTPUT: possibilistic relevance of text to software aspects

1: Build software development dictionary D
2: for EACH term w in D do
3: compute term frequency f(w)
4: end for
5: for EACH input document I do
6: T ← ExtractTriplets(I) - extract tripplets

7: T+ ← T ∪ entailments(T) - entailment expansion

8: T (I) ← Choquet(T (I)) - reduce the model

9: M(I) ← as.matrix(M(I)
10: end for
11: return corr(M(Itd),M(Ireference))

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 285

ISBN: 1-60132-446-4, CSREA Press ©

Algorithm 2 Extract triplets

INPUT: Raw Text T
OUTPUT: Subject-Action-Object triplets

1: S ← tokenize(I) - extract sentences

2: result ← {}
3: for EACH Sentence S do
4: W ← words(S)
5: for EACH word w ∈ W do
6: Extract part of speech P (w)
7: Extract root word L(w)
8: Extract word dependency D(w,w1)
9: Extract dependency type DT (w,w1)

10: Extract type for each verb t(w)|w is verb

11: for EACH subject-action-object triplet (s, a, t) do
12: result ← result ∪ (L(s), T (a), L(o))
13: end for
14: for EACH noun-adjective pair (s, j) do
15: result ← result ∪ (L(s), state, L(j))
16: end for
17: for EACH noun-noun pair (n1, n2|n2 = obj(n1)) do
18: result ← result ∪ (L(n1), state, L(n2))
19: end for
20: end for
21: end for
22: return result

between two words. The word “software architecture” is a

subject in relation to the verb “refers to”.

This figure shows the lemma for each word in the sentence,

the part-of-speech using standard natural language notation

and the relation type among words in the sentence.An example

of a noun-verb-object triplet is “software architecture”, “refer

to”, and “structure”. The first noun is the subject with a

term frequency of 0.75 in our dictionary and it has a 60%

probability it refers to an artifact, 20% probability it refer to

a cognitive process, and 20% probability that it refers to a

Fig. 1. Distribution of words by rank for each part of sentence type.

Fig. 2. Parsed dependency tree with part of speech and dependency type.

TABLE III
TRIPLETS EXTRACTED FROM THE PARSED DEPENDENCY TREE

Subject Action Type Object

architecture refers to structure
software has architecture
structure has level

level is high
system has structure

software has system
architecture is discipline
discipline creates structure
discipline has documentation

documentation has structure

human activity. Similarly, the noun “structure” is the object in

the sentence and it refers to artifact, attribute, and cognition

with probabilities 50%, 27% and 14.8% respectively. The

verb “refer to” can be categorized as communication, stative,

and cognition with probabilities 46.2%, 26.7% and 17.9%

respectively. The Table III shows all the triplets extracted from

this sentence.

C. Determining Contextual Entailments

One characteristic of text communication is the variability of

semantic expression, where people express the same meaning

can using different words [20]. To better generalize our

models we need to evaluate words for which the meaning

can be inferred from used in our text. For example, when

analyzing the text provided above, one may imply that the

use of the word “software system” may entail with some

degree of relevance the word “application”. That means that

two different people may use the two words to convey the

same meaning. In general, contextual entailments generation

requires both understanding of language as well as common

background knowledge and can be acquired by analyzing a

large corpus of data. For the purpose of this article we will

use the TextRazor [21] to generate contextual entailments.

286 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

TABLE IV
EXAMPLE OF ENTAILED WORDS WITH THEIR PROBABILITY FOR ONE SUBJECT-VERB-OBJECT TRIPLET

Word Entailed Word Contextual probability P Term Frequency f Choquet C Relevant?

architecture

architecture 1.000 0.7504 0.3084 Yes
system 0.697 0.9691 0.2776 Yes

structure 0.561 0.7488 0.1726 Yes
design 0.439 0.8725 0.1574 Yes
layout 0.399 0.5118 0.0530 No

refer

refer 1.000 0.6431 0.6152 Yes
utilize 0.270 0.2600 0.0671 No

exemplify 0.201 0.3342 0.0642 No
use 0.171 0.8363 0.1368 Yes

form 0.167 0.7291 0.1164 Yes

structure

structure 1.000 0.7488 0.2021 Yes
system 0.963 0.9691 0.2519 Yes

architecture 0.941 0.7504 0.1906 Yes
framework 0.843 0.7646 0.1740 No

design 0.769 0.8725 0.1811 No

TextRazor provides for each word or phrase a list of possibilis-

tic entailments, by taking into account meaning of the initial

word in its context and provides a confidence score for each

contextual entailment. TextRazor uses DBpedia and FreeBase

as knowledgbases for their text processing.

Table IV shows the top five entailments for each word

in the triplet “architecture-refer to-structure” in the columns

“Entailed word” and the probability of entailment in the

column “ Contextual probability”. According to this data,

there is a probability of 27% that the meaning of the word

“refer” can be conveyed by using the word “utilize”. Note

that TextRazor returned a large set of entailed words: 12

entailments for “architecture”, 127 entailments for “refer”, and

43 entailments for “structure”. Also, due to different context

the two usages of the word “structure” will return different

probabilities for entailment variations.

D. Model reduction using Choquet integral

There are two main issues with using the TextRazor service

to generate the list of entailed words. First, TextRazor uses

general knowledge bases to generate the list of entailed words.

This means that this list may not be directly applicable to

the software development domain which is specialized and

idiosyncratic. Secondly, the number of entailed words is very

large. This results in increased complexity in generating the

models. To address these two issues we use the Choquet inte-

gral to aggregate and retain only the most relevant knowledge

in our models [22].

The discrete Choquet integral can be used as a generalized

method of knowledge aggregation[22]. Consider that we have

a set of entailed words E(w) = {w1, w2,...wn)} with contex-

tual probabilities Pc(E(w)) = {Pc(w1), Pc(w2), ..., Pc(wn)
The set of entailed words has the term frequency f(E(w)) =
{f(w1), f(w1), ...f(w1), }. These formulas represent a non-

decreasing permutation of the input entailed words on f(w).
The Choquet integral of each entailed word Cv(w) is given in

the equation below.

Cv(w(i)) = f(w) ∗ (Pc(x(i))− Pc(x(i− 1)) (2)

In this formula, xi refers to the Choquet capacity contained

in the set {w1, ..., wi}. As seen in this formula, this methods

assigns a higher relevance to the words relevant to the com-

munity, that have higher term frequency, as well as words that

ave higher entailment probability. For example, in Table IV

the use of word “structure” entails the word “system” with

a probability of 76.9%. However, the the word system has a

higher relevance in the context of software development and

consequently it will have a higher Choquet relevance. After

we compute the Choquet integral of each entailed word, we

reduce the set of entailed using χ2methods on the Choquet

relevance value[23]. The final decision to keep the entailed

word in the result is shown in the last column of the Table

IV.

E. Model construction

To construct the model, we cross-product all the entailed

words in each triplet. In the example shown in Table IV

will result in 36 triplets with different degrees of relevance

determined by the Choquet relevance. An example of such

transformation is shown in Table V for triplet “architecture

- refer - structure”. In total, there are 36 category triplets

of which we show, due space constraints, only the ten most

relevant ones. All the word in each triplet are then assigned

to WordNet categories. In this example the relevance of each

category triplet is computed as the average of the Choquet

TABLE V
CATEGORIES FOR THE TRIPLET “ARCHITECTURE - REFER - STRUCTURE”

Cnt Subject
category

Verb category Object
category

Relevance

1 artifact communication artifact 0.5160
2 artifact stative artifact 0.4639
3 artifact communication attribute 0.4380
4 artifact cognition artifact 0.4114
5 artifact motion artifact 0.3954
6 artifact communication cognition 0.3859
7 artifact stative attribute 0.3827
8 action communication artifact 0.3546
9 cognition communication artifact 0.3434

10 artifact cognition attribute 0.3306

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 287

ISBN: 1-60132-446-4, CSREA Press ©

Fig. 3. Example of models in the cognition space for (a) architecture, (b) technical debt, and (c) code style

Fig. 4. Distribution of words by rank for each part of sentence type.

relevance of each word in the triplet. The model generated

in this example will have four spaces that correspond to the

categories of each verb: cognition, communication, motion,

and state. Each of these spaces will have five dimensions that

correspond to the number of unique categories of subjects and

objects: action, artifact ,attribute, body, and cognition. This

representation can be easily represented as a matrix and used

to compute the correlation between models.

III. EXPERIMENTAL RESULTS AND ANALYSIS

We constructed our models using text from IBM Developer

Works [24], [25], [26], [27], [28], [29], [30], [31]. Each

of these texts contain between 120 and 190 sentences that

describe: architecture, code style, testing, design, governance,

requirements, documentation, or technical debt. Each of the

texts were converted into a model using the methodology

described in this article. The models generated varied in the

number of spaces used ranging from 11 spaces for architecture,

to 12 spaces for documentation, and 15 spaces for design or

technical debt. Figure 3 show a comparison of the models

that were generated for architecture, technical debt, and code

style. For a cleaner representation, these models were pre-

processed using PathFinder networks [32]. As seen in this

figure, the central dimension for architecture and technical

debt is “relation”. At the same time the “relation” dimension

holds a marginal role for code style. Similarly the “person”

dimension is central for code but only marginal for architecture

or technical debt. From this visual representation, we can

conclude that in the cognitive space, technical debt is more

similar to architecture than to code style.

To evaluate the results we calculated the correlation between

the “technical debt” model and all the other aspects of software

development. The results are shown in Figure 4. As seen in

this figure, technical debt is highly correlated with architecture,

design, requirements, and governance. Technical debt is least

correlated with code style, documentation, and testing. We

observed that the correlation is positive for all the aspects

and we attribute this to the fact that all these activities belong

to the same domain and they overlap. We expect we would

return a negative correlation when comparing technical debt

with a subject outside software development area. We conclude

that the results of our experiments are consistent with the

conceptual framework described in Krutchten et al. [2].

IV. CONCLUSION

In this paper, we developed a model to extract domain-

specific knowledge from free test. We applied this model to

the software development domain to determine the relevance

of a test to several aspects of software development such as

architecture, code style, testing, design, governance, require-

ments, documentation, or technical debt. Our goal was to

develop a model that would allow us to determine technical

debt indirectly from all other aspects of software development.

Our experiments compared the model created for technical

288 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

debt with other domain specific models and we showed that

the models created are consistent the knowledge frameworks

in the domain. Our future work includes much more in-

depth experiments using expert-in-the-loop and application of

our methodology to other areas such as education. We are

also interested in including domain ontologies to replace the

WordNet general framework.

REFERENCES

[1] W. Cunningham, “The wycash portfolio management system,” SIGPLAN
OOPS Mess., vol. 4, pp. 29–30, Dec. 1992.

[2] P. Kruchten, R. L. Nord, and I. Ozkaya, “Technical debt: From metaphor
to theory and practice,” IEEE Software, vol. 29, no. 6, pp. 18–21, 2012.

[3] D. R. Dowty, Word Meaning and Montague Grammar: The Semantics
of Verbs and Times in Generative Semantics and in Montague’s PTQ,
vol. 7. Springer, 1979.

[4] B. Levin, English Verb Classes and Alternations: A Preliminary Inves-
tigation. Chicago, IL: University of Chicago Press, 1993.

[5] G. A. Miller, “Wordnet: a lexical database for english,” Commun. ACM,
vol. 38, pp. 39–41, November 1995.

[6] S. Chambers and S. Chiaretta, “31 days of refactoring,” October 2009.
[7] R. T. Fielding, Architectural Styles and the Design of Network-based

Software Architectures. PhD thesis, 2000. AAI9980887.
[8] A. Shalloway, S. Bain, K. Pugh, and A. Kolsky, Essential Skills for the

Agile Developer: A Guide to Better Programming and Design. Addison-
Wesley Professional, 1st ed., 2011.

[9] K. Seguin, Foundations of Programming, Building Better Software.
BetterCode.com, 2008.

[10] T. Kühne and A. Child, “A functional pattern system for object-oriented
design,” tech. rep., 1999.

[11] W. Agresti, F. Mcgarry, D. Card, J. Page, V. Church, and R. Werking,
“Managers handbook for software development.” NASA Goddard Space
Flight Center, 11 1990.

[12] S. Demeyer, S. Ducasse, and O. Nierstrasz, Object Oriented Reengineer-
ing Patterns. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 2002.

[13] R. P. Gabriel, Patterns of Software: Tales from the Software Community.
Oxford Univ Press, 1996.

[14] I. Marsic, Software Engineering. Rutgers University, 2012.
[15] “Software testing.” Wikipedia, 2014.
[16] S. A. Conger, The New Software Engineering. Boston, MA, United

States: Course Technology Press, 1st ed., 1993.
[17] J. Zobel, A. Moffat, and K. Ramamohanarao, “Inverted files versus

signature files for text indexing,” ACM Trans. Database Syst., vol. 23,
pp. 453–490, Dec. 1998.

[18] R. Krovetz, “Viewing morphology as an inference process,” in Pro-
ceedings of the 16th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval, SIGIR ’93, (New
York, NY, USA), pp. 191–202, ACM, 1993.

[19] L. Màrquez and H. Rodrı́guez, Machine Learning: ECML-98: 10th
European Conference on Machine Learning Chemnitz, Germany, April
21–23, 1998 Proceedings, ch. Part-of-speech tagging using decision
trees, pp. 25–36. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998.

[20] I. Dagan, O. Glickman, and B. Magnini, “The pascal recognising textual
entailment challenge,” in Proceedings of the First International Confer-
ence on Machine Learning Challenges: Evaluating Predictive Uncer-
tainty Visual Object Classification, and Recognizing Textual Entailment,
MLCW’05, (Berlin, Heidelberg), pp. 177–190, Springer-Verlag, 2006.

[21] “Textrazor - extract meaning from your text.” https://www.textrazor.com.
Accessed: 2016-03-22.

[22] J. L. Marichal, “An axiomatic approach of the discrete choquet integral
as a tool to aggregate interacting criteria,” IEEE Transactions on Fuzzy
Systems, vol. 8, pp. 800–807, Dec 2000.

[23] P. M. Bentler and K.-H. Yuan, “Tests for linear trend in the smallest
eigenvalues of the correlation matrix,” Psychometrika, vol. 63, no. 2,
pp. 131–144, 1998.

[24] “What is software architecture.” https://www.ibm.com/ developerworks/
rational/library/feb06/eeles/. Accessed: 2016-05-30.

[25] “Documenting software architecture.” https://www.ibm.com/ developer-
works/ library/ar-archdoc1/. Accessed: 2016-05-30.

[26] “Test management best practices.” https://www.ibm.com/ developer-
works/ rational/ library/06/1107 davis/. Accessed: 2016-05-30.

[27] “Writing clean code.” https://www.ibm.com/ developerworks/ rational/
library/nov06/pollice/. Accessed: 2016-05-30.

[28] “Design debt economics. a vocabulary for describing the causes, costs,
and cures for software maintainability problems.” https://www.ibm.com/
developerworks/ rational/ library/ edge/09/jun09/designdebteconomics/.
Accessed: 2016-05-30.

[29] “Defining program governance and structure.” https://www.ibm.com/
developerworks/ rational/ library/apr05/hanford/. Accessed: 2016-05-30.

[30] “Requirements: An introduction.” https://www.ibm.com/ developerworks
/rational/ library/4166.html. Accessed: 2016-05-30.

[31] “Technical liability: Extending the technical debt
metaphor.” https://www.ibm.com/ developerworks/ commu-
nity/blogs/RationalBAO/entry/technical liability extending the
technical debt metaphor. Accessed: 2016-05-30.

[32] R. W. Schvanevelt, Pathfinder Associative Networks: Studies in Knowl-
edge Organization. Norwood, NJ:Ablex, 1990.

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 289

ISBN: 1-60132-446-4, CSREA Press ©

Adopting Agile Practices in Maturity Model for
Testing

Ana Paula C. C. Furtado
Informatics Center - CIn

Federal University of Pernambuco
Recife, PE, Brazil
apccf@cin.ufpe.br

Ivaldir de Farias Junior, Marcos
Wanderley

SOFTEXRECIFE
Recife, PE, Brazil

{ivaldir, marcos}@recife.softex.br

Suzana Sampaio,Ermeson
Andrade

Federal Rural University of
Pernambuco

Recife, PE, Brazil
{suzana, ermeson}@deinfo.ufrpe.br

Abstract— Software engineering comprises various disciplines

dedicated to preventing and repairing faults in software
development. In this sense, test process improvement, is a
widespread validation approach in the industry, however,
software development organizations still see the discipline of
software testing as a cost rather than an investment to generate
benefits. Within this context, the objective of this paper is to
present an experience report on the use of agile practices together
with MPT.BR to support organizations that want to implement
them together. As a result, we propose a group of testing agile
practices that can be used together with maturity models on
software testing. We conclude that agility in testing is a great
field of interest and there are great amounts of contributions that
can improve software quality.

Keywords— software testing, maturity models, agile practices.

I. INTRODUCTION

In today’s context of software development, given the
increase in the demand for products and the reduction in the
number of qualified personnel to develop them, quality is a
key concept in strategies for winning a share of this market. In
the broad context of software quality seen in Deming [1],
Crosby [2] and Juran [3] one of the common characteristics
observed is that all of these authors mention that it is essential
for the specification given to be adequate and in accordance
with clients’ needs. Hence, testing software before delivering
products to clients is one of the ways to achieve quality.
According to Meyrs [4], “software testing is the process of
executing a program with the intent of finding errors” and he
recommends that this activity should be done as early as
possible in the software development lifecycle. The earlier it is
done, the lower is the cost to fix any faults that are found in
the software. In this context, software testing is a tool that
supports the development of software which, when used
appropriately, adds value to the final product delivered to the
customer. It is necessary to plan the introduction of test
processes associated with developing software so that both can
be run appropriately.

In this context, maturity models under test, such as MPT
[5], TMM [6] and TMMI [7], are guides that assist
organizations to introduce the essential elements for the

development of the discipline of testing, given that it is not
always known where to begin to define a testing process.

Agile methods, for their part, appear in the software setting
as an alternative to software development which is faster and
more readily adaptable to the client´s needs. According to
Highsmith [8] "agility is the ability to both create and respond
to change in order to profit in a turbulent business
environment; it is the ability to balance flexibility and
stability". The practices arising from this context are also
instantiable for testing processes, which should be interpreted
as if one can map the concepts of agility for testing activities
in the software development scenario.

Therefore the aim of this paper is to present an experience
report on how some process areas of MPT.BR were
implemented together with agile methods based on data
collected from implementing the model in 27 software
engineering companies over the last 4 years.

This paper is organized as follows: the next Section gives
an overview of the discipline of software testing and its main
concepts. Section 3 gives the background of agile software
development. Section 4 explains the MPT.BR framework,
Section 5 presents the methodology used to implement
MPT.BR and Section 6 brings forward an experience report on
implementing MPT.BR together with agile practices in
Brazilian companies. Section 6 makes concluding remarks and
suggests future lines of study.

II. SOFTWARE TESTING

There have been several attempts to define activity testing,
ranging from the more empirical insight test to a formal
definition [4] and [9]. All statements give a general idea of the
definition of software testing and essentially lead to the same
overall objective of software testing which is not to find every
system/software bug that exists, but to uncover situations that
could negatively impact the business. Nevertheless, note that
the cost of finding and fixing bugs can rise considerably
during the life cycle.

It might cost 100 times more to fix a bug after the product
has been released than the fix would have cost during early

290 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

development of the product [10]. That is, the earlier a bug is
found, the cheaper it costs to fix. The cost of finding and
fixing defects rises considerably throughout all the stages in
the life cycle, as shown in Figure 1. If an error is made and the
consequent defect is detected in the requirements at the
specification stage, then it is relatively cheap to find and fix.
This is because no rework will be necessary in later stages in
the life cycle.

Fig. 1. Cost of defects [11]

On the other hand, if a defect is introduced in the
requirement specification and it is only detected in testing or
even in the operational stage then it will be much more
expensive to fix, since defects in the requirements may
propagate themselves into several places in the design and
code. It is worth stressing that it is quite often the case that
defects detected at a very late stage such as the operational
stage, depending on how serious they are, will not be
corrected because the cost of doing so would be extremely
expensive.

This Section presented the main concepts of software
testing used for consolidating the MPT.BR. The Section that
follows comments on agile concepts used as reference to
implement agile practices on MPT.BR.

III. AGILITY

Agile methodologies and their strategies began with the
Agile Manifesto [12], in which experts united to argue that the
following values should be applied to software development:

• Individuals and interactions over processes and tools;

• Working software over comprehensive documentation

• Customer collaboration over contract negotiation; and

• Responding to change over following a plan.

 One of the justifications for introducing agility into the
software development process is that customers’ requirements
often change [13]. Agile assumes that that change is not only
inevitable but also necessary to foster innovation and
adaptation [14]. The dominant idea of agile development is
that the team can be more effective in responding to these
changes [15].

In the context of agile methodologies, it is worth
describing both SCRUM [16] and Extreme Programming –

XP [17]. The former is a methodology that supports the
management of projects as it has the following characteristics:

• Short software development cycles, called Sprints;

• Constant delivery of functioning software to the client;

• Multi-disciplinary and self-manageable teams; and

• Daily meetings to monitor the team.

Extreme Programming, for its part, is a discipline of
software development based on values of simplicity,
communication, feedback, courage, and respect. It works by
bringing the whole team together in the presence of simple
practices, with enough feedback to enable the team to see
where they are and to tune the practices to their unique
situation.

According to Dingsoyr [18], the vast majority of published
articles talk about Extreme Programming (XP), despite
SCRUM being more dominant in the industry. Nevertheless,
in recent years, Scrum has been gaining more and more
prominence and has already surpassed other methods in
annual publications. While XP focuses on agile development,
Scrum focuses on agile project management. Both follow agile
values and principles but each with its own focus and
practices.

According to Beck [19], adopting XP is also related to
transforming problems into opportunities: personal growth,
deepening of relationships and improving the software
produced. The attitude of simply solving the problems is not
enough to reach the level of excellence in the production of
software. Scrum is not a methodology, it is a framework, an
iterative and incremental process, one that is simple to use
when handling complex projects [20].

McConnell [21] states that, regardless of project size, some
techniques are always valuable, such as: disciplined coding
practices, code inspections, good tool support, reviews and use
of high-level languages. These techniques are valuable for
small projects and indispensable in large projects.

The discussion on the possibility of using or not using
agile methods in conjunction with maturity models in software
processes is frequent and current [22]. Some authors discuss
the benefits of using practices from models such as CMMI to
complement agile methods, especially when the size of
projects grows. It is hoped to be able, in this way, to take
advantage of the control and discipline of these models
together with the agility and speed of response to the changes
of agile methods [23], [24] and [25].

This Section presented an overview on agility and the
development of the discipline together with software
development processes and the next Section will present
MPT.BR.

IV. MPT.BR

MPT.BR [26] uses best practices from improving the
software testing process together with the software lifecycle.
The main objectives of the model are:

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 291

ISBN: 1-60132-446-4, CSREA Press ©

• To become a reference model for defining and
institutionalizing the testing process in organizations;

• To have continuous improvements in the software
testing process talked about in accordance with the
organizational objectives and desired maturity level;

• To provide a basis for assessing and, consequently,
identifying the maturity level which is present in
organizations; and

• To collect best practices and structure them in
accordance with the levels of complexity and maturity
which are associated with them.

MPT.BR consists of two components:

• Reference model: this document presents the main
structure, the process areas and the practices of the
model; and

• Assessment guide: this includes the assessment
process and instructions on evaluating an
organization based on MPT.BR.

A. Reference Model
The MPT.BR reference model presents five maturity

levels, representing the stages for the evolution of a test
process in the context of an organization. The maturity levels
are:

1) Partially Managed: this represents the first maturity
level for an organization. It contains the minimal requirements
that a company needs to meet in order to demonstrate that the
discipline of testing is applied to projects and that this takes
place in a planned and monitored manner.

2) Managed: the second maturity level of testing in an
organization has a broader visibility in which the scope of the
project starts to be controlled by the management of change
process. In addition, software testing patterns are defined and
processes are monitored and controlled.

3) Defined: at this level, testing becomes organizational.
Defined software processes are adopted, quality assurance is
institutionalized in order to support process definition,
responsibilities for test organization are defined and a
measurement program is institutionalized in the organization.
At this level, the software testing lifecycle is associated with
the development one, where static and acceptance testing are
formalized and systematic procedures are applied for test
closure.

4) Defect Prevention: the fourth level focuses on
preventing defects and systematically improving the quality of
the product. At this level, the organization has a process for
managing defects, in which defects found are monitored. For
these defects, corrective actions are taken to prevent new
defects occurring due to the same root cause. A risk analysis
of the non-functional attributes of the products is made and
non-functional tests are conducted to minimize such risks. It is
also, at this maturity level, that an analysis is made to
determine the effectiveness of the tests and to determine the
quality level of the product objectively.

5) Automation and Optimization: the fifth maturity
level sets out to establish a process for testing that
continuously improves tests and automates them. Among the
characteristics of this level, it is important to mention that

there is a systematic approach to automating the conduct of
tests and to adopting CASE tools. The testing process is
statistically controlled and undergoes continuous
improvement.

Each maturity level consists of a group of process areas. A
process area is a set of related practices which, when
collectively implemented, satisfy a given objective. Each
maturity level is also associated with a group of generic
practices that need to be applied to each process area that
comprises the desired maturity level. A generic practice takes
into account process capabilities that need to be met by all
process areas of a given maturity level.

For an organization to reach a given maturity level, it
should demonstrate through the assessment, that the testing
process applied in its project is in compliance with all process
areas of that level together with those of the previous levels.
The organization needs to demonstrate that generic practices
associated with the level are also in compliance. Table I
summarizes the maturity levels including MPT.BR
process areas.

TABLE I. MPT.BR MATURITY LEVEL AND PROCESS AREAS

Maturity Level Process Areas
1- Partially
managed

GPT – Test Project Management
PET – Test Project and Implementation

2 – Managed

GPT – Test Project Management (evolution)
PET – Test Project and Implementation
(evolution)
GRT – Test Requirement Management

3 – Defined

GPT – Test Project Management (evolution)
PET – Test Project and Implementation
(evolution)
FDT – Test Closure
GDQ – Quality Assurance
MAT – Test Measurement and Analysis
OGT – Test Organization
TDA – Acceptance Testing
TES – Static Testing
TRE – Training

4 – Defect
Prevention

OGT – Test Organization (evolution)
AQP – Product Quality Assessment
GDD – Management of Defects
TNF – Non-functional Testing

5 - Automation
and Optimization

AET – Automating the conduct of Tests
CEP – Statistical Control of the process
GDF – Management of Tools

Process areas described as “evolution” mean that more
requirements evolve from the previous level to the following
one, these being requirements that were not mentioned before.
Table II takes into account generic practices in accordance
with the maturity level.

TABLE II. MPT.BR MATURITY LEVEL AND GENERIC PRACTICES

Maturity Level Generic Practices

1- Partially
managed

PG1 – Reach Defined Results
PG2 – Establish Organizational Policies
PG3 – Plan Process Implementation
PG4 – Identify and Provide Resources
PG5 – Define Authority and Responsibility
PG6 – Provide Training

292 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

Maturity Level Generic Practices

2 – Managed

PG7 – Control Work products
PG8 – Monitor and Control the Process
PG9 – Provide Senior Management with
 Visibility of the Process

3 – Defined No extra generic practice added for this level.

4 – Defect
Prevention

No extra generic practice added for this level.

5 - Automation
and Optimization

No extra generic practice added for this level.

This Section presented the general structure of MPT.BR
with its process areas and generic practices which are being
used in the context of software development companies. The
following Section will describe the methodology used to
implement the model and assess the maturity on the
companies throughout the last 4 years.

V. METHODOLOGY

In order to implement and assess the companies on
MPT.BR, a methodology was developed to improve the
efficiency in implementing the model, increase the expected
results and enhance the companies’ software testing processes,
according to what is presented in Figure 2.

Fig. 2. Process Improvement Methodology | Source: Author

The process improvement methodology was implemented
by consultants who gathered practical experience in process
improvement, not only on MPT.BR but also other maturity
models, following the activities in the sequence display in the
methodology, according to what is detailed bellow:

1. Diagnosis: this activity is based on the analysis of the
company’s current situation, to understand the main problems
regarding the software testing process and to plan future
actions based on the improvements suggested by the maturity
model.

2. Process Improvement: regarding the gaps identified in
the diagnosis, a schedule of the improvements is defined and
monitored by the consultant along the time in order to improve
the companies’ process and implement them into software
projects.

3. Maturity Assessment: whenever the companies
achieves a maturity in a certain level, a formal assessment is
conducted by an external appraisal company in order to certify
that the maturity level requirement where achieved.

After the maturity assessments were made, formal reports
were published and the results on how they implemented agile
practices were collected from theses documents.

Therefore, this Section described how process
improvements were implemented into the software
development companies in order to collect the results of how
agile practices were implemented in testing process. Next
Section will describe and analyze the results collected.

VI. EXPERIENCE REPORT

Software testing performed in the traditional way is
conducted in a separate phase of development, shortly after
completing the analysis, design and coding system. Generally,
the focus of these tests is only on the graphical interface and
occurs at the end of a release or at the end of the project. This
is, therefore, the last (or only) sieve of quality. Note that the
errors found during these tests will give feedback to the
traditional development process, where steps prior to testing
(e.g., design, analysis and coding) need to be performed again,
and only then will the test be performed. However, if this
feedback is performed more than once, it may have a
significant impact on the scope, time and cost of the project,
which has a direct impact on the quality of the system being
developed.

Agile methodologies, such as XP or Scrum are
increasingly being adopted by software development
companies around the world since they enable results to be
obtained in the early stages of software development and are
able to add value to the client from the first iteration. For the
implementation of agile techniques in the testing environment
what happens is that the test occurs on each increment to the
product (e.g. a new functionality, increased code etc.) as soon
as it is available, and not only when the entire product is
concluded. This is, unlike the traditional test, depending on the
product that is being developed, tests are performed and
nonconformities found are corrected immediately.

A. AGILE PRACTICES IN MPT.BR
Testing maturity models, such as MPT.BR aim to improve

the testing process using best practices related to the activities
throughout the test life cycle of the product. However, what is
still not clearly defined is how test practices should be
embedded in the context of agile methods. Thus, this Section
describes an experience report based on the experience of
implementing MPT.BR in various companies all over Brazil,
in which agile practices were adopted in the testing
environment. Table III shows the mapping of the process areas
(including the practices of each area) in agile implementations
adopted in the context of MPT.BR.

TABLE III. AGILE IMPLEMENTATION IN MPT.BR

Process
Area Practices Agile Implementation

GPT

GPT4
Scrum Taskboard, Kanban Board, Sprint

Backlog, Improvement Backlog

GPT5
Planning Poker, Ideal Days, Relative

Sizing

GPT6 Short Iterations, Sprints

GPT9 Daily Meetings to Identify Risks

GPT13
Agile Metrics, such as Sprint Burndown

Chart

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 293

ISBN: 1-60132-446-4, CSREA Press ©

Process
Area Practices Agile Implementation

GPT16,
GPT18

Daily Meetings, Sprint Review,
Retrospective

GPT17
Continuous Feedback, Client

Collaboration
GPT19,
GPT20

Daily Meetings

PET
PET1,
PET2

Test Driven Development – TDD
Behavior Driven Development - BDD

GRT GRT1
User Stories,
Backlog Item

FDT FDT3
Sprint Review
Restrospective

GDQ GDQ2 Daily Meetings

MAT
MAT1

Agile Metrics, such as Sprint Burndown
Chart

MAT4 Daily Meetings, Restrospective

TES
TES3

Pair Programming
Peer Review

TES4 Daily Meetings

GDD GDD1 Daily Meetings, Retrospective

AET
AET1
AET2
AET3

Test Driven Development – TDD
Behavior Driven Development - BDD

The details of how agile practices were mapped to the
process areas can be observed as described below:

• GPT: agile practices were used to introduce the
concept of test sprints, in which the requirements to be
tested are arranged in backlog and made visually
available using Scrum boards (or Kanban Boards).
Moreover, planning poker, relative sizing and ideal
days can be used as techniques for estimating the size
of the stories to be tested, particularly as a metric so as
to construct Sprint Burndown, Team Velocity, Lead
Time, etc. Daily Meetings were introduced to monitor
the project and as a mechanism to identify and stay
abreast of project risks.

• PET: Test driven development (TDD) or Behavior-
driven development (BDD) are techniques that could
be used to identify the project's test cases and satisfy
the demand of the process area.

• GRT: instead of formal requirements, the scope of
projects could be organized using user stories that are
part of the project backlog.

• FDT: During the Sprint Review, the tested items can
be packaged so they can be delivered and the test
environment can be clean, thus satisfying part of what
the test closure process area requires. In addition, the
practice of retrospective adds on the lessons learned,
thus bringing an implemented agile practice to FDT.

• GDQ: for this process area, the practice of daily
meetings can be implemented to include the reporting
of items on the quality of the project.

• MAT: the agile metrics suggested by SCRUM, such
as Burndown, Velocity, and Lead Time can be used as

an option for the indicators of the test project. In
addition, the Daily Meetings and Retrospectives can
be used to report on these results.

• TES: the static test can be conducted by pair
programming, where not only the revision of the code
developed is observed but also the dissemination of
knowledge. In addition, the daily meetings can be
used as a moment to analyze the data from the reviews
and to standardize communication with the team.

• GDD: the daily meetings and retrospectives can also
be used to identify the root causes of the defects
found.

• AET: the test can be automated based on the BDD and
TDD techniques, besides which automating the test
itself is already considered the introduction of agile
design practices.

Therefore, this section has presented the agile techniques
and practices that have been implemented in MPT.BR so far.
The Following Section will present the number of agile
implementations compared to implementations that did not use
such an approach.

B. MPT.BR AGILE CERTIFIED ORGANIZATIONS
Based on the results of the current implementations, the

consolidated situation is that, of a total of 16 existing process
areas in MPT.BR, so far 10 have been implemented using
agile methodologies, i.e. 63% of the model has already been
instantiated in an agile way. These data were obtained by
analyzing the implementation of MPT.BR in the 27 companies
that have been evaluated between 2010 and 2014.

Table IV summarizes the total number of companies
evaluated, at their respective levels, and indicates which of
them do or do not use agile methods in their testing processes.
Based on these numbers, it can be observed that at all levels of
companies evaluated until now, MPT has been implemented
both by using the traditional approach and agile methods.
Level 4 was not evaluated because two companies have opted
to go directly to the 5th maturity level.

TABLE IV. NUMBER OF ORGANIZATIONS THAT USE AGILE PRACTICES

Number of Organizations Maturity
Level Agile Traditional Total

9 3 12 1

4 3 7 2

1 5 6 3

0 0 0 4

2 0 2 5

27 Organizations Total

294 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

Moreover, the number of implementations with agile
methodologies (16) is greater than the number of companies
that have implemented it using the traditional method (11),
which is another indication that the current trend of software
development is to use agile methodologies. The largest
number of evaluations so far is at the first level of maturity
and 75% of companies have also used agile methods. It can be
observed that of the companies that use agility, just as many
are small as are medium-sized or large, which makes us infer
that the use of agile methods is not related to the size of the
organization.

In general, some positive points were observed starting
with using agile methods, such as:

• Increase in the visibility of the process of testing
engineering;

• Integration of the development and testing teams;

• Ease of understanding and adapting the company´s
processes so as to make them fit for MPT.BR;

• Agility in planning the tests in the project;

• The involvement of testers in the planning activities
anticipated the planning of testing and improving the
definition of the acceptance criteria of the project ; and

• The tests stopped being made by the developers
themselves and the role of the tester was defined in the
project.

A negative aspect of the introduction of agile
methodologies, which goes out of its way to extol the
simplicity of the process and the reduction in the maximum
number of artifacts generated during the process, was the
difficulty in generating evidence for companies to assess in
MPT.BR. As the evaluations are made based on the products
generated from projects that use the maturity model,
sometimes some artifacts were produced more because of the
need to make an evaluation than because of the company’s
need to have it in its process. The implementers of the model
and companies face a paradox between maintaining the agility
requirements of a process and adhering to the maturity model
and being ready for a formal evaluation.

Therefore, this Section has presented some of the most
important aspects concerning the introduction of agile
methodologies into a maturity model for software testing. The
following Section will present the conclusions obtained from
this study as well as future research studies that could be
usefully carried out.

VII. CONCLUSION AND FUTURE RESEARCH STUDIES

This article was constructed to present the testing maturity
model - MPT.BR together with the concepts of testing that
were used as the basis for designing it. Moreover, it also
presented a theoretical framework for agile methodologies and
how these methodologies were instantiated in conjunction
with a testing maturity model.

The use of agile methods has been observed as a trend in
the area of software development, and this can also be

observed when the aspect of software development is directly
related to the testing processes of a given organization. The
instantiation of the concepts of the agile world for the aspects
of the discipline of testing was a demand that came from the
Information Technology market and a challenge for the group
of implementers of the testing maturity model.

From the data collected from the assessments of the
MPT.BR from January 2010 until April 2014, it was observed
that most of the companies evaluated made use of agile
methodologies when instantiating their processes. It was also
observed that the use of agile methods in conjunction with the
testing maturity model is not restricted to how large or small a
company is because it was conceived in small, medium and
large companies.

Therefore, based on the results obtained so far, it is
predicted that this study can be complemented by the
following future studies:

• Seeking ways to conduct Non-Functional Testing of
agile ways to support the implementation of the TNF -
Non Functional Testing process area;

• Seeking agile practices to carry out the process area of
CEP - Statistical Control of Processes;

• Enhancing the automation of the tests over all process
areas and maturity levels of MPT.BR in order to
maximize the results obtained;

• Understanding the reasons that lead an organization to
choosing either an implementation with a traditional
approach or an agile approach; and

• Analyzing the possibilities of evaluating the maturity
of companies which use agile practices without
requiring documents to be drawn up that are
constructed only to prove a given practice has been
carried out and which is performed in a lighter way in
everyday life.

References
[1] E. Deming (1989) Calidad, Productividad y Competitividad. La salida

de la Crisis - Ediciones Díaz de Santos, S.A., Madrid.

[2] P. Crosby (1988). The eternally successful New York: Times Books.
organization. New York: McGraw-Hill.,

[3] J. Juran and A. Blanton (1999). Juran’s Quality Handbook. McGraw Hill
- New York.

[4] J. Glenford Myers (1979). “The Art of Software Testing,” John Wiley
and Sons, ISBN 0-471-04328-1.

[5] Softex Recife (2011) MPT - Melhoria do Processo de Teste.
Available at http://mpt.org.br/mpt/wp-
content/uploads/2013/05/MPT_Guia_de_referencia.pdf captured
27/04/2014

[6] E. Veenendaal and R. Swinkels (2002) Guidelines for Testing Maturity.
Available at http://goo.gl/0n5d3V captured 26/04/2014.

[7] E. Veenendaal(2012). Test Maturity Model Integration Release 1.0.
TMMi Foundation, Ireland. Available at
www.tmmifoundation.org/downloads/TMMi/TMMi%20Framework.pdf
captured 26/04/2014.

[8] J. Highsmith (2004). Agile Project Management - Creating Innovative
Products. Pearson Education.

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 295

ISBN: 1-60132-446-4, CSREA Press ©

[9] B. Hetzel (1988). The Complete Guide to Software Testing -
Second Edition, John Wiley & Sons.

[10] H. Brian, P. Morgan, A. Samaroo, G. Thompson and P. Williams
(2010). “Software Testing – An ISTQB-ISEB Foundation Guide”,British
Informatics Society Limited.

[11] D. Graham, E. Veenendaal, I. Evans, R. Black (2008). “Foundations of
Software Testing: ISTQB Certification,” Intl Thomson Business Pr.

[12] J. Highsmith (2001). Jim Highsmith & Martin Fowler. The Agile
Manifesto. Software Development Magazine, vol. 9, no. 8, pp. 29–30.

[13] K. Reed, E. Damiani, G. Gianini, A. Colombo (2004). Agile
management of uncertain requirements via gen- eralizations: a case
study. In QUTE-SWAP ’04: Proceedings of the 2004 workshop on
Quantitative techniques for software agile process, pp. 40–45, New
York, NY, USA, ACM.

[14] V. Vinekar, C. Slinkman and S. Nerur (2006). Can agile and traditional
systems development approaches coexist? an ambidextrous view. IS
Management, 23(3):31–42.

[15] A. Cockburn, J. Highsmith (2001). Agile Software Development: The
People Factor. Computer, vol. 34, no. 11, pp. 131–133.

[16] K. Schwaber and J. Sutherland (2013). The Definitive Guide to Scrum:
The Rules of the Game. Available at http://goo.gl/mDyLcM. Captured
26/04/2014.

[17] F. Maurer and S. Martel (2002) Extreme Programming. Available at
http://cf.agilealliance.org/articles/system/article/file/1026/file.pdf
Captured 26/04/2014

[18] T. Dingsøyr (2012). A decade of agile methodologies: Towards
explaining agile software development. J. Syst. Softw. 85, 6 , 1213-
-1221.

[19] K. Beck (2004). Programação eXtrema aplicada: Acolha as Mudancas..
Bookman.

[20] K. Schwaber (2004). Agile project management with scrum. Microsoft
Press, Redmond, WA, USA.

[21] S. McConnell (2004). Code Complete. Microsoft Press

[22] J. Boria, V. Rubinstein, A. Rubinstein. (2013). A História da Tahini-
Tahini: Melhoria de Processos de Software com Métodos Ágeis e
Modelo MPS” , SBQS 2013, SEPIN.

[23] C. Jakobsen., K. Johnson (2008). Mature Agile with a Twist of CMMI.
AGILE '08 Proceedings of the Agile 2008 (pp. 212--217). IEEE
Computer Society Washington, DC, USA.

[24] V. Mahnic,N. Zabkar (2008). Measurement repository for Scrum-based
software development process. CEA'08
Proceedings of the 2nd WSEAS International Conference on Computer
Engineering and Applications (pp. 23--28).

[25] C. Jakobsen, J. Sutherland (2009). Scrum and CMMI ± Going from
Good to Great. Agile Conference, 2009. AGILE'09. (pp. 333-
-337). IEEE Computer Society Washington, DC, USA.

[26] A. Furtado, M. Gomes, E. Andrade, I. de Farias Junior (2012). MPT.BR:
A Brazilian Maturity Model for Testing Published in: Quality Software
(QSIC).

296 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

