
SESSION

COMMUNICATION SYSTEMS: MOBILE
COMPUTING, INTERCONNECTION NETWORKS

AND TOPOLOGIES, WIRELESS SYSTEMS

Chair(s)

TBA

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 1

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 1

ISBN: 1-60132-444-8, CSREA Press ©

2 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

2 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

RM-circuits: Toward Feasible Use of Reconfigurable Mesh
Algorithms

Yosi Ben-Asher

CS, University of Haifa

Esti Stein

CS, Tel Aviv-Yaffo Academic College

Vladislav Tartakovsky

CS, University of Haifa

Abstract— The reconfigurable mesh (RM) is a powerful
model for parallel computations that can outperform PRAM
computation. Many basic algorithms has been shown to run
in constant time on the RM. In spite of this power, the RM has
not been realized mainly due to the theoretical assumption of
constant time broadcasting, while practically its a function
of the number of switches the broadcast has to pass through.
We introduce the restricted-RM (RRM) model, wherein buses
use mostly d(n) = n1/k switches. We show that counting the
number of 1’s in an n-bits input, can be done on the RRM in
2 ·k steps for k = 2, 3, An almost matching lower bound
is presented, showing that the RRM cannot compute counting
of n variables in less than k steps. Finally, the algorithm was
directly coded in Verilog outperforming a regular optimal
parallel adders-circuit. This work thus present a practical
version of the RM which is directly coded as a hardware-
circuit showing not only that RM-algorithms are practical
but also a simple way to program them.

1. Introduction
One of the most interesting models in the field of parallel

computations is the reconfigurable mesh (RM). The RM

consists of a mesh, augmented by the addition of a dynamic

bus system, whose configuration changes in response to

computation and communication needs. More precisely, a

RM of size N × N consists of N2 identical processing

elements (PEi,j) as described in figure 1. Each PEi,j is

connected to its four neighbors PEi−1,j , PEi+1,j , PEi,j−1

and PEi,j+1 provided they exist, and has four ports denoted

by ′N ′,′ S′,′ E′ and ′W ′. Local connections within the PE

can be dynamically changed at each step of the RM using

on-off switches (figure 1 depicts 15 possible reconfiguration

states). This yields a variety of possible bus topologies for

the mesh, where each connected component is viewed as

a single bus. In every broadcast step, each PE receives

incoming signals, executes local computations, chooses a new

configuration and broadcasts on some of its S,N,E,W edges

(ports).

Counting the number of bits set to ′1′ in an input vector, is

a fundamental operation of the RM. It is used in almost every

RM algorithm, and is performed in many variations. Conse-

quently, when introducing a new RM model, it is important

to study its complexity in this model. Figure 2 depicts how

counting is applied to a 4-bits input using a 4×4 RM. Based

W

N

S

E W

N

S

E W

N

S

E

W

N

S

E W

N

S

E W

N

S

E

W

N

S

E W

N

S

E W

N

S

E

W

N

S

E W

N

S

E

Reconfigurable mesh

Possible configuration states

PE i,j PE i,j PE i,j

PE i,j PE i,j PE i,j

PE i,j PE i,j PE i,j

PE i,j PEi,j
i,j

i,j

i,ji,je w

n

s

i,j

i,j

i,ji,je w

n

s

i,j

i,j

i,ji,je w

n

s

i,j

i,j

i,ji,je w

n

s

i,j

i,j

i,ji,je w

n

s

i,j

i,j

i,ji,je w

n

s

i,j

i,j

i,ji,je w

n

s

i,j

i,j

i,ji,je w

n

s

i,j

i,j

i,ji,je w

n

s

i,j

i,j

i,ji,je w

n

s

i,j

i,j

i,ji,je w

n

s

s14

i,j

i,j

i,ji,je w

n

s

s15

i,j

i,j

i,ji,je w

n

s

i,j

i,j

i,ji,je w

n

s

i,j

i,j

i,ji,je w

n

s

s5 s6

s1 s2 s3 s4

s7 s8 s9

s10 s11 s12 s13

Fig. 1: Reconfigurable mesh and all 15 possible states

on the i’th input bit, each switch in column-i of the RM

choose either to perform a ”band” < W =⇒ N, S =⇒ E >
or a “horizontal-pass” < W =⇒ E, S, N >. As a result, an

incoming signal (> in figure 2, bottom-left) is banded where

INP [i] == 1, and the output signal comes out through the

k’th output iff
∑N

i=0 INP [i] == k. Note that since we

are targeting a circuit, we can freely use wires connecting

different RM switches, and also input bits. Thus, as shown

in figure 2, the task of converting the position (0, 1, 2, 3, 4) of

the output signal to a binary number is done via connecting

each possible position to its binary representation using

log 4 + 1 vertical wires. Counting of N input bits takes

one step on N × N RM, using broadcasts that traverse N
switches. It is thus not immediate to find a counting algorithm

for the restricted RM using buses of length less than or equal

to d(N), maintaining minimal possible number of steps.

Moreover, a lower bound for counting on the restricted RM

should be devised, so that optimal values of d(N) can be

determined.

As such it has been shown that the RM can perform

parallel computations faster than boolean circuits or by the

PRAM (Parallel Random Access Machine) model [15]. This

include O(1) summing [14], [5], O(1) multiplication [12],

sorting [13], convex hall [19], graph algorithms [6], [23]

and image processing [16]. However, this potential power of

the RM could not practically be used, since the RM model

assumes that broadcasting a signal along a bus/connected

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 3

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 3

ISBN: 1-60132-444-8, CSREA Press ©

0

1

2

4

3

010
output

10 1 0 INP

W

S

N

Ecounting
signal

Fig. 2: Counting on the reconfigurable mesh

component can be done in one step regardless of the number

of switches/ports it passes. This assumption is not feasible

using current CMOS transistors since the dynamic recon-

figurations inside each PE must be realized by switches

connecting/disconnecting its S,N,E,W edges. As switches

are made from CMOS transistors, each with a Resistance ·
Capacity delay for ON/connected-state, broadcasting along

a bus composed of n switches, is at least n ·R · C which is

in contrast to the O(1) assumption. In fact, using the Elmore

model [9] to estimate the delay along n switches, yields a

quadratic delay of (n2)/2·R·C. This is due the time required

to fill Ci (the capacitance of the i’th switch of the bus), which

is proportional to (i ·R).

Several types of restricted models such as the RMBM

(Reconfigurable Multiple Bus Machine) [22] have been pro-

posed. Since all of them are using n switches on an n length

bus, they are not good candidates to solve the above problem.

One restricted model that is closer to the proposed restricted

RM is the SRGA of [21], [8], where each row/column of the

mesh has a complete binary tree of reconfigurable switches,

allowing to route messages between the leaves of this tree.

However, the SRGA still allow broadcasts that pass through

O(N) switches. A more related work is [4] proposing k-

constrained RM model that allows buses of wire-size at most

k to be formed per cycle. [4] shows that a version of column-

sort [18] can sort N items on the k-constrained k ×N RM

in O(N/k) steps (and a similar result for convex hull). This

implies that sorting on the k-constrained RM has optimal

VLSI complexity of A · T 2, mainly due to the linear O(N)
bus configurations of the sorting algorithm, which can be

optimally simulated in N/k steps by the k-constrained RM.

We remark that optimal self simulations for the RM with

linear bus configurations has been shown in [2], hence any

RM algorithm that uses only linear buses can be efficiently

simulated by k-constrained RM. This work differs from [4]

as we go beyond simulation of larger buses over small buses

and ask a different question: what is the minimum number

of switches (length) on a bus, forming a restricted RM,

that can be a platform for solving a problem running on a

non-restricted RM, without increasing time complexity. For

example, in order to execute counting of N bits by an N×N
RM in a constant number of steps, one should use buses of

length N
1
k . In comparison, had we just simulated the N -

bus of the regular N × N counting by buses of length N
1
k

we would have end with N
k−1
k steps using [4], rather than

the k steps we obtain. In addition, our model focuses on the

number of switches a broadcast goes through compared to

the length of bus, since the main delay on the RM bus is

quadratic in the number of switches.
Thus in this work we study a new model of the RM

called the “restricted-RM” (RRM) wherein broadcasting

along buses is restricted not to use or pass through more

than d(n) switches where n is the input size. For example

if d(n) = n
1
4 then for n = 106 we get that d(n) ≈ 30, a

number for which the RM O(1) assumption may be feasible,

using current transistors technology. Thus, we believe that

by restricting broadcast to pass through no more than d(n)
switches we can obtain RM circuits that are feasible and

outperform their regular gate-based circuits. We study the

fundamental problem of counting the number of 1 bits in an

input sequence of n variables and show that:

• Counting can be done using the RRM with d(n) = n1/k

in 2k steps for any constant value of k = 2, 3,
• An almost matching lower bound showing that a RRM

with d(n) = n1/k can not compute counting of n vari-

ables in less than k+1 steps. Proving lower bounds for

reconfigurable algorithm is more difficult than regular

lower-bounds, due to the need to bound information

that can be obtained by reconfiguration. The technique

presented in this work adds to the few existing lower-

bound techniques proposed so far (e.g. [1]).

• We show that RM-algorithm can be directly coded in

Verilog. This way of programming RM-algorithms over-

come most of the drawbacks of the C-like programing

style proposed so far for RM-algorithms (e.g.,ARMlang

[10]). We thus demonstrate that RM algorithms can

be directly synthesized to circuits using hardware de-

scription language even for large size of RMs. Previous

realizations of the RM were mainly to a small-size

grid of Soft-CPUs on the FPGA using MUX-gates for

reconfiguration. Clearly this method [11] can not scale

well.

2. Counting with the Restricted RM
We first indicate that the restricted RM (RRM) model

we consider is a form of a circuit. Therefore, wires and

logic/arithmetic sub-circuits can be used freely. We can thus

use a set of x subRMs each of size z · w where fix wires

can arbitrarily connect between the processing units of these

subRMs. We refer to such a circuit of subRMs as a RRM of

size z × x · w.
The ability to perform counting on a RRM requires an

ability to sum numbers. Therefore, we use a simple RM

4 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

4 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

0

1

2

3

4

5

6

7

1 1 1

0

1

2

3

4

5

6

7

1 1 1

4

5

6

7

0

1

2

3

0 0 0

1 1 1
MSB

1
LSB

Fig. 3: One step summing

technique for summing:

Theorem 2.1: Summing of L binary numbers x1, . . . , xL

of L input bits each, can be done in one step by a 2 ·L×L2

RRM using bus lengths of at most L2 switches.

This can be done by concatenating L RMs, each of

size 2 · L × L (RM1, . . . , RML) such that each RMi

computes counting of the i’th bits of each number,

yi = countinginput_signal,RMi
(x1[i], . . . , xL[i]). The po-

sition of the output signal of RMi is converted to an output

bit yi = i mod 2 such that yL, . . . , y1 form the final sum.

The input_signal of RMi+1 is either:

• fed to RMi+1[0][0] if the output position of RMi is zero

or

• fed to RMi+1[0][k] if the output position of RMi is 2·k
(by “banding” the output bus).

The validity of this construction follows from the fact that

each 1-value at column-i represents 2i in the final sum, thus

the carry from column i − 1 should be the number of 1s

divided by 2. Figure 3 depicts the summing for the case of

L = 3 where 101 + 101 + 101 = 1111. This simple

construction (plus some other known techniques [3], [17],

[12]) yields that multiplications, parallel sums, divisions and

shift operations can be performed in one parallel step using

RMs.

Next, we consider counting where the RM is restricted to

use buses of length ≤ N
1
2 where N is the input size. The

algorithm is depicted in figure 4 and contains the following

four steps:

restricted_counting2(N, x1, . . . , xN) :

STEP-1 A set RM1, . . . , RM
N

1
2

each of size N
1
2 ×N

1
2 ,

computes counting of N
1
2 input bits each. This

yields N
1
2 partial sums of (logN)/2 bits.

STEP-2 The N
1
2 partial sums are packed into N

1
2 ×

(logN)/2 array (denoted as Y-array in figure 4).

This is done by broadcasting along (logN)/2 wires

for each RMi .

N Ncounting X

N Ncounting X

N Ncounting X
NX

X N+1 X 2N

...X1

...

......

00...00
00...01

11...11

...

......

00...00
00...01

11...11

11...10

00...11
N Ncounting X

N Ncounting X
N

N

0101
1001

0110

1000

S
(log N)/2

S 1

(log N)/2
... ...

... ...

XN− N X N...

...

......

00...00
00...01

11...11

10...01

0 0...1 1
1 1...1 0

1 0...0 1

......

...

...

...
... ...

... ...

(log N)/2

summing

log N

(log N
)/2

shift

shift

STEP−1 STEP−2 STEP−3 STEP−4

Y−array

Fig. 4: Restricted counting for k = 2, schematic layout of

the algorithm/circuit

STEP-3 Counting of the N
1
2 bits in each column of the Y-

array is applied using RM1, . . . , RM(logN)/2. This

yields (logN)/2 partial sums S1, . . . , S(logN)/2 of

(logN)/2 bits each.

STEP-4 Summing of S1, . . . , S(logN)/2 is performed using

the RM described in theorem 2.1. Each Si must be

first shifted i positions since each 1 in column i
of the Y array is 2i. Due to this shifting, we sum
1
2 logN numbers of logN bits. Thus we need a RM

of logN × 1
2 log

2 N RM to be used as described

in theorem 2.1. Since all reconfiguration paths must

be less than N
1
2 we get that N

1
2 > 1

2 log
2 N .

Thus the following claim hold:

Theorem 2.2: For 1
2 · (logN)2 ≤ N

1
2 , counting of N

input bits can be done in four steps by a N
1
2 × N RM

restricted to N
1
2 bus lengths.

This counting can be extended to d(N) = N1/k k =
2, 3, 4, . . . as follows. For the case k = 3 we can use the

following steps:

restricted_counting3(N, x1, . . . , xN) :

STEP-1 A set RM1, . . . , RM
N

2
3

each of size N
1
3 ×N

1
3

RMs computes counting of N
1
3 input bits each. This

yields N
2
3 partial sums of (logN)/3 bits.

STEP-2 The N
2
3 partial sums are packed into N

2
3 ×

(logN)/3 Y-array (similar to the way it was done

in figure 4).
STEP-3 Counting of the N

2
3 bits in each column of this

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 5

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 5

ISBN: 1-60132-444-8, CSREA Press ©

Y-array is performed using

S1 = restricted_counting2(N
2
3 , Y [1][1], . . . , Y [1][N

2
3])

S2 = restricted_counting2(N
2
3 , Y [2][1], . . . , Y [2][N

2
3])

.

.

S(logN)/3 = restricted_counting2(N
2
3 , Y [(logN)/3][1],

. . . , Y [(logN)/3][N
2
3])

Each Si should be shifted according to its column

position, i.e., i positions.

STEP-4 Summing of the shifted S1, . . . , S(logN)/3 is

performed using the algorithm of theorem 2.1.

Hence, for the summing we need a RM of
1
3 logN × 1

3 log
2 N . Consequently it follows that

1
3 log

2 ≤ N
1
3 .

Clearly this recursive scheme can be used for any
d(N) = N1/k k = 2, 3, 4, . . . using

Si = restricted_countingk−1(N
k−1
k , Y [i][1], . . . , Y [i][N

k−1
k])

The following claim holds:

Theorem 2.3: For 1
k log

2 N ≤ N
1
k , counting of N input

bits can be done in 2 · k steps by a RM restricted to N
1
k bus

lengths.

Finally, we can solve the condition 1
k log

2 N ≤ N
1
k as

follows:

• Using the fact that N
log log N

log N = logN we get that

log2 N ≤ N
1
k ⇐⇒ k ≤ logN

2 · log logN (1)

• Applying some calculations (omitted due to space limi-

tations) to this equation we can improve this bound to:

log2 N ≤ N
1
k ⇐⇒ k ≤ logN

log logN + 2 · log log logN
(2)

For example, if N = 232 then the first bound implies k =
32
2·5 = 3.3 while the second bound yields that k = 4 which

is the correct result.

We remark that by adding another step (STEP-3.5) to the

restricted_counting2 algorithm, repeating the partial sums

calculations, we can end with (logN)/2 partial sums each of

a size of (log logN). By carefully wire the results, we can

end using a smaller RM for the final summing of a length

of 1
2 logN · log logN . This gives us a higher k for the same

N , since 1
k logN · log logN ≤ N

1
k holds.

3. Lower bound
An almost matching lower bound for counting can be

shown for the RRM. However, due to space limitation its

proof has been omitted. The lower bound works by replacing

a T-steps computation of the RM by a stronger model of T
non-deterministic levels of Branching programs B1, . . . BT

such that:

• B1 is any polynomial (in N) DAG whose some of

its edges are labeled by input variables xi,¬xi. Based

on the input values edges whose label are false, are

disconnected.

• Bt>1 is any polynomial (in N) DAG whose some of its

edges are labeled by ei,¬ei where ei are edges of Bt−1.

An edge labeled ei in Bt−1 is valued true iff there is

a path from a leaf node in Bt−1 to ei (vice versa for

edges labeled ¬ei).
We show that

Lemma 3.1: A d-restricted (#labeled edges in any path)

LBPT , d = N
1
k /k, cannot compute the function

f(x1, x2, . . . , xn) =
∑

xi = n/2 (and hence counting)

in less than k + 1 steps.

In addition we show that LBPT can simulate any T steps

of the RM. Consequently, we get matching lower bound for

counting showing the optimality of the above algorithm.

4. Feasibility and FPGA results
Two realizations of the RM switch for the RM-counting

are presented, followed by comparisons between the delay for

a d(n)×d(n) RM-counting in our algorithm, and equivalent

realizations of an adder based circuit. Finally, we show a

comparison of the two mentioned methods synthesized on

an FPGA using Xilinx Vivado. The RM switch for the RM-

counting is realized using three basic on-off switches as

described in figure 1 (upper left part). There are two possible

states < W −→ N,S −→ E > and < W −→ E,S,N >
that are determined by a control bit x directly connected to an

input bit. The state of each basic switch can be either connect

or disconnect generating the required configuration. Figure 5

describes the realization of the RM-switch using three NMS

transistors to implement the basic on-off switches we need.

These three transistors are controlled by the input value X
and one inverter. The following holds:

• Only the nmos transistors along the signal-path are

in on-state, the rest are in-off state and all basically

disconnected from the transistors of the signal path.

• The voltage after each transistor along such a chain of

nmos-transistors is vdd − vthreshold, thus there is no

need to insert buffers to restore the signal strength.

• An nmos-transistor at on-state can be regarded as a

source-drain resistor of resistance R + capacitor with

capacitance C to the ground. Thus, the delay along

a chain of N
1
k nmos transistors, is based on Elmore

model, N
2
k · R·C

2 . The capacitors of the rest of the tran-

sistors and the inverter can be ignored while computing

the delay of N
1
k ×N

1
k counting RM.

The implementation for RRM counting of N inputs and k
levels contains:

1) k levels of N
1
k ×N

1
k sub-RMs to perform the different

counting operations of STEP-1 (see figure 4). Once all

switches have been configured, the counting signal (see

figure 2) needs to traverse N
1
k switches to the output

of this step. This is referred as the signal critical path.

6 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

6 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

ds

ds

dsW

N

S
X

.
E

ds

ds

dsW

N

S
X

.
E

ds

ds

dsW

N

S
X

.
E

ds

ds

dsW

N

S
X

.
E

ds

ds

dsW

N

S
X

.
E

G

s d

G

s d

G

s d

G

s d

resulting chain of on on−state

vddvddvddvdd

reconfiguration)
nmos−switches (after any R

C

vdd.1

z

Fig. 5: NMOS realization of the RM switch and equivalent
RC chain of the signal path

2) k levels of summing where each summing is applied

to at most logN
k numbers in k+1

k bits of STEP-4

(see figure 4). The resulting sum-RM needed for this

summing is of size logN
k × logN

k · logN , which is still

in the restriction of d(n) ≤ N
1
k . This is because we

have selected the suitable value for k from eq. 1,2.

Thus, all signal paths are of the same length and the delay

for restricted counting is 2k ·N 2
k · R·C

2
This delay should be compared to the delay of a CMOS

circuit that computes counting of N inputs using a complete

binary tree of adders:

• logN adders in each path of this summing tree.

• Each adder has depth (critical path) of 4+ 2 · log logN
gates (see [20]).

• Each gate has a critical path of two-three CMOS tran-

sistors.

• The switching delay of each CMOS transistor can be

estimated by 2 · R · C, counting for the delay to

switch each transistor to conducting state + source-drain

propagation delay of the current.

tree_of_adders_delay = logN ·(4+2·log logN)·3·2·R·C
For a given N , the restricted RM-counting will outperform

the tree of adders circuit if

logN · (4 + 2 · log logN) · 3 · 2 ·R · C ≥ 2k ·N 2
k · R · C

2

We get that

24 · logN + 12 · logN · log logN ≥ k ·N 2
k

This hold for most cases of N ≥ 216 and k ≥ 4.

Another possibility to implement the RRM is to use

Optical Ring Resonator (ORR) [7] which consists of silicon

micro-ring resonator coupled to two straight wave-guide.

Basically, ORR allows light to “jump” from one wave-guide

(′L′) to the other wave-guide ′R′, when an electrical field

is applied. Unlike CMOS transistors, this is done without

any latency apart from the speed of light inside |L| + |R|.
Note that ORR are directional and thus (ideally) light beams

cannot propagate “backwards” in the switching network that

we are building. The RM-switch work with one ORR and one

Y-junction. Therefore, light coming from ′W ′ will continue

either to ′N ′ or to ′E′, depending on ′X ′. However, light

coming from ′S′ will always continue to ′E′. For this optical

realization, the delay calculation should be:

logN ·(4+2 · log logN) ·3 ·2 ·R ·C ≥ 2k ·N 1
k ·ORR_dellay

For current CMOS technology R · C = 5ps, and

ORR_delay = ORR_length/speed_of_light_silicon =
82 · 10−6 · 208 · 106 = 0.4ps

which is significantly faster for any value of N and k.

Finally, the design was synthesized on the Kintex FPGA

using Xilinx Vivado. The proposed RRM-counting algorithm

was compared with a regular summing circuit which is a

binary tree of adders (BTA). From the above analysis, it is

clear that the RRM-counting will outperform an equivalent

circuit of BTA only for large input size. Both circuits (RRM-

counting and BTA) are basically combinatorial, and the

clock period is measured for one round of computation.

The BTA circuit was optimized to use the minimal amount

of wires possible to be embedded in the FPGA. Figure 7

depicts the synthesis results for both the restricted RM-

counting and the BTA circuits. For the RRM-counting, we

used two restrictions on the number of switches a broadcast

can traverse N
1

k=4 , N
1

k=5 . These results suggest that:

• Only at k = 5 and for N = 215, the clock period of the

RRM-counting outperforms that of the BTA circuit. This

is close to what was predicted by the above analysis,

showing that the RRM-counting for sufficiently large

values of N , will outperform BTA circuits.

• Observe that the BTA clock period is constantly increas-

ing by 1ns for an increase of 1 in logN , while the RRM-

counting improves its run-time (for k = 5) by 0.36ns

per increase of 1 in logN .

• Even when the RRM-counting clock period is longer

than that of the corresponding BTA, it is significantly

more efficient in terms of power and LUTs, as the RM

uses far less logic than the BTA circuit. In particular,

note that the BTA for N16 can not fit into the FPGA

while the RRM-counting can.

5. Verilog coding
The programming style to express RM algorithms is known

to be a hard problem. Therefore, describing the Verilog

coding of RRM is essential, since it demonstrates a new

approach of direct and simple way of coding. Previous work

that has addressed this issue, tried to extend C code to include

RM processing elements (PEs) and low-level notion of the

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 7

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 7

ISBN: 1-60132-444-8, CSREA Press ©

log N Rmcounting K=4 Rmcounting K=5 BTA

8
Period(ns) 9.16 6

LUTs 573 665

Power(W) 0.051 0.093

10
Period(ns) 9.4 8

LUTs 2026 2685

Power(W) 0.171 0.258

12
Period(ns) 17.6 10

LUTs 10434 10831

Power(W) 0.263 0.839

15
Period(ns) 11.2 12

LUTs 18803 87545

Power(W) 0.899 1.636

16
Period(ns) 17

Too large to handleLUTs 139059

Power(W) 1.42

Fig. 6: FPGA synthesis results

RM-steps. In a RM-step, a PE would: 1-Reconfigure its

switch; 2-Broadcast values on its un-connected ports; 3- Read

values from its connected ports; 4- Computes new values.

Integrating RM-steps into C, created complex programming

problems, most of them coordination issues, such as:

1) Conditional execution of RM-steps may cause some

PEs to execute more RM-steps than the others.

2) Recursion and arbitrary function calls involving RM-

steps, creates non-equal length RM-steps.

3) Inner computations between RM-steps can vary in the

amount of instructions that are executed.

4) Different RM algorithms use different size of RMs.

Should a programmer work with variable or fixed size

RMs?

All these problems are hard to solve for a C like programming

style due to its serial mode of execution. However, in Verilog

(or any other Hardware Description Language) this can be

naturally done since it employs a parallel mode of execution

wherein clock synchronization is imposed.
The following code show how simple counting can be

programmed in Verilog. First, we define the set of switches
needed for the algorithm. For simple counting, we need only
one type of switch that have two states: a band < W =⇒
N , S =⇒ E > or horizontal-pass < W =⇒ E , S, N >.
The control of this switch is done by the input bit x which
is directly fed to the switch. We use bufif1 tristate devices to
implement this switch.

module SW (x, w, s, e , n);
input w,s,x;
output e,n;
tri e,n;
bufif1 bwn(n, w, x);
bufif1 bse(e, s, x);
bufif1 bwe(e, w, ~x);

endmodule

Next, we define the module that creates a complete 8× 8
RM. We mainly use the generate−for construct to create a
two dimensional array of switches. The input bits are passed

to the module via an array of N = 8 wires inp[. . .]. The x
parameter of each switch will be assigned the suitable input
bit when this switch is instantiated by the generate − for
construct. Thus, the following code (for one dimension of
the RM) will create/instantiate six switches s1, . . . , s6 with
the suitable input bit inp[X].

genvar X,Y;
generate
for (X=1; X < N-1; X=X+1)

SW s (inp[X],...);

Next, when a switch sX is instantiated, its W-port needs to
be connected to sX−1’s E-port. This is done by declaring
an array WLR[. . .] of wires and connecting to the E-port
of sX−1 to the W-port of sX via a wire WLR[X − 1] as
follows:

wire WLR [0:N-1];
genvar X,Y;
generate
for (X=1; X < N-1; X=X+1)
SW s(inp[X],WLR[X-1],...,WLR[X][Y],...);

Since the RM is two dimensional, we need to connect sX,Y ’s
E-port to sX−1,Y ’s W-port and sX,Y ’s S-port to sX,Y−1’s N-
port. Thus, full connections are obtained using 2D arrays of
wires as follows:

wire WLR [0:N-1][0:N];
wire WUD [0:N-1][0:N];
genvar X,Y;
generate
for (X=1; X < N-1; X=X+1)
for (Y=1; Y < N; Y=Y+1)
SW s(inp[X],WLR[X-1][Y],

WUD[X][Y-1],WLR[X][Y],WUD[X][Y]);

Creating The overall RM is more complicated since the
external edges of the RM form the ends and should be
instantiated differently than the internal switches of the RM.
The following module instantiate a full RM using separate
generate−for statements for the edges and separate instan-
tiations for the corners of the RM.

module RMcounting #(parameter N=8)(inp,out);
input inp;
output out;
wire [0:N-1] inp;
wire [0:N] out;
wire WLR [0:N-1][0:N];
wire WUD [0:N-1][0:N];
genvar X,Y;
generate
for (X=1; X < N-1; X=X+1) begin
for (Y=1; Y < N; Y=Y+1) begin
SW s(inp[X],WLR[X-1][Y],

WUD[X][Y-1],WLR[X][Y],WUD[X][Y]);
end end endgenerate

generate for (Y=1; Y < N; Y=Y+1) begin
SW sl(inp[0],1’b0,WUD[0][Y-1],

WLR[0][Y],WUD[0][Y]);
end endgenerate
generate for (Y=1; Y < N; Y=Y+1) begin
SW sr(inp[N-1],WLR[N-2][Y],

WUD[N-1][Y-1],out[Y],WUD[N-1][Y]);
end endgenerate

8 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

8 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

generate for (X=1; X < N-1; X=X+1) begin
SW sd(inp[X],WLR[X-1][0],

1’b0,WLR[X][0],WUD[X][0]);
end endgenerate
generate for (X=1; X < N-1; X=X+1) begin
SW su(inp[X],WLR[X-1][N],

WUD[X][N-1],WLR[X][N],WUD[X][N]);
end endgenerate
SW s00(inp[0],1’b1,1’b0,WLR[0][0],WUD[0][0]);
SW s0N(inp[0],1’b0,WUD[0][N-1],

WLR[0][N],WUD[0][N]);
SW sN0(inp[N-1],WLR[N-2][0],1’b0,

out[0],WUD[N-1][0]);
SW sNN(inp[N-1],WLR[N-2][N],

WUD[N-1][N-1],out[N],WUD[N-1][N]);
endmodule

6. Conclusion
In this paper we presented the RRM wherein broadcasting

along buses is restricted not to pass through more than

d(n) = n
1
k switches, where k = 2, 3, . . . and n is the input

size. We argued that using the RRM, the theoretical broadcast

assumption of O(1) is feasible, using current transistors

technology. We have shown that the fundamental problem

of counting can be done on the RRM in 2k steps. An

almost matching lower bound was presented, showing that

the RRM can not compute counting in less than k + 1
steps. Finally, we presented a realization of the counting

algorithm, coded directly in Verilog. We demonstrated that

RM algorithms can be directly synthesized to circuits using

hardware description language even for large size of RMs,

while previous realizations of the RM were mainly to a small-

size grid of Soft-CPUs using MUX-gates for reconfiguration,

which cannot scale well. The Verilog realization of the RRM

is shown to outperform a regular optimal parallel adders-

circuit both for current CMOS technology and Optical ring

resonators. This work thus presents a significant step toward

a realization of the RM algorithms.

References
[1] Y. Ben-Asher and A. Schuster. The bus-usage method for the analysis

of reconfiguring networks algorithms. In Proc. of the Intl. Parallel
Processing Symp., Beverly Hills, March 1992.

[2] Yosi Ben-Asher, Dan Gordon, and Assaf Schuster. Efficient self simu-
lation algorithms for reconfigurable arrays. In AlgorithmsâĂŤESA’93,
pages 25–36. Springer, 1993.

[3] Yosi Ben-Asher, David Peleg, and Assaf Schuster. The complexity
of reconfiguring network models. In Israel Symposium on Theory of
Computing Systems, pages 79–90, 1992.

[4] Bryan Beresford-Smith, Oliver Diessel, and Hossam ElGindy. Optimal
algorithms for constrained reconfigurable meshes. Journal of Parallel
and Distributed Computing, 39(1):74–78, 1996.

[5] G. Chen, B. Wang, and H. Li. Deriving algorithms on reconfigurable
networks based on function decomposition. Theoretical Computer
Science, 120(2):215–27, November, 1993.

[6] J. L. Trahan C.P.Subbaraman and R. Vaidyanathan. List ranking
and graph algorithms on the reconfigurable multiple machine. In
Proceedings of International Conference on Parallel Processing, pages
III–224–247. CRC Press, August, 1993.

[7] D. Ding and D. Z. Pan. Oil: a nano-photonics optical interconnect
library for a new photonic networks-on-chip architecture. In Proceed-
ings of the 11th international workshop on System level interconnect
prediction, 2009.

[8] Hatem M El-Boghdadi, Ramachandran Vaidyanathan, Jerry L Trahan,
and Suresh Rai. On the communication capability of the self-
reconfigurable gate array architecture. In ipdps, page 0152b. IEEE,
2002.

[9] W. C. Elmore. The transient response of damped linear networks with
particular regard to wideband. Journal of Applied Physics, 19:55–63,
1948.

[10] Heiner Giefers and Marco Platzner. Armlang: a language and compiler
for programming reconfigurable mesh many-cores. In Parallel &
Distributed Processing, 2009. IPDPS 2009. IEEE International Sym-
posium on, pages 1–8. IEEE, 2009.

[11] Heiner Giefers and Marco Platzner. An fpga-based reconfigurable mesh
many-core. 2013.

[12] J. Jang, H. Park, and V.K. Prasanna. An optimal multiplication
algorithm on reconfigurable mesh. In Proc. Symp. on Parallel and
Distributed Processing, pages 381–391, 1992.

[13] J. Jang and V.K. Prasanna. An optimal sorting algorithm on reconfig-
urable mesh. In Proc. Inter. Parallel Processing Symp., pages 130–137,
March 1992.

[14] Ju-wook Jang and Viktor K. Prasanna. An optimal sorting algorithm
on reconfigurable mesh. In Proceedings of 6th International Parallel
Processing Symposium, pages 130–137. IEEE,, 1992.

[15] Y. Matias and A. Schuster. On the power of a 2-band reconfigurable
network. Unpublished Manuscript, 1992.

[16] R. Miller, V.K. Prasanna-Kumar, D.I. Reisis, and Q.F. Stout. Image
computations on reconfigurable VLSI arrays. In Proceedings of the
Conference on Vision and Pattern Recognition, pages 925–930, 1988.

[17] K. Nakano and K. Wada. Integer summing algorithms on reconfig-
urable meshes. Theoretical Computer Science, Vol. 197, pp. 57–77,
Jan, 1998.

[18] Madhusudan Nigam and Sartaj Sahni. Sorting n numbers on n× n
reconfigurable meshes with buses. Journal of Parallel and Distributed
Computing, 23(1):37–48, 1994.

[19] Stephan Olariu, James L. Schwing, and Jingyuan Zhang. Fast compo-
nent labeling and convex hull computation on reconfigurable meshes.
Image and Vision Compututing, 11(7):1993, September, 1993.

[20] Oday Abdul Lateef Abdul Ridha. Performance estimation of n-bit
classified adders. 2013.

[21] Reetinder Sidhu, Sameer Wadhwa, Alessandro Mei, and Viktor K
Prasanna. A self-reconfigurable gate array architecture. In Field-
Programmable Logic and Applications: The Roadmap to Reconfig-
urable Computing, pages 106–120. Springer, 2000.

[22] JL Trahan and R Vaidyanathan. Relative scalability of the reconfig-
urable multiple bus machine. In Proc. Workshop Reconfigurable Arch.
and Algs, 1996.

[23] Biing-Feng Wang and Gen-Huey Chen. Constant time algorithms for
the transitive closure and some related graph problems on processor
arrays with reconfigurable bus systems. IEEE Transactions on Parallel
and Distributed Systems, 1(4):500–507, October, 1990.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 9

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 9

ISBN: 1-60132-444-8, CSREA Press ©

Hardware Implementation of Parallel Algorithm for
Setting Up Benes Networks

Yikun Jiang and Mei Yang
Department of Electrical and Computer Engineering

University of Nevada, Las Vegas
Emails: jiangy3@unlv.nevada.edu, Mei.Yang@unlv.edu

Abstract— Benes/Clos networks have been used in many

areas, such as interconnection network in parallel computers,
multiprocessors system, and networks-on-chip. The parallel
switch setting algorithm is the key to satisfy the requirements of
high performance switching networks. The Lee’s routing
algorithm is by far the most efficient parallel routing algorithm
for Benes networks. However, there is no hardware
implementation for this algorithm. In this paper, the Lee’s
routing algorithm is fully implemented in RTL and synthesized.
We have refined the algorithm in data structure and
initialization/updating of relation values to make it suitable for
hardware implementation. The simulation and synthesis results
of the switching setting circuits for 8x8 to 32x32 Benes networks
confirm that the timing, area, and power consumption of the
circuit is consistent with the complexity of the Lee’s algorithm.
To the best of our knowledge, this is the first complete hardware
implementation of the parallel switch setting algorithm which
can handle all types of permutations including partial ones.

Keywords— Benes, Parallel Algorithm, Hardware, RTL,
Implementation, Synthesis

I. INTRODUCTION
Both Benes and Clos networks are rearrangeably non-blocking
multi-stage interconnection networks. Benes network is a
special case of Clos network which has inputs and
outputs. The Benes network is constructed with
switching nodes recursively. Due to their non-blocking
property and relative smaller number of crosspoints,
Benes/Clos networks have received much attention in both
academia and industry. Benes/Clos networks have been used
in many areas, such as interconnection network in parallel
computers, multiprocessors system [1], and networks-on-chip
[2][3][4][12][13]. In packet switching systems, the switch
fabric must be able to provide internally conflict-free paths for
the requesting packets in each time slot [5]. This is
implemented by setting the states of all switches in the
network. It is clear that the routing assignment (i.e., switch
setting) scheme in Benes/Clos networks has a strong impact to
the efficiency of the Bene/Clos networks.
 A number of switch setting algorithms have been developed
in the past few decades, including sequential algorithms and
parallel algorithms. Sequential algorithms such as looping
algorithms [7] are designed for circuit switching systems
where the switching configuration can be rearranged at
relatively low speed. In [7], a switch setting algorithm with

time complexity is proposed based on Waksman’s
proof. As a matter of fact, using sequential algorithm, the
N×N Benes network cannot be set up in less than
time, because there are switches. The set-up time
is much longer than the latency in Benes networks, which is

 for N×N network. In order to obtain a switch setting
algorithm of complexity comparable to the network latency,
parallel algorithms are needed.
 In [9], Nassimi and Sahni developed a parallel set-up
algorithm which runs significantly faster than the sequential
algorithm based on Waksman’s proof. The complexity of this
algorithm depends on the parallel computer model and the
number of processing elements available. Four SIMD models
with different topologies are studied: Completely
Interconnected Computer (CIC) with time complexity of

, Mesh-Connected Computer (MCC) with time
complexity of , Cube Connected Computers
(CCC) with time complexity of , and Perfect Shuffle
Computer (PSC) with time complexity of . The time
complexity of topologies other than CIC is fairly high.
However, CIC is simply too complex to be realized. In
addition, this parallel algorithm [9] cannot handle the partial
permutations. The authors also proposed a self-routing
algorithm for Benes network [9] to route through the network
using destination tags. However, this algorithm cannot route all
permutations.

In [5][11], Lee and Liew present a parallel routing
algorithm for Benes Networks. It has time complexity

 which is same as CIC but using only
processing elements [9]. This algorithm was developed based
on the previous work in [8] and [9], but can handle the partial
permutation problem. In addition, the algorithm can be
extended and applied to Clos networks with two’s power
number of central modules. In the literature, there is nearly no
hardware implementation of this parallel algorithm. In [3], a
simple hardware design based on Lee’s algorithm for
Benes network in FPGA is presented. However, no detailed
design and simulation results are shown in that paper. Another
problem about [3] is that, the work is only limited to the
switch setting unit for the first stage of Benes
network. Without the design of the switch setting circuit for
different size networks, there is no way to tell the trend of how
the hardware cost would increase correspondingly when the
network size grows.

In this paper, we present the hardware design of Lee’s
parallel routing algorithm for Benes networks in different

10 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

10 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

sizes ranging from to . The algorithm is refined
to make it more suitable for hardware design. The Register-
Transfer-Level (RTL) design of the algorithm is coded in
Verilog, simulated, and synthesized using Cadence tools under
65nm technology. The timing delay trend is consistent with
the time complexity trend of Lee’s algorithm. The switch
setting hardware design can be integrated with Benes network
circuit to be used in high-performance network-on-chip
systems.

The rest of the paper is organized as follows. Section II
presents the parallel routing algorithm. Section III presents the
RTL design and improvement of Lee’s parallel routing
algorithm. Section IV presents the synthesis results and
analysis of the results.

II. LEE’S PRALLEL ROUTING ALGORITHM

A. Lee’s Algorithm
Lee’s parallel algorithm can be decomposed into four major

steps: initialization, searching, merging and calculating the
permutation for subnetworks. Denote the set of input and
output ports as and , respectively, i.e.,

, and be an input-output permutation
indicating connection requests. We use to indicate the th
input port is going to connect to the output port in the
permutation. In this part, we will use an example permutation
to elaborate the main concept of this algorithm. In the below
permutation, means this input port has no output request.

Because of the symmetric routing constraint, the algorithm
only need to find out the routing bits of the stages in one
Omega subnetwork, then the routing bits of the counterpart
stages in the other Omega network will be determined. In
Lee’s algorithm, the output side switch setting is determined
first, then the input side switch setting is derived.

B. Initialization
The first step of Lee’s algorithm is to build the connections

between output switching nodes using relation values. The
connection between output switching nodes are built on the
internally conflict-free constraint, to avoid this internal
conflict, the algorithm need to group switching nodes with the
same relation together, and assign the switch state values to
them consistently.

Here, we adopt the same notations as in (Lee et al., 1996).
We use and to denote the switch state value of
input/output switching node and , respectively. Let

, where is the routing bit
of th input, and is the routing bit from th output.

From [5], the symmetric self-routing constraint requires
that

 k=0, 1, …, N-1 (1)
The internal conflict-free constraint requires that

, k=0, 1, …, N-2 (2)
The combination of (1) and (2) gives

 k=0, 1, …, N-2 (3)

a0

a1

a2

a3

b0

b1

b2

b3

0
1

2

3

4

5

6
7

0
1

2

3

4

5

6
7

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

b0 b1 b3 b2

4x4
S_down

4x4
S_up

Equal to

Not equal to

Routing Bit 1

Routing Bit 0

Fig. 1 Initialization

Then we have

 (4)

(5)

For the given permutation, we have:

For the th input switching node, we refer to the output
port pair corresponding to the input port pair

 as a connection pair. Then we obtain:

Based on Eqn. (3), we have:

 (6)
Consider the given permutation, taking as example. As
shown in Fig. 1, in order to have the same routing bits (or

) for input port and output port , the corresponding input
switching node must set the state value base on the
corresponding output switching node, i.e., for input/output
permutation , we have , , since

, then we can get . Similarly, for , we
derive, . Together, we obtain

After eliminating all from above equations, we can
obtain a set of initializing equations as follows:

These equations about can help us to build the relation

connections between output switching nodes as shown in Fig.
1. All output switching nodes are connected like a linked list,
where the index of the state variable is taken as the node

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 11

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 11

ISBN: 1-60132-444-8, CSREA Press ©

address. Each initializing equation is used to establish a
pointer, in which the state variable with larger index points to
the other with smaller index.

After initialization step, all output switching nodes can be
grouped into equivalent classes. For switching nodes in the
same class, the state value of any switching node is relevant to
the state value of others. The representative node of each class
is the switching node with the smallest index number. For the
above example, as shown in Fig. 1, all output switching nodes
are in the same class. The representative node of the group is

. Regardless of the Benes network radix, the initialization
step is processed at all PEs at the same time with time
complexity .

C. Searching
As shown in Fig. 1, there are two pointer types, Type 0

Pointer indicating the two state variables are equal, and Type 1
Pointer indicating the two state variables are not equal. All
switching nodes except the representative node in the group
will go through the searching step to point to the representative
node. The time complexity of searching step is .

Fig. 2 shows the searching result for Fig. 1.

b0 b1 b3 b2

b0 b1 b3 b2

Searching

Merging

b0 b1 b3 b2

Fig. 2 Searching and Merging

D. Merging
Usually, among the nodes belonging to the same class,

there should be only one endpoint which is the representative
node of the class. If there are two endpoints in one class, then
the merging step is needed to eliminate one of them. The time
complexity of this merging step is . Fig. 2 shows that the
two endpoints and are pointed by , which means the
value of will be determined by the values of and ,
causing confliction. As shown in Fig. 2, after the merging step,
the direct connection between two endpoints and is
found.

After all switching nodes point to the representative of the
class, the state values of all switching nodes can be determined
by assigning the state value of the representative as 0 or 1. One
of the assignments of the above example is derived as by
letting :

By applying the symmetric routing constraint, the state

values of input switching nodes should be setup as:

Fig. 3 shows the settings of input/output switching nodes
for the given permutation .

E. Permutation for Subnetworks
After the state values of input/output switching nodes are

determined, the switch settings of two inner
subnetworks can be determined recursively. The permutations
of the two inner subnetworks can be derived by tracing the
routing paths from both input and output sides. Then Lee’s
algorithm is applied to derive the state values of the
input/output switching nodes of the two subnetworks. The time
complexity to calculate those permutations for subnetworks is

. In a recursive manner, the state values of all stages will
be computed by the Lee’s parallel routing algorithm.

a0

a1

a2

a3

b0

b1

b2

b3

00
1

2

3

4

5

6
7

0
1

2

3

4

5

6
7

1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

1

2
3

0

1

2
3

0

1

2
3

0

1

2
3

0

5

2

6

1

4

3

x

0

5

2

7

0

1

4

3

6
Fig. 3 Permutation for Subnetwork

Fig. 3 shows the connections of the two inner subnetworks
and the derived two permutations for and for

for two inner subnetworks, respectively.

,
Continue this process until the state values of the middle

stage switching nodes are determined.
As we can see from the description in above section, the

searching step is the only procedure which is relevant to the
radix of Benes network. All the other procedures could be
finished in . The time complexity for each round is
determined by the searching procedure which is .

III. HARDWARE DESIGN OF LEE’S ALGORITHM

A. Design Flow
The hardware design of Lee’s algorithm follows the

common RTL design flow which consists of four steps: 1)
specification, 2) RTL design, 3) simulation of the RTL code, 4)
synthesis of the RTL design. In the second step, we use Verilog
HDL to implement the RTL design of Lee’s parallel algorithm.

As shown in Fig. 4, the switch setting circuit of
Benes network takes the input of N output port indexes
representing the permutation and generates the switch setting
of every two stages as well as the permutation of two inner

 subnetworks. There are processing elements (PE),
each representing an output switching node, are connected by
the main frame. Each holds several variables. In the main
frame, two major parts are the control logic and shared
memory. TABLE I. lists the variables used in our design. For

 Benes network, each variable storing port index has
 bits. The global variables are shared among all

processing elements.

12 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

12 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

Control Logic

Shared Memory

PE0

PE1

PE(N/2-1)

Main Frame

nodeValue0/1[(N*logN)/2-1:0]

nodeS0/1[N/2-1:0]

Data
Collection

Sub
Permutation

State Map
out=>in

Port[0]
Port[1]

Port[2]
Port[3]

Port[N-2]
Port[N-1]

Switch
Setting

Sub-Network
Permutation

Fig. 4 Circuit Architecture

As each output switching node (represented by one
processing element) has two ports, 0 and 1, we adopt a two-
register structure for each output switching node to store the
pointers associated with port 0/1. In the searching step of Lee’s
algorithm, each PE may need search in two directions. The
two-register structure allows each PE keeps searching in two
directions until they reach the representative nodes. Here four
variables are used for storing the index of the node

 pointed by the port 0/1 pointer and
corresponding relation value , respectively. The
size of these shared registers is determined by the radix of
Benes network. For Benes network, the size of

 is bits as there are output
switching nodes and bits are needed to represent the
index of each port. The size of is as one bit is
needed to represent the relation value between two connected
switching nodes, ‘0’ represents not equal, ‘1’ represents equal.

TABLE I. DEFINITION OF VARIABLES

Global Variable Meaning Size (bit)

port[] Store the output port index of
the permutation.

nodeValue0/1[]

Store the index of the port
which is pointed by the port
0/1 pointer of each output
switching node. For example,

,
, means

node points to node , i.e.,
there is a relation connection
between node and node .

nodeS0/1

Store the relation value for
the connection from the port
0/1 pointer of each output
switching node.

inNodeStateValue[] Store the state value of input
switching nodes.

outNodeStateValue[] Store the state value of output
switching nodes.

sub0/1_port[] Store the permutations for
two inner subnetworks.

Local Variable Meaning Size (bit)

port0/1

Stores the output port index
of the connection pair
corresponding to input port
pair

preNodeValue0/1 Stores the
before each searching

procedure.

nodeType

Two-bit value, ‘00’ means the
node doesn’t point to any
other node; ‘01’ if the node
points to only one other node,
‘11’ if it points to two other
nodes.

The control logic is responsible for the following functions:
1. Maintaining and updating the registers’ data and status

respectively, according to the newest information
received from processing elements.

2. Calculating the setting value for switching nodes on the
inputs/outputs stage.

3. Calculating the input/output permutation for the
subnetworks.

B. Finite State Machine
In this part, the RTL design of Lee’s parallel algorithm is

presented. Following the process of Lee’s parallel routing
algorithm, we derive the finite state machine of each
processing element as shown in Fig. 5 which encloses five
steps: 1) IDLE, 2) INIT, 3) SEARCH, 4) MERGE, 5) DONE.

Each step could be divided into several states to complete
the function that this step is supposed to do. Those states
named with ‘WAIT’ as appendix are used to synchronize
processing elements. All the processing elements need to wait
one clock cycle so that the register values updated by other
processing elements become valid in all processing elements.
In the following part of this section, we will describe these five
main steps.

Without New
Configuration

IDLE

INIT

SEARCH

MERGE

DONE

New
Configuration

Merge
Detected

New
Configuration

Merge Node

Merge/Search
Done

SEARCH_WAIT

MERGE_WAIT

INIT_WAIT

IDLE_WAIT

No Condition
Changed

Fig. 5 State Diagram

IDLE

At the starting point, all processing elements are in the
IDLE state to wait for the new permutation between input and
output ports. When the new permutation arrives by setting
input ports of all input switching nodes, all processing
elements will enter the INIT state to conduct initialization
functions. Before the processing element enters the INIT state,
the control unit needs one clock cycle to synchronize with all
other processing elements.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 13

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 13

ISBN: 1-60132-444-8, CSREA Press ©

In the IDLE state, all register values are reset to default
values, where and are set
to the current node index and are all reset to 0.

INIT

In Lee’s parallel routing algorithm, the first step is to
initialize the pointers and relation values between output
switching nodes. This initialization process is determined by
the permutation between inputs and outputs of Benes network.
Consider the following permutation for a Benes
network:

There are two types of relation between two output
switching nodes that have connection, equal or not equal,
represented as respectively. In Lee’s parallel routing
algorithm, in order to find out the relation between these two
output switching nodes, the equations between routing bits of
input/output switching nodes need be derived first. In our
design, the relation between two output switching nodes can be
derived directly from the parity of two output port indexes
corresponding to the two input ports of each PE.

Given the connection pair for an input port pair
 (i.e., and in our design), according to

Eqns. (4), (5) and (6), we derive the four possibilities of the
above equation:
Case 1: is even and is even, we have

;
Case 2: is even and is odd, we have

 ;
Case 3: is odd and is even, we have

 ;

Case 4: is odd and is odd, we have

As we can see from above options, when and have the
opposite odd-even property, then their corresponding output
switching nodes will have the same state value, otherwise, they
have the opposite state value. The relation between two output
switching nodes can be set according to odd-even property of
and by checking and as shown in Eqn.
(3).

 (7)
At each processing element , the following code is used

to set and , where .

// pNode is the temporal variable to hold the larger node index

 ;

Note that each register has width of bits with the
top bits representing the output switching node
number and the least significant bit representing the port
number (0 or 1) of the output switching node as well as the
parity of the output port index.

b0 b2 b3 b5 b7 b6 b4 b1

0 0 1 0 1 1 1 1

Fig. 6 Initialization

After the initialization step, all output switching nodes will
be divided into one or more classes depending on the
permutation of inputs/outputs as shown in Fig. 6. All nodes in
the same class are bounded together such that once the state
value of any node is determined, then the state values of all the
other nodes will be determined. For the example shown above,
if the switch setting value of is 0, then the state values of
the whole class are shown in Fig. 6.

SEARCH

In the searching step, all processing elements parallelly
search and update the node pointer till reaching the
representative node of the class, i.e., the switching node with
the smallest index number in the class. The number of
searching steps is bounded by . As shown in Fig. 5, right
after the state machine runs into the SEARCH state, each
processing element updates and relation
values stored locally till the pointer’s values do
not change in the current searching iteration. To detect the
ending condition of searching step, before searching in
SEARCH state, the node pointer’s current value

 will be stored in .

Fig. 7 shows that after searching all processing elements
point to one endpoint except the one representing , which
reaches two endpoints and . In
each class, there is only one representative node. In order to
solve this problem, we must merge these two end nodes
pointed by the same processing element, as shown in Fig. 7,
this process will be done in the state.

The following two conditions need be satisfied before
transferring to the state.
 After one searching step, the value contained in register

 doesn’t change.
 The switching node has type value

, which means the switching node points to two
endpoints.

14 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

14 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

b0 b2 b3 b5 b7 b6 b4 b1

b0 b2 b3 b5 b7 b6 b4 b1

b0 b2 b3 b5 b7 b6 b4 b1

Searching Step

Searching Step

b0 b2 b3 b5 b7 b6 b4 b1

Merging Step

b0 b2 b3 b5 b7 b6 b4 b1

Searching Step

Fig. 7 Searching and Merging

At each processing element , the following code is used
to determine if transiting to the MERGE state.

)

 ;
 ;

If the two pointers of the switching node point to the same

endpoint, then FSM transits to state, in which one
of two pointers of the switching node will be reset to its initial
value; otherwise, the FSM transits to the MERGE state.

MERGE

When the processing element reaches the endpoints in both
directions and the two endpoints are different, the merging step
will be conducted. As in the initialization step, the node pointer
with larger node index is updated with smaller node index
number. As shown in Fig. 7, the processing element merges the
endpoints of overwriting the register storing
to . We can also see that, after the merging process, the
switching nodes previously pointing to node need be
updated to pointing to . For the example in Fig. 7, after the
merging step, nodes and need go through searching step
again to update their pointers to the representative node .

For each processing element , the following code is used
to update pointers.

 {
 ;
 }

 ;

}

 ;

 ;

After the merging step, the processing element will notify
the other processing elements so that all the other processing
elements will transit to the SEARCH state. As shown in Fig. 7,
after the searching step, all the switching nodes point to the
representative node of this class. The initial state value for the
representative node ‘b0’ of this class is ‘0’, then the state value
of all other switching nodes can be determined by the relation
value in parallel. And the switch state values shown in
Fig. 7 is exactly the same as those values shown in Fig. 6.

In our design, after all processing elements are in DONE
state the mainframe will set the state values of output and input
switching nodes.

C. Setting State Values of Output Switching Nodes and Input
Switching Nodes
The state values for output switching nodes

 can be obtained directly from the
relation value or as

 (8)
After the state values of output switching nodes are

determined, the state values of input switching nodes are
determined too. According to the symmetric routing constraint,
the state value of an input switching node is equal to or
opposite to the state value of its corresponding output
switching node which depends on the relation of the
input/output port index number.

Given permutation pair where is the input port
number, and is the output port number, due to the symmetric
self-routing constraint, i.e., Eqn. (4) and (5), we have:

 (9)

where and give the corresponding input/output
switching node index. As we can see, either or

 can be used to determine the relation between
state values of input switching node and its corresponding
output switching node. Here we use to do the
calculation. And gives the parity of the output
port.

// For i=0, 1, …, N/2

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 15

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 15

ISBN: 1-60132-444-8, CSREA Press ©

 =

 =

IV. EXPERIMENT RESULTS
We have implemented the Lee’s algorithm for finding the

switch settings for input/output stages of 8x8 to 32x32 Benes
networks in Verilog, simulated and synthesized the designs
using Cadence tools. The RTL code is written in parameterized
way so that it is easy to expand to larger sizes. In the
simulation process, ModelSim is adopted as the simulation
tool. For each design, five categories of permutations are used
for validation including bit reversal, perfect shuttle, butterfly,
matrix transpose, and random permutations. Under each
category, one or more different permutations have been tested.
In the synthesis process, Cadence Encounter RTL-Compiler is
used with TSMC 65nm technology library. All size designs are
synthesized under the same settings. The synthesized results
are presented below

TABLE II. TIMING RESULT

Benes Size 8x8 16x16 32x32

Critical Timing Delay (ps) 8.34E+02 2.30E+03 3.68E+03
Time Complexity 9 16 25

The timing delay is mainly decided by the time complexity
of the algorithm. While the size of the processing element will
not affect the timing delay as much as that does to area and
power consumption. The complexity of algorithm is
determined by the number of searching steps. The simulation
results in Table II show that the number of searching steps
follows .

TABLE III. CELL NUMBER AND AREA

Benes Size 8x8 16x16 32x32
Number of Cells 1.81E+03 8.11E+03 3.62E+04

TABLE III. shows the area result in terms of number of
cells, the basic design unit used to measure the logic
complexity. When the network size is doubled, the number of
cells increases by about 4 times. It is clear that in Lee’s
algorithm, when the network size is doubled, the number of
processing elements needed in each stage is doubled. For
example, the Benes has 4 processing elements and the

 Benes network has 8 processing elements. Besides,
the logic complexity of the processing element nearly doubles
when the network size is doubled. Overall, the logic
complexity of the processing element should be increased by
four times when the network size is doubled. This explains the
trend of number of cells in TABLE III.

TABLE IV. POWER CONSUMPTION

Size

Power Type
8x8 16x16 32x32

Leakage (nW) 9.24E+04 3.86E+05 1.76E+06
Internal (nW) 8.46E+04 3.85E+05 1.69E+06

Net (nW) 2.98E+04 1.42E+05 6.04E+05
Switching (nW) 1.14E+05 5.28E+05 2.29E+06

TABLE IV. shows the power consumption of the design in
terms of static (internal) power, dynamic (mainly switching),
net and leakage power. Each portion of power increases
significantly as the radix of Benes network increases. The
power consumption increasing trend is consistent with the
increasing trend of number of cells. The switching power is the
most significant portion, followed by internal (static) and
leakage power which occupies 36%, 28% and 27% of total
power, respectively. Together the three portions of power
dominate the power consumption at more than 90%.

V. CONCLUSION
This paper presents the RTL design of a parallel switch

setting algorithm in Benes Networks. We have refined the
algorithm in data structure and initialization/updating of
relation values to make it suitable for hardware
implementation. The simulation and synthesis results confirm
that the timing, area, and power consumption of the circuit is
consistent with the complexity of the Lee’s algorithm.

REFERENCES
[1] K. N. Levitt, M. W. Green and J. Goldberg “A study of the data

commutation problems in a self-repairable mutiprocessor.” in Proc.
Spring Joint Computer Conf., 1968.

[2] Y. Kao, M. Yang, N. S. Artan, and H. J. Chao “CNoC: high-radix Clos
network-on-chip,” in IEEE Trans. Computer-Aided Design of
Intergrated Circuits and Systems, vol. 30, no. 12, pp. 1897-1910, Dec.
2011.

[3] H. Liu, L. Xie, J. Liu, and L. Ding, “Application of butterfly Clos-
network in network-on-chip,” The Scientific World Journal, vol. 2014,
pp. 1-11, 2014.

[4] A. Joshi, C. Batten, , Y. Kwon, S. Beamer, I. Shamim, K. Asanovic, V.
Stojanovic, "Silicon-photonic Clos networks for global on-chip
communication," in Proc. 3rd ACM/IEEE Int’l Symp. Networks-on-Chip
(NoCS), 2009, pp. 124-133.

[5] T. T. Lee and S. Y. Liew, "Parallel routing algorithms in Benes-Clos
networks," in Proc. 15th INFOCOM, 1996 vol.1, pp.279-286.

[6] Y. Kai, K. Hamada, Y. Miao and H. Obara., "Design of partially-
asynchronous parallel processing elements for setting up Benes
networks in O(log2N) time," in Proc. Int’l Conf. Photonics in Switching,
2009, pp. 1-2.

[7] Y. Yeh and T. Feng, “On a class of rearrangeable networks” in IEEE
Trans. Comput., vol. 41, no. 11, pp. 1361-1397, Nov. 1992.

[8] A. Waksman, “A permutation network,” J. Ass. Comput. Mach., vol. 15,
pp. 159-163, Jan. 1968.

[9] D. Nassimi and S. Sahni, “Parallel algorithms to set up the Benes
permuation network”, IEEE Trans. Computer, vol. c-31, no. 2, pp. 148-
154, Feb. 1982.

[10] K. N. Levitt, M. W. Green, and J. Goldberg, “A study of the data
commutation problems in a self-repairable multiprocessor”, in Proc.
Spring Joint Computer Conf., 1968, vol. 32, pp. 515-527.

[11] T. T. Lee, S. Y. Liew, “Parallel routing algorithms in Benes-Clos
networks”, IEEE Trans. Commun., vol. 50, no. 11, pp. 1841-1847, Nov.
2002.

[12] H. Richter, "Real-time interconnection network for single-chip many-
core computers," in East-West Design & Test Symp., 2013, pp.1-4.

[13] H. Moussa, O. Muller, A. Baghdadi, M. Jezequel, "Butterfly and Benes-
based on-chip communication networks for multiprocessor turbo
decoding," in Proc. DATE, 2007, pp.1-6.

[14] H. S. Stone, “Parallel processing with the perfect shuffle,” IEEE Trans.
Comput., vol. C-20, pp. 153-161, Feb. 1971.

16 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

16 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

Traceability Acquisition Method for
Network Security using Multiple Encryption and

Decryption of the Tag in Packet
Kento Masukawa, Kenichi Takagiwa, Tadanori Matsui, Hiroaki Nishi

Graduate School of Science and Technology, Keio University, Japan
+{masukawa, takagiwa, matz, west}@west.sd.keio.ac.jp

Regular Research Paper

Abstract – Multi-factor authentication is used to
improves the existing vulnerability of traditional
password authentication, such as biometric and one-
time password token. However, these methods foist a
burden on the user. We propose the traceability
acquisition method in a network for the user
authentication, which runs only on the routers;
thereby it achieves secure and authenticated
communication between a user and a server
application without any burden on the users and
applications. In this method, “tracer tags” is
introduced for attaining packet traceability of a
packet and the tags are encrypted with unique
router’s key. Recipient makes sure that packet has
delivered through the expected routing path by
decrypting a tracer tag. The Proposed method
achieved secure and authorized communication
using packet traceability without any additional
effort to users The proposed method is evaluated in a
virtual environment. By using the proposed method,
routing throughput decreased only by 3% compared
with normal routing.

Keywords: network security, routing information,
multi-factor authentication, multiple encryptions,
tag information.

1 Introduction
The combination of username and text password is

the most common authentic method as the user
authentication of a Web service. The text password
authentication should choose a strong password to
resist brute-force or dictionary attack [1]. However,
a strong password which combines multiple random
alphabets, numeric and special characters are
difficult to memorize for a human being. Many users
are using the easy-to-remember weak passwords.

Reusing the password across multiple Website also
promotes the vulnerability of text password
authentication [2]. Florencio and Herley indicated
that user reuses the same password across 3.9 Web
services on average [3]. Reuse of password could
expand the damage to multiple Web service caused
by password leak from one of Web services. This
attack is called Password Reuse Attack.

In addition, Password Stealing Attacks (PSA) must
be taken into consideration. The phishing site is the
most common as a method of PSA. According to the
APWG report [4], the total number of phishing
attacks was observed in the 4th season of 2016 was a
review 158,574.The email address has been used for
user identification in many Websites. Therefore,
password theft leads to crack user accounts.

Some researchers focus on multi-factor
authentication to provide more reliable user
authentication. NIST announced SP800-63-2 [5] for
guidelines of online authentication; there are the
following three factors.

 SYK(Something You Know)
 SYH(Something You Have)
 SYA(Something You are)

Text password authentication is categorized in the
SYK. One-time password token is SYH. Biometric
authentication is SYA. Multi-factor authentication
utilizes the SYH or SYA beside the password.
Although these multi-factor authentications improve
security by convoluted user authentication, it incurs
expensive to introduce compared with password
authentication [6]. These methods also need new
processes to the users such as preregistering
biometric information and creating a one-time
password, and burden on users is increased.
Therefore, people who are not aware of security do
not use multifactor authentication. For protecting
private information, there is a need for a method to

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 17

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 17

ISBN: 1-60132-444-8, CSREA Press ©

improve security using multifactor authentication
without increasing the user burden.

In this paper, we propose the traceability
acquisition method in a network and apply it to the
multifactor authentication, which requires no
additional action to users. The tracer tag is stored in
the packet, which is encrypted with each router
during packet forwarding. The server acquires a
traceability by analyzing the tag. This method
requires special router which can analyze traffic and
modify packet on the fly. Sevice-oriented
Router(SoR) [7], a router is capable of analysis and
processing of the packet, is used for this research.
SoR is used for storing and encrypting tags in the
packet.
2 Related Work

K.-P. Yee and K. Sitaker [8] propose Passpet, a
password management tool that improves both the
convenience and security of Website logins. By
using password hashing, the tool manages multiple
accounts by turning a single memorized password
into a different password for each account. User-
assigned site labels help users securely identify
phishing sites. Password-strengthening measures
defend against dictionary attacks. They propose new
improvements to these techniques and integrate
techniques into a single tool.

Some researchers focus on multi-factor
authentication rather than text password
authentication to provide more reliable. Multi-factor
authentication depends on three factors [5], SYK e.g.
password, SYH e.g. token, SYA e.g. biometric.

H-M. Sun, Y.-H. Chen and Y.H. Lin [9] propose a
user authentication protocol named oPass, which
leverages cell phones and short message service to
protect password stealing, and password reuse
attacks. Unlike generic web logins, oPass utilizes a
user’s cell phone as an authentication token and SMS
as a secure channel. oPass requires each participating
website possesses a unique phone number. oPass
program on phone stores user’s long-term password.
The server on oPass requests for the user’s account
id and phone number, instead of a password. In login
procedure, the user enters the long-term password in
a phone; the oPass program generates a one-time
password and sends a login SMS securely to the
server. oPass does not require users to type the
password into an untrusted web browser. Users only

need to remember a long-term password for login on
all Websites.

FIDO (Fast IDentity Online) Alliance [10] develop
technical specifications that define an open, scalable,
interoperable set of mechanism that reduce the
reliance on passwords to authenticate users. In 2014,
FIDO Alliance published FIDO1.0 [11]
Specifications. UAF protocol has been described in
FIDO1.0. UAF (Universal Authentication
Framework) uses biometric of user and device with
UAF stack installed. The user registers their device
to the online service by selecting a local
authentication mechanism such as swiping a finger,
looking at the camera, speaking into the mic, etc. The
user simply repeats the local authentication action
whenever they need to authenticate to the service.
The user no longer needs to enter their password
when authenticating from that device.

As an above study, multi-factor authentication has
been used in improving the security. However, it
incurs expenses to introduce [6]. Also, multi-factor
authentication requires new actions to the user for
the operation such as scanning of the fingerprint,
checking one-time password token. Moreover, the
burden on users is increased. Furthermore, the user
must manage the token and the scanning device.
Therefore, the low security-conscious user hesitates
to implementation.

The processing by infrastructure can solve these
problems. Regarding the method without the burden
of user, Rajitha et.al proposed [12] a hop-by-hop
routing protocol that provides hop-by-hop data
encryption using functions of SoRs, which offers
security, privacy, and integrity. SoR [7] [13] is a
router, which can inspect the data contents in a
packet up to OSI layer 7. A SoR has a high-
throughput database and can analyze all transactions
on its interfaces.

However, routing path information has not been
considered with this protocol. This information may
vary according to the access points, and can be used
for specifying a user. The contribution of this
research is a novel user authentication based on
routing path information obtained through the
infrastructure such as routers using data encryption.
3 Traceability acquisition method

 “Tracer tag” is introduced to store the route
information in a packet. The tracer tag is encrypted

18 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

18 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

by the unique cryptographic key in the SoR. Since
all SoRs in the route execute encryption process, the
tracer tag is encrypted multiple times according to
the order of the forwarding path of the packet. The
packet acquires the traceability when the received
packet is successfully decrypted according to the
reversed order of the forwarding path.

In this method, SoR updates the tracer tag when the
packet is forwarded because traceability of the
packet is guaranteed by multiple encryptions on the
router and decryption on the receiver. The proposed
method allows enhancing security without requiring
extra hassle for users in terms of introduction and
operation compared to another method. This
authentic method needs pre-registration of places, so
accesses from home and workplaces are assumed.

We believe the difficulty of unauthorized access is
raised by the increase of required information. In the
password certification, two components, username,
and password are needed. In the proposed method,
adding to username and password, route information
from the user to server and decryption keys on the
router in the route are needed.

The proposed algorithm has three phases: addition
of tracer tag, encryption on routers, and decryption
to analyze route information.
3.1 Insertion of tracer tag

SoRs of the proposed method can inspect the data
contents to OSI layer 7, and process data in packets.
In this research, the tracer tag is defined as a data
field in the packet to store route information. The
first 16 bytes of the data field is set as tracer tag.
When a packet is sent, 16-byte data is inserted into
the data field. This research uses 16-byte password
which is shared with sender and receiver for
simplicity.
3.2 Encryption function introduced router

The SoRs do not only routing but also encryption
process. An encryption module for SoR is
implemented by C language.

Tracer tag is multi-encrypted with holding fixed
field. Since all routers execute encryption process,
the processing speed of encryption affects total delay
of the system. AES (Advanced Encryption
Standard) [14] is selected because public key
encryption consumes more computation power. The
length of AES key is 128 bits, 192 bits, and 256bits.

Bisclique attack [15] lessens the safety to 126.1 bits,
189.7 bits, and 254.4 bits. NIST recommended [16]
that the length of AES key should be 112 bits or more
to ensure code safety when the system used until
2030. This AES algorithm with 128 bits is in that
scope. The proposed method uses the EVP (The
Digital EnVeloPe Library) by The OpenSSL Project
[17] for implementation of AES.
 Fig. 1 shows the flow of encryption process in
proposed method. 128-bit data in the tracer tag is
encrypted by the unique 128-bit key on every router.
There are different kinds of block cipher mode for
AES since AES is one of the block encryption. ECB
is chosen for this research since tracer tag is fixed
length and the simplest one.
 This algorithm uses destination port number to
judge whether encryption process executed or not.
 Every SoR has different 128-bit encryption key
which is used for encrypting the data of tracer tag.
The encryption process causes the change of UDP
checksum because tracer tag is included in the UDP
data field. UDP checksum is recalculated after
encryption.
3.3 Analysis of routing information

The receiver validates the path information by
preregistered user information and path information.
The user information such as password and path
information are linked with port number and
registered to the receiver. This route information is
acquired by traceroute function, and it is registered
with a password when the first connection was
established between sender and receiver. The
receiver receives the decryption key of every router
in the route. The receiver starts to analyze UDP data
when the data arrived in the predefined port number.
Firstly, it identifies the sender by user information in
the packet. Secondly, The tracer tag is decrypted
according to the forwarding order from receiver to
sender. After decryption process, receiver validates

Fig. 1 The encryption flow

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 19

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 19

ISBN: 1-60132-444-8, CSREA Press ©

the password. If the validation is correct, it means the
packet passed through correct route.

 Fig. 2 shows the flow of proposed algorithm.
“pwd” is the password in trace tag, “R1” and “R2”
are encryption process on router 1 and router 2. “R1-

1” and “R2-1” means decryption process. The data
“pwd” from sender arrives as “R2 R1 pwd” on the
receiver. Receiver assumes the packet pass through
router #1 and router #2 after that receiver decrypts
the packet according to the reversed order. Since it
can get “pwd” correctly, the receiver can judge that
packet passed through correct route.

4 Evaluation
This section explains about the environment of

evaluation. The virtual network includes the virtual
bridges in the virtual machines. Virtual Box [18] is
used as the virtual machine, which is an open source
virtualization software. Table. 1 shows information
about the host machine and virtual machine.

Constructed virtual network is shown in Fig. 3.
Intel PRO/1000 MT Desktop is selected as a network
adapter. Three virtual machines are used as routers,
and another three is used as nodes. Every router
routes packet by a static routing table in the router
and contains 2 hops ahead node information from the
node. The software routers of this environment
implemented as a variety of the SoR.

4.1 Experimental environment

In this paper, traceability is definable as a function
that the routed path of a packet can be confirmed
after receiving the packet, and the traceability is
achieved by using multiple encryption and
decryption in order. Therefore, the multiple
encryption processes decrease the performance of
concerning routers. For evaluating the effect of the
encryption process, a software router with
encryption was compared to IP forwarding function
of Linux kernel and software router.

For measuring the encryption throughput and

latency, a simple model shown in Fig. 4 was
constructed. The sender sends the packet with tracer

Fig. 2 flow of getting traceability

Table. 1 Evaluation environment

CPU Intel Core i7-4790 3.60GHz

Main Memory 16.0 GB

Host OS Windows 8.1 Pro

Virtual Box VirtualBox 5.06 r 103037

Virtual OS CentOS 7.2 1511

Virtual CPU 1 CPU

Virtual Memory 768 MB

VM Linux kernel 3.10.0-229

Fig. 3 Assumed virtual network model

Fig. 4 Model of encryption process load test

20 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

20 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

tag to the receiver via the router. Input and output
interface are monitored for measuring the processing
delay of the routing process. The size of the packet
is fixed as 62 bytes. Tracer tag is handled as a part of
UDP data when encryption process is not executed.

Sender stores the password in the 16 bytes tracer
tag field and then send the packet to the destination
to UDP port 12333 of the receiver. The number of
sending packet is varied from 1 to 10,000,000. Data
transfer rate is 2.3MB/s. The number of a passing
packet of the router and the passing time were
monitored at input and output interface by using
tcpdump.

The number of the passing packets, the start and

end time of the evaluation, and starting and ending
time of output are measured by monitoring interfaces
on the router. The latency is calculated by using the
measured values as shown in Fig. 5. The time when
the packet was input, the latency of process and total
processing time are used for this evaluation. The
total data size was calculated by multiplying the
number of output packet by 62 bytes, which are
packet size. Then, throughput can be calculated by
dividing the total amount of data by total processing
time. We designed a middleware of a software router
to implement the proposed algorithm on it. General
Linux with kernel IP forwarding, the software router
without the proposed algorithm, and the software
router with the proposed algorithm were compared
to evaluate routing performance.

Latency of these three models was shown in Table.
2. The average and standard deviation of the latency
of Linux kernel are 1/6 and 1/50 of other software
routers. Moreover, the throughput of Linux kernel is
3.0 times higher than others.

Designed software router routes packets by copying
them into the buffer, which causes degradation of
performance. From here, to evaluate the effect of
additional load of the encryption process, proposed
router is compared with existing router.

Fig. 6 shows the variation of throughput of the
encryption process. The value increases rapidly until
the number of the input packet becomes 500, and it
decreases after that in any cases. The packet loss
occurs after the number of the packet becomes 500,
which means software router has a limitation on its
packet buffers and the capacity of the buffer was
exceeded after the number of the packet becomes
500. When the number of the input packet becomes
more than 5,000, the throughput converges because
a load of packet control becomes constant.
 Table. 3 shows the average and maximum
throughput after the number of the input packet
becomes 5,000. Each value of existing router is
higher than that of proposed router. The throughput
of proposed router decreases by 3 % compared with
the that of an existing router because of the
encryption process delay. The delay is caused by the
packet preprocessing, encryption, and rewriting
UDP checksum.

Fig. 5 Evaluation value got from input and

output

Fig. 6 Throughput and rate of packet processing

Table. 2 Latency comparison

 Linux
kernel

Software router
 w/o encryption

Software router
w/ encryption

Avarage 0.035ms 0.270ms 0.319ms

Standard
deviation 1 13μs 80 8μs 77 9μs

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 21

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 21

ISBN: 1-60132-444-8, CSREA Press ©

4.2 User authentication using routing

information
User authentication using routing information is

implemented and evaluated according to the
proposed method. Node B is a server (receiver),
Node A and Node C are users (sender), and routers
execute encryption process.

4.2.1 Traceability acquisition method
Node A and Node C send the same UDP data to

Node B, and authentication process is confirmed. In
this experiment, the route information only from
Node C is registered and approved. Namely,
accesses from the other nodes are refused.

Node B processes UDP data comes from port
number 12333 and distinguish which the packet
should be encrypted or not. After that, the packet is
forwarded to Node C according to the registered
route information. After that, the tracer tag is
decrypted according to the order of registered
routing information.
As a result, nonetheless, Node A and Node B send
the same password from the same port, the multiple
encryption and decryption process guaranteed the
packets were delivered through the correct and
hopeful route and were generated by different users
despite the condition of using same passwords. This
experiment confirmed that proposed method could
acquire traceability by adding route information in a
packet.
4.3 Authentication performance evaluation

Packet forwarding performance of proposed
authentication using route information and existing
password authentication was compared. Response
time is the duration time from the time when 16 bytes
password UDP data was sent to the time when a
response from the server was received. Node B is a

user, and Node C is a server, the date passed through
router #1 and router #2 as shown in Fig.3.

In existing password authentication, the packet is
transferred by the router and reaches the server, nad
then password certification is executed. On the
contrary, in the proposed method, the password is
repeatedly encrypted on every router, and password
certification is executed after the decryption process
on the server. Soon after the password certification
is succeeded, the response packet is sent to the user.

Response time is measured by monitoring network
interface of the user by using tcpdump. Table 4
shows the comparison of the response time of user
certification. The response time of user
authentication using router information increases
0.909 milliseconds compared with the existing
password certification. This difference means the
processing delay of encryption on router and
decryption on the server. In this experiment, two
routers are passed, and it means 2 set of encryption
and decryption were executed. The processing time
per 1 hop is 0.454 milliseconds. Since the Time To
Live, which is the limit of a number of hops, is set to
64 on the CentOS7, the maximum delay could
become 29 milliseconds by adopting proposed
method.

 In terms of user load, the user only inserts 16 bytes
password in a packet of a stream in any cases. This
means the user load is the same even using the
proposed user certification. Compared with the one-
time password, token control, and biological
certification, it is easy to implement proposed
method that adds the tracer tag to the packet because
this can introduce by software.

5 Conclusion

In this study, we proposed traceability
acquisition method in a network and new user
authentication using routing path information. The
tracer tag is inserted in the packet, and the tracer tag
is encrypted at each router on its forwarding path.
The recipient decrypts the tracer tag to validate the

Table. 3 Comparison of performance by
throughput

 Software router
with encryption

Software
router

Reductionrate
by encryption

Maximum
throughput

(Mbps)
1.56 1.60 2 82

Avarage
throughput

(Mbps)
0.88 0.90 3 15

Table. 4 Comparison of response

 Text password Proposed authentication

Response time 1.12ms 2.03ms

22 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

22 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

path of the packet. The router in the proposed
method is evaluated by using VirtualBox. The
throughput of a router with the proposed method
decreased by 3% compared with a router without the
proposed method. However, it achieves traceability
of packet. User authentication leveraging packet
traceability can enforce security without increasing
the user’s burden. The response time of the proposed
user authentication was about 0.454ms increase in
each through a router.

ACKNOWLEDGEMENT
This work was partially supported by the funds of

SECOM Science and Technology Foundation.
6 References
[1] M.Bishop, "Password Management,"

Proceedings of Compoom Spring '91: Digest of
Papers page 167-169, 1991.

[2] Tarwireyi, P., Flowerday, S., Bayaga, A.
"Information Security Competence Test with
Regards to Password Management,"
Information Security South Africa(ISSA), 2011.

[3] D. Florencio, C. Herley, "A large-scale study of
web password habits," WWW '07:Proc. 16th Int.
Conf. World Wide Web., 2007.

[4] APWG, "Phishing Activity Trends Report,"
APWG, 2016.

[5] NIST, "Special Publication 800-63-2," NIST,
2013.

[6] L. O'German, "Comparing passwords, tokens,
and biometrics for user authentication,"
Proc.IEEE, vol.91, no. 12, pp.2021-2040, 2003.

[7] Koichi Inoue, Dai Akanishi, Michihiro
Koibuchi, Hideyuki Kawashima, Hiroaki Nishi,
"Semantic router using data stream to enrich
services.," 3rd International Conference on
Future Internet CFI 2008 Soul, June 2008.

[8] Ka-Ping Yee, Kragen Sitaker, “Passpet:
convenient password management and phishing
protection,” SOUPS '06: Proc. 2nd Symp.
Usable Privacy Security, New York, 2006.

[9] H.M. Sun, Y.H. Chen, Y.H. Lin, "oPass: A User
Authentication Protocol Resistant to Password
Stealing and Password Reuse Attack," IEEE
Transaction on Information Forensics and
Security, vol.7, No.2, 2012.

[10] FIDO Alliance, "FIDO Alliance," FIDO
Alliance, 2016. [Online]. Available:
https://fidoalliance.org.. [Accessed 04 04 2016].

[11] FIDO Alliance, "FIDO NFC Protocol
Specification v1.0",
https://fidoalliance.org/specs/fido-u2f-nfc-
protocol-id-20150514.pdf. [Accessed 4 4 2016].

[12] R. Tennekoon, J. Wijekoon, E. Harahap, H.
Nishi, E. Saito, S. Katsura, “ Per Hop Data
Encryption Protocol for Transmission of Motion
Control Data Over Public Networks,” Advanced
Motion Control(AMC), 2014.

[13] K. Takagiwa, S. Ishida, H. Nishi, "SoR-based
Programmable Network for Future Software-
Defined Network," IEEE 37th Annual
Computer Software and Applications
Conference, 2013.

[14] NIST, “FIPS PUB 197,” NIST, 2001.
[15] A. Bogdnaov, D. Khovatovich , C. Rechberger,

“Bisclique Cryptanalysis of the Full AES,”
ASIACRYPT 2011, 2011.

[16] NIST, “NIST SP 800-57(Recon for Key
Management),” NIST, 2007.

[17] OpenSSL Project, "OpenSSL," 2016. [Online].
Available: https://www.openssl.org. [Accessed
04 04 2016].

[18] Oracle, "Oracle VM VirtualBox," 2016.
[Online]. Available: https://www.virtualbox.org.
[Accessed 04 04 2016].

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 23

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 23

ISBN: 1-60132-444-8, CSREA Press ©

Node-Independent Spanning Trees in Gaussian Networks

Z. Hussain1, B. AlBdaiwi1, and A. Cerny2

1Computer Science Department, Kuwait University, Kuwait
2Department of Information Science, Kuwait University, Kuwait

Abstract— Gaussian network is known to be an alternative

to toroidal network since it has the same number of nodes

with less diameter, which makes it perform better than

toroidal network. Spanning trees are said to be independent

if all trees are rooted at the same node r and for any other

node u, the nodes of the paths from r to u in all trees are

distinct except the nodes r and u. In this paper, we investigate

the problem of finding node independent spanning trees in

Gaussian networks.

Keywords: Circulant Graphs, Gaussian Networks, Spanning Trees,

Independent Spanning Trees, Fault-Tolerant Routing.

1. Introduction
The topology of an interconnection network plays a major

role in achieving high performance computing in parallel

systems. There are many varieties of these interconnection

networks and some of them are popular such as hypercube,

generalized hypercube, mesh, torus, De Bruijn, REFINE, and

RMRN networks [2][3][4][5][6][7][9]. An efficient intercon-

nection topology called Gaussian network has been studied in

[8][15][16]. The studies show that the Gaussian network can

be a better alternative to the torus network since it has the

same number of nodes but with less diameter. This network

is briefly reviewed in Section 2.

In parallel computing and distributed systems, a network

can be represented as a graph G(V ,E) where V is the set

of nodes and E is the set of edges. These nodes and edges

represent processors and communication links between the

processors in the network, respectively. A path from node s

to node d in the graph is a sequence of edges, which connects

a sequence of nodes from s to d. Two such paths are said

to be independent if their nodes are different except the end

nodes s and d, i.e. the intermediate nodes in the first path

are distinct form the intermediate nodes in the second path.

A spanning tree is a connected loop-free subgraph of graph

G containing all the nodes of graph G. Spanning trees rooted

at node r are said to be independent if the paths from r to

any other node u in all trees are independent.

Node independent spanning trees used to resolve important

issues in network applications such as fault-tolerant broad-

casting [11][13] and secure message distribution [17][18].

These applications are briefly described below:

• Consider that there exist t node independent spanning

trees rooted at node r in a network N . Assume that the

network N contains at most t− 1 faulty nodes. Then, r

can broadcast a message to every non-faulty node u in

the network N with the existence of t− 1 faulty nodes.

Since the number of faulty nodes is less than t, then at

least one of those t node disjoint paths from r to u is

fault free. Thus, every non-faulty node in the network

N would receive the broadcasted message from r if all

t node independent spanning trees are used to broadcast

the message.

• Node independent spanning trees could be used to secure

message distribution as follows. A message can be

divided into t packets where each packet is sent by node

r through a different spanning tree to its destination.

Thus, each node in the network receives at most one of

the t packets whereas the destination node receives all

the t packets [14][18][19].

In [1], we have constructed two edge-disjoint node-

independent spanning trees in dense Gaussian network, in

which the network contains the maximum number of nodes

for a given diameter k [16], where the depth of each tree is

2k, k ≥ 1. We also designed algorithms that can be used in

fault-tolerant routing or secure message distribution where the

source node in these algorithms is not restricted to a specific

node; it could be any node in the network.

In this paper, we investigate the problem of finding node

independent spanning trees in Gaussian networks where the

trees are not necessarily edge-disjoint. This paper is organized

as follows. The Gaussian network is reviewed in Section

2. Section 3 presents the algorithms that illustrate the con-

struction of node independent spanning trees in Gaussian

networks. The communication overhead and the amount of

work to construct the trees are discussed in Section 4. The

paper is concluded in Section 5.

2. Background

Gaussian networks are 4-regular symmetric networks

where each node in the network has 4 neighbors. These

networks are based on quotient rings of Gaussian integers

Z[i] = {x + yi | x, y ∈ Z} where i =
√−1 [10]. Z[i] is a

Euclidean domain. The nodes of the network are elements of

the residue class modulo some α ∈ Z[i]. The total number

of nodes in the network is known as norm, N(α), of the

Gaussian integer α = a+ bi and is equal to a2 + b2. Various

representations of these residue classes are given in [12].

Each node in the network is labeled as x + yi. The nodes

A and B are said to be adjacent, i.e. neighbors, if and only if

24 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

24 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

(A−B) mod α is equal to ±1 or ±i. As described in [15],

if N(α) is odd, for each node in the grid, the number D(s)
of nodes at distance s such that 0 ≤ s ≤ k and t = a+b−1

2
is:

D(s) =

⎧⎨
⎩

1
4s

4(b− s)

if s = 0
if 0 < s ≤ t

if t < s < b

(1)

Further, when N(α) is even, the number D(s) of nodes at

distance s such that 0 ≤ s ≤ k and t = a+b

2 is:

D(s) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
4s

2(b− 1)
4(b− s)

1

if s = 0
if 0 < s < t

if s = t

if t < s < b

if s = b

(2)

when 0 < a = b, the distance distribution of the graph Gb+bi

is as follows:

D(s) =

⎧⎨
⎩

1
4s

2b− 1

if s = 0
if 0 < s < b

if s = b

(3)

Based on the above, the diameter of the network is k,

which is equal to b when N(α) is even and to b − 1 when

N(α) is odd. Figure 1 shows an example of Gaussian network

generated with α = 3 + 4i.

-1+2i 2i 1+2i

3i

-3 -2 -1 0 1 2 3

-2+i -1+i i 1+i 2+i

-1-2i -2i 1-2i

-2-i -1-i -i 1-i 2-i

-3i

Fig. 1: Gaussian network generated with α = 3 + 4i

The wrap-around links can be obtained by tiling the

Gaussian network on an infinite grid. For example, Figure 2

shows the Gaussian network generated with α = 2 + 3i and

the nodes’ wrap-around links are illustrated based on tiling

the network. Consider the node 1+i where its −1 edge and −i

edge are connected to the nodes i and 1, respectively, which

are within the basic grid. However, the +1 edge should be

connected to node 2 + i, which is not within the basic grid.

Thus, this edge is considered as a wrap around link and it is

connected to node −2i, which is an equivalent to node 2+ i

modulo 2+3i. Similarly, +i edge of node 1+ i is connected

to node 1 + 2i, whose corresponding node in the basic grid

is −1− i.

Fig. 2: Tiling Gaussian network generated with α = 2 + 3i

In this paper, we deal with dense diameter-optimal graph,

which is isomorphic to the Gaussian network G(αk), where

αk = k + (k + 1)i, since GCD(k, k + 1) = 1. We denote

Gk = (Vk, Ek) = G(αk), k ≥ 1.

3. Node Independent Spanning Tree Con-

struction
In this section, we describe how to construct four node

independent spanning trees in Gaussian network Gk. We

give algorithms that construct four different spanning trees

and then, from the figures, we show that these trees are

independent and the exact proof of the independence of these

trees will be in an extended version of this paper.

Algorithm 1 constructs four paths of length 1 where each

path connects the node 0 to one of its neighbors (children of

root), which is considered as the first step for constructing

the four node independent spanning trees. The variables used

in the following algorithms are described as follows. treeNo

= 1, 2, 3, and 4 determines the first, second, third, and fourth

node independent spanning tree, respectively. root is the root

node and current is the current node where both being of

the form x + yi; root.x or root.y (current.x or current.y)

describe the coordinates of the node in the network. The

root.Child1, root.Child2, root.Child3, and root.Fourth are the

links, in respective order, to the first, second, third, and fourth

children of the node root. The current.Child1, current.Child2,

and current.Child3 are the links to the first, second, and third

children of node current, respectively, and current.Parent is

the link to the parent node of the node current. The network

generator is α = k + (k + 1)i; k is the network diameter in

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 25

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 25

ISBN: 1-60132-444-8, CSREA Press ©

dense Gaussian networks. In all algorithms, all operations of

+ and − are done mod α.

Algorithm 1 allTrees: Construct four node independent span-

ning trees based on a network generator α = a+ bi

1: root.x ← 0

2: root.y ← 0

3: root.Child1 ← root.x + 1
4: root.Child2 ← root.y + i

5: root.Child3 ← root.x − 1
6: root.Child4 ← root.y − i

7: send through +1 packet (root, root.Child1, 1)

8: send through +i packet (root, root.Child2, 2)

9: send through −1 packet (root, root.Child3, 3)

10: send through −i packet (root, root.Child4, 4)

Algorithm 2 does the configuration for a node when it

receives the packet (parent, current, treeNo). For example, it

initializes the current node and it sets its parent node. After

that, based on the value of treeNo, it calls the corresponding

function to construct the targeted tree.

Algorithm 2 Node initialization based on the received packet

(parent, current, treeNo)

1: k ← b− 1
2: current.Parent ← parent

3: current.Child1 ← Nil

4: current.Child2 ← Nil

5: current.Child3 ← Nil

6: if treeNo = 1 then

7: call Tree1(parent, current)

8: else if treeNo = 2 then

9: call Tree2(parent, current)

10: else if treeNo = 3 then

11: call Tree3(parent, current)

12: else

13: call Tree4(parent, current)

14: end if

Algorithm 3 sets the child nodes and forwards the packet

to them based on the directions corresponding to the first

spanning tree. The first tree uses the following edges. 2k
edges are in +1 direction where k of them on the path from

node 0 to node k and the other k are from node k to node ki

and from node (−1+ ji) to node (ji) for j = 1, 2, . . . , k−1.

Further, k2 edges are used in −i direction from node (m −
ni) mod α to node (m−(n+1)i)mod α for m = 1, 2, . . . , k
and n = 0, 1, . . . , k− 1. Also, there are k2 edges are used in

+i direction from node (m+ni) mod α to node (m+(n+
1)i)mod α for m = 1, 2, . . . , k and n = 0, 1, . . . , k−1. Thus,

a total of 2k2 + 2k edges are used in the first spanning tree,

which are sufficient to form a spanning tree of all 2k2+2k+1
nodes of the network.

From figures 3, 4, 5, and 6, it is clear that the four spanning

trees are symmetric. Also, it is obvious that the second tree in

Figure 4 is a one rotation to the counter clockwise of the first

tree in Figure 3. Similarly, the third and fourth trees as seen

in figures 5 and 6, respectively, are two and three rotations

to the counter clockwise of the first tree, respectively. Thus,

it follows that the algorithms 4, 5, and 6 are similar to the

Algorithm 3 except that the direction of sending the packet is

set according to the rotation based on its corresponding tree.

Note that, the intersected edges between the first and third

(also, second and fourth) spanning trees are used in opposite

directions. That is, the path between any nodes u and v in

the first spanning tree is independent from the third spanning

tree. The similar argument applies to the second and fourth

spanning trees. Thus, the first and third (second and fourth)

spanning trees are independent.

Moreover, the first spanning tree uses mostly ±i (vertical)

edges, which are not used in the second tree, while the second

spanning tree uses mostly ±1 (horizontal) edges, which are

not used in the first tree. Also, note that the intersected

edges between the first and second spanning trees are used

in opposite directions. That is, the path between any nodes

u and v in the first spanning tree is independent from the

second spanning tree. The similar argument applies to the

third and fourth spanning trees. Thus, the first and second

(third and fourth) spanning trees are independent.

A similar to the above argument can be applied to show

that the first and the fourth (the second and the third) span-

ning trees are independent. Thus, we get four independent

spanning trees.

-1+2i 2i 1+2i

3i

-3 -2 -1 0 1 2 3

-2+i -1+i i 1+i 2+i

-1-2i -2i 1-2i

-2-i -1-i -i 1-i 2-i

-3i

Fig. 3: First spanning tree

After constructing the trees, we can execute tree broadcast-

ing to send a message from the root node to every other node

in the network in 2k steps.

26 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

26 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

Algorithm 3 Tree1(parent, current): Invoked by a function

call in Algorithm 2

1: if current.y = 0 and current.x > 0 and current.x ≤ k

then

2: current.Child1 ← current.y−i

3: send through −i packet (current, current.Child1, 1)

4: current.Child2 ← current.x+1
5: send through +1 packet (current, current.Child2, 1)

6: current.Child3 ← current.y+i

7: send through +i packet (current, current.Child3, 1)

8: end if

9: if parent.Child1 = current then

10: current.Child1 ← current.y−i

11: if current.y ≥ i and current.y ≤ (k−1)i and current.x

= −1 then

12: current.Child2 ← current.x+1
13: end if

14: if current.Child1.y �= 0 then

15: send through −i packet (current, current.Child1, 1)

16: end if

17: end if

18: if parent.Child3 = current then

19: current.Child3 ← current.y+i

20: if current.Child3.y �= −i then

21: send through +i packet (current, current.Child3, 1)

22: end if

23: end if

4. Construction Complexity

Each tree needs 2k parallel construction steps. In the

following two subsections we will derive the communication

overhead and the amount of work to construct a single tree.

In the third subsection, we will derive the total complexity

to construct all four trees.

4.1 Communication Complexity

We will enumerate the construction steps from 0 to 2k −
1. The number of messages generated in the ith step of

communication is:

Comm(i) =

{
2i+ 1, 0 ≤ i ≤ k

2(2k − i) + 1, k + 1 ≤ i ≤ 2k − 1
(4)

Thus, the total messages generated in each tree construc-

Algorithm 4 Tree2(parent, current): Invoked by a function

call in Algorithm 2

1: if current.x = 0 and current.y > 0 and current.y ≤ ki

then

2: current.Child1 ← current.x+1
3: send through +1 packet (current, current.Child1, 2)

4: current.Child2 ← current.y+i

5: send through +i packet (current, current.Child2, 2)

6: current.Child3 ← current.x−1
7: send through −1 packet (current, current.Child3, 2)

8: end if

9: if parent.Child1 = current then

10: current.Child1 ← current.x+1
11: if current.x ≥ −k + 1 and current.x ≤ −1 and

current.y = −i then

12: current.Child2 ← current.y+i

13: end if

14: if current.Child1.x �= 0 then

15: send through +1 packet (current, current.Child1, 2)

16: end if

17: end if

18: if parent.Child3 = current then

19: current.Child3 ← current.x−1
20: if current.Child3.x �= 1 then

21: send through −1 packet (current, current.Child3, 2)

22: end if

23: end if

tion is:

=
2k−1∑
i=0

Comm(i) (5)

=

k∑
i=0

(2i+ 1) +

2k−1∑
i=k+1

(2(2k − i) + 1)) (6)

=

k∑
i=0

2i+

k∑
i=0

1 +

2k−1∑
i=k+1

4k −
2k−1∑
i=k+1

2i+

2k−1∑
i=k+1

1 (7)

= 2(
k(k + 1)

2
) + (k + 1) + 4k(k − 1)

−2(

2k−1∑
i=1

i−
k∑

i=1

i) + (k − 1) (8)

= 5k2 − k − 2(
((2k − 1)(2k))

2
− k(k + 1)

2
) (9)

= 5k2 − k − (3k2 − 3k) (10)

= 2k2 + 2k (11)

Note that, this one less than the number of nodes in Gk since

each node receives a message except the root node.

4.2 Local Computation

Each node needs 26 local operations for assignments,

comparisons, and sending the packets. 9 of these operations

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 27

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 27

ISBN: 1-60132-444-8, CSREA Press ©

-1+2i 2i 1+2i

3i

-3 -2 -1 0 1 2 3

-2+i -1+i i 1+i 2+i

-1-2i -2i 1-2i

-2-i -1-i -i 1-i 2-i

-3i

Fig. 4: Second spanning tree

-1+2i 2i 1+2i

3i

-3 -2 -1 0 1 2 3

-2+i -1+i i 1+i 2+i

-1-2i -2i 1-2i

-2-i -1-i -i 1-i 2-i

-3i

Fig. 5: Third spanning tree

are performed in Algorithm 2 and 17 of them are performed

when calling one of the following algorithms 3, 4, 5, and

6. Hence, the number of local computations in step i is

26Comm(i). In details, it is:{
26(2i+ 1), 0 ≤ i ≤ k

26(2(2k − i) + 1), k + 1 ≤ i ≤ 2k − 1
(12)

Thus, the total amount of work over all phases is 52k2+52k.

4.3 Total Complexity

All four trees can be constructed in 2k parallel steps. The

total communication overhead to construct all trees is:

= 4× Communication Complexity for

One Tree (13)

= 8k2 + 8k (14)

Algorithm 5 Tree3(parent, current): Invoked by a function

call in Algorithm 2

1: if current.y = 0 and current.x ≥ −k and current.x ≤ −1
then

2: current.Child1 ← current.y+i

3: send through +i packet (current, current.Child1, 3)

4: current.Child2 ← current.x−1
5: send through −1 packet (current, current.Child2, 3)

6: current.Child3 ← current.y−i

7: send through −i packet (current, current.Child3, 3)

8: end if

9: if parent.Child1 = current then

10: current.Child1 ← current.y+i

11: if current.y ≥ (−k + 1)i and current.y ≤ −i and

current.x = 1 then

12: current.Child2 ← current.x−1
13: end if

14: if current.Child1.y �= 0 then

15: send through +i packet (current, current.Child1, 3)

16: end if

17: end if

18: if parent.Child3 = current then

19: current.Child3 ← current.y−i

20: if current.Child3.y �= i then

21: send through −i packet (current, current.Child3, 3)

22: end if

23: end if

The total amount of computation work needed to construct

all trees is:

= 4× Local Computations for One Tree (15)

= 208k2 + 208k (16)

5. Conclusions
In this paper, we briefly described the definition of graphs,

independent paths, node independent spanning trees, and

Gaussian network. Then, we gave algorithms that construct

four node independent spanning trees in Gaussian networks.

The depth of each tree is 2k. Further, we have computed the

construction complexity for the given algorithms.

In our future work, we would like to extend this work

and implement algorithms for parallel construction of node

independent spanning trees and fault-tolerant routing from a

given source node to a given destination node.

References
[1] B. AlBdaiwi, Z. Hussain, A. Cerny, and R. Aldred, “Edge-disjoint

node-independent spanning trees in dense gaussian networks,” The

Journal of Supercomputing, pp. 1–19, 2016. [Online]. Available:
http://dx.doi.org/10.1007/s11227-016-1768-x

[2] H. R. Arabnia and J. W. Smith, “A reconfigurable interconnection
network for imaging operations and its implementation using a multi-
stage switching box,” in Proceedings of the 7th annual international

high performance computing conference. The, 1993, pp. 349–357.

28 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

28 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

Algorithm 6 Tree4(parent, current): Invoked by a function

call in Algorithm 2

1: if current.x = 0 and current.y >= −ki and current.y <

0 then

2: current.Child1 ← current.x−1
3: send through −1 packet (current, current.Child1, 4)

4: current.Child2 ← current.y−i

5: send through −i packet (current, current.Child2, 4)

6: current.Child3 ← current.x+1
7: send through +1 packet (current, current.Child3, 4)

8: end if

9: if parent.Child1 = current then

10: current.Child1 ← current.x−1
11: if current.x ≥ 1 and current.x ≤ k − 1 and current.y

= i then

12: current.Child2 ← current.y−i

13: end if

14: if current.Child1.x �= 0 then

15: send through −1 packet (current, current.Child1, 4)

16: end if

17: end if

18: if parent.Child3 = current then

19: current.Child3 ← current.x+1
20: if current.Child3.x �= −1 then

21: send through +1 packet (current, current.Child3, 4)

22: end if

23: end if

[3] H. Arabnia and S. Bhandarkar, “Parallel stereocorrelation on a recon-
figurable multi-ring network,” The Journal of Supercomputing, vol. 10,
no. 3, pp. 243–269, 1996.

[4] S. Bhandarkar and H. Arabnia, “The hough transform on a recon-
figurable multi-ring network,” Journal of Parallel and Distributed

Computing, vol. 24, no. 1, pp. 107 – 114, 1995.

[5] S. M. Bhandarkar and H. R. Arabnia, “The REFINE multiprocessor
– theoretical properties and algorithms,” Parallel Computing, vol. 21,
no. 11, pp. 1783 – 1805, 1995.

[6] S. M. Bhandarkar, H. R. Arabnia, and J. W. Smith, “A reconfigurable
architecture for image processing and computer vision,” International

Journal of Pattern Recognition and Artificial Intelligence, vol. 09,
no. 02, pp. 201–229, 1995.

[7] J. Duato, S. Yalamanchili, and L. Ni, Interconnection Networks: An

Engineering Approach, 1st ed. Los Alamitos, CA, USA: IEEE
Computer Society Press, 1997.

[8] M. Flahive and B. Bose, “The topology of Gaussian and Eisenstein-
Jacobi interconnection networks,” IEEE Transactions on Parallel and

Distributed Systems, vol. 21, no. 8, pp. 1132–1142, August 2010.

[9] A. Grama, A. Gupta, G. Karypis, and V. Kumar, Introduction to Parallel

Computing, 2nd ed. Boston, MA, USA: Addison-Wesley Longman
Publishing Co., Inc., 2003.

[10] K. Huber, “Codes over Gaussian integers,” IEEE Transactions on

Information Theory, vol. 40, no. 1, pp. 207–216, Jan. 1994.

[11] A. Itai and M. Rodeh, “The multi-tree approach to reliability
in distributed networks,” Inf. Comput., vol. 79, no. 1, pp.
43–59, Oct. 1988. [Online]. Available: http://dx.doi.org/10.1016/0890-
5401(88)90016-8

[12] C. J. P. J. H. Jordan, “Complete residue systems in the gaussian
integers,” Mathematics Magazine, vol. 38, no. 1, pp. 1–12, 1965.
[Online]. Available: http://www.jstor.org/stable/2688007

[13] M. S. Krishnamoorthy and b. Krishnamurthy, “Fault diameter
of interconnection networks,” Comput. Math. Appl., vol. 13,

-1+2i 2i 1+2i

3i

-3 -2 -1 0 1 2 3

-2+i -1+i i 1+i 2+i

-1-2i -2i 1-2i

-2-i -1-i -i 1-i 2-i

-3i

Fig. 6: Fourth spanning tree

no. 5-6, pp. 577–582, Apr. 1987. [Online]. Available:
http://dl.acm.org/citation.cfm?id=35064.36256

[14] J.-C. Lin, J.-S. Yang, C.-C. Hsu, and J.-M. Chang, “Independent
spanning trees vs. edge-disjoint spanning trees in locally twisted
cubes,” Information Processing Letters, vol. 110, no. 10, pp. 414 –
419, 2010.

[15] C. Martinez, R. Beivide, E. Stafford, M. Moreto, and E. Gabidulin,
“Modeling toroidal networks with the Gaussian integers,” IEEE Trans-

actions on Computers, vol. 57, no. 8, pp. 1046–1056, Aug. 2008.
[16] C. Martinez, E. Vallejo, R. Beivide, C. Izu, and M. Moreto, “Dense

Gaussian networks: Suitable topologies for on-chip multiprocessors,”
International Journal of Parallel Programming, vol. 34, pp. 193–211,
2006.

[17] A. Rescigno, “Vertex-disjoint spanning trees of the star network with
applications to fault-tolerance and security,” Information Sciences, vol.
137, no. 1-4, pp. 259–276, 2001.

[18] J.-S. Yang, H.-C. Chan, and J.-M. Chang, “Broadcasting
secure messages via optimal independent spanning trees in
folded hypercubes,” Discrete Applied Mathematics, vol. 159,
no. 12, pp. 1254 – 1263, 2011. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0166218X11001454

[19] J.-S. Yang, J.-M. Chang, and H.-C. Chan, “Independent spanning trees
on folded hypercubes,” in Proceedings of the 2009 10th International

Symposium on Pervasive Systems, Algorithms, and Networks, ser.
ISPAN ’09. Washington, DC, USA: IEEE Computer Society, 2009,
pp. 601–605.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 29

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 29

ISBN: 1-60132-444-8, CSREA Press ©

A Load Service Structure with An Reputation

System in Ad-hoc Networks

Ming-Chang Huang

Department of Business Information Systems / Operation Management

University of North Carolina at Charlotte

mhuang5@uncc.edu

Abstract - It is important how wireless hosts find other
hosts securely and efficiently for load service purposes
because hosts in an ad-hoc network moves dynamically. In
this paper, I design a method for load services in computer
networks with a new reputation system to check available
host reputation. I use databases for directory agents to save
information provided by load-server agents and build
protocols that how a host can find available hosts for load
service and load transfer purposes when it moves to a new
region. This includes how a directory agent builds its
database, how a load-server agent provides its services, and
how a load-client agent gets the services it needs. I will also
use fuzzy logic control method to transfer loads for load
balancing, instead of fixed threshold level methods. The
purpose of this new system structures is to provide efficient
ways in building communication and accessing resources
in ad-hoc computer network systems. This helps users to
find data easily and securely.

Keywords: Load Service, Ad-Hoc Network, Directory
Agent, Load-server Agent, Load-client Agent,
Peer-to-Peer, Reputation System

1. Introduction
Computer networks can provide parallel computation and
services. It is important that hosts send their loads to other
hosts for certain function implementation through
network transfer. With the increasing popularity of mobile
communications and mobile computing, the demand for
load services and load balancing grows. When a computer
is overloaded or it needs special services from other
computers, it may send requests to other computers for
load transfer or load services. For example, a computer
may need some jobs to be executed with higher quality of
services or it needs some jobs to be done with a short
period of time that its processor is too slow to perform the
jobs; therefore, it may send part those jobs to other
computers with higher speeds of processors. Since
wireless networks have been wild used in recent years,

how a host transfers its loads to other nodes has becomes
a very important issue because not all wireless hosts have
the ability to manipulate all their loads. For instance, a
host with low battery power cannot finish all its jobs on
time and should transfer some of them to other hosts.
Currently, most of load balancing algorithms are based on
wired network environments, it is important to find an
efficient way for load service purposes.

Before a wireless host transfers its loads to other hosts
or asks for load services from other hosts, it has to find
available hosts using resource allocation algorithms.
There are several resource allocation protocols been
developed, for example, IEFT Service Location Protocol
(SLP) [1] and Jini [2] software package from
Microsystems. However, these protocols address how to
find the resources in wired networks, not in wireless
networks. Maab [3] develops a location information
server for location-aware applications based on the X.500
directory service and the lightweight directory access
protocol LDAP [4]; while it does not cover some
important issues about the movements of mobile hosts, for
example, how to generate a new directory service and how
a host gets the new services, when a directory agent moves
away its original region. In an Ad-Hoc network, system
structure is dynamic and hosts can join or leave any time.
Therefore, how to provide load services and how to find
available hosts providing load services become
importance issues in an Ad-Hoc network system.

To find a host which can fulfill the load service
purpose, the requesting host also has to make sure that the
host it is looking for has good reputation in load services.
For good reputation hosts, they will have to share their
resources as well besides just requesting resources from
other hosts. It is called the “free-riding” situation if a host
only requests resources from other hosts without sharing
it resources to others. Measurement study of free-riding
on Gnutella was first reported by [10] in 2000 which
indicated that approximately 70% of Gnutella users did

30 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

30 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

not share any files and nearly 50% queries were responded
from top 1% peers. However, according to the most
recently measurement study, the percentage of free riders
rises to 85% [11]. It is very possible that a small number
of peers who are willing to share information take most of
the job loadings in P2P networks. As a result, the
prevalence of free riders will eventually downgrade the
performance of entire system and would make the system
vulnerable [12].

In this paper, I am going build a system structure for
load services with reputation checking in wireless Ad-Hoc
network systems using peer-to-peer concept [8, 9]. In Ad-
Hoc network systems, hosts move dynamically without
base stations for communication. The load service
architecture provides special services upon requests from
hosts and these services, e.g., include resource location
services and load balancing services. A host may send its
special requests to other hosts for load services or send its
loads for load balancing. The requests include service
types the host needs or the amount of loads to be sent to
other hosts. For those special services, the host should
define the conditions that other hosts may accept the
services. For example, the request includes the price of job
execution, the limit requirement of execution time, etc.
Besides looking for the desired resources, the requesting
host also check the requested host’s reputation to avoid
“free-riding” cases [7].

In Section 2, I discuss the system structure. Section 3
expresses the details of the method. Section 4 and
section 5 illustrate the information format for databases,
and the scalability respectively. Section 6 presents the
conclusion.

2. System structures
In this section, I am going to describe the structure used
in the system. Basically, there are three components in my
load service system – directory agent, load-server agent
and load-client agent. A load-server agent provides load
services that are queried by other hosts (load-client agents)
which require load services. Load-server agents post the
types of services periodically to their directory agents to
update the services they can provide to load-client agents.
A load-client agent is a host in the network, which may
need some services performed by other hosts. It sends
requests to its directory agents to ask for services from
load-server agents when it is heavily loaded or it needs
some special services, which it does not have the ability
to perform. A directory agent forms groups for both load-
server agents and load-client agents respectively and
builds a database for service queries from load-client
agents.

Figure 1 shows an example based on the architecture
of my load service system. Figure 2 shows the structure of
the reputation system (FuzRep) [7] which I am going to

apply in the paper. Each directory agent has a query
database, which stores all the query information from
load-server agents. Load-server agents and load-client
agents may join directory agents upon requests. In Figure
1, for example, Load-server Agent 1 and Load-client
Agent 1 register with Directory Agent 1; Load-server
Agent 2 registers with Directory Agent 1 and Directory
Agent 2 at the same time. Load-client Agent 1 may send
requests to Directory Agent 1 for querying load services
and Directory Agent 1 checks its database and the
reputation system to find fitted load-server agents and
sends those available load-server agent addresses to Load-
client Agent 1. The fitted load-server agents can be Load-
server Agent 1, Load-server Agent 2, or both. Load-client
Agent 1 can choose one of them based on its best
convenience; or it can choose both of them for special
purposes. Of course, it is possible that none of the load-
server agents can be found.

Figure 1: Load service system architecture with FuzRep
Reputation System

FuzRep is a design of a fuzzy-based reputation system
for P2P networks. It includes three techniques reputation
determination, selective polling, and service differentiation.
I am going to describe how FuzRep works by revealing
answers of the following questions.

 How to determine a peer’s reputation level? What are
the criteria? How to transfer a crisp score to a reputation
level? How to maintain it?

 How and when to share the contribution information?
 How to encourage sharing and discourage free riding?

How to differentiate the service level?

In FuzRep, a peer’s reputation is determined by its
contributions to the communities. A peer saves transaction
information into local transaction repository, including
requesters’ or providers’ IDs, and accumulated
contribution scores. The transaction repository is updated
after every successful transaction. The initial local
contribution score is set to zero originally for pre-
unknown peers at their first interactions. A global

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 31

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 31

ISBN: 1-60132-444-8, CSREA Press ©

accumulated contribution score is used to determine
corresponding peer’s reputation. It is built on two phase
computes personal reputation inference and global
reputation deduction. Personal reputation inference
simply fetches a peer’s contribution score from its
transaction repository. If a file provider chooses to
determine a file request’s reputation simply based on its
experience, personal reputation inference fits that purpose.
Otherwise, the file provider should run the global
reputation deduction process using the selective polling
reputation sharing process. [7]

Figure 2. FuzRep architecture and operational processes

3. Algorithm for wireless ad-hoc load
services

There are several issues that I consider when designing the
system architecture, which includes, for example, how a
directory agent asks a host to register with its database, the
effects of the movement of mobile hosts to the join of load-
server and load-client agents, and fault tolerance of the
system. Below I explain how hosts join or leave directory
agents and how directory agents form their databases when
they move.

I also describe how a load-client agent should pay
load-server agents that it asks the services from and how
hosts in the system gain tokens in order to pay the services
it need. How to transfer loads between load-server agents
and load-client agents is also mentioned in this section.

3.1 A directory agent asks hosts for
registration

In order to collect load service information from other
hosts and provide results for queries, a directory agent
builds a query database. The information in the database
includes the addresses of load-server agents which provide
information, the service types, or the loads that load-server
agents can accept. The host can be a desk computer or a
laptop once it has the ability; for example, it has high-speed
processors, enough power for communication, etc. The

method how a directory agent asks for registration is
discussed below.

1. A directory agent broadcasts a message to the other
hosts within the range that its power can reach.

2. A host, which receives the broadcast message from a
directory agent and is willing to register with the
directory agent’s database as a load-server agent,
sends an ACK message to the directory agent for
registration. The ACK message includes information,
such as the service types it can perform and/or the
loads it can accept, etc., provided by a load-server
agent.

3. The directory agent keeps the ACK information in its
query database and therefore builds a link from itself
to the load-server agent sending the ACK message.

4. To check if a load-server agent is still available in the
database, a directory agent periodically sends
multicast messages to all the load-server agents, which
have query information in its database. This purpose
for this is for database information update because
load-server agents might move away anytime. When a
load-server agent receives a query message from a
directory agent, it should send back a response to the
directory agent to indicate that it is still existed in the
directory agent’s power range. If the directory agent
does not get the acknowledgement from a load-server
agent that has query information in the database, it
deletes the information provided by that load-server
agent from its database and therefore deletes the link
between them. The Figure 3 demonstrates the steps
how a directory agent builds its query database.

(1) A directory agent sends requests to hosts for
registration.

(2) Hosts, which are willing to register as load-
server agents, send ACKs back to the directory
agent.

(3) The directory agent saves all the information in
those ACKs to its database for future use.

(4) The directory agent also builds links between
itself and its load-server agents.

Figure 3: The procedures for a directory agent asks for
registration

3.2 A host join directory agent’s databases as
a load-server agents

32 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

32 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

A mobile host may join directory agents’ databases as a
load-server agent when it has the ability to provide services,
or it is lightly loaded and is willing to accept loads from
other hosts. Not only a load-server agent may join a
directory agent, but also it may join multiple directory
agents. A load-server agent joins directory agent’s
databases in two ways.

Method 1: The first method is that it sends out messages to
ask for registering with directory agents within
its power range and waits for the replies from
those directory agents. After receiving
acknowledgements from directory agents, the
mobile host registers with the databases of
those directory agents by sending its address,
the service types it can provide, and the amount
of loads it can accept for load transfer. A
mobile host can register with several directory
agents at the same time; which means a mobile
host can join several databases simultaneously.

Method 2: The second method, like the method in Section
3.1, is that a mobile host receives messages
from some directory agents for requesting
joining their databases. Thereafter, the mobile
host may join those databases by replying
acknowledgements (ACKs) back to those
directory agents and the directory agents add
the ACKs into their databases.

After the directory agents receive the ACKs from
load-server agents, they build links between them. The
following figure illustrates the procedures of Method 1 for
a load-server agent to a directory agent database.

(1) A host sends request to directory agents for registering
as a load-server agent.

(2) Directory agents send ACKs back to the host when
they receive the request and allow it to join their
databases.

(3) The host sends registration information to those
directory agents once it receives the ACKs.

(4) Those directory agents add the information into their
databases.

(5) The directory agents also build links between
themselves and the load-server agent.

Figure 4: How a load-server joins a directory agent
database for Method 1

3.3 Queries from load-client agents
A mobile host may join directory agents’ databases as a
load-client agent when it needs services from other hosts.
Since directory agents broadcast their addresses
periodically to ask for mobile hosts to register for services,
a load-client agent can find the addresses of directory
agents from those broadcasting messages. When a load-
client agent needs load services, it sends queries to
directory agents that it can contact and waits for the replies
from them. The contents in these replies include the
addresses of available load-server agents that can provide
the services the load-client agent asks. The load-client
agent may receive several replies from different load-
server agents at the same time and it chooses the best-fit
one. If it cannot find available load-server agents (without
any reply from directory agents in a period of time), it waits
for a certain period of time and sends queries again.
 A load-client agent selects the best-fit load-server
agent based on the service conditions it requests. For
example, it may choose the one that satisfies the price the
load-client agent asks. When a load-client agent selects the
best-fit load-server agent, it directly sends service
requirements or loads to the chosen load-server agent.
Figure 5 shows the steps.

(1) A load-client agent sends query to directory agents to
request services

(2) Directory agents apply the FuzRep reputation system
to the requesting host for a free-rider check. Then the
Directory agents search their database for the desired
services requested by the load-client agent. Before the
Directory agents send back searching information,
they also apply the FuzRep reputation system to the
load-server agents to avoid free-riding.

(3) Directory agents send replies back, which indicate the
information they have in the databases.

(4) The load-client agent gets the services it needs from
load-server agents.

Figure 5: How a load-client agent sends queries

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 33

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 33

ISBN: 1-60132-444-8, CSREA Press ©

3.4 Movement of directory agents

When a directory agent moves to another region, it loses
all the information in its database about load-server agents
and its peer directory agents. How a directory agent notifies
all the other agents about its movement becomes an
important issue. There are two ways that other agents can
detect the leave of a directory agent. The first is that the
directory agent sends a message to notify other hosts about
its movement. Hosts receiving the message will stop
sending queries to this directory agent and remove the links
between them.

The second method is to use the fact that hosts cannot
detect the existence of a directory agent. Since load-server
agents send update information to a directory agent
periodically, load-server agents can notice that a directory
agent does not exist in the region if hosts do not get the
reply from that directory agent. For a load-client agent to
detect the existence of a directory agent, if it does not
receive any broadcast message during a period of time,
then it deletes the link to that directory agent.

After moving to a new region, a directory agent sends
messages to hosts in the power range it can reach to ask for
hosts to join its database for load services as discussed in
section 3.1. It may happen that some hosts do not have any
directory agent to contact to once a directory agent moves
away. Those hosts will keep sending messages to other
hosts for finding new directory agents as described in
section 3.2 and 3.3.

3.5 Movement of load-server agent
When a load-server agent moves to a new region, it may
lose its original directory agents and it has to establish new
links to its new directory agents as described in section 3.2.
Once a directory agent does not receive update information
from a load-server agent for a period of time, it deletes the
information about that load-server agent from its database
and therefore deletes the link between them.

3.6 An example
Figure 6 illustrates a flow how a directory agent, load-
server agent, and load-client agent communicates each
other. (1), (2), (3), (4), and (5) indicate the procedures for
setting up the processes.

(1) A Directory Agent broadcasts join message to hosts.
(2) Load-Server Agent replies an acknowledgement to

that Directory Agent to join the database.
(3) Directory Agent saves the information to its database.
(4) Load-Server Agent sends requests to Directory Agent

for load services.
(5) Directory sends the address of Load-Server Agent if

Load-Server Agent is suitable for load service.
(6) Load-Client Agent communicates with Load-Server

Agent directly.

Figure 6: An Example for Communications between
Agents

3.7 Load transfer
A host may transfer loads to other hosts when it is heavily
loaded. Instead of using fixed threshold method to decide
whether a host is heavily loaded, I use fuzzy logic control
method to improve the performance. First, the host finds an
available host by sending service request as I mentioned
before. Once it finds a host that accepts its request for load
transfer, it transferred its loads to the selected host. The
amount of loads to be transferred is equal to half of the
difference of loads between the load-client agent and the
load-server agent. It is possible that there are several server
load-server agents, which satisfy the request by a load-
client agent. In order to reduce the distance and moving
effect, a load-client chooses the load-server agent that is
the closest one to it. Figure 7, for example, shows the
power range that load-client agent C can reach and there
are three load-server agents – S1, S2, and S3 – which
satisfy the request from agent C. Since S1 is the closest one
to C, it is chosen which C will transfer its loads to.

Figure 7: An example for a load-client agent to choose a
best-fit load-server agent

34 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

34 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

The following steps show the details of load transfer.

(1) When a host detects that it is heavily loaded, it
broadcasts a request message to hosts in its power
range to ask for load transfer service. Instead of
using fixed threshold levels to check if it is lightly
loaded or heavily loaded, I use fuzzy logic control
[5] to check its queue status to improve the
performance. This method is mentioned in [6, 7].

(2) Hosts, which receive the request, check their
queue status using fuzzy logic control method,
and returns ACKs, if they are lightly loaded, to the
load-client agent that sent the request.

(3) When the load-client agent gets the ACKs from
load-server agents, it chooses the load-server
agent, which is the first one to send its ACK, for
load transfer. That means that the load-client
agent chooses the closest one in order to improve
the performance.

(4) If there are no available hosts in the load-client
agent power range, the load-client agent sends
requests to its directory agents to look for the
registered load-server agents for load transfer.
Then it waits for the responses from its directory
agents.

(5) The directory agents find available (lightly loaded)
load-server agents when they receive requests
from a load-client agent. Then, the directory
agents send addresses of these available load-
server agents to that load-client agent for load
transfer. The load-client chooses the best host to
transfer its loads to the selected host.

4. Service type format and service price

In the future, it is possible that hosts have to pay if they ask
for service from other hosts. In this section, I discuss this
situation and define the service type format for load
services and the price for each service. This format is for a
directory agent to store the information in its database.
Figure 8 shows the format that there are 4 fields in it –
address, service-type, number-of-tokens, and load.

The address field is the address of a load-server agent,
so that a load-client can directly connect to it. The service-
type field indicates which kind of services that a load-
server agent provides. The number-of-tokens shows the
price of a service for a load-client to pay, and the load field
shows the current load for a load-server agent. When a
load-server agent provides load services to directory agents,
it provides directory agents the information about the
type(s) of services it can provides, the tokens (price) for a
load-client agent to take the service, and the current load
status and address for the load-server agent. A load-client
agent can get the service only it matched the service type,
and the price that the load-server agents ask, or it can find
an available load-server agent for load transfer purpose if

the load-server agent is lightly loaded and the load-client
agent can pay the price.

address service-type number-of-tokens load

Figure 8: Service Type Format Stored

There are some assumptions in our architecture for
hosts.

(1) A load-client agent has to pay a load-server agent
when it needs load services from that load-server
agent.

(2) When sending a request to a directory agent, a
host loses tokens as the price for asking load
service.

(3) In order to increase the number of tokens and
therefore increase the ability to ask for services, a
host must try its best to gain tokens. There are two
possible ways to implement it. First of all, a host
can provide the services to other hosts to gain
tokens. Secondly, a host should avoid sending
useless requests to network to save tokens. This
can be implemented by increasing the waiting
time for a load-client agent to send requests. This
also may avoid network congestion because the
number of messages is reduced.

(4) A load-client agent may find several available
load-server agents for a particular request such
that those load-server agents satisfy the
requirements for the load-client agent. Then the
client host has to choose the best-fit one.

(5) If a host does not have enough tokens to find a
load-server agent for load services, it should stop
sending requests to its directory agents for asking
load services until it can provide enough tokens.

The request message, which a load-client agent sends
out when it needs a service, includes a price that the load-
client agent can pay. The directory agent, which receives
the message, finds available load-server agents by
comparing the key words and the prices. For example, if a
host needs a service with higher speed calculation, it sends
requests to its directory agents. In these requests, the speed
of the load-server agent’s processor and the price the load-
client agent can provide are included. Directory agents
match these requirements to the information via the key
words and the number of tokens in their database and
therefore find the available load-server agents. The
addresses of those load-server agents are sent to the
requesting load-client agent. Upon receiving those
addresses, the load-client agent chooses one available and
sends jobs directly to that load-server agent. To choose an
available load-server agent from those addresses by
directory agents, the load-client agent may choose the one,
which asks the lowest number of tokens for performing the
requesting service.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 35

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 35

ISBN: 1-60132-444-8, CSREA Press ©

5. Scalability

As the number of clients and servers in the network system
increase, so does the burden to the system because of the
increases of messages for service discovery and request.
When a host joins or roams into a network, it sends out
requests. If there are too many hosts that move too
frequently, they may send many requests, which may cause
the congestion of the network. Therefore, careful
consideration of scalability issues is very important to the
design of the protocols. In our system, I use the number of
tokens (the price to pay) to control the scalability of load-
server agents registered with directory agents and load-
client agents sending load service requests. For example, a
client host cannot send requests to directory agents for
services if it does not have enough tokens. It should provide
its services to other hosts to gain enough tokens before it
sends requests.

6. Conclusion
In the paper, a new load service method in wireless ad-hoc
networks is proposed using a reputation system to check
nodes’ reputation. Since the hosts in a wireless ad-hoc
network can move anywhere by anytime, it is difficult for
a host to find other host for load service or load transfer
purposes. Several issues are discussed about a directory
agent asking for hosts to register as load-server agents, a
load-server agent registering with directory agents’
databases, and a load-client agent finding available load-
server agents when it need load services. The Directory
agents can find the available load-servers which provide
services the clients need. Also the Directory agents apply
the FuzRep reputation system to check the clients and
servers’ reputation to load and services requests. This is to
avoid free-riding situation in P2P network systems.

This paper also addresses a new concept that a
host should pay the price when it needs services from other
hosts in networks and how it works by using token as the
price in the networks. The token concept is also used to
control the scalability of networks and congestion control
of network flow. Fuzzy logic control is used to check load
status of hosts in the load transfer protocol.

References
[1] E. Guttman, C. Perkins, J. Veizades and M. Day,

“Service Location Protocol,” Version 2, IEFT, RFC
2165, November 1998.

[2] J. Waldo, “The Jini Architecture for network-centric
computing,” Communication of the ACM, pp 76-82,
July 1999.

[3] H. Maab, “Location-Aware Mobile Application
Based on Directory Services,” MOBICOM 97, pp 23-
33.

[4] W. Yeong, T. Howes, and S. Kille, “Lightweight
Directory Access Protocol,” RFC 1777, March 1995.

[5] Ross, T. J., Fuzzy Logic with Engineering
Applications, McGraw Hill, 1995.

[6] Huang, M., S. H. Hosseini, and K. Vairavan, “Load
Balancing in Computer Networks,” Proceedings of
ISCA 15th International Conference on Parallel and
Distributed Computing Systems (PDCS-2002),
Special session in Network Communication and
Protocols. Held in the GALT HOUSE Hotel,
Louisville, Kentucky, Sep. 19 - 21.

[7] Ross, T. J., Fuzzy Logic with Engineering
Applications, McGraw Hill, 1995.

[8] Andy Oram et al., “Peer-to-Peer:Harnessing the
Power of Disruptive Technologies,” Oreilly 2001.

[9] Stephanos Androutsellis-Theotokis and Diomidis
Spinellis, “A survey of peer-to-peer content
distribution technologies,” ACM Computing Surveys,
36(4):335–371, December 2004.
doi:10.1145/1041680.1041681.

[10] Adar, E., and Huberman, B. A. Free riding on
Gnutella. First Monday 5, 10 (October 2000).

[11] Hughes, D., Coulson, G., and Walkerdine, J. Free
riding on Gnutella revisited: the bell tolls? In IEEE
Distributed Systems Online 6, 6 (June 2005).

[12] Ramaswamy, L. and Liu, L. Free riding: A new
challenge to peer-to-peer file sharing systems. In
Proceedings of 36th Hawaii International Conference
on System Sciences (HICSS’03) (January 2003)

36 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

36 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

A Path Routing Algorithm for the Basic WK-Recursive Pyramid
Networks

Yi-Chun Wang and Justie Su-Tzu Juan∗

Department of Computer Science and Information Engineering,

National Chi Nan University, Puli, Nantou, Taiwan.
∗Corresponding author: jsjuan@ncnu.edu.tw

Abstract— In routing, a source vertex sends a message to
a target vertex and the routing algorithm decides a path
from the source vertex to the target vertex. In 2013, Wang
and Juan proposed a simple version of the WK-recursive
pyramid networks, is called the basic WK-recursive pyramid
network, which have received much attention recently. There
are many literatures that study on this topology. This paper
studies the path routing problem on the basic WK-recursive
pyramid networks. Because each basic WK-recursive pyra-
mid network consists of the WK-recursive networks, we
also review a shortest path routing algorithm for the WK-
recursive networks first.

Keywords: Path, Routing algorithms, Basic WK-recursive pyra-

mids, WK-recursive networks

1. Introduction
The WK-recursive network (WK, for short), proposed in

1987 [1], is a network that is recursively defined and is

expandable to any level. This is a well-known network in

network computing, there are several researches on the n

dimension WK-recursive network ([2][3][4]). The definition

of the WK-recursive network is reviewed as follows. Figure

1 is an illustration of WK(3,3).

Definition 1: [5] A radix-t WK-recursive network with
expansion level d, denoted as WK(d,t), consists of a set of

vertices V (WK(d,t)) = {at−1at−2...a1a0|0 ≤ ai < d, 0 ≤
i ≤ t − 1}. Each vertex at−1at−2...a1a0 is adjacent to

(1) at−1at−2 . . . a1b, where 0 ≤ b < d and b �= a0; and

(2) at−1at−2 . . . aj+1aj−1(aj)
j , if aj �= aj−1 and aj−1 =

aj−2 = · · · = a0, where (ap)
q denotes q consecutive aps.

The edges of type (1) are referred to as substituting edges
and the edges of type (2) are referred to as flipping edges.

For convenience, at−1at−2...a1a0 is called the labelling of

a vertex in V (WK(d,t)). A vertex at−1at−2...a1a0 is called

a k-frontier if ak−1 = ak−2 = · · · = a0, where 1 ≤ k ≤ t.

A k-frontier is proper if it is not a (k + 1)-frontier.

In 1993, Fernandes and Kanevsky [6] proposed hierar-

chical WK-recursive topology, which are called the WK-
recursive pyramid network (WKP, for short). Figure 2 shows

WKP(4,2,2).

Definition 2: [6] A WK-recursive pyramid network of
height l, WKP(d,t,l), consists of a set of vertices

V (WKP(d,t,l)) = {(0)} ⋃ {(k, atk−1atk−2 . . . a1a0)| 1 ≤
k ≤ l, 0 ≤ ai < d, 0 ≤ i ≤ tk − 1}, where (0) is an

apex in level 0 and {(k, atk−1atk−2 . . . a1a0)| 1 ≤ k ≤
l, 0 ≤ ai < d, 0 ≤ i ≤ tk − 1} arranged in l levels of the

radix-tk WK-recursive networks. The apex (0) is adjacent

to (1, (0)t), (1, (1)t), . . . , and (1, (d − 1)t), other vertex

is addressed as (k, atk−1atk−2 . . . a1a0) and is said to be a

vertex at level k. The part atk−1atk−2 . . . a1a0 of the address

determines the address of a vertex within layer k of the radix-

tk WK-recursive network,WK(d,tk). The vertices at level k

form a network of WK(d,tk), i.e., a vertex with the address

(k, atk−1atk−2 . . . a1a0) placed at level k of the WK(d,tk)

network, is connected to adjacent vertices as defined in

Definition 1. This vertex is also connected to vertices (k +

1, atk−1atk−2 . . . a1a0(b)
t) for 0 ≤ b ≤ d−1, in level k+1,

as childvertices, and to vertex (k−1, atk−1atk−2 . . . at+1at)

as the parent, if at−1 = at−2 = · · · = a0.

In 2013, Wang and Juan proposed a simple version of

WKP(d,t,l), which is to fix the variable t = 1 in WKP(d,t,l)

[7]. This topology denoted by WKP(d,l). The definition is

shown as follows.

Definition 3: [7] A basic WK-recursive pyramid net-
work of height l, WKP(d,l), consists of a set of vertices

V (WKP(d,l)) ={(0)}⋃{(k, ak−1ak−2 . . . a1a0)| 1 ≤ k ≤ l,

0 ≤ ai < d, 0 ≤ i ≤ k − 1}, where (0) is an apex in level

0 and {(k, ak−1 ak−2 . . . a1a0)| 1 ≤ k ≤ l, 0 ≤ ai < d,

0 ≤ i ≤ k − 1} is arranged in l levels of the radix-d

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 37

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 37

ISBN: 1-60132-444-8, CSREA Press ©

Fig. 1: The structure of WK(3,3).

(2, 0100) (2, 0133) (2, 0111) (2, 0122)

(1, 00)
(1, 03)

(1, 01)
(1, 02)

(0)

(1, 22)(1, 33)

(2, 0000)

(1, 00)

Fig. 2: The structure of WKP(4,2,2).

WK-recursive network. The apex (0) is adjacent to (1, 0),

(1, 1), . . . , and (1, d − 1), other vertex v is addressed as

(k, ak−1ak−2 . . . a1a0) and is said to be a vertex at level

k. The part ak−1ak−2 . . . a1a0 of the address determines

the address of a vertex within the layer k of the radix-

d WK-recursive network. The vertices at level k form

38 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

38 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

a network of WK(d,k), i.e., a vertex v with the address

(k, ak−1ak−2 . . . a1a0) placed at level k of the WK(d,k)

network, is connected to adjacent vertices as defined in

Definition 1. This vertex v is also connected to vertices

(k+1, ak−1ak−2 . . . a1a0b) for 0 ≤ b ≤ d−1, in level k+1,

as childvertices, and to vertex (k− 1, ak−1ak−2, . . . , a1) as

the parent, p(v). Conversely, v is called a child of p(v); on

the other hand, the vertex p(v) has d children, and v is one

of them.

Figure 3 shows WKP(3,2). WKP(d,l) receive much at-

tention recently ([7][8][9]). For convenience, let pi(a) =

p(pi−1(a)) be the parent of pi−1(a), level k of WKP(d,l) be

denoted by WK∗
(d,k) in this paper. That is, for 1 ≤ k ≤ l,

V (WK∗
(d,k)) = {(k, ak−1ak−2 . . . a1a0)|0 ≤ ai < d for

0 ≤ i ≤ k−1}, and E(WK∗
(d,k)) = {(k, ak−1ak−2 . . . a1a0)

(k, ak−1ak−2 . . . a1α)|0 ≤ α < d and α �= a0}⋃ {(k, ak−1ak−2 . . . aiβ1(β2)
i−1) (k, ak−1ak−2 . . . ai β2

(β1)
i−1)|β1 �= β2 and 2 ≤ i ≤ k}. For 1 ≤ l′ ≤ l, we

define a subgraph of WKP(d,l) be denoted by WKP∗
(d,l′)

as V (WKP∗
(d,l′)) = {(0)} ⋃

(
⋃

1≤i≤l′ V (WK∗
(d,i))),

and WKP∗
(d,l′) is an induced subgraph of WKP(d,l) by

V (WKP∗
(d,l′)).

In this paper, we review the related work about WK(d,t)

and WKP(3,2), including some properties of them and the

shortest path routing algorithm for WK(d,t) in Section 2. In

Section 3, a path routing algorithm is proposed.

2. Related Work
The following properties are not difficult to see by the

definition of WKP(d,l).

Property 1: In WKP(d,l), for any 1 ≤ t ≤ l, (a) all

neighbours in WK∗
(d,t) of any t-frontier vertex in WK∗

(d,t)

form a complete graph; (b) if any two vertices x, y in

WK∗
(d,t) satisfy p(x) = p(y), then xy ∈ E(WKP(d,l)).

Property 2: The order N(d,l) of WKP(d,l) is (dl+1 −
1)/(d− 1).

Property 3: The diameter of WKP(d,l) is 2l − 1.

In addition, we also define two kinds of subgraphs

of WKP(d,l). Let ct−1ct−2 . . . cm be a specific (t − m)-

digit radix d number. Define ct−1ct−2 . . . cm· WK∗
(d,m)

as the subgraph of WK∗
(d,t) induced by {(t, ct−1ct−2

. . . cmam−1am−2 . . . a1a0)| 0 ≤ ai ≤ d, for 0 ≤ i ≤
m − 1}; that is, ct−1ct−2 . . . cm· WK∗

(d,m)is an embedded

WK(d,m) with the identifier ct−1ct−2 . . . cm. Similarly, we

define ct−1ct−2 . . . cm·WKP∗
(d,m) for 0 ≤ m ≤ t ≤

l as the subgraph of WKP(d,l) induced by {(t − m +

k, ct−1ct−2 . . . cmak−1ak−2 . . . a1a0)| 0 ≤ k ≤ m and

ak−1ak−2 . . . a1a0 is a k-digit radix d number}; that is,

ct−1ct−2 . . . cm·WKP∗
(d,m) is an embedded WKP(d,m) with

the identifier ct−1ct−2 . . . cm. Note that WKP∗
(d,l−1) is the

subgraph of WKP(d,l) induced by all the vertices from level

0 to level l − 1.

In Figure 3, 1·WK∗
(3,1) is the subgraph of WK∗

(3,2) induced

by {(2, 10), (2, 11), (2, 12)}; and 0·WKP∗
(3,1) is the subgraph

of WKP(3,2) induced by {(1, 0), (2, 00), (2, 01), (2, 02)}.

Note that each c·WKP∗
(d,l−1) is a subgraph with level l− 1.

There are some preliminaries about WK(d,t) as follows.

Lemma 1: [10] The distance between any two t-fronties

with in WK(d,t) is 2t − 1.

Lemma 2: [10] The diameter of WK(d,t), which denoted

by diam(WK(d,t)) is 2t − 1.

Because WK(d,t) is a famous graph, many problems

are discussed on it ([2][4][11]). In 1994, Chen and Duh

discussed some communication algorithms on WK(d,t) [2].

They proposed the diameter of WK(d,t), and designed a

shortest path routing algorithm for WK(d,t). Now, we review

the contents of this algorithm.

For convenience, considering any two vertices u and v,

defines u =i v if they belong to the same WK(d,i), for some

i ∈ {1, . . . , t}, and u �=i v if they belong to two different

WK(d,i)s. Let s′ be another endpoint of flipping edge of s

in this paper. Chen and Duh first proposed a simple routing

algorithm as Algorithm 1. Note that when t = 0 and t = 1,

WK(d,t) is isomorphic to K1 and Kd, respectively. Hence,

we let t ≥ 2 in the following discussion.

They also proved the length fomula between source vertex

s and destination v if v is i-frontier. Here, σ is defined as a

compare function. For any two numbers a and b, σ(a, b) = 0,

if a = b; σ(a, b) = 1, otherwise.

Lemma 3: [2] Let s = st−1st−2...s1s0 and v = vt−1

vt−2...v1v0 denoted the source vertex and destination vertex,

respectively, in WK(d,t). If st−1 = vt−1, st−2 = vt−2, ...,

si = vi (that is, s =i v) and v is an i-frontier, where 1 ≤
i ≤ t, then the length of simple routing path between s and

v, l(s, v) = dWK(d,t)
(s, v) = Σi−1

k=02
k · σ(sk, vk).

Then, they proposed Algorithm 2 to compute the distance

for any two vertices s and v. Also, they gave Algorithm 3

and prove that algorithm is a shortest routing algorithm for

WK(d,t).

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 39

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 39

ISBN: 1-60132-444-8, CSREA Press ©

(0)

(1,0)

(1,1)

(1,2)

(2,00)

(2,01)

(2,02)

(2,10)

(2,11)

(2,12)

(2,20)

(2,21)

(2,22)

Fig. 3: The structure of WKP(3,2).

Algorithm 1: A simple routing algorithm for WK(d,t)

Input: source vertex s = st−1st−2...s1s0 and

destination vertex v = vt−1vt−2...v1v0

Output: P and l(s, v) //P is the simple routing path

between s and v, and l(s, v) is the length of

P .

1 P ← s, l(s, v) ← 0;

2 Examine s = st−1st−2...si+1sisi−1...s1s0 and

v = vt−1vt−2...vi+1vivi−1...v1v0, find the leftmost

index i such that si �= vi;

3 if i can be found then
4 if s0 �= vi then r = st−1st−2...s1vi;

5 else r = s′;
6 P ← P ||r;

7 s ← r;

8 l(s, v) = l(s, v) + 1;

9 goto Line 2;

10 return P and l(s, v);

3. Main Result

The shortest path routing algorithm for WK(d,t) is pro-

posed by Chen and Duh [2], that is, the shortest path routing

algorithm for a layer of WKP(d,l). Hence, this section will

discuss the shortest path routing algorithm for WKP(d,l).

After reviewing Algorithm 1 and 2 and 3 in Section 2,

there are some corollaries.

Corollary 1: For any two vertices u = ut−1ut−2...u1u0

and v = vt−1vt−2...v1v0 in WK(d,t), l(u, v) = Σi−1
k=02

k ·
σ(uk, vi) + 1 + Σi−1

k=02
k · σ(ui, vk), where i is the leftmost

index such that ut−1 = vt−1, ut−2 = vt−2, ..., ui = vi and

ui−1 �= vi−1.

Corollary 2: For any two vertices u = ut−1ut−2...u1u0

and v = vt−1vt−2...v1v0 in WK(d,t), d(u, v) =

min{l(u, v),Σi−2
k=02

k · σ(uk, ui−1) + 1 + (2i−1 − 1) + 1 +

Σi−1
k=02

k · σ(ui−1, vk),Σ
i−2
k=02

k · σ(uk, vi−1) + 1 + (2i−1 −
1) + 1 + Σi−1

k=02
k · σ(vi−1, uk)}, where i is the leftmost

index such that ut−1 = vt−1, ut−2 = vt−2, ..., ui = vi

and ui−1 �= vi−1.

By the definitions of WKP(d,l) and WK(d,t), the above

corollaries are suitable on a layer of WKP(d,l).

Lemma 4: For any two vertices u = (h, ut−1ut−2...u1u0)

and v = (h, vt−1vt−2... v1v0) in WKP(d,l), 1 ≤ h ≤ l,

lWK∗
(d,h)

(u, v) ≥ lWK∗
(d,h−1)

(p(u), p(v)).

Proof. Let i be the leftmost index such that ut−1 = vt−1,

ut−2 = vt−2, . . . , ui = vi and ui−1 �= vi−1. By Corolleay

1, lWK∗
(d,h)

(u, v) = Σi−1
k=02

k · σ(uk, vi) + 1 + Σi−1
k=02

k ·
σ(ui, vk) ≥ Σi−1

k=12
k−1 ·σ(uk, vi)+1+Σi−1

k=12
k−1 ·σ(ui, vk)

= lWK∗
(d,h−1)

(p(u), p(v)). Hence, this lemma is proved. �

40 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

40 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

Algorithm 2: Distance between two vertices s and v on

WK(d,t)

Input: source vertex s = st−1st−2...s1s0 and

destination vertex v = vt−1vt−2...v1v0

Output: d(s, v)
1 Examine s = st−1st−2...si+1sisi−1...s1s0 and

v = vt−1vt−2...vi+1vivi−1...v1v0 from left to right,

find the leftmost index i such that si �= vi;

2 if i cannot be found then dWK(d,t)
(s, v) ← 0;

3 else
4 Find an (i)-frontier Ur, such that Ur =i−1 s;

5 Find an (i)-frontier Vs, such that Vs =i−1 v;

6 Find an (i)-frontier Vr, such that Vr =i v and

V ′
r =i U

′
r;

7 Find an (i)-frontier Us, such that Us =i s and

U ′
s =i V

′
s ;

8 Compute

d(s, v) ← min{l(s, v), l(s, Ur) + l(Vr, v) + 2i + 1,

l(s, Us) + l(Vs, v) + 2i + 1};

9 return d(s, v);

Lemma 5: For any two vertices u = (h, ut−1ut−2...u1u0)

and v = (h, vt−1vt−2... v1v0) in WKP(d,l), 1 ≤ h ≤ l,

dWK∗
(d,h)

(u, v) ≥ dWK∗
(d,h−1)

(p(u), p(v)).

Proof: Let i be the leftmost index such that ut−1 =

vt−1, ut−2 = vt−2, ..., ui = vi and ui−1 �= vi−1. By Lemma

2, dWK∗
(d,h−1)

(p(u), p(v)) ≤ 2i−1 − 1. By Corollary 2, If

dWK∗
(d,h)

(u, v) equals to Σi−2
k=02

k ·σ(uk, ui−1)+1+(2i−1−
1) + 1 + Σi−2

k=02
k · σ(ui−1, vk) or Σi−2

k=02
k · σ(uk, vi−1) +

1+(2i−1−1)+1+Σi−2
k=02

k ·σ(vi−1, uk), dWK∗
(d,h)

(u, v) ≥
2i−1 + 1 > dWK∗

(d,h−1)
(p(u), p(v)). Otherwise, we obtain

dWK∗
(d,h)

(u, v) = lWK∗
(d,h)

(u, v) ≥ lWK∗
(d,h−1)

(u, v) ≥
dWK∗

(d,h−1)
(p(u), p(v)) by Lemma 4. �

According to Lemma 5, we easy to obtain corollary as

follows.

Corollary 3: For any two vertices u = (h, ut−1ut−2...u1

u0) and v = (h, vt−1vt−2...v1v0) in WKP(d,l), 1 ≤ m ≤ h,

dWK∗
(d,h)

(u, v) ≥ dWK∗
(d,h−m)

(pm(u), pm(v)).

Now, we propose a routing algorithm for WKP(d,l) as

Algorithm 4. The inputs of this algorithm is source vertex

s = (k1, sk1−1sk1−2...s1s0) and destination vertex d =

(k2, dk2−1dk2−2...d1d0), and the output is a path SP(s, d).

Algorithm 3: Shortest path routing algorithm on

WK(d,t)

Input: source vertex s = st−1st−2...s1s0 and

destination vertex v = vt−1vt−2...v1v0

Output: SP(s, v) // Shortest path routing algorithm

between s and v

1 Compute l(s, v) by Algorithm 1 with input s and v,

and compute d(s, v) by Algorithm 2;

2 if d(s, v)= l(s, v) then
3 Executed Algorithm 1 with input s and v, and get

output P (s, v);

4 SP = P (s, v);

5 if d(s, v)= l(s, Ur) + l(Vr, v) + 2i + 1 then
6 Executed Algorithm 1 three times with input s and

Ur, U ′
r and V ′

r , and Vr and v, then get output

P (s, Ur), P (U ′
r, V

′
r) and P (Vr, v);

7 SP(s, v) = P (s, Ur)||P (U ′
r, V

′
r)||P (Vr, v);

8 if d(s, v)= l(s, Us) + l(Vs, v) + 2i + 1 then
9 Executed Algorithm 1 three times with input s and

Us, U ′
s and V ′

s , and Vs and v, then get output

P (s, Us), P (U ′
s, V

′
s) and P (Vs, v);

10 SP(s, v) = P (s, Us)||P (U ′
s, V

′
s)||P (Vs, v);

11 return SP(s, v);

The main idea is first to find a pair of vertices s′ = pk1−k2(s)

and d′ = d on the same layer k2 if k1 > k2 or s′ = s and

d′ = pk1−k2(d), if k2 > k1. Next, algorithm computes the

distance between s′ and d′ and distance between p(s′) and

p(d′), and adds suitable vertices into the output path.

4. Conclusions
This paper presents a path routing algorithm for the basic

WK-recursive pyramids. In fact, we have several reasons to

believe the output path is a shortest path between two input

vertices in the basic WK-recursive pyramids. We will prove

it completely in the near future.

5. Acknowledgements
This research was supported in part by the Ministry of

Science and Technology of the Republic of China under

grant MOST 104-2221-E-260-005 - .

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 41

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 41

ISBN: 1-60132-444-8, CSREA Press ©

Algorithm 4: A path routing algorithm for WKP(d,l)

Input: source vertex s = (k1, sk1−1sk1−2...s1s0) and

destination vertex d = (k2, dk2−1dk2−2...d1d0)

Output: A path SP(s, d)

1 H ← Null; T ← Null ;

2 while k1 > k2 do

3 H ← H||s; s ← p(s);

4 while k1 < k2 do

5 T ← d||T ; d ← p(d);

6 while d(s, d) > 2 + d(p(u), p(v)) do

7 H ← H||s; s ← p(s);

8 T ← d||T ; d ← p(d);

9 Executes Algorithm 3 with inputs s and d (ignore k1

and k2), and obtains outpath as SP(s, d) (add k1 and

k2);

10 return H||SP(s, d)||T ;

References

[1] G. Della Vecchia and C. Sanges, “Recursively scalable networksfor

message passing architectures,” Parallel Processing and Applications,

pp. 33–40, 1987.

[2] G. H. Chen and D. R. Duh, “Topological properties, communication,

and computation on WK-recursive network,” Networks, vol. 24, no. 6,

pp. 303–317, 1994.

[3] M. H. Farahabady, N. Imani, and H. Sarbazi-Azad, “Some topological

and combinatorial properties of WK-recursive mesh and wk-pyramid

interconnection networks,” Journal of Systems Architecture, vol. 54,

no. 10, pp. 967–976, 2008.

[4] J. S. Fu, “Hamiltonicity of the WK-recursive network with and

without faulty nodes,” IEEE Transactions on Parallel and Distribured

Systems, vol. 16, no. 9, pp. 853–865, Sep 2005.

[5] R. Fernandes, “Recursive interconnection networks for multicomputer

networks,” in Proceedings of the 1992 International Conference on

Parallel Processing, vol. I, 1992, pp. 76–79.

[6] R. Fernandes and A. Kanevsky, “Hierarchical WK-recursive topolo-

gies for multicomputer systems,” in Proceedings of the 1993 Interna-

tional Conference on Parallel Processing, vol. I, 1993, pp. 315–318.

[7] Y.-C. Wang and J. S.-T. Juan, “The m-pancycle-connectivity of

basic WK-recursive pyramids,” in Proceeding of the 30nd Workshop

on Combinatorial Mathematics and Computational Theory, Hualien,

Taiwan, Apr, 2013, pp. 103–108.

[8] Y.-C. Wang, A Study on Basic WK-Recursive Pyramids and Triangular

Pyramids. Ph.D. Thesis, Department of Computer Science and

Information Engineering National Chi Nan University, Puli, Nantou

Hsien, Taiwan, 2015.

[9] Y.-C. Wang and J. S.-T. Juan, “Hamiltonicity of the basic WK-

recursive pyramid with and without faulty nodes,” Theoretical Com-

puter Science, vol. 562, no. 11, pp. 542–556, 2015.

[10] D.-R. Duh and G.-H. Chen, “Topological properties of WK-recursive

network,” Journal of Parallel and Distributed Computing, vol. 23, pp.

468–474, 1994.

[11] D. Zivkovic, “Hamiltonianicity of the tower of hanoi problem.” Univ.

Beograd. Publ. Elektrotehn. Fak. Ser. Mat., vol. 17, pp. 31–37, 2006.

42 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

42 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

An Algorithm for k-pairwise Cluster-fault-tolerant Disjoint Paths in
a Burnt Pancake Graph

Masato Tokuda, Yuki Hirai, and Keiichi Kaneko
Graduate School of Engineering, Tokyo University of Agriculture and Technology, Koganei-shi, Tokyo, Japan

{s149510s@st.go,yhirai@cc,k1kaneko@cc}.tuat.ac.jp

Abstract— In this paper, we focus on the pairwise cluster-
fault-tolerant disjoint paths routing problem in a burnt
pancake graph, and propose an algorithm that solves the
problem in a polynomial time of the degree of the graph.
That is, in a n-burnt pancake graph with (n − 2k + 1)
faulty clusters whose diameters are at most 3, the algorithm
can construct fault-free disjoint paths between k pairs of
nodes. The time complexity of the algorithm is O(kn3) and
the maximum path length is 2n+ 13. We have conducted a
computer experiment and its results showed that there was
not any path that attained the theoretical maximum path
length and the average time complexity of the algorithm is
O(n2.2).

Keywords: Cayley graph, multicomputer, interconnection net-

work, parallel processing

1. Introduction
In the near future, processing performance of a sequential

computer is expected to reach a ceiling because of limitations

in technology. With this expectation, the field of parallel and

distributed computation is taking on increasing importance,

and studies on massively parallel computers are eagerly

conducted recently. An interconnection network provides a

topology to construct a massively parallel computer, and

many topologies have been proposed and studied to inter-

connect many computers.

One of the factors that determine the performance of an

interconnection network is fault tolerance. As the number of

processors in a parallel computer increases, the probability of

existence of faulty processors also increases. In practice, we

face with the situation where not only the single processor

fault but also a set of faulty nodes will arise. Hence, to

address a fault-tolerant routing problem in a graph with

multiple cluster faults has a merit to establish a fault-free

communication, and there are many research activities about

it. Similarly, to address a disjoint paths problem has a

merit to establish full-bandwidth communication that gets

no interference from other communication, and it is also

studied very hard.

To solve the pairwise disjoint paths in a given graph

with degree n is to find �n/2� disjoint paths si � ti
(1 ≤ i ≤ �n/2�) for two arbitrary sets of nodes S =
{s1, s2, . . . , s�n/2�} and T = {t1, t2, . . . , t�n/2�} in the

graph. Practically, it is crucial to find disjoint paths in a

network since they make it possible to use the full bandwidth

and enhance communication reliability. Therefore, solving

the pairwise disjoint paths problem [1], [2], [3] is important

as well as solving the node-to-node disjoint paths problem

[4], [5], [6], [7], [8], the node-to-set disjoint paths problem

[9], [10], [11], [12], [13], [14], and the set-to-set disjoint

paths problem [15], [16], [17].

In this paper, we have focused on a burnt pancake graph

[18], [19], [20], [21], [5], which is derived from a pancake

graph [22], [23], [24], [25], [26], [27], [8] of a Cayley

graph. A burnt pancake graph can connect many nodes with

a small degree. Also, burnt pancake graphs are expected

to fill in the gaps of incremental expandability of pancake

graphs because they can connect different numbers of nodes

from pancake graphs. However, there are many unsolved

problem with a burnt pancake graph such as the shortest-path

routing problem, the pairwise cluster-fault-tolerant disjoint

paths routing problem, and so on.
In this paper, we pick up the pairwise cluster-fault-tolerant

routing problem among the unsolved problems in a burnt

pancake graph. For this problem, we propose an algorithm

that solves it in a polynomial time of the degree of the burnt

pancake graph. That is, in a n-burnt pancake graph with at

most (n − 2k + 1) faulty clusters whose diameters are at

most 3, for k pairs of the source and destination nodes, we

prove that our algorithm can construct k fault-free disjoint

paths between them. We also prove that the time complexity

of the algorithm is O(kn3) and the maximum path length is

2n+ 13.

2. Preliminaries
In this section, we first introduce a definition of a burnt

pancake graph and related definitions.

Definition 1: A permutation u = (u1, u2, . . . , un) that

satisfies that {|u1|, |u2|, . . . , |un|} = 〈n〉 is called a signed

permutation where 〈n〉 = {1, 2, . . . , n}.

Definition 2: For a signed permutation u =
(u1, u2, . . . , un) and an integer i (1 ≤ i ≤ n), the

signed prefix reversal operation u(i) is defined by

u(i) = (−ui,−ui−1, . . . ,−u2,−u1, ui+1, . . . , un).

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 43

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 43

ISBN: 1-60132-444-8, CSREA Press ©

We use the notation u(i,...,j,k) as a short hand of a signed

prefix reversal operation u(i,...,j)(k). A signed prefix reversal

operation is invertible and u(i,i) = u holds.

Definition 3: If a graph G(V,E) satisfies the conditions

that V = {(u1, u2, . . . , un)|(u1, u2, . . . , un) is a signed

permutation of 〈n〉} and E = {(u,u(i))|u ∈ V, 1 ≤ i ≤ n},

G is called an n-burnt pancake graph.

In this paper, we denote Bn and i to represent an n-

burnt pancake graph and −i, respectively. Figure 1 shows

examples of burnt pancake graphs, B1, B2, and B3.

(a) B1 (b) B2

(c) B3

• (1)•(1)

• (2, 1)•(1, 2)

•(1, 2) • (2, 1)

• (1, 2)

• (1, 2)•(2, 1)

•(2, 1)

#A

#B

#C #D

#E

#F

#G #H

•
(1, 2, 3)

•
(1, 2, 3)

• (2, 1, 3) • (2, 1, 3)

• (2, 1, 3)

•
(1, 2, 3)

•
(1, 2, 3)

• (2, 1, 3)

•
(3, 2, 1)

•
(3, 2, 1)

• •

••

(2, 3, 1) (2, 3, 1)

(2, 3, 1)(2, 3, 1)

•
(3, 2, 1)

•
(3, 2, 1)

•
(1, 3, 2)

•
(1, 3, 2)

• (3, 1, 2) • (3, 1, 2)

• (3, 1, 2)

•
(1, 3, 2)

•
(1, 3, 2)

• (3, 1, 2)

#H

#G

#K
#L

•
(1, 3, 2)

•
(1, 3, 2)

•(3, 1, 2) •(3, 1, 2)

•(3, 1, 2)

•
(1, 3, 2)

•
(1, 3, 2)

•(3, 1, 2)

#J

#I

#C
#D

•(2, 3, 1)

•(2, 3, 1)

•
(3, 2, 1)

•
(3, 2, 1)

•
(3, 2, 1)

•
(3, 2, 1)

•(2, 3, 1)

•(2, 3, 1)

#A

#B

#I #J

•(2, 1, 3)

•(2, 1, 3)

•
(1, 2, 3)

•
(1, 2, 3)

•
(1, 2, 3)

•
(1, 2, 3)

•(2, 1, 3)

•(2, 1, 3)

#E

#F

#K #L

Fig. 1: Examples of burnt pancake graphs.

A Bn is a symmetric graph, and the number of nodes,

the number of edges, the degree, and the connectivity are

n! × 2n, n! × n × 2n−1, n, and n, respectively. There is

no shortest-path routing algorithm found for a Bn in time

complexity of the polynomial order of n. However, the fact

that d(Bn) ≤ 2n is proved.

Definition 4: In a Bn, for an arbitrary node u =
(u1, u2, . . . , un) and an arbitrary integer k (1 ≤ |k| ≤ n),

an extended signed prefix reversal operation u([k]) is defined

by

u([k]) =

{
u(i) (ui = k)
u(i) → u(i,1) (ui = k)

Definition 5: In a Bn, the sub graph induced by the

subset of nodes that have k at the rightmost positions in

their permutations is isomorphic to a Bn−1. The sub graph

is specified by Bn−1(k) by using the k as its index. A Bn

is decomposable into 2n Bn−1’s that are mutually disjoint.

Each sub graph is called a sub burnt pancake graph. In

addition, the sub burnt pancake graph that contains the node

u(∈ Bn) is denoted by Bn−1(u).

In Figure 1, the sub graph indicated by the dashed circle

is specified by B2(1), which is isomorphic to a B2.

Definition 6: A connected sub graph in a graph is called

a cluster. If all of the nodes in a cluster are faulty, the cluster

is called a faulty cluster. In addition, in a graph G(V,E) the

nodes defined by argminc∈V maxv∈V d(c,v) are called the

centers of the graph G.

Definition 7: In a Bn with faulty clusters, if a Bn−1(k)
does not include any center of the faulty clusters, it is

called a candidate sub burnt pancake graph and denoted by

CBn−1(k).

Definition 8: The set that consists of the nodes that have

j and i at the leftmost and rightmost positions in their

permutations, respectively, is called a portset from Bn−1(i)
to Bn−1(j), and denoted by P (i, j).

Theorem 1: In a Bn, for two non-faulty nodes s =
(s1, s2, . . . , sn), t = (t1, t2, . . . , tn) and a set of faulty nodes

F (|F | ≤ n−1), we can construct a fault-free path between

s and t of length at most 2n+4 in time complexity O(n2).
(Proof) See [19].

3. Algorithm
In this section, we show an algorithm that solves the

pairwise cluster-fault-tolerant disjoint paths problem in a

burnt pancake graph.

3.1 Lemmas
Lemma 1: For two distinct nodes u and v in a port set

P (l,m) (1 ≤ |l|, |m| ≤ n, |l| �= |m|), the distance between

them d(u,v) is no less than 3.

(Proof) Let u = (u1, u2, . . . , un) and v = (v1, v2, . . . , vn)
be two distinct nodes in a port set P (l,m). From assumption,

u1 = v1 = m and un = vn = l hold. If d(u,v) = 0,

u = v holds. It is contradictory to the fact that u and v
are distinct. If d(u,v) = 1, u and v are adjacent. For any

two adjacent nodes in Bn, the elements in their leftmost

positions are different. However, it is contradictory to the

44 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

44 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

fact that u,v ∈ P (l,m). If d(u,v) = 2, ∃i, j (i �= j) such

that u → u(i) → u(i,j) = v ∈ P (l,m). However, if i �= j,

u1 �= v1 holds. It means that u and v do not belong to a

single port set P (l,m). Consequently, Lemma 1 holds.

Lemma 2: There is not a cycle in a Bn whose length is

less than 8.

(Proof) We prove this lemma based on mathematical induc-

tion. In B1, there is no cycle and B2 is a cycle of length

8. Hence, this lemma holds for n ≤ 2. Now, we prove

that Lemma 2 holds for Bn with the hypothesis that the

lemma holds for Bn−1 (n ≥ 3). If there is a cycle C whose

length is less than 8, C has an edge between two sub burnt

pancake graphs since this lemma holds for any sub burnt

pancake graphs by hypothesis. To be a cycle, C must have

at least two such edges. If C has exactly two edges (a0, b0)
and (a1, b1) between sub burnt pancake graphs, we can

assume that a0,a1 ∈ P (l,m) and b0, b1 ∈ P (m, l) without

loss of generality. Then, from Lemma 1, d(a0,a1) ≥ 3
and d(b0, b1) ≥ 3 hold. Therefore, the length of C is at

least 8. It is a contradiction, and it means that C does

not exist. If C has exactly three edges between sub burnt

pancake graphs (a0, b0), (a1, b1), and (a2, b2), we can

assume that a0 ∈ P (j, l), b0 ∈ P (l, j), a1 ∈ P (l,m),
b1 ∈ P (m, l), a2 ∈ P (m, j), and b2 ∈ P (j,m) without

loss of generality. Since the length of C is less than 8, at

least two of the distances d(a0, b2), d(a1, b0), and d(a2, b1)
must be 1. Here, without loss of generality, we can assume

that d(a0, b2) = 1 and d(b0,a1) = 1 hold. Then, since

b2 ∈ P (j,m), b2 = (m, . . . , j) holds. In addition, because

a0 ∈ P (j, l) and d(a0, b2) = 1 hold, a0 = (l, . . . ,m, . . . , j)

holds. Hence, b0 = a
(n)
0 = (j, . . . ,m, . . . , l) holds. On the

other hand, a1 = (m, . . . , l) holds since a1 ∈ P (l,m).
Then, from the sign of m, b0 and a1 cannot be adjacent.

Therefore, d(b0,a1) �= 1 holds. It is a contradiction, and C
does not exist. Finally, if C has 4 or more edges between sub

burnt pancake graphs, still 4 or more edges are necessary to

make C be a cycle. It means that the length of C is at least

8. From the discussion above, we have proved this lemma.

Lemma 3: In a Bn, if there are at most (n − 2k + 1)

faulty clusters whose diameters are at most 3, there are at

least (4k − 2) candidate sub burnt pancake graphs.

(Proof) There are 2n sub burnt pancake graphs. Because a

cluster whose diameter is at most 3 has at most two centers,

there are at least (2n− 2(n− 2k + 1) = 4k − 2) candidate

sub burnt pancake graphs.

Lemma 4: In a Bn, for a node u = (u1, u2, . . . , un), we

can construct n disjoint paths of length at most 3 from u to

n distinct sub burnt pancake graphs Bn−1(k) (k �= |un|).
(Proof) We can construct the paths of lengths at most 3 from

u to (2n− 2) sub burnt pancake graphs as follows:⎧⎪⎪⎨
⎪⎪⎩

u → u(n) ∈ Bn−1(u1)
u → u(i) → u(i,n) ∈ Bn−1(ui) (1 ≤ i ≤ n− 1)
u → u(i) → u(i,1) → u(i,1,n) ∈ Bn−1(ui)

(2 ≤ i ≤ n− 1)

Among these (2n− 2) paths we can select n disjoint paths

u � u(n), u � u(1,n), u � u(2,n), . . . , u � u(n−1,n),

for instance.

Figure 2 shows (2n− 2) candidate paths from a node u
to (2n− 2) distinct sub burnt pancake graphs.

•
u

•u(n)

•u(1,n)

•u(2,n)

•
u(2,1,n)• u(n−1)

•u(n−1,1)

•
u(n−1,n)

•
u(n−1,1,n)

•u(2)

•
u(2,1)

•u(1)

Bn−1(un)

Bn−1(u1)

Bn−1(u1)

Bn−1(u2)

Bn−1(u2)

Bn−1(un−1)

Bn−1(un−1)

Bn−1(un)

···

···

Fig. 2: (2n − 2) paths from a node u to (2n − 2) distinct

sub burnt pancake graphs constructed in Lemma 4.

Lemma 5: In a Bn, for a non-faulty node u =
(u1, u2, . . . , un) and n candidate sub burnt pancake graphs

CBn−1(k) (k �= |un|), a faulty cluster whose diameter is at

most 3 can overlap at most one of the n paths of length at

most 3 that are given in Lemma 2.

(Proof) Let P : u � v and Q: u � w are two distinct paths

among the n paths given in Lemma 4. Then, from Lemma 2,

a cluster cannot overlap simultaneously the nodes on P and

Q inside Bn−1(un). Also, from Lemma 1, it is impossible

for a cluster to overlap a node on P inside Bn−1(un) and the

node w on Q simultaneously. Finally, let us construct a path

of length 2 R: v → x → x(n) so that x(n) is in the same

sub burnt pancake graph as w. Then, because v = (un, . . .),
x contains un and x(n) contains un. Since w = (un, . . .),
w and x(n) cannot be adjacent. Hence, d(v,w) > 3. From

the discussion above, this lemma holds.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 45

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 45

ISBN: 1-60132-444-8, CSREA Press ©

Lemma 6: In a Bn, for a node u = (u1, u2, . . . , un) and

a sub burnt pancake graph Bn−1(k), (k �= u1, |un|), we can

construct n disjoint paths of length at most 5 from u to

the Bn−1(k) in O(n2) time complexity. (Proof) If |k| �=
|u1|, |un|, we can construct n paths of lengths at most 3 as

follows:

⎧⎨
⎩

u → u(i) → u(i,[k]) → u(i,[k],n) (1 ≤ i ≤ n, |ui| �= |k|)
u → u(i) → u(i,n) (ui = k)
u → u(i) → u(i,1) → u(i,1,n) (ui = k)

If k = un, we can construct n paths of lengths at most 4

as follows:

⎧⎨
⎩

u → u(i) → u(i,n) → u(i,n,i) → u(i,n,1,n)

(1 ≤ i ≤ n− 1)
u → u(n) → u(n,1) → u(n,1,n) (i = n)

If k = u1, we can construct n paths of lengths at most 5

as follows:

⎧⎨
⎩

u → u(1) → u(1,n) (i = 1)
u → u(i) → u(i,1) → u(i,1,i) → u(i,1,i) → u(i,1,i,1)

→ u(i,1,i,1,i) (2 ≤ i ≤ n)

From above discussion, we can construct n paths from u
to Bn−1(k) of lengths at most 5 that are disjoint except for

u. Also, it takes O(n) time to construct a path. Hence, it

takes O(n2) in total to construct n paths.

Lemma 7: For CBn−1(p) and distinct (n − 1)

CBn−1(li)’s (1 ≤ |li| ≤ n, 1 ≤ i ≤ n, |p| �= ∀|li|,
and |li| �= |lj | for i �= j) such that each CBn−1 has at

most (n− 2) faulty nodes, we can construct (n− 1) disjoint

fault-free paths of lengths 6 each of which is from an

arbitrary node uli in each CBn−1(li) to CBn−1(li) via

CBn−1(p) in the time complexity O(n3).
(Proof) Because CBn−1(li), CBn−1(li), and CBn−1(p)
are sub burnt pancake graphs, P (li, p), P (p, li), P (p, li),
and P (li, p) do not include any faulty node. Therefore,

if uli,1 = p, we can construct a fault-free path uli,1 →
u
(n)
li,1

(∈ CBn−1(p)) → u
(n,1)
li,1

→ u
(n,1,n)
li,1

(∈ CBn−1(li)
of length 3. Moreover, if uli,1 = p, we can construct a

fault-free path uli,1 → u
(1)
li,1

→ u
(1,n)
li,1

(∈ CBn−1(p)) →
u
(1,n,1)
li,1

→ u
(1,n,1,n)
li,1

(∈ CBn−1(li) of length 4.

For each uli with uli,j = p and j ≥ 2, we can construct

(n − 1) disjoint paths Rh (1 ≤ h ≤ n − 1) from uli to

CBn−1(li) via CBn−1(p) as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uli → u
(h)
li

→ u
(h,j)
li

→ u
(h,j,1)
li

→ u
(h,j,1,n)
li

(∈ CBn−1(p)) → u
(h,j,1,n,1)
li

→ u
(h,j,1,n,1,n)
li

(∈ CBn−1(li)) (1 ≤ h ≤ j − 1)

uli → u
(h)
li

→ u
(h,1)
li

→ u
(h,1,n)
li

(∈ CBn−1(p))

→ u
(h,1,n,1)
li

→ u
(h,1,n,1,n)
li

(∈ CBn−1(li)) (h = j)

uli → u
(h)
li

→ u
(h,h−j+1)
li

→ u
(h,h−j+1,1)
li

→ u
(h,h−j+1,1,n)
li

(∈ CBn−1(p)) → u
(h,h−j+1,1,n,1)
li

→ u
(h,h−j+1,1,n,1,n)
li

(∈ CBn−1(li))
(j + 1 ≤ h ≤ n− 1)

For each uli with uli,j = p and j ≥ 2, we can construct

(n − 1) disjoint paths Rh (1 ≤ h ≤ n − 1) from uli to

CBn−1(li) via CBn−1(p) as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uli → u
(h)
li

→ u
(h,j)
li

→ u
(h,j,n)
li

(∈ CBn−1(p))

→ u
(h,j,n,1)
li

→ u
(h,j,n,1,n)
li

(∈ CBn−1(li))
(1 ≤ h ≤ j − 1)

uli → u
(h)
li

→ u
(h,n)
li

(∈ CBn−1(p)) → u
(h,n,1)
li

→ u
(h,n,1,n)
li

(∈ CBn−1(li)) (h = j)

uli → u
(h)
li

→ u
(h,h−j+1)
li

→ u
(h,h−j+1,n)
li

(∈ CBn−1(p)) → u
(h,h−j+1,n,1)
li

→ u
(h,h−j+1,n,1,n)
li

(∈ CBn−1(li))
(j + 1 ≤ h ≤ n− 1)

Then, we can find a fault-free path among the above (n−1)

paths for each uli . Each path construction takes O(1) time.

It takes O(n) time to check whether a path is fault-free or

not. Hence, it takes O(n2) time to find a fault-free path for

one uli . Therefore, construction of (n−1) paths takes O(n3)
time in total.

Figure 3 shows the (n − 1) fault-free disjoint paths of

length at most 6 constructed in Lemma 7.

3.2 Algorithm Description
In this section, we describe the details of the algorithm

for cluster-fault-tolerant k-pairwise disjoint path routing, and

estimate the maximum path length and its time complexity.

In a Bn, for k pairs of source and destination nodes (3 ≤
k ≤ �n/2�), the algorithm first constructs paths si � s′i
and ti � t′i where s′i and t′i belong to a same Bn−1 and

the paths do not include any node on the other paths sj �
s′j nor tj � t′j where j �= i. Then, it connects s′i and t′i
by a fault-free path in the Bn−1 by using the fault-tolerant

routing algorithm. The Bn−1 is called the target sub burnt

pancake graph for the pair of nodes si and ti, and denoted

by Bn−1(li) (1 ≤ |li| ≤ n, 1 ≤ i ≤ k). Also, in the rest of

this paper, we assume that the candidate sub burnt pancake

graph for si satisfies the condition that it does not include

any nodes on the other paths sj � s′j nor tj � t′j in

46 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

46 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

CBn−1(li1)

CBn−1(li2)

CBn−1(lin−1)

CBn−1(li1)

CBn−1(li2)

CBn−1(lin−1
)

CBn−1(p)

P (p, li1
) P (p, li1

)

P (p, li2
) P (p, li2

)

P (p, lin−1
) P (p, lin−1

)

•uli2

•uli1

•ulin−1

• •

• •

• •

•
•

•

•
•

•
···

····
·
·

·
·

·

Fig. 3: (n − 1) fault-free disjoint paths of length at most 7

constructed in Lemma 7.

addition to the condition that it does not include any center

of faulty clusters.

The algorithm consists of the following four steps.

Step 1) If there is a Bn−1(m) that contains si
or ti and the Bn−1(m) is a candidate sub burnt

pancake graph for si or ti, assign the Bn−1(m)
to the target sub burnt pancake graph Bn−1(li).
If si and ti are included in distinct Bn−1(p) and

Bn−1(q), respectively, and both of Bn−1(p) and

Bn−1(q) satisfy the conditions of candidate sub

burnt pancakes for si and ti, either of them are

assigned to Bn−1(li). We can assign a target sub

burnt pancake graph for each pair of source and

destination nodes in O(n) time.

Step 2) For each pair of the source node si =
(si1, si2, . . . , sin) and the destination nodes ti to

which any target sub burnt pancake graph is not

assigned, construct a path from either of the source

or destination nodes to a candidate sub burnt pan-

cake graph for it. Here, we assume that we found

a candidate sub burnt pancake graph for si. Then,

we can assign a target sub burnt pancake graph and

construct a path by the following three sub steps.

Sub Step 2a) If the Bn−1(si1) is a candidate sub

burnt pancake graph for si, we assign Bn−1(si1)
to the target sub burnt pancake graph Bn−1(li),

construct a path si � s
(n)
i of length 1 to the sub

burnt pancake graph, and let s
(n)
i = s′i.

Sub Step 2b) If the Bn−1(sip) (1 ≤ p < n) is a

candidate sub burnt pancake graph for si, we try

to construct a path si � s
(p)
i � s

(p,n)
i of length

2. If this path is fault-free and disjoint from other

paths, we can assign Bn−1(sip) to the target sub

burnt pancake graph Bn−1(li), and let s
(p,n)
i = s′i.

Sub Step 2c) If the Bn−1(sip) (1 < p < n) is a

candidate sub burnt pancake graph for si, we try

to construct a path si � s
(p)
i � s

(p,1)
i � s

(p,1,n)
i

of length 3. If this path is fault-free and disjoint

from other paths, we can assign Bn−1(sip) to the

target sub burnt pancake graph Bn−1(li), and let

s
(p,1,n)
i = s′i.

In Step 2, we can assign a target sub burnt pancake

graph for each pair of source and destination nodes

by constructing a path of length at most 3 in O(n3)
time.

Step 3) By Steps 1 and 2, for k pairs of nodes si
and ti, target sub burnt pancake graphs Bn−1(li)
are assigned and at least one path from either

of the nodes is constructed. Here, we construct

a path to Bn−1(li) from either of si or ti from

which a path to Bn−1(li) has not been constructed.

For simplicity, we assume that a path from si
to Bn−1(li) has been already constructed, and a

path from ti has not been constructed without loss

of generality. Here, if ti,1, ti,1, ti,n �= li, consider

the (n − 1) paths of lengths at most 4 given in

Lemma 6 excluding one path that includes t
(n)
i . If

there is a path among them that is fault-free and

disjoint from other constructed paths, let the path

be ti � t′i. If ti,1 = li, check whether the path

of length 2, ti → t
(1)
i → t

(1,n)
i is fault-free and

disjoint from other constructed paths. If it is fault-

free and disjoint from other constructed paths, let

the path be ti � t′i. If there is not such path,

or if tin = li, we construct a path to a candidate

sub burnt pancake graph for ti as similar to the

Sub Steps 2a), 2b), and 2c). Let this candidate sub

burnt pancake graph be Bn−1(l
′
i).

Then, this step is divided into two cases depending

on li and l′i to construct the path.

Case 1)(li = l′i) For pairs of the nodes such that

li = l′i hold, we can construct disjoint paths of

lengths at most 7 that pass a candidate sub burnt

pancake graph Bn−1(p) that does not include any

source nor destination node from Lemma 7. Note

that if li = l′i, in case that there is a path si � s′i
(⊂ Bn−1(l

′
i) of length 3 is constructed among

the paths given in Lemma 4, it is possible to

construct the path si � s′i (⊂ Bn−1(l
′
i) of length

2. Similar discussion holds for ti. From Step 2,

the destination sub burnt pancake graph Bn−1(li)
is selected among the candidate sub burnt pancake

graphs so that it can be reached from the node si
or ti with the shortest path. Therefore, if li = l′i,
the lengths of the paths si � s′i and ti � t′i are

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 47

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 47

ISBN: 1-60132-444-8, CSREA Press ©

both 2. Therefore, the sum of the paths from si
and ti to Bn−1(li) is at most 2 + 2 + 7 = 11.

Case 2)(li �= l′i) If li �= l′i, consider the paths from

Bn−1(l
′
i) to Bn−1(li) of lengths at most 5 given

by Lemma 6. Then, there is at least one fault-free

path among them. Hence, if li �= l′i, the sum of the

paths from si and ti to Bn−1(li) is at most 3 + 3

+ 5 = 11.

In this step, we can construct a path of length at

most 11 between a pair of a source node and a

destination node in O(n3) time.

Step 4) For k pairs of nodes si and ti (1 ≤ i ≤ k),

from Steps 1 to 3, we have constructed paths si �
s′i(∈ Bn−1(li)) and ti � t′i(∈ Bn−1(li)) where

Bn−1(li) is the target sub burnt pancake graph for

si and ti. Bn−1(li) does not include any node on

sj � s′j or tj � t′j (j �= i), and contains at

most (n − 2k + 1) faulty nodes. Therefore, from

Theorem 1, we can construct a path s′i � t′i of

length at most 2n+ 2 in O(n2) time.

Consequently, our algorithm can construct each path si �
ti of length at most 2n + 13 in O(n3) time. Therefore, it

takes O(kn3) time to construct k paths.

4. Evaluation
To evaluate performance of our algorithm, we conducted

a computer experiment. The algorithm constructed k disjoint

fault-free paths between the k pairs of source and destination

nodes in a n-burnt pancake graph with (n− 2k + 1) faulty

clusters whose diameters are 3. In this section, we give the

method, the results, and consideration.

4.1 Method
In the experiment, we applied our algorithm to solve the

k-pairwise cluster-fault-free disjoint paths problem (3 ≤ k ≤
�n/2�) in a Bn (5 ≤ n ≤ 40). We repeated the following

steps for 10,000 times and measured the average execution

time and the maximum path length as well as the average

path length.

1) We first set up (n − 2k + 1) disjoint faulty clusters

whose diameter is fixed to 3.

2) Then we select k source nodes s1, s2, . . ., sk and

k destination nodes t1, t2, . . ., tk among non-faulty

nodes.

3) We apply the algorithm to construct k disjoint fault-

free paths si � ti (1 ≤ i ≤ k) and measure the

execution time, the maximum path length, and the

average path length.

4.2 Results
Figure 4 shows the results of the maximum path lengths

and the average path lengths for 5 ≤ n ≤ 40. In addition,

Figure 5 shows the result of the average execution time for

5 ≤ n ≤ 40 and 3 ≤ k ≤ �n/2�. From Figure 4, we can

see that there is no path whose length attained the theoretical

maximum path lengths. From Figure 5, the average execution

time seems to converge to O(n2.2).

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 5 10 15 20 25 30 35 40

P
at

h
 L

en
g
th

n

Ave. Path Length
Max Path Length

2n + 13

Fig. 4: Maximum and average path lengths of our algorithm

 4 6 8 10 12 14 16 18 20

 5
 10

 15
 20

 25
 30

 35
 40

1.0×10
-6

1.0×10
-5

1.0×10
-4

1.0×10
-3

T
im

e
(s

)

Ave. Time
O(n

2.2
)

k

n

T
im

e
(s

)

Fig. 5: Execution time of our algorithm

4.3 Limitation
The algorithm that we have proposed cannot solve the

k-pairwise cluster-fault-tolerant disjoint paths problem in a

burnt pancake graph with k = 2. Our algorithm makes use

of a redundant candidate sub burnt pancake graph. From

Lemma 3, if there are at most (n − 2k + 1) faulty clusters

whose diameters are at most 3 in Bn, there are at least

(4k − 2) candidate sub burnt pancake graphs, which do not

include any center of the faulty clusters. If there are at least

two source or destination nodes in a candidate sub burnt

pancake graph and they are not the corresponding pair, the

candidate sub burnt pancake graph is unavailable. Therefore,

in the worst case, 2k candidate sub burnt pancake graphs

are not available. Moreover, it is necessary to assign one

distinct candidate sub burnt pancake graph to each of the

source and destination pair. Therefore, at least k candidate

48 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

48 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

sub burnt pancake graphs must be required. In addition, as

shown in Lemma 7, one candidate sub burnt pancake graph

is used to connect paths between two Bn−1’s that do not

have direct edges between them. Therefore, in total, (3k+1)

candidate sub burnt pancake graphs are necessasry. Then,

from 4k − 2 ≥ 3k + 1, k ≥ 3 is a necessary condition to

apply our algorithm.

5. Conclusions and Future Works
In this paper, we have proposed an algorithm that solves

the k-pairwise disjoint paths problem in an n-burnt pancake

graph with (n− 2k+1) faulty clusters whose diameters are

at most 3. The time complexity of the algorithm is O(kn3)
and the maximum path length is 2n+13. We have conducted

a computer experiment and its results showed that there was

not any path that attained the theoretical maximum path

length and the average time complexity of the algorithm is

O(n2.2).
Future works include extension of the algorithm so that it

can address the cluster-fault-tolerant disjoint paths problem

with two pairs of nodes in Bn as well as improvement of

the maximum path lengths.

Acknowledgments
This study is partly supported by a Grant-in-Aid for Sci-

entific Research (C) of the Japan Society for the Promotion

of Science (JSPS) under Grant No. 25330079.

References
[1] A. Bossard and K. Kaneko, “k-pairwise disjoint paths routing in

perfect hierarchical hypercubes,” Journal of Supercomputing, vol. 67,
no. 2, pp. 485–495, Feb. 2014.

[2] Q.-P. Gu and S. Peng, “An efficient algorithm for k-pairwise disjoint
paths in star graphs,” Information Processing Letters, vol. 67, no. 6,
pp. 283–287, Sep. 1998.

[3] ——, “An efficient algorithm for the k-pairwise disjoint paths prob-
lem in hypercubes,” Journal of Parallel and Distributed Computing,
vol. 60, no. 6, pp. 764–774, Jun. 2000.

[4] K. Kaneko, “Internally-disjoint paths problem in bi-rotator graphs,”
IEICE Transactions on Information and Systems, vol. E88-D, no. 7,
pp. 1678–1684, Jul. 2005.

[5] K. Kaneko and N. Sawada, “An algorithm for node-to-node disjoint
paths problem in burnt pancake graphs,” IEICE Transactions on
Information and Systems, vol. E90-D, no. 1, pp. 306–313, Jan. 2007.

[6] K. Kaneko and Y. Suzuki, “Node-to-node disjoint paths problem in a
pancake graph,” in Proceedings of the Second International Confer-
ence on Software Engineering, Artificial Intelligence, Networking &
Parallel/Distributed Computing, Aug. 2001, pp. 572–579.

[7] D. Kocík, Y. Hirai, and K. Kaneko, “An algorithm for node-to-node
disjoint paths problem in a möbius cube,” in Proceedings of the
2015 International Conference on Parallel and Distributed Processing
Techniques and Applications, 2015, pp. 149–155.

[8] Y. Suzuki and K. Kaneko, “An algorithm for node-disjoint paths in
pancake graphs,” IEICE Transactions on Information & Systems, vol.
E86-D, no. 3, pp. 610–615, Mar. 2003.

[9] A. Bossard and K. Kaneko, “Node-to-set disjoint-path routing in
hierarchical cubic networks,” The Computer Journal, vol. 55, no. 12,
pp. 1440–1446, Dec. 2012.

[10] ——, “Time optimal node-to-set disjoint paths routing in hypercubes,”
Journal of Information Science and Engineering, vol. 30, no. 4, pp.
1087–1093, Jul. 2014.

[11] Q.-P. Gu and S. Peng, “Node-to-set disjoint paths problem in star
graphs,” Information Processing Letters, vol. 62, no. 4, pp. 201–207,
Apr. 1997.

[12] D. Kocík, Y. Hirai, and K. Kaneko, “Node-to-set disjoint paths
problem in a möbius cube,” IEICE Transactions on Information and
Systems, vol. E99-D, no. 3, p. in press, Mar. 2016.

[13] L. Lipták, E. Cheng, J.-S. Kim, and S. W. Kim, “One-to-many node-
disjoint paths of hyper-star networks,” Discrete Applied Mathematics,
vol. 160, no. 13-14.

[14] Y. Xiang and I. A. Stewart, “One-to-many node-disjoint paths in (n,k)-
star graphs,” Discrete Applied Mathematics, vol. 158, no. 1, pp. 62–70,
Jan. 2010.

[15] A. Bossard, “A set-to-set disjoint paths routing algorithm in hyper-
star graphs,” ISCA International Journal of Computers and Their
Applications, vol. 21, no. 1, pp. 76–82, Mar. 2014.

[16] A. Bossard and K. Kaneko, “The set-to-set disjoint-path problem
in perfect hierarchical hypercubes,” The Computer Journal, vol. 55,
no. 6, pp. 769–775, Jun. 2012.

[17] ——, “Set-to-set disjoint paths routing in hierarchical cubic net-
works,” The Computer Journal, vol. 57, no. 2, pp. 332–337, Feb.
2014.

[18] D. S. Cohen and M. Blum, “On the problem of sorting burnt
pancakes,” Discrete Applied Mathematics, vol. 61, no. 2, pp. 105–
120, 1995.

[19] T. Iwasaki and K. Kaneko, “Fault-tolerant routing in burnt pancake
graphs,” Information Processing Letters, vol. 110, no. 14-15, pp. 535–
538, Jul. 2010.

[20] K. Kaneko, “An algorithm for node-to-set disjoint paths problem
in burnt pancake graphs,” IEICE Transactions on Information and
Systems, vol. E86-D, no. 12, pp. 2588–2594, Dec. 2003.

[21] ——, “Hamiltonian cycles and hamiltonian paths in faulty burnt
pancake graphs,” IEICE Transactions on Information and Systems,
vol. E90-D, no. 4, pp. 716–721, Apr. 2007.

[22] S. B. Akers and B. Krishnamurthy, “A group-theoretic model for sym-
metric interconnection networks,” IEEE Transactions on Computers,
vol. 38, no. 4, pp. 555–566, Apr. 1989.

[23] D. W. Bass and I. H. Sudborough, “Pancake problems with restricted
prefix reversals and some corresponding cayley networks,” Journal
of Parallel and Distributed Computing, vol. 63, no. 3, pp. 327–336,
2003.

[24] W. H. Gates and C. H. Papadimitriou, “Bounds for sorting by prefix
reversal,” Discrete Mathematics, vol. 27, pp. 47–57, 1979.

[25] M. H. Heydari and I. H. Sudborough, “On the diameter of the pancake
network,” J. Algorithms, vol. 25, no. 1, pp. 67–94, 1997.

[26] K. Kaneko and Y. Suzuki, “Node-to-set disjoint paths problem in
pancake graphs,” IEICE Transactions on Information and Systems,
vol. E86-D, no. 9, pp. 1628–1633, Sep. 2003.

[27] K. Qiu, H. Meijer, and S. G. Akl, “Parallel routing and sorting on
the pancake network,” in Proceedings of International Conference on
Computing and Information, ser. Lecture Notes in Computer Science,
vol. 497. Springer Verlag, 1991, pp. 360–371.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 49

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 49

ISBN: 1-60132-444-8, CSREA Press ©

An Efficient Fault Tolerant Scheme for Mobility Management in
Wireless Networks

Abel DIATTA1, Ibrahima NIANG1, and Mandicou BA2

1Département de Mathématiques et Informatique, Laboratoire d’Informatique de Dakar (LID)
2Département Génie Informatique, Ecole Supérieure Polytechnique (ESP)

Université Cheikh Anta Diop, Dakar, Sénégal

Abstract— Mobile communications are nowadays highly
developed thanks to the multiplicity of mobile devices. Some
communications pass directly between mobile nodes (be-
cause the latters have direct connections between them),
while for others, the mobile node must pass through a point
of attachment (PoA). In the latter case, when the PoA

falls down, all mobile nodes that are attached to him losing
communication with their counterparts.

In this paper, we develope a way to avoid this loss of mo-
bile nodes communications even when their PoA falls down.
This, thanks to an algorithm that we propose to strengthen
the capacity of the Media Independent Handover Function
(MIHF) in terms of managing the handover, especially
during a failure of a PoA. In other words, our algorithm
combines management of the continuity of communication
during handover and managing the fault tolerance of the
PoA.

Keywords: Fault Tolerance, Mobility management, Wireless Net-
works, MIHF

1. Introduction
With the proliferation of mobile devices (smartphones,

tablets, laptops, ...), wireless networks have become essential
nowadays. Indeed, the ability of users to communicate, send
files, ... while moving, do that users are genuinely interested
over these networks. In most cases, the communications
are via applications using P2P networks (Skype, viber,
WhatsApp ...) [1].These two opportunities (possibility of
movement during communication, use of P2P technology)
offered to the user, are problematic. Indeed, in P2P technolo-
gies you need a good strategy for (i) fault tolerance because
the nodes arrive and depart at any time. Meanwhile, in an
environment characterized by high mobility of nodes, it is
essential to take into account the (ii) frequent disappearances
of links, but especially (iii) communications interruptions
and loss of packets due to change coverage areas (handover)
or disruption of an Attachment Point (PoA).
In the existing literature, work that included fault tolerance
[2], [3], [4], [5] do not integrate mobility communication into
their work. In other words, in these works, two users who
are communicating are forced to stay on one place until the
end of their communication. This is a heavy constraint. In

the same vein, research works that tried to manage mobility
nodes [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], did
not take into account the fault tolerance.

Yu Liu et al. in [13] used a P2P technology to manage
mobility. However, their study focused on how to avoid
interference between the nodes. Abhishek Dhiman et al.
in [14] treated the vertical and horizontal handover but
they were interested in the throughput and delay (when a
node moves at a given speed from one Access Point (AP)
to another or from one Base Station (BS) to another) in
Wi-Fi and WiMAX. They not only did not address the
continuity of communication between two mobile nodes,
but they have especially not integrated the possibility that
a BS or an AP goes down while mobile nodes attached to it
are in communication (ie fault tolerance). It is the same for
papers [16], [17], [18], [19] in which the authors conduct
studies on the performance of applications such as FTP,
Video conference ... in WLANs, WiMAX, UMTS in terms
of delay for the handover but also, in terms of traffic sent
and received. In [20], autors ensure the continuity of service
during handoff but not take into account the fault tolerance.

In this paper, we propose a solution to ensure the con-
tinuity of communication between two mobile nodes even
when their PoA falls down i.e we integrate both mobility
management and fault tolerance.

The rest of the paper is organized as follows. In section II,
we give the related works on Mobility and fault tolerance
in Wireless mobile Networks. In section III, we give our
contribution. Section IV gives details on our solution for
Mobility and Fault Tolerant Management in Wireless mobile
Networks. A performance analysis of our solution is done
in this section. Section V is devoted to the conclusion and
our future works.

2. Related Work
2.1 Survey on Mobility in Wireless Networks

In [8], authors, about searching for files have set up a
cluster system based on mobile Ad hoc networks approach.
Their solution is mainly based on the creation of clusters
head (CH) and secondary CH . It presents notorious limits
on the managing of CH failures. Indeed in their approach,
the secondary CH must wait a time t seconds, if it does not

50 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

50 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

receive messages from the CH , it considers it down and
takes over. Thus, in their approach, a member of a cluster
will wait 2 × t seconds (t for CH and t for secondary
CH) before constating that its CH is down and that it will
seek another CH . In a file-sharing system, this is tolerable.
By cons in the case of real-time communications that is
unacceptable.

In [9], the solution established by Jabbar et al. allow
mobile devices to connect themselves without a point of at-
tachemnt (Wi-Fi Direct). Therefore, in their solution, mobile
nodes are to be confined within a small geographical area.
What is not suitable for internet or social networks.

In [10] Kim et al. have set up a system to ensure the
handover but only in the context of data loss. Their solution
avoids data loss by selecting a peer agent to store the data
of the mobile node (MN) which is moving to another area.
Once it will be connected to another point of attachment
(PoA), peer agent transmits it the data it had guarded
and the transmission continues. In their approach, when the
MN enters into handover, it does not receive data until it
establishes a connection with another PoA. In other words,
during this time the communication is interrupted. In the
case of video transmission, as in their case the solution is
relevant. However, in the case of communication via Skype
calls, viber ... for example, this is unacceptable.

Kuo et al. in [11] and Angoma et al. in [20] have
provided solutions to ensure service continuity during the
handover. However in [11] they took into account only the
horizontal handover. While in [20], their deployment in a real
environment has not taken into account the possibility that
a PoA fails during communication or that the access point
is moved in the case of Wi-Fi. It is very possible especially
now with the existence of wireless routers.

In [12], authors considered the horizontal and vertical
handover (HHO and V HO). However, their study was
limited mainly to show the impact of the movement speed of
the mobile not only in terms of packet loss but also the terms
of time required for handover. They have not implemented
a strategy to ensure the continuity of communication during
handover.
In [21], authors use the packet retransmission system for
managing fault tolerance. Indeed if after some time an ACK
is not received, they retransmit the packet. However, it
should be noted that their solution does not solve the prob-
lem when the cluster is down. Because we can retransmit
the packet as many times as we want, it will always be the
same scenario.

In [22], Zayaraz et al. based their study on the compar-
ison in terms of signal strength and handover (HO) delay.
They applied the comparison of the two types of network
integration namely the loose coupling and tight coupling
but also on WiFi and WiMAX networks. To manage the
HO, authors set up a system which, when the link between
MN and PoA is lost, the Media Independent Handover user

(MIH user) initiates the discovery of a candidate network.
The MN checks the RSS (Received Signal Strength) and
the bandwidth of the WiMAX network. If the bandwidth is
greater than a threshold defined in the MN , then MN starts
the execution of the HO. The problem with their solution
is that if there are several WiMAX networks that cover the
area and whose bandwidth is greater than the threshold set
in the MN , there will create a conflict because the MN will
attempt to connect to all these networks at the same time.

2.2 Related Work on Fault Tolerance Mecha-
nisms

In [2], [3], messages ping / pong are used to verify the
breakdown of nodes. In fact, if after some time, a node
does not respond with a message pong, it is declared down.
We know that the response time is strongly dependent on
the quality of the network. Otherwise, in their solution, a
node can be declared out when it is not (simply because
the response has been slow to happen due to poor network
quality or a temporary disconnection of the link).

According to [4], a system in which the degree of distri-
bution (degree of connectivity) is high, is more vulnerable
to attack. But conversely, it provides a much more efficient
communication and better fault tolerance. By cons, a system
where the degree distribution is not strong is more resistant
to attack, but less effective in terms of communication and
fault tolerance. So be in the middle (ie a high degree of
constant distribution). This is what Suto et al. in [4] wanted
to manage by implementing the hub nodes with a high
degree and non-hub nodes with a low degree. However,
their solution does not solve the problem. Indeed their
degrees depend on the total number of nodes in the network.
However, in networks with the size of the internet, charac-
terized by high Chuns, the number of nodes in the network
continuously changes. By applying their solution, the system
will be unstable. Sometimes it has better fault tolerance
and therefore more vulnerable to attack because the degree
became high, sometimes communication is lacking because
the degree is again low (because of several departures of
nodes).

In [6], Lun et al. have developed a method for detecting
failures of nodes. To do this, they put up a message storage
tree (ms-tree). Each node sends a message to others. Each
node receiving the message saves the message source in
the ms-tree; in turn sends the message to others, and then
adds the source node in a NFLP list (Non-Faulty-Like Peer).
They realize the transmission message during three steps and
after that, each node counts the number of times each node
appears in the list NFLP. If a node appears a number of times

less than n−
⌊
n− 1

3

⌋
, then this one is considered down (n

is the number of peers in the network). A large incovenient
in this system is that in highly dynamic systems (arrival and
departure at any time), a node can arrive in the system at

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 51

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 51

ISBN: 1-60132-444-8, CSREA Press ©

the third step of sending the message. It is clear that in this
case, it will appear in the NFLP a number of times less than

n−
⌊
n− 1

3

⌋
, and therefore will be declared down while it

is not.

3. Contribution
We propose a model combining both the management of

mobility and fault tolerance of nodes (MNs and PoAs)
based on a hierarchical wireless network. Unlike flooding
message used, our routing system avoids overloading the
network because each PoA, by sending a message to its
neighbors, precise to them in a list, all other neighbors to
which it sent the same message. Therefore, the later PoA

will not send the same message at the same latters even if
they are its neighbors.

In addition, our solution helps strengthen the MIHF

(Media Independent Handover Function) protocol by adding
new features including those to continue communication
even when the PoA falls down. This, due to the use of
priority and backup addresses.

4. An efficient Fault Tolerant Solution
for Mobile Wireless Networks
4.1 Basic Idea

The idea of our solution is very simple. We started with
the following conclusion:

1) All the papers that have dealt fault tolerance [2], [3],
[4], [5], [23]

• consider that a node is down, if it is physically
defective or does not respond to a ping message
that was sent to it,

2) All the papers that have worked on the mobility of
nodes in wireless networks [6], [7], [8], [9], [10], [11],
[12], [13], [14], [15] did not take into account the
possibility that a PoA falls down during one of its
son communicates

Considering all this, our solution sets a time t after which
if a node does not respond, the source node asks two of its
neighbors if they can contact the destination. If their answer
is "NO", then the later is considered broken. By cons, if at
least one of the two answers with "Y ES" this means that
it is the connection between the source and the destination
which is a problem.

This verification is especially important that declare a
node as failed while it is not, creating unnecessary additional
operations. In fact, if a node is declared down, all the nodes
under its responsibility (especially when it is a backbone)
will undertake updates to their routing table when it was not
necessary since the node always work.

In our solution a node can be considered as a PoA,
if at least k nodes can connect to it but also if it has a

fixed IP address. PoAs are linked together randomly. The
mobile nodes are connected to different PoAs via Wi-Fi
network, WiMAX, UMTS, etc. Whenever a MN connects,
its distance from the PoA is relieved. Unlike a lot of work,
when this distance changes (ie when the MN moves), the
HO is triggered, in our case, when the absolute value
of this distance increases, the PoA by flooding sends a
message to its neighbors to tell them that it has a son which
wish to connect to them. This message contains the MN

information.
The MN connects to the first PoA that responds and then
informs its former PoA that it is connected to such PoA.
Each PoA contains a list of MNs that are attached to it. In
addition, each PoA contains information about its neighbors
(distance, bandwidth, ...).

Drawing inspiration from [14], a MN has multiple IP
addresses according to networks to which it belongs (Wi-
Fi, WiMAX, UMTS,...). However, there is an address that
is marked as a priority. This is the address obtained in
the network to which the MN is attached. To find which
network the MN is attached, we compare the absolute
values of the distances between the MN and the PoA. MN

will be attached to the PoA with which the absolute value
is the smallest. It is this address that will be considered as
a priority until the MN moves to another network. Figure
1 shows our hierarchical wireless architecture.

MN
PoA

Fig. 1: Hierarchical Wireless Networks

4.2 Architecture operating
4.2.1 Routing

In our architecture, a MN wishing to contact another,
sends a call message (audio, video ...) to its PoA. The
message contains the information of the source and the
destination. The PoA checks whether the destination is not
attached to it. If attached to it, the message is sent directly to
the MN , otherwise the PoA sends, by flood, the message to
all its neighbors. In this message, the PoA precises the list of
all neighbors to whom it sent the message. This will prevent
other neighbors to send the same message to those which

52 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

52 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

have already received (to avoid overloading the network).
This list will be re-initialized at each PoA. The PoA checks
whether the destination is not attached to it. If attached to it,
the message is sent directly to the MN , otherwise the PoA

sends, by flood, the message to all its neighbors except those
which have already received, so on (see Algorithm 1).

For sending the response, we use the same scenario. The
destination (ie the source of the response) sends the response
to the PoA. This later verifies if the MN destination of
the response (ie the source of the original message) is not
attached to it (because after sending the message, it can move
to another PoA). If attached to it, it sends it the response,
otherwise the PoA sends the response to all its neighbors,
stating in the message the list of other neighbors to which
it also sent the response. Each of the neighboring check in
turn if the MN destination of the response is attached to it.
Otherwise, it sends the response to all its neighbors except
those that have already been traversed by the response. The
same process continues until the MN destination.

msg : Message
MNsrc : MN source
MNDest : MN destination
ListPoA(MN) : List of MNs attached to PoA

idMN : MN Identifier
idPoA : Identifier of PoA source
idPoAi : Identifier of PoA i

num_neigh : Number of neighbors
ListPoA(Neighbor): List of PoA neighbors
List

msg

PoA
(Neighbor): List of neighbors receiving the msg

function : send(source,msg, destination)

Algorithm 1: Sending msg from MNsrc to MNDest

1: send(MNsrc, msg,idPoA) %MN sends msg to its PoA

2: if (MNDest ∈ ListPoA(MN)) then
3: send (idPoA, msg, idMNDest)
4: else
5: foreach PoA neighbor
6: send (idPoAi, msg, ListPoA(idNeighbor)
7: end for
% When receiving a msg, each PoA does the following
8: repeat
9: if (MNDest ∈ ListPoA(MN)) then
10: send (idPoA, msg, idMNDest)
11: else
12: foreach PoA neighbor
13: if ((idPoAi ∈ ListPoA(idNeighbor)) and

(idPoAi /∈ List
msg

PoA
(Neighbor)))

14: send (idPoA, msg, idPoAi)
15: end if
16: end for
17: end if
18: until ((MNDest ∈ ListPoA(MN)) ∨

(all PoA receive the msg))
19: end if

To send the response, the same algorithm is used. We
simply reverse the roles of MNsrc and MNDest.

The worst case complexity of this algorithm is obtained
on lines 12, 13 and 14. Let n be the number of PoA.
For each PoA, we must go through the list of its neighbors.
Therefore the complexity is a function of n×(size of each
PoA neighbors list). These instructions will be in the worst
case until all PoA receive the message. In other words, the
complexity is n × n×(size of each PoA neighbors list).
However, the size of the PoA neighbors list is a most equal
to connectivity degree of that PoA.
Let k be the maximum connectivity degrees of PoA.
So complexity is O(k×n2). We recall that n is the number
of PoA and not the total number of nodes.

4.2.2 Node departure

For node departures, if it is a MN that is leaving the
network, it informs its PoA and then leaves. The PoA

removes it from the list of MN that are attached to it.
However, in the case of it is a PoA that leaves the network
(e.g. an AP), it sends information of its neighbors (relative
distances, bandwidth, ...) to every MN which are attached to
it, informs its neighbors and then leaves. Each MN attempts
to connect to the PoA closest to him.

The complexity in the worst case is obtained when it is
a PoA leaving the system. This should send a message to
all its sons. So the complexity depend on the (number of
MNs attached to PoA). In addition, the PoA leaving the
system inform all its neighbors. Therefore the complexity is
also dependent on the (number PoA neighbors).
Then, the complexity depends on the (number of MNs
attached to PoA) + (number of PoA neighbors). This is
at most equal to the degree of connectivity of the PoA.
Let k be the connectivity degree of PoA.
Therefore the complexity is O(k).

4.2.3 Node joining

When a MN arrives, it sends a broadcast message. In the
message, it specifies that it wants to connect to a PoA. If
there is a PoA which responds, it tries to connect to it. The
response contains the PoA information thereof (position,
bandwidth, number of remaining connection, ...). If multiple
PoA respond, the MN chooses to connect to the PoA

which has the largest bandwidth. If they have the same
bandwidth, the MN then connects to the nearest PoA.
If it is a PoA which arrives, it sends a broadcast message
stating its position, bandwidth. Each PoA receiving the
message is considered as its neighbor. The latter responds to
arriving PoA stating in turn its position, bandwidth, etc. It
saves it in its neighbor list. The arriving PoA also recorded
in its neighbor list, all the PoA that responded.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 53

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 53

ISBN: 1-60132-444-8, CSREA Press ©

Complexity is based at most on the number of degree
of connectivity (ie the number of neighbors of incoming
PoA and the number of MNs attached to it). Therefore the
complexity is O(k).

4.2.4 Fault-tolerance
As we said above, the mobility management works con-

sider that a node is down when it does not respond to a
"ping" message during a time t. But the arrival of a message
(request or response) depends on other factors such as the
quality of bandwidth, link status, etc. That is why in our
case, all nodes send to their neighbors (MN or PoA) ping
messages at regular time interval t. When a node does not
respond to a "ping" message for a time t, the source asked
two of its neighbors if they can contact the destination. If
their answer is "NO", then the later is considered broken.
All its neighbors suppress it in their neighbor list. By cons,
if at least one of the two answers is "Y ES" this means that
it is the connection between the source and the destination
which is a problem.
When a node fails, the following steps are performed:

1) If it is a MN that is down:
• its PoA removes it from its MNs list
• its neighbors suppress it in their neighbors list

2) If it is a PoA that is down:
• each MN connects to the PoA of its backup

address
• each PoA which was connected to the down one

removes it from its neighbor list and attempts to
connect to another PoA

The complexity in the worst case is obtained when it is a
PoA that fails. Each node that was connected to the latter
changes its neighbor table by removing the failed PoA in
the neighbor list.
Let k be the connectivity degree of PoA.
There are at most k nodes that were connected to the failed
PoA. Each of these k nodes must go through the list of its
neighbors (k× (size of list)). The size of this list is at most
equal to k. Therefore the complexity is O(k2)

4.2.5 Managing Continuity of communication during
handover

Handover management includes three stages [22]:
• Initiation of handover: When the MN moves
• Available networks Discovery
• Execution of handover: Connect to an available network

In papers which worked on the management of handover,
when the MN moves, the handover is triggered (ie the im-
plementation of the Media Independent Handover Function
(MIHF)). This sometimes creates unnecessary operations
(thus overloading the network). Because the MN can move
by approaching more its PoA, and thus its signal becomes
better. It is unnecessary in this case to trigger a handover.

In our case, we trigger the handover if and only if the
absolute value of the distance of the MN with its PoA

increases (as this shows that the MN moves away from its
PoA).

To implement our strategy for ensuring the continuity of
communiction, we are inspired by [14] where authors use
Master IP.
When a node integrates the network, the address that was
provided to it in its PoA network, is considered as a
priority. If the MN straddles several other networks, it will
have other addresses it got from other PoA. Among these
addresses, the one it obtained from the PoA which has the
largest bandwidth will be marked as a backup address. What
will serve this backup address ?

Response: When the PoA of the MN (ie the one of its
priority address) is faulty, backup address is used directly to
continue the communication. Hence, we avoid the interrup-
tion of communication.

In summary, in our solution, we trigger the handover in
two cases:

• If the distance between the MN and its PoA grows
• When the PoA of at least one of the communicating

MN fails (even if the MN does not move).
This is summarized in the following algorithm:

Algorithm 2:Continuity of Communication Management
1: If distance (MN , PoA) grows
2: trigger MIHF

3: Else if PoA falls down /%MN does not move %/
4: MN connects, meanwhile, to 2nd priority network
5: MN checks the best network in terms of bandwidth
6: If best network <> from 2nd priority network
7: MN connects to the best network
8: End if
9: End if

We have added a new feature in the MIHF (Media
Independant Handover Function), these are lines 3 to 9 of
algorithm 2. Indeed, some fault tolerance of a PoA was pre-
viously not included in the MIHF . In other words, before
our algorithm, a failure of a PoA causes the breakdown of
communication.

Similarly, the complexity depends on the number of PoA

neighbors to which was attached the communicating MN .
Let k be the connectivity degree of PoA.
The MN in communication is connected to the PoA.
Therefore the number of other PoAs which are neighbors of
the latter PoA is at most equal to k−1. Since this is one of
those (k− 1) PoAs neighbors that the communicating MN

seeks an alternate; the complexity is therefore O(k − 1).

4.3 Performances Analysis
In this section, we first give a summary table of the costs

of the different algorithms we have implemented, then we
make a criticism of our solution.

54 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

54 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

• FT : Fault Tolerance
• MCCHO: Managing Continuity of Communication

during Handover
• Let K be the set of degrees of connectivity of all PoAs
• k = Max(i), i ∈ K

• n: number of PoA

Algorithm Routing Arrival Nodes FT

nodes departure MCCHO

Complexity O(k × n2
) O(k) O(k) O(k2) O(k − 1)

Memory
Occupation high low low medium low

Table 1: Complexity of our algorithms

The core strength of our solution is that it is very suitable
for scaling. The more the number of nodes are, the higher the
degree of connectivity of the system is. Thus, for operations
such as routing, for example, there are more routes to which
the messages are sent. Thus, it becomes faster to find a
destination.

However, the main disadvantage of our solution is that it
takes up too much memory space especially in the routing.
Because each PoA must consult two lists: its neighbors list
and the list of these neighbors which have already received
the message.

5. Conclusion and future works
In this paper, we have set up a management architecture

of both mobility management, fault-tolerance and ensuring
communication continuity in wireless mobiles networks.
Most solutions that use the flooding routing are major
polluters of bandwidth. By cons, in our cas we have given
a routing algorithm (algorithm 1) which, although it uses
flooding messages, avoids overloading the network. This is
due to the sending by each PoA to its neighbors, the list of
other PoAs to which it sent the message. In addition, we
have given another one (algorithm 2) which, if embedded
on a wireless network adapter of a mobile node, will allow
it to continue communication even in case of failure of the
PoA.

In the case of our very close perspective, we will focus
on an experimental simulation analysis first and then by
deployment.

References
[1] “Skype replaces P2P supernodes with Linux boxes hosted by

Microsoft (updated),” http://arstechnica.com/business/2012/05/skype-
replaces-p2p-supernodes-with-linux-boxes-hosted-by-microsoft/ -
March 10, 2016.

[2] C. DOBRE, “A cluster-enhanced fault tolerant peer-to-peer system,”
International Journal of Innovative Computing, Information and Con-
trol, vol. 10, no. 2, pp. 417 – 436, April 2014.

[3] T. T. Nguyen and D. El-Baz, “Fault tolerant implementation of peer-
to-peer distributed iterative algorithms,” in Computational Science and
Engineering (CSE), 2012 IEEE 15th International Conference on, Dec
2012, pp. 137–145.

[4] K. Suto, H. Nishiyama, X. Shen, and N. Kato, “Designing p2p
networks tolerant to attacks and faults based on bimodal degree
distribution,” Journal of Communications, SI on Security and Privacy
in Communication Systems and Networks, vol. 7, no. 8, pp. 587 –
595, Aug 2012.

[5] O. Karaca and R. Sokullu, “A cross-layer fault tolerance management
module for wireless sensor networks,” Journal of Zhejiang University
SCIENCE C, vol. 13, no. 9, pp. 660–673, 2012. [Online]. Available:
http://dx.doi.org/10.1631/jzus.C1200029

[6] M. L. Chiang and H. C. Hsieh, “A new approach to the fault detection
problem for mobile p2p network,” INFORMATION TECHNOLOGY
AND CONTROL, vol. 41, no. 2, pp. 151 – 161, 2012.

[7] S. Ferretti, “Modeling Self-Organizing, Faulty Peer-to-Peer Systems
as Complex Networks,” ser. Technical Report UBLCS-2010-03.

[8] T. B. Noor, M. R. Salehin, and S. R. Islam, “A clustering scheme for
peer-to-peer file searching in mobile ad hoc networks,” International
Journal of Advanced Research in Computer and Communication
Engineering, October 2012.

[9] W. A. Jabbar, M. Ismail, and R. Nordin, “Framework for
Enhancing P2P Communication Protocol on Mobile Platform,” The
International Conference on Informatics and Applications (ICIA2012),
2012. [Online]. Available: http://sdiwc.net/digital-library/framework-
for-enhancing-p2p-communication-protocol-on-mobileplatform

[10] E. Kim, S. Kim, and C. Lee, “Supporting Seamless Mobility for P2P
Live Streaming,” The Scientific World Journal, vol. 2014, p. 8.

[11] J.-L. Kuo, C.-H. Shih, and Y.-C. Chen, “A cross-layer design for p2p
live streaming with graceful handover in mobile ip network,” in ITS
Telecommunications (ITST), 2013 13th International Conference on,
Nov 2013, pp. 456–461.

[12] B. S. and R. Daruwala, “Experimental analysis of horizontal and ver-
tical handovers in wireless access networks using ns2,” in Information
and Communication Technologies (WICT), 2011 World Congress on,
Dec 2011, pp. 594–599.

[13] Y. Liu, B. Guo, C. Zhou, and Y. Cheng, “Network-coded
cooperative information recovery in cellular/802.11 mobile
networks,” Journal of Network and Computer Applications,
vol. 51, pp. 59 – 67, 2015. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1084804514000320

[14] A. Dhiman and K. S. Sandha, “Vertical and horizontal handover in
heterogeneous wireless networks using opnet,” International Journal
of Engineering Research and Technology (IJERT), vol. 2, no. 6, pp.
842 – 846, June 2013.

[15] D. R. Dandekar and P. Deshmukh, “Relay node placement
for multi-path connectivity in heterogeneous wireless sensor
networks,” Procedia Technology, vol. 4, pp. 732 –
736, 2012, 2nd International Conference on Computer,
Communication, Control and Information Technology(C3IT-
2012) on February 25 - 26, 2012. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S2212017312003982

[16] P. Babel, M. A. K. Bhola, and D. C. K. Jha, “Delay and Throughput
Comparison between Hard Handover and Soft Handover by Varying
the Speed in Mobile WIMAX,” International Journal of Research,
vol. 2, no. 4, pp. 742 – 746, April 2015.

[17] P. Mehta and S. Baghla, “Performance Evaluation of Heterogeneous
Networks for Various Applications Using OPNET Modeller,” Inter-
national Journal on Recent and Innovation Trends in Computing and
Communication, vol. 3, no. 8, pp. 4003 – 4006, August 2014.

[18] M. V. Verma and S. Baghla, “Performance Evaluation of QoS in
WLAN-UMTS Network Using OPNET Modeller,” International Jour-
nal of Science and Research (IJSR), vol. 3, no. 6, pp. 4003 – 4006,
June 2015.

[19] D. J. Kadhim and S. S. Abed, “PERFORMANCE AND HANDOFF
EVALUATION OF HETEROGENEOUS WIRELESS NETWORKS
(HWNS) USING OPNET SIMULATOR,” International Journal of
Electronics and Communication Engineering and Technology (IJE-
CET), vol. 4, no. 2, pp. 477 – 496, March - April 2013.

[20] B. Angoma, M. Erradi, Y. Benkaouz, A. Berqia, and M. C. Akalay,

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 55

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 55

ISBN: 1-60132-444-8, CSREA Press ©

“A Vertical Handoff Implementation in a Real Testbed,” Mobile
Computing, vol. 1, no. 1, pp. 1 – 14, November 2012.

[21] B. Heep, M. Florian, J. Volz, and I. Baumgart, “Overdrive: An overlay-
based geocast service for smart traffic applications.”

[22] G. Zayaraz, J. K. Devi, V. Vijayalakshmi, and V. Hemamalini,
“MOBILITY MANAGEMENT IN HETEROGENEOUS WIRELESS
NETWORKS,” IJRET: International Journal of Research in Engineer-
ing and Technology, vol. 03, no. 07, pp. 761 – 768, May 2014.

[23] I. Diane, I. Niang, and B. Gueye, “A hierarchical dht for fault tolerant
management in p2p-sip networks,” in Proceedings of the 2010 IEEE
16th International Conference on Parallel and Distributed Systems,
ser. ICPADS ’10, 2010, pp. 788–793.

56 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

56 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

__
*Corresponding author: ytchuang@mis.ccu.edu.tw

A Trustworthy Information Publication and Search
System for Large-Scale & Mobile Wireless Networks

Yung-Ting Chuang*, Qian-Wei Wu
Department of Information Management, National Chung Cheng University, Chia-Yi County, Taiwan

Abstract - As ubiquitous networked devices continue to play
an increased role in the daily lives of most people, people can
use any mobile device to access or share any information at
anytime and from anywhere. However, most of the search
services still belong to centralized systems. In addition, it is
very difficult to distribute or retrieve data when considering
enormous number of mobile nodes over the large-scale mobile
wireless networks. In order to address these problems, we
present a Trustworthy Information Publication and Search
System, an efficient decentralized search and retrieval system
for the large-scale and mobile wireless networks. Our goals
are to: 1) ensure robustness and effectiveness of the system
which cannot easily to be censored or filtered; 2) provide high
search and retrieval rate even when in a high mobility and
density network; 3) require reasonable message costs and
delay.

Keywords: P2P, Membership, decentralized mobile search
and retrieval, distributed systems

1 Introduction
Currently, our trust in the accessibility of information

over the Internet depends on benign and unbiased
administration of centralized search engines and indexes.
Unfortunately, the experience of history, shows that we
cannot depend on such administrators to remain benign and
unbiased forever. To ensure the free flow of information over
the Internet, some decentralized search and retrieval systems
[3,6,10] have previously proposed, so that it would be
difficult to censor or filter information accessed over the
Internet. These decentralized search systems give better
assurance to the users of the Internet, because a small number
of administrators cannot prevent them from exchanging their
information with others.

The network have slowly shifted to a large-scale
wireless network (e.g., wireless sensor network (WSN),
mobile ad-hoc network (MANET), etc.), where these
networks contain massive number of sensors gathered
together to sense, and communicate their environmental data
with others. However, one of the biggest problems behind
such wireless sensor and mobile ad-hoc networks is that it is
difficult to distribute or retrieve information in such
decentralized and large-scale mobile wireless networks.
[9,15,11,2] have therefore proposed solutions to address the
above problems in both WSNs and MANET environment.

Unfortunately, these systems generate too much overhead for
data distribution and database maintenance, and do not
guarantee high retrieval rate when it is in a highly mobile
wireless networks.

2 Related Work
2.1 Peer-to-Peer Network

Mischke and Stiller [13], provide comparisons of
distributed search methods for peer-to-peer networks. The
structured approach [1,7] requires the nodes to be organized
in an overlay network based on distributed hash tables
(DHTs), trees, rings, which is efficient but is vulnerable to
manipulation by untrustworthy administrators. The
unstructured approach [3,6,10], is typically based on
gossiping, uses randomization, and requires the nodes to find
each other by exchanging messages over existing links. Our
system uses the unstructured approach, which is less
vulnerable to manipulation.

2.2 Online Social Networks
Currently a number of recent studies, such as [5],

addressed the privacy concerns in current online social
networks. Similarly, some other studies have proposed to
provide better privacy and trustworthiness. Diaspora allows
users to choose where to store their data with a number of
different providers without a centralized control. Similarly,
other systems [4,12], allow users to choose whether to store
data on their or friends’ devices. Thus, users can have better
control over their information, and also can use the system
locally without the Internet access. Other commercial
applications, such as Tribler, Wuala, and 2Peer, were
presented to allow users to connect and share information
with their friends in a decentralized manner. Similarly, our
system provides better trustworthiness by having users to
share and control their data in a decentralized way.

2.3 Data Search Systems
Geographic routing based data search systems, such as

[15], are proposed which aim for high scalability. In these
works, a file is mapped to a geographic location using the
distributed hash table (DHT) data mapping policy, and
applies geographic routing methods [8] to store the file to a
node closes to this geographic location. In order to retrieve a
file, the requesting node first calculates the mapped

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 57

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 57

ISBN: 1-60132-444-8, CSREA Press ©

geographic location, and then applies the geographic routing
methods to deliver the query to the mapped location.
However, the file might have to constantly transfer to the new
location when it is in a highly mobile network, thus creating a
lot of overhead, delaying the data mapping, and creating
query failure. In our system, we allow nodes to publish their
metadata to a mapped geographic location, do not require file
to constantly transfer to the new location when it is in a
highly mobile network, guarantee high retrieval rate, and
ensure low overhead when in a large-scale and mobile
wireless networks.

3 Methodology
Therefore, in this paper, we present a Trustworthy

Information Publication and Search System for large-scale
and mobile wireless networks. The goal of our system is to
provide robust and effective search and retrieval in a large-
scale mobile wireless networks. Our system first divides the
entire network into a number of regions. Next, our system
have source nodes to generate metadata, where the metadata
that includes a list of keywords and the URL of a file. After
that, our system applies Locality Sensitive Hash (LSH)
functions [14], which maps metadata to a geographical region,
and then stores it in 2 n nodes in that region. Therefore, our
system could reduce data replicas in a region, but still can
suffice to achieve high retrieval rate and ensure mobility
resilience. Similarly, the requesting node first generates its
requests, applies LSH functions to map its requests to a
geographical region, and then distributes its requests to 2 n
nodes in the mapped region. The nodes receive such requests
would compare this request with the metadata that they
currently hold, and if there is a match, they would return the
URL of the source node back to the requesting node. After
receiving the match results, the requesting node can further
retrieve the file. Having successfully retrieved the file, the
requesting node becomes one of the sources nodes, and in this
way, it would further publish the metadata of the file to its
mapped region. In addition, our system applies extensive
back-tracking method [9] to address the issues when either
source node or requesting node moves to other region.

4 Validation and Future Work
So far we only conducted the literature survey and

developed the Mobile and Search Algorithm. Next, in order to
demonstrate the effectiveness of the proposed algorithm, we
plan to implement our model, and then simulate our proposed
algorithm in a highly mobile and large wireless networks.
After that, we plan to evaluate the performance metrics and
compare our system against other decentralized search and
retrieval systems, and demonstrate that our system could
achieve better scalability, overhead, and mobility resilience.

Acknowledgment
This research is supported by Ministry of Science &

Technology (MOST 104-2410-H-194-090-MY2).

5 References
[1] S. Bianchi, P. Felber, and M. Gradinariu. Content-based

publish/subscribe using distributed r-trees. In Proceedings of
Euro-Par, pages 537–548, Rennes, France, August 2007.

[2] P. Sharma, Daniel Souza, Evan Fiore, Jeffrey Gottschalk, and D
Marquis. A case for manet-aware content centric networking of
smartphones. In World of Wireless, Mobile and Multimedia
Networks (WoWMoM), 2012 IEEE International Symposium
on a, pages 1–6. IEEE, 2012.

[3] I. Clarke, O. Sandberg, B. Wiley, and T. Hong. Freenet: A
distributed anonymous information storage and retrieval system.
In Proceedings of the Workshop on Design Issues in Anonymity
and Unobservability, pages 46–66, Berkeley, CA, July 2001.

[4] L. A. Cutillo, R. Molva, and M. Onen. Safebook: A distributed
privacy preserving online social network. In Proceedings of the
IEEE World of Wireless, Mobile and Multimedia Networks
Conference, Lucca, Italy, June 2011.

[5] N. B Ellison et al. Social network sites: Definition, history, and
scholarship. Journal of Computer-Mediated Communication,
13(1):210–230, 2007.

[6] R. A. Ferreira, M. K. Ramanathan, A. Awan, A. Grama, and S.
Jagannathan. Search with probabilistic guarantees in
unstructured peer-to-peer networks. In Proceedings of 5th IEEE
International Conference on Peer-to-Peer Computing, pages
165–172, Konstanz, Germany, August 2005.

[7] A. Gupta, O. Sahin, D. Agrawal, and A. El Abbadi. Meghdoot:
Content-based publish/subscribe over P2P networks. In
Proceedings of the 5th ACM/IFIP/USENIX International
Conference on Middleware, pages 254–273, Toronto, Canada,
October 2004.

[8] H. Frey and Ivan Stojmenovic. On delivery guarantees and
worst-case forwarding bounds of elementary face routing
components in ad hoc and sensor networks. Computers, IEEE
Transactions on, 59(9):1224–1238, 2010.

[9] H. Y. Shen, Ze Li, and Kang Chen. A scalable and mobility-
resilient data search system for large-scale mobile wireless
networks. Parallel and Distributed Systems, IEEE Transactions
on, 25(5):1124–1134, 2014.

[10] T. Isdal, M. Piatek, A. Krishnamurthy, and T. Anderson.
Privacy preserving P2P data sharing with OneSwarm. In
Proceedings of the ACM SIGCOMM Conference, pages 111–
122, New Delhi, India, September 2010.

[11] N. Shah and Depei Qian. An efficient unstructured p2p overlay
over manet using underlying proactive routing. In Mobile Ad-
hoc and Sensor Networks (MSN), 2011 Seventh International
Conference on, pages 248–255. IEEE, 2011.

[12] A. Loupasakis, N. Ntarmos, P. Triantafillou, and D.
Makreshanski. eXO: Decentralized autonomous scalable social
networking. In CIDR, pages 85–95, 2011.

[13] J. Mischke and B. Stiller. A methodology for the design of
distributed search in P2P middleware. IEEE Network, 18(1):30–
37, 2004.

[14] A. Rajaraman and Jeffrey D Ullman. Mining of massive
datasets, volume 77.

[15] S. Ratnasamy, Brad Karp, Scott Shenker, Deborah Estrin,
Ramesh Govindan, Li Yin, and Fang Yu. Data-centric storage in
sensornets with ght, a geographic hash table. Mobile networks
and applications, 8(4):427–442, 2003.

58 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

58 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

A New Group Membership Protocol in Synchronous
Distributed Systems

Sung-Hoon Park1 and Yeong-Mok Kim2

1,2Department of Computer Engineering, Chungbuk National Unvi., Cheongju, ChungBuk, Korea

Abstract - In distributed systems, a group of
computer should continue to do cooperation in order
to finish some jobs. In such a system, a group
membership protocol is especially practical and
important elements to provide processes in a group
with a consistent common knowledge about the
membership of the group. Whenever a membership
change occurs, processes should agree on which of
them should do to accomplish an unfinished job or
begins a new job. The problem of knowing a stable
membership view is very same with the agreeing
common predicate in a distributed system such as the
consensus problem. Based on the termination
detection protocol that is traditional one in
asynchronous distributed systems, we present the new
group membership protocol in arbitrary wired
networks.

Key-words Synchronous Distributed Systems; Group
membership; Fault Tolerance; Wired Arbitrary Network
Environment

1. Introduction

In distributed systems, a group of computer should
continue to do cooperation in order to finish some
jobs. A group membership protocol is especially
helpful tools to allocate processes in a same group
with a same view of the membership of the group.
Whenever a membership change occurs, processes
can consent to which of them should do to finish a
waiting job or begin a new job. The problem of
getting a stable membership view is very same with
the one of getting common knowledge in a
synchronous distributed system such as the consensus
problem [1].

The Group membership protocol [2] is that every
process connected in a network requires getting a
stable same group membership view if all connected
process are belong to just one group. The problem
was widely discussed at the study community. The
reason for this great study is that many distributed
systems need a group membership protocol
[3,4,5,6,7]. In spite of such practically usefulness, to
our knowledge there is only a few research that have
been committed to this problem in a wired arbitrary
connected computing environment.
 Depending on process failure and recover, network
topologies is changed and process may dynamically
connect and disconnect over a wired network. In such
wired networks, group membership can be changed
so much, making it a special critical module of
system software part. In wired arbitrary network
systems, a lot of environmental adversities are more

common than the static wired network systems such
as that can cause loss of messages or data [8]. In
particular, a process can easily get to fault by
hardware or software problem and disconnect from
the wired network. Implementing fault-tolerant
distributed applications in such an environment is a
complex and difficult behavior [9,10].

In this paper, we propose a new protocol to the
group membership protocol in a specific wired
distributed computing system. Based on the
termination detection protocol that is traditional one
in asynchronous distributed systems, we address the
new group membership protocol. We make up of the
rest of this paper as follows. In Section 2 we address
the system model we use. In Section 3, we describe a
specification to the group membership problem in a
traditional synchronous distributed system. We also
address a new protocol to solve the group
membership problem in a wired arbitrary computing
system in Section 4. In Section 5, we address
conclude.

2. Computing System Model,
Definition and Assumptions

In this section, we describe our models for
capturing behavior of distributed systems. We use
these models foe reasoning about correctness of our
protocol as well as for analysis of distributed
computations. Our model for distributed systems is
based on message passing, and all of protocol is
around that concept. Many of these kinds of protocol
have analogs in the shared memory computing
system but will not be addressed in this paper.
 First, we define our system model based on some
assumptions and after that we address our goals. We
model a distributed system as a loosely coupled
messing-passing system without shared memory and
a global clock. Our distributed computation model for
a wired network is made up of as an undirected graph.
That is, the undirected graph is described as G = (V,
E), in which vertices V facing each other with set of
process {1, 2,….,n} (n >1) with unique identifiers
and edges E between a pair of process correspond the
fact that the two process are in each other’s
transmission radii. Hence, our distributed system has
a channel to directly communicate with each other
which changes over time when processes move.

Every process i has a variable Ni, which denotes
the neighboring processes, with that i can directly
communicate the neighboring processes. Every
process communicates with a channel that is

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 59

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 59

ISBN: 1-60132-444-8, CSREA Press ©

bidirectional; j Ni iff i Nj. More accurately, in the
network G = (V, E), we decide E such that for all
i V, (i, j) E if and only if i Nj. Depending on
process’s movement, the graph could be disconnected
that means that the network is partitioned. Because
the processes may alternate their position, Ni position
would be unexpectedly changed and therefore G also
may be changed accordingly. The assumptions about
the processes, wired network and system architecture
are followings.
 Every process is distinguished by a unique
identifier. The unique identifiers are used to
distinguish processes during operating the group
membership search process. Channels and links are
bidirectional that means first n first out, i.e. every
process receives messages based on the sequence that
are delivered over a link between two neighboring
processes. Many topology changes may be arbitrary
occurred when the process stops or recovers in wired
networks. That makes a lot of network partitioning
and merging. Processes can make a fault to be crash
arbitrarily at random and can recover again at any
time.
 Without network partition, the sender and the
receiver do successful message delivery that means
the message would be successfully delivered only
when the two processes remain connected for the all
period of message transfer. Every process has a big
receiving buffer enough to avoid buffer overflow all
the time in its lifetime. Even though a finite number
of topology changes, every process i eventually has a
same view of group membership of the group to
which i belongs.

3. Group Membership Specification

We assume that our specification is as followings,
it is consist of four properties for a group
membership protocol.
Safety(1) : At any time, all processes in the group
have a stable consistent view.
Progress : If there are no more changes in the each
views of the processes in one group, they eventually
getting to their stable consistent views.
Validity : If all processes in a event know a view as
their local view and they have eventually reached
their stable states, then the last process of their
sequences of global views are all at same position
and must be equal to each other.
Safety(2) : When a view is committed as a global
view, it cannot be changed.
The first property describes agreement. Consistent
history must be an unchanged one for any program
that satisfies the specification. The second property
shows termination of global view. When the state and
event of all processes are unchanged, the processes
are eventually getting to close changing their output
results. The third property removes trivial solutions
where protocols never getting on any new view or
always determine on the consistent view.

4. Group Membership Algorithm in
Wired Network

In this section, we describe a Group membership
algorithm based on the termination detection
algorithm, simply TDA, by diffusing computations.
In later sections, we will discuss in detail how this
algorithm can be adapted to a mobile setting.

4.1 A Group Membership in a Wired
Networks

We first address our group membership protocol in
the wired network settings. In which we assume that
process and channels have no faults.

The protocol is made up of three phases running at
the process that starts the group membership protocol.
1) The first phase that is a diffusing phase and it
works by first diffusing the “who” messages.
2) The second phase that is a searching phase and it
runs by then accumulating the id of every process
that is consist of the wired networks. We represent
this computation starting processes as the start
process.
3) The third phase is a closing phase that is managed
by deciding the same view and announcing it as a
stable new view to all process.
 The start process will have the information enough
to decide a uniform group membership view after
taking all process’ ids completely and the start
process will then broadcast it to the rest of the
process in the network. The three kinds of message,
Who, Ack and View are used to manipulate the
operations.
As the first phase is diffusing computing phase, Who
message is used to make a start of the group
membership protocol by diffusing the Who message.

1) The first Phase: When group membership protocol
is launched at a start process s, the start process
makes a replying queue wl and a accepted queue rl
and starts a scattering computation by forwarding a
Who message to all of its immediate neighboring
processes. At the starting point, the replying queue
makes up of only its most close neighboring
process’s ids and the accepted queue has nothing.
 When process i receives a Who message from the
neighboring process for the first time, it immediately
sends the Ack message to the start process and
propagates the Who message to all its neighboring
process except the process from which it first
accepted an Who message.

The Ack message sent by process i to the start
process contains the ids of all its neighboring process
that are needed for the start process to decide the
stable view of the process connected with a
distributed network. After that, any Who message
accepted by other neighboring process will be
ignored.
2) The Second Phase: Searching phase. When the
start process receives the Ack message was taken out
from the process j, it takes j out from the replying

60 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

60 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

queue and gets j into the accepted queue and as soon
as possible it detects sequentially the each process’s
id included in the Ack message. If there is the some
process in the Ack message which has already been
accepted, i.e. that means it is in the accepted queue, it
is dismissed. If it is not in the accepted queue, it is
inserted into the replying queue of start process. The
start process will be suspends for the Ack message
from one.
 The replying queue is increasing and decreasing
repeatedly when it was accepted based on the
accepted Ack messages, however the replying queue
is continually increasing by accepting the Ack
messages. But the replying queue at the end could
have no element and the replying queue could insert
all ids of processes connected to the wired networks
whenever the start process accepted the Ack messages
from all other processes. Therefore the start process
eventually has much information enough to decide
the stable view of the group based on the replying
queue. That is because the replying queue could be
eventually unoccupied and it means that the start
process has accepted the Ack messages from all the
process.
3) The Third Phase: Once the start process has
accepted Acks from all other process, it decides the
stable view based on the replying queue and forwards
a View message to all other process to let know the
current view of the group. We show some sample
running protocol as the protocol execution to explain
more specific features. We address the protocol in
synchronous setting even though all the behaviors of
the protocol are practically asynchronous. We assume
that the network shown in Figure 1(a) is
asynchronous. In this shape, and for the all of the
paper, thin arrows denote the route of Who message’s
move and dotted arrows denotes the way of route of
Ack messages to the start process.

As shown in Figure 1, process A is a start process
that starts wla and rlb with {B,C} and {A} at each and
starts a scattering computation with forwarding out
Who messages (indicated as “E” in the shape) to its
immediate neighbors, viz. process B and C, shown in
Figure 1(a). As indicated in Figure 1(b), process B
and C in turn forward the Who message to its most
close neighbors only except the start process. It sends
the Ack message with close neighboring process
queue to the start process A. Hence B and C also send
Who messages to each other.
But B and C do not acknowledge to the start process
about the Who messages because process B and C
have already accepted Who messages from the start
process at each. The information of neighboring
process is piggybacked upon the Ack message sent by
all process. Upon hearing Ack messages from B and
C, process A renews wla = { B,C }, rlb = { A } with
the close neighboring process information
piggybacked at the Ack messages. The Who messages
is transmitted over the arrows at the edges and the
dotted arrows going parallel with the edges denotes
Ack messages. In Figure 1(c), the process D and F
also send the Ack messages to the starts process at the
time they accepted the Who message s from the B and
C one by one.

Each of these Ack messages includes the ids of the
neighbor. All the time, the start A accepts all
acknowledgments from all of other process except
itself in Figure 1(d) and then determines the stable
view between the group and forwards it, that is the
View message displayed in Figure 1(d).

Figure 1: An example of group membership protocol
execution on the process search protocol.

5. Concluding Remarks
In this paper, we proposed an asynchronous,

distributed group membership algorithm for mobile,
ad hoc networks and showed it to be correct. We
formally specified the property of our group
membership algorithm using temporal logic. We have
assumed the ad-hoc network topology is dynamically
changing and nodes are frequently connected and
disconnected over the networks. With this approach,
the group membership specification states explicitly
that progress and safety cannot always be guaranteed.
In practice, our requirement for progress is that there
exists a constant c such that if connection or
disconnections occur for a period of at least c, then
by end of that period, the system reaches a state
satisfying a consistent view. Furthermore, the system
remains in that state as long as no failures or
disconnections occur. In fact, if the rate of perceived
a node failures in the system is lower than the time it
takes the protocol to make progress and accept a new
consistent view, then it is possible for the algorithm
to make progress every time there is a node failure in
the system.

In real world systems, where process crashes
actually lead a connected cluster of processes to share
the same connectivity view of the network,
convergence on a new consistent view can be easily
reached in practice. However, the algorithm should
work correctly even in the case of unidirectional links,
provided that there is symmetric connectivity
between nodes. We are currently working on the
proof of correctness in the case of unidirectional links.
We are also investigating on how our group
membership algorithm can be adapted to perform
clustering in wireless, ad hoc networks.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 61

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 61

ISBN: 1-60132-444-8, CSREA Press ©

6. References

[1] Y. Amir, L. E. Moser, P.M. Melliar-Smith, D.A.
Agarwal, and P. Ciarfella, “The Totem Single-
Ring Ordering and Membership Protocol,”
ACM Trans. Computer Systems, vol. 13, no. 4,
pp. 311-342, Nov. 1995.

[2] E. Anceaume, B. Charron-Bost, P. Minet, and S.
Toueg, “On the Formal Specification of Group
Membership Services,” Technical Report 95-
1534, Computer Science Dept., Cornell Univ.,
Aug. 1995.

[3] T. Anker, G.V. Chockler, D. Dolev, and I. Keidar,
“Scalable Group Membership Services for Novel
Applications,” Proc. Workshop Networks in
Distributed Computing (DIMACS 45), pp. 23-42,
1998.

[4] I. Keidar, J. Sussman, K. Marzullo, and D. Dolev,
“A Client Server Oriented Algorithm for
Virtually Synchronous Group Membership in
WANs,” Proc. 20th Int'l Conf. Distributed
Computing Systems, Apr. 2000.

[5] J. Brunekreef, J.-P. Katoen, R. Koymans, and S.
Mauw, “Design and analysis of dynamic leader
Group membership protocols in broadcast
networks,” Distributed Computing, vol. 9, no. 4,
pp. 157-171, 1996.

[6] D. Bottazi, R. Montanari and G. Rossi, "A self-
organizing group management middleware for
mobile ad-hoc networks," Computer
Communications, vol. 31, no. 13, pp. 3040-304,
8 Elsevier, 2008.

[7] David Powell, guest editor. Special section on
group communication. Communications of the
ACM, 39(4):50-97, April 1996.

[8] Pradhan D. K., Krichna P. and Vaidya N. H.,
Recoverable mobile environments: Design and
tradeoff analysis. FTCS-26, June 1996.

[9] L. Briesemeister and G. Hommel, "Localized
group membership service for ad hoc networks,"
Proc. International Conference on Parallel
Processing Workshops, IEEE Computer Society,
pp. 94-100, 2002.

[10] K. Hatzis, G. Pentaris, P. Spirakis, V.
Tampakas and R. Tan. Fundamental Control
Algorithms in Mobile Networks. In Proc. of 11th
ACM SPAA, pages 251-260, March 1999.

62 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

62 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

1 awwad@uop.edu.jo
2 j_alsadi@aou.edu.jo

1CS Dept., University of Petra, Amman, Jordan
2CS Dept., Arab Open University, Amman, Jordan- E-mail

Abstract — the Arrangement-Star is a known network in

literature and it is one of the promising interconnection
networks for future super computers, it is expected to be one
of the attractive alternatives in the future for High Speed
Parallel Computers. The Arrangement-Star network having
a smaller diameter, node degree, and number of links, it has
a lower broadcasting cost and more flexibility in choosing
the desired network size. In spite that some of the research
work has been done on Arrangement-Star promising
network, it still needs more time and efforts to be done on the
issue of load balancing. In this paper we attempt to fill this
gap by proposing an efficient algorithm for load balancing
among different processors of the Arrangement-Star
network. The proposed algorithm is named as Arrangement
Star Clustered Dimension Exchange Method ASCDEM
presented and implemented on the Arrangement-Star
network. The algorithm is based on the Clustered Dimension
Exchange Method (CDEM). The ASCDEM algorithm is
shown to be efficient in redistributing the load balancing
among all different processors of the network as evenly as
possible.

Keywords: Interconnection Networks, Arrangement

Network, Star Network. Arrangement-Star, Load balancing.

1. INTRODUCTION
The arrangement-star network as a case of study on vertex
product networks [1, 7, 8], it is constructed from the cross
product of the star and arrangement graphs. It has shown to
have superior topological properties over its constituents:
the star and arrangement graphs [3, 2, 24]. Besides having a
smaller diameter, node degree, and number of links, it has a
lower broadcasting cost and more flexibility in choosing the
desired network size.

Although some algorithms proposed for the arrangement-
star graph such as distributed fault-tolerant routing
algorithm [2]. But still one of the important problems that
the arrangement-star network still needs more efforts and
researchers time is the issue of load balancing among
different processors of this network. Since there is no
enough research work in literature for proposing efficient
algorithms for load balancing on arrangement-star network.
In this research efforts we move one more step in filling this
gap by investigating and proposing the ASCDEM algorithm
on the arrangement-star network, the proposed algorithm is
based on the CDEM algorithm which was able to

redistribute the load balance among all node of the networks
on OTIS-Hypercube network as evenly as possible [17]. A
reasonable and efficient implementation of the ASCDEM
algorithm on our network will make the arrangement-star
network more attractive for the issue of load balancing
problem.

This paper is organized as follows: In the next section we
present the necessary basic notations and definitions, in
section III introduces the related work on load balancing,
section IV presents the implementation of the ASCDEM
algorithm on the arrangement-star network, finally section
V concludes this research work.

2. DEFINITIONS AND Basic
Topological Properties

During the last two decades a big number of interconnection
networks for High Speed Parallel Computers (HSPC)
investigated and proposed in literature [3, 4, 5]. As an
example one of these networks was the hypercube
interconnection network [6, 17]. Also a well know example
is the star graph [3]. Some properties of this network have
been studied in the literature including its basic topological
properties, parallel path classification, node connectivity and
embedding [10, 11, 13, 14]. The authors Akers and
Krishnamurthy have proved that the star graph has several
advantages over the hypercube network including a lower
degree for a fixed network size of the comparable network
sizes, a smaller diameter, and smaller average diameter.
Furthermore they showed that the star graph is maximally
fault tolerant edge, and vertex symmetric [3].

The star graph, however, has few drawbacks [23]. One of the
major problems of the star graph is related to its scalability.
The size of the star graph increases according to a factorial
function, and thus grows widely very rapidly; for example,
the value of 7! is equal to 5040 while the value of 11! is
about forty million. Despite its attractive topological
properties, the star graph has not been used in practical
systems yet.

In an attempt to address the scalability problem in the star
graph, Day and Tripathi [24] have proposed the arrangement
graph as a generalization of the star graph. The arrangement
graph is a family of undirected graphs that contains the star
graph family. It slightly brings a solution to the problem of

Efficient Load Balancing Algorithm for the Arrangement-
Star Network

Ahmad M. Awwad1, Jehad Al-Sadi1

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 63

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 63

ISBN: 1-60132-444-8, CSREA Press ©

the scalability, which the star graph suffers from (i.e. the
problem of growth of the number n! of nodes in the n-star).
It also preserves all the nice qualities of the star graph
topology including, hierarchical structure, vertex and edge
symmetric, simple shortest path routing and many fault
tolerance properties [24]. Still a common drawback of the
star and arrangement graphs is the restriction on the number
of nodes: n! for the star graph and m!/(m-k)! for the
arrangement graph. The set of values of n! (or m!/(m-k)!) is
spread widely over the set of integers; so, one will be faced
with the choice of too few or too many available nodes.

However, there has been relatively a limited research efforts
have been dedicated to design efficient algorithms for the
arrangement-star graph including broadcasting [13],
selection and sorting [14, 22], Fast Fourier Transform [12],
and Matrix Multiplications [15] and load balancing. In an
attempt to overcome the load balancing problem we present
an efficient algorithm for load balancing problem on
arrangement-star graph to redistribute the load balancing
among all processors of the network as evenly as possible.

An arrangement graph is specified by two parameters m and
k, satisfying 1 k m. For simplicity let m = {1,2,…,m}
and k = {1,2,…,k}.

Definition 1: The (m,k)-arrangement graph Am,k = (V1, E1), 1
 k m-1 is defined as follows [24]:

V1= {p1p2 … pk pi m and pi pj for i j }= m
kP , and

E1 = (p,q) p and q in V1 and for some i in k , pi qi and pj

= qj for j i}.
That is, the nodes of Am,k labelled with a unique

arrangements of k elements out of m symbols m , and the
edges of Am,k connect arrangements which differ in exactly
one of their k positions An edge of Am,k connecting two
arrangements which differ only in position i called an i-edge.
In this case, p and q are i-adjacent and q is called (i, qi)-
neighbour of p. The (m,k)-arrangement graph Am,k is regular
of degree k(m-k) and of size m!/(m-k)!, and diameter 3k/2 .
The (m, m-1)-arrangement graph Am,m-1 is isomorphic to n-
star graph Sn [8, 24], and the (m,1)-arrangement graph is
isomorphic to the complete graph with m nodes [24].

Definition 2: The n-star graph, denoted by Sn, has n
nodes each labelled with a unique permutation on n =
{1,…,n}. Any two nodes are connected if, and only if,
their corresponding permutations differ exactly in the
first and one other position.

 The diameter, , and the degree, , of the star
graph are as follows [3]:

, of n-star graph = 1.5 (n-1)
, of the n-star graph = n-1, where n 1.

Definition 3: The arrangement-star graph is the cross
product of the n-star graph and the (m, k)-arrangement graph,
and is given by ASn,m,k = Am,k Sn such that n 1 and 1 k
m.

Note that if G1 and G2 are two undirected graphs then for
any node X = x1, x2 in the cross product graph, G = G1

G2, has an address consisting of two parts, one coming from
G1 and the other coming from G2. We will denote the earlier
part by lp(X)=x1 and the later part by rp(X)=x2.

Figure 1 shows the topology of AS2,3,2 that is obtained from
the graph product of S2 and A3,2 networks. A node X = u, v
in AS2,3,2 consisting of two parts, left part coming from the
star graph and the right part coming from the arrangement
graph (lp and rp). Two nodes X = u, v and Y = u , v are
connected if, lp(X) = lp(Y) and rp(X) is connected rp(Y) in
Am,k (in this case X and Y are said arrangement-connected) or
rp(X)= rp(Y) and lp(X) is connected lp(Y) in Sn (in this case
X and Y are said star-connected). For instance in Figure 1 the
node ab13 is connected to the node ab12, and the node ab23
is connected to the node ba23.

3. Background and Related Work

Many attractive properties for the arrangement-star graph
have been shown in the literature enabled it to be one of the
candidate’s networks for the High Speed Parallel Computers
(HSPC) and a reasonable choice for any real life applications
[2]. This outcome about arrangement-star network has
motivated us to spend more time and do some research on it
for some important class of algorithms such as: the load
balancing because still this networks suffers from shortening
in number of algorithms for the load balancing problem in
general and for load balancing problem in specific. This
algorithm has been studied and proposed for many HSPC
infrastructure ranging from electronic networks [2] and also
for Optoelectronic networks [20, 21].

The Load balancing algorithm is a famous type of
problems that is needed by all HSPC infrastructures. The
load balancing problem have been investigated from many
angles and point views. As an example on the literature work
this problem was investigated by the researchers Ranka,
Won, and Sahni [6, 16, 17], As conclusion of their work they
come out with an efficient algorithm to be implemented on
HSPC called the Dimension Exchange Method (DEM) on
the hypercube topology. This algorithm (DEM) constructed
and developed by issuing and getting the average load of
neighbors’ nodes, where the symmetric degree of the
hypercube is n, All adjacent nodes which are connected on
the nth dimension they will exchange their task loads to
redistribute the task load and as evenly as possible, the
processor with extra load will share any extra amount of the
load to its adjacent neighbor node. The DEM algorithm main
advantage that it was able to redistribute the load balances of
processors among all neighbors as evenly as possible.
Furthermore Ranka and et al have enhance the load balance
in the DEM algorithm in its worst case to achieve log2n on
the cube network [18].

Zaho, Xiao, and Qin have investigated and proposed
hybrid structure of diffusion and dimension exchange called
DED-X which worked in a perfect manner for the load
balancing algorithm on Optoelectronic networks [19]. The

64 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

64 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

DED-X problem main task was to redistribute the load
balancing between different nodes of the network to three
different phases. The achieved outcome on Optical
Transpose Interconnection System networks proved that the
redistribution of load balance between all nodes of the
topology was efficient and mostly even. Furthermore the
reached outcome and the issued results of the simulation
from Zaho et al of the proposed algorithms on load balancing
has shown a considerably big improvements in enhancement
in redistribution the load balancing of the processors of the
topology [19]. In a different literature and research done by
Zaho and Xiao they investigated a different algorithm named
t DED-X for load balancing on homogeneous optoelectronic
technology and they proposed new algorithm framework,
Generalized Diffusion-Exchange- Diffusion Method, this
framework was efficient for the load balancing distribution
on the Heterogeneous optoelectronic technology [6, 18].

ab23

ba21

ab13

ba23

ba13

ab21

ab12

ba12

ab31

ba32

ba31

ab32

Fig.1: Arrangement-star graph, AS2,3,2.

On the other hand Zaho, Xiao, and Qin have investigated
and proved that the efficiency of the new investigated load
balancing algorithms to be more effective than the X old load
balancing algorithm [19].

The target of this research effort is to investigate a new
algorithm for the load balancing among the nodes of the
arrangement-star networks named Arrangement Star
Clustered Dimension Exchange Method (ASCDEM). The
algorithm is based on the Clustered Dimension Exchange
Method (CDEM) [6].

4. the implementation of the ASCDEM

algorithm on the arrangement-star
NETWORK

The algorithm we present in this paper ASCDEM is based
on the Clustered Dimension Exchange Method CDEM for
load balancing for the Arrangement-Star Interconnection
networks [17].

The main achievement of the new presented ASCDEM is
to obtain even load balancing for the ASn,m,k network by
redistributing the load size to reach an equal load size at each

node within the whole network. The structure of the ASn,m,k

network consists of Sn network as a first level structure of the
hierarchal ASn,m,k network, the first level of Sn consists of n!
Sub-graphs, each sub graph represented by an Am,k
Arrangement graph. The links and edges between the nodes
of the whole graph have been identified and described in the
above section.

The ASCDEM load balancing algorithm is based on the
following two phases:
٠Phase 1: Distributing the load balancing among all sub-
graphs of the first level hierarchal Sn graph, we start by
balancing the load of every two nodes via the edges that
connect these sub-graphs within the Star topology structure.
By the end of this phase we guarantee that all sub-graphs will
have almost the same total number of loads since each sub-
graph is represented as if it is a single node of the Star
network structure in the first level hierarchy. It worth to
mention here, that the load within each sub graph is not
sorted at this stage. To complete this phase we need to make
n!/2 parallel redistribution steps of load among every two
nodes via a star structure edge. But at each of these parallel
steps, there will be an n-1 sequential exchanges for each node
with its n-1 neighbors within the star structure.
٠Phase 2: Distributing the load size within each subgraph,
this will the second level of the hierarchal ASn,m,k network,
where each subgraph is an Arrangement graph
representation, by the end of the phase 1, all subgraphs will
have the same load size, then by redistributing the load sizes
among these Arrangement graphs, the whole ASn,m,k network
will have almost equal load sizes at each node. This phase
requires m!/2(m-k)! parallel redistribution steps of load
among every two nodes via an Arrangement structure edge.
But at each of these parallel steps, there will be a k*(m-k)
sequential exchanges for each node with its k*(m-k)
neighbors within the arrangement structure. By the end of
this phase, all nodes will have almost the same load size, the
following algorithm in Feg 2 describe the ASCDEM method
of load balancing.

Note that n-1 is the number of neighbors of any
processor in Sn:

1. for p1 = 1; p1 ≤ n-1; p1++ // Start of phase#1
2.
3. for all neighbour nodes pi and pj which they differ

in 1st and n+1 position of Sn do in parallel
4. Give-and-take pi and pj total load sizes of the two

nodes
5. TheAverageLoad pi,j = Floor (Load pi +

Load pi)/2
6. if (Totalload pi >= excess AverageLoad pi,j)
7. Send excess load pi to the neighbour node pi
8. Load pi = Load pi – extra load
9. Load pj = Load pj + extra load
10. else
11. Receive extra load from neighbour pj
12. Load pi = Load pi + extra load
13. Load pj = Load pj – extra load

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 65

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 65

ISBN: 1-60132-444-8, CSREA Press ©

14. Repeat steps (1 to 12) n!/2 times // End of phase#1

15. for p2 = 1; p2 ≤ k*(m-k); p2++ // Start of phase#2
16. for all neighbor nodes pki and pkj which they differ

in exactly one k position of Am,k do in parallel
17. Give-and-take pki and pkj total load sizes of the

two nodes
18. TheAverageLoad pki,kj = Floor (Load pki + Load

pki)/2
19. if (Totalload pki >= excess AverageLoad pki,kj)
20. Send excess load pki to the neighbour node pki
21. Load pki = Load pki – extra load
22. Load pkj = Load pkj + extra load
23. else
24. Receive extra load from neighbour pkj
25. Load pki = Load pki + extra load
26. Load pkj = Load pkj – extra load
27. Repeat steps (15 to 26) m!/2(m-k)! times // End of

phase#2

Fig. 2: The ASCDEM load balancing Algorithm

ASCDEM algorithm works on redistributing load
balancing among all processors of the network, the two
phases are done in parallel.

٠Phase 1: The load balancing between the processors;
subgraphes; of Sn based on ASCDEM algorithm is
exchanged as in steps 2 to 12 in parallel, in first step the load
exchange will be between all the processors in which they
differ in 1st position and 2nd position for all the factor
networks of Sn i.e. Sn -1. Then the same process will be
repeated continually until it reach the neighbours pj that is n
positions far away from pi. By the end of this phase all
subgraphs will have almost the same total number of load
sizes.

٠Phase 2: The load balancing within the processors of each
subgraph where each subgraph is an Am,k network. The
ASCDEM algorithm in steps 15 to 26 performed in parallel,
in first step the load exchange will be between all the
processors in which they differ in exactly one k position for
any two neighboring nodes, which means they are connected
via an arrangement structure. Then the same process will be
repeated continually all of the m!/2(m-k)! neighbors. By the
end of this phase all nodes of the network will have almost
the same load size.

15

10

30

8

50

7

ab23

ba21

ab13

ba23

ba13

ab21

40

30

16

20

10

ab12

ba12

ab31

ba32

ba31

12

ab32

Fig. 3: Arrangement-star graph, AS2,3,2 with initial loads

23

30

22

8

30

7

ab23

ba21

ab13

ba23

ba13

ab21

28

20

28

16

20

ab12

ba12

ab31

ba32

ba31

16

ab32

Fig. 4: Arrangement-star graph, AS2,3,2 after performing

ASCDEM phase 1

5. Conclusion

In This research we have investigated and proposed an
algorithm named Arrangement-Star Clustered Dimension
Exchange Method (ASCDEM), the proposed algorithm in
based on the well-known efficient algorithm SCDEM which
we proposed by Mahafza and et al which was named
(CDEM).The main target of the ASCDEM algorithm is to
redistribute the load balancing among all the processors of
the Arrangement-star network as evenly as possible. As
shown above the algorithm was able to redistribute the load
balance among all the nodes of the ASn,m,k in an efficient
approach.

66 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

66 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

A further work will be done on the proposed algorithm
includes: total execution time, efficient load balancing
accuracy, latency, number of communication moves and
complexity speed to show that the ASCDEM efficiency in
terms of mathematically analysis.

References
[1] K. Day and A. Al-Ayyoub, “The Cross Product of

Interconnection Networks”, IEEE Trans. Parallel and
Distributed Systems, vol. 8, no. 2, Feb. 1997, pp. 109-
118.

[2] Ahmad Awwad, “vertex Product networks”, University
of Glasgow, Computer Science Dept. thesis, 2001.

[3] S. B. Akers, D. Harel and B. Krishnamurthy, “The Star
Graph: An Attractive Alternative to the n-Cube” Proc.
Intl. Conf. Parallel Processing, 1987, pp. 393-400.

[4] K. Day and A. Tripathi, “A Comparative Study of
Topological Properties of Hypercubes and Star Graphs”,
IEEE Trans. Parallel & Distributed Systems, vol. 5.

[5] Kaled Day and Abdel-Elah Al-Ayyoub, “Node-ranking
schemes for the star networks”, Journal of parallel and
Distributed Computing, Vol. 63 issue 3, March 2003, pp
239-250.

[6] B.A. Mahafzah and B.A. Jaradat, “The Load Balancing
problem in OTIS-Hypercube Interconnection Network”,
J. of Supercomputing (2008) 46, 276-297.

[7] S. B. Akers, and B. Krishnamurthy, “A Group Theoretic
Model for Symmetric Interconnection Networks,” Proc.
Intl. Conf. Parallel Proc., 1986, pp. 216-223.

[8] Ayyoub, “The Cross Product of Interconnection
Networks”, IEEE Trans. Parallel and Distributed
Systems, vol. 8, no. 2, Feb. 1997, pp. 109-118.

[9] A. Al-Ayyoub and K. Day, “A Comparative Study of
Cartesian Product Networks”, Proc. of the Intl. Conf. on
Parallel and Distributed Processing: Techniques and
Applications, vol. I, August 9-11, 1996, Sunnyvale, CA,
USA, pp. 387-390.

[10] I. Jung and J. Chang, “Embedding Complete Binary
Trees in Star Graphs,” Journal of the Korea Information
Science Society, vol. 21, no. 2, 1994, pp. 407-415.

[11] Berthome, P., A. Ferreira, and S. Perennes, “Optimal
Information Dissemination in Star and Panckae
Networks,” IEEE Trans. Parallel and Distributed
Systems, vol. 7, no. 12, Aug. 1996, pp. 1292-1300.

[12] P. Fragopoulou and S. Akl, “A Parallel Algorithm for
Computing Fourier Transforms on the Star Graph,”
IEEE Trans. Parallel & Distributed Systems, vol. 5, no.
5, 1994, pp. 525-31.

[13] Mendia V. and D. Sarkar, “Optimal Broadcasting on the
Star Graph,” IEEE Trans. Parallel and Distributed
Systems, Vo;. 3, No. 4, 1992, pp. 389-396.

[14] S. Rajasekaran and D. Wei, “Selection, Routing, and
Sorting on the Star Graph,” J. Parallel & Distributed
Computing, vol. 41, 1997, pp. 225-33.

[15] S. Lakshmivarahan, and S.K. Dhall, “Analysis and
Design of Parallel Algorithms Arithmetic and Matrix
Problems,” McGraw-Hill Publishing Company, 1990.

[16] N. Imani et al, “Perfect load balancing on star
interconnection network”, J. of supercomputers,
Volume 41 Issue 3, September 2007. pp. 269 – 286.

[17] Jehad Al-Sadi, “Implementing FEFOM Load
Balancing Algorithm on the Enhanced OTIS-n-Cube
Topology”, Proc. of the Second Intl. Conf. on Advances
in Electronic Devices and Circuits - EDC 2013, 47-5.

[18] Ranka, Y. Won, S. Sahni, “Programming a Hypercube
Multicomputer”, IEEE Software, 5 (5): 69 – 77, 1998.

[19] Zhao C, Xiao W, Qin Y (2007), “Hybrid diffusion
schemes for load balancing on OTIS networks”, In:
ICA3PP, pp 421–432

[20] G. Marsden, P. Marchand, P. Harvey, and S. Esener,
“Optical Transpose Interconnection System
Architecture,” Optics Letters, 18(13), 1993, pp. 1083-
1085.

[21] Qin Y, Xiao W, Zhao C (2007), “GDED-X schemes for
load balancing on heterogeneous OTIS networks”, In:
ICA3PP, pp 482–492.

[22] A. Menn and A.K. Somani, “An Efficient Sorting
Algorithm for the Star Graph Interconnection Network,”
Proc. Intl. Conf. on Parallel Processing, 1990, pp.1-8.

[23] A. Al-Ayyoub and K. Day, “The Hyperstar
Interconnection Network,” J. Parallel & Distributed
Computing, vol. 48, no. 2, 1998, pp. 175-199.

[24] K. Day and A. Tripathi, “Arrangement Graphs: A Class
of Generalised Star Graphs,” Information Processing
Letters, vol. 42, 1992, pp. 235-241.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 67

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 67

ISBN: 1-60132-444-8, CSREA Press ©

68 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

68 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

SESSION

CLOUD COMPUTING AND NOVEL
APPLICATIONS

Chair(s)

TBA

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 69

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 69

ISBN: 1-60132-444-8, CSREA Press ©

70 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

70 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

Study of point-to-point communication latency for MPI
implementations in cloud

F. Gomez-Folgar, G. Indalecio, N. Seoane, A. J. Garcia-Loureiro and T. F. Pena
Centro Singular de Investigación en Tecnoloxías da Información (CiTIUS)

Universidade de Santiago de Compostela, Santiago de Compostela, Galicia, Spain

Abstract— This paper proposes a Heuristic Latency Model
that characterizes MPI point-to-point communications in
both cloud and non-virtualized infrastructures and analyzes
the influence on the latency of VM allocation policies in
cloud for MPI point-to-point communications. PingPong
and PingPing communication patterns were analyzed over
commodity hardware in two types of infrastructures: a
cloud based on Apache CloudStack and a non-virtualized
cluster. Two opposite allocation policies were considered:
concentrated, in which the Virtual Machines are allocated in
the same host, and scattered, in which the Virtual Machines
are spread using different hosts. The MPI communications
were analyzed for message sizes ranging from 1 byte to
4096 KiB. The results show that the cloud layer introduces a
considerable overhead in the latency. However, if the cloud
is employed to execute MPI applications, the concentrated
allocation policy is between 30% to 90% better than the
scattered policy for messages up to 4 KiB.

Keywords: Cloud Computing, MPI, MPICH, OpenMPI, Perfor-

mance

1. Introduction
Historically, cluster computing has played an important

role on the support of high performance enterprise services

and it has also become a fundamental tool in the support

of scientific research. In this field, to facilitate the scientific

community the access to the resources they need, several

solutions have been released. Some of the proposed solutions

have been focused on a specific research field such as physics

simulations [1], bioinformatics [2], chemistry [3], oceanog-

raphy [4] or climate modeling [5]. Others, such as science

gateways [6], provided a more general approach. In this type

of computing model, Message Passing Interface (MPI) has

become the de-facto standard used for programming parallel

computers and communicating processes on distribute mem-

ory systems. MPI supports point-to-point communications

and collective operations and allows an efficient usage of

NUMA architectures since it promotes memory locality. Two

popular MPI implementations are MPICH and OpenMPI.

MPICH is a high performance and portable implementation

of the MPI standard. Currently, MPICH is used in nine of the

top ten supercomputers of the TOP-500 ranking, including

Tianhe-2 supercomputer. OpenMPI is an open-source MPI

implementation developed and maintained by a consortium

of academic, research and industry partners.

On the other hand, cloud technologies are of great interest

in several fields (e.g. science, private companies, computing

service providers) because of the trend to virtualize the

services offering the computational capacity in the form of

Virtual Machines (VMs), under the Infrastructure as a Ser-

vice (IaaS) paradigm. In the scientific field, MPI applications

are widely used on the cloud in a plethora of research areas

such as nanodevice simulations [7] and high energy physics.

An example of the latter is the CERN LHCb project [8], in

which cloud resources have been integrated in the LHCb

Distributed Computing. Also, research centers are offering

computing facilities to their users via cloud in form of VMs

and in some cases commodity hardware is employed. In

these cloud platforms, the scheduler is a key component

because it is responsible of selecting the host in which the

user VM will be executed. Usually, the schedulers implement

several scheduling policies in order to deploy VMs, and the

police employed has an impact on the performance of the

VMs and in the cloud.

In order to study the suitability of cloud infrastruc-

tures based on commodity hardware for executing MPI

applications, in this work we will present: i) the MPI

Heuristic Latency Model (MHLM) that allows characterizing

MPI point-to-point communications in both cloud and non-

virtualized infrastructures, ii) a study of the overhead that the

cloud layer introduces on the latency of point-to-point MPI

communications using MPICH and OpenMPI, iii) the impact

on the latency of point-to-point MPI communications that

employ two opposite cloud scheduling policies: concentrated

allocation policy (in which the VMs are deployed in the same

host), and scattered allocation policy (in which the VMs are

deployed horizontally in different hosts), and iv) the impact

on the latency of MPI point-to-point communications that the

used MPI implementation, MPICH vs OpenMPI, introduce.

This paper is structured as follows: Section 2 describes

the related work in this topic and our contributions to the

research field. Section 3 introduces the proposed MPI com-

munication model. Section 4 details the platforms employed

(cloud and bare-metal cluster infrastructures). Section 5

presents the experimental results obtained in a cloud infras-

tructure based on Apache CloudStack [9] under different

VM allocation schemes for MPICH and OpenMPI and their

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 71

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 71

ISBN: 1-60132-444-8, CSREA Press ©

comparison. The results obtained in two bare-metal clusters

employing Intel and Realtek based Gigabit Ethernet Network

Cards, and the comparison with the cloud MPICH results

are also included in this section. Finally, the conclusions are

discussed in the last section.

2. Related work
The related work in this area can be classified, mainly,

in three topics: i) performance comparison of MPI over

different networks, ii) performance evaluation of MPI using

Amazon EC2, and iii) MPI models for MPI communication.

2.1 Performance comparison of MPI over dif-
ferent networks

There are studies analyzing the performance of MPI

employing different networks such as 10 GbE [10], in

which the authors have employed a simple two-node cluster

environment based on dual AMD Opteron 246 processors

running at 2.0 GHz with 2 GiB of PC3200 RAM. The

10 GbE network adapters were Intel PRO/10GbE LR that

are based on Intel’s 82597EX single-chip 10 GbE controller.

The network cards were placed in the PCI-X slots of the

computers. Both NetPipe and MPIBench benchmarks were

executed. The MPI implementation selected to provide the

MPI support was LAM-MPI over TCP. The obtained results

showed that the performance of this type of network is fairly

competitive with technologies like MPI over Quadrics.

In [11] a comparison of MPI implementations over In-

finiband, Myrinet and Quadratics is presented using micro-

benchmarks and level application benchmarks. Both NAS

parallel Benchmarks and sweep3D benchmark were used

employing 8-node clusters and, in this study, InfiniBand

offered performance improvements for some applications

compared with Myrinet and Quadrics.

2.2 Performance evaluation of MPI over Ama-
zon EC2

Other studies are focused on evaluating the feasibility

of running HPC applications in clouds comparing Amazon

Cluster Compute Instances (CCI) and typical local clus-

ters [12]. The CCI had 2 quad-core Intel Xeon X5570

processors, with 32 GiB of memory. The instances were

allocated to users in a dedicated way, and were intercon-

nected with 10 GbE networks. The local cluster employed

for comparison purposes had 2 Intel Xeon X5670 6-core

processors on each compute node with 32 GiB of RAM

and were interconnected by a QDR InfiniBand network. In

this local cluster, NFS was used as the shared file system.

In this study the benchmarks used were NAS NPB, three

real-world applications and Intel MPI Benchmarks (IMB).

Results showed that applications with heavily message pass-

ing might fail to achieve good performance on the CCI

platform employed due to the high latency that reduced the

Fig. 1: PingPong and PingPing communication patterns.

performance of applications that employed a lot of small

MPI messages.

2.3 MPI communication models
The last type of studies are focused on proposing models

to characterize the MPI communications. Some of them

extended the LogGP model [13] in order to include detailed

hardware performance factors and also for including over-

heads due to different data structures. The modified LogGP

model aimed to address the complete costs of the full com-

munication path, including the communication cost inside

the memory hierarchy. These models allowed evaluating and

predicting the performance.

In [14], a new LogP-based model, LoOgGP is presented.

LoOgGP extends the existing LogP model for long messages

providing an accurate characterization of MPI applications

based on micro-benchmark measurements.

The usage of these LogP-based MPI communication

models needs the extraction of different communication

parameters, but obtaining these parameters is usually not

straightforward and sometimes not even possible. Further-

more, the required parameters have a strong dependence on

the underlying hardware architectures.

2.4 Contributions of our work
Our work differs from the previous ones in the following:

1) Proposal of the MPI Heuristic Latency Model which

allows characterizing the latency of point-to-point

communications in a direct way for MPICH and

OpenMPI implementations. The proposed model is

simple and effective, and avoids collecting low level

MPI parameters. Using this model, we have estimated

the behavior of MPI communications on clouds based

on commodity hardware.

2) Study of the overhead that cloud layer introduces over

the latency of MPI point-to-point communications.

3) Study of the impact on the MPI point-to-point com-

munications of two paradigmatic cloud allocation poli-

cies: concentrated and scattered.

4) Study of the impact of the MPI implementation,

MPICH vs OpenMPI, on the latency of point-to-point

communications.

72 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

72 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

3. MPI Heuristic Latency Model
The LogP-based MPI performance models described in

the related work section are too exhaustive for being applied

to a cloud infrastructure which introduces several virtualiza-

tion layers and it is also usually composed by heterogeneous

hardware. In most of these models, the parameters required

to characterize the communications are very difficult to ob-

tain in both homogeneous and heterogeneous infrastructures.
In this work, we characterize the MPI communications

via a heuristic model which can be obtained almost in a

direct way. In this model, the latency of communications is

described as the sum of three contributions:

Lat(b) = Lat0 · + SH · 1 + erf(5 · (Log(b) − SP))

2
+ PL · (bPS − 1) (1)

where Lat0, SH , SP , PL and PS are the fitting parameters.

In this model, b is the message size in bytes, Lat0 represents

the latency of the minimum message size employed, 1 byte,

and SH and SP characterize, using the error function (erf),
the sharp step-shaped increase in the latency that sometimes

appears for message sizes between 32 bytes and 8 KiB.

SP is the position where the step appears, and SH is the

change in the latency due to the step. For larger sized

messages, the latency exhibits a quasi-linear behavior that

is characterized by PL and PS parameters, with PS near to

one. PL represents the packet latency and PS represents the

packet slope. As we could see later, this model will be able

to characterize the MPI communications for both cloud and

bare-metal cluster infrastructures.

4. Platforms
In this section the platforms we have employed are pre-

sented: a cloud infrastructure based on Apache CloudStack

using commodity hardware and also two cluster infrastruc-

tures employing two types of network cards, an Intel NIC

and a Realtek NIC, for comparison purposes.

4.1 Cloud infrastructure
A cloud infrastructure based on Apache CloudStack

has been employed. Apache CloudStack is an open-source

software architecture that allows building several types of

clouds: public, private and hybrid. Our cloud infrastructure

uses Apache CloudStack 4.4 and KVM as the hypervisor em-

ployed in the CNs. The Apache CloudStack CNs employed

have Intel Core i7-2600@3.4 GHz processors with 8 GiB

of RAM and CentOS 6.3 64 bit as Operating System (OS).

This processor has four cores and eight threads, a L1 cache

size of 4x32 KiB for instructions and a 4x32 KiB for data,

a L2 cache of 4x256 KiB, a L3 shared cache of 8 MiB,

Intel Virtualization Technology (VT-x) and virtualization

for directed I/O (VT-d). A 12 TiB NAS provides the NFS

version 4 shared storage system for the infrastructure. The

interconnection network of this infrastructure is based on

RTL8111/8168/8411 PCI Express Gigabit Ethernet Con-

troller (rev 06).

4.2 Bare-metal cluster infrastructures

Two cluster infrastructures have been employed for com-

parison purposes. The first one employs Realtek NICs based

on RTL8111/8168/8411 PCI Express Gigabit Ethernet Con-

troller. This infrastructure has Intel Core i7-2600@3.4 GHz

processors with 8 GiB of RAM and CentOS 6.3 64 bit as OS.

The second one employs Intel NICs based on Intel 82574L1

PCI Express Gigabit Ethernet Controller. This infrastructure

has Intel Core i7-3770@3.4 GHz processors with 16 GiB of

RAM and CentOS 6.3 64 bit as OS.

5. Case studies

In this work we have considered two testbeds: MPI on

cloud and MPI on bare-metal clusters. In both cases, only

point-to-point communications are considered: PingPong

and PingPing. The first testbed, MPI on cloud, is intended

to study the impact of the cloud allocation policies over the

latency of MPI point-to-point communications in order to

determine the most suitable cloud policy. The second testbed

is intended to study the MPI performance on the bare-metal

clusters, allowing comparing these results with the cloud

ones and determining the overhead of using cloud on the

MPI communications.

In order to evaluate the performance of MPI communi-

cations Intel MPI Benchmarks [15] have been employed

in both cloud and bare-metal cluster infrastructures. The

Intel MPI Benchmarks perform a set of MPI performance

measurements for point-to-point and global communication

operations for a range of message sizes. The benchmark aims

to fully characterize the performance of a cluster system

including node performance, network latency, throughput

and the efficiency of the MPI implementation used. In order

to characterize the communications, we have executed ten

series of measurements for PingPong and PingPing commu-

nication patterns. For each series, 1000 repetitions have been

executed for message sizes between 1 and 32 KiB, whereas

for larger messages different repetitions were selected. For

example, 640 repetitions for messages of 64 KiB, 320 for

messages of 128 KiB, 160 for messages of 256 KiB, 80

for messages of 512 KiB, 40 for messages of 1024 KiB, 20

for messages of 2048 KiB, and, finally, 10 repetitions for

messages of 4096 KiB.

In this work, we have been focused on PingPong and

PingPing point-to-point communications. Using PingPong,

depicted in Fig. 1(1), is possible to measure the startup and

throughput of a single message sent between two processes,

whereas PingPing, depicted in Fig. 1(2), can be used to

measure start-up and throughput of single messages that

are obstructed by oncoming messages. Note that in point-

to-point communication patterns only two processes are

involved.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 73

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 73

ISBN: 1-60132-444-8, CSREA Press ©

La
te

nc
y

(
s)

102

103

104

105 Lat0 = 20.2 ± 0.5
SH = 0
SP = 0

PL = 0.0062 ± 0.0006
PS = 1.14 ± 0.01

Data
Curve fit

Lat0 = 20.5 ± 0.3
SH = 0
SP = 0

PL = 0.0205 ± 0.0013
PS = 1.05 ± 0.01

Data
Curve fit

102

103

104

105 Lat0 = 50.0 ± 1.4
SH = 145.3 ± 4.7
SP = 1.42 ± 0.02

PL = 0.0035 ± 0.0005
PS = 1.17 ± 0.01

Data
Curve fit

Lat0 = 56.7 ± 1.1
SH = 116.8 ± 5.8
SP = 2.14 ± 0.02

PL = 0.0142 ± 0.0018
PS = 1.08 ± 0.01

Data
Curve fit

102

103

104

105 Lat0 = 24.2 ± 0.6
SH = 0
SP = 0

PL = 0.0054 ± 0.0006
PS = 1.14 ± 0.01

Data
Curve fit

Lat0 = 22.2 ± 0.4
SH = 0
SP = 0

PL = 0.0202 ± 0.0012
PS = 1.05 ± 0.01

Data
Curve fit

102

103

104

105 Lat0 = 56.0 ± 1.6
SH = 142.5 ± 6.0
SP = 1.71 ± 0.02

PL = 0.0031 ± 0.0005
PS = 1.18 ± 0.01

Data
Curve fit

Lat0 = 63.5 ± 1.1
SH = 116.5 ± 5.3
SP = 2.12 ± 0.02

PL = 0.0136 ± 0.0015
PS = 1.08 ± 0.01

Data
Curve fit

102

103

104 Lat0 = 23.7 ± 0.5
SH = 152.4 ± 2.6
SP = 1.45 ± 0.01

PL = 0.0030 ± 0.0004
PS = 1.07 ± 0.01

Data
Curve fit

Lat0 = 23.9 ± 0.5
SH = 146.1 ± 2.6
SP = 1.44 ± 0.01

PL = 0.0022 ± 0.0003
PS = 1.10 ± 0.01

Data
Curve fit

102

103

104

101 102 103 104 105 106

Lat0 = 50.1 ± 0.6
SH = 0
SP = 0

PL = 0.0285 ± 0.0023
PS = 0.91 ± 0.01

Data
Curve fit

101 102 103 104 105 106

Lat0 = 53.7 ± 0.5
SH = 0
SP = 0

PL = 0.0178 ± 0.0011
PS = 0.96 ± 0.01

Data
Curve fit

Fig. 2: Latency of PingPong and PingPing communication patterns for MPICH and OpenMPI under concentrated and

scattered policies in cloud and for MPICH in Realtek-based and Intel-based bare-metal clusters.

5.1 MPI on Cloud

In order two study the latency of point-to-point MPI

communications on cloud, a Virtual Cluster (VC) composed

by two virtual nodes was deployed in the Apache CloudStack

infrastructure described in 4.1. Each virtual node has 1 Core,

1 GiB of RAM and 10 GiB of hard disk. The operating

system is CentOS 6.6 64 bit.

Two allocation policies were employed in order to study

the MPICH and OpenMPI performance: concentrated and

scattered. In the first policy, both virtual nodes are allocated

in the same CN. In the second policy each VM is allocated

in different CNs.

The concentrated policy is usually used to consolidate

several VMs in the same Compute Node (CN) in order

to reduce the number of CNs required to host the VMs,

contributing to reduce the power consumption of the cloud

infrastructure. The scattered policy is usually employed to

distribute VMs horizontally among several CNs, in order to

74 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

74 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

Fig. 3: Percentage of latency improvement for the concen-

trated allocation policy in comparison with the scattered

policy vs the message size in bytes.

promote the availability of the virtual computing resources.

5.1.1 Concentrated allocation policy

Figs. 2(1) and 2(3) show the comparison of the ex-

perimental latency and the curve fit obtained from our

proposed communication model (MHLM, eq. 1) using the

concentrated allocation policy in cloud for MPICH for

both PingPong and PingPing, whereas for OpenMPI, the

results are depicted in Figs. 2(5) and 2(7). Note, for all

the analyzed cases, the excellent agreement between the

experimental data and the fitting provided by the model. In

both MPICH and OpenMPI implementations, for messages

up to 1 KiB the latency remains practically constant, around

20 μs for both communication patterns in the MPICH case

and around 24 μs for PingPong and 22 μs for PingPing in

the OpenMPI case, as described by the Lat0 parameter of

the MHLM model. For larger messages the latency increases

with the message size with a quasi-linear behavior, as the

PS parameter of the model is near to one for PingPong and

PingPing in both MPICH and OpenMPI implementations.

5.1.2 Scattered allocation policy

In Figs. 2(2) and 2(4) are depicted the comparison of

the experimental latency and the curve fit obtained from

our proposed communication model using the scattered

allocation policy in cloud for MPICH for both PingPong

and PingPing, whereas for OpenMPI, the results are depicted

in Figs. 2(6) and 2(8). Note, again, for all the analyzed

cases, the excellent agreement between the experimental data

and the fitting provided by the model. In both MPICH and

OpenMPI implementations, for short messages (less than 32

bytes) the latency remains practically constant, around 50 μs

for PingPong and 57 μs for PingPing in the MPICH case,

and around 56 μs for PingPong and 63 μs for PingPing in

the OpenMPI case, as described by the Lat0 parameter of

the model. When the size of the message is 32 bytes for

MPICH and 64 bytes for OpenMPI, there is a sharp step-

shaped increase in the latency, as described by the SH and

SP parameters of the model. For messages ranging from

32 bytes to 8 KiB, the latency slightly rises, whereas for

messages larger than 8 KiB, the latency experiments a quasi-

linear behavior as the PS parameter of the model is near to

one in both MPI communication patterns.
In the current bibliography, a step in the latency for

message sizes around 32 bytes has been previously captured

in [11], seen in Myrinet networks for the AlltoAll com-

munication pattern, although no clear explanation for this

phenomena has been offered to the best of our knowledge.

As this step is not present when the concentrated policy is

employed in the cloud, it can not be caused by the Virtio

network device with the Virtio-PCI Kernel driver used in

the virtual compute nodes of the VC. However, when the

scattered allocation scheme is used, the underlying network

hardware adapter must be used to communicate the virtual

nodes among them. Due to the fact that the underlying

hardware is using the same OS as the VMs and the only

difference is the Realtek-based NIC, we believe that this

step has to be introduced by the Realtek-based NIC or the

r8169 network kernel module.

5.1.3 Influence of the cloud allocation policy
In this subsection, the impact of the two cloud allo-

cation policies on the latency of the MPI point-to-point

communications has been analyzed. The percentage of the

improvement in the latency for the concentrated allocation

scheme in comparison with the scattered allocation policy is

depicted in Fig. 3 for PingPong and PingPing communica-

tion patterns under MPICH and OpenMPI implementations.

As we can see, for messages up to 4 KiB, the use of the

concentrated policy produces an important improvement in

the latency of the communications ranging from 30% to 90%

for both MPI implementations and communication patterns.

For larger messages, the latency improvement is limited to

15% in the best case, as seen for 64 KiB messages using

OpenMPI-PingPong. However, for messages ranging from

16 KiB to 32 KiB, the use of the concentrated allocation

policy produces an increase in the latency of the PingPong

communication pattern up to 80% when compared to the

scattered one.

5.1.4 Influence of the MPI implementation for concen-
trated and scattered cloud policies

In this subsection, we analyze the impact on the latency

of the MPI implementation used. The percentage of the

improvement in the latency for MPICH in comparison

with OpenMPI under concentrated and scattered allocation

policies vs the message size is depicted in Fig. 4. With

some exceptions, in general, the MPICH implementation

obtains better latency, with up to 21% improvement for

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 75

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 75

ISBN: 1-60132-444-8, CSREA Press ©

Fig. 4: Percentage of latency improvement for MPICH in

comparison with OpenMPI vs message size in bytes. Note

the negative axis has been changed by a factor of ten in

order to improve the display quality.

messages up to 1 KiB. Also, the concentrated allocation

policy produces the best results. For larger messages, for

the MPI implementations analyzed, there is no clear winner

and the influence of the allocation police used is even not

remarkable. Note the exception that happens for PingPong in

the scattered allocation scheme for messages of 32 bytes that

produces a degradation of MPICH performance up to -249%,

when compared to the OpenMPI result. This phenomena is

due to the fact that the sharp step-shaped increase in latency

happens for messages of 32 bytes for MPICH, by contrast

with OpenMPI, in which the step is seen at 64 bytes. For

example, for messages of 32 bytes, the latency obtained for

OpenMPI is around 58 μs, whereas for MPICH is around

202 μs.

5.2 MPI on bare-metal clusters
In this subsection, the MPICH results obtained employing

the two bare-metal cluster architectures described in section

4.2 are presented. The first cluster employs the popular

Realtek RTL8111/8168/8411 NIC, whereas the second one

employs Intel 82574L1 NICs. The communications among

two compute nodes for PingPong and PingPing point-to-

point patterns were compared.

5.2.1 Realtek NIC based cluster

A comparison between the experimental latency and the

curve fit obtained from our proposed communication model

for PingPong and PingPing communication patterns is pre-

sented in Figs. 2.9 and 2.11, respectively. Results show,

again, a sharp step-shaped increase in latency of MPI of

around 152 μs for PingPong and 146 μs for PingPing, for

messages larger than 32 bytes, whereas for shorter messages

the latency remains around 24 μs. For messages larger than

8192 bytes, the latency experiments a quasi-linear increase

as the PS parameter of the model is near to one. Note, again,

for all the analyzed cases, the excellent agreement between

Fig. 5: Percentage of latency improvement of PingPong

for MPICH between both bare-metal clusters, and between

the Realtek-based cluster and the cloud under scattered

allocation policy vs message size in bytes.

the experimental data and the fitting provided by the model.

5.2.2 Intel NIC based cluster

Figs. 2.10 and 2.12 show a comparison between the

experimental latency and the curve fit obtained from our

proposed communication model for PingPong and PingPing

communication patterns. Results do not show the step-

shaped increase in the latency of MPI, previously seen in

the Realtek case. Instead, the latency of the messages smaller

than 8192 bytes remains practically constant, around 50 μs

for PingPong and around 54 μs for PingPing. For messages

larger than 8192 bytes, the latency experiments a quasi-linear

increase. As the OS of the bare-metal clusters is the same but

employs different NICs, as said before, the sharp step-shaped

increase in the latency, seen in the Realtek case, should be

due to the different Kernel driver or the NIC used.

5.2.3 MPICH bare-metal clusters and cloud comparison

In this subsection the comparison of PingPong MPICH

is performed for two bare metal clusters (Realtek-based

and Intel-based), and also for a Realtek-based cluster and

the cloud infrastructure under scattered allocation policy. In

Fig. 5 the obtained results are shown.

On one hand, the comparison between Realtek-based and

Intel-based bare-metal clusters is depicted as red bars. As

we can see, for messages between 1 and 16 bytes the use of

the Realtek NIC introduces an improvement of 50% in the

latency if the Intel NIC is used as reference. However, for

messages between 32 bytes and 8 KiB the latency obtained

for the Realtek NIC is worse than the Intel one, up to

-250%. For larger message sizes, the latency remains almost

the same for both NICs. The different behavior between

the Intel and Realtek bare-metal clusters can be due to

the different NIC designs and/or different network kernel

76 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

76 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

module implementations.

On the other hand, comparing the results obtained in

Realtek-based cluster vs cloud it can be seen for message

sizes ranging from 1 to 16 bytes that the cloud does not

introduce a remarkable overhead, as the improvement on

the latency for the Realtek-based cluster is around 7%.

However, for larger messages, the use of the cloud layer

introduces an important overhead on the latency. For these

ranges of message sizes, the latency obtained in the physical

infrastructure is up to 78% less than the cloud ones. This

phenomena can be due to the network virtualization layers

that the cloud introduces, producing an overhead in the

communications.

6. Conclusion
In this paper, a MPI Heuristic Latency Model that allows

characterizing the MPI point-to-point communications on

clouds based on standard commodity hardware has been

proposed. As clouds hides the underlying hardware, this

model avoids the inherent overhead and complexity of the

hardware-dependent LogP-based models, and was able of

characterize all studied cases, MPICH and OpenMPI, con-

sidering two different VM allocation policies: concentrated

and scattered. Also, we have studied: i) the overhead that

the cloud layer introduces on the latency of MPI point-to-

point communications in comparison with the underlying

hardware, ii) the impact of two paradigmatic cloud allocation

policies, concentrated and scattered, on the MPI point-

to-point communications, and iii) the impact of the MPI

implementation, MPICH vs OpenMPI, on the latency.

After analyzing the effects on the latency for MPI point-

to-point communications on the platforms studied, we can

conclude that i) the use of the cloud introduces an important

overhead in the latency, as the latency obtained in the

physical infrastructure is up to 78% less than the cloud ones,

ii) the use of different allocation policies on cloud has an

impact on the latency of point-to-point communications, as

the latency for message sizes ranging from 1 byte to 4 KiB is

improved in the range between 30% and 90% when the con-

centrated policy is used (for larger messages the maximum

latency improvement is limited to 15% in the best case), but

the use of this allocation police can produce a degradation in

the latency up to 80%, for messages ranging from 16 KiB

to 32 KiB, iii) in general, the MPICH implementation, in

comparison with OpenMPI, obtains latency improvements

up to 25% for messages up to 1 KiB, whereas for larger

messages there is not a clear winner and the influence of

the cloud allocation police used is not noticeable.

As seen, the use of cloud layer and the VM deployment

policies have an important impact on the performance of

MPI point-to-point communication. Therefore, it is neces-

sary to have this fact in mind when deploying MPI appli-

cations in this type of infrastructures. The optimal situation

would require the analysis of the MPI application’s execution

profile in order to select the most appropriate scheduling

policy in the cloud that allows improve the latency of MPI

point-to-point communications.

As future work, we plan to extend our model to collective

MPI communications, including other performance parame-

ters.

Acknowledgment
This work has been supported by FEDER funds and

by Spanish Government (MCYT) under projects TEC2010-

17320, TIN-2013-41129-P and TEC2014-59402-JIN, and by

the Spanish Ministry of Education, Culture and Sports under

FPU grants FPU12/05190 and FPU12/02916.

References
[1] A. Tsaregorodtsev, V. Garonne, and I. Stokes-Rees, “DIRAC: A

Scalable Lightweight Architecture for High Throughput Computing,”
in Fifth IEEE/ACM International Workshop on Grid Computing.
IEEE, 2004, pp. 19–25.

[2] M. Mirto, S. Fiore, I. Epicoco, M. Cafaro, S. Mocavero, E. Blasi,
and G. Aloisio, “A Bioinfomatics Grid Alignment Toolkit,” Future
Generation Computer Systems, vol. 24, no. 7, pp. 752–762, jul 2008.

[3] C. Manuali, A. Laganà, and S. Rampino, “GriF: A Grid framework
for a Web Service approach to reactive scattering,” Computer Physics
Communications, vol. 181, no. 7, pp. 1179–1185, jul 2010.

[4] C. Cotelo, A. Gómez, J. I. López, D. Mera, J. M. Cotos, J. P.
Marrero, and C. Vázquez, “Retelab: A geospatial grid web laboratory
for the oceanographic research community,” Future Generation
Computer Systems, vol. 26, no. 8, pp. 1157–1164, oct 2010.

[5] D. Bernholdt et al., “The Earth System Grid: Supporting the Next
Generation of Climate Modeling Research,” Proceedings of the
IEEE, vol. 93, no. 3, pp. 485–495, mar 2005.

[6] N. Wilkins-Diehr, “Special Issue: Science Gateways - Common
Community Interfaces to Grid Resources,” Concurrency and
Computation: Practice and Experience, vol. 19, no. 6, pp. 743–749,
apr 2007.

[7] F. Gomez-Folgar, E. Comesana, R. Valin, A. Garcia-Loureiro, and
T. F. Pena, “Nanodevice simulations on CloudStack,” in 2013 Spanish
Conference on Electron Devices. IEEE, feb 2013, pp. 9–12.

[8] M. Ú. García, V. M. Muñoz, F. Stagni, B. Cabarrou, N. Rauschmayr,
P. Charpentier, and J. Closier, “Integration of Cloud resources in
the LHCb Distributed Computing,” Journal of Physics: Conference
Series, vol. 513, no. 3, p. 032099, jun 2014.

[9] Apache CloudStack. http://cloudstack.apache.org
[10] J. G. Hurwitz and W.-C. Feng, “Analyzing MPI performance over

10-Gigabit Ethernet,” Journal of Parallel and Distributed Computing,
vol. 65, no. 10, pp. 1253–1260, oct 2005.

[11] J. Liu, B. Chandrasekaran, J. Wu, W. Jiang, S. Kini, W. Yu,
D. Buntinas, P. Wyckoff, and D. K. Panda, “Performance
Comparison of MPI Implementations over InfiniBand, Myrinet and
Quadrics,” in Proceedings of the 2003 ACM/IEEE conference on
Supercomputing - SC ’03. New York, New York, USA: ACM Press,
2003, p. 58.

[12] Y. Zhai, M. Liu, J. Zhai, X. Ma, and W. Chen, “Cloud versus
in-house cluster,” in State of the Practice Reports on - SC ’11. New
York, New York, USA: ACM Press, 2011, p. 1.

[13] T. T. Le and J. Rejeb, “A detailed MPI communication model for
distributed systems,” Future Generation Computer Systems, vol. 22,
no. 3, pp. 269–278, feb 2006.

[14] D. R. Martinez, J. C. Cabaleiro, T. F. Pena, F. F. Rivera, and V. Blanco,
“Accurate analytical performance model of communications in MPI
applications,” in 2009 IEEE International Symposium on Parallel &
Distributed Processing. IEEE, may 2009, pp. 1–8.

[15] Intel MPI Benchmarks. https://software.intel.com/en-us/articles/intel-
mpi-benchmarks

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 77

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 77

ISBN: 1-60132-444-8, CSREA Press ©

Runtime network-level monitoring framework in the
adaptation of distributed time-critical Cloud applications

Salman Taherizadeh1,4, Andrew C. Jones2, Ian Taylor2, Zhiming Zhao3, Paul Martin3, and Vlado Stankovski4

1Faculty of Computer and Information Science, University of Ljubljana, Ljubljana, Slovenia
2School of Computer Science and Informatics, Cardiff University, Cardiff, United Kingdom

3Informatics Institute, University of Amsterdam, Amsterdam, Netherlands
4Faculty of Civil and Geodetic Engineering, University of Ljubljana, Ljubljana, Slovenia

 {Salman.Taherizadeh, Vlado.Stankovski}@fgg.uni-lj.si, {JonesAC, TaylorIJ1}@cardiff.ac.uk, {Z.Zhao, P.W.Martin}@uva.nl

Abstract - Many distributed time-critical applications have
emerged on the Internet in recent decades, involving for
example sensor-based early warning systems, online gaming
and instant messaging. Such applications can be virtualised
and distributed in a federated Cloud environment. Ensuring
that these types of application are able to offer favourable
service quality has been a challenging issue due to runtime
variations in network conditions intrinsic to connections
between individual application components replicated and
distributed across different Cloud infrastructures. In this
paper, we propose a lightweight method for performing
network-level monitoring that can be used to guide the
autonomous selection of optimal connections between
running components, so improving distributed application
performance at runtime. This solution contributes towards
realising self-adaptation capabilities for time-critical
applications by implementing a non-intrusive monitoring
technique for key network-level parameters including round-
trip time (RTT), packet loss, throughput and/or jitter. The
experimental results show that the proposed framework has a
low communication overhead and requires little processing
power and memory capacity.

Keywords: Monitoring System, Network QoS, Distributed Time-
Critical Applications, Multi-Cloud Environment

1. Introduction
In recent years, time-critical systems such as early warning

systems, multimedia applications and Cloud-based gaming
have emerged as Internet services which are increasingly
widely used and important, especially to organisations that
want to leverage the benefits of distributed applications.
Decomposing such complex applications, each application
component can be distributed to a different machine such that
each component interacts with other components regardless
of deployment location. Accordingly, by using a multi-Cloud
environment, companies can use Cloud infrastructures to run
and replicate their application components in different
locations.

Time-critical applications have specific network QoS
(Quality of Service) requirements between their components,
such as demanding minimal delay and packet loss, and

require suitable support to achieve guaranteed application
performance for their users. This is a challenge because the
network connection quality between different components, as
a key influencer of the overall application performance, is
difficult to maintain when Cloud infrastructures continuously
change. In particular, time-critical Cloud application
providers have to dynamically adapt their services to network
conditions to deliver high performance and a seamless
experience. In essence, the main problem encountered by
time-critical service providers is that there are limited
automated and intelligent adaptation capabilities in existing
Cloud infrastructures based on real-time network features that
can be used to satisfy application performance requirements.
Therefore, to avoid application performance issues, providers
must carefully monitor the network QoS of connections
within and between all of their own servers hosting
application components in different Cloud infrastructures; all
while being non-intrusive to the ordinary operation of the
application [1].

This paper presents a lightweight monitoring approach
based upon a non-intrusive design intended to enable
distributed applications to autonomously reconfigure and
adapt to changing network conditions at runtime. Replicating
application components in different Cloud infrastructures to
increase availability and reliability under various network
conditions and varied amounts of traffic, and dynamically
connecting each component to the best possible component in
each different tier, together offering fully-qualified network
performance, is often an essential requirement for providers
of time-critical applications running on the Cloud. If such a
network performance metric can be measured, then the
system can be made automatically capable of improving the
deployment of an application when performance drops.
Under our proposed system, the network performance metric
is a combination of measurements including network
throughput, round-trip time, packet loss and/or jitter, which
can be measured and responded in order to enhance
application performance and hence user experience.

The rest of the paper is organised as follows. Section 2
presents summary of related work supporting network-level
Cloud monitoring. Section 3 describes the use case. Section 4
discusses the architecture and implementation of our
proposed approach, followed by empirical evaluation results
and finally conclusion respectively in Sections 5 and 6.

78 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

78 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

2. Related Work
To achieve the objective of providing high-quality services

in time-critical systems, it is essential to implement
trustworthy techniques that can be responsible for
maintaining QoS when considering the limitations imposed
by the network. There have been many research approaches,
all trying to provide QoS guarantees over Cloud networks.
Anouari and Haqiq [2] analysed the performances of VoIP
and Video stream traffic that is characterized by the ability to
transmit real-time and interactively visual and auditory
information. These types of traffic are highly delay-intolerant
and need high priority transmission. Addressing this concern,
their study was focused on using different service classes
with respect to QoS parameters such as average delay,
average jitter and throughput. Sodangi [3] designed and
simulated two Cloud-based networks. The first scenario
involved running multimedia applications (voice and video)
and the second one involved running traditional applications
(email, file transfer, web browsing). These were compared,
and the main finding was that multimedia applications need
appropriate throughput and are sensitive to delay, resulting in
data loss, whereas traditional applications can use minimum
throughput and with typical data loss levels are normally
insensitive to changes in delay. In [4], the results showed that
network performance varies substantially from one Cloud
provider to another. Their approach can guide customers in
selecting the best-performing provider for their applications.
To measure the performance of internal connections between
a customer’s instances and to the shared services offered by a
Cloud, they used throughput and latency as metrics.

With regard to network-based measurement, associated
QoS attributes change constantly and so network-layer
parameters need to be closely monitored. Table 1 shows the
most important metrics to be analysed for Cloud network

measurement: (I) Throughput, which is the average rate of
successful data transfer through a network connection. (II)
RTT, which is the time elapsed from the propagation of a
message to a remote place to its arrival back at the source.
(III) Packet loss, which occurs when one or more packets of
data traveling across a network fail to reach their destination.
(IV) Jitter, which is the variation in the delay of successive
packets.

Lampe et al. [5] mostly focused on the QoS parameter of
latency, since this parameter plays an important role in the
overall game experience. The authors conducted their
research only on network latency measurement. Their
experiments could be extended through the consideration of
additional metrics; for example, the effects of network
disturbances, such as increased packet loss or fluctuating
throughput. Samimi et al. [6] introduced a model including a
network-based monitoring system and the enabling of
dynamic instantiation, composition, configuration and
reconfiguration of services on an overlay network. Mohit [7]
selected throughput, RTT and data loss for Cloud network
measurement. The author suggests a solution that involves
use of different technologies such as high-capacity edge
routers which have a high cost and cannot be afforded in all
use cases. Cervino et al. [8] presented an experimental
validation of the Cloud infrastructure's ability to distribute
streaming sessions with respect to some key streaming QoS
parameters. Next, the authors performed experiments to
evaluate the benefits of deploying VMs in Clouds to aid P2P
streaming, by measuring the QoS improvement. Chen et al.
[9] focused on the users’ perspective in Cloud gaming
systems; from their point of view, the QoS metrics have an
important effect on gaming experience. In other words, they
proposed a suite of measurement techniques to evaluate the
QoS of Cloud gaming systems.

Table 1. Relevant research on network-based measurement of Cloud environment performance

Title Field Measured Metrics Results
To frag or to be fragged
- an empirical
assessment of latency
in cloud gaming [5]

Audio/video
stream

Limitations of the network
infrastructure, such as high latency,
potentially affect the QoS of the
cloud gaming system.

While cloud gaming substantially reduces the demand
of computational power on the client side, thus enabling
the use of thin clients, it may also affect the QoS
through the introduction of network latencies.

Service clouds:
distributed
infrastructure for

adaptive communication
services [6]

Adaptive
communication

services

Monitors carry out measurements on
data streams. The metrics can be
generic in nature (e.g., packet delay
and loss rate) or domain-specific
(e.g., jitter in a video stream).

Service clouds are distributed infrastructures which are
designed to facilitate rapid prototyping and deployment
of adaptive communication services in clouds, and they
are appropriate choices when service platforms’
workloads are dynamic or they need a lot of resources.

A comprehensive
solution to cloud-traffic
tribulations [7]

General
systems

Regarding network-based
measurement, the three significant
parameters to be analysed are
throughput, RTT and data loss.

Computation-based infrastructure measurement is
insufficient for the optimal operation and future growth
of the cloud. Network-based measurements of the cloud
computing service are also very important.

Testing a cloud
provider network for
hybrid p2p and cloud
streaming architectures
[8]

Online real-
time

streaming

Authors considered four very
important network parameters for
video/audio streaming and for many
other real-time services: bandwidth,
delay, jitter and packet losses.

Using a cloud network infrastructure to cross continents
has improved the majority of QoS problems. It means
that using connections between distant cloud
datacentres can help to improve the QoS response of
streaming even in videoconferencing P2P systems.

On the quality of
service of cloud gaming
systems [9]

Cloud gaming
systems

Authors concentrate on the metrics
related to network conditions namely
delay, packet loss, bandwidth and
also other types of metrics which are
graphic quality and frame rate.

Packet loss and bandwidth limitations impose negative
impact on the frame rates and the graphic quality in the
cloud gaming systems. The network delay does not
predominantly affect the graphic quality of the games on
the cloud gaming systems.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 79

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 79

ISBN: 1-60132-444-8, CSREA Press ©

3. Use Case
A typical example for time-critical services considers

disaster early warning systems developed for the purpose of
providing proper alert before disaster occurs. Figure 1 depicts
the basic framework of such a system.

Figure 1. The basic framework of an early warning system

All application components are defined in Table 2. IP

Gateway and RTU cannot be virtualized as these components
have physical items like attached antennas.

Table 2. Components of a disaster early warning system
Component Functionality Type
Call
Operator

The Call Operators decide
whether or not to send an alert to
emergency systems or to the
public.

Dedicated
and ad-

hoc
agents

CC Server
(Contact
Centre
Server)

The server checks sensed data
stored in DB Server and statistics
in real-time and sends
notifications (such as e-mail, SMS
or voice call via SIP based IP
telephony or ordinary PSTN) to
Call Operators if values are
outside predetermined thresholds
for sensors.

Apache
web

server

DB Server
(Database
Server)

This is a Time Series Database
which is used for storing and
handling sensed values indexed
by time.

Cassandra

IP Gateway The IP Gateway is a node that
allows communication between
networks. It receives data over
direct radio link or GSM/GPRS
from sensors, aggregates the
data and sends the data to the
database.

E.g.
TA900e or
Cisco-ASA

RTU Remote terminal units (RTUs)
connect to sensors in the process
and convert sensor signals to
digital data.

E.g.
Modbus-

RTU

Sensors Sensors can measure
temperature, barometric pressure,
humidity and other environmental
variables.

E.g.
DHT11

In this case, the overall application performance is the
system’s reaction time, which means the length of time taken
from sensor data acquisition to when a notification is sent to
the Call Operator. This application performance metric is
mainly affected by the network communication quality
between the DB Server and the CC Server. Due to the Cloud-
based environment, several DB Servers and CC Servers can
be running in various Cloud providers’ infrastructures in
different geographical locations, all connecting with each
other. Assume that the data is replicated among DB Servers
and also that each CC Server is dedicated to a certain number
of Call Operators who must send warning messages through
various communication channels in each region. The
proposed mechanism aims at providing the ability to connect
each CC Server to the best possible DB Server which has the
superior network QoS in relation to the CC Server. Therefore,
a Monitoring Probe is running on each CC Server’s VM to
measure the network performance metric (NPM) between the
CC Server and every single DB Server. Our proposed
approach shows how different Cloud providers can offer
varying network performance in the execution of real-time
applications depending on various aspects. We introduce (1)
to calculate NPM including three important network
parameters which are network throughput (NT), average
delay (AD) and packet loss (PL).

AD

NTPL

NPM
*

100
1

 (1)

In this use case, jitter is not taken into account; since this
disaster early warning system is not a real-time service
involving e.g. video/audio streaming in which lower jitter is
advantageous (because lower jitter means the delay times are
more consistent, and therefore a connection is more stable).

4. Architecture and Implementation
Cloud-based applications can be viewed from both design-

time and run-time perspectives. In the design-time view, the
whole Cloud service, including application topology and
application components, is shown. In the run-time view,
instances of application components are examined as they are
deployed and executed in VMs. Considering these two views,
Figure 2 presents an overview of the proposed architecture to
make an effective improvement in the performance of the
aforementioned disaster early warning system. In this figure,
at run-time, for example there are three running CC Servers
and two running DB Servers which are dynamically
connected to each other in the best possible way to maximise
the overall application performance.

80 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

80 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

Network QoS between these two components (DB Server and CC Server) strongly influences the overall application performance

Figure 2. Overview of the proposed architecture to improve the performance of early warning system

Figure 3. Pseudocode for Monitoring Probe which is
deployed along with the CC Server

As depicted in Figure 2, this monitoring system employs a

number of distinct components. The Network Monitoring
Probe is responsible for monitoring network QoS parameters
of links between instances of two application components
(the DB Server and the CC Server). For each CC Server, the
network performance metric for every connection with
potential DB Servers is simultaneously evaluated periodically
at regular intervals by a Network Monitoring Probe. The
pseudocode of the developed algorithm for the Monitoring
Probe is depicted in Figure 3.

The Monitoring Manager is responsible for aggregating
and analysing network QoS data received from Monitoring
Probes. The Monitoring Manager consists of two parts; a
Knowledge Base Engine and a Reasoning Engine. The
Knowledge Base Engine is responsible for all the work that
controls the collection of network QoS values as RDF
(Resource Description Framework) triples, along with
actually storing and also retrieving these data on disk. This

proposed monitoring system incrementally stores information
about the environment in a Knowledge Base (KB) that will be
used for interoperability, integration, analysing and
optimisation purposes. Maintaining a KB enables analysis of
long-term trends, supports capacity planning and allows for a
variety of strategic analysis like year-over-year comparisons
and usage trends. The Reasoning Engine is responsible for
network-based QoS analysis and evaluating relevant policies
such as interpreting the network performance metrics
between CC Servers and DB Servers. Therefore, based on
network-based analysis, the Reasoning Engine will return
decisions such as which CC Server should be automatically
and dynamically connected to which DB Server when current
conditions do not satisfy the expected requirements. Each
alternative possesses different attributes which can be
compared and evaluated using network-level criteria; the
proposed framework via the Reasoning Engine can then
choose the best one at real-time.

For our experiments, the actual network QoS parameters
for time-critical services are measured by using ICMP
(Internet Control Message Protocol) requests. The “ping” tool
operates by sending echo request packets to the target host
and waiting for an echo reply packets. It measures the round-
trip time from transmission to reception and reports errors
and packet loss. We used different command options to
enable the monitoring system to adjust the size of the ICMP
packet, determine the number of echo requests to send, and
specify wait period between pings. Moreover, we used an
option to set the “Do Not Fragment” bit on the ICMP packet
which does not allow fragmentation to occur in the path of
the data flow by intermediate routers. We implemented the
Knowledge Base Engine using a Jena Fuseki server to load an

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:
14:
15:

/* Probe resides in VMi where the CC Server is running */
/* Packet Loss (PL), Network Throughput (NT), Average Delay (AD) */
/* Network Performance Metric: NPM */
while(true){
 TS ← TimeStamp()
 for each DB Server running on a VMx do {
 PL ← Calculate_PL(VMi, VMx)
 NT ← Calculate_NT(VMi, VMx)
 AD ← Calculate_AD(VMi, VMx)
 NPM ← ((1 - (PL/100)) * NT)/AD
 Message ← Make_Message(VMi, VMx, TS, NT, AD, PL, NPM)
 Send_To_Knowledge_Base_Engine(Message)
 } // end of for
 wait(interval)
} // end of while

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 81

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 81

ISBN: 1-60132-444-8, CSREA Press ©

RDF dataset and make it accessible through a REST API as a
SPARQL endpoint, to expose the CRUD operations for
creating, retrieving, updating and deleting records. Jena
Fuseki is an open source, lightweight database server, easy to
install and able to efficiently store large numbers of RDF
triples on disk [10].

5. Empirical Evaluation Results
As a preliminary set of proof-of-concept results to test the

design of the monitoring components, we performed an initial
set of experiments to measure the network-based metrics
between a particular CC Server (Hosti) and two replicated DB
Servers (Hostx and Hosty) at runtime. Periodically (every 10
seconds), our Network Monitoring Probe deployed on the
VM, hosting also the CC Server, sends 10 ICMP packets to
the both DB Servers with a 0.2 second delay between sending
each packet, and then calculates the network metrics. The CC
Server will then be automatically connected to the DB Server
providing the highest connection quality.

The following experiment shows how this configuration
allows us to check the network-based QoS features related to
two different connections with the same source: the first link
between Hosti and Hostx and the second one between Hosti
and Hosty. Table 3 shows features of these three hosts. Hosti
which is a CC Server, belongs to the Flexiant Cloud
infrastructure in the United Kingdom. Two DB Servers—
Hostx and Hosty—are in different locations in Slovenia and
belong to different Cloud infrastructure providers: the
ARNES (the Academic and Research Network of Slovenia)
and the FGG (the Faculty of Civil and Geodetic Engineering,
University of Ljubljana).

Table 3. Features of infrastructures used in our experiment
 Feature Hosti Hostx Hosty
 Type CC Server DB Server DB Server
 OS Ubuntu 14.04 Debian 7.8 Ubuntu 14.04
 CPU(s) 2 1 1
 CPU MHz 2600.030 2666.760 2397.222
 Memory 1024 MB 1024 MB 1024 MB
 Speed 1000 Mbps 1000 Mbps 1000 Mbps
 IP 109.231.121.55 193.2.91.109 194.249.0.142
 Cloud Flexiant FGG ARNES

The round-trip delay gives the total end-to-end time, and
hence is an important metric in evaluating the performance of
the time-critical Cloud service. A lower average delay is
always preferred; because it takes less time for packets to
reach and return between the servers. Therefore, Figure 4
shows that according to the average delay, the network
quality of Hostx is a little bit better than that of Hosty for a
period of time.

Figure 4. Average Delay (ms) for 200 second

monitoring window

Time-critical Cloud applications require network services
with minimal packet loss. The possibility of packet loss
increases as traffic travels a longer distance and over more
hops in the network. Data loss has one of the biggest impacts
on time-critical applications, seriously affecting the quality of
services, and this is the reason that the network should be
engineered for zero percent packet loss. Our test system
showed that packet loss ratio was zero, which indicates that
there was no drop in either connection related to the servers
deployed during the experiment.

Network throughput is the amount of data moved
successfully from one place to another in a given time period.
It is possible to benchmark network throughput and find
bottlenecks in the network to ensure that network interfaces
are fast enough to achieve desired performance. The amount
of traffic in current high-speed, heavy-traffic and multi-
service networks increases continuously, and traffic
characteristics change heavily in time—for example network
throughput fluctuates due to time of day, server backup
operations, DoS (Denial of Service) attacks, scanning attacks
and other anomalous network traffic. The performance of
Cloud services must be independent of such states and must
continue to behave reliably in all possible cases. Our
proposed monitoring system sends ICMP packets, each one
containing 500 bytes of data, from the first node (CC Server)
to the second node (DB Server). Then it receives the results
including the average delay (“Avg”). To make the proposed
monitoring system lightweight, network throughput was
estimated from the latency based on (2), which converts bytes
per millisecond into kilobytes per second:

10

6

2 *
10*500

Avg
KB/s)roughput (Network Th (2)

Figure 5 shows no major variation in throughput
belonging to either server; however in real-time systems,
continuous fluctuation is important to be taken into account.

Figure 5. Network Throughput (KB/s) for 200 second

monitoring window

Finally, regarding NPM, Figure 6 shows that Hosti has
better network performance quality with Hostx compared to
Hosty during the last 10 intervals. Therefore, if Hosti is
connected to the Hosty, adaptation should occur and thus
Hosti will be connected to the Hostx instead of Hosty.

Figure 6. Network performance metric (NPM) for 200

second monitoring window

82 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

82 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

By employing only the last measurement explained above,
this metric can have significant effect on the application
performance and hence users' satisfaction; Cloud services for
time-critical applications can automatically optimise the
process of choosing the best possible application components,
which are responsible for offering acceptable network QoS.

A challenge in designing a monitoring framework in the
Cloud environment is ensuring that the overhead of the
monitoring system is kept to the minimum [11]. The
distributed nature of proposed monitoring framework
quenches the runtime overhead of system to a number of
Monitoring Probes running across different VMs. A detailed
view on the resource consumption of the Monitoring Probe
revealed that our approach is lightweight in terms of CPU and
memory overhead. To confirm this, we applied the “top” tool
which provides a dynamic real-time view of tasks currently
being managed by the Linux kernel. Our running Monitoring
Probe consumes only 0.3 percent of the whole CPU time and
3.1 percent of the whole memory usage in average.

Furthermore, comparing with the average network
throughput of CC Server, the running Monitoring Probe
consumes a small fraction of network bandwidth. To this end,
we parsed the output of “nethogs” tool to estimate the
bandwidth overhead introduced by our Monitoring Probe. We
found out our Monitoring Probe transmits 1282944 bytes
during 15 minutes, which means ~712 bytes per second for
every DB Server in average.

Since the architecture includes a knowledge base, average
“write” performance in milliseconds for the Fuseki backend
implementation was calculated. The Fuseki server has one
CPU 2397 MHz and 2GB total memory. During 15 minutes,
90 “write” queries were executed for each DB Server and the
average query execution time was 3.93 ms.

6. Conclusion
In distributed time-critical Cloud applications, network-

level features such as throughput and latency of packets
travelling between application components directly affect
user experience. Therefore, time-critical service providers
must constantly monitor the network performance between
their current servers running on different Cloud
infrastructures, and other alternatives. In this way, preventing
and predicting potential network performance drops related to
the connections between the servers or possible overloads in
the system will give more time to take action like
dynamically changing connectivity topology among running
components and switching from one server to another server
to adjust the system in an anticipatory manner.

This research paper presented a lightweight network-based
monitoring approach that is particularly suitable for
autonomously adapting distributed time-critical Cloud
applications. The lightweight feature for the implemented
monitoring approach is a significant property in Cloud
computing environments because of the necessity of being
non-intrusive to the normal flows of application. The
proposed solution is general and extensible, and it can be
applied to any distributed Cloud application. The goal of the
paper was to investigate network QoS properties that are

especially important for the development of modern time-
critical Cloud applications. We extend the current state-of-
the-art by proposing a turnkey approach that not only
monitors network QoS, but also stores the monitoring
information, processes it, and integrates it with other system
information for controlling the overall performance.

7. Acknowledgements
This project has received funding from the European

Union's Horizon 2020 Research and Innovation Programme
under grant agreement No. 643963 (SWITCH project:
Software Workbench for Interactive, Time Critical and
Highly self-adaptive cloud applications).

8. References
[1] Ma, K., Sun, R., and Abraham, A., "Toward a lightweight
framework for monitoring public clouds"; Proceedings of 4th
International Conference on Computational Aspects of Social
Networks (CASoN 2012), Brazil, Pp. 361—365, 2012.
[2] Anouari, T. and Haqiq, A., "Analysis of VoIP and Video
Traffic over WiMAX Using Different Service Classes";
Journal of Mobile Multimedia, Vol. 9, No. 3&4, 2014.
[3] Sodangi, L. S., "Distributed Multimedia Applications in
Quality of Service for Wireless Wide Area Network";
International Journal of Engineering Research and
Technology (IJERT), Vol. 2, No. 10, Pp. 4088—4104, 2013.
[4] Li, A., Yang, X., Kandula, S., and Zhang, M., "Cloudcmp:
comparing public cloud providers"; Proceedings of the ACM
SIGCOMM conference on Internet measurement, 2010.
[5] Lampe, U., Wu, Q., Hans, R., Miede, A., and Steinmetz,
R., "To Frag Or To Be Fragged - An Empirical Assessment
of Latency in Cloud Gaming"; 3rd International Conference
on Cloud Computing and Services Science, 2013.
[6] Samimi, A. F., McKinley, P. K., Sadjadi, S. M., Tang, C.,
Shapiro, J. K., and Zhou, Z., "Service Clouds: Distributed
Infrastructure for Adaptive Communication Services"; IEEE
Transactions on Network and Service Management, Vol. 4,
No. 2, Pp. 84—95, 2007.
[7] Mohit, M., "A comprehensive solution to cloud traffic
tribulations"; International Journal on Web Service
Computing, Vol. 1, No. 2, Pp. 1—13, December 2010.
[8] Cervino, J., Rodriguez, P., Trajkovska, I., Mozo, A., and
Salvachua, J., "Testing a Cloud Provider Network for Hybrid
P2P and Cloud Streaming Architectures"; IEEE International
Conference on Cloud Computing, Pp. 356—363, 2011.
[9] Chen, K. T., Chang, Y. C., Hsu, H. J., Chen, D. Y.,
Huang, C. Y., and Hsu, C. H., "On the quality of service of
cloud gaming systems"; IEEE Transactions on Multimedia,
Vol. 16, No. 2, Pp. 480—495, February 2014.
[10] Roda, C., Navarro, E., and Cuesta, C. E., "A comparative
analysis of Linked Data tools to support architectural
knowledge"; ISD2014 International Conference on
Information Systems Development, 2014.
[11] Aceto, G., Botta, A., De Donato, W., and Pescape, A.,
"Cloud Monitoring: definitions, issues and future directions";
IEEE 1st International Conference on Cloud Networking
(CLOUDNET), Pp. 63—67, November 2012.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 83

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 83

ISBN: 1-60132-444-8, CSREA Press ©

OpenStackFT: Fault Tolerance in Open Source Cloud
Computing Environment

H. P. Martins1, R. Spolon1, N. G. Bachiega1, R. S. Lobato, A. Manacero2, M. A. Cavenaghi3
1Departamento de Ciências da Computação, Universidade Estadual Paulista “Júlio de Mesquita Filho”

Bauru, SP, Brasil
2Departamento de Ciências da Computação e Estatística, Universidade Estadual Paulista “Júlio de Mesquita

Filho”, São José do Rio Preto, SP, Brasil
3Humber Institute of Technology & Advanced Learning, The Business School, Toronto, ON

Abstract - Cloud Computing is a set of features and services
offered over the internet, delivered from data centers located
around the world. As the Cloud Computing grows fast, the
concern with the need of services offered increases, and the
major challenge is to implement a fault-tolerant environment.
The main issues of fault tolerance in Cloud Computing are
fault detection and recovery. In order to combat such
problems, many techniques are projected. Paid managers
offer this kind of support, but the open source managers do
not provide evidence to tolerate failures and leave users
vulnerable to failures of the technology environment. This
study presents the OpenStackFT, a fault-tolerant mechanism
developed for the OpenStack manager. A redundancy
mechanism was created in virtual machines instantiated in
cloud nodes. If a node presents a transient or intermittent
failure, the virtual machine will be stored on a backup node,
waiting for the node to return from a failure. Experimental
results show that the mechanism developed is viable and
efficient because, right after a node has recovered from a
failure, the virtual machine is not lost, thus becoming active
again to the user.

Keywords: cloud computing; openstack; fault tolerance.

1 Introduction
 As there is a constant increase of computational use,
problems like energetic demand and space in the data center
are occurring all over the world. Many solutions are being
projected to solve this kind of situation, among them is the
Cloud Computing, term used initially by IBM in its white
paper about technology in 2007 [1].

 Cloud can be defined as a network environment based
on the sharing of computing resources. Clouds are based on
the internet and they try to make the complexity transparent to
customers. Cloud Computing refers to applications (from
hardware and software) delivered as services over the internet
from data centers. Companies that provide clouds use
virtualization technologies, combined with their abilities to

provide computing resources through the network
infrastructure [2].

 In cloud environments, the concern is whether there will
be high availability in the services offered by cloud managers.
Many companies are migrating their services to cloud and
choosing to implement their own cloud, using some open
source managers such as the OpenStack.

 Given the aforementioned context, there is a concern
about having a fault-tolerant environment, if there is an
environment failure, it means the environment is not
providing the services properly to what it was designed for. If
a distributed system is designed with a set of servers that
communicate with each other and with customers, the
inadequate supply of services means that the servers are not
doing what they should. However, the fault is not always on
the server that presents it, since if the server depends on other
servers to provide its services, the error may have to be
looked in another place [3]. This study shows the mechanism
developed for the OpenStack manager.

2 Related Research
 OpenStack has information about its high availability
and fault tolerance on its support website, but no information
on how to implement the solutions is displayed or
demonstrated. The company Rackspace uses OpenStack1 as a
solution. It informs it has implemented fault tolerance and
high availability, but it does not display information about
how they are implemented.

 Another highlighted open source is the Apache
CloudStack2, a platform that gathers computing resources for
the construction of infrastructure as a service. CloudStack has
some high availability characteristics such as the Management
Server, which can make its implementation by itself in many
nodes, where servers are balanced between data centers. The
database MySQL can be set to use replication, preventing a
failure situation in case of a data loss.

1 https://www.openstack.org/
2 http://cloudstack.apache.org/index.html

84 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

84 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

 Paid clouds servers such as VMware, Amazon and Citrix
have implemented fault tolerance solutions in their
distributions. This research was designed from these paid
managers, which are presented in this section.

 The vSphere product of the VMware provides
availability for a company entire virtual environment,
minimizing unplanned downtime by restarting the virtual
machine, providing a level of high availability [4]. A number
of 5 products of high availability resources are presented such
as: High Availability, Data Protection, App HÁ, Fault
Tolerance and the Replication.

 The AWS - Amazon Web Services (Amazon Web
Services) of Amazon is one of the tools and resources that
allows the creation of fault-tolerant systems that are reliable
and demand little human intervention. The Amazon Services:
Elastic Compute Cloud (EC2) and the Amazon Elastic Block
Store (EBS) provide resources such as snapshots and
availability zones, which fault-tolerant systems are highly
available [5].

 The Citrix XenServer is a complete virtual infrastructure
solution, with a management interface, live migration
resources, and tools to convert workloads from a physical
environment to a virtual one. It is possible to create and
manage virtual machines that can be executed from a
management interface, it allows the active virtual machines to
be transferred to a new physical host without the interruption
of its applications, generating inactivity [6].

3 Fault tolerance Mechanism
 As a distributed system environment, Cloud Computing
is susceptible to faults, and fault tolerance techniques must be
used to improve environment availability. A vulnerability
considered critical to cloud functioning was chosen for this
research. The vulnerability chosen was the hardware fault-
tolerance problem in the nodes. Thus, the fault-tolerance
mechanism labeled as OpenStackFT was created.

 For the implementation of OpenStackFT, a node was
used with the Linux OpenFiler operating system, NAS
(Network Attached Storage) and SAN (Storage Area
Network) for open source storage appliance, which provides
data storage device access via network.

 The OpenFiler3 was chosen because it has support for
volume-based partitioning (iSCSI - Internet Small Computer
System Interface) and management of settings via the Web.
Another reason to choose the iSCSI was the test performed
with other tools that did not work in OpenStack, these tools
were the DRBD (Distributed Replicated Block Device), NFS
(Network File System) and RSync.

 The iSCSI is used to connect storage devices through a
network via TCP/IP. It can be used through a local area
network (LAN), a wide area network (WAN) or through the

3 https://www.openfiler.com/

Internet. The iSCSI devices include disks, tapes, CD-ROMs
and other storage devices in another computer in the network
which can be connected. Sometimes, these storage devices are
part of a storage area network (SAN). In the relation between
the computer and the storage device, the computer is labeled
as the Initiator, because it initiates the connection with the
device, which is labeled as Target..

 Figure 1 shows the OpenStackFT environment. In this
environment, it is possible to observe the OpenFiler,
responsible for the storage of the instances initiated by the
OpenStack.

 Figure 1. OpenStackTF environment.

 Figure 2 shows the flow of a virtual machine when
instanced by Horizon. When the virtual machine is instanced
in an available node, the iSCSI protocol that is configured and
active in the node replicates in the OpenFiler, creating a
redundancy of the virtual machine in a directory available to
the node. In the example of Figure 2, the virtual machine
instanced by node01 will be stored in the OpenFiler /dev/sdb
directory. This virtual machine that was sent to OpenFiler is
constantly updated by iSCSI, until a fault occurs in the node.
If a fault occurs in the node, the virtual machine turns to stand
by in the OpenFiler until the node recovers itself from the
fault.

Figure 2. Virtual Machine (VM) flow in the environment.

 It is emphasized that the OpenStackFT test environment
has limitations, but the same environment can be reproduced
in more robust hardware environments.

4 Tests and Results
 The tests were carried out based on the requirements
established by Tanenbaum and Steen [3], who described a
fault-tolerant environment, implementing availability,
reliability, safety and maintainability.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 85

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 85

ISBN: 1-60132-444-8, CSREA Press ©

 The tests were intensified in the nodes, since, as
mentioned above, a user creates a virtual machine which will
be allocated on a node, and if this node has problems, the
virtual machine that is connected is lost and must be discarded
by the cloud administrator. This failure makes the user lose
the virtual machine, having to create a new one.

 To simulate a node failure, three types of tests were
carried out: unplugging the node’s network cable, restarting
the node, and disconnecting the node by removing it from the
outlet. These failure tests are classified as transient or
intermittent. For the tests, the ping4 tool was used to test if the
node did not respond and if it showed the expected failure. In
addition to using the ping tool on two computers, the
researcher personally made sure that the machine was off the
network or powered off.

 The failure simulation tests were timed to verify how
long it takes for the virtual machine to be available for the
user again. To accomplish this control of time, the controller
operating system clock was used. The time control was
performed as follows:

 Test 1: In the event of a network failure, the network cable
was removed and a confirmation by the ping that the
machine did not respond was waited. Then the network
cable was plugged in and the timer was initiated. When
the status of the virtual machine became "Active", the
timer was stopped.

 Test 2: In the event the machine restarts, the command
"shutdown -r now" was used, at the time the command
was executed, the timer was initiated, and this was
ceased at the time the status of the virtual machine
became "Active".

 Test 3: In the event the machine abruptly turned off, the
power cable was removed and plugged in soon after. At
the time the machine was turned off, the timer was
initiated, and it was ceased when the status of the virtual
machine became "Active".

 To ensure fairness and efficiency in the data collection,
a number of 30 tests were performed in the environment; the
results are shown in Table 1. The average time observed was
3 seconds for Test 1, 95 seconds for Test 2 and 120 seconds
for Test 3, with a standard deviation of 0.00 for Test 1, 0.79
for Test 2 and 1.26 for Test 3.

 In the following sections, two scenarios of tests are
presented. In the first scenario, the failure tests were
performed in the initial environment; to perform the same test
afterwards with the active settings. The test was conducted
with only one virtual machine to verify the efficiency of the
solution. In the second scenario, tests were performed with the
largest number of machines possible. This scenario was

4 Ping is a utility to test connectivity between devices. (CISCO, 2014).

performed to verify if the solution would be as effective as it
had been in the first scenario.

4.1 First Test Scenario
 In this stage, it was taken in consideration only if the
virtual machine was not lost after the recovery of a node fault.

 Figure 3 shows that the virtual machine presents the
Error status. Some node faults were simulated so that the
Error status appeared. It is worth to highlight that after a node
recovers itself from a fault, the virtual machine can no longer
be re-used and it was necessary to delete the instance.

Figure 3. Simulating a node fault.

 Next, the fault-tolerance configuration was performed
using the OpenFiler. As shown in Figure 4, a new virtual
machine was initiated, but this time, the OpenStackFT was
active.

Figure 4. Initiating a virtual machine with a fault tolerance solution.

 According to Figure 5, the machine status presented
Error because node faults were simulated.

Figure 5. Simulating a node fault with a fault tolerance solution.

 After replacing the network cable or reinitializing the
node, the machine status became Active again. In this case,
there was no need to delete the instance as shown in Figure 6.

Figure 6. Virtual machine active after a node fault.

86 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

86 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

 In all performed tests, the behavior observed was always
the same. The instance became active after the node recovered
itself from the failure.

4.2 Second Test Scenario
 The second test scenario was performed in a similar way
as the first one, but the test was executed in the maximum of
virtual machines available for the environment research.
Figure 7 shows the entry of 10 virtual machines.

Figure 7. Entry of 10 virtual machines.

 After activating the 10 virtual machines in the
environment, the same procedures were performed as in the
first scenario. All virtual machines obtained a successful result
after the node returned from the fault. In the case of the failure
test, the three types of node faults were simulated.

 In all the performed tests in the second scenario, the
behavior was always the same. Therefore, all virtual machines
became active again after the nodes recovered from the faults.

4.3 Results Evaluation
 After the implementation and the tests performed in the
OpenStackFT, it can be concluded that the solution found
solved a fault in the OpenStack: reactivating node instanced
virtual machines. Thus, the users will not be affected if some
hardware fault occurs in the node in which this virtual
machine is linked to. The cloud managers that have
implemented the OpenStackFT will also be benefited because
they will not need to recreate new virtual machines for the
users in case of faults in the nodes.

 According to the collected results, the requirements of
reliability shown by Tanenbaum and Steen [3] were reached:
the availability requirement was reached, since the virtual
machine becomes available to the user after a node fault. The

reliability requirement was reached, since the virtual machine
recovered itself and stood active after the node fault, offering
the user the reliability of not losing the virtual machine. The
security requirement was reached, since the node was
inoperative for some time and, nevertheless, it started
functioning normally. Besides, the virtual machines active at
the time of the fault were not damaged. The maintainability
requirement was reached, since the node that presented a fault
was recovered.

 Table 1 presents the results obtained with the tests
performed in the OpenStackFT. The comparative presents the
average and the time standard deviation in seconds that each
scenario took to activate the virtual machines after the three
failure tests. By observing this table, it is also possible to
verify that the higher the number of virtual machines that need
to be reactivated, the higher will be the average time that the
environment will take to become fully active.

TABLE I. TIME COMPARATIVE
 Scenario 1 ± SD Scenario 2 ± SD
Test 1 1 second 0.00 3 seconds 0.00
Test 2 35 seconds 0.83 95 seconds 0.79
Test 3 55 seconds 0.83 120 seconds 1.26

5 Considerations and Conclusions
 The difficulties encountered by a user to ensure the high
availability of technology services, primarily in open source
environments, was an important factor for the development of
the OpenStackFT mechanism.

 This work is relevant to users and cloud administrators
who intend to implement a open source private cloud.. In
order that the administrator is able to reproduce the proposed
mechanism, it is, first, necessary to have the OpenStack and
subsequently implement the OpenStakTF.

6 References
[1] Z. He and Y. He, “Analysis on the security of cloud
computing”. Proc. Spie, Qingdao, China, n., 2011, p.7752-
775204.

[2] F. SABAHI, “Cloud computing security threats and
responses”. Communication Software and Networks (ICCSN),
2011 IEEE 3rd International Conference on May 2011.

[3] A.S. TANENBAUM and M.V. STEEN, “Distributed
Systems: Principles and Paradigms”. 2.ed, Pearson Prentice
Hall, 2007.

[4] VMWARE, Availability, Accessed on:
<http://www.vmware.com/>, February 2016.

[5] AMAZON, Architecture Center of the AWS, Accessed
on: <http://aws.amazon.com/pt/architecture/>, February 2016.

[6] CITRIX, Accessed on: <http://www.citrix.com>,
February 2016.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 87

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 87

ISBN: 1-60132-444-8, CSREA Press ©

88 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

88 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

SESSION

PARALLEL AND SCALABLE ALGORITHMS AND
SYSTEMS, HPC, AND COMPUTATIONAL

SCIENCE

Chair(s)

TBA

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 89

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 89

ISBN: 1-60132-444-8, CSREA Press ©

90 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

90 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

Exploration of MPI-backed Parallelization for Tableau-based
Description Logic Reasoning

M. Hossain and W. MacCaull
Department of Mathematics, Statistics and Computer Science

St. Francis Xavier University, Antigonish, NS, Canada

Abstract— Description logic (DL) reasoning systems do not
scale to the requirements of the rapidly growing amount of
data. Although a lot of optimization techniques have been
developed over the last decades, reasoning performance is
still a bottleneck for users. Moreover, most modern reasoners
consist of programs that run on a single machine. When
the ontology is very large and complex, the computational
resources of a single machine are not enough. Therefore, in
order to achieve the vision of the semantic web, developing
highly scalable and efficient ontology reasoner is crucial. In
this work, we have investigated the potential of improving
performance of a tableau-based reasoner via parallelization.
In order to achieve practical scalability via parallelization,
we have developed a parallel model based on the univer-
sal manager-worker model to check the consistency of a
knowledge base. We have also implemented this model in
a distributed memory environment using a Java message
passing library for the DL ALC.

Keywords: parallel reasoning; description logic; high perfor-

mance computing; message passing interface.

1. Introduction
With the explosive growth of data in the semantic web

(SW), large and complex knowledge bases (KBs) are emerg-

ing day by day. At present, reasoning over such KBs has

become one of the most challenging problems in SW appli-

cations. Although a good number of optimization techniques

have been developed in the past decades, DL reasoning

systems do not scale efficiently to deal with the rapid

growth of data. Most optimization techniques have been

investigated for sequential reasoners, and scalability (i.e.,

the ability to use additional computational resources to

process larger KBs) of a sequential reasoner is limited by

the physical resources of a single machine. Furthermore,

most state-of-the-art reasoning systems are based on tableau

algorithms and the high computational complexity (e.g., KB

satisfiability for SHIQ is ExpTime-complete) of tableau

algorithms makes the process even more difficult. Therefore,

in order to support the vision of the SW, developing a highly

scalable and efficient ontology reasoner is crucial.

In the last decade, a few attempts have been made to

parallelize DL reasoning, but most target a single machine

(e.g., thread-level parallelism on multi-core systems) [1],

[2], [3], [4]. The performance gain that can be achieved by

this approach is limited by the number of available cores.

Typically, the number of cores in such a machine is not

higher than eight [5]. Moreover, for large or distributed

ontologies, thread-based strategies are not suitable because

they target a single machine. So, in order to reduce the pro-

cessing time via parallelization, reasoning engines need to

distribute their workload into different computational units.

A distributed approach is potentially more scalable than a

single machine approach because it can be scaled in two

dimensions, namely enhancing the hardware performance of

each node and increasing the number of nodes in the system.
The core function of a tableau based reasoner is checking

the consistency of a KB, i.e., determining whether a given

KB has a model. Therefore, we focused on parallelizing

the consistency checking procedure. In this work, we de-

veloped a parallel consistency checking algorithm based on

a well-known programming paradigm, the Message Passing

Interface (MPI) [6]. We showed that independent tableau

branches can be processed concurrently on independent

processes. Our algorithm is based on a universal model

namely manager-worker model. We implemented this par-

allel consistency checking algorithm for the DL ALC using

MPJ Express [7], an open source Java message passing

library, and discussed our initial results by executing in

both multi-core processors (shared-memory) and computer

clusters (distributed memory). As far as we are aware, this

is the first attempt to parallelize consistency checking in a

distributed memory environment using MPI. This work is

also significant to the high performance computing (HPC)

community because it attempts to close the gap between Java

and MPI.
The rest of this paper is organized as follows: Section

2 outlines a few related works, Section 3 describes the

syntax and semantics, and the tableau algorithm for the DL

ALC, Section 4 presents the parallel model to check the

consistency of a KB, Section 5 describes the implementation

and evaluation of this model for the DL ALC by means of

MPI, and finally, Section 6 summarizes the paper with future

work.

2. Related Work
The DL community has already made some notable efforts

on adopting the HPC paradigm in DL reasoning. A few of

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 91

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 91

ISBN: 1-60132-444-8, CSREA Press ©

them are related to our work; these are reported below.

Liebig and Muller [2] reported a parallel SHN reasoner

named UUPR (Ulm University Parallel Reasoner). UUPR

parallelizes the tableau algorithm itself by applying con-

current computation on disjunction and the at most number
restriction rules. Although various optimization techniques

have been adopted in UUPR, a few significant optimizations,

e.g., GCI absorption, dependency directed backtracking,

are absent. Moreover, UUPR is implemented as a shared

memory program using the boost.Threads library and hence

the speed up gain is limited by the physical architecture of

a single machine.

Bao et al. [8] presented a distributed tableau algorithm

using MapReduce [9]. Although MapReduce has proved to

be efficient for large datasets on certain kinds of distributable

problems, this technique requires a considerable re-thinking

of the tableau algorithms in order to conform to the Map and

Reduce steps. Therefore, we did not explore this approach.

Wu and Haarslev [10] developed a parallel tableau-based

DL reasoner named Deslog for the DL ALC. Deslog is

a shared-memory parallel reasoner for TBox classifica-

tion. Several optimization techniques were incorporated into

Deslog, thus leading to good efficiency for TBox classifica-

tion. However, the speed up that can be gained is limited by

the available cores in the shared-memory environment.

The recently developed LarKC [11] platform provides a

high level of flexibility, performance, and scalability for

reasoning over large-scale semantic data sets [12]. This

platform addresses the limitations of current semantic rea-

soning engines and enables reasoning with big data by

distributing computation among nodes. For the most part,

there are two proposed approaches in the literature: rule

partitioning and data partitioning. In [5], Cheptsov described

an MPI based approach for implementing parallel semantic

web applications and evaluating the performance of random

indexing over large text volumes on the LarKC platform.

Faddoul and MacCaull [13] outlined a fork/join parallel

framework for handling non-determinism arising from al-

gebraic tableau reasoning. This parallel framework allows

the execution of non-deterministic rules on independent

cores only (not on independent processes). To work with an

algebraic reasoning component, a standard tableau calculus

needs to be modified and extended.

An observation is that applying thread based strategies

such as multi-threading in multi-cored processor is the

easiest and simplest way to achieve the high performance

[10]. However, speed up gained via thread-level parallelism

is limited by the currently existing computer architecture. On

the other hand, the process-based strategies, such as MPI,

allow one to execute applications in distributed compute

architectures such as compute clusters, grid systems, etc.

The MPI is a well-known programming paradigm intended

for programming in distributed memory environments. It

is a high-level library for sending and receiving messages

that is commonly used in HPC applications to abstract the

underlying networking details. In this work, we introduce

and discuss solutions for the implementation of a tableau

algorithm with MPI [14].

3. Preliminaries
DLs are a family of knowledge representation formalisms

suitable for representing the terminological knowledge in a

wide range of applications. They can be used to represent

the knowledge of an application domain in a structured and

formally well-defined way. A KB of a typical DL system

consists of a TBox and an ABox. The TBox introduces the

terminology, i.e., the vocabulary of an application domain,

while the ABox contains assertions about named individuals

in terms of this vocabulary [15]. A DL system sets up KBs to

do reasoning and manipulation of content. In this section we

introduce the syntax, semantics, and the tableau algorithm

for the DL ALC.

3.1 Syntax and Semantics of ALC
ALC language is the smallest but relatively expressive

propositionally closed DL. It is constructed from atomic

concepts, atomic roles, � (conjunction), 	 (disjunction),

¬ (negation), ∀R.C (value restriction), ∃R.C (existential

restriction).

Let NC and NR be non-empty and pair-wise disjoint sets

of concept names and role names respectively. Let NI be a

set of all individual names. Below A is used to denote an

atomic concept (A ∈ NC), R is used to denote an atomic

role (R ∈ NR). Concept descriptions in ALC are formed

according to the syntax rule in (1), given in BNF form; where

C, D are ALC concepts and (everything) and ⊥ (nothing)

are the universal concept and bottom concept, respectively.

C,D → A | |⊥ |C �D |C 	D | ¬C | ∀R.C | ∃R.C (1)

The formal definition of semantics of ALC is given by

means of an interpretation I. An interpretation I = (ΔI , .I)
consists of a non-empty set ΔI , called the domain of I, and

a mapping function .I , called the interpretation function of

I, that maps:

• every individual name a ∈ NI to an element, aI , of

ΔI (i.e., aI ∈ ΔI)
• every concept name A ∈ NC to a subset, AI , of ΔI

(i.e., AI ⊆ ΔI)
• every role name R ∈ NR to a subset, RI , of ΔI ×

ΔI (i.e., RI ⊆ ΔI ×ΔI).

The interpretation function is extended to satisfy ALC-

concept descriptions as follows:

I = ΔI ; ⊥I = ∅; (¬A)I = ΔI \ AI ;

(C �D)I = CI ∩DI ; (C 	D)I = CI ∪DI ;

(∃R.C)I = {x ∈ ΔI | ∃y ∈ ΔI : 〈x, y〉 ∈ RI ∧ y ∈ CI};

(∀R.C)I = {x ∈ ΔI | ∀y ∈ ΔI : 〈x, y〉 ∈ RI → y ∈ CI}.
An ALC KB is a finite set of axioms formed by concepts,

roles and individuals. A concept assertion is an axiom of

92 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

92 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

the form C(a) (a is an instance of C) and a role assertion

is an axiom of the form R(a, b) (a is related to b via R),

where a, b are individuals and C and R are concept and

role, respectively. A concept inclusion is an axiom of the

form C � D means that concept D is more general than

concept C. An ABox is set of role assertions and concept

assertions; a TBox is a set of concept inclusions.

An interpretation I satisfies a concept assertion C(a),
denoted by I |= C(a), if and only if (iff) aI ∈ CI ; it

satisfies a role assertion R(a, b), denoted by I |= R(a, b),
iff (aI , bI) ∈ RI ; it satisfies an ABox, A, (written, I |= A)

iff I satisfies every assertion in A. If I satisfies A, then I is

called a model of A. An interpretation I satisfies a concept

inclusion C � D, denoted by I |= C � D, iff CI ⊆ DI

and it satisfies a TBox, T , (written, I |= T) iff I satisfies

every inclusion in T . If I satisfies T then I is called a

model of T .

An interpretation I is a model of a KB, K = {T ,A},

denoted by I |= K, iff I is a model of both T and A. A

concept C is satisfiable with respect to (w.r.t.) a TBox T iff

there exist a model I of T such that CI �= ∅. An ABox A is

consistent w.r.t. a TBox T , if there is an interpretation that

is a model of both A and T ; A is inconsistent otherwise.

3.2 Tableau Algorithm
State of the art DL systems typically use tableau al-

gorithms to decide satisfiability (consistency) of a KB.

The standard tableau algorithm [16] generally contains the

following main elements:

• A completion forest (called tableau) that represents a

model of the DL language; such a completion forest

typically has the tree model property.

• A set of tableau expansion rules to construct a comple-

tion forest.

• A set of blocking rules to guarantee termination.

• A set of clash conditions to detect logical contradic-

tions.

For an ALC KB, K = 〈T ,A〉, the algorithm will construct

a model for both T and A to check the consistency of K.

If one such model (i.e., a completion forest) is found, K is

consistent, otherwise K is inconsistent.

In order to work efficiently, it is necessary to transform a

KB into the Negation Normal Form (NNF), i.e., the negation

only occurs in front of concept names. A KB is in NNF

if all concept descriptions in it are in NNF. Each concept

description can be transformed to NNF by pushing negations

inwards using the following equivalences:

¬¬C ≡ C; ¬(C � D) ≡ ¬C 	 ¬D; ¬(C 	 D) ≡
¬C � ¬D; ¬∃R.C ≡ ∀R.¬C; ¬∀R.C ≡ ∃R.¬C.

Reasoning w.r.t. a TBox T can be reduced to reasoning

w.r.t. an empty TBox by a process called internalization [15].

Given a T , a concept CT is defined as

CT :=
�

Ci�Di ∈T
(¬Ci 	Di).

Any individual x in any model of T will be an instance of

CT in that model [16].

Consistency checking is one of the main inference prob-

lems to which all other inferences can be reduced [15].

The main idea of tableau-based approaches for deciding the

consistency of an ABox is as follows: the algorithm starts

with the input ABox, A and applies consistency preserving

expansion rules (e.g., the expansion rules for ALC-ABoxes

are presented in Table 1) until no more rules are applicable

(the tableau is complete) or an obvious contradiction (called

a clash) is found. If a complete and clash-free tableau is

obtained, A is consistent; otherwise it is inconsistent. For

comprehensive background on tableau calculus, the reader

is referred to [15], [17], [18].

Table 1: ALC-tableau expansion rules.

�-rule if C1 � C2(x) ∈ A, and {C1(x), C2(x)} � A,

then A′
= A ∪ {C1(x), C2(x)}.

�-rule if C1 � C2(x) ∈ A, and {C1(x), C2(x)} ∩ A = ∅,

then A′
:= A ∪ {C1(x)}, A′′

:= A ∪ {C2(x)}.

∃-rule if ∃R.C(x) ∈ A and there is no y

such that {C(y), R(x, y)} ∈ A,

then A′
:= A ∪ {C(z), R(x, z)} such that

z is a fresh individual.

∀-rule if {∀R.C(x), R(x, y)} ∈ A and C(y)} /∈ A,

then A′
:= A ∪ {C(y)}.

4. Parallelization
4.1 Parallel Consistency Checking

Tableau algorithms are amenable to parallelization due

to the existence of inherently non-deterministic rules (e.g.,

disjunctions rule, qualified cardinality restriction rule, and

choose rule for the DL SHIQ). The application of a non-

deterministic rule yields multiple alternatives, which can be

treated as different possible ABoxes to continue reasoning

with. Since there is no dependency between the alternatives,

they can be processed concurrently. For example, if we have

an ABox, A = {a : C 	 D}, then the disjunction rule

generates two ABoxes A1 = A∪{a : C} and A2 = A∪{a :
D}, which are independent, i.e., the consistency checking of

one ABox does not depend on others.

In order to work efficiently, all tableau expansion rules

are categorized into two main groups: deterministic and non-
deterministic. If a deterministic rule is applicable then the

original ABox, A, is transformed into a new ABox, A1.

Then A is consistent if the expanded ABox, A1, is. On the

other hand, if a non-deterministic rule is applicable, then the

original ABox, A, is transformed to a set of new ABoxes,

S = {A1,A2, ...,Ak}, instead of a single ABox. Then A

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 93

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 93

ISBN: 1-60132-444-8, CSREA Press ©

is consistent if there is some i, 1 ≤ i ≤ k, such that Ai is

consistent. Typically, consistency checking is performed on

the set of ABoxes sequentially, i.e., one after another. Since

the ABoxes {A1,A2, ...,Ak} are independent, it is possi-

ble to perform the consistency checking of these ABoxes

concurrently.

4.2 Manager-Worker Model
We propose an MPI-backed parallel algorithm for check-

ing the consistency of a KB. Our algorithm is based on one

of the most universal manager-worker or task parallelism
approaches. The manager-worker pattern is a variant of the

master-slave pattern where node-0 is the manager (master)

and all other nodes are workers (slave nodes). The variation

is based on the fact that components of this pattern are

proactive rather than reactive [19]. Each processing unit per-

forms the same operations simultaneously and independently

of the processing activity of other units. The manager and

worker algorithms are presented below in Algorithm 1 and

Algorithm 2, respectively.

Fig. 1: Manager-worker model.

In manager-worker model, the manager maintains a work

pool, a set of work items, and upon request the manager

sends the next available work item to a worker (Lines 15–

17, Algorithm 1). Each worker processes one work item at

a time and, when finished, requests the manager for a new

work item. This continues until there are no work items left.

When all work items are complete, the manager tells the

workers to stop (Lines 27–30, Algorithm 1). Figure 1 shows

the manager-worker parallel computation model. Here, the

manager executes a different algorithm from that of the

worker. Though manager and worker execute different al-

gorithms, we combine both manager and worker routines

into a single program which is more convenient, efficient

and also supported by all implementations of MPI.

Our algorithm follows a self-scheduling approach where

the manager maintains a work pool. Each work item is an

ABox, which consists of a set of concepts and expansion

rules. The consistency checking algorithm for an ABox is

provided in Algorithm 3. When a worker receives an ABox

(Line 8, Algorithm 2), it applies consistency preserving

expansion rules until no more rules are applicable or a

Algorithm 1 mpiOWL manager

Let n be the number of workers.

Let W = {W1,W2, ...,Wn} be the set of participating

workers.

Let A = {A1,A2, ...} be the finite set of ABoxes.

Let closedA = {A1,A2, ...} be the finite set of closed

ABoxes.

Let D = {D1,D2, ...,Dn} be the set of assigned

ABoxes and Dj ∈ A where Dj has been assigned to

the worker Wj , 1 ≤ j ≤ n.

Data: Input ABox, A
Initialize:

1: ptr ← 1

2: A ← {A}
3: closedA ← ∅
4: isClosed ← false
5: isComplete ← false

Require: |W | �= 0

Ensure: isComplete = true ∨ isClosed = true
6: while ¬isComplete & ¬isClosed do
7: Receive a message from a worker Wj

8: if message is a state request then
9: if ptr ≤ |A| then

10: Send the state CHECK to the worker Wj

11: else
12: Send the state WAIT to the worker Wj

13: end if
14: else if message is an ABox request then
15: Send ABox, Aptr, to the worker Wj

16: Dj ← Aptr

17: ptr ← ptr + 1

18: else if message is a newly generated ABox then
19: A ← A ∪ {message}
20: else if message is a CLASH report then
21: closedA ← closedA ∪ {Dj}
22: else if message is a COMPLETE status then
23: isComplete ← true
24: end if
25: isClosed ← (|A| = |closedA|)
26: end while
27: for all W ∈ W do
28: Receive a message form the worker Wj

29: Send the state STOP to the worker Wj

30: end for
31: if isComplete = true then
32: A is Consistent.
33: else
34: A is Inconsistent.
35: end if

94 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

94 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

Algorithm 2 mpiOWL worker

1: Send a request to the manager
2: currentState ← Receive the state from the manager
3: while currentState �= STOP do
4: if currentState = WAIT then
5: Wait(timeOut)

6: Send a request to the manager
7: else
8: A ← Receive an ABox from the manager
9: if CONSISTENT(A) then

10: Send the state COMPLETE to the manager
11: else
12: Send the state CLASH to the manager
13: end if
14: end if
15: currentState ← Receive the state from the man-

ager
16: end while

clash is found (Lines 2–7, Algorithm 3). Whenever a non-

deterministic rule is applied, i.e., more than one ABox is

produced (Line 12, Algorithm 3), it keeps one ABox to itself

and sends the remaining ABoxes to the manager (Line 14,

Algorithm 3). If the manager receives a new ABox from a

worker, it adds the new ABox to the work pool (Lines 18 and

19, Algorithm 1). After performing consistency checking on

a given ABox, a worker sends the result to the manager and

asks for another ABox (Lines 10 and 12, Algorithm 2). If

there are any available ABoxes, the manager assigns one of

them to the worker, otherwise the manager tells the worker

to stop. The manager stops when there is an ABox that is

complete or all the ABoxes are closed (contains clash).

5. Experiments
5.1 MPI Libraries in Java

MPI is a standardized and portable message-passing

system that follows a process-oriented parallel computing

paradigm. It is based on a Single Program Multiple Data

(SPMD) execution model. Although there is no official

MPI binding for Java, there exist several projects (e.g.,

mpiJava, JavaMPI, MPIJ) that provide required functions

with different degrees of success and compatibility [7]. Most

of these projects are prototype implementations, without any

maintenance. Currently, the most successful ones in terms

of uptake by the HPC community are mpiJava and MPJ

Express, which we now present.

mpiJava: The mpiJava1 is an object-oriented Java inter-

face to the standard MPI, developed as part of the HPJava

1http://www.hpjava.org/mpiJava.html

Algorithm 3 consistency checking

Data: Input ABox, A
Result: True or False.

1: procedure CONSISTENT(A)

2: if A is closed then
3: return false
4: end if
5: if A is complete then
6: return true
7: end if
8: Find a rule that is applicable on A.

9: if a deterministic rule is applicable then
10: A1 ←Apply the expansion rule on A.

11: else if a non-deterministic rule is applicable then
12: {A1,A2, ...,Ak} ←Apply the expansion rule on

A.

13: for all i such that 2 ≤ i ≤ k do
14: Send Ai to the manager

15: end for
16: end if
17: return CONSISTENT(A1)

18: end procedure

project in late 1997 by Carpenter et al. [20]. The imple-

mentation of mpiJava is through Java Native Interface (JNI)

wrappers to native MPI software. It takes an existing native

MPI implementation and provides Java wrappers through

the JNI which is a mechanism that allows the application

programmer to call native subroutines and libraries (written

in other languages such as C, C++) from Java and vice

versa. In mpiJava, every MPI process or node corresponds

to a single JVM, running on the same host computer.

The mpiJava is implemented on top of a native MPI and

most native implementations of MPI are not thread-safe.

Therefore, it is not possible to perform MPI operations

concurrently for more than one thread in a single JVM.

MPJ Express: MPJ Express2 is a message passing library

that can be used by application developers to execute their

parallel Java applications on compute clusters or network of

computers [7]. Although MPJ Express is designed for dis-

tributed memory environments like networks of computers

or clusters, it can execute parallel programs efficiently in

a multi-core processor with a shared memory environment.

The MPJ Express software can be configured in two ways:

(1) multi-core configuration and (2) cluster configuration.

The multi-core configuration is used by the developers who

want to execute their parallel Java applications on multi-

core processors. The cluster configuration is used to execute

2http://mpj-express.org/

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 95

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 95

ISBN: 1-60132-444-8, CSREA Press ©

parallel Java applications on distributed memory platforms

including clusters and network of computers.

Both mpiJava and MPJ Express provide message passing

functionality to the Java programmers. But mpiJava can

incur a noticeable overhead for large messages and also

presents some portability and instability issues. There is no

recent update in mpiJava and it only supports some native

MPI implementations. On the other hand, MPJ Express is

maintained regularly and most recent version was released

on April 18, 2015. We therefore choose to use MPJ Express

to implement our parallel consistency checking task.

5.2 Parallel Implementation for the DL ALC
There is an important property in ALC tableau algo-

rithm which makes the algorithm pleasingly parallel. The

whole knowledge necessary for node expansion or for clash

detection is contained in a given node. Therefore, there

is no information exchange between nodes belonging to

different branches. As a result, branches of the tableau can be

constructed independently of one another. The parallelization

strategy described in this paper takes advantage of this

property. The standard tableau expansion rules for the DL

ALC are presented in Table 1. Note that only the 	-rule is

non-deterministic in the ALC tableau algorithm.

In this work, the manager-worker model is implemented

based on Pellet by means of MPI as a distributed memory

program using MPJ Express library. Pellet [21] is a tableau-

based OWL-DL reasoner developed by the Mind Swap

group. It is an open source reasoner and developed in Java. In

MPI programming, all processes execute the same program

executable and each process is identified by means of a

special process identifier, called rank, which is unique within

a group of processes involved in the execution. The rank

allows every process to identify what part of the data to be

processed. In order for two processes to communicate, we

use MPI blocking send and receive operations. The blocking

operations do not return until the communication is finished.

There are many technical challenges in implementing this

dynamic manager-worker algorithm in Java by means of

MPI. One of the major challenges is passing an object (e.g.,

an ABox) from one process to another. As the object is not a

primitive data type, to pass an object using MPI, all classes

of that object must implement the Serializable interface.

Since we are working on legacy code, it is not feasible

for every class to implement the Serializable interface.

Moreover, standard Java serialization is inefficient both in

terms of speed and size. To deal with these problems, we

converted an object to byte vectors using KRYO3, a fast and

efficient serialization framework for Java, and sent these byte

vectors using the same method as primitive byte buffers. At

the receiving end, the object is reconstructed using these

byte buffers.

3https://github.com/EsotericSoftware/kryo

5.3 Evaluation
In the manager-worker model described in the previous

section, the manager is dedicated to distributing work items

to workers and does not itself do any computation. Conse-

quently, if there are p processes, only p − 1 processes are

available to process the computation tasks, i.e., to perform

the consistency checking. Therefore, maximum parallel effi-

ciency can be obtained in this scheme is [(p−1)/p]×100%.

In order to remove this limitation, it is possible to ask

the manager to participate in the computation as do other

workers. In that case, all p processes will participate in the

computation, but the manager may be less likely to be avail-

able to respond instantly to the worker’s requests. If there

is very large number of workers, the processing of requests

for the work item on the manager may become a bottleneck.

If tchk is the average time required to perform consistency

checking on a given ABox on a worker, and treq is the time

required to process a request for a work item on the manager,

then the manager can process tchk/treq requests without

keeping any worker waiting. So, the maximum number of

workers that the manager can support efficiently in this

scheme is tchk/treq . The time required to perform consis-

tency checking on a given ABox can vary from one ABox to

another. However, tchk is sufficiently large compared to treq .

So we can expect that this scheme will perform efficiently

for a large number of processes. The efficiency of this

scheme also depends on the existence of non-determinism in

a KB. Typically, the number of disjunctions exist in a KB is

very large compared to p. For example, Thesaurus ontology

contains 83,644 subsumption axioms and 10,242 equivalent

axioms. Since each equivalence axiom can be replaced by

two subsumption axioms, there are approximately 105,000

disjunctions in total. The possible advantage of parallelism

increases for more expressive fragments, where there are

more non-deterministic rules.

It is noted that no optimization techniques have been

addressed in this manager-worker model. As it takes much

time to develop a new reasoner, we implemented our

manager-worker model on top of Pellet. We conducted

our experiments on the ACENET4 cluster both in shared

memory (using multi-core configuration of MPJ Express)

and distributed memory (using cluster configuration of MPJ

Express) environments. As is observed in the Table 2, our

preliminary results are not encouraging. The main reason

for performance degradation is the absence of optimizations.

Pellet implements most state-of-the-art optimization tech-

niques whereas there are no optimizations in our model.

Dependency-directed backtracking, also known as back-

jumping, is the most significant among them. Backjumping

allows an algorithm to detect the source of a clash and

prune the search space to avoid facing the same clash again.

When we distribute the computation into different computa-

4http://www.ace-net.ca/

96 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

96 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

Table 2: Consistency test result for the Transportation ontol-

ogy.

Cluster configuration Multi-core configuration
No of Worker Time (seconds) No of Worker Time (seconds)

1 5 1 20
3 6 3 32
5 9 5 23
7 13 7 35

11 23 11 47

tional nodes, it reduces the pruning possibility significantly.

Backjumping allows the search space to be dramatically

pruned and plays a significant role in the performance when

KB contains a lot of disjunctions. As we internalize every

subsumption relation, there are a lot of disjunctions. There-

fore, the absence of backjumping degrades the performance

drastically. The dramatic performance of backjumping is also

mentioned in [15]. The way Pellet implements backjumping

is not amenable to parallelization. We leave adopting state-

of-the-art optimization techniques with this model as future

work.

6. Conclusions and Future Work
With the progress of semantic web technologies, knowl-

edge bases are becoming larger and more complex. Reason-

ing with large and complex ontologies is one of the biggest

challenges for DL reasoners. In this work, the potential

for improving the scalability of a DL reasoner via paral-

lelization was investigated. A parallel model was developed

for handling non-determinism arising from tableau-based

reasoning. This parallel model allows the execution of non-

deterministic rules on independent processes. The parallel

model was implemented to check the consistency of a KB in

a distributed memory environment using MPI. Even though

the model was implemented for the DL ALC, the provided

algorithm is applicable for the whole DL family including

SROIQ. For the parallel implementation, MPJ Express, a

Java MPI library, was used. In this work, the process based

programming model is applied to Java, which brings the

parallel computation paradigm, i.e., MPI, closer to Java.

Most DL reasoners implement tableau algorithms with a

set of optimization techniques. State-of-the-art optimization

techniques are keys to the performance of a modern tableau-

based reasoner. So, a parallel model should address the main

optimizations to achieve the high performance. Currently,

we are in the process of implementing this parallel model

with a set of optimizations, namely dependency-directed

backtracking, semantic branching, etc., in order to get better

performance. We also plan to implement this model for an

expressive DL, e.g., SHIQ, in the near future.

Acknowledgments: The second author wishes to thank

the Natural Sciences and Engineering Research Council of

Canada for financial support.

References
[1] J. Faddoul and W. MacCaull, “Parallelizing algebraic reasoning for

the description logic SHOQ,” The 4th Canadian Semantic Web
Symposium (CSWS 2013), pp. 20–23, 2013.

[2] T. Liebig and F. Müller, “Parallelizing tableaux-based description
logic reasoning,” in Proceedings of the 2007 OTM Confederated
International Conference on On the Move to Meaningful Internet
Systems, 2007, pp. 1135–1144.

[3] T. Liebig, A. Steigmiller, and O. Noppens, “Scalability via paral-
lelization of OWL reasoning,” in Proceedings of the 4th Workshop on
New Forms of Reasoning for the Semantic Web: Scalable & Dynamic,
2010, pp. 39–43.

[4] K. Wu and V. Haarslev, “Parallel OWL reasoning: Merge classi-
fication,” in Proceedings of the 3rd Joint International Semantic
Technology (JIST) conference, 2014, pp. 211–227.

[5] A. Cheptsov, “An approach for distributed parallelization of large-
scale Semantic Web reasoners based on MPI,” in Web Information
Systems Engineering–WISE 2011 and 2012 Workshops, 2013, pp. 4–
12.

[6] The MPI standard. [last accessed: December, 2015]. [Online].
Available: http://www.mcs.anl.gov/research/projects/mpi/.

[7] A. Shafi, B. Carpenter, and M. Baker, “Nested parallelism for multi-
core HPC systems using Java,” Journal of Parallel and Distributed
Computing, vol. 69, no. 6, pp. 532–545, 2009.

[8] J. Bao, D. Caragea, and V. G. Honavar, “A distributed tableau
algorithm for package-based description logics,” in Proceedings of
the Second International Workshop on Context Representation and
Reasoning, 2006.

[9] J. Urbani, S. Kotoulas, J. Maassen, F. Van Harmelen, and H. Bal,
“WebPIE: A web-scale parallel inference engine using MapReduce,”
Web Semantics: Science, Services and Agents on the World Wide Web,
vol. 10, pp. 59–75, 2012.

[10] K. Wu and V. Haarslev, “A Parallel Reasoner for the Description
Logic ALC,” in Proceedings of the 2012 International Workshop on
Description Logics (DL-2012), 2012, pp. 378–388.

[11] D. Fensel, F. van Harmelen, B. Andersson, P. Brennan, H. Cunning-
ham, E. Della Valle, F. Fischer, Z. Huang, A. Kiryakov, T. Lee,
L. Schooler, V. Tresp, S. Wesner, M. Witbrock, and N. Zhong,
“Towards LarKC: a platform for web-scale reasoning,” in Semantic
Computing, 2008 IEEE International Conference on, 2008, pp. 524–
529.

[12] M. Assel, A. Cheptsov, G. Gallizo, K. Benkert, and A. Tenschert,
“Applying high performance computing techniques for advanced
semantic reasoning,” in eChallenges, 2010, pp. 1–8.

[13] J. Faddoul and W. MacCaull, “Handling non-determinism with de-
scription logics using a fork/join approach,” International Journal of
Networking and Computing, vol. 5, no. 1, pp. 61–85, 2015.

[14] M. Hossain, “Inconsistency-tolerant description logic reasoning,”
M.Sc. thesis, St. Francis Xavier University, Canada, 2016.

[15] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F.
Patel-Schneider, Eds., The Description Logic Handbook: Theory,
Implementation, and Applications. New York, NY, USA: Cambridge
University Press, 2003.

[16] I. Horrocks, U. Sattler, and S. Tobies, “Reasoning with individuals
for the description logic SHIQ,” in Proceedings of the 17th Inter-
national Conference on Automated Deduction, 2000, pp. 482–496.

[17] F. Baader and U. Sattler, “An overview of tableau algorithms for
description logics,” Studia Logica, vol. 69, no. 1, pp. 5–40, 2001.

[18] R. Möller and V. Haarslev, “Tableau-based reasoning,” in Handbook
on Ontologies. Springer, 2009, pp. 509–528.

[19] K. M. Chandy and S. Taylor, An Introduction to Parallel Program-
ming. USA: Jones and Bartlett Publishers, Inc., 1992.

[20] M. Baker, B. Carpenter, G. Fox, S. H. Ko, and S. Lim, “mpiJava:
an object-oriented Java interface to MPI,” in Parallel and Distributed
Processing. Springer, 1999, pp. 748–762.

[21] E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and Y. Katz, “Pellet: A
practical OWL-DL reasoner,” Web Semantics: Science, Services and
Agents on the World Wide Web, vol. 5, no. 2, pp. 51–53, 2007.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 97

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 97

ISBN: 1-60132-444-8, CSREA Press ©

Evaluating a Persistent Soft Fault Model on Preconditioned
Iterative Methods

Evan Coleman1,2, Masha Sosonkina2
1Naval Surface Warfare Center - Dahlgren Division, Dahlgren, VA, USA

2Modeling, Simulation, and Visualization Engineering Department, Old Dominion University, Norfolk, VA, USA

Abstract— The impact of soft fault errors on the GMRES
iterative method with flexible preconditioning (called FGM-
RES) is explored. In particular, a new method for simulating
soft fault errors is implemented directly in FGMRES, and
the effect of error magnitude and timing is evaluated for
the FGMRES convergence in solving of an elliptical PDE
problem on a regular grid. Two types of preconditioners
are explored, featuring an incomplete LU factorization and
an algebraic recursive multilevel solver ARMS. The experi-
ments have confirmed an intuition that, in general, injecting
perturbation-based faults at the matrix-vector operation
stage had a greater impact on the convergence rate than
doing so at the preconditioning application stage, resulting
in more cases when the iterative solver failed. In addition,
several cases of better convergence under faults in precon-
ditioning operation were observed and analyzed.

Keywords: iterative solvers, preconditioning, fault model, flexible

GMRES, pARMS

1. Introduction
Fault tolerance methods are devised to increase both

reliability and resiliency of high-performance computing

(HPC) applications on exascale platforms, in which the mean

time to failure (MTTF) is projected to decrease dramatically

due to the sheer size of the computing platform [4]. There

are many reports (e.g., [1], [4], [16]) that discuss the

expected increase in the number of faults experienced by

HPC environments. This is expected to be a more prevalent

problem as HPC environments continue to evolve towards

larger systems. As the landscape of HPC continues to grow

into one where experiencing faults during computations

is increasingly commonplace, the software used in HPC

applications needs to continue to change alongside it in order

to provide an increased measure of resilience against the

increased number of faults experienced. Typically, faults are

divided into two categories: hard faults and soft faults (see,

e.g., [6], [10]). Hard faults come from negative effects on

the physical hardware components of the system and cause

program interruption. As hardware components themselves

continue to evolve and grow both smaller and faster, they

(generally) become more prone to error, and the algorithms

and software packages that are used in HPC environments

need to be able to respond to sudden and unexpected changes

in both the quantity and quality of the physical resources that

may be available for use. The other category of faults, soft

faults, are the focus of this work. This category of failures

captures all faults that a program might experience that do

not immediately interrupt program execution. Most often,

these faults refer to some form of data corruption that is

occurring either directly inside of, or as a result of, the

algorithm that is being executed. It is possible for a program

to detect the presence of a soft fault while it is still executing.

In order to properly investigate the impact of soft errors, one

needs to select a fault model that fully encapsulates all of the

potential impacts of a soft fault, implement the selected fault

model into the algorithm to be investigated, and conduct the

necessary experiments to determine the potential impact of a

fault occurring during the selected algorithm. Typically, soft

faults have been modeled by a bit flip. This study focuses

on utilizing an arguably more general approach towards the

modeling of soft faults, and subsequently evaluating it in the

case study of the Flexible GMRES (FGMRES) [14] iterative

solver. Faults were injected as small perturbations to results

of certain mathematical operations using a modified version

of fault injection found in [6] and [8].

The rest of the paper is organized as follows: in Section 2,

a brief overview of related studies is provided, in Section 3,

details concerning the fault model that is used throughout

this work are given, in Section 4, experimental results are

provided, and in Section 5, a quick summary is presented

along with possible directions for future work.

2. Related Work
Traditionally, when performing experiments to analyze the

potential impact of soft faults upon a computing environ-

ment, researchers have relied primarily upon the injection

of bit flips into a particular portion of the routine [3], [9]. In

contrast, in the work by Elliot, Hoemmen, and Mueller [8],

[6], faults are modeled in a more general sense. These

studies choose to generalize the simulation of soft faults to

producing an incorrect solution to one of key computational

parts, such as the application of the preconditioner inside of

an iterative solver. This approach generalizes the simulation

of soft faults by disregarding the actual source of the fault

98 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

98 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

and allowing the fault injector to create as large or as small

a fault as necessary for the experiment. In the experiments

conducted in [8], [6], [7] faults are typically defined as

either a scaling of the contribution of the result of the

preconditioner application for the Message Passing Interface

(MPI) process in which a fault was injected, or a permutation

of the components of the vector result of the preconditioner

application for the MPI process in which a fault was injected.

In the taxonomy of faults given in [6], [10] soft faults are

divided into the categories of transient, sticky, and persistent.

Transient faults are defined as faults that occur only once,

sticky faults indicate a fault that recurs for some period of

time but where computation eventually returns to a fault-free

state, and persistent faults arise when the fault is permanent.

Whether the studies discussed above model faults using bit

flips or adopt a more numerical analysis style approach,

much of the previous work on the impact of silent data

corruption (SDC) has to do with modeling transient errors.

The goal of this effort is to present a fault model that

can accurately predict the impact of persistent soft faults.

Examples of scenarios that could cause a persistent fault are

a stuck bit in memory, or a hardware malfunction – such

as the Intel Pentium FDIV bug – or the incorrect copy of

data from one location to another. [6], [5], [10] The model

presented here is general enough that it can be adapted to

simulate the impact of any persistent error, including those

caused by hardware malfunction.

Traditional analysis of potential persistent type errors has

rested more in the hardware domain than in the algorithmic

domain, with analysis of both processor based faults [11],

[2] and memory based faults [15]. The impact of persistent

faults on iterative methods does not seem to have explored

to a great extent. The work presented here follows an

idea from [8], [6], [7] of disregarding the source of the

error in the simulated fault. In other words, an analytical

approach is taken as opposed to flipping random bits inside

some pertinent data structures. On the other hand, here the

simulated soft faults persist once injected as opposed to work

in [8], [6] where the faults are transient in nature.

3. Fault Model
The approach chosen was to perturb the vector result

of key computations for the single MPI process in which

a fault was injected. This perturbation-based fault model

is an adaptation of the fault model presented in [6], [8],

[7]. The fault model presented in [6], [8], and [7] focuses

exclusively on modeling transient faults; the fault model

presented here attempts to modify that approach to extend

it to persistent soft faults. In an attempt to accurately model

the impact of a persistent soft fault, a small randomized

perturbation is injected on each iteration after the fault is

modeled to occur. Adopting a characterization from [7],

faults are divided based upon their impact to the l2-norm

of the vector they are injected into. The default version of

the fault model presented here relies on the generation of

small random numbers that are added to each element of

the data structure where the fault is injected. However, the

fault model was also adapted to allow for the possibility of

either moving each element of the vector to be perturbed

further away from, or closer towards, zero. In this way, the

fault model offers some level of control over whether the

l2-norm of the vector the fault is injected into increases

or decreases. This allows observations about the effect of

perturbing the l2-norm on the general convergence of the

total algorithm. Since FGMRES works towards reducing the

l2-norm of the residual vector, modifying the l2-norm of

any of the vectors used to construct the residual vector may

affect its convergence rate by affecting the l2-norm of the

residual in a ripple-like effect [7], [14]. Hence, one of three

outcomes may occur: The iterative solver will converge at

about the same rate as without perturbation, or converge but

will take significantly longer to reach convergence, or fail

to converge entirely [8]. However, it is also possible that

the injected fault will actually cause the iterative solver to

converge in fewer iterations than without perturbations.

It is important to design the fault model in such a way that

it encapsulates the worst-case behavior that one is trying to

protect against. By modeling faults as a random perturbation,

a controlled amount of noise is added to the result of key

operation inside of the algorithm. The amount of this noise

is parameterized throughout the different experiments. How-

ever, the random nature of the faults limits the knowledge

of specific details regarding the fault that was injected.

As persistent faults are one of three types of soft faults

accounted for in the taxonomy of soft faults presented in

[6], [10], designing a fault model to accurately measure the

impact of these faults is an important endeavor. The nature of

the fault model presented here, in that every iteration inside

of the iterative solver is perturbed after the fault initially

occurs, provides a way to quantify the impacts of a potential

persistent soft fault.

3.1 FGMRES
The FGMRES algorithm, as described in [14], is provided

in Algorithm 1. FGMRES is similar in its nature to the

standard GMRES with the notable exception of allowing

the preconditioner to change in each iteration by storing the

result of each preconditioning operation (cf. matrix Zm in

line Line 10). FGMRES was selected in this study because

it is a robust, popular iterative solver which is proven to

converged under variable preconditioning, possibly resulting

from a perturbation in the preconditioning operation. Here,

such a perturbation is due to injected faults. In particular,

faults were injected at two distinct points inside of the

FGMRES algorithm; Line 1, termed here as the outer matvec
operation, and Line 3, which the application of the precondi-

tioner. In this study, the effect of injecting faults exclusively

into one of these two locations as well as into both locations

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 99

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 99

ISBN: 1-60132-444-8, CSREA Press ©

simultaneously was considered. Also, the GMRES restart

parameter (m in Algorithm 1) was taken to be 20.

Input: A linear system Ax = b and an initial guess at

the solution, x0

Output: An approximate solution xm for some m ≥ 0
1 r0 = b−Ax0, β = ||r0||2, v1 = r0/β
2 for j = 1, 2, . . . ,m do
3 zj = M−1

j vj
4 w = Azj
5 for i = 1, 2, . . . , j do
6 hi,j = w · vi
7 w = w − hi,jvi
8 end
9 hj+1,j = ||w||2, vj+1 = w/hj+1,j

10 Zm = [z1, . . . , zm], H̄m = hi,j1≤i≤j+1;1≤j≤m

11 end
12 ym = argminy||H̄my − βe1||2, xm = x0 + Zmym
13 if Convergence was reached then return xm

14 else set x0 ← xm, GoTo Line 1

Algorithm 1: FGMRES as given in [14]

3.1.1 Preconditioner
A traditional linear system is given by Ax = b, however

a transformed preconditioned system is given by M−1Ax =
M−1b, when preconditioning is applied from the left, and

AM−1y = b with x = M−1y, when preconditioning is

applied from the right. The matrix M is a nonsingular

approximation to A, and is called the preconditioner. Incom-

plete LU factorization methods (ILUs) are an effective class

of preconditioning techniques for solving linear systems.

They define the preconditioner as M = L̄Ū , where L̄ and Ū
are approximations of the L and U factors of the standard

triangular LU decomposition of A. The incomplete factor-

ization may be computed from the Gaussian Elimination

(GE) algorithm, by discarding some entries in the L and U
factors. If the m independent unknowns are numbered first,

and the other n − m unknowns last, the coefficient matrix

of the system is permuted in the 2 × 2 block structure. In

multi-elimination methods, a reduced system is recursively

constructed from the permuted system by performing a block

LU factorization of PAPT of the form

PAPT =

(
D F
E C

)
=

(
L 0
G In−m

)
×
(

U W
0 A1

)

where D is a diagonal matrix, L and U are the triangular

factors of the LU factorization of D, A1 = C − ED−1F
is the Schur complement with respect to C, In−m is the

identity matrix of dimension n − m, and then denote by

G = EU−1 and W = L−1F . The reduction process can

be applied another time to the reduced system with A1,

and recursively to each consecutively reduced system until

the Schur complement is small enough to be solved with a

standard method. The factorization of PAPT above defines

a general framework which accommodates for different

methods. The ARMS preconditioner uses block independent

sets to discover sets of independent unknowns and computes

them by using the greedy algorithm. In the ARMS imple-

mentation used here, the incomplete triangular factors L̄, Ū
of D are computed by one sweep of ILUT. In the second

loop, an approximation Ḡ to EŪ−1 and an approximate

Schur complement matrix Ā1 are derived. This holds at each

reduction level. At the last level, another sweep of ILUT is

applied to the (last) reduced system.

3.1.2 Fault Detection and Resilience in FGMRES
Fault detection inside of FGMRES can be achieved in

many different ways. Upon each restart of FGMRES, the

norm of the residual is computed, and in a fault-free envi-

ronment these norms should be monotonically decreasing. A

cheap fault detector could be implemented to check this, and

it would be an intuitive way to attempt to detect faults that

occur during the outer sparse matrix-vector multiply. It will

be shown experimentally that if the fault that is injected into

the outer sparse matrix-vector multiply does not increase the

norm of the initial residual, than it has a significantly less

negative effect on the convergence of FGMRES.
One of the key observations made in [10] was that since

the preconditioner is allowed to change on every iteration

in the FGMRES algorithm, faults that occur during the

precondioning operation (Line 3 in Algorithm 1) can be

modeled as different preconditioners. As such, if a fault were

to occur anywhere inside of the preconditioning operation

it can be modeled by injecting a fault into the result of

the preconditioning operation (zj in Algorithm 1). The

perturbation-based fault model proposed in this paper allows

the size of the fault to be controlled by offering direct control

on the size of the perturbation that is injected.
It will be shown experimentally that FGMRES is capable

of proceeding through many faults occuring in the precondi-

tioning operation by accepting the faulty output as a different

preconditioner. This natural adaptive response in the FGM-

RES algorithm to faults that occur during preconditioning

should also cause faults that occur during the outer sparse

matrix-vector multiply to have more of an impact on the

convergence of FGMRES. This was also able to be shown

experimentally, and results are provided in Section 4.

4. Experimental Results
The test problem that was used comes directly from the

pARMS library [12], and represents an elliptic 2D partial

differential equation,

−Δu+ 100
∂

∂x
(exyu) + 100

∂

∂y
(e−xyu)− 10u = f

100 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

100 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

Parameter Acceptable Values
Global Preconditioner Block Jacobi
Local Preconditioner ILUT, ARMS
Tolerance Required for Convergence 10

−6

Starting Iteration at which Fault Appears ≥ 5

Order of Perturbation 10
−6, . . . , 10−4

Effect on l2-norm Any, Decrease, Increase

Table 1: Input parameters the value of which varied in the

experiments.

on a square region with Dirichlet boundary conditions, dis-

cretized with a five-point centered finite-difference scheme

on a nx × ny grid, excluding boundary points. The mesh is

mapped to a virtual px × py grid of processors, such that

a subrectangle of rx = nx/px points in the x direction

and ry = ny/py points in the y direction is mapped to a

processor. The size of the problem was varied and controlled

by changing the size of the mesh that was used in the

creation of the domain. The mesh sizes that were considered

ranged from nx = ny = 100 to nx = ny = 500, and these

mesh sizes were run on numbers of processors that varied

from four (px = py = 2) to 100 (px = py = 10). In order

to compare experiments run with different parameters the

resulting number of iterations was compared to the number

of iterations in the same unperturbed run and depicted as the

percentage in the plots throughout this section.

In all of the experiments that were conducted, multiple

sets of runs were executed for each set of parameters (i.e.

perturbation size, iteration fault was first injected) and their

effect on the convergence of FGMRES was combined into

an average with all other runs with the same parameters

before being analyzed. The parameters that were varied in

these experiments are detailed in Table 1.

Since the fault model presented here is based on a series of

random perturbations, multiple runs/solves were conducted

for each set of parameters, and the results were averaged and

depicted in the plots of this section. In all of the experiments,

a maximum number of iterations was instituted and, if a

run did not converge within this preset number of iterations,

then it was terminated, and determined to have failed. The

focus is on investigating the effects on two of the local

preconditioners available within pARMS: Incomplete LU

with dual nonzero dropping strategy [14] (referred to as

ILUT), and the ARMS preconditioner [13].

The experiments conducted for this study were run on two

distinct hardware environments. The first test environment

was a node with Intel Core i7 processor having four physical

cores at 2.50 GHz each and 16 GB of main memory. The

second was the Hopper supercomputer, which is a compute

resource of the National Energy Research Scientific Center

(NERSC). Hopper has a total of 153,216 compute cores,

212 Terabytes of memory and nodes are connected with a

custom high-bandwidth, low-latency network provided by

Cray. Up to five compute nodes of Hopper were utilized. The

problem size was scaled appropriately for each environment,

by adjusting the size of the square mesh per subdomain;

namely, 200 and 500 points for the Intel Core i7 and Hopper,

respectively.

The results shown in all the figures of Sections 4.1 to 4.3

come from runs on the Intel Core i7 platform using four

MPI ranks, one per core. The results from the runs with

larger problem sizes performed on Hopper showed similar

convergence tendencies under perturbation-based faults con-

sidered here. Note that, in all the plots, the x-axis represents

the fraction (as %) of the execution when a fault begins and

the y-axis shows the increase (or decrease) in the number of

iterations with respect to non-perturbed case. For example,

a data point with x coordinate of 50% shows an effect from

the fault injected halfway through the number of iterations
that would be required by a fault-free run. This effect is

quantified by the y coordinate of the point, such that, if

y = +100%, e.g., then the run corresponding to this data

point required twice as many iterations to converge than that

did in a fault free case.

4.1 Matvec Perturbations
The first set of experiments affected only the outer matvec

operation in the FGMRES algorithm (see Line 1). The

following results are provided the instance where the sign

of the perturbation (and hence, the magnitude of the l2-

norm) was not controlled by the fault model. Figure 1

shows the effects of faults with various perturbation sizes in

outer matvec when the ARMS (top) or ILUT (bottom) local

preconditioner is used. Only perturbation sizes no larger

than 5 × 10−5 are shown since for larger values the solver

failed to converge. Comparing the results in Fig. 1 (top) and

(bottom), a similar convergence behavior may be observed.

However, the faults corresponding to smaller perturbations

(10−6, . . . , 5× 10−5) have a slightly greater negative effect

on the runs with the ILUT preconditioner than on those with

ARMS. When examining effects of very small perturbations

(on the order of convergence tolerance, which is 10−6 here),

it was found that they had either no effect at all on the

convergence rate or slightly decreased the total number of

iterations. This beneficial effect was noted regardless of

when during the run the fault has started, and it appears

more often with the ARMS preconditioner than with ILUT.

Next, results for the case where the sign of the pertur-

bation was matched with the sign of the existing vector

component in order to ensure that the l2-norm of the

perturbed operation result decreased (Fig. 2). In order to

match the sign appropriately, the fault model checks the sign

of the original vector component before applying the fault.

It is interesting to observe in Fig. 2 the increased rate of

successful convergence for a much larger range of fault mag-

nitudes. A larger spectrum of perturbation sizes resulted in

successful convergence and, hence, is represented in Fig. 2.

Comparing the effects of injecting faults that vary the l2-

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 101

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 101

ISBN: 1-60132-444-8, CSREA Press ©

Fig. 1: Outer matvec perturbation faults with varied l2-norm

for the ARMS preconditioner (top) and ILUT preconditioner

(bottom). On y- and x-axis, % of extra iterations and of fault-

commencing iteration, respectively, compared to the number

of iterations in the fault-free run.

norm (Fig. 1) to those that shrink the l2-norm (Fig. 2),

there is also a decrease in the negative effect that a fault

of the same magnitude has upon the FGMRES algorithm.

In general, the performance of the two preconditioners is

fairly similar in the case when faults are incurred in the

outer matvec operation. For instance, as expected, there is

a tendency for the fault to have more of an impact on the

convergence if the fault commences later in the execution;

smaller perturbations show little effect while larger pertur-

bations produce a much higher variations of convergence

results. Perturbed executions resulting in fewer iterations

than non-perturbed ones appear to arise with about equal

frequency between scenarios using either the ARMS or the

ILUT preconditioner. These results are seen for all the fault

sizes—although much more commonly for faults of size

≤ 10−4—and are observed most when faults occur before

the run reaches approximately 60% of completion of a fault-

free run.

Fig. 2: Outer matvec perturbation faults with decreasing l2-

norm for the ARMS preconditioner (top) and ILUT precon-

ditioner (bottom). On y- and x-axis, % of extra iterations

and of fault-commencing iteration, respectively, compared

to the number of iterations in the fault-free run.

4.2 Preconditioner Perturbations
Results (Fig. 3) are presented for each of the two precon-

ditioners, ARMS and ILUT, and exclusively for the version

of the perturbation-based soft fault model that decreases the

l2-norm of the vector that it is applied to. Comparing the

results with the ILUT preconditioner to those with ARMS,

it again appears that the runs with the latter suffer less of a

negative effect than those with the former for the faults of

an equivalent size. Next, when examining results with the

ARMS preconditioner in Fig. 3(top), it is clear that injecting

a perturbation-based fault into the result of the application

of the preconditioner (from Line 3 in Algorithm 1) has

less of an effect on a FGMRES solve using the ARMS

preconditioner than that from injecting a similar fault into

the result of the outer matvec iteration (Fig. 2(top)). Even

a magnitude of fault (e.g., 10−4) that may cause stagnation

when injected into the outer matvec operation, causes only

a 40–50% increase in the total number of iterations here

and only has a large impact if injected throughout the

102 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

102 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

Fig. 3: Preconditioner perturbation faults with decreasing l2-

norm for the ARMS preconditioner (top) and ILUT precon-

ditioner (bottom). On y- and x-axis, % of extra iterations

and of fault-commencing iteration, respectively, compared

to the number of iterations in the fault-free run.

majority of the run. Similar observations may be made

for the ILUT preconditioning in Fig. 3(bottom): less of

a negative effect is evident when perturbation-based faults

appear in this preconditioning operation than in the outer

matvec (cf. Fig. 2(bottom)). In general, FGMRES, being

able to converge with a preconditioner that changes at each

iteration, does not negatively react to perconditioner changes

due to faults in the course of linear system solution.

4.3 Matvec and Preconditioner Perturbations
The graphs in Fig. 4 show the effect of injecting a

fault into the two fault sites considered simultaneously (i.e.,

at the same FGMRES iteration), the outer matvec and
preconditioner application, such that the l2-norm decreases.

In Fig. 4, notice that, for large faults (starting at 10−4), the

increase in the number of iterations required to converge was

very high—between 400-600% at times. This increase is also

much higher than that for either matvec- or preconditioner-

only incurred faults producing the highest increases of ∼60%

Fig. 4: Outer matvec and preconditioner application faults

with decreasing l2-norm for the ARMS preconditioner (top)

and ILUT preconditioner (bottom). On y- and x-axis, % of

extra iterations and of fault-commencing iteration, respec-

tively, compared to the number of iterations in the fault-free

run.

and ∼55%, respectively, for the same perturbation value of

10−4. Conversely, for perturbation sizes of 10−5 and smaller,

the effect on convergence appears similar to that of either

matvec faults. This suggests that the ability of FGMRES to

accept faulty preconditioners is inhibited by the coexistence

of a matvec fault. Also, there were fewer cases where the

number of iterations to converge decreased due to faults.

All of the experiments were also performed with a variant

of this perturbation-based fault model that increased the l2-

norm of the operation result. In all instances, smaller fault

sizes caused FGMRES to fail to converge compared with

the other l2-norm variants of the fault model, and, for the

cases in which the iterative solver converged, many more

iterations were required. Due to space considerations, the

experiments with the increasing l2-norm are not detailed in

this paper.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 103

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 103

ISBN: 1-60132-444-8, CSREA Press ©

Fault Size Fault Location Starting Its l2-norm Effect PC Improvement

5× 10−5 matvec 0% - 30% Varied ARMS 2% - 4%

10−6 matvec (anywhere) Varied ARMS 0% - 1%

10−6 − 10−5 matvec (anywhere) Varied ILUT 0% - 1%

(any size) matvec 0% - 60% Decreasing ARMS, ILUT 0% - 1%

≤ 5× 10−5 PC (anywhere) Decreasing ARMS 0% - 5%

≤ 5× 10−6 PC (anywhere) Decreasing ILUT 0% - 2%

Table 2: Summary of Beneficial Results- Note: Its (Iteration), PC (Preconditioner)

5. Summary and Future Work
This paper showcased experiments designed to exhibit a

persistent fault model with faults affecting bounds within an

iterative solver, which may be monitored and play a role

in the solver reaction to faults. Specifically, effects on the

l2-norm of the fault-perturbed vector were explored and it

was found that persistent faults may be treated similarly to

episodic faults in quantifying their effects except that the

application possibly needs to adjust to continuing operation

“under failure”. An investigation of such adaptations is left

as a future work. In particular, persistent faults that shrink the

l2-norm have less of a negative effect upon the convergence

of the iterative solver. It was also found that injecting faults

into the outer matvec operation, in general, had a greater

impact upon the FGMRES convergence than doing so for the

preconditioner application—including causing more cases

in which the iterative solver failed—which was observed

for both the ARMS and ILUT preconditioners. It appears

that runs using ARMS preconditioner are more naturally

resilient to the injection of persistent perturbation-based

faults than runs using the ILUT preconditioner; regardless

of which of the two fault sites is chosen. In addition, a small

fault injection resulted in several runs that converged in up

to 5% fewer iterations than would be typically required.

Table 2 summarizes beneficial outcomes from the results

presented in this paper. In the future, it is planned to use

this summary as a guide in devising algorithm based fault

tolerance procedures for the flexible GMRES.

5.1 Acknowledgments
This work was supported in part by the Air Force Office

of Scientific Research under the AFOSR award FA9550-12-

1-0476, by the National Science Foundation grant 1516096,

by the U.S. Department of Energy (DOE), Office of Ad-

vanced Scientific Computing Research, through the Ames

Laboratory, operated by Iowa State University under contract

No. DE-AC02-07CH11358, and by the U.S. Department

of Defense High Performance Computing Modernization

Program, through a HASI grant. This work used resources of

the National Energy Research Scientific Computing Center

(NERSC), a DOE Office of Science User Facility supported

by the U.S. Department of Energy under Contract No. DE-

AC02-05CH11231.

References
[1] K Asanovic, R Bodik, BC Catanzaro, JJ Gebis, P Husbands,

K Keutzer, DA Patterson, WL Plishker, J Shalf, SW Williams,
et al. The landscape of parallel computing research: A view from
berkeley. Technical report, Technical Report UCB/EECS-2006-183,
EECS Department, University of California, Berkeley, 2006.

[2] FA Bower, DJ Sorin, and S Ozev. Online diagnosis of hard faults
in microprocessors. ACM Transactions on Architecture and Code
Optimization (TACO), 4(2):8, 2007.

[3] G Bronevetsky and B de Supinski. Soft error vulnerability of
iterative linear algebra methods. In Proceedings of the 22nd annual
international conference on Supercomputing, pages 155–164. ACM,
2008.

[4] F Cappello, A Geist, W Gropp, S Kale, B Kramer, and M Snir.
Toward exascale resilience: 2014 update. Supercomputing frontiers
and innovations, 1(1), 2014.

[5] A Edelman. The mathematics of the Pentium division bug. SIAM
review, 39(1):54–67, 1997.

[6] J Elliott, M Hoemmen, and F Mueller. Evaluating the impact of SDC
on the GMRES iterative solver. In Parallel and Distributed Processing
Symposium, 2014 IEEE 28th International, pages 1193–1202. IEEE,
2014.

[7] J Elliott, M Hoemmen, and F Mueller. Tolerating Silent Data Cor-
ruption in Opaque Preconditioners. arXiv preprint arXiv:1404.5552,
2014.

[8] J Elliott, M Hoemmen, and F Mueller. A numerical soft fault model
for iterative linear solvers. In Proceedings of the 24nd International
Symposium on High-Performance Parallel and Distributed Comput-
ing, 2015.

[9] J Elliott, F Mueller, M Stoyanov, and C Webster. Quantifying the
impact of single bit flips on floating point arithmetic. preprint, 2013.

[10] M Hoemmen and MA Heroux. Fault-tolerant iterative methods via
selective reliability. In Proceedings of the 2011 International Con-
ference for High Performance Computing, Networking, Storage and
Analysis (SC). IEEE Computer Society, volume 3, page 9. Citeseer,
2011.

[11] ML Li, P Ramachandran, SK Sahoo, SV Adve, VS Adve, and Y Zhou.
Trace-based microarchitecture-level diagnosis of permanent hardware
faults. In Dependable Systems and Networks With FTCS and DCC,
2008. DSN 2008. IEEE International Conference on, pages 22–31.
IEEE, 2008.

[12] Z Li, Y Saad, and M Sosonkina. pARMS: a parallel version of the
algebraic recursive multilevel solver. Numerical linear algebra with
applications, 10(5-6):485–509, 2003.

[13] Y Saad and B Suchomel. ARMS: An algebraic recursive multilevel
solver for general sparse linear systems. Numerical linear algebra
with applications, 9(5):359–378, 2002.

[14] Yousef Saad. Iterative methods for sparse linear systems. Siam, 2003.
[15] B Schroeder, E Pinheiro, and WD Weber. DRAM errors in the wild: a

large-scale field study. In ACM SIGMETRICS Performance Evaluation
Review, volume 37, pages 193–204. ACM, 2009.

[16] M Snir, RW Wisniewski, JA Abraham, SV Adve, S Bagchi, P Balaji,
J Belak, P Bose, F Cappello, B Carlson, et al. Addressing failures
in exascale computing. International Journal of High Performance
Computing Applications, page 1094342014522573, 2014.

104 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

104 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

Performance Evaluation of Parallel Algorithms in R Statistical
Package on Multicore Parallel Architectures

A. F. Kummer Neto1 and A. Charão2 and P. P. Barcelos2 and B. O. Stein2

1Post-Graduate Program in Computer Science
2Department of Languages and Computing Systems

Federal University of Santa Maria, Brazil

Abstract— This paper presents an empirical performance
evaluation of some parallel algorithms implemented in R
statistical software. We focus on multicore parallel archi-
tectures, as other related works are more concerned with
parallel distributed architectures. Such an evaluation is
important, given that we live in an era in which the amount of
data streams is very large, thus requiring high performance
techniques and tools. The results show that the parallel
algorithms can be effective but not so efficient.

Keywords: r statistical software; parallel algorithms; performance

evaluation; multicore architecture

1. Introduction
R is a prominent free development environment used for

statistical data analysis [1]. It comprises a domain specific

programming language and a number of extensions and

function libraries that implement algorithms for data mining

such as sorting, clustering, association, among many others.

In statistical data analysis, there are many algorithms that

can be significantly time-consuming, depending on the size

of the input dataset. This becomes more of a concern in

the current scenario of big, voluminous amount of data that

is generated at speeding rates and has the potential to be

analyzed for extracting useful information.

Given R’s popularity in this domain, and also given the

advances on parallel computer architectures, some authors

and developers proposed solutions for parallel data analysis

using R [2], [3], [4]. This gave rise to packages such as

multicore [5], snow [6] and, finally, parallel [7],

which is included in the core distribution of R. The functions

provided by these libraries can also be combined with other

packages to speedup time-consuming data analysis, as with,

for example, Caret (short for Classification and Regression

Training) [8] and Boruta [9] packages.

The packages we mentioned above cover distributed and

shared memory parallel architectures but, to our knowledge,

there is no thorough study of their parallel efficiency on

such architectures. On the other hand, there is a widespread

availability of multicore parallel architectures which support

computations as provided by these packages. In this con-

text, the objective of this work is to evaluate the parallel

performance of some benchmarks on multicore platforms,

using multicore and parallel packages. Throughout

the article, we present the R environment, its extensions and

support for parallel computations, the benchmarks we used

and our computational experiments and, finally, we discuss

the results.

2. R and Parallel Computing

R environment provide resources for handling, analysis and

visualization of data. In addition to the native capabilities, R

is designed to extensible through libraries for a wide variety

of tasks, including big data analysis procedures and data

mining tasks.

Concerning to data visualization and graphical user in-

terfaces, we can highlight Rattle [10] and RStudio [11]

distributions which bring a number of embedded data

mining algorithms and a graphical user interface that further

facilitates using R.

Among some extensions that lend themselves to data

mining, we can cite Caret (short for Classification and

Regression Training) [8] and Boruta [9] packages. The first

is a compilation of functions that facilitates the creation of

data models. The second is a framework that implements

algorithms for feature selection and machine learning tasks.

Back to Caret package, it is used to simplify complex

regression and classification problems. One of its features is

the capability of concurrent execution of R code snippets via

multicore package. As a performance concern, the Caret

package does not load its entire function collection at once.

These are loaded as needed to prevent memory waste [8].

Concerning to parallel processing, we can explore paral-

lelism in distributed and shared memory systems

through snow [6] and multicore [5] R extensions, re-

spectively. These packages manages parallel jobs, dividing

the computation between the available cores/hosts available.

Note that these extensions are available for in Unix-based

systems only.

Since R 2.14.0, parallel package [12] offers a drop-

in replacement for snow and multicore functionalities–

some of them depicted in Table 1–and brings support for

dynamic work scheduling between workers.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 105

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 105

ISBN: 1-60132-444-8, CSREA Press ©

Function Memory model
Task

scheduling

clusterApplyLB distributed dynamic

parLapply distributed static

mclapply with
mc.preschedule

= FALSE
shared dynamic

mclapply with
mc.preschedule = TRUE

shared static

Table 1

G E N E R A L P U R P O S E F U N C T I O N S O F F E R E D B Y P A R A L L E L

PA C K A G E T O P E R F O R M PA R A L L E L C O M P U TAT I O N O N S H A R E D

A N D D I S T R I B U T E D M E M O RY S Y S T E M S .

All functions listed in Table 1 have an interface similar

to native lapply R function. clusterApplyLB and

parLapply were designed to reduce communication be-

tween workers due to high overhead inherent to network

communication. Communication is made via via sockets.

To exploit parallel processing in shared memory architec-

tures, we can use mclapply function to spawn workers on

a multicore system. In current version of R, the workers are

implemented via processes and piped communication since

R interpreter is not reentrant.

3. Benchmarks and Performance Met-
rics

To evaluate performance gains archieved with parallelism

facilities available in R, we build a set of four benchmark

applications. The first is application aim to take a user

perspective of parallel computing. The remaining bench-

mark applications are elaborated to stress specific parts of

interpreter as an attempt to reach a more robust analysis

of software infrastructure. A complete list of benchmark

applications is available in Table 2.

Benchmark
application

Test case

bench-caret
User point of view; automatic

parallelism over Caret native support
for multicore architectures

primes

Unbalanced, independent tasks with
simple reduction procedure; low

memory and communication
requirements

primes-repeat
Repetition of homogeneous tasks;

CPU-bound application

firesim
Monte Carlo simulation for fire

spreading on forest

Table 2

B E N C H M A R K A P P L I C AT I O N S U S E D I N T H I S W O R K .

To proceed with discussion of results, we use two metrics

proposed by [13] to compute the gains of parallel approach

over sequential one. The first metric is called Speedup and

is calculated as

Sn =
Tseq

Tn
(1)

where n indicate the number of concurrent tasks, Tseq and Tn

is how long the sequential and concurrent procedures take to

finish, respectively. The second metric measures how scalable

the parallelism approach is through Efficiency indicator

En =
Sn

n
. (2)

Ideally, we want a linear speedup, which incurs to efficiency

of 1. In most cases, this is infeasible since hardware and

software bound the gains of parallel approaches [14].

4. Case study: bench-caret.R
Elimination of meaningless information of a dataset is a

common steps in data mining technique.

Elimination of meaningless information of a dataset is a

common steps in data mining scenarios. An analysis with

all the variables of a particular object of study is unviable,

since the vast amount of data degrades the performance of

algorithms and overload computational resources–sometimes

worsening end result of analysis. To overcome this situations

is usual to employ a characteristics selection filtering to

eliminates any variable that is irrelevant for mining.

To elucidate the practice of data mining, we used a

benchmark written in R called bench-caret.R [15]. It

is structured as follows: initially, the benchmark loads the

Caret and RandomForest packages (set of algorithms used

for sorting); random samples of data with increasing size

are generated; the generated data are analyzed by the code

snippet responsible for processing. Lastly, the result is printed,

stating the size of the sample tested and the time spent on

execution.

To evaluate the performance of bench-caret.R bench-

mark, a computer with two Intel Xeon 2.00 GHz 4-core

processors (8 cores the total) was used, 64-bit operating

system Linux (Kernel 2.6.20), the statistical environment R

with Multicore and Caret packages.

The tests were performed with 1 to 8 cores, with in each

case three rounds were carried out the same test. This allowed

a check fluctuations in time for the same number of cores.

After collecting performance data, one can calculate the mean,

standard deviation and the coefficient of variation for each

core, encompassing three rounds each. There were more

executions performed because the coefficient of variation

was low (from 0 to 0.03) for all cases. Furthermore, a round

was performed without multicore package to ascertain the

effect on function of time.

As shown in Figure 1, the test took longer was the use

of only one core. There was a big difference in time using

106 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

106 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

Fig. 1

E X E C U T I O N T I M E S F O R VA RY I N G N U M B E R O F C O R E S A N D D ATA S I Z E S

1, 2, 3, 4 and 5 cores. From there the differences became

smaller. It should be noted that with 5 and 6 cores, times

were nearly identical. Intuitively, one might think that with

8 test centers would have been done faster. However, it was

not what happened. The test performed faster with 7 cores.

For the sample sizes of 4, 5, 6, 7, 8, 9 and 10, the 8 cores

were slower than 7. By rotating the test without Multicore,

there was a decrease in execution time regarding the test 1

with core and with the function. This is because this type of

function generates overhead.

Figure 2 brings the result of acceleration (speedup). It has

a representation of what would be the ideal performance, but

as you can see, is not what happens. Note, however, that the

higher the data size, the greater the acceleration.

5. Case study: primes application
The primes application is used to calculate how many

primes exists from 1 to a upper limit value ub, as illustrated in

Routine (1). On the parallel version, we perform computations

of lines (4 – 8) concurrently through functions of Table (1).

As output, the application count how many primes exists in

range (1, ub].
For the following results, we conducted our computational

experiments on a Dell PowerEdge R720 machine equiped

with two Intel Xeon E5-2697 processors (each one working

at 2.7 GHz) and 64 GiB of main memory (DDR3 1600 MHz

SDRAM). As the version of R available on repositories of

distribution used by this machine is old (R 3.1.1 in Debian 8

Routine 1 Brute-force prime counting routine

Input: Upper limit ub for greatest number of testing sequence.
Output: count, Number of primes found in interval (1, ub].
1: count ← 0

2: for v ∈ (1, ub] do
3: flag ← true
4: for i ∈ [2, v − 1] do
5: if vmod i �= 0 then
6: flag ← false
7: end if
8: end for
9: if flag = true then

10: count ← count+ 1

11: end if
12: end for

official repositories), we opted to a manual install of official R

distribution 3.2.4 with standard library bundle. The machine

uses a 64-bit Linux operating system 3.16.0.

The first Figure (3) show speedup reached up to 24 workers.

The results show that primes application does not scales

well on any of test cases, mainly due to unbalanced nature

of tasks. Contrary to what we expect, dynamic assignment

of task does not help to improve speedup of any test cases.

On package documentation, the authors pointed com-

munication overhead could make dynamic load balancing

prohibitive. That does not justificates poor performance of

primes application since each task accomplished need to

communicate only one byte to job scheduler process.

Low speedup rates result in poor parallelism efficiency. In

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 107

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 107

ISBN: 1-60132-444-8, CSREA Press ©

Fig. 2

S P E E D U P F O R B E N C H - C A R E T. R

2 4 8 12 16 24
of workers

0

1

2

3

4

5

6

S
p
ee
d
u
p

mc dynamic

cl static

mc static

cl dynamic

Fig. 3

S P E E D U P V E R I F I E D F O R P R I M E S B E N C H M A R K

the best case (speedup of ≈ 6 for n = 12, 24), parallelism

efficiency is always below 60%–value which decrease as

number of workers grows up.

6. Case study: primes-repeat appli-
cation

Similar to previous benchmark, primes-repeat appli-

cation test for primes repeatedly over a small range of values.

2 4 8 12 16 24
of workers

0

20

40

60

80

100

P
ar
al
el
lis
m

effi
ci
en
cy

(%
)

mc dynamic

cl static

mc static

cl dynamic

Fig. 4

PA R A L L E L I S M E F F I C I E N C Y F O R P R I M E S B E N C H M A R K

The choice of elements is such that each number takes almost

the same time to be tested. For this, we substitute the range

presented at line (2) of Routine (1) by a list of numbers to

test.

We use R bundle function rep.int(x, times) to

build a list with times repetitions of x value and use as

input of benchmark. With a list build by rep.int(5×105,
5×103) we verified almost linear speedups as shown in

Figure (5).

108 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

108 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

2 4 8 12 16 24
of workers

0

2

4

6

8

10

12

14

16

18

S
p
ee
d
u
p

mc dynamic

cl static

mc static

cl dynamic

Fig. 5

S P E E D U P V E R I F I E D F O R P R I M E S- R E P E A T B E N C H M A R K

As expected, we observed great efficiency rates for all

test cases with static task scheduling, as show in Figure

(6). The best results are obtained with mclapply with an

average 89% of efficiency. Besides, worst results are found

with mclapply too, but with dynamic task schedule, due to

repetitive creation and destruction of worker processes [12].

The remaining results pointed that clusterApplyLB and

parLapply obtained 87% of average efficiency for both

static and dynamic task scheduling (2% worse than best

results) and up to 16 cores.

2 4 8 12 16 24
of workers

0

20

40

60

80

100

P
ar
al
el
lis
m

effi
ci
en
cy

(%
)

mc dynamic

cl static

mc static

cl dynamic

Fig. 6

E F F I C I E N C Y V E R I F I E D F O R P R I M E S- R E P E A T B E N C H M A R K

Increase from 16 to 24 cores do not promote any improve-

ment in computation times. Besides, we verified a efficiency

drop of 29% of efficiency for mclapply and static work

schedule, the test case of best results for primes-repeat
application.

7. Case study: firesim application
firesim is a benchmark application based on a Monte

Carlo method to simulate fire spreading on a forest. The

application perform several trials to estimate the percentage

of forest burnt with distinct fire spread probabilities.

The application uses a matricial representation of forest, in

which each position of matrix is a tree. Each tree can be in

one of the following states: unburnt, smoldering, burning and

burnt. A tree in burning state can spread fire to its neighbors

following a 4-connected model.

Each trial starts with one smoldering tree. The trial

ends after several iterations of 4-connected fire spreading

simulation, when there is no trees in smoldering and burning
state.

In our computational experiments we used a 30×30 forest

(900 trees), spreading probabilities from 0% to 100%–a total

of 10 spreading scenarios, each one repeated 5000 times.

Similar to previous results, we observed low speedup rates–

up to 14 times faster than serial implementation–as pointed

in Figure 7. The result is shown in Figure 8 indicates less

than 60% of parallelism efficiency when all cores of machine

be used.

2 4 8 12 16 24
of workers

0

2

4

6

8

10

12

14

16

S
p
ee
d
u
p

mc dynamic

cl static

mc static

cl dynamic

Fig. 7

S P E E D U P V E R I F I E D F O R F I R E S I M B E N C H M A R K

8. Conclusions
The combination of Caret and multicore packages was

effective and achieved satisfactory results with relatively

large data samples. The [15] benchmark revealed that the

parallel processing feature improves the performance of the

tests in most cases. The acceleration, however, does not hold

up to eight available cores.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 109

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 109

ISBN: 1-60132-444-8, CSREA Press ©

2 4 8 12 16 24
of workers

0

20

40

60

80

100

P
ar
al
el
lis
m

effi
ci
en
cy

(%
)

mc dynamic

cl static

mc static

cl dynamic

Fig. 8

E F F I C I E N C Y V E R I F I E D F O R F I R E S I M B E N C H M A R K

The other tests shown that great speedup and parallelism

efficiency are achieved with coarse-grained tasks, as well as

dynamic job scheduling proved to be ineffective to surpass

unbalanced tasks.

It is intended to continue this research, primarily to

ascertain the cause of the poor performance with 8 cores.

This will only be possible with a deeper analysis of the Caret

packages, Multicore and own mining algorithm.

References
[1] W. N. Venables and D. M. Smith, “An introduction to R,” 2010, avail-

able: <http://cran.r-project.org/doc/manuals/R-intro.pdf>. Accessed
April 2016.

[2] M. Schmidberger, M. Morgan, D. Eddelbuettel, H. Yu, L. Tierney,
and U. Mansmann, “State of the art in parallel computing with r,”
Journal of Statistical Software, vol. 31, no. 1, pp. 1–27, 8 2009.
[Online]. Available: http://www.jstatsoft.org/v31/i01

[3] Q. E. McCallum and S. Weston, Parallel R. O’Reilly Media, Inc.,
2011.

[4] E. Mahdi, “A survey of r software for parallel computing,” American
Journal of Applied Mathematics and Statistics, vol. 2, no. 4, pp. 224–
230, 2014. [Online]. Available: http://pubs.sciepub.com/ajams/2/4/9

[5] S. Urbanek, “multicore: Parallel processing of r code on machines
with multiple cores or CPUs,” 2009, available: <https://cran.r-project.
org/src/contrib/Archive/multicore/>. Accessed April 2016.

[6] L. Tierney, A. J. Rossini, N. Li, and H. Sevcikova, “Simple network
of workstations for r,” 2003, available: <http://homepage.stat.uiowa.
edu/~luke/R/cluster/cluster.html>. Accessed April 2016.

[7] R-core, “Package parallel,” 2015, available: <http://stat.ethz.ch/
R-manual/R-devel/library/parallel/doc/parallel.pdf>. Accessed April
2016.

[8] M. Kuhn, “The Caret package,” 2010, available: <http://cran.
r-project.org/web/packages/caret/vignettes/caretTrain.pdf>. Accessed
April 2016.

[9] B. M. Kursa and W. R. Rudnicki, “Feature selection with the boruta
package,” Journal of Statistical Software, vol. 36, 2010, available:
<http://www.jstatsoft.org/v36/i11/paper>. Accessed April 2016.

[10] Togaware, “Rattle: Gnome cross platform gui for data mining using R,”
2010, available: <http://rattle.togaware.com/>. Accessed April 2016.

[11] J. S. Racine, “Rstudio: A platform-independent ide for r and sweave,”
Journal of Applied Econometrics, vol. 27, no. 1, pp. 167–172, 2012.

[12] R Core Team, R: A Language and Environment for Statistical
Computing, R Foundation for Statistical Computing, Vienna, Austria,
2016. [Online]. Available: https://www.R-project.org

[13] D. L. Eager, J. Zahorjan, and D. Lazowska, “Speedup versus efficiency
in parallel systems,” Computers, IEEE Transactions on, vol. 38, no. 3,
pp. 408–423, 1989.

[14] V. P. Kumar and A. Gupta, “Analyzing scalability of parallel algorithms
and architectures,” Journal of parallel and distributed computing,
vol. 22, no. 3, pp. 379–391, 1994.

[15] A. Engelhardt, “Benchmarking feature selection with Boruta
and Caret,” 2010, available: <http://www.r-bloggers.com/
benchmarking-feature-selection-with-boruta-and-caret/>. Accessed
April 2016.

110 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

110 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

Scalability of OpenFOAM for Simulations of a Novel
Electromagnetic Stirrer for Steel Casting

Isabella Mazza1 1*, Ahmet Duran2 2&, Yakup Hundur3 3#, Cristiano Persi1, Andrea Santoro1, Mehmet
Tuncel2,4

1Ergolines Lab s.r.l., Area Science Park, Padriciano 99, 34149, Trieste, Italy
2Mathematical Engineering, Istanbul Technical University (ITU), 34469 Sariyer, Istanbul, Turkey

3Physical Engineering, Istanbul Technical University (ITU), 34469 Sariyer, Istanbul,Turkey
4Informatics Institute, Istanbul Technical University (ITU), 34469 Sariyer, Istanbul, Turkey

* Corresponding author. E-mail address: isabella.mazza@ergolines.it
& Corresponding author. E-mail address: aduran@itu.edu.tr
Corresponding author and speaker. E-mail address: hundur@itu.edu.tr

Abstract - In this work, custom codes were developed for
HPC-based magnetohydrodynamics (MHD) simulations,
enabling the design of a dedicated electromagnetic stirrer
(EMS) for the electric arc furnaces (EAF). The fluid-dynamics
of liquid steel within the EAF under the effect of
electromagnetic stirring has been studied under different
simulation parameters. We performed parallel simulations
using an OpenFOAM solver and other related programs on
IBM-FERMI (a PRACE Tier-0 system) at CINECA, Italy. We
realized performance analysis for the current sequential
version and updated parallel versions of the code via
extensive simulations. We present and discuss the results of
the scalability analysis of the specific codes using two
different domain decomposition methods including simple and
hierarchic.

Keywords: HPC, scalability, OpenFOAM, steel casting,
magnetohydrodynamics simulations

1 Introduction
The use of state-of-the-art electromagnetic stirrers

(EMSs) for steel quality improvement represents a well-
established practice in the steelmaking industry ([1], [2]).
Besides their employment in steel continuous casting,
dedicated EMS can be designed to improve the performance
of the electric arc furnace (EAF), where metal scrap is melted
at the very first stage of the steel casting process. A state-of-
the-art overview of the applications of electromagnetic
machines in the steelmaking industry is given in [2].

Numerical simulations of the effects of electromagnetic fields
on liquid metals can be performed by various Computational
Fluid Dynamics (CFD) codes, including OpenFOAM [3],
which solve the equations of Magneto-Hydro-Dynamics
(MHD) models. A general review of possible solutions is
given by Murawski [4]. More recently, swirl flow velocities
are compared in the presence and absence of solidification for
the mould EMS system simulations (see Ren et al. [5]).
Moreover, a cellular-automaton-finite-element method was
used to simulate the solidification structure of a continuous
casting large round billet to examine the effect of mold
electromagnetic stirring (see Tao et al. [6]). Furthermore, a
variational multiscale algorithm was employed to simulate the
liquid steel flow in a non-industrial EMS application in order
to study the small scale turbulences in [7]. In order to design
highly customized EMSs, dedicated codes for MHD
simulations need to be implemented.

It is important to conduct research including HPC-based
MHD simulations to design a new EMS dedicated to the
casting of large blooms. The very first stage of the casting
process is the melting of metal scrap into the EAF. Optimal
steel melting has a critical impact on the efficiency of the
overall casting process both in terms of energy efficiency,
costs optimization and productivity. Employment of
electromagnetic stirring in the EAF significantly improves the
EAF performance by providing several benefits, including
improved homogenization of the liquid bath and reduced
furnace wear.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 111

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 111

ISBN: 1-60132-444-8, CSREA Press ©

 The goal of this paper is to conduct HPC-based
simulations of the fluid dynamics of liquid steel in the EAF
under the effect of electromagnetic stirring. Due to the
complexity of the multi-physical system under study, very fine
discretization in terms of geometry will be required. The use
of HPC and the possibility to take advantage of specialized
expertise is therefore key to meet this industrial challenge.

 The remainder of this paper is organised as follows:
Section 2 presents methodology and results. Section 3
concludes this work.

2 Methodology and results
 EMS design has been performed following an iterative,
multiple-simulation process including: 1) analysis of the
geometrical constraints, 2) calculation of the EM
performance, 3) fluid dynamic simulation 4) parameter
calibration, 5) iteration of steps 2 to 4 until the required EM
performance is achieved.

 The project partners at ITU (Duran, Hundur and Tuncel)
have prepared sequential job submit scripts and parallel job
submit scripts to compile and run OpenFOAM with
mathematical operators such as turbulence models and various
mesh operators and the solver, and also to execute other
related programs on IBM-FERMI at CINECA, Italy. They
guided Ergolines for performance and scalability of the codes
on HPC system.

Fig. 1a: EAF geometry and mesh (top view).

Fig. 1b: EAF geometry and mesh (bottom view).

Fig. 1c: Fluid-dynamic simulation: velocity field displayed
as flux lines (top view).

Fig. 1d: Fluid-dynamic simulation: velocity field displayed
as vector field (bottom view).

 The fluid-dynamics of liquid steel in an electric arc
furnace under the effect of electromagnetic stirring has been
studied by means of HPC-based numerical simulations. The
geometry, mesh and fluid dynamics of the system under study
are represented in Figures 1a-1d. The velocity field generated
by the EMS, which is located under the EAF, is also shown.

 The magnetic field produced by the stirrer and the force
field induced into the steel has been computed by means of
Comsol Multiphysics in order to calculate the initial
conditions for the fluid-dynamic simulations. The stationary
magnetic and force fields have then been used as initial
conditions for the fluid dynamic simulations, carried out in
OpenFOAM code (C++, MPI) where OpenFOAM (see [3]) is
an open source CFD toolbox. A series of fluid dynamic
simulations has been performed by considering a stationary
magnetic field. A mesh of 3 million elements was used.
Ergolines’ proprietary solver, implemented in OpenFOAM,
has been compiled on the CINECA FERMI supercomputer.
GNU 4.4.6 C++ compiler has been used because the related
libraries were compiled via GNU by CINECA. Specifically,
in order to simulate the effects of electromagnetic stirring on
liquid steel, a dedicated customization of Ergolines’ current
OpenFOAM code has been implemented so as to couple
Electromagnetism with Fluid Dynamics. The simulations in
this work are obtained using the OpenFOAM 2.1.1.

112 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

112 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

 In order to better assess how parallelisation improves
computational performance, the simulations have been carried
out by considering an increasing number of processors. All
the simulations were run over 200 iterations: in fact, this
figure represents a good trade-off between computational
times and statistics, since it produces enough data to carry out
a sound statistical analysis while maintaining at the same time
an acceptable computational time.

 In addition, two different domain decomposition
methods have been compared:

 The “simple” method, which generates a mesh where the
number of elements per unit volume is in general not the
same for all the elements;

 The “hierarchical” method, which generates a mesh
where the number of elements per unit volume is constant
in the whole domain. This approach enables to efficiently
distribute the computational load between the cores.

 While the first approach is best suited for simple
geometries, the latter one is more convenient when dealing
with complex domains. We observe that the simple
decomposition is not a suitable strategy for the case using 256
cores possibly due to the unbalanced computational load
distribution in Table 1.

 The results of the simulations are reported in Table 1,
where performance is quantified in terms of speed-up and
computational time. The BlueGene/Q (FERMI) configuration
(see [8]) is made of 10 racks such as 2 racks having 16 I/O
nodes per rack, implying a minimum job allocation of 64
nodes (1024 cores) and 8 racks having 8 I/O nodes per rack,
implying a minimum job allocation of 128 nodes (2048
cores). In other words, each node contains 16 cores.

 Figure 2.a shows the measured speed-up as a function of
the number of cores used. The ideal trend is linear and it is
displayed as a green line for comparison. The blue and red
lines represent the measured trends based on the hierarchic
and simple methods, respectively.

Table 1. Data displayed in Figures 2 and 3. Legend: # of nodes: number of nodes allocated on CINECA FERMI (minimum 64). Each node
has 16 cores at most. # of cores: number of cores used in the simulation. # of iterations: number of iterations. Decomposition: domain
decomposition methos and strategy (different strategies were used for the same method). Computation time: time of the simulation (seconds).
Speed-up: speed-up as a function of the number of cores, calculated as the ratio of the time with "n" cores over the time with 20 cores (20
cores has been considered as the normalization factor).

of nodes # of cores # of iteration Decomposition Computational time (s) Speed-up

64 256 200 not suitable with simple decomposition strategy

64 128 200 simple 8x4x4 9520 3.04

64 64 200 simple 4x4x4 15907 1.82

64 20 200 simple 2x2x5 28988 1.00

256 1024 200 hierarc. 32x4x8 xzy 1241 25.96

256 1024 200 hierarc. 16x8x8 xzy 1277 25.23

128 1024 200 hierarc. 16x8x8 xzy 1304 24.71

128 1000 200 hierarc. 10x10x10
xzy 1247 25.84

128 900 200 hierarc. 10x10x9 xzy 1231 26.18

128 800 200 hierarc. 10x10x8 xzy 1254 25.70

128 600 200 hierarc. 10x10x6 xzy 1412 22.82

64 512 200 hierarc. 8x8x8 xzy 1477 21.82

64 512 200 hierarc. 16x4x8 xzy 1544 20.87

64 400 200 hierarc. 10x10x4 xzy 2005 16.07

64 256 200 hierarc. 8x4x8 xzy 2830 11.39

64 128 200 hierarc. 8x4x4 xzy 5479 5.88

64 64 200 hierarc. 8x2x4 xzy 10613 3.04

64 20 200 hierarc. 5x2x2 xzy 32222 1.00

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 113

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 113

ISBN: 1-60132-444-8, CSREA Press ©

Fig. 2a: Speed-up as a function of the number of cores.

Fig. 2b: Zoom on the region of the graph in Fig. 2a enclosed in a red rectangle: linear regime.

114 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

114 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

Fig. 3: Wall-clock time as a function of the number of cores.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 115

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 115

ISBN: 1-60132-444-8, CSREA Press ©

 Figure 2.a displays almost a linear speed-up till 512
cores. Part of the linear region is enlarged in Figure 2.b,
which shows the superior performance of the hierarchic
decomposition, close to the ideal trend, with respect to the
simple method. In fact, since the shape of the domain
representing the furnace is quite complex, the hierarchic
decomposition enables to distribute the mesh elements and
computational load much more efficiently than the simple
method. In addition, the simple method fails to decompose the
domain if more than 128 cores are used. Based on this result,
in all the successive simulations only the hierarchical method
was used.

 After 512 cores, the speed-up growth-rate gradually
decreases and saturation is reached. When a large number of
cores are used, the number of elements per core decreases,
reducing the computational time, but the communication
overhead dominates because more cores need to communicate
with each other. Since this figure is characteristic of the
system, it does not improve so much by increasing the number
of cores, thus causing the speed-up to saturate. Moreover, we
observe a gradual speed-up up to 1024 cores with oscillations
depending on the decomposition and the memory usage of
each core in Table 1. For example, the simulation took 1241
seconds with the hierarchical decomposition mesh of 32x4x8
and 1024 cores as having advantage where 4 cores are used
per node instead of 8 cores per node so that a larger memory
can be provided.

3 Conclusions
 We conducted research and prepared codes/scripts for
HPC-based magnetohydrodynamics simulations for designing
an electromagnetic stirrer. We performed parallel simulations
using the OpenFOAM, solver and other related programs on
IBM-FERMI at CINECA. We obtained that the solver with
hierarchical decomposition method scales for a mesh domain
having 3000 K elements, on FERMI, CINECA. We observed
almost a linear speed-up up to 512 cores and then a gradual
speed-up up to 1024 cores. Moreover, the matrices having
larger order coming from the finer meshes may require a
higher saturation point for the optimal minimum number of
cores (see [9]). Thus, the code is suitable for the BlueGene/Q
(FERMI) system.

 The fluid-dynamics of liquid steel in an electric arc
furnace under the effect of electromagnetic stirring has been
studied by means of HPC-based numerical simulations. The
velocity field was generated by the EMS.

 As a conclusion, the use of HPC for steel casting
provided a dramatic advantage and enabled to carry out an
extensive analysis of the fluid-dynamic of the liquid steel in
the furnace under the influence of electromagnetic stirring,

providing key information for EMS design and
industrialization.

Acknowledgements

 This work was supported by the PRACE project funded
in part by the EU’s Seventh Framework Programme
(FP7/2007-2013) under grant agreement RI-312763, by the
EU’s Horizon 2020 research and innovation programme
(2014-2020) under grant agreement 653838, and by the
Project 2010PA3012 awarded to access to IBM-FERMI at
CINECA, Italy under the 21st Call for PRACE Preparatory
Access.

4 References
[1] Norbert Vogl, Hans-Jürgen Odenthall, and Markus
Reifferscheid, Fluid flow in continuous casting affected by
electromagnetic fields, 6th International Congress on Science
and Technology of Steelmaking, Beijing, May 2015.

[2] Brian G. Thomas and Rajneesh Chaudhary, State of the
art in electromagnetic flow control in continuous casting of
steel slabs: Modelling and plant validation, 6th Int.
Conference on Electromagnetic Processing of Materials EPM
2009, Oct. 2009.

[3] OpenFOAM main site, http://www.openfoam.com

[4] Kris Murawski, Numerical solutions of
magnetohydrodynamics equations, Bulletin of the Polish
Academy of Sciences, Technical Sciences, 59(2), 2011.

[5] B-Z. Ren, D-F. Chen, H-D. Wang, M-J. Long, and Z-
W. Han, Numerical simulation of fluid flow and solidification
in bloom continuous casting mould with electromagnetic
stirring, Ironmaking & Steelmaking, 42(6), 401−408, 2015.

[6] Tao Sun, Feng Yue, Hua-jie Wu, Chun Guo, and Ying
Li, and Zhong-cun Ma, Solidification structure of continuous
casting large round billets under mold electromagnetic
stirring, Journal of Iron and Steel Research, International,
23(4), 329−337, 2016.

[7] Marioni Luca, Jose Alves, François Bay, and Elie
Hachem, Effect of m-ems on in-mould transient flow during
continuous casting, the Proceedings of Int. Conference on
Heating by Electromagnetic Sources, Italy, May 2016.

[8] http://www.cineca.it/en/content/fermi-bgq

[9] Ahmet Duran, M. Serdar Celebi, Senol Piskin, and
Mehmet Tuncel, Scalability of OpenFOAM for bio-medical
flow simulations, Journal of Supercomputing, 71(3),
938−951, 2015.

116 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

116 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

Parallel Kernel K-Means on the CPU and the GPU

Mohammed Baydoun1, Mohammad Dawi1, and Hassan Ghaziri1
1Beirut Research and Innovation Center, Beirut, Lebanon

Abstract – K-Means is probably the leading clustering
algorithm with several applications in varying fields such as
image processing and patterns analysis. K-Means has been
the basis for several clustering algorithms including Kernel K-
Means. In machine intelligence and related domains
Kernelization transforms the data into a higher dimensional
feature space by calculating the inner products between the
different pairs of data in that space. This work targets Kernel
K-Means and presents parallel implementations of the
clustering algorithm using CUDA on the GPU and OpenMP,
Cilk-Plus and BLAS on the CPU. The implementations are
tested on different datasets leading to different speedups with
CUDA achieving the faster runtimes.

Keywords: Kernel K-Means; clustering; CUDA; OpenMP;
BLAS

1 Introduction
 Clustering consists of finding partitions of a data set
such that similar data points are grouped together. This
definition is vague on purpose. In fact, there is no standard
definition to clustering and it remains at the end a subjective
procedure allowing the end user to detect some hidden
structures or regularities inside the data set. Clustering has a
wide variety of applications such as data mining, pattern
recognition, knowledge discovery, text mining, and many
others [1].

Definitely, there are several clustering algorithms and perhaps
the most famous one is K-Means due to its simplicity and
behavior. K-Means has had several modifications and
amongst the notable ones are those that utilize Kernelization
which are generally termed Kernel K-Means. These methods
are used to bypass some of the limitations of K-Means related
to data representations. Kernel Methods are mainly used since
the data in its raw representation often needs to be explicitly
transformed into feature vector representation via a user-
specified feature map. Kernel methods are relatively
computationally cheap methods for achieving this objective
using a selected kernel, i.e., a similarity function over pairs of
data points in raw representation. Kernel methods owe their
name to the use of kernel functions, which enable them to
operate in a high-dimensional implicit feature space [2].

High Performance computing is a major area of research. In
particular, parallel programming leads to implementing a
parallel version of the required algorithm while targeting a

suitable hardware. The aim is essentially speeding up the
performance of the algorithm in comparison with other
hardware. While a sequential or traditional program runs
serially, a parallel program utilizes the independences or
parallelizable parts of the algorithm to speed-up the
performance taking into consideration the used hardware and
its limitations. It is worth mentioning that the speedup of any
program is limited by its sequential part according to
Amdahl's law.

Applications to parallel computing and programming are
limitless since there are limitless algorithms and various
parallel architectures or platforms. These include Field
Programmable Gate Arrays (FPGA), Graphics Processing
Units (GPU), Multi-Core Central Processing Units (CPU),
Networks or Clusters, ASICs, and others developed for the
main purpose of enhancing performance of various
algorithms.

In regards to CPUs, several tools exist and perhaps the most
common one is Open Multi Processor (OpenMP). Others
include PThreads and Cilk Plus. Concerning GPUs, the main
available tools are General Purpose Programming on the GPU
(GPGPU), Open Computing Language (OpenCL), and
Compute Unified Device Architecture (CUDA).

This work addresses using the CPU and implements Kernel
K-Means using OpenMP and Cilk Plus. In addition, we target
the GPU and provide the Kernel K-Means implementation on
an Nvidia CUDA capable GPU.

Also, this work considers various artificial and real datasets
having different numbers of patterns and features without
accounting for big data cases which is definitely an important
issue but is a problem on its own and it can be targeted in
future works. It is important to note that in order to obtain
accurate comparisons; this work optimizes the serial and the
parallel versions of the algorithm on the handled
architectures.

The remainder of the paper discusses the different ideas
regarding the proposed Kernel K-Means implementations. In
section II, we provide a brief review of previous literature on
the related subjects. Afterwards, section III explains the
Kernel K-Means clustering algorithm. Section IV details the
serial and parallel CPU related implementations and section
V dwells on the CUDA GPU implementation. After that,

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 117

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 117

ISBN: 1-60132-444-8, CSREA Press ©

section VI presents the main results and the last section
provides the conclusion.

2 Literature Review
 K-Means have been the subject of much research.
Kernel K-Means is part of this research, where works
concentrate on the accuracy of the clustering algorithm. The
main ideas related to Kernel K-Means were discussed in [2].
Other ideas were discussed in different research. The work in
[3] added a kernel step to the global K-Means algorithm
discussed in [4] to deal with nonlinearly separable clusters. In
[4] the work proposed a way to eliminate high sensitivity of
K-Means to the initial guess. In [3], the authors also presented
a fast version to get comparable running times. In [5], the
authors addressed implementing the Kernel K-Means
algorithm on large data. They discussed changing the
clustering order from the sequence of the sample to the
sequence of the Kernel, which enabled an efficient way of
handling the Kernel Matrix along with using all the available
disk space. The work in [5] aimed at improving the speed of
the kernel k-means by using a new kernel function termed
conditionally positive definite kernel (CPD). They mentioned
getting running times superior to that of the K-means
clustering algorithm on artificial and real data. In regards to
parallelizing the Kernel K-Means algorithm, previous work is
lacking and therefore, we consider the literature related to
parallel implementations of K-Means.

The work in [6] implemented several algorithms on the GPU
and K-Means was one of them. Moreover, the work in [7]
discussed the first implementation on a CUDA device by
mainly parallelizing the part accounting for the minimum
distance calculation. In [8], the work provided a detailed
CUDA implementation of K-Means and discovered that a
speedup of 14 times is possible in comparison to a single
threaded CPU implementation. Also, MapReduce was used in
several works in order to present a parallel K-Means
algorithm such as the algorithm in [9]. Additionally, the work
in [10] considered the parallel implementation of K-Means on
MPI, OpenMP and CUDA and concluded that for relatively
small data, OpenMP performs the best, while for larger data,
CUDA obtains the best speedup.

In [11], the objective was to utilize the advantages of both
MPI and OpenMP to parallelize the K-Means algorithm,
namely parallel processing inside the node and distribution of
tasks inside the cluster obtained through MPI. The latter work
showed good speedups especially on large datasets.
Moreover, [12] focused on distributed ways to parallelize K-
Means and proved scalability over large datasets.

Thus, and despite the lack of any parallel implementation of
Kernel K-Means, there are lots of relevant works on the
parallel implementation of the K-Means algorithm. So, the
main contribution of this work lies in being the first parallel
implementation, as far as we know, of Kernel K-Means using
the targeted architectures or tools.

3 Kernel K-Means
 Kernel K-Means utilizes the Kernelization approach to
divide given data into a set of clusters using an approach that
is mainly based on K-Means.

First, it is important to provide a basic idea about
Kernelization. This is a common approach that is used with
various algorithms including PCA, SOM, etc… It can be
explained in the following.

Given a set S in the input space, its image is φ(S) in the
feature space. The center of mass of set φ(S) is the vector
given by:

1

1() ()
l

mean i
i

S x
l

φ φ
=

= ∑ (1)

As with all points in the feature space we will not have an
explicit vector representation of this point. However, a point
xmean whose image under φ is φmean (S) may not exist. In
other words, we are now considering points that potentially
lie outside φ(X) that is the image of the input space X under
the feature map φ .

Despite this apparent inaccessibility of the point φmean (S) , we
can compute its norm using only evaluations of the kernel
function on the inputs:

2

1 1

2
, 1

2 , 1

1 1() (), () (), ()

1 (), ()

1 (,)

l l

mean mean mean i j
i j

l

i j
i j

l
i ji j

S S S x x
l l

x x
l

k x x
l

φ φ φ φ φ

φ φ

= =

=

=

= =

=

=

∑ ∑

∑

∑

 (2)

Where l is the number of samples in the set φ(S) , or in other
words it is the number of samples per class or cluster.

Hence, the square of the norm of the center of mass is equal
to the average of the entries in the kernel matrix.

Incidentally this implies that this sum is greater than or equal
to zero, with equality if the center of mass is at the origin of
the coordinate system. Similarly, we can compute the
distance of the image of a point x from the center of mass
φmean (S) .

2

21 , 1

() () () (), () ()

(), () 2 (), () (), ()
2 1(,) (,) (,)

mean mean mean

mean mean mean

l l
i i ji i j

x S x S x S

x x x S S S

k x x k x x k x x
l l

φ φ φ φ φ φ
φ φ φ φ φ φ

= =

− = − −

= − +

= − +∑ ∑

(3)

118 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

118 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

In regards to clustering in general and K-Means in particular,
the main aim is to determine the clusters of a certain input set
X = {x1,...xN}.

We first provide a basic explanation of K-Means. K-Means
starts with the data randomly labeled according to a selected
number of clusters. Then, and on an iterative basis, the label
of each pattern is chosen based on the distance from the
center of the cluster which is constantly updated until
convergence.

For Kernel K-Means, the data is initially transformed into the
Kernel feature space using a predefined kernel function such
as the ones mentioned in the following equations:

2

2

|| ||(,) exp()
2

x yk x y
σ
−= − (Gaussian) (4)

 k(x, y) = exp(− || x − y ||

2σ 2) (Radial Basis) (5)

 k(x, y) = tanh(α xT y + β) (Sigmoid) (6)

2

1

()(,) 1 1 ()
2

N i i
n

i i

x yk x y
x y

=

−= −
+

∑ (Chi-Square) (7)

In this work, we only utilize the Gaussian Kernel noting that
other kernels can be performed in a similar manner without
greatly affecting the performance of the algorithm especially
that this only affects the first phase of the algorithm (Phase I),
where the Kernel Matrix needs to be computed. It is worth
emphasizing that this phase can be used in several other
Kernel methods such as Kernel SOM [13] and Kernel PCA,
so its implementation is generally useful.

In order to provide a complete explanation of the Kernel K-
Means algorithm, the pseudo code of the algorithm is
provided noting that we divide the algorithm into two phases.

Given a training set of N samples ← X1,........, XN

(Phase I) KNxN ← Kernel Matrix:

K(i, j)← φ(Xi),φ(X j) = exp(−
|| Xi − X j ||2

2σ 2) (If the

Gaussian Kernel is used)
Number of clusters← k , cluster centers (C1,........,Ck)

Distance matrix: D (N rows, k columns),
D(i, j) = φ(Xi)−φ(Cj)

2

Randomly assign each pattern to a cluster: Labels matrix A (N rows,
k columns), label rule:

1 ;
0

i
ij

if X in cluster j
A

otherwise
⎧

= ⎨
⎩

change ← 1
while change ≠0 do
 (Phase II) Iterative
 for j=1:k do
 calculate the cluster size l
 for i=1:N do
 calculate distance of each sample from the mean of the
 cluster in feature space using:

1

1() ()l
j ij is

C A X
l

φ φ
=

= ∑

21 1 1

2 1(,) (,) (,) (,)N N N
i i i m mj nj m nm m n

D i j K X X K X X A A K X X
l l= = =

= − +∑ ∑ ∑

 end for
 end for
 old A = A
 update labels of all samples according to minimum distance
 A =indices(minimum of D along the columns)
 if old A = A then
 change=0
 end if
end while

4 CPU Implementation
 This work mainly tested the algorithm using C on
different artificial and real datasets with varying number of
patterns and features without accounting for big data cases
since this is a domain on its own and should be the subject of
future work.

We optimized both the serial and the parallel implementations
on a multicore CPU to attain the highest possible speedups
whilst ensuring the correctness of the results.

Concerning the serial version, the implementation relies on
using a Matrix-like form that utilizes functions similar to
matrix and vector operations which is generally optimal in
Matrix Based Software such as Matlab. This matrix like form
is possible due to the nature of the problem as can be
observed in the pseudo code. For example, phase I is
relatively similar to the matrix multiplication, but by
replacing the multiplication with a subtraction, squaring and
division followed by the exponential calculation. Also, the
distance calculation involves a matrix multiplication for
calculating the second term in a single kernel for all the
values followed by multiplying by (2/l). So, these can be
directly optimized.

Thus, in the C sequential version, we initially implemented a
direct serial version and afterwards used and modified the
Open-BLAS library [14], where BLAS stands for Basic
Linear Algebra Subprograms, in order to optimize the
implementation using matrix-like operations. Open-BLAS
includes one of the fastest sequential and parallel matrix
multiplication algorithms, so we implemented similar
approaches that suit the Kernel-K Means algorithm which
helped achieve the faster serial solution.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 119

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 119

ISBN: 1-60132-444-8, CSREA Press ©

Concerning the parallel multicore CPU implementation, we
implemented the Kernel K-Means algorithm in C using two
very common libraries. These are the OpenMP and Cilk-Plus
parallel libraries. Also, and due to the matrix properties of the
problem, we used Open-BLAS which allows for selecting the
number of threads and is therefore parallel. The OpenMP and
Cilk Plus implementations are relatively similar since we
basically parallelized the sequential version by dividing the
threads according to the number of patterns, which allows for
the highest level of parallelism in this algorithm. In regards to
the BLAS related versions, we based on the parallel BLAS
version in addition to using OpenMP when BLAS was not
applicable or even when it achieved lower times to obtain the
fastest possible times.

5 CUDA Implementation
 The CUDA implementation is rather similar to the
parallel CPU one but with important differences that require
explanation.

Initially, CUDA requires transferring the required data to the
GPU, which is in this case the dataset itself including the
patterns and the features in addition to the initial random
labels, although these can be initiated on the GPU. Definitely,
these variables and others as mentioned in the pseudo code
require to be allocated in the GPU memory, so this can be
termed (Phase 0) and is relatively time consuming depending
on the size of the data. In general, memory transfers can be a
bottleneck in GPU implementations, except when used with
multi-streams, but this is not applicable here, since the
complete data is required from the start of the Kernel K-
Means algorithm.

After transferring the data, the implementation requires
computing the Kernel Matrix, which is similar to matrix
multiplication as already mentioned in the previous section.
Thus, this can be performed using a kernel similar to the
(cublas) kernels that are already available with CUDA, or to
the kernels provided in the CUDA sample codes, which is
adopted here using a modified version of the matrix
multiplication kernel. This is probably the best possible
implementation according to the CUDA guidelines.

Afterwards, the iterative phase needs to be performed. The
first part accounts for counting the size of each cluster, which
is simply performed using the atomicAdd function. Then, one
needs to compute the distance value for each pattern with
each cluster. This is composed of three terms. The first term
is from the Kernel Matrix, which is already computed. The
second term can be computed for all the patterns and the
clusters in a similar operation to a single matrix multiplication
operation as already noted in the serial section. The last term
is common for each cluster meaning that there can be only a
number of clusters' terms. Thus, it needs to be computed only

once for all the patterns and used according to each cluster.
This term is composed of two summation steps and is
computed using a reduction operation. Reduction is usually
used for summations and in this case we have summation of
several variables that are a collection of multiplied values,
which means reduction can be used. Like other matrix
operations, reduction is provided in the CUDA sample codes,
so these were modified to suit the calculation of this term.

After obtaining the three terms, the distance matrix can be
computed, where each value is computed by a single CUDA
thread while ensuring that the accesses to the variables in the
memory are coalesced to achieve better speedups.

Afterwards, the minimum distance and the corresponding
cluster for each pattern need to be determined. Like the
distance matrix computation, this is done for each pattern in a
single CUDA thread and this leads to the new labels matrix
whilst checking if convergence was achieved through the
Boolean "change" variable. This completes the second phase,
which is repeated for a certain number of iterations until
convergence is achieved.

After the completion of the algorithm, the final labels need to
be transferred back to the host from the GPU, which
completes the implementation.

Thus, the proposed CUDA implementation mainly relies on
modifying tasks that are generally provided with the CUDA
sample codes in order to achieve the best possible speedups.

6 Results
 The Kernel K-Means algorithm, and as already noted in
the pseudo code can be divided into two distinct phases. The
first phase (PI) calculates the Kernel matrix (K), and the
second phase (PII) is part of (the while loop) and is thus an
iterative procedure that is required to update the distances,
and obtain the clusters and the labels of the patterns. (PII) is
performed for a number of times until the convergence of the
algorithm.

Moreover, we can consider a phase zero (P0), which is
necessary for allocating the data and copying the required
values only in the CUDA case. P0 accounts for copying the
data to and from the GPU.

Thus, we need to report on the results of these different
phases by considering different datasets. So, we considered
artificial and real datasets as noted in Table 1. Several of
these datasets are shown in Figure 1. Besides the ones in the
figure, we generated a Gaussian random dataset of four
clusters where each pattern has three features. Also, for the
MNIST dataset [15], we utilized the test data for the images
of “0” and “1” which means that there are only two clusters.

120 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

120 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

The results are presented in Table 1 for the various
implementations using the different datasets. The table shows
the time in milliseconds. All the CPU related tests were
performed using a 2.3GHz i7 Intel CPU with 4 cores. The
GPU implementation was performed on a Tesla C2050
device.

It is worth comparing the obtained times of Kernel K-Means
with that of a serial C K-Means implementation and although
the timing is not mentioned, all the times for K-Means are
less than 0.5 milliseconds, which indicates that Kernel K-
Means is much more time consuming.

Besides, it is important to note that the CPU implementation
varied according to the used CPU and the number of available
cores whose increase directly meant higher speedups although
this is not detailed here. Moreover, the CUDA
implementation directly depends on the used GPU where a
newer GPU should yield better results. The discussion related
to such ideas should be provided in future works.

In regards to the errors and the accuracy of K-Means versus
Kernel K-Means, there is a drastic difference with Kernel K-
Means being much more accurate and having near 100%
accuracy in all the cases except the Gaussian and Spiral case
while the K-Means accuracy is generally much lower except
when the data is linearly separable.

The results indicate that computing phase I and phase II is
clearly faster on the CUDA device and even if the memory
timings or phase zero is accounted for, the CUDA device still
proves to be the faster albeit not by much when compared
with the OpenMP+BLAS version except in relatively larger
datasets such as MNIST and Energy Time.

Figure 1. Circular, Moon, Atom, Chainlink, Spiral and
Energy-Time Datasets

7 Conclusion
This work presented several parallel implementations of the
Kernel K-Means algorithm using the CPU and the GPU. The
CPU implementations involved using Cilk-Plus and OpenMP
in addition to OpenBLAS due to the matrix-like nature of the
problem, while the GPU used CUDA and the available sample
codes. The CUDA implementation proved to yield the faster

Table 1. Timing Results for the different implementations

Dataset Patterns Features Clusters
C (ms) C+BLAS (ms) OpenMp (ms) Cilk (ms) MP+BLAS (ms) CUDA

PI PII PI PII PI PII PI PII PI PII P0 PI PII

Circular 1012 2 2 13.2 3.8 4.3 3.3 5.4 1.9 4.2 1.3 1 1.9 1.1 0.17 0.6

Full Moon 1000 2 2 11.8 4.1 2.5 3.3 5.8 1.8 4.9 1.2 1 1.8 1.1 0.17 0.6

Atom 800 2 2 9.2 2.5 1.9 2.2 3 1.5 3.4 1.3 0.5 1.5 1 0.12 0.5

Chainlink 1000 3 2 12.9 3.8 2.2 3.4 5.1 2 3.4 1.6 0.9 2 1.1 0.19 0.6

Spiral 2000 2 2 60 44 18 43 15 11 15 14 9.3 25 2.9 0.65 0.5

Gaussian 2000 3 4 50 32 12.2 21 14 10 13 8.2 8.8 14 7.7 1.7 0.9

EngyTime 4096 2 2 198 65.5 69.3 59.1 54.9 22 56.4 21.4 36.9 38 10 2.7 1.1

Mnist (0,1) 2115 400 2 1877 18 91.1 15.7 356.6 6.6 359.5 6.3 37 6.6 5.4 0.92 0.6

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 121

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 121

ISBN: 1-60132-444-8, CSREA Press ©

results despite the relatively high time consumption caused by
memory allocation and data transfers between the CPU and
the GPU. The work also notes that there is a large room for
further improving the parallel implementations with emphasis
on large data.

8 References
[1] C. C. Aggarwal and C. K. Reddy, Data Clustering:
Algorithms and Applications. CRC Press, 2013.

[2] J. Shawe-Taylor and N. Cristianini, Kernel Methods for
Pattern Analysis. Cambridge university press, 2004.

[3] G. F. Tzortzis and A. C. Likas, "The global kernel-
means algorithm for clustering in feature space," Neural
Networks, IEEE Transactions on, vol. 20, pp. 1181-1194,
2009.

[4] G. Tzortzis and A. Likas, "The global kernel k-means
clustering algorithm," in Neural Networks, 2008. IJCNN
2008.(IEEE World Congress on Computational Intelligence).
IEEE International Joint Conference on, 2008, pp. 1977-1984.

[5] R. Zhang and A. I. Rudnicky, "A large scale clustering
scheme for kernel k-means," in Pattern Recognition, 2002.
Proceedings. 16th International Conference on, 2002, pp.
289-292.

[6] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer
and K. Skadron, "A performance study of general-purpose
applications on graphics processors using CUDA," Journal of
Parallel and Distributed Computing, vol. 68, pp. 1370-1380,
2008.

[7] R. Farivar, D. Rebolledo, E. Chan and R. H. Campbell,
"A parallel implementation of K-Means clustering on GPUs."
in Pdpta, 2008, pp. 212-312.

[8] M. Zechner and M. Granitzer, "Accelerating K-Means
on the graphics processor via cuda," in Intensive Applications
and Services, 2009. INTENSIVE'09. First International
Conference on, 2009, pp. 7-15.

[9] W. Zhao, H. Ma and Q. He, "Parallel K-Means
clustering based on mapreduce," in Cloud
ComputingAnonymous Springer, 2009, pp. 674-679.

[10] J. Bhimani, M. Leeser and N. Mi, "Accelerating K-
Means clustering with parallel implementations and GPU
computing," in High Performance Extreme Computing
Conference (HPEC), 2015 IEEE, 2015, pp. 1-6.

[11] L. M. Rodrigues, L. E. Zárate, C. N. Nobre and H. C.
Freitas, "Parallel and distributed kmeans to identify the
translation initiation site of proteins," in Systems, Man, and

Cybernetics (SMC), 2012 IEEE International Conference on,
2012, pp. 1639-1645.

[12] K. Stoffel and A. Belkoniene, "Parallel k/h-means
clustering for large data sets," in Euro-Par’99 Parallel
ProcessingAnonymous Springer, 1999, pp. 1451-1454.

[13] K. W. Lau, H. Yin and S. Hubbard, "Kernel self-
organizing maps for classification," Neurocomputing, vol. 69,
pp. 2033-2040, 2006.

[14] http://www.openblas.net/

[15] Y. LeCun, C. Cortes and C. J. Burges, The MNIST
Database of Handwritten Digits, 1998.

122 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

122 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

On Optimization of Parallel Communication-Avoiding
Codes for Multicore Architectures

Emna Hammami, Yosr Slama

University of Tunis El Manar, Faculty of Sciences of Tunis,
University Campus - 2092 Manar II, Tunis, Tunisia

Abstract - Parallelizing polyhedron programs (PP) i.e.
programs structured in nested loops with affine bounds is still
a matter of focus for a lot of research works due to its
practical interest in scientific applications. Indeed several
efficient code generation tools (CGT) from PP’s have been
proposed in the literature such as Pluto. Despite its
performance, these CGT’s rarely take into consideration the
target architecture (TA) which may be a source of
performance improvement. We precisely address this aspect
i.e. adapting code generation from a PP to a given TA, namely
a multicore machine in order to enhance the efficiency of the
generated parallel communication-avoiding codes. For this
purpose, we propose a two-phase approach. The first consists,
for given TA and PP, in fairly distributing the parallel tasks
involved by the PP onto the TA cores. The second improves
data locality through cache memory optimization. In order to
evaluate the interest of our contribution, we carried out a
series of experiments targeting a quadcore bi-processor
machine and choosing three PP’s often encountered in
scientific applications, namely matrix addition, matrix-vector
product and matrix-matrix product.

Keywords: Allocation, cache memory, code optimization,
multicore architecture, polytope model, Prefetching.

1 Introduction
 Parallel computing may be performed on different
parallel platforms. Recently, many studies have focused on
multicore machines which are nowadays the most used
components of supercomputers, clusters and grids. Following
the recent architectures development, it becomes necessary to
adapt existing parallelization methods and tools to the new
architectures by taking into account the target machine (TA)
characteristics, e.g. cache memory organization and size,
cores’ speed, etc. It is in this general context that our work
focuses especially on polyhedron programs (PP) i.e. programs
structured in nested loops with affine bounds, which are the
most used codes in scientific computing. Since code
generation (CG) is the last phase of automatic parallelization
based on the polytope model, we are interested in parallel
generated codes from PP’s. In spite of the performance of the
most known CG tools (CGT) such as Pluto, these latter don’t
take into account all the TA intrinsic characteristics which
may be a rich source of performance enhancement. Thus, we
take a special interest in the generated code optimization

based on some hardware characteristics of the TA in order to
improve the completion time. In particular, we aim at
optimizing parallel generated communication-avoiding codes.
The remainder of the paper involves four sections organized
as follows. In section 2, we present a brief state-of-the art on
the most known optimization tools for parallel codes
incorporated in Pluto. Section 3 is devoted to the description
of our general two-phase approach, where we detail an
experimental study on a multicore parallel platform that
allows our theoretical contribution validation and evaluation.
We finally conclude and present some perspectives in section
4.

2 Brief state-of-the art
 In this section, we present a summary on existing code
optimization tools related to the Pluto compiler [1].

In fact, we find in the literature many code optimization
methods, particularly for parallel processing. This
optimization may be seen as aiming at reducing either the
code size or the run time in order to increase the overall
performance. In our work, we mainly address the second
point i.e. improving run time. Clearly, such optimization is
quite important for codes automatically generated by CGT’s.
Indeed, these latter, though powerful in parallel code
generation, are sometimes inefficient from an optimization
point of view because of their generality and the overheads
they induce.

In this paper, a special interest is attached to the Pluto
compiler [1] because of the high-level optimizations it
achieves by means of the code optimization tool Cloog [2]
and the tiling technique. More precisely, Pluto transforms C
programs from source to source for coarse-grained
parallelism and data locality simultaneously for generating
parallel C OpenMP codes [1]. It uses a scheduling algorithm
which tries to find affine transformations allowing the most
efficient tiling.

Cloog [2] is a free software which generates code for
scanning Z-polyhedra. It is designed to build control automata
for high-level synthesis and find the best polynomial
approximation of a given function. Based on Quilleré’s
method [3], Cloog helps to solve scanning Z-polyhedra
matters [2]. It was originally written to solve code generation

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 123

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 123

ISBN: 1-60132-444-8, CSREA Press ©

problems for optimizing compilers based on the polytope
model. It allows avoiding control overhead and producing
effective codes in a reasonable amount of time when there is
full control on generated code quality. Besides, it performs
dependency analysis and provides scattering functions which
remove redundant constraints and specify better
transformations reordering. These latter transforms the
original polyhedron, by applying a new lexicographic order,
into an equivalent target polyhedron [4].

Tiling which is a loop transformation that decomposes the
whole computation set into subsets of smaller computation
blocks, is especially used in vectorization, coarse-grained
parallelism, and also in many high-level program
optimizations such as data locality. Following old tiled loop
generation methods with fixed tile sizes e.g. the approaches of
Goumas and al [5], Kelly and al. [6], the SUIF [7] tool and
the method of Ahmed and al. [8], new tiling techniques have
been developed. These latter use parameterized and multi-
level tiled loop generation methods where the block size is
not fixed at compile time, but remains a symbolic constant.
Hence, it may be changed even at runtime. Among such
methods, we can mention the PrimeTile tool of Hartono and
al. [9], the techniques of Baskaran and al. [10] and those of
Kim [11]. Let us notice that the tiled code generation scheme
of Pluto, which initially used fixed tile sizes, was extended to
use parametric tiling by incorporating the tiled code
generation with parametric tile sizes within the polyhedral
model addressed by Renganarayanan and al. [12] in order to
make it convenient for iterative and empirical optimization.

To conclude, we notice that most of these optimization
techniques, though effective in parallel code generation, don’t
care of the most intrinsic characteristics of the TA.
Subsequently, through this paper, we aim to present our
proposal for optimizing the quality of the code generated
from Pluto by taking into account some physical
characteristics of the TA. For this purpose, based on a
selective study of hardware architecture detection tools, we
have chosen the Hwloc package [13]. Indeed, it is able to
supply generic and complete vision of hardware architecture.
The provided data are more detailed relatively to the other
methods. It generates a portable abstraction of the hierarchical
topology of modern architectures with gathering information
about NUMA memory nodes, sockets, shared caches, cores
and simultaneous multi-threading.

3 Proposed approach
 In this section, we’re going to present the general
principle of our contribution as well as the following two
steps: (i) distribution of the parallel tasks onto the cores of a
target architecture (TA) and (ii) cache use optimization. A
series of experiments were achieved on the chosen TA in
order to evaluate the interest of our contribution.

3.1 General principle
 Our aim is to link the software topology of the parallel
code generated by Pluto [1] to the target hardware topology in
order to optimize completion time. Thus, we have taken into
consideration some hardware features e.g. cache memory
size, cache sharing, cores organization on nodes, etc. In this
work, as it is shown in Fig. 1, given a parallel program (not
adapted to any architecture and generated by Pluto) and a
target multicore architecture, we propose the following
approach: After detecting the architecture hardware
characteristics using the Hwloc framework [13] and the
Cpuinfo library, we had developed a software component
allowing code adaptation to the TA. So, we propose two steps
towards this adaptation consisting, first, in distributing the
different parallel tasks on the various available cores, and
second in optimizing the cache memory use.

Fig. 1. Schematic description of the proposal

In the following subsections, we’ll first study various ways
for distributing parallel tasks on the cores and we’ll choose
the best allocation through an experimental study. Secondly,
we’ll propose a method to improve the quality of a parallel
generated code by taking into account some cache memory
characteristics of the TA. This improvement will be evaluated
through a series of experiments.
Let us mention that our multicore TA is an Intel ® Xeon dual
quadcore processor CPU E5420 @ 2.50GHz. Its eight cores
have dedicated L1 cache with 32 KB size, and share in pairs
the L2 cache level whose size is 6MB. The RAM size is 4
GB.
Our target parallel programs don’t require any core
communication since the iterations (tasks) are independent.
This feature may be called communication-free (or more
precisely communication-avoiding). We chose three
benchmarks codes: (i) matrix addition (MA), (ii) matrix-
vector product (MVP) and (iii) matrix-matrix product (MMP)
where N denotes the size of the processed matrices.

The two proposed improvement phases were implemented in
an automatic tool which takes as input a parallel
communication-avoiding code generated by Pluto (CGP) and
then generates an equivalent code undergoing the
optimization that will be more detailed in the remainder.

124 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

124 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

3.2 Distributing the parallel tasks on cores
 Taking into account the target architecture (TA), there
are several factors which have a direct impact on run time.
Particularly, changing the way to distribute threads on the
different cores may reduce data exchanges and thus improve
data locality. For this reason, it is important to appropriately
choose the allocation of parallel tasks on the available cores.
We therefore examined some parallel code allocation
methods expressed by the OpenMP library. In fact, the
distribution of parallel iterations (tasks) on physical cores
may be automatized by specifying the chunk size (CHS) i.e.
the number of iterations constituting a thread. The chunks
may be computed then allocated to threads in compile time.
In this case, the OpenMP task allocation may be performed
either statically or dynamically. A static allocation means that
iteration blocks divided into chunks are statically mapped to
the execution threads in a round-robin manner. However, for
the dynamic allocation, once a thread is available, it requests
a chunk of iterations to execute.

Another manner in task distributing on cores is the OpenMP
sections directive. Each section is assigned to one thread and
each thread (TH) may be explicitly executed by one core. To
illustrate this distribution manner, let us consider the
following example consisting of a single parallel loop (the
loop body may be a perfect nest not only a single iteration):

FORALL (i = 1, N)
{ S(i)} /*loop body*/
ENDFORALL

In our case, we run as many sections as the cores number (i.e.
8) as follows:

Section 1: { TH 0: (i= 1, N/8) Allocate (TH 0; Core0)}
Section 2: { TH 1: (i= (N/8)+1, N/4) Allocate (TH 1; Core1)}
Section 3: { TH 2: (i= (N/4)+1, 3N/8) Allocate (TH 2; Core2)}
Section 4: { TH 3: (i= (3N/8)+1, N/2) Allocate (TH 3; Core3)}
Section 5: { TH 4: (i= (N/2)+1, 5N/8) Allocate (TH 4; Core4)}
Section 6: { TH 5: (i= (5N/8)+1, 6N/8) Allocate (TH 5; Core5)}
Section 7: { TH 6: (i= (6N/8)+1, 7N/8) Allocate (TH 6; Core6)}
Section 8: { TH 7: (i= (7N/8)+1, N) Allocate (TH 7; Core7)}
An experimental study covering on the one hand static and
dynamic automatic allocation, and on the other hand manual

allocation (sections) was carried out in order to compare them
and choose the most efficient.

Three chunk types in the automatic case were studied by
varying the sizes i.e. :

 X1 = cache line size
 X2 = cache size
 X3 = cache size / 2
 X4 = problem size (iterations number) / the cores

number
X is considered ST (resp. DY) if the automatic allocation is
static (resp. dynamic).

We detail experimental comparisons carried out on our TA
and illustrated through some excerpts of our performed tests
in Tables I, II and III, and Fig. 2 for the three benchmarks
MA, MPV and MMP. We mention that the following
notations are adopted in these tables in order to indicate the
execution time of the studied codes:

 PLUTO : code generated by Pluto (CGP)
 STi : CGP with a CHS equal to Xi (i=1…4, see

above) when the allocation is static
 DYi : CGP with a CHS equal to Xi (i=1…4) when

the allocation is dynamic
 TILE : CGP undergoing the tiling technique adopted

by Pluto
 Section : CGP with manual allocation (fair sections)
 Execution times : T1 for MA (ms), T2 for MVP

(ms), T3 for MMP (s)
 Reducing time ratio r (%):

 rj(Version)=(Tj(PLUTO)-Tj(Version)) / Tj(PLUTO)
 where j=1 for benchmark MA, 2 for benchmark
 MVP, 3 for benchmark MMP and
 Version ϵ {ST1,.., ST4, DY1,.., DY4, TILE, Section}
The various algorithm versions were coded in C under Linux.
For the parallel experiments, we used the shared memory
OpenMP environment. We point out that for each benchmark;
we chose 10 values of N in the range [500, 5000] with a step
equal to 500. For each N, the execution time is the mean of
five runs. We therefore achieved 330 tests in total (110 for
each benchmark). Excerpts of the results we obtained are
depicted below.

TABLE I. EXECUTION TIME (MS) OF MA FOR DIFFERENT ALLOCATIONS

N PLUTO ST1 ST2 ST3 ST4 DY1 DY2 DY3 DY4 TILE Section
1000 116.783 118.135 14.743 15.660 48.610 113.249 15.325 15.783 111.800 8.349 7.779
2000 457.104 444.688 48.108 48.917 212.243 461.003 49.125 48.897 432.978 33.110 17.815
3000 983.732 954.530 108.772 108.735 480.052 1049.271 108.273 109.783 973.274 75.970 45.061
4000 1799.962 1750.715 194.027 192.424 982.619 1809.196 192.318 193.677 1730.625 142.906 74.757
5000 2832.404 2704.928 304.036 302.762 1431.34 2825.001 303.613 305.762 2682.211 209.901 138.349

TABLE II. EXECUTION TIME (MS) OF MVP FOR DIFFERENT ALLOCATIONS

N PLUTO ST1 ST2 ST3 ST4 DY1 DY2 DY3 DY4 TILE Section
1000 121.466 66.508 16.209 15.900 123.169 63.398 17.988 14.497 128.805 7.2170 3.838
2000 501.556 256.033 42.869 42.876 484.484 247.971 43.953 42.898 498.401 29.646 6.571
3000 1159.214 565.273 100.598 96.345 1058.303 540.607 96.287 96.318 1097.031 66.422 22.584
4000 2005.986 939.893 175.306 171.199 1842.777 975.638 171.115 171.033 2008.391 119.317 34.703
5000 3097.488 1375.272 269.459 272.383 2977.059 1592.616 268.522 268.374 3009.494 183.488 50.349

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 125

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 125

ISBN: 1-60132-444-8, CSREA Press ©

TABLE III. EXECUTION TIME (S) OF MMP FOR THE DIFFERENT ALLOCATIONS

N PLUTO ST1 ST2 ST3 ST4 DY1 DY2 DY3 DY4 TILE Section
1000 89.934 76.675 14.166 14.173 80.813 79.644 14.174 14.178 76.412 8.941 1.892
2000 669.358 599.686 114.846 114.851 616.960 611.035 114.940 114.955 579.875 80.489 19.097
3000 2262.674 1962.621 386.629 386.618 2054.293 2035.842 386.889 386.897 1930.912 322.032 102.357
4000 5421.078 4636.604 915.902 916.462 4837.712 4853.935 916.4089 916.567 4614.829 895.139 212.622
5000 10629.747 9198.934 1798.107 1800.011 9320.983 9353.020 1798.316 1798.423 9190.790 2015.090 475.367

Fig. 2. Experimental comparison of the different allocations of : (a) MA , (b) MVP, (c) MMP

From Tables I, II and III, we noticed that automatic allocation
of OpenMP tasks performed either statically or dynamically is
less efficient than the manual one. Indeed, it’s due to the
generation of some overheads. Fig. 2 shows that the best
inherent allocation is expressed in “Section” version for all the
studied benchmarks. This improvement is more clarified in
Table IV where we notice that the reducing time ratios (r) are
high and vary in the range 93.33 (N=1000) - 95.84 %
(N=4000) for MA, 96.84 (N=1000) - 98.68 % (N=2000) for
MVP, and 95.48 (N=3000) - 97.90 % (N=1000) for MMP.
Remark that the variations of r are not regular in terms of N.

We expect that the improvement would continue for larger N.
Let us add that with ST2, ST3, DY2, DY3 and TILE, we also
obtain an improvement but less than with Section. Notice
finally that a negative r corresponds to an increase in
execution time. According to the comparative study below
(see Fig. 2 and Table IV), we hence choose the manual
allocation with fair sections. Subsequently, we decided in the
tool that we have implemented to produce in the generated
code as many sections as available cores (manual allocation).
We present in the following section the major optimization
phase which improves data locality through better cache
memory use.

TABLE IV. REDUCING TIME RATIOS R(%)

Benchmark N r(ST1) r(ST2) r(ST3) r(ST4) r(DY1) r(DY2) r(DY3) r(DY4) r(TILE) r(Section)

MA

1000 -1.15 87.37 86.59 58.37 3.02 86.87 86.48 4.26 92.85 93.33
2000 2.71 89.47 89.29 53.56 -0.85 89.25 89.30 5.27 92.75 96.10
3000 2.96 88.94 88.94 51.20 -6.66 88.99 88.84 1.06 92.27 95.41
4000 2.73 89.22 89.30 45.40 -0.51 89.31 89.23 3.85 92.06 95.84
5000 4.50 89.26 89.31 49.46 0.26 89.28 89.20 5.30 92.58 95.11

MVP

1000 45.24 86.65 86.90 -1.40 47.80 85.19 88.06 -6.04 94.05 96.84
2000 48.95 91.45 91.45 3.40 50.55 91.23 91.44 0.62 94.08 98.68
3000 51.23 91.32 91.68 8.70 53.36 91.69 91.69 5.36 94.27 98.05
4000 53.14 91.26 91.46 8.13 51.36 91.46 91.47 -0.11 94.05 98.27
5000 55.60 91.30 91.20 3.88 48.58 91.33 91.33 2.84 94.07 98.37

MMP

1000 1.30 7.06 84.24 10.14 11.44 84.24 84.24 15.04 90.06 97.90
2000 0.17 0.87 82.84 7.83 8.71 82.83 82.83 13.37 87.98 97.15
3000 0.05 0.26 82.91 9.21 10.02 82.90 82.90 14.66 85.77 95.48
4000 0.02 0.11 83.09 10.76 10.46 83.10 83.09 14.87 83.49 96.08
5000 0.01 0.06 83.07 12.31 12.01 83.08 83.08 13.54 81.04 95.53

126 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

126 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

Remark: A negative ratio corresponds to an increasing time (e.g.
r(ST1)= -1.15 for MA when N=1000).

3.3 Optimizing the cache memory use
 Typically, when the core-processor needs to read or to
write a data, it fetches it first in the cache memory which avoids
access to the main memory. If the cache memory has a copy of
the data required by the processor, this is called a cache hit,
otherwise this is called a cache miss. Cache memory is in fact
categorized in levels that describe its closeness and accessibility
to the processor. Level 1 (L1), which is extremely fast but of
relatively small size, is located close to the processor and used
for temporary instructions and data storage. Level 2 (L2) cache,
located half-way between the processor and the system bus, is
fairly fast and medium-sized. Level 3 (L3) cache is relatively
large and close to the RAM.
Some cache memory levels can be shared between cores. This
sharing allows a better cache coherence as well as a
considerable decreasing of cache misses. Cores communication
becomes faster since it depends on the shared cache memory
speed which is faster than the main memory.
There are two basic types of reference locality. Temporal
locality refers to the re-use of specific data, and/or resources,
within relatively small time duration. Spatial locality refers to
the use of data elements within relatively close storage
locations.
To take advantage of spatial locality, we suggest loading in
advance data that we shall probably need in the near future in
order to enable the processor to find the requested data it usually
seeks in the cache memory and to avoid the overhead due to
main memory access. This phenomenon is called the
Prefetching, and may be performed either by the programmer or
directly by the processor which is called the hardware
prefetcher. This latter can operate transparently, without any
programmer intervention, to fetch data and instructions from
memory into the unified second-level cache. The hardware
prefetcher can be trusted to prefetch highly regular accesses,
while software Prefetching can be used for irregular accesses
that the hardware one can’t handle.

Fig. 3. Prefetching principle

In this work, we supposed that our TA doesn’t rely on a
hardware prefetcher. It’s in this context that the second phase
focuses on the software Prefetching technique (PT) to take
advantage of data locality in order to optimize cache memory
use.
Let us adopt the following notations:

 CL : Size of cache memory line
 DS : Data size
 CQ = CL/DS : Cache Line-data ratio

The Prefetching technique can be explained through the
following MMP code generated by Pluto (see Nest 1.).

Nest1. Matrix- Matrix Product MMP (A,B,C, N)
lbp=0;
ubp=N-1;
#pragma omp parallel for
for (t2=lbp;t2<=ubp;t2++) {
 for (t3=0;t3<=N-1;t3++) {
 for (t4=0;t4<=N-1;t4++) {
 C[t2][t4]=C[t2][t4]+A[t2][t3]*B[t3][t4];
 }
} }

 Starting from the innermost for loop (t4), we detect the
cache memory size line (assuming that CL= 64B) by
calling a function from the Cpuinfo library.

 Since we know the data size to prefetch (e.g. DS(C[i,j])
= sizeof(int) = 4 B), we compute the cache line-data
ratio corresponding to the data to prefetch (in this case
CQ = CL/DS = 64/4 = 16). Since all transfers between
the main memory and the cache memory are done
cache line-wise, when loading C[t2, t4], we’ll load CQ
data in the same line starting by C[t2, t4] until C[t2,
t4+15].

 We detect the access type for each data structure, then
we call the necessary Prefetching instructions. In our
case, C[t2, t4] would be prefetched when writing and
B[t3,t4] when reading.

 We apply the Prefetching mechanism on the innermost
loop by duplicating the instruction CQ times and by
Prefetching at each iteration, the requested data.

This finally leads to the illustrated code in Nest 2. An
experimental study targeting the same TA was achieved on
the three benchmarks MA, MVP and MMP with the
different allocations previously tested after undergoing the
Prefetching technique. This could lead to interesting
improvements. Tables V, VI and VII show a comparison
emphasizing that the best result is provided by the program
working with the manual allocation using equal sized
sections and undergoing the Prefetching technique (PT).

We detail in Tables V, VI and VII respectively for MA,
MPV and MMP, excerpts of experimental comparisons
carried out on our TA.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 127

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 127

ISBN: 1-60132-444-8, CSREA Press ©

Nest2. Matrix- Matrix product MMP(A,B,C, N)
for (t2 = lbp ; t2 < ubp; t2++) {
 for (t3 = 0; t3 <= N - 1; t3++) {
 __builtin_prefetch(&C[t2][0], 1, 1);
 __builtin_prefetch(&B[t3][0], 0, 1);
 for (t4 = 0; t4 <= (N – 1) - 16; t4 += 16) {
 __builtin_prefetch(&C[t2][t4 + 16], 1, 1);
 __builtin_prefetch(&B[t3][t4 + 16], 0, 1);
C[t2][t4 + 0] = C[t2][t4 + 0] + A[t2][t3] * B[t3][t4 + 0];
C[t2][t4 + 1] = C[t2][t4 + 1] + A[t2][t3] * B[t3][t4 + 1];
C[t2][t4 + 2] = C[t2][t4 + 2] + A[t2][t3] * B[t3][t4 + 2];
C[t2][t4 + 3] = C[t2][t4 + 3] + A[t2][t3] * B[t3][t4 + 3];
C[t2][t4 + 4] = C[t2][t4 + 4] + A[t2][t3] * B[t3][t4 + 4];
C[t2][t4 + 5] = C[t2][t4 + 5] + A[t2][t3] * B[t3][t4 + 5];
C[t2][t4 + 6] = C[t2][t4 + 6] + A[t2][t3] * B[t3][t4 + 6];
C[t2][t4 + 7] = C[t2][t4 + 7] + A[t2][t3] * B[t3][t4 + 7];
C[t2][t4 + 8] = C[t2][t4 + 8] + A[t2][t3] * B[t3][t4 + 8];
C[t2][t4 + 9] = C[t2][t4 + 9] + A[t2][t3] * B[t3][t4 + 9];
C[t2][t4 + 10] = C[t2][t4 + 10] + A[t2][t3] * B[t3][t4 + 10];
C[t2][t4 + 11] = C[t2][t4 + 11] + A[t2][t3] * B[t3][t4 + 11];
C[t2][t4 + 12] = C[t2][t4 + 12] + A[t2][t3] * B[t3][t4 + 12];
C[t2][t4 + 13] = C[t2][t4 + 13] + A[t2][t3] * B[t3][t4 + 13];
C[t2][t4 + 14] = C[t2][t4 + 14] + A[t2][t3] * B[t3][t4 + 14];
C[t2][t4 + 15] = C[t2][t4 + 15] + A[t2][t3] * B[t3][t4 + 15];}
 for (t4 = (N – 1) - 16 + 1; t4 <= N - 1; t4++) {
 C[t2][t4] = C[t2][t4] + A[t2][t3] * B[t3][t4]; }}}

We mention that the following notations are adopted in order to
indicate the execution time of the studied codes:

 STi_Pre: code generated by Pluto (CGP) with a chunk
size (CHS) equal to Xi (i=1..4, see section 3.2) when
the allocation is static, and undergoing the PT.

 DYi_Pre: CGP with a CHS equal to Xi (i=1..4) when
the allocation is dynamic, and undergoing the PT.

 Section_Pre: CGP with manual allocation (fair
sections) after undergoing the PT.

 Execution times: T'1 for MA (ms), T'2 for MVP (ms),
T'3 for MMP (s).

 Reducing time ratio r' (%):
 r'j(Version)=(T'j(PLUTO)-T'j(Version))/T'j(PLUTO)
 where j=1 for MA, 2 for MVP and 3 for MMP
 and Version ϵ { STi_Pre, DYi_Pre, Section_Pre }
For these parallel experiments, we used the “GNU_SOURCE”
package. We remind that, for each benchmark algorithm, we
chose 10 values of N in the range [500, 5000]. For each N, the
execution time is the mean of five runs. So, we achieved 90 tests
for each benchmark. Excerpts of the results we obtained are
depicted below.
The experimental study of the MA benchmark (respectively
MVP and MMP) was carried out with both static and dynamic
automatic allocation by varying the CHS as indicated in section
3.2. It was then processed with manual allocation. All these
experimental versions have undergone the PT as explained in
section 3.3. Table VIII shows our excerpts of experimental
comparisons of ST1, ST4, DY1 and Section versions performed
on our TA. Several improvements are obtained through the
reduction of the execution time.
Similar remarks as done in section 3.2 may be detailed here.
The best version is still the manual allocation expressed in
“Section_Pre” version for the three studied benchmarks. The
reducing time ratios (r') are also high and vary in the range
93.38 (N=1000) - 96.13 % (N=2000) for MA, 92.53 (N=1000) -
98.93 % (N=5000) for MVP, and 96.58 (N=5000) - 98.16 %
(N=1000) for MMP. Furthermore, the variations of r' are
irregular in terms of N. We have to note that with the others
versions, we also obtain an improvement relative to the code
generated by Pluto (CGP) but less than with Section undergoing
the Prefetching technique (PT).

TABLE V. EXECUTION TIME (MS) OF MA FOR DIFFERENT ALLOCATIONS WITH PREFETCHING
N ST1_Pre ST2_Pre ST3_Pre ST4_Pre DY1_Pre DY2_Pre DY3_Pre DY4_Pre Section_Pre

1000 27.953 13.206 12.527 25.352 25.612 11.023 12.553 23.741 7.734
2000 113.844 40.82 40.923 94.616 104.572 40.116 40.483 99.527 17.697
3000 248.827 91.688 92.648 224.009 240.715 90.356 89.922 223.656 42.593
4000 411.637 161.35 161.921 399.57 410.759 160.156 160.054 379.512 76.386
5000 643.714 257.076 255.802 594.37 634.819 251.689 253.035 592.206 112.569

TABLE VI. EXECUTION TIME (MS) OF MVP FOR DIFFERENT ALLOCATIONS WITH PREFETCHING
N ST1_Pre ST2_Pre ST3_Pre ST4_Pre DY1_Pre DY2_Pre DY3_Pre DY4_Pre Section_Pre

1000 30.424 15.067 11.1 27.859 33.475 15.188 9.536 29.702 9.077
2000 127.251 37.267 33.586 109.82 130.924 34.127 34.106 106.012 14.698
3000 272.951 77.719 76.621 245.621 293.985 78.194 78.116 244.15 24.048
4000 486.27 133.826 133.928 412.417 527.677 135.708 135.798 439.297 32.441
5000 743.987 215.561 213.861 613.375 808.491 218.966 218.684 667.755 33.017

TABLE VII. EXECUTION TIME (S) OF MMP FOR DIFFERENT ALLOCATIONS WITH PREFETCHING
N ST1_Pre ST2_Pre ST3_Pre ST4_Pre DY1_Pre DY2_Pre DY3_Pre DY4_Pre Section_Pre

1000 26.545 12.198 12.194 23.069 21.905 12.220 12.220 21.499 1.658
2000 220.829 97.846 97.845 201.861 170.788 97.792 97.869 169.298 19.742
3000 762.466 327.575 327.865 727.719 588.535 328.164 328.430 569.553 66.423
4000 1816.399 775.579 775.503 1688.525 1407.161 776.375 776.273 1348.133 184.934
5000 3541.314 1543.684 1543.122 3326.861 2667.724 1545.763 1545.772 2619.664 363.515

128 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

128 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

TABLE VIII. REDUCING TIME RATIOS R' (%)

Benchmark N r'(ST1_Pre) r'(ST2_Pre) r'(ST3_Pre) r'(ST4_Pre) r'(DY1_Pre) r'(DY2_Pre) r'(DY3_Pre) r'(DY4_Pre) r'(Section_Pre)

MA

1000 76.06 88.69 89.27 78.29 78.07 90.56 89.25 79.67 93.38
2000 75.09 91.07 91.05 79.30 77.12 91.22 91.14 78.23 96.13
3000 74.71 90.68 90.58 77.23 75.53 90.81 90.86 77.26 95.67
4000 77.13 91.04 91.00 77.80 77.18 91.10 91.11 78.92 95.76
5000 77.27 90.92 90.97 79.02 77.59 91.11 91.07 79.09 96.03

MVP

1000 74.95 87.60 90.86 77.06 72.44 87.50 92.15 75.55 92.53
2000 74.63 92.57 93.30 78.10 73.90 93.20 93.20 78.86 97.07
3000 76.45 93.30 93.39 78.81 74.64 93.25 93.26 78,94 97.93
4000 75.76 93.33 93.32 79.44 73.69 93.23 93.23 78.10 98.38
5000 75.98 93.04 93.10 80.20 73.90 92.93 92.94 78.44 98.93

MMP

1000 70.48 86.44 86.44 74.35 75.64 86.41 86.41 76.10 98.16
2000 67.01 85.38 85.38 69.84 74.48 85.39 85.38 74.71 97.05
3000 66.30 85.52 85.51 67.84 73.99 85.50 85.48 74.83 97.06
4000 66.49 85.69 85.69 68.85 74.04 85.68 85.68 75.13 96.59
5000 66.68 85.48 85.48 68.70 74.90 85.46 85.46 75.36 96.58

4 Conclusions
 Addressing polyhedron program automatic
parallelization, we first studied the most known code
optimization tools related to Pluto. Then, we proposed a two-
phase approach leading to parallel code optimization.
Targeting a multicore machine, our proposal takes into
consideration the number of cores and the cache line size, and
aims to especially optimize the cache memory use. In fact,
starting with a program generated by Pluto, we proposed to
automatically generate a parallel avoiding-communication
code with explicit task allocation on the available cores. This
code then automatically underwent the Prefetching technique.
It therefore took advantage of the spatial locality which
minimized the main memory access. Ultimately, our proposal
was translated by a software component that was integrated
with Pluto. A series of experimentations could validate our
contribution and specify its practical interest.
However, several interesting points remain to be seen,
particularly: (i) extension of the experimental study to other
benchmark matrix algorithms, (ii) optimization of parallel
programs with core communications by taking into
consideration the cache memory sharing, (iii) adaptation of
the code generation to other parallel architectures e.g. GPUs.

Acknowledgment
We’d like to thank Pr. Zaher Mahjoub for his valuable help.
5 References
[1] U. Bondhugula, A. Hartono, and J. Ramanujan, “A
Practical Automatic Polyhedral Parallelizer and Locality
Optimizer”, ACM SIGPLAN Conference on Programming
Languages Design and Implementation (PLDI), Tucson,
Arizona, USA, vol. 43(6), pp. 101-113, June 2008.
[2] C. Bastoul, and P. Feautrier, “Improving data locality by
chunking”, CC'12 International Conference on Compiler
Construction, Poland, Vol. 2622, pp. 320-335, April 2003.
[3] F. Quilleré, S. Rajopadhy, and D. Wilde, “Generation of
Efficient Nested Loops from Polyhedra”, International
Journal of Parallel Programming, vol. 28(5), pp. 469-498,
October 2000.
[4] C. Bastoul, “Improving Data Locality in Static Control
Programs”, PhD thesis, University Paris 6, Pierre et Marie
Curie, France, December 2004.

[5] G. Goumas, M. Athanasaki, and N. Koziris, “An
efficient code generation technique for tiled iteration spaces”,
IEEE Transactions on Parallel and Distributed Systems, vol.
14(10), pp. 1021-1034, October 2003.
[6] W. Kelly, W. Pugh, and E. Rosser, “Code generation for
multiple mappings”, Frontiers’95: The 5th Symposium on the
Frontiers of Massively Parallel Computation, McLean, VA,
pp. 332, February 1995.
[7] R. P. Wilson, Robert S. French, C. S. Wilson, S. P.
Amarasinghe, J. M. Anderson, S. W. K. Tjiang, S-W. Liao,
C-W. Tseng, M. W. Hall, M. S. Lam, and J. L. Hennessy,
“SUIF: An infrastructure for research on parallelizing and
optimizing compilers”, J. ACM SIGPLAN Notices, vol.
29(12), pp. 31-37, December 1994.
[8] N. Ahmed, N. Mateev, and K. Pingali, “Synthesizing
transformations for locality enhancement of imperfectly-
nested loop nests”, Int. J. of Parallel Programming, vol. 29(5),
pp. 493–544, October 2001.
[9] A. Hartono, M. M. Baskaran, J. Ramanujam, and P.
Sadayappan, “Dyntile: Parametric tiled loop generation for
effective parallel execution on multicore processors”, IEEE
International Parallel and Distributed Processing Symposium
(IPDPS), Atlanta, USA, pp.1-12, April 2010.
[10] M. M. Baskaran, A. Hartono, S. Tavarageri, T. Henretty,
J. Ramanujam, and P. Sadayappan, “Parameterized tiling
revisited”, IEEE/ACM International Symposium on Code
Generation and Optimization (CGO), Toronto, Ontario,
Canada, pp. 200-209, April 2010.
[11] D. Kim, “Parameterized and Multi-level Tiled Loop
Generation”, PhD thesis, Colorado State University, Fort
Collins, CO, USA, April 2010.
[12] L. Renganarayanan, D. Kim, S. Rajopadhye, and M. M.
Strout, “Parameterized tiled loops for free”, The 28th ACM
SIGPLAN Conference on Programming Language Design
and Implementation (PLDI '07), San Diego, California, USA,
vol. 42(6), pp. 405-414, June 2007.
[13] F. Broquedis, J. Clet-Ortega, S. Moreaud, N. Furmento,
B. Goglin, G. Mercier, S. Thibault, and N. Namyst, “hwloc: a
Generic Framework for Managing Hardware Affinities in
HPC Applications”, Proceedings of the 18th Euromicro
International Conference PDP 2010: Parallel, Distributed and
Network-Based Processing, IEEE Computer Society Press,
Pisa, Italia, pp 180-186, February 2010.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 129

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 129

ISBN: 1-60132-444-8, CSREA Press ©

Parallel Edge Detection using Sobel Algorithm with
Contract-time Anytime Algorithm in CUDA

Md Kamal Hossain, Md Assaduzzaman Ashique, Md Asif Ibtehaz, and Jia Uddin

Computer Science and Engineering Department, BRAC University
Dhaka 1212, Bangladesh.

E-mail: shajal16@gmail.com, ashique12301017@gmail.com, ibtehaz.shawon@gmail.com,
jia.uddin@bracu.ac.bd

Abstract - Edge detection is a considerably important factor
in image or video processing. Detection of edges plays a
significant role in image segmentation, data compression, well
matching, and image reconstruction. Among several edge
detection approaches we focus on Sobel edge detection using
contract-time anytime algorithm in CUDA. To reduce the
computational complexity we implemented our proposed edge
detection method using CUDA. In the experimental setup we
have used NVIDIA GTX 550Ti GPU along with AMD FX8150
Processor and 8 GB RAM. Finally, we measure speedup using
3 steps of contract-time anytime of our proposed parallel
implementation model. Comparing with conventional serial
CPU based edge detection we have experienced maximum 4X
speedup of proposed implementation for 16 block dimension.

Keywords: Edge detection; CUDA; Anytime algorithm;
Parallel Computing; Sobel; NVIDIA

1 Introduction
 Edge detection from a color image is a very important
and basically critical area in low level image processing. For
performing high speed industrialized application based on
image processing, edge detection is a mandatory thing to
enhance work rate as well as accuracy. A number of
researchers works on several edge detection algorithms and
they give different responses and details to the different input
images [1-7]. Edge detection quality has a great impact on
realization of complex automated computer/machine vision
systems [1]. Among them, the Sobel edge detection algorithm
is much more popular than simple gradient operators due to
its property to counteract the noise sensitivity and easier
implementation process [2]. While using Sobel operator for
GPU takes much less time than CPU. Again, the use of
Interruption-Algorithm for image processing much less time
efficient [3]. Moreover, in case of canny edge detection in
GPU time process seems efficient but not enough for real time
[4]. The use of anytime algorithm for GPU architecture makes
it run faster in association with Dijkstra’s algorithm [5, 8]. In
addition, anytime algorithm seems much efficient when it is
used for observing different tasks [6]. Interruptible Anytime
Algorithm for image processing is much faster than normal
image processing algorithms and also gives the privilege of
getting output in different stage of time [7]. That is why, we

are choosing contract-time anytime algorithm in co-ordination
with Sobel operator for proposed parallel implementation.

 The rest of this paper is organized as follows: Section II
describes the detailed of Anytime Algorithm. Section III
presents details about the proposed Sobel edge detection
using Contract-time anytime algorithm in an NVIDIA GPU in
CUDA, and Section IV contains experimental results of
analysis and comparison. Finally, Section V concludes this
paper.

Figure 1. Model of contract-time Anytime Algorithm.

2 Contract-time anytime algorithm
 Anytime algorithm is a kind of algorithm that searches
for better result instead of calculating the final result [3, 5,
and 7]. There are mainly two types of anytime algorithm:
Interruption and Contract-time. Interruption anytime is the
algorithm that continues running and can be stopped anytime
to get the final result. For contract-time anytime it is a little
different, as final result is generated based on user input of

130 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

130 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

processes or time. Figure 1 is the presentation of contract-time
anytime algorithm, which we used in our proposed edge
detection algorithm.

3 Proposed model
Figure 2 shows the block diagram of proposed parallel

implementation of CPU-GPU based edge detection method.
To evaluate our proposed model have utilized different test
images. First of all, we have taken the images as input. As the
images are color images, we converted it into gray scale
images. The process ran in GPU and we used interruptive
anytime algorithm to make the conversion process faster, as
depicted Figure 2.

Figure 2. Proposed model for Sobel and contract-time anytime
based edge detection using NVIDIA GPU.

After that, the edge detection process runs in GPU.
Again, used interruptive anytime algorithm to detect the
edges. We have calculated the time for Sobel operator in
CUDA environment and took the time for processing and
compared results. Our all the outputs shows in CPU that were
calculated in GPU that is the primary aspiration of parallel
implementation of Sobel operator along with any time
algorithm.

Figure 3. Sobel operator Convolution Kernel/Mask.

Figure 3 is a Sobel operator matrix that we used to
calculate value for detecting edges in our CUDA
environment. Here we used the general Sobel operator
gradient matrix with CUDA. That detects edges and the time

taken here is less than normal Sobel operator in conventional
CPU programming.

 22
x SSS y (1)

 ySSS x (2)

 Where Sx represents horizontal convolution mask and
followed by Sy represents vertical convolution mask. These
convolution mask is being used for calculating the gradient.

 Sobel operator 2D gradient based measurement is
performed on an image. High spatial frequency which
correspond to edges is mainly used to perform the
measurement. For measurement we use Equation 1 which is
the equation for gradient magnitude. In addition, Equation 2
can give approximate magnitude for the computation, which is
much faster to compute the gradient.

Figure 4. Contract-time Anytime Algorithm task processing.

Figure 5. 3x3 sub-mask filters (1-8).

Less
More

Low High

Edge detection
(Sobel)

Gray Scale
Conversion

Along with
Contract-time

anytime

Image input CPU

NVIDIA
GPU

Along with
Contract-time

anytime

Output CPU

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 131

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 131

ISBN: 1-60132-444-8, CSREA Press ©

 Figure 4 shows the task processing structure of any
image input. From starting point it takes less time to compute
but quality of processing is low. That is the quick process of
contract-time anytime algorithm. Gradually for half process
and complete process of the program gives better output.

 Figure 5 depicted how we divide every image into eight
3x3 sub-masks to use Sobel operator and use contract-time in
different time period. We initially experiment only 3 contracts
using these sub-masks and calculate process time in GPU and
CPU system

4 Experimental results and analysis
 In the experimental setup, we have used AMD FX 8150
CPU, 8 GB RAM with a GTX 550ti GPU, which specification
is given in the Table I.

TABLE I. GTX 550TI GPU ENGINE SPECS.

Parameters Value
CUDA Cores 192
Graphics Clock (MHz) 900
Processor Clock
(MHz)

1800

Texture Fill Rate
(billion/sec)

28.8

Processor Clock
(MHz)

1800

Total amount of shared
memory per block

49152
bytes

Maximum number of
threads per block

1024

CUDA Driver Version
/ Runtime Version

7.5 / 7.5

4.1 Experimental Results of Parallel Sobel
Detection

 To evaluate our proposed edge detection model, we have
used a 3840x2400 image [Image 1] and a 1920x1080 image
[Image2]. Figure 6 is our sample image [Image 1] for this
experiments. Figure 7 and Figure 8 are the two outputs of
input we present in Figure 6.

Figure 6. Sample image 1.

Figure 7. Output of [Image 1]
for block dimension 16.

Figure 8. Output of [Image
1] for block dimension 32.

 Figure 9 and Figure 10 are two outputs for our
experiment image, Image I. For large pixel images we capture
the real image in 4096x4096 texture and then we send it to the
GPU for gray scale conversion and edge detection. CPU
execution time is the total time to read the image and printing
the output. GPU time is the time for kernel that is calculating
the total time to execute the kernel in GPU. We have taken
block dimension 16 and 32 to calculate threads. Maximum
amount of threads for 16 block dimension is 256 and for 32
block dimension is 1024 threads. For our experiment, we have
calculated the blocks using Equation 3. .

)Y,X(SizeBlock 11 (3)

 d1 W/BX

 d1 H/BY

 Where width and height of image are from input image
and block dimension is our default value. Width of image =
W, Height of image = H, and Block dimension = Bd..

Figure 9. Console Result for 16 block dimension.

Figure 10. Console Result for 32 block dimension.

132 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

132 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

 A conventional CPU based Sobel edge detection is able
to compute the edge detection for our sample Image,1920 x
1080 pixel image. However, it is unable to compute a 3840 x
2400 pixel image. Figure 11 depict the information related to
conventional CPU based implementation.

Figure 11. Conventional CPU Error Output.

4.2 Experiment with Parallel Contract-time
Anytime and Sobel Detection

 For experimenting our contract time algorithm with
Sobel, we have used a 1920x1080 image [Image 2], which is
presented in Figure 12, in two different 16 and 32 block
dimensions.

Figure 12. Sample image 2.

 Figure 13 shows that we have used 32 block dimension
for test contract-time anytime algorithm. Where we have got
different output and execution time from 3 contract of our
program. Test 1 is the result of quick process. Test 2 is for
half process and Test 3 is for Full process. Test 1 takes
comparatively less time than test 3. Same goes for the image
tested in 16 block dimension that’s showed in Figure 14.
Here, we have changed our block dimension to 16 to measure
the computation time when we are using less amount of

blocks.

[Output 1] Anytime algorithm

output

[Output 2] Conventional
CPU output

Figure 15. Sample output of parallel anytime and
conventional CPU

Figure 15 illustrates the sample outputs of our process. Where
process of our algorithm is anytime algorithm output [Output
1], here user defines which process will be calculated. This
output is for 16 block dimension half process. Output 2 is a
sample output for conventional CPU based program.

(a) Test Image 2 (b) Test 1(quick)

(c) Test 2(half) (d) Test 3(full)

Figure 14. Three contract-time process test
for 16 block dimension test (b, c and d).

(a) Test Image 2 (b) Test 1(quick)

(c) Test 2(half) (d) Test 3(full)

Figure 13. Three contract-time process test
for 32 block .dimension Test (b, c, and d).

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 133

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 133

ISBN: 1-60132-444-8, CSREA Press ©

Figure 16. Process versus Time for 16 and 32 block
dimension.

 Figure 16 graph represents the detailed comparison
between 16 and 32 block dimension with respect to execution
time.

Figure 17. Process versus Time of 1920 x 1024 Input Image.

 Figure 17 presents the comparison graph of conventional
CPU based program and both 16 and 32 block dimension in
GPU. Where conventional CPU based program took 480 ms
and for our sobel in parallel process its 141.6ms and 127.9ms
for 32 block dimension and 16 block dimension to compute a
1920 x 1024 pixel image.

 Table II represents the comparison of our program with
conventional CPU programming. Comparing with the CPU
program we have calculated speedup of our program and for
16 block low it is 4.003x and for high quality edge detection it
is 3.75x.

TABLE II. PROCESS EXECUTION TIME COMPARISON

5 Conclusion
 This paper presented a new parallel edge detection
method using Sobel and Contract Anytime Algorithm. As a
parallel platform we utilize an NVIDIA GTX GPU and 8
Core CPU. For sample test images, we calculate the execution
time of proposed CPU-GPU parallel method and conventional
CPU based algorithm. In addition, by varying thread and
block sizes, we observed the effect of computation time.
Experimental results show that the proposed parallel
implementation exhibits above 4X speedup over the
conventional serial implementation.

6 References
[1] M. B. Ahmad and T. S. Choi, “Local threshold and

boolean function based edge detection,” IEEE
Transactions on Consumer Electronics, vol. 45, no. 3, pp.
674–679, 1999.

[2] T. A. Abbasi and M. U. Abbasi, “A novel FPGA-based
architecture for Sobel edge detection
operator,”International Journal of Electronics, vol. 94, no.
9, pp. 889–896, 2007.

[3] W. Kywe, D. Fujiwara, and K. Murakami., “Scheduling
of Image Processing Using Anytime Algorithm for Real-
time System,” Pattern Recognition, 2006. ICPR 2006.
18th International Conference on, vol.3.2006.

[4] Ogawa, Kohei, Y. Ito, and K. Nakano. “Efficient Canny
Edge Detection Using a GPU.” First International
Conference on Networking and Computing. 2010.

[5] M. Rahul, and A. A. Saba. “Anytime Algorithms for GPU
Architectures.” 2011 IEEE 32nd Real-Time Systems
Symposium, 2011.

[6] Baxter, J W, J. Hargreaves, N. Hawes, and R. Stolkin.
“Controlling Anytime Scheduling of Observation Tasks.”
Research and Development in Intelligent Systems XXIX:
219-24, Oct 2012.

[7] W. Kywe, D. Fujiwara, and K. Murakami, “An Approach
to Linear Spatial Filtering Method based on Anytime
Algorithm for Real-time Image Processing,” 18th

Process CPU-GPU
time (ms)

Threads
in
 Block

Block
size

CPU
Executio
n
Time(ms)

Speedup

16 block dimension

480

Quick 119.899
256

8192

4.003x

Half 127.809 3.7x

Full 127.992 3.75x

32 block dimension

Quick 138.227
1024

2048

3.47x

Half 141.027 3.4x

Full 141.601 3.38x

134 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

134 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

International Conference on Pattern Recognition
(ICPR'06), v ol. 4, no. 12, 2012.

[8] J. Uddin, E. Oyekanlu, C.H. Kim, and J. M. kim, “High
Performance Computing for Large Graphs of Internet
Applications using GPU,” International Journal of
Multimedia and Ubiquitous Engineering, Vol. 9, No. 3,
pp. 269-280, 2014.

[9] Rostov Kremlin Available from:
<https://wallpaperscraft.com/wallpaper/rostov_velikij_kre
ml_rossiya_khram_103672>

[10] Gulls Available from:
 <https://wallpaperscraft.com/download/gulls_birds_flying

_flapping_106466/1600x900>

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 135

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 135

ISBN: 1-60132-444-8, CSREA Press ©

136 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

136 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

SESSION

PARALLEL PROCESSING + GPU and GPGPU
BASED UTILIZATION AND SYSTEMS

Chair(s)

TBA

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 137

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 137

ISBN: 1-60132-444-8, CSREA Press ©

138 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

138 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

Numerical Solutions of Heat and Mass Transfer with
the First Kind Boundary and Initial Conditions in

Hollow Capillary Porous Cylinder Using
Programmable Graphics Hardware

Hira Narang1, Fan Wu1, Abisoye Ogunniyan1
1Computer Science Department, Tuskegee University, Tuskegee, AL, USA

Abstract—Nowadays, a heat and mass transfer simulation
plays an important role in various engineering and
industrial fields. To analyze physical behaviors of a thermal
environment, we have to simulate heat and mass transfer
phenomena. However to obtain numerical solutions to heat
and mass transfer equations is much time-consuming. In
this paper, therefore, one of acceleration techniques
developed in the graphics community that exploits a
graphics processing unit (GPU) is applied to the numerical
solutions of heat and mass transfer equations.
Implementation of the simulation on GPU makes GPU
computing power available for the most time-consuming
part of the simulation and calculation. The nVidia CUDA
programming model provides a straightforward means of
describing inherently parallel computations. This paper
improves the computational performance of solving heat
and mass transfer equations with the first boundary and
initial conditions numerically running on GPU. We
implemented simulation of heat and mass transfer using the
novel CUDA platform on nVidia Quadro FX 4800 and
compared its performance with an optimized CPU
implementation on a high-end Intel Xeon CPU. The
experimental results clearly show that GPU can perform
heat and mass transfer simulation accurately and
significantly accelerate the numerical calculation with the
maximum observed speedups 10 times. Therefore, the GPU
implementation is a promising approach to acceleration of
the heat and mass transfer simulation.

Keywords: Numerical Solution; Heat and Mass Transfer;
High Performance Computation; General Purpose Graphics
Processing Unit; CUDA.

1 Introduction
During the last 4-5 decades, many scientists and

engineers working in Heat and Mass Transfer processes have
focused their attention to finding solutions both
analytically/numerically, and experimentally. To precisely
analyze physical behaviors of thermal environments, we
need to simulate several heat and mass transfer phenomena
such as heat conduction, convection, and radiation. A heat
transfer simulation is accomplished by combining multiple
computer simulations of such heat and mass transfer
phenomena. With the advent of computer, initially the
sequential solutions were found, and later when super-

computers became available, fast solutions were obtained to
above mentioned problems. However, the simulation of heat
and mass transfer requires much longer execution time than
the other simulations. Therefore, acceleration of the heat and
mass transfer simulation is essential to realize a practical
large-scale heat and mass transfer simulation.

This paper exploits the computing power of graphics
processing units (GPUs) to accelerate the heat and mass
transfer simulation. GPUs are cost-effective in terms of
theoretical peak floating-point operation rates [1]. Therefore,
comparing with expensive cluster, GPUs is a powerful co-
processor on a common desktop PC that is ready to achieve a
large-scale heat and mass transfer simulation at a low cost.
The GPU has several key advantages over CPU architectures
for highly parallel, compute intensive workloads, including
higher memory bandwidth, significantly higher floating-
point throughput. The GPU can be an attractive alternative to
CPU clusters in high performance computing environments.

Recent announcement like CUDA [2] by nVidia proved
their effort to extend both programming and memory
models. CUDA (Compute Unified Device Architecture) is a
new data-parallel, C-language programming API that
bypasses the rendering interface and avoids the difficulties of
classic GPGPU. Parallel computations are instead expressed
as general-purpose, C-language kernels operating in parallel
over all the points in a domain.

This paper investigates the numerical solutions to Two-
point Initial-Boundary Value Problems (TIBVP) of Heat and
Mass with the first boundary and initial conditions arising in
hollow capillary porous cylinder. These problems find
applications in drying processes, under-ground contaminants
transport, absorption of nutrients in human bodies,
transpiration cooling of space vehicles at re-entry into
atmosphere, and many other science and engineering
problems. Although traditional approaches of parallel-
distributed processing have been applied with advantage to
the solutions of some of these problems, no more seem to
have explored the high performance solutions to these
problems with compact multi-processing capabilities of
GPU, which is multi-processors technology on a chip. With
the power of this compact technology and develop relevant
algorithms to find the solution of TIBVP with the first
boundary and initial conditions and compare with some of
the existing solutions to simple known problems. All of our
experimental results show satisfactory speedups. The
maximum observed speedups are about 10 times.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 139

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 139

ISBN: 1-60132-444-8, CSREA Press ©

The rest of the paper is organized as follow: Section II
introduces some previous related work; Section III describes
the background on GPU and CUDA briefly; Section IV
presents the mathematical model of heat and mass transfer
and numerical solutions to heat and mass transfer equations;
Our experimental results are presented in Section V; Finally
Section VI concludes this paper with our future direction.

2 Related Work
The simulation of heat and mass transfer has received

much attention for years. And there is much work related to
this field, such as modeling and dynamic simulation. Here
we just refer to some recent work closely related.

Soviet Union was in the fore-front for exploring the
coupled Heat and Mass Transfer in Porous media was
researched as a part of chemical engineering discipline, and
major advances were made at Heat and Mass Transfer
Institute at Minsk, BSSR. Later England and India took the
lead and made further advances in terms of analytical and
numerical solutions to certain problems. Later Narang and
Rajiv [4-9] explored the wavelet solutions and Ambethkar
[10] explored the numerical solutions to some of these
problems.

 With the programmability of fragments on GPU, Krüger
et al. [11] computed the basic linear algebra problems, and
further computed the 2D wave equations and NSEs on GPU.
Bolz et al. [12] rearranged the sparse matrix into textures,
and utilized them multigrid method to solve the fluid
problem. Similarly, Goodnight et al. [13] used the multigrid
method to solve the boundary value problems on GPU.
Harris [14, 15] solved the PDEs of fluid motion to get cloud
animation.

GPU is also used to solve other kinds of PDEs. For
example, Kim et al. [16] solved the crystal formation
equations on GPU. Lefohn et al. [17] packed the level-set
isosurface data into a dynamic sparse texture format, which
was used to solve the PDEs. Another creative usage was to
pack the information of the next active tiles into a vector
message, which was used to control the vertices and texture
coordinates needed to send from CPU to GPU. To learn
more applications about GPU for general-purpose
computations, readers can refer to [18].

3 An Overview of CUDA Architecture
The GPU that we have used in our implementations is

nVidia’s Quadro FX 4800, which is DirectX 10 compliant. It
is one of nVidia’s fastest processors that support the CUDA
API and as such all implementations using this API are
forward compatible with newer CUDA compliant devices.
All CUDA compatible devices support 32-bit integer
processing. An important consideration for GPU
performance is its level of occupancy. Occupancy refers to
the number of threads available for execution at any one
time. It is normally desirable to have a high level of
occupancy as it facilitates the hiding of memory latency.

The GPU memory architecture is shown in figure 1.

Figure 1: GPU Memory Architecture [2]

4 Mathematical Model and Numerical
Solutions of Heat and Mass Transfer

4.1 Mathematical Model
Consider the Heat and Mass Transfer through a porous

cylinder with boundary conditions of the first kind. Let the z-
axis be directed upward along the cylinder and the r-axis
radius of the cylinder. Let u and v be the velocity
components along the z- and r- axes respectively. Then the
heat and mass transfer equations in the Boussinesq's
approximation, are:

t
T
∂
∂

= k1)1(2

2

2

2

z
T

r
T

rr
T

∂
∂+

∂
∂+

∂
∂

+ k2)(
t
C
∂
∂

 (1)

t
C
∂
∂

 = k3 +
∂
∂+

∂
∂+

∂
∂)1(2

2

2

2

z
C

r
C

rr
C

 k4

)1(2

2

2

2

z
T

r
T

rr
T

∂
∂+

∂
∂+

∂
∂

 (2)

0,0, ≥>>< tzbra
A prescribed constant temperature and concentration supplie
d by the hot plate at the left end X=0 of the cylinder, the initi
al and boundary conditions of the problem are:
 0,0, >>= tzar (3)

a

a

CtzaC
TtzaT

=
=

),,(
),,(

0,0, >>= tzbr (4)

140 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

140 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

b

b

CtzbC
TtzbT

=
=

),,(
),,(

 0,,0 >∞→> tzr (5)

 () ∞→∞ TtrT ,,

 () ∞→∞ CtrC ,,

Since the cylinder is assumed to be porous, 1μ is the

velocity of the fluid, pT the temperature of the fluid near the

cylinder, ∞T the temperature of the fluid far away from the

cylinder, pC
 the concentration near the cylinder, ∞C the

concentration far away from the cylinder, g the acceleration

due to gravity, β the coefficient of volume expansion for

heat transfer,
'β the coefficient of volume expansion for

concentration, ν the kinematic viscosity, σ the scalar

electrical conductivity, ω the frequency of oscillation, k
the thermal conductivity.

From Equation (1) we observe that 1v is independent of
space co-ordinates and may be taken as constant. We define
the following non-dimensional variables and parameters.

t = t1V0
2

4v
, z = V0z1

4v
 (8)

'
,,,, 11

0

1

D
vS

k
vP

CC
CCC

TT
TTT

V
uu cr

PP

==
−
−=

−
−==

∞

∞

∞

∞

()
3

0
2

0

2
0 ,

V
TTvgG

V
vBM P

r
∞−== β

ρ
σ

()

2
0

3
0

4,'
V
v

V
CCvgG iP

m
ω

ω
β =−= ∞

Now taking into account Equations (5), (6), (7), and (8),

equations (1) and (2) reduce to the following form:

∂T
∂t

+ ∂
2T

∂r2
− 4

∂C
∂t

+ 1

r

∂T
∂r

= 4

Pr

∂2T

∂z2
 (9)

∂C
∂t

+ ∂
2C

∂r2
− 4

∂T
∂t

+ 1

r

∂C
∂r

= 4

Pr

∂2C

∂z2
 (10)

with
0≤t (11)

 C(r, z, t) = 0 , T (r, z, t) = T0

 0>t (12)

∂C r, z, t()

∂z
+ k

∂T r, z, t()
∂z

= 0

 0>t (13)
 T r,∞, t() = 0 , C r,∞, t() = 0

4.2 Numerical Solutions
Here we sought a solution by finite difference technique

of implicit type namely Crank-Nicolson implicit finite
difference method which is always convergent and stable.
This method has been used to solve Equations (9), and (10)
subject to the conditions given by (11), (12) and (13). To
obtain the difference equations, the region of the heat is
divided into a gird or mesh of lines parallel to z and r axes.
Solutions of difference equations are obtained at the
intersection of these mesh lines called nodes. The values of

the dependent variables T , and C at the nodal points along

the plane 0=x are given by),0(tT and),0(tC hence
are known from the boundary conditions.

In the figure 2,Δz , Δr are constant mesh sizes along z
and r directions respectively. We need an algorithm to find
single values at next time level in terms of known values at
an earlier time level. A forward difference approximation

for the first order partial derivatives of T and C . And a
central difference approximation for the second order partial

derivative of T and C are used. On introducing finite
difference approximations for:

Figure 2: Finite Difference Grid

The shaded portion of the grid represents the hollow in the
cylinder. For the purposes of coming up with a numerical

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 141

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 141

ISBN: 1-60132-444-8, CSREA Press ©

solution for the problem, the height of the hollow is 0.1,
while the radius of the cylinder is 1.0.

 (14)

The finite difference approximation of Equations (9) and
(10) are obtained with substituting Equation (14) into

Equations (9) and (10) and multiplying both sides by tΔ and
after simplifying, we let Δt

Δz()2 = r ' =1 (method is always

stable and convergent), under this condition the above
equations can be written as:

t
C
∂
∂

=
2
1

()2
,,)(2

(
r

CTVU jiji

Δ

+−+
+ ()rr

VU
Δ

+
2

 +

()2
,,)(2

(
z

CTVU jiji

Δ

+−+
)

t
T
∂
∂

 =
2
1

()2

,,)2(22
(

r
CTVU jiji

Δ

+−+
 +

()rr
VU

Δ

+
2
2

 +
()

)
)2(22

2
,,

z
CTVU jiji

Δ

+−+

Let U = 1,11,1,1,1 +−++−+ −+− jijijiji TTTT

Let V = 1,11,1,1,1 +−++−+ −+− jijijiji CCCC
 (15)

5 Experimental Results and Discussion
5.1 Setup and Device Configuration

The experiment was executed using the CUDA Runtime
Library, Quadro FX 4800 graphics card, Intel Core 2 Duo.
The programming interface used was Visual Studio.

The experiments were performed using a 64-bit Lenovo
ThinkStation D20 with an Intel Xeon CPU E5520 with

processor speed of 2.27 GHZ and physical RAM of 4.00GB.
The Graphics Processing Unit (GPU) used was an NVIDIA

Quadro FX 4800 with the following specifications:
CUDA Driver Version: 3.0
Total amount of global memory: 1.59 Gbytes
Number of multiprocessors: 24
Number of cores: 92
Total amount of constant memory: 65536 bytes
Total amount of shared memory per block: 16384 bytes
Total number of registers available per block: 16384
Maximum number of threads per block: 512
Banwitdh:

Host to Device Bandwith: 3412.1 (MB/s)
 Device to Host Bandwith: 3189.4 (MB/s)

 Device to Device Bandwitdh: 57509.6 (MB/s)
In the experiments, we considered solving heat and mass

transfer differential equations in hollow capillary porous
cylinder with boundary conditions of the first kind using
numerical methods. Our main purpose here was to obtain
numerical solutions for Temperature T, and concentration C
distributions across the various points in a cylinder as heat
and mass are transferred from one end of the cylinder to the
other. For our experiment, we compared the similarity of the
CPU and GPU results. We also compared the performance of
the CPU and GPU in terms of processing times of these
results.

In the experimental setup, we are given the initial
temperature T0 and concentration C0 at point z = 0 on the
cylinder. Also, there is a constant temperature and
concentration N0 constantly working the surface of the
cylinder. The temperature at the other end of the cylinder
where z = ∞ is assumed to be ambient temperature (assumed
to be zero). Also, the concentration at the other end of the
cylinder where z = ∞ is assumed to be negligible (≈ 0). Our
initial problem was to derive the temperature T1 and
concentration C1 associated with the initial temperature and
concentration respectively. We did this by employing the
finite difference technique. Hence, we obtained total initial
temperature of (T0 + T1) and total initial concentration of (C0
+ C1) at z = 0. These total initial conditions were then used
to perform calculations.

()2
,1,11,1,1,1

,
2

2

2
2

z
TTTTT

z
T jijijijiji

ji Δ

−−+−
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

∂
∂ +−++−+

()2
,1,11,1,1,1

,
2

2

2
2

r
TTTTT

r
T jijijijiji

ji Δ

−−+−
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

∂
∂ +−++−+

()r
TTTT

r
T jijijiji

ji Δ

−+−
=⎟

⎠

⎞
⎜
⎝

⎛
∂
∂ +−++−+

4
1,11,1,1,1

,

t
uu

t
u

t
CC

t
C

t
TT

t
T jiji

ji

jiji

ji

jiji

ji Δ

−
=⎟

⎠

⎞
⎜
⎝

⎛
∂
∂

Δ

−
=⎟

⎠

⎞
⎜
⎝

⎛
∂
∂

Δ

−
=⎟

⎠

⎞
⎜
⎝

⎛
∂
∂ +++ ,1,

,

,1,

,

,1,

,

,,

()t
CCCC

t
C jijijiji

ji Δ

−+−
=⎟

⎠

⎞
⎜
⎝

⎛
∂
∂ +−++−+

4
1,11,1,1,1

,

()2
,1,11,1,1,1

,
2

2

2
2

z
CCCCC

z
C jijijijiji

ji Δ

−−+−
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

∂
∂ +−++−+

()2
1,11,1,1,1

,
2

2

2 r
CCCC

r
C jijijiji

ji Δ

−+−
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

∂
∂ +−++−+

()r
CCCC

r
C jijijiji

ji Δ

−+−
=⎟

⎠

⎞
⎜
⎝

⎛
∂
∂ +−++−+

4
1,11,1,1,1

,

142 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

142 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

For the purpose of implementation, we assumed a fixed
length of the cylinder and varied the number of nodal points
N to be determined in the cylinder. Since N is inversely
proportional to the step size ∆z, increasing N decreases ∆z
and therefore more accurate results are obtained with larger
values of N. For easy implementation in Visual Studio, we
employed the Forward Euler Method (FEM) for forward
calculation of the temperature and concentration distributions
at each nodal point in both the CPU and GPU. For a given
array of size N, the nodal points are calculated iteratively
until the values of temperature and concentration become
stable. In this experiment, we performed the iteration for 10
different time steps. After the tenth step, the values of the
temperature and concentration became stable and are
recorded. We run the tests for several different values of N
and ∆z and the error between the GPU and CPU calculated
results were increasingly smaller as N increased. Finally, our
results were normalized in both the GPU and CPU.

5.2 Experimental Results
The normalized temperature and concentration

distributions at various points in the cylinder are depicted in
Table 1 and Table 2 respectively. We can immediately see
that, at each point in the cylinder, the CPU and GPU
computed results are similar. In addition, the value of
temperature is highest and the value of concentration is
lowest at the point on the cylinder where the heat resource
and mass resource are constantly applied. As we move away
from this point, the values of the temperature decrease and
concentration increase. At a point near the designated end of
the cylinder, the values of the temperature approach zero
and concentration approach one.

Z GPU Results CPU Results
6.000 0.8235960 0.8219550
12.000 0.6032240 0.5999140

18.000 0.4146470 0.4104230
36.000 0.0903610 0.0874080
48.000 0.0235920 0.0222570
54.000 0.0110760 0.0102900
66.000 0.0022830 0.0020780
76.500 0.0007480 0.0007360
82.500 0.0005290 0.0005990
90.000 0.0004410 0.0006580
102.000 0.0004140 0.0011160
111.000 0.0004120 0.0017040
126.000 0.0004120 0.0024570
138.000 0.0003950 0.0019150
147.000 0.0001820 0.0005950
150.000 - -

Table 1. Comparison of GPU and CPU Results
(Tempreture)

Z GPU Results CPU Results

6.000 0.0038350 0.0037140

12.000 0.0076340 0.0075130
18.000 0.0094730 0.0093520
36.000 0.0065130 0.0063920
48.000 0.0030940 0.0029730
54.000 0.0018850 0.0017640
66.000 0.0006450 0.0005240
76.500 0.0005750 0.0004540
82.500 0.0011190 0.0009980
90.000 0.0036980 0.0031880
102.000 0.0192070 0.0175870
111.000 0.0558170 0.0528540
126.000 0.2360980 0.2314500
138.000 0.5522080 0.5487840
147.000 0.8816640 0.8807490
150.000 1.0000000 1.0000000

Table 2. Comparison of GPU and CPU Results
(Tempreture)

Figure 3: Shows the temperature distribution in the

cylinder with 4 different radiuses

Figure 4: Shows the concentration distribution in the

cylinder with 4 different radiuses

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 143

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 143

ISBN: 1-60132-444-8, CSREA Press ©

Furthermore, we also evaluated the performance of the GPU
(NVIDIA Quadro FX 4800) in terms of solving heat and
mass transfer equations by comparing its execution time to
that of the CPU (Intel Xeon E5520).

For the purpose of measuring the execution time, the
same functions were implemented in both the device (GPU)
and the host (CPU), to initialize the temperature and
concentration and to compute the numerical solutions. In this
case, we measured the processing time for different values of
N. The graph in Figure 3 depicts the performance of the GPU
versus the CPU in terms of the processing time. We run the
test for N running from 15 to 1005 with increments of 30 and
generally, the GPU performed the calculations a lot faster
than the CPU.

 When N was smaller than 512, the CPU
performed the calculations faster than the
GPU.

 For N larger than 512 the GPU performance
began to increase considerably

Figure 5 shows some of our experimental results.

Figure 5: Performance of GPU and CPU Implementations

Finally, the accuracy of our numerical solution was

dependent on the number of iterations we performed in
calculating each nodal point, where more iteration means
more accurate results. In our experiment, we observed that
after 9 or 10 iterations, the solution to the heat and mass
equation at a given point became stable. For optimal
performance, and to keep the number of iterations the same
for both CPU and GPU, we used 10 iterations.

6 Conclusion and Future Work
We have presented our numerical approximations to the

solution of the heat and mass transfer equation with the first
kind of boundary and initial conditions using finite
difference method on GPGPUs. Our conclusion shows that
finite difference method is well suited for parallel
programming. We implemented numerical solutions utilizing
highly parallel computations capability of GPGPU on nVidia
CUDA. We have demonstrated GPU can perform
significantly faster than CPU in the field of numerical
solution to heat and mass transfer. Our experimental results

indicate that our GPU-based implementation shows a
significant performance improvement over CPU-based
implementation and the maximum observed speedups are
about 10 times.

There are several avenues for future work. We would
like to test our algorithm on different GPUs and explore the
new performance opportunities offered by newer generations
of GPUs. It would also be interesting to explore more tests
with large scale data set. Finally, further attempts will be
made to explore more complicated problems both in terms of
boundary conditions as well as hollow cylinder geometry.

7 References
[1] J.D. Owens, D. Luebke, N. Govindaraju, M. Harris, J.
Krger, A.E. Lefohn, T.J. Purcell,: A survey of general-
purpose computation on graphics hardware. Computer
Graphics Forum 26(1) (2007) 80-113.

[2] NVIDIA Corporation. NVIDIA Programming Guide
2.3. Retrieved July, 2009. www.nvidia.com.

[3] A. V. Luikov. Heat and Mass Transfer in Capillary
Porous Bodies, Pergamon Press, 1966.

[4] Hira Narang and Rajiv Nekkanti. Wavelet-based
Solution to Time-dependent Two-point Initial Boundary
Value Problems with Non-Periodic Boundary Conditions,
Proceedings of the IATED International Conference Signal
Processing, Pattern Recognition & Applications July 3-6
2001, Rhodes, Greece.

[5] Hira Narang and Rajiv Nekkanti. Wavelet-based
Solution of Boundary Value Problems involving Hyperbolic
Equations, Proceedings from the IATED International
Conference Signal Processing, Pattern Recognition &
Applications June 25-26, 2002

[6] Hira Narang and Rajiv Nekkanti. Wavelet-based
solutions to problems involving Parabolic Equations,
Proceedings of the IATED International Conference Signal
Processing, Pattern Recognition & Applications 2001,
Greece.

[7] Hira Narang and Rajiv Nekkanti. Wavelet-Based
Solution to Elliptic Two-Point Boundary Value Problems
with Non-Periodic Boundary Conditions, Proceedings from
the WSEAS international conference in Signal, Speech, and
Image processing Sept 25-28, 2002

[8] Hira Narang and Rajiv Nekkanti. Wavelet-Based
Solution to Some Time-Dependent Two-Point Initial
Boundary Value Problems with Non-Linear Non-Periodic
Boundary Conditions, International Conference on
Scientific computation and differential equations,
SCICADE 2003, Trondheim, Norway, June 30. July 4,
2003

144 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

144 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

[9] Hira Narang and Rajiv Nekkanti. Wavelet based
Solution to Time-Dependent Two Point Initial Boundary
Value Problems with Non-Periodic Boundary Conditions
involving High Intensity Heat and Mass Transfer in
Capillary Porous Bodies, IATED International Conference
proceedings, Gainesville, FL 2004.

[10] Vishwavidyalaya Ambethkar. Numerical Solutions of
Heat and Mass Transfer Effects of an Unsteady MHD Free
Conective Flow Past an Iffinite Vertical Plate With
Constant Suction. Journal of Naval Architecture and
Marine Engineering, pages 28-36, June, 2008.

[11] Jens Krüger and Rüdiger Westermann. Linear Algebra
Operators for GPU Implementation of Numerical
Algorithms. ACM Transactions on Graphics (Proceedings
of SIGGRAPH), pages908-916, July 2003.

[12] Jeff Bolz, Ian Farmer, Eitan Grinspun and Peter
Schröoder. Sparse Matrix Solvers on the GPU: Conjugate
Gradients and Multigrid. ACM Transactions on Graphics
(Proceedings of SIGGRAPH), pages917-924, July 2003.

[13] Nolan Goodnight, Cliff Woolley, David Luebke and
Greg Humphreys. A Multigrid Solver for Boundary Value

Problems Using Programmable Graphics Hardware. In
Proceeding of Graphics Hardware, pages 102-111, July
2003.

[14] Mark Harris, William Baxter, Thorsten Scheuermann
and Anselmo Lastra. Simulation of Cloud Dynamics on
Graphics Hardware. In Proceedings of Graphics Hardware,
pages 92-101, July 2003.

[15] Mark Harris. Real-Time Cloud Simulation and
Rendering. PhD thesis, 2003.

[16] Theodore Kim and Ming Lin. Visual Simulation of Ice
Crystal Growth. In Proceedings of
SIGGRAPH/Eurographics Symposium on Computer
Amination, pages 86-97, July 2003.

[17] Aaron Lefohn, Joe Kniss, Charles Hansen and Ross
Whitaker. Interactive Deformation and Visualization of
Level Set Surfaces Using Graphics Hardware. In IEEE
Visualization, pages 75-82, 2003.

[18] GPGPU website. http://www.gpgpu.org.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 145

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 145

ISBN: 1-60132-444-8, CSREA Press ©

hSA-DS: A Heterogeneous Suffix Array Construction Using
D-Critical Substrings for Burrow-Wheeler Transform

Yu-Cheng Liao, Yarsun Hsu
Department of Electrical Engineering, National Tsing Hua University, Hsinchu, Taiwan 30013, R.O.C.

Abstract— Burrow-Wheeler Transform (BWT) algorithm is
widely used in data compression and bioinformatics. Math-
ematically, BWT can be derived from the constructed suffix
array. In this work, we analyze the current parallel imple-
mentations of SACAs and introduce the first heterogeneous
implementation of the SA-DS algorithm on GPU. In order
to achieve better performance, we also optimize the radix
sort on GPU for our platform. As the result, the optimized
radix sort on GPU can significantly decrease processing time
compared with the latest Thrust library for sorting millions
of keys. Our heterogeneous SA-DS demonstrates up to 4x
speedup over the sequential version of SA-DS and has a
performance gain up to 2x than the parallel BWT provided
by the CUDPP library.

Keywords: GPGPU, CUDA, Burrow-Wheeler Transform, Com-

pression, SA-DS

1 Introduction
1.1 Motivation

Burrow-Wheeler Transform (BWT) [1] is an algorithm

used in data compression techniques like bzip2 [2]. Math-

ematically the transform can be obtained from constructing

suffix array [3] in linear time [1]. The research of many

previous studies on optimizing suffix array construction

algorithms (SACAs) in both time and space also greatly

improves the Burrow-Wheeler Transform.

For heterogeneous platform, in these days, the prevalence

of flexible, programmable and inexpensive general-proposed

graphics processing unit (GPGPU) opens a new era of SIMD

programming. Consequently, the heterogeneous architecture

with GPGPUs has been widely adopted in the field of high

performance computing.

By reviewing recent works [4] [5] [6], we know these

parallel SACAs adopted a well-known linear time SACA

called skew algorithm. The famous linear time sequential

SACAs are the skew algorithm, KA algorithm [7] and Ge

Nong et al.’s SA-IS and SA-DS [8]. The skew algorithm has

the worst time/space performance among these algorithms. It

is interesting to compare between the parallel skew algorithm

and the parallel Ge Nong et al.’s work. Further more, on

the ground of concerning appropriate BWT block sizes

for efficient compression, the conventional bzip2 selects

the block size from 100K characters to 900K characters

for BWT [2] to get the high compression rate along with

moderate transforming time. We are motivated to find a

better implementation for block size between 100K to 2M

characters in this study.

1.2 Goal and Contribution
The objective of this work is to present a heterogeneous

version of the SA-DS algorithm accelerated by NVIDIA

GPU using CUDA programming model. We package the

memory transactions between host and device to obviate

the data transfer overhead of the heterogeneous platform.

Also, the heterogeneous SA-DS is appended with a kernel

to compute the final encoded string for Burrow-Wheeler

Transform.

An additional contribution is a custom radix sort based

on the Thrust library [9] on GPU. Since our heterogeneous

platform equipped with a Tesla k20c graphics card, rather

than calling existing Thrust primitives, we simplify the re-

dundant sorting procedures, optimize the kernel and improve

the load balance in device to achieve higher throughput.

After the optimizations, our radix sort kernels outperform

the Thrust library’s by 60%. Comparing the full characters

and integers sorting to the latest Thrust library, our method

shows up to 77% decrease in time with respect to small

sequences comprised of thousands of elements, and up

to 23% decrease in time with respect to large sequences

comprised of millions of elements. Our heterogeneous SA-

DS demonstrates up to 4x speedup over the C++ sequential

version and 2x faster compared to the implementation of

BWT using the CUDPP library [6] with the block size

ranging from 100K to 2M characters in this study.

1.3 Organization
This paper is organized as follow. Section 2 discusses

related works. Section 3 introduces Burrow-Wheeler Trans-

form, and suffix array construction algorithms. Section 4

states the design and the implementations. Then, the perfor-

mance evaluations are presented in section 5. Finally, section

6 describes conclusion.

2 Related Work
As a part of a greater ambition to research the feasibility of

lossless data compression on GPU, R.A. Patel et al. provide

a new approach for suffix array construction based on merge

sort [10]. They first use a bitonic sort to sort eight suffixes

146 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

146 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

within a thread in GPU. Each thread fetches four characters

of each suffix in a comparison. If two suffixes reside in one

thread have the same prefix and are unable to be sorted, the

thread would fetch the next four characters on-the-fly from

the global memory. Once all of the threads complete sorting

their suffixes, the threads in a block work cooperatively to

merge the partitioned suffix array into one complete suffix

array. As a result, they report severe degradation in per-

formance while merging large sequence because of branch

divergence and frequent global memory access. Further, it

cannot take advantage of the relationship between suffixes.

For the implementation on GPU, they report a 3x slower

than the single thread CPU implementation by Seward et al.
[11].

In 2013, M. Deo et al. brought the parallel DC3 algorithm

to GPU. Their work is implemented on discrete GPU and

APU respectively using OpenCL. It is inspired by the pDC3

but considered to be the first implementation on modern

GPU architecture. They resolve some issues which are

encountered while adapting the original pDC3 from the

distributed system to heterogeneous platform and optimize

the performance of pDC3 on GPU. Their paper also includes

a brief explication that we can safely choose to ignore BWT

and only discuss SA and its implementation since we are

able to derive BWT trivially in one pass in parallel with

computing SA.

In 2014, CUDPP library added a new primitive to compute

the suffix array of a string. They use the recursive skew

algorithm, similar to M. Deo et al., for the suffix array

construction on GPU using CUDA. The primitive has the

same sorting procedure analogous to M. Deo et al.’s work,

but in the final merging step, they adopted another merging

technique, call merge path, presented by O. Green et al. [12]

which is different from M. Deo et al.’s work. According to

the author’s note, their parallel skew algorithm is 1.35x faster

than the fastest implementation on GPU. Their work is the

latest implementation we are going to compare with.

In conclusion, to the best of our knowledge, we do not see

the implementation of other linear suffix array construction

algorithms such as the KA, SA-IS and SA-DS algorithm

utilizing the computational power of GPGPU.

3 Background
3.1 Burrow-Wheeler Transform

Burrow-Wheeler Transform (BWT) is discovered by

Wheeler in 1984. BWT first produces a list, also called a

block, of strings consisting of all the cyclical rotations of

the original string. The block is then sorted lexicographically

and the last character of each rotation forms the permuted

string. $ is the terminal symbol denoting the end of current

string and is the lexicographically smallest character.

BWT is aimed at gathering the same characters and the

transformed string must be capable of reversing back. For

the serial implementation of BWT, Burrow and Wheeler

suggested performing a radix sort on first character and

second character of every rotations to obtain the preliminary

order [1]. On their observation, most of the rotations can be

sorted within the preliminary order. The order then followed

by a quick sort to distinguish the strings sharing the same

prefix.

3.2 BWT and Suffix Array
We first review the content of a suffix array (SA). Consider

size-n string S = s1s2 . . . sn−1$, and $ is the terminal

symbol. Let Si denote the suffix of S ranging from the i-
th character to the ending character $. The suffix array (SA)

stores the integers of starting index i that represents Si for all

suffixes in lexicographical order. Which means if the entry

SA[j] is i, Si is the j-th smallest suffix in the string S and

hence ∀k ∈ [1, j] : SSA[k] ≤ Si.

From the given SA, BWT result can be conducted simply

as the equation: BWT [i] = S[SA[i] − 1]. The process is

trivial and the BWT can be derived in one pass in parallel

for each entry. This relationship allows us to neglect BWT

and focus on SA’s construction.

3.3 Suffix Array Construction Algorithms
According to the property above, it is safe for us to

only study the implementations of SACAs and their parallel

implementations on GPGPU. Linear-time SACAs can easily

prevail the original implementation in large scale strings. The

up-to-date well-known linear-time SACAs use two genres of

framework: skew algorithm and two-stage induction.

3.3.1 Skew Algorithm

Skew algorithm is an algorithm recursively constructing

SA in linear time. It follows the pattern proposed for suffix

tree construction by Farach et al. in 1997 [13]. The following

is the brief review of the skew algorithm, or DC3 algorithm,

from J. Kärkkäinen et al.. The skew algorithm consists of

three steps. First, considering a string S, it is first reduced

by excluding the suffixes starting at position i mod 3 = 0,

and the new problem size is 2/3 of the original input.

To construct the SA, sorting is performed by scanning the

first three characters of each suffix in the reduced problem

and renaming the sorted suffixes with their ranks. If all

the names are different, step one is finished and we attain

the SA; otherwise, skew algorithm would be recursively

applied to the reduced arrays. Secondly, every suffix is the

concatenation of the character of the starting position, and

the suffix starting at the next position. The remaining SA

is attained by radix sorting the first character followed by

the entry in constructed SA that represents the following

suffix. The last step is to merge the two SAs. Skew algorithm

compares the lexicographical order of each suffix in two

SAs, and put them in the final complete suffix array.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 147

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 147

ISBN: 1-60132-444-8, CSREA Press ©

J. Kärkkäinen et al. constructing two suffix arrays with

asymmetric length provides the simplicity in step 3. The

implementation of skew algorithm by J. Kärkkäinen et al.
is succinct, many researchers exploit the parallelism of

skew algorithm based on their scheme [4] [5] [6]. Skew

algorithm is simple, however, the algorithm can only reduce

the problem size to one-third of the input size in each

recursion.

3.3.2 Two-Stage Induction
Recent two-stage induction algorithms are variants of the

SACA proposed by H. Itoh [14]. Since G. Nong et al. are

dedicated to ameliorate the intrinsic sorting bottleneck of

using S-distance lists method in KA algorithm [7], we would

discuss their algorithm briefly in the following. SA-IS and

SA-DS are the twin algorithms using the same framework.

SA-IS consists of more sequential structures, so we concen-

trate and analyze thoroughly on the implementation of SA-

DS algorithm as well as exploiting the potential parallelism

in the algorithm.

SA-DS is based on KA algorithm. In addition to classify-

ing two types, we need to further separate the leftmost S-type

suffixes (LMS) among type S suffixes. Besides, these LMS

characters are used to locate the intervals of LMS-substrings.

As a result, the original S is replaced by a shorter string only

comprised of LMS-substrings. The input problem is simpler

than KA algorithm because arrays having consecutive type

S suffixes are curtailed.

Despite the abbreviated problem size, suffixes in it are

variable-length. They propose a new approach established

on the radix sort and fixed-length substrings called D-critical
substrings. A character is a d-critical character if and only

if it is an LMS-character; or the character d length after

is a d-critical, and no character between them is d-critical

where d ≥ 2. The suffix starts from the character is called

a d-critical suffix.

SA-DS constructs the SA using the framework consisting

of three steps. First, we can reduce the problem into an array

containing the pointer of all the d-critical characters. The

distance between any two neighboring d-critical characters

is proven to be in [2, d+ 1]. Next we perform radix sort on

the leading d + 2 characters of each d-critical suffix after

these suffixes are sorted by their types. If all the names are

unique, step one is accomplished and we attain the suffix

array of d-critical; otherwise, we have to recursively apply

the SA-DS algorithm. Secondly, bucket all of the suffixes

in S according to their first character, then initialize a new

array for storing the final SA. We assign the buckets orderly

to the SA array and record the ending position and the

starting position of each bucket. The algorithm puts the

sorted S-type suffixes into the correct entries in the final

SA. Lastly, SA-DS incorporates one more induction process

than KA algorithm for the position of other type S suffixes

and remaining type L suffixes. For inducing positions of type

8192 16384 32768 65536 131072 262144

8k 16k 32k 64k 128k 256k

SADA 1 75672333 3 04438469 5 30209199 9 32807975 14 8338020 21 2294392

Performance of SA-DS Algorithm

M
eg

aS
uf

fix
es

 P
er

 S
ec

on
d

0

17.5

35

52.5

70

Problem Size

8k 16k 32k 64k 128k256k512k 1M 2M 4M 8M 16M 32M 64M

parallelable sequential
total

Fig. 1: Performance of two portions of SA-DS algorithm,

clearly the overall performance is bounded by the paralleliz-

able part.

L suffixes, the procedure is described in the KA algorithm

[7]. For the remaining type S suffixes, each entry SA[i]
encountered during the scan, if the suffix SSA[i]−1 is S-type,

move the suffix to the recorded ending position of its bucket

in SA. The LMS-suffix originally resides at the end of the

bucket is swapped.

Apparently SA-DS algorithm has better performance in

large scale strings owing to the high reduction rate in

recursive sorting step. Between KA algorithm and SA-DS,

SA-DS provides a framework that gives the simplicity of the

sorting step and is suitable for parallelization on GPU.

Now, we extract the possible parallelizable parts of SA-

DS algorithm for the intent of mapping these portions onto

GPU. Classification of suffixes’ type is self-reliant. The

type of a suffix is determined by itself and its next suffix.

Comparison for all of the suffixes in the input string S can

be done parallelly on GPU. LMS-characters are parallelly

distinguishable by simply checking every previous suffix’s

type for type S suffixes. Since blocks in LMS-substrings

are disjoint, d-critical substrings within each LMS-substrings

can be located in parallel. Fast fixed-length radix sorting on

GPU already exists. Assigning LMS-suffixes is also paral-

lelizable since we only have to maintain the order in the same

bucket. Lastly, the induction step contains dependencies in

each iteration, therefore this part remains sequential and can

not be parallelized. Fig. 1 shows the performance of different

portions. It’s clear that the overall performance of the SA-DS

algorithm is bounded by the parallelizable part in all ranges

of the input size. From the evaluation, more than four-fifth of

the execution time is parallelizable. According to Amdahl’s

law [15], it is possible to improve performance up to 5x.

4 Design and Implementation

In this section, we describe the method we used to

parallelize the original SA-DS algorithm. Table 1 presents

the pseudo code of the SA-DS algorithm and the steps that

are packed into kernels for GPU are also marked.

148 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

148 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

Table 1: The SA-DS algorithm pseudo code

SA-DS(S, SA) kernel
//S is the input string
//SA is the output suffix array for S

1 Find d-critical substrings in S (1-3)
2 Reduce the original problem into a shortened P1 (4-6)
3 Radix sort the d-critical substrings in P1 (7-10)
4 Name each d-critical substring by its rank to get SDC (11-14)
5 if (allUniqueNames) SADC = SDC

6 else SA-DS(SDC , SADC) //recursion
7 Induce SA from SADC step 1 (15-19)
8 Induce SA from SADC step 2,3 //on CPU
9 end

4.1 Parallelizing SA-DS
In table 1, there are six primary sections culled from the

sequential SA-DS algorithm. We do not describe the process

of parallel radix sort since it is already explained in detail

in D.G. Merrill et al.’s work [16].

4.1.1 Locating D-Critical Substrings
It includes three kernels responsible for classifying types

of characters, identifying leftmost S-type characters, and

assigning additional d-critical substrings between any two

adjacent LMSs by the given d distance. In order to classify

types of characters, each thread in the kernel is in charge

of one particular character in the input string appointed by

its thread index and block index. Every thread compares

the current assigned character with the next character. The

classification is done if the next character is lexicograph-

ically greater than the current character, which means the

associated suffix is lexicographically smaller than the next

suffix. If the character is equal to the next one, comparison

between the next character and the next of the next is taken

recursively. The kernel identifies leftmost S-type characters

by fetching the type of characters, and comparing the type

with the preceding character’s type. If the fetched type is

S-type and the preceding type is L-type, the character is

a leftmost S-type character. Finally, continuous d-critical

substrings inside independent blocks bounded by neighbor-

ing leftmost S-type characters are denoted parallelly using

multiple threads in the kernel. After these kernels, there is

an array T storing types of characters and another array

Cboolean in the same size of input string S storing ‘1’ or

‘0’. For any entry containing ‘1’ in an array indicates the

starting position of a d-critical substring.

4.1.2 Shrinking Problem
The d-critical substrings can be assembled into a short-

ened array storing starting indexes of d-critical substrings

called P1. From the last section we know if an entry of

Cboolean holds a ‘1’, the corresponding index is the starting

position of a d-critical substring. The kernels first examine

each entry in Cboolean, then exclude the entries containing

‘0’, and aggregate the index of the entries containing ‘1’ into

an abbreviated array P1.

4.1.3 Naming and Constructing SA
The sorted d-critical substrings are stored lexicographi-

cally in global memory. Initially, each thread in the kernel

is responsible for one particular entry in the sorted P1. It

loads the first d+2 characters of its assigned index and the

first d + 2 characters of its previous index, and determine

whether these two sets of d + 2 characters are different. If

two sets of the characters are different, the thread stores

a ‘1’ in the corresponding entry in a temporary array N ;

otherwise, stores ‘0’. Next, we use the similar three steps

described in section 4.1.2. Instead of distributing the keys,

the third kernel distributes the scanned ranks as values to

each entry in N . The following kernel scatters the rank of

each d-critical substring according to the index in P1 to the

final suffix array.

4.1.4 Inducing SA Step 1
In those sorted d-critical substrings, we only use the

substrings starting with leftmost S-type characters. The de-

pendency among these suffixes merely resides in an individ-

ual bucket. To extract LMS-suffixes from sorted d-critical

suffixes, we use the same approach explained in section

4.1.2. A kernel marks the LMS-suffixes by inspecting the

type of the target character and its previous character’s type

similar to section 4.1.1. Later the following three kernels

remap the marked LMS-suffixes into a shortened array. The

subsequent kernels collect the number of names/characters of

each bucket, then scan the numbers once to acquire the index

offsets by accumulating the size of buckets. Moreover, the

LMS-suffixes are placed on the tail of each bucket. After all

of the necessary variables are calculated, a kernel launches

threads seeded by the offset of its bucket to fill the LMS-

suffixes in the correct entries in the suffix array for inducing.

4.2 Optimization
In the heterogeneous SA-DS, the sorting stage using

radix sort on GPU consumes most of the execution time.

Rather than using the existing radix sort provided by the

Thrust library, we rewrite the three steps of radix sort for

customization on our Tesla k20c GPU. We fix the decode

digits in one iteration to be four digits and implement a

simple dynamic terminal policy on host that stops the radix

sort kernels when our keys are sorted. The termination is

determined by how many kernels that sorting four digits at

a time are required for covering the first non-zero bit from

MSB in all of the keys. We first find the position of the first

non-zero bit, calculate the length of bits from the position

we found to the LSB, and then divide the length by four.

This terminal policy can prevent a plethora of useless kernel

calls.

The radix sort kernels in Thrust library launch blocks or

threads according to static profile created by themselves.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 149

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 149

ISBN: 1-60132-444-8, CSREA Press ©

Table 2: Hardware specifications

CPU Intel® Xeon® CPU E5620 @ 2.4GHz 4C/8T × 2
RAM 4GB DDR3-1066MHz × 6

GPU Nvidia® Tesla™ K20c × 1
HDD WD 2TB 7200RPM × 2 (RAID 1)

Fig. 2: Performance and speedup of sorting integers

However, the load balance in each block among different

input array sizes should be also considered. We configure

the number of blocks using the size of current input array

in our radix sort. With this strategy, our radix sort can have

better response time for variable size of input array.

5 Evaluation
We investigate the implementations including the original

sequential SA-DS algorithm, the skew algorithm imple-

mented in the CUDPP library, and our heterogeneous SA-

DS using CUDA. These implementation are performed and

compared on the same hardware platform listed in table 2.

The evaluations focus on the execution time of a set of

kernels, including memory transfer between host and device.

5.1 Radix Sort
We evaluate the execution time for sorting characters of

the three kernels including kernel configuration and exe-

cution time but excluding data transfer time between host

and device. The input keys are already transfered to GPU’s

global memory since the overhead of data transfer for the

two implementations is the same. We benchmark the kernels

by using nvprof profiling tool. The result is the average of

one hundred executions. The outcome shows our radix sort

is 1.31x, 1.37x, and 1.61x faster than the Thrust library in

upsweep, toplevelscan, and downsweep kernel respectively

when processing one million characters.

We test the scalability of the complete radix sort. Fig. 2

shows the performance of sorting integers with varying sizes

of input array. In the Thrust library, the radix sort encounters

a performance drop for the problem size around 64K to

2M keys. Comparing with Thrust library, our customized

radix sort achieves 4.3x speedup at input of 64K keys, 2x

on average with character keys, 2.3x at 4K keys and 1.7x

on average with integer keys.

SADA 0.0044472 0.0051324 0.0058939 0.0067002 0.0084267 0.0117761

ADA 0.0007799 0.0013744 0.0025598 0.0049969 0.0102983 0.0218453
Performance of hSA-DS

M
eg

aS
uf

fix
es

 P
er

 S
ec

on
d

0

22.5

45

67.5

90

Problem Size

8k 16k 32k 64k 128k 256k 512k 1M 2M 4M 8M 16M 32M 64M

paralleled sequential
total

Fig. 3: Performance of the heterogeneous SA-DS, the par-

allelized portion gains improvement.

5.2 Heterogeneous SA-DS

We first analyze the performance curves of parallelized

portion and the intact sequential portion. The parallelized

portion accounts for any additional overheads of memory

transfer between host and device on kernel launch.

Fig. 3 shows the performance of each part in heteroge-

neous SA-DS. As we can see, the performance curve shows

the parallelized portion gains vast improvement compared

with the performance of the parallelizable part depicted in

Fig. 1. With the utilization of GPU, the overall performance

of SA-DS no longer suffers from the bound set by the sorting

steps. The speedup compared with original SA-DS is 3.7x

faster on average when the input problem is large enough.

We choose four datasets downloaded from the Internet

with different properties. The content in a text file directly

impacts the performance of SA construction. Although these

datasets do not take into account of every condition of

sorting suffixes, the four representative datasets provide us

comprehensive measurements for the normal usage of SA

construction.

Enwiki dataset is downloaded from the wikidepia website

[17]. It is dumped from the English Wikipedia. Linux kernel

tarball is the latest Linux-4.1 kernel, and it contains the

source code of Linux kernel. The content can be regarded

as random characters. Enwiki abstract is different from the

case 1, it contains the abstracts of English wikipedia as

million lines of websites. Lastly, we generate strings with

different sizes varying from 8K to 32M characters. Fig. 4

shows that the speedup of the hSA-DS rises from negative

7x at small inputs to a steady positive 3.7x at large input.

For random characters, because our heterogeneous SA-DS

is benefited form the parallel sorting stage, it outperforms

sequential SA-DS in most of the problem sizes. However,

the inducing stage requires more iterations to construct the

complete suffix array. Consequently, the overhead of CPU

to construct long suffix array degrades the performance at

large input sequence.

150 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

150 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

k 16k 32k 64k 128k 256k 512k

.27617694 2.36986592 4.28005971 7.16636281 11.5373255517.6430320 23.453367

.01615695 10.6633453 11.6326682512.0661029 11.7536436211.0416225010.423050

.50467368 1.00297200 1.61878516 3.17804151 5.55651868 9.63335452 13.051558

Speedup of hSA-DS
S

pe
ed

up

-8

-6

-4

-2

0

2

4

Problem Size

8k 16k 32k 64k 128k 256k 512k 1M 2M 4M 8M 16M 32M

enwik kernel abstract
random

Fig. 4: Speedup of the hSA-DS for four datasets.

4M 8M 16M 32M 64M

65 19.2328127 12.4826348 9.22366301 9.30109264 4.85328224

28 5.91029909 3.89403066 2.75645176 2.79720230 1.92267563

4M 8M 16M 32M 64M

54 0.2079779 0.64089033 1.73466875 3.440456 13.186952

79 0.6767847 2.05442655 5.80456375 11.440002 33.286946

Performance of Three Algorithms

M
eg

aS
uf

fix
es

 P
er

 S
ec

on
d

0

10

20

30

40

Problem Size

8k 16k 32k 64k 128k256k512k 1M 2M 4M 8M 16M 32M 64M

hSADS SADS CUDPP

Fig. 5: Comparison between the SA-DS, DC3 on GPU and

the hSA-DS.

5.3 Comparisons with CUDPP Library
CUDPP library utilizing NVIDIA GPU with CUDA pro-

gramming model is considered to be the fastest implemen-

tation of parallel DC3 algorithm. The result is shown in Fig.

5. The readme file of the CUDPP library describes that their

BWT can not process strings larger than 1M characters, but

we test up to 2M characters to generate the curve since we

are interested in performance for strings with sizes smaller

than 2M characters. Finally, the figure shows that our hSA-

DS has the best performance for size of strings smaller than

2M characters.

6 Conclusion
Our hSA-DS improves the performance of the original

SA-DS by parallelizing its slowest portion. The hetero-

geneous platform using both GPU and CPU is the best

choice for our algorithm since the sequential portion must

be performed on a powerful CPU. The customized radix sort

further optimizes the distributed workloads of each process-

ing elements, and incorporates a dynamic terminal strategy

for keys with different length. As the result, our customized

radix sort on GPU gains up to 2.3x and 4x speedup with

respect to integer keys and character keys compared to

the Thrust library. The hSA-DS algorithm can obviate the

performance bound incurred by sequential sorting overhead,

and gain up to 3.7x speedup over the sequential SA-DS,

and up to 2x speedup over the parallel skew-algorithm-based

BWT. The hSA-DS has the best performance for block sizes

ranging from 100K to 2M characters.

7 Acknowledgement
The authors thank the support from MOST under grant

104-2220-E-007-006.

8 References
[1] M. Burrows and D. J. Wheeler, “A block-sorting lossless data com-

pression algorithm,” 1994.
[2] “bzip2-1.0.6,” 2015. [Online]. Available: http://www.bzip.org
[3] U. Manber and G. Myers, “Suffix arrays: a new method for on-line

string searches,” siam Journal on Computing, vol. 22, no. 5, pp. 935–
948, 1993.

[4] M. Deo and S. Keely, “Parallel suffix array and least common prefix
for the gpu,” in ACM SIGPLAN Notices, vol. 48, no. 8. ACM, 2013,
pp. 197–206.

[5] F. Kulla and P. Sanders, “Scalable parallel suffix array construction,”
Parallel Computing, vol. 33, no. 9, pp. 605–612, 2007.

[6] “Cudpp-2.2,” 2014. [Online]. Available: http://cudpp.github.io
[7] P. Ko and S. Aluru, “Space efficient linear time construction of suffix

arrays,” in Combinatorial Pattern Matching. Springer, 2003, pp.
200–210.

[8] G. Nong, S. Zhang, and W. H. Chan, “Two efficient algorithms for
linear time suffix array construction,” Computers, IEEE Transactions
on, vol. 60, no. 10, pp. 1471–1484, 2011.

[9] J. Hoberock and N. Bell, “Thrust: A parallel template library,” 2010,
version 1.8.1. [Online]. Available: http://thrust.github.io/

[10] R. Patel, Y. Zhang, J. Mak, A. Davidson, J. D. Owens, et al., Parallel
lossless data compression on the GPU. IEEE, 2012.

[11] J. Seward, “On the performance of bwt sorting algorithms,” in Data
Compression Conference, 2000. Proceedings. DCC 2000. IEEE,
2000, pp. 173–182.

[12] O. Green, R. McColl, and D. A. Bader, “Gpu merge path: a gpu
merging algorithm,” in Proceedings of the 26th ACM international
conference on Supercomputing. ACM, 2012, pp. 331–340.

[13] M. Farach, “Optimal suffix tree construction with large alphabets,” in
Foundations of Computer Science, 1997. Proceedings., 38th Annual
Symposium on. IEEE, 1997, pp. 137–143.

[14] H. Itoh and H. Tanaka, “An efficient method for in memory construc-
tion of suffix arrays,” in String Processing and Information Retrieval
Symposium, 1999 and International Workshop on Groupware. IEEE,
1999, pp. 81–88.

[15] G. M. Amdahl, “Validity of the single processor approach to achieving
large scale computing capabilities,” in Proceedings of the April 18-20,
1967, spring joint computer conference. ACM, 1967, pp. 483–485.

[16] D. G. Merrill and A. S. Grimshaw, “Revisiting sorting for gpgpu
stream architectures,” in Proceedings of the 19th international con-
ference on Parallel architectures and compilation techniques. ACM,
2010, pp. 545–546.

[17] “Enwiki,” 2015. [Online]. Available: https://dumps.wikimedia.org/
enwiki/

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 151

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 151

ISBN: 1-60132-444-8, CSREA Press ©

Periodic Steady State Solution of Power Networks using the
Current Injections Method and Parallel Processing based on

GPUs

Marcolino H. Díaz-Araujo1, Aurelio Medina-Rios1, Ernesto Magaña-Lemus1, Antonio Ramos-Paz1
1Facultad de Ingeniería Eléctrica, Universidad Michoacana de San Nicolás de Hidalgo, Francisco J. Múgica S/N,

Ciudad Universitaria, C.P. 58030, Morelia, Mich., México

Abstract — This paper details an efficient, fast and non-
iterative algorithm for the simulation of the steady state
response of power networks under non-sinusoidal conditions
in the frequency domain. The algorithm uses the injection
current method, LU decomposition, and parallel processing
techniques based on Graphic Processing Units (GPUs). It is
shown that for the explicit harmonics representation, the
implementation on a GPU-based platform becomes an
efficient computational resource to find the steady state
solution since floating-point operations and repetitive
calculations increase in proportion to the number of
harmonics and size of the network; both related with the
computer effort.

Keywords — Injection current method, LU
decomposition, parallel processing, Graphic Processing
Unit.

1 Introduction
The complexity of power systems has increased in direct

proportion with the network size and the presence and
continuous incorporation of nonlinear elements. In addition,
the need for more efficient, accurate and robust simulation
techniques has also increased. Engineers need to determine
many variables and quantities of interest, such as harmonic
levels in the power network [1].

Admittedly, the periodic steady state solution of power
systems can be obtained in three main frameworks, i.e.
frequency domain, time domain and hybrid frequency-time
domain, respectively [2]. A concise review is given in [2]
regarding the main advantages, drawbacks, formulation and
convergence characteristics related to the different methods
belonging to the frames of reference above indicated. In
particular, this contribution deals with a method for the
efficient periodic steady state solution of power networks in
the frequency domain.

A widely used methodology to compute the steady state
solution of power networks is based on a unified iterative
approach where phases, linear and nonlinear components,
number of harmonics explicitly represented, harmonic cross-
coupling and unbalance effects are combined together for
the entire system [3]. Its application to larger scale three-
phase sytems may lead, however, to excessive computer
effort as high dimension problems may need to be solved
[4].

On the other hand, phasor equivalents of linear and non-
linear power system waveforms consist of an infinite

number of terms. For the purposes of simulation, this
representation is truncated to a finite number of terms. This
procedure is intuitive and it should be verified that the
frequency set used in the analysis provides accurate results
by increasing the number of frequencies, then repeating the
simulation, and checking that the simulation results change
by a negligible amount. In practical terms, it is sufficient for
harmonic analysis to account for the first 50 harmonics.
However, it may result on a time consuming process.

Due to the time critical nature of such computation, the
need for parallel processing for the simulation of realistic
systems becomes a necessity. Parallel processing is a
technique that allows one program to execute multiple tasks
concurrently. A thread consists of a stream of control that
can execute its instructions independently so a multi-treaded
process, or program, can perform numerous tasks
concurrently [5].

Over the last 15 years, significant changes have ocurred
to summarize and review the relationship between power
system analysis and high performance computing. By way
of example, in [6] a study for large-scale transient stability
simulation based on the massively parallel architecture of
multiple GPUs is made.

In this paper, the current injection method [1] is applied
to obtain the periodic steady state analysis of power systems
under non-sinusoidal conditions by means of parallel
processing based on GPUs and LU decomposition.

2 Harmonic Analysis
2.1 Linear Circuit Analysis

The steady state solution of power systems operating
under sinusoidal and non-sinusoidal conditions can be
obtained using phasor analysis. The power network is solved
for each frequency of interest as opposed to only the
fundamental frequency [7].

In general, a linear circuit analysis operating under non-
sinusoidal conditions can be represented by the following set
of linear equations:

ih
1

ih
2

ih
j

ih
N

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

=

yh
1,1 yh

1,2 yh
1, j yh

1,N

yh
2,1 yh

2,2 yh
2, j yh

2,N

yh
j,1 yh

j,2 yh
j, j yh

j,N

yh
N,1 yh

N,2 yh
N,3 yh

N,N

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

vh
1

vh
2

vh
j

vh
N

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
 (1)

152 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

152 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

where ij is the current phasor for frequency h injected at
node j; yi,j is the equivalent admittance for frequency h
between nodes i and j (mutual when i≠j and self when i=j); v
is the voltaje phasor for frequency h at node j, and N is the
number of nodes of the network.

In compact form (1) can be written as,

 Ιh = ΥhVh (2)

where h is the harmonic, Ih is the harmonic current injection
vector, Yh is the harmonic equivalent admittance matrix, and
Vh is the harmonic voltage vector.

2.2 The Harmonic Current Injection Method
The harmonic current injection method is widely used to

carry out harmonic propagation studies in distribution
systems [7]. The salient features of the method are outlined
below:

• Build Yh of the power system including the
contribution for all sources and loads. A different
Yh must be calculated for each harmonic h.

• Obtain Ih by extracting the term of the appropiate
frequency from each nonlinear load.

• Use (2) to calculate Vh. Both magnitude and phase
information are important. If a time domain
solution required for each bus voltage, the
calculated harmonics are superimposed.

2.3 LU Decomposition
Since (2) should be repetitively used, once for each

harmonic. It is advisable to form Yh with an algorithm being
time and memory efficient. For instance, triangular
factorization may be applied. The triangular factors of Yh
and the voltages are calculated by forward and backward
substitution, respectively.

In this expression L and U are the lower left and upper

right triangular factors of Yh. The vector W is solved by
forward substitution, and the vector Vh is subsequently
calculated by backward substitution.

2.4 Parallel Processing Based on GPU
NVIDIA is one of the leading manufactures of GPUs.

Architectures Fermi and Kepler are the most widely used for
parallel processing. The GPU used in this research is the
Tesla C2075 with Fermi architecture [8], discussed next.

The first Fermi architecture based GPU, implemented
3.0 billion transistors and features up to 512 CUDA cores. A
CUDA core executes a floating point or integer instruction
per clock for a thread. The 512 CUDA cores are organized
in 16 streaming multiprocessors (SM) of 32 cores each. The
GPU has 64-bit memory partitions, for a 384-bit memory
interface; supporting up to a total of 6 GB of GDDR5
DRAM memory. A host interface connects the GPU to the
CPU via PCI-Express. The GigaThread global scheduler
distributes thread blocks to SM thread schedulers. Fig. 1,
shows the elements of SM and a core. CUDA is the
hardware and software architecture that enables NVIDIA
GPUs to execute programs written with C, C++, Fortran,

Open CL, DirectCompute, and other languages [9]. A
CUDA program calls parallel kernels. A kernel executes a
process in parallel across a set of parallel threads. The
programmer or compiler organizes these threads in thread
blocks and grids of thread blocks. The GPU instantiates a
kernel program on a grid of parallel thread blocks. Each
thread within a thread block executes an instance of the
kernel, and has a thread ID within its thread block, program
counter, registers, per-thread private memory, inputs, and
output results.

A CUDA program has two parts: the serial part and the
parallel part. In the serial part, no parallelism exists and the
instructions are executed in the CPU. In the parallel part,
which involves massive data parallelism, instructions are
executed in the GPU. A high-level view of the CUDA
programming model is illustrated in Fig. 2.

2.5 Component Modelling
To assemble the elements of a power system into a bus

impedance matrix for each harmonic, a frequency dependent
model for each element must be developed [11]. This
section summarizes the typical representations of common
network components for harmonic analysis.

1) Transmission lines: For the case of a
transmissionline, the total resistance and inductive
reactance of the line is included in the series arm
of the equivalent-π and the total capacitance to
neutral is divided equally between its shunt arms.

2) Generators: These are considered to be linear
components whose harmonic impedance is

 ΖG = R√h + jΧdh (3)

where R is derived from the generator power losses
and Xd is the generator subtransient reactance.

3) Transformer: These are considered to be linear
components whose harmonic impedance is

 ΖT = R√h + jΧth (3)

where R is derived from the tranformer power
losses and Xt is the transformer’s short-circuit
reactance.

Figure 1. SM and core processor scheme.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 153

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 153

ISBN: 1-60132-444-8, CSREA Press ©

Figure 2. Schematic of execution of a NVIDIA´s CUDA programming

model.

4) Capacitor banks: These are considered to be
passive components, where

 ΖC = − jV2/ hQ (5)

where V is the line voltage and Q is the reactive
power.

5) Passive loads: Linear passive loads do not produce
harmonics but have a significant effect on the
system frequency response. A general model for
passive load is given in [12]

 ΖL = RΧL / (R + ΧL) + ΧS (6)

where

 R = V2/ Ρ (7)

 ΧL = jhR / 6.7(Q/Ρ − 0.74) (8)

 ΧS = j0.073hR (9)

6) Non-linear loads: These are represented by a
harmonic current injection source. Harmonic
current injection sources are used to represent the
harmonic contributions from static VAR
compensators (SVCs), induction arc furnaces,
rectifiers and electronic devices. For example, a
SVC is represented by the harmonic current
injection given by,

 Ιh = (%h)Ι1 (10)

where %h is a percentage of the current at
fundamental frequency given by

 Ι1 = (Q / √3V) ej(theta + pi/2) (11)

Where theta is the voltage angle obtained from a
conventional power flow, and pi/2 is the required phase
shift, since the current leads or lags the voltage by 90°.

3 Harmonic Propagation Method
The algorithm for the harmonic propagation in the power

network combines a conventional power flow study with the
injection current method and LU decomposition.

Fig. 3 shows the flow chart for the harmonic propagation
method. It is basically composed by three blocks, i.e. the
data block that reads the parameters of the power system,
the power flow block that performs a conventional power
flow study and the harmonic voltage block that determines
the harmonic propagation throughout the system.

Some parts of the algorithm are executed sequentially
and some parts in parallel. The system data block is
programmed sequentially. Then two tasks are
simultaneously run. Each task is performed by one thread in
the CPU (OpenMP). One of the threads (thread 1) performs
the power flow study meanwhile the other thread (thread 0)
copy the system data from the CPU to the GPU. These two
tasks are executed in parallel and have different computation
time, so they have to be synchronized. To synchronize this
part of the algorithm a flag is used. It is initially flag = 0
and changes to flag = 1 when the power flow concludes. If
the power flow study has no finished yet, thread 0 will have
to wait until thread 1 finishes its process. The last part of the
algorithm is executed in the GPU (CUDA). For each
harmonic, it is necessary to obtain the equivalent admittance
matrix, the current injection vector, and solve for the
harmonic voltage vector. Superposition effects are
accounted to obtain the final result. The following steps
summarize the complete method:

• Find the steady state solution given by a
conventional power flow study.

• With the resultant voltages at fundamental
frequency, compute the passive equivalent circuit.

• Obtain the driving point impedance seen from node
where the non-linear load is connected.

• Solve (2) for each frequency to get the final result
by superposition of effects.

Vh=1
Yh=3

Yh=3Vh=3 = Ih=3

Vh=1V =
V

+ + +

Block 1 2 Block nBlock

Vh=1

Ih=3 Yh=5 Yh=nIh=5 Ih=n

Yh=5Vh=5 = Ih=5 Yh=nVh=n = Ih=n

+Vh=3 Vh=5 Vh=n

Figure 3. Algorithm of the proposed method.

154 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

154 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

Figure 4. IEEE-14 bus test system.

4 Test Case
The test system of Fig. 4 has been used to illustrate the

performance of the implemented method. The electric power
system includes three SVCs connected in three diferent
buses. The maximum magnitudes of harmonic current
injected by the SVCs are given in Table I. The fundamental
power flow solution is given in Table II. The SVCs are
considered to be delta connected, hence no zero sequence
harmonic current is injected into the system.

The impedance of the capacitor bank at node 9 is given
by

 ΖC = − j(1.1005)2/ h0.29 = − j4.1762 / h

 and the load in node 4 is represented by the equivalent
impedance

 ΖL = RΧL / (R + ΧL) + ΧS
 where,

 R = (1.024)2/ 0.47 = 2.2310
 ΧL = jh2.2310 / 6.7(0.039/0.478 − 0.74) = -jh0.5057
 ΧS = j0.073h(2.2310) = jh0.1628

TABLE I. MAXIMUM AMPLITUDE OF HARMONIC CURRENTS IN SVC [7]

Harmonic % of fundamental

5 5.05

7 2.59

11 1.05

13 0.75

17 0.44

19 0.35

23 0.24

25 0.20

TABLE II. FUNDAMENTAL FREQUENCY POWER FLOW (P.U.)

Node ⎟⎟ V⎟ θθ PG QG PD QD

1 1.060 0 2.385 0 0 0

2 1.045 -5.109 0.400 0.122 0.217 0.127

3 1.010 -12.91 0 -0.182 0.942 0.190

4 1.024 -10.72 0 0 0.478 -0.039

5 1.023 -9.079 0 0 0.076 0.016

6 1.070 -14.53 0 -1.250 0.112 0.075

7 1.083 -14.03 0 0 0 0

8 1.090 -14.03 0 0.037 0 0

9 1.100 -15.68 0 0 0.295 0.166

10 1.087 -15.77 0 0 0.090 0.058

11 1.075 -15.32 0 0 0.035 0.018

12 1.155 -18.07 0 0 0.061 0.016

13 1.136 -17.53 0 0 0.135 0.058

14 1.170 -19.08 0 0 0.149 0.050

By using the same procedure, the parameters for the rest

of load buses are obtained. The generator reactance for the
slack bus is ΖG = jh0.0001 and for regulated buses are ΖG =
jh0.001.

For the SVC at bus 14, the fundamental frequency
current is given by

ΙSVC = (0.40 / √3⋅1.1704) ej(-03331 + 3.1415/2) = 0.1973∠70.914°

In Table I, the harmonic currents are given as percentage
of the fundamental component.

The system is solved for each frequency of interest with
(2), where Ιh have values different from zero only in entries
where the non-linear loads are connected. Table III shows
the harmonic voltages in percentage of the fundamental.

TABLE III. NETWORK HARMONIC VOLTAGES

V \ h 5% 7% 11% 13% 17% THD

⎟⎟V10⎟ 0.5548 0.6397 0.1646 0.0727 0.0238 0.8662

θθ10 129.60 104.52 -10.29 -19.272 -23.88

⎟⎟V11⎟ 0.2875 0.3267 0.0806 0.0346 0.0105 0.4441

θθ11 128.89 103.72 -11.29 -20.38 -25.22

⎟⎟V12⎟ 1.1192 0.7802 0.4406 0.3717 0.2815 1.5527

θθ12 149.58 148.30 153.31 154.19 155.32

⎟⎟V13⎟ 0.9679 0.6763 0.3441 0.2946 0.2244 1.3182

θθ13 147.67 143.67 151.85 153.07 154.29

⎟⎟V14⎟ 1.5306 1.1408 0.3504 0.3292 0.2644 2.0175

θθ14 141.39 129.81 144.64 149.31 151.55

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 155

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 155

ISBN: 1-60132-444-8, CSREA Press ©

Figure 5. Distorted voltage waveform at node 14.

4.1 Harmonic Propagation in Larger Systems
The parallel code has been applied to larger systems to

show the relevance of the harmonic injection current method
processed in parallel. The IEEE-57, 118 and 300 test bus
systems have been solved. Table IV shows the results
obtained by the sequential and the parallelized algorithm.
The first column shows the node number, the second the
time for data reading of power system, and the third is the
time consumed by the power flow study. Columns fourth
and fifth show the computation time of the current injection
method processed en parallel (PCI) an sequential (SCI),
respectively. Columns sixth and seventh show the
processing time for the complete parallel (TPCI) and
sequential (TSCI) code, respectively. Last two columns
show the speed-up of the complete algorithm and the speed-
up of the current injection method, respectively.

The comparison of the fourth column to the fifth shows
the importance of using parallel processing based on GPU
for the current injection method. The best speed-up is 12.95
times for the IEEE-300 bus test system and 4.84 times for
the complete algorithm. For the case of the IEEE 118 bus
test system the results were 6.94 and 3.83, respectively, and
for the case of the IEEE 57 bus test system were 1.11 and
1.07, respectively. It is clear that the speed-up significantly
increases with the size of the power network. The speed-up
can be improved if the entire algorithm and not just to the
current injection algorithm are solved by using parallel
processing.

5 Conclusions
The application of parallel GPU-computing in harmonic

propagation studies in large electrical networks has been
presented.

The algorithm is non-iterative, and a solution is always
obtained. The algorithm exploits the injection current
method and LU decomposition. The introduction of the
parallel processing technique has been very effective in
reducing the required CPU time and in increasing memory
efficiency. Even for the small test system analyzed, it has
shown that the parallel algorithm is faster than the sequential
algorithm. The algorithm implemented on a Tesla C2075

TABLE IV. CPU TIME IN LARGER SYSTEMS

IEEE
 system Data Power

Flow PCI SCI TPCI TSCI Speedup
SCI/PCI

57 0 21 46 51 67 72 1.11

118 1 56 52 361 109 418 6,94

300 2 1250 592 7667 1844 8919 12.95

GPU improves efficiency from 1.11 to 12.95 times for the
injection current method and from 1.07 to 4.84 times in total
simulation, as compared with a conventional algorithm
processed in series.

 References

[1] G. T. Heydt, Electric Power Quality, Stars in a Circle
Publications, May 1991.
[2] A. Medina, J. Segundo, P. Ribeiro, W. Xu, K. L. Lian,
G. W. Chang, V. Dinavahi, N. R. Watson, “Harmonic
Analysis in Frequency and Time Domain”, IEEE
Transactions on Power Delivery, Vol. 28, Issue 3, July
2013, pp. 1813-1821.
[3] J. Arrillaga, A. Medina, M. Lisboa, and M. Cavia,
“The Harmonic domain. A Frame of Reference for Power
System Harmonic Analysis”, IEEE Transactions, vol. 10,
pp. 433-440, Feb 1995.
[4] J. Segundo, A. Medina, “Periodic Steady State
Solution of Electric Systems Including UPFCs by
Extrapolation to the Limit Cycle”, IEEE Transactions on
Power Delivery, Vol. 23, No. 3, July 2008, pp. 1506-1512.
[5] H. F. Jordan and G. Alaghband, Fundamentals of
Parallel Processing, Pearson, Aug 2002.
[6] V. Jalili-Marandi, Z. Zhou, and V. Dinavahi, “Large-
Scale Transient Stability Simulation of electrical Power
Systems on Parallel GPUs”, IEEE Transactions, vol. 23, pp.
1255-1266, Nov 2011.
[7] E. Acha and M. Madrigal, Power Systems Harmonics,
John Wiley & Sons, New York, 2001.
[8] NVIDIA, “Specification: Tesla C2075 GPU
Computing System”, 2011.
[9] NVIDIA CUDA: Programming Guide, 2015.
[10] “Modeling and Simulation of the Propagation of
Harmonics in Electric Power Networks”, IEEE
Transactions, vol. 11, pp. 452-465, Jan 1996.
[11] CIGRE Working Group, “Harmonics, Characteristic
Parameters, Methods of Study, Estimates of Existing Values
in the Networks”, Electra, No. 77, pp. 35-54, July 1981.
[12] T. J. E. Miller, Reactive Power Control in Electric
Systems, John Wiley & Sons, New York, 1982.
[13] D. Owens, M. Houston, and D. Luebke, “GPU
Computing”, IEEE Proceedings, vol. 96, pp. 879-899, May
2008.

 Acknowledgment
Financial support by Consejo Nacional de Ciencia y

Tecnología (CONACYT) is gratefully acknowledged. The
first author wants to acknowledge the scholarship granted by
CONACYT for his doctoral studies at the División de
Estudios de Posgrado, Facultad de Ingeniería Eléctrica,
Universidad Michoacana de San Nicolás de Hidalgo,
Morelia, México.

156 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

156 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

1

A Modular Application of Runtime Performance Analytics
Using GPU and CPU Execution on Planetary Formation

Simulation
Philip M. Westhart1, Kevin Walsh2, and Ben Abbott1

1Southwest Research Institute® 2Southwest Research Institute®

P.O. Drawer 28510 1050 Walnut St
San Antonio, TX 78238, USA Boulder, CO 80302, USA

philip.westhart@swri.org kevin.walsh@swri.org
ben.abbott@swri.org

Abstract - The Symplectic Massive Body Algorithm (SyMBA)
for planetary formation simulation was targeted for
optimization including runtime performance analytics and
execution on a graphics processing unit (GPU). The approach
identified specific functions that would benefit from GPU
acceleration and migrated this limited functionality to execute
on the GPU. Benchmarks saw speedups of up to 26.48x (541s
from 14327s). The overall performance highly depended on
the nature of the test case. To accommodate these data-
dependent performance differences, runtime performance
analysis was integrated into the software to allow the decision
of whether to execute on the central processing unit (CPU) or
GPU to be made at runtime. The runtime performance
analysis was tested and was able to successfully use the more
efficient execution environment.

Keywords: GPU, OpenCL, Runtime performance analytics,
Planetary formation

1 Introduction
The fast pace of technological advances continues to improve
the power of modern day machines. In line with these
improvements, new computationally-intensive problems have
emerged. These problems may involve simulations of large
numbers of particles and exhaustively detailed flow modeling.
The targeted software of this optimization effort falls into this
category, involving the physics simulation of thousands to
millions of particles on time scales ranging from thousands to
hundreds of millions of years. The high demands of these
problems occasionally fall outside the capabilities of today’s
computers, taking orders of magnitude longer than target
times. The optimization of these problems are intrinsically
bound by Amdahl’s law, which states that the maximum
reduction in time by optimizing a subcomponent cannot
exceed the time spent in the subcomponent before
optimization. An ideal optimization should therefore aim to
broadly optimize components to reduce this limitation. The
discussed approach aims to utilize a broad range of
optimization techniques including graphics processing unit
(GPU) execution, runtime performance analytics, and other

techniques as applied to the Symplectic Massive Body
Algorithm (SyMBA) problem.

2 Background
The gravitational N-body code, SyMBA, has led to numerous
advances in planet formation studies [1]. It is valuable to the
planetary science community due to its energy conservation
properties. Owing to its symplectic algorithm, it can support
the number of time steps and encounters necessary for billion
year integrations of planetary building blocks interacting,
colliding, and growing. However, this code had not previously
been ported to run on GPU hardware.

Work has shown planet formation models have a strong
dependence on the number of particles considered [2], and
parallelization attempts have not been successful for running
multi-processor jobs. Due to the chaotic nature of these solar
system dynamics problems there is a need for numerous
simulations to build statistics about the system behavior (in a
recent work Fisher and Ciesla 2014 used 50 simulations [3]).
Current simulations can take months, and thus there are strong
limitations on problems to attack based on available hardware
and manpower. Both of these issues point to a need for
optimizing this code to run on an accelerated platform such as
a GPU.

The purpose of an N-body algorithm is to calculate the
acceleration on each particle caused by the gravitational
interaction with all of the other particles. The calculation only
requires data about the location and mass of all of the particles
in the system at the time of the calculation. At the most basic
level, the calculation has no data dependencies and is fully
parallelizable. Since this calculation is a standard part of many
different celestial mechanics software, there are published
designs of different approaches to memory management and
data structures/organization on the GPU to maximize the
speedup (Elsen et al. 2006 [4], Portegies et al. 2007 [5],
Dindar et al. 2012 [6], Grimm and Stadel 2014 [7]).

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 157

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 157

ISBN: 1-60132-444-8, CSREA Press ©

2

3 Methods
3.1 Initial Profiling
To understand where the software was spending most of its
execution time, the application was run through a software
profiler. The software profiler indicated two particular
functions within the code that consumed the majority of the
execution time.

The first function iterates across all particles and calculated the
instantaneous acceleration for each particle. The instantaneous
acceleration was calculated as the summation of each particle’s
interaction with all other massive particles in the system. In a
simulation where all particles are massive, this function
experienced execution times proportional to the square of the
number of particles in the system (i.e. O(N2)).

The second function checks to see if each particle is having an
encounter with a massive particle. Again, in the simulation
case where all particles are massive, the execution time
followed an O(N2) relationship with the total number of
particles.

Both of these functions are highly-parallelizable in nature.
Each function iterates across every particle in the system and
performs a function related to every other particle in the
system. The highly-parallelizable nature of these functions was
a strong indicator that these would be ideal candidates for
GPU-execution.

3.2 OpenCL Implementation
To accomplish the GPU-execution, the targeted functions were
migrated from the original Fortran 77 implementation into an
OpenCL implementation. A wrapper function was written in C
to handle the OpenCL interface calls, namely explicit
declaration and allocation of variables on the execution device
(in our case, a Tesla K40 GPU), as well as explicit migration
of data onto the device. The target functions were then coded
into OpenCL kernels.

3.3 Runtime Performance Analytics
In GPU execution, the transfer of data between the central
processing unit (CPU) and the GPU incurs a large amount of
overhead. The gains achieved through parallel execution must
outweigh this memory transfer cost in order for GPU-
execution to be a viable option. If the memory cost of GPU-
execution cannot be overcome, faster execution times can be
achieved by exploring the parallelism within the CPU. This is
less preferable since GPUs offer parallelism on the scale of
1000’s of simultaneous operations while current CPUs
typically offer less than 32 simultaneous operations. The
knowledge of which execution environment performs better
might not be known prior to runtime.

In the SyMBA simulations, the benefits of parallelism depend
on N, the number of total particles in the system, and M, the
number of massive particles in the system. Different simulation
scenarios can have significantly different performance based
on the values of M and N. However, these variables can also
change over the course of the simulation as particles collide
and merge. To account for the dependency on M and N, a
runtime performance analysis was implemented.

The runtime performance analysis used a sample-based
approach to dynamically determine which execution
environment, the GPU or the CPU, performed better for the
current dataset. This was accomplished by periodically
executing the code on both environments and comparing the
execution times. The interval at which this dual execution was
performed varied based on the historical results such that the
interval was extended if a consistent trend was identified to
minimize the overhead of executing on both environments.
Determining the best environment at runtime allows for the
same code to be used for a variety of input datasets. Datasets
better suited for GPU execution can be run on the same
program as datasets better suited for CPU execution and
datasets that change which environment performs better during
runtime. The last case can occur when particles merge enough
to reduce overall particle count to a point where the gains of
GPU parallelization are no longer outweighed by the overhead
of data transfer.

3.4 Additional Optimizations
Since the GPU execution was implemented on a single
function level, a large portion of the code remained executed
on the CPU. Many functions involved too many data structures
and would have incurred too large of an overhead to calculate
on the GPU. These functions were targeted for general CPU
optimizations such as loop transformations, optimized search
algorithms, and control flow restructuring.

3.5 Problem Sets
To evaluate the various optimizations, three representative
datasets were tested and benchmarked. The first dataset
featured 444 total initial particles and 23 massive initial
particles. The second dataset featured 5100 total initial
particles with 100 initial massive particles. The final dataset
featured 10,000 total initial particles with all of the particles
initially being massive. These test cases cover the range of
plausible test cases of interest from early to late solar system
creation. The variation between the total particle count and the
massive particle count also yields a large range of execution
time per iteration (i.e. how long it takes to calculate the
particle physics for a single time step). In initial tests, the
10,000 test particle case took the longest amount of time per
iteration, while the 444 test particle test case took the shortest
amount of time per iteration.

158 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

158 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

3

4 Results and Discussion
The overall speedup achieved varied greatly between test
cases. The 10,000 particle test case was observed to complete
26.48x faster, while the 5100 particle test case completed
2.10x faster, and the 444 particle test case completed 2.34x
faster. The runtime performance analysis was observed to
favor GPU execution for the 10,000 test case, while favoring
the CPU for the other two test cases. When runtime
performance analytics were not used, the 5100 particle and
444 particle test cases were observed to run approximately 10x
slower on the GPU than their original CPU execution times.
The runtime performance analytics was able to successfully
determine this and direct execution to the ideal environment
for each dataset. Final execution times and speedups are
summarized in Table 1.

Table 1. Execution Times and Speedups

10,000
particles

All massive

5,100
particles

100 massive

444
particles

23 massive
Baseline
Time (s)

14,327 93,600 25,600

Final Wall
Clock Time
(s)

541 44,656 10,923

Overall
Speedup
Compared to
Original
Baseline

26.48 2.10 2.34

The 10k test case saw significant gains from the GPU
execution. This was due to the O(N2) nature of the problem. In
general, as the number of test particles (N) and the number of
massive particles (M) increase, the computations grow by an
order of N*M, while the data transfer cost grows linearly in
relation to N. Therefore, the larger test cases experienced
greater speedups on the GPU while the smaller test cases
performed faster on the CPU.

5 Summary and Conclusions
The SyMBA code for simulating planetary formation was
successfully optimized and achieved speedups ranging from
2.10x to 26.48x faster depending on the problem set. Runtime
performance analytics were used to dynamically determine
whether the optimized code should execute on a GPU or on a
CPU. The runtime performance analytics successfully diverted
execution to the more efficient environment, allowing for a
single code base to be used for problems that span a wide
range of performance-affecting parameters. We expect that
these approaches can be leveraged to successfully optimize a
variety of other problems with similar runtime dependent
performance characteristics.

6 References
[1] M. J. Duncan, H. F. Levison and M. H. Lee, "A

Multiple Time Step Symplectice Algorithm For
Integrating Close Encounters," The Astronomical
Journal, pp. 2067-2077, October 1998.

[2] D. P. O'Brien, A. Morbidelli and H. F. Levison,
"Terrestrial Planet Formation With Strong Dynamical
Friction," Icarus, pp. 39-58, 2006.

[3] R. A. Fischer and F. J. Ciesla, "Dynamics of the
Terrestrial Planets From a Large Number of N-body
Simulations," Earth and Planetary Science Letters, pp.
28-38, 2014.

[4] E. M. H. V. V. E. D. P. H. a. V. P. Elsen, "N-Body
Simulation on GPUs," in Supercomputing 06
Conference, 2006.

[5] S. R. B. a. P. G. Portegies Zwart, "High Performance
Direct Gravitational N-body Simulations on Graphics
Processing Unit," ArXiv Astrophysics e-prints, February
2007.

[6] S. L. Grimm and J. G. Stadel, "The GENGA Code:
Gravitational Encounters in N-body Simulations with
GPU Acceleration," The Astrophysical Journal,
November 2014.

[7] S. Dindar, E. B. Ford, M. Juric, Y. I. Yeo, J. Gao, A. C.
Boley, B. Nelson and J. Peters, "Swarm-NG: a CUDA
Library for Parallel N-body Integrations with Focus on
Simulations," New Astronomy, vol. 23, pp. 6-18,
September 2013.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 159

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 159

ISBN: 1-60132-444-8, CSREA Press ©

160 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

160 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

SESSION

DISTRIBUTED ALGORITHMS AND PROCESSING
+ BIG DATA ANALYTICS + REAL-TIME

ALGORITHMS

Chair(s)

TBA

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 161

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 161

ISBN: 1-60132-444-8, CSREA Press ©

162 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

162 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 163

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 163

ISBN: 1-60132-444-8, CSREA Press ©

164 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

164 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 165

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 165

ISBN: 1-60132-444-8, CSREA Press ©

166 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

166 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 167

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 167

ISBN: 1-60132-444-8, CSREA Press ©

Abstract A very well-known and relevant problem in science
is the All Pairs Shortest Path problem (APSP). The APSP has
a considerable number of applications ranging from network
traffic to circuit design. Through the years different versions
of Floyd’s algorithm have been implemented to solve the
APSP, some of these versions have been adapted to
contemporary architectures in order to better exploit
hardware and software resources in the quest for additional
benefits in total execution time. In this paper we follow the
recommendations of the Department of Energy (DOE), and
we present a study for a proposed parallel variant of Floyd’s
algorithm in a distributed shared memory environment
(cluster), while trying to maximize the opportunities for
communication hiding through the use of overlapping of
communication and computation. The proposed algorithm
relies in two key factors to attempt better performance,
computation reordering and overlapping. In this research we
also show why a cluster characterization is important, and
how it can help to explain unexpected results.

jijiE
diagonalji

D ji

k
jk

k
ki

k
ji

k
ji dddd

k
jid i j

n
jiD

168 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

168 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

p n

p p p

p
n

p
n

p
n

Pi,j

,*

i P* , j j

k
jid

p

k
jid

jiP
kD

.

jiP

jiP

p
n

p
n

p
n

p

1. procedure FLOYD_2DBLOCK(D(0))
2. begin
3. for k := 1 to n do
4. begin

5. each process Pi,j that has a segment of
 the kth row of D(k-1); broadcasts it to the
 P*,j processes;

6. each process Pi,j that has a segment of
 the kth column of D(k-1); broadcasts it to
 the Pi,* processes;

7. each process waits to receive the needed
 segments;

8. each process Pi,j computes its part of the
 D(k) matrix;
9. end
10. end FLOYD_2DBLOCK

1. procedure FLOYD_ALL_PAIRS_SP(E)
2. begin
3. D(0) = E;
4. for k := 1 to n do
5. for i := 1 to n do
6. for j := 1 to n do
7. k

jk
k
ki

k
ji

k
ji dddd ;

(EQUATION 1)

8. end FLOYD_ALL_PAIRS_SP

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 169

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 169

ISBN: 1-60132-444-8, CSREA Press ©

Each Process initializes the submatrix of D(0)
with the submatrix of A.

Processor P1,j (j=1,…,p1/2) broadcast the segment
of the 1st row of D(0) to processes Pi’,j for all
i’ 1; and processes Pi’,j for all i’ 1 receive
the segment of the 1st row of D(0).

Processor Pi,1 (i=1,…,p1/2) broadcast the segment
of the 1st column of D(0) to processes Pi,j’ for all
j’ 1; and processes Pi,j’ for all j’ 1 receive the
segment of the 1st column of D(0).

For k starting from 1 through (n-1)

Step 1. Each Processor Pi,j owning a segment
of (k+1)th row of D(k) computes entries on
the (k+1)th row of D(k) as indicated by
equation 1 of figure 1, and broadcast these
just computed entries to processors Pi’,j for
all i’ i.

Step 2. Each Processor Pi,j owning a segment
of (k+1)th column of D(k) computes entries on
the (k+1)th column of D(k) as indicated by
equation 1 of figure 1, and broadcast these
just computed entries to processors Pi,j’ for
all j’ j.

Step 3. Each Processor Pi’,j owning no segment
of (k+1)th row of D(k) compute uncomputed(*)
entries of D(k) using equation 1 of Figure 1;
and then receive entries on the (k+1)th row of
D(k) broadcasted from the processor owning
them.

Step 4. Each Processor Pi,j’ owning no segment
of (k+1)th column of D(k) compute uncomputed(*)
entries of D(k) using equation 1 of Figure 1;
and then receive entries on the (k+1)th column
of D(k) broadcasted from the processor owning
them.

Step 5. The processor owning a segment of
(k+1)th row and a segment of (k+1)th column of
D(k) compute uncomputed entries using equation
1 of Figure 1.

(*) Note: A processor owning no segment of the
(k+1)th row of D(k) might own a segment of (k+1)th

170 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

170 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 171

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 171

ISBN: 1-60132-444-8, CSREA Press ©

172 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

172 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 173

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 173

ISBN: 1-60132-444-8, CSREA Press ©

174 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

174 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

Design and Performance of a Low Cost Cluster using
ARM-based Platform

Felipe dos Anjos Lima¹, Edward David Moreno¹, Wanderson Roger Azevedo Dias²
¹Department of Computer Science (DCOMP) – Federal University of Sergipe (UFS)

²Coordination of Informatics (COINF) – Federal Institute of Sergipe (IFS)
Aracaju, SE, Brazil

{felipes1474, edwdavid, wradias}@gmail.com

Abstract—This article presents the results obtained during the
simulations that measured the performance of a low-cost cluster
with ARM processors. For the simulations, we consider the
impact caused by parallel applications responsible for big chunks
of calculations (HPL benchmark, matrix multiplication and
scalar product).Thus, after the simulations, we could observe that
the cluster performance increased considerably compared to
sequential solutions, when the measured amount of processed
data also increased. For matrix multiplication, the gain came to
66% when compared to the sequential solution.

Keywords—cluster; raspberry pi; performance; parallelism

I. INTRODUCTION

Along with technological development, computer
processing power has greatly increased over the last years.
Therefore, the quantity of information has also increased,
hence the search for faster systems and processors which bear
the new demands still a big priority.

Nowadays, the task of maintaining the computing power of
the processors continuously rising, according to Moore`s Law
[1] has been a great challenge for computer scientists and
engineers. That main reasons for that are the difficulties on
developing technology which reduces transistor size, as well
as the heat these components dispute [4, 5].

In order to solve this problem, processor designers started
to considerate the creation of parallel systems. In other words,
instead of trying to increase processing power from a single
core, they came to considerate the creation of processors with
several cores inside one unique integrated circuit.

By taking advantage of parallelism with processors
compound of several cores, it was possible to increase the
process power to higher rates than the ones we have managed
to reach when a single core was used.

By associating two or more computers connected to a LAN
(Local Area Network), it is also possible to create a cluster,
which can be seen as a single system with multiple processors
[21].

In order to take advantage from the rescuers available on
systems that support parallel process, there are several APIs
and libraries that help the development of parallel programs.
As an example, we may cite the libraries MPI (Message
Passing Interface) [25] and OpenMP (Open Multi-Processing)

[2]. Thereby, all management of shared memory that was
needed for maintaining consistence on the device’s computing
could be done safely.

In this paper, we analyze the performance of a cluster of
low cost embedded processors from ARM and Raspberry Pi
platform. After the cluster assembly and configuration
simulations conducted to verify the same behavior. For this,
we use mathematical applications that performed the
calculation of the scalar product and matrix multiplication.
Moreover, with the help of the HPL benchmark can extract
performance metrics such as runtime and GFLOPS. With MPI
framework was possible to parallelize and share the load of
data between cluster nodes.

The paper is organized into six sections, Section 2 presents
the simulation environment the analyzed algorithms; Section 3
is devoted to analysis of the related works; Section 4 presents
the architecture of the cluster; Section 5 presents the results
during simulations, and finally, Section 6 presents the
conclusions and ideas for future work.

II. THEORETICAL GROUNDING

Actually, a the majority of modern computer systems is
already using some resource that makes them more powerful
and capable of handling higher data processing demands [23].
The capacity of processing data in parallel is one of them,
which allows a computer system to run various tasks at the
same time. Therefore, it's important to remember that in order
to run several tasks at the same time; a system must have the
disposition of many processors or one or more processing
cores inside the same chip. The following section presents the
main concepts related to parallel computer system.

A. Concurrent Systems
According to [22], every concurrent program has multiple

control threads (see Figure 1). Therefore, this does not
guarantee them to be run in parallel. In case the system has
only one core available while having several tasks to be run,
multiple control threads alter the usage of the processor for a
specific time interval.

Though there is no parallel data processing, single-core
systems may increase their performance by the usage of
threads [23].

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 175

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 175

ISBN: 1-60132-444-8, CSREA Press ©

Fig. 1. Multiple threads system [22].

For example, it is possible to cite multitask operational
systems, which have the objective of maximizing processor
usage. Thus, every time a thread is in a stand by state, the
operational system then begins to run another thread so that
the processor is never lazy [22]. This mechanism is known as
thread scheduling.

B. Multicore Systems
According to Pacheco [10], transistor size decreases as

processing power increases. Therefore, the heat dissipated by
these circuits also increases, which is problem on system's
performance. The best solution so far was to assemble several
processing units in a single circuit. These circuits are known
as multicore systems [21].

Even though the word multicore is often used to designate
systems with several processing cores in a single chip, it is
also used to designate systems in that the processors stay on
different chips [23]. Figure 2 presents the scheme of a
processor with more than one core.

Fig. 2. Multicore processor [23].

In order to operate correctly, multicore systems need to
efficiently manage memory usage, so that the consistency of
the data that is processed by several cores can be maintained.

In shared-memory systems with multiple processors the
connection of the memory to the processors can be done in
two ways [10]: UMA (Uniform Memory Access) and NUMA
(Nouniform Memory Access).

On the UMA model of connection the processors are
directly connected to the main memory. In this sense, the
access time to the addresses from the memory is the same for
every processor in the system [21]. Figure 3 presents the
operation sketch of the UMA model of connection.

On NUMA model every processor accesses a single
memory block from the main memory [21]. In case a
processor desires to access a memory block from another
processor, it will be necessary to utilise an additional hardware

because this access cannot be done directly. Figure 4 presents
the operation sketch from NUMA model of connection.

Fig. 3. UMA model of connection [10].

Fig. 4. NUMA model of connection [10].

C. Cluster
A cluster is a collection of two or more computers

designed to run a single task [21]. Normally, cluster nodes are
connected via a local area network that must allow an efficient
connection between the nodes. Figure 5 depicts the operation
sketch of a cluster.

Fig. 5. Multiple node cluster [21].

In order to maintain consistency during the task execution,
the cluster uses a NUMA shared-memory model because each
processor has access to its own memory [10]. Some authors
call as distributed shared-memory system, a system that uses
NUMA shared memory model.

D. Parallel Algorithms
To make it possible to benefit from the resources available

on parallel architectures, it is necessary that the algorithms
were prepared to operate in this type of architecture, in order
to improve its runtime.

Nowadays, there are many types of algorithms which do
not recognize the resources available on parallel hardware
architectures [10]. Systems that process images, climate data,
scientific computing, energetic researches that manipulate

176 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

176 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

substantial data quantities, may have their performance
increased if they did benefit from parallel hardware
architectures.

According to [23], in order to correctly execute a parallel
algorithm in a parallel system, it should be able to accomplish
three basic tasks:

• Mapping: the distribution of tasks to the different
processors.

• Sharing: the sharing of the task's execution according
to data dependency.

• Identification: the identification of the data that travels
through processors.

E. Parallel Algorithms
There are many types of parallelism that are involved in a

computational system. To make an algorithm able to execute
in a parallel way, it is necessary the hardware to provide the
needed support. Next, the main types of parallelism are
presented [21].

• Bit-Level Parallelism: the bits of an instruction are
processed in parallel.

• Instruction-Level Parallelism: through a resource
known as pipeline, processors are able to process
instruction in parallel because they posses multiple
functional unities.

• Data-Level Parallelism: the data are stored and can be
accessed after having its results combined.

• Task-Level Parallelism: Uses a separate control flow
for each task that is to be executed independently.

F. MPI Library
MPI (Message Passing Interface) is a “Message-Passing”

library developed to be a pattern, initially on distributed-
memory environments, for “Message-Passing” and for Parallel
Computing [21]. All parallelism is explicit, in other words, the
programmer is responsible to identify the parallelism and to
implement the algorithm using MPI constructions.

In this model of parallel computing, the same source code
is run on each processor. Thus the variables declared are
relative to each processor. The MPI is responsible for
managing memory between the cores of the system [21, 13].
Figure 6 shows the memory model used on clusters.

Fig. 6. Distributed-memory system [10].

The processes that are being executed by cluster nodes
communicate to each other by message sending. For that, the
MPI provides a set of functions described as follows:

• MPI_Init: responsible for initial configurations on the
system. It is the very first function to be executed by
the system.

• MPI_Finalize: frees every resource utilised by the
MPI. It is the last function to be executed by the
system.

• MPI_Send: loads the information exchanged between
the processes.

• MPI_Recv: it is used to receive messages that were sent
by other processes.

All function presented above can be called by C, C++ and
FORTRAN written software.

III. RELATE WORK

The authors in [14] present an analysis of the impact
thread usage may cause on applications. The simulations were
performed on different operational systems (Windows and
Linux) and on different architectures (32 and 64 bits), in order
to verify the impact these alterations could cause on
application performance.

To model the concurrent applications between thread
manipulations, the author utilised the libraries Pthreads and
WinAPI. The library Pthreads defines a default programming
interface on UNIX systems [9]. On the other hand, WinAPI
specifies a set of interfaces for developing desktop
applications and also server applications on Windows [8].

To measure performance on the libraries, the authors
worked with four problems: calculating the value of using
Leibniz method, integral calculating by rectangle rule, MIPS
(Millions of Integer Operations Per Second) and MFLOPS
(Millions of Floating Point Operations Per Second)
calculations. For each problem, 33 executions were
performed, with the number of threads varying from 1 to 4.
The results showed that the increase on the number of threads
provoked the enlargement of MPIS and MFLOPS rates. For
integral and value calculating, the increase on thread
numbers caused a rising of speedup.

In [17], the author verified the impact the implementation
of parallel programs using OpenMP caused on application
performance. To perform the tests, the following applications
were used: JPEG, Huffman Codec, Radixsort, AES
Encryption, traveling Salesman, Block Matching, Discrete
Fourier Transform. The simulations were performed on an
ARM11 MPCore platform.

Simulation results showed that an increasing number of
threads implies on a considerable rise of process power and
efficiency. In addition, the increasing number of threads
caused a growth of energy consumption. Figure 7 shows the
impact parallelization with OpenMP has caused.

Simon et al [15] presents a low-cost cluster
implementation compounded by sixty-four Raspberry Pi chips
with ARM processors. Initially, the authors verified the
process power of each cluster node individually. For that,
LINPACK benchmark was used. This benchmark measures
the ability each cluster node has on solving linear equation

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 177

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 177

ISBN: 1-60132-444-8, CSREA Press ©

systems with n x n density, For n = 200, the performance
measured for each node was 55571 KFlops-1 with a standard
deviation of 304 KFlops-1.

Fig. 7. Impact of OpenMP usage [17].

To verify performance for every cluster node running in
parallel, the HPL (High-Performance LINPACK) was used.
During the tests, the number of nodes in a cluster, as well as
the size of the linear systems varied. Analyzing Figure 8 it is
possible to realize that using less than 24 nodes for smaller
linear systems (with n = 1280) was irrelevant, because the
performance kept practically constant.

Furlinger et al [11] presents an analysis of energy
consumption of a cluster assembled by five apple TV devices.
Each device had an ARM Cortex-A8 processor. In order to
measure the performance of cluster nodes individually, the
authors used the Coremark benchmark. With Coremark it was
possible to perform performance tests on integer number
operations. To measure performance on operation that
manipulates float point numbers on each cluster node,
LINPACK benchmark was used. On the other hand, HPL
allowed them to measure parallel process power on the cluster.
The best performance number they could reach was 160.6
MFlops on arithmetic operations.

Fig. 8. Performance measure during the execution of HPL benchmark [15].

Silva and Yokoyama`s [16] work aimed to compare the
performance of the libraries that manipulated threads. In order
to accomplish these tests they have utilized the libraries PTh
(GNU Portable Threads) [27], Protothreads [28] and PM2
Marcel [29].

PTh libraries allowed every thread to be run at the same
address space of the process. The scheduling of multiple
threads is no-preemptive. The PM2 Marcel library was

developed to support a greater quantity of threads at the same
time. The threads created by Protothreads are known as “light”
threads, in other words, those threads are run on the same
stack.

During the tests, the authors verified the time spent on
initialization, creation and join operations. The analysis of
results allows us to conclude that Protothreads library had the
best performance. This is due to the way the library was
implemented. The Figures 9 and 10 represent the results they
obtained.

Fig. 9. Average time for thread creation [16].

Fig. 10. Average time for execution and join operation [16].

Torelli and Bruno [18] presented a comparative analysis
on the libraries OpenMP and PThreads. To accomplish the
tests, the authors used both sequential and parallel versions of
the algorithm that calculates the Euclidian Distance between
two points of an image. The programs were executed with 2D
images of different sizes. After testing the sequential version
of the algorithm with OpenMP the authors calculated the
speedup (see Figure 11).

Fig. 11. Speedup from solutions using OpenMP, Pthreads and OpenMP [18].

Jin et al [24], have done studies to verify the performance
of parallel programs which utilise hybrid solutions. In other
words, solutions implemented by a combination of the
OpenMP and MPI libraries. By adopting this approach, the

178 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

178 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

authors have verified a reduction on energy consumption,
when compared to the same application developed with only
MPI.

IV. CLUSTER ARCHITECTURE USING ARM PROCESSORS AND
RASPBERRY PI

In this section, the details on the construction of the
proposed cluster are presented, as well as its characteristics.

A. Raspberry Pi Characteristics
The proposed cluster utilizes Raspberry Pi [31] chips (see

Figure 12) with the following settings:

• ARM Processor with 700 MHz.
• SDRAM of 512 Mbytes.
• GPU Dual Core Videocore IV.
• Network Interface 10/100 Ethernet RJ-45.
• HDMI Interface for video output.
• 4 USB 2.0 ports.

Fig. 12. Raspberry Pi components [31].

B. Raspbian Operating System
In order to control each cluster chip, we use the operating

system Raspbian [32], which is optimized for running on
Raspberry Pi chips and is derived from Debian Operating
System.

C. Cluster Assembling
To assemble the cluster eight type B Raspberry Pi chips

are used. The chips communicate through network modules
present on each one. The system processor belongs to the
AMR platform [12]. Figure 13 presents the example of a
Raspberry Pi type B model.

Fig. 13. Raspberry Pi type B model [31].

One of the advantages of using Raspberry Pi is its low-
cost, because it possesses every component present on higher

value computer. In this sense, it is possible to install an
operating system that will manage the chip’s components.

After assembling the cluster, the tasks sent via network are
parallelized so that they are run by every node of the cluster.
Figure 14 presents the sketch from the cluster assembling.

Fig. 14. Raspberry Pi cluster.

Cluster chips are activated individually so that it is
possible to utilise specific chips during the program execution.
When tasks are sent, the programmer must specify the number
of chips he would like.

It is also part of the job the implementation of parallel
algorithms to be run by the cluster and, thus, measuring the
cluster performance. With this information we have done
some analysis and have verified the real efficiency of the
cluster when compared to other sequential computing systems.

V. SIMULATIONS AND RESULTS

In this section, we present the results of simulations to
verify the performance of the embedded cluster. For this, we
use the MPI_Wtime() function, provided by the MPI API to
calculate the average time spent after a hundred executions of
each algorithm.

In addition to the execution times of each algorithm, we
also present the speed-up, which measures the performance of
parallel solutions when compared with the respective
sequential solutions.

A. Running Matrices Multiplications
Analyzing the results obtained by the simulations with the

algorithm that held the matrix multiplication, we can see that
the parallelization led to a considerable improvement in the
cluster's performance. The simulations take into account the
number of nodes and the order of the matrices. The reduction
in run time to four nodes in the cluster has reached 66%
compared to sequential execution with only one node. Figure
15 shows the simulation times for the matrix multiplication.

By doing an analysis of the found speed-ups, we can see
that for matrices with the same, an increase in the number of
cluster nodes also caused an increase in the speed-ups. Figure

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 179

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 179

ISBN: 1-60132-444-8, CSREA Press ©

16 shows the speed-ups to the problem of matrix
multiplication.

Fig. 15. Simulation times for the matrix multiplication.

Fig. 16. Speed-ups to the problem of matrix multiplication

B. Running Dot Product
After the simulations with the algorithm that held the dot

product of two vectors with sizes 100, 250 and 500, we can
see that the parallelization caused a reduction in runtime that
reached 52%. Figure 17 shows the algorithm runtimes that
held the dot product.

Fig. 17. Simulation times for the dot product

The analysis of speed-ups shows that an increase in the
number of cluster nodes caused an increase in performance by
reducing the run time (see Figure 18).

Fig. 18. Speed-ups to the problem of dot product

C. Running Linpack Benchmark
After running the HPL benchmark, we can measure the

time taken to solve a dense linear system of order N = 4000,
and the amount of floating-point operations (GFLOPS)
performed per second.

Analysis of the results shows that an increase in the
number of cluster nodes caused a considerable reduction in
run time. For the case in which four nodes performed in
parallel, the reduction was 64% compared to sequential
execution. Regarding the number of transactions, we can see
that hears an increase of approximately 65%. Figures 19 and
20 show the results obtained after execution of the benchmark
HPL.

Fig. 19. Execution times for the benchmark HPL

Fig. 20. Number of operations in GFLOPS

180 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

180 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

VI. CONCLUSIONS AND FUTURE WORK

In this work, we implemented and analyzed the
performance of a cluster of low cost with embedded
processors from ARM and Raspberry Pi platform. To measure
the cluster's performance, we use the HPL benchmark, in
addition to algorithms that carried out the matrix
multiplication and the dot product of two vectors.

After performing this work, we can make the following
observations: (i) the increase in the number of cluster nodes
caused a considerable reduction in the application runtime; (ii)
an increase in the amount of processed data proved an
improvement in the performance of the cluster. This is due to
the fact that for small amounts of data, the time spent in
communicating between nodes exceeds the processing time,
making the solution more efficient sequential; (iii) after
analyzing the applications performed and the results obtained
by running the HPL benchmark, we can conclude that the
cluster shipped with ARM processors performed well when
running parallel applications.

REFERENCES

[1] Moore, G. E., "Cramming More Components onto Integrated Circuits".
Electronics, 38(8):114-117, April, 1965

[2] OpenMP, Available in: http://openmp.org/wp/. Accessed December 18,
2014.

[3] MPBench, Available in:
http://icl.cs.utk.edu/projects/llcbench/mpbench.html. Accessed
December 18, 2014.

[4] COSTA, Ricardo A. G., "Desempenho e Consumo de Energia de
Algoritmos Criptográficos do MiBench em Sistemas Móveis".
Monograph, Amazonas State University, November 2007.

[5] GUTHAUS, M.; RINGENBERG, J.; ERNST, D.; AUSTIN, T.;
MUDGE, T. and BROWN, R., "MiBench: A Free, Commercially
Representative Embedded Benchmark Suite". In Proc. of the IEEE 4th

Annual Workshop on Workload Characterization (WWC), USA, pages
3-14, December 2001.

[6] LIN, C.-H.; SHIH, C.-S.; LIU, J.-C.; CHENG, M.-H. and LEE, Y.-W.
"Energy Efficiency Measurement for Multimedia Audio Decoding on
Embedded Systems". In: 2nd International Conference on Ubiquitous
Information Management and Communication (ACM ICUIMC), Suwon,
Korea, January 31 - February 01, 2008.

[7] Intel, "Inte’s Tera-Scale Research Prepares for Tens, Hundreds of
Cores". Technology@Intel Magazine, 2006, Available in:
http://www.intel.com/technology/magazine/computing/tera-scale-
0606.pdf. Accessed January 4, 2015.

[8] Windows API Index, Available in: https://msdn.microsoft.com/en-
us/library/windows/desktop/hh920508%28vs.85%29.aspx. Accessed
December 20, 2014.

[9] POSIX Threads Programming, Available in:
https://computing.llnl.gov/tutorials/pthreads/. Accessed December 21,
2014.

[10] PACHECO, Peter, "An Introduction to Parallel Programming". –
Morgan Kaufmann, 1st edition, 2011, 392p.

[11] FÜRLINGER, Karl; KLAUSECKER, Christof; KRANZLMÜLLER,
Dieter, "The AppleTV-Cluster: Towards Energy Efficient Parallel
Computing on Consumer electronic Devices". 2011.

[12] ARM Company Profile, Available in:
http://www.arm.com/about/company-profile/index.php. Accessed
November 12, 2014.

[13] NEILL, Richard; SHABARSHIN, Alexander and CARLONI, Luca P.
"A Heterogeneous Parallel System Running Openmpi on a Broadband
Network of Embedded set-top Devices". In Proceedings of the 7th ACM
International Conference on Computing Frontiers, CF'10, pages 187-
196, New York, NY, USA, 2010.

[14] SÁ, Aléx G. C.; PEREIRA, Marluce, R.; MOURA, Pedro M. and
PEIXOTO, Luiz Henrique R., "A Comparative Study of Multithreaded
Applications Performance in Different Scenarios". Magazine of
Information System the FSMA, 1(9):45-53, 2012.

[15] COX, Simon J.; COX, James T.; BOARDMAN, Richard P.;
JOHNSTON, Steve J.; SCOTT, Mark and O'BRIEN, Neil, "Iridis-pi: a
Low-Cost, Compact Demonstration Cluster". Cluster Computing,
1(17):349-358, June 2013.

[16] SILVA, R. R. and YOKOYAMA, R. S., "Avaliação de Desempenho da
Utilização de Threads em User Level em Linux". Magazine of
Theoretical and Applied Informatics (RITA). 1(18):112-132, 2011.

[17] BLUME, H.; LIVONIUS, J. Von; ROTENBERG, L.; NOLL, T. G.;
BOTHE, H. and BRAKENSIEK, J., "OpenMP-Based Parallelization on
an MPCore Multiprocessor Platform – A Performance and Power
Analysis". Journal of Systems Architecture (JSA), 11(54):1019-1029,
November, 2008.

[18] TORELLI, J. C. and BRUNO, O. M., "Programação Paralela em SMPS
com OPENMP e POSIX Threads: Um Estudo Comparativo".
Proceedings of the IV Brazilian Congress of Computing (CBComp).
Volume 1, pages 486-491, 2004.

[19] JAIN, Raj and PAUL, Subharthi, "Network Virtualization and Software
Defined Networking for Cloud Computing: A Survey". IEEE
Communications Managzine, 51(11):24-31, November, 2013.

[20] SkaMPI-5 benchmark, Available in: http://liinwww.ira.uka.de/~skampi/.
Accessed January 12, 2015.

[21] McCOOL, Michael; REINDERS, James and ROBISON, Arch,
"Structured Parallel Programming - Patterns for Efficient Computation".
– Morgan Kaufmann; 1st edition, 2012, 432p.

[22] SILBERSCHATZ, A. S.; GALVIN, P. and GAGNE, G., "Sistemas
Operacionais - Conceitos e Aplicações". – São Paulo: Campus, 2001.
585p.

[23] GEBALI, Fayez, "Algorithms and Parallel Computing". – New Jersey:
Wiley, 1st edition, 2011, 341p.

[24] JIN, Haoqiang; JESPERSEN, Dennis; MEHROTRA, Piyush; BISWAS,
Rupak; HUANG, Lei and CHAPMAN, Barbara, "High performance
computing using MPI and OpenMP on multi-core parallel systems",
Journal Parallel Computing, 37(9):562–575, September, 2011.

[25] MPI, Available in: http://www.open-mpi.org/. Accessed December 18,
2014.

[26] Intel OpenMP, Available in: https://software.intel.com/en-
us/articles/getting-started-with-openmp. Accessed December 19, 2014.

[27] Pth, Available in: www.gnu.org/s/pth/. Accessed January 12, 2015.
[28] Protothreads, Available in: http://dunkels.com/adam/pt/. Accessed

January 12, 2015.
[29] PM2 Marcel, Available in: http://runtime.bordeaux.inria.fr/marcel/.

Accessed January 12, 2015.
[30] ZOMAYA, Albert Y. Z and LEE, Young Choon, “Energy Efficient

Distributed Computing Systems”. – Wiley-IEEE Computer Society
Press, August, 2012, 856p.

[31] Raspberry Pi, Available in: www.raspberrypi.org/. Accessed November
7, 2014.

[32] Raspbian, Available in: www.raspbian.org/. Accessed November 7,
2014.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 181

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 181

ISBN: 1-60132-444-8, CSREA Press ©

A Framework for Scheduling Real-Time Systems

Zhuo Cheng∗, Haitao Zhang†, Yasuo Tan∗, and Yuto Lim∗
∗School of Information Science, Japan Advanced Institute of Science and Technology, Japan

{chengzhuo, ytan, ylim}@jaist.ac.jp
†School of Information Science and Engineering, Lanzhou University, China

htzhang@lzu.edu.cn

Abstract—Real-time system is playing an important role in
our society. For such a system, sensitivity to timing is the central
feature of system behaviors, which means tasks in the systems
are required to be completed before their deadlines. To guarantee
this requirement, the design of scheduling is crucial. In this
paper, based on satisfiability modulo theories (SMT), we provide
a framework to design scheduling for real-time systems. In the
framework, the problem of scheduling is treated as a satisfiability
problem. The key work is to formalize the satisfiability problem
using first-order language. After the formalization, a SMT solver
(e.g., Z3, Yices) is employed to solver such a satisfiability problem.
An optimal schedule can be generated based on a solution model
returned by the SMT solver. To demonstrate the practicality of
the framework, we give design guidelines for real-time systems
with multiprocessor. Through the demonstration, the framework
is found flexible and sufficiently general to apply to different
kinds of real-time systems. To the best of our knowledge, it is the
first time that systematically introducing SMT to solve a series
problems covering a wide range in real-time scheduling domain.

Keywords—real-time scheduling, SMT, multiprocessor, satisfia-
bility problem

I. INTRODUCTION

Real-time system is playing an important role in our
society. For example, chemical and nuclear plant control, space
missions, flight control, telecommunications, and multimedia
systems are all real-time systems [1]. In such a system,
sensitivity to timing is the central feature of system behaviors,
which means, tasks in the system are required to be completed
before their deadlines. To provide such guarantee, the design
of scheduling is crucial.

The research on real-time scheduling has lasted for
decades, but still lots of challenges remain [5]. For example,
limited task models for multiprocessor systems, limited poli-
cies for access to shared resources, ineffective schedulability
tests, limited scheduling methods. In this paper, we try to
address the challenge limited scheduling methods.

For designing scheduling method, many research has con-
tributed to this area [8, 9, 10, 11]. But one important problem is
that all the proposed methods are specified on either a specific
system architecture (e.g., uniprocessor) or specific scheduling
target (e.g., make all task meet deadline). Usually, it is quite
difficult, even impossible, to adapt one scheduling method to
another application scenario. This becomes a main obstacle for
designing scheduling for a new application system and results
in a high design cost. In this paper, we try to solve the problem

Haitao Zhang is the corresponding author.

by proposing a framework to design scheduling for real-time
systems. The main contributions of this paper are as follows.

i) We propose a scheduling framework based on satisfia-
bility modulo theories (SMT). In this framework, the problem
of scheduling is treated as a satisfiability problem. The key
work is to formalize the satisfiability problem using first-order
language. We use a sat model to represent the formalized
problem. This sat model is a set of first-order logic formulas
(within linear arithmetic in the formulas) which express all
the scheduling constraints that a desired optimum schedule
should satisfy. After the sat model is constructed, a SMT solver
(e.g., Z3 [6], Yices [7]) is employed to solve the formalized
problem. An optimal schedule can be generated based on a
solution model returned by the SMT solver. The correctness
of this method and the optimality of the generated schedule
are straightforward.

ii) The proposed scheduling framework is flexible. In the
SMT-based scheduling method, we define the scheduling con-
straints as system constraints and target constraints. It means
if we want to design scheduling to achieve other objectives,
only the target constraint needs to be modified. Or, if we
want to achieve the same scheduling objective for another real-
time system with different system architecture, only the system
constraints need to be modified.

iii) We give practical design guidelines for scheduling mul-
tiprocessor systems. These design guidelines are for systems
with multiprocessor, and of course, they are also applicable for
system with uniprocessor, as scheduling uniprocessor systems
is a sub problem of scheduling multiprocessor systems. The
model for the multiprocessor system is defined in a very
general way, and in the design guidelines, we have considered
systems with mixed-criticality (containing both firm and soft)
real-time functions, task dependency relation, task migration
cost, heterogeneous processors (processors with different pro-
cessing speed and architectures), heterogeneous network chan-
nels (network channels with different data transfer speed and
supporting different network protocols). All these efforts make
the framework practicable and sufficiently general to apply to
different kinds of real-time systems and different scheduling
targets, which can benefit system designers to efficiently design
scheduling.

The remainder of this paper is organized as follows. In
Section II, we present scheduling framework which is based
on satisfiability modulo theories. The system model is denoted
in Section III. We give the design guidelines for system
constraints in Section IV, while Section V gives the design
guidelines for target constraints. Related work are summarized
in Section VI. Section VII concludes the paper.

182 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

182 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

TABLE I. SYMBOLS AND DEFINITIONS

Symbol Definition
t system time instant

δ network precision

F set of functions of a real-time system

FH ⊆ F set of functions with firm deadlines

FS ⊆ F set of functions with soft deadlines

Fi ∈ F function of a real-time system, i is the index of the function

ri triggered time instant of function Fi

di deadline of function Fi

vi obtained value by completing function Fi before deadline

T set of all the tasks in the real-time systems

Ti ⊆ T set of tasks corresponding to function Fi

τj ∈ T task, j is index of the task

cj computation cost of τj

mj migration cost of τj from a processor to another one

τsi start task of task poset (Ti,≺)

τei end task of task poset (Ti,≺)

P set of processors

pa ∈ P processor, where a is the index of the processor

psa speed of processor pa

TSa ⊆ T task set that can be completed by processor pa

TSa→b ⊆ T task set that can migrate on network channel na→b

N ⊆ P × P set of network channels

na→b ∈ N network channel from processor pa to pb

nsa→b speed of na→b

II. THE SMT-BASED SCHEDULING FRAMEWORK

A. Satisfiability Modulo Theories (SMT)

Satisfiability modulo theories checks the satisfiability of
logic formulas in first-order formulation with regard to certain
background theories like linear integer arithmetic or bit-vectors
[2]. A first-order logic formula uses variables as well as quan-
tifiers, functional and predicate symbols, and logic operators
[3]. A formula F is satisfiable, if there is an interpretation
that makes F true. For example, formula ∃a, b ∈ R, (b >
a + 1.0) ∧ (b < a + 1.1), where R is real number set, is
satisfiable, as there is an interpretation, a �→ −1.05, b �→ 0, that
makes F true. On the contrast, a formula F is unsatisfiable,
if there does not exist an interpretation that makes F true.
For example, if we define ∃a, b ∈ Z, where Z is integer set,
the formula (b > a+1.0)∧ (b < a+1.1) will be unsatisfiable.

For a satisfiability problem that has been formalized by
first-order logic formulas, a SMT solver (e.g., Z3, Yices)
can be employed to solver such a problem. If all the logic
formulas are satisfiable, SMT solver returns the results sat
and a solution model which contains an interpretation for all
the variables defined in the formulas that makes the formulas
true. For the case ∃a, b ∈ R, the model is: a �→ −1.05, b �→ 0.
If there is an unsatisfiable logic formula, SMT solver returns
the results unsat with an empty model, for the case ∃a, b ∈ Z.

B. The Scheduling Framework

The framework of the SMT-based scheduling is illustrated
in Fig. 1. In a real-time system, a schedule (execution order of
tasks) is generated by a scheduler. The problem of scheduling
can be treated as a satisfiability problem.

In order to use SMT to solve this satisfiability problem,
the key work is to formalize the problem using first-order

Target

Scheduler

Task

system

schedule

System
Constraints

Target
Constraints

SAT Model

/\

SMT Solver (e.g., Z3)

Fig. 1. The framework for scheduling real-time system based on SMT

language. We use a sat model to represent the formalized
problem. This sat model is the set of first-order logic formulas
(within linear arithmetic in the formulas) which expresses
all the constraints that the desired schedule should satisfy.
There are two kinds of constraints: system constraints and
target constraints. System constraints are based on the specific
system. For example, if two tasks run on a processor, a
schedule should make sure that the execution of these two
tasks cannot have overlap in time domain. Target constraint
is based on the scheduling target. For example, under normal
workload condition, the desired schedule should make all the
functions meet their deadlines (completed before deadlines).

After the sat model is constructed, it can be inputted into
a SMT solver (e.g., Z3). A solution model will be returned by
the SMT solver. This solution model gives an interpretation
for all the variables defined in the sat model, and under
the interpretation, all the logic formulas in the sat model
are evaluated as true. It means the satisfiability problem
represented by the sat model is solved, and based on this
interpretation, the desired schedule can be generated.

III. SYSTEM MODEL

A. Function Set

Function set define the functions that can be achieved
by a real-time system. Let F = {F1, F2, . . . , Fn} denote
the function set. Each function Fi ∈ F is achieved by a
corresponding series tasks, represent as poset (Ti,≺), Ti �= ∅
denotes the set of the corresponding task, and ≺ denotes
the dependency relation of tasks in Ti (the detail of the
poset will be explained in the next subsection). For real-time
systems, when functions are triggered at system time instant
r, they are required to be completed before a specific time,
which is called deadline, represented by di. Moreover, different
functions have different degrees of importance to the system,
we use vi to denote the values obtained by the system through
completing functions Fi before its deadline di. Based on above
explanation, we define the function Fi = ((Ti,≺), ri, di, vi).

Note that, unlike many research on real-time scheduling
that set deadlines to tasks, we set deadline to the function
level rather than task level. This setting can better reflect the
reality that the deadline requirement is for the functions of
real-time systems, while a function is achieved by a series
tasks cooperated together.

This function definition denotes the functions which have
firm deadlines. That is, for such a function, if it misses its

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 183

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 183

ISBN: 1-60132-444-8, CSREA Press ©

deadline, system will not obtain any value through completing
it. Usually, in a complex real-time system, not all functions
are firm real-time functions. Some functions are soft real-
time functions. For such a function, if it misses deadline, it
will still be useful for the system, but the value obtained
by completing such function will be less than completing it
before its deadline. To denote the function with soft deadlines,
without losing generality, we define such functions as: Fi =
((Ti,≺), ri, di, fi(t)), where fi(t) is the coefficient function
to indicate the value that the system can obtain by completing
function Fi at system time instant t. The reasonable value of
the coefficient function is in interval [0 1]. For convenience,
we use FH ⊆ F to denote the set of functions with firm
deadlines, and use FS ⊆ F to denote the set of functions
with soft deadlines.

B. Task Poset

A multiprocessor real-time system comprises a set of tasks,
denoted by T . For each function, it is achieve by a series tasks
cooperated together. Poset (Ti,≺) is used to denote such a
series tasks, where Ti ⊆ T is the task set corresponding to Fi,
and Ti = {τ1, τ2, . . . , τm}, where τj ∈ Ti is a task, and m is
the number of tasks. We use τi,j to indicate task τj ∈ Ti. We
assume that, if |F| > 1, then ∀Ti, Tj ⊂ T , i �= j =⇒ Ti∩
Tj = ∅. That is, no tasks are shared by different functions 1.
The symbol ≺ indicates the dependency relation between two
tasks. That is, τk, τj ∈ Ti, τk ≺ τj indicate that task τj can start
to run only after task τk has been completed. The dependency
relation is transitive. That is, τk ≺ τj , τj ≺ τl =⇒ τk ≺ τl.

Definition (start task). A start task of (Ti,≺) is such a
task τi ∈ Ti that starts earliest of all the tasks in Ti, that is,
∀τj ∈ Ti, i �= j =⇒ τi ≺ τj .

Definition (end task). A end task of (Ti,≺) is such a task
τi ∈ Ti that starts latest of all the tasks in Ti, that is, ∀τj ∈
Ti, i �= j =⇒ τj ≺ τi.

Without losing generality, we assume that there is one start
task and one end task of (Ti,≺), and use τsi and τei to indicate
the start task and end task of task poset (Ti,≺), respectively
2. Each task has two parameters, τj = (cj ,mj), where j is
the index of the task. cj is the required computation cost,
which means the number of time slots (ticks of processor)
needed by a unit speed processor to complete task τj ; and mj

is the required migration cost for task τj migrating from a
processor to another one. We use the parameter mj combined
with parameters of network (the details will be explained later)
to calculated the overheads of migrating tasks.

C. Processor Set

In multiprocessor real-time systems, different processors
are used to execute tasks. We use P = {p1, p2, . . . , pl}
to denote the set of processors, where l is the number of
processors. Each processor pa is a 2-tuple, pa = (psa, TSa),
where a is the index of the processor. psa is the speed of the

1Note that, this assumption is for concise expression. In real systems, if
task τk ∈ T is used by function Fi and Fj , we can use two tasks τik and
τjk , to represent τk used in function Fi and Fj , respectively.

2To express a function with many starts (end) tasks, we can set a virtual
task, with empty operation, start before all the starts tasks (start after all the
end task) to be the start (end) task.

(a) (b) (c)

Fig. 2. Different types of network topologies: a. ring, b. mesh, c. tree

processor. When task τi running on processor pa, the number
of time slots needed for processor pa to complete task τi,
represented by task completion tcia:

tcia =
ci
psa

(1)

TSa is the task set that can be completed by processor pa. This
parameter is for heterogeneous systems, as in such systems,
processors have different architectures, some tasks can only be
executed on some specific processors. If TSa = ∅, it means
processor pa cannot be used to execute any task in the system.

Processors have independent local clocks, they are syn-
chronized with each other in the time domain through syn-
chronization protocol. The maximum difference between the
local clocks of any two processors in the networked systems
is called network precision (also called synchronization jitter)
which is a global constant. We denote the network precision
with δ.

D. Network Channel Set

In multiprocessor real-time systems, processors are con-
nected through network channels. We use N ⊆ P×P to denote
the set of network channel. na→n ∈ N denotes the network
channel from processor pa to pb, where pa, pb ∈ P, a �= b.
Since we consider bi-directional network channel, we have
∀na→b ∈ N =⇒ nb→a ∈ N . We use nsa→b to represent the
speed of na→b.

Note that, define the network channel set as N ⊆ P × P
makes the system model become very general which includes
any types of network topologies. For example, as shown in
Fig. 2, the network channel set for mesh topology (b in the
Fig. 2) equals to P ×P , while the ring and tree topologies is
the subset of P ×P . Moreover, this definition is also suitable
for processor with multi-cores. For example, for a processor A
with four cores, in this definition, can be represented as four
processors connect with network channels in mesh topology,
and the speed of networks is set based on the data transfer
speed inside the processor A.

When the data of the computed results of task τi migrates
from processor pa to pb

3, the time slots spent on network
channel, represented by tmi

a→b, can be calculated as:

tmi
a→b =

mi

nsa→b
(2)

Based on tmi
a→b, we can get the time instant that processor

pb receives the data of task τi migrating from processor pa

3For conciseness, we say “task τi migrates from processor pa to pb” to
mean “the data of the computed results of task τi migrates from processor pa
to pb” in the reset of the paper.

184 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

184 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

P
NT

T

Fig. 3. An example for scheduling multiprocessor real-time systems

through network channel na→b, represented by ria→b, as

ria→b = sia→b + tmi
a→b + δ (3)

where, sia→b is the start time of τi migrating through network
channel na→b, and δ is the network precision.

For a distributed real-time system, different processors are
connected through network channels which are built by routers.
As different routers support different network protocols, some
tasks may not be migrated through some network channels.
To capture this characteristics, similar as the heterogeneous
processors, we also can define the heterogeneous network
channels. We use TSa→b to denote that task set that can be
transferred through network channel na→b.

E. Assumptions

Applied to this system model, we require that all the
parameters of the functions and tasks are known a prior.
This requirement makes the model become a generalization
of the widely studied period task model, in which all the
tasks in the system are released periodically. This means our
method applies more broadly than other methods which are
specified on period task model. To guarantee a certain level of
determinacy, in this paper, task preemption is not allowed.

To illustrate the defined system model, an exam-
ple of scheduling for multiprocessor real-time systems is
shown in Fig. 3. In this example, there are three pro-
cessors p1, p2, p3 in the system. These processors are
connected with each other through six network chan-
nels n1→2, n2→1, n1→3, n3→1, n2→3, n3→2, and these network
channels support all the migration of all the tasks in T . The
network precision δ is 1. In the system, a firm real-time
function F = ((T,≺), 1, 11) is waiting to be executed on the
processors. The task poset of the function is (T,≺) which
consists of six tasks. Task dependency relations are described
in a directed acyclic graph. An edge starting from task τi to
task τj represented by a dotted line denotes a dependency
relation τi ≺ τj .

IV. SYSTEM CONSTRAINTS

This subsection describes all the system constraints ex-
pressed in the sat model for the defined multiprocessor sys-
tems.

A. Constraint on start execution time of functions

Task set Ti corresponding to function Fi can start to run
only after the function is triggered. That is, the start execution
time of the start task of the poset (Ti,≺) should be larger than
the triggered time of function Fi.

∀Fi ∈ F , ∀pa ∈ P
sτsia ≥ ri

(4)

where symbol sτsia denotes the start execution time of task τsi
on processor pa.

B. Constraint on start time of task migration

If a task τi migrates from processor pa to processor pb
through network channel na→b, it means i): task τi has been
completed by processor pa; or ii): τi has migrated to processor
pa from another processor. For the first case, task τi can start
to migrate after it has been completed, and for the second
case, task τi can start to migrate after it has already migrated
to processor pa.

∀τi ∈ T , ∀na→b ∈ N , ∃nc→a ∈ N
(sia→b ≥ sia + tcia) ∨ (sia→b ≥ ric→a)

(5)

where symbol sia→b denotes the start time of task τi migrating
through network channel na→b, sia denotes the start execution
time of task τi on processor pa.

C. Constraint on task dependency

For processor pa, if τi ≺ τj , task τj can start to run only
after τi has been completed. Similar to the constraints on start
time of task migration, there are two cases. i): task τi has
been completed by processor pa; ii): task τi has migrated
to processor pa from another processor. For the first case,
τj can start to run after τi has been completed, and for the
second case, τj can start to run after τi has already migrated
to processor pa.

∀τi, τj ∈ T , ∀pa ∈ P, ∃nb→a ∈ N
τi ≺ τj =⇒ (sja ≥ sia + tcia) ∨ (sja ≥ rib→a)

(6)

D. Constraint on execution of processors

A processor can execute only one task at a time. This is
interpreted as: there is no overlap of the execution time of any
two tasks.

∀τi, τj ∈ T , i 	= j, ∀pa ∈ P
(sia ≥ sja + tcja) ∨ (sja ≥ sia + tcia)

(7)

E. Constraint on network channels

A network channel can transfer data of only one task at a
time. That is, there is no overlap of the migration time of any
two tasks on a network channel.

∀τi, τj ∈ T , i 	= j, ∀na→b ∈ N
(sia→b ≥ sja→b + tmj

a→b) ∨ (sja→b ≥ sia→b + tmi
a→b)

(8)

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 185

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 185

ISBN: 1-60132-444-8, CSREA Press ©

Fig. 4. The scheduling result for example shown in Fig. 3 by using the
proposed SMT-based scheduling

F. Constraint on heterogeneous processors

In heterogeneous systems, processors have different archi-
tectures, some tasks can only be executed on some specific
processors. For tasks that cannot be executed on some proces-
sors, the start execution time of the tasks in such processors
are set to +∞, which means the tasks will never start to run
on these specific processors.

∀pa ∈ P, ∀τi ∈ T − TSa

sia = +∞ (9)

G. Constraint on heterogeneous network channels

For a distributed real-time system, different processors are
connected through network channels which are built by routers.
As different routers support different network protocols, some
tasks may not be migrated through some network channels.
Similar as the constraint on heterogeneous processors, for
tasks that cannot migrate on some network channels, the start
migration time of the tasks in such network channels are set
to +∞, which means the tasks will never start to migrate on
these specific network channels.

∀na→b ∈ N , ∀τi ∈ T − TSa→b

sia→b = +∞ (10)

V. TARGET CONSTRAINTS

There are many targets can be considered when we de-
sign scheduling for real-time systems. Which objectives are
appropriate in a given situation depends, of course, upon the
application. In this section, we give design guidelines for
different scheduling targets.

A. Making all the functions meet their deadlines

Under normal workload conditions, the desired schedule
should make sure that every triggered function can be com-
pleted before its deadline.

∀Fi ∈ F , ∃pa ∈ P
sτeia + tcτeia ≤ di

(11)

where symbol sτeia is the start execution time of task τei on
processor pa, and tcτeia is the number of time slots needed for
processor pa to complete task τei.

Based on this scheduling target, recall the example shown
in Fig. 3, we can get the solution model M which defines

the values of the start time of task execution on processor, sja,

and the start time of task migration through network, sjb→c, for
∀fi ∈ F , ∀τj ∈ Ti, ∀pa ∈ P, ∀nb→c ∈ N . Based on the model
M, we can get the scheduling results as shown in Fig. 4. This
scheduling sequence can make the function F in Fig. 3 meet
its deadline. Some characteristics of this scheduling sequence
should be noticed:

• Task τ1 has been executed on processor p1 from system
time t = 1 to t = 3, and it has also been executed
on processor p3 from system time t = 2 to t = 3.
This means, the SMT-based scheduling framework can
handle the parallel execution of tasks, and can make a task
repeatedly run on different processors when such repeated
execution is necessary.

• Task τ2 runs on processor p2 from t = 6 to t = 7.
Although task τ2 needs the computed results from com-
pleting task τ1, such computed results can not only be
obtained by completing task τ1 on processor p2 itself,
but also can be obtained by transferring the computed
results from other processor that has completed task τ1.
Specified to this example, at system time t = 6, processor
p2 gets the computed results of task τ1 from processor p1.

B. Maximizing obtained values of completed functions

Under normal workload conditions, there exist a schedule
can make all the triggered functions meet their deadlines.
However, in practical environment, system workload may vary
widely because of dynamic changes of work environment.
Once system workload becomes too heavy so that there does
not exist a feasible schedule can make all the functions meet
their deadlines, we say the system is overloaded. When system
is overload, one reasonable scheduling target is to maximize
the obtained values of the completed functions.

Let symbol v be the obtained values of the completed
functions, and its initial value is set to be 0. For functions
with firm deadlines, system can obtain their values only when
such functions have been completed before their deadlines.

∀Fi ∈ FH
if ∃pa ∈ P, sτeia + tcτeia ≤ di

v := v + vi
end

(12)

For completing functions Fi with soft deadlines, the value that
the system can obtain is according to the coefficient functions
fi(t), where t is the time when the system completes the
function, and it can be calculated as follows.

∀Fi ∈ FS
if ∃pa ∈ P, sτeia + tcτeia ≤ di

v := v + fi(s
τei
a + tcτeia)

end

(13)

Let symbol sv denote the maximum obtained values of the
completed functions, and obviously, sv is no less than 0 and no
larger than the sum of the values of the firm deadline functions
(
∑

vi for ∀Fi ∈ FH) and the values of the soft deadline
functions when all the soft deadline tasks are completed before
deadlines (

∑
fi(ti), for ∀Fi ∈ FS , where ti is the completed

186 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

186 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

time instant of task τi, and ti < di), represented as max. The
constraints on the scheduling target can be expressed as:

v = sv (14)

C. Making firm deadline functions meet deadlines while maxi-
mizing obtained values of the completed soft deadline functions

Since firm deadline functions usually play important roles
in a real-time system, when system is under overload condi-
tion, a reasonable scheduling target is to first make sure that all
the firm deadline functions meet their deadlines, meanwhile,
maximizing obtained values of the completed soft deadline
functions. To make firm deadline functions meet deadlines,
we can get

∀Fi ∈ FH, ∃pa ∈ P
sτeia + tcτeia ≤ di

(15)

To maximize the obtained value of the completed soft dead-
line functions, the formula is similar as it for the previous
scheduling target. Let symbol v be the obtained values of
the completed functions, and its initial value is set to be 0.
The values system can obtain by completing the soft deadline
functions can be calculated as follows.

∀Fi ∈ FS
if ∃pa ∈ P, sτeia + tcτeia ≤ di

v := v + fi(s
τei
a + tcτeia)

end

(16)

Let symbol sv denote the maximum obtained values of the
completed soft deadline functions, and obviously, sv is no
less than 0 and no larger than the values of the soft deadline
functions when all the soft deadline tasks are completed before
deadlines (

∑
fi(ti), for ∀Fi ∈ FS , where ti is the completed

time instant of task τi, and ti < di). The constraints on
scheduling target can be expressed as:

v = sv (17)

VI. RELATED WORK

The research on real-time scheduling has lasted for
decades, many research have been conducted on this area. For
research on designing scheduling for multiprocessor systems,
a comprehensive survey can be found in [5]. In [8], the
Proportionate Fair (Pfair) algorithm was introduced. Pfair
is a schedule generation algorithm which is applicable to
periodic tasksets with implicit deadlines. It is based on the
idea of fluid scheduling, where each task makes progress
proportionate to its utilization. Pfair scheduling divides the
timeline into equal length quanta or slots. Authors in [8]
showed that the Pfair algorithm is optimal for periodic tasksets
with implicit deadlines. In [9], authors extended the PFair
approach to sporadic tasksets, showing that the EPDF (earliest
pseudodeadline first) algorithm, a variant of Pfair, is optimal
for sporadic tasksets with implicit deadlines executing on two
processors, but is not optimal for more than two processors.

Some approaches focus on studying task and messages
schedule co-synthesis in switched time-triggered networks.
In [10], authors studied time-triggered distributed systems
where periodic application tasks are mapped onto different
end stations (processing units) communicating over a switched

Ethernet network. They try to solve the scheduling problem
using a MIP multi-objective optimization formulation. In [11],
authors studied the system consisting of communicating event-
and time-triggered tasks running on distributed nodes. These
tasks are scheduled in conjunction with the associated bus
messages by using dynamic and static scheduling methods,
respectively.

Hitherto, most of the presented methods are either lim-
ited to specific task model (e.g., [8, 10] limited to periodic
tasksets) or simple system architecture (e.g., [9] limited to two
processors, [11] simple bus network topologies). Compared
with these works, our proposed framework is flexible and
sufficiently general to apply to various kinds of real-time
systems and various scheduling targets, which makes that our
framework applies much more widely.

VII. CONCLUSION

In this paper, based on satisfiability modulo theories
(SMT), we provide a framework to design scheduling for real-
time systems. In the framework, the problem of scheduling
is treated as a satisfiability problem. After using first-order
language to formalize the satisfiability problem, a SMT solver
is employed to solver such a problem. An optimal schedule
can be generated based on a solution model returned by the
SMT solver. To demonstrate the practicality of the framework,
we give design guidelines for real-time systems with multi-
processor. Through the demonstration, the framework is found
flexible and sufficiently general to apply to different kinds of
real-time systems. By giving the practical design guidelines,
we believe that our framework can benefit system designers to
efficiently design scheduling.

REFERENCES

[1] F. Zhang and A. Burns, “Schedulability analysis for real-time systems
with EDF scheduling,” IEEE Trans. Comput., vol. 58, no. 9, pp. 1250–
1258, Apr. 2009.

[2] C. Barrett, et al., “Satisfiability modulo theories,” Handbook of Satisfi-
ability, vol. 185. IOS Press, 2009.

[3] L.d. Moura and N. Bjorner, “Satisfiability Modulo Theories: An Appe-
tizer,” Formal Methods: Foundations and Applications, vol. 5902, pp.
23–26, 2009.

[4] S.S. Craciunas and R.S. Oliver, “SMT-based Task- and Network-level
Static Schedule Generation for Time-Triggered Networked Systems,”
Proc. 22th Int. Conf. on Real-Time Networks and Systems, NY, USA,
pp. 45–54, October, 2014.

[5] R.I. Davis and A. Burns, “A survey of hard real-time scheduling for
multiprocessor systems,” ACM Comput. Surv., vol. 43, no. 5, pp. 35:1–
35:44, Oct. 2011.

[6] L. Moura and N. Bjrner, “Z3: an efficient SMT solver,” Proc. 14th Int.
Conf. on Tools and Algorithms for the Construction and Anal. of Syst.,
Budapest, Hungary, LNCS 4963, pp. 337–340, Springer-Verlag, 2008.

[7] B. Dutertre, “Yices 2.2,” Proc. 26th Int. Conf. on Comput. Aided
Verification, Vienna, Austria, LNCS 8559, pp. 737–744, Springer In-
ternational Publishing, 2014.

[8] S.K. Baruah, et al., “A notion of fairness in resource allocation,”
Algorithmica, vol. 15, no. 6, pp. 600–625, 1996.

[9] J. Anderson and A. Srinivasan, “Early-release fair scheduling,” Proc. of
the Euromicro Conference on Real-Time Systems, 2000.

[10] L. Zhang, et al., “Task- and network-level schedule co-synthesis of
Ethernet-based time-triggered systems,” Proc. of ASP-DAC, 2014.

[11] T. Pop, P. Eles, and Z. Peng, “Holistic scheduling and analysis of mixed
time/event-triggered distributed embedded systems,” Proc. of CODES,
2002.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 187

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 187

ISBN: 1-60132-444-8, CSREA Press ©

Manipulation of Atmospheric Data under Apache Hadoop

E. L. Rasch, A. S. Charão, and P. P. Barcelos
Department of Languages and Computing Systems

Federal University of Santa Maria, Santa Maria, RS, Brazil

{erasch, andrea, pitthan}@inf.ufsm.br

Abstract— This paper explores the use of Hadoop to ana-
lyze large amounts of atmospheric data. First, we present a
brief explanation of Apache Hadoop, along with an descrip-
tion of the data we handle, which are produced by satellites.
Next, we present some steps of our algorithm to compute
statistical measures, in particular standard deviation, and
some problems raised on the accomplishment of the task as
well as the solutions we found. We finalize the paper with
some preliminar results and a perspective from the future of
the investigation.

Keywords: Hadoop, Big Data, MapReduce, Parallel Computing

1. Introduction
Nowadays we are experiencing the dawn of massive data

sources, in a rhythm tending to rise with the popularization

and spread of the internet. Having this in mind, it makes

sense that the development of tools – powerful enough to

treat and interact with such an amount of data (known as big

data) – would rise along. One of these tools is the subject of

the present study: Apache Hadoop. There are many others

like it, with more or less the same features, like Storm and

Spark [1], operating in different ways. While Spark and

Storm stores the processed data on the primary memory,

Hadoop uses the hard drive, both for the outputs of the Map

and Reduce tasks, which makes it advantageous in cases

where the amount of memory is less than the amount of

data [2], [3]. Other differentials include the easy way of

developing jobs, mainly using Java, and the possibility of

batch processing.

Apache Hadoop makes use of the Map/Reduce model

for processing huge amounts of data (in our case, a huge

amount typically means some gigabytes), and operates by

dividing the computer resources in a way that the tasks can

be executed in parallel and a distributed way.

So, what we do in this article is to show and overview of

the Map/Reduce paradigm immersed on Apache Hadoop, by

analyzing climate data produced by satellites. To accomplish

this task, we divided the study in the following sections:

section 2, in which we describe the Apache Hadoop and the

Map/Reduce model; section 3, in which we show how we

used Apache Hadoop to manipulate the data, make some

comparisons on different ways of executing jobs on pseudo-

distributed mode, and expose some preliminary results based

on the tests; and section 4, where we present some final

considerations about this work.

2. Apache Hadoop
The Apache Hadoop project develops open-source soft-

ware for reliable, scalable, distributed computing. The

Apache Hadoop software library is a framework that allows

for the distributed processing of large data sets across

clusters of computers using simple programming models.

The Apache Hadoop project consists several projects such as

Hadoop Commom, Hadoop Distributed File System (HDFS),

Hadoop Yarn and Hadoop MapReduce [2]. This paper

focuses on Hadoop Distributed File System (HDFS) and

Hadoop MapReduce. HDFS is a distributed file system that

provides high-throughput access to application data, while

MapReduce is a programming model for parallel processing

of large data sets.

2.1 HDFS - Hadoop Distributed File System
HDFS is the primary distributed storage used by Hadoop

applications. A HDFS cluster primarily consists of a Na-

meNode that manages the file system metadata and DataN-

odes that store the actual data.

HDFS has a master/slave architecture. An HDFS cluster

consists of a single NameNode, a master server that manages

the file system namespace and regulates access to files

by clients. In addition, there are a number of DataNodes,

usually one per node in the cluster, which manage storage

attached to the nodes that they run on. HDFS exposes a file

system namespace and allows user data to be stored in files.

Internally, a file is split into one or more blocks and these

blocks are stored in a set of DataNodes. The NameNode

executes file system namespace operations like opening,

closing, and renaming files and directories. It also determines

the mapping of blocks to DataNodes. The DataNodes are

responsible for serving read and write requests from the

file system’s clients. The DataNodes also perform block

creation, deletion, and replication upon instruction from the

NameNode.

2.2 MapReduce
The MapReduce framework consists of a single master

JobTracker and one slave TaskTracker per cluster-node. The

master is responsible for scheduling the jobs’ component

tasks on the slaves, monitoring them and re-executing the

188 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

188 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

Fig. 1: Raw Data

failed tasks. The slaves execute the tasks as directed by the

master.

The MapReduce programming model permits to express

simple computing to be performed in parallel on a large

amount of data [4]. The input data are divided in tuples (key,

value), which are submitted to a mapping function (Map)

that generates an intermediate set of pairs (key, value). The

intermediate set of pairs are in turn submitted to a reduction

function (Reduce), responsible for processing all values of

the same key, resulting in a final set of pairs (key, value) [5].

The architecture of the Apache Hadoop platform is based on

two major components: the Hadoop Distributed File System

(HDFS) [3], which provides a distributed storage layer, and

the Hadoop MapReduce [5], which provides a distributed

implementation layer.

3. Using Hadoop to climate monitoring
This work describes the use of MapReduce to implement

algorithms for manipulating data from satellites of climate

monitoring, whose challenge is to deal with big data, ex-

tracting and managing it. The main goal of the work is to

implement metrics such as average, maximum and minimum

values and standard deviation. The algorithms implemented

require the selection of the range time and the space to

extract the pattern and/or the specific data of a zone.

3.1 Data Manipulation
The data to be manipulated are from the satellites1 and

they are in raw form as shown in Figure 1.

Figure 2 shows the data interpretation. As we see dis-

played in Figure 1, there are 180 blocks, with 15 lines each,

totaling blocks with 360 measures. Each block represents

1The files with the data can be obtained on
<https://ozoneaq.gsfc.nasa.gov/data/ozone/>, by choosing “OMI - Aura -
Global Ozone Data”.

a latitude, varying from 89.5 (-89.5) South to 89.5 (89.5)

North. The longitudes are represented by each element from

the blocks, varying from 179.5 West to 179.5 East. However,

these files of data also contain the title columns, like date

and time, location and so on, beyond the relevant information

under which the metrics are done. Thus, it is needed to make

a parser to find the relevant data. In our case, we set up

certain intervals of map areas. Thereby, “lulat“ (Left Upper

Lattitude) , “lulon“ (Left Upper Longitude) and “rllat“ (Right

Low Latitude), “rllon“ (Right Low Longitude) match with

latitude and longitude from top left point and latitude and

longitude from low right point, respectively.

As for the space of time, we just need to make a simple

check on the first row of the data file, and if it doesn’t fit

our lapse, we can ignore it.

3.2 Map and Reduce Tasks
To compute the statistics that require that we read the data

only once (e. g. average), we simply use the Map/Reduce

model, so that in the Map task we detach and join the values

and calculate its occurrences; and in the Reduce task we

compute the result.

However, measures like standard deviation require the

knowledge of the average, demanding two or more iterations

over the data. The Hadoop tasks, both Map as Reduce, read

the data in a streaming form, with the values divided line

by line, making it impossible to iterate through the data

twice, as a read of a streaming data is also a “consuming“ of

the data. Therefore, we must choose between (a) make two

iterations over the data (the first to calculate the average and

store it on a variable, and another to calculate the standard

deviation), or (b) to store the values to reuse (using, for

example, an array or linked list, which can be iterated as

many times as we need). With (a) we raise the processing

time, while with (b) we have an intensive use of memory.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 189

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 189

ISBN: 1-60132-444-8, CSREA Press ©

Fig. 2: Parser used to filter data

To obtain results considering all of the data, these solu-

tions are enough. But, if we consider some data range, like

the exclusively data between the lapse of two points which

forms a square, knowing that the data is read line by line, we

again came across to an analogous problem: how to know

which values from a data line of a block we must consider,

since the latitude is shown only in the final line of each

block?

The solution could be, as in the previous problem, to store

the date on the memory, or even to read it, mark the data

we need with a parallel array, and iterate it again to obtain

the meaning values.

But for this case we found a more reasonable solution:

to reorganize the granularity from the Map task, shown

in Figure 3. In a nutshell, we make an override of the

InputFormatClass class, whose goal is to break the input

files into lines and to forward the data to Map class again.

So, it is possible to set up the cardinality of the data in which

a Map task will operate, varying from only one character to

an entire file. In our case, the files are completely read and

then they are broken into blocks of lines, i.e, they suffer a

split right on the line that contains the latitude information,

allowing us to extract the latitude and determine whether

the the block of data is meaningful or not. To do this, we

must also update the job to use our custom class, as shown

in Figure 4. Figure 5 and Figure 6 show the Map class and

the Reduce class, respectively, that illustrate the operation

described above.

Fig. 3: Organizing the data reading

3.3 Tests
As an preliminary test, we run our algorithms on an

pseudo-distributed environment. We consider the following

data set: 2633 files of the raw satellite data (approximately

533 MB). The aim was to see how the memory consumption

and the processing time was affected, under the perspectives

190 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

190 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

Fig. 4: Using the “WholeFileInputForm“ class

Fig. 5: Map class

Fig. 6: Reduce class

of the problems raised from the double read the values on the

standard deviation measure. It’s important to mention that

this tests are merely experimental, as tests on real clusters

are scheduled for the future of the investigation.

As for the tests with the different input formats, we

conducted a simple test to obtain the average value, and

reach an elapsed time of 115.6 seconds when using the

custom WholeInputFileFormat to process the data (consider-

ing the entire job), while using the default TextInputFormat

we obtained a time of 141.7 seconds. This values are the

average of a series of 5 tests on each configuration. On the

memory analysis, we reach a total committed heap usage of

4008866480128 bytes (average). As for the memory of the

tests with entire file reading, the total committed heap usage

totaled 5032410349568 bytes (average).

Also a test with a reduced data set was conducted (967

files with 196.1 MB) to obtain the variance. The time elapsed

to accomplish the entire task, on the custom input format

environment was 134.1 seconds. On the other hand, with

the standard input and using a vector to store the values, the

time was 140.4 seconds.

4. Conclusions
The present work arises the possibility of knowing and

experiencing of a parallel and distributed tool to process

mass data, and in our case, atmospheric data. In fact,

it‘s a experimental work, which explores the usage of the

Map/Reduce model in manipulation and treatment of huge

masses of atmospheric data, produced by satellites used on

climate researches.

Until now, all measurements were carried out on pseudo-

distributed configurations and using relatively small amounts

of data. It is necessary to extend this process to a real

cluster. Thus, measurements can be carried out on the actual

costs of each solution found, such as costs for memory and

performance. In this sense, it is expected that at the end

of the project, we can have good sense on the time and

resources required to perform each operation, so that they

can compare and indicate more clearly what are the best

outputs for each context.

References
[1] K. Ballou, “Apache storm vs. apache spark,”

http://zdatainc.com/2014/09/apache-storm-apache-spark/.
[2] A. S. Foundation, “Welcome to hadoop!” available in:

http://hadoop.apache.org.
[3] ——, “Hdfs architecture guide,” available in:

http://hadoop.apache.org/docs/r1.2.1/hdfs_design.html.
[4] D. Wegener, M. Mock, D. Adranale, and S. Wrobel, “Toolkit-based

high-performance data mining of large data on mapreduce clusters,”
2013 IEEE 13th International Conference on Data Mining Workshops,
vol. 0, pp. 296–301, 2009.

[5] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on
large clusters,” Commun. ACM, vol. 51, no. 1, pp. 107–113, Jan. 2008.
[Online]. Available: http://doi.acm.org/10.1145/1327452.1327492

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 191

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 191

ISBN: 1-60132-444-8, CSREA Press ©

A Hybrid Distributed Framework for SNP Selections

Pengfei Liu1, Shuai Li1, Weiying Yi 1 and Kwong Sak Leung1
1Department of Computer Science and Engeering

The Chinese University of Hong Kong, Hong Kong

Abstract— With the development of next generation se-
quencing technology, researchers are able to obtain ex-
tremely high-dimensional data. However, only a fraction
of the data is related to diseases and the computational
time on processing the whole sequences is tremendous.
Moreover, using the high-dimensional data directly will
greatly reduce the accuracy of the machine learning and
data mining algorithms. Single nucleotide polymorphism
(SNP) selections is critical for addressing these problems in
genome wide association study (GWAS). Typically, it needs
days to perform SNP selections even though the relationship
between SNPs and diseases is assumed to be linear. More
time is needed when the relationship is nonlinear. In order to
speed up the SNP selection processes, a CPU-GPU hybrid
distributed framework (HDF) specifically for SNP selection
algorithms is introduced in this paper. The HDF fully utilizes
the computational power of machines. And the interfaces
are also provided, which help researchers to extend their
SNP selection algorithms into distributed version. The re-
sults demonstrate that the acceleration by HDF is about
hundreds times on SNP selections with synthetic and real
data, compared to single machine.

Keywords: SNP selection, CPU, GPU, distributed

1. Introduction
Genome-wide association study (GWAS) is an analysis to

identify which part of the human genomes are associated

to a certain trait. In GWAS, statistical and computational

analyses are applied to compare the DNA sequences of

the controls (healthy samples) and the cases (patients with

the specific genetic disease) in order to identify the related

single nucleotide polymorphisms (SNPs) [1][2][3]. With the

technology of next generation sequencing, researchers are

able to obtain millions of SNPs in DNA sequences. However,

only a small fraction of the SNPs are related to diseases,

and the rest are irrelevant and regarded as noises. These

noises will severely reduce the accuracy and reliability of the

GWAS algorithms [4]. Hence, identifying the useful SNPs

before analyzing their relationship with diseases is a critical

issue in GWAS.

There are about 4 million SNPs in human DNA sequences,

and many SNPs work in coordination to manifest a disease

[5]. Analyzing such a high dimensional combinatorial re-

lationship increases the computational complexity a lot. To

speed up the process of SNP selection, parallel computing

is adopted in this work.

Nowadays, most of the computers are equipped with both

CPUs and GPUs. In order to maximize the utilization of

the computing resources, a CPU-GPU hybrid distributed

framework (HDF) specifically for SNP selections is pro-

posed and implemented. The HDF provides interfaces that

help researchers extend their SNP selection algorithms into

distributed versions. To the authors’ best knowledge, the

proposed HDF is the first CPU-GPU based distributed sys-

tem specifically designed for speeding up the SNP selection

processes.

The HDF consists of three components:

• Controller
The Controller decomposes the original computational

mission from a user into many small tasks, and dis-

tributes them to the CPU clients and GPU clients de-

scribed below. After receiving the progress report from

the clients, the Controller merges the progresses and

find a new task to distribute, which can be manipulated

using the provided interfaces.

• CPU client
The CPU clients use multi-thread architecture to handle

the tasks distributed by the Controller and return the

results back to the Controller after finishing the task.

• GPU client
The GPU clients use Nvidia CUDA API to process the

tasks distributed by the Controller and return the results

back to the Controller after finishing the task.

To test the performance of the HDF, we implement an

SNP selection algorithm ReliefF on the HDF using the

provided interfaces. The experimental results show that the

distributed version is about hundreds times faster than the a

single thread CPU version.

The rest of the paper is organized as follows. Literature

reviews on SNP selection algorithms and distributed systems

are introduced in Section 3. Section 4 and 5 are the architec-

ture design and the implementation of the HDF. Experiments

are performed in Section 6 and the results are analyzed in

Section 7. Section 8 is the conclusion and discussion.

2. Definition of SNP Selections
Each SNP in human genome is either an A-T pair or a

C-G pair. For each SNP, the pair with higher probability is

called the major allele, otherwise it is called the minor allele.

192 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

192 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

For each pair of chromosomes, there are three different kinds

of SNP combinations, major-major, major-minor, and minor-

minor.

Input: A dataset that contains the cases and the controls.

Each sample stores an array of human SNP genotypes, which

are encoded in Table 1.

Genotype Value
missing 0

major allele–minor allele 1
major allele–minor allele 2
minor allele–minor allele 3

Table 1: SNPs encoding scheme

Output: The association weight between each SNP, or a

set of SNPs, and the target disease.

3. Related Work
With the increasing dimension of data, feature (that is SNP

in this paper) selection becomes more and more important

in various research areas [6][7][8]. Generally speaking, there

are three types of feature selection algorithms. Filters utilizes

one or more statistical properties of each attribute, such as

information entropy and t-test value, to identify useful fea-

tures [9]. Wrappers evaluate the association between labels

and groups of features. Embedded methods treat features

selection as part of main algorithms.

Bacause SNPs may work in coordination to manifest a

disease and the interactions between SNPs probably are

nonlinear, it takes days to perform SNP selections [10].

The ReliefF [11] and its variations [12] [13][9] are widely

used in SNP selections. It evaluates every SNP in the

following steps. First, it compute the distance matrix among

all the samples. Second, for each sample, ReliefF finds its

nearest neighbor with the same phenotype (called nearest

hit) and the nearest neighbor with different phenotype (called

nearest miss). Third, for each SNP, its value in the selected

sample is compared with the nearest hit and nearest miss.

The weight of each SNP will be updated based on the

comparison result.

Meanwhile, many parallel and distributed studies have

been reported to accelerate the SNP selection algorithms

[14]. Some of them are multi-core CPU based architecture

[15], and some of them are GPU based architecture [16][17].

Although there are many distributed machine learning pack-

ages, such as the TensorFlow [18] from Google and the

DMTK from Microsoft. There are no packages specially

designed for SNP selections.

4. System Design
The CPU-GPU hybrid distributed framework (HDF)

adopts a central control structure. In the proposed HDF, there

is a master, called the Controller, which controls the work

flow of the whole system. The Controller decomposes the

Fig. 1: The architecture of the CPU-GPU hybrid distributed

framework.

computing mission, uploaded by a user, into many small

tasks and distributes the small tasks to the CPU and GPU

clients, where lots of CPU clients and GPU clients can

be activated in this HDF. Those clients receive tasks from

the Controller and return the computed results back. The

architecture of the HDF is illustrated in Fig. 1.

4.1 Two levels acceleration

Our HDF uses two levels of acceleration to speed up the

computing process. The first level is in the Controller-clients

cooperation. The clients are independent from each other and

they can work concurrently. By decomposing the mission

and distributing the tasks in the Controller, and executing

the tasks concurrently in the clients, the HDF achieves the

first level of acceleration. The second level of acceleration is

in the clients. CPU clients can use the multi-thread scheme

to further speedup the execution. And the advantage in GPU

clients lies in vector operations, which can greatly accelerate

the process of SNP selections.

4.1.1 Acceleration by distributing

For most SNP selection algorithms, the evaluation of an

individual SNP, or a set of SNPs, is independent from other

SNPs, or other sets of SNPs. This enables the clients to

work concurrently. So the Controller maintains two lists.

The first list is all clients that are in connection with the

Controller, and the second list is all small tasks which are

decomposed by the mission. Each task keeps a record of

its destination client. When there is a progress report from

a client, the Controller searches this task from the task list

and merges this progress with the progresses obtained so far.

The Controller can distribute small tasks to different clients

one by one or distribute randomly to make the clients have

balanced load. The Controller keeps distributing and merging

until all tasks are finished. In addition, if no progress report

of a task after distributing is heard for too long time, the

HDF will redistribute this task.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 193

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 193

ISBN: 1-60132-444-8, CSREA Press ©

4.1.2 Acceleration by multi-threads

After receiving the tasks from the Controller, CPU and

GPU clients can further speedup the SNP selection pro-

cesses. Although they both use the multi-thread scheme, their

architectures are different from each other.

CPU Clients When receiving a task from the Controller,

each CPU client divides it into smaller ones and assigns a

thread from its thread pool to handle the smaller tasks. Previ-

ous studies show that the performance of CPU multi-thread

parallelization is highly related to CPU thread scheduling,

and there is little increase when there are more threads than

there are more cores in CPU [19]. (This is validated by our

experiments in Section 7). In order to achieve an optimal

trade-off between the acceleration and CPU thread switch

cost, the CPU clients keep a thread pool with the number of

threads a little bit more than the number of physical cores

in the CPU.

GPU Client The hardware structure of GPU is different

from that of CPU. GPU has many pipelines which can

process multiple data under one instruction (SIMD). When

doing vector operations, these pipelines can process different

elements in the vectors simultaneously. This makes GPU

much faster than CPU in many scientific computations

involving vectors and matrices. To utilize the advantages

of GPU, researchers need to transform the task data into

matrices with rows standing for samples and columns rep-

resenting SNPs, and rewrite the SNP selection algorithms

using the computing API of GPU, such as CUDA.

4.2 Scheduling
The main challenge for the distributed system is the

communication and synchronization among all the machines.

In the HDF, the Controller is responsible for data splitting,

distributing and the synchronization of all the computing

clients. When researchers use this HDF to develop the

distributed version of their SNP selection algorithms, they

can use the defaulted interfaces of the HDF to handle these

scheduling problems, or that they can define their own

scheduling methods.

4.2.1 Splitting scheme

One important difference of bioinformatics data from data

of other fields is that there are extreme high number of

features (106) but relatively low number of samples(103).

To split this imbalanced data, we provide four defaulted

interfaces, which are features oriented and samples oriented

splitting, with or without overlapping. Users can use any one

of them, or define their own splitting methods based on their

algorithm.

There are some cases that the users want to define their

own splitting methods. For example, the processing power of

CPU and GPU clients are imbalanced, and users may want

to distribute them with different kinds of tasks. Note that

some algorithms may need a special method for splitting and

scheduling. For instance, VLSReliefF [12] samples features

with replacement.

4.2.2 Distributing scheme

Since the acceleration comparisons of GPU and CPU

vary on different algorithms, our HDF provides several

distributing interfaces to optimize the performance. It can

distribute tasks to CPU or GPU clients in priority, where

it will not consider the other type of clients unless all the

same types clients have been used. It can just distribute to

GPU clients only or CPU clients only. It can also choose

any of the two types of clients randomly. The interfaces

are also provided for users to define their own methods of

distributing.

4.2.3 Synchronization

By defining three states for the tasks, Unprocessed, Wait-
ing (sent but without progress reported) and Finished, the

Controller synchronize the HDF in the following steps. First,

when a task is created, its state is set to be Unprocessed,

and it is assigned with a unique id to identify from other

tasks. Second, when a task is sent to a client, the task

will remember the ip address of the client and update its

state to be Waiting. Third, when the Controller receives a

progress report from a client, which contains the id of the

corresponding task and the ip address of the client, the

Controller will check whether it is a legal progress (by

comparing the task id and the ip address). If legal, the

Controller merges this progress result with others’ (by task

id), and updates the task state to be Finished, and then find an

Unprocessed task to distribute. For tasks which we haven’t

received their progress reports for a long time, the Controller

will assume there is something wrong and will redistribute

the task. When all tasks in the list have be updated to

Finished, the Controller will notify the result to the users.

5. Implementation
As illustrated in Fig. 2, the proposed HDF is divided into

three layers, the network layer, the middle layer, and the

algorithm layer. Each layer focuses on its own target and

provides service to its upper layer.

5.1 Network layer
Network layer handles the packages transmitting and

receiving between the Controller and clients, and focus

on providing stable communication services to its upper

layer, the middle layer. The following kinds of packages

are defined in the network layer.

• Register package, which is sent from the client to

the Controller, and contains the IP address and the

hostname of the client. The Controller will add the

194 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

194 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

Fig. 2: Three-layer structure

socket ID to the package after receiving it from the

client.

• Mission package, which is sent from the user to the

Controller, and contains the location of the input file

and the name of the algorithm.

• Task package, which is sent from the Controller to

the client, and contains the location of the input file,

the name of the algorithm, the task ID, the mission ID

that the task belongs to, and a hash table that contains

a subset of SNPs in the input file. The task package

contains the file path instead of the content of the

input file to reduce the communication overhead for

the Controller.

• Progress package, which is sent from the client to the

Controller, and contains the task ID, the mission ID that

the task belongs to, and an array of SNP scores. This

array of SNP scores is associated with the hash table in

the task package, and the Controller will merge it with

score arrays of other progress packages.

• Notification package, which is sent from the Controller

to the user, and contains the location of the result file.

These packages are structured information. The network

layer provides methods to serialize them into streams and to

deserialize them from streams for transmitting and receiving.

5.2 Middle layer
The work flow of the proposed HDF is based on the event

driven model. The Controller and clients start to work after

some packages arrived. For the Controller, it may receive

the following three packages:

a) Registration from clients: After receiving register pack-

age from the client, the Controller checks whether this client

is on the clients list based on the ip address. If it is a

new client, its IP address will be added into the clients list,

which are maintained by the Controller. If not, the client’s

information will be updated.

b) Mission from user: After receiving mission package

from the user, the Controller looks for the algorithm speci-

fied in the mission task, and then splits and distributes the

data using the interfaces specified by the user. Different in-

terfaces are provided to handle the splitting and distributing

processes.

c) Progress from clients: The progress package’s response

from the Controller has been specified in Section 4.2.3.

For clients, it can only receive the task package from the

Controller.

d) Task from the Controller: After receiving task package

from the Controller, the client reads the data file from the

file path provided by the task package. Then the indicated

algorithm is called to handle the subset of data specified

in the hash table stored in the task package. When the

task is completed and a progress report to the Controller

is generated, the client will copy the task ID of the task

package to help the Controller synchronize.

5.3 Algorithm layer
Enabled by the network layer and middle layer, all kinds

of SNP selection algorithms (described in Section 3) that

evaluate a subset of SNPs independently from the rest of

SNPs can be extended to distributed versions using the pro-

posed HDF. An algorithm manager is also implemented in

the proposed HDF to manage the algorithms when multiple

SNP selection algorithms are adopted into the HDF.

6. Experimental Designs
6.1 ReleifF algorithm

According to the proposed system design in Section 4,

the HDF has been implemented using C++ 11. Also, the

ReliefF algorithm has been integrated into the HDF in order

to compare its performance with that of a single PC. The

pseudo-code of the ReliefF algorithm is illustrated in Fig. 3.

6.2 Hardware configurations
In the following experiments, 16 CPU clients (Debian 6.06

workstations with Intel Xeon E5 processors) are adopted.

Among these 16 CPU clients, client 1 to client 4 are single-

core machines; client 5 to client 8 are 4-core machines; client

9 to client 12 are 5-core machines; and client 13 to client

16 are 16-core machines. 6 GPU clients that equipped with

NVIDIA Kepler (GK110GL) display board are also adopted.

The memory capacity of each one of these 22 machines is

larger than 100 GB.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 195

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 195

ISBN: 1-60132-444-8, CSREA Press ©

Fig. 3: Pseudocode of ReliefF algorithm.

Group 1 Group 2
Heritibiltiy (folders) 0.1, 0.2, 0.3, 0.4 0.1, 0.2, 0.3, 0.4

Dataset in each folder 100 100
Samples in each dataset 1000 (500:500) 1000 (500:500)

Features(SNPs) in each dataset 1000 10000
Total Size 700MB 9.8 GB

Table 2: Details for the synthetic data.

6.3 Data sources
a) Synthetic data: The synthetic data used in the ex-

periments are generated by GAMETES[20], which is a

specified tool with high accuracy GWAS data generation

ability. Two groups of synthetic data with different sizes

are generated. The first group contains datasets with 1k

features, and the second group contains datasets with 10k

features. For each group, there are 4 folders representing

different heritability (0.1, 0.2, 0.3, and 0.4). Each of these

folders contains 100 files in it and each file is an independent

dataset containing 1000 samples (500 positive samples and

500 negative samples). Detailed information of the synthetic

data is listed in Table 2

b) Real data: A real dataset phs000019v1 for psoriasis

study from the Genotypes and Phenotypes datebase(dbGaP)

is used in the experiments. This dataset contains 1659

samples, in which there are 950 cases, and 709 controls.

For each sample, there are 448955 SNPs. The size of the

phs000019v1 is 2.1GB.

In the experiments, we design 3 tasks for the proposed

HDF. task No.1 is to run the ReliefF algorithm on the

synthetic dataset with 1k SNps. task No.2 is to run the

ReliefF algorithm on the synthetic dataset with 10k SNPs.

And task No.3 is to run the ReliefF algorithm on the real

dataset. For each task, the speedup achieved by the proposed

HDF, compared to one single-thread PC, is recorded.

7. Results
Previous experiments have indicated that single-thread

CPU client can accomplish tasks No.1-3 in 10825s (3.1h),

107982s (32h), and 29810s(8.3h) respectively. In the fol-

lowing experiments, these three results will be considered

Fig. 4: Acceleration achieved by multiple CPU clients.

as benchmarks and all the accelerations are calculated with

respect to them.

In the following experiments, the two levels of accelera-

tion techniques of the HDF will be tested, and the results

illustrate that significant acceleration rate can be achieved

for both levels.

7.1 First level acceleration
a) Acceleration of multiple CPU clients: In this experi-

ment, the number of CPU clients is increasing from 1 to 16,

where each client has only one single-thread. The result is

shown in Fig. 4.

In Fig. 4, the horizontal axis is the number of adopted

CPU clients, and the vertical axis is the acceleration achieved

compared to the benchmarks described in Section 7.1. A

linear relationship with coefficient < 1 between the number

of clients and the acceleration can be obtained in this figure.

When the number of clients adopted is small (< 5), the

linear coefficient is above 0.9. It drops to around 0.7 when

the number of clients adopted increases. The reason that

task No.1 achieves better acceleration than tasks No.2-3 is

that the size of task No.1’s dataset is much smaller than

that of the other two. Such a small size dataset makes

task No.1 suffers less from the communication overhead.

The accelerations achieved by the task No.3 is the smallest

because the dataset is stored in one single file, while the

datasets of tasks No.1-2 are stored in many small files.

Hence, when performing tasks No.1-2, different clients read

different small size files simultaneously. However, when

performing task No.3, different clients read the large size

single file independently. Such a read operation dramatically

increases the reading time of the hard disk, and further

encumbers the acceleration.

b) Acceleration of multiple GPU clients: In this experi-

ment, the number of GPU clients is increasing from 1 to 6.

The result is shown in Fig. 5.

In Fig. 5, the horizontal axis is the number of GPU clients

adopted, and the vertical axis is the achieved acceleration

rate, compared to the benchmarks described in Section 7.1.

196 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

196 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

Fig. 5: Acceleration achieved by multiple GPU clients.

The speedup by GPU is much better than that by CPU.

The performance differences among tasks No.1-3 are mainly

caused by the interchanging property of GPU computing

states. There are two computing states inside one GPU

computation process, the working state and the sleeping

state. Whenever a GPU operation arrives, the computing

state changes from the sleeping state to the working state,

and changes back to the sleeping state after accomplishing

the tasks. A specific period of time is needed for interchang-

ing states. For task No.1, frequent interchanging of states

occurred due to the small size of the dataset files. For tasks

No.2-3, the overhead on interchanging states is much smaller

than that of task No.1 because the size of the dataset files

is larger. The difference between tasks No.2-3 is caused by

how the dataset is stored (multiple small-size files or single

large-size file).

7.2 Second level acceleration
The performance of the second level acceleration is tested

by conducting experiments on a single CPU client, and a

single GPU client respectively.

a) Acceleration of CPU multi-thread processing: In this

experiment, there are 16 physical cores inside the CPU

client. The number of threads is increasing from 1 to 20,

and the result is shown in Fig. 6

In Fig 6, all the three tasks can be speeded up by

the multi-thread technique. However, scheduling the threads

takes time. When the size of the processed dataset by each

thread decreases, the thread scheduling overhead becomes

important. For task No.1, there are only 1000 features for

each sample. When the number of threads increases, each

thread will process about one hundred SNPs. The time spent

on scheduling threads is then more significant than the

time spent on processing the SNPs. For tasks No.2-3, the

increasing tendency of acceleration stops when the number

of threads exceeds the number of physical cores inside the

CPU. Performance of task No.3 is typically better than that

of task No.2 because the size of dataset processed by each

Fig. 6: Acceleration achieved by CPU multi-thread process-

ing

thread is larger and the time spent on thread scheduling is

relatively insignificant.

b) Acceleration of GPU parallel processing: GPU parallel

processing is a little bit more complex than CPU multi-

threading. In CUDA API, each GPU process contains several

blocks, and each block contains many threads. Despite the

accessible global memory for all threads, each block also

has its own faster memory. Users can modify the memory

distribution by adjusting the ratio between the number of

blocks and the number of threads in each block. In the

experiment, the number of threads in each block is increasing

from 1 to 1000. The results illustrate constant acceleration

for all the three tasks, which indicates that there may be

some optimization inside CUDA.

7.3 Acceleration of the proposed CPU-GPU
hybrid distributed framework

In this subsection, the CPU clients and GPU clients

have been integrated into one hybrid system called CPU-

GPU hybrid distributed framework (CPU-GPU HDF) and

its performance on SNP selections has also been tested. For

the CPU clients, 20 threads are created in each client. For the

GPU clients, the number of blocks in GPU doesn’t matter

as discussed in Section 7.2. The results are shown in Fig. 7.

In Fig. 7, the acceleration increases when the number of

CPU and GPU clients increase. The acceleration power of

CPU clients is almost linear to the number of physical cores

in it, and the acceleration power of GPU client is algorithm

dependent. For ReliefF algorithm, GPU client can achieve

30 to 70 times speedup compared to benchmarks. When

there are 16 multi-thread CPU clients and 6 GPU clients, the

acceleration for task No.1-3 are 151, 423, 419 respectively.

8. Conclusion
SNP selections is critical in genome wide association

study (GWASs). However, SNP selections is really time con-

suming, so the acceleration on performance is essential. In

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 197

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 197

ISBN: 1-60132-444-8, CSREA Press ©

0
5

10
15

20

0
2

4
6

8
0

50

100

150

200

CPU clients number

Task No.1

GPU clients number

Ac
ce

le
ra

tio
n

0
5

10
15

20

0
2

4
6

8
0

100

200

300

400

500

CPU clients number

Task No.2

GPU clients number

Ac
ce

le
ra

tio
n

0
5

10
15

20

0
2

4
6

8
0

100

200

300

400

500

CPU clients number

Task No.3

GPU clients number

Ac
ce

le
ra

tio
n

Fig. 7: Acceleration achieved by the HDF.

this paper, a CPU-GPU hybrid distributed framework specif-

ically for SNP selection algorithm is proposed, designed,

implemented, and tested. The HDF provides interfaces for

data splitting and communication synchronization. It can

support many different SNP selection algorithms using the

interfaces provided. In the experiments, the algorithm of

ReliefF SNP selection has been integrated into the HDF to

test its performance on different datasets. The experiments

indicate that the proposed HDF is able to achieve significant

acceleration on different datasets.

References
[1] P. M. Visscher, M. A. Brown, M. I. McCarthy, and J. Yang, “Five

years of gwas discovery,” The American Journal of Human Genetics,
vol. 90, no. 1, pp. 7–24, 2012.

[2] M. A. Rivas, M. Beaudoin, A. Gardet, C. Stevens, Y. Sharma,
C. K. Zhang, G. Boucher, S. Ripke, D. Ellinghaus, N. Burtt et al.,
“Deep resequencing of gwas loci identifies independent rare variants
associated with inflammatory bowel disease,” Nature genetics, vol. 43,
no. 11, pp. 1066–1073, 2011.

[3] D. L. Nicolae, E. Gamazon, W. Zhang, S. Duan, M. E. Dolan, and N. J.
Cox, “Trait-associated snps are more likely to be eqtls: annotation
to enhance discovery from gwas,” PLoS Genet, vol. 6, no. 4, p.
e1000888, 2010.

[4] J. Bedő, D. Rawlinson, B. Goudey, and C. S. Ong, “Stability of
bivariate gwas biomarker detection,” PloS one, vol. 9, no. 4, p. e93319,
2014.

[5] A. Dahl, V. Iotchkova, A. Baud, Å. Johansson, U. Gyllensten, N. So-
ranzo, R. Mott, A. Kranis, and J. Marchini, “A multiple-phenotype
imputation method for genetic studies,” Nature genetics, 2016.

[6] M. Dash and H. Liu, “Feature selection for classification,” Intelligent
data analysis, vol. 1, no. 3, pp. 131–156, 1997.

[7] ——, “Feature selection for clustering,” in Knowledge Discovery and
Data Mining. Current Issues and New Applications. Springer, 2000,
pp. 110–121.

[8] G. Chandrashekar and F. Sahin, “A survey on feature selection
methods,” Computers & Electrical Engineering, vol. 40, no. 1, pp.
16–28, 2014.

[9] J. H. Moore and B. C. White, “Tuning relieff for genome-wide genetic
analysis,” in Evolutionary computation, machine learning and data
mining in bioinformatics. Springer, 2007, pp. 166–175.

[10] K.-Y. Lee, P. Liu, K.-S. Leung, and M.-H. Wong, “Very large scale
relieff algorithm on gpu for genome-wide association study,” in Pro-
ceedings of the International Conference on Parallel and Distributed
Processing Techniques and Applications (PDPTA). The Steering
Committee of The World Congress in Computer Science, Computer
Engineering and Applied Computing (WorldComp), 2015, p. 78.

[11] I. Kononenko, E. Šimec, and M. Robnik-Šikonja, “Overcoming the
myopia of inductive learning algorithms with relieff,” Applied Intel-
ligence, vol. 7, no. 1, pp. 39–55, 1997.

[12] M. J. Eppstein and P. Haake, “Very large scale relieff for genome-wide
association analysis,” in Computational Intelligence in Bioinformatics
and Computational Biology, 2008. CIBCB’08. IEEE Symposium on.
IEEE, 2008, pp. 112–119.

[13] Y. Sun, “Iterative relief for feature weighting: algorithms, theories,
and applications,” Pattern Analysis and Machine Intelligence, IEEE
Transactions on, vol. 29, no. 6, pp. 1035–1051, 2007.

[14] M. Cadzow, J. Boocock, H. T. Nguyen, P. Wilcox, T. R. Merriman,
and M. A. Black, “A bioinformatics workflow for detecting signatures
of selection in genomic data,” Frontiers in genetics, vol. 5, 2014.

[15] X. Zheng, D. Levine, J. Shen, S. M. Gogarten, C. Laurie, and B. S.
Weir, “A high-performance computing toolset for relatedness and
principal component analysis of snp data,” Bioinformatics, vol. 28,
no. 24, pp. 3326–3328, 2012.

[16] X. Hu, Q. Liu, Z. Zhang, Z. Li, S. Wang, L. He, and Y. Shi, “Shesisepi,
a gpu-enhanced genome-wide snp-snp interaction scanning algorithm,
efficiently reveals the risk genetic epistasis in bipolar disorder,” Cell
research, vol. 20, no. 7, pp. 854–857, 2010.

[17] L. S. Yung, C. Yang, X. Wan, and W. Yu, “Gboost: a gpu-based
tool for detecting gene–gene interactions in genome–wide case control
studies,” Bioinformatics, vol. 27, no. 9, pp. 1309–1310, 2011.

[18] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin et al., “Tensorflow: Large-
scale machine learning on heterogeneous systems, 2015,” Software
available from tensorflow. org.

[19] C. Li, C. Ding, and K. Shen, “Quantifying the cost of context switch,”
in Proceedings of the 2007 workshop on Experimental computer
science. ACM, 2007, p. 2.

[20] R. J. Urbanowicz, J. Kiralis, N. A. Sinnott-Armstrong, T. Heberling,
J. M. Fisher, and J. H. Moore, “Gametes: a fast, direct algorithm for
generating pure, strict, epistatic models with random architectures,”
BioData mining, vol. 5, no. 1, p. 1, 2012.

198 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

198 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

Toward a Smart Adaptive Scheduling using
Lua Programming Language

Felipe Santos da Silva and Marcia Pasin
Departamento de Linguagens e Sistemas de Computação

Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil

Abstract— Process scheduling can define the performance
of a computer system. There are different algorithms to deal
with it (such as FIFO, shortest remaining time, and round-
robin). However, due to the dynamic nature of distributed
applications, the choice of a scheduling policy is not trivial.
Indeed, choosing an appropriate policy requires take into
account the scenario and current demand. If the scenario
and demand change, an adaptation may be necessary. Thus,
in this work we describe an approach based on the appli-
cation of scheduling policies and adaptation to deal with
changes in demand. This is a step in the direction of smart
scheduling. The adaptation of the scheduler behavior occurs
through the use of heuristics. It trades at a random policy. If
the new policy gets better results than the former, execution
continues with the new policy until a new evaluation oc-
curs. Experiments were conducted using Lua programming
language due to the suitable support to the development of
prototype in distributed systems.

Keywords: scheduling, adaptation, client-server architecture.

1. Introduction
Distributed applications are subject to heterogeneous de-

mand, peak load and idleness. This scenario leads to the need

to manage these occurrences, which is a complex activity.

Current computing infrastructure solutions are not designed

to automatically adapt to dynamic conditions and complexity

of the system. Typically, existing solutions require manual

operation, leaving the system to be subjected to unavailabil-

ity and inappropriate response time. There is a shortage of

self-adaptive computational infrastructures, which are able

to withstand changes in demand and are able to deal with

different adversities simultaneously.

More specifically, current distributed applications need

more adaptable solutions that allow facilities to the evolution

such as tuning of of scheduling policy. Adaptive solutions

for scheduling with a focus on adaptation are better suited

to the dynamic demands of today’s distributed applications

and consider requirements such as overload servers [10],

information contained in the client request [7], such as

response time, or even priority of client processes [4].

Thus, in paper we propose a scheduler processes that

implementing different scheduling policies, flowing dynamic

behavior and that seeks to improve the system’s efficiency.

This is an step toward the building of a smart scheduler,

suitable to distributed systems with dynamic load.

Scheduling policies executed by the scheduler are con-

figurable and include FIFO (first in, first out), SJF (the

shortest job first) and lottery scheduling [9]. Basically, the

scheduler operates in a continuous looping and the behavior

modification, i.e. the switch from a policy to another, occurs

through the use heuristics. The system continuously switchs

from a policy to a new policy in a random fashion. If the

new policy achieves better results, execution continues with

the new policy until a new assessment.

To evaluate the our proposed solution, we implemented a

prototype using Lua programming language 1 [5]. Lua is a

powerful language to build prototypes.

Both scheduling is recurrent research subject. However,

there is still no consensus among authors on the use of

scheduling policies. Choosing the suitable policy depends on

application characteristics, demand and the computer system

issues.

In this sense, this work investigates the use of process

scheduling policies in heterogeneous scenarios, trying to

evaluate them as to optimize response time to client request.

As it is difficult to choose a single policy that offers

excellent results in all possible combinations of hardware

and software, an adaptive mechanism is an interesting idea,

as the scheduling process adapts as needed by the computer

system.

Through knowledge of the application needs to be per-

formed, the current loads and the behavior of different

scheduling policies in accordance with given scenario may

be performed choosing the best scheduling policy at that

time or at least can be used as a solution that gives the

performance values that are close to the best solution.

As a restriction, in this work we assumed that the system

never fails and has no answer delays, for purposes of

estimating the best policy given the target scenario. It is

expected that a policy with a good performance in the ideal

situation also is the actual situation. Policies that do not show

in this state will be out of choice for the adaptive scheduler.

This paper is organized as following. Section 2 presents

the related works. Section 3 presents the design of the

adaptive scheduler, describing the overall architecture and

1https://www.lua.org

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 199

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 199

ISBN: 1-60132-444-8, CSREA Press ©

adaptation policies. Section 4 shows the experimental eval-

uation of the proposed adaptive scheduler and indicates

how adaptation can improve the performance of a computer

system. Finally, section 5 presents the conclusions and final

considerations.

2. Related works
Adaptation in computer systems is not a new subject. It

has been studied in the context of centralized and distributed

architectures, aiming at the implementation of the concept

of autonomic systems [6].

Even before the development of autonomic computing,

Cervieri [3] proposes the use of adaptive scheduling for real-

time CORBA applications. The period in which each tasks

are executed is controlled, varying within a predetermined

range. The main objective of the approach is to reduce the

average delay of running tasks.

In Ewing & Menascé [4], the scheduling is handled the

load balancing level for multiple servers in an auction system

using web pages. The goal of this approach is to prioritize

groups of users who are running the largest amounts of

bids. Scaling is performed by classification of requests,

allocating priority requests to a cluster with more processing

availability.

As a common feature with our proposed work, the work

of Ewing & Menascé also uses the response time to user

requests’ as metric adaptation in the computer system. In

contrast, the adaptive scheduler here proposed focuses on

appropriate policy choice not on the choice of suitable

machine as Ewing & Menascé do.

Badonnel & Burgess [1] use metrics of time and aban-

donment of requests to perform calibrations in a distributed

computer system. Response time measurements of customer

orders are collected. Statistics are generated with the number

of applications being executed, and the average response

time is compared using pull-based and push-based methods.

In contrast to our work, in Badonnel & Burgess, the focus

is on communication between clients and the scheduling

module. In the scheduler, and each server exists a finite

queue of requests that may suffer dropouts when the queue

is full. A statistic about the number of abandoned order is

used as a basis for decision between the two methods (push

or pull). It is used FCFS (first come first serve) policy or

FIFO for the distribution of tasks.

In Bouchenak et al. [2], sensors are used to check

the CPU usage in order to manage a system made up of

components. This management is able to deploy distributed

applications to get a reconfiguration autonomously when

required. Adaptation is executed by a centralized module

that collects information about CPU in local components.

If the setting is not adequate, which is verified by defining

a threshold, the system triggers a mechanism that adapts

the system configuration. In contrast, in this work the

adjustment is applied to the scheduling of processes and

not in load balancing or neither in the system configuration.

The approach adopted here has the focus on the scheduling

policies themselves.

3. Architecture overview
Our adaptive scheduling service follows a client-server

architecture. This architecture is composed of n clients and

a server. Basically, clients request the execution of tasks to

the server. The server receives the request and uses a queue

to store them. The schedule executes a scheduling policy

(FIFO, lottery or SJF).

Continually, the server switches from a policy to another

looking for better respond time results. Thus, the server

service was fractioned in three parts: task executor itself

(i.e. the scheduler), adapter and queue manager. An schema

with this architecture is shown in Figure 1.

ClientnClient2Client1

SchedulerQueue managerAdapter

SJF FIFOLottery

Fig. 1: Overview of the client-server architecture.

In the following, we describe in details the client-server

architecture. Initially, we focus on the client side, then we

detailed the server architecture and also the scheduling al-

gorithms. We describe, in particular, the adjustment process

based on heuristics. For short, we also given implementation

details in the algorithms.

3.1 Client side
A client interacts with the queue manager on the server

side. Clients request tasks to the server by running the code

outlined by Algorithm 1.

1: function runs_the_client (list_of_tasks, server_id)

2: for i ⇐ 1 until size (list_of_tasks) do
3: sent ⇐ false

4: while not sent do
5: sent ⇐ send (server_id,

6: {from ⇐ self(), task ⇐ list_of_tasks[i]})

7: end while
8: msg ⇐ receive()

9: end for
Algorithm 1: Client processing.

Basically, in Algorithm 1, there is a list of tasks, with

size given by size(list_of_tasks) that must be executed

by a server, specified by the variable server_id. Notice

200 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

200 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

that, if there is more than a task to be executed in the

list_of_tasks, using the Lua implementation, we can im-

plement the send using the function concurrent.spawn()
to emulate size(list_of_tasks) concurrent clients. This is

given by lines 5-6.

The variable msg, in line 8, receives the confirmation of

the execution of the task by the server. While the client

process does not receive this confirmation, the client is

blocked waiting.

3.2 Server side
As we previously mentioned, the server service has three

parts: task executor itself, adapter and queue manager. The

tasks’ executor executes a scheduling policy. The adapter

switches from a scheduling policy to another. The adapter

also stores information about the collected response time and

sent by clients, which will be used for adaptation. The queue

manager performs the communication with the clients.

3.2.1 Adaptation

Basically, the adapter operates through the use heuristics.

Exchange the policies is a random approach. If the new

policy gives better results, execution continues with the

new policy until a new evaluation within the specified time

interval.

The client sends, in a interval of time Tc, information

about the response time to the adaptive service. The server

executes the following tasks, in a interval Ts of time:

1) collects clients’ response time information,

2) raffles new policy,

3) runs new policy,

4) collects the new clients’ response time information,

5) if the new response times are better than the previous

one, then follows by applying the new policy; other-

wise, then returns to step 2.

3.2.2 Queue manager

The queue manager interacts with the clients. With regard

to the queue manager, the following steps are executed:

• each client process sends a work requests to the server;

• the server, through the queue manager, receives these

requests and puts them in a queue. If the queue is full,

the client remains in a continuous loop until it reaches

blank entry in the queue.

• the task manager, when idle, is constantly calling for a

new task to the queue manager,

• when the queue is not empty, the queue manager stag-

gers the arranged processes in the queue and chooses

which process should be sent to the tasks’ performer,

• the scheduler, when finishing a task, returns to the

manager and to the client that the work has been

completed.

To implement the queue on the server, we used the

mailbox feature offered by Lua programming language. The

code is outlined by Algorithm 2.
O Algorithm 2 shows the set of steps executed by the

server. Again, we give some Lua details. Initially, the queue

is empty (line 2) and the process to perform the task is started

(line 3).
Continually, the server receives new messages. If the new

message is from the executor process (line 6) and the process

queue is not empty (line 7), the scheduler selects a task from

the queue (line 8), according to a specific policy, and sends

it to the executor (line 9).
If the queue is empty, the queue manager sends to the

performer a message indicating that there is no task to be

performed at the time (line 11). If the received message is

not from the task manager, a client is thus the task requested,

and the request for executing the task is inserted in the queue.

1: function server()

2: queue ⇐ {}

3: executor_id=spawn (executor, self())

4: while true do
5: msg ⇐ receive()

6: if msg.from=executor then
7: if queue>0 then
8: chosen ⇐ choose (queue)

9: send (executor_id, chosen)

10: else
11: send (executor_id, {client=nil, task=0})

12: end if
13: else
14: insert (queue,{client=msg.from, task=msg.task})

15: end if
16: end while
Algorithm 2: Server processing.

3.2.3 Scheduler
The scheduler executes a scheduling policy. The schedul-

ing policies are responsible for defining what should be done

to occur the scheduling. The literature describes different

policies for scheduling processes. In the scope of this paper,

we studied the following policies: SJF, FIFO and lottery al-

gorithm. In sequence, these policies will be briefly described.
SJF (shortest job first). Using this policy, the scheduler

performs tasks according to the size of each task. The shorter

task has higher priority over the longer tasks. This policy

is especially suitable for batch jobs, where the runtime is

known in advance. This policy is, therefore, interesting to

computing systems with requirements of efficient response

time.
As disadvantage, the information about the duration of

each task needs to be available beforehand. However, in

many applications, such as file transfer between different

machines, these values can be easily estimated.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 201

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 201

ISBN: 1-60132-444-8, CSREA Press ©

FIFO (first in, first out). In this approach, the first to

enter in a queue is the first to leave the queue. This is one

of the simplest policies to be implemented, because it does

not require special approaches such as previously to compute

the information on the duration of each available task.

Basically, this policy put the tasks to be performed in

a queue, following the order in which the requests were

delivered to the server. The first task that enters the queue

is the first task to be performed.

In this policy, for each execution, the order of the tasks

may change substantially, because the task execution order is

enforced by the delivery order of clients’ request messages

on the server (that is, no matter the shipping order). This

order impacts on the performance as well as in the response

time to clients.

The lottery scheduling. This algorithm chooses randomly

which is the next task to be executed distributing lottery

tickets to the tasks. When the scheduler is available for

use, a new ticket is drawn. According to [8], this algorithm

may prioritize a process pi allocating more tickets for this

process.

3.3 Metrics’ definition
In the scope of scheduling algorithms, different metrics

can be used to quantify how much a policy is better

than another. Among the different metrics reported in the

literature, Tanenbaum [8] stands out:

• fairness to ensure that each process receives a fair share

in the allocation of CPU,

• efficiency to keep the CPU busy 100% of the time,

• response time to minimize the response time for inter-

active users,

• turnaround to minimize the time that batch users must

wait for output,

• throughput to maximize the number of jobs processed

per hour.

In this work, we choose the response time as metric

because we are interested in build a high performance

system in terms of clients’ feedback. We are looking into

the direction of a smart, adaptive scheduler. Policies are

evaluated periodically and the scheduler selects the policy

with the best response time for a given scenario.

4. Experimental evaluation
4.1 System setup

The experiments were performed on a machine using

the Debian 7.2 operating system (wheezy) 32-bit with the

Linux Kernel 3.2.0-4-686-pae, and GNOME 3.4.2 desktop.

The machine has memory RAM 3.7GiB and four-processor

Intel®Core™i3 CPU 540 @ 3.07GH. The version of Lua
programming language we used is 5.1, with the system

LuaRocks to install the library concurrentLua.

In total, we used only 420 lines of code, which include the

implementation of the client-server architecture, the testing

scenarios and auxiliary programs to assess results of logs
generated by the experiments. This only was possible be-

cause Lua is a really powerful language to build prototypes.

4.2 Defining the target-scenarios and compar-
ing policies

For the experimental evaluation, we defined four target-

scenarios, with different demands. The scenarios and results

we achieved are described below.

To measure the server’s response time to clients’ requests,

and to enable evaluate metrics seeking adaptation, we used

a clock that increases the time according to the task being

performed by the server.

To provide more accurate measurements, we carried out

three executions in each scenario and we plot the average of

these values in the graphics.

4.2.1 Scenario 1: homogeneous and short-term tasks

In scenario 1, the server receives requests from clients that

issue identical tasks. Each client, using the concurrentLua
library, issues 100 tasks simultaneously. The tasks are homo-

geneous and have short duration. Because tasks are short, the

demand in the server service is high. The duration of each

task is 10 units of assessment measure.

The results obtained by performing experiments using this

scenario, and policies lottery, FIFO and SJF are shown in

Figure 2. In this first scenario, lottery policy got better

response time than FIFO and SJF, which in turn showed

similar behavior.

 26

 27

 28

 29

 30

 31

 32

 33

 34

 35

FIFO SJF Lottery

R
es

po
ns

e
tim

e

Algorithm

client-1
client-2
client-3

Fig. 2: Performance comparison of policies in scenario 1,

using homogeneous and short-term tasks.

In fact, one may claim that the results we got are almost

the same, and the performance of the algorithms are equiv-

alent in this case.

202 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

202 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

 1500

 2000

 2500

 3000

 3500

 4000

FIFO SJF Lottery

R
es

po
ns

e
tim

e

Algorithm

client-1
client-2
client-3

Fig. 3: Performance comparison of policies in scenario 2,

using homogeneous and long-term tasks.

4.2.2 Scenario 2: homogeneous and long-term tasks
In scenario 2, the server receives, again, requests from

clients with identical tasks. Each client issues concurrently

100 tasks. Tasks are homogeneous but long-lasting to con-

trast with scenario 1. As the tasks are long-lasting, in the

server a new task is performed just after completion of the

previous task. In the scenario 2, the duration of each task is

1, 000 units of assessment measure.

In the experiment, this second scenario gave us very

similar results to the scenario 1. The results obtained with

the execution of experiments using this scenario, with lottery,

FIFO and SJF are shown in Figure 3. However, now, SJF

got slightly better results than the other algorithms. Again,

one can claim that the results are very similar since tasks

have the same size and the effort to execute all algorithms

is also similar.

4.2.3 Scenario 3: heterogeneous tasks
We tried heterogeneous task in this next experiment. In

scenario 3, the server receives requests from three different

clients. The first client issues 100 small tasks. The second

client issues 100 average size tasks. The third client issues

100 long tasks. Each short task has 10 units of assessment

measure. Each mean size task has 100 units of assessment

measure. Finally, each long hard task has 1, 000 units of

assessment measure.

The results obtained by the performing experiments using

this scenario, using lottery, FIFO and SJF policies are shown

in Figure 4.

In this third scenario, we observed a lower response time

on the client with short and average tasks using the SJF

policy. This policy got really better results than the others.

The client with only large tasks went through a period

of starvation: waiting until all the tasks of the first two

customers were executed. Note also that the response time

to clients with small and medium tasks is very similar. This

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

FIFO SJF Lottery

R
es

po
ns

e
tim

e

Algorithm

client-1
client-2
client-3

Fig. 4: Performance comparison of policies in scenario 3,

using heterogeneous tasks.

 1440

 1460

 1480

 1500

 1520

 1540

 1560

 1580

 1600

FIFO SJF Lottery

R
es

po
ns

e
tim

e

Algorithm

client-1
client-2
client-3

Fig. 5: Performance comparison of policies in scenario 4,

using heterogeneous tasks and dynamic demand.

is due to the fact that when finalized all small tasks in the

queue, the queue server chooses the average task and all the

long tasks must wait. Thus, the average task was the lowest

at the time, and it was chosen to be the task performed

before arriving a request of new small task. It was observed

also that small and medium tasks execution were intercalated

during scheduling.

4.2.4 Scenario 4: heterogeneous tasks with dynamic
demand

In scenario 4, the server receives one request per client

and each request has a huge sequence of large and short

tasks. First each client sends k large tasks to the server then

each client sends n short tasks to the server.

The results obtained with the execution of experiments

using this scenario, and policies lottery, FIFO and SJF, are

shown in Figure 5.

In this scenario, despite differences in the results we got,

it was observed that starvation also takes place, but not so

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 203

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 203

ISBN: 1-60132-444-8, CSREA Press ©

Table 1: Results in experiments with adaption.

System charge Before adaption After adaption
Algorithm Value Algorithm Value

Short tasks SJF 29 FIFO 28
Long tasks SJF 2,979 Lottery 2,869

Heterogeneous tasks FIFO 1,095 SJF 456
Dynamic demand FIFO 1,484 SJF 1,469

severe as the previous scenario, due to the fact the client

3 has had half of its requests made in the middle of the

experiment. Here, 50 small tasks were performed before

starting the execution of the large tasks for the clients 1
and 2.

To remedy the situation of starvation, in this case, it could

be implemented a more tricky approach, but reducing the

weight of requests according to a criteria, such as age.

4.3 Experimental evaluation with adaption
After comparing the policies and finding what policy

is most appropriate for each situation, the policies were

assessed again. This time, algorithms are compared each

other, aiming to adapt the scheduling.

Instead of changing the scenario and waiting for the

scheduler to decide the policy, in these new experiments,

we changed the current policy to another policy. In general,

as expected, the service has improved.

To demonstrate situations of adjustment, experiments were

performed in the same four different scenarios (section 4.2).

However, this new battery of experiments, the scheduling

changes its policy on time it reaches half the customers’

demand, seeking to improve the service. Results are sum-

marized in Table 1.

4.3.1 Adaptation in scenario 1
First, we take into account a scenario with small and

homogeneous tasks. At the beginning of the experiment, the

scheduler uses the SJF policy. However, when the experi-

ment reaches the half of the demand of the three clients, the

scheduler changes its policy to lottery. In this experiment,

the average response time slightly decreases from 29 to 28
units of assessment measure.

Again, we cannot claim that lottery scheduling is better

than FIFO because the values we got are very similar. With

this experiment, we just want to test our adaptation service.

4.3.2 Adaptation in scenario 2
Scenario 2 deals with homogeneous and long-term tasks.

In this experiment, the scheduler uses, initially, the SJF

policy. However, when the experiment reaches the half of

the demand of the three clients, the scheduler turns to

lottery approach. In this situation, the average response time

decreases, slightly, from 2, 979 to 2, 869 units of assessment

measure.

Again, we cannot claim that lottery scheduling is better

than SJF because the values we got are very similar. With

this experiment, we just want to test our adaptation service

one more time. Indeed with tasks with the same size, there

is no sense in executing SJF. But, as expected, in contrast to

the first scenario, we got high values in response time here

since tasks in scenario 2 are longer than in scenario 1.

4.3.3 Adaptation in scenario 3
So, let’s move to a more realistic scenario with heteroge-

neous tasks. In fact, the presence of heterogeneous tasks is

common in many real applications.

In this experiment, the scheduler uses initially FIFO

policy. However, when the experiment reaches the half of

the demand of the three clients, the scheduler changes its

policy to SJF.

Thus, the average response time decreases considerably

more than half, from 1, 095 to 456 units of assessment

measure. In the scenario with heterogeneous tasks, it is easier

to realize the gain on the exchange policy from FIFO to SJF.

However, the drawback of SJF is how to predict the duration

on the jobs.

4.3.4 Adaptation in scenario 4
Finally, we take into account adaptation in scenario 4,

with heterogeneous tasks and dynamic demand. Now, clients

request 25 large tasks, followed by 25 small tasks, followed

by another 25 large jobs and 25 small tasks.

At the beginning of the experiment, the scheduler uses

the FIFO policy. However, when the experiment reaches

the half of the demand of the three clients, the scheduler

turns to SJF policy. In this situation, the average response

time decreases, very subtly, from 1, 484 to 1, 469 units of

assessment measure.

Despite of the large jobs in the queue, when the server

turns from FIFO to SJF, the response time is maintained

because large jobs are processed only at the end of the

experiment.

4.4 Final remarks
Analyzing the results obtained from the experiments in

different scenarios, one can notice that the scheduling al-

gorithm choice is not a complex task when the system is

subject to constant demand of similar processes.

However, in the presence of heterogeneous tasks, SJF

tends to outperform the other evaluated policies. In our

proposed approach, observing the clients’ behavior, the

scheduler can adapt its policy to better serve them. One

important restriction of this policy is that computing the time

a job needs to be processed a priori is really tricky.

Finally, with regard to the adjustment (i.e. switching from

a policy to another), when changing from FIFO or lottery

scheduling to SJF, we got the best performance results or,

at least, we maintain the performance.

204 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

204 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

5. Conclusions
In this paper, we presented an adaptive scheduler in the

context of computer systems. We implemented and evaluated

different scheduling policies (FIFO, SJF and lottery) using

the support of the Lua programming language. The scheduler

adapts following the response time provided by clients’

requests. To enable the evaluation of our approach, experi-

ments were performed considering four different scenarios

of tests with different amounts of tasks and different weights

for these tasks.

Analyzing the results obtained with the experiments in dif-

ferent scenarios, one may claim that the scheduling approach

choice is not so relevant in situations where all clients have

similar size tasks. However, in a scenario with tasks with

different sizes, SJF achieves the best results. When we take

into account adaptation, the experiments have shown that

SJF showed the best results in the investigated scenarios.

As a continuation of this work, other policies and metrics

could be used to allow the adaptation of the scheduling

processes. Thus, further works include the following: (i)
investigation of the use of a decentralized architecture with

load distribution among different servers, (ii) investigation

scenarios where the frequency of issuing requests among

customers is different, (iii) evaluation of other scheduling

policies and more complex policies, for instance, those that

implement requests queues using heaps, and (iv) evaluation

of the use of data mining to predict client’s behavior and to

choose the appropriate policy.

References
[1] R. Badonnel, M. Burgess, "Service load balancing with autonomic

servers: reversing the decision making process", in Proceedings of 2nd
International Conference on Autonomous Infrastructure, Management
and Security (AIMS 2008). LNCS 5127. Bremen, Germany. pp. 92-
104, 2008.

[2] S. Bouchenak, N. De Palma, D. Hagimont, C. Taton, "Autonomic
management of clustered applications", in Proceedings of the IEEE
International Conference on Cluster Computing, vol., no., pp.1-11, 25-
28 Sept. 2006.

[3] A. Cervieri, R. Silva de Oliveira, C. F. Resin Geyer, "Uma abordagem
de escalonamento adaptativo no ambiente Real-Time CORBA", in
Proceedings of the XX Simpósio Brasileiro de Redes de Computadores
(SBRC’2002). Búzios - RJ, 2002.

[4] J. M. Ewing, and D. A. Menascé, "Business-oriented autonomic load
balancing for multitiered Web sites", in Proceedings of the 17th Annual
Meeting of the IEEE/ACM International Symposium on Modelling,
Analysis and Simulation of Computer and Telecommunication Systems
(MASCOTS 2009), London, UK, 2009.

[5] R. Ierusalimschy, L. H. de Figueiredo, W. Celes. "Lua Reference
Manual" (Rio de Janeiro: Lua.org), 2006. 103 p.

[6] J. O. Kephart, D. M.Chess, "The vision of autonomic computing",
Cover Feature, IEEE Computer Society, January 2003.

[7] W.-S. Li, D. C. Zilio, V. S. Batra, M. Subramanian, C. Zuzarte, and
I. Narang,"Load balancing for multi-tiered database systems through
autonomic placement of materialized views", in Proceedings of the
22nd International Conference on Data Engineering (ICDE’06), 2006.

[8] A. S. Tanenbaum, "Modern Operating Systems", Prentice Hall Press,
Upper Saddle River, NJ, USA, 1992.

[9] C. A. Waldspurger, W. E. Weihl, "Lottery scheduling: flexible
proportional-share resource management", in Proceedings of the 1994
Operating Systems Design and Implementation Conference (OSDI ’94).
Monterey, California. November, 1994.

[10] H. Zhang, X. Qiu, L. Meng, and X. Zhang, "Design of distributed and
autonomic load balancing for self-organization LTE", in Proceedings
of the IEEE 72nd Vehicular Technology Conference Fall (VTC 2010-
Fall), pp. 1-5, 2010.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 205

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 205

ISBN: 1-60132-444-8, CSREA Press ©

Complex Query JOIN Optimization in Parallel
Distributed Environment

Dr. Sunita M. Mahajan1, Ms. Vaishali P. Jadhav 2

1Principal, Computer Science Dept., Mumbai Education Trust , Bandra , Maharashtra, India
2Research Scholar, NMIMS University, Mumbai, Maharashtra, India

Abstract - The research work covers the query optimization
concept in parallel distributed environment. The queries
considered are select-project-join (SPJ) queries with large
databases. The main query operation considered for research
is JOIN operation of the query. For fast execution of a
complex query, JOIN operation time needs to be minimized.
Different JOIN operation algorithms such as Network Byte
Order (NBO) parallel two way semi JOIN with bit array,
NBO parallel collision free intelligent bloom JOIN filter, NBO
parallel positional encoded reduction filter (PERF) JOIN and
NBO parallel distinct encoded reduction filter (DERF) JOIN
are implemented and evaluated with existing algorithms.

Keywords: Query Optimization, JOIN Operation, Network
Byte Order, Parallelization, and Distributed Environment.

1 Introduction
 A query is defined as content retrieval from database on
demand. It can be as easy as “Retrieving name of the person
with PAN card number AAQPW2130D” or more complex
like “Finding the amount of EMI of all bank customers whose
age is between 30-39 years, having more than 5 years of work
experience, having loan amount between 20 lacks to 50 lacks
and want to make up loan within 5 years having loan period of
20 years with floating interest”. After carrying out a JOIN
operation between query tables, the query results are
produced. The JOIN order of the tables decides the
performance of the query. Query optimizer determines JOIN
order via different JOIN algorithms in diverse environments.
Depending upon the algorithmic change in each JOIN
algorithm, query JOIN optimization time may vary. The
research focus is to reduce the optimization time and network
cost (in terms of amount of data to be transferred on network)
of JOIN operation of a complex query in large databases.

The following Fig.1 gives an example of a complex query
consists of many relations R1-R15. To produce the final JOIN
operation result in minimum time, we need to reduce the time
required by intermediate JOIN operations. To get the fast
result, we parallelize a set of query optimization procedures
for improving the performance of JOIN operation in a

complex query on large databases in parallel distributed
environment [1-17] [18-23] [29-31] [48].

Fig. 1 Distributed Complex Query with Multiple JOINs

For implementing parallel JOIN algorithms, intra-operator
parallelism and inter-query parallelism with shared nothing
architecture is used. In intra-operator parallelism, single query
JOIN operation is executed and in inter-query parallelism,
multiple queries are executed on multiple nodes in distributed
environment [18-23] [29-32] [48].

In parallelization, various load balancing schemes are used.
The load balancing schemes that we used are round-robin,
total-sum, equi-depth and stratified-allocation. The cost of
parallel execution of JOIN operation includes the cost of data
partitioning, data assembling and maximum execution cost of
JOIN operation on multiple nodes. For achieving better results
of parallelism, the combination of independent and pipelined
parallelism is used. In independent parallelism, each node
works independently with the data allotted to it. The pipelined
parallelism gathers the results in pipeline and gives the final
result [9-11] [42-45].

Our research work gives extra facilities during optimization
phase. Query JOIN optimizer converts actual JOIN attribute
values into a compressed binary form. But the problem is
different CPU platforms may store compressed binary data
types differently [17].i.e. Little Endian or Big Endian
representation. To solve this problem, this compressed binary
data is again converted into network byte order representation

206 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

206 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

which will be an intermediate storage of binary data to be
transmitted across network [17] [40] [42]. This NBO data
again is encrypted and provides the security during
transmission of data on network.

The research work focused on various challenges occurred
during optimization of query in different environment such as
centralized environment, distributed environment and parallel
environment. We focused on parallel environment. Producing
the query result in less execution time, reducing
communication cost when data is distributed among different
sites, preventing data loss during JOIN operation, eliminating
duplicate data during data transfer, reducing the amount of
data to be transferred using data compression techniques,
securing the data during transmission are some of the
challenges in our research work[9-11] [42-15].

Based on certain parameters such as execution time, memory
utilization, amount of data to be transferred on network, speed
and efficiency, the query JOIN optimization algorithms are
evaluated [40-48].

2 Related Work
The existing JOIN algorithms that we considered for our
research are as follows:

Fig. 2 Existing JOINs

For research in optimization of complex queries, we studied
the existing JOIN optimization algorithms. Existing JOIN
optimization algorithms are classified as Uncompressed and
Compressed JOIN optimization. We studied semi JOIN and
two way semi JOIN optimization techniques [1- 5] [19-23]
[42-48] [30-35]. In Uncompressed JOIN optimization, the
actual JOIN attribute values are transmitted so it increases the
transmission time as well as network data. In two way semi
JOIN optimization, the common and uncommon JOIN
attribute values are compared but data is still in uncompressed

form. We then studied some compressed techniques such as
Bloom JOIN [6], Position Encoded Reduction Filter (PERF)
JOIN [7, 8] [41-47] and Distinct Encoded Reduction Filter
(DERF) JOIN [7,8][41-47]. Bloom JOIN faces the collision
problem i.e. more than one elements point to the same
address. PERF JOIN uses position encoding which is not
suitable for large databases and DERF JOIN requires more
time to remove duplicates. So our research fills these gaps by
using parallelization to improve the performance of JOIN
operation [24-28] [36-39] [47]

3 Research Work
We develop four JOIN optimizers in parallel distributed
databases which focus on network data reduction, time-
memory reduction and security during data transmission on
network.

Fig. 3 Proposed Work

Instead of sending a data in its actual format, data is converted
into binary format i.e. data is compressed and cost in terms of
data transfer is reduced [30-35]. The main issue with binary
data transmission is its compatibility with binary data
representation on different machines [40]. Different machines
can have different binary representations such as little endian
or big endian i.e. the way to read binary data may be different.
Machines with little endian binary representation read Least
Significant Byte (LSB) first and machines with big endian
binary representation read Most Significant Byte (MSB) first.
So while binary data is transferred between different machines
with different representations, data can be interpreted wrongly.
To avoid this problem, our research converts this ordinary
binary data into network byte order (NBO) which is
transparent to any binary representation [40][42].

Another issue that we consider in our research is security of
data during transmission on network. The next step after
conversion of binary data into NBO is providing data security
by encrypting NBO using Advanced Encryption Security

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 207

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 207

ISBN: 1-60132-444-8, CSREA Press ©

(AES) algorithm. The encrypted data is transferred on network
and provides security to original data [40] [42-47] [50]. Thus
the problems of data reduction, binary data representation and
security issues are solved with above solutions (Data
Compression, NBO and AES). The time and memory
reduction is achieved by using parallelization concept in query
optimization [9-11] [42-45].

The detailed block diagram of our system is given below in
Fig. 4

Fig. 4 Block Diagram and Contribution

The basic block diagram of a system is consists of 3 phases:
preprocessing, optimization and query execution as shown in
Fig. 3. Pre-processing consists of server status checker module
which checks the connection between server and client in
distributed environment. If the connection is OK then query
generator module generates the query. According to the
number of JOIN attributes of query tables, adjacency matrix is
created in query pre-processing module. It gives the pre-
processing time and query type as its output. Query type
defines the number of relations in a query with number of
JOIN attributes. For example query type 4-#3 means number
of relations is 4 and number of JOIN attributes is 3 in a query.

The optimization phase consists of intra-operator and inter-
query parallelism. Intra-operator parallelism consists of
parallelization of single operator i.e. JOIN operator on
multiple machines. Inter-query parallelism consists of multiple
queries executed simultaneously on multiple machines [9-11]
[45].Our four parallel JOIN optimizers are available in both
environment i.e. intra- operator and inter-query parallelism.
After the data compression and data reduction is over in all
parallel JOIN optimizers, compressed data is converted into
network byte order (NBO). NBO data is then encrypted with
the help of AES algorithm and provides the security during
transmission of data on network [43-47] [50].
In execution phase, the query is executed with calculation of
time and memory requirement. The row count of reduced

relation is also calculated in execution phase [1-5] [19-23].
The queries considered for research are star, chain, cycle and
clique. The five databases used for evaluation are TPC-H,
Northwind, Pub, AdventureWorks and Query Optimization
(customized database used for testing) [13-15]. Databases can
be scaled with proper scale factors.

The four JOIN optimizers developed are

 NBO parallel two way semi JOIN with byte array
 NBO parallel collision free intelligent bloom JOIN
 NBO parallel positional encoded reduction filter JOIN
 NBO parallel distinct encoded reduction filter JOIN

3.1 NBO Parallel Two Way Semi JOIN with

Byte Array
Original two way semi JOIN calculates the common and
uncommon JOIN attribute values and compares the count of
both the values. The less count of common or uncommon
values are transmitted on network and used further for
reduction at resultant site [1-5] [19-23] [42-44] [50] [30-35].

The detailed algorithmic contribution of our first NBO parallel
algorithm is given below in Fig 5.

Fig. 5 Algorithmic Contribution of NBO Parallel Two Way
Semi Join with Byte Array

Two way semi JOIN optimizer can also be executed in parallel
environment. Instead of sending actual JOIN attribute values,
our optimizer encodes the lesser count of either common or
uncommon JOIN attribute values into byte array to save
transmission cost. The byte array is converted into network
byte order (NBO) to solve the problem of compatibility of
binary representations on multiple machines [40]. Then NBO
data is encrypted using AES algorithm for providing security

208 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

208 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

during data transmission [12] [42-47] [50]. Parallelization of
above optimizer improves the performance of original two
way semi JOIN optimizer [9-12] [17] [30-35][38]. We have
used intra-operator and inter-query parallelization in our
research.

3.2 NBO Parallel Collision Free Intelligent
Bloom JOIN Filter

Original bloom JOIN filter uses hash function to map JOIN
attribute values of relations. The main problem of hash
function is collision problem. More than one JOIN attribute
values can be mapped to the same address in collision problem
[6] [24-28] [36-39].

Instead of using hash functions in bloom JOIN, our algorithm
used C# data structure i.e. Hash Table. The problem of
collision due to hash functions is avoided by using hash table.
Also hash table saves only the distinct values so parallel
collision free intelligent bloom JOIN with hash table is useful
in large databases and improves the performance of original
bloom JOIN optimizer[9-12] [17].

The main contribution of this algorithm is conversion of JOIN
attribute values into hash table in forward reduction of JOIN
operation. The hash table values are converted into network
byte order for solving the problem of binary representation.
Security to transmitted data is provided by using AES
algorithm. In backward reduction, the less count of common
and uncommon values are converted into hash table, then
network byte order conversion and then AES algorithm is
applied for security purpose.

3.3 NBO Parallel Position Encoded Reduction
Filter JOIN

Original positional encoded reduction filter (PERF) encodes
the position of JOIN attribute value into byte array.
Considering JOIN operation between two relations, PERF
JOIN sets byte array value equal to 1 for the common JOIN
attribute value and sets 0 for the uncommon JOIN attribute
value [7-8] [41-47].

The problem with original PERF JOIN is it encodes position
in byte array, as the JOIN attribute values increases, the size
of byte array increases. This problem is solved by NBO
parallel PERF JOIN which compares common and uncommon
JOIN attribute values and instead of encoding all JOIN
attribute values, less count of common and uncommon values
are used for encoding.

The conversion process of compressed data to NBO data and
then NBO data to encrypted data remains same for all
optimizers. The PERF JOIN encodes all the values including
duplicates.

3.4 NBO Parallel Distinct Encoded Reduction
Filter JOIN

In PERF join, duplicate JOIN attribute values are also
encoded. Duplication increases the cost in terms of response
time, transmission time as well as it increases the amount of
data to be transferred on network. To solve this problem,
original distinct encoded reduction filter (DERF) JOIN selects
distinct JOIN attribute values while transmitting data on
network. It solves the problem of duplication [7-8] [41].

Our NBO parallel DERF JOIN further reduces the cost in
backward reduction phase of JOIN operation. NBO parallel
DERF provides security during transmission of data as well as
reduces transmission overhead. In backward reduction phase,
the distinct common and uncommon JOIN attribute values are
compared and less count of these values is represented into
byte array for further reduction.

4 Experimental Set Up
For experimentation, we consider 3 servers (Configuration:
Intel® Core™ 2 Duo Processor E7300, 2.66 GHZ, 3 MB
Cache) and 20 Clients (Configuration: 2.9GHz Intel Core i5
processor,4GB DDR3 RAM, 500GB hard drive) in one data
center. During experimentation, database of size 500GB is
considered and 1500 queries are evaluated. The queries
considered for research are star, chain, cycle and clique. The
five databases used for evaluation are TPC-H, Northwind,
Pub, AdventureWorks and Query Optimization (customized
database used for testing) [13-15] [16-17]. Databases can be
scaled with proper scale factors.

Different load balancing schemes are used during
experimentation such as round-robin, total-sum, equi-depth
and stratified-allocation [12]. We considered all the test cases
(Best, Average and Worst) during our experimentation. This
research paper includes the results of ‘equi-depth’ load
balancing scheme with all types of queries in intra-operator
and inter-query parallelism.

We have used following parameters for evaluation of our
optimizers.

 Execution time
 Memory utilization
 Amount of data to be transferred
 Speed –Up
 Efficiency

With the help of these evaluation parameters, optimizer’s
performance is evaluated. All NBO parallel optimizers with all
types of queries in intra-operator and inter-query parallelism
are shown in results.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 209

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 209

ISBN: 1-60132-444-8, CSREA Press ©

5 Results and Discussion
This section includes the results of our first NBO Parallel
JOIN optimizer in worst case intra-operator parallel
environment. Our algorithms work well with best case and
average case for all types of queries.

Our first optimizer i.e. NBO Parallel Two Way Semi JOIN
with Byte Array is compared with two existing JOIN
optimizers i.e. Parallel JOIN and Parallel Two Way Semi
JOIN. This optimizer is evaluated on basis of all evaluation
parameters such as execution time, memory utilization,
amount of data to be transferred, speed up and efficiency.
Table 1 shows the evaluation of our optimizer using execution
time.

Table 1 Execution Time

NBO Parallel Two way Semi JOIN Optimizer works well with
all queries in best and average case. The time required to
execute Chain, Cycle and Clique queries is more than the time
required to execute existing optimizers in worst case. So our
optimizer works well for star queries in worst case scenario.
The time required to count common and uncommon JOIN
attribute values may take extra time for more complex queries
in worst case scenario.

Table 2 Memory Utilization

The memory utilization is also less for Star queries in worst
case scenario. Memory required by Chain, Cycle and Clique is
somewhat more than the existing optimizers.

Table 3 Amount of Data to be Transferred

Our NBO parallel optimizers used compressed data during
transmission on network. So in all test cases, the amount of
data to be transferred is less than existing JOIN optimizers. In
worst case also, the amount of data to be transferred on
network is less for all types of queries.

We compared all our NBO parallel optimizers with above
evaluation parameters. For other two evaluation parameters
such as Speed-Up and Efficiency, we compared all four NBO
parallel optimizers with existing parallel optimizers.

Table 4 Speed Up

Table 5 Efficiency

210 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

210 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

Our four NBO parallel optimizers are compared with existing
two optimizers.Speed Up and efficiency of all optimizers is
measured. Among all four optimizers , NBO Parallel Distinct
Encoded Reduction Filter gives more speed and is more
efficient than other 3 NBO parallel optimizers.

6 Conclusion
NBO parallel optimizers significantly improve the
performance of JOIN operation in parallel distributed
environment along with reduction in the execution time and
amount of data to be transferred on network. The compression
techniques such as Byte Array conversion, Hash Table
conversion, PERF(Relation) conversion and DERF(Relation)
conversion solves the existing issues in JOIN operation. We
found ‘Equi-Depth’ is better load balancing scheme among
other load balancing schemes. Our evaluation parameter,
‘amount of data to be transferred’ is always acceptable for all
queries in all cases.

NBO Parallel Two Way Semi JOIN with Byte Array and NBO
parallel PERF JOIN is suggested for star queries. NBO
Parallel Collision Free Intelligent Bloom JOIN Filter is
suggested for star and chain queries. NBO Parallel DERF
JOIN is suggested for all types of queries i.e. star, chain, cycle
and clique. NBO Parallel DERF is the best optimizer among
all other NBO parallel optimizers.

In future these NBO parallel optimizers can be tested on
unstructured databases or column oriented databases.

7 References
[1]Abraham Silberschatz, Hank Korth and S. Sudarshan.

Database System Concepts, 5th Edition, McGraw-Hill, 2006

[2]“SQL Statement Processing”
http://technet.microsoft.com/ens/library/ms190623(v=sql.105)

.aspx

[3]Goetz Graefe, Query Evaluation Techniques for Large

Databases, ACM Computing Surveys,Vol. 25, No. 2, June
1993.

[4]“Application areas of Databases”,
http://my.safaribooksonline.com/book/databases/9788131731

925/databasesystem/ch01lev1sec4

[5]Anand V. Hudli, “Distributed Query Processing”, M.Tech

Dissertation IIT Bombay, 1984

[6]J.M.Morrissey and W.Osborn,“Experiments with the use of

reduction filters in distributed query optimization” , in
proceedings of the 9th International Conference on Parallel
and Distributed Computing and Systems,(pp.327- 330).

[7]Ahmet Cumhur ÖZTÜRK, “Distinct Encoded Records Join
Operator for Distributed Query Processing”, Thesis of Masters
of Science, İzmir Institute of Technology. Izmir 2012.

[8]Zhe Li and Kenneth A. Ross“PERF Join: An Alternative
To Two-way Semijoin And Bloomjoin”
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.57.
2324&rep=rep1&type=pdf

[9]“Chapter 8:Parallel Query Optimization”
http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase
.dc20023_1251/html/optiz-er/X23652.htm

[10]”Parallel Hardware Architeture”
http://docs.oracle.com/cd/A58617_01/server.804/a58238/ch3_
arch.htm

[11]Patrick Valduriez , “ Parallel Database Systems : Open
Problems and New Issues” , Distributed and Parallel
Databases I (1993) 137-165

[12]S.K. Basu, “Design Methods and Analysis of
Algorithms”, PHI learning Pvt.Ltd. Second Edition.

[13]http://en.wikipedia.org/wiki/Transaction_Processing_Perf
ormance_Council

[14]https://northwinddatabase.codeplex.com/

[15]http://www.codeproject.com/Articles/20987/HowTo-
Install-the-Northwind-and-Pubs-Sample-Databa

[16]https://msftdbprodsamples.codeplex.com/releases/view/93
587

[17]http://www.ccse.kfupm.edu.sa/~fazzedin/COURSES/CSP
2005/Reading/NetworkProgramming.pdf

[18]http://nou.edu.ng/NOUN_OCL/pdf/pdf2/DAM%20%202
12.pdf

[19]http://www.it.bond.edu.au/inft320/001/lectures/qproc3.pdf

[20]
http://www.srpskibre.com/pdf/Fundamentals_of_Database_Sy
stems.pdf

[21]G.M.Lohman , C. Mohan, L.M. Haas, D. Daniels,
B.G.Lindsay, P.G. Selinger, and P.F. Wilms. “Query

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 211

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 211

ISBN: 1-60132-444-8, CSREA Press ©

processing in R*”.In query processing in Database Systems.
Springer ,New York, 1985.

[22]J.K.Ahn and S.C.Moon. “Optimizing joins between two

fragmented relations on a broadcast local network”.
Information systems, vol. 16, no. 2, pages 185-198, 1991.

[23]J.S.J. Chen and V.O. K. Li. “Optimizing joins in

fragmented database systems on a broadcast local
network”. IEEE Transaction on software Engineering,
vol. 15, no. 1, pages 26-38, 1989.

[24]W.K.Osborn.”The use of reduction filters in distributed

query optimization” Master Thesis, University of
Windsor, 1998.

[25]W.T.Bealor.”Semijoin strategies for total cost

minimization in distributed query processing”. Master
Thesis, University of Windsor, 1995.

[26]W.T. Bealor and J.M. Morrissey, “Minimizing data

transfer in distributed query optimization: A comparative
study and evaluation”, Computer Journal, Vol 39, No. 8,
1997.

[27]J. M. Morrissey , S. Bandopadhyay, and W.T. Bealor. “ A

heuristic for minimizing total cost in distributed query
processing”. In proceedings of the 7Th International
Conference on Computing and Information – ICCI’95,
1995.

[28]J.M. Morrissey, S.Bandopathyay, and W. T. Bealor .” A

comparison of static and dynamic strategies for query
optimization” In proceeding of the 7th IASTED/ISM
International Conference on Parallel and Distributed
Computing Systems, 1995.

[29]Bernstein, PA, Godman, N.Wong, E.Reeve, C, and

Rothnie, J, “ Query processing in a system for distributed
databases (SDD-1)” , ACM Trans. syst. Vol.6, Dec 1981.
Pages 602-625.

[30]Yu, CT and Chang CC, “On the design of a query

processing strategy in a distributed database
environment”, Proc. ACM SIGMOD Intl. Conf.
Management of Data, 1983, pages 30-39.

[31]Apers,PMG,Hevner,A, and Yao,SB, “ Optimization

algorithm for distributed queries”, IEEE Trans. Software
Engg, Vol. 9, No. 1, Jan. 1983, Pages 57-68.

[32]C. Wang, V.O.K. Li and A.L.P.Chen. “ Distributed query

optimization by one shot fixed precision semijoin
execution”. In Proceedings of the 7th International
Conference on Data Engineering, pages 756-763, 1991.

[33]C. Wang, V.O.K. Li and A.L.P. Chen.”One-shot semi join
execution strategies for processing distributed join query”.
Computer Systems Science and Engineering, Vol. *, No. 4,
pages 245-253, 1993.

[34] H.Kang and N. Roussopoulos.“ Using 2-way semijoins in
distributed query processing” In proceedings of the 3rd
International conference on Data Engineering, pages 644-651,
1987.

[35]N. Roussopoulos and H.Kang,“A pipielined n-way join
algorithm based on the 2-way semijoin program”. IEEE
Transactions on knowledge and Data Engineering, 3(4) pages
486-495,1991.

[36]B.H.Bloom,”Space/time tradeoff in hashing coding with
allowable errors”, Communication ACM, Vol.13, July 1970,
pages 422-426.

[37]J.M. Morrissey and X.Ma, ”Investigating response time
minimization in distributed query optimization, In proceedings
of the 10Th International Conference on Computing and
Information – ICCI’98, 1998.

[38]J.C.R. Tseng and A.L.P. Chen,“Improving distributed
query processing by hash semijoins”. Journal of Information
Science and Engineering. Vol. 8, pages 525-540, 1992.

[39]J.M. Morrissey and W.K. Osborn.”Experiments with the
use of reduction filters in distributed query optimization.” In
proceedings of the 9th IASTED International Conference on
Parallel and Distributed Computing and Systems, 1997.

[40]http://www.goldparser.org/doc/about/byte-ordering.htm

[41]Zhe Li. and Kenneth A. Ross.” PERF Join: An alternative
to two ay semi join and Bloom join”, Department of Computer
Science, Columbia University, New York, NY 10027.

[42]http://library.iyte.edu.tr/tezler/master/bilgisayaryazilimi/T
001058.pdf

[43]https://support.microsoft.com/en-us/kb/246071/

[44]http://mu.ac.in/myweb_test/MCA%20study%20material/A
dvanced%20Database%20Techniques-f.pdf

[45]http://web.cs.wpi.edu/~cs561/s12/Lectures/4-
5/ParallelDBs.pdf

[46]http://mazsola.iit.uni-
iskolc.hu/tempus/discom/doc/db/tema01a.pdf

[47]http://bnrg.cs.berkeley.edu/~adj/cs262/papers/graefe.pdf

212 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

212 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

Parallel relational databases for diameter calculation
of large graphs

Fabiano da Silva Fernandes
Faculty of Campo Limpo Paulista (FACCAMP)

Campo Limpo Paulista, São Paulo, Brazil

Email: contato@fabianofernandes.adm.br

Eduardo Javier Huerta Yero
Faculty of Campo Limpo Paulista (FACCAMP)

Campo Limpo Paulista, São Paulo, Brazil

Email: huerta@faccamp.br

Abstract—Parallel relational databases are seldom considered
as a solution for representing and processing large graphs.
Current literature shows a strong body of work on graph pro-
cessing using either the MapReduce model or NoSQL databases
specifically designed for graphs. However, parallel relational
databases have been shown to outperform MapReduce imple-
mentations in a number of cases, and there are no clear reasons
to assume that graph processing should be any different. Graph
databases, on the other hand, do not commonly support the
parallel execution of single queries and are therefore limited to
the processing power of single nodes. In this paper, we compare
a parallel relational database (Greenplum), a graph database
(Neo4J) and a MapReduce implementation (Hadoop) for the
problem of calculating the diameter of a graph. Results show that
Greenplum produces the best execution times, and that Hadoop
barely outperforms Neo4J even when using a much larger set of
computers.

I. INTRODUCTION

For decades relational databases stood as the dominant
choice for storing, managing and retrieving large datasets, as
its widespread adoption indicate. The declarative nature of the
relational model allows programmers to specify what data they
want to store and retrieve, leaving it to them implementation
to choose the data structures and algorithms necessary to
do so. Furthermore, features such as integrity constraints,
ACID properties and referential integrity, which are present in
many implementations of the model, release the programmer
from dealing with the intricacies of creating and maintaining
a consistent dataset in the face of concurrent access and
hardware or software failures.

However, the recent explosion of digitally available data
has exposed weaknesses in relational databases. The challenges
faced by these traditional systems can be broadly classified in:

• Volume: The amount of data stored has grown into
orders of magnitude that overwhelm current rela-
tional databases. In particular, the size of the tables
and, therefore, the time required to perform the join
operations needed to execute queries (the so-called
join pain) has made it unfeasible to manage modern
datasets using traditional tools.

• Velocity: Data velocity refers to the rate at which data
changes over time. Modern systems typically deal with
high volumes of data operations, often write-heavy,
concentrated in short periods of time. Furthermore,
the data model usually changes over time as well,

due mainly to the fluid nature of modern businesses
and the experimental nature of data acquisition and
processing. Relational databases have been known to
perform poorly during peak loads and are ill prepared
to deal with constantly changing data models.

• Variety: Today’s data may be dense or sparse, data
items may be interconnected or independent and may
be structured, semi-structured or unstructured. This
landscape is far removed from the type of problems
relational databases were designed to solve. Forcing
current data into a relational model often produces
inefficient and counter-intuitive data models that are
hard to maintain.

Relational databases have responded to some of these
challenges by increasing the adoption of known techniques
such as data sharding, column-oriented tables and the parallel
execution of single queries. Databases supporting the latter
feature are known as parallel relational databases and have
been successfully deployed on highly demanding scenarios in
the industry where the more traditional relational databases
were not sufficient.

A host of alternatives approaches have also been developed
to cope with these challenges. One of the most widely known
is MapReduce, a simple and powerful programming model
and implementation initially developed by Google [7]. Other
approaches have been grouped under the name of NoSQL
databases [11], representing their departure from the traditional
relational model. NoSQL databases typically alter or com-
pletely eliminate some essential feature of the relational model
(e.g. data model, ACID properties) in order to improve metrics
regarded as more vital, such as performance, availability and/or
fault tolerance.

In the particular case of graphs, a number of specific
solutions such as GraphLab [18] and NoSQL graph databases
such as Neo4J [8] have been developed. For large graphs, the
recent body of work has focused on the MapReduce model
[7] and to a lesser extent the Bulk Synchronous Parallel (BSP)
model [27].

MapReduce has been proved to perform poorly for graph
algorithms, both theoretically [20] and through practical ex-
periments [12]. Some of the reasons behind this lack of
performance are its reliance on an external data storage layer
(e.g. HDFS for Hadoop), its need to materialize intermediate
results on this storage layer (e.g the results from the map
phase) and the stateless nature of the map and reduce phases

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 213

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 213

ISBN: 1-60132-444-8, CSREA Press ©

that forces data to be redistributed at the beginning of every
cycle.

Graph databases use their multi-node deployments for high
availability and fault tolerance, but do not commonly support
the parallel execution of single queries. Therefore, when pro-
cessing complex queries on large graphs, their performance
tends to be limited by the computing power of single nodes.

Although proven to be superior to MapReduce in a number
of use cases [26], parallel relational databases are not com-
monly considered as a potential solution for graph problems
in current literature. More interestingly, the characteristics
that made parallel relational databases outperform MapReduce
in [26] (i.e better data distribution and locality, indexing
capabilities, execution plan optimization) are all true for graph
algorithms as well. When compared to graph databases, paral-
lel relational databases offer a less intuitive data model, but
coupled with a highly tuned parallelization mechanism for
single queries.

In this paper we intend to explore this issue by calculating
the exact diameter of a graph with a graph database, a
MapReduce implementation and a parallel relational database
and comparing their performances. We selected the diameter
calculation because it requires the calculation of the distance
between every pair of vertices in the graph (known as the
All-Pairs Shortest Path problem), which is computationally
intensive. Also, an exact solution to this problem is less likely
to be affected by the particular partitioning of the graph among
the parallel nodes, since every vertex has to be considered
against every other vertex in the graph.

We do not intend to present a full comparison of these mod-
els in the realm of graph algorithms, or to provide innovative
algorithms for graph calculation (which is typically done using
approximate algorithms [13]). Instead, our goal is to present
an initial set of experiments to explore the feasibility of using
a parallel relational database to process large graphs instead of
a MapReduce implementation or graph databases. We believe,
however, that the problem of calculating the exact diameter of
a graph is complex enough to expose most of the strengths
and weaknesses of each solution.

Rest of the paper is organized as follows. Section II
describes literature relevant to this paper. Section III briefly
presents each model compared. Section IV compares each
model and points out their main differences. Section V de-
scribes the algorithms used for calculating the diameter of a
graph on each model. Section VI explains the design of the
experiments and the datasets used. Section VII presents the
results of the experiments and comments on them. Finally,
Section VIII presents the conclusions of this paper.

II. RELATED WORK

A large effort has been devoted to write graph algorithms
for the MapReduce model and understanding their perfor-
mance characteristics. In [6] the author identify challenges
and propose MapReduce based solutions for graph mining,
matching and querying. In [17] several design patterns are
proposed whose objective is to enhance the performance of
graph algorithms in MapReduce. In [23] a class of MapReduce

algorithms is introduced that is named Scalable Graph Pro-
cessing Class, and its demonstrated that algorithms belonging
to it exhibit good scalability when processing large graphs.

The PEGASUS graph mining library [14], built on top of
Hadoop MapReduce, implements typical graph-mining tasks
such as calculating graph diameter and the radius of a specific
vertex, as well as finding the connected components. For the
specific problem of calculating the diameter of a graph, [13]
offers an approximate solution, while [19] offers the exact
results, both based on MapReduce.

MapReduce has also been compared to parallel relational
databases in traditional scenarios not involving graphs. In
[21] and later in [26] the authors compare the performance
and suitability of MapReduce and two parallel databases
for problems commonly found in traditional scenarios. The
papers concludes that parallel databases are best suited for
querying large datasets, while MapReduce is best suited for
ETL (Extract, Transform and Load) and complex analytics.

MapReduce has also been extended or enhanced to improve
its performance on graph algorithms. In [1] the authors propose
an extension to the MapReduce model called PACT, which is
based on the idea of parallel contracts. Among the problems
used to compare both models are the pairwise shortest path
and the edge-triangle enumeration in large graphs.

In [22] a MapReduce implementation is described that
uses the well-known Message Passing Interface (MPI) as the
communication mechanism. By giving up on some of the most
heralded features of standard MapReduce implementations,
such as fault tolerance and data redundancy, the authors are
able to provide an implementation that outperforms its standard
Hadoop counterpart in several graph problems.

In [5] is described a system called Surfer, which extends
MapReduce with a propagation operation designed to ease
the implementation of edge-oriented tasks in graphs. Simi-
larly, [28] and [4] propose an extension to MapReduce that
introduces the capability of executing iterative computations,
typically needed for graphs algorithms.

Other models have also been compared to MapReduce in
the context of graph algorithms. In [15], MapReduce is com-
pared to the PRAM (Parallel Random-Access Machine) model
using the Minimum Spanning Tree (MST) of a dense graph in
the comparison. In [10] the authors compare the MapReduce,
BSP, PACT and GraphLab [18] (which is based on the Gather-
Apply-Scatter pattern) programming models for the k-core
decomposition problem in graphs. With few exceptions, all
other models performed better than MapReduce.

In [25] Microsoft’s Trinity [24] and other platforms for
graph computing, such as MapReduce, Pregel, Pegasus and
several NoSQL based approaches are superficially compared.
Finally, in [12] the authors compare MapReduce and BSP for
graph algorithms. The problems chosen for the comparison
were the Single Source Shortest Path (SSSP) and Relational
Influence Propagation (RIP). The results show that BSP is
better suited to handle graph problems, although the partic-
ular implementation chosen (Apache Giraph) presented some
scalability issues for the larger graphs tested that discourage
the adoption of this platform.

214 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

214 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

III. MODELS

In the MapReduce model the input data to be processed is
divided into chunks, which are then fed to several map tasks.
Each map task produces an output as a set of {key, value},
which are then shuffled by the MapReduce implementation
such that all outputs with the same key are fed to the
same reducer task. The reducer task then combines these
intermediary results to produce the final output.

The power of the MapReduce model relies in letting the
programmer focus on the details of the application while the
MapReduce implementation deals with all problems associated
with its parallel execution, such as code and data distribution,
load balancing, fault tolerance and data flow.

Parallel relational databases work by harnessing the power
of several database servers to execute single user queries
in parallel. Traditional models for parallel and distributed
databases include shared-memory, shared-disk and shared-
nothing, although shared-nothing architectures have prevailed
due to their simplicity, low cost and high performance and
scalability.

Relational database servers execute SQL queries that con-
sist of a set of relational operators applied to potentially large
sets of data. SQL queries do not specify how they should
be executed, thus giving database implementors considerable
freedom in the execution plan and offering large opportunities
for parallelism [9]. A SQL query can be executed as a dataflow
graph, composed of a set of relational operators such that:

• the output of one operator can be the input of another,
creating opportunities for pipelined parallelism

• the data to be processed can be partitioned and sub-
mitted to several dataflows whose results are merged
at the end.

A graph database uses graph theory to represent discrete
entities and their relationships. Entities are represented by
graph nodes, while relationship among entities are represented
through edges. Both nodes and edges can have associated
properties to describe their characteristics, much like the
Entity-Relationship model. In graph databases relationships are
materialized and stored in the database at creation time instead
of being calculated through join-like operations at execution
time, so graph traversal is more natural and efficient.

IV. IMPLEMENTATIONS

The architectural differences between parallel relational
databases, MapReduce and graph databases have been studied
in current literature [9] [2] [8]. Comparing these architectures
is difficult, given the number of different options available. In
this work we chose the standard Hadoop/HDFS implementa-
tion of the MapReduce model, a mainstream graph database
without support for parallel query execution (Neo4J) and a
mainstream parallel relational database (Greenplum). We will
now briefly compare these particular systems instead of the
general models to which they belong.

• Parallelism support: Both Hadoop and Greenplum
support parallelism and therefore are capable of par-
titioning the data to be processes among the available

nodes. The main difference is that Hadoop material-
izes intermediate results on an external data storage
and requires the map phase to be finished before
the reduce phase begins. Greenplum exploits pipeline
paralellism to immediately push intermediate results
to the next processing stage. Neo4J do not support
parallelism.

• Indexing: Both Neo4J and Greenplum support index-
ing, while Hadoop does not.

• Input parsing: Input data is parsed at creation time by
both Greenplum and Neo4J, while Hadoop requires
data to be parsed at every execution.

• Scheduling: Greenplum creates a distributed query
plan so that each node knows exactly what to do
before the query execution begins. Such compile-time
scheduling contrasts with Hadoop, that dynamically
allocates input blocks to map and reduce tasks at
execution time. Compile-time scheduling usually pro-
duces better performance results, while execution-time
scheduling is better at adapting to workload skews and
changes in node performance.

• Fault tolerance: Both Neo4J and Greenplum provide
transaction-level fault tolerance, meaning that if an
operation within a transaction fails the whole transac-
tion is rolled back. Hadoop provides block-level fault
tolerance, so that if a task assigned to process an
input block fails then that block will be reallocated
to another task.

V. DIAMETER CALCULATION

The diameter of the graph is calculated using the same
strategy for all approaches: a breadth-first search expanding
from every vertex of the graph until it reaches every other
vertex. This algorithm produces the eccentricity of each vertex,
and the diameter of the graph is then determined as the
maximum value of all eccentricities.

A. MapReduce algorithm

The MapReduce algorithm used in the comparison is
based on the one presented in [19]. The driver program, that
repeatedly calls the map() and reduce() functions until all
vertices are processed, is shown in Figure 1.

input: Graph G
output: Diameter D

for all v ∈ G do
P ← P

⋃{v, v, 0, PROCESSING}
end for
while ∃path ∈ P, path.state = PROCESSING do

map()
reduce()

end while
D ← Max(P.distance)

Figure 1. MapReduce main algorithm for the exact calculation of graph
diameter

This algorithm relies on a path vector P that contains all
currently known paths. Each vector entry contains the path

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 215

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 215

ISBN: 1-60132-444-8, CSREA Press ©

origin vertex (path.origin), the destination vertex (path.dest),
the currently known distance (path.distance) and the path
state (path.state), which can be either PROCESSING
or PROCESSED, depending on whether all neighbors of
the destination vertex of the path have been processed. The
algorithm initializes the path vector (with paths from each
vertex to itself with zero distance and PROCESSING state)
and repeatedly calls map() and reduce() until all paths are in
state PROCESSED.

Figure 2 presents the map() function invoked by Figure 1.

input: Graph G, path ∈ P
output:
(path.orig, path.dest) → (path.distance, path.state)

if path.state = PROCESSED then
Output((path.orig, path.dest) →
(path.distance, path.state))

else
for all v ∈ Neighbors(path.dest) do

Output((path.orig, v) →
(path.distance+ 1, PROCESSING))

end for
Return((path.orig, path.dest) →
(path.distance, PROCESSED))

end if
Figure 2. Map function for the exact calculation of graph diameter

The map() function receives the complete graph G and an
entry of the path vector P called path. If path needs further
processing, the map function outputs a new entry for every
neighbor of the destination vertex path.dest with its distance
increased by 1. The reduce() function invoked by Figure 1 is
shown in Figure 3.

input:
(path.orig, path.dest) → values =
{(path.distance1, path.state1), ...}

output:
(path.orig, path.dest) →
(path.distance, path.state)

path.distance ← Min(values.distance)
/*Consider PROCESSED > PROCESSING ∗ /
path.state ← Max(values.state)

Output(path.orig, path.dest) →
(path.distance, path.state)

Figure 3. Reduce function for the exact calculation of graph diameter

The reduce() function receives as input all distances and
states calculated for a specific pair of vertices. The path
distance is calculated as the minimum distance of all entries
in the input.

B. Relational DB algorithm

For the relational database algorithm the graph is repre-
sented by a table G with two fields containing the origin and
destination vertices of an edge. The algorithm then produces

a second table D with the distance for every pair of vertices,
as shown in Table I.

Table I. TABLES USED TO REPRESENT THE GRAPH IN THE RELATIONAL

ALGORITHM: (A) ORIGINAL GRAPH (B) OUTPUT

Name Type

orig int
dest int

(a) Table G

Name Type

orig int
dest int

distance int

(b) Table D

The algorithm is described in Figure 4. It works by
iteratively adding new entries to the result table D, such that
at iteration i it contains all pairs of vertices that can be reached
with i hops or less from every possible origin vertex. At every
iteration a table Frontier is created with the vertices reachable
from destination vertices in D, and then updates D with the
new entries. The loop finishes when no new entries are found,
at which point the eccentricity for each vertex and the diameter
of the graph are calculated.

input: Table G
output: Table D with distances for every pair of vertices

D ← G, D.distance=1
go ← true
while go do

Frontier ← Select D.orig, G.dest, D.distance+1
From D, G Where D.dest = G.orig
AND G.dest <> D.orig

Update D with Frontier if D does not contain
an entry with a lesser distance
go ← (items updated > 0)

end while
Ecc ← Select orig, MAX(distance) From D
Group By orig
Diameter ← SELECT MAX(distance) From Ecc

Figure 4. Relational database algorithm used to calculate the diameter of a
graph.

C. Graph database algorithm

The algorithm for the graph database algorithm is straight-
forward. It sequentially scans the graph and calculates the
eccentricity of every vertex, which is then used to calculate
the diameter of the graph, as shown in Figure 5.

diameter ← 0
for all Nodes in graph as nodeSrc do

ecc ← 1
for all Nodes in graph as nodeDest do

ecc ← max(ecc,distance(nodeSrc,nodeDest)
end for
diameter ← max(diameter, ecc)

end for
Figure 5. Sequential algorithm used in graph databases.

Graph databases offer convenient ways to traverse graphs.
For instance, Neo4J provides a Traverser class to reach every
node in the graph starting at a source node according to settings

216 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

216 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

specified by the user. In the example shown in Figure 6 a
Traverser object is created from nodeSrc that reaches all
other nodes in the graph using a breadth-first strategy.

Traverser traverser = nodeSrc.traverse(
Order.BREADTH FIRST ,
StopEvaluator.END OF GRAPH ,
ReturnableEvaluator.ALL BUT START NODE,
RelTypes.KNOWS,
Direction.BOTH);

Figure 6. Traverser object used in the Neo4J graph database to find all paths
from a single node.

VI. DESIGN OF EXPERIMENTS

Experiments were conducted using a set of real and syn-
thetic graphs of different sizes. The tests were designed to
assess how execution time and speedup were affected by
changing the size of the graphs and the number of available
computers.

It is worth noting that the size of the graphs used were
limited by the available computing time in the test environ-
ment. Since the calculation of the exact diameter of a graph is
a demanding task, for larger graphs some of the tests would
exceed the maximum allotted time and be interrupted.

A. Test environment

Tests were conducted on the Grid’5000 platform [3], a plat-
form composed by approximately 1200 computers with more
than 8000 cores combined, distributed among 11 locations in
France. The experiments used two of the clusters offered by
the Grid’5000 platform:

• Cluster Paradent: from the Rennes site, it is formed by
45 computers with two Intel Xeon L5420 processors
each with four 2.66 GHz cores each (360 cores total),
32GB RAM and a 350GB SATA hard drive.

• Cluster Graphene: from the Nancy site, it is formed
by 120 computers with an Intel Xeon X3440 processor
containing four 2.53 GHz cores (480 cores total), 32
GB RAM and a 350 GB SATA hard drive.

Computers used in the experiments were connected by
a 1 GB Ethernet switch. They were running Linux Cen-
tOS 5.9, kernel 2.6.18-371.4.1.el5.x86 64, Java Virtual Ma-
chine 1.7.051, Python 2.7.6, Python-NetworkX 1.9.0, Apache
Hadoop 1.2.1 and the Pivotal Greenplum Database, version
4.2.2.

B. Datasets

The real graphs used in the tests were obtained from the
Stanford dataset [16] and are shown in Table II.

Graph Vertices Edges Diameter
Cahepth 9.877 51.971 17
Cahepph 12.008 237.01 13
Astroph 18.772 396.161 14
Com-amazon 334.863 925.872 44

Table II. REAL GRAPHS USED IN THE EXPERIMENTS (STANDFORD

DATASET [16]).

Synthetic graphs are divided in two groups. The first group
contain graphs with a fixed number of vertices and varying
number of edges, and is presented in Table III. The second
group has graphs with varying number of vertices and edges
and is shown in Table IV.

Table III. SYNTHETIC GRAPHS WITH 20,000 VERTICES AND VARYING

NUMBER OF EDGES.

Edges Diameter
200.000 7
300.000 6
400.000 5
500.000 5

Table IV. SYNTHETIC GRAPHS USED IN THE EXPERIMENTS WITH

VARYING NUMBER OF VERTICES AND EDGES.

Vertices Edges Diameter
10.000 100.000 4
20.000 200.000 6
30.000 300.000 8
40.000 400.000 11
50.000 500.000 13

C. Data distribution

The test graphs had to be loaded on each of the 3 platforms
compared. The simplest case was Neo4J: since we only used
one computer to process the graphs they were loaded from a
file containing vertices and edges.

For Greenplum, the table containing the graph was sharded
among all nodes in the cluster using a simple hash function
aimed at guaranteeing that data about a single vertex was
located on the same node. Hadoop, on the other hand, offers
less control about how data is divided. The graph, represented
by a file, is loaded into HDFS which then divides it into blocks
that are replicated and spread among nodes in the cluster.

VII. RESULTS

A. Real graphs

The best execution times for real graphs are shown in
Figure 7. These results were obtained in the Paradent cluster
using all 45 computers for both Greenplum and Hadoop and
a single computer for Neo4J.

Figure 7. Execution times for real graphs

The performance of Neo4J was better for the smaller
graphs and degraded for the larger graphs. Greenplum outper-
formed Hadoop in all cases, and was almost 2,5 times faster
for the Com-Amazon graph.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 217

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 217

ISBN: 1-60132-444-8, CSREA Press ©

Figure 8 shows the execution times for Hadoop and
Greenplum when increasing the number of computers used.
The behavior is similar for all graphs: for smaller numbers
of computers Hadoop produces better execution times, while
Greenplum produces better results when the number of com-
puters available is larger.

Figure 8. Execution times for real graphs with Greenplum and Hadoop when
varying the number of available computers.

Figure 9 shows the relative speedup for the Hadoop and
Greenplum execution times for real graphs as the number of
computers grow. The relative speedup is calculated dividing
the execution time obtained with N computers by the execution
time of the same solution when using a single computer.

Figure 9. Speedup for real graphs with Greenplum and Hadoop when varying
the number of available computers.

Both speedup curves have similar shapes, increasing as
the number of available computers grew. However, speedup
numbers for Greenplum are clearly superior, reaching nearly
30 with 45 computers for the Com-Amazon graph.

B. Synthetic graphs

All synthetic graphs were processed on cluster graphene
using all 120 computers available. Figure 10 shows the execu-
tion times for the first set of graphs, all with 20,000 vertices
and varying number of edges.

As the number of edges increase there are two opposing
forces affecting the execution time. On one side, the larger

number of edges means more processing to be done to analyze
the whole graph, while at the same time the diameter of the
graph decreases and therefore less iterations are needed to
reach the end of the algorithms.

Figure 10. Execution times for synthetic graphs with 20,000 vertices and
varying number of edges.

As expected, Neo4J had the worst results, unable to take
advantage of all the computing power available. However, it
is worth noticing that Neo4J produced results that were about
twice the execution times obtained by Hadoop, a remarkable
fact considering it only used one computer. Greenplum had
the best results and seemed to be less affected by the increas-
ing number of edges, maintaining its execution times nearly
constant while those of Neo4J and Hadoop increased.

The speedup values corresponding to the execution times
in Figure 10 ares shown in Figure 11.

Figure 11. Speedup for synthetic graphs with 20,000 vertices and varying
number of edges.

The speedup values for Greenplum were considerably
better than Hadoop, staying around 80 and reaching nearly
100 for the graph with 300,000 vertices. Speedup for Hadoop
remained nearly constant for all graphs.

The second group of synthetic graphs was built by varying
the number of vertices and edges. Unlike the first group, the
larger graphs in this group had larger diameters, which meant
a larger number of iterations to calculate it. Furthermore, the
work to be done at each iteration was larger as well, as a
consequence of increasing the number of vertices and edges.

Figure 12 shows the execution times for graphs in the
second group. To simplify presentation, graphs are named ac-
cording to their number of vertices and edges, so that Graph10
represents the graph with 10,000 vertices and 100,000 edges
and so on.

218 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

218 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

Figure 12. Execution times for synthetic graphs with varying number of
vertices and edges.

Again, Neo4J had the worst results but took approximately
only twice as long as Hadoop, that used 120 computers for the
task. Execution times for Greenplum increased only slightly for
the larger graphs, and were remarkably better than Hadoop’s.

Speedup values for the results in Figure 12 are shown in
Figure 13.

Figure 13. Speedup for synthetic graphs with varying number of vertices
and edges.

As expected, speedup values for Greenplum were better
than Hadoop. However, Greenplum had better speedup results
for the smaller graphs. As the graphs grew larger the speedup
values decreased, presumably because a smaller part of the
processed data could fit into memory.

C. Analysis

The tests conducted prove that both Hadoop and Green-
plum, being able to exploit the computing power available,
produce better execution times than Neo4J, which was con-
fined to a single computer. This is hardly a surprise: however,
it is worth noticing that the execution time of Neo4J were
remarkably close to those of Hadoop, taking about twice as
long even when Hadoop used 120 computers and Neo4J was
executed on a single computer.

Greenplum produced the best results, with speedups at
about 2/3 of the optimum value and execution times more
than 10 times faster than Neo4J. Perhaps counterintuitively,
Hadoop performed better than Greenplum only in tests with a
smaller number of computers, while Greenplum seemed to be
better at handling effectively a larger number of nodes.

There are no doubts that a graph database such as Neo4J
is better at handling graphs, as they should. This fact was

clearly demonstrated by the simple and intuitive algorithm and
data models necessary to calculate the graph diameter and the
excellent performance results obtained with a single computer.

However, the tests conducted in this paper indicate that,
when better performance is required, a parallel relational
database such as Greenplum should be considered as a solution
before MapReduce does. Greenplum was able to produce
shorter execution times while still ensuring fault tolerance and
data integrity. MapReduce implementations such as Hadoop
seem to be useful when cost is an issue and/or when ”quick and
dirty” analysis are required for which purchasing, installing
and configuring a parallel database would be considered an
overkill [26].

VIII. CONCLUSIONS

This paper presented a set of experiments aimed at under-
standing the performance characteristics of a parallel relational
database, a MapReduce implementation and a graph database
in the context of graph processing. Since there are a consid-
erable number of options and variations of each model, we
selected a popular representative of each model and used it
in the comparison: Greenplum (parallel relational database),
Hadoop (MapReduce) and Neo4J (graph database).

The problem selected was the calculation of the diameter of
a graph, since we felt it was demanding enough to shed light on
the strengths and weaknesses of each system. Tests conducted
with both real and synthetic graphs revealed that Greenplum
had the best execution times and speedup values, followed by
Hadoop and Neo4J in that order. However, it is worth noticing
that although Neo4J does not support the parallel execution
of single queries its execution times were only about twice as
large as those of Hadoop, even when 120 computers were used
by the latter.

We conclude that when performance is an issue, a parallel
relational database such as Greenplum is a better choice than
a MapReduce solution, unless other concerns such as cost or
setup time favors a cheaper and quicker solution with MapRe-
duce. Neo4J combines simple, intuitive and easy to maintain
programming and data models with excellent performance
results, even with its lack of support for parallelism.

REFERENCES

[1] A. Alexandrov, S. Ewen, M. Heimel, F. Hueske, O. Kao, V. Markl,
E. Nijkamp, and D. Warneke. Mapreduce and PACT - compar-
ing data parallel programming models. In Datenbanksysteme für
Business, Technologie und Web (BTW), 14. Fachtagung des GI-
Fachbereichs ”Datenbanken und Informationssysteme” (DBIS), 2.-
4.3.2011 in Kaiserslautern, Germany, pages 25–44, 2011.

[2] S. Babu and H. Herodotou. Massively parallel databases and MapRe-
duce systems. Foundations and Trends in Databases, 5(1):1–104, 2013.

[3] R. Bolze, F. Cappello, E. Caron, M. Daydé, F. Desprez, E. Jeannot,
Y. Jégou, S. Lanteri, J. Leduc, N. Melab, G. Mornet, R. Namyst,
P. Primet, B. Quetier, O. Richard, E.-G. Talbi, and I. Touche. Grid’5000:
A large scale and highly reconfigurable experimental grid testbed.
International Journal of High Performance Computing Applications,
20(4):481–494, Nov. 2006.

[4] Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst. HaLoop: Efficient
iterative data processing on large clusters. Proc. VLDB Endow., 3(1-
2):285–296, Sept. 2010.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 219

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 219

ISBN: 1-60132-444-8, CSREA Press ©

[5] R. Chen, X. Weng, B. He, and M. Yang. Large graph processing in
the cloud. In Proceedings of the 2010 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’10, pages 1123–1126,
New York, NY, USA, 2010. ACM.

[6] S. Das and S. Chakravarthy. Challenges and approaches for large graph
analysis using Map/Reduce paradigm. In V. Bhatnagar and S. Srinivasa,
editors, Big Data Analytics, volume 8302 of Lecture Notes in Computer
Science, pages 116–132. Springer International Publishing, 2013.

[7] J. Dean and S. Ghemawat. MapReduce: Simplified data processing on
large clusters. Commun. ACM, 51(1):107–113, Jan. 2008.

[8] N. Developers. Neo4J. Graph NoSQL Database [online], 2012.

[9] D. J. DeWitt and J. Gray. Parallel database systems: The future of
database processing or a passing fad? SIGMOD Rec., 19(4):104–112,
Dec. 1990.

[10] B. Elser and A. Montresor. An evaluation study of BigData frameworks
for graph processing. In Big Data, 2013 IEEE International Conference
on, pages 60–67. IEEE, Oct. 2013.

[11] J. Han, E. Haihong, G. Le, and J. Du. Survey on NoSQL database. In
Pervasive Computing and Applications (ICPCA), 2011 6th International
Conference on, pages 363–366. IEEE, Oct. 2011.

[12] T. Kajdanowicz, P. Kazienko, and W. Indyk. Parallel processing of large
graphs. Future Generation Computer Systems, 32:324–337, Mar. 2014.

[13] U. Kang, C. E. Tsourakakis, A. P. Appel, C. Faloutsos, and J. Leskovec.
HADI: Mining radii of large graphs. ACM Trans. Knowl. Discov. Data,
5(2), Feb. 2011.

[14] U. Kang, C. E. Tsourakakis, and C. Faloutsos. PEGASUS: A Peta-Scale
graph mining system implementation and observations. In ICDM 2009.
Ninth IEEE International Conference on Data Mining, pages 229–238.
IEEE, Dec. 2009.

[15] H. Karloff, S. Suri, and S. Vassilvitskii. A model of computation
for MapReduce. In Proceedings of the Twenty-first Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA ’10, pages 938–
948, Philadelphia, PA, USA, 2010. Society for Industrial and Applied
Mathematics.

[16] J. Leskovec and A. Krevl. SNAP Datasets: Stanford large network
dataset collection. http://snap.stanford.edu/data, June 2015.

[17] J. Lin and M. Schatz. Design patterns for efficient graph algorithms
in MapReduce. In Proceedings of the Eighth Workshop on Mining and
Learning with Graphs, MLG ’10, pages 78–85, New York, NY, USA,
2010. ACM.

[18] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. M.
Hellerstein. GraphLab: A new framework for parallel machine learning,
June 2010.

[19] J. P. Nascimento and C. Murta. Um algoritmo paralelo em hadoop para
cálculo de centralidade em grafos grandes. In XXX Simpósio Brasileiro
de Redes de Computadores e Sistemas Distribuı́dos, 2012.

[20] M. F. Pace. BSP vs MapReduce. Procedia Computer Science, 9:246–
255, 2012.

[21] A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J. DeWitt, S. Madden,
and M. Stonebraker. A comparison of approaches to large-scale data
analysis. In Proceedings of the 2009 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’09, pages 165–178,
New York, NY, USA, 2009. ACM.

[22] S. J. Plimpton and K. D. Devine. MapReduce in MPI for large-scale
graph algorithms. Parallel Computing, 37(9):610–632, Sept. 2011.

[23] L. Qin, J. X. Yu, L. Chang, H. Cheng, C. Zhang, and X. Lin. Scalable
big graph processing in MapReduce. In Proceedings of the 2014 ACM
SIGMOD International Conference on Management of Data, SIGMOD
’14, pages 827–838, New York, NY, USA, 2014. ACM.

[24] B. Shao, H. Wang, and Y. Li. Trinity: A distributed graph engine on a
memory cloud. In Proceedings of the 2013 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’13, pages 505–516,
New York, NY, USA, 2013. ACM.

[25] B. Shao, H. Wang, and Y. Xiao. Managing and mining large graphs:
Systems and implementations. In Proceedings of the 2012 ACM
SIGMOD International Conference on Management of Data, SIGMOD
’12, pages 589–592, New York, NY, USA, 2012. ACM.

[26] M. Stonebraker, D. Abadi, D. J. DeWitt, S. Madden, E. Paulson,

A. Pavlo, and A. Rasin. MapReduce and parallel DBMSs: Friends
or foes? Commun. ACM, 53(1):64–71, Jan. 2010.

[27] L. G. Valiant. A bridging model for parallel computation. Commun.
ACM, 33(8):103–111, Aug. 1990.

[28] Y. Zhang, Q. Gao, L. Gao, and C. Wang. iMapReduce: A distributed
computing framework for iterative computation. Journal of Grid
Computing, 10(1):47–68, Mar. 2012.

220 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

220 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

Scalability analysis of Hash Distributed A* on
commodity cluster: results on the 15-puzzle problem

Victoria Sanz (1,2), Armando De Giusti (1,2) and Marcelo Naiouf (1)
(1) III-LIDI. School of Computer Science, UNLP, Argentina

(2) CONICET. Ministry of Science, Technology and Productive Innovation, Argentina

Email:{vsanz,degiusti,mnaiouf}@lidi.info.unlp.edu.ar

Abstract—The A* algorithm is generally used to solve combi-
natorial optimization problems, but it requires high computing
power and a large amount of memory. In this sense, Hash
Distributed A* (HDA*) parallelizes A* in order to benefit from
the computing power and the accumulated memory provided by
clusters. The parallelization is done by applying a decentralized
strategy and using a hash function to distribute nodes among
processes. In this paper, we present a detailed implementation of
HDA* using MPI, which includes a parameter that determines
the number of nodes to be computed by each process per
iteration of the algorithm. The experimental work is carried
out on a commodity cluster, using the 15-puzzle as study case.
Our experimental results reveal that the included parameter
favors performance. Finally, we present a performance analysis
of HDA*, as the problem size and the number of processors
increase, which indicates that the algorithm scales well.

Keywords:Hash Distributed A*, Commodity Cluster, Scala-

bility, 15-Puzzle.

I. INTRODUCTION

In the area of Artificial Intelligence, heuristic search algo-

rithms are used as the basis to solve combinatorial optimiza-

tion problems that require finding a sequence of actions that

minimize a goal function and allow transforming an initial

configuration (which represents the problem to be solved) into

a final configuration (which represents the solution).

One of the most widely used search algorithms for that

purpose is A* [1], [2], a variant of Best-First Search, which

browses the graph that represents the state space of the

problem using a cost function f̂ to value the nodes, in order to

process the most promising paths first. To that end, function

f̂ contains known cost information of the path from the

initial node s to the current node n (ĝ), as well as heuristic

information to estimate the unknown cost of the path that

goes from the current node n to the solution node t (ĥ),

which can never overestimate the actual cost. The algorithm

is different from conventional methods because the search tree

is implicit and dynamically generated. During the process, it

keeps two data structures: one for the unexplored nodes sorted

by function f̂ (open list), and another for the already explored

nodes (closed list) used to avoid processing the same state

multiple times. In each iteration, the most promising node

(according to f̂) available on the open list is removed, it is

added to the closed list, and legal actions are applied to it

to generate successor nodes that will be added to the open

list under certain conditions (verification known as duplicate

detection). The search process continues until the node that

represents the solution is removed from the open list.

The major drawback of A* is that it requires high computing

power and a large amount of memory, as a consequence of

the exponential or factorial growth of the state space of the

problem. Therefore, over the last decades, the development of

parallel A* algorithms has been promoted which, in particular,

may benefit from the computing power and the accumulated

memory provided by clusters.

In this sense, Hash Distributed A* (HDA*) [3] parallelizes

A* by applying a decentralized strategy (i.e. each processor

has its own open and closed lists and performs a quasi-

independent search) and using a hash function to assign each

state of the problem to a single processor. In this way, when

a processor generates a node, it determines who the owner

is and transfers the node to that owner. This mechanism

allows balancing the workload and pruning duplicate nodes
(i.e. nodes representing the same state) in an absolute way,

as they are always sent to the same processor. The imple-

mentation of HDA* proposed by these authors uses MPI and

asynchronous communication. Although they carried out an

extensive experimental work on an HPC cluster with Infini-

band interconnection, for applications with different heuristic

computation time such as the domain-independent planning

and the Sliding Puzzle, the tests carried out on a conventional

cluster with Ethernet connection did not take into account the

latter application.

In this paper, we present a detailed implementation of

HDA*, which includes the LNPI (Limit of Nodes per Iteration)

parameter that determines the number of nodes to be computed

by each process per iteration of the algorithm. In this sense,

our version differs from the original algorithm, since in the

latter each process computes a single node per iteration. The

implementation was carried out using MPI and the 15-Puzzle

was selected as study case. The experimental work is focused

on analyzing the speedup and efficiency obtained by the

parallel algorithm when it is run on a cluster of multi-core

machines connected through Ethernet (a commodity cluster),

as the problem size and the number of processors increase. Our

experimental results reveal that the included parameter favors

performance. Finally, this analysis shows that the implemented

version scales well.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 221

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 221

ISBN: 1-60132-444-8, CSREA Press ©

II. RELATED WORK

So far, different authors have presented various techniques

to parallelize A*, which vary in the method used to manage

the open and closed lists and the strategy used to balance load

among processors during the execution. The technique to be

chosen will depend on the architecture and the problem to

solve [4].

The commonly used parallelization technique is known as

decentralized strategy [5], and it is based on the following:

each processor has its own local open and closed lists, and

carries out a quasi-independent search. This strategy is suitable

both for shared memory and distributed memory architectures.

However, communication among processors is needed due to

the following reasons: the search tree is generated at run time,

therefore, the workload should be distributed dynamically;

duplicate nodes can be generated by different processors and

should be pruned in order to prevent processors from per-

forming redundant work (it is possible to achieve an absolute
duplicate detection and pruning by using a hash function that

assigns each state to a particular processor); the termination

criterion should be modified because if the search is ended

when a solution is found, there will be no guarantee that such

solution is the best one; the costs of the partial solutions found

so far should be communicated in order to use them to prune

the paths that lead to suboptimal cost solutions.

The earliest parallel A* algorithms based on the decen-
tralized strategy used receiver/sender initiated load balanc-

ing algorithms [4], [5], [6], [7]. However, those techniques

cause duplicate nodes to arise on the open or closed lists

of different processors in the system, because they usually

involve carrying out a partial duplicate detection and pruning,

i.e., that procedure is performed only by the donor processor

and the recipient processor. Therefore, redundant work is

carried out by different processors, which in turn increases

the Search Overhead1 and the amount of RAM consumed

by the parallel algorithm, situation that is even worse as

more processors are used. Consequently, an absolute duplicate

detection and pruning procedure should be applied to obtain

higher performance.

In this sense, the Hash Distributed A* algorithm (HDA*) [3]

parallelizes A* by applying a decentralized strategy and using

Zobrist’s hash function [8] to assign each state of the problem

to a single processor. Thus, when a processor generates a node

that does not belong to it, it determines who the owner is

and transfers the node to that owner. This mechanism allows

balancing the workload and pruning duplicates in an absolute
way, as the nodes representing the same state are always sent

to the same processor.

The implementation of HDA* proposed by these authors

uses MPI and asynchronous communication, so the algorithm

is suitable for execution both on distributed memory and

1The Search Overhead represents the percentage of nodes that the parallel
algorithm expands in excess as compared to the sequential algorithm. It is
calculated using the formula 100x(NP/NS -1), where NP is the number of
nodes processed by the parallel algorithm and NS is the number of nodes
processed by the sequential algorithm.

shared memory architectures. To avoid congestion in the com-

munication medium caused by messages being sent containing

a single node, the algorithm uses the technique proposed in

[9], which involves packing in one message a given number of

nodes whose recipient is the same before sending the message

(in this paper, we refer to this value as LNPT, or Limit of Nodes
per Transfer).

The experimental work carried out by these authors uses

the domain-independent Fast Downward planner [10], placing

HDA* as the search mechanism. On the other hand, it uses

the 24-Puzzle problem, a specific application where processing

a state is faster, together with a disjoint pattern database
heuristic [11], [12], but they exclude the time required for

reading these data from the disc. The authors note that the

speed of processing a state significantly affects the efficiency
of the parallel search algorithm: when processing a state

is expensive, the impact of parallelization-related overheads,

such as communication and synchronization, tends to decrease.

For this reason, studying the efficiency achieved by HDA* for

various types of applications running on different architectures

is of interest.

Consequently, the authors analyze the speedup and effi-

ciency achieved by HDA* on a single, 32GB RAM multicore

machine, for planning problems. However, they do not assess

performance for the 24-Puzzle since the instances they used

exhaust RAM before finding a solution.

Additionally, the authors study the scalability of HDA*

for the applications mentioned above on a multicore cluster

with Infiniband interconnection (HPC cluster). They show that

HDA* achieves good performance and scales relatively well

for complex planning problems that require large amounts of

RAM. On the other hand, the performance obtained for the

24-Puzzle application is not as satisfactory as in the previous

case, and it rapidly degrades when increasing the number of

cores in the architecture.

Similarly, they assess the scalability of HDA* for planning

applications on a multicore cluster with Ethernet connec-

tion (commodity cluster), obtaining an almost linear relative

speedup. However, they do not evaluate the performance on

this architecture for the 24-Puzzle.

HDA* is currently interesting due to its simplicity and good

scalability. On the other hand, the Sliding Puzzle has recently

gained relevance because it is related to real problems such

as moving pallets with an automated guided vehicle in high-

density storage warehouses [13]. Also, research centers usu-

ally have clusters formed by connecting multicore machines

through conventional networks such as Ethernet. It is for all

these reasons that the study of HDA* behavior on this type

of clusters for solving the Sliding Puzzle is an open research

line.

III. HASH DISTRIBUTED A*

Hash Distributed A* (HDA*) [3] parallelizes A* based on

a decentralized strategy. It was programmed using exclusively

the MPI message passing library and asynchronous communi-

cation; therefore, it is suitable for execution both on distributed

222 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

222 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

memory as well as shared memory architectures. It uses a

hash function to assign states to processes, thus it implicitly

achieves load balancing and absolute duplicate detection (two

nodes representing the same state are sent to the same process,

which in turn checks for duplicates in its local structures).

Initially, the relevant process adds the initial node to its open

list. Then, each process carries out iterations until a global

optimal solution is reached. In each iteration:

1) It checks if one or more nodes have been received

through messages. If so, for each node received, it

carries out the duplicate detection to determine if the

node must be added to the open list or if it should be

discarded.

2) If no messages containing nodes were received, the

process selects a node from its open list (the one with

the lowest f̂ -value) and expands it, generating successor

nodes. Then, for each successor, it calculates the hash
value to identify the owner process and, if the node

belongs to another process, it sends asynchronically the

node to its owner through a message.

To reduce the communication overhead, the idea proposed

in [9] is used, which involves packing within a single message

a given number of nodes whose recipient is the same (in

this paper, this number is referred to as Limit of Nodes
per Transfer, or LNPT). The number of nodes to be packed

depends on factors such as communication medium speed and

number of processors, among others.

To obtain a uniform distribution of nodes, which is nec-

essary to achieve an effective load balancing, Zobrist’s hash
function [8] is used. On the other hand, to detect the end of

the computation, i.e., to know the state in which all processes

are idle and there are no messages in transit, Mattern’s time
algorithm [14] is used.

IV. IMPLEMENTATION OF HASH DISTRIBUTED A*

We developed our own version of the HDA* algorithm,

which is described in this section. For its implementation, the

following tools were used: MPI; asynchronous communica-

tion; non-blocking query for a message’s arrival (MPI Iprobe)

when the process is not idle, blocking query (MPI Probe)

otherwise; the termination detection algorithm proposed by

Dijkstra and Safra [15], since we opted for not increasing the

size of each work message sent with additional information2;

Zobrist’s hash function to assign nodes to processes; and

the technique proposed in [9] to package a given number of

nodes (LNPT) before sending the work message to its recipient

process.

Each process carries out an A* search locally and com-

municates with its peers for any of the following reasons:

2This algorithm is similar to Mattern’s time algorithm [14], [16]. Both are
based on the same idea of counting messages. The main difference between
them is that Dijkstra and Safra’s algorithm is based on the double wave
approach, whereas Mattern’s time algorithm is based on the single wave
approach (at the expense of increasing the amount of control information
or augmenting every message with a time stamp).

sending/receiving work messages containing nodes, send-

ing/receiving the costs of solutions found, sending/receiving

the termination token, sending/receiving termination notifica-
tion messages.

Locally, each process has its open and closed lists, which

will be empty at first, the cost of the best global solution

known so far (best solution cost), the best solution found by

the process (best solution), the data required by the termina-

tion detection algorithm, and a variable that changes its value

when the computation reaches its end (end). For the purpose

of packing several nodes in a message before sending them to

their owner, processes are equipped with a buffer for each peer

process (send buffer); each buffer will contain node records,

its physical dimension is known as LNPT (Limit of Nodes per

Transfer), and its logical dimension must be kept updated to

know the number of nodes that have been accumulated.
Although the code is the same for all processes, process 0

is in charge of: loading the initial configuration; generating

the initial node, which will be added to the open list of this

process (if the node belongs to it) or which will be sent to the

corresponding owner process; and carrying out the termination

detection, which involves sending the termination notification

to the other processes.
Each process performs a series of iterations until receiving

the termination notification; at that moment the optimal solu-

tion has been reached. In each iteration, the following stages

are carried out:

1) Work message reception stage: the process checks, in a

non-blocking manner (MPI Iprobe), if work messages
containing nodes have arrived. If so, it receives each

message and, for each node record whose cost is lower

than best solution cost, it carries out the following

actions: it allocates space in dynamic memory; it assigns

the record received to the allocated space; it performs

the duplicate detection adding the node to the open list

as appropriate.

2) Cost message reception stage: the process checks, in

a non-blocking manner (MPI Iprobe), if cost messages
containing the cost of a better solution found have

arrived. If so, it receives the messages and updates the

local variable best solution cost as appropriate. Now, if

the cost of the best open node (according to function

f̂) is at least best solution cost, the process empties

its open list since the nodes stored in it would lead to

suboptimal solutions.

3) Processing stage: the process expands at most LNPI
(Limit of Nodes per Iteration) nodes from its open list.

For each extracted node, the process checks if its cost

is at least best solution cost. If so, the process empties

the open list. Otherwise, it checks if the node represents

the solution and in that case it empties the open list

and updates best solution and best solution cost. When

the extracted node is not the solution, it is added to

the closed list, it is expanded (i.e., successor nodes
are generated) and then, for each successor, the Zobrist
function is calculated to determine its corresponding

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 223

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 223

ISBN: 1-60132-444-8, CSREA Press ©

owner process. When the successor belongs to this very

process, it carries out the duplicate detection and adds

the node to its open list as appropriate. Otherwise, the

process adds the node record to the send buffer for the

destination process and, if that buffer is full (i.e., it

already has LNPT nodes), it sends the work message
asynchronically.

4) Idle stage: the process goes into this stage when its

open list is empty. If a new solution was found in

the processing stage, the process sends the solution

cost to its peers. It then sends work messages to those

destination processes whose send buffer contains nodes

that were not communicated. Finally, it remains wait-

ing (MPI Probe) for any type of message: (1) work

message, (2) cost message (3) token message, (4) ter-

mination notification message. The process ends this

stage when it has nodes on its open list, as a result

of having received a work message, or when it receives

the termination notification message. Messages of types

(1) and (2) are processed in a similar way as described

above; messages of the type (3) are processed based on

the termination detection algorithm (knowing that the

process is idle and it must send the token to the next

process or assess the termination condition in the case

of Process 0); messages of the type (4) are processed

by changing the value of variable end, and by doing so,

algorithm ends.

Each work message that is sent or received is processed

as indicated by the termination detection algorithm. Three

additional fields are added to the token message to make

solution retrieval possible: cost of the best global solution

found so far, ID of the process that found that solution,

and memory address for the solution node. Before sending

the token, the process must update these fields with its own

information if it has the best solution so far.

When computation ends, the solution is retrieved in a

distributed manner, obtaining the sequence of actions that

allows transforming the initial state into the final state.

V. EXPERIMENTAL RESULTS

Experimental tests were carried out on a cluster composed

by 7 machines connected through 1Gb Ethernet. Each machine

has two Intel Xeon E5620 processors and 32GB RAM. Each

processor has four 2.4Ghz physical cores. Each processor has

a memory controller and uses a 5.86 GT/s QPI connection.

A* and HDA* were configured to use the Jemalloc memory

allocator (with 256 arenas) and a heuristic that is a variation of

the Sum of Manhattan Distances (SMD) of the tiles with the

addition of linear conflicts detection, the detection of the last

moves applied and an analysis of corner tiles [17]. We showed

in [18] that this configuration improves the performance of A*

versus using the default memory allocator (Ptmalloc) and the

SMD heuristic.

A* was run on a single machine of the previous cluster.

HDA* was run on various cluster configurations, i.e., vary-

ing the number of machines used between 2 and 7. For all

tests, 4 processes were assigned to each machine used3 (two

processes per processor in the machine). The parameters and

values used were: number of processes/cores (8, 12, 16, 20,

24, 28), LNPI (1, 5, 50, 500) and LNPT (26, 210, 1680). The

LNPT values correspond to work messages whose size is 1KB,

8KB and 64KB, respectively.

The tests considered the 15-Puzzle instances used in [19]

whose sequential execution time is of at least 5 seconds

(numbered 3, 15, 17, 21, 26, 32, 33, 49, 53, 56, 59, 60, 66, 82,

88, 100) and six of the 10 configurations that are part of the

test suite proposed in [20] (numbered 101-106 in this paper).

Thus, the 22 configurations used present different levels of

complexity, which is measured in terms of the number of

nodes processed by A*, and varies between 1 and 103 million

processed nodes.

We have selected the instances mentioned above because

they are solvable on a single 32GB RAM machine. Serial

runtimes can not be measured for hard problems, for example

Korf’s 24-puzzle instances, using our architecture because A*

exhausts RAM before finding a solution. The same problem

arises when running HDA* on a single 32GB RAM multicore

machine for those instances [3]. While it may be possible

to solve some Korf’s 24-puzzle instances on our cluster and

measure relative speedup and efficiency as in [3], as future

work we intend to analyze the scalability of our version

of HDA*, implemented using MPI, on a multicore machine

for the Sliding Puzzle problem, and to compare the results

achieved with those presented here and those obtained by

our optimized version of HDA* for multicore machines,

implemented using Pthreads [18], [21].

HDA* is non-deterministic, i.e., when multiple runs are

carried out using the same input data (initial and final states),

the results generated by the algorithm may be different.

For this reason, 10 tests were carried out for each cluster

configuration, initial configuration and set of parameters. The

data obtained with these 10 runs were then averaged, which

will be referred to as mean sample.

In the following sections, we analyze the impact of the

LNPI and LNPT parameters on the performance of HDA*,

and then we assess its scalability when the parameters values

that experimentally improved performance are used.

A. Limit of Nodes per Iteration (LNPI)

The LNPI parameter determines how many nodes a process

must expand per algorithm iteration, i.e., it establishes the

interval for checking the arrival of work messages and cost
messages.

To analyze the impact of this parameter on execution time,

all mean samples obtained from runs carried out for LNPT=26

(i.e., 1KB work messages) were taken; and those with the same

initial configuration and number of cores were grouped. That

3It was observed that when 8 processes per machine are used, the perfor-
mance obtained is poor. This is because each machine has a single network
controller and therefore bottlenecks are caused by network I/O; this is even
worse because services communicate through the same network.

224 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

224 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

TABLE I
SD AND CV RANGES SORTED BY LNPT

LNPT SD range (seconds) CV range

26 0.063-18.94 0.054-1.28

210 0.04-9.43 0.054-0.24

1680 0.12-9.45 0.07-0.17

is, each group contained the mean samples whose only dif-

ference among them was the LNPI parameter value. For each

group, Standard Deviation (SD) and Coefficient of Variation
(CV) of execution time were calculated, since these values

measure how much the execution time of a mean sample in

the group tends to deviate from the group mean time.

From the data obtained for LNPT=26, it was observed that

only 60% of the groups have SD values below 1, and 39%
below 0.5. Similarly, only 11% of the groups have CV values

below 0.1.

The procedure described above was also applied to mean
samples obtained from runs carried out for LNPT=210 and

LNPT=1680 (i.e., 8KB and 64KB work messages, respec-

tively).

Table I shows the ranges of SD and CV values for the

groups, sorted by the LNPT value. As it can be seen, when

work messages contain few nodes (small LNPT), the LNPI

value has a greater impact on execution time, since there is a

greater difference in the execution times of the mean samples
in each group (greater CV). The results obtained indicate that

there is a significant variation in execution time when changing

the value of the LNPI parameter among those defined (1, 5,

50 or 500), mainly for LNPT=26 and LNPT=210.

The LNPI value that improves performance depends on the

initial configuration, the number of processes and the LNPT

value.

For LNPT=26, the LNPI value that improves overall perfor-

mance is 50. The configurations that presented improvements

with LNPI=500 are some of the most complex ones (60,

88, 105, 106 and 104); however, as the number of cores

increases, the number of configurations that favored such value

decreased. The configurations that presented improvements

with LNPI=5 are some of the less complex ones (3, 21 and

49) with a large number of cores.

For LNPT=210 and LNPT=1680, performance improves

with LNPI=50 or LNPI=500. In contrast with the previous

case, there is no clear preference for either of these two values.

From the data presented above, the following can be con-

cluded:

1) When LNPT is small, processes will send numerous

work messages containing few nodes. If LNPI is set

to a very high value, processes will carry out too

much speculative work on their local nodes in each

processing stage, without adding newly arrived nodes,

increasing the Search Overhead, which is even worse

as the number of processes increases. Therefore, the

frequency of checking for message’s arrival has to be

increased (low LNPI) to allow the addition of nodes that

are among the global best ones.

2) When LNPT is large, processes will send few work
messages containing many nodes. If LNPI is set to a

high value, the number of checks for message’s arrival,

that are likely to fail, decreases. Otherwise, if LNPI is set

to a low value, performance is not affected that much

because non-blocking checks are used. No significant

variations in Search Overhead are observed with LNPI

changes.

It should be noted that setting LNPI to 1 never resulted in

improved performance. This indicates that the parameter that

was added to our own version of HDA* is indeed relevant and

an original contribution in the area.

B. Limit of Nodes per Transfer (LNPT)

The LNPT parameter indicates the maximum number of

nodes that will be included in each work message.

For the purpose of analyzing the effect of the LNPT

parameter on execution time, all mean samples obtained from

runs limiting LNPT to 26 nodes (1KB messages), 210 nodes

(8KB messages) and 1680 nodes (64KB messages) were taken.

Then, all mean samples with identical initial configuration,

number of cores and LNPI values were grouped; i.e., each

group contained mean samples whose only difference was the

value for their LNPT parameter. For each group, Standard
Deviation (SD) and Coefficient of Variation (CV) of execution

time were calculated, since these values measure how much

the execution time of a mean sample in the group tends to

deviate from the group mean time.

In general, the results obtained show that the SD for the

groups is between 0.045 and 24.37. This indicates that when

varying the LNPT parameter between the values defined, mean
samples execution times tend to deviate at most in 24.37

seconds from their group mean. It should be noted that 46.21%
of the groups has a SD value below 1, and 23.10% has a SD

value below 0.5.

On the other hand, the general CV values obtained for the

groups range from 0.019 to 1.15; i.e., the execution time of a

mean sample in the group tends to deviate between 1.9% and

115% from the group mean when the LNPT parameter changes

between the values defined. Only 24.4% of the groups have

CV values below 0.1.

Based on the high CV values, it is concluded that the

LNPT parameter affects execution time. This is because this

parameter impacts network traffic, process activity and volume

of speculative work carried out. The following can be inferred:

1) A low value of LNPT will cause processes to generate

small work messages, which increases the number of

work messages that are sent from one process to another

over the network using MPI, which in turn generates an

overhead for handling buffers associated to communica-

tions and network congestion.

2) Very high values of LNPT can also degrade performance

because, if a process packs too many nodes for a recip-

ient process, it could cause the latter’s idleness when it

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 225

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 225

ISBN: 1-60132-444-8, CSREA Press ©

TABLE II
SPEEDUP AND EFFICIENCY FOR EACH LNPT VALUE AND NUMBER OF

PROCESSES

LNPT Processes/Cores Speedup Efficiency

26 8 4.72 - 6.58 0.59 - 0.82

210 8 5.05 - 7.53 0.63 - 0.94

1680 8 3.20 - 8.26 0.40 - 1.03

26 12 6.74 - 10.31 0.56 - 0.86

210 12 6.85 - 11.79 0.57 - 0.98

1680 12 2.90 - 11.35 0.24 - 0.95

26 16 8.52 - 13.73 0.53 - 0.86

210 16 7.16 - 15.62 0.45 - 0.98

1680 16 2.15 - 14.70 0.13 - 0.92

26 20 11.07 - 17.76 0.55 - 0.89

210 20 8.57 - 20.22 0.43 - 1.01

1680 20 2.11 - 19.40 0.11 - 0.97

26 24 12.73 - 21.23 0.53 - 0.88

210 24 8.92 - 24.27 0.37 - 1.01

1680 24 1.72 - 22.71 0.07 - 0.95

26 28 13.49 - 25.16 0.48 - 0.90

210 28 8.60 - 28.86 0.31 - 1.03

1680 28 1.61 - 27.05 0.06 - 0.97

has only few nodes to process or when it is currently

idle due to lack of work. The process could also delay

the transmission of higher quality nodes (according to

f̂) than those that are currently being processed by the

recipient, which would increase the Search Overhead.

Table II summarizes the ranges for Speedup and Efficiency,

sorted by LNPT value and number of processes/cores. For each

LNPT, initial configuration and number of cores, the mean
sample with the best performance was selected (i.e., that whose

LNPI value reduces execution time).

In most of the cases, the value of LNPT that improves

execution times for each configuration and number of cores

is 210, i.e., 8KB work messages. There are some excep-

tions with some low-complexity configurations as the number

of processes scales, for which performance improved using

LNPT=26, since higher values of LNPT increased Search
Overhead. Other exceptions were observed with some of the

more complex configurations when only a few processes were

used; in these cases, the best performance was obtained with

LNPT=1680 because it produces a lower Search Overhead or

a lower load unbalancing.

The following configurations had their best performance

with LNPT=26: 21 with 12 processes; 100, 21 and 101 with

16 processes; 100, 21, 101 and 82 with 20 processes; 100, 33,

21, 101 and 82 with 24 processes; 100, 33, 21, 101, 82, 59

and 53 with 28 processes. The following configurations had

their best performance with LNPT=1680: 88, 102, 106 and

104 with 8 processes; 104 with 12 processes.

From the above, it can be concluded that, for less complex

configurations, as the number of processors increases it is

better to use smaller work messages (smaller LNPT). In

the case of more complex configurations and only a few

Fig. 1. Speedup obtained by HDA* on cluster

Fig. 2. Efficiency obtained by HDA* on cluster

processes, the best performance is occasionally obtained with

larger work messages (larger LNPT). However, empirically

for this architecture, as the workload and the number of

processes/cores scale, better performance is obtained when

using 8KB work messages (i.e., LNPT= 210).

C. Performance analysis

To analyze the performance of HDA*, for each initial

configuration and number of processes, the mean sample that

minimized resolution time was selected; that is, the sample

whose LNPI and LNPT values resulted in the best perfor-

mance.

To assess algorithm scalability, the various selected mean
samples were sorted by configuration complexity (that is,

based on the number of nodes processed by A*, which is

related to sequential execution time). In this sense, scaling the

problem means increasing the number of processed /generated

nodes. On the other hand, the architecture is scaled by increas-

ing the number of cores/processes used to solve the problem.

Figure 1 shows the speedup obtained by the mean sample
selected for each initial configuration using 8, 12, 16, 20,

24 and 28 processes/cores (4 processes per machine), while

Figure 2 shows the efficiency obtained.

After analyzing the data presented, it can be concluded

that, if workload is constant (initial configuration) and the

number of cores/processes is increased, speedup improves,

meaning that less time is required to solve the problem.

However, this improvement does usually not keep efficiency

at a constant value. The decrease in efficiency is due to factors

such as: sequential portions of the algorithm, particularly at the

beginning and at the end of the computation, synchronization,

communication, idle time, load unbalancing, increased search

overhead, and so forth.

226 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

226 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

Fig. 3. Scalability for HDA* on cluster

The superlinear speedup obtained for the configuration 102

and 8 processes was due to the fact that the parallel algorithm

processed a lower number of nodes than the sequential algo-

rithm, which is possible in this type of search algorithms[4],

[5]. The remaining cases are due to the decrease in the number

of elements in the open-list and closed-list structures, which

causes an acceleration of the operations carried out on them.

Figure 3 shows the efficiency as the workload (problem

complexity) and the number of processes/cores increase. As

it can be observed, when problem complexity is scaled and

the number of cores used is constant, the efficiency generally

improves or remains constant because the overhead is less

significant for total processing time.

Based on the results presented above, it can be concluded

that the behavior presented by the algorithm, when it is run

on cluster configurations with 4 processes per machine, is

typical of a scalable parallel system, where the efficiency can

be kept at a constant value as both problem size and number

of processors are increased.

VI. CONCLUSIONS AND FUTURE WORK

We developed our own version of HDA*, which differs

from the original version in that it includes the LNPI (Limit of
Nodes per Iteration) parameter, which indicates the maximum

number of nodes to be processed in each iteration.

The effect of the LNPI and LNPT parameters (the latter

determines the size of work messages) on performance was

analyzed. It was concluded that the LNPI value that improves

performance depends on the initial configuration, the number

of processes and the size of work messages (LNPT). It was

noted that performance never improved by processing one

node per algorithm iteration (LNPI=1), as done in the original

version, which indicates that the parameter added to our ver-

sion favors performance. On the other hand, it was established

that, empirically for this architecture, as the problem size

and number of processes/cores increase, better performance

is obtained when using 8KB work messages (LNPT=210).

Finally, algorithm scalability was assessed. The results

obtained indicate that the parallel algorithm, if run on cluster

configurations with 4 processes per machine, presents the

typical behavior of scalable parallel systems.

As for future work, we intend to compare performance

achieved and memory consumed by HDA* for shared-memory

architectures and HDA* for distributed-memory architectures,

when they are run on a multicore machine. The former

algorithm was presented in [18], [21] and implemented with

Pthreads, and the latter was introduced in this paper and

implemented with MPI. The results will allow assessing if

there are any potential benefits of converting HDA* into a

hybrid application that uses programming tools for shared

and distributed memory when the underlying architecture is

a multicore cluster.

REFERENCES

[1] Hart et al. A Formal Basis for the Heuristic Determination of Minimum
Cost Paths. IEEE Transactions on Systems Science and Cybernetics
1968; 4(2):100-107.

[2] Russel et al. Artificial Intelligence: A Modern Approach 2nd ed. Prentice
Hall: New Jersey, 2003.

[3] Kishimoto et al. Evaluation of a simple, scalable, parallel best-first
search strategy. Artificial Intelligence 2013; 195: 222-248.

[4] Kumar et al. Parallel Best-First Search of State-Space Graphs: A
Summary of Results. Proceedings of the 7th Nat. Conf. AI. AAAI:1988;
122-127.

[5] Grama et al. Introduction to Parallel Computing 2nd ed. Pearson:
Harlow, 2003.

[6] Dutt et al. Parallel A* Algorithms and Their Performance on Hypercube
Multiprocessors. Proceedings of Seventh International Parallel Process-
ing Symposium. IEEE Computer Society:1993; 797-803.

[7] Sanz et al. Parallel Optimal and Suboptimal Heuristic Search on
multicore clusters. Proceedings of The 2011 International Conference
on Parallel and Distributed Processing Techniques and Applications.
CSREA Press:2011; 673-679.

[8] Zobrist. A New Hashing Method with Application for Game Playing.
Computer Sciences Department, University of Wisconsin: Madison,
1968. Technical Report 88.

[9] Romein et al. A performance analysis of transposition-table-driven work
scheduling in distributed search. IEEE Transactions on Parallel and
Distributed Systems 2002; 13(5): 447-459.

[10] Helmert. The Fast Downward Planning System. Journal of Artificial
Intelligence Research 2006; 26: 191-246.

[11] Culberson et al. Pattern databases. Computational Intelligence 1998;
14(3): 318-334.

[12] Korf. Recent Progress in the Design and Analysis of Admissible
Heuristic Functions. Proceedings of the 4th International Symposium on
Abstraction, Reformulation, and Approximation. Springer:2000; 45-55.

[13] Gue et al. GridStore: A Puzzle-Based Storage System With Decentral-
ized Control. IEEE Transactions on Automation Science and Engineer-
ing 2014; 11(2): 429-438.

[14] Mattern. Algorithms for distributed termination detection. Distributed
Computing 1987; 2(3):161-175.

[15] Dijkstra. Shmuel Safra’s version of termination detection. Department
of Computer Sciences, University of Texas: Austin, 1987. EWD-Note
998.

[16] Mittal et al. A family of optimal termination detection algorithms.
Distributed Computing 2007; 20(2):141162.

[17] Korf et al. Finding Optimal Solutions to the Twenty-Four Puzzle. Pro-
ceedings of the Thirteenth National Conference on Artificial Intelligence
AAAI:1996; 1202-1207.

[18] Sanz et al. On the Optimization of HDA* for Multicore Machines.
Performance Analysis. Proceedings of the 2014 International conference
on Parallel and Distributed Processing Techniques and Applications.
CSREA Press:2014; 625-631.

[19] Korf. Depth-first Iterative-Deepening: An Optimal Admissible Tree
Search. Artificial Intelligence 1985; 27(1): 97-109.

[20] Brüngger. Solving Hard Combinatorial Optimization Problems in Par-
allel: Two Cases Studies. Swiss Federal Institute of Technology Zurich:
Zurich, 1998. Diss. ETH No. 12358.

[21] Sanz et al. Performance tuning of the HDA* algorithm for multicore ma-
chines. Computer Science and Technology Series.XX Argentine Congress
of Computer Science. Selected Papers. EDULP: La Plata,2015.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 227

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 227

ISBN: 1-60132-444-8, CSREA Press ©

228 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

228 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

SESSION

SOFTWARE ENVIRONMENTS, LANGUAGES,
SYSTEMS, AND SUPERCOMPUTING

Chair(s)

TBA

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 229

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 229

ISBN: 1-60132-444-8, CSREA Press ©

230 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

230 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

Supercomputer Reliability and Mitigation
Ron T. Ogan

Dept. of Electrical & Computer Engineering
Jackson State University
Jackson, MS. 39217 USA

ron.t.ogan@jsums.edu

Paul E. Watson
Dept. of Electrical & Computer Engineering

Jackson State University
Jackson, MS. 39217 USA
paul.e.watson@jsums.edu

Marshall D. Boyette
Dept. of Electrical & Computer Engineering

Jackson State University
Jackson, MS. 39217 USA

marshall.d.boyette@jsums.edu

Khalid H. Abed
Dept. of Electrical & Computer Engineering

Jackson State University
Jackson, MS. 39217 USA
khalid.h.abed@jsums.edu

Abstract — Reliability, Availability and Serviceability
(RAS) are key to high performance computing. Because of
the relatively high costs of supercomputers and the required
support needed to operate these systems, a holistic
approach must be taken to assure system reliability as
defined: Reliability is the probability that a material,
component, or system will perform its intended function
under defined operating conditions for a specific period of
time. Extension of the computer system lifetime will be
achieved through the implementation of built-in-test-
equipment (BITE) monitoring that will provide the required
feedback for optimum environmental controls. Reliability
improvements of MTBF of 25% have been predicted based
upon redesign of the microprocessor cooling system to
reduce average case temperatures from 90 °C to 75 °C

Keywords—Supercomputer, Reliability, Availability,
Serviceability (RAS), thermal analysis

I. INTRODUCTION

Supercomputers, the heart of High Performance
Computing Centers, are designed with the latest processor
technology to provide performance and scalable systems that
integrate advanced interconnections to achieve the high-
bandwidth performance to achieve incredible mathematical
calculation rates. Advanced design methodology is utilized
to network the rack assemblies with distributed memory to
minimize system latency yet provide scalability and
maintainability. Incredible performance has been achieved
across computing network systems with distributed memory
systems to provide programmers with global access to large
memory arrays for parallel processing applications to support
the most demanding global communication patterns. This
paper addresses technological aspects of supercomputer
technology that are predominantly being operated at U.S.
Federal Laboratories to solve very large complex problems
efficiently. The supercomputers are housed in a large
environmentally controlled workspace with monitored
support for cooling and power equipment to guarantee
reliability, availability and serviceability (RAS) of >99%.

High Performance Computing System components
include CMOS general purpose processors (GPPs) and
heterogeneous computational hardware, in particular, a field
programmable gate array (FPGA) [2], memory integrated
circuits, wiring, resistors, capacitors and inductors. Each of
these components has a design life with resistors being the
most stable and least affected by aging and temperature.

MIL-STD-217E, parts count or macro models may be
used to predict computer failures based upon the operating
environment. Built-in-test-equipment (BITE) circuits are
often incorporated into the computer design to monitor
voltages or bit errors such as parity mismatch in series data
transmissions or miss-compares when co-processors do not
show exact results. Failure rates as a function of time
include initial failures due to manufacturing defects,
constant hazard region where failures are random, and
finally, the wear-out region where insulation, capacitors, and
mechanical components such as fans and cooling pumps are
aged beyond the useful life. Table 1 shows compute module
faults that affect performance with possible design
mitigation to minimize these effects on performance and
module lifetime.

TABLE 1. COMPUTE MODULE FAULTS AND MITIGATION

Defect Design Mitigation

Memory soft failure Provide electromagnetic
shielding to extent possible

Memory hard failure Provide fault tolerant systems
Capacitor drift Design Center to accept drift
Power supply spikes Power conditioning
Board impedance shifts Design Center to accept shift
Microprocessor failure Provide optimum cooling and

monitoring
Microprocessor
degradation

Provide optimum cooling and
monitoring

A. Abbreviations and Acronyms
CPU- Computer Processing Unit

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 231

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 231

ISBN: 1-60132-444-8, CSREA Press ©

FCBGA- flip chip ball grid array
HPC- High Performance Computers
MTBF- Mean Time Between Failures
MTTR- Mean Time To Repair
RAS- Reliability Availability and Serviceability

II. RELIABILITY MODELING

Reliability is the probability that a material, component,
or system will perform its’ intended function under defined
operating conditions for a specific period of time.
Supercomputers are constructed of many single board
computer systems that are efficiently connected to form a
computer array capable of achieving high rates of
mathematical calculations per second. Single board
computers, called Compute Modules, with multiple
microprocessors have heat sinks or heat pipes to dissipate
large amount of heat energy that is required to achieve the
high data rates. Most systems have liquid cooling including
recirculated cooling water or Freon for more efficient heat
transfer. Supercomputer reliability can be determined by
parts count with known failure rates, calculated using
reliability models or measured experimentally. Circuit
interconnections are very difficult to model since the
failures may be open, short or intermittent. Failure Modes
Effects Analysis (FMEA) techniques are often employed to
determine components with the highest failure probability.

CPU health testing, monitors cooling water flow rates
and temperature sensors that detect potential microprocessor
failures to mitigate and avoid downtime from repairs,
correcting temperature and humidity controls. System
performance monitoring is used to collect metrics to detect
system changes like duty cycles, offline checks, redundancy,
overheating, solder connection failures, capacitor drift,
intermittent operation, memory loss, addressing errors,
board impedance changes of less than or greater than 50
ohm characteristic impedance, semiconductor junction
migration, ground or via faults, power supply spurious or
harmonics from switching supplies, moisture intrusion, wire
bond failures, heat-sink corrosion.

Reliability, Availability, Serviceability (RAS)
Reliability is a function of time that expresses the

probability at time t+1 that a system is still working, given
that it was working at time t. Availability is the measure of
how often the system is available for use (such as a system’s
up-time percentage). Availability and reliability may sound
like the same thing, but it is worth noting that a system can
have great Availability but no Reliability. An internet router
is a good example of this; it stores no state data. It is one of
the few systems wherein data loss is acceptable, as long as
high availability is maintained. Availability is typically
described in nines notation. For example 3-nines means
99.9%. Obtaining 5 nines or 99.999% availability is an
ambitious goal for many vendors when producing hardware
and software modules as shown in Table 2 [8].

Table 2-DOWNTIME OF AVAILABILITY
Availability 9s Downtime

90% One 36.5 days/year
99% Two 3.65 days per year

99.9% Three 8.76 hours/ year
99.99% Four 52 minutes/ year

99.999% Five 5 minutes/ year
99.9999% Six 31 seconds/ year

S
the system is serviced or repaired. For example, a system
with modular, hot- swappable components would have a
good level of serviceability. Technology may limit
unscheduled downtime by having systems with redundant
dynamic reconfiguration, constant system monitoring and
resource management. [5]

Mean Time between Failures (MTBF) is the average
(expected) time between two successive failures of a
component. It is a basic measure of a system’s reliability
and availability and is usually represented as units of hours.
- Mean Time to Repair (MTTR) (or Recover) is the average
(expected) time taken to repair a failed module. This time
includes the time it takes to detect the defect, the time it
takes to bring a repair man onsite, and the time it takes to
physically repair the failed module. Just like MTBF, MTTR
is usually stated in units of hours. The following equations
illustrate the relationship of MTBF and MTTR with
reliability and availability [4] and [5].

Reliability = e – Time/ MTBF

Availability = MTBF / (MTBF + MTTR)
The following conclusions can be reached based on

these formulas [4]:
*The higher the MTBF value is, the higher the reliability

and availability of the system.
*MTTR affects availability. This means if it takes a

long time to recover a system from a failure, the system is
going to have a low availability.

*High availability can be achieved if MTBF is very
large compared to MTTR.

Sandia Laboratories has suggested new Energy-Reliability
(EneRel) metrics that are noted as reliability-aware by the
use of a subscript r, for example ErD and ErD2 At a very
high level, EneRel can be thought of as: [9]

EneRel = Er t + (Ef ail recov (p(fail) + p(failad d r t)) (1)

The Efail for an energy saving technique under test differs
from the Efail of the baseline implementation since the
baseline technique’s p(failadd rt) is zero. Figures 1a, 1b and
1c show the impact that failures can have on energy
consumption given different failure rates and increases in
runtime for evenly distributed failures over the runtime. For
large node/socket counts the amount of energy that can be
lost due to failures in the increased runtime period is non-
negligible as HPC component counts keep rising and will
continue to rise for Exascale computing and beyond.

232 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

232 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

Reliability must improve along with rising component
counts to make future systems viable. Despite improvements
in component reliability, reductions in whole system
reliability are still likely to occur. The forecasts in Figure 1
a,b,c show that reliability mechanisms will no longer play a
minor role in energy consumption. EneRel proves useful for
illustrating that sometimes spending slightly more energy to
finish a job faster, thereby reducing the probability that a
failure occurs during the job’s runtime, may in some cases
actually result in lower energy consumption. The
exploration of the effect of reliability on energy
consumption is made all the more important by the fact that
reliability can be reduced when using energy saving
techniques due to thermal cycling [10] and lowered
operating voltages result in an increase in soft faults [11].

Figure 1 (a) Energy overhead due to reliability for varying
percentage increases in runtime for 3 year, MTBF

Figure 1 (b) Energy overhead due to reliability for varying
percentage increases in runtime for 5 year, MTBF

Figure 1 c) Energy overhead due to reliability for varying
percentage increases in runtime for 25 year, MTBF

III. THE US ARMY ENGINEER RESEARCH &
DEVELOPMENT CENTER (ERDC) INFORMATION
TECHNOLOGY LABORATORY (ITL) FACILITY

The US Army Engineer Research & Development Center
(ERDC) Information Technology Laboratory (ITL) facility
has 10,000 square feet of air conditioned space with four
feet deep false flooring for utilities. The computer systems
are Cray Sonexion (12 processors) and experimental LEO.
There is a section of UNCLASSIFED servers/processors
and a much larger set of CLASSIFIED servers/processors.
There is a section of Silicon Graphics Inc. (SGI) computers
with speeds of 1.2 or 4.6 Penta Flops. One petaflops is equal
to 1,000 teraflops, or 1,000,000,000,000,000 FLOPS.
Computer systems cost $25M and are operated for 4 years
before replacement. ERDC HPCC has HPC computers that
are ranked 16th fastest in the world. User computers have
access to 12 Penta-Bytes of memory. HPCC’s do not charge
for use of the computer 1.9 Billion core hours per year, but
applications must be for US government or non-profit
(University) entities. Online access is available at
www.uit.hpc.mil Backup generators supply 2.4 Mega Watts
of power and there are extensive cooling systems to support
operations. Emerson power systems and Data Direct 3.5”
disk drives were observed. C ray uses a proprietary
interconnect circuitry but Silicon Graphics Inc. (SGI) uses
open architecture. Both Cray and SGI compute module have
large copper cooling heat transfer plates. Cooling water flow
rates provided in channels to maintain the required exchange
rate and return the heated water to cooling towers before the
return cycle to the HPC system.

IV. PERFORMANCE DEGRATION

The typical reliability curve is shown below in Figure 2.
The initial failure region depends upon the screening and
quality of the components and workmanship. The initial
failures may be high due to latent defects that were
introduced during the manufacturing or assembly process
and not caught during the testing phase. The center useful
life region is where random, contact hazard occurs. The end

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 233

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 233

ISBN: 1-60132-444-8, CSREA Press ©

of life region is where mechanical devices such as air
cooling fans fail and cause over heating of the electronic and
electro migration of device junctions which degrade
performance or result in catastrophic failures.

Decreasing
failure rate
(burn-in-period)

h(t) failure rate vs time

Constant failure rate
(useful life)

Increasing failure rate
(wear-out-phase)

Reliability Curve –
”typical bathtub shape”

Operating Times (hrs)

250,000 hrs ** MTBF reference
SGI

0 hrs

100%

0%

Figure 2 – Failure rate as a function of time at a single
environmental condition (temperature, humidity, salt

atmosphere, etc.) curve [1]

V. THERMAL CONTROL AND HEAT DISSIPATION IS
CRITICAL FOR MICROPROCESOR PERFORMANCE AND LIFETIME

One dimensional conduction requires that the junction
and case nodes be isothermal, however, neither the die nor
the lid are isothermal; therefore, this thermal model requires
corrections for heat spreading from the chip to the heat sink.
Theta jc is the temperature rise from the device junction to
the case.

JC= (Tj –Tc) / Power (2)

Intel ® Xeon ® microprocessor have a specified Theta jc

of 0.3 ° C per Watt for maximum applied power of 90
Watts. Rearranging the equation and substituting the
specification values results in Tj = Tc + 27 ° C; therefore,
the junction temperature is a direct function of the cooling
water temperature with these results predicted: Tj = 62 ° for
35 °C Tc, Tj = 57 ° for 30 °C Tc, and Tj = 52 ° for 25 °C
Tc, neglecting losses across the Thermal Interface material
(TIM).

A simplified one dimensional heat flow model was
proposed by Bar Cohen as shown in Figure 5 [6] where
Theta junction-to-case jc, Theta case-to-sink cs and Theta
sink-to-ambient sa or to a reservoir when liquid cooling is
used.

Figure 3 Single axis heat flow model [6]

Figure 4 shows the actual heat flow from the jucntion to
case then lateral through the case lid and spreading into the
external heat sink for dissipation through the combination of
heat conduction into the cooling liquid or convection to the
surrounding air flow created by cooling fans. [7]

Figure 4 heat flow from flip chip ball grid array
microprocessor to the heat sink

It is clear that control of the microprocesor junction
temperature is critical to performance and minimizing
degradation due to device operation and elevated
temperatures near the maximum limits.

VI. TECHNOLOGICAL AND PROCEDURAL METHODS TO
EXTEND SUPERCOMPTUER USEFUL LIFE

The microprocessor is the heart of the high performance
computing system that generates thermal energy during
operation. There would be performance degradation unless
adequate heat transfer cooling is provided which is normally
a case temperature of 0° to 70°C. Thermal case temperature
regulation is provided by thermal conduction through the
heat sink and transfer to external cooling water or other
exchangers to an external support facility. Cooling air is
provided by keeping the room temperature in the 65°-70°F
range and providing fan air flow rates to change the typical
72 cubic foot equipment cabinet air out every 5 minutes or
14.4 CFM flow rate.

A standard model used by the industry is the Sum-of-
failure-rates (SOFR) model, which makes two assumptions
to address this problem: (1) the processor is a series failure
system –
failing due to any failure mechanism causes the entire
processor to fail; and (2) each individual failure mechanism
has a constant failure rate (equivalently, every failure
mechanism has an exponential lifetime distribution).
Microprocessor failures are accelerated by temperature, duty
cycles and electro and stress migration effects resulting from
the AL and Cu metal interconnections and junctions.

234 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

234 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

The FIT value targeted by reliabili
FITtarget, is a standard. Currently, processors are expected to
have an MTTF of around 30 years – this implies FITtarget is
around 4000 [12].

From MIL-STD-217Fn2, paragraph 5.1 the failure rate
p for microprocessors is estimated by

p = (C1 T + C2 E) Q L Failures/ 10 6 Hours per
million hours of operation.

T the effects of
elevated temperature operation. From the MIL-STD-
217Fn2, Section 5.2 and 5.8 tables for microprocessor
CMOS technology shows values of T at 90 T
at 75 °C 0.71 which will directly result in an approximately
+25% increase in MTTF.

The lower temperature operation may be achieved by
implementing these changes in the High Performance
Computing cooling systems

Install temperature monitoring and coolant flow
rate sensors at the input of rack assembly
Redesign the parallel and series routing of coolant
to achieve a maximum exchanger temperature at
the microprocessor heat sink of 70 °C
Monitor and control processor work flow to avoid
peak duty cycles without providing additional
cooling.

Performance modeling and testing has shown that
Intel® microprocessors (at the very least Sandy Bridge, Ivy
Bridge, and Haswell) can run at their maximum Turbo
Boost frequency all the way up to 100 °C. While there may
be a tiny performance difference between a microprocessors
running at 30 °C and one running at 95 °C, our testing has
found that the difference is miniscule. In fact, even after
running benchmarks dozens of times the difference is so
small that it is essentially nonexistent.

Puget Systems recently performed tests to measure the
effects on operating frequency when a microprocessor core
temperature approaches 100 °C. The Intel Core i7
4790 microprocessor was cooled it with a Gelid Silent Spirit
Rev. 2 cooler that was connected to a manual PWM fan
speed controller. By running Linpack (a benchmark widely
used in the scientific community) and slowly dialing the fan
speed down in careful increments, to allow the
microprocessor to overheat by incremental amounts. At each
cooling increment a log of the Linpack benchmark results
were monitored as well as using CoreTemp to record the
microprocessor core temperature and frequency, as shown in
Figure 5 [1]. Since the Intel microprocessor thermal limit is
100 °C, the amount of overheating occurs when the core
temperature was running at > 99 °C.

Figure 5 – Intel ® Intel Core i7 4790 cooling effects on
microprocessor frequency [1]

The testing showed that while the minimum core load
frequency started to drop as soon as the core hit 100 °C, the
average microprocessors frequency didn't drop by more than
0.1GHz until the core was overheating more than 30% of
the time. In fact, Intel microprocessors are surprisingly good
at being able to handle large thermal changes with only a
small reduction in the average frequency. However, for high
performance computing centers, the frequency changes and
subsequent performance degradation could extend run times
significantly and also reduce the component lifetimes
similar to degradation results from accelerated life testing at
elevated temperatures that shortens the useful lifetimes.

Intel ® server-board-s2600jf with Xenon ® processors,
are used in high performance computing applications and as
shown in Figure 6, may have two or more microprocessors
with heat sinks to dissipate the thermal energy. The Mean
Time Between Failures (MTBF) is 25,000 hours, 100, 000
hours or 250,000 hours depending upon the operating
environment and physical configuration.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 235

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 235

ISBN: 1-60132-444-8, CSREA Press ©

Figure 6 – Intel ® server-board-s2600jf with Xenon ®
processors that are used in High Performance Compute
Modules

VII. CONCLUSIONS AND FUTURE PLANS

Reliability, Availability, Serviceability (RAS) are key
factors to consider in improving the performance and
extending the lifetime of high performance computer center
systems. The Mean Time Between Failures (MTBF) and
Mean Time To Repair (MTTR) are critical to system
availability. Modular hot swappable compute modules,
cooling fans and even redundant systems may be required to
meet program operating objectives.

Dynamic system monitoring similar to an electrical
power generation facility may be required to detect and
correct support equipment out-of-specification operation to
minimize performance degradation of the computing
system.

Further work with the temperature control facility and
the compute module supplier RAS may be needed to
measure and characterize the relationship of performance
degradation as a function of cooling systems under several
operating loads.

Extension of the computer system lifetime will be
achieved through the implementation of built-in-test-
equipment (BITE) monitoring that will provide the required
feedback for optimum environmental controls.

ACKNOWLEDGMENTS

This work was supported in part by the U.S. Department
of Defense High Performance Computing Modernization
Program under the U.S. Army Engineer Research and
Development Center (ERDC) contract number W912HZ-
15-2-0001 entitled: “Strategic Cyber Science, Warfare,
Security, Application Development and High Performance
Computing Research and Development,” and the research
project is entitled: “Investigating High Performance
Heterogeneous Computing with Advanced Architectures,”
and in part by Army Research Office HBCU/MSI contract
number W911NF-13-1-0133 entitled: “Exploring High
Performance Heterogeneous Computing via
Hardware/Software Co-Design.”

REFERENCES

[1] Impact of Temperature on Intel CPU Performance–
Puget Systems https://www.pugetsystems.com/labs/
articles/Impact-of-Temperature-on-Intel-CPU-
Performance-606/. Oct 14,2014

[2] Anas Alfarra, Jamory Hawkins, Gerald Morris, and
Khalid H. Abed, “Mapping the Conjugate Gradient
algorithm onto High Performance Heterogeneous
Computers,” The 2015 International Conference on
Embedded Systems and Applications (ESA’15), Las
Vegas, Nevada, July 27-30, 2015. pp 43-46.

[3] Reliability Analysis Center, Reliability Toolkit:
Commercial Practices Editions, Rome Laboratory.

[4] Torell, W. and V. Avelar, Mean time between failure:
Explanation and standards. White Paper, 2004. 78.

[5] Calculating Total System Availabiltiy Hoda Rohani,
Azad Kamali Roosta Information Services Organization
KLM-Air France Amsterdam.

[6] Bar Cohen A., R. Eliasi and T. Elperin, “ jc
characterization of chip packages – Justifications,
limitations and future”, presented at the IEEE 5th annual
Semi-Therm Conference, 1989.

[7] Jesse E. Galloway, Siddharth Bhopte, Cameron Nelson
Amkor Technology 1900 S. Price Rd. Chandler,
Arizona 85286 www,amkor.com. Characterizing
Junction-To-Case Thermal Resistance And Its Impact On
End-Use Applications.

[8] Weygant, P.S., Clusters for High Availability: A Primer
of HP Grant, ryan .Solutions. 2001: Prentice Hall
Professional.

[9] Ryan E. Grant, Stephen L. Oliver, James H. Laros III
and Ron Brightwell, Sandia National Laboratories,
“Metrics for Evaluation Engergy Saving Techniquest
for Resilent HPC Systems, 2014 IEEE 28th
International Parallel & Distributed Processing
Symposium Workshops.

[10] J. S. S. T. Association, “Failure mechanisms and
models for semiconductor devices,” Tech. Rep., 2006.

[11] V. Chandra and R. Aitken, “Impact of technology and
voltage scaling on the soft error susceptibility in
nanoscale CMOS,” in Defect and Fault Tolerance of
VLSI Systems, 2008. DFTVS ’08. IEEE International
Symposium on, 2008, pp. 114–122.

[12] Jayanth Srinivasan, Sarita V .Adve, Pradip Bose,
JudeA.Rivers “The Case for Lifetime Reliability-Aware
Microprocessors” , The 31st International Symposium
on Computer Architecture (ISCA-04), June 2004.

236 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

236 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

A Software-Defined Network Configuration Providing
Differentiated QoS to an eHealth Environment

Marcus Assuiti1, Felipe Volpato¹, Madalena Pereira da Silva², Mario Antônio Ribeiro Dantas¹

1Department of Informatics and Statistics and 2Department of Engineering and Knowledge Management
Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil

assuiti@gmail.com, fvolpato@gmail.com, madalena.silva@posgrad.ufsc.br, mario.dantas@ufsc.br

Abstract - Sepsis is an inflammatory reaction that starts with
an infectious condition whose mortality rate is bigger than
that of breast cancer, prostate cancer and HIV together. Early
diagnosis and agility in the implementation of a protocol is
crucial to ensure the effectiveness of the treatment. This paper
presents an approach to Quality of Service (QoS) management
aimed at providing services aware of the urgency in the sepsis
diagnosis. The model proposes a non-concurrent environment
for services delivery where the sepsis application will
guarantee QoS using Software Defined Network (SDN)
resources. The implementation of the proposed model shows
to be feasible and functional and will avoid concurrent data in
the delivering of services with the sepsis application.

Keywords: Software Defined Network; QoS; Sepsis

1 Introduction
 Medical Informatics is a multidisciplinary field where

information technology is applied to health care. It
encompasses efficiency, quality, data analysis, security,
better governance, news resources, clinical pathway, and cost
reduction. This technology has become indispensable due to
various factors for instance high volume of information,
secrecy, need for information availability, complex
diagnosis and treatment, knowledge management, disclosure
of relevant information, among others.
According to study [1], sepsis, severe sepsis and septic shock
have mortality rates of 33.9%, 46.9% and 52.2%,
respectively. There is evidence that the clinical skills to
diagnose Systemic Inflammatory Response Syndrome (SIRS),
infection and septic shock are satisfactory, but those to
diagnose sepsis and severe sepsis are still unsatisfactory.

Some facts can be considered about sepsis:
• One person dies of sepsis every four seconds [3].
• More than six million babies and children die of sepsis

every year [3].
• If treated within the first four hours the chance of

survival is 50%, after 12 hours the chance drops to
15% [4].

• Treatment of sepsis occupies 25% of the ICU beds[3].

• Treatment for non-survivor patients is more expensive
than for survivor patients [3].

Sepsis clinical pathway is a priority and it is urgent within the
hospital routine. Therefore it requires SDN resources to ensure
QoS for the sepsis application. In other words, SDN
resources will provide QoS to the application that will
control the sepsis protocol, ensuring the necessary
bandwidth and background traffic control, thus facilitating
rapid and effective implementation of the sepsis protocol.

2 Characteristics
 Sepsis is a body response that is triggered due to an
infection and can cause tissue damage, organ failure, and
death. It is crucial to diagnose sepsis in the early stages for a
prompt treatment because it evolves fast and should be faced
as an emergency. Sepsis is also known as a septic or
generalized infection syndrome. As a topic of investigation, it
is important to first define some terms related to sepsis

Figure 1 - Sepsis taxonomy

 Figure 1 show terms discussed and defined in [6] and
how they relate in a Venn diagram:

• Infection occurs due to the permanence of a living
micro-organism that is able to multiply and cause
pathological changes.

• SIRS is a systemic response of the body to an infectious
or noninfectious insult such as trauma, pancreatitis, burns,
with at least two of the characteristics below:

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 237

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 237

ISBN: 1-60132-444-8, CSREA Press ©

1) Fever, body temperature > 38 Celsius or hypothermia,
body temperature < 36 Celsius;

2) Tachycardia - heart rate>90 bpm;
3) Tachypnea - respiratory rate > 20 b rea ths per

minute or PaCO2 < 32 mmHg;
4) Leukocytosis or leukopenia - leukocytes > 12, 000
cells / mm3 or < 4, 000 cells / mm3, or presence of >
10% of young forms (rods)

• Sepsis is defined by SIRS criteria and a suspected or
confirmed infection.

• Severe sepsis presents organ dysfunction and tissue
hypoperfusion identified by lactic acidosis, oliguria or altered
level of consciousness, or hypotension with systolic less than
90 mmHg. This is considered the most common cause of
death in noncoronary critical care units (CCU).

• Septic shock is an acute collapse, and hypotension does
not respond to the administration of intravenous fluids.
Hypotension is defined as systolic blood pressure < 90 mmHg
reduction of > 40 mmHg from baseline, and mean arterial
pressure < 60 mmHg despite adequate fluid resuscitation,
requiring vasopressors, in the absence of other causes of
hypotension.

2.1 Sepsis complexity and urgency
 Ensuring a clinical pathway for the sepsis problem is a
tough challenge. According to the conclusion in [1], the
diagnosis of sepsis is satisfactory in case of infection, SIRS
and septic shock, but it is still insufficient in case of sepsis
and severe sepsis. Furthermore, intensive care doctors should
have a better performance in this regard. Study [7] categorizes
some factors that influence clinical decision in three kinds:

• Personal: motivation; bodily fatigue; financial situation;
stress.
• Patient: poor instructions; psychic diseases; lack of clarity;
newly born; unreliable information.
• Environment: infrastructure and multidisciplinary team;
costs.

The roadmap implementation suggested by [3] demonstrates
that the sepsis protocol involves a large part of an institution.
Some steps include for example a desired interval of 30
minutes. Treatment urgency is evidenced in Figure 2 showing
the inversely proportional relationship between survival rate
and early antibiotic action.

Figure 2 - Sepsis urgency[8]

2.2 Sepsis bundles

 This subsection will discuss treatment protocols after
sepsis suspicion. Sepsis bundles were developed based on
[10] and [12].

There are two severe sepsis bundles:
a) Sepsis resuscitation bundle

This bundle is defined by [11] as the combination of
evidence-based objectives that must be completed
within six hours for patients with severe sepsis, septic
shock or lactate > 4mmol/L.
• Measure serum lactate. Thirty minutes for

completion of this step;
• Obtain blood cultures prior to antibiotic

administration;
• Broad-spectrum antibiotic within three hours of

ED admission and within one hour of non-ED
admission. Thirty minutes for completion of this
step.

• Treat hypotension and elevated lactate with fluids;
• Administer vasopressors for hypotension not

responding to initial fluid resuscitation to maintain
mean arterial pressure (MAP) > 65 mmHg;

• Achieve a central venous pressure of > 8 mmHg;
• Achieve a central venous oxygen saturation > 70%

or mixed venous oxygen saturation (SvO2)> 65%.
b) Sepsis management bundle

It consists of evidence-based goals for patients with
severe sepsis and septic shock. It must be completed
within twenty four hours.

• Administer low-dose steroids for septic shock in
accordance with a standardized ICU policy;

• Administer recombinant human activated protein C
in accordance with a standardized ICU policy;

• Maintain glucose control lower than limit of
normal, but < 180mg/dL(10mmol/L)

• Maintain a median inspiratory plateau pressure for
mechanically ventilated patients.

238 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

238 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

3 Related Work
 A literature review on QoS and SDN involving sepsis
showed no occurrence of proposals going further than the one
in our study. Table 1 displays a review with the type of
application and a brief description of the proposal in each
paper.

Paper Application Description
[2] eHealth. Video

streaming and
gaming services

Different QoS use approach for QoE
modeling and architecture in order to adapt
network resources using Software-Defined
Networking (SDN), centered in the user
experience.

[14] Several. Network
management

QoS policy management framework that
monitors the network and automatically
applies pre-determined policies using SDN.

[17] Several. Network
management

System that supports high-level
configuration using SDN in order to manage
QoS in home networks.

[15] Video streaming SDN controller that provides dynamic
QoS routing for multimedia applications.

[16] Several OpenFlow 1.0 extension that improves QoS
by employing Linux multiple packet
schedulers.

[18] Several. Network
Management

QoS approach for an open-source SDN
controller focused on DiffServ and Traffic
Shaping.

[20] eHealth. Video
streaming

QoS applied for video stream and clinical
data.

4 The Proposed Model
 This section presents the proposed environment and
proposed tests and the means used to ensure QoS in the case
of sepsis, considering the infrastructure and network traffic
and providing means to facilitate the hospital administration
in terms of good practices.

Figure 3 - Model Proposal

In a quick overview, Figure 3 shows a hospital environment
with an intensive care unit (ICU) monitored with bedside
monitors that communicate with the vendor central
monitoring server. The central integrates the interface with
the legacy application server, which sends data related to
the sepsis protocol to the sepsis application server.

Possessing the relevant information obtained from the
electronic medical record (EMR) through the sepsis application
support can help in the diagnosis of sepsis. Then, the
protocol s t a r t s t o alert t h e sectors where
implementation tasks are needed, i . e . , the action points.

We intend to provide best QoS as regards the network
behavior. Our goal is to ensure clinical pathway using SDN in
the sepsis protocol, as suggested by institutions involved in
campaigns against sepsis.

4.1 Component integration model

An idealized environment consists of an integration of
three systems: the supplier of bedside monitors; the legacy
application of the institution; the sepsis application. Figure 4
illustrates this integration.

Figure 4 - Component integration model

The sepsis application will work in this integration,
thereby causing little impact to the existing infrastructure of
the institution. The main idea is to use existing tools and
information to provide a clinical decision support system with
an integrated EMR for diagnosis, flow control and alerts
related to sepsis, and with the urgency required by the sepsis
protocol.

4.2 QoS with the legacy system
 Keeping a medical record of the patient’s health is a
legal and organizational need, as can be seen in [9]. The large
amount of information and the hospital routine require very
consistent medical systems, so the solution presented here is
based on the legacy system and mainly in the EMR.

 Our experiment will formulate an external application to
the legacy application and will make the resource available
with a conventional integration. In other words, the legacy

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 239

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 239

ISBN: 1-60132-444-8, CSREA Press ©

application will receive information related to sepsis which
will be passed on to the sepsis application server. However,
this information will be initially used only by the sepsis
application in the action points notifying activities with high
priority to the sectors where they are needed.

QoS will be applied in two ways, as defined below:

a) Input flow: the input flow refers to relevant data about
sepsis registered in the EMR and sent to the sepsis
application server, especially in ICU environments since
they are monitored sectors with high incidence of sepsis.
For instance, the national report [3] pointed out a number
of 81.6 cases of sepsis recorded in ICUs.

As it is a critical environment, the patient’s vital signs are
monitored by bedside monitors that can be from different
suppliers and in general communicate with the vendor
central monitoring station which, in turn, forwards the
information to the legacy system.

The QoS between bedside monitors and the central
monitoring station will be performed by resource
reservation for communication in this local network. This
is simple among bedside monitors because they are
hardware for the sole purpose of communicating with the
central monitoring station.

b) Output flow: the output flow begins when the sepsis
protocol starts, then tasks are sent to the sectors where
some action is needed. This is the biggest challenge of this
proposal because at this point we need to differentiate the
regular traffic from the traffic of sepsis bundles in the
network as an integration of imaging examinations,
antivirus, the legacy system, emails and any other
processes of the institution. Messages sent to the action
points will not have their QoS guaranteed through
resource reservation, but through queue management.
This will be done through a specific port for all network
traffic related to the sepsis application and the flow
controller will prioritize all the traffic going on through
this port. It is crucial that no other application will use this
port defined in the network.

5 Case Study
 Case study [13] describes JVF’s case – a nineteen-year old

pregnant woman admitted to a hospital in the municipality of
Limeira, state of São Paulo, Brazil. Her case quickly
evolved as follows:

• 06/08/2011, 11:31 am: Was admitted to the
emergency department and later was found to have
pyelonephritis;

• 06/10/2011, 06:35 am: After worsening, was
transferred to a semi-intensive care unit where was
diagnosed with sepsis of urinary origin;

• 06/11/2011: Was requested remain in the ICU due to
new worsening;

• 06/20/2011: After appropriate treatment, was
discharged from the ICU due to improvement;

• 06/24/2011: Was discharged from hospital and
referred to the high-risk pregnancy service of the
municipality

• 10/21/2011: Underwent a cesarean section giving
birth to newborn with 2510g;

• 10/24/2011: The newborn was discharged from
hospital.
The following aspects of the abovementioned study

can be discussed:
• The study was conducted at ISCML, a teaching

hospital that provides tertiary care in the municipality
of Limeira.

• The institution has medical intensivists working 24
hours a day;

• The institution suggests that the Surviving Sepsis
Campaign protocol can be one of the strategies to
achieve the United Nations’ goal which is to reduce
maternal mortality by 75%; whereas serious
infections are one of the three leading causes of
death in the pregnancy-puerperal cycle.

• It discusses the difficulty of the gynecologists team in
diagnosing sepsis, and points out that this is a
common disease in any specialty. It highlights the
need to follow the sepsis protocol and extend it to all
areas.

• The discussion finally reports that even though the
pregnant woman and the baby survived, this case is
classified by the World Health Organization (WHO)
as a near miss. This term refers to a stage that
precedes death, which was interrupted by timely and
adequate management or luck.

Questions
• The diagnosis of sepsis was given in the ICU almost

two days after admission and then the correct
antibiotics were administered. Could not it have
started before, giving the patient greater survival rate
and less cost?

• Is it reasonable to expect, as pointed out in this case
study and confirmed in [1], that intensive care
physicians are more qualified to diagnose sepsis?

• In the diagnosis of sepsis, can it be expected that all
sepsis triggers are properly analyzed based on
calculations with standard deviation and the time
recommended in the guidelines for sepsis bundles?

• Considering the low popularity of sepsis and the
difficulty in diagnosing it, as pointed out in [1], is it
reasonable to expect that the institution should have a
professional able to make a correct diagnosis? Can
we expect that a professional be available? How
about young professionals?

240 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

240 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

6 Experimental Results
 Firstly, this section provides information about the
environment used in the experiment. Subsequently, we
describe the tests performed. Finally, we present the results
obtained.

Figure 5 - Network Topology

Figure 5 displays the network topology on a virtual
machine with the Mininet[22] emulator, the Floodlight[21]
controller and the Open vSwitch software[24].

Mininet is a complete network emulator platform that allows
the creation of multiple nodes (hosts/switches/controllers).
Besides, it is useful for experimenting different topologies and
is widely adopted in SDN research. Floodlight is an open-
source SDN controller project written in Java and has a large
community and good documentation. Open vSwitch is an
open-source software switch project that is compatible with
protocols such as Open-Flow and QoS queues configuration.
All the switches in our experiment are Open vSwitch
implementations.

Moreover, the Floodlight controller, nine hosts (h1 to h9) and
three switches (s1 to s3) were created for the tests.

A. Test 1 – Bandwidth between hosts

For the first experiment, the following six connections (C)
were established:

• C1: between h1 and h9 on port 9000, lasting 30 seconds;
• C2: between h2 and h9 on port 9000, lasting 30 seconds;
• C3: between h3 and h8 on port 80, lasting 50 seconds;
• C4: between h5 and h8 on port 80, lasting 50 seconds;
• C5: between h4 and h7 on port 9001, lasting 30 seconds;
• C6: between h6 and h7 on port 9001, lasting 30 seconds.

For all the connections we used the Iperf [23] software.

Connections 1 and 2 simulated traffic between the bedside
monitors and the central monitoring station. Connections 3

and 4 simulated background traffic, for instance: HTTP web
surfing, file download, video streaming, and even imaging
exams. Finally, connections 5 and 6 simulated the sepsis
application data.

Figure 6 - Results of measurements without QoS mechanism

The test in Figure 6 began with connections 3 and 4
performing background traffic simulation without speed
restrictions. This is represented in the graph by the
bandwidth received in h8 (BWR1). Ten seconds later,
connections 1 and 2 started to simulate the application
traffic (ICU legacy server) on port 9000 (BWR2). At 20
seconds from the start of the test, communication began on
the AP-sepsis application server on port 9001 (BWR3). For
this test, there was no QoS setup among the nodes, only
the bandwidth set at 10mb among all links.
Figure 6 shows that the background traffic ends up

consuming virtually all the available bandwidth across the
links and impairing the applications connections among the
bedside monitors, the central monitoring station, and the
sepsis application. In this scenario, there was no bandwidth
guarantees among the hosts.

In order to ensure bandwidth for our applications (Figure
7), we defined queues in the Floodlight Controller as
follows:

• Queue 1 with maximum rate of 8 megabits;
• Queue 2 with minimum rate of 4 megabits and

maximum rate of 4 megabits;
• Queue 3 with minimum rate of 2 megabits and up to

2 megabits.

After setting up the queues, we have the following
configuration:

• Traffic between h1 and h9 - queue 3.
• Traffic between h2 and h9 - queue 3.
• Traffic between h5 and h8 - queue 1.
• Traffic between h3 and h8 - queue 1.
• Traffic between h4 and h7 - queue 2.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 241

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 241

ISBN: 1-60132-444-8, CSREA Press ©

• Traffic between h6 and h7 - queue 2.

By comparing the graphs in Figure 6 and Figure 7, it can be
seen that, from the moment they came into being, an SDN
configuration ensuring QoS for the applications using
specific ports delivered much more consistent data in line
with the urgency required by the application.

Figure 7 - Results of measurements with QoS mechanism

As described in section two, the sepsis protocol requires
urgent implementation of its stages, where the hospital
management should take steps with estimated time of 30
minutes. Thus QoS provided by SDN can help meeting the
protocol’s urgency requirements.

TABLE
FI L E T R A N S F E R TIME (IN S E C O N D S)

File size(MB) FT1 FT1 with QoS FT2 FT2 with QoS

4 60.41 17.03 89.26 8.79
8 72.66 34.03 57.70 17.43

1
6

113.99 74.46 87.58 34.52
3 168.11 135.16 181.49 70.41

B. Test 2 – File sent through hosts

For the second test (Figure 8, Table I), we made file
transfers with different file sizes between two pair of hosts:
h1-h9 on port 9000 (FT1), simulating traffic between the
bedside monitors and the central monitoring station, and h4-
h7 on port 9001 (FT2), simulating the sepsis application data.
We kept connections C3 and C4 from the first test for
background traffic purposes.

We used the same QoS parameters from the first test, so
FT1 traffic used queue 3 with minimum and maximum rate of
2 megabits. The traffic for the FT2 configuration used queue
2 with minimum and maximum rate of 4 megabits.

Figure 8 - File transfer test

The results in Figure 8 showed that the implementation of
QoS can significantly reduce the time to send data. In this
study, in particular, this proved to be essential in order to
maintain the applications’ requirements. We can also
conclude that the greater the minimum bandwidth rate, the
greater the difference between using or not QoS parameters.

C. Test 3 – Latency

This test took exactly the same parameters from the first
test. Our goal was to check the latency between connections
C1, C2, C5 and C6. Figure 9 shows that when there is no QoS
guarantee in the SDN, latency tends to have very high values
according to the network competition. In turn, with the QoS
mechanisms, latency always tends to range between 0 and 1.

Figure 9 - Host latency

7 Final Remarks And Future Work
 This paper proposed the use of Software-Defined
Networking technology to meet the urgency and ensure the
quality of service required for a critical application,
maintaining an entire topology and architecture with low

242 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

242 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

impact to the environment. In a hospital setting, it provides
service guarantees for the application that implements the
sepsis protocol.

The test showed to be promising as regards the use of QoS
through queues with the sepsis application. Other concurrent
hosts on the network without QoS contributed to
communication deterioration. The test also demonstrates that
it is possible and relatively simple to apply SDN features in an
application so as to guarantee its required QoS, as the
application has an exclusive port in the network where it is
applied.

As future work, we intend to analyze and build a clinical
decision support system with capabilities of sepsis diagnosis,
alert and management. Initially, we intend to deploy the sepsis
protocol proposed by [3] and then enable the institution to
customize the flow in relation to the sepsis triggers. We also
intend to study a way to use the context of sepsis variables to
ensure QoS, as in [19]. For example, body temperature
between 36 and 38 degrees Celsius is not interesting for the
sepsis protocol. It is however a big challenge because some
sepsis triggers are calculated according to standard deviations
of vital signs. Besides, we intend to consider a way to
differentiate packets that could be sent to an action point
located in a monitored sector. In this sense, as soon as the
sepsis protocol is started, that information should be given a
higher priority for patients who are being monitored and may
not develop sepsis.

Once applied in a real environment, it would be very
interesting to develop management indicators, providing the
institution with a vision of a sort of Business Intelligence (BI),
thus allowing better management of the sepsis steps. It would
also be possible to display the time that each flow task is
taking to run as well as the data during the progress and
outcome of the sepsis case.

In the previous sections, it is clear that the problem of sepsis
is critical because it is a major cause of death in ICUs and
because the medical staff is not able to diagnose it in a timely
manner for treatment. It is urgent, as can be seen in Figure 4,
and an analysis of the sepsis packages suggested by [3] for an
early diagnosis is important for an effective treatment. It is
also complex, as it is a current problem that involves the
entire medical staff and, according to The Latin American
Sepsis Institute (ILAS), a medical diagnosis in early stages
guarantees a more efficient treatment.

8 Acknowledgments
 We would like to thank Philips Health Care for the
support in this work.

9 References
 [1] Assu n o Murillo, et al. Survey on physicians knowledge of sepsis: Do
they recognize it promptly? Journal of critical care 25.4 (2010): 545-552.

[2] da Silva Madalena P., et al. A Managing QoE Approach for Provisioning
User Experience Aware Services Using SDN Proceedings of the 11th
ACM Symposium on QoS and Security for Wireless and Mobile Net-
works. ACM, 2015.

[3] ILAS, Latin American Institute, in http:\\ilas.org.br, feb-2016.
[4] WORLDSEPSEDAY, World Sepse day, in http:\\world-sepsis-day.org
[5] Shorr Andrew F. et al. Economic implications of an evidence-based

sepsis protocol: Can we improve outcomes and lower costs? Critical care
medicine 35.5 (2007): 1257-1262.

[6] Levy Mitchell M., et al. 2001 sccm/esicm/accp/ats/sis international sepsis
definitions conference. Intensive care medicine 29.4 (2003): 530-538.

[7] Guilherme Almeida Rosa da Silva. O processo de tomada de decisãõ o na
pratica clínica: a medicina como estado da arte Rev Bras Clin Med. São
Paulo 11.1 (2013): 75-9.

[8] Kumar Anand et al. Duration of hypotension before initiation of effective
antimicrobial therapy is the critical determinant of survival in human
septic shock. Critical care medicine 34.6 (2006): 1589-1596.

[9] Fed era l Council of Medicine (Brazil). Sets medical records and mandates
the creation of the Medical Records Review Committee in health
institutions Official Journal the Federative Republic of Brazil resolution
CFM 1.638/2002(2002): 184-185.

[10] Rhodes Andrew et al. The Surviving Sepsis Campaign bundles and
outcome: results from the International Multicentre Prevalence Study on
Sepsis. The IMPreSS study. Intensive care medicine 41.9 (2015): 1620-
1628.

[11] Khan P Divatia JV. Severe sepsis bundles. Indian Journal of Critical
Care Medicine Peer-reviewed, Official Publication of Indian Society of
Critical Care Medicine. 2010;14(1):8-13.

[12] Dellinger, R. Phillip, et al. Surviving Sepsis Campaign guidelines for
management of severe sepsis and septic shock. Intensive care medicine
30.4 (2004): 536-555.

[13] Fatima Aparecida Henrique Lotufo. Sepse Grave de Origem Urinaria na
Gestação (2012).
[14] Bari , M. F., Chowdhury, S. R., Ahmed, R., and Boutaba, R.
(2013). Policycop: an autonomic QoS policy enforcement framework for
software defined networks. In Future Networks and Services
(SDN4FNS), 2013 IEEE SDN for, pages 1–7. IEEE.
[15] Egilmez, H. E., Dane, S. T., Bagci, K. T., and Tekalp, A. M.
(2012). Openqos: An openflow controller design for multimedia delivery
with end-to-end quality of service over software-defined networks. In
Signal & Information Processing Association Annual Summit and
Conference (APSIPA ASC), 2012 Asia-Pacific, pages 1–8. IEEE.

[16] Ishimori, A., Farias, F., Cerqueira, E., and Abelém, A. (2013). Control of
multiple packet schedulers for improving QoS on openflow/sdn network-
ing. In Software Defined Networks (EWSDN), 2013 Second European
Workshop on, pages 81–86. IEEE.

[17] Seddiki, M. S., Shahbaz, M., Donovan, S., Grover, S., Park, M.,
Feamster, N., and Song, Y.-Q. (2014). Flowqos: Qos for the rest of
us. In Proceedings of the Third Workshop on Hot Topics in Software
Defined Networking, HotSDN ’14, pages 207–208, New York, NY, USA.
ACM.

[18] Wallner , R. and Cannistra, R. (2013). An sdn approach: quality of
service using big switchs floodlight open-source controller. Proceedings of
the Asia-Pacific Advanced Network, 35:14–19.

[19] Cabra l Nazario, Debora, et al. (2014) An Approach to Evaluating Qual-
ity of Context Parameters in an Ambient Assisted Living Environment.
Computer-Based Medical Systems (CBMS), IEEE 27th International
Symposium on. IEEE.
[20] Ongaro, Francesco. Enhancing Quality of Service in Software-
Defined Networks. Diss. alma Master Studiorum-University of Bologna,
2014.
[21]Floodlight-QoS-Beta, Floodlight-QoS-Beta, in
http:\\floodlight.atlassian.net\floodlight.atlassian.net\wiki\display\
floodlightcontroller\How+to+implement+
[22] Mininet, Mininet, in http:\\mininet.org
[23] Iperf, iperf, in http:\\dast.nlanr.net\Projects\Iperf\
[24] Open vSwitch, openvswitch, in http:\\http://openvswitch.org/\

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 243

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 243

ISBN: 1-60132-444-8, CSREA Press ©

Information System for Smart Grid:

Systemic and UML combined approach

Ali SNOUSSI 1, Samir BEN AHMED 2

1LR LISI, INSAT, University of 7th November at Carthage, Tunis
E-mail: ali.snoussi.smartgrids@gmail.com

2LR LISI, INSAT, University of 7th November at Carthage, Tunis
E-mail: samir.benahmed@fst.rnu.tn

Abstract - The effective management of large and complex
systems depends on the presence of all relevant information
describing system within the reach of the actors and
decision makers. To this extent, we propose in this paper a
combined methodology for information system design
based on a participatory approach that brings together
several parts to ensure better result juxtaposed with an
object-oriented process based on Unified Modeling
Language diagrams to design the database of the
information system following a spiral development cycle.
This methodology is implemented through the systemic
method: PPPO, the Simplified Unified Process and the
spiral development cycle. It allows us to model the smart
grid and develop an information system that describes all
information necessary for its good management.

Keywords: Smart Grid, Systemic methods, Information
System, Participatory Planning of Project by Objectives,
Simplified Unified Process.

1.INTRODUCTION
The use of information systems in the company has

become a daily reality. Therefore, the management and
design of information systems represent today a major
problem of organizations. To meet this need, several
studies and attempts are developed to facilitate and even
automate the information system development process.

This paper describes a systemic methodology combined
with an object-oriented modeling and design tool for
analysis, modeling and planning projects and systems and
designing their information systems. This methodology is
based on systemic approach and follows a participatory
method juxtaposed with an object-oriented development
process. The system analysis and modeling are made by the
Participatory Planning of Project by Objectives method
(PPPO) and the Simplified Unified Process (SUP).

This paper is divided into three parts. First, we start
with the presentation of the methodologies and tools used
for analysis and modeling the smart grid and the
development of its information system. Second, we present
the output (result) validating the proposed methodology for
the design of smart grid information system through the
implementation of the PPPO method that aims to capture
the problems and objectives of the system and deduct the
appropriate strategies, the adoption of the spiral cycle, and
the simplified unified process as a development and
process cycle respectively for the design of the database.
Finally, we discuss some points about the choice of these
methodologies, the work done and the future one.

2.METHODOLOGIES & TOOLS
Based on the key characteristics of the smart grid

namely its complexity, extended and heterogeneity [6], we
chose to analyze the system and develop its information
system a systemic approach for the first step (modeling of
the problem). For the second one, we opted to use a
development process based on UML diagrams through an
iterative cycle.

2.1. Systemic approach (Methodology)
The world phenomenon known as "systemic movement"

and the large number of ideas and practices that can be
classified under "systemic approach" are keys to the
implementation of a solid methodology that considers the
following systemic aspects [7]:

 The consideration of "systems" as abstract objects
for building a better understanding and a shared
vision of a complex system.

 The identification of the essential dimensions and
high priority issues.

 The predominant importance given to the study of
relationships between elements of the system and
the system with its environment.

244 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

244 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

 The interest in collective and participatory
reflection and group work.

 The need for autonomy and integration into
decision making.

 The possibility to use images and graphics in the
development of specific actions and the information
system.

The systemic approach in the analysis and design of
information systems allows also being conscious of the
future world in which the treaty system should be located. It
allows thus to spend a major weakness of the organizations
that is the resistance to changes in their environments
therefore secure their sustainable development [8].

2.2. Systemic used method
We used to analyze the control problem of smart grid

and develop a coherent and faithful to reality information
system the method: Participatory Planning of Project by
Objectives (PPPO).

PPPO's goal is to collect the knowledge and expertise of
experts and stakeholders in order to reach a broad consensus
and a collective solution to the questions related to the
Smart Grid [3]. It serves to mobilize the efforts and know-
how of different stakeholders around a structured and
systematic approach by linking them in workshops and
structured meeting of “brainstorming” to generate the
maximum of ideas that will later be the subject of analysis,
classification and modeling [3], [8].

PPPO has the capacity during its exercise to motivate
stakeholders who may have different repositories to be
active, influential and participate in the analysis and design
process to be part in decision-making process and have a
strategic reflection on future actions [8]. The method tries to
find a compromise land between the different actors through
an iterative negotiation process for the exchange of views
and even debates around some critical situations [8].

It is widely flexibilized by its instigator (German
Cooperation Agency "GTZ") to avoid its mechanistic, rigid
and falsely participative use. So, it has become just a
general framework counselor rather than a series of tools
and prescribed mandatory steps. This flexibility puts the
actors and their perceptions of the problems, needs,
interventions, etc. at the center of a non-deterministic
planning process, an iterative negotiation and not final
process [8].

PPPO is based on a very linear approach to reality
(cause produces effect). It starts with a negative reading
(reverse) of this reality, i.e. a succession of problems [8].

Like many modeling tools, PPPO provides possible
simplifications [8]. In short, we limit ourselves at this stage
to some problems and causal links, and we choose some
prospects to prove our solution.

The method is based on five methodological steps;
identification of stakeholders, developing a problems tree,
developing an objectives tree, defining strategies and
developing the planning matrix (logical framework). This
approach is retroactive as a spiral process, i.e., each step
used for supplying the previous steps (addition of new
actors, problems, goals, etc.).
2.2.1. Stakeholders Identification

The first step is to identify the individuals, groups and
institutions that are relevant to the system. Determine their
interests and views on the issues. The relations and the
positioning of these players are also subjected to analysis in
order to properly master the debates between them and
understand the "contradiction" of their viewpoints
sometimes. For example debates between economists on the
one hand and naturalists and environmentalists on the other
hand [8].

Stakeholders meet in workshops for a common reflection
and shared discussion of different points of view.
2.2.2. Development of problems tree

The first phase is to identify problems in bulk
(brainstorming). This collective exercise is done using small
cards by annotating one problem per card. Thereafter,
prioritize and organize the cards problems according to
causality relations (cause gives effect) to build a problems
tree [3], [8].

The tree can have one or more roots (one / many major
problems). Each node of the tree represents a problem cause
while his descendants (branches) are the negative
consequences.
2.2.3. Development of objectives tree

The issues identified in the previous phase are translated
into objectives insofar the resolution of these issues results
the desired future state. i.e., negative states are translated
into positive desirable states. An objectives tree is
automatically built by translating causality links into end-
means links. Only solutions of possible problems are
retained [3], [8].
2.2.4. Definition of strategies
The objectives tree helps bring up several possible
alternatives and strategies that can help in solving the posed
problems and issues. One or more potential alternatives are
selected to form adequate strategies and policies according
to well-defined and carefully selected criteria defined by
domain experts such as skills, priorities, available resources
(human, financial, etc.), economic and political climate, etc.
2.2.5. Development of the planning matrix (logical

framework)
Once the objectives and strategies are well defined,

indicators and tools to measure, verify and evaluate the
result of the planned activities will have to be specified.
These activities are determined according to the strategies
defined to achieve the desired objectives.

All these information are transposed and summarized in a
matrix that attempts to answer the following questions [3],
[8]:

 The why of the project?
 What are the results (objectives)?
 What are the external factors of importance to

project success (hypothesis / risks)?
 How to evaluate the success / failure of the project

(objectively verifiable indicators)?
 Where to find the data needed to evaluate the

project?
 How much the project will cost (means)?

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 245

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 245

ISBN: 1-60132-444-8, CSREA Press ©

2.3. Development Process
To design the solution of the Smart Grid control problem

and the development of its SI, we have chosen as a
development process a reduced and simplified derivative of
the unified process.

A unified process is a software development process
built on UML. It is iterative and incremental, focusing on
architecture, driven by the use cases and piloted by risk.
The management of such a process is organized in four
phases presented as follows: pre-study (inception),
elaboration, construction and transition. Its development
activities are defined by six fundamental disciplines that
describe business modeling, requirements capture, analysis
and design, implementation, testing and finally deployment
[30].

The adopted simplified unified process comprises the
following nine steps [30]:
2.3.1. Development of use cases

This step is very important, in fact, these diagrams
explain clearly the expected application services and the
needs it must satisfy.
2.3.2. Development of System Sequence Diagram

This diagram shows the interactions between actors and
the system.
2.3.3. Implementation of Human Machine Interface

(HMI) models
The models give the possibility to work on the design

appearance before delivery of the final version of the
software and discuss his critics from the start of work.
2.3.4. Development of the domain model

This is a first class diagram to identify the entities and
their attributes and associations.
2.3.5. Development of participating class diagram

It is a diagram that includes the three types of classes;
dialogs, controls and entities, it is based on the domain
model.
2.3.6. Development of the navigation diagram

Two diagrams can fulfill this task, the activity diagram
and the statechart. They complement the sequence diagram.
2.3.7. Development of intercation diagram

It is a detailed diagram of sequences, it reflects the
communication between the different implemented objects.
2.3.8. Development of the design class diagram

It is obtained by the enrichment of participating class
diagram by adding functions from detailed sequence
diagrams.
2.3.9. Implementation

This step consists in generating the database (classes). It
ends by filling the code completely, test and validate it.

2.4. Development Cycle
In order to increase productivity and to estimate

development time, it is imperative advised to follow a
development cycle. It turns out that several approaches and
methodologies exist and can meet this need.

After a comparative study of these methodologies and
cycles, we felt that the spiral cycle is the most suitable for
our case.

It is a software design procedure that want more
pragmatic than traditional methods. This model enables
highly responsive to its requests. It aims to real satisfy the
needs. The spiral model is distinguished compared with
conventional methods by its principles that present its
strengths [1]:

 Giving more importance to individualities and
foster communication than following fixed
processes to ensure communication and serious
discussion between the project participants.

 Perform iterative tests to ensure having fully tested
software at the end.

 Involve all participants in development in order to
avoid possible misunderstandings.

 Instead of following an exact plan, develop and
evolve the project while responding to any changes
identified during work.

This software development cycle model includes the
different steps of cycle V. By implementing successive
versions, the cycle starts by offering a product more
complete and robust. However, it puts more emphasis on
risk management in the cycle V. There are four phases in
the course of the spiral cycle [1], [31]:

i. Determining objectives, alternatives and
constraints.

ii. Analysis of risks, evaluation of alternatives.
iii. Development and verification of the solution.
iv. Review of results and verification of the next

cycle.

3.CASE STUDY OF A SMART GRID
(RESULT)

3.1 Application of PPPO
The PPPO method is used in order to model the problem

of management and control of the Smart Grid to identify
the needs of the system that are used later in the design of
the solution. In short, these needs present the starting point
for use cases diagrams.

The result of the application of this method is presented
in the following in this section.
3.1.1 Identification of Stakeholders

The Smart Grid is a complex system [5], [6] that affects
many parties. To ensure the identification of all individuals
and groups interested in energy system and that can
contribute to the completion and success of the Smart Grid
project, we chose to identify stakeholders layer by layer of
the Smart Grid Architecture Model “SGAM” (Component
Layer, Communication Layer, Information Layer, Function
Layer, Business Layer) [9].

Some stakeholders are included in several layers,
namely the Manager of the grid which is involved in the
physical chain (production, transmission and distribution of
electricity) and in the logic chain and grid control.

246 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

246 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

3.1.2 Problems tree
After brainstorming workshops, and the classification

of identified Smart grid problems, a main problem is
unveiled: the implementation and control of smart grid
based on the existing aging infrastructure. We partitioned
the problems that arise from this main problem into four
groups (Management problems, Technical problems,
economic problems and Environmental problems).
3.1.2.1 Management problems

The first part concerns the real-time management of
energy production, transportation from fields, turbines and
power plants to customers through a transport and
distribution network. The power management also extends
to cover energy consumption. Indeed, one of the benefits of
smart grids is the inclusion of the user in the management
process.

Logical management issues are classified as a sub-part
dealing with data flow management, the taking of adequate
and timely decisions and the management of resources
(human, financial, etc.).
3.1.2.2 Technical problems

As the first part, the second one is divided into two
categories, physical and other logical problems. The first
correspond to the power system namely issues related to
the equipment and installations especially cohabitation
between new technologies and equipments and existing
infrastructure.

One of the most relevant issues in this part is the
distributed generation through the introduction of
renewable and intermittent new energy resources [10].

The explosion of the demand and the new arrival
(electric vehicle (EV)) [11], [12], the automatic incident
detection and resolution of faults [13], [14], [15] are also
predominant issues in the implementation of Smart Grid.

The second category in this part concerns the logical
problems: security of the energy system against cyber-
attacks and confidential data hacking threats of customer
and all parties included in the energy chain [16].

Among posed technical problems, we identify the
issues of standardization and legislation whose role is so
important that they must be answered before any efforts in
the implementation of Smart Grid [17], [18], [19], [20].

Besides the energy network traffic, a data traffic system
is essential for rapid collection of information and reliable
communication between consumers and regional centers of
conduct and parties concerned by this information [19],
[21], [22], [23].

Technical problems also include backup and archiving
problems of electric grid characteristic values and history
of the entire energy system for a possible electric network
analysis.
3.1.2.3 Economic problems

The economic problems are linked mainly to the
financing and investment, the stress of the energy market,
the speculation problem and economic balance income /
expenses.

The dynamic billing [18], [24] and prices of energy use
affect the economic side especially with the increase of
distributed generation and consumer participation in energy
production (e.g. providing excess energy produced locally
by its solar panel).

The loss of jobs presents also a very critical social and
economic problem. In fact, the use of new intelligent
control and management technologies and the automation
of many parts of the energy system may eliminate a lot of
jobs [25].
3.1.2.4 Environmental problems

The obvious first problem is related to the pollution
issues (emission of greenhouse gases, waste of nuclear
activities, etc.). The second problem is the resources
depletion mainly those based on fuels due to its
overexploitation. The third one, which is very serious and
dangerous, is the health problem and environment damage
from radiofrequency (RF) and electromagnetic frequency
(EMF) radiation from new information and
communications technologies (ICT) and Smart Meter
installation [25].
3.1.3 Objectives tree

The objectives present the resolution of the previously
mentioned problems and the response to the relevant
questions. In short, the same structure characterizes the two
trees (problems tree and objectives tree).
3.1.3.1 Management objectives

The Smart grid allows to maintain balance between
supply and demand by developing an effective real-time
work plan, optimizing decisions in terms of time and
efficiency and using intelligent management of stocks of
raw materials (fuels, nuclear resources, etc.) to satisfy
customers and supply new needs (electric vehicles) and
reduce energy consumption especially during peak hours
and avoid falls of the electricity grid. This will help to
reduce damage and bad impacts to incidents and organize
the relationships between parts of the smart grid.
3.1.3.2 Technical objectives

In the technical level, the smart grid aims to upgrade
existing infrastructure by adding new technologies,
increase the estimation and analysis capacities of climate
changes and their impact on the energy system balance. It
improves techniques and energy storage means and secures
the communication network. It is necessary also to ensure
the interoperability of different parts of smart grid by
standards and different parties by adequate laws and
appropriate legislations.
3.1.3.3 Economic objectives

Economic objectives affect both clients whatever their
kind (industrial, commercial, individual) by rationalizing
consumption and consequently billing and Increase local
energy production and society as a whole (the state) by
reducing energy costs and make economic gains, founding
a robust economy and limit the loss of jobs.
3.1.3.4 Environmental objectives

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 247

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 247

ISBN: 1-60132-444-8, CSREA Press ©

The environmental objectives take into consideration
the conservation of energy resources against
overexploitation and the reduction of pollution and health
problems.
3.1.4 Definition of strategies

The search for solutions to achieve the desired
objectives permits to classify them into groups. Each group
allows the appearance of many alternatives to satisfy those
goals. These alternatives form the Energy Policy and the
strategies leading to the success of the smart grid.

The strategies adopted are:
 Diversify and distribute energy resources and

improve the use of renewable resources to reduce
dependence on fuel-based resources that have
unstable prices [10].

 Decentralizing the management and control [24].
 Inform the consumer of his consumption and

introduce him in the control process.
 Securing the exchange and sharing of data between

control centers [16].
 Facilitate investment in the energy market with

adequate decisions and legislations.
 Evolving the energy storage technologies.
 Adjust the production program in real time

according to supply and demand.
3.1.5 Developpement of logical framework

In this step, we limited ourselves to the definition of
control units and their activities which allow us to simulate
the Smart Grid and implement our solution in the rest of
the work. Four units are defined (inspired from [17], [2],
[28]) to manage the Smart Grid in order to rationalize
consumption and local energy production. In short, the
Smart Grid is divided into three compartments based on the
seven domains of National Institute of Standards and
Technology (NIST) model. The first compartment is the
Production (Generation), the second encompasses the
energy delivery grid and the parts affecting the system such
as markets managers, operations and service providers.
Third, the consumption compartment. Each compartment is
managed by a type of logic units. The fourth one is
responsible for the management of information flows
circulating in the system.

This step has enabled us to develop a set of
specifications containing functional and technical
requirements of the solution. The functional requirements
are used to set the activities and uses of each identified unit
(agent).

3.2 Application of simplified unified process
The simplified unified process starts up with the needs

identified by the application of PPPO.
The second modeling phase of the Smart Grid enables

the design of an IT solution to the problems mentioned
above and the development of a coherent IS for the Smart
Grid.

As mentioned, the proposed solution is based on four
types of units (agents):

 Consumer Agent: responsible for the management
of energy consumption (consumption
compartment).

 Producer Agent: responsible for the management
of energy production (production compartment).

 Control Agent: manages the entire energy system
including the management and coordination of
other agents (control compartment).

 Database Agent: responsible for data management
and present the access point to the database for
other agents.
Each agent is considered as an autonomous,

independent and application that communicates with
others parts.

The output of the simplified unified process is
presented as a design class diagram enabling the
development of the source code of the solution. The IS
presents the direct projection of this class diagram.

The diagrams elaborated specify the characteristics
(attributes) of each agent, its tasks (methods),
interactions (associations) with its environment and
with its neighbors (agents).

4.DISCUSSION

4.1 Choice of systemic methodology
Several techniques are developed for the analysis and

modeling of IS, most of which are part of two major classes
"Cartesian methods" and "systemic methods" [4].

We chose a systemic class method given to the nature
of Smart Grid system. Indeed, the electrical system is
among the widest and complex human systems [5], [6],
[24]. It encompasses several subsystems (power subsystem,
management subsystem, and human subsystem [24]) and
brings together many and various stakeholders. Such a
system requires great coordination among its
heterogeneous parts for its better management. That is why
we felt that the Cartesian methods are unable to meet our
needs for analysis and modeling of the Smart Grid as
asserted C. FLOYD "Cartesian methods are applicable to
medium-sized systems with little human-machine
interaction and when the features of the system are
relatively clear in advance" [4].

The table TABLE I shows a comparison between the
two classes of methods:

TABLE I. COMPARISON OF GENERATION AND CASES OF
APPLICATION BETWEEN SYSTEMIC AND CARTESIAN METHODS

Systemic methods Cartesian methods
2nd generation [4] 1st generation (appeared in

the 60s) [4]
 large and complex

systems [27]
 systems with

heterogeneous parts
[27]

 small and medium
systems [4]

 existing systems
[4]

 known system
functions [4]

248 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

248 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

We excluded the analytical approach also because it
aims to reduce the system to its smallest elements [29] in
contrast to the systemic approach that addresses the system
in the whole of its components and its internal interactions
[26]. The analytical approach applies the rule "divide and
rule" so that each element of the system becomes an
independent problem, smaller and easier to solve.
Thereafter, evaluate all solutions and use compensatory
algorithms to mutually compensate the resulting values of
different dimensions. Therefore, the use of analytical
methods entails many, lengthy and intensive calculations
[29].

For these reasons, the analytical approach is reserved for
easy problems and its use as a problem solving process does
not always result solutions when the system studied is
complex [29].

The TABLE II illustrates an opposition of Joel de
Rosnay of the two approaches (systemic and analytical)
[29]:

TABLE II. COMPARISON BETWEEN SYSTEMIC AND ANALYTICAL
METHODS

Systemic approach Analytical approach
Connects : focuses on the
interactions between system
elements

Islands : focuses on the
elements

considers the effects of
interactions

considers the nature of
interactions

is based on the global
perception

is based on the precision
of details

insufficiently rigorous models
as a basis of knowledge, but,
usable in the making decision
and action

precise and detailed
models, but difficult to use
in action

effective approach when
interactions are important and
nonlinear

effective approach when
interactions are low and
linear

Systemic methods have some gaps too. For example, the
method adopted (PPPO), although it is used by many
funders, and that it benefit of a systemic and participatory
approach, it admits shortcomings. One of the risks of the
method lies in the disproportionate importance that can be
given to planning to the detriment of reflection and constant
questioning of the changing context. It can become
demotivating and disempowering [8]. But PPPO allows
benefiting from other tools and juxtaposing other techniques
to overcome its limitations. In fact, it represents just a
counselor [8].

4.2 Utility of PPPO
The SUP starts from needs and based on use cases. In

our case, we do not have tender specifications that contain
these requirements and functional and technical needs and
we are invited to identify them. Hence the need for a tool
that precedes the SUP to make the problem analysis.

We believe that the systemic approach is the most
appropriate class as explained previously.

We used the systemic approach PPPO given the clarity
of its principle and the simplicity of its application.

4.3 Implementation of PPPO
4.3.1 Meeting stakeholders and brainstorming

workshops organization
A Smart Grid is a wide and complex system [5], [6] that

affects several stakeholders from different fields. Thus, the
meeting of all these parties is a non-obvious mission.
Indeed, it requires the availability of these parties and their
agreement to share their knowledge and expertise. This
phase also requires significant budgetary and human
resources not all currently available. However, we have
exploited existing ones and we have benefited from the
meeting and workshops organized to analyze Smart Grid
and design a minimal IS that can be enriched afterwards and
assist in decision making.
4.3.2 Logical framework development

This step requires even more coordination between
participants in the project. Indeed, the establishment of a
complete logical framework and plan for the
implementation of a national Smart Grid requires more
financial and human resources. That's why we are limited in
this step to the definition of solution actor’s and the
definition of their tasks to identify the use cases of the
proposed solution.

4.4 Choice of Unified Process Simplified
PPPO is insufficient to realize the SI in a support usable

for decision making. So it is necessary to complete it with
another tool to design and implement the IS.

We chose the SUP because it is an object-oriented
method that represents the market trend toward. It plays a
dual role. It models the IS as a set of diagrams finalized by a
design class diagram to realize the IS and develop a
database in the first hand. On the other hand, it allows the
passage to the development of decision-making system in
the future based on the same elaborated design.

The SUP benefits from the power and completeness of
Unified Process (UP) and speed of the extreme
programming, of course while reducing the cumbersome of
standard UP [30].

4.5 Choice of the spiral cycle
We opted to use the spiral model because it is the most

suitable for new applications, and it allows benefiting from
several advantages of which we mention [1]:

 Allows catching up if we miss one or more use
cases.

 Practical and safe solution validation.
 Validation as early as possible.
 Upward design.
 Identify possible changes early.
 Make variants iterations (sprints) to give time to

code. Each sprint has a specific goal or "backlog".

5.CONCLUSION
This paper presents a methodology for the study and

modeling of complex systems to develop an information
system. The systemic method PPPO and the simplified
unified process based on UML are used to analyze the
smart grid and develop its information system in a

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 249

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 249

ISBN: 1-60132-444-8, CSREA Press ©

participatory process that brings together all stakeholders in
order to identify problems and challenges of
implementation of the Smart Grid, classify and structure
them in the form of a tree that will be converted into an
objectives tree that reflects the strategies and the planning
of Smart grid implementation activities. It is proved that
these steps are very important and sensitive. They greatly
affect the following steps. Indeed, the design of solution of
all these issues in the form of UML diagrams developed as
part of the unified process and refined in each iteration
(sprint) following a spiral development cycle are deducted
from this analysis and modeling performed.

The proposed approach enabled to design a minimal IS
that can be enriched permanently and will serve the
decision system.

In the future, it is important to treat the hosting and
access to data to complete a logical framework.

6.REFERENCES
[1] J. J. NGANG BILOUNGA. Méthode de Conception des

Systèmes d'Information.[Online]. Available :
« https://www.google.tn/url?sa=t&rct=j&q=&esrc=s&source
=web&cd=1&cad=rja&uact=8&ved=0ahUKEwiw-
ajv8JDLAhVHaRQKHXYhC7IQFggZMAA&url=http%3A
%2F%2Fwww.foad-
mooc.auf.org%2FIMG%2Fpdf%2Fcours_mcsi.pdf&usg=AF
QjCNGurzasr7tSEzqEplipRdFroAc6CA&bvm=bv.11527709
9,d.bGQ » (Accessed 2015-02-19).

[2] M. Pipattanasomporn, H. Feroze, and S. Rahman. Multi-Agent
Systems in a Distributed Smart Grid: Design and Implementation. In
Power Systems Conference and Exposition (PSCE). Seattle.
IEEE 2009. pp. 1-8.

[3] M.N. LAKHOUA Analysis and Modelling of Industrials Systems in
order to develop an Information System. In Research Challenges
in Information Science. 2009. Fez. IEEE Third International
Conference on pp. 403-408.

[4] C. ROLLAND, A. FLORY. Nouvelles perspectives des
systèmes d'information. In congrès 90 de l'Association
informatique des organisations et systèmes d'information et
de décision. 1990, Paris, Editiond Eyrolles. P 3-40.

[5] G. GUERARD, S. BEN AMOR, A. BUI. Approche système
complexe pour la modélisation des Smart Grids.

[6] C. PETERMANN, S. BEN AMOR, A. BUI et
al.Optimisation de Smart Grid: d'un modèle intégratif vers
une simulation multi-agents autonomique. In Modélisation
Agents pour les Systèmes Complexes. 2013. Lille.

[7] E. COUDERT, J.P. GIRAUD, J. MONTGOLFIER (eds.).
Guide d'utilisation de 'Imagine' - Analyse Systémique et
Prospective de Durabilité. Blue Plan n°3. Mars 2006. ISBN:
2-912081 - 17-3.

[8] C. ACHEROY, H. HADJAJ-CASTRO. Méthode de
planification par objectif (PIPO, PPO, PPPO, ZOPP).
Creative Commons belgique Attribution. Octobre 2006.

[9] CEN-CENELEC-ETSI Smart Grid Coordination Group.
Smart Grid Reference Architecture. November 2012.

[10] C. BELET CESSAC. Analyse du cadre réglementaire de
l’accès au réseau des producteurs d’électricité à partir
d’énergies renouvelables en Tunisie - Etude de préfaisabilité
sur les axes de développement. June 2014. Tunis.

[11] Y. K. PENYA, J. C. NIEVES, A. ESPINOZA et al.
Distributed Semantic Architecture for Smart Grids. In
Energies 2012. pp 4824-4843.

[12] J. MIRANDA, J.BORGES, M. J. G. C. MENDES et al.
Development of a multi-agents management system for an

intelligent charging network of electric vehicles. 18th IFAC
World Congress. August 28 - September 2, 2011. Milano.

[13] S. BOU GHOSN, P. RANGANATHAN, S. SALEM et al. Agent-
orineted Designs for a Self Healing Smart Grid. In Smart Grid
Communications (SmartGridComm). 2010. First IEEE
International Conference on pp. 461-466.

[14] S. MOHAN, K. BHALERAO, S. A. KHAPARDE. A
Review of Self healing applications in Smart Grids. In Fifth
International Conference on Power and Energy Systems.
October, 2013. Kathmandu, Nepal.

[15] D. SUTANTO, D. YE, M. ZHANG. Design of an Intelligent
Self-Healing Smart Grid using a Hybrid Multi-Agent
Framework. In JOURNAL OF ELECTRONIC SCIENCE
AND TECHNOLOGY, VOL. 9, NO. 1, MARCH 2011. pp
17-22.

[16] D. VON OHEIMB. IT Security architecture approaches for
Smart Metering and Smart Grid. Siemens Corporate
Technology, Munich, Germany.

[17] National Institute of Standards and Technology (NIST).
NIST Framework and Roadmap for Smart Grid
Interoperability Standards, Release 3.0. February 2014.

[18] J. DEDRICK, Y. ZHENG. Information Systems and Smart
Grid: New Directions for the IS Community. In iConference.
2013. Fort Worth, TX, USA.

[19] V. C. GUNGOR, D. SAHIN, T. KOCAK et al. Smart Grid
Technologies: Communication Technologies and Standards.
IEEE TRANSACTIONS ON INDUSTRIAL
INFORMATICS, VOL. 7, NO. 4, NOVEMBER 2011.

[20] V. Vyatkin, G. ZHABELOVA, N. HIGGINS et al. Standards-
enabled Smart Grid for the Future EnergyWeb. In Innovative
Smart Grid Technologies (ISGT). 2010. Gaithersburg. pp. 1-
9.

[21] B. BENAOUDA. La Communication Sans Fil dans un
Réseau Electrique Intelligent (Smart Grid) - Méthodologie
de Développement. Informatique. Université du Québec à
Montréal. 2013.

[22] V.K. SOOD, D. FISCHER, J.M. EKLUND et al.
Developing a Communication Infrastructure for the Smart
Grid. In Electrical Power & Energy Conference (EPEC).
Montreal. 2009. pp. 1-7.

[23] W. WANG, Y. XU, M. KHANNA. A survey on the
cmmunication architectures in smart grid. In Computer
Networks 55. 2011. pp 3604-3629.

[24] S. CHEBBI. Production - Transport et Distribution d'Energie
- Notions de base sur les réseaux électriques. Université
vertuelle de Tunis.

[25] N. BEETY. Analysis: Smart Meter and Smart Grid
Problems. Second Edition. December 2012.

[26] G. MINATI. Introduction à la systémique.
[27] Définition systémique et approche systémique | L'approche

systémique. [Online]. Available : « http://www.approche-
systemique.com/definition-systemique/ ». (Accessed 2014-
10-20).

[28] Saifur Rahman, Manisa Pipattanasomporn, and Yonael Teklu.
Intelligent Distributed Autonomous Power Systems (IDAPS). In
Power Engineering Society General Meeting. Tampa. IEEE
2007. pp. 1-8.

[29] E. GAULIN. Approche Analytique et Approche Systémique
| L'approche systémique. [Online]. Available :
« http://www.approche-systemique.com/approche-
systemique/approche-a... ». (Accessed 2014-10-20).

[30] UML 2. [Online]. Available : « http://laurent-
audibert.developpez.com/Cours-UML/?page=mise-en-oeuvre-uml ».
(Accessed 2015-12-17).

[31] Modèle en spirale. [Online]. Available :
« https://fr.wikipedia.org/wiki/Modèle_en_spirale ». (Accessed
2015-12-17)

250 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

250 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

A JSON-Based Markup Language for Deploying Virtual
Clusters via Docker

Scott Morton, Salvador Barbosa, Ralph Butler and Chrisila Pettey

Department of Computer Science, Box 48
Middle Tennessee State University

Murfreesboro, Tennessee, USA

Abstract - Our team develops large cluster-based projects
(often using MPI). At times it is necessary to simulate a
cluster and perhaps even two or more networked clusters.
This occurs particularly in a testing mode where one or
more of the clusters may be involved in production work. It
is possible to run multi-rank MPI jobs on a laptop or
desktop, but it is more problematic to simulate a cluster or a
multi-cluster environment. The technique presented in this
paper uses Docker containers, a JSON system configuration
description, and Python scripts to quickly and easily build
and run user defined networked systems on any of the three
major host operating systems - Linux, Mac OS X, and
Microsoft Windows.

Keywords: Virtual Clusters, Linux Containers, Docker,
JSON, Python

1 Introduction
 While configuring a cluster, or a network, requires an
understanding of networking (e.g. IP addresses) and
operating systems concepts (e.g. host-based authentication),
most users of high performance clusters are not the system
administrators and never have to concern themselves with
the potentially tricky issues involved in configuring them.
However, at times, it would be convenient to simply use a
virtual cluster that is a replica of the actual hardware. Such
situations might include, the system not being available due
to scheduling, or the need to run a test of a simple change to
a piece of software, or the system is inaccessible due to
being in a remote location. Whatever the situation, we need
to run some experiments, and we cannot run them on the
actual hardware. In this instance, it would be nice to have a
virtual replica of the system on our laptop. However,
configuring a virtual system on our laptop suddenly puts us
in the position of being the system administrator.

 In order to alleviate the hurdles faced in such a
situation, we proposed a markup language for describing
virtual clusters in 2005 [1]. That system based on XML,
QEMU, VDE, TUN/TAP, and Python was called VCML,
was fairly simple to use, and was almost indispensable in
debugging software running on various, sometimes
confusing, hardware configurations. However, over time,
technologies changed. Some software is no longer

supported, while newer, more powerful software becomes
available. With the popularity of JSON [5], and the advent
of Linux Containers [6] and Docker [3], we have developed
a new virtual system configuration software system,
VCML2. This paper describes VCML2 in section 2 and
illustrates its use with some example clusters in section 3.

2 Virtual Cluster Markup Language
 To understand the proposed system for describing and
deploying virtual clusters, it is necessary to be somewhat
familiar with the underlying software that is combined to
create VCML2. This underlying software, including Linux
Containers, Docker, and JSON will be discussed in section
2.1. Then section 2.2 will present the basics of VCML2

2.1 Support Software
 The project presented in this paper is about building
virtual clusters on a host computer running any of the three
most common operating systems: Linux, Mac OS X, and
Microsoft Windows. The prior project, VCML, used virtual
machine software, but this project, VCML2 uses container
software. When using container software, it is important to
understand two notions: image and container. An image is
a passive or static entity like an executable program. It
consists of an executable operating system configured with
services and other programs. A container, on the other
hand, is an active entity, like a process. In fact, it actually
runs as a process on the host operating system. The
container process runs the operating system and provides
the services and programs made available from the
associated image.

 Linux Containers [6], LXC, are the Linux
community's attempt to create their own version of a
technology that has been around for several years. Two
older examples are Solaris Zones [9] and FreeBSD Jails [4].
Linux containers being relatively new are still in
development and have not fully addressed some issues such
a security. However, they formed the basis for early
Docker implementations, and so they are included here.
Docker has since moved on to their own model.

 Docker containers [3] almost immediately proved
extremely useful, and were quickly deployed in many
production shops. One good reason for the popularity of

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 251

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 251

ISBN: 1-60132-444-8, CSREA Press ©

Docker is that it is much less resource intensive to spin up
hundreds of containers on a single system, than to do
something similar with virtual machines. Additionally, it is
possible to develop software in a container on a test
machine and then deploy the container with the developed
software onto the production machine - thereby ensuring
that the production environment is identical to the
development environment. Since there is such a large
Docker community, their containers are rapidly becoming
production level software. For these reasons, we chose
Docker containers as the basis for VCML2.

 JSON [5] originally became a de-facto standard
among web developers because of its simplicity and its
obvious relationship to JavaScript. Mostly due to the
simplicity, its popularity spread to other communities, e.g.
Python, where it has largely displaced markup languages
such as XML. Indicative of this popularity is that Python
has a JSON module that is part of the standard distribution.
Thus it was an obvious choice for our project for the system
configuration language.

 Python [7] is a scripting language. Given the
ubiquitous nature of Python, it seems unnecessary to
explain our use of it in this project. That is particularly true
given Python support for JSON. Our current project
consists of a handful of scripts that can be used to build,
deploy, and manage virtual clusters configured with
VCML2 and running on Docker containers. These scripts,
on average, consist of about 120 lines of executable code
each. We make those scripts freely available, not only to
our colleagues and students, but also to anyone who would
like a copy.

2.2 VCML2
 As was stated previously, the goal of this project was
to be able to build a wide range of containers - from a
couple of nodes on a single network to multiple clusters
with routing between them. Additionally, we wanted to be
able to do this on a single computer running any of Linux,
Mac OS X, or Microsoft Windows. Specifically, we
wanted to provide an easy to use toolset that would quickly
create a virtual system for the user on the host platform of
their choice. We envisioned that the user would sketch the
configuration they wanted to deploy, express that
configuration in a simple markup language, and then run a
script that would build and deploy that configuration. We
also wanted to provide management functionality in terms
of routing and users and some file system support.

 To accomplish this goal, we first developed the
language that allows the user to express the configuration in
a JSON file. To keep the language simple, there are only
two types of entities - networks and nodes. Each type of
entity has a set of attributes.

 Networks have a name, a driver, and a subnet attribute.
The name attribute is used by the nodes to specify which
networks nodes are on. It makes configuring the Docker
containers more convenient. With regards to the driver
attribute, we currently have only tested with bridge, but it
can use any that the user has support for on their system.
The subnet is represented in CIDR notation.

 Nodes ultimately become containers that represent
computers and/or routers attached to a network. In the
JSON configuration file they have the following attributes:
name, hostname, list of networks to which they are
attached, image, volume, and router. As with networks, the
name attribute is a Docker convenience, and we usually
have it match the hostname, although that is not a necessity.
The image is the virtual disk from which the OS and all its
facilities will be booted. It should be noted that
executables, such as MPI, that are resident on the host
platform can be mounted into the virtual cluster nodes,
instead of having to do an install into the node. The volume
is a colon-separated pair giving the volume on the physical
host that is mounted on the container when it boots up. The
volume attribute is optional. router is a boolean attribute
that indicates if the node performs routing functions
possibly in addition to being a compute node.

 Once the desired JSON system configuration file is
created, the Python dbuild script can be used to build and
start the system running. dbuild must build the networks,
build the nodes (containers) from their associated images,
and make sure the nodes are attached to the appropriate
networks. After building the system, dbuild will configure
routing. Any node that is a router has to have routing
turned on and have their routing tables set up. For nodes
that are not routers, there has to be minimal setup of their
routing tables (which network/router to use). In setting up
the routing tables, our assumption is that the user wants
each node to be able to communicate with all nodes it could
possibly communicate with in the given configuration. So,
if there is any communication path between two nodes
(even going through multiple routers), we set up routing
tables. If the user does not want routing to occur between
two nodes, then they must set the routing tables by hand or
else reconfigure the system. For example, in Figure 1, m2
is configured as a router. This means that m1 can
communicate with m4 or m3 through m2. If the user does
not want m1 to be able to communicate with m3, then they
either need to reconfigure the system as in Figure 2 where
there is no m2, or if they need m2 as a compute node, then
they could configure the system as in Figure 3. If the user
does not want to change the configuration and does not
want the default routing tables provided by our scripts, then
they will need to configure their own routing tables.

252 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

252 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

Figure 1. All nodes can communicate with each other.

Figure 2. Node m1 and node m3 cannot communicate with

each other.

Figure 3. All nodes can communicate with nodes m2 and
m4, but m3 and m1 cannot communicate with each other.

 In addition to routing you might want root to be able
to ssh among nodes. Therefore dbuild sets that up
automatically. Also, you might want to be able to run
something such as MPI, and you don't want the user to have
to set up ssh keys, etc., so dbuild also sets up host-based
authentication.

 The final item that must be considered in building a
system is the image that will be run on a container. There
are three possibilities for obtaining an image. The first, and
simplest, is to just use the image we provide which will
automatically be pulled from an online repository when you
do the first build of a system. If, however, you wanted to
work offline, and wanted to make sure you had our image

prior to building the system, then you could do an
appropriate docker pull command. And finally, if you want
to build your own image, then we provide a small
Dockerfile file that you can customize and use in an
appropriate docker build command.

 As was mentioned previously, there are five small
Python scripts for building, deploying, and managing the
virtual systems. dbuild, as described above, fully builds out
and starts the configuration described in a config.json file.
dstop will leave the configuration built, but stops the
execution of the nodes including the routers. dstart can be
used to start the configuration up again if it is already built.
dremove does a stop and removes all the components -
nodes and networks. duseradd can be used to add a user to
all currently active nodes providing the same valid user id
on the running container as you have on the host machine.

. Admittedly, you could do the same thing we provide
with VCML2 by installing and using the extra tools
provided by Docker and Weaveworks [10] (e.g., Weave,
Compose, Swarm, etc.). However, along with the need to
install and configure additional software, we found there to
be a fairly steep learning curve to using these tools.
Additionally, Docker Compose - the tool that allows you to
specify the system configuration - is not supported for
Microsoft Windows. Unlike the Docker tools, to use
VCML2 you install Docker, download our five Python
scripts, create your JSON configuration file, run dbuild, and
the system is ready to be used. For a simple network, this
whole process can be done in under ten minutes. And it
will work on Microsoft Windows, Linux, and Mac OS X.
The following section demonstrates VCML2's simplicity.

3 Example Virtual Systems
 Shown below (Figures 4 - 6) are three architecture
models. The simplest is the single cluster with two nodes
on a shared network. The second example is of two
separate systems on disparate networks that are capable of
communicating with each other through a shared router.
The final example is of four separate systems with two
shared routers. The left column of the table contains the
diagram of the proposed system, while the right column
contains the JSON necessary to describe it.

 In the JSON of Figure 4 there is only one network,
netA, in the NETWORKS section. In the NODES section,
both m1 and m2 are described along with the networks
accessible to them and whether or not they are nodes
capable of acting as routers. In figure 5, node m2 is
somewhat more interesting in that it is configured as a
router that is attached to both netA and netB. In figure 6,
m5 is an example of a node where dbuild must be careful in
setting up the routing table, because m5 can access two
routers.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 253

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 253

ISBN: 1-60132-444-8, CSREA Press ©

{
 "NETWORKS": {
 "netA": {
 "driver": "bridge",
 "subnet": "172.16.0.0/26"
 },
 },

 "NODES": {
 "m1": {
 "hostname": "m1",
 "image": "vcml/vcml2",
 "router": false,
 "networks": ["netA"],
 "volume": "/nfshome/home/scott:/home/scott"
 },
 "m2": {
 "hostname": "m2",
 "image": "vcml/vcml2",
 "router": false,
 "networks": ["netA"],
 "volume": "/nfshome/home/scott:/home/scott"
 },
 }
}

Figure 4. Single Cluster architecture with two nodes and a shared network and the JSON file that describes it.

254 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

254 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

{
 "NETWORKS": {
 "netA": {
 "driver": "bridge",
 "subnet": "172.16.0.0/26"
 },
 "netB": {
 "driver": "bridge",
 "subnet": "172.16.0.64/26"
 },
 },

 "NODES": {
 "m1": {
 "hostname": "m1",
 "image": "vcml/vcml2",
 "router": false,
 "networks": ["netA"],
 "volume": "/nfshome/CNL/home/scott:/home/scott"
 },
 "m2": {
 "hostname": "m2",
 "image": "vcml/vcml2",
 "router": true,
 "networks": ["netA","netB"],
 "volume": "/nfshome/CNL/home/scott:/home/scott"
 },
 "m3": {
 "hostname": "m3",
 "image": "vcml/vcml2",
 "router": false,
 "networks": ["netB"],
 "volume": "/nfshome/CNL/home/scott:/home/scott"
 },
 }
}

Figure 5. Two separate systems capable of communicating via a shared router and the JSON that describes them.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 255

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 255

ISBN: 1-60132-444-8, CSREA Press ©

{
 "NETWORKS": {
 "netA": {
 "driver": "bridge",
 "subnet": "172.16.0.0/26"
 },
 "netB": {
 "driver": "bridge",
 "subnet": "172.16.0.64/26"
 },
 "netC": {
 "driver": "bridge",
 "subnet": "172.16.0.128/26"
 },
 "netD": {
 "driver": "bridge",
 "subnet": "172.20.0.0/24"
 },
 },

 "NODES": {
 "m1": {
 "hostname": "m1",
 "image": "vcml/vcml2",
 "router": false,
 "networks": ["netA"],
 "volume": "/nfshome/home/scott:/home/scott"
 },
 "m2": {
 "hostname": "m2",
 "image": "vcml/vcml2",
 "router": true,
 "networks": ["netA","netB","netC"],
 "volume": "/nfshome/home/scott:/home/scott"
 },
 "m3": {
 "hostname": "m3",
 "image": "vcml/vcml2",
 "router": true,
 "networks": ["netC","netD"],
 "volume": "/nfshome/home/scott:/home/scott"
 },
 "m4": {
 "hostname": "m4",
 "image": "vcml/vcml2",
 "router": false,
 "networks": ["netB"],
 "volume": "/nfshome/home/scott:/home/scott"
 },
 "m5": {
 "hostname": "m5",
 "image": "vcml/vcml2",
 "router": false,
 "networks": ["netC"],
 "volume": "/nfshome/home/scott:/home/scott"
 },
 "m6": {
 "hostname": "m6",
 "image": "vcml/vcml2",
 "router": false,
 "networks": ["netD"],
 "volume": "/nfshome/home/scott:/home/scott"
 },
 }
}

Figure 6. A complex system including four disparate systems with two shared routers and the associated JSON description.

256 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

256 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

4 Conclusions
 For all the times when it would be convenient to
simulate a system of networked routers and compute nodes on
your desktop or laptop, we have provided a relatively simple,
easy technique for specifying, building, deploying, and
managing possibly complex virtual systems using Docker
containers. The technique, called VCML2 uses JSON with
only two entities for describing the system configuration.
Building, deploying, and managing the specified system is
accomplished with five small Python scripts that we make
freely available to the community. VCML2 works on Linux,
Mac OS X, and Microsoft Windows - a necessity to us as all
three operating systems are in use by different members of
our team, consisting of both faculty and students. While
VCML2 was created to assist our team with research, one
side benefit was that it is also useful for teaching. A Docker
image alone can be used to replace the practice of having a
virtual machine either on a jump drive [2] or via download [8]
that makes it possible for students to do assigned programs in
an environment comparable to whatever the professor needs
for the class. However, VCML2 gives the added ability of
allowing students to configure networked systems that can be
used for a variety of purposes - for example to run MPI jobs,
to run client-server jobs, or to learn about setting up routing
to name a few.

 While we had anticipated needing to change VCML2 so
that it had the ability to run distributed virtual networked
systems - i.e. nodes located on multiple physical hosts - so far
it has met all of our needs. In the future, if we find that we
need to add that capability, then we will investigate the
technologies that we used in the prior VCML project and
contrast them with newer technologies that may exist.

5 References
[1] Butler, Ralph, Lowry, Zach, and Pettey, Chrisila, “Virtual

Clusters,” Proceedings of the Eighteenth International
Conference on Systems Engineering, August 2005, pp.
70 - 75.

[2] Butler, Ralph, Pettey, Chrisila C., and Lowry, Zach,
“CPVM: Customizable Portable Virtual Machines,”
Proceedings of the 44th ACM Southeast Conference,
March 2006, pp. 616 - 619.

[3] Docker. https://www.docker.com/
[4] FreeBSD Jails

https://www.freebsd.org/doc/handbook/jails.html
[5] JSON http://www.json.org/
[6] Linux Containers. https://linuxcontainers.org/
[7] Python https://www.python.org/
[8] Sayler, A., Grunwald, D., Black, J., White, E., Monaco,

M., "Supporting CS Education via Virtualization and
Packages: Tools for Successfully Accommodating
"Bring-Your-Own-Device" at Scale," Proceedings of the
45th ACM Technical Symposium on Computer
Science Education, 2014, pp. 313-318.

[9] Solaris Zones
http://docs.oracle.com/cd/E36784_01/html/E36848/zones
.intro-1.html#scrolltoc

[10] Weaveworks https://www.weave.works/company/

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 257

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 257

ISBN: 1-60132-444-8, CSREA Press ©

Abstract -- For high performance application software
development on massive parallel processing, existing
languages have to be augmented with new constructs and
paradigms that exploit massive parallel computing and
distributed memory models while retaining the user-
friendliness. Available object-oriented languages for massive
parallel computing such as Chapel, X10 and UPC++ exploit
data and task parallelism at the process level in the PGAS
memory model. However, they do not support automated
class-template distribution, object migration and user-
transparent dynamic growth of regions for load balancing.
This paper describes new constructs that extends C++ with
distributed class template distribution, dynamic regions,
object cloning, object migration; and integrates data
parallelism, task parallelism, automated class-template
distribution, and object migration. The integration supports
MIDD (Multiple Invocation Distributed Data) programming
paradigm for user-transparent invocations of multiple copies
of methods concurrently working on different data elements of
the same distributed data.

Keywords: C++, distributed programming, high
productivity, object-mobility, programming language,
PGAS.

1 Introduction

Currently available supercomputers have peta-scale
(1015 instruction/second) capability. It is anticipated that by
the end of the next decade, we will have exa-scale (1018
instructions/second) computing power. This processing
power needs to be fully exploited to solve big data problems
in health science, weather science, agricultural science, space
science, managing the Internet of things and modeling the
population-related problems at the global and regional scale
that will generate huge amount of data. Productivity is the
most important issue that faces high performance computing
[14] against the backdrop of existing software library and the
existing familiarity with the programming paradigms.

 The processing of big data will require the development
of user-friendly high-productivity programming tools that
exploit massive number of processors. The development of
such programming tools should be paradigm-friendly, and
should be downward compatible to use the existing libraries.
The development of such tools requires the integration of
user-friendly paradigms such as event-based programming,

object-oriented programming, web-based programming in
addition to task parallelism and data parallelism currently
being exploited on high performance computers.

Task parallelism splits a task into multiple subtasks that
run on different processing elements concurrently; data
parallelism broadcasts the same instructions to multiple
processing elements to perform same operations on multiple
data elements concurrently.

 Currently available languages supporting large scale
concurrent processing exploit data parallelism and task
parallelism including spawning of multiple threads, and their
integration. However, massive parallel processor
configurations and available memory models pose issues
about how to map problems and tasks among the processors
to preserve efficiency due to synchronization introduced to
handle race conditions and message passing overheads.

 PGAS (Partitioned Global Address Space) is a popular
model [3, 12, 17] for high-performance computing. In PGAS,
the distributed address space is divided into multiple local
spaces connected through a global address space. The local
spaces support multiple concurrent threads each with their
own data area and a common shared space called heap. The
communication between local address spaces is done by using
global address space and message passing. Compared to MPI
(Message Passing Interface) that suffers from excessive
overhead of message passing, the use of local memory and
distributed partitioned address space improves the
productivity and execution-efficiency in PGAS model [15].

 Currently available high-performance and high-
productivity computing languages on PGAS such as Chapel
[8, 9], X10 [10, 11] and UPC++ [18] support global
partitioning of distributed data like distributed arrays, SPMD
(Single Program Multiple Data) paradigm, task parallelism,
asynchronous computation and invocation of remote threads.
UPC++ also supports runtime distributed memory allocation.
While these languages support object-oriented programming,
they do not incorporate object distribution and mobility; and
remote method invocation described in Emerald [4, 14], Java
and other agent based languages [3]. These languages also do
not support dynamic distribution of objects and class
templates for dynamic load management. In addition, they do
not support the constructs that can be derived by the
integration of object-oriented programming, task parallelism
and data parallelism.

This paper describes extension of C++ by developing new
programming constructs and paradigms that integrate object-

Distributed Objects based Programming Constructs
for PGAS based High Performance C++

Salwa D. Aljehan and Arvind K. Bansal
Department of Computer Science, Kent State University, Kent, OH 44242, USA

258 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

258 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

oriented programming, compile-time user-transparent
distribution of class-templates to a set of processing nodes,
object migration, object cloning, task parallelism and data
parallelism. The integration of these programming paradigms
supports MIDD (Multiple Invocation Distributed Data) in
which a distributed class-template is automatically distributed
to a region (possibly dynamic) that is set of logical processing
nodes called places in X10 [10, 11], and multiple copies of
methods in the same distributed-class are invoked
concurrently to process different elements of distributed data.
 The major contributions in this research are as follows:

1. Incorporation of sets of static as well as dynamic
logical regions that can dynamically grow and shrink
to accommodate load balancing in a user-transparent
manner.

2. Incorporation of different types of classes for
distributed computing: distributed class, local class
and Emerald like flat class [4].

3. New programming constructs integrating object-
mobility, cloning and distribution; task parallelism;
and data parallelism for C++ and UPC++ languages.

4. Incorporation of higher level primitives such as
monitor as in Emerald [4].

 The rest of the paper is organized as follows. Section 2
describes the PGAS model, current languages for PGAS
model and object-mobility in Emerald. Section 3 presents the
abstract concepts. Section 4 describes the extended data
abstractions. Section 5 presents the extended control
abstractions. Section 6 illustrates the new constructs using
examples. Section 7 presents related work. The last section
concludes the paper.

2 Background
 The “Partitioned Global Address Space” (PGAS) [3,

12] memory model has been proposed to overcome the
limitations of the shared and distributed memory models.
Overall address space is partitioned into multiple local spaces
each having their own heap. These local spaces are connected
through a shared global address space. Multiple threads
execute locally, and can access remote locations
asynchronously. The PGAS model supports SPMD control
model. The data structures in this model can be distributed
across address spaces. A distributed array is a data-space in
shared memory such that different subranges are mapped on
different places of local activities to exploit data-parallelism.

2.1 PGAS based high-productivity languages

There are many PGAS based high-productivity
programming languages such as Chapel [8, 9], X10 [10, 11],
UPC++ [18] that support object-oriented programming.

Chapel is a multithreaded high productivity computing
language. It adopts a global view model, which means that a
program starts with one thread, and based on the construct
written by the programmer new threads can be spawned [3].
Data distribution and logical partitions are static and user-

defined to map onto different architectural configurations.
Chapel supports both data parallelism and task parallelism.
Parallel and distributed data structures are supported by
shared address space that connects various local partitions.
The constructs forall-loop, domains, ranges and array are the
basic data parallel features in Chapel.

X10 [10, 11] is a statically typed, object-oriented, high-
performance and high-productivity computing language. It
extends a sequential core language using features called
places, activities, clocks, arrays, and struct types [11]. Like
Java and C++, X10 makes use of classes, structs, and
interfaces. X10 supports single inheritance [11]. Methods
can be inherited and overridden in the subclasses. The
reserved words “private”, “public” and “protected” are used
to control the visibility of a method.

Central to X10 is the concept of a place, a collection of
data and resident lightweight threads called "activities" [10].
Places map to a local processor, and contain a bounded
number of activities and a bounded amount of storage.
Creation of multiple places allows cluster-level parallelism.
X10 introduced the notion of asynchronous activities for
creating threads locally and remotely. X10 uses atomic
statements to secure data-values limited only to the local
scope. Since multiple processes need to be coordinated, it is
necessary for X10 to use multiple barriers.

UPC++ [18] provides three main functionalities: 1) an
object-oriented model for C++ language; 2) a collection of
parallel programming constructs, not included in C++, to
support high performance execution; and 3) a transition to
PGAS programming through interoperability with other
similar systems. The execution model of UPC++ is “Single
Program Multiple Data” (SPMD). UPC++ implements
asynchronous features through distributed-memory systems
similar to C++11 standard asynchronous libraries for shared-
memory systems. Synchronization is provided using
primitives such as barriers, fences and locks to facilitate
parallel programming. Remote function invocation allows
asynchronous remote function with a single thread ID that is
a place or a group of threads.

2.2 Emerald

 Emerald is a flat object-based programming language
[4, 14] that supports object-mobility [3] in a networked
environment. Location-independent addressing allows
object-mobility from node to node [14]. All entities are
treated as objects. Concurrency is supported between objects
and within an object. Variables shared by operations are
synchronized using high level control-abstraction monitor.
Emerald’s runtime system is responsible for the location and
transfer of control to the target object.

2.3 Notations

We denote the data and control abstractions in italics
and reserved words within double quotes “..”. The non-
terminal symbols in the data-abstractions are enclosed in
angular-brackets, are written in italics, and are self-

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 259

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 259

ISBN: 1-60132-444-8, CSREA Press ©

explanatory. For example, the non-terminal symbol
<distributed-class> discusses about the declaration of
distributed class. The grammar rules are written using
extended BNF when required: sets are written using curly
brackets {…}, optional use is written using square brackets [
..]; alternatives are written using parenthesis and vertical bar
(..|..); multiple occurrences are denoted by {…}+.

3 Abstract concepts
The motivation behind the proposed DOPC++

(Distributed Object based Programming for C++) language is
to incorporate high level user-friendly constructs that provide
integration of object distribution and mobility with task and
data parallelism while retaining the user-friendliness in the
PGAS model. DOPC++ introduces a high level abstraction,
and hides the low level object mapping on physical processors
to increase the usability and user-friendliness.

DOPC++ supports: 1) distributed creation and dynamic
migration of objects; 2) communication between remote
objects; 3) cloning of distributed objects; and 4) extension of
the notion of region in Chapel. Unlike static regions in
Chapel, the regions in DOPC++ can dynamically grow and
shrink. It describes distributed class, distributed methods,
dynamic migratory methods that can be remotely invoked for
dynamic load balancing. User-transparent dynamic object
migration facilitates load balancing and performance-
improvement without loss of any functionality.

In DOPC++, a place is a logical computational entity
like a virtual processor that is mapped to physical processor
statically or dynamically. A region is a set of places and/or
sub-regions that allow mapping of distributed data-
abstractions.

Regions could be static or dynamic. A static-region is
fixed during compile time. A static region is mapped to
physical processors at compile-time, and does not grow or
shrink during execution. Declaring a static-region allows
every place in that region to get a copy of a distributed class-
template and each place within this region will create a copy
of the object in response to object-creation instruction.
Unlike other PGAS based languages, DOPC++ also supports
dynamic regions. A dynamic-region grows and shrinks at
runtime based upon: 1) the computational need of the
executing task; 2) resource-availability of the HPC system;
and 3) load-balancing of the physical processors. Operating
system performs runtime allocation of the places and the
physical processors for dynamic regions.

Dynamic regions are bounded by a problem space. A
problem space is a fixed set of places in which a dynamic
region can grow. The rationale for the boundedness of
dynamic regions is to limit the spread of very large problems
that may affect the execution efficiency of other tasks. A
dynamic region grows and shrinks during runtime, but cannot
go beyond the problem space.

A distributed data-abstraction is distributed within a
region with compiler and operating system deciding the
granularity based upon: 1) available memory; 2) processing
speed; 3) processor load; and 4) processor configuration table.

System level utilities inserted by the compiler take care
of the mapping at run time. Objects methods and data
elements migrate between processors dynamically in a
dynamic region to balance the process-load. Within a
dynamic region every place gets a copy of the class-template
automatically. Similarly, the object-creation checks the
number of places at runtime, and invokes objects in every
place of the dynamic region concurrently. The use of
dynamic-regions allows migration of the objects, methods
and data elements potentially to any place for load balancing.
Multiple objects could be invoked concurrently within a
region, and each can work on an array of data elements
independently.

A region provides an added scope rule for the visibility
of objects and classes. A class declared within a region is
visible only in the places included in the region. This also
limits migration of objects to places within the region where
a class has been declared. However, for dynamic regions, the
migration pattern of objects changes dynamically. For the
dynamic regions, the operating system keeps a mapping table
of logical places and regions to the physical processors.

Places exchange information with other places using
PGAS shared address space, and require constructs to access
address space in remote places within the same region. The
migration of objects can be place-to-place, many places–to-
one place, one place-to-many places, region-to-place, or
region-to-region. When an object migrates from one place to
another place <place> in the region <region> then the runtime
system utilities will creates an alias
<region>.<place>.<object-name> to point to the same object.
The migration of objects from a region requires a broadcast
of the code part of the object to the destination-region from
one of the places in the source region. The data part of an
object migrates based upon the type of mapping and available
physical processor-load.

Communication between objects is done through a
remote invocation. The parameters that are passed during
invocations can be objects themselves. Parameter passing
uses call by object-reference or call by object move as in
Emerald [14]. In call by object-reference, the identifier that
allows accessing the object remotely is passed as parameter.
Call by move involves migration of an object to the remote
place. In addition, the interface of any method to execute
remotely is done by accessing the object.

DOPC++ supports different type of classes: 1)
distributed-class; 2) flat-class as used in Emerald [14]; 3)
local-class; and 4) regular C++ class. A distributed-class
has distributed data elements and/or distributed methods. The
scope of a distributed-class is within a declared region. A
user gives an initial region to start with.

A method embedded in a flat-object is invoked at the
time of creation of the object. Active objects can share
information using a blackboard. A blackboard is a
synchronized shared address space that is shared between
multiple threads. A shared blackboard can be in the global
shared address space or it could be distributed among the
places in a region. A local-blackboard is shared between
local threads in a place. A distributed-blackboard is shared

260 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

260 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

between the threads in the places within a static or dynamic
region. A global-blackboard is shared between all the threads
among multiple regions. Local-blackboards are used for
sharing information between threads within the same place.
All other processes sharing the blackboard are suspended to
achieve synchronization until the writing process finishes
writing on the blackboard. The synchronization-construct
monitor ensures mutual-execution in the shared blackboard to
serialize writing. The lock for a local blackboard is kept
locally in the same place where the thread activities are taking
place. The lock for a distributed-blackboard is kept in a
shared address-space. When a thread writes on a blackboard,
the lock is first captured to ensure that no other thread can
write on the blackboard.

4 Extended data abstractions
A distributed data abstraction is declared after the

specification of problem space and region (or sub-regions).
Problem-space is declared as “problem space” {<place-
identifiers>}+. A region is declared as “region” <region-
name> {<place-identifiers>}+. A distributed-data-
abstraction is declared as [<synchronization-type>]
<compile-type><data-abstraction><location-type>.

Compile-type could be static or dynamic. Distributed-
class or distributed data structures could be distributed, local,
or global. Location-type specifies the region or place where
data-abstraction is located.

4.1 Distributed-class declarations

A static distributed-class is distributed in a static-region
declared at compile-time. The name of the distributed-class
is unique within a region, and an object-name is qualified by
the place-identifier to make it unique. For dynamic
distributed-class, a class-template is created in every place of
the initial dynamic region at compile-time. A class-template
migrates at run time as the region grows or shrinks based on
the load balance. In the case of nested classes (inheritance),
whole class-hierarchy migrates. A flat-class allows objects to
be easily distributed since there is no hierarchy. A class is
considered hierarchical by default. A local-class resides in a
specific place. An object-instance of a local-class is created
in the same place without any possibility of object-migration.
One motivation of using the local-class is to reduce the
overhead of migration.

A distributed-method can be declared in a region or a
specific place. A method-declaration in a region results in a
copy of the method in each place within the region. The
location-name of a method-declaration can be different than
the location-name of the corresponding class-declaration if
the methods are invoked remotely.

A <distributed-class> is declared as (“static”| “dynamic”)
(“distributed” | “flat” | “local”) <class-declaration> <region-
declaration>. A <flat-Class> is declared as “flat” <class-
declaration> <region-declaration>. A <local-class> is
declared as “local” <class-declaration><place-declaration>.

A <distributed-method> is declared as “distributed-

method” <method-declaration> “in” (“region” | “place”)
<location-name>. A distributed-method is declared as <data-
type> followed by the <method-name> that is followed by the
<typed parameter-list>.

4.2 Distributed data structures declarations

Elements of a distributed-array (or distributed-vector)
are split in different places of the region based upon user-
defined granularity. Granularity is the number of consecutive
elements in an array (or vector) that occur in the same place.
The granularity for each dimension can be different.

A <distributed-array> (or <distributed-vector>) is
declared as “distributed” (or “global”) followed by “array” (or
“vector”) followed by <array-name> (or <vector-name>).
Array-name is followed by dimension-list. Dimension-list is
a non-empty sequence of the form
<dimension>:<granularity>. The distributed-array (or
distributed-vector) declaration is followed by location
declaration (“in region” | “in place”) <location-name>. A
global-array is allocated in the shared partitioned space.

The elements of distributed-array are processed in
parallel using multiple invocations of a method in the resident
copies of the objects in different places of the region. This
paradigm is called MIDD (Multiple Invocation Distributed
Data). When a distributed-array is defined as “global” then
the elements are shared in global address-space.

4.3 Shared data and synchronization

A <distributed-blackboard> is declared by “distributed
blackboard” <blackboard-name> “at region” <region-
name>. A<local-blackboard> is declared as “blackboard”
<blackboard-name>. A <global-blackboard> is declared as
“global” <blackboard-name>.

Data-objects are synchronized by tagging with a reserved
word “synchronized” preceding the declared data-objects.
The granularity of the synchronization is at the data
abstraction level. A monitor control-abstraction is used to
provide mutual exclusion of statements working on
synchronized data-objects. All the statements occurring
within the block following the reserved word "monitor" form
the critical section. The use of monitor secures the lock(s)
associated with the corresponding synchronized data-objects
before executing the embedded methods. Monitor creates a
queue for the processes waiting to access the corresponding
synchronized data-object(s). This restriction imposes
sequentiality. For SPMD operations on distributed data-
objects, this restriction can cause serious efficiency overhead.
To avoid this, the default mode for aggregate data-
abstractions is asynchronous.

5 Control abstraction extensions
Major extensions are migrate, remote invocation of

methods, clone, get-object-location, move-object, remotely-
delete-object, get-remote-value, blackboard-put, blackboard-
get in addition to SPMD statements working on distributed-

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 261

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 261

ISBN: 1-60132-444-8, CSREA Press ©

arrays, distributed-vectors, and distributed-blackboards.
The purpose of object migration is to distribute the

workload. During object-migration, code-template is
broadcast to all the places in the destination region. However,
data-area of the object is migrated to balance the data
distribution in limited number of places of the destination
region. Object-migration is declared as “migrate” <object-
name> “to” (<region-name> | <place-name>).

A remote-method is needed to perform some computation
to balance the computational load or to use a specific resource
present at a specific place. A remote-method is invoked using
<place-name>.<object-name>.<method-name> ().

Cloning is used to duplicate an object for migration to
another place or region. However, the object should be clone-
able to execute this method. An object that is an instance of
a local-class is fixed in one place and cannot be copied to
another place. Cloning of a distributed-object is declared as
“clone” <object-name> “in” (<region-name>|<place-
name>) “to” (<region-name> | <place-name>).

The possible name-conflict during migration of objects or
cloning of objects across regions needs two global tables for
each region: 1) a table of object-names for each region that is
checked when an object is migrated to avoid duplication; and
2) a correspondence table between the object-name in the
source-region and the object-name in the destination region.

There are two control-abstractions that support SPMD
paradigm: 1) standard forall statement that works on every
element of a distributed-array (or distributed-vector)
concurrently; and 2) foreach statement that works on
elements in a subset concurrently. A foreach statement is
written as “foreach”<variable-name> “in” (<set> | <region-
name>). The set could also be a set of places marking a sub-
region. Foreach construct invokes multiple copies of a
method distributed in a set of places in a region. For
communication between places, objects can be passed as
arguments.

DOPC++ uses three additional built-in methods: size,
length and Indexset. The method size computes the number
of elements in a distributed-array that can be allocated to each
place by knowing the place capacity and load. The method
length returns the number of allocated elements of dynamic
distributed array (or vector) at each place. Indexset computes
the set of indices of a distributed array element in a place.

6 Programming examples
In this section, we illustrate extended constructs using

two examples. Example 1 illustrates static-region, MIDD
(Multiple Invocation Distributed Data), object-distribution,
object-migration, and the use of distributed-arrays and static
distributed-class. Example 2 illustrates dynamic-region,
object-cloning, synchronization using monitor, static
distributed-class and dynamic distributed-class. We have
used extended C++ syntax in the programs.

6.1 Example 1 - object migration and MIDD

The program in Figure 1 illustrates distributed class and
object migration from a place in a region R = {1, 2, 4, 5} to
another region S = {3} to utilize a printer resource available
in the region S. Declaring a “static distributed-class” in
region R allows every place in region R to get a copy of the
distributed class-template dictionary. Four class templates,
one for each place within the region R are created
transparently by a compiler. The program has a distributed
array word and four functions: main, lookup, store and
printData. The program creates distributed objects for static
distributed-class dictionary, and calls store and lookup
methods in a region R = {1, 2, 4, 5}, and the data is printed in
a different region S = {3}.

Figure 1. Illustrating object migration and MIDD

The function lookup looks at various places
concurrently. The number of spawned threads depends upon
operation system according to the load balancing. The
function store reads one word at a time, and stores in the
distributed array word. The function store spawns concurrent

problem space = {1, 2, 3, 4, 5};
region R = {1, 2, 4, 5}; region S = {3};

static distributed class dictionary at region R
 { Public:
 int n = 100; gs = 25; // gs is grain-size of word in a place
 dynamic string distributedArray word[n] at region R;

 distributed void store ()
 { cout<< “enter new words”;
 for (i = 0; i < gs; i++) cin >> word[i]; // read words
 }

distributed void lookup () in region R
 { string w;
 Boolean found = false;
 Cout << ” what is your word to look up:”; cin >> w;
 foreach i in indexset(word) // search word
 if (word [i] == w) { found = true; break;}
 If (found) return(‘found’); else return(‘search fails’);
 }

 remote printData () in region S
 { int i, m = 0;

 foreach p in R // for each place in region R do
 { m = p.word.size(word.length);

 for (i = 0; i < m; i++) // read the words
 cout << word[i]; // print the words

 } // end foreach
 }
 } //end distributed class dictionary

int main ()
 { int value;
 Boolean keepLooping = true;
 new dictionary d; // create object d in every place in R;
 cout << ”1 to store new words; 2 to look up; 3 to print:”;
 while (keepLooping) // read the commands
 { cin >> value;
 switch (value)

 { 1: store (); break;
 2: lookup (); break;
 3: keepLooing = false; d.printData(); break;

 } // end reading the commands
 } //end main

262 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

262 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

threads in all four places of the region R. Migration creates
an object in the place 3 that will print the distributed array
word iteratively. The object d migrates to place 3, which has
a printer resource. The remote-method printData spawns a
thread to iteratively print the dictionary words.

The main program invokes three functions: 1) store() to
store the words in the distributed array word; 2) lookup() to
lookup a given word in the distributed array word; and 3) print
function printData() to print the data. The main program
terminates after printing the dictionary. The functions are
invoked based upon the input value value.

The statement “dictionary d” in main program
automatically creates multiple instances of objects 1.d, 2.d,
3.d, 4.d, one in each place, within the region R. Each copy of
the object works concurrently on the distributed array word
during the execution of functions store() and lookup().
The local Boolean variable found is used to break the foreach
loop after the successful search. To insert new words inside
the distributed array word, multiple invocations for all objects
are done concurrently. A built-in method size computes the
number of words allocated in each place.

6.2 Example 2 – cloning and synchronization

The program in Figure 2 illustrates dynamic distributed-
class, object-cloning and synchronization. The program has
a dynamic distributed-class math in a dynamic region R with
four initial places {1, 2, 3, 4}. Multiple copies of the class-
template math, one for each place within the dynamic region
R, are created automatically after the execution of the
statement math m in the main program. The method m.add()
and the distributed array num are created in the places 1, 2,
and 3 constituting the sub-region R1.

The distributed array num within the region R1 is added
by spawning concurrent threads in different places in the
region R1. The result is stored in the local copy of the variable
accum in each place of the region R1. The values stored in
local copies of accum are added to the synchronized global
shared variable sum to get the cumulative total; concurrent
threads are spawned in the places within the region R1. The
synchronization between concurrent active threads is
maintained using a monitor.

A static distributed class test is created in the region R2
to derive even or odd numbers using isEvenorOdd(). Cloning
of the object m in the main program creates distributes copies
of the object testarray in the places {6, 7, 8}. The method
isEvenorOdd() filters and stores the numbers in two
distributed arrays: even and odd. The built-in method size
retrieves the number of data-elements of a distributed-array
stored in a place based upon the reconfiguration table. The
built-in method length gives the number of data-elements in
the distributed-array.

In the method isEvenorOdd, monitor is needed for the
shared synchronized index-variables j and k that are being
updated by multiple concurrent threads, each trying to update
distributed-arrays even and odd concurrently.

Figure 2. Illustrating object cloning and synchronization

7 Related works
Three types of high-productivity languages are being

developed: 1) MPI based languages such as mpiJava [2] and
PObC++ [16]; and PGAS based languages such as Chapel [8,
9], X10 [10, 11], and UPC++ [17]; 3) CSP (Communicating
Sequential Processes) based such as OCCAM [13] and
Rain[7].

In mpiJava [2] and PObC++ [16], the integration of MPI
and object-oriented programming supports: 1) point-to-point
communication; 2) process topologies; and 3) dynamic
process creation. PObC++ also supports automatic dynamic
process spawning when a flat-object is created. However, the
overhead of message passing is an issue in MPI. MPI based
languages do not provide the same type of productivity as
PGAS based languages [15]. In addition, MPI based
languages cannot exploit the data abstractions based upon the
shared partitioned space.

problem space = {1, 2, 3, 4, 6, 7, 8};
dynamic region R = {1, 2, 3, 4};
dynamic region R1 = {1, 2, 3};
synchronized int sum = 0; // stores final sum-value

dynamic distributed class math in dynamic region R
{ Public:

 int n = 20, gs = 7; // gs is grains-size of num in a place
 static int distributedArray num[n:gs] in region R1;

 distributed void add (distributedArray <int> num)

in region R1;
 int i = 0, accum = 0; // initialize variables
 { gs = num.size(num.length);
 for (i = 0; i < gs; i++) accum = accum + num[i];

 monitor { sum = sum + p.accum;} // end monitor
 } // end method add
 }//end class

 region R2 = {6, 7, 8};
 static distributed class test at region R2
 { Public:
 synchronized int j, k = 0;
 int n = 20 , gs = 8;
 static distributedArray even [n:grain] at region R2;
 static distributedArray odd [n:grain] at region R2;
 static distributedArray remainder[n:grain] at region R2;

 distributed void isEvenorOdd(distributedArray <int> A);
 { gs = A.size(A.length);
 forall (i = 0:gs)
 { remainder[i] = A[i] %2;
 monitor

{ if (remainder[i] == 0) even [j++] = A[i];
 else odd[k++] = A[i];

 } //end monitor
 } //end forall

 } //end method isEvenorOdd
 } //end distributed-class test

int main ()
{ int value;
 new math m in region R; // create object m in region R
 m.add(m.num); // add the element in the array num

new mClone = clone m in region R2; // clone m
new test testarray in region R2;
testarray.isEvenorOdd(mClone.num); // test

} // end main

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 263

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 263

ISBN: 1-60132-444-8, CSREA Press ©

Both UPC++ [18] and PObC++ [16] extend C++11
constructs to incorporate task and data parallelism while
retaining object-oriented programming constructs of C++11.
However, they lack: 1) object distribution; 2) object cloning;
3) object migration; and 2) integration of object-distribution
with task and data parallelism.

Multiple integrations [5, 7] of C++ with OCCAM [13]
have been proposed to integrate object-oriented programming
in C++ with CSP-like parallelism [6]. However, these
integrations do not support object-migration, object-cloning
and automated distribution of distributed-class templates.

This paper extends the work of prior PGAS based
languages [8, 9, 10, 11, 18] by introducing: 1) the concept of
static and dynamic regions for better user-transparent load
balancing; 2) integration of object-distribution and object-
migration to exploit MIDD (Multiple Invocation Distributed
Data) paradigm; 3) dynamic growth of regions; and 4)
separation of logical notion of place and regions from
physical processors. Many new constructs have been
developed using these extension of concepts.

8 Conclusion and future work
We have extended the PGAS based high performance

computing language development effort by integrating class-
template distribution, object-mobility and remote method
invocation with task and data parallelism. We have also
extended the concept of region to include dynamically
growing and shrinking regions to take care of load balancing.
The integration of object-distribution and remote method
invocations supports MIDD (Multiple Invocation Distributed
Data) programming paradigm where multiple methods can be
automatically distributed to work on distributed data-
elements of an object in a distributed class. The separation of
logical place and regions from physical processors provides
more architecture independent high level programing that we
believe will provide better adaptability of object-oriented high
performance computing to desktop as high performance
computing moves to desktops.

We need to investigate other process invocation
paradigms in the models integrating CSP derivatives and C++
[5, 7] to look into alternate communication models. We are
also looking into developing a translator that can translate
these constructs to languages like UPC++ or X10. We are
extending the language further for integrating event-based
programming with object distribution.

9 References

[1] S. Aljehan. "DOPC++ - Extending C++ with Distributed
Objects and Object Migration for PGAS". MS Thesis,
Department of Computer Science, Kent State University,
Kent, Ohio, USA, November 2015.

[2] M. Baker, B. Carpenter, G. Fox, S. H. Ko and S. Lim.
"MPIJava: An Object-oriented Java Interface to MPI"; in
Parallel and Distributed Processing, Vol. No. 1586,
Lecture Notes in Computer Science, Springer Berlin
Heidelberg, pp. 748-762, 1999.

[3] A. K. Bansal. "Introduction to Programming
Languages". 1st edition, 2nd print, CRC Press: Boca
Raton, FL, USA, 2014.

[4] A. P. Black, N. C. Hutchinson, E. Jul and H. M. Levy,
"The Development of the Emerald Programming
Language"; Proceedings of the Third ACM SIGPLAN
Conference on History of Programming Languages, pp.
11-1 - 11-47, 2007.

[5] D. Boles. "Parallel Object-Oriented Programming with
QPC++"; Structured Programming, Vol. No. 14, 158 -
172, 1993.

[6] S. D. Brookes, C. A. R. Hoare and A. W. Roscoe. "A
Theory of Communicating Sequential Processes";
Journal of the ACM, Vol. No. 31, Issue No. 3, 560-599,
1984.

[7] N. Brown. "Rain: A New Concurrent Process Oriented
Programming Language"; Communicating Process
Architectures, P. Welch, J. Kerridge, and F. Barnes eds,
IOS Press, 237-251, 2006.

[8] B. L. Chamberlain, D. Callahan and H. P. Zima. "Parallel
Programmability and the Chapel Language";
International Journal of High Performance Computing
Applications, Vol. No. 21, Issue No. 3, 291-312, 2007.

[9] B. Chamberlain. "A Brief Overview of Chapel".
http://chapel.cray.com/papers/BriefOverviewChapel.pdf
, 2013. (last accessed March 20, 2016).

[10] P. Charles, C. Grothoff, V. Saraswat, et. el. "X10: An
Object-oriented Approach to Non-uniform Cluster
Computing"; ACM Sigplan Notices, vol. No. 40, 519-
538, 2005.

[11] S. Crafa, D. Cunningham, V. Saraswat et. el.
"Semantics of (Resillient X10)"; European Conference
on Object-Oriented Programming (ECOOP 2014),
Springer Berlin Heidelberg, 670-696, 2014.

[12] J. Diaz, C. Munoz-Caro and A. Nino. "A Survey of
Parallel Programming Models and Tools in the Multi and
Many-core Era"; IEEE Transactions On Parallel and
Distributed Systems, Vol. No. 23, 1369-1386, 2012.

[13] M. Elizabeth and C. Hull. "Occam-A Programming
Language for Multiprocessor Systems"; Computer
Languages, Vol. No. 12, Issue No. 1, 27-37, 1987.

[14] E. Jul, H. Levy, N. Hutchinson and A. Black. "Fine-
grained Mobility in the Emerald System"; ACM
Transactions on Computer Systems (TOCS), Vol. No. 6,
109-133, 1988.

[15] J. Kepner, "HPC Productivity: An Overarching View";
International Journal of High Performance Computing
Applications, Vol. No. 18, 393-397, 2004.

[16] E. G. Pinho and F. H. de Carvalho Jr.. "An Object-
oriented Parallel Programming Language for Distributed
Memory Parallel Computing Platforms"; Science of
Computer Programming, vol. 80, pp. 65-90, 2014.

[17] S. Spetka, H. Hadzimujic, S. Peek and C. Flynn, "High
Productivity Languages for Parallel Programming
Compared to MPI, " in DoD HPCMP Users Group
Conference, 2008. DOD HPCMP UGC, pp. 413-417,
2008.

[18] Y. Zheng, A. Kamil, M. B. Driscoll, et. el., "UPC++ : A
PGAS Extension for C++, " in the Proceedings of the
IEEE 28th International Parallel and Distributed
Processing Symposium, pp. 1105-1114, 2014.

264 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

264 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

FREDDO: an efficient Framework for Runtime Execution of
Data-Driven Objects

George Matheou1 and Paraskevas Evripidou1

1Department of Computer Science, University of Cyprus, Nicosia, Cyprus

Abstract— In this work we introduce FREDDO, an effi-
cient object-oriented implementation of Data-Driven Mul-
tithreading (DDM) model, and its evaluation on a 32-core
machine using a suite of ten benchmarks. FREDDO is a
C++ framework that supports efficient data-driven execution
on conventional processors. FREDDO incorporates new
features like recursion support and simpler programming
methodology to the DDM model. Our aim is to create a
robust system that can scale to HPC level.

The performance evaluation shows that FREDDO scales
well and tolerates scheduling overheads and memory la-
tencies effectively. We have also compared our system with
the DDM-VM, the OpenMP and the OmpSs frameworks on
several benchmarks with different characteristics. The com-
parison results show that the DDM systems achieve better
results than OpenMP and OmpSs. Furthermore, FREDDO
achieves similar results with DDM-VM despite the fact
that the former provides more functionalities. Additionally,
our object-oriented approach reduces the size of the DDM
applications to half.

Keywords: Data-Driven, Multithreading, Object-Oriented Pro-

gramming, Recursion Support

1. Introduction
The switch to multi-core and many-core systems has

created the need for efficient parallel processing in main-

stream computing [1]. Conventional multiprocessor systems

based on control-flow architectures suffer from long memory

latencies and waits due to synchronization events [2]. As

the number of cores increases in the future, traditional

ways for achieving large scale computations will need to

evolve from legacy models such as OpenMP and MPI

[3], [4], [5]. Thus, efficient parallel programming models

and architectures must be developed that will be able to

efficiently keep all the available resources busy [6]. Such a

model is the Data-Driven Multithreading (DDM) model [7]

of execution.

DDM is a non-blocking multithreading model that allows

Data-Driven scheduling on conventional processors. Data-

Driven scheduling enforces only a partial ordering as dic-

tated by the true data-dependencies which is the minimum

synchronization. This is very beneficial for parallel process-

ing because it exploits the maximum possible parallelism.

In this work, we present the FREDDO framework, an

optimized object-oriented C++ implementation of DDM.

The main contributions of this work can be summarized as

follows:

• We introduce a new optimized implementation of the

DDM model which provides several improvements over

the previous implementations. Our aim is to create a

robust framework that can scale to HPC level. Thus, the

first step is to implement and evaluate our framework on

a single-node system. Our next goal is the development

of an efficient distributed system.

• We are providing the basic functionalities for sup-

porting recursion in the DDM model. As a proof of

concept, we have implemented three famous recursive

algorithms: Fibonacci, Knight’s Tour and NQueens.

• We improve the programmability of DDM programs

through object-oriented programming.

FREDDO is evaluated on different number of cores and

problem sizes (Small, Medium and Large) using a suite of

ten benchmarks on a 32-core AMD processor. The evaluation

showed that FREDDO scales very well across the range of

the benchmarks and it achieves very good speedups. For the

Large problem size, FREDDO achieves an average speedup

of 3.98 out of 4, 7.79 out of 8, 15.33 out of 16 and 29.48

out of 31.

We have also compared our system with the DDM-

VM [8], [9], the OpenMP [10] and the OmpSs [11], [12]

frameworks. Our framework outperforms the OpenMP and

OmpSs especially in the case of high-complexity applica-

tions. Finally, we observed that FREDDO achieves similar

results with DDM-VM, despite the fact that the former pro-

vides more functionalities. Our new programming interface

reduces the size of the DDM applications to half, compared

to the size of the DDM-VM applications.

2. Data-Driven Multithreading
The Data-Driven Multithreading (DDM) [7] is a non-

blocking multithreading model that allows data-driven

scheduling on sequential processors. A DDM thread (called

DThread) is scheduled for execution after all of its required

data have been produced, thus no synchronization or com-

munication latencies are experienced after a DThread begins

its execution.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 265

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 265

ISBN: 1-60132-444-8, CSREA Press ©

Fig. 1: Example of a DDM program.

In DDM, a program consists of the DThreads’ code, the

Thread Templates and the Dependency Graph. A Thread

Template holds information about a DThread. The Depen-

dency Graph describes the consumer-producer dependencies

amongst the DThreads.
DDM is utilizing the Thread Scheduling Unit (TSU),

a special module that is responsible for scheduling the

DThreads in a data-driven manner. The TSU uses the Thread

Templates and the Dependency Graph to schedule DThreads

for execution when all of their producer-threads completed

their execution. This ensures that all data needed by a

DThread is available, before it is scheduled for execution.
The DDM model was evaluated by several software imple-

mentations. The first implementation, the Data-Driven Net-

work of Workstations (D2Now) [7], was targeting Networks

of Workstations. That was followed by two other implemen-

tations, the TFlux [13] and the Data-Driven Multithreading

Virtual Machine (DDM-VM) [8], [9], [14]. Both TFlux

and DDM-VM were targeting data-driven concurrency on

sequential multiprocessors. DDM was also evaluated by a

hardware implementation [15], [16] where the TSU was

implemented as a hardware peripheral for sequential multi-

core systems.

2.1 The Context and Nesting Attributes
The DDM’s tagging system has been based on the U-

Interpreter’s tagging system [17]. The tagging system of

DDM enables multiple instances of the same DThread to

co-exist in the system. More specifically, it maps the tag

of the U-Interpreter into a unique 32-bit integer, called the

Context. This enables concurrency in re-entrant constructs,

such as loops and function calls.
The DDM model allows the parallelization of nested loops

that can be mapped into a single DThread by using the

Nesting attribute [8], [16]. This attribute is a small number

that indicates the loop nesting level for the DThreads that

implement loops. FREDDO supports three nesting levels,

i.e. the DThreads are able to implement one-level (Nesting-

1), two-level (Nesting-2) or three-level (Nesting-3) nested

loops. If a DThread does not implement a loop, its Nesting

attribute is set to zero (Nesting-0).

2.2 The DDM Dependency Graph
The DDM Dependency Graph is a directed graph where

the nodes represent the DThreads and the arcs represent the

data-dependencies amongst them. In this work we categorize

the DThreads as simple or multiple. A simple DThread has

only one instance (i.e., its Nesting=0 and Context=0). A

multiple DThread has Nesting>0 and several instances where

each instance has a unique Context value. Each instance of

a DThread is paired with a special value called Ready Count

(RC) that represents the number of its producers.

An example of a DDM program is shown in Figure 1.

On the left side of the figure, the pseudo-code of a synthetic

application and its partitioning into five DThreads are de-

picted. From this code it is possible to observe a number of

dependencies. DThreads T2, T3 and T4 depend on T1 which

is responsible for initializing the data. Also, T5 depends on

T2, T3 and T4 since T5 prints the output results generated

by them. These dependencies form the DDM Dependency

Graph of this application which is presented on the right

side of Figure 1.

The RC values are depicted as shaded values next to the

nodes. The RC value is initiated statically and is dynamically

decremented by the TSU each time a producer completes its

execution. A DThread is deemed executable when its RC

value reaches zero, such as the DThread T1.

266 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

266 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

In DDM, the operation used for decreasing the RC value

is called Update. Update operations can be considered as

tokens that are moving from the producer to consumer

instances through the arcs of the graph. Multiple Updates
are introduced in order to decrease multiple RC values of a

DThread at the same time. This reduces the number of tokens

in the graph. For instance, DThread T1 sends a Multiple

Update to DThread T2 in order to spawn all its instances,

instead of sending 64 single Updates.

The three for-loop blocks are fully parallel and are mapped

into three different DThreads. Each instance of a DThread is

identified by the Context and it executes the inner command

of the block. T2 has 64 instances (with Contexts from 0 to

63), T3 has 256 instances (with Contexts from 0,0 to 15,15)

and T4 has 512 instances (with Contexts from 0,0,0 to 7,7,7).

DThread T5 depends on all the instances of DThreads T2-

T4, thus its RC is equal to 832. Moreover, the instances

of DThreads T2-T4 have RC=1 because they have only one

producer (the DThread T1). When T1 finishes its execution a

Multiple Update will be sent in each consumer-thread. As a

result, all the instances of DThreads T2-T4 will be executed

concurrently.

3. The FREDDO Framework
FREDDO is a robust implementation of DDM that pro-

vides extra functionalities compared to the previous software

DDM systems, like, support for recursion, larger Context

values and better programming interface. C++11 was se-

lected as the programming language in order to take advan-

tage of object-oriented techniques such as maintainability,

re-usability, data abstraction and encapsulation. Also, new

features of C++11 are used such as range-based loops,

initializer lists, Lambda expressions and atomic operations.

FREDDO allows efficient DDM execution on multi-core and

many-core systems by utilizing three different components:

the TSU, the Kernels and the Runtime Support.

3.1 New features and Improvements
3.1.1 Extending the Context Attribute

The Context attribute of DDM was encoding up to three

nesting levels in a 32-bit long word. The coding and decod-

ing of Context values was cumbersome and it was difficult

to have nested loops with large indexes. FREDDO supports

three different Context sizes: 32-bit, 64-bit and 96-bit. In this

work we are using 96-bit Context values for our evaluation.

3.1.2 Introducing dynamically allocated data-structures
in TSU

The data-structures of the previous TSU modules were

implemented using static memory allocation in order to

increase the performance. This forces the programmer to

recompile the TSU code when:

• The number of cores that will be utilized by the TSU

has to be changed.

• The queues (called Input Queues) that hold the Update

commands are full.

• The Synchronization Memory (SM) is full. SM is

responsible for holding the RC values of the DThreads.

In order to address the aforementioned limitations we have

implemented the majority of the TSU’s data-structures by us-

ing dynamic memory allocation. We have also introduced an

auxiliary data-structure, the Unlimited Input Queue (UIQ),

for holding the Updates in case the Input Queues are full.

3.1.3 Reducing the memory allocated by the SM module
In the previous DDM implementations, an RC value is

allocated for each instance of each DThread. As a result,

SM was holding thousands or even millions of RC values.

We observed that it is not necessary to allocate RC values for

DThreads that have RC value equal to one. The instances

of such DThreads can be scheduled immediately for exe-

cution when Update operations are received for them. This

approach reduces the memory usage of DDM applications

significantly as well as it accelerates the Update operations.
As an example, consider a for-loop with one million

iterations that is able to be parallelized with a DThread that

its RC value is equal to one. In this case our framework will

avoid allocating one million RC values, i.e. 4MB of data

(notice that an RC is a 32-bit integer value). Furthermore,

this approach is vital for hardware DDM implementations

[15], [16] where the size of the SM is limited.

3.1.4 Improving the DDM programmability
a) Object-Oriented Approach: In the previous DDM im-

plementations the programs were developed using C macros

[8], [9]. This approach was very restrictive and complicated

since special macros had to be used for: (i) marking the

boundaries of the DThreads, (ii) creating the DThreads’ IFPs

and (iii) extracting the index of the loops from Context

values, regarding the Nesting value. Notice that IFP (In-

struction Frame Pointer) is a pointer to the address of the

DThread’s first instruction. In this work, these functionalities

are provided automatically.
FREDDO provides a C++ API (Application Programming

Interface) that enables the programmers to develop DDM

applications. The API includes a set of runtime functions

and classes which are grouped together in a C++ namespace

called ddm. The user is able to create and manage DThreads

by just creating and accessing objects of special C++ classes.

The development process is more efficient which reduces

the programming effort. In this paper we present only a

small subset of the API’s functionalities due to the lack of

space. An interested reader can find a full documentation of

FREDDO as well as programming examples in [18].
We are providing four basic C++ classes for creating,

updating and removing DThreads: SimpleDThread, Multi-

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 267

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 267

ISBN: 1-60132-444-8, CSREA Press ©

pleDThread, MultipleDThread2D and MultipleDThread3D.

These classes correspond to DThreads with Nesting-0,

Nesting-1, Nesting-2 and Nesting-3 respectively. Further-

more, these classes require the RC value to be specified by

the programmer in their constructors.

b) Introducing DFunctions: In the previous software

DDM systems the code of all DThreads had to be placed in

the same function/place. This is because the runtime support

of these systems uses label and goto statements for executing

the code of the DThreads. Thus, the programmers were

restricted from having parallel code in different files as well

as in different functions.

In FREDDO, the code of the DThreads can be embodied

in any callable target (called DFunction) like: (i) standard

C++ functions, (ii) Lambda expressions and (iii) functors.

This methodology allows us to have parallel code anywhere

in a DDM program.

Each DFunction has one input argument, the Context

value. Different Context structures (Context, Context2D and

Context3D) are provided based on the type of the DThread

class. Notice that the DFunctions of the DThreads with

Nesting-0 do not have input arguments since the Context

value is always zero.

3.1.5 Supporting Recursion

The envelopment of DThreads’ code in DFunctions en-

ables us to create parallel DThreads for function calls.

This is useful for supporting recursion in the DDM model.

FREDDO is the first DDM implementation that supports

recursion. Our approach for providing recursion support in

DDM was firstly presented in [19]. FREDDO provides three

different classes for recursion support:

• RecursiveDThreadWithContinuation: a special tem-

plate class which provides functionalities for algorithms

with multiple recursion. It is used when the number of

instances of a recursive function is known at compile-

time.

• RecursiveDThread: a special class that allows paral-

lelizing recursive functions that their number of in-

stances is not known at compile time. This class al-

locates/deallocates the arguments and the return values

of the instances at runtime. It can be used for different

types of recursion, such as, linear, tail, and so on.

• ContinuationDThread: it can be used in combination

with RecursiveDThread to implement algorithms with

multiple recursion (or any similar algorithms).

3.1.6 Automatic computation of the RC values

In the previous DDM systems the RC value of each

DThread was required to be specified by the programmer. In

this work we allow two different approaches for specifying

the RC values of the DThreads:

1) Like the previous DDM systems, the RC values are

given by the programmers. For this purpose the basic

DThread classes have to be used.

2) The RC values will be computed at runtime based on

the producer-consumer relationships of the DThreads.

For supporting this new feature we have introduced a

special data-structure in the TSU, the Pending Tem-

plate Memory (PTM).

For the latter approach we are providing the Fu-

tureDThread Classes (FutureSimpleDThread, FutureMulti-

pleDThread, FutureMultipleDThread2D and FutureMulti-

pleDThread3D). These classes are derived-classes of the

basic DThread classes which do not require an RC value

to be specified in their constructors. Initially, the Thread

Templates of the future DThreads will be stored in PTM

and their RC values will be computed at runtime by the

TSU module.

3.2 The FREDDO Architecture
Our implementation allows data-driven execution on top

of any commodity OS. This allows the execution of DDM

and non-DDM applications simultaneously. This key-feature

is supported by the Kernels and the Runtime system. The

overall architecture of the FREDDO framework is depicted

in Figure 2.

3.2.1 The Thread Scheduling Unit (TSU)

a) The TSU’s storage units: The TSU uses four main units

for the storage, the Template Memory (TM), the Pending

Template Memory (PTM), the Graph Memory (GM) and

the Synchronization Memory (SM). The TM contains the

Thread Template of each DThread. The PTM contains the

Thread Templates that their RC values will be computed

at runtime using the consumers of each DThread. The GM

contains the consumers of each DThread. The SM contains

the RC values of the different instances of the DThreads. A

DThread that implements a loop has multiple instances, one

for each iteration.

FREDDO supports static and dynamic SM. Static SM is

used when the number of a DThread’s instances is known at

compile time (accessing an RC entry is a direct operation).

Dynamic SM is used when there is no information about the

number of instances of a DThread (accessing an RC entry

is an associative operation). A different SM is allocated for

each DThread in order to use exactly the amount of RC

values that is required for each DThread.

b) TSU-Kernels Communication: The communication be-

tween the TSU and the Kernels is done through the Output

Queues (OQs), the Input Queues (IQs) and the Unlimited

Input Queues (UIQs). A triplet of IQ, UIQ and OQ is

attached in each Kernel. The TSU dispatches the ready

DThreads to the Kernels, through the OQs.

268 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

268 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

Fig. 2: The FREDDO’s overall architecture.

After a Kernel completes the execution of a DThread, it

sends Update commands to the consumers of the completed

DThread. An Update consists of the Thread ID (TID) and

the Context of the DThread that is going to be updated.

Particularly, an Update operation indicates that the RC value

that corresponds to the TID and Context attributes will be

decreased by one. The Updates are stored in the IQs. If an

IQ is full, then the Updates are stored in the associated UIQ.

The UIQ is an efficient variable-length queue.

c) The TSU’s Updating and Scheduling operations: The

TSU fetches the Updates from the IQs/UIQs in a round-

robin fashion. For each Update, the TSU locates the Thread

Template of the DThread from the TM and decrements the

RC value in the SM which is associated with the DThread

(Static or Dynamic). If the RC value of any DThread’s

instance reaches zero, then it is deemed executable and it

is sent to the Scheduler. An instance of a DThread that is

ready for execution is called Ready DThread and consists of

the TID, the IFP and the Context attributes.
The Scheduler is responsible for assigning the ready

DThreads to the Output Queues (OQs). The DThread in-

vocations are distributed to the Kernels in order to achieve

load-balancing.
Prior the DDM scheduling, the TSU fetches the Pending

Thread Templates (PTTs) from PTM and it computes their

RC values based on the producer-consumer relationships of

the DThreads. More specifically, the TSU performs three

algorithmic steps:

• Step 1: For each PTT allocate an RC Value and set it

to 0

• Step 2: Get the consumers of each DThread from GM.

For each consumer of each DThread:

– If the consumer is located in PTM, increase its RC

Value by 1

– If the consumer is not located in PTM, ignore it

• Step 3: For each PTT of PTM

1) If the PTT’s RC Value=0, set it to 1

2) Remove the PTT from PTM and store it in TM

3) If the PTT’s RC Value > 1, allocate a new SM

(static or dynamic)

3.2.2 The Kernels

A Kernel is a POSIX Thread (PThread) that is pinned in

a specific core until the end of the DDM execution. This

eliminates the overheads of the context-switching between

the Kernels in the system. The Kernel is responsible for

executing the ready DThreads that are stored in its Output

Queue (OQ). In FREDDO, m Kernels are created, where m
is the maximum number of DThreads that can be executed

in parallel in a system. Usually, m is equal to N − 1, where

N is the number of cores of the system. This is because one

of the cores is reserved for the execution of the TSU code.

3.2.3 The Runtime System

The Runtime system enables the communication between

the Kernels and the TSU through the Main Memory. It

enqueues the Update commands in the IQ/UIQ pairs and

it dequeues the ready DThreads from the OQs and forwards

them to the Kernels. The Runtime is also responsible for

loading the Thread Templates, the Pending Thread Templates

and the Consumers of the DThreads, for creating and running

the Kernels, and for deallocating the resources allocated by

DDM programs.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 269

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 269

ISBN: 1-60132-444-8, CSREA Press ©

4. Programming Methodology
In this section we show how the program of Figure 1

can be implemented in DDM using FREDDO. Listing 1

depicts one possible implementation of the algorithm. In

this example we show a combination of basic and future

DThread classes.

1 # i n c l u d e < d t h r e a d s . h>
2 # i n c l u d e < f u t u r e _ d t h r e a d s . h>
3 us ing namespace ddm ; / / Use t h e ddm name−s p a c e
4
5 / / D e c l a t e DThread o b j e c t s
6 Fu tu reS impleDThread * t 1 ;
7 F u t u r e M u l t i p l e D T h r e a d * t 2 ; Mul t ip leDThread2D * t 3 ;
8 Fu tu reMul t i p l eDThread3D * t 4 ; SimpleDThread * t 5
9

10 / / D e c l a r e G lo ba l V a r i a b l e s (Arrays , e t c .)
11
12 void t 1 _ c o d e () { / / I n i t i a l i z i n g A r r a y s . . .
13 / / Update t h e i n s t a n c e s o f consumers
14 t2−>u p d a t e (0 , 63) ; / / M u l t i p l e Update
15 t3−>u p d a t e ({ 0 , 0 } , { 1 5 , 1 5 }) ; / / M u l t i p l e Update
16 t4−>u p d a t e ({ 0 , 0 , 0 } , { 7 , 7 , 7 }) ; / / M u l t i p l e Update
17 }
18
19 void t 4 _ c o d e (Context3D c) {
20 auto x = c . Outer , y = c . Middle , z = c . I n n e r ;
21 D[x] [y] [z] = E [x] [y] [z] * F [x] [y] [z] ;
22 t4−>u p d a t e A l l C o n s () ;
23 }
24
25 void main () { / / I n i t i a l i z i a t i o n s goes h e r e . . .
26 ddm : : i n i t (NUM_KERNELS) ;
27 / / DTheads d e c l a r a t i o n s u s i n g s t a n d a r d f u n c t i o n s
28 t 1 = new Futu reS impleDThread (t 1 _ c o d e) ;
29 t 4 = new F u t u re M ul t i p l eD T hr e ad 3 D (t 4 _ c o d e) ;
30
31 / / DTheads d e c l a r a t i o n s u s i n g Lambda e x p r e s s i o n s
32 t 2 = new F u t u r e M u l t i p l e D T h r e a d ([&] (C o n t e x t c n t x) {
33 C[c n t x] = A[c n t x] + B[c n t x] ;
34 t5−>u p d a t e () ;
35 }) ;
36
37 t 3 = new Mult ip leDThread2D ([&] (Context2D c n t x) {
38 auto j = c n t x . Outer , k = c n t x . I n n e r ;
39 R[j] [k] = L [j] [k] * M[j] [k] ;
40 t5−>u p d a t e () ;
41 } , 1) ; / / 1 a t t h i s p o i n t i s t h e RC v a l u e
42
43 t 5 = new SimpleDThread ([&] () {
44 / / P r i n t R e s u l t s . . .
45 } , 832) ; / / 832 a t t h i s p o i n t i s t h e RC v a l u e
46
47 / / S e t t h e consumers o f each DThread
48 t1−>se tConsumers ({ t2 , t3 , t 4 }) ;
49 t2−>se tConsumers ({ t 5 }) ;
50 t3−>se tConsumers ({ t 5 }) ;
51 t4−>se tConsumers ({ t 5 }) ;
52
53 t1−>u p d a t e () ; / / D e c r e a s e t h e RC of T1
54 ddm : : run () ; / / S t a r t t h e DDM s c h e d u l i n g
55 d e l e t e t 1 ; . . . ; d e l e t e t 5 ;
56 ddm : : f i n a l i z e () ; / / D e a l l o c a t e R e s o u r c e s
57 }

Listing 1: DDM code of the program presented in Figure 1.

Additionally, we place the DThreads’ code in standard

C++ functions (for T1 and T4) and in Lambda expressions

(for T2, T3 and T5) in order to show the ability of our

framework to allow the DThreads’ code to be placed in

different callable targets.
The init runtime function (line 26) initializes the DDM ex-

ecution environment and it starts NUM_KERNELS Kernels.

For each DThread object we specify at least its DFunction.

For instance, in line 29, we specify only the DFunction for

DThread T4. Since we don’t specify the maximum indexes

of the loops the Dynamic SM will be used. Notice that

FREDDO provides additional constructors that allow the

users to use Static SMs [18].
Each DThread object can call several different types of

Update commands. An object is able to Update itself or

all its consumers. In both cases a user is able to specify a

Context or a range of Contexts if the DThread which is going

to be updated has Nesting>0. In the case of Nesting=0, there

is no need to specify the Context since it’s always zero. For

example, in line 40, T3 sends an Update to T5.
A Multiple Update decrements a range of RC values of

a DThread’s instances. For example, in line 14, T1 updates

the RC values of T2’s instances from Context=0 to 63. In

the T4’s code (line 22), T4 updates all its consumers. In this

example, T4 has only one consumer, the DThread T5.
After the DThreads’ declarations, the consumers of each

DThread are defined, using the setConsumers function

(lines 48-51). The run function is responsible for computing

the RC values of the pending Thread Templates (Future

DThreads) and for starting the DDM scheduling.
When the scheduling finishes, the DThreads are removed

from the TSU (line 55) using the delete operator of C++. Fi-

nally, all the resources allocated by the FREDDO framework

are deallocated by executing the finalize runtime function

(line 56).

5. Experimental Results
5.1 Experimental Setup

To evaluate FREDDO we have used a 32-core (with

Clustered Multi-Threading) HP server machine equipped

with 2 x 1.4GHz AMD 8-core Opteron 6276 processors

and 48GB of DDR3 RAM clocked at 1333MHz. Out of

the 32 cores, one is used to run the TSU, while the rest

are used for executing DThreads. Our benchmark suite has

ten applications. Figure 3 illustrates the characteristics of

all the benchmarks. The problem sizes are separated into

three categories: Small, Medium and Large. The last three

columns depict the sequential execution time (in seconds)

of each problem size of all benchmarks. The execution time

measurements were collected using the gettimeofday system

call. For the performance evaluation, all the experimental

results are reported as speedups. Speedup represents how

many times a certain parallel execution is faster than the

corresponding sequential execution. The baseline for the

speedup is the original sequential one, without any FREDDO

overheads.

270 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

270 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

Fig. 3: The benchmark suite characteristics.

Fig. 4: Performance scalability of FREDDO for different number of computation cores (Kernels) and problem sizes.

5.2 Performance Evaluation

In this work we performed a scalability study of the per-

formance for applications with different characteristics. Our

benchmark suite includes applications that are embarrass-

ingly parallel (like Swaptions and Blackscholes [20]), appli-

cations that are compute-bound like Trapez and applications

that have a combination of memory-bound and compute-

bound nature (like BMMULT). Additionally, benchmarks

with complex data-dependencies are selected (like LU and

Cholesky) as well as benchmarks with recursion. The bench-

marks with recursion were implemented using the Recur-

siveDThreadWithContinuation class.

We have evaluated the performance of our framework on

different number of cores and problem sizes. The evaluation

is shown in Figure 4. Four different Kernel configurations are

used: 4, 8, 16 and 31. The evaluation shows that FREDDO

scales very well across the range of the benchmarks and

it achieves very good speedups, especially in the Large
problem size. This is justified by the fact that, as the

benchmark’s execution time increases, the parallelization

overhead is amortized.

For the Large problem size, the blocked algorithms (BM-

MULT, Cholesky, Conv2D and LU), Swaptions, Blacksc-

holes and Trapez achieved almost the theoretical peak

in each configuration. For instance, the LU benchmark,

achieves the following speedups: 3.95 out of 4, 7.84 out of 8,

15.57 out of 16 and 30.41 out of 31. The recursive algorithms

ended up with lower speedups due to their complexity.

Particularly, they achieved an average speedup of 3.62 out

of 4, 7.08 out of 8, 13.84 out of 16 and 27.15 out of 31.

For the Small and Medium problem sizes, FREDDO

achieves also very good performance, especially in the cases

of the blocked and compute-bound algorithms. To conclude,

the results achieved for all benchmarks show that FREDDO

effectively leverages the decoupling of synchronization and

execution for the maximum tolerance of synchronization

overheads.

5.3 Comparisons with other frameworks
FREDDO is compared with three different frameworks,

the DDM-VM [8], [9], the OpenMP (version 3.1) and the

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 271

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 271

ISBN: 1-60132-444-8, CSREA Press ©

Fig. 5: Framework comparisons on benchmarks with different characteristics.

Fig. 6: FREDDO vs. DDM-VM on

lines of code (LOC).

OmpSs (version 15.04 [11]), for benchmarks with different

characteristics (Figure 5).

In the case of Cholesky and LU benchmarks which have

strict data-dependencies, the DDM systems achieve better

performance results compared to the OpenMP and OmpSs

implementations. This is due to the DDM ability to tolerate

synchronization latency by decoupling the synchronization

from computations, and allowing the TSU to operate asyn-

chronously from the computation cores.

Additionally, we observed that OpenMP and OmpSs need

much larger sizes (for example 8Kx8K matrix sizes) to

achieve similar results with the DDM systems. This is

because of: (i) the low thread switching overheads of the

DDM frameworks and (ii) the static dependency resolution

that is used in our case which incurs less overheads. For

the same reasons, FREDDO achieves better performance

than OpenMP for the Blackscholes and BMMULT (for the

Small and Medium problem sizes) benchmarks which are

embarrassingly parallel.

Furthermore, we compare FREDDO with OmpSs for the

Fibonacci and NQueens benchmarks which are recursive

algorithms. In the case of the Fibonacci algorithm FREDDO

is better than OmpSs for the Small problem size while they

achieve similar results for the rest of the problem sizes. In

the case of NQueens, our framework is about 10% faster

than the OmpSs framework.

DDM-VM achieves slightly better results than FREDDO,

for the Small problem size due to three factors:

• The DDM-VM uses only static memory in contrast with

FREDDO which uses both static and dynamic memory.

• In DDM-VM, all DThreads are declared in the same

function using label statements. The DDM-VM’s run-

time executes the ready DThreads by simply jumping to

their labels using the goto statements. Our framework

places the DThreads’ code in any callable target (like

functions and Lambda expressions). The FREDDO’s

runtime executes the ready DThreads by calling the

callable targets which incurs more overheads than the

DDM-VM’s approach.

• In FREDDO, functionalities such as creating, updat-

ing and removing DThreads are provided by creating

and accessing objects. DDM-VM provides the same

functionalities by using C macros which incurs less

overheads.

However, the factors above, restrict the programmers

from writing productive DDM-VM applications (see Sec-

tions 3.1.2 and 3.1.4). For the larger problem sizes (Medium
and Large), the overheads derived from the new features of

our framework are amortized. Thus, FREDDO and DDM-

VM achieve very similar results. It is worth noting that the

lines of code (LOC) of the DDM benchmarks in FREDDO

is reduced to half compared to DDM-VM (Figure 6).

6. Related Work
OmpSs [11], [12] is a programming model that provides

the features of the StarSs [21] framework using OpenMP

directives. OmpSs allows to express data-dependencies be-

tween tasks using the in, out and inout clauses. The Nanos++

runtime system is used to support task parallelism using

synchronizations based on data-dependencies. Also, the Mer-

curium source-to-source compiler is used which recognizes

constructs and transforms them to calls to the runtime.

OmpSs builds the dependency graph at runtime (dynamic

dependency resolution), thus, this approach incurs extra

overheads. The DDM model provides support for both static

and dynamic dependency resolutions [22].

Gupta and Sohi [6] provide a C++ runtime library that

allows data-flow/data-driven execution of sequential imper-

ative programs on multi-core systems. Their framework

exploits Functional-Level Parallelism (FPL) by executing

functions on the cores in a data-flow fashion. In contrast,

DDM applies its techniques at non-blocking threads.

SWARM (SWift Adaptive Runtime Machine) [23] is a

software runtime that uses an execution model based on

272 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

272 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

codelets [3]. SWARM divides a program into tasks, with

runtime dependencies and constraints that can be executed

when all runtime dependencies and constraints are met. The

runtime schedules the tasks for execution based on resource

availability. Also, SWARM utilizes a work-stealing approach

for on-demand load-balancing.

Thread Building Blocks (TBB) is an API developed by

Intel that relies on C++ templates to facilitate parallel

programming [24]. It provides a set of data-structures and

algorithmic skeletons that supports the execution of tasks.

TBB also provides a set of concurrent containers (hash-

maps, queues, etc.) and synchronization constructs (mutex

constructs, atomic operations). The TBB runtime implements

a tasks-stealing scheduling policy and adopts a fork-join

approach for the creation and management of tasks. On

the contrary, DDM relies on data-dependencies for the

scheduling of threads.

7. Conclusions
In this work we presented FREDDO, an object-oriented

software implementation for the Data-Driven Multithreading

(DDM) model. The proposed framework targets multi/many-

core systems and it provides improvements and new func-

tionalities over the previous DDM implementations.

FREDDO performance has been evaluated on a 32-core

server with ten benchmarks and compared with the per-

formance achieved from OpenMP, OmpSs and DDM-VM

frameworks. The evaluation shows that FREDDO scales well

and tolerates scheduling overheads and memory latencies

effectively. Our framework outperforms the OpenMP and

OmpSs especially in the case of high-complexity applica-

tions. We also showed that FREDDO achieves similar results

with DDM-VM despite the fact that the former provides

more functionalities. The size of the DDM applications

implemented in FREDDO is reduced to half, compared to the

size of the DDM-VM applications, due to the improvements

in the programming interface.

Future work will be focused on a distributed implementa-

tion of FREDDO. Also, we plan to support DDM execution

in other object-oriented languages like Java and Scala.

Acknowledgment
This work was partially funded by the IKYK foundation

through a scholarship for George Matheou.

References
[1] S. H. Fuller and L. I. Millett, “Computing performance: Game over

or next level?” Computer, no. 1, pp. 31–38, 2011.
[2] Arvind and R. A. Iannucci, “Two fundamental issues in multiprocess-

ing,” in 4th International DFVLR Seminar on Foundations of Engi-
neering Sciences on Parallel Computing in Science and Engineering.
New York, NY, USA: Springer-Verlag New York, Inc., 1988, pp. 61–
88.

[3] S. Zuckerman, J. Suetterlein, R. Knauerhase, and G. R. Gao, “Po-
sition paper: Using a codelet program execution model for exascale
machines,” in EXADAPT Workshop. Citeseer, 2011.

[4] G. Matheou, P. Evripidou, and C. Kyriacou, “Paradigm shift for exas-
cale computing,” in Proceedings of the 3rd International Conference
on Exascale Applications and Software. University of Edinburgh,
2015, pp. 109–114.

[5] P. Kogge, “Next-generation supercomputers,” IEEE Spectrum, Febru-
ary, 2011.

[6] G. Gupta and G. S. Sohi, “Dataflow execution of sequential imperative
programs on multicore architectures,” in Proceedings of the 44th
Annual IEEE/ACM International Symposium on Microarchitecture.
ACM, 2011, pp. 59–70.

[7] C. Kyriacou, P. Evripidou, and P. Trancoso, “Data-driven multithread-
ing using conventional microprocessors,” IEEE Trans. on Parallel and
Distributed Systems, vol. 17, no. 10, pp. 1176–1188, Oct. 2006.

[8] S. Arandi and P. Evripidou, “Programming multi-core architectures
using data-flow techniques,” in SAMOS-2010. IEEE, 2010, pp. 152–
161.

[9] ——, “DDM-VMc: the data-driven multithreading virtual machine for
the cell processor,” in Proc. of the 6th Int. Conf. on High Performance
and Embedded Architectures and Compilers, 2011, pp. 25–34.

[10] O. Board, “Openmp application program interface version 3.0,” in The
OpenMP Forum, Tech. Rep, 2008.

[11] BSC, “The ompss programming model,” 2015. [Online]. Available:
https://pm.bsc.es/ompss

[12] A. Duran, E. Ayguadé, R. M. Badia, J. Labarta, L. Martinell,
X. Martorell, and J. Planas, “Ompss: a proposal for programming
heterogeneous multi-core architectures,” Parallel Processing Letters,
vol. 21, no. 02, pp. 173–193, 2011.

[13] K. Stavrou, M. Nikolaides, D. Pavlou, S. Arandi, P. Evripidou, and
P. Trancoso, “TFlux: a portable platform for data-driven multithread-
ing on commodity multicore systems,” in Parallel Processing, 2008.
ICPP’08. 37th International Conference on. IEEE, 2008, pp. 25–34.

[14] G. Michael, S. Arandi, and P. Evripidou, “Data-flow concurrency on
distributed multi-core systems,” in Proceedings of the 2013 Interna-
tional Conference on Parallel and Distributed Processing Techniques
and Applications (PDPTA’13), 2013.

[15] G. Matheou and P. Evripidou, “Verilog-based simulation of hardware
support for data-flow concurrency on multicore systems,” in SAMOS
XIII, 2013. IEEE, 2013, pp. 280–287.

[16] ——, “Architectural support for data-driven execution,” ACM Trans.
Archit. Code Optim., vol. 11, no. 4, pp. 52:1–52:25, Jan. 2015.
[Online]. Available: http://doi.acm.org/10.1145/2686874

[17] Arvind and Gostelow, “The u-interpreter,” Computer, vol. 15, no. 2,
pp. 42–49, Feb. 1982.

[18] G. Matheou and P. Evripidou, “Freddo: an efficient framework
for runtime execution of data-driven objects,” Department of
Computer Science, University of Cyprus, Nicosia, Cyprus,
Tech. Rep. TR-16-1, January 2016. [Online]. Available:
https://www.cs.ucy.ac.cy/docs/techreports/TR-16-1.pdf

[19] G. Matheou, I. Watson, and P. Evripidou, “Recursion support for
the data-driven multithreading model,” 2015, will be published in
Fifth Workshop on Data-Flow Execution Models for Extreme Scale
Computing (DFM 2015).

[20] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC benchmark
suite: characterization and architectural implications,” in Proceedings
of the 17th international conference on Parallel architectures and
compilation techniques. ACM, 2008, pp. 72–81.

[21] J. Planas, R. M. Badia, E. Ayguadé, and J. Labarta, “Hierarchical
task-based programming with starss,” International Journal of High
Performance Computing Applications, vol. 23, no. 3, pp. 284–299,
2009.

[22] S. Arandi, G. Michael, P. Evripidou, and C. Kyriacou, “Combining
compile and run-time dependency resolution in data-driven multi-
threading,” in Data-Flow Execution Models for Extreme Scale Com-
puting (DFM), 2011 First Workshop on. IEEE, 2011, pp. 45–52.

[23] C. Lauderdale, M. Glines, J. Zhao, A. Spiotta, and R. Khan, “Swarm:
A unified framework for parallel-for, task dataflow, and distributed
graph traversal,” ET International Inc., Newark, USA, 2013.

[24] J. Reinders, Intel threading building blocks: outfitting C++ for multi-
core processor parallelism. O’Reilly Media, Inc., 2007.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 273

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 273

ISBN: 1-60132-444-8, CSREA Press ©

274 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

274 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

SESSION

SAFE, SECURE AND DEPENDABLE
INFORMATION SHARING NETWORK SYSTEMS

AND SERVICES

Chair(s)

Prof. Hiroaki Nishikawa
Prof. Hiroshi Ishii

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 275

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 275

ISBN: 1-60132-444-8, CSREA Press ©

276 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

276 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

A Study on the Information Content Leaked from Queries to
Search Engines and Its Reduction

Hiroshi Yamamoto1 and Yusuke Hiraide2
1School of Information and Telecommunication Engineering, Tokai University,

2–3–23 Takanawa Minato-ku, Tokyo, Japan
2Hitachi, Ltd. 1–6–6 Marunouchi Chiyoda-ku, Tokyo, japan

Abstract— Recently, the opportunity to use search engines
has increased due to the increased variety and number
of Internet-capable devices. Search engines have become
indispensable services for many users. Users are sending
a vast amount of information as input to search engines.
The risk when information related to user privacy is stored
and analyzed by search engine providers has recently been
recognized. There is existing research regarding protecting
user privacy from search engines that try to extract related
information from users’ query strings. The searchable en-
cryption technique is effective when searching encrypted
queries. This technique is useful when users search their
own data stored in external cloud storage. However, search
engine providers make a profit based on the query strings
of their many users, therefore, they are not expected to
adopt this approach. Private Information Retrieval (PIR) is
a known technique that ensures no information is leaked to
the search engine. However, PIR is a technique based on
a model with strict limitations on retrieval and is hardly
a practical method. In this paper, we define a measure for
the amount of information that is leaked during a search
activity. The distinctive feature of this paper is that the
amount of information is defined using entropy. In addition,
a practical search scheme that reduces the amount of leaked
information is proposed. The proposed scheme is simple, and
we implement the system using a typical personal computer
(PC). We evaluate the system by experiment and confirm that
the proposed scheme works correctly and is of acceptable
usability.

Keywords: search engine, leak of information, privacy

1. Introduction
Recently, the use of smartphones with the ability to

connect to the Internet using a cellular or wireless network

is increasing. Many users have become able to use the

Internet anywhere. The web search is one of the most

popular services on the Internet [1]. Users send search

keywords to search engines every day to perform web

searches. Keyword searches from a user may relate to the

user’s interests, lifestyle or job. There are obviously issues

of privacy in sensitive keywords sent to search engines.

Search engine providers actually store queries from users

and analyze them, and they use the collected information

to provide advertisements or recommendations. It is argued

that there are privacy risks from the information stored by

the search engines. It is reported that, from the user’s web

search queries, the user’s gender can be calculated with

84% accuracy and the user’s age can be calculated with an

absolute error of 7 years [2].
A number of studies have been performed to avoid the

risk caused by search engines. One study is on searchable

cryptography technology [3]. Using a homomorphic encryp-

tion function, we send encrypted queries to the search engine

and perform searches for the encrypted queries among the

encrypted data in the search engine. Searchable cryptography

ensures that the search engine cannot know the plain text

version of the queries. Searchable cryptography technology

is effective when we search for our own data stored in the

cloud. It is not suitable for a general web search service be-

cause search engine providers make a profit from the content

of query strings, using this information for advertisements

or recommendations.
PIR (Private Information Retrieval)[4], [5] is another

technology to protect query privacy. It has been shown that

we can send search data to a search engine using PIR while

giving no information to the search engine. We explain the

details in section 2. However, PIR is based on a mathematical

model, and the constraints and assumptions are too strict for

practical use.
In this paper, we define a measure for the amount of

information that is leaked during a search activity. We

propose a practical scheme in which we protect a certain

amount of privacy while allowing a small amount of infor-

mation to leak. We evaluate the proposed scheme in terms

of the measure of leaked information and from a practical

viewpoint.

2. Existing Technique
Because search engine providers make a profit from

analyzing search keywords, we have to make the following

assumption.
Assumption 1: Search engines store the plain text version

of the query strings.
This is why we cannot expect search engine providers to

adopt an approach using searchable cryptography.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 277

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 277

ISBN: 1-60132-444-8, CSREA Press ©

2.1 PIR
PIR is a secure search scheme using plain text. In PIR,

the search is defined as follows;

• The number of searchable items is n.

• Each Ai(1 ≤ i ≤ n) is a binary digit.

• The user wants to know the value of Ak(1 ≤ k ≤ n)
for a particular k.

In this model, an array (A1, A2, . . . , An) represents a

database and is stored in a search engine. An integer k
represents a search keyword and the value of Ak represents

the search result.

In this model, an ordinary search action corresponds to

the following procedure;

1) The user sends the value of k to the search engine.

2) The search engine retrieves the value of Ak and sends

it to the user.

The information we want to keep secret in this model is the

index k. Obviously, that same index k is known by the search

engine in this procedure. We assume that all the information

about the search keyword is leaked to the search engine

in this procedure. The goal of PIR is to get the value of

Ak without giving any information about the value of k to

the search engine. PIR provides an information-theoretically

secure way to retrieve the value of Ak. A trivial form of PIR

is defined in the following procedure;

1) The user requests that the search engine send all the

data A1, A2, . . . An.

2) The search engine sends the user the requested data.

3) The user retrieves Ak and abandons the other values.

The procedure gives no information about the value of k to

the search engine because the search engine can simulate

the input of the user independently. Therefore, this trivial

PIR is an information-theoretically secure scheme. On the

other hand, the search engine must send the user all the data

A1, A2, . . . , An. This procedure is not a practical scheme

because of the unrealistically large amount of communica-

tion traffic it requires. It has been demonstrated that if we

use a single database, trivial PIR is the only way to achieve

an information-theoretically secure scheme.

2.2 Feasibility of PIR
Schemes to reduce communication complexity by using

multiple servers have been proposed [5]. These schemes

make the following assumptions:

• The mirror servers have exactly the same contents.

• The mirror servers are not conspiring.

Implementing the first assumption strictly is difficult due to

the technical problems of time lag or failure. Mirror servers

cooperate with one another to retrieve the searched data. It

is difficult for users to believe that mirror servers are not

conspiring.

PIR is a scheme that guarantees information-theoretic

security, but there are difficulties in its practical implemen-

tation.

3. Measure of Leaked Information
From the discussion in the previous section, the practical

implementation of a information-theoretically secure web

search is infeasible. The goal of this research is not perfect

privacy but to protect a certain amount of privacy, tolerating

a small amount of information leakage to the search engines.

Quantification of the amount of information that is leaked

to search engines is crucial in this approach. We define the

amount of leaked information using the entropy of the query

strings.

3.1 Terminology
In this paper we use the following terms;

Input alphabet:
The set of characters that a user can input into the search

box of a search engine.

• Note that the space character that separates keywords

is also an element of the input alphabet.

• In many case, the input alphabet consists of alphabetic

characters, numeric characters and the space character.

• We denote the input alphabet by Σ.

Search string:
A string using characters from the input alphabet Σ.

• A search string corresponds to the whole string that a

user inputs into a search box.

• A search string may represent multiple search keywords

separated by space characters.

Search string space:
The set of all the possible search strings.

• We denote the search string space by S.

Real search string:
The search string that the user actually wants to input.

• The real search string s is an element of S.

Search action:
A series of search strings containing the real search string.

• In order to reduce the quantity of leaked information,

a user may execute searches including the real search

string as well as dummy search strings.

• A search action is an array σ that consists of elements

in S containing the real search string.

For example, consider the case of a user executing a

search for the two keywords “apple” and “orange” in the

search box of a search engine that accepts twenty letters

of alphabetic, numeric or space characters. We assume that

alphabetic characters are represented internally as lower-

case characters in the search engines. In this case, the input

alphabet Σ is the set {a, . . . , z, 0, . . . , 9, [SPACE]}. A search

string is a string from Σ with length 20. We assume that if

278 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

278 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

an input string is shorter than 20 characters, [SPACE]s are

used as padding in the rest of the search string. The search

string space S is the twentieth extension of the input alphabet

Σ20, the set of possible search strings. The real search string

is “apple+orange++++++++”, where ’+’ stands for a

[SPACE] character. The search action is a series of search

string that are a mixture of dummy search strings and the

real search string, as in the following example;

σ = s1, s2, s3, where

s1 = “peach+grape+++++++++”,

s2 = “apple+orange++++++++”,

s3 = “banana+apple+apricot”.

3.2 Quantity of the Leaked Information
We define the quantity of the information leaked to a

search engine as follows.

Definition 1:[
The amount of information leaked

from a search action

]
=

[
Ambiguity of the real search string

before the search action

]

−
[

Ambiguity of the real search string

after the search action

]
(1)

In this paper we use Shannon entropy to quantify the

ambiguity of the search strings.

Shannon entropy
• S = {s1, s2, . . . , sq} : The information source

• Pi (1 ≤ i ≤ q) : The probability that si occurs

• H(S) : The (binary) Shannon entropy of S, where

H(S) = −
q∑

i=1

Pi log2 Pi. (2)

In this paper we may omit the base number for the base 2

logarithm.

Using Shannon entropy, the ambiguity of the real search

string before the search action is H(S) and the ambiguity

of the real search string after a search action σ is the

conditional entropy H(S|σ). From definition 1, the amount

of information that is leaked to the search engines is

H(S)−H(S|σ). (3)

3.3 Models and Leaked Information Content
We now discuss several cases in which various dummy

search strings are assumed to be used.

Case 1: Ordinary search
We assume that the input alphabet Σ is the set

{a, . . . , z, 0, . . . , 9, [SPACE]}. The cardinality of the input

alphabet |Σ| equals 37. Also, we assume that the length of

the search box is 100. Thus the search string space S is

Σ100. For simplicity, we assume that each possible search

string si ∈ S occurs with equally likely probability. In this

case, each Pi equals (1/37)100 for i = 1, 2, . . . , 37100 and

the entropy H(S) equals 100 log 37
In an ordinary search, the search action σ consists of the

real search string only. After the search engine receives σ,

the search engine can determine the real search string with

the probability of 1. This means that the ambiguity of the

real search string after the search action H(S|σ) equals zero.

We conclude that the leaked information H(S)−H(S|σ)
equals H(S). This is the case where all the information is

leaked to the search engine.

Case 2: Search all the possible strings
Assume that Σ, S and Pi are the same as those in

Case 1. In this case we assume that the search action σ
consists of all the possible search strings. Because the search

engine has zero knowledge about the real search string, the

ambiguity of the real search string after the search action is

the same as the ambiguity of the real search string before

the search action. This means that H(S|σ) equals H(S),
and therefore the leaked information H(S) − H(S|σ) is

zero. This case corresponds to the PIR scheme and is an

information-theoretically secure search action.

Case 3: Search n strings
This case is one of the more practical cases. We do not use

all the possible search strings but instead n search strings as

σ. Again, Σ, S and Pi are assumed to be the same as those

in Case 1.

We assume that σ consists of n distinct search strings

containing the real search string. In other words, σ is a series

of n−1 distinct dummy strings and the real string in arbitrary

order. In this case, because one of the n search strings is the

real search string, the search engine gets n candidates for the

real search string and the probability that each candidates

is the real search string equalls 1/n. This means that the

ambiguity after the search engine receives the search action

σ is

H(S|σ) =
n∑
1

1

n
log n = log n. (4)

We conclude that the leaked information H(S) − H(S|σ)
equals 100 log 37− log n.

If n equals 1
2i of all the possible search strings, the leaked

information equals

log 37100 − log
37100

2i
= i.

If one half of all the possible search string are searched, the

leaked information to the search engine is 1 bit.

Case 4: Word unit model
In this case, we consider another model in which the unit

is a word instead of a character. In this model, we regard

each English word that represents a single search keyword

as a literal. Let E be the set of English words. A search

string is a subset of E . If there is no limit on the length

of the input search string, the search string space S is 2E ,

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 279

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 279

ISBN: 1-60132-444-8, CSREA Press ©

the power set of E . Let w be the number of English words

(|E| = w).

We now consider the number of search keywords in a

single query. In the real world, large numbers of search

keywords are seldom used at once. We expect that the

distribution of the number of search keywords has a certain

statistical tendency. In this case, let P (K = i) be the

probability that i keywords are used in a single query.

Consider the case where the number of keyword is fixed at i.

The number of subsets of 2E with i keywords is

(
w
i

)
. We

assume these subsets occur with equal probability. Therefore

the probability of a particular search string with i keywords

is
P (K = i)(

w
i

) (5)

From (2), the entropy of the real search string is

H(S) =

w∑
i=1

∑
iwords query

P (K = i)(
w
i

) log

(
w
i

)
P (K = i)

=

w∑
i=1

P (K = i) log

(
w
i

)
P (K = i)

(6)

In this case, the amount of leaked information is evaluated

using the distribution of P (K = i). The leaked information

is as follows:

• If we execute an ordinary search, that is, σ consists

of only the real search string, the leaked information

equals

w∑
i=1

P (K = i) log

(
w
i

)
P (K = i)

.

• If we execute all the searches in 2E as σ, the leaked

information equals zero.

• If we execute n searches including n−1 dummy search

strings as σ, the leaked information equals

w∑
i=1

P (K = i) log

(
w
i

)
P (K = i)

− log n.

4. Proposed Method
In this section we propose practical schemes to reduce the

information content that is leaked to the search engines.

4.1 Design Over View
We begin by explaining the proposed system briefly. The

main components of the proposed system and interactions

between these components are shown in Figure 1 and

Figure 2.

Queue of real

Controller

DB of dummy

Proposed system

User

Search engine

(query phase)

search strings
search words

Fig. 1: Query phase of the proposed system.

File space for

Controller

Abandon responses

Proposed system

User

Search engine

(response phase)

mirrored responses
to dummy search
strings

Fig. 2: Response phase of the proposed system.

The proposed system primarily consists of the “Queue

of real search string”, “Database of dummy search words”,

“File space for responses” and “Controller”. The proposed

system is placed in a trusted organization and acts generally

as a web proxy server. When the user requests a search

with a real search string, it is enqueued into the real search

string queue. The controller checks for items in the queue at

fixed intervals. If there is an item at the head of the queue,

the controller executes a search for the item otherwise the

controller choose a dummy search string constructed from

the database and searches for this instead.

The controller stores the responses to queries for real

search strings into the file space. Responses to dummy

queries are simply abandoned. The system periodically

280 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

280 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

checks if there is a response in the file space after the user

has sent the query to the proposed system.

4.2 Detailed Design
The proposed system consists of two modules: the user

query module and the server query module. Both are in-

stalled on a server that is trusted by the user. The two mod-

ules are executed by performing the following procedures

repeatedly;

User query module
1) Listen for the transmission of a real search string from

the user.

2) When a real search string arrives, enqueue it into the

queue of real search strings.

3) Check the file space periodically for the mirrored

response, until the contents created from the response

to the search string appear.

4) Return the response to the user using the contents in

the file space.

Server query module
1) The controller checks the queue of real search strings

for items at fixed intervals.

2) If there is an item in the queue of real search strings,

the controller dequeues the item on the head of the

queue and sends the search engine the dequeued item.

If the queue is empty, the controller makes a dummy

search string from the database of dummy search

words and sends the dummy search string to the search

engine.

3) If the query sent in the previous step was a search

string from the queue (a real search string), the con-

troller stores the mirror contents of the response to the

search string. If the query was a dummy search string,

the controller simply ignores the response.

Information from the user query module to the server

query module is transmitted by the queue of real search

strings. The queue must store additional information to

identify the particular query. Information from the server

query module to the user query module is transmitted by

the file in the file space for mirrored responses. The server

query module must store files according to identifiable rules.

4.3 Multiuser Expansion
The proposed scheme is easily expanded to accept multi-

ple users. The expansion is enabled by allowing the queue of

real search strings in Figure 1 to accept search strings from

multiple users and adding adequate information to identify

distinct users and queries. This expansion is effective in

practice because real search strings can be used as dummy

search strings for other users. Therefore, the traffic caused

by dummy search strings is reduced when one system is

shared by many users.

5. Experiment
We implemented the proposed system including the mul-

tiuser expansion in Section 4.3. The environment of the

experiment is shown in Table 1.

Table 1: Experimental environment
CPU Intel Xeon X3430(8M Cache, 2.40GHz)
Operating system Ubuntu Linux 14.04
Development language PHP5.5.9
Tools Apache2.4.7, MySQL 14.14

The server query module checks the queue for items at

fixed intervals (Section 4.2). The interval is vitally important

because if it is set for too long a period, the time lag to

receive the response may become unacceptable. On the other

hand, if the interval is set to be too short, heavy traffic caused

by the searches of dummy search strings may become a

problem. In some cases, the search engine may regard such

traffic as a kind of DOS attack and may cut off system

access. In this experiment, the interval is set to 5 seconds,

considering practical usage levels.

Experiments were performed using 10 people, and we

confirmed that the system works correctly. There were 31

searches in total, and the time lag of the response ranged

from 14 to 57 seconds.

6. Conclusions
There are privacy risks when using search engines. It is

possible to predict the users’ attributes such as sex, age,

preference, interests, and so on from the users’ queries.

Searchable cryptography using homomorphic functions may

not solve the problem. Search engine providers make a

profit from analyzing search keywords, therefore they will

maintain the search keywords in plain text.

In this paper we proposed a measure for the amount

of information content that leaked from queries to search

engines, using entropy. We defined the amount of informa-

tion leaked by a search action as the ambiguity of the real

search string before the search action minus the ambiguity

of the real search string after the search action. We analyzed

this measure of the leaked information in several cases.

Then we demonstrated a practical scheme to reduce the

leaked information, consisting of a queue of real search

strings, a database of dummy search words, a file space for

mirrored responses and a controller. The proposed scheme is

especially effective in a multiuser implementation. We im-

plemented the proposed scheme with inexpensive equipment.

We confirmed that the system works correctly and the time

lag is acceptable.

Using the measure proposed in this paper, we can quantify

the information leaked to search engines during a web

search, and we can reduce the leaked information using the

proposed scheme.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 281

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 281

ISBN: 1-60132-444-8, CSREA Press ©

We will continue experiments and analyses with more

participants. We will refine the source code of the system

to reduce the time lag of the response. There is still a gap

between the model used in the evaluation of the leaked

information and the implemented system. Narrowing the gap

by refining the model of leaked information is an issue to

be addressed in the future.

References
[1] Sören Preibush “The value of privacy in Web search,” WEIS 2013
[2] Rosie Jones, et al., “I know what you did last summer- query logs and

user privacy,” CIKM 2007
[3] Craig Gentry, “A Fully Homomorphic Encryption Scheme,” STOC

2009
[4] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan, “Private Infor-

mation Retrieval,” In Proceedings of the 36th Annual Foundations of
Computer Science. IEEE Computer Society Press, 1995

[5] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan, “Private Infor-
mation Retrieval,” Journal of the ACM, Vol. 45, No. 6, November 1998

282 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

282 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

A Study on Approximation of the Processing Time of a Model of
Cloud Computing

Hiroshi Yamamoto1, Yutaro Kuriyama2 and Hiroshi Ishii1
1School of Information and Telecommunication Engineering, Tokai University,

2–3–23 Takanawa Minato-ku, Tokyo, Japan
2DOCOMO Systems, Inc. Kokusai Akasaka Bldg. 5F 2–4–5 Akasaka Minato-ku, Tokyo, japan

Abstract— Recently, cloud services have been used not only
as storage but also for computing power. Cloud computing
systems perform computations using distributed computation
with a large number of computers connected to the Internet.
Therefore, cloud computing systems are designed to com-
pute correct results even if failures occur on some of the
computers. Many cloud computing systems have mechanisms
for redundant calculation for this purpose, which make it
difficult to estimate the computing power of cloud services.
In this paper, we propose a method to estimate the computing
power of cloud computing systems. First, we define a simple
model of cloud computation. Assumptions about hardware
and software control of the model are shown. We introduce
a concept called the "round number". We show that the
round number is crucial for the overall computation time,
and we derive a formula for the distribution function of the
round number. We show that the overall computation time
of cloud computing systems can be approximated using the
distribution function of the round number combined with an
approximation of the frequency of the computation time for
each round number. Simulation of distributed computation
is performed for an experimental problem and the validity
of the proposed method is confirmed.

Keywords: cloud computing, discrete probability distribution

1. Introduction
Cloud computing is defined as the kinds of application

technologies or services that use virtual resources through

the Internet [1]. The meaning of “resource” is widely-varied,

i.e., infrastructure (IaaS), platform (PaaS), software (SaaS),

etc. At the inception of cloud services, simple Internet

storage services were popular [2]. Recently, cloud services

have begun to be used as computing power because of

their low initial cost and high flexibility. There are many

cloud service providers offering computing power, and it

has been become important to evaluate the performance of

the computing power of cloud computing systems for the

purpose of choosing adequate cloud service providers to

match users’ needs. Cloud computing systems use a large

number of general PCs as calculating resources, therefore

they are designed to be able to accomplish correct com-

putation even if some of the PCs are not functioning. A

retransmission and recalculation technique is used for a fail-

proof mechanism, and this causes a time lag in the overall

computation. This is one of the reasons why evaluation of

overall computing power of a cloud computing system is

difficult. The failure probability of each calculating node,

the time lag to detect failure, and the delay of recalculation

affect the overall computation time. Therefore these factors

make precise evaluation difficult.

In this paper, we propose an evaluation method for the

computing power of a cloud computing system using a

simple model of cloud computing systems. We make as-

sumptions about the hardware and software control of the

model. Then, we introduce a concept called the “round

number,” which is the maximum number of times to in-

voke calculation, including recalculation, among all the

subproblems divided by the controller node of the system.

The overall computation time is strongly affected by the

distribution of the round number. We derive a formula

for the distribution function of the round number. Then

we approximate the frequency of the overall computation

time for each round number using normal distribution. We

approximate the total frequency of the overall computation

time by summing the approximation of the computation time

for each round multiplied by the distribution function of

the round number. Then, we execute a distributed computer

simulation corresponding to the proposed model of cloud

computing systems. Comparing the approximation using the

distribution function and the approximation of frequency of

the overall computation time for each round number with the

simulation result, we conclude that the overall computation

time of cloud computing systems can be estimated by the

proposed method.

2. Model of Cloud Computing
Real cloud computing systems have a complicated control

and recalculation mechanism that is affected by the random

occurrence of failure. Therefore, estimation of the total

computing time of a real cloud computing system is difficult.

In this section, we explain the assumptions we made to

establish a simple model of a cloud computing system for

the purpose of estimating the overall computation time.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 283

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 283

ISBN: 1-60132-444-8, CSREA Press ©

Assumptions about hardware
• The cloud computing system consists of one control

node and a sufficient number of calculating nodes. All

the calculating nodes have the same processing speed.

• When the control node orders the calculating nodes to

start calculation, they either stop with failure probability

p or carry out the calculation and return correct answers.

• The computing time of the control node is negligible

compared to the computing time of calculating nodes.

• The communication time between nodes is also neg-

ligible compared to the computing time of calculating

nodes.

Assumptions about control
• The overall problem given to the cloud computing

system is divided into n subproblems by the control

node.

• The control node distributes the divided subproblems

to calculating nodes, checks if each calculating node is

working, orders other calculating nodes to recalculate

failed problems if needed, and aggregates the results of

subproblems.

• Calculating nodes return ACK responses when the

control node checks if they are working.

• The control node decides that a calculating node is

out of order if the control node fails to receive an

ACK responses from the calculating node within Te

after the calculation order. In this case, the control

node immediately orders another node to start the

recalculation of the subproblem that was distributed to

the failed node. The control node repeats this until it

has obtained the results of all the subproblems.

Let P be the original problem given to the cloud comput-

ing system. The control node divides P into n subproblems.

We call the subproblems P1,P2, . . . and Pn, and we call the

answers to the subproblems A1,A2, . . . and An respectively.

The control node sends each Pi (1 ≤ i ≤ n) to a calculating

node and receives the result Ai if the calculating node works.

The control node combines the results A1,A2, . . . ,An after

it has received all of them and creates the result of the

original problem P .

For example, let the original problem P be “How many

prime numbers exist that are less than one billion?” The con-

trol node may divide P into the following ten subproblems;

P1: How many prime numbers are there from 1 to

100,000,000?

P2: How many prime numbers are there from

100,000,001 to 200,000,000?
...

P10: How many prime numbers are there from

900,000,001 to 1,000,000,000?

After the control node has received all the results

A1,A2, . . . ,A10, it simply adds the number of prime num-

bers in each section and obtains the result of the original

problem P .

3. Computation Time in the Proposed
Model

We introduce a concept called the round number, which

strongly affects the overall computation time. We show a

formula for the probability distribution function of the round

number. Then, we show an approximation of the overall

computation time including recalculation time caused by

failures.

3.1 Round Number
If the failure probability p equals zero, all of the Pi (1 ≤

i ≤ n) are calculated only once until the control node has

received the results of all the subproblems. In the case that a

failure occurs when a calculating node is ordered to calculate

Pi, the control node detects the failure after Te, then it orders

another calculating node to recalculate the subproblem Pi.

Assume that the failure probability p is given and consider

a trial calculation from start to finish where the control node

obtains all the results A1,A2, . . . ,An including the process

to check if calculating nodes are working and the time for

the recalculating process. Let Ri be the number of times that

the control node has ordered calculating nodes to calculate

the particular subproblem Pi in the trial. If p equals zero,

R1 = R2 = · · · = Rn = 1 because each subproblem is

calculated only once. Consider the case where q is nonzero.

First, we describe the process for a particular subproblem

Pi. If the calculating node that is ordered to calculate the

“first” calculation of Pi succeeds, Ri equals 1. If a failure

occurs at the first calculation of Pi, the control node orders

another calculating node to recalculate Pi. If the “second”

calculation succeeds, Ri equals 2. In this manner, if the

subproblem Pi is succeeded at r-th calculation for the first

time, Ri equals r. In general, the values of Ri (1 ≤ i ≤ n)
differs among various i for the trial. We define the round

number for a trial as the maximum value of Ri among

1 ≤ i ≤ n.

The round number is crucial for the estimation of overall

computation time. Consider the case where the time required

by successful calculation of a subproblem is a constant Tc.

If the round number of a trial is r and one of the problems

for which the control node has ordered the calculation r
times is Pj (1 ≤ j ≤ n), one of the most time consuming

problems is Pj . Therefore, the overall computation time is

dominated by the overall time required to receive the result

of Pj . The time required until the control node has received

the result of Pj is the time for r − 1 occurrences of failure

detection followed by one successful calculation. Therefore,

the overall computation time where the round number is r
is:

(r − 1)Te + Tc (1)

284 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

284 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

The distribution of the overall computation time is given

by (1) and the discrete probability distribution of the random

variable of the round number P (R = r). The overall

computation time is (r − 1)Te + Tc with the probability

P (R = r).
In the more general case where the time required by the

successful calculation of a subproblem fluctuates, this evalu-

ation is still useful to approximate of the overall computation

time.

3.2 Distribution of the Round Number
We derive a formula for the probability distribution func-

tion for the random variable of the round number P (R = r).
The overall computation time under the proposed model of

cloud computing is exactly provided in the case where the

time required by the successful calculation of a subproblem

is constant.

First of all, we consider a particular subproblem Pi. Ri

stands for the number of times times the calculation for

Pi was ordered before the calculation completed. The case

where Ri is equal or smaller than r is the complementary

case where all of the first r consecutive orders for Pi fail.

The probability that all of the first r consecutive orders for

Pi fail is pr, therefore, the probability that Ri is equal or

smaller than r for a trial is

(1− pr). (2)

The case where the round number for a trial is equal or

less than r is the intersection of the cases where Ri is equal

or less than r for all i (1 ≤ i ≤ n). The cases where Ri is

equal or smaller than r for all i are independent. Therefore,

the probability that the round number for a trial is equal or

less than r is given by the following expression.

P (R ≤ r) = (1− pr)n. (3)

The probability that the round number for a trial is exactly

r is “the probability that the round number for a trial is

equal to or less than r” minus “the probability that the round

number for a trial is equal to or less than r − 1”, therefore

the following theorem holds.

Theorem 1: The probability that the round number for a

trial is exactly r is

P (R = r) = (1− pr)n − (1− pr−1)n. (4)

3.3 Approximation of the Overall Computation
Time

Under the proposed model of cloud computing, the overall

computation time in the case where the time required by the

successful calculation of a subproblem is constant is given

by (1) and the distribution function (4). In a realistic case, the

time required by the successful calculation of a subproblem

is not constant. In such cases, the probability distribution

function (4) still holds but Tc of the overall computation

time in (1) fluctuates.

We propose an approximation method where we use the

distribution function (4) and a type of probability density

function to approximate the value of (1). Let fr(x) be

the probability density function to approximate (1) for a

particular round number r, where x is the parameter of the

overall computation time. In this paper, we approximate (1)

by a normal distribution function

fr(x) = N (μ, σ2) (5)

where N (μ, σ2) is the probability density function of the

normal distribution;

N (μ, σ2) =
1

σ
√
2π

e−
(x−μ)2

2σ2 . (6)

We approximate the overall computation time by summing

fr(x) multiplied by (4) for all the positive integers r.

[
The probability density function of the

overall computation time

]
=

∑
r=1,2,...

P (R = r)fr(x) (7)

Estimating the parameters of N (μ, σ2), by simulation for

example, we can approximate the overall computation time

of the cloud computing system.

4. Experiment
We performed a distributed simulation experiment to

confirm that the proposed method is effective. We explain

the simulation system and the example problem we used for

the experiment.

4.1 System Used for the Experiment
The environment of the experiment is shown in Table 1.

Table 1: Experimental environment
CPU Intel Core2Duo CPU P8600 2.40GHz
Operating system Windows 7 Professional
Development environment C, Visual Studio
Network environment 100MHz switch, directly connected
The number of 10 nodes
calculating nodes

The distributed simulation software was implemented

almost exactly according to the assumptions described in

section 2. However, we devised an implementation for

recycling calculating nodes that have acted as failed nodes.

In the implementation, calculating nodes return a "failure

signal" instead of stopping entirely in case of failure, and the

nodes are used for subsequent calculations. This contrivance

reduces the number of required calculating nodes to n no

matter how many failures happen.

The parameter n, the number of divisions, was 10. The

failure probability p in the experiment was 0.1. We assumed

that Te, the time required to detect failure, was 0.303

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 285

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 285

ISBN: 1-60132-444-8, CSREA Press ©

seconds. This value is determined as one-twentieth of the

largest actual calculating time of a subproblem. We repeated

4,988 trials of the example problem described below.

4.2 Problem Used for the Experiment
We performed an experiment of distributed computation

to find the number of prime numbers in an interval. The

original problem that is the input of the cloud computing

system is defined as the following;

Original problem
P : Find the number of prime numbers from 1,000,000,000

to 1,000,499,999.

The length of the interval to search for prime numbers is

500,000 in the original problem.

The original problem P was divided into ten subproblems,

each with an interval length of 50,000. The subproblems are

as follows:

P1: Find the number of prime numbers from

1,000,000,000 to 100,049,999.

P2: Find the number of prime numbers from

1,000,050,000 to 100,099,999.
...

P10: Find the number of prime numbers from

1,000,450,000 to 100,499,999.

The results of the subproblems are combined by simply

adding them together, and thus the result of the original

problem is obtained.

The algorithm we used to check for primality of an integer

k is a simple algorithm performed by dividing k by small

positive integers up to
√
k.

5. Results and Consideration
First of all, we must confirm that Theorem 1 holds in the

simulation. Theorem 1 says that the appearance probability

of the round number is given by (4). Table 2 shows the

comparison between Theorem 1 and the simulation results.

The second column of Table 2 is calculated by (4), and

the third column is the actual appearance probability in the

experimental simulation for round numbers 1, 2, . . . , 6. The

Table 2: Appearance probability of round numbers
Round number Theorem 1 Simulation

1 3.49× 10
−1

3.64× 10
−1

2 5.56× 10
−1

5.38× 10
−1

3 8.57× 10
−2

8.82× 10
−2

4 8.96× 10
−3

9.82× 10
−3

5 9.00× 10
−4

4.01× 10
−4

6 9.00× 10
−5

0

higher the round number, the smaller the appearance proba-

bility exponentially; however, we can confirm that Theorem

1 holds approximately in the experimental simulation.

According to Section 3.3, we approximate the frequency

of the overall computing time of each round number with

a normal distribution. Table 3 shows the average μ and

the standard deviation σ when regarding the frequency of

each round number as a normal distribution. We show

Table 3: Parameters of Normal Distribution
Round number Average(μ) Standard deviation(σ)

1 3.275 0.3957
2 3.545 0.3746
3 3.849 0.3616

the parameters only up to the round number 3 because

the appearance probability is exponentially small when the

round number is large. The differences of μ between each

round number are approximately 0.3. The value of Te equals

0.303 in the experiment, therefore this suggests that (1)

roughly holds when Tc is not constant.

Then, we compare the approximation by a normal distri-

bution using the parameter in Table 3 and the simulation

result for each round number. Figures 1, 2 and 3 are

comparisons of the frequency of the overall computation

time when the round number is 1, 2, and 3 respectively.

Fig. 1: Approximation and simulation (round number = 1).

Fig. 2: Approximation and simulation (round number = 2).

286 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

286 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

Fig. 3: Approximation and simulation (round number = 3).

The vertical axis shows the frequency and the horizontal

axis shows the overall computation time in Figures 1, 2 and

3, where the lengths of intervals of the horizontal axis are

0.15 seconds and the labels are the medians of sections.

The lines on the graphs indicate approximations by normal

distributions using the parameters in Table 3. The bars on

the graphs indicate the actual frequencies calculated by

the simulation. To correspond to the vertical axis of the

frequency in the simulation, the values of the lines are

the interval integrals of normal distributions multiplied by

the number of total trials (4,988) and by the appearance

probabilities (the second column of Table 2).

Figure 4 is the comparison of the total overall computation

time between the approximation by the proposed method

and the actual frequency calculated by the simulation. The

Fig. 4: Approximation and simulation (total).

approximation by the proposed method is given by (7);

however, we used only r = 1, 2 and 3 for the summation

in Figure 4 because events with larger round numbers are

exponentially unlikely and we couldn’t get enough data in

the simulation. Therefore, the line in Figure 4 is calculated

by simply adding the lines of Figures 1, 2 and 3. The

bars in Figure 4 show the frequency of the total overall

computation time of all the trials. From Figure 4, it can

be stated that the approximation by the proposed method is

a good approximation visually, whereas the approximation

of each round number by normal distribution shown in

Figures 1, 2, and 3 is not. This suggests that the effect of

Theorem 1, the distribution of the round number, is dominant

to the overall computation time and the effect of precision in

the approximation of each round number shown in Figures 1,

2 and 3 is limited.

6. Conclusion
Cloud computing systems are designed to allow for fail-

ures of the participating calculating nodes. To overcome the

impact of node failures, cloud computing systems have a

mechanism to manage detection of failure and order recal-

culation. Such a process makes estimation of the computing

power of cloud computing systems difficult.
In this paper, we proposed a method to approximate the

computing power of cloud computing systems. We proposed

a simple model of a cloud computing system that represents

the fail-proof mechanism of cloud computing. We introduced

the important concept of the round number, which strongly

affects the overall computation time. We proved a theorem

that provides a formula to represent the probability that the

round number r occurs in a trial. If the time required by

the successful calculation of a subproblem is constant, the

distribution of the overall computation time is strictly given

by the formula we derived. In the more general case where

the time required by successful calculation of a subproblem

is not constant, we proposed a method to approximate by

normal distributions for each round number. Correctness of

the theorem and effectiveness of the proposed method was

demonstrated by distributed simulation. The result of the

experiments suggests that Theorem 1 results in a strong

effect even in the general case where the time required by

successful calculation of subproblems fluctuates.

7. Future Problems
As mentioned in section 5, it is difficult to analyze events

with a large round number because the appearance proba-

bility is too small to get enough statistical data. Therefore,

it is difficult to determine the parameter of average and

standard deviation of normal distribution for cases using

large round numbers. We predict that the average parameter

of normal distribution increases by Te as the round number

increases, and therefore the average for large round numbers

is estimated by the average for small round numbers and the

value of Te. If the standard deviation parameter for large

round numbers can be predicted using the standard deviation

for small round numbers, an approximation of large round

numbers becomes possible. To establish a way to estimate

these parameters for large round numbers is an important

future problem.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 287

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 287

ISBN: 1-60132-444-8, CSREA Press ©

The distribution of the frequency of the total computa-

tion time for each round number strongly depends on the

problems. We are planning to examine problems other than

the problem used in this paper. Another future problem is to

examine a distribution other than the normal distribution to

approximate the distribution of each round number. We are

planning to examine log normal distribution for this purpose.

The validity of the assumptions we made in the proposed

model of the cloud computing system should be discussed

using comparisons to real cloud computing systems.

References
[1] Amazon Web Services, “What is Cloud Computing?,” [Online]. Avail-

able: http://aws.amazon.com/what-is-cloud-computing/
[2] Amazon Web Services, “Amazon Simple Storage Service,” [Online].

Available: http://aws.amazon.com/s3/
[3] Y. Kuriyama, H. Yamamoto, “A Study on Modeling and Simulation of

Cloud Computing,” The 37th Symposium on Information Theory and
its Applications, pp.311–314, 2014 (in Japanese).

[4] Y. Kuriyama, H. Yamamoto, “Approximation of the Processing Time
for Cloud Computing and its Evaluation,” The 38th Symposium on In-
formation Theory and its Applications, pp.628–630, 2015 (in Japanese).

288 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

288 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

Prototype Development of a Twitter-Based
Safety Confirmation System for Disaster Situations

Keisuke Utsu1, Akio Ogata2, Kunihiko Sakurai1, Mana Tsutsumi1, Ayaha Suzaki1,

Rie Abe1, Ayami Manaka2, Hiroshi Ishii1, and Osamu Uchida3
1Department of Communication and Network Engineering, School of Information and Telecommunication

Engineering, Tokai University, Minato City, Tokyo, Japan
2Course of Information and Telecommunication Engineering, Graduate School of Information and

Telecommunication Engineering, Tokai University, Minato City, Tokyo, Japan
3Department of Human and Information Science, School of Information Science and Technology,

Tokai University, Hiratsuka City, Kanagawa, Japan

Abstract - Since the Great East Japan Earthquake of March
11, 2011, disaster-related information through sharing social
media has been gathering attention. In this study, we develop
a Twitter-based safety confirmation system as a web
application. Then, we deploy the system on an Internet server
and a multi-hop wireless LAN constructed by access point
devices using micro-computer Raspberry Pi boards.

Keywords: Disaster, Safety confirmation, Social media,
Twitter

1 Introduction
 After the occurrence of a large-scale disaster, many
people try to confirm the safety of their family and friends.
The confirmation is usually attempted through telephone
using fixed-line phones and cellphones or by e-mail using
cellphones [1].

 Safety confirmation using information devices requires
the communication infrastructure to be running normally.
However, we have experienced many cases where the
communication infrastructure has been disabled for a long
time due to large-scale disasters. The Great East Japan
Earthquake of March 11, 2011, seriously damaged the
communication infrastructures. After the earthquake, many
phone calls using fixed-line phones and cell phones were
attempted, but could not connect to the network; this situation
continued for a long time in many places [1]. Communication
carriers took control of the traffic to prevent traffic congestion
due to several phone calls attempting safety confirmation. A
similar situation occurred during the Kumamoto Earthquake
of April 2016.

 Many alternative safety confirmation services are
available; for example, communication carriers provide
Business-to-Consumer (B2C) services and information service
providers and security companies provide Business-to-

Business (B2B) services. However, since these services rely
on functioning communication infrastructures, they cannot be
used for prolonged periods under lengthy failure conditions.

 On the contrary, immediately after the Great East Japan
Earthquake, although phone calls were unavailable due to
traffic congestion, many people were able to communicate
through the Internet. In addition, Twitter [2], one of the social
media, was also used to share information on the damage
caused at the disaster site. On Twitter, users can post short
messages within 140 characters in length and pictures. The
reason why many people used Twitter was that the exchanged
data size on Twitter was rather small. Although smartphone
use was not widespread at the time, Twitter was easily
accessible with feature phones (conventional cellphones). The
most important feature of Twitter is that users can distribute
information easily to their followers. The following is an
example where Twitter was used beneficially. An isolated
victim sent an e-mail to her family abroad using her cell
phone, which was the only available means of communication,
and her family posted a rescue request on Twitter. Then, a
vice-president in Tokyo who was not in the disaster site found
the post. Finally, a rescue team from outside the disaster area
was dispatched, and the rescue succeeded [3]. Similarly, many
posts requesting rescue and relief supplies were posted after
the Kumamoto Earthquake [4][5].

 Recently, the use of information on SNS and Twitter for
disaster situations has been gathering attention. Various
studies have focused on systems that gather and utilize
information across various SNSs [6][7][8]. We have also
studied a web system that enables users to post disaster-
related information in a useful format using smartphones on
Twitter [9][10]; the posted information is linked to an online
map.

 Taking into account the above background, we are
studying safety confirmation systems provided by social
media. This study develops a prototype of a Twitter-based
safety confirmation system named “T-@npi” for consumers.
“T-@npi,” the name of the proposed system, is after the

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 289

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 289

ISBN: 1-60132-444-8, CSREA Press ©

Japanese word " " which is pronounced anpi in Japanese
and means the degree of safety of someone. Then, this study
deploys T-@npi on the Internet server. In addition, assuming
that communication infrastructures will be unavailable during
disaster situations, this prototype system is deployed on
access-point (AP) devices controlled by Raspberry Pi [11]
microcomputer boards for multi-hop wireless local area
network (LAN).

2 Existing Safety Confirmation System
This paper assumes the following three types of users:

 Sending user: User is sending a safety information
message.

 Confirming user: User is confirming the safety
information message of their family or friends.

 Supporting user: Users, such as staff of local
governments, are confirming the safety of the disaster
site.

 Disaster Emergency Message Dial 171 [12] and Disaster
Emergency Message Board Web171 [13] are services for
consumers in Japan. These services are provided by
communication carriers when excessive traffic congestion
results due to the large number of safety confirmation phone
calls.

 Disaster Emergency Message Dial 171 is a service to
record voice messages. The users can use the system by
dialing 171 using fixed-line phones or cell phones. Sending
users in the disaster area must input the fixed-line phone
number of the confirming user. Then, the sending users can
record a message for the confirming users. The problem with
this system is that the user must know the fixed-line phone
number of the recipient. In addition, since only fixed-line
phones in the disaster areas are allowed to use the system, the
users who do not have fixed-line phones cannot use the
system.

 Disaster Emergency Message Board Web171 is a
service for registering text messages. The users can use the
system with any type of information device. The system uses
the phone number for identification. Here, the phone numbers
are not limited to fixed-line phone numbers; cell phones are
also allowed to use the system.

 In the Great East Japan Earthquake, both 171 and
Web171 were not used by many people because the
communication infrastructure had been unavailable for a long
time at the disaster site [1]. A notable reason is that the
systems were not generally used by the people.

 Google Person Finder is a web service to help people
reconnect after a disaster [14]. The service was first provided

in the aftermath of the Great East Japan Earthquake, and
670,000 calls were registered.

 Facebook [15], the most popular SNS in the world, also
provides a safety confirmation service. The service asks the
user in the disaster site to reply to confirm their safety, and the
response is sent to his/her friends on their timeline. Facebook
is used by many for communicating among individuals rather
than with an unspecified number of people because the users
generally use their real name. Twitter is more effective than
Facebook for communicating with an unspecified number of
people. In addition, the LINE communication system [16] is
better than Facebook for confirming one’s safety to close
friends.

 Regarding Twitter, a system that estimates safety
based on posts has been proposed [17]. In addition, a system
that estimates safety based on life log data has been studied
for supporting safety confirmation using SNS [18].

3 Twitter-based Safety Confirmation
System, T-@npi

 This section describes the development of a safety
confirmation system using Twitter. The system is named “T-
@npi.” We adopted Twitter because it enables users to easily
post and distribute information. In the existing 171 or Web
171 systems, sending users can only communicate their safety
information. These systems cannot support sending users
requesting rescue; the T-@npi system should support rescue
requests. In addition, since Twitter is an open SNS with
anonymity unlike Facebook and LINE, a system using Twitter
is helpful for mutual and public assistance.

3.1 Outline of the system

 User devices are assumed to be smartphones, tablet PCs,
or general PCs. The system is deployed on the Internet server.
The information devices are connected to the server by mobile
network lines such as Long Term Evolution (LTE), 3G, or
fixed network lines such as Fiber to the Home (FTTH) or
xDSL. The system is constructed by programs and web pages
of PHP (Hypertext PreProcessor) and JavaScript. They are
deployed on the server. Twitter API is called by PHP script
posts and searches the information on Twitter.

 The outline and use cases are shown in Fig. 1. The
sending users send their safety information to the confirming
users, and the information is posted on the timeline of account
@anpi_test on Twitter by Twitter API [19]. The confirming
user can find the safety information of the sending user from
the timeline of account @anpi_test. Also, the confirming user
can distribute the information on Twitter. The supporting user
can grasp the damage status of the disaster area where they
support and see the list of the safety information submitted by
the sending user from the timeline of account @anpi_test.

290 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

290 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

The advantages of using Twitter are as follows. Since
Twitter is a very popular service, users are experienced and
can use the system easily. Since users do not use the existing
services such as 171 and Web171 daily, they are not familiar
with the system operation; this has been a bottleneck for the
acceptance of these systems. Our proposed system will be a
solution to this problem. On the other hand, if systems need to
have dedicated applications installed on a user’s device, then
the application must be distributed by the application store’s
website beforehand. However, it is not easy to register
applications at application stores. In addition, some users are
reluctant to install these applications because they are not
used frequently. For supporting users, the proposed system
has no cost. Since information exchange takes place on
Twitter, the proposed system does not require large-scale
hardware. Furthermore, since the identification of individuals
is distinguished by Twitter IDs, the system manager does not
need to maintain individual information.

3.2 User Interface and Operation

 The user page transition is shown in Fig. 2. The screen
shots are shown in Fig. 3-9. These figures were captured on
Xperia J1 compact with Android 4.4 sold by Sony mobile
communication Japan Inc. We have confirmed that similar
screens were displayed on iPhone 6 or 5s with iOS9 sold by
Apple Inc. The user can switch the language of the
instructions between English and Japanese. Functions and
operations on each screen are explained as follows.

Screen #1 (Fig. 3): Index

 First, when a user accesses the system via a web browser,
this page appears. The screen has three buttons. The user
presses the appropriate button to select the operation. The
button of “Submit your safety information” is for the sending
user to submit a safety information. When the button is
pressed, the screen transits to Screen #2. The button of “Find
the safety information” is for the confirming user to find the
safety information of the sending user. When the button is

Twitter

Prototype of T-@npi

Sender

Confirming user

Support user
Account for safety info

@anpi_test

Twitter API

Send safety info

Confirm safety info

Confirm safety info

Fig.1. Outline and use cases of the system

Screen #1
Index

To send a safety info

To search a safety info

Screen #2
Input for submission

Screen #4
Input for search

Screen #3
Result of submission

Screen #5
Result of search

To list safety info Screen #6
List

Fig. 2. User page transitions

Fig. 3. Screen #1 (Index)

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 291

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 291

ISBN: 1-60132-444-8, CSREA Press ©

pressed, the screen transits to Screen #4. The button of “List
the safety information (for administrators)” is for supporting
users to see the list of safety information submitted by the
sending users. When the button is pressed, the screen transits
to Screen #6.

Screen #2 (Fig. 4): Input for submission

This screen is for a sending user to send the safety
information. Since the contents on the screen do not fit in the
display size, some screenshots are combined in Fig. 4.

2-1) input of Twitter ID

The sending user enters one’s own twitter ID; login on Twitter
is not needed.

2-2) selection of the rescue request

If sending users need a rescue, they select “YES.”

2-3) selection of the safety status

 The sending users check more than one appropriate check box
of their safety status among four choices: “I am fine,” “There
is some damage,” “I am at home,” and “I am at an evacuation
center.” The status choices are based on those in Web171.

2-4) additional message

A user may enter a message within 40 characters.

2-5) user’s current location and the selection of whether to
send it.

If the user accesses the system via the Internet, the web
browser asks permission to provide the location information.
When the user allows to provide the location information, the
latitude and longitude information is obtained by GPS and a
geolocation system, which are called by Java Script. The
information is transformed into the address by the reverse
geocoding service [20] and displayed. When the “Yes” radio
button is checked in response to the question “do you wish to
send your location information?,” the address is sent with the
safety information. Otherwise, “ ,” which means “no
location information,” is sent. On the other hand, if the user’s
device cannot obtain its location coordinates or the user does
not want to provide location information, then “ (no
location information)” is sent. In Fig. 6, the location
information is displayed as “ 3,”
which means “2-3 Takanawa, Minato City, Tokyo.”

 If a user accesses the system via the multi-hop wireless
LAN, the question of “do you wish to send your location
information?” does not appear; instead, the preset address of
the access point device is sent automatically.

2-6) “Submit” button

Once the “Submit” button is pressed, a tweet described in
Japanese, as shown in Fig. 5, is posted on Twitter. The
description of the sample post in Fig. 5 is as follows.

ID: @utsuken_tokai
Information: There is a damage./I am at an evacuation
center.
Location: 2-3 Takanawa, Minato City, Tokyo.
Comment: Test
#Tanpi-Disaster

Fig. 4. Screen #2

(Input for submission)

Fig. 5. Example tweet

Fig. 6. Screen #3

(Result of submission)

292 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

292 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

The screen then transits to Screen #3 (Fig. 6).

Screen #3 (Fig. 6): Result of submission

 When the submission is completed, the submitted message is
displayed. A sample of the submitted message is shown in Fig.
6. In the example, the hashtag # _ is included.
Here, “ ” means “a rescue request” and “ ”
means “a test submission.”

Screen #4 (Fig. 7): Input to find information

4-1) Input of Twitter ID

 The confirming user enters the ID of the sending user for
which the confirming user wants to search. Here, the
confirming user is not required to login on Twitter.

4-2) “Submit” button

The user presses the button after entering the information, and
the screen then transits to Screen #5.

Screen #5 (Fig. 8): Result of search

 The safety information of the confirming user can be found by
searching the information submitted on @anpi_test by the
GET method of Twitter API.

Screen #6 (Fig. 9): List view for supporting users

The safety information submitted on @anpi_test is listed by
the GET method of Twitter API. The list is useful for
supporting users to collect safety information and to support
victims. Users can filter the information by location and sort
and view the information. If the information includes a rescue
request (# _) or “ (There is
some damage),” the background color of the information is
highlighted.

4 Deployment of T-@npi
 First, the prototype system of T-@npi is deployed on the
Internet server to support users who can connect to the
Internet. Next, the prototype system is deployed on a multi-
hop wireless LAN comprising AP devices controlled by
Raspberry Pi boards. Each access point operates as a web
server; an outline of the entire network is shown in Fig. 10.

4.1 Deployment on the Internet server

 The prototype system is deployed on the rented
server on the Internet. As an operation test, post submissions
are tried from March 11, 2016, to April 4, 2016. The test
submissions are made both outdoors and indoors (at the
stations and on the trains). The device is a smartphone Xperia
J1 compact with Android version 4.4 produced by Sony
Mobile Communications, Inc, was and is connected to the
Internet by LTE or 3G lines. We submit 45 posts with the
geolocation function enabled, and all 45 posts are successfully
submitted with the address information. However, the address
in some posts has position errors. Since some posts are
submitted on the trains, the past addresses may be included.
To mitigate this error, the system should be improved as
follows. If a user finds that the obtained address is obviously
incorrect, a message is displayed on Screen #2 to recommend
the user to reload the page. Alternatively, the button to renew
the address information is added on the page.

Fig. 7. Screen #4
(Input for search)

Fig. 8. Screen #5
(Result of search)

Fig. 9. Screen #6

(List view)

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 293

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 293

ISBN: 1-60132-444-8, CSREA Press ©

4.2 Deployment on the access point devices of the multi-
hop wireless LAN

We develop AP devices for the multi-hop WLAN
using Raspberry Pi boards [21]. The board is shown in Fig.11,
and the specifications are shown in Table 1. Since the board is
inexpensive, Linux-compliant, and consumes low energy, we
can easily implement the AP functions. The OS on the board
is Raspbian OS [22], on top of which necessary functions are
implemented. Two USB-connected wireless LAN adaptors
are installed on the board. One adaptor runs in the ad hoc
mode and uses IEEE802.11g as the MAC layer, and the other
runs in the infrastructure mode by hostapd [23] and uses
IEEE802.11g as the MAC layer. Web server Apache [24]
and PHP are installed in each AP. The static routing is
configured in each AP to construct the multi-hop wireless
LAN as shown in Fig. 10. In real situations, a dynamic routing
protocol will be required to achieve flexibility and reliability.
The selection or development of a suitable routing protocol
will be addressed in further studies. The distance between the
adjacent APs and between an AP and a user terminal is 10 m.
One AP runs as a gateway node to connect to the Internet via
the campus network. The user terminal connecting to the AP
receives IP addresses for the terminal, default gateway, and IP
address of Domain Name System (DNS) server by Dynamic
Host Configuration Protocol (DHCP). For the test operation,
we connect the smartphone Xperia J1 compact to each AP and
test to submit the information five times. All submissions are
successful. In addition, searching and finding the posted
information is also successful.

Table 1 Spec of Raspberry Pi Type B

CPU BCM2835 (700MHz)
RAM 512MB

USB ports 2
Board size 85.6x53.98x17 [mm]

Price USD 35.00

5 Summary and future issues
 This paper describes the prototype development of

the T-@npi safety confirmation system using twitter. We
first explain the operation and user interface of the system.
Then, we explain the development of the system on the
Internet server and the multi-hop wireless LAN constructed
with APs made with Raspberry Pi boards. Future issues are
as follows. In terms of the application of the prototype,
sending users can post information without user logins. In
the future, we plan to introduce user logins to confirm
identities. In terms of network composition, the test network
consists of one AP running as a gateway node with a
connection to the Internet. In an actual network, the gateway
would be a redundant configuration. In addition, we must
study the provision for the case where a gateway node is
disabled. After improving the system, we plan to collaborate
with local governments to adopt the system.

6 Acknowledgments
 This study has been supported by the COC (Center
of Community), Ministry of Education, Culture, Sports,
Science and Technology, Japan

7 References
[1] Internet white paper 2011, http://iwparchives.jp/iwp2011

[2] Twitter, Twitter Inc., https://twitter.com/

[3] SHUCHI PHP Online,
http://shuchi.php.co.jp/article/943?p=1

[4] Asahi Shimbun Company ,
http://www.asahi.com/articles/ASJ4J34R6J4JULZU003.html

Apache2
PHP5

Multi-hop WLAN Internet

T-@npi Apache2
PHP5

T-@npi

Apache2
PHP5

T-@npi

The terminal can connect
to the Internet

The terminal cannot connect
to the Internet by LTE or 3G

Apache2
PHP5

T-@npi

Ap

Fig. 10. Outline of the network system

Fig. 11. Raspberry Pi Type B board

294 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

294 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

[5] Sankei Shimbun & SANKEI DIGITAL,
http://www.sankei.com/west/news/160421/wst1604210120-
n1.html

[6] DISAster-information ANAlyzer (DISAANA),
http://www.nict.go.jp/en/index.html, National Institute of
Information and Communication Technology

[7] Takahiro Okuma, Kayoko Yamamoto, “Study on a Social
Media GIS to Accumulate Urban Disaster Information :
Accumulation of Disaster Information during Normal Times
for Disaster Reduction Measures”, Socio-Informatics, Vol.2,
No.2, pp.49-65, 2013 (in Japanese)

[8] Takuma Murakoshi, Kayoko Yamamoto, “Study on a
Social Media GIS to Support the Utilization of Disaster
Information : For Disaster Reduction Measures from Normal
Times to Disaster Outbreak Times”, Socio-Informatics, Vol.3,
No.2, pp.17-30, 2014 (in Japanese)

[9] Osamu Uchida, Masafumi Kosugi, Gaku Endo, Takamitsu
Funayama, Keisuke Utsu, Sachi Tajima, Makoto Tomita,
Yoshitaka Kajita, Yoshiro Yamamoto, “A Real-Time
Disaster-Related Information Sharing System Based on the
Utilization of Twitter”, The Fifth International Conference on
Social Media, Technologies, Communication, and Informatics
(SOTICS 2015), pp.22-25, IARIA, 2015

[10] Masafumi Kozugi, Hiroto Funakoshi, Keisuke Utsu,
Sachi Tajima, Makoto Tomita, Yoshitaka Kajita, Yoshiro
Yamamoto, Osamu Uchida, “Introduction of MGRS code into
Disaster-Related Information Sharing System”, IPSJ SIG
Technical Report, 2016-GN-98, No.14, pp.1-8, 2016 (in
Japanese)

[11] Raspberry Pi Foundation, https://www.raspberrypi.org/

[12] Disaster Emergency Message Dial 171, https://www.ntt-
east.co.jp/en/saigai/voice171/ , NTT EAST

[13] Emergency Message Board Web171, https://www.ntt-
west.co.jp/dengon/web171/english/ , NTT WEST

[14] Google person finder,
https://www.google.org/personfinder/

[15] Facebook, https://www.facebook.com/

[16] LINE, http://line.me

[17] Masakazu Kyokane, Yukio Hori, Yoshiro Imai,
“Twitter-based Information Collecting System for Safety
Confirmation”, IEICE Technical Report, pp. 7-11,
KBSE2013-54, 2013 (in Japanese)

[18] Yuji Ikebata, Koji Tsukada, “A Proposal for Safety
Confirmation System using Lifelog Data”, IPSJ Kansai-
Branch Convention, E-20, 2013 (in Japanese)

[19] Twitter API,
https://dev.twitter.com/overview/documentation

[20] Reverse geocoding service, National Agriculture and
Food Research Organization, Japan,
http://www.finds.jp/wsdocs/rgeocode/index.html.ja

[21] Akio Ogata, Hirohide Matsuzaka, Hayato Taniguchi,
Masaya Nomoto, Ayami Manaka, Koichi Saito, Minoru
Fukuzaki, Hiroshi Ishii, Yasuhiro Nozawa, Keisuke Utsu,
“Prototype Development and Performance Evaluation of
Wireless LAN Access Points for Community Information
Network”, IEEE TENCON 2015, PID:524, 2015

[22] Raspbian, Raspberry pi foundation,
https://www.raspberrypi.org/downloads/raspbian/

[23] hostapd, https://w1.fi/hostapd/

[24] The Apache HTTP Server Project,
https://httpd.apache.org/

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 295

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 295

ISBN: 1-60132-444-8, CSREA Press ©

A Simulation Study of Broadcast Voice Streaming using
BBISS over a Multi-hop Wireless LAN

Ayami Manaka1, Chee Onn Chow2, Hiroshi Ishii3, and Keisuke Utsu3

1Course of Information and Telecommunication Engineering, Graduate School of Information and
Telecommunication Engineering, Tokai University, Minato City, Tokyo, Japan

2Department of Electrical Engineering, Faculty of Engineering,
University of Malaya, Kuala Lumpur, Malaysia

3Department of Communication and Network Engineering, School of Information and Telecommunication
Engineering, Tokai University, Minato City, Tokyo, Japan

Abstract - We have been studying a community network made
of a multi-hop wireless LAN to inform citizens of daily or
emergency information. On the other hand, we have proposed
an information delivery method named BBISS (Broadcast
Based Information Sharing System) for ad hoc communication
environments. The system is suitable for the multi-hop wireless
LAN. Also, we have proposed a broadcast voice streaming
method named VoBBISS (Voice over BBISS) which can
distribute the stream with high quality and efficiency. This
study evaluates a performance of the broadcast voice
streaming using BBISS for inter access points communications
on the multi-hop wireless LAN by a network simulation.

Keywords: Wireless LAN, Multi-hop, Voice streaming,
Simulation

1 Introduction
 Japan has a well-developed communication
infrastructure. Smart devices such as smart phones and tablet
PCs have been widely spread. However, it is difficult to
support daily life for citizens by using smart devices. Since
daily life support services using telecommunications carrier’s
lines may be expensive, they are not easily provided by local
government. To provide the services at a low costs, we have
studying a development of a multi-hop wireless LAN which is
constructed by multiple access point (AP) devices. We have
reported a development of the AP devices which is made by
microcomputer board “Raspberry Pi” in [1].

 On the other hand, large-scale disasters frequently
happen in Japan. When the communication infrastructure is
disabled due to disasters, emergency alerts and evacuation
instructions are broadcast by local governments, police, or
firefighters using microphones and speakers as usual. Since
the audio broadcast is often poorly-heard for the citizens, it
has problems in terms of immediacy and reliability.
Furthermore, people still use radios and handy televisions to
obtain the information. Even if the citizens have such devices,
they have difficulty in getting information specific to the local

area by them. To obtain the local information, the citizens
have to wait for mass media coverages. However, the mass
media may not cover local information in the disaster site.
Therefore, it is necessary a way to distribute the local
information in the community.

 Regarding the above issues, we have studied the method
to distribute the daily information, event announcements, and
emergency notifications to the user devices under the multi-
hop wireless LAN (WLAN). The network was assumed to be
deployed in Minato city, Tokyo, Japan, and named
Community Information Network (CIN), in [2]. To broadcast
non-real-time contents such as text and image data, that paper
studied to apply the Broadcast Based Information Sharing
System (BBISS) [3] to information distribution among APs.
Then, the effectiveness of the system was evaluated through
the network simulations. On the other hand, to enable the
emergency notifications and the evacuation instructions in
voice, a broadcast voice streaming method is required.
Regarding the broadcast voice streaming, we studied voice
streaming over BBISS (VoBBISS) on ad-hoc communication
environment and showed the effectiveness in [4].

 This paper focuses on the broadcast voice streaming
applying VoBBISS on the multi-hop WLAN based on [2].
Then the distribution performance is evaluated by the network
simulation. Section 2 describes assumptions and requirements
of the multi-hop WLAN and broadcast voice streaming on the
network. Section 3 introduces VoBBISS. Section 4 evaluates
the effectiveness of applying VoBBISS to multi-hop WLAN
inter APs distribution of voice streaming by the network
simulation. Lastly, Section 5 describes conclusions of the
paper.

296 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

296 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

2 Assumption and Requirements
2.1 Assumptions of multi-hop WLAN

As locally launched communication network services,
APs have been equipped to provide tourists with public Wi-Fi
services in Japan [5][6]. On the other hand, as a technology,
IEEE802.11s mesh network has been studied [7].

We consider that there are following two requirements to
develop the locally launched network.

1. The network provides the residents and/or tourists with the
internet connection service by deploying Wi-Fi APs. As a
result, the network makes it possible for the users to use the
application everywhere in the city even when the
infrastructures of communication carriers are unavailable due
to disasters.

2. The network is available even when the infrastructures of
communication carriers are unavailable due to disasters, and
the citizen can use the network for an alternative infrastructure.

 To satisfy the above requirements at low costs and at the
same time, we are studying a multi-hop WLAN as shown in
Fig. 1. Each sub-area is composed with multiple APs. Each
AP is assumed to be furnished with 2 radio interfaces. The
one interface runs ad hoc mode to communicate with other
APs, and the other one runs infrastructure mode to
communicate with user terminals in its coverage. Next, the
network is composed of a number of sub-areas, each of which
is composed of several APs. An AP in each sub-area is a
gateway to the other sub-areas and/or the external network
(Internet). How to realize the connections among sub-areas
and between the network and the internet needs further study.

 The inter-AP communication on the multi-hop
WLAN was studied in [2]. In the paper, we studied the
broadcast distribution of the download and play media such as
text and images. The information source is assumed to have
two cases: the one is specific point(s) such as city office and
its brunches. The other one is unspecific point(s) under APs.
In both cases, to reach generated packets to the user terminals,
they must be delivered to each AP. Here, unicast
communication is not appropriate for distribution to many
destination. That is because link capacity is small in the
wireless network and it results in low packet reachability. To
enable the broadcast distribution effectively achieving high
packet reachability, we discussed the applying of BBISS
which uses broadcast communications to the inter-AP
distribution in [2]. The method BBISS utilizes the
characteristics of broadcast communication: broadcast
communication on wireless media has redundancy and it has
better fault tolerance than the unicast communication.

The Internet
City government or
its branches

AP-users: Infrastructure mode

Inter-APs:
Ad-hoc modeSub-area Sub-area

Fig. 1 Composition of the multi-hop wireless LAN

2.2 Requirements of broadcast voice streaming of
multi-hop WLAN

 As mentioned above, we have already studied the
broadcast distribution of the download and play media such as
text and images by BBISS. However, we have not yet studied
the broadcast voice streaming performance on the network.
Therefore, this study focuses on broadcast voice streaming for
the emergency notifications.

 This study focuses on the broadcast voice streaming for
the user terminals which is connecting to the multi-hop
WLAN. Here, this study is not concerned with voice codecs.
The codec G.711 [8] which is a general codec is assumed to
be used below.

 For reference, voice streaming using existing flooding
[9][10][11] is shown in Fig. 2. A packet includes information
such as sequence number which is added by Real time
Transfer Protocol (RTP) or another protocol is transferred to
UDP layer, IP layer, and link layer. On the contrary, at the
receiver side, receiving voice packets are reassembled.
However, since packets are generated at a high rate in the
voice streaming, the above methods are insufficient. The
reduction of the packet losses and complement them are
required in the distribution method.

Codec

UDP

IEEE802.11 WLAN

Application

IP

Codec

UDP

IEEE802.11 WLAN

Application

IP

Audio packets
including time stamps

Streaming originator Receiving terminals

Broadcast transmission

Fig. 2 Voice streaming by existing flooding methods

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 297

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 297

ISBN: 1-60132-444-8, CSREA Press ©

The broadcast voice streaming should meet the
following requirements.

(a) Quality degradation due to collisions should be saved:

Since ad-hoc and multi-hop communication environment
are lossy, and streaming applications generates packets at a
high rate, packet losses significantly occur. Since we assume a
one-way voice streaming of emergency notifications and
evacuation instructions, the percentage of unreached packets
at the receiving terminal should be 5.00% or less, which is
sufficient quality in the assumed environments, taking into
account of [12]. For the same reason, a few seconds buffering
delay is acceptable. Therefore, the system can adopt
retransmissions of the unreached packets. Based on the above,
the system aims for 5.00% or less of unreached packets.

(b) Redundant packet exchanges and overhead should be
saved:

The saving the redundant packet exchanges is effective
to save quality degradation due to collisions. In addition,
since the battery capacity of the node is limited, the redundant
packet exchanges should be saved. By the same reason,
overhead of under UDP layer which is generated in packets
transfer should be reduced.

(c) Overhead of HELLO packets should not be generated:

HELLO packets which are generated to collect and
distribute the topology information should not be generated to
reduce traffic load and the number of packet exchanges.

3 VoBBISS
We have proposed VoBBISS which is a broadcast voice

streaming method on the ad-hoc communication environment
in [4]. The system VoBBISS and voice codec are independent,
and this study does not take into account of packet loss
concealment (PLC). The details of the system are shown in
the following.

3.1 Broadcast voice streaming by VoBBISS

Figure 3 shows the outline of proposed system. The
BBISS was primarily assumed to be adopt to the download
and play media such as text and images which are non-real-
time data sized tens of kBytes to hundreds of kBytes.
Therefore, BBISS itself cannot be applied to the voice
streaming that generates packets at a high rate. For the
streaming application in VoBBISS, the voice packets are
conjunct at the streaming originator. Finally, conjunct packets
are transferred by BBISS. Then, the conjunct packet are
reassembled to the voice packets at the receiver side.

 (A) Conjunction and disjunction of voice packets

 At the streaming originator, the voice packets including
sequence numbers are combined with a certain length of time.
As the number of packets to be combined get larger, the
length of a buffering time which is waiting time for the
playback start will be longer. The number of packets to be
combined must be larger values than multiple number of the
BBISS packet payload size, and it should be similar values of
multiple number of the BBISS packet payload size. In an
example shown in Fig. 3, the packets for 0.5s (i.e. 25 voice
packets) are combined. The conjunct packets are transferred
to the BBISS layer. At the receiver, conjunct packets which
are received at the BBISS layer are reassembled to the voice
packets. Then, voice packets are transferred to a playback
application.

Codec

UDP

IEEE802.11 WLAN

Application

IP

Codec

UDP

IEEE802.11 WLAN

Application

IP

BBISS BBISS

Audio packet conjunction Audio packet disjunction

total_packets = 3

…… ……

Conjunct Audio packets

BBISS packets

Audio packets including time stamps

25packets (for 0.5 sec.)

Streaming originator Receiving terminals

Broadcast transmission

Fig. 3 Voice streaming by BBISS

(B) Packets distribution by BBISS

 Broadcast Based Information Sharing System operates
on the UDP/IP layer. The detailed explanation of BBISS
operation and its features is described in [2]. The outline of
BBISS is as follows. Below “send” means “broadcast” at the
MAC layer in this section.

 The streaming originator divides the information (a
conjunct audio packet) into multiple packets (BBISS packets).
The division number is determined by total_packet which is a
preset value. An example of the case where total_packet = 3
is shown in Fig. 3. Here, the setting is depends on the number
of packets combined in (A). How to set the value will be
mentioned later. Then, the node sends the packets sequentially
with a fixed time interval which is determined by
send_interval (as Sending state in Fig. 4). Then the packets
are received by a node around the initiator node (as Receiving
state in Fig. 4).

 A node that has received all packets does not
immediately relaying them but waits during a random period.
During the period, the node listens to other nodes and counts
the number of nodes relaying the same information that it has

298 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

298 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

(as Relay decision state in Fig. 5). If the number of relaying
nodes reached to a predetermined threshold (relay_threshold),
the relaying by itself is canceled. The operation can save
redundant relays and reduce traffic load. After the period, if
the number of relaying nodes is not reached to
relay_threshold, the node relays the information (as Sending
state in Fig. 6).

 In the architecture, unreached packets may possibly be
complemented by redundancy of broadcast transmission. In
the case where the unreached packets cannot be
complemented (as the right bottom node in Fig. 5), a NACK
(Negative Acknowledgments) based retransmission control is
operated as shown in Fig. 7. The number of trials to send
retransmission request packet is limited to a predetermined
threshold (req_threshold).

3.2 Features of VoBBISS and solution for the
requirements

If voice packets are transferred as they are, the lower layer
contentions are serious. That is because, the packet size of the
voice packet is smaller than that of other applications. In
addition, traffic load is heavy due to the overhead under the
UDP layer. To solve the problems, VoBBISS can reduce the
overhead as below. The audio packets are conjunct at first,
and then the conjunct audio packets are divided into the
BBISS packets which can be delivered using BBISS. The
operation can reduce the quality degradation of the playback,
and contributes the requirements (a) and (b).

 The retransmission operation, which is using within several
seconds buffering, is taken to reduce the quality degradation
of playback in VoBBISS. When some packets are not reached
the receiving node, the NACK based retransmission control is
taken. The operation can reduce the quality degradation of the
playback, and contributes the requirement (a).

 In addition, in Relay decision state of BBISS, the relay
transmission is canceled when the receiving node detects the
number of relaying node is reached relay_threshold. The
operation can reduce the redundant relay transmissions, and
contributes the requirement (b). Also, the operation does not
require HELLO packet exchanges, therefore it can contribute
the requirement (c).

 In the previous study [3], VoBBISS can deliver in better
packet reachability than existing methods, on the ad hoc
communication environment. The quality is sufficient for
voice streaming. Furthermore, since the number of transmitted
packets are reduced, it can consume the energy efficiently.

Initiator
(Sender)

broadcast

SendingReceiving

Receiving

Receiving

Receiving

Fig. 4 Sending and Receiving states in BBISS

Relay decision Relay decision

Relay decision Receiving

2 packets
unreached

Retrans. wait.

Fig. 5 Relay decision state in BBISS

Sending Sending

Relay decision Receiving

2 packets
unreached

Retrans. wait.

Fig. 6 Relay decision and Sending states in BBISS

Retrans. send.

Retrans. req.

Fig. 7 Retransmission operation for complementing
unreached packets in BBISS

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 299

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 299

ISBN: 1-60132-444-8, CSREA Press ©

4 Performance evaluation of VoBBISS on
the multi-hop WLAN

In this section, the performance evaluation of broadcast
voice streaming by VoBBISS on the multi-hop WLAN which
is assumed to be applied in the Merry Load Takanawa Street,
Takanawa area, Minato City, Tokyo, Japan, as a model case.
Here, the evaluation focuses on communication performance
of the inter-APs. The communication among AP-user
terminals is a further issue.

4.1 Simulation environment

We used OPNET Modeler 17.5 as a network simulator
[13]. The simulation area size could cover Merry Road
Takanawa Street. The APs were assumed to be equipped there
covering the street in about 100m intervals, as shown in Fig. 8.
The radio communication range (transmission radius) was
150m. The MAC layer protocol was IEEE802.11a, and the
data rate was 54Mbps. AP1, 6, and 8 were in one hop radio
range of AP0. AP2 and 7 were two hops away from AP0. AP3
was three hops away from AP0. AP4 and 5 were four hops
away from AP0. The radio channel for inter-APs and that for
the AP to the user terminals were assumed not to interfere
each other. In the simulation, traffic was assumed to be
generated from the AP.

We assume the voice stream as G.711, and voice
playback time (length) was 30s, i.e. 50 packet/s that was
equivalent to a total of 1500 packets. The sending packet size
was 200Byte (Payload 160Byte + UDP/IP header that was
equivalent to 40Byte).

The numbers of APs generating the information
simultaneously (source APs) were 1 (AP_a, in Fig. 8), 2
(AP_a and AP_b), or 4 (AP_a, AP_b, AP_c, and AP_d). As
larger the number was set, the traffic load got heavier. The
voice stream was distributed by SF or VoBBISS. The number
of trials for each distribution method was 10.

For SF simulations, send_interval was set 20ms, and waiting
time for the packet relaying was set a value in the range of (20,
200) ms. For BBISS simulations, send_interval was set 166ms,
and waiting time for the packet relaying was set the value in
the range of (16.6, 166) ms, the payload size of the BBISS
packets was 1480Byte. The other parameters for BBISS were
set according to [14]: relay_threshold was set 2, and
req_threshold was set 3. The following describes the number
of packets constructing a BBISS packet (total_packet). The
number of combined voice packets must be less than or equal
to the value multiple of the payload size of the BBISS packet
(The number of combined voice packets * The size of voice
packets ≤ payload_size * total_packet). In addition, it should
be close to a multiple of the payload size of the BBISS
packets. This study was simulated as the number of conjunct
packets were 25 (0.5s), that was equals total_packet = 3.

Although the streams were generated at nodes connected to
the APs in real situations, the voice streams were assumed to
be generated at APs in the simulations. That was because, the
channels among APs and that for the user terminals to APs
were independent in the study. The numbers of APs generating
the information simultaneously (source APs) were 1 (AP_a, in
Fig. 8), 2 (AP_a and AP_b), or 4 (AP_a, AP_b, AP_c, and
AP_d).

: AP

AP0

AP2

AP4

AP7

AP1

AP3

AP6

AP5

AP8

Fig. 8 Assumption of the APs’ placement

4.2 Evaluated items

Since this study focuses on the one-way voice streaming in
the disaster situations, a few seconds of buffering time is
acceptable. The evaluated items were the following (i) and (ii).

(i) Percentage of receiving packets [%]

 The percentage of voice packets received at the APs of the
generated voice packets (1500 packets) in each stream. Here,
streaming originator APs were excluded. The percentage
values were averaged in all APs. To deliver the packets to
user terminals under the multi-hop WLAN, as many as
possible of generated packets should be reached to the APs.
Therefore, as the percentage gets larger, the performance will
be better.

(ii) End-to-End delay time of voice packets [s]

 The average end-to-end packet delay between the originator
AP and the receiver APs was evaluated. Then, the values were
averaged in all generated packets. The generated packets
should be reached as early as possible. Therefore, as the time
gets shorter, the performance will be better.

300 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

300 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

4.3 Evaluation result

(i) Percentage of receiving packets [%]

 The simulation result for average of 10 trials is shown in
Fig. 9. The deviation bars in the graph show the range of
average values +/- standard deviation values.

In SF, the number of source APs got more, the traffic loads
and packet collisions were increased. Therefore, the
percentage of receiving packets was decreased. In VoBBISS,
even though the number of source APs was 4 (that was the
maximum case), the percentage was 95.8%. This means that
almost all of voice packets are reached the APs. The reason is
as follows: in SF, the nodes relay the packet every time when
the nodes receive it. On the other hand, in BBISS, the nodes
relays the conjunct packet after the node receiving it.
Therefore, BBISS can reduce the traffic load and the data
frame collisions, compared with SF. In addition, the
retransmission control in BBISS contributes to improve the
packet reachability.

(ii) End-to-End delay time of voice packets [s]

The simulation result for average of 10 trials is shown in
Fig. 10. The deviation bars in the graph show the range of
average values +/- standard deviation values.

 The end-to-end delay time values for VoBBISS were
about 1s, and those were larger than those for SF in all cases
of the number of source APs. The reason is as follows: the
retransmissions were operated in BBISS at the case where
some packets were unreached. In addition, since BBISS
combined and divided voice packets, the delay time was
expanded. However the end-to-end delay time is equivalent to
the minimum waiting time for the playback start at the user
terminal. That delay time for BBISS is negligible for the
emergency broadcast to the user terminals.

0%

20%

40%

60%

80%

100%

1 2 4

Pe
rc

en
tag

e o
f r

ec
eiv

in
g p

ac
ke

ts
+/

-S
D

The num. of source APs

SF
VoBBISS

Fig. 9 Simulation result for percentage of receiving
packets

0.000

0.200

0.400

0.600

0.800

1.000

1.200

1 2 4

Pa
ck

et
 la

te
nc

y
[s

] +
/-

SD

The num. of source APs

SF
VoBBISS

Fig. 10 Simulation result for percentage of packet latency

5 Conclusions
 This study evaluated a performance of the broadcast
voice streaming using VoBBISS for the multi-hop wireless
LAN which was assumed to be applied in Takanawa, Minato
city, Tokyo. The performance for inter-APs distribution was
evaluated by the network simulation. The simulation result
showed that the distribution by VoBBISS shows the better
packet reachability than that by SF. In addition, even though
in the case of the number of source APs was 4, the packets
end-to-end delay time was the small values (about 1s). In the
future, we plan to evaluate on multi-hop LANs with other
topologies. In addition, we plan to implement VoBBISS on
the communication devices.

6 Acknowledgments
 This study has been supported by the Telecommunications
Advancement Foundation, Japan.

7 References
[1] Akio Ogata, Hirohide Matsuzaka, Hayato Taniguchi,

Masaya Nomoto, Ayami Manaka, Koichi Saito, Minoru
Fukuzaki, Hiroshi Ishii, Yasuhiro Nozawa, Keisuke Utsu,

Prototype Development and Performance Evaluation
of Wireless LAN Access Points for Community
Information Network”, IEEE TENCON 2015, PID:524,
2015

[2] Ayami Manaka, Tomomi Itoh, Yasuhiro Nozawa, Chee
Onn Chow, Minoru Fukuzaki, Hiroshi Ishii, Keisuke
Utsu, “Performance Evaluation of a Community
Information Network for a Daily Life Support System”,
Proceedings of the 2015 International Conference on
Parallel and Distributed Processing Techniques and
Applications (PDPTA’ 15), pp.539-545, 2015

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 301

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 301

ISBN: 1-60132-444-8, CSREA Press ©

[3] Keisuke Utsu, Chee Onn Chow, Hiroaki Nishikawa,
Hiroshi Ishii, “A Novel Information Sharing
Architecture Constructed by Broadcast Based
Information Sharing System (BBISS)”, Proceedings of
the 2014 International Conference on Parallel and
Distributed Processing Techniques and Applications
(PDPTA’14), pp.534-540, 2014

[4] Keisuke Utsu, Chee Onn Chow, Hiroshi Ishii, “A Voice
Streaming Technique achieving High Reliablity and
Efficiency by Broadcast Based Information Sharing
System”, The IEICE Transactions on Communications,
Vol. J98-B, No.7, pp. 582-590, 2015 (in Japanese)

[5] Kobe City, “KOBE Free Wi-Fi,”
http://www.city.kobe.lg.jp/information/press/2014/07/20
140704142001.html

[6] Fukuoka City, “Fukuoka City Wi-Fi,”
http://www.city.fukuoka.lg.jp/wi-fi/

[7] Shiro Sakata, Akira Yamada, Hiroyuki Iizuka, Tetsuya
Ito, “Trend on Wireless LAN Mesh Network,” The
Journal of the Institute of Electronics, Information and
Communication Engineers, Vol.92, No.10, pp.841-846,
2009 (in Japanese)

[8] ITU-T Recommendation G.711, “Pulse code modulation
(PCM) of voice frequencies”

[9] Jorjeta G. Jetcheva, David A. Malts, “A Simple protocol
for Multicast and Broadcast in Mobile Ad Hoc
Networks”, IETF MANET Working Group InternetDraft,
<draft-ietf-manet-simple-mbcast. txt>, 2001

[10] Brad Williams, Tracy Camp, “Comparison of
Broadcasting Techniques for Mobile Ad Hoc Networks”,
Proceedings of the 3rd ACM International Symposium
on Mobile Ad Hoc Networking and Computing, pp. 194-
205, 2002

[11] Yu-Chee Tseng, Sze-Yao Ni, Yuh-Shyan Chen,
JangPinig-Sheu, The Broadcast Problem in a Mobile
Ad Hoc Network , Wireless Networks Volume 8,
Springer, pp. 153-167, Kluwer Academic Publishers,
2002

[12] J.H. James, Bing Chen, Laurie Garrison, “Imple-menting
VoIP: A Voice Transmission PerformanceProgress
Report”, IEEE Communications Magazine, Vol. 72,
Issue. 7, pp.36-41, July 2004

[13] The network simulator, OPNET Modeler (Riverbed
Modeler),
http://www.riverbed.com/products/steelcentral/steelcentr
al-riverbed-modeler.html

[14] Sayuri Wada, Hiroshi Ishii, Hiroaki Nishikawa and
Keisuke Utsu, “An Optimization Study on Broadcast
Based Information Sharing System (BBISS)”,
Proceedings of the 2014 International Conference on
Parallel and Distributed Processing Techniques and
Applications (PDPTA’14) , pp.485-489, 2014

302 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

302 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 303

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 303

ISBN: 1-60132-444-8, CSREA Press ©

304 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

304 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 305

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 305

ISBN: 1-60132-444-8, CSREA Press ©

306 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

306 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 307

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 307

ISBN: 1-60132-444-8, CSREA Press ©

308 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

308 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 309

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 309

ISBN: 1-60132-444-8, CSREA Press ©

An Experimental Study on Round Trip Time Distribution
of the Internet

Akira Sasatani and Hiroshi Ishii

Graduate School of Information and Telecommunication Engineering, Tokai University, Minato, Tokyo, Japan

Abstract – The end-to-end delay is one of the important service
indicators of the Internet applications. Knowing the
characteristics of the end-to-end delay seems very significant to
provide users better net-related services. This paper measures
end-to-end delay between a fixed site in Japan and several sites
outside Japan periodically and clarifies actual delay
distributions in shape of histograms. Then, it compares each
measured histogram and normal distribution with the same
mean and standard deviation as those of histogram and shows
most histograms are normally distributed.

Keywords: End-to-end delay, ping, normal distribution,
correlation factor

1 Introduction
People are nowadays able to access information existing all

over the world quickly and simply through the internet which
spread as infrastructure. The packet transfer time between the
service requiring side and offering one is a main service
performance ruling factor in the internet. Therefore to get
some knowledge about the distribution of the end-to-end delay
of this network is necessary to design and achieve a service.

End-to-end delay should be measured as one way delay to a
destination from an original sender. However, it is difficult to
know one way delay conveniently because there have to install
measuring equipment in both of sending side and receiving
side and have to be operated synchronously. Therefore it is
general that only one side measures the round trip delay instead
of one-way end-to-end delay. This round trip delay is called
RTT (Round Trip Time). An existing study [1] shows RTT
obeys Gamma distribution and another [2] explains that RTT
follows Pareto distribution when a network is congested and
does lognormal distribution when a network is not in
congestion. We however think it necessary to re-examine
RTT distribution because those existing study results are
obtained in the period when high speed access circuits did not
exist and the network traffic was much smaller.

In [3], we have already measured RTT using ping command
to some countries and studied resemblances between the
measured results and lognormal distribution according to the
result of [2] but failed to show the resemblance adequately. The
reason of failing getting the resemblance seemed lack of
consideration of outliers of measured values.

Based on the estimation in [3], this paper revisits the issue and
studies resemblances between this actually measured results
and a normal distribution by considering the outliers of
measured values using IQR (Interquartile range).

Section 2 describes measuring method and conditions. In
section 3, we show experimental results. Section 4 studies
resemblances between the measured results after excluding
outliers and a normal distribution. Section 5 concludes this
paper.

2 Measuring method and conditions

2.1 Measuring method of RTT
We measure RTT using ping command. Ping commands are

periodically sent from a PC in our laboratory by use of
"ExPing" [5] and the results are logged.

2.2 Measuring specification of RTT
2.2.1 Measurement cycle
10 min. (6161 times in total)

2.2.2 Measurement period

 April 29, 2015 at 06:03 p.m. June 18, 2015 at 01:42 p.m.
(51 days).

2.2.3 Measurement target
USA free web server (000webhost.com), Germany free web

server (Host-ed.net), University of Vienna, Higher University
of San Andrés, The University of Sydney, University of
Nairobi, Harvard University, The University of British
Columbia and Tunghai University.

2.2.4 Measurement place
 Ishii laboratory, Tokai University, Minato, Tokyo, Japan.

3 Experimental results
The results of measuring experiment are shown as histograms

in Figures 1 through 9. The horizontal axis shows the measured
RTT and the vertical axis shows the frequency of RTT per 2ms
time slot. The average and the standard deviation of all the RTT
measured for each destination is also shown in each figure.

310 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

310 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

(Average 225.250 Standard deviation 13.721)
Fig. 1. RTT histogram of the U.S.

(Average 318.852 Standard deviation 17.961)
Fig. 2. RTT histogram of Germany

(Average 292.753 Standard deviation 13.659)
Fig. 3. RTT histogram of Univ. of Vienna

(Average 306.889 Standard deviation 14.642)
Fig. 4. RTT histogram of Univ. of San Andres

(Average 297.372 Standard deviation 11.428)
Fig. 5. RTT histogram of the Univ. of Sydney

(Average 220.097 Standard deviation 15.326)
Fig. 6. RTT histogram of Univ. of Nairobi

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 311

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 311

ISBN: 1-60132-444-8, CSREA Press ©

(Average 28.617 Standard deviation 8.399)
Fig. 7. RTT histogram of Harvard Univ.

(Average 155.364 Standard deviation 10.384)
Fig. 8. RTT histogram of the Univ. of British Columbia

(Average 71.657 Standard deviation 28.845)
Fig. 9. RTT histogram of Tunghai Univ.

4 Consideration

4.1 A distribution of RTT and normal
distribution

 The shape of the RTT histograms seems similar to that of the
normal distribution from Fig.1 through 9. Then we research

resemblance by use of correlation coefficient between each
measured RTT histogram and the normal distribution with the
same mean and variance as those of each histogram. The
results are shown in Table 1.

Table 1. Correlation coefficient between measured results and
normal distribution with same average and variance

 Correlation coefficient
the U.S. 0.566
Germany 0.559
Vienna 0.397
San Andres 0.590
Sydney 0.330
Nairobi 0.426
Harvard 0.389
B.C. 0.358
Tunghai 0.232

As shown in the Table1, the correlation coefficient of any pair
of sample and normal distribution is rather small (less than 0.6).
Hence, it is difficult to conclude that the normal distribution
gives reasonable approximation to the measured RTT
histograms. This result is also shown in [3].

4.2 Excluding outliers
Section 4.1 uses the average and standard deviation calculated

from all samples. But there are samples whose values are
extremely deviated from the average. They are called
“outliers”. An outlier is a value in a statistical samples which
does not fit a pattern that describes most other data points.
More specifically, a value that lies r* IQR beyond the upper or
lower quartile. Hence, we exclude outliers using quantiles
because outliers may affect estimation of the distribution. First,
each RTT data is rearranged in an ascending order of the value.
Next we find the values bottom 25th percentile (first quartile)
Q1 and bottom 75th (top 25th) percentile (third quartile) Q3.
Then, according to the following formula, we get the boundary
of outliers, OL and OU.

13
3)(
1)(

QQIQR
IQRrQOUpperOutlier
IQRrQOLowerOutlier

U

L

We researched data between OL and OU.

Although generally "r" is 1.5, we adopt r=3 to exclude
extreme outliers only.

312 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

312 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

Table 2. Excluding outliers before and after
 Average and normal distribution, Rate (Excluding outliers / All data)

 the U.S. Germany Vienna San Andres Sydney Nairobi Harvard B.C. Tunghai

All data
Ave.[ms] 225.250 318.852 292.753 306.889 297.372 220.097 28.617 155.364 71.657

Std. dev. 13.720 17.961 13.659 14.642 11.428 15.326 8.399 10.384 28.845

Excluding
outliers

Ave.[ms] 224.032 314.097 288.794 304.251 295.225 216.794 27.308 153.786 62.082
Std. dev. 8.020 6.163 0.671 3.604 0.535 1.447 0.690 0.673 1.843

Rate 0.990 0.897 0.858 0.944 0.906 0.900 0.947 0.945 0.812

Table2 shows an average and a standard deviation of all
measured data and those of data after excluding outliers. Also
it shows the rate of number of sample after excluding outliers
to that of all elements measured. It shows that the average is
unchanged independent of outlier exclusion but the standard
deviation becomes much smaller after excluding extreme
outliers. Normal distribution with an average and a standard
deviation calculated from the data without extreme outliers and
measured histogram are shown for each country in figures 10
through 18. In addition, correlation coefficients are
summarized in Table3.

(Correlation coefficient: 0.597)
Fig. 10. RTT histogram and outliers

excluded normal distribution (the U.S.)

(Correlation coefficient: 0.797)

Fig. 11. RTT histogram and outliers
excluded normal distribution (Germany)

(Correlation coefficient: 0.726)
Fig. 12. RTT histogram and outliers

excluded normal distribution (Univ. of Vienna)

(Correlation coefficient: 0.951)
Fig. 13. RTT histogram and outliers

excluded normal distribution (Univ. of San Andres)

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 313

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 313

ISBN: 1-60132-444-8, CSREA Press ©

(Correlation coefficient: 0.979)
Fig. 14. RTT histogram and outliers

excluded normal distribution (Univ. of Sydney)

(Correlation coefficient: 0.988)
Fig. 15. RTT histogram and outliers

excluded normal distribution (Univ. of Nairobi)

(Correlation coefficient: 0.962)
Fig. 16. RTT histogram and outliers

excluded normal distribution (Harvard Univ.)

(Correlation coefficient: 0.996)
Fig. 17. RTT histogram and outliers

excluded normal distribution
(the Univ. of British Columbia)

(Correlation coefficient: 0.824)
Fig. 18. RTT histogram and outliers

excluded normal distribution
(Tunghai Univ.)

Table 3. Correlation coefficient between measured histograms
without outliers and normal distribution

 Correlation coefficient
the U.S. 0.597

Germany 0.797
Vienna 0.726
San Andres 0.951
Sydney 0.979
Nairobi 0.988
Harvard 0.962
B.C. 0.996
Tunghai 0.824

314 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

314 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

 According to the above Figures 20 through 28 and Table3, most RTT
data rather accord with normal distribution owing to excluding
outliers. Nevertheless in USA server, even if outliers were excluded,
correlation coefficient between measured histogram and the normal
distribution is small. In the following, we study this phenomenon.

4.3 Composite distribution
 The RTT distribution of the USA server has several peaks
(Fig.1). Hence we study whether it can be expressed with the
composition of several distributions or not. According to
studies until section 4.2, the average almost coincides with the
mode in histograms approximated with just a single
distribution. Let the delay of the maximum frequency and
delay of the 2nd largest frequency be d1 and d2, respectively
and so forth. We assume that samples in the neighborhood of
peak i belongs to a normal distribution i with the average delay,
di, group all the samples into several groups belonging to the
different normal distribution and then each standard deviation
is estimated.

Here let the composite distribution dist(x), then;

),,()(ii
i

xNORMaxdist i

tsmeasurementhefromestimatedroughlyisa

dawhere

i

ii
i

i

1

Here we choose 4 values from the highest frequency (i =1, 2,
3, 4) and get a composite distribution. Fig.19 shows measured
histogram and the composite distribution. Moreover we get a
correlation coefficient of them.

(Correlation coefficient: 0.807)

Fig. 19. RTT histogram and
Composite distribution (the U.S.)

It can be said that the shape of measured histogram and one of
the composite distribution are similar. We get a high
correlation coefficient (0.807). Accordingly the histogram can

be approximated as a composite distribution that consists of
several normal distributions.

5 Conclusions
 This paper has tried to clarify the characteristics of RTT by
continuous measurement using ping. We have sent ping
commands to and logged the results of USA, Germany,
University of Vienna, Higher University of San Andrés, The
University of Sydney, University of Nairobi, Harvard
University, The University of British Columbia and Tunghai
University. As a result, we found out that the RTT has a very
stable value. The distributions without extreme outliers have
high correlation with the normal distribution.

 Further study is needed to consider the resemblance by a
distribution besides the normal distribution, quantitative study
of resemblance by chi-square testing, consideration of the
relation between number of hops and RTT, and more precise
investigation of the composite distribution.

6 References

[1] Kaori Kobayashi, Masaru Ohta, Tsuyoshi Katayama.
“Analysis and Evaluation of Packet Delay Time on Internet”;
IEICE technical report, NS2001-5, pp.27-32 (2001) (in
Japanese).

[2] K. Fujimoto, S. Ata and M. Murata. “Statistical Analysis
of Packet Transmission Delay in the Internet”; IEICE technical
report, IN2000-48, pp.41-48 (2000) (in Japanese).

[3] Sho Tohyama, Kalkattawi Suhail, Alamri Zizo, Go Gun
and Hiroshi Ishii. “Analysis of end-to-end delay characteristics
of the internet”; IEE-CMN, CMN-15-003, pp.11-16 (2015) (in
Japanese).

[4] Akira Sasatani, Nozomu Hirata, Natsuki Okabe and
Hiroshi Ishii. “A study on end-to-end delay distribution of the
internet”; IEE-CMN, CMN-16-005, (2016) (in Japanese).

[5] ExPing , http://www.woodybells.com/exping.html

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 315

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 315

ISBN: 1-60132-444-8, CSREA Press ©

Data-Driven Sensor Networking Processor
Tolerating Instantaneously Excessive Load

Shuji SANNOMIYA1, Yukikuni NISHIDA2, Makoto IWATA3, and Hiroaki NISHIKAWA1

1Faculty of Engineering, Information and Systems,University of Tsukuba, Ibaraki, Japan
2Graduate School of Systems and Information Engineering, University of Tsukuba, Ibaraki, Japan

3School of Information, Kochi University of Technology, Tosayamada-cho, Kochi, Japan

Abstract— To deploy sensor networks widely, not only long
life-time even with the use of batteries but also innovative re-
liability is indispensable because human maintenance works
for individual device become no longer possible. As already
proposed, ultra-low-power data-driven sensor networking
systems detect and isolate failure devices autonomously for
eliminating human checking works. However, the failures
may still arise instantaneously huge input data and make
processors inoperative. In this paper, a data-driven sensor
networking processor with an autonomously variable input
rate mechanism is proposed to realize tolerance against
such instantaneously excessive load. The proposed processor
makes it possible to accept arriving input data only when the
processing load after the data input can be kept within the
processing capability by utilizing the predictability of inter-
nal processing load. The circuit simulation of the proposed
processor shows that the operation of the processors can be
guaranteed regardless of the input data arrival timing.

Keywords: data-driven processor, real-time multiprocessing, self-

timed pipeline, sensor network, internet of things

1. Introduction
Toward Trillion-Sensor-Universe which is propounded by

Janusz Bryzek and indicates the utilization of more than 100

networked sensors per person for a year on earth, sensor

networking system should be innovatively reliable because

maintenance cost for individual sensor device increases ex-

plosively and becomes unacceptable. Moreover, such sensor

devices may be battery-operated to be free from electrical

wiring and thus should be long-lifetime. To realize such

reliable and long-lifetime sensor networking system, we have

proposed data-driven sensor networking system based on a

data-driven processor by which the battery-operated lifetime

becomes foreseeable and long even when failures occur in

sensor devices [1].

The long battery-operated lifetime foreseeability is pro-

vided as a result of data-driven processor architecture and its

self-timed pipeline implementation in which operation exe-

cution is initiated on the arrival of input data as long as com-

putational resources (i.e. pipeline stages) are available and

thus real-time multiprocessing indispensable for networking

under time constraints defined by communication protocols

can be achieved without extrinsic program-execution over-

heads such as context switching and interrupt handling [2].

This passive and overhead-free execution manner results in

not only low power consumption but also the proportional

relation between the consumption current and the processing

load (i.e. the amount of processing data) of the data-driven

processor. Based on this proportional relation, the runtime

energy dominating the battery-operated lifetime of sensor

nodes can be estimated for a given typical load before the

installation of the nodes.

The energy foreseeability leads to the drastic reduction

of the system maintenance costs. For instance, the schedule

of the replacement of battery can be designed and opti-

mized before the system installation, and thus the human

working for battery replacement each time the battery runs

down becomes no longer required. Moreover, it makes it

possible to detect the failures of devices autonomously after

the system installation by the energy self-check of each

node because the failure occurred in a node changes the

consumption current of the node or its neighbors processing

the data transferred from the node, and gets the energy of

the node or the neighbors out of the foreseen range. To

enhance the reliability of the system, the bad effects of the

nodes with failures can be suppressed within the neighboring

nodes by dropping the data transferred from the nodes with

failures in the neighbors, while the other nodes can operate

continuously.

On the other hand, not only the failures but also unex-

pected situations in which a large amount of events is sensed

concurrently may cause overload situation in which the

amount of processing load of a node exceeds the processing

capacity of the node. To make the system reliable against

such situations, we have studied an overload-free data-

driven networking platform architecture, in which input data

is buffered or discarded when the sum of the observed

load and the load to process the input data exceeds the

processing capability, by utilizing the direct observability

of the processing load via consumption current [3], [4].

However, the observation of the processing load involves

delay due to both the signal propagation in the observation

circuit and sampling interval of consumption current, and

thus instantaneously sudden increase of input may cause

overload and make the platform inoperative.

316 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

316 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

In this paper, a data-driven sensor networking processor

with tolerance against such instantaneously excessive load is

proposed. Fortunately, the self-timed pipeline has tolerance

against excessive load by nature. In the self-timed pipeline,

valid data is transferred between adjacent stages locally

based on local negotiation between the stages, and each

pipeline stage never accept input data when processing.

As a result, the input rate is kept within the maximum

throughput of the self-timed pipeline. To inherit this natural

tolerance, a variable rate input mechanism is proposed for

the circular pipeline indispensable to execute operations in

the data-driven processor. The proposed mechanism keeps

the processing load within the maximum throughput of

the processor naturally. The effectiveness of the proposed

mechanism is evaluated based on the circuit simulation.

2. Data-driven sensor networking pro-
cessor

In this section, data-driven sensor networking processor

realizing sensor networking systems with energy foreseeabil-

ity, autonomous failure detection/isolation and long battery-

operated lifetime is explained and its requirements against

instantaneously excessive load are discussed.

2.1 Ultra-low-power chip multiprocessor archi-
tecture

Sensor networking systems provide a variety of services

such as security, infrastructure monitoring, and disaster

prevention, by networking sensors spread on sensing targets.

With increasing the scale of the sensor networking systems,

system maintenance cost to keep the sensor devices alive

and healthy increases due to the checking of the operation

of every device and the replacement or charge of discharged

batteries especially for wireless devices. Therefore, the key

to realize large scale networking systems is to reduce the

work for operation checking and the frequency of the battery

replacement/charge as low as possible.

To realize not only ultra-low-power consumption but

also autonomous failure detection/isolation to eliminate

both the operation checking and the frequent battery re-

placement/charge, a data-driven processor named ULP-CUE

(Ultra-Low-Power CUE) and its chip multiprocessor version

named ULP-DDCMP (Ultra-Low-Power Data-Driven Chip

Multiprocessor) [5] are introduced.

Figure 1 shows the ULP-CUE’s circular pipeline which is

indispensable to naturally realize the iteration of operation

execution in which operation result is transferred to the

input of the succeeding operations. The circular pipeline

of the ULP-CUE consists of matching memory (MM) to

detect the arrival of operands for binary operations, program

storage (PS) to fetch operations, functional processing unit

(FP) to execute the operations and memory access (MA)

to read and write data. Its circularization is realized by a

��������

�����	
��

�	���
�

������

�����	�

���	��

��
���
	���

��������
��

�
�

�		�

������

������

�
�
�
�
�

�
�
�
�
�
�

� ��

���	������������		������
�
���� �
������������!�"��#�$%

���	��������!������%

Fig. 1: Circular pipeline to realize ULP-CUE.

merge (M) stage which accepts data from two preceding

stages in order of arrival and transfers the accepted data to a

succeeding stage and a branch (B) stage which transfer each

data to one of the succeeding stages selectively. With this

structure, the concurrent operations of target programs can

be naturally exploited over the circular pipeline as long as the

pipeline stage is available, as a result of data-driven program

execution, i.e. no context switching and interrupt handling

are required. Moreover, the circular pipeline is optimized

for protocol handling whose operations are mainly unary, by

providing shortcut to bypass the MM when unary operations

are executed [5].

2.2 Ultra-low-power self-timed circuit imple-
mentation

To inherit the passive and on-demand processing manner

of the data-driven manner into circuit implementation, the

whole stages of the ULP-DDCMP are realized by using

ultra-low-power self-timed elastic pipeline (ULP-STP) [6].

In the ULP-STP, only pipeline stages with valid data are

driven exclusively as a consequence of the localized data

transfer called handshake. Figure 2 shows the structure of the

ULP-STP in which each stage consists of a data-latch (DL),

functional logic (FL) and transfer control unit (C). The ULP-

STP is a kind of asynchronous bundled data pipelines, and

it employs four-phased handshake [7]. Based on the four-

phased handshake, the valid data in the STP are transferred

between adjacent stages, as follows.

• (0) Reset: After the assertion of the reset signal, the C

negates both its send signal representing transfer request

and ack signal representing acknowledge.

• (1) The C asserts its ack signal after its send signal is

asserted.

• (2) After the assertion of the ack signal, the preceding

C negates its send signal.

• (3) After the negation of the send signal, the C asserts

both its gate open signal (cp) and its send signal and

it negates concurrently its ack signal, only if the ack

signal from the succeeding C is negated. As a result,

the data is latched in the stage to which the C belongs.

• The succeeding C repeats the above steps similarly to

the C, as shown in figure 3.

This handshake concentrates dynamic consumption cur-

rent into the pipeline stages with valid data naturally while

the empty pipeline stages can be powered off by the power

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 317

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 317

ISBN: 1-60132-444-8, CSREA Press ©

��

�

��

�

��

�

�� �� ��

��

�

��

�

������������	
����������	��������	���������������������

����������������������������������	

�����

��	�

����

��	

�����

��	�

�����

��	�

��

�

�
 �� ��

�������������

����������

���

	�

��

������������

�������������

���������

�������� ���

�������

���

���

Fig. 2: Self-timed elastic pipeline with run-time voltage

scaling and power gating.

������

�����

�����

��	�

�
�

�����

��	�

�
�

�����

�� ��

�� ��

��

��

��

��

��

��

��

�� �������	
����

Fig. 3: Handshake timing chart of ULP-STP

control and power switch to reduce the leakage current

through the empty stages. Moreover, the signal propagation

delay of the DL, FL and C are changed at equal rate

according to the supply-voltage, and thus the supply-voltage

of the ULP-STP can be scaled at run-time while the rate of

change of the voltage is moderate enough to guarantee the

transistor switching, i.e., the throughput and processing time

of the ULP-DDCMP can be changed during the execution

of target programs.

The ULP-DDCMP realized by the ULP-STP realizes both

ultra-low-power consumption which is demonstrated in [8]

and autonomous failure detection/isolation discussed below.

2.3 Energy foreseeability and autonomous fail-
ure detection/isolation

Figure 4 shows the measured values of the throughput and

current consumption of the ULP-CUE in a prototype LSI

chip of the ULP-DDCMP. As a proof of the essential power

consumption of the ULP-DDCMP, both the throughput and

current consumption increase when the occupancy rate of

the ULP-STP increases. That is, the power is consumed

���

���

���

���

���

���

���

�	 ��	 ��	 ��	 ��	 ���	 ���	 ���	

�
�
�
�
�
�
�
	

�
�
�
�

�
�
�
��

���������	

����
��������	���������

��������

�����������������

�������

	
���	

��������

�����������������

�����

���	
����	���	����������	��	��	���	���	����	��������
���	

����	���� ���	�����
��	���	���� �	��� ���

�����
��������

Fig. 4: Proportional relation between throughput and con-

sumption current.

���

���

���

���

���

���

���

�� ��� 	��
�� ��� ���� ���� �	��

�
�
�
�
�
�
�
�
�
	

�
�
�
�

�
�
�
�
�
�
�

���������	

����
��������	���������

�

�

�������

	
���	

�����
��������

�����

���	
����	���	����������	��	��	���	���	����	��������
���	

����	���� ���	�����
��	���	���� �	��� ���

Fig. 5: Run-time scaling of throughput design target.

only for processing. Moreover, the consumption current has

a proportional relation with the processing load. This pro-

portional relation makes it possible to estimate consumption

current in operation (I[A]) according to the processing load

in operation beforehand by using a system level simulator [9]

and to calculate battery-operated lifetime (T [sec.] = W/I)

of the networking devices by using the I and a given ampere-

hour capacity (W [Ah]) before the start of the operation of

the devices.

This predictability on the lifetime leads to not only the

economical design of the battery replacement/charge sched-

ules but also run-time detection and isolation of failures.

The processing load may be out of the predicted range in

operation due to failures such as malfunction of the sensors,

and accordingly the consumption current may differ from

the predicted amount. In addition, operating environment

changes such as the change of temperature also may change

the consumption current. Therefore, the actual battery-

operated lifetime may differ from the predicted value. For-

tunately, by virtue of the proportional relation between the

processing load and consumption current, such failures and

318 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

318 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

contingencies in operation can be autonomously detected by

measuring the consumption current. In particular, ampere-

hour capacity during a certain time t[sec.], which is denoted

by Wt[Ah], can be calculated as explained above, and

discharge capacity (d[Ah]), which is the production of the t
and the measured run-time consumption current within the

t, is compared to the Wt. The deviance of the d from the

range of the Wt indicates that the failures or contingencies

occur. In operation, devices whose d becomes out of the

Wt alerts the failures/contingencies occurrence to the other

devices or the center of management with a request to

settle the failures/contingencies. This autonomous detection

of the failures leads to the reduction of the health checking

operations.

Moreover, the failure detection leads to the isolation of

the nodes with failures because the alerting nodes can be

recognized by their neighboring nodes and the neighbors can

isolate the failure nodes by ignoring the packets sent from

the failure nodes in the sensor network. This failure node

isolation can confine the bad effects of failures within the

neighbors of the failure nodes and preserve the other nodes.

2.4 Requirement for tolerance against instan-
taneously excessive load

In addition to the energy foreseeability and failure detec-

tion/isolation, the ULP-DDCMP provides a natural tolerance

against the processing load fluctuation. As shown in the fig-

ure 4, the throughput is kept at a maximum value without any

additional controls when the pipeline occupancy rate exceeds

the design target and reaches overload region temporarily.

Moreover, to cope with high load situation in which the

processing load exceeds the natural tolerance, the supply-

voltage is controlled according to the pipeline occupancy rate

observed through the consumption current and it is increased

to speed-up the ULP-DDCMP before the observed pipeline

occupancy rate falls into the overload region, as shown in

figure 5 [4].

Unfortunately, the observation of the processing load and

the run-time supply-voltage control take time due to the

signal propagation in the observation and control circuit, the

sampling interval of consumption current and the circuit’s

parasitic capacitance. On the other hand, the prediction

of the individual occurrence timing of sensing events and

communication requests is difficult while the typical amount

of lifetime processing load can be predicted within a certain

range. Therefore, instantaneously sudden increase of the

sensing events and/or the communication requests may not

be handled and thus may cause overload and eventually make

the processor inoperative.

Consequently, the data-driven sensor networking proces-

sor should have tolerance to such instantaneously excessive

load.

3. Autonomously variable input rate cir-
cular pipeline

To prevent processors from instantaneously excessive load

situations, the fluctuation of internal processing load should

be smoothed and the arrival input data should be accepted

only when the sum of the increased load to process the

input data and the internal processing load is under a given

processing capability. That is, the load fluctuation should

be predictable while the input of arrival data should be

controlled according to the internal processing load in the

processor.

In this section, the internal processing load predictability

is discussed, and the input control mechanism stopping the

acceptance of arriving data naturally is proposed for the

operation execution circular pipeline in order to keep the

processing load within the elastic capability of the self-timed

pipeline.

3.1 Predictability of internal processing load
As illustrated in figure 6, the programs of the data-driven

processor are defined by data-flow graph (DFG). The DFG

consists of nodes and arcs, and each node corresponds to

an operation while each arc represents the data-dependency

between two successive operations. The data-dependencies

between operations expose naturally the ILP (Instruction

Level Parallelism) inherent in the programs, and thus de-

scribing target program by using the DFG results in extract-

ing the whole ILP in the target programs. In the data-driven

processor, each operand is executed independently from the

other operands and the execution time of each operand is

also independent from that of the other operands as a result

of the real-time multiprocessing. Therefore, the maximum

number of operations executed concurrently for single data is

determined by the concurrent operations, and the maximum

processing load which is the maximum number of data

flowing in the operation execution circular pipeline can

be calculated by the product of the maximum number of

operations executed concurrently and the maximum number

of data processed concurrently.

From the viewpoint of the overload avoidance, the max-

imum processing load should be as low as possible be-

cause the processing load observed though consumption

current may differ from the actual processing load and it

becomes difficult to keep the actual processing load within

a certain value for the large fluctuation of processing load.

Fortunately, the number of operations executed concurrently

can be changed by postponing the execution timing of

the operations on non-critical paths, as shown in figure 6.

This program modification can smooth the processing load

fluctuation without any overhead on the execution time of

the operations on the critical path of target programs.

However, the number of the concurrently executed opera-

tions on the critical path should be preserved in order to keep

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 319

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 319

ISBN: 1-60132-444-8, CSREA Press ©

�������	
��

�
�

�
�

�
�

�
�

�����������	�

!� ���

"#$"�$ "%$ "#$ "�$ "�$

"	$ ���������������������	
�������������	��������	��

�
�

�������	
������������
	
������	�

�
�

�
�

�
�

�
�

!� ���

"#$"�$ "#$ "#$ "#$ "�$

��
��
�������

�����	�
�����

Fig. 6: Data-flow graph exposing the maximum processing

load.

the throughput of the program, and thus the actual processing

load may change during the observation. To prevent the

processors from the overload, the acceptance of the arrival

data should be postponed while the maximum processing

load after accepting the data exceeds the elastic capability

of the self-timed pipeline.

3.2 Elastic capability of self-timed pipeline
The operation execution circular pipeline has tolerance to

temporal overload situation by virtue of the elastic capability

of the self-timed pipeline. In the self-timed pipeline, each

input data is packed into a packet-style set named token. The

elastic capability can be defined by the propagation time of

the signals to transfer the token. As shown in figure 3, the

minimum time for handshake at a pipeline stage is (Tf+Tr),
where Tf and Tr denotes the send signal propagation time

and the ack signal propagation time respectively. When the

temporal distance D(t) which means the signal propagation

time on the critical path of the circuit between two adjacent

tokens is equal to or greater than (Tf + Tr), the token can

be transferred at Tf because the ack signal arrives before

send signal and Tr is overlapped. On the other hand, when

D(t) is temporarily less than (Tf + Tr), the transfer of the

token is postponed until D(t) becomes equal to or greater

than (Tf + Tr). This postponed time is called transfer wait

time in this paper.

The transfer wait time can be absorbed if it is equal

to or less than the temporal margin D(t) − (Tf + Tr) of

�������

��	
���
�������

��������
���
���������
������!

������

Fig. 7: Temporal distance between tokens.

the following token. That is, the sum of the D(t) in the

circular elastic pipeline determines the elastic capability

to absorb the transfer wait time. In the circular pipeline,

(Tf + Tr) of a pipeline stage is usually different from that

of the other pipeline stages. For example, the arbitration at

a merge stage may postpone the arrival of the ack signal

and thus the Tr may be increased during the arbitration.

Moreover, it is difficult to strictly retain the designed signal

propagation time through circuit implementation phase in

which unexpected delays are produced by design tools and

fabrication environment.

As shown in figure 7, by virtue of the handshake of

the STP, tokens autonomously attempt to keep D(t) ≥
Tmax, where Tmax denotes the largetst (Tf + Tr) in the

circular elastic pipeline. The tokens with D(t) ≥ Tmax are

transferred between stages at Tf , and thus the sum of D(t)

can be
∑

Tf at maximum. Based on these facts, the number

of tokens, which is denoted by Ptotal, should satisfy equation

(1) to assure D(t) ≥ Tmax for each data.

∑
Tf ≥ Tmax × Ptotal (1)

According to the equation (1), the design target, which is

denoted by PDT , is defined by equation (2).

PDT = �
∑

Tf

Tmax
� (2)

Based on the above equations, the processing time in-

creases due to the transfer wait time when the processing

load, which is Ptotal, exceeds the PDT temporally. However,

the increased processing time decreases the throughput and

may lead to the overload situation in which all of pipeline

stage are filled with tokens and the pipeline becomes inop-

erative.

320 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

320 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

3.3 Autonomously variable input rate mecha-
nism

To avoid the overload situation, the arriving data should be

accepted only when the Ptotal can be kept within less than

pl, where the pl indicates the total number of pipeline stages.

As discussed in the section 3.1, the maximum processing

load after accepting the arriving data, which is denoted by

Pmax, can be estimated, and it is calculated as (Ptotal+1)×
Psingle, where the Psingle denotes the maximum value of the

Ptotal when processing single token. Based on these facts,

to guarantee that the Pmax is less than the pl, the arriving

data should be accepted only when the Ptotal is less than
pl

Psingle
− 1.

To realize such input acceptance, the natural acceptance

control of the self-timed pipeline is utilized. Each stage of

self-timed pipeline waits to accept the tokens transferred

from its preceding stage until it finishes processing and

becomes empty. To inherit this control, the transfer control

unit of the merge stage in the circular pipeline is modified to

vary the input rate autonomously according to the number

of the empty stages. Figure 8 illustrates the merge stage

with the modified transfer control unit. As shown in the

figure 3, either the send signal or the ack signal is asserted

and becomes logically 0 during data processing. That is,

whether a pipeline stage is empty or not can be detected

by using only AND gate whose inputs are connected with

the send and ack signals of the pipeline stage. In order to

assure that the Ptotal is less than pl
Psingle

− 1, the number of

empty stages should be pl − � pl
Psingle

− 1�. Based on these

facts, the modified transfer control unit monitors the pipeline

stages which should be empty by the AND gate whose inputs

are connected all of the send and ack signals of the target

pipeline stages and stops the handshake with the external

pipeline stage while the target pipeline stages are empty.

To realize this handshake control, the arbitration circuit in

the merge stage is modified as shown in figure 9. The orig-

inal arbitration circuit realizes first-come-first-served basis

as a result of the saturable reactor (SR) flipflops which sets

one of two gate signals activating the cp signal at a time.

In the modified arbitration circuit, the empty signal of the

target pipeline stages is utilized to stop the handshake with

the external pipeline stage during it is negated.

With this merge stage with the modified transfer control

unit, the input rate of the circular pipeline can be varied

autonomously according to the internal processing load, and

the tolerance against instantaneously excessive load can be

achieved.

4. Evaluation on instantaneously exces-
sive load tolerance

To show the feasibility and the effectiveness, the au-

tonomously variable input rate mechanism is realized into

the circular pipeline of the ULP-CUE and the tolerance

��
��

��
��

��

��

����
��

�	

��

����

�	

	�
��

����
��

�	

��

	�
��

��

�������	�
�������������

�������	�
��������������

���

�������������
��������� �����

�
��

	�
��

����
��

�	

��

����
��

�	

��

�
��

	�
��

��	

���������������������

���

�����������	

�
�����

���

�������	��	���

��
��

��
��

����

�	

	��
��

	��
��

����

������������

�������������������������������

Fig. 8: Merge stage with autonomously variable input rate

mechanism.

against instantaneously excessive load is evaluated through

circuit simulation.

The ULP-CUE is divided finely in order to eliminate the

pipeline bottleneck. As a result of this pipeline division,

the number of stages (pl) of the ULP-CUE is 13. The

prototype LSI chip of the ULP-DDCMP integrating four

ULP-CUE’s has been designed and fabricated by 65nm

CMOS 7-metal-layer process technology. The circuit of the

ULP-CUE with the proposed mechanism is described at RTL

(Register Transfer Level) by utilizing the ULP-DDCMP’s

RTL description and pipeline tact information extracted from

the circuit layout of the prototype LSI chip.

As the application program, a UDP/IP program is used

because the UDP/IP’s connection-less communication results

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 321

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 321

ISBN: 1-60132-444-8, CSREA Press ©

����
��

���
��

����
��

���
��

�	
��

�

��

�

��

��
��

��
��

Fig. 9: Arbitration logic realizing variable input rate.

in low-power consumption and it is one of the protocols

suitable to realize sensor networking systems with low-

power consumption. The ULP-CUE provides an instruction

set enough to describe the UDP/IP handling program. The

described UDP/IP handling program realizes the checksum

calculation and the generation of the UDP/IP header, and

the packets containing pseudo header and payload are input

to the program and the program outputs IP datagrams.

The number of the operations executed simultaneously in

the originally described program varies from 1 to 5 for

processing single token, and thus the Psingle is 5. That is, the

successive acceptance of only 3 arriving data may increase

the Ptotal up to 15 instantaneously and make the ULP-CUE

inoperative. As explained in the section 3.3, to avoid such

instantaneous overload, 12 stages should be empty to accept

arriving data because pl − � pl
Psingle

− 1� = 12. Based on

this calculation, the send and ack signals of the 12 stages

are connected to the input of the AND gate of the proposed

mechanism.

To check the tolerance, turn-around time from the accep-

tance to the output is measured by changing the interval time

of input data arrival to the ULP-CUE. The turn-around time

of the ULP-CUE with the proposed mechanism (proposed) is

compared with that of the original ULP-CUE (conventional).

The comparison result is shown in figure 10. The result

shows that the ULP-CUE with the proposed mechanism can

tolerate the instantaneously excessive load and operate con-

tinuously, while the original ULP-CUE becomes inoperative

when the normalized input data arrival interval is 1/4. The

turn-around time changes within approximately 30%. This

is because the temporary overload is buffered by the elastic

capability of the self-timed pipeline and the processing time

is increased as a result.

5. Conclusion
In this paper, an autonomously variable input rate mech-

anism is proposed to realize data-driven sensor networking

�

���

���

���

���

�

���

���

� �	� �	
 �	�

���������

��������

�������������������������������������

�
�
�
�
�
�
�
�
�
�
	

�
�

�

�
�
�
�

�
�
�
�
�
	
�

�

Fig. 10: Turn-around time.

processor with tolerance against instantaneously excessive

load. With the proposed mechanism, the operation execution

circular pipeline never become inoperative regardless of the

input data arrival timing. To show the feasibility and effec-

tiveness of the proposed mechanism, the turn-around time of

a UDP/IP program is measured through a circuit simulation

while shortening the input data arrival interval to cause the

instantaneously excessive load. The result shows that the

circular pipeline with the proposed mechanism operates even

while the conventional circular pipeline becomes inoperative.

Acknowledgement
The CAD tools for the evaluation in this work is sup-

ported by VDEC (VLSI Design and Education Center), the

University of Tokyo in collaboration with Synopsys, Inc.

References
[1] Shuji Sannomiya, Hiroaki Nishikawa, "Highly-Dependable and Long-

Lifetime Data-Driven Networking Processor with Energy Assurance
Capability," in Proc. of PDPTA, pp.557-563, July 2015.

[2] Hiroaki Nishikawa, “Design Philosophy of a Networking-Oriented
Data-Driven Processor: CUE,” IEICE Transactions on Electronics,
Vol.E89-C No.3, pp.221-229, Mar. 2006.

[3] Shuji Sannomiya, Hiroaki Nishikawa,"Energy Efficient Data-Driven
Networking Processor with Autonomous Load Distribution Capability,"
in Proc. of PDPTA, pp.514-520, July 2014.

[4] Shuji Sannomiya, Yukikuni Nishida, Makoto Iwata, and Hiroaki
Nishikawa, "An Overload-Free Data-Driven Ultra-Low-Power Net-
working Platform Architecture," in Proc. of PDPTA, pp.604-610, July
2013.

[5] Shuji Sannomiya, Kazuhiro Aoki, Makoto Iwata, and Hiroaki
Nishikawa, “Power-Performance Verification of Ultra-Low-Power
Data-Driven Networking Processor: ULP-CUE,” in Proc. of PDPTA,
pp.465-471, July 2012.

[6] Kei Miyagi, Shuji Sannomiya, Makoto Iwata, and Hiroaki Nishikawa,
"Low-Powered Self-Timed Pipeline with Variable-Grain Power Gating
and Suspend-Free Voltage Scaling," in Proc. of PDPTA, pp.618-624,
July 2013.

[7] C. J. Myers, “Asynchronous circuit design,” Univ. of Utah John Wiley
& Sons, Inc., 2001.

[8] Kazuhiro Aoki, Hiroshi Ishii, Makoto Iwata, and Hiroaki Nishikawa,
“A Comprehensive Evaluation of ULP-DDNS by Platform Simulator,”
in Proc. of PDPTA, pp.445-451, July 2012.

[9] Kazuhiro Aoki, Shuji Sannomiya, Hiroaki Nishikawa, "Data-Driven
Sensor Networking System Simulator," in Proc. of PDPTA, pp.564-
570, July 2015.

322 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

322 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

Self-Timed I/O Architecture of Data-Driven Sensor Hub

Hiroki SHIBUTA and Makoto IWATA
Graduate School of Engineering, Kochi University of Technology,

Kami, Kochi, 782-8502 Japan

Abstract— With rapid increase of Internet of Things (IoT)
devices, processing load on the cloud server would be
tremendously increasing. In order to suppress such heavy
load, edge-heavy computing has been studied at various
communities. The typical edge device is generally composed
of multiple sensors, a sensor hub to integrate sensed data, an
application processor (AP), and a communication module.
When equipped with a sensor hub, AP is free from sensor
management process. Whenever the interrupt will occur in
the hub, its processing resource and power will be wasted.

This study focuses data-driven processor (DDP) that can
operate without any interrupt process. This paper presents
an I/O architecture of data-driven sensor hub (DDSH) pro-
cessor as an extended version of DDP. DDSH is composed
of the DDP core and I/O units which convert data/packet
format in adapting to individual peripheral device interface.
Furthermore, the proposed DDSH supports hub instructions
to realize sensor fusion on edge devices and to accelerate
their performance by application-specific coprocessors.

Keywords: sensor hub, data-driven processor, self-timed pipeline,
internet of things

1. Introduction
With rapid increase of Internet of Things (IoT) devices

[1], the amount of processing and traffic load on their
cloud server will be tremendously increasing. Therefore,
edge-heavy computing has been recently studied in various
universities and companies to reduce the heavier load on the
cloud server [2]. An edge IoT device is typically composed
of multiple sensors, a micro controller unit (MCU) to operate
multiple data streams from the sensors such as inertial
measurement unit, Hall effect sensor, and so on. Also, it
sometimes employs an internet communication module. If
the IoT device is equipped with a sensor hub [3] to aggregate
the sensed data from multiple sensors, as illustrated in Fig. 1,
the application processor (AP) is free from any manage-
ment process for various sensor interfaces so that the AP’s
processing resource can be dedicated to operate essential
data with required minimum runtime power. Furthermore,
the stand-by power of the IoT device can be reduced because
the sensor hub can help the AP sleep longer.

The typical IoT device equipped with a sensor hub
receives sequences of signals from multiple sensors, ma-
nipulates the data in sensor hub, performs an advanced
processing in AP, and transmits the data to the cloud by using

Sensor HubAP

Image
Sensor

Acoustic
Sensor

IMU

AP : Application processor
IMU : Inertial Measurement Unit
HES : Hall effect sensor

HES

Fig. 1: IoT device equipped with sensor hub.

the communication equipment. For example, an edge-heavy
computing device may extract a disparity image from two
image sensors and transmit it to the AP or the cloud server.
Such an integration process by combining the multiple
sensor data is expected to be an edge-heavy computing
function, which is called sensor-fusion [4].

The typical sensor hub is generally based on the Von
Neumann architecture. Therefore, it is necessary to pre-
process the interrupt processing or the like when the input
events from multiple sensors have occurred. As a result,
the sensor hub is required to save current process context
and to resume it from the interrupt point after the execution
of interrupt process. Whenever the interrupt will occur in
the hub, its processing resource and electric power will be
wasted for the extra overhead of the interrupt handling.

We have studied on data-driven processors (DDP’s) such
as DDMP [5]. The DDP can perform parallel pipelined
execution by a trigger for the arrival of data if the DDP is
implemented based on the self-timed pipeline (STP) circuit
with a handshake protocol. Therefore, the DDP doesn’t
require an interrupt process to receive multi-sensor data.
For this reason, the DDP can be expected to realize high
performance and lower power consumption as compared to
the typical sensor hubs.

This paper proposes an architecture of data-driven sensor
hub (DDSH) as an extension of the DDP. Specifically, we
discuss an I/O architecture and its extended instruction set in
order to realize essential mechanisms in the sensor hub. The
performance evaluation results of the DDSH circuit which is
designed by 65nm CMOS standard logic cells will be also
discussed in the paper.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 323

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 323

ISBN: 1-60132-444-8, CSREA Press ©

2. Data-Driven Sensor Hub
The basic operation of the sensor hub is to receive data

from multiple sensors and to transmit data to an application
processor. The sensor hub architecture is basically controlled
by the program counter so that it is necessary to invoke a
data receiving process by a polling or interrupt mechanism.
The polling mechanism regularly monitors the validity of
data coming from an external device. For example, in case
of an IoT device to detect an irregular event during a
few hours, millisecond-order polling process must waste
the CPU resource and energy. In the case of interrupt
processing, it is necessary to suspend its current process,
execute the interrupt code, and resume the suspended process
from the interrupted point. Therefore, frequent interruptions
induce an increase in the performance degradation and power
dissipation.

Therefore, an architecture suitable for the sensor hub must
operate based on a passive operation mode. This means
that it is not necessary to introduce any active receiving
mechanisms such as the polling or interrupt mechanism.
Thus, this study focuses on the data-driven processor (DDP)
where the program execution is triggered by the arrival of the
data. In this section, a sensor hub extension of the DDP is
discussed after a brief introduction of the self-timed pipeline
(STP) and the STP-based DDP.

2.1 Basic Architecture of Data-Driven Proces-
sor

In the DDP, data transfer between the stages of a pipeline
is controlled by self-timed pipeline (STP) [5]. The STP is
composed of Coincidence flip-flops (C-element’s), as shown
in Fig. 2. The STP operates in a handshake protocol between
Ci and Ci+1. The C-element between adjacent pipeline
stages exchanges the data transfer request signal (send) and
the data transfer acknowledge signal (ack). The STP has
an autonomous power saving feature, which means that the
STP consumes power only when valid data in the stages is
processed and transferred. This is because the STP makes
it possible to minimize the wiring and power consumption
[5].

By virtue of the STP behavior, the STP-based DDP works
according to the passive operation mode. That is, only
when an incoming packet arrives at the input portion of the
DDP, the DDP operates the packet without any interrupt
or polling operation. In the basic architecture of the DDP,
the data-driven program is interpreted according to the data-
dependency among the operation nodes. Each data on the
data-driven program is implemented using a packet format
shown in Fig. 3. The color identifier (color) denotes a context
or state of a process instance in multi-process execution.
It can be associated with a specific input source such as
sensors. The generation identifier (gen) represents an index
of a packet belonging to a packet stream. It can be used

Sendi+1Sendi

CPi

DLi DLi+1LogiciLogici-1 Logici+1

CPi+1

Acki+1AckiAcki-1

Sendi-1

Ci+1

�� !
�
"#$%&%#&'% ()�'#'�*+�(&#(,- %.

/01
�
"#$%&%#&'% ()�'#%01 23.�!-�#(,- %.

$4
�
"#$%&%#4%&05

67
�
"#6.201#7+.(�

42-,0
�
"#$%&%#8'20�((, -#0,'0+,&

6
�
"#&'% ()�'#02 &'2.#0,'0+,&

Ci

Pipeline Stagei

Fig. 2: Basic structure of self-timed pipeline.

color gen dest LR CP opc C Z Data

color : Identification
dest : Destination Address
gen : Generation

LR : Left or Right flag
OPC: Operation Code
CP : Copy flag

C: Carry over flag
Z : Zero flag

011121314171819202627313234

Fig. 3: Packet format for data-driven execution control.

to identify the order of the packets. The destination field
(dest) denotes a destination node number in a data-driven
program. The packet representing the data is manipulated
in a circular self-timed pipeline to realize the data-driven
processor shown in Fig. 4.

The data-driven execution control employed in the DDP
is realized by the following self-timed pipeline stages:

• Merge Unit (M)
The merge unit joins two packet streams from two
independent self-timed pipelines into a packet flow
through a single self-timed pipeline.

• Constant Memory (CST)
The constant memory stores constant values to be used
by immediate operations belonging to the data-driven
program. If the operation code in the operand packet
indicates an immediate operation, its corresponding
constant value is fetched from the constant memory and
it is then appended to the packet. If it is not a constant

M CST MM

ALU

B DMEMPS

Input packet

M : Merge Unit
CST : Constant Memory
MM : Matching Memory

PS : Program Storage
B : Branch Unit

ALU : Arithmetic Logic Unit
DMEM : Data Memory

Output packet

Fig. 4: Basic architecture of data-driven processor.

324 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

324 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

instruction, the packet passes through the CST to the
MM without accessing to the constant memory.

• Matching Memory (MM)
The matching memory provides a temporal storage to
control the firing of binary operation nodes in the data-
driven program. In case of binary operation, the packet
is temporarily held in the internal memory of the MM.
When its paired packet with the same destination and
generation arrives, the MM outputs a packet containing
two operands for the binary operation. At that time,
the LR flag in the both operand packets is checked
and whether the data packed in the packet is the first
(left) or second (right) operand for its binary operation.
In case of unary operation or immediate operation,
the packet passes through the MM without any packet
manipulation.

• Arithmetic Logic Unit (ALU)
The ALU performs arithmetic and logic operations
in accordance with the operation code (opc) in the
operand-pair packet. After that, it appends the result
data to the packet header and outputs the resultant
packet to the data memory. At that time, if the result
data is zero, the zero flag (Z) is set to 1. If the arithmetic
operation generates a carry, the carry flag (C) is set to 1.
The instruction set employed in the DDP supports basic
arithmetic, logic, and shift operations, simple branch
instructions based on the Z or C flags, and data memory
access instructions (load or store).

• Data Memory (DMEM)
The DMEM supports memory access for a load /
store instruction. The memory address to load or store
data is included in the operand packet. In case of the
store instruction, the stored data is also included in
the operand packet. The result packet of the DMEM
includes its loaded data or a store completion flag.

• Program Storage (PS)
The PS holds a data-driven program to be executed.
The destination node in the result packet indicates the
address for the next instruction. The PS concatenates
the resultant data with the next operation code and
destination node fetched from the program storage. If
the CP flag in the packet is set, the result data will
be duplicated (copied) and another operation code and
destination node stored in the next PS address will be
fetched. After that, the PS outputs it as next operand
packet to the branch stage (B).

• Branch Unit (B)
The branch unit splits a stream of operand packets
to two output streams of packets flowing to two suc-
ceeding pipelines. The destination pipeline of every
packet is determined according to its destination node
or branch flag. One of the destination pipeline is the
circular pipeline to continue to execute the remaining
instructions of the program. The other one is the output

IN M CST MM

Extended
ALU

B DMEM
(dest)PS

Data-Driven Sensor Hub

OUT

M : Merge Unit
CST : Constant Memory
MM : Matching Memory

B : Branch Unit
IN : Input Unit
OUT : Output Unit

ALU : Arithmetic Logic Unit
DMEM : Data Memory
PS : Program Storage

Sensor A

Sensor B

coprocessor

Actuator A

Actuator B

dest : Destination

Fig. 5: Basic architecture of data-driven sensor hub.

pipeline to communicate with the external modules such
as I/O devices, or co-processors.

Although the DDP works passively, some modifications
or extensions are necessary to apply the DDP to a sensor
hub processor, as discussed in the nest subsection.

2.2 Architecture of Data-Driven Sensor Hub
In order to apply the DDP to the sensor hub, I/O interface

functions between the DDP and sensor devices will be
required. In addition, a co-processor interface functions are
required to realize an edge-heavy IoT device.

However, there are many kinds of interfaces for sensors
such as I2C, SPI, etc. Furthermore, there are various co-
processors such as the fast Fourier transform, floating-point
arithmetic operations, and so on. It is impossible to adapt the
DDP interface to individual specific interface of the device,
so that a kind of generalized interface module should be
introduced to realize a data-driven sensor hub (DDSH).

Therefore, our DDSH based on the basic DDP is equipped
with a generalized input and output module, which interfaces
multiple sensor devices and co-processors, as shown in
Fig. 5. Hence, the different types of sensors or co-processors
can be connected the DDSH. In the input (IN) module, raw
data from the sensor are transformed into the DDP packet
format. In the output (OUT) module, the DDP packet is
transformed to the proper format depending on the external
device or co-processor interface. Furthermore, additional
instruction set is introduced into the extended ALU to
interface them. Those are explained in detail in the following
section.

3. I/O Architecture of DDSH
Generally, the sensor hub in the IoT device is connected

to multiple sensors, such as passive infrared sensor and
inertial measurement unit, and multiple actuation devices
such as light emitting diode and speaker. Each device has
its own specific data format and protocol. In this section,
those data formats and protocols are classified in terms of
the DDSH’s passive operation mode and the I/O architecture
of the DDSH will be proposed.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 325

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 325

ISBN: 1-60132-444-8, CSREA Press ©

3.1 Requirement Specification
The packet format of the data-driven processor (DDP)

includes the following information as shown in Fig. 3.
The color identifier in the packet represents which external
device generates or consumes the data in the packet. The
generation identifier (gen) is used as an index order within
a packet stream of its corresponding device identified by its
color identifier. Although the destination field in the packet
format is usually used as the destination node in the data-
driven program, this field is also utilized as an output port
number in the DDSH architecture. In order to represent
flexible sensor hub functions coping with multiple sensors,
those identifiers and destination have to be manipulated in
its data-driven program. Therefore, the color modification
instruction, the generation modification instruction, and the
destination modification instruction are designed for the
DDSH.

In the proposed DDSH architecture, diversity of input
devices are abstracted by mapping specificity to those packet
fields as summarized in Table 1. In the table, input de-
vices are classified to synchronized or asynchronized device.
Furthermore, a stream of data form the device is classified
whether it is regularly ordered or not. If not, the data in the
stream must be a form of packet, and thus it can be identified
by its generation identifier. The non-ordered asynchronized
I/O devices are excluded because they do not generally exist.
The data stream from the synchronized I/O devices such as
an A/D converter and micro control unit (MCU) is usually
ordered, so that the data may be raw and thus it must be
formed in the DDP packet format by adding the color and
generation identifiers to the raw data. Then, the destination
node, operation code, and flags necessary to process the
input data are fetched at the I/O PS. The asynchronous event
data from the sensor such as the Hall effect sensor (HES)
can be dealt with in the same way in the DDSH if the data
is digitized at the sensor device. As for the non-ordered
asynchronous devices, we assume the self-timed data-driven
processor or co-processor that copes with the similar packet
format shown in Fig. 3.

As for the output interface of the DDSH, the destination
field in the packet is used to identify an output external
device. Some fields of the packet might not be necessary for

Table 1: Specifications for DDSH interface (input).

Synchronous Devices Asynchronous Devices
ordered non-ordered ordered non-ordered

color Input ID Input ID �
gen (order) (order) �
dest I/O PS[color] – I/O PS[color] �
opc I/O PS[color] I/O PS[color] �
flags I/O PS[color] I/O PS[color] �
ex. A/D, MCU – HES DDP

flags: LR, CP, C, Z � : transfer it with data. – : null

Table 2: Specifications for DDSH interface (output).

Synchronous Devices Asynchronous Devices
ordered non-ordered ordered non-ordered

color – / � � – �
gen (reorder) � (reorder) �
dest Output ID Output ID Output ID Output ID
opc – – – �
flags – – – �
ex. D/A, MCU MCU LED DDP

flags: LR, CP, C, Z � : transfer it with data. – : null

the external device. Therefore, the output interface functions
are specified as shown in Table 2.

Since the DDSH can execute multiple operations in par-
allel based on the data availability in the MM, the order
of execution might alter in some cases. In this case, the
output packets from the DDSH must be re-ordered in order
to communicate with a synchronous device such as D/A
converter. Furthermore, in the case that the DDSH transfers
the result packets to the application processor such as MCU,
the color identifier associated with a specific sensor context
must be transferred with the data.

If the synchronous device such as MCU can accept non-
ordered data stream with the color and generation, the DDSH
transfers the data with its identifiers, color, and generation.
In case of the event-driven actuator such as toggle-switched
LED, the output packets must be re-ordered if the orders of
packets are altered in the DDSH. In case of the asynchronous
device such as the DDP, the output packet can be transferred
as it is.

3.2 Input module
According to the above discussion on the specification of

the DDSH input interface, the input module (IN) is designed
as shown in Fig. 6.

In order to accommodate the sensor devices in the IoT
node, the DDSH must transform the raw sensor data into the
DDSH packet. At first, the color identifier is attached to the
raw data at individual color generator (CG) corresponding
to the sensor. Next, through the merge unit, the generation

Header A
Header B

dest LR CP OPC C Z
M

Other
Input D

Sensor
A

Sensor
B

Other
Input C

CGA

CGB GG

CG : Color Generator
GG : Generation Generator

I/O
PS

M M
Input packet

A
B

color

Fig. 6: A block diagram of input module.

326 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

326 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

identifier is attached to the packet at a generation generator
(GG). After that, the header information for the packet is
fetched at the I/O PS which holds the entry nodes of the
data-driven programs for the sensor process such as filtering,
sensor fusion, and so on. The address of the I/O PS is
associated to the color identifier of the packet. In case of
interface to the conventional synchronous processor such as
MCU, the raw data can be accepted in the same way. In
case of the input interface for the co-processor or DDP, the
packet is accepted as it is. Additional modules for mutual
conversion of data between the external device and DDP
are input mechanism IN and the output mechanism OUT.
Basically, the incoming packets to the DDSH are accepted
based on the first-come-first-served policy when the normal
merge unit is used for the input module. The priority-based
service could be introduced if the prioritized merging would
be implemented.

3.3 Output module
The output module (OUT) for the DDSH is designed as

shown in Fig. 7. The output packet from the branch unit
(B) has its destination as an identifier of the output external
device (output ID). At each branch unit with packet formatter
(BF) in the output module, the packet is routed to an output
device specified by the output ID. If the output device
accepts only an ordered data, the BF formats and outputs
the data with its generation identifier. After that, if the orders
of the output packets are altered in the DDSH, they are re-
ordered at the small sorter module in accordance with their
generation identifiers and transferred to the target output
device. An efficient implementation of self-timed sorter has
been already proposed in [6]. This can be utilized in our
DDSH implementation.

The destination field of the DDSH packet is basically
used as a destination node in the data-driven program. Since
the data-driven program is stored in the PS, the output
ID in destination field can be also stored in the PS. This
implementation is feasible if the output ID can be defined
statically. If the output device is decided in runtime, the
output ID must be stored in the data memory addressable in
the program. Therefore, a compound instruction to change
output ID is introduced in the DDSH. The instruction of

Other
Output D

Other
Output C

Actuator B

Actuator A Sorter

Sorter

Sorter

gen Data

Output packet

BF : Branch Unit with Formatter

BF

BF BF

Fig. 7: A block diagram of output module.

br Data

&

Address

ldm

compose

chgdest

DMEM
address

Processing
data

br : branch flag
ldm : load of memory compose : composition to single packet

Fig. 8: Instruction for change destination (chgdest).

chgdest is executed as shown in Fig. 8. If branch instruction
is running, the ALU calculates data memory address by
operand of address and branch flag of data packet. After that,
the DMEM reads output ID from the data memory by the
calculation address. The output ID and data are composed
into single packet at the DMEM stage.

As discussed in this section, the proposed architecture for
self-timed data-driven sensor hub processor could be one of
promising implementation to realize a sophisticated sensor
hub that can operates I/O data without interface overhead in
terms of the passive operation.

4. Evaluation
For the preliminary evaluation, DDSH is designed using

a 65nm CMOS standard cell library. The designed circuit
is described by Verilog-HDL and synthesized by Design
Compiler, Synopsys Inc. The specifications of this circuit
are shown in Table 3. The number of STP stages organizing
the DDP core is 8, where the MM stage is divided into
two stages, a stage for associative memory access and a
stage for operand-pair packet composition, and where the PS
stage is divided into two stage, a stage for program storage
access and a stage for packet absorb and branch. As for other
pipeline stages, M, CST, ALU, and DMEM , each of them is
realized as single stage as shown in Fig. 5. The I/O devices
connected to the DDSH is 4 respectively. Furthermore, each
SRAM memory size necessary to implement the DDSH is
as listed in the table.

Table 4 shows total cell area of the synthesized DDSH
circuit. As shown in the table, the area overhead of the
I/O modules is 67% in total cell area of the DDSH. This
is because the size of the data is set to 12bit, which is a
usual resolution in typical sensors. If the size of data is
expanded to that of normal processors, e.g., 32bit or 64
bit, the area of I/O modules could be relatively reduced. It
would be realistic condition, especially in case of the DDSH
supporting heavy sensor fusion. Actually, total cell area of
DDSH is reasonable as a general sensor hub, e.g., the core
processor of the sensor hub SAM D20 (Atmel Co.) [7] is

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 327

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 327

ISBN: 1-60132-444-8, CSREA Press ©

Table 3: Specifications of DDSH circuit.

Process SOTB 65nm CMOS
stages of STP ring 8 stages
I/O devices 4 inputs, 4 outputs
Constant memory (CST) 15bit × 128 word
Matching memory (MM) 37bit × 16 packets
Data memory (DMEM) 12bit × 512 word
Program storage (PS) 12bit × 128 word
I/O Program storage (I/O PS) 14bit × 8 word

Table 4: Cell area of synthesized DDSH circuit.

core I/O total
standard cells 1.2k 0.4k 1.6k
area [mm2] 0.0122 0.0082 0.0204

equipped with ARM Coretex-M0 that area is 0.04mm2.
Table 5 is a comparison result of the simulated perfor-

mance of DDSH and the emulated performance of a typical
MCU in the case that both work as a sensor hub. In the
comparison, RX210 (Renesas Electronics Corp.) is picked
up as the typical MCU. The sensor hub performance of
DDSH and MCU is defined as the effective throughput
[operations/s] except for interrupt operations. In addition,
the input data rate to the sensor hub is assumed to be 8 k
sample/s.

Table 5: Performance comparison of DDSH and RX210.

DDSH RX210
Throughput 41.6M 33.6M

[operations/s]

The table shows the DDSH achieves about 24 % perfor-
mance improvement of the MCU. This is because it takes
(N+6) clock cycle (N denotes the number of used registers)
to execute the interrupt process in RX210, i.e., its processing
resource available for essential process are wasted.

5. Conclusion
In this paper, the I/O architecture of data-driven sensor

hub (DDSH) with a single circular self-timed pipeline (STP)
is proposed. The DDSH has less I/O overhead compared
with program-counter-based sensor hub processors. The
DDSH is composed of an input module (IN), an output mod-
ule (OUT), and a data-driven processor core. In addition, I/O
instructions are introduced into the DDSH for implementing
a sensor fusion. The circuit performance of the proposed
architecture is evaluated based on 65 nm CMOS standard

cell library. The evaluation results show that the performance
of the DDSH is 24 % superior to that of a typical MCU,
RX210.

Since lower energy consumption is indispensable to most
of battery-operated IoT devices, the designed circuit must
be implemented with typical low power techniques, e.g.,
dynamic voltage scaling (DVS) [8] and power gating (PG)
[9]. In this study, the computing performance of DDSH is
only evaluated. Thus, power consumption of DDSH intro-
ducing those low power techniques should be evaluated as
remaining works in our project. Furthermore, to tolerate
instantaneous excessive load at the sensor hub must be
supported as one of essential features for the IoT devices.
Since the DDP realized by the STP has an elastic buffering
capability, this can be extend to its I/O interface to detect
and regulate such excessive traffic from multiple sensors, as
proposed in [10].

Acknowledgement
Although it is impossible to give credit individually to all

those who organized and supported our project, the authors
would like to express their sincere appreciation to all the
colleagues in the project.

This research work was supported in part by Japan Science
and Technology Agency (JST). The circuit design work was
supported by VLSI Design and Education Center (VDEC),
the University of Tokyo in collaboration with Synopsys, Inc.
and Cadence Design Systems, Inc.

References
[1] “Special Issue on Advancing the Internet of Things,” IEEE Computing

edge, vol. 2, no. 4, pp. 9–45, Apr. 2016.
[2] L. D. Xu, W. He, and S. Li, “Internet of Things in Industries: A

Survey,” IEEE Transactions on Industrial Informatics, vol. 10, no. 4,
pp. 2233–2243, Feb. 2014.

[3] P. Charith, J. Prem, and Z. Arkady, “Dynamic Configuration of
Sensors Using Mobile Sensor Hub in Internet of Things Paradigm,”
IEEE ISSNIP, pp. 473–478, Apr. 2013.

[4] D. L. Hall and J. Llinas, “An introduction to multisensor data fusion,”
Proceedings of the IEEE, vol. 85, no. 1, pp. 6–23, Jan 1997.

[5] H. Terada, S. Miyata, and M. Iwata, “DDMP’s: Self-Timed Super-
Pipelined Data-Driven Multimedia Processors,” Proceedings of the
IEEE, vol. 87, no. 2, pp. 282–296, Nov. 1999.

[6] K. Komatsu, S. Sannomiya, and M. Iwata, “Interaction Self-Timed
Pipelines and Elementary Couping Control Modules,” Transactions
of IEICE, vol. E92-A, no. 7, pp. 1642–1651, July 2009.

[7] “SAM D ARM Cortex M0 MCUs - Atmel,” http://www.atmel.com/
products/microcontrollers/arm/sam-d.aspx.

[8] K. Miyagi, S. Sannnomiya, M. Iwata, and H. Nishikawa, “Low-
Powered Self-Timed Pipeline with Variable-Grain Power Gating and
Suspend-Free Voltage Scaling,” in International Conference on Par-
allel and Distributed Processing Techniques and Applications, July
2013, pp. 618–624.

[9] K. Miyagi, M. Iwata, S. Sannnomiya, and H. Nishikawa, “Self-Timed
Pipeline with Fine Grain Power Gating and Its Evaluation,” IEICE
Transactions on Fundamentals, vol. J97-A, no. 8, pp. 554–564, Aug.
2014.

[10] S. Shuji, N. Yukikuni, I. Makoto, and N. Hiroaki, “Data-Driven Sensor
Networking Processor Tolerating Instantaneously Excessive Load,”
in International Conference on Parallel and Distributed Processing
Techniques and Applications, July 2016 (to be presented).

328 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

328 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

Self-Timed Pipeline Register Operating at Near-Threshold Voltage

Tomoki OGAWA and Makoto IWATA
Graduate School of Engineering, Kochi University of Technology,

Kami, Kochi, 782-8502 Japan

Abstract— In recent years, steady improvement on both
performance and energy efficiency of LSI systems by virtue
of the miniaturization of CMOS process has been harder.
However, lower power devices are still demanded, especially
in growing IoT market. Although near-/sub-threshold voltage
operation is one of promising ultra-low-power techniques,
there are critical issues on exponential performance degra-
dation, huge performance variations, and high probability of
functional failures. In order to solve those issues, this study
focuses on the self-timed pipeline circuit which has inherent
robustness against circuit delay variation.

In this study, a self-timed data-transfer control circuit
and pipeline register operable under sub-threshold voltage
is proposed. Through SPICE simulation of self-timed control
circuit, called C-element, an optimal CMOS transistor sizing
method is discussed to help C-element and pipeline register
more robust under sub-threshold voltage region. SPICE
simulation results of 65nm CMOS circuit reveal that the
circuit can correctly operate in 0.1 V steps under nominal
voltage, variations of process, voltage, and temperature.

Keywords: Near-/Sub-threshold voltage, C-element, self-timed
pipeline

1. Introduction
Miniaturization of semiconductor process along with

Moore’s Law has brought great benefit to modern com-
puting devices, but the increase of power consumption of
CMOS circuits has become a serious problem with denser
integration of semiconductor transistors. However, lower
power devices are still demanded, especially in growing IoT
market.

In order to reduce the power consumption significantly,
near-threshold computing (NTC) in which the circuit op-
erates at near or less threshold voltage has been recently
studied [1], [2]. This is because power consumed in CMOS
circuit is proportional to the square of the voltage. However,
the problem is often caused by lowering power supply
voltage (VDD). Major critical problems on NTC are as
follows.

(1) Performance Degradation.
The performance of CMOS circuit decreases in
proportion to the supply voltage when it is over
the threshold voltage (Vth) of the CMOS transistor.
However, the performance is degraded exponen-
tially when near- or sub-threshold voltage.

(2) Increase performance Variation.
Drivability of CMOS transistor usually depends
on Vth, VDD, and temperature, especially in the
near-threshold region. As a result, NTC will bring
considerable variations in circuit performance.

(3)Function Failure.
Similar to the performance variation, variations
in process, voltage, and temperature have a sig-
nificant impact on the occurrence probability of
function failures in the circuit, especially at the
near-threshold voltage region. In order to eliminate
the function failures, circuit design margin have
to be considered to guarantee plenty of space at
the sacrifice of its performance. As a result, it
may induce the increase of leakage energy per
operation.

In case of the modern synchronous circuit, clock distri-
bution to the whole chip area tends to lengthen the wires.
The longer wiring delay might induce more malfunction due
to the clock skew. In contrast, the self-timed pipeline (STP)
circuit [3] controls data-transfer within the pipeline by using
hand-shake signals between adjacent pipeline stages. STP is
hence designed to wire only adjacent pipeline stages, so that
the influence of the wire delay variation induced by various
process and environmental variations could be localized. The
design margin could be also minimized for sub-threshold
voltage operation. It can be said that the STP itself has
an inherent robust feature against various variability of the
CMOS transistor. This smart feature implies that the STP
has a potentiality to operate without malfunction under the
dynamic voltage scale control, from super- to near-/sub-
threshold voltage. This is because the voltage scaling could
be regarded as a sort of voltage variation, as long as the
supply voltage is gently scaled [4].

In order to achieve significant power reduction, this study
aims to investigate an optimal circuit design of the STP
operating at near-threshold voltage. At first, the behaviors
of typical STP circuit is characterized under various voltage
and temperature conditions. After that, optimal transistor
sizing method for self-timed data-transfer control circuit,
called C-element, is proposed. Finally, widely operating
conditions of the self-timed pipeline register including the
C-element which is designed by 65nm CMOS transistors,
will be revealed through SPICE simulation results.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 329

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 329

ISBN: 1-60132-444-8, CSREA Press ©

2. Low-Voltage Characteristics of STP
The influences of PVT variations appear to be worse rel-

atively when lowering the supply voltage of general CMOS
circuit to sub-threshold region, in comparison with recom-
mended supply voltage operation. The self-timed pipeline
circuit (STP) has a potentiality to moderate those influences
because of its localized wiring between pipeline stages.

Figure 1 shows a basic structure of self-timed pipeline
where every pipeline stage is composed of a data latch,
function logic, and data-transfer control circuit called C-
element shown in figure 2.

���� ����� ��� �����
������ ��������

&'()*'+)	,-./)�

����� ���

 �!� ���

����� � ����� ��� ���� ���

 �!� � �!� ��� �! ���

0& ���
0& � 0& ���

���

�
���

�
���

�
�

����� ��������������

��� ������ ������

��� �������������

 !� ������"#���$�����

�"���� ���!%"��$$���� �%�&��

 � � �� '���(���

Fig. 1: Basic structure of STP.

DA

Sendi

Acki

DC

cp

Sendi+1

Acki+1

MR

DD

DB

Fig. 2: Basic logic circuit of C-element.

Figure 3 illustrates a typical timing sequence of the STP.
The STP circuit usually operates as follows.

(1) Master reset: At first, a master-reset signal initializes
all states of C-elements. At that time, every handshake
(send and ack) signal is set to 1 (high).

(2) Ready to transfer data: When a data packet hold at the
stagei−1 is ready to be transferred, its data-latch open
signal CPi−1 is asserted and sendi signal is set to 0
(low) to begin to transfer the data. Then, the stagei
negates acki as an acknowledge signal.

(3) Completion to transfer data: Then, the stagei−1 asserts
sendi for completion of the data transfer. After that,
the stagei asserts the CPi to receive the data and the
stage then asserts acki. It implies that the stagei is
ready to transfer the data to the next stagei+1 as well.

Every pipeline stage in the STP operates with the above
hand-shake protocol. Therefore, even if an adjacent pipeline

Send i

Ack i

CP i

Send i+1

Ack i+1

CP i-1

Tf Tf TrTr

Fig. 3: Typical timing chart of C-element.

stage might be delayed due to some PVT variation, the
data can be adaptively transferred based on the hand-shake
protocol, where the time from the positive edge of the CPi to
that of the CPi+1 represents the data-transfer time between
the two stages and where the time between a positive edge of
the CPi to the next positive edge of that represents the period
of consecutive data transfer at the stagei. Furthermore, it is
noted that the STP stage realized by the CMOS transistors
consumes active power only when the stage is transferring
and processing the data. This means that the STP does not
require additional clock gating technique to save its dynamic
power of clock distribution.

The article [1] reported critical issues under near-threshold
voltage, where the nominal voltage is 1.1 V and the near-
threshold voltage is 400 mV. In this case, performance
of the fanout-of-four inverter in industrial 40 nm CMOS
is degraded in 1/10th. Performance variations of transistor
switching speed increases in 20x, in which process variations
increase in 5x, the sensitivity due to temperature and supply
ripple increase in 2x respectively. Function failure rate
increases in 5 orders of magnitude.

Those issues are related to characteristics of individual
CMOS gate composing the CMOS circuit. In terms of circuit
design for the pipeline operating at near-threshold voltage
region, there are two counter methods, synchronous and
asynchronous. As for the synchronous pipeline, its clock
cycle must be adjusted to the longest delay in the pipeline,
i.e., it might be occurred under the worst case in PVT
variations. The longest path such as clock distribution tree or
forwarding mechanism might exist among several pipeline
stages. In such case, the worst case design requires larger
margin to reduce its function failure rate in sacrifice of the
performance.

As for the self-timed pipeline, a kind of asynchronous
pipeline, the influence of performance variations and the
function failure rate can be limited to a single pipeline stage
and suppressed in comparison of that of the synchronous
pipeline. Thanks to the hand-shake protocol of the STP, the
operating speed of the C-element alters autonomously even
if the PVT variations affect the delay time of the CMOS cells

330 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

330 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

composing the C-element. As a result, the average pipeline
throughput is restricted by the slowest pipeline stage in the
STP. As with the synchronous pipeline, setup and hold time
of data latches must be guaranteed in the STP so that each
delay time of send and ack signals have to be adjusted to the
longest latency of the critical path in its corresponding stage.
Furthermore, the SR latch in the C-element might oscillate
or fall into a meta-stable state when both input signals of
the RS latch change within a short time. A systematic design
to avoid those malfunction under near-threshold voltage will
be required with consideration of PVT variations.

Furthermore, in order to realize the dynamic voltage
scaling including sub-threshold voltage region, lower limit
of supply voltage must be settled. This is because the energy
minimum voltage around the sub-threshold region must exist
due to the exponential increase of leakage power beyond the
reduction of switching power.

3. NTC-Oriented C-Element
In order to ensure correct operation of the C-element

under near-threshold voltage, there are two major issues to be
solved. The first one is that the setup and hold time violation
of the data latch must be avoided even if the transistor delay
increases exponentially. The second one is that the electric
potential on cyclic paths in the C-element must be kept
steady at high potential, VDD, or low potential, VSS.

The first problem is solved by adjusting the delay buffers,
Da, Db, Dc, and Dd, of the C-element.

In general, forwarding latency required to transfer valid
data from one set of data-latches to a set of data-latches in
the succeeding stage is calculated by the sum of response
time of the data latch τq , delay time of a critical path in
the logic τcp, and setup time of the data latch τsetup. Thus,
handshake time of STP must be adjusted to the forwarding
latency. As explained in Section 2, the original STP circuit
operates based on the 4-phase handshake protocol so that
latency time Tf required from the first to the third phase
of the protocol has to exceed the forwarding latency. After
completing the data-transfer, the data latch has to receive
the next data correctly. Therefore, backward latency time Tr

required for the fourth phase must exceed hold time of the
data latch τhold.

Tf ≥ τq + τcp + τsetup (1)
Tf ≥ τhold (2)

Using the two parameters and, it is then possible to define
pipeline throughput as 1/(Tf + Tr) and pipeline efficiency
as Tf/(Tf +Tr). Pipeline throughput is a measure of packet
flow rate through the pipeline. Pipeline efficiency is the
proportion of net processing time spent on packet processing
in terms of pipeline throughput.

The lower the supply voltage is set, the weaker the driving
power of the output port of CMOS logic cell becomes. Thus,

it is hard for output electric potential of the CMOS cell to
keep steady VDD or VSS under the near-threshold voltage.
The following techniques can be introduced as a candidate
solution to tune the driving power of the related CMOS cells.

1) Replacement: to replace the target cell to a stronger
cell which generates more driving current.

2) Multiplication: To multiplicate nMOS/pMOS transis-
tors constructing the target cell.

3) Widening: To widen gate-width of nMOS/pMOS tran-
sistors of the target cell.

In terms of the technological difficulty of those tuning
techniques, the first one is tried to be applied to C-element
circuit design by using 65nm SOI-CMOS process. At first,
the basic logic of the C-element is synthesized with zero
capacitive load for every cell. After that, the critical cells
are replaced to suitable stronger cells.

Figure 4 is a diagram showing the drivability of CMOS
cells in the C-element which is synthesized with zero capac-
itive load for every cell. In the figure, each number described
on individual cell denotes the relative drivability of the cell.

Sendi

Acki

cp

Sendi+1

Acki+1

MR

��
��

����

��

DA

DC DD

DB

Fig. 4: C-element synthesized with zero capacitive load.

Figure 5 shows a C-element CMOS circuit modified with
large cell replacement.

Sendi

Acki

cp

Sendi+1

Acki+1

MR

��
��

����

��

DA

DC DD

DB

Fig. 5: C-element modified with large cell replacement.

4. Evaluation
The robust operation of the STP register with the modified

C-element is verified by using SPICE simulation with the
65nm SOI-CMOS process libraries.

As a preliminary verification, the two kinds of single C-
element CMOS circuit designed by using standard threshold
voltage transistor (SVT) and low threshold one (LVT) are

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 331

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 331

ISBN: 1-60132-444-8, CSREA Press ©

�������

�������

�������

�������

�������

�������

�������

�������

� ��� ��� ��� ��� 	 	�� 	��

�
�
�
�
�
�
�
	

�
�
�
�

�
�
�
�
�

������

 �� !!

(a) energy/operation.

�������

�������

�������

������	

������

�������

�������

������

�������

�������

�������

� ��� ��� ��� ��� � ��� ���

�
�
�
�
�
�
�
�
�
�
	

�
�
�
�
�

�
�

������

�� �� ��

(b) data transfer time.

Fig. 6: Performance characteristics of SVT-based C-element (−20◦C).

simulated respectively. The operating conditions are assumed
as listed in table 1. The supply voltage range is set from 0.1
V to 1.2 V in 0.1 V steps, the temperature is −20◦C, 25◦C,
and 75◦C, the process corner of nMOS and pMOS transistors
is slow-slow (SS), typical-typical (TT), and fast-fast (FF).

Table 1: Transistors and PVT conditions in SPICE.
Transistors SVT, LVT

Process Corner SS, TT, FF
Voltage 0.1V to 1.2V

Temperature −20◦C, 25◦C, 75◦C

In the SPICE simulation, the data transfer time (Tt) from
receiving a data packet to sending the packet is measured as
well as the average power during the data-transfer time (Pt).
Precisely describing that in the figure 3, it is the time from
when sendi−1 is negated to when acki is asserted. That is, Tt

indicates about Tf ×2. Therefore, the energy (Et) consumed
in the C-element to operate a data packet can be calculated
by Et = Pt × Tt. In this measurement, the effective signal
level is set to over 90 % of VDD as the high level signal
and to under 10 % of VDD as the low level signal. The used
SPICE simulator is Hspice, Synopsys Inc.

At first, the measurement results of the SVT-based C-
element circuit at -20◦C, 25◦C, and 75◦C is shown in
figure 6, 7, and 8 respectively. The SVT-based C-element
can operate well without function failure, except for case
of 0.1 V and the SS process condition. As discussed in
section 2, the energy/operation decrease in proportion to the
square of VDD and the data-transfer time in case of 0.1 V
is degraded about 5 order of magnitude in comparison with
the 1.2 V.

At first, the measurement results of the LVT-based C-
element circuit at −20◦C, 25◦C, and 75◦C is shown in
figure 9, 10, and 11 respectively. Compared with the SVT
circuit, the LVT-based C-element can hardly operate in some
cases of 0.1 V.

As discussed in section 2, there is the energy minimum

point around the near-threshold voltage due to the expo-
nential increase of leakage power. However, the minimum
point cannot be observed in the preliminary measurements.
Therefore, the supply voltage range around the sub-threshold
is finely set from 0.1 V to 0.2 in 10 mV steps and the energy
minimum voltage is searched in case of 25◦C. Figure 12
shows the energy/operation around the energy minimum
voltage, 0.16 V, in both SVT and LVT circuits. This means
that the NTC operating at the supply voltage lower than
0.16 V can bring no advantageous effect to the C-element.

5. Conclusion
Near-threshold computing (NTC) technique for operating

the circuit below the threshold or less called is expected
to be a promising scheme to reduce power consumption
significantly. There is challenging issues on the near-/sub-
threshold voltage operation, in which function failure must
be eliminated and performance degradation and variations
must be suppressed.

This paper focuses on the self-timed pipeline (STP) circuit
which has an inherent robust feature against the PVT vari-
ations and discusses the low voltage characteristics of the
CMOS STP circuit. After that, an optimal transistor sizing
method for the STP operating at near-threshold voltage
is proposed and verified by using SPICE simulation of
65 nm CMOS process libraries (SVT and LVT) in various
conditions, where VDD is 0.1 V to 1.2 V in 0.1 V steps,
temperature is −20◦C, 25◦C, and 75◦C, and the process
corner is SS, TT, and FF. The lower limit voltage for
minimizing the energy/operation was 160 mV for the C-
element realized by either SVT or LVT transistor. The
simulation results reported in the paper are limited to the
single C-element CMOS circuit, so that the practical STP
circuit such as DDMP should be designed by applying the
proposed method in the paper and evaluated under near-
threshold voltage region. Those works are still remained as
further investigations in our research project.

332 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

332 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

�������

������	

������

������

������

������

�����

�����

	�����

��� ��� ��� ��� ��� ��� ��� ���

�
�
�
�
�
�
�
	

�
�
�
�

�
�
�
�
�

����

�� �� ��

(a) energy/operation.

�������

�������

�������

������	

������

�������

�������

������

�������

�������

�������

��� ��� ��� ��� ��� ��� ��� ���

�
�
�
�
�
�
�
�
�
�
	

�
�
�
�
�

�
�

������

�� �� ��

(b) data transfer time.

Fig. 7: Performance characteristics of SVT-based C-element (25◦C).

�������

������	

������

������

������

������

�����

�����

	�����

� ��� ��� ��� ��� � ��� ���

�
�
�
�
�
�
�
	

�
�
�
�

�
�
�
�
�

����

�� �� ��

(a) energy/operation.

�������

�������

�������

������	

������

�������

�������

������

�������

�������

�������

� ��� ��� ��� ��� � ��� ���

�
�
�
�
�
�
�
�
�
�
	

�
�
�
�
�

�
�

������

�� �� ��

(b) data transfer time.

Fig. 8: Performance characteristics of SVT-based C-element (75◦C).

�������

������	

������

������

������

������

�����

�����

	�����

� ��� ��� ��� ��� � ��� ���

�
�
�
�
�
�
�
	

�
�
�
�

	
�
�
�
�

	

�	�

�� ��

(a) energy/operation.

�������

�������

�������

������	

������

�������

�������

������

�������

�������

�������

� ��� ��� ��� ��� � ��� ���

�
�
�
�
�
�
�
�
�
�
	

�
�
�
�
�

�
�

	

�	�

�� �� ��

(b) data transfer time.

Fig. 9: Performance characteristics of LVT-based C-element (−20◦C).

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 333

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 333

ISBN: 1-60132-444-8, CSREA Press ©

����"��

#���$�%

����$�&

��#�$�&

'���$�&

'�#�$�&

&���$�&

&�#�$�&

%���$�&

%�#�$�&

#���$�&

' '() '(* '(+ '(, - -() -(*

�
�
	

�
�

�
�
	

�
�
�
�
�
�
�
�

.��/.0

((��))

(a) energy/operation.

�������

�������

�������

������	

������

�������

�������

������

�������

�������

�������

� ��� ��� ��� ��� � ��� ���

�
�
�
�
�
�
�
�
�
�
	

�
�
�
�
�

�
�

	

�	�

�� �� ��

(b) data transfer time.

Fig. 10: Performance characteristics of LVT-based C-element (25◦C).

�������

�������

�������

�������

�������

�������

 ������

!������

"������

� ��� ��	 ��
 ��� � ��� ��	

�
�
�
�
�
�
�
�

�
�
�
�
	
�
�
!
"
#

#$$%#&

'' (())

(a) energy/operation.

�������

�������

�������

������	

������

�������

�������

������

�������

�������

�������

� ��� ��� ��� ��� � ��� ���

�
�
�
�
�
�
�
�
�
�
	

�
�
�
�
�

�
�

������

�� �� ��

(b) data transfer time.

Fig. 11: Performance characteristics of LVT-based C-element (75◦C).

Acknowledgement
Although it is impossible to give credit individually to all

those who organized and supported our project, the authors
would like to express their sincere appreciation to all the
colleagues in the project.

The circuit design work was supported by VLSI Design
and Education Center (VDEC), the University of Tokyo
in collaboration with Synopsys, Inc. and Cadence Design
Systems, Inc.

References
[1] Ronald G. Dreslinski, Michael Wieckowski, David Blaauw, Dennis

Sylvester, Trevor Mudge, “Near-Threshold Computing: “Reclaiming
Moore’s Law Through Energy Efficient Integrated Circuits,” Proceed-
ings of the IEEE, Vol. 98, No. 2, pp. 253–266, Feb. 2010.

[2] I-Chyn Wey, Po-Jen Lin, Bing-Chen Wu, Chien-Chang Peng, and
Pin-Hsi Lin, “Near-threshold-voltage circuit design: The design chal-
lenges and chances,” International SoC Design Conference (ISOCC),
pp. 138–141, Nov. 2014.

[3] Hiroaki Terada, Soichi Miyata, and Makoto Iwata, “DDMP’s: Self-
Timed Super-Pipelined DataDrivenProcessors,” Proceedings of the
IEEE, Vol. 87, No. 2, pp. 282–296, Feb. 1999.

5.122E-15 5.096E-15 5.137E-15

5.992E-15 5.938E-15 5.956E-15

�����

�������

�������

��	����

��
����

	����

	������

���� ���	 ����

�
�
�
�
�
�
�
	

�
�
�
�

�
�
�
�
�

����

��� ���

Fig. 12: Energy minimum voltage of C-element.

[4] Kei Miyagi, Shuji Sannomiya, Makoto Iwata, and Hiroaki Nishikawa,
“Low-PoweredSelf-Timed Pipeline with Variable-Grain Power Gat-
ing and Suspend-Free Voltage Scaling,” International Conference
on Parallel and Distributed Processing Techniques and Applica-
tions(PDPTA’13), pp. 618–624, July 2013.

334 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

334 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

SESSION

WORKSHOP: MATHEMATICAL MODELING AND
PROBLEM SOLVING, MPS

Chair(s)

Prof. Hayaru Shouno

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 335

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 335

ISBN: 1-60132-444-8, CSREA Press ©

336 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

336 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

Parallel Processing for Density-based Spatial Clustering Algorithm
using Complex Grid Partitioning and Its Performance Evaluation

Tatsuhiro Sakai1,2, Keiichi Tamura1, Kohei Misaki1, and Hajime Kitakami1
1Graduate School of Information Sciences, Hiroshima City University, Hiroshima, Japan

2JSPS Research Fellow, Japan

Abstract— Density-based spatial clustering algorithms,
which have been well studied in database domains, are
based on densities of geospatial data. Recently, the sizes
and volumes of spatial databases have been increasing not
only because of the popularity of geographical data, but
also because of the popularity of geosocial media. Therefore
the speedup for the processing of density-based spatial
clustering algorithms is one of the most important challenges
in many different application domains. In this paper, we
propose a new parallelization model on a multi-core CPU
using the spatial partition method for DBSCAN, which is
one of the most fundamental algorithms for density-based
spatial clustering. The new parallelization model utilizes a
data replication technique and complex grids for the parallel
processing of DBSCAN, in order to improve the speedup
performance of parallel processing. The experimental results
show that our new model outperforms a conventional data
parallelization model.

Keywords: density-based spatial clustering, spatial database, par-

allel processing, multi-core CPU, complex grid

1. Introduction
With the increasing interest in big data, the use of geospa-

tial databases for ICT (information and communications

technology) has received much attention in recent years. The

clustering technique for geospatial data is one of the most

well studied techniques because it allows us to reveal spatial

relevance of geospatial data. To extract clusters for geospatial

data, a huge number of spatial clustering techniques have

been proposed. Clustering techniques for geospatial data

differ from traditional clustering techniques (e.g., k-means

method) only in that clusters for geospatial data do not

always form circles. For example, contaminated land sites

form arbitrary shapes from a satellite observation.

A density-based spatial clustering algorithm is one of the

simplest but most robust clustering techniques for geospatial

data. The DBSCAN (Density-Based Spatial Clustering of

Applications with Noise) algorithm was first introduced by

Ester et al. [1][2], and it applies a density-based concept of

spatial clusters. Spatial clusters are recognized by analyzing

the density of data points. Areas with a high density of data

points are spatial clusters, whereas areas with a low density

are not. DBSCAN can discover spatial clusters with arbitrary

shapes. Therefore, many methods apply this algorithm to

geospatial databases because spatial clusters in geospatial

databases are not circular. The key concept of the DBSCAN

algorithm is that for each data point in a spatial cluster, the

neighborhood with a user-defined radius has to contain at

least a minimum number of points; i.e., the density in the

neighborhood must exceed some predefined threshold.
In this paper, we focus on the speedup of the DBSCAN

algorithm. The goal of this study is to develop a novel

parallel-processing parallelization model for DBSCAN on

a multi-core CPU. Currently, PCs and workstations have

one or more multi-core CPUs. A multi-core CPU is a

single microprocessor with two or more independent CPU

cores on a die, which are the units that read and execute

program instructions. It is necessary to develop an efficient

parallelization model for spatial clustering techniques on a

multi-core CPU.
The main contributions of this study are as follows:

• To parallelize the DBSCAN algorithm, the proposed

parallelization model is based on the master-worker

model using data parallelism. The DBSCAN algorithm

has spatial independence at the data level, because a

spatial cluster can be extracted independently of the

extraction of other spatial clusters. In data parallelism,

an entire geospatial database is divided into two or more

sub-databases called partitions using grid partitioning.

A partition is assigned to a worker thread on a CPU

core, and it is executed on a worker thread.

• To extract a spatial cluster that is spread over several

grids, we have to calculate the density of geospatial

data near the boundary of the grids correctly. Each

gird contains a replication of geospatial data beyond

the borders of the grid. This replication allows us

to calculate the density of geospatial data near the

boundary of the grids. Moreover, several spatial clusters

extracted from adjacent grids are merged if they are

connected.

• To reduce the number of replications, the proposed

parallelization model utilizes complex grid partitioning.

One of the disadvantages of grid partitioning is the in-

crease in the number of replications due to merging. In

complex grid partitioning, a complex grid is composed

of highly dense adjacent grids. Composing a complex

grid reduces the number of grids; therefore, the number

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 337

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 337

ISBN: 1-60132-444-8, CSREA Press ©

of replications decreases compared with simple grid

partitioning. This improves the overall performance of

the parallel processing.

The rest of this paper is organized as follows. In Section

2, related work is reviewed. In Section 3, a density-based

spatial clustering algorithm and its algorithm are presented.

In Section 4, we propose a novel parallelization model for

the parallel processing of DBSCAN. In Section 5, we report

the experimental results. In Section 6, we conclude the paper.

2. Related work
Recently, the parallelization model of DBSCAN for

speedup of its algorithm has been proposed [3][4] as the

sizes and volumes of spatial databases have been increasing

because of the popularity of geographical data [5]. Xu et

al. [3] proposed the parallelization model of DBSCAN on a

cluster computer. The method divides an entire geospatial

dataset using grid division of the space index, and each

computer performs clustering for the divided geospatial data.

It is possible to perform parallel processing of clustering

by using multiple computers. Moreover, research on parallel

processing of DBSCAN has also been conducted on the

new computing platform, example, the parallelization model

using graphics processing unit (GPU) [6][7] and MapReduce

[8].

Misaki et al. [9] proposed a parallelization model for the

parallel processing of DBSCAN on a multi-core CPU. In

previous model, a geospatial database is divided into two or

more sub-databases called partitions using grid partitioning

on the basis of data parallelism. Each CPU core performs the

same processing on different partitions. In the experimental

results, the previous model showed the effectiveness of paral-

lel processing in terms of speedup; however, the process for

each grid partitioning is time consuming because each grid is

increased in the number of replications. The proposed new

model reduce the processing time because decreasing the

number of replications by using complex grid partitioning.

3. DBSCAN
In this section, the definitions of the DBSCAN (Density-

Based Spatial Clustering of Applications with Noise) are

briefly reviewed.

3.1 Definitions
In DBSCAN, the ε-neighborhood of a geospatial data is

defined as geospatial data in the neighborhood of a user-

defined given radius ε.

Definition 1 (ε-neighborhood GSNε(gsd)) The ε-
neighborhood of a geospatial data gsdp denoted by

GSNε(gsdp), is defined as

GSNε(gsdp) = {gsdq ∈ GSD|dist(gsdp, gsdq) ≤ ε}, (1)

Fig. 1: Example of definition 1, 2, and 3

where the function dist returns the distance between geospa-

tial data gsdp and geospatial data gsdq .

An example of the ε-neighborhood of gsdp is shown on

Fig. 1. On the left side of the figure, there are four geospatial

data in the ε-neighborhood of gsdp. Moreover, in the right

side of Fig. 1, there are three geospatial data in the ε-
neighborhood of gsdp.

Definition 2 (Core geospatial data, Border geospatial data)
A geospatial data gsdp is called a core geospatial

data if there is at least the minimum number of

geospatial data, MinGSD, in the ε-neighborhood

GSNε(gsdp) (|GSNε(gsdp)| ≥ MinGSD). Otherwise,

(|GSNε(gsdp)| < MinGSD), gsdp is called a border

geospatial data.

Suppose that MinGSD is set to four. A geospatial data

gsdp on the left side of Fig. 1 is a core geospatial data,

because there are four geospatial data in GSNε(gsdp). A

geospatial data gsdp on the right side of Fig. 1 is a border

geospatial data because the number of geospatial data in

GSNε(gsdp) is less than MinGSD.

Definition 3 (Density-based directly reachable) Suppose

that a geospatial data gsdq is in the ε-neighborhood of gsdp.

If the number of geospatial data in the ε-neighborhood

of gsdp is greater than or equal to MinGSD, i.e., if

|GSNε(gsdp)| ≥ MinGSD, gsdq is density-based directly

reachable from gsdp.

On the left side of Fig. 1, geospatial data gsdp is a

core geospatial data, because |GSNε(gsdp)| ≥ MinGSD.

Geospatial data gsd1, gsd2, gsd3, and gsd4 are in the

ε-neighborhood of gsdp. These four geospatial data are

density-based directly reachable from gsdp. On the other

hand, on the right side of Fig. 1, geospatial data gsdp is

a border geospatial data; i.e., it is not |GSNε(gsdp)| ≥
MinGSD. These three geospatial data are not density-based

338 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

338 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

Fig. 2: Grid partitioning

directly reachable from gsdp although geospatial data gsd2,

dgs3, and gsd4 are in the ε-neighborhood of gsdp.

Definition 4 (Density-based reachable) Suppose that

there is a geospatial data sequence (gsd1, gsd2, · · · , gsdn),

and the (i + 1)-th geospatial data gsdi+1 is density-based

directly reachable from the i-th geospatial data gsdi. The

geospatial data gsdn is then density-based reachable from

gsd1.

Definition 5 (Density-based connected) Suppose that

geospatial data gsdp and gsdq are density-based reachable

from geospatial data gsdo. If |GSNε(gsdo)| ≥ MinGSD,

we denote that gsdp is density-based connected to gsdq .

A density-based spatial cluster consists of two types of

data: core geospatial data, which are mutually density-based

reachable; and border geospatial data, which are density-

based directly reachable from the core geospatial data. A

density-based spatial cluster is defined as follows.

Definition 6 (Density-based spatial cluster) A density-

based spatial cluster (GSC) in a geospatial data set GSD
that satisfies the following restrictions:

1 ∀gsdp, gsdq ∈ GSD, if and only if gsdp ∈ GSC
and gsdq is density-based reachable from gsdp, and

gsdq is also in GSC.

2 ∀gsdp, gsdq ∈ GSC, gsdp is density-based con-

nected to gsdq .

3.2 Algorithm
To extract density-based spatial clusters, approximate core

geospatial data are appended recursively. A density-based

spatial cluster is created using a core geospatial data first, and

neighbors of the core geospatial data are then added to the

cluster. For each geospatial data gsdi in GSD, the following

steps are executed. If gsdi is a core geospatial data according

to Definition 2, it is assigned to a new spatial cluster GSC,

and all the neighbors are queued to a candidate queue Q
for further processing. The processing and assignment of

Fig. 3: Geospatial data around the border of a grid

geospatial data to the current spatial cluster continue until

Q is empty. The next geospatial data is then dequeued from

Q. If the dequeued geospatial data is not already assigned to

the current spatial cluster, it is assigned to the current spatial

cluster. The ε-neighborhood of the dequeued geospatial data

is then queued to Q, which puts input geospatial data into

Q if they are not already in Q.

4. Proposed Method
In this section, we propose a new parallelization model for

the parallel processing of DBSCAN on a multi-core CPU.

4.1 Data Parallelism using Grid Partitioning
In this study, we focus only on the data-parallelism-

based master-worker model on a multi-core CPU. In data

parallelism, a geospatial database is divided into two or more

sub-databases called partitions. The extraction of spatial

cluster can be performed in parallel using these partitions.

In a multi-core CPU environment, each CPU core performs

the same processing on different partitions. The proposed

parallelization model utilizes grid partitioning to divide the

whole database. The whole space is divided into boundary

boxes called grids. Each data in the geospatial database is

assigned to a grid that includes the data. Fig. 2 shows an

example of grid partitioning. In this example, the whole area

is divided into four subareas called grids. A set of geospatial

data is assigned to a partition.

4.2 Data Replication
In the grid partitioning framework, we cannot determine

whether a geospatial data near the border of a grid is core

geospatial data or not using only the data set of the grid that

contains geospatial data. In Fig. 3, even though a geospatial

data gsd near the border of Grid 1 is a core geospatial data

the geospatial data gsd is not identified as a core geospatial

data, because some its neighbors are located in Grid 3. To

determine whether a geospatial data near the border of a

grid is core geospatial data or not, all grids extend only ε.
Therefore, adjoining grids overlap. In Fig. 3, Grid 1 contains

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 339

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 339

ISBN: 1-60132-444-8, CSREA Press ©

Fig. 4: Example of complex grid partitioning

not only a set of geospatial data located in its area but also

a set of geospatial data located in the area shown with a

transmission color. The set of geospatial data located in the

area is a replication.

4.3 Complex Grid
To reduce the number of replications, the proposed par-

allelization model utilizes complex grid partitioning. Fig. 4

shows an example of complex grid partitioning. The left

side of Fig. 4 shows simple grid partitioning. One of the

disadvantages of simple grid partitioning is the increase in

the number of replications due to merging. In complex grid

partitioning on the right side of Fig. 4, a complex grid

is composed of highly dense adjacent grids. Composing a

complex grid reduces the number of grids; therefore, the

number of replications decreases compared with simple grid

partitioning. This improve the overall performance of the

parallel processing.

Moreover, if data there is concentrated in one of the

grids, the loads are not distributed. Then, if the number of

geospatial data in a grid is larger than the number of the

entire geospatial data divided by the number of workers, the

grid is further divided.

The steps are the processing steps of creating complex

grids.

(1) For each grid, the number of geospatial data in the

grid is counted.

(2) For each grid, if the number of geospatial data

is larger than the number of all geospatial data

divided by the number of workers, the grid is

further divided.

(3) For each grid, if the number of geospatial data is

larger than twice the average of the number of

geospatial data, the grid is labeled a dense grid.

Otherwise the grid is labeled a non-dense grid.

(4) Each dense grid combines with the adjoining dense

grids up to the number of all geospatial data

divided by the number of workers. A set of dense

grids then forms a complex grid.

(5) Each non-dense grid forms a complex grid.

4.4 Dynamic Load Balancing
The proposed model utilizes the task pool to distribute

the loads. A processing of spatial clustering for a partition

associated with a complex grid is referred to as a task.

The master thread manages tasks using the task pool. Each

worker perform clustering after obtaining a task from the

task pool. Finally, if the task pool is empty and each worker

finishes task processing, the entire process is completed.

4.5 Merging Clusters
To extract a spatial cluster that spread over several grids,

the proposed model merges extracted spatial clusters from

each partition. First, the proposed model obtains adjacent

grids information from the area number of each partition

and the division points for each dimension. On the basis of

the information from the adjacent grids, the proposed model

extracts overlapping clusters from spatial clusters in a grid

and spatial clusters in grids adjacent to its grid. It is possible

to extract overlapping spatial clusters because of data repli-

cation. The extracted overlapping spatial clusters are merged,

and those spatial clusters become one spatial cluster. The

proposed model can obtain the same as clustering results

using no parallel method by the merging clusters.

4.6 Algorithm
The processing steps of the master thread and the worker

threads are as follows.

A) Master Thread
(1) The master thread received a geospatial database

GSD, and parameters p, ε, and MinGSD.

(2) The whole space is divided into p subspaces for

each dimension. A separated space is a grid. For

each geospatial data gsd ∈ GSD, the master thread

assigns gsd to a grid. For each grid, the number of

geospatial data is calculated.

(3) If the number of geospatial data in a grid is

larger than the number of the entire geospatial

data divided by the number of workers, the grid

is further divided.

(4) The master thread calculates GSNε(gsd) for

geospatial data.

(5) The master thread generates complex grids from a

set of grids.

(6) The master thread creates a tack pool.

(7) The complex grid is referred to as a partition. The

master puts a partition in the task pool.

(8) The master thread creates t worker threads.

(9) The master thread receives a request for task as-

signment from a worker thread.

(10) If the task pool is not empty, the master thread pops

a task from the task pool and sends it the task to

the worker thread. Otherwise, the master worker

sends a wait message to the worker thread.

(11) If the master thread has sent wait messages to all

the worker threads, the processing step returns to

(12). Otherwise, the processing step returns to (9).

340 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

340 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

R15 Aggregation Pathbased

Fig. 5: Distribution for each dataset

(12) The master thread destroys the task pool.

(13) The master thread sends an end message to each

worker thread.

(14) The master thread receives clustering results from

all the worker threads.

(15) The master thread merges clusters that spread over

several grids.

(16) The master thread returns a set of spatial clusters.

B) Worker Thread

(1) The worker thread sends a task assignment request

to the master thread.

(2) If the worker thread receives a wait message, the

processing step goes to (4). Otherwise, the worker

thread receives a task from the master thread.

(3) The worker thread extracts spatial clusters from

a partition associated with the task using the

DBSCAN algorithm. The worker thread puts the

clustering results of the assigned task in a result

pool. The processing step returns to (1).

(4) The worker thread waits for an end message from

the master thread.

(5) The worker thread sends a set of spatial clusters to

the result pool.

5. Performance Evaluation
To evaluate the proposed model for parallel processing

for DBSCAN on a multi-core CPU, we employed actual

data sets. We implemented the proposed model for parallel

processing using multi-thread. We conducted an experiment

with a PC with the following specifications: CPU INTEL

XEON E5-1270 V2 (number of core = 4) @3.5 GHz,

memory:32GB. In the experiment, we used three types of

datasets: R15, Aggregation and Pathbased. Fig. 5 shows

the datasets. For, each dataset, we expanded the number

of geospatial data to approximately 100,000 by increasing

geospatial data around each geospatial data artificially.

The parameters were set to the number of initial grid

divisions of each dimension p = 8. Moreover, the parameters

were set to ε = 0.5 and MinGSD = 3000 with R15,

ε = 1.8 and MinGSD = 1550 with Aggregation, and

ε = 1.6 and MinGSD = 2300 with Pathbased so as to

be correct clustering results. We compared the results of

changing the number of worker threads t from 1 to 4.
In the experiments, we measured the processing time of

DBSCAN using the proposed model, which utilizes complex

grid partitioning (denoted by CGPM), and the previous

model, which utilizes simple grid partitioning (denoted by

SGPM). Fig. 6 shows the speedup for each dataset. The

vertical axis represents the speedup ratios, while the hori-

zontal axis shows the number of worker threads. In SGPM,

the speedup ratio reaches up to approximately 3.7 times for

each datasets. In CGPM, the speedup ratio reaches up to

approximately 3 times using R15 and Aggregation. However,

the speedup ratio reaches up to approximately 2 times using

Pathbased. The previous model obtained a higher speedup

compared to the proposed model.
In addition, Fig. 7 shows the processing time for each

dataset. The processing time of CGPM are faster than that of

SGPM using R15 and Aggregation, as shown in Fig. 7. This

is because the number of replication data is reduced by the

complex grid partition. The processing time with t = 3 and

4 of CGPM is worse then that of SGPM using Pathbased. It

is assumed that deviation of the loads occurred by conbining

of dense grid.
The previous model obtained a higher speedup compared

to the proposed model, as shown in Fig 6. It is assumed that

the number of replication data with worker threads t = 4 is

more than the number of replication data with worker threads

t = 1, because the less the number of threads, the more

combining of dense grids increase. We then conducted an

experiment with chenging the condition of combining of the

dense grids. The condition is combining up to the number of

all geospatial data divided by four. That is, we set the same

condition for each the number of worker thread. Fig 8 and

Fig 9 show the speedup and processing time, respectively.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 341

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 341

ISBN: 1-60132-444-8, CSREA Press ©

Speedup of R15 Speedup of Aggregation Speedup of Pathbased

Fig. 6: Speedup for each dataset

Processing time of R15 Processing time of Aggregation Processing time of Pathbased

Fig. 7: Processing time for each dataset

The speedup ratio of CGPM is much the same as the speedup

ratio of SGPM using R15 and Aggregation. The processing

time of CGPM is faster than the processing time of SGPM,

as shown in Fig 9. However, the processing time of CGPM

in Fig 9 is slower than the processing time of CGPM in

Fig 7. We are necessary to develop a method for automatic

setting of the combining condition for each the number of

worker thread.

Datasets whose data distribution exhibits a small deviation

on the coordinate space. We then created datasets whose

data distributions exhibited large deviations. We artificially

expanded the number of geospatial data of each dataset to

about 100,000. A_R15, A_Aggregation and A_Pathbased are

half of the geospatial data distributed in the lower left. The

parameters were set as p = 8 and t = 4. The parameters

were set as ε = 0.2 and MinGSD = 3000 with A_R15,

ε = 1.0 and MinGSD = 4650 with A_Aggregation, and

ε = 1.4 and MinGSD = 6900 with A_Pathbased.

Table 1 shows the processing time for each process using

A_R15, A_Aggregation, and A_Pathbased. The processing

time of CGPM is faster than that of SGPM using A_R15,

A_Aggregation and A_Pathbased, as shown in Table 1.

These results indicate that CGPM is effective in terms of

the processing time, using a data distribution with a large

deviation on the coordinate space.

6. Conclusion
This paper proposed a new parallelization model on a

multi-core CPU for the parallel processing of DBSCAN. The

proposed parallelization model utilizes the data replication

technique and complex grids in order to improve the speedup

performance of parallel processing. The data replication

technique is utilized to determine whether a geospatial data

near the border of a grid is core geospatial data or not.

Moreover, the proposed model reduces the number of repli-

cations owing to the complex partition grid partition. The

experimental results showed that the proposed parallelization

model outperforms the conventional parallelization model,

which utilizes the simple grid partition. In our future work,

we intend to discuss combining condition of the dense grids.

Moreover, we intend to conduct experiments by increasing

the number of workers.

Acknowledgment
This work was supported by JSPS KAKENHI Grant Num-

ber 16J05403 and 26330139, and Hiroshima City University

Grant for Special Academic Research (General Studies).

342 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

342 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

Speedup of R15 Speedup of Aggregation Speedup of Pathbased

Fig. 8: Speedup for each dataset with chenging the condition of combining of the dense grids

Processing time of R15 Processing time of Aggregation Processing time of Pathbased

Fig. 9: Processing time for each dataset with chenging the condition of combining of the dense grids

Table 1: Processing time for each process using data distribution with a large deviation
Datasets Model Calculating neighbors(s) Creating tasks(s) Tasks process(s) Merging clusters(s) Total time(s)
A_R15 SGPM 26.05 0.08 21296.92 0.02 21323.07

CGPM 30.15 16.42 12767.14 0.06 12813.78
A_Aggregation SGPM 38.48 0.09 27733.29 0.11 27771.98

CGPM 49.12 31.56 22728.25 0.14 22809.17
A_Pathbased SGPM 71.69 0.12 31777.16 0.14 31849.11

CGPM 97.29 88.39 30876.74 0.20 31062.62

References
[1] M. Ester, H. peter Kriegel, J. Sander, and X. Xu, “A density-based

algorithm for discovering clusters in large spatial databases with noise,”
in Proceedings of the Second International Conference on Knowledge
Discovery and Data Mining, ser. KDD-96, 1996, pp. 226–231.

[2] J. Sander, M. Ester, H.-P. Kriegel, and X. Xu, “Density-based clustering
in spatial databases: The algorithm gdbscan and its applications,” Data
Mining and Knowledge Discovery, vol. 2, no. 2, pp. 169–194, 1998.

[3] X. Xu, J. Jäger, and H.-P. Kriegel, “A fast parallel clustering algorithm
for large spatial databases,” Data Mining and Knowledge Discovery,
vol. 3, no. 3, pp. 263–290, 1999.

[4] D. Arlia and M. Coppola, “Experiments in parallel clustering with
dbscan,” in Proceedings of the 7th International Euro-Par Conference
Manchester on Parallel Processing, ser. Euro-Par 01, 2001, pp. 326–
331.

[5] M. Stonebraker, J. Frew, K. Gardels, and J. Meredith, “The sequoia
2000 storage benchmark,” in Proceedings of the 1993 ACM SIGMOD
International Conference on Management of Data, ser. SIGMOD ’93,
1993, pp. 2–11.

[6] C. Böhm, R. Noll, C. Plant, and B. Wackersreuther, “Density-based
clustering using graphics processors,” in Proceedings of the 18th ACM
Conference on Information and Knowledge Management, ser. CIKM
’09, 2009, pp. 661–670.

[7] B. Welton, E. Samanas, and B. P. Miller, “Mr. scan: Extreme scale
density-based clustering using a tree-based network of gpgpu nodes,”
in Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis, ser. SC ’13, 2013, pp.
84:1–84:11.

[8] Y. He, H. Tan, W. Luo, H. Mao, D. Ma, S. Feng, and J. Fan, “Mr-
dbscan: An efficient parallel density-based clustering algorithm using
mapreduce,” in Parallel and Distributed Systems (ICPADS), 2011 IEEE
17th International Conference on, 2011, pp. 473–480.

[9] K. Misaki, K. Tamura, and H. Kitakami, “Parallel processing for
density-based clustering algorithm on a multi-core cpu,” in Proceedings
2014 IEEE SMC Hiroshima Chapter Young Researchers’ Workshop,
2014, pp. 33–36.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 343

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 343

ISBN: 1-60132-444-8, CSREA Press ©

Proposal on a Linear Regression being hardly affected by outliers
and its application to the Estimation of Michaelis Constant

T. Matsuda1, Y. Kawaguchi1, and K. Ohsugi1
1Department of Computer Science, Shizuoka Institute of Science and Technology, Fukuroi, Shizuoka, Japan

Abstract— The Michaelis constant is utilized for the inves-
tigation on the relation between an enzyme and a substrate
concentration, and is estimated by Michaelis-Menten equa-
tion. The conventional estimation method is the least squares
method, but it is problem that the data of the Michaelis
includes some outlier. In this study, we proposed a estimation
method of a linear regression which is robust for outliers,
and applied to the estimation of Michaelis constant in a
simple case. Moreover, we compared our proposed method
with the conventional method, and showed the effectiveness
of our proposed method.

Keywords: Michaelis constant, Linear regression, least squares

fitting, Outliers

1. Introduction
Michaelis-Menten equation is very important theory in

the enzyme kinetics and had supported development of the

former enzyme chemistry [1]. Michaelis-Menten equation is

defined in the following way:

1

v
=

Km

Vmax

1

[S]
+

1

Vmax
. (1)

Here, v is a speed of reaction of the enzyme E, [S] is the

concentration of the substrate S, Vmax indicates the maxi-

mum rate achieved at maximum substrate concentrations and

Km is the Michaelis constant. Michaelis-Menten equation

expresses that the speed of reaction increases when the

substrate concentration [S] increases. The Michaelis constant

Km is the substrate concentration at v = Vmax

2 . Michaelis-

Menten equation is well-known model of enzyme kinetics

in biochemistry, but it may not give the complete data

fitting. In particular, we have to pay attention to the case

including some outliers over the data set
{

1
[Si]

, 1
vi

}I

i=1
. In

the theory of the enzyme kinetics, it is very important to

use the concentration of the substrate in the condition of a

zero-order reaction, because a chemical reaction proceeds

regardless in the density of the substance. However, the

Michaelis constant Km is estimated by using the data except

a zero-order reaction, therefore the error of the measurement

of Km are caused by some outliers. So, it is to be desired that

outliers are removed when we estimate Km. Many methods

on removing outliers had been studied before now [2] [?],

it is not easy to judge whether the given data is an outlier

or not correctly.

In this study, we proposed an algorithm of a linear regres-

sion that is robust for outliers, and estimated the Michaelis

constant Km by using our proposed algorithm. Our proposed

algorithm is based on some linear classifier, called Exact

Soft Confidence-Weighted Learning (SCW) [3]. SCW is

an algorithm on an online supervised learning, but the

estimation of Km is not a supervised learning. Therefore, we

included some device in our proposed algorithm to to apply

algorithm of supervised learning. The data of this study is

the one that used for investigating the enzymatic activity

of Alkaline phosphatase (ALP). In the data of this study,

outliers appear in the range of 0 < [S] < 1. To investigate

the effectiveness of our proposed algorithm, we generated

some outliers artificially, and compared the estimation result

of our proposed algorithm and the least squares method as

a conventional method. As a result, we confirmed that our

proposed algorithm is less subject to outliers. The rest of

this paper is organized as follows. Section 2 explains on the

Michaelis-Menten Equation simply. Section 3 proposes an

algorithm of a linear regression. Section 4 shows the exper-

iment of our proposed algorithm, and Section 5 concludes

this study.

2. Michaelis-Menten Equation
Enzyme E plays an important role in a chemical reaction

of animal and plant bodies. A material which is catalyzed

by an enzyme is called a substrate S. An enzyme and a

substrate reacts and generates a complex ES.

E + S → ES (2)

We assume that the rate constant of Eq. (2) is k1. A complex

ES is decomposed into E and S (Eq. (3)), or becomes a

reaction product P (Eq. (4)).

ES → E + S (3)

ES → E + P (4)

We assume that the rate constant of Eq. (3) and Eq. (4) is

k2 and k3, respectively.

The speed of reaction of the enzyme is determined by [E]
and [S]. Michaelis-Menten equation is derived using steady-

state approximation [?] in the following way.

v =
Vmax[S]

Km + [S]
, (5)

344 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

344 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

where

Km =
k2 + k3

k1
.

If [S] > Km, then v = Vmax and v does not depend on [S]
(zero-order reaction). If [S] < Km, then

v =
Vmax

Km
[S].

From Eq. (5), we have

1

v
=

Km + [S]

Vmax[S]

=
Km

Vmax

1

[S]
+

1

Vmax
.

This equation is called Lineweaver-Burk plot. The set of data{
1

[Si]
, 1
vi

}I

i=1
does not lie over a straight line. Therefore, the

Michaelis constant Km is estimated using the linear least

squares fitting. Let

y =
1

v
,

x =
1

[S]
,

a =
Km

Vmax
,

b =
1

Vmax

and {(xi, yi)}Ii=1 =
{

1
[Si]

, 1
vi

}I

i=1
. Our goal is to compute

the linear regression y = ax+b from the data {(xi, yi)}Ii=1.

The parameters a and b are computed as follows.

a =

(∑I
i=1 yi

)(∑I
i=1 x

2
i

)
−
(∑I

i=1 xi

)(∑I
i=1 xiyi

)
I
(∑I

i=1 x
2
i

)
−
(∑I

i=1 xi

)2

b =
I
(∑I

i=1 xiyi

)
−
(∑I

i=1 xi

)(∑I
i=1 yi

)
I
(∑I

i=1 x
2
i

)
−
(∑I

i=1 xi

)2
The estimation results of a and b may be influenced by

outliers including in data set. In this study, we proposed an-

other estimation method of the computation on the Michaelis

constant Km. We will introduce our proposed algorithm in

the next section.

3. Algorithm
In this section, we propose an algorithm of a linear

regression estimator based on the online supervised learning

which is called SCW [3]. Therefore, firstly, we will overview

the algorithm of SCW.

Fig. 1: Michaelis constant Km

Fig. 2: Lineweaver-Burk plot

3.1 SCW
SCW is an online learning algorithm considered a

soft margin learning, and is constructed by extending the

confidence-weighted learning (CW) [4]. The algorithms of

CW and SCW estimate the parameter w ∈ RN of the linear

classifier

< w, s >=
N∑

n=1

wisi,

where s ∈ RN is an input data. In the supervised learning,

we consider some label data ti associated to the input data

si. We assume ti ∈ {1,−1} in this study. The algorithm of

CW utilizes a normal distribution N(μ,Σ) with mean vector

μ ∈ Rd and covariance matrix Σ to determine the parameter

w. It is assumed the parameter w has a normal distribution

N(μ,Σ), that is

w ∼ N(μ,Σ).

The algprithm of CW estimates the parameter w by using

the information of the frequency of the data. For the high

frequency data, the update of w becomes slower. On the

other hand, the update of w becomes faster for the low

frequency data. The optimization problem of CW is written

as follows.

(μn,Σn) = arg minμ,Σ KL (N(μ,Σ),N(μn,Σn))

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 345

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 345

ISBN: 1-60132-444-8, CSREA Press ©

subject to Pr[tn < w, sn >≥ 0] ≥ η. Here, 0 ≤ η ≤ 1 and

KL(·, ·) denotes the Kullback Leibler information.

KL(A(x), B(x)) =

∫
A(x) log

A(x)

B(x)
dx.

The restrection condition Pr[tn < w, sn >≥ 0] ≥ η can be

rewirtten as

tn < μ, sn >≥ Φ−1(η)
√

< sn,Σsn >,

where Φ is the cumulative function of the normal distribu-

tion. The algorithm of SCW is obtained from the following

optimization problem.

(μn,Σn) = arg minμ,Σ KL (N(μ,Σ),N(μn,Σn))

subject to

max
(
0,Φ−1(η)

√
< sn,Σsn >− tn < μ, sn >

)
= 0.

SCW allows some error of probability (1 − η) and stops a

rapidly change of the parameter w. The update rules of the

parameter μ and Σ of SCW are obtained from

μn+1 = μn + αntnΣnsn

Σn+1 = Σn − βnΣns
T
nsnΣn,

where

αn = min

{
C,max

{
0,

1

pnζ
(−mnφ+A)

}}

A =

√
m2

n

Φ−1(η)

4
+ pn(Φ−1(η))2ζ

βn =
αnΦ

−1(η)√
un + pnαnΦ−1(η)

un =
−αnpnΦ

−1(η) +
√

α2
np

2
n(Φ

−1(η))2 + 4pn
4

pn = < sn,Σsn >

mn = tn < μn, sn >

φ = 1 +
(Φ−1(η))2

2
The data for estimating the Michaelis constant Km has

not label data tn ∈ {−1, 1}. Therefore, we need some idea

to apply the algorithm of SCW to our proposed algorithm.

3.2 Proposed Algorithm
Here, we propose an algorithm of linear regression esti-

mator in the following way.

(Step 1)

Let {(xn, yn)}Nn=1 be a sample.

(Step 2)

Compute the average coordinate of {(xn, yn)}Nn=1

xr =
1

N

N∑
n=1

xn,

yr =
1

N

N∑
n=1

yn,

and transform (xn, yn) into

Xn = xn − xr,

Yn = yn − yr

(Step 3)

Compute the eigenvector p = (p1, p2) corresponding to the

first principal component of the variance covariance matrix

1

N

(∑N
n=1 X

2
n

∑N
n=1 XnYn∑N

n=1 YnXn

∑N
n=1 Y

2
n

)
(6)

and the line

y =
p2
p1

x

(Step 4)

If Yn > p2

p1
Xn (resp. Yn ≤ p2

p1
Xn), then we give the label

(Xn, Yn, zn = +1) (resp. (Xn, yn, zn = −1)).
(Step 5)

Compute the parameter w1 and w2 of

w1X + w2Y = 0

by using the algorithm of SCW.

(Step 6)

By substituting the transforms of (Step 2), we have

y = −w1

w2
x+

w1xr + w2yr
w2

= ax+ b.

In the process of (Step 4), we give the label data {+1,−1}
by using the eigenvector (the first principal component)

of the variance - covariance matrix. The line through the

average coordinate (xr, yr) with the slope −w1

w2
may fit to the

data {(Xn, Yn)}Nn=1 if the data does not have outliers. In this

study, we will give some outliers artificially and investigate

the behavior of our proposed algorithm and conventional

method.

4. Experiment
In this section, we will do an experiment using real data.

4.1 Experiment Data
Firstly, we explain the real data of this study. Our data

of this study is composed of

E : Alkaline phosphatase (ALP)

S : p-Nitrophenyl phosphate (pNPP)

P : p-Nitrophenol (pNP)

This chemical experiment investigate the reaction mass of

pNP and the enzymatic activity of ALP using the substrate

pNPP under the condition without the factor of hindrance.

ALP is an enzyme distributed over a liver, a bone and

a small intestine and using for the study of the bone

metabolism. Table 1 is the specific data of [S] and 1
v .

346 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

346 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

Table 1: Data of S and v
[S] (mM) v (μ mol/min) 1

[S]
1
v

0.05 0.004478 20 223.3
0.1 0.007518 10 133.02
0.2 0.011751 5 85.1
0.5 0.017284 2 57.86
1 0.020835 1 47.99
2 0.02391 0.5 41,82
5 0.0259 0.2 38.61

10 0.02605 0.1 38.39

We used 8 data set {(xnj , ynj)}
Nj

nj=1, (j = 1, 2, · · · , 8) to

estimate the constants of the line

1

v
=

Km

Vmax

1

[S]
+

1

Vmax
.

4.2 Experiment Results
Here, we will show the result of our proposed method and

the conventional method (linear least squares fitting). The

red line and green line of the Fig 3 and Fig 4 indicate the

result of our proposed method and the conventional method,

respectively. Fig 3 and 4 are obtained from the data set No.

1 and No. 2, respectively.

Fig. 3: Experiment result 1

It can be seen that almost of the data of Fig 3 are lying on

some line. Therefore, it may be considered that the result of

our proposed method and the conventional method coincide

almost. On the other hand, the data of Fig 4 are scattered

from some line. Therefore, the result of our proposed method

is different from the one of the conventional method. To

compare our proposed method and the conventional method,

we will compute the distance from the data to the fitting line.

The residual sum of squares are minimized in the linear least

squares fitting. In this study, we compute the sum of the

length of a perpendicular lowered to the fitting line from the

Fig. 4: Experiment result 2

data coordinate. We summarized the computation result of

the sum of the length of a perpendicular in Table 2.

Table 2: The distance between a data and a line
Number of data set Proposed Method Conventional Method

1 0.846 0.848
2 6.258 7.182
3 3.383 3.609
4 1.902 1.962
5 2.402 2.41
6 0.690 0.691
7 1.019 1.031
8 0.689 0.691

We can see that results of our proposed method and the

conventional method are almost the same with the exception

of the data set No. 2 and No. 3. In all cases, the distance

between a data and a line of our proposed method is smaller

than the one of the conventional method. The purpose of

this study is to propose the estimation method that is less

subject to outliers. Therefore, we investigate the behavior of

our proposed method and the conventional method by giving

an outlier.

4.3 Experiment for Outliers
To investigate the Influence by outliers, We changed the

part of the data set No. 1 (the data of Table 1) to an outlier.

Here, we call the data set No. 1 the original data. The red line

and the green line of Fig 5, 6, 7 and 8 indicate the estimation

result of our proposed method and the conventional method,

respectively. Moreover, the dotted line is the estimation result

of the conventional method using the original data. Fig 5

was obtained by changing the data (1
[S] ,

1
v) = (10, 133.02)

of Table 1 into (10, 100). From Fig 5, we can see that the

influence by an outlier concerning the parameter estimation

of our proposed method is smaller than the one of the

conventional method. We summarized the changed point in

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 347

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 347

ISBN: 1-60132-444-8, CSREA Press ©

Fig. 5: Experiment result 1 on outliers

Table 3.

Table 3: Outliers data
Number of figure Outlier

Fig 5 (10, 133.02) → (10, 100)
Fig 6 (10, 133.02) → (10, 70)
Fig 7 (10, 133.02) → (10, 180)
Fig 8 (10, 133.02) → (10, 210)

Fig. 6: Experiment result 2 on outliers

In any cases of Fig 5, 6, 7 and 8, we can see that our pro-

posed method is robust by comparing with the conventional

method because the estimated line of our proposed method

is closely to the dotted line. Therefore, it may be said that

our proposed method achieved our purpose. Namely, our

proposed method may be robust slightly for outliers in this

experiment of the estimation on the Michaelis constant by

comparing to the conventional method.

5. Conclusions
In this study, we proposed an algorithm of a linear

regression that is robust for outliers. The result of Section

4 shows the effectiveness of our proposed algorithm. The

data of this study has the condition without the factor of

Fig. 7: Experiment result 3 on outliersg p

Fig. 8: Experiment result 4 on outliers

an inhibitor in enzyme reactions. Our proposed algorithm

can apply to a non-linear problem. To apply our proposed

algorithm to complex problem and provide free software of

our proposed algorithm are our future problems.

Acknowledgement
The experiment data of this study was provided from

the class "Experiments in Materials and Life Science" of

Department of Materials and Life Science at Shizuoka

Institute of Science and Technology. The authors wish to

acknowledge Dr. Akihiro Saito for providing the data.

References
[1] Michaelis, L. and Menten, M. L. Biochem, Z, 49, p.333, 1913.
[2] V Hodge, J Austin. A survey of outlier detection methodologies,

Artificial Intelligence Review 22 (2), pp.85-126, 2004.
[3] Markus M. Breunig, Hans-Peter Kriegel, Raymond T. Ng, JÃűrg

Sander. LOF: identifying density-based local outliers, Proceedings of
the 2000 ACM SIGMOD international conference on Management of
data, pp.93-104, 2000.

[4] Jialei Wang et al. Exact Soft Confidence-Weighted Learning, Interna-
tional Conference on Machine Learning, pp.121-128, 2012.

[5] A. D. McNaught (Author), A. Wilkinson Compendium of Chemical
Terminology, Wiley; 2 edition, 1997.

[6] Dredze, Mark, Crammer, Koby, and Pereira, Fernando. Confidence-
weighted linear classification, International Confer- ence on Machine
Learning, pp. 264âĂŞ271, 2008.

348 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

348 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

Implementation of Computing Singular Pairs for Large Scale
Matrices using ARPACK

Masami Takata1, Sho Araki2, Kinji Kimura2, Yuki Fujii2, and Yoshimasa Nakamura2
1Research Group of Information and Communication Technology for Life,

Nara Women’s University, Nara, Nara, JAPAN
2Graduate School of Informatics, Kyoto University, Kyoto, Kyoto, JAPAN

Abstract— In this paper, we propose a new implementa-
tion for computing singular pairs for large-scale matrices,
which is introduced from the viewpoint of the computational
order and the caches of shared-memory multi-core proces-
sors. In the case when only the partial eigenvalues and
eigenvectors from the absolute maximum or the absolute
minimum eigenvalue of a target matrix are needed, we
use an effective software package, called ARPACK(ARnoldi
PACKage), and transform singular value decompositions
into eigenvalue problems. To get the singular value de-
compositions using ARPACK, the transformed eigenvalue
problems can be generally computed through the use of two
matrix-vector operations at each iteration. If the size of the
target matrix is large, the large number of the elements in
the target matrix cause the caches of the shared-memory
multi-core processors to overflow. On the other hand, the
proposed implementation can achieve a high cache hit ratio
because each row in the target matrix can be reused. The
proposed implementation was evaluated by experimentation.
The experimental results show that the computation time of
the proposed implementation is about 80% of that of the
conventional implementation.

Keywords: Krylov subspace method, IRA algorithm, IRL algo-
rithm, sparse matrix, dense matrix, matrix-vector multiplication

1. Introduction
In statistical analysis, feature quantity of target matrices is

obtained by using principal component analysis. In principal
component analysis, SVD (singular value decomposition) of
a large matrix, which can be dense or sparse, is needed.
In SVD, we compute singular pairs, which consists of a
singular value and the corresponding singular vectors. How-
ever, the singular pairs, which have larger or smaller singular
values, are more useful. Thus, a partial SVD, in which
we compute only these singular pairs, is more suitable. An
SVD can be transformed into an eigenvalue problem through
multiplication of a target matrix by the transpose matrix. In
this case, all eigenvalues are non-negative numbers.

In the case where only the partial eigenpairs, which are
combined with a eigenvalue and the corresponding eigenvec-
tor, from the absolute maximum or the absolute minimum
eigenvalue of the target matrix are needed, these eigenpairs

are computed using the IRA(implicitly restarted Arnoldi)
algorithm [7] and the IRL(implicitly restarted Lanczos)
algorithm [8] using the ARPACK (ARnoldi PACKage) [5]
software, which is a solver for large-scale matrices. The IRA
and IRL algorithms, which are two of the Krylov subspace
methods, are effective for solving partial eigenvalue prob-
lems. The idea of the IRA and IRL algorithms is to reduce
the computational cost by limiting the number of bases in
Krylov subspace.

Since ARPACK adopts reverse communication interface
[5], users simply compute matrix-vector operations. In gen-
eral, a partial eigenvalue problem can be computed by
using matrix-vector multiplication, of which the number
should be set at about 10 times the number of required
eigenvalues in ARPACK. In the case where ARPACK is
used for SVD, two matrix-vector operations are generally
needed at each iteration. In an example file (dsvd.f) [5]
for partial SVD in ARPACK, the computational order and
the caches of shared-memory multi-core processors are not
considered. We therefore propose a new implementation us-
ing ARPACK. The new implementation is more effective in
terms of parallel computation on shared-memory multi-core
processors with large caches. By using OpenMP directives,
the implementation can result in much higher performance
in parallel computing.

In Section 2, we introduce the Krylov subspace method.
In Section 3, we introduce the IRA and the IRL algorithms.
In Section 4, we propose an implementation of SVD using
ARPACK software. In Section 5, we evaluate the perfor-
mances of the proposed implementation on the multi-core
processor with large caches and discuss the results.

2. Krylov subspace method
2.1 Arnoldi algorithm

The Arnoldi algorithm [1] transforms the target matrix A
to the approximate matrix Hk ∈ R

k×k of A, whose size is
rather smaller than A, by using the Krylov subspace method.

The Krylov subspace is a linear subspace based on the
power method and is composed of A,q1, and k. q1 is an
initial vector and k (k < n) is an iteration number:

K(A,q1, k) = span{q1, Aq1, . . . , A
k−1q1}. (1)

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 349

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 349

ISBN: 1-60132-444-8, CSREA Press ©

Algorithm 1 Arnoldi algorithm
1: Set initial vector q1;
2: v1 := q1/‖q1‖;
3: for j := 1 to k do
4: rj := Avj ;
5: for i := 1 to j do
6: hij := v�

i rj ;
7: rj := rj − hijvi;
8: end for
9: hj+1,j := ‖rj‖; vj+1 := rj/hj+1,j ;

10: end for

The iteration number k depends on the algorithms. In the
Arnoldi algorithm explained in this section and the Lanczos
algorithm introduced in Section 2.2, the iteration number
k is determined when the eigenvalues of matrix Hk is
well approximated to that of A. On the other hand, in the
implicitly restarted Arnoldi algorithm in Section 3, k is
determined by users as the limit of the number of bases
in the Krylov subspace.

Let A ∈ R
n×n be non-symmetric. We set an initial vector

q1 ∈ R
n (q1 �= 0), and generate new base vectors qk ∈ R

n

from the vectors which we have already computed. The qk is
a base vector of the Krylov subspace K(A,q1, k). Actually,
in the Arnoldi algorithm, for each iteration, a new base
qk is obtained using qk = Ak−1q1 and orthogonalization.
The new base vector is orthogonalized against existing
base vectors q1, . . . ,qk−1, and the new base vector qk is
normalized to vk ∈ R

n. Then, an orthonormal basis results:

K(A,q1, k) = K(A,v1, k) = span{v1,v2, . . . ,vk}, (2)

where vj (j = 1, . . . , k) are orthonormal vectors obtained
by the Arnoldi algorithm.

Algorithm 1 shows the pseudocode of the Arnoldi algo-
rithm. Lines 5 to 8 of Algorithm 1 denote the orthogonal-
ization part. The orthogonalization part of Algorithm 1 is
written by the modified Gram-Schmidt algorithm [4].

After the k-th iteration for k = 2, 3, . . . in Algorithm 1,
the following equation holds:

AVk = VkHk + rke
�
k , (3)

where Vk := [v1|v2| · · · |vk] ∈ R
n×k, ek ∈ R

k is the k-th
column vector of the k × k identity matrix, and

Hk :=

⎡
⎢⎢⎢⎢⎢⎢⎣

h11 h12 · · · · · · h1k

h21 h22 · · · · · · h2k

0 h32
. . .

...
...

.
...

0 · · · 0 hk,k−1 hkk

⎤
⎥⎥⎥⎥⎥⎥⎦
. (4)

Moreover, rk ∈ R
n is a residual vector rk := hk+1,kvk+1.

Hk ∈ R
k×k is an upper Hessenberg matrix, and it is

an approximate matrix of A. The components of Hk are

Algorithm 2 Lanczos algorithm
1: Set initial vector q1;
2: v1 := q1/‖q1‖; β0 := 0; q0 := 0;
3: for j := 1 to k do
4: rj := Avj − βj−1vj−1;
5: αj := v�

j rj ;
6: rj := rj − αjvj − βj−1vj−1;
7: βj := ‖rj‖; vj+1 := rj/βj ;
8: end for

represented by using the equation hij = v�
i Avj , which is

expressed in lines 5 to 8 of Algorithm 1.
We introduce the stopping criterion of the Arnoldi al-

gorithm as follows. Let λ
(k)
j ∈ R and y

(k)
j ∈ R

n be the
eigenvalues of Hk and the unit eigenvectors corresponding to
λ
(k)
j , respectively. Then, the following equation is satisfied:

Hky
(k)
j = λ

(k)
j y

(k)
j . (5)

When we set x(k)
j := Vky

(k)
j ∈ R

n, the following equation
is formulated from Eq. (3):

Ax
(k)
j − λ

(k)
j x

(k)
j = AVky

(k)
j − λ

(k)
j Vky

(k)
j (6)

= AVky
(k)
j − Vkλ

(k)
j y

(k)
j (7)

= AVky
(k)
j − VkHky

(k)
j (8)

= (AVk − VkHk)y
(k)
j (9)

= rke
�
k y

(k)
j (10)

= (e�k y
(k)
j)rk. (11)

If we set E := −(e�k y
(k)
j)rkx

(k)
j

� ∈ R
n×n, Eq. (11) is

transformed into

(A+ E)x
(k)
j = λ

(k)
j x

(k)
j . (12)

Equation (12) is regarded as an eigenvalue problem which
has the added perturbation E to A. Thus, if the norm ‖E‖2
is small, λ(k)

j approximates an eigenvalue of A.

2.2 Lanczos algorithm
As well as the Arnoldi algorithm, the Lanczos algorithm

[6] generates orthonormal bases v1,v2, . . . ,vk according to
the increasing iteration number k.

Algorithm 2 shows the pseudocode of the Lanczos algo-
rithm. In contrast to the A in the Arnoldi algorithm, here
A ∈ R

n×n is assumed to be symmetric. Hence,

hij = v�
i Avj = v�

i A
�vj

= (Avi)
�vj =

(
v�
j (Avi)

)�
= hji (13)

is satisfied. Then, for the approximate matrix Tk ∈ R
k×k at

the end of the k-th iteration in the Lanczos algorithm, the
following equation holds:

AVk = VkTk + rke
�
k , (14)

350 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

350 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

where Vk := [v1|v2| · · · |vk] ∈ R
n×k, ek ∈ R

k is the k-th
column vector of the k × k identity matrix, and

Tk :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

α1 β1 0 · · · 0

β1 α2 β2
. . .

...

0 β2 α3
. . . 0

...
. βk−1

0 · · · 0 βk−1 αk

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (15)

Tk is a symmetric tridiagonal matrix whose eigenvalues
approximate those of A.

However, in the Lanczos algorithm, the orthogonality of
vectors becomes worse as the iteration number increases
because the algorithm is more susceptible to rounding errors
than the Arnoldi algorithm. Thus, lines 5 to 8 of Algorithm 1
are usually used even if A is symmetric. Moreover, the
stopping criterion of the Lanczos algorithm is the same as
that of the Arnoldi algorithm.

3. Implicitly restarted Arnoldi algorithm
and Implicitly restarted Lanczos algo-
rithm

In this section, following [7], [8], we introduce the IRA
and IRL algorithms. The number of desired eigenpairs is set
to be �. In the Arnoldi and Lanczos algorithms, for each
iteration, a new base vector is added with the expansion of
the Krylov subspace until we obtain an approximate matrix.
The cost of the re-orthogonalization keeps on increasing,
so these algorithms need a lot of memory and computa-
tional time. The IRA and IRL algorithms reduce these re-
orthogonalization costs by limiting the number of bases in
Krylov subspace to m (� < m � n). The IRA and IRL
algorithms are implemented in ARPACK [5].

3.1 Implicitly shifted QR steps
In the IRA and IRL algorithms, the implicit QR steps are

used. The implicit QR steps are derived from the explicit
QR steps. The QR steps are the algorithm to renew H̃

(i)
m ∈

R
m×m based on the following recurrence formula:

H̃(i)
m = Q̃iR̃i (16)

H̃(i+1)
m = R̃iQ̃i. (17)

Starting from the initial matrix H
(1)
m ∈ R

m×m, H̃(i)
m is the

matrix at the end of the ith iteration. The following equation
is obtained:

H̃(i)
m = Q̃�

i−1 · · · Q̃�
2 Q̃

�
1 H

(1)
m Q̃1Q̃2 · · · Q̃i−1 (18)

= Q̃�H̃(1)
m Q̃ (Q̃ := Q̃1Q̃2 · · · Q̃i−1). (19)

On the other hand, in the implicitly shifted QR steps, the
shift values μi ∈ R are introduced:

˜̃H(i)
m − μiI = ˜̃Qi

˜̃Ri (20)
˜̃H(i+1)
m = ˜̃Ri

˜̃Qi + μiI. (21)

Starting from the initial matrix H
(1)
m , at the end of the ith

iteration we obtain ˜̃H
(i)
m ∈ R

m×m. Then, the following
equation is satisfied:

˜̃H(i)
m = ˜̃Q�

i−1 · · · ˜̃Q�
2
˜̃Q�
1 H

(1)
m

˜̃Q1
˜̃Q2 · · · ˜̃Qi−1 (22)

= ˜̃Q�H(1)
m

˜̃Q (˜̃Q := ˜̃Q1
˜̃Q2 · · · ˜̃Qi−1) (23)

The implicitly shifted QR steps are as follows. The starting
matrix ˜̃H

(1)
m is the upper Hessenberg matrix and, if μi is the

eigenvalue of ˜̃H
(1)
m , ˜̃R1 ∈ R

m×m is an upper triangle matrix
with { ˜̃R1}n,n = 0:

˜̃H(1)
m =

⎡
⎢⎢⎢⎢⎢⎢⎣

∗ ∗ · · · · · · ∗
∗ ∗ · · · · · · ∗
0 ∗ . . .

...
...

.
...

0 · · · 0 ∗ ∗

⎤
⎥⎥⎥⎥⎥⎥⎦
, (24)

˜̃R1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

∗ ∗ · · · · · · ∗
0 ∗ · · · · · · ∗
...

.
...

...
. . . ∗ ∗

0 · · · · · · 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦
. (25)

Thus, ˜̃R1
˜̃Q1 becomes an upper Hessenberg matrix with

{ ˜̃R1
˜̃Q1}n,n−1 = 0 and { ˜̃R1

˜̃Q1}n,n = 0:

˜̃R1
˜̃Q1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗ ∗ · · · · · · · · · ∗
∗ ∗ · · · · · · · · · ∗
0 ∗ . . .

...
...

.
...

...
. . . ∗ ∗ ∗

0 · · · · · · 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (26)

Then, we obtain

˜̃H(2)
m =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗ ∗ · · · · · · · · · ∗
∗ ∗ · · · · · · · · · ∗
0 ∗ . . .

...
...

.
...

...
. . . ∗ ∗ ∗

0 · · · · · · 0 0 μ1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (27)

Repeating this process m times, the diagonal components of
˜̃H
(m)
m are composed of the eigenvalues of H(1)

m .

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 351

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 351

ISBN: 1-60132-444-8, CSREA Press ©

3.2 Implicit restarting
We compute m steps of Arnoldi iteration and then restart

the iteration with a new initial vector v+ ∈ R
n chosen

by performing the implicitly shifted QR algorithm from the
Arnoldi vectors v1, . . . ,vm. In this section, we introduce
the method to compute an ideal vector v+.

After the m steps of Arnoldi iteration, we obtain the
following relation:

AVm = VmHm + hm+1,mvm+1e
�
m. (28)

Then, we compute all the eigenvalues λ1, . . . , λm of Hm,
and divide them into λ1, . . . , λ�, which approximate the
desired eigenvalues of A, and λ�+1, λ�+2, . . . , λm. Next, we
apply the m − � implicitly shifted QR steps to Hm with
λ�+1, λ�+2, . . . , λm as the shift values to obtain H+

m. By
using λ�+1, λ�+2, . . . , λm as the shift values,

μm−� = λ�+1, μm−�−1 = λ�+2, . . . , μ1 = λm, (29)

and we are able to extract the unnecessary components of
vectors in the direction of the corresponding eigenvectors.

The relationship between Hm and H+
m is as follows;

Q+ := Q1Q2 · · ·Qm−�, (30)
V +
m := VmQ+, (31)

H+
m := (Q+)�HmQ+, (32)

H+
m =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗ · · · · · · ∗
∗

...

0
. . .

...
.

∗ ∗
0 μm−�

.
...

...
. μ2 ∗

0 · · · · · · 0 0 μ1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(33)

Then, from Eq. (28), we get

AVmQ+ = VmHmQ+ + hm+1,mvm+1e
�
mQ+ (34)

= VmQ+(Q+)
�
HmQ+ + hm+1,mvm+1e

�
mQ+

(35)
= VmQ+H+

m + hm+1,mvm+1e
�
mQ+. (36)

Therefore, we obtain the following equation;

AV +
m = VmQ+H+

m + hm+1,mvm+1e
�
mQ+. (37)

From Eqs. (31), (32), and (37), the following relationship

Algorithm 3 IRA algorithm
1: Set m: an upper limit and set �: the number of the

desired eigenpairs
2: Input: Arnoldi decomposition AVm = VmHm +

hm+1,mvm+1e
�
m;

3: for i := 1, 2, · · · do
4: Compute all the eigenvalues of Hm: λ1, . . . , λm;
5: Divide eigenvalues: λ1, . . . , λ� and λ�+1, . . . , λm;
6: Implicitly shifted QR steps for Hm m − � times

(λ�+1, λ�+2, · · · , λm are shift values);
7: Q+ = Q1Q2 · · ·Qm−�;
8: V +

m = VmQ+, H+
m = (Q+)�HmQ+;

9: v+
m+1 := v+

m+1/hm+1,m;
10: V +

� := V +
m (:, 1 : �), H+

� := H+
m(1 : �, 1 : �);

11: m − � step Arnoldi algorithm starting with AV +
� =

V +
� H+

� + h�+1,�v
+
�+1e

�
� ;

12: end for

from the 1st to the �th columns of Eq. (37) is formulated:

AV +
m (:, 1 : �) =V +

mH+
m(:, 1 : �) + vme�mQ+(:, 1 : �) (38)

=V +
m (:, 1 : �)H+

m(1 : �, 1 : �)

+ h+
�+1,�v

+
�+1e

�
� + qm,�vme�� (39)

=V +
m (:, 1 : �)H+

m(1 : �, 1 : �) + v+
� e

�
� , (40)

where v+
� := h+

�+1,�v
+
�+1 + qm,�vm. Thus, we are able to

restart the Arnoldi decomposition with the initial vector v+

and Eq. (40).
Algorithm 3 shows the pseudocode of the IRA algorithm.
Moreover, we note that the IRL algorithm is more suitable

than the IRA algorithm, when a target matrix is symmetric.

4. Singular Value Decomposition using
ARPACK
4.1 Transformation into eigenvalue problem

To apply the IRL algorithm in ARPACK, SVD should be
transformed into an eigenvalue problem.

A w × n (w ≥ n) rectangular matrix A(r), in which data
is stored in row-major order, is decomposed into A(r) =

U (r)Σ(r)V (r)�. Here, Σ(r) is a diagonal matrix whose
elements are singular values σ(r)

j ≥ 0 (j : 1 ≤ i ≤ n)
∈ R of A(r), U (r) = (u(r)

1 , u(r)
2 ,· · · ,u(r)

w) ∈ R
w×w is a

left orthogonal matrix, in which u
(r)
j ∈ R

w corresponding to
σ
(r)
j is aligned, and V (r) = (v(r)

1 , v(r)
2 ,· · · ,v(r)

n) ∈ R
n×n is

a right orthogonal matrix, in which v
(r)
j ∈ R

n corresponding
to σ

(r)
j is aligned. Moreover, the pairs of (σ(r)

j ,u
(r)
j ,v

(r)
j)

are called singular pairs. Each pair satisfies A(r)�u(r)
j =

σ
(r)
j v

(r)
j and A(r)v

(r)
j = σ

(r)
j u

(r)
j .

352 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

352 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

Among singular pairs (σ(r)
j ,u

(r)
j ,v

(r)
j), the following re-

lation holds:

A(r)�A(r)v
(r)
j = A(r)�

(
σ
(r)
j u

(r)
j

)
= σ

(r)
j

(
A(r)�u(r)

j

)
= σ

(r)
j

2
v
(r)
j ,

(41)

u
(r)
j =

A(r)v
(r)
j

||A(r)v
(r)
j ||2

. (42)

Eqation (41) shows that the singular value problem of A(r)

can be changed to the eigenvalue problem of A(r)�A(r)

algebraically. Namely, the squares of singular values σ
(r)
j

2

of A(r) are equal to eigenvalues of A(r)�A(r). Therefore,
when A(r)�A(r) is the input matrix in the IRL algorithm,
the singular values of A(r) and the right singular vectors
corresponding to the singular values can also be computed.
Moreover, the left singular vectors can be obtained from
Eq.(42).

In the case of n > w, data in a rectangular matrix A(c)

should be stored in column-major order. Note that, the data
format in a matrix A(c)� is the same as that in a matrix
A(r). When the values σ

(c)
j ∈ R and the vectors u

(c)
j ∈ R

w

and v
(c)
j ∈ R

n that satisfy A(c)�u(c)
j = σ

(c)
j v

(c)
j , A(c)v

(c)
j =

σ
(c)
j u

(c)
j (j = 1, . . . , r, r < w) are found, σ(c)

j are called the
singular values of A(c), and u

(c)
j and v

(c)
j are called, respec-

tively, the left and the right singular vectors corresponding
to σ

(c)
j . For a singular pair (σ

(c)
j ,u

(c)
j ,v

(c)
j), the following

relation holds:

A(c)A(c)�u(c)
j = A(c)

(
σ
(c)
j v

(c)
j

)
=

(
A(c)v

(c)
j

)
σ
(c)
j = u

(c)
j σ

(c)
j

2
, (43)

v
(c)
j =

u
(c)
j A(c)

‖u(c)
j A(c)‖2

. (44)

Eqation (43) shows that the singular value problem of A(c)

can be changed to the eigenvalue problem of A(c)A(c)�

algebraically.

4.2 Pseudocode
The discussion of the data format in A(r)�A(r) is the

same as that of A(c)A(c)�. Hence, we explain only the case
of A(r).

To employ the IRL algorithm, A(r)�A(r)x can be gen-
erally computed by using two matrix-vector operations at
each iteration. Thus, once x̃ = A(r)x, r = A(r)�x̃ is
computed, where x̃ ∈ R

w and r ∈ R
n. In this paper, this

implementation is called as the conventional implementation.
Algorithm 4 shows the pseudocode of the conventional
implementation.

Algorithm 4 Conventional implementation
1: x̃ = Ax;
2: r = A�x̃;

Algorithm 5 Proposed implementation
1: r = 0;
2: #omp parallel for private(t) reduction(+:r)
3: for i = 1 to n do
4: t = 〈ai,x〉 (ai = A(r)(i, :));
5: r = r+ tai;
6: end for
7: #omp end parallel for

Considering the computational order and the caches
of shared-memory multi-core processors, we propose that
A(r)�A(r)x is computed using the following iteration.

1) t = A(r)(i, :)x

2) r = r+ tA(r)�(i, :)

Here A(r)(i, :) (i : 1 ≤ i ≤ n) ∈ R
n is the i-th row vector

of A(r). The iteration can be performed efficiently because
the data of A(r)(i, :) and A(r)�(:, i) are the same and have
been stored in caches. 1 Consequently, A(r)�A(r)x can be
computed efficiently on shared-memory multi-core proces-
sors with large cashes. In this paper, this implementation is
called the proposed implementation. Algorithm 5 shows the
pseudocode of the proposed implementation. In the proposed
implementation, since the size of an element in A(r)(i, :) is
8bytes, the size of caches needs, theoretically, to be more
than n× 8bytes.

4.3 Sparse matrix
The proposed implementation can be made efficient for

use in the case of not only dense but also sparse matrices.
In the case of a w × n (w ≥ n and w < n) rectangular

matrix A(r), these elements should be stored in CRS (com-
pressed row storage) and CCS (compressed column storage)
formats [3], respectively. The CRS and CCS formats are
the most general [2]. These formats require no assumptions
about sparse matrices and any unnecessary elements are not
contained in these format.

The CRS format stores only non-zero elements of the
matrix rows sequentially. If a non-symmetric sparse matrix
A(S) is given, we write the matrix as three vectors valR,
col_ind and row_ptr. valR is a vector of floating-point
numbers, and stores the value of the non-zero elements of
the given matrix A(S) traversal in row-wise order. col_ind
is a vector of integers indicates the column indices of the

1The data in A(r)
(i, :) is stored in serial order. Therefore, when n is

smaller than the size of caches, all data in A(r)
(i, :) is stored in caches

at the same time. Since A(c)
(:, j) is stored in serial order, the case of

A(c)
(:, j)

� is performed in the same way.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 353

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 353

ISBN: 1-60132-444-8, CSREA Press ©

elements in valR. row_ptr is also a vector of integers
indicates the locations in valR that start a row. The last entry
of row_ptr indicates the number of non-zero elements in
the matrix A(S).

The CCS format is equivalent to the CRS format except
that the CCS format traverse the non-zero elements of A(S)

in column-wise order. In other words, the CCS format can be
interpreted as the CRS format for A(S)�. The CCS format is
composed of the three vectors valR, col_ind and row_ptr.
valR, vector of floating-point numbers, stores the value of
the non-zero elements of the given matrix A(S) traversal in
column-wise order. row_ind, a vector of integers, indicates
the row indices of the elements in valR. col_ptr, a vector of
integers, indicates the locations in valR that start a column.
The last entry of col_ptr indicates the number of non-zero
elements in the matrix A(S).

As an example, consider the non-symmetric matrix A(S′)

defined by

A(S′) =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 3 0
0 2 0 −1 0 3
2 7 3 2 6 0
0 3 8 4 0 0
3 5 0 9 5 9
0 0 0 0 2 6

⎤
⎥⎥⎥⎥⎥⎥⎦
. (45)

The CRS format for A(S′) is

valR = {1, 3, 2,−1, 3, 2, · · · , 5, 9, 2, 6}, (46)
col_ind = {1, 5, 2, 4, 6, 1, · · · , 5, 6, 5, 6}, (47)
row_ptr = {1, 3, 6, 11, 14, 19, 20}. (48)

The CCS format for A(S′) is

valC = {1, 2, 3, 2, 7, 3, · · · , 2, 3, 9, 6}, (49)
row_ind = {1, 3, 5, 2, 3, 4, · · · , 6, 2, 5, 6}, (50)
row_ptr = {1, 4, 8, 10, 14, 18, 20}. (51)

5. Experiment
We have performed experiments to evaluate the perfor-

mance of the proposed implementation. The dimension of
the sample sparse matrix is 200000×100000 and this matrix
is composed of the 1000 non-zero elements in every row. The
number of required singular pairs � are 50, 100, 200 and 400
from the maximum singular value of A(r). In ARPACK, the
dimension of the Krylov subspace m is determined by the
users; in the numerical experiments, m is set to m = 2�.

Table 1 lists the specifications of the computer used in the
experiments.

The size of an element in the matrix A(r) is 64 bits in
the case of double precision. Therefore, the size of a row
in the matrix A(r) is much smaller than the size of the L3
cache. Consequently, all data in A(r)(i, :) are stored to the
caches at the same time. Hence, the iteration of the proposed
implementation can be performed efficiently because the

Table 1: Specifications of the experimental environment
Environment (Appro 2548X), Kyoto University

CPU Intel Xeon E5-4650L @2.6GHz, 32cores (8 cores ×4)
L3 cache: 20MB × 4

RAM DDR3-1066 1.5TB, 136.4GB/sec
Compiler Intel C++/Fortran Compiler 14.0.2
Options -O3 -xHOST -ipo -no-prec-div -mcmodel=medium

-shared -intel
Software Intel Math Kernel Library 11.1.2

Fig. 1: Computation time of A(r)�A(r)x (A(r) is a
200, 000 × 100, 000 real matrix), comparison the conven-
tional and the proposed

data of A(r)(i, :) and A(r)�(:, i) are the same and have been
stored in the caches.

Figure 1 shows the results of the experiments. The number
of required singular pairs is listed on the horizontal axis,
and the vertical axis indicates the computation time for
A(r)�A(r)x. The results show that the computation time for
A(r)�A(r)x of the proposed implementation is about 80%
of that of the conventional implementation.

6. Conclusions
To obtain only the partial singular values and singular

vectors of the target matrix, it is effective to use ARPACK,
which is known as a solver of eigenvalue problems for
large-scale matrices. Therefore, we have transformed SVD
problems into eigenvalue problems.

In ARPACK, transformed eigenvalue problems are gener-
ally computed by using two matrix-vector operations at each
iteration. In the case of large-scale matrices, not all of the
elements in the eigenvalue problems can be stored in the
caches at the same time. Hence, we have proposed a new
implementation, which is introduced from the viewpoint of
the computational order and the caches of shared-memory
multi-core processors. In the proposed implementation, if
only one row in a target matrix can be stored in the caches,
high cache hit ratios can be archived.

354 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

354 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

We performed experiments to evaluate the proposed im-
plementation. In the experiments, we used a machine with
20MB L3 caches. Therefore, the size of a row in a target
matrix with dimension size 100000 is much smaller than
the size of the L3 cache. The experimental results showed
that the computation time of the proposed implementation
is about 80% of that of the conventional implementation.

References
[1] W. E. Arnoldi, “The principle of minimized iterations in the solution of

the matrix eigenvalue problem,” Quart. Appl. Math., vol.9, pp.17-29,
1951.

[2] J. Dongarra, (1995) Templates for the Solution of Linear
Systema: Building Blocks for Iterative Methods, [Online]. Available:
http://netlib.org/linalg/html_templates/node89.html

[3] I. Duff, R. Grimes, AND J. Lewis, “Sparse matrix test problems,” ACM
Trans. Math. Soft., vol.15, pp.1-14, 1989.

[4] G. H. Golub and C. F. van Loan, Matrix Computations, Baltimore,
MD, USA: Johns Hopkins University Press, 1996.

[5] R. B. Lehoucq, D. C. Sorensen, and C. Yang.. (1998) ARPACK
User’s Guide: Solution of Large-Scale Eigenvalue Problems
by Implicitly Restarted Arnoldi Methods. [Online]. Available:
http://www.caam.rice.edu/software/ARPACK

[6] C. Lanczos, “An iteration method for the solution of the eigenvalue
problem of linear differential and integral operators,” J. Res. Nat.
Bureau Standards, Sec, vol.B, no.45, pp.255-282, 1950.

[7] D. C. Sorensen, “Implicit application of polynomial filters in a k-
step Arnoldi method,” SIAM J. Matrix Anal. Appl., vol.13, pp.357-385,
1992.

[8] D. C. Sorensen D. Calvetti, and L. Reichel, “An Implicitly Restarted
Lanczos Method for Large Symmetric Eigenvalue Problems,” Elect.
Trans. Numer. Anal., vol.2, pp.1-21, 1994.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 355

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 355

ISBN: 1-60132-444-8, CSREA Press ©

Generating All Solutions of Minesweeper Problem
Using Degree Constrained Subgraph Model

Hirofumi Suzuki, Sun Hao, and Shin-ichi Minato
Graduate School of Information Science and Technology, Hokkaido University

Abstract— Minesweeper is one of the most popular puzzle
game. Several kinds of decision or counting problems on
Minesweeper have been studied. In this paper, we consider
the problem to generate all possible solutions for a given
Minesweeper board, and propose a new formulation of the
problem using a graph structure, called degree constrained

subgraph model. We show experimental results of our ef-
ficient graph enumeration techniques for various sizes of
Minesweeper boards.

Keywords: minesweeper, generating, graph model, degree con-

strained subgraph

1. Introduction
Minesweeper is one of the most popular puzzle game,

which is frequently bundled with operating systems and

GUIs, including Windows, X11, KDE, GNOME, etc. The

objective of this game is to find all hidden mines in covered

cells with the some helps of hints.

There are several problems related to Minesweeper, the

Minesweeper consistency problem [1], the Minesweeper
counting problem [2], and the Minesweeper constrained
counting problem [3]. Minesweeper on graph structures are

also studied in [3]. These problems ask us whether or

not the input Minesweeper board has any solutions, valid

assignments of mines.

Those problems was studied as one of decision prob-

lems or counting problems. However, the objective of

Minesweeper is considered as to really assign some mines to

uncovered cells with some constraints. From this viewpoint,

we consider a new problem which contains the above

problems. This problem requires all solutions of the input

Minesweeper board. Solving this problem is useful for

finding the best solution with some costed mines, revealing

that there is no mine, and calculating the probability of mine

placement at each cell.

For finding one solution of the minesweeper, we may use

some simple backtracking.search algorithms, however, it is

hard to generate all the solutions because of the combina-

torial explosion in terms of computation time and space.

Recently, Zero-suppressed Binary Decision Diagram (ZDD)

[4] is known as a compact representation for manipulating

a set of combinations. ZDDs are useful for generating all

the solutions for a Minesweeper board. In this method, it is

a naive way to use a combinatorial model that one logic

variable (combinatorial item) is assigned to each cell, to

represent whether a mine exists at the cell or not.

In this paper, we propose yet another formulation us-

ing a graph structure, called degree constrained subgraph
model, and show an efficient method using ZDD-based graph

enumeration technique [5]. We experimentally compared

performance of the methods based on our graph model and

the naive combinatorial model. The result showed that our

formulation is effective for the problem.

In section 2, we explain the rules of Minesweeper in

detail, and introduce some problems related to Minesweeper.

In section 3, we explain the naive combinatorial model

using ZDD for finding all valid assignments of mines. In

section 4, we show the proposal formulation using degree

constrained subgraph model, and explain the method based

on graph enumeration technique. In section 5, we show the

experimental results. In section 6, we explain the calculation

method for mine probability.

2. Problems on Minesweeper
Minesweeper consists of a grid of cells. All cells at the

initial board is covered (see Fig.1). At each move, the player

may uncovers a cell. There are three types of uncovered

cells, mine cells, hint cells, and free cells. A mine cell

contains a mine, a hint cell has information about number

of mine cells surrounding it (called count), and a free cell

contains nothing. In this paper, we consider the free cells as

the hint cells whose counts are 0, and draw mine as a black

circle (•). The goal of the game is to uncover all free cells

(see Fig.2). If mine cell was uncovered, the game becomes

over and the player loses (see Fig.3).

Fig. 1: The initial board.

The Minesweeper consistency problem (or simply the

Minesweeper problem) is a decision problem, whether or not

a given Minesweeper grid has a valid assignment of mines

(see Fig.4 and Fig.5). The consistency problem was proved

356 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

356 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

Fig. 2: A winning state. Fig. 3: A lost state.

to be NP-complete [1], even if each cell in the grid has

only one mine surrounding it [6]. Counting number of valid

assignments to the given Minesweeper grid is also defined

as a problem, the Minesweeper counting problem (called

#Minesweeper in [2]). In setting of Fig.4, the solution for the

counting problem is 66. The counting problem was proved

to be #P-complete [2]. In [3], Minesweeper constrained
counting problem is defined. The input of the constrained

counting problem also includes the total number of mines.

Fig. 4: This setting has valid assignment.

Fig. 5: An example of assignment for Fig.4.

Althought the grid is used for the board in general

Minesweeper, we can use a graph structure instead of the

board. Each vertex of graph corresponds to a hint cell or a

free cell, or a covered cell (see Fig.6). If vertex is a hint cell,

it has a count of the number of mines in adjacent vertices,

otherwise may have a mine. Then, the Minesweeper on grid

boards is considered as the Minesweeper on grid graphs (see

Fig.7). Minesweeper on graph structure was studied in [3],

and polynomial algorithm is provided for the consistency,

counting problem for Minesweeper on trees and on graphs

of bounded treewidth.

We consider a new problem for Minesweeper, the

required output is all valid assignments of mines for

given Minesweeper board. We refer to the problem as

Minesweeper generation problem. The Minesweeper gener-

Fig. 6: Minesweeper on graph.

Fig. 7: Graph based on grid board of Fig.4.

ation problem is including both the consistency problem and

the counting problem.

In the Minesweeper generation problem, the input is a

Minesweeper board MB(m,n,C,A). There is m covered

cells numbered from 1 to m, and n hint cells numbered from

1 to n. Note that the covered cell is ignored if hint cell of

surrounding it is nothing. C has n integers c1, c2, . . . , cn, and

ci is count written in i-th hint cell (ci ≥ 0). A has n sets of

integers A1, A2, . . . , An, and Ai has all numbers of covered

cells surrounding i-th hint cell (Ai ⊆ {1, 2, . . . ,m}).

3. Naive Combinatorial Model Using
ZDD

Combination of covered cells correspond to assignment

of mines, namely, mines are assigned to all covered cells

included in the combination. Hence set of all valid combina-

tions of cells represents solution to Minesweeper generation

problem.

Zero-suppressed Binary Decision Diagram (ZDD) [4] is

compact data structure for manipulating sets of combina-

tions, and has many application to combinatorial problems

[4] [7]. We explain a method for solving the Minesweeper

generation problem based on naive combinatorial model

using ZDD.

3.1 Zero-suppressed Binary Decision Diagram
ZDD is a compact representation of binary decision tree

(see Fig.8 and Fig.9). The tree has a root node and two

terminal nodes, a 0-terminal and a 1-terminal. A path which

connects the root to the 1-terminal node corresponds to a

combination in the set. Each internal node of the tree has a

label of an item and two edges, one is 0-edge, the other is

1-edge. The 0-edge represents that the item is not included

in the combination, the 1-edge is opposite. In general, the

order of appearances of items is fixed.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 357

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 357

ISBN: 1-60132-444-8, CSREA Press ©

Fig. 8: An example of binary decision tree that represents set

of combinations {{a, c}, {b, c}, {b}, {c}}. 0-edge is dotted,

and 1-edge is solid.

Fig. 9: ZDD for Fig.8.

ZDDs are based on the following reduction rules.

• Deletion rule: delete all redundant nodes whose 1-edge

point to the 0-terminal (see Fig.10).

• Sharing rule: share all equivalent subgraphs (see

Fig.11).

To make ZDDs compact and canonical for representing sets

of combinations, we should apply these reduction rules as

much as possible without minding order.

Fig. 10: Deletion rule. Fig. 11: Sharing rule.

A conventional ZDD package supports various operations

for manipulating sets of combinations. The ZDD pack-

age maintains a compact data structure in handling those

operations. Here we show some operations, which used

for generating the solutions of the Minesweeper generation

problem. In the following, P and Q indicate an instance of

sets of combinations represented by a ZDD, respectively.

P ∪Q the union set of P and Q

result is {c|c ∈ P or c ∈ Q}
P ∩Q the intersection set of P and Q

result is {c|c ∈ P and c ∈ Q}
P ∗Q the direct product set of P and Q

result is {p ∪ q|p ∈ P and q ∈ Q}

3.2 Using ZDD Operation
For representing solutions of Minesweeper using ZDDs,

we consider each covered cell as an item. We define U as the

set of all items, xi ∈ U denote the item of i-th covered cell.

A subset X ⊆ U , combination of covered cells, corresponds

to an assignment of mines. We also defile Mvalid ⊆ 2U

as the set of combinations that each of them represents

valid assignment for a given Minesweeper board. Then, our

objective is to generate Mvalid as output.

We define Mi ⊆ 2U as the set of all the assignments

satisfying the i-th hint. Then, a valid assignment must be

commonly included in all Mi (i = 1, 2, . . . , n). Hence the

set of all the valid assignments Mvalid is represented by:

Mvalid = ∩n
i=1Mi.

Thus, our method constructs the n ZDDs each of which

represent Mi for all i, and calculate the intersection of those

ZDDs.

For calculating Mi, we define the set S(X, k) as all

combinations of any k items in the item set X ⊆ U .

For example, X = {a, b, c} and k = 2, then S(X, k) =
{{a, b}, {a, c}, {b, c}}. Using notation of set S(X, k), Mi is

represented by following, where Xi = {xj |j ∈ Ai} is the

set of all covered cells surrounding i-th hint cell.

Mi = S(Xi, ci) ∗ 2(U\Xi)

We can construct a ZDD which represents Mi effectively,

using memorised recursion technique (see algorithm 1). In

algorithm 1, recursive(i,X, c,m) generates a ZDD ret
which represents

S(X, c) ∗ 2({xi,...,xm}\X).

If xi ∈ X , we can divide the set of combinations repre-

sented by ret into two disjoint subsets, one has xi in each

combination:

({{xi}} ∗ S(X \ {xi}, c− 1)) ∗ 2({xi,...,xm}\X),

and the other has no xi in each combination:

S(X \ {xi}, c) ∗ 2({xi,...,xm}\X),

otherwise ret equals ZDD which represents

(({{xi}} ∗ S(X, c)) ∪ S(X, c)) ∗ 2({xi,...,xm}\X).

358 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

358 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

As a result, we get the algorithm for calculating Mvalid (see

Algorithm 2). In the following, we define Z(x) as ZDD

which represents {{x}}, set of combinations consisting of

only {x}.

Algorithm 1 recursive(i,X, c,m)

1: if i = m then
2: if c = 0 then
3: return ZDD consisting of only 1-terminal
4: end if
5: return ZDD consisting of only 0-terminal
6: end if
7: if memo table has a ZDD at (i, c) then
8: return ZDD memorised at (i, c)
9: end if

10: ret ← null
11: if xi ∈ X then
12: z1 ← recursive(i+ 1, X \ {xi}, c− 1,m)
13: z0 ← recursive(i+ 1, X \ {xi}, c,m)
14: ret ← (Z(xi) ∗ z1) ∪ z0
15: else
16: z ← recursive(i+ 1, X, c,m)
17: ret ← (Z(xi) ∗ z) ∪ z
18: end if
19: memorise ret at (i, c)
20: return ret

Algorithm 2 The method for Minesweeper generation prob-

lem based on naive combinatorial model using ZDD

Input: MB(m,n,C,A), and U
Output: ZDD which represents all valid assignments of

MB
1: for i = 1 to n do
2: Xi ← {xj ∈ U |j ∈ Ai}
3: initialize memo table for algorithm 1

4: Zi ← recursive(1, Xi, ci,m)
5: end for
6: Zvalid ← ∩n

i=1Zi

7: return Zvalid

This algorithm is based on the naive combinatorial model.

An advantage of this model is the simple notation and

compact processing with ZDD. However, the algorithm

repeats algebraic operations as many as the number of hints,

and thus the computation time may become large. As an

improvement, we propose yet another formulation in the

following section.

4. Graph Model for Minesweeper
We propose a formulation for the problem to find a

valid assignment of mines for the input Minesweeper board.

In this formulaion, we use graph structure, called degree

constrained subgraph model. Then, we show that generating

all solutions of the formulated problem is equivalent to

generating all valid assignments for the Minesweeper board.

For solving the formulated problem, we can use ZDD-based

graph enumeration technique.

4.1 Notations and Definitions for Degree Con-
strained Subgraph Model

In undirected graph G = (V,E), we define dv as degree of

vertex v, number of edges connected with v. We also define

d′v as degree of v ∈ V in subgraph G′ = (V,E′ ⊆ E).
We define the degree constraint for vertex v as follows.

dcv ⊆ N ∪ {0}

dcv denotes the set of valid degrees of v in subgraph. For

given graph G and degree constraints dcv for all v ∈ V ,

degree constrained subgraph is a subgraph G′ satisfying the

following constraints (see Fig.12).

d′v ∈ dcv for all v

Fig. 12: An example of degree constrained subgraph.

4.2 Formulation
For a given Minesweeper board MB(m,n,C,A), we

construct a graph (named MG). We define B as a set of

the vertices for covered cells, and bi ∈ B means the vertex

for the i-th covered cell. We also define H as set of vertices

for hint cells. hj ∈ H means the vertex of the j-th hint

cell. In the following, we call the vertex of covered cell

covered vertex, and call the vertex of hint cell hint vertex.

The graph has the set of edges E which connect vertices of

adjacent cells, namely, e = {bi, hj} ∈ E if i ∈ Aj . Then,

MG = (B ∪ H,E) is a bipartite graph consisting of the

covered vertices and the hint vertices.

To make the correspondence between a mine assignment

and a subgraph of MG, we set degree constraints on MG.

If we assign a mine to the i-th covered vertices, bi should

connect with all the adjacent hint vertices in the subgraph of

MG, otherwise be independent. Then, we get the following

degree constraints.

dcbi = {0, dbi} ∀i ∈ {1, 2, . . . ,m} (1)

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 359

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 359

ISBN: 1-60132-444-8, CSREA Press ©

For converting from a subgraph G′ of MG under the degree

constraints (1) to an assignment of mines, we assign a mine

to the i-th covered cell if d′bi �= 0.

In addition, since our objective is to find a valid assign-

ment of mines, hint vertex hi should connect with ci adjacent

covered vertices in the subgraph of MG. Then, we get the

following degree constraints.

dchj = {cj} ∀j ∈ {1, 2, . . . , n} (2)

As a result, we also get the following theorem.

Theorem 1 There is a one-to-one correspondence between
the subgraphs of MG under degree constraints (1) (2) and
the valid assignments for MB.

Proof. MG has an edge e = {bi, hj} if and only if the i-th
covered cell adjacent to the j-th hint cell. We define MGdc

as the set of all the degree constrained subgraphs of MG.

We also define MBdc as the set of assignments converted

from ∀G′ ∈ MGdc, and also define MBvalid as the set of all

the valid assignments. We should show MBdc = MBvalid.

First, we show MBdc ⊆ MBvalid. In G′ ∈ MGdc, any

covered vertex with a non-zero degree connects to all the

adjacent hint vertices. Since each hint vertices must satisfy

the degree constraint, for all j, the j-th hint cell has cj mine

cells surrounding it. Thus, all assignments in MBdc is valid,

and we get MBdc ⊆ MBvalid.

Next, we show MBdc ⊇ MBvalid. We consider an

induced subgraph of MG based on a valid assignment in

MBvalid, and we call the subgraph MGind. MGind has the

subset of covered vertices B′ ⊆ B and all the hint vertices

H , and B′ consists of the covered vertices that there is a

mine in corresponding cell, then MGind has the set of edges

E′ = {e|e ∈ E and b ∈ e and b ∈ B′}. Thus, in Gind, the

degree of b ∈ B′ is db and the degree of b /∈ B′ is 0,

then all covered vertices satisfy the degree constraints. In

addition, since the assignment is valid and each hint vertex

connects all adjacent covered vertexes whose degree is not

zero, the degree of hj ∈ H is equivalent to cj . Thus, all

the hint vertices also satisfy the degree constraints. Hence

MGind ∈ MGdc, and we get MBdc ⊇ MBvalid.

Thus, the theorem follows. �

4.3 Using Graph Enumeration Technique
By the theorem 1, the Minesweeper generation problem is

solved by generating all solutions of the formulated problem.

Here we can use an efficient ZDD-based graph enumeration

technique shown in [5], frontier-based search method. The

frontier-based search generates a ZDD which represents

all the subgraphs as the combinations of edges, satisfying

various topological constraints, for example paths, cycles,

trees, forests, and the degree constraints (see Fig.13).

Frontier-based search begin construction of ZDD with

only the root node, and advance the search by top-down

Fig. 13: An example of frontier-based search.

manner which depends on the order of edges; after deciding

order of the edges, in i-th step, all the bottom nodes branch

off, and make two child nodes, one correspond to the case

of using i-th edge, and the other correspond to the case of

not using i-th edge. In addition, frontier-based search prune

some unnecessary nodes, and merge some equal nodes.

These processes are realized by the supporting infomation

of the search which is called mate (we leave the details to

reference [5]).

The coventional enumeration algorithms output all solu-

tions one by one, and thus it is hard to generate all the

solutions because of the combinatorial explosion in terms

of computation time and space. In contrast, the frontier-

based search method output a large number of solutions as

a compact ZDD to avoid combinatorial explosion in many

cases, and the computation time and space depends on the

size of ZDD.

5. Computational Experiments
We experimentally compared the performance of the

method using degree constrained model and the method

using the naive combinatorial model (which based on

ZDD operations). Especially, we use not only grid based

Minesweeper board but also graph based Minesweeper

board, to compare them under various situations. The pro-

gram was coded in C++, and compiled using g++. The

experiments were done on the PC with Intel Core i7-3930K

3.2GHz CPU and 64GB memory.

The instance boards were randomly generated boards.

Some of them are based on 30× 30 grid, and the others are

based on randomly generated graph which has 300 vertices

and 900 edges (relatively sparse). We set three types of ratio

of mine cells, 10%, 20%, and 30%, and set nine types of ratio

of visible hints, 10%, 20%, . . . , and 90%. Tables 1 and 3

summarize the computation time. zdd’ indicates the method

based on naive combinatorial model using ZDD, and dc’

indicates the method based on graph enumeration technique

using degree constrained subgraph model. In addition, tables

2 and 4 summarize the number of valid assignments in each

instance. The computation time of the latter includes time

360 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

360 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

of constructing graph and degree constraints. The best time

is written in bold letters.

The computation time results for grid based boards are

shown in table 1, and table 2 shows the number of valid

assignments in each instance. The number of valid assign-

ments is over 1020 in quite of half instances. However, dc’

shows the best time in most instances, and it is 100 times

faster than zdd’ in some instances. Thus, our formulation is

efficient for the Minesweeper generation problem with board

based on grid. But in instance consisting of 30% mine cells

and 40% visible hits, ’dc’ is inefficient in comparison with

’zdd’. It is thought that the reason depends on the complexity

of the graph generated by the board; it is supposed that the

degree constraints is easily complicated by the state of the

connection of the vertexes.

Table 1: Computation time (in second) for grid based board
mine 10% 20% 30%
hint zdd dc zdd dc zdd dc
10% 3.602 0.006 2.917 0.006 2.872 0.005
20% 15.306 0.023 16.124 0.095 16.921 0.024
30% 19.812 0.149 23.974 0.732 22.268 3.472
40% 24.636 0.051 34.478 1.226 36.521 79.872
50% 23.334 0.041 33.440 0.331 37.740 1.884
60% 18.915 0.033 23.872 0.065 35.572 0.273
70% 11.826 0.028 17.801 0.031 23.063 0.035
80% 6.013 0.019 12.659 0.024 18.790 0.030
90% 1.788 0.013 6.128 0.018 11.642 0.023

Table 2: Number of valid assignments for grid based board
hint\mine 10% 20% 30%

10% 1.53× 10
30

6.33× 10
47

1.92× 10
55

20% 3.76× 10
30

1.35× 10
55

8.41× 10
71

30% 1.12× 10
20

8.29× 10
37

2.81× 10
51

40% 4.09× 10
7

5.24× 10
21

5.90× 10
39

50% 512 1.73× 10
7

6.89× 10
25

60% 16 65536 3.52× 10
6

70% 1 64 6912
80% 1 2 4
90% 2 1 1

The computation time results for graph based boards are

shown in table 3, and table 4 shows the number of valid

assignments in each instance. dc’ shows the best time

in all instances, and it is 100 times faster than zdd’ in

some instances. The computation time of zdd’ is not stable

compared with grid instances. It is thought that this result

is caused by dispersion of the degree in the original graph,

which affect number of adjacent cells. In contrast, number of

adjacent cells of each cell in grid is approximately constant.

On the other hand, the computation time of dc’ is stable.

Thus, our formulation is also efficient for the Minesweeper

generation problem with board based on sparse graph.

Table 3: Computation time (in second) for graph (|V | =
300, |E| = 900) based board

mine 10% 20% 30%
hint zdd dc zdd dc zdd dc
10% 0.171 0.001 0.629 0.002 52.186 0.001
20% 0.816 0.004 89.602 0.024 82.493 0.141
30% 1.156 0.008 100.224 0.025 49.926 0.650
40% 5.859 0.012 12.410 0.071 60.105 2.592
50% 1.189 0.008 81.190 0.007 65.981 0.017
60% 0.917 0.006 2.065 0.007 147.352 0.234
70% 0.461 0.006 0.799 0.008 2.206 0.008
80% 0.203 0.005 0.500 0.008 0.737 0.007
90% 0.051 0.003 0.184 0.005 0.398 0.005

Table 4: Number of valid assignments for graph based board
hint\mine 10% 20% 30%

10% 10251360 3.63× 10
9

1.23× 10
15

20% 2419200 7.65× 10
10

1.75× 10
14

30% 4 7.97× 10
7

7.15× 10
10

40% 90 11520 1.28× 10
8

50% 4 12 864
60% 1 4 4
70% 1 1 2
80% 1 1 1
90% 1 1 1

6. Analysis of Mine Probability
Calculating the probability of mine placement on each cell

is useful for considering a strategy of playing Minesweeper.

We can easily calculate it after generating a ZDD of all the

solutions.

We define C as the number of all valid assignments , and

also define Ci as the number of valid assignments whose i-
th covered cell is mine. Then, following formula calculates

the mine probability for i-th cell (we call Ri).

Ri =
Ci

C
(3)

We can calculate the cardinality of a set of combinations in

a linear time for the ZDD size, and we may use various

algebraic operations for extracting a set of combinations

which satisfies some additional constraints.

The items in a ZDD generated by frontier-based search

corresponds to the edges in the input graph. If the i-th
covered cell has a mine in some assignments, the subgraphs

of those assignments are sure to use all edges which connect

bi. Then, we get following algorithm 3 for calculating (3).

7. Conclusion
In this paper, we considered the Minesweeper genera-

tion problem to generate all possible solutions for a given

Minesweeper board, and proposed a formulation of the prob-

lem using degree constrained subgraph model. For solving

the problem, we used ZDD-based graph enumeration tech-

niques. Experimental results showed that our formulation is

effective for many instances of the Minesweeper boards.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 361

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 361

ISBN: 1-60132-444-8, CSREA Press ©

Algorithm 3 The method for calculating mine probability

of the i-th cell.

Input: MG = (B ∪H,E), Zall (ZDD of all valid assign-

ments), i
Output: mine probability of i-th cell

1: L ← cardinality of Zall

2: e′ ← ∀e ∈ E which satisfies bi ∈ e
3: Zi ← Zall ∩ (Z(e′) ∗ 2(E\{e′}))
4: Ci ← cardinality of Zi

5: return Ci

C

As a future work, we can also consider an online problem

for Minesweeper, where the hints are given one by one.

Solving this online problem is close to actual play of the

Minesweeper, and an efficient online method is desired.

Acknowledgment
For implementing frontier-based search, we coded

the program based on the software library TdZdd (in

https://github.com/kunisura/TdZdd, [8]). Our work is partly

supported by JSPS KAKENHI Scientific Research(S) -

Number 15H05711.

References
[1] R. Kaye, Minesweeper is NP-complete, ser. The Mathematical Intelli-

gencer. Springer-Verlag, 2000, vol. 22, pp. 9–15.
[2] P. Nakov and Z. Wei, “MINESWEEPER, #MINESWEEPER,”

http://www.minesweeper.info/articles, 2003.
[3] S. Golan, Minesweeper on graphs, ser. Applied Mathematics and

Computation, 2011, vol. 217, pp. 6616–6623.
[4] S. Minato, “Zero-suppressed BDDs for set manipulation in com-

binatorial problems,” Proc. of 30th ACM/IEEE Design Automation
Conf. (DAC 1993), pp. 272–277, 1993.

[5] J. Kawahara, T. Inoue, H. Iwashita, and S. Minato, “Frontier-based
search for enumerating all constrained subgraphs with compressed
representation,” Hokkaido University Graduate School of Infomation
Science and Technology, Tech. Rep., Sept. 2014.

[6] J. D. Fix and B. McPhail, “Offline 1-minesweeper is np-complete,”
http://www.minesweeper.info/articles, 2004.

[7] O. Coudert, “Solving graph optimization problems with zbdds,” in
European Design and Test Conference, Mar. 1997, pp. 224–228.

[8] H. Iwashita and S. Minato, “Efficient top-down zdd construction tech-
niques using recursive specifications,” Hokkaido University Graduate
School of Infomation Science and Technology, Tech. Rep., Dec. 2013.

362 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

362 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

Visualizing Intrinsic Space for Spatial Data via Input Regularized

Gaussian Process Latent Variable Models

Tomoharu Iwata and Naonori Ueda

NTT Communication Science Laboratories, Kyoto, Japan

Abstract— We propose the input-regularized Gaussian pro-

cess latent variable model for visualizing a latent intrinsic

input space that improves interpolation performance in

regression tasks. The proposed model assumes that a latent

location is associated with each observed input location, and

the covariance function is determined by distance between

the latent locations. The latent locations are estimated so

that the output covariance of the given data is appropri-

ately captured by the latent locations while preserving the

neighbor relationships between the observed input space

and the latent space by input regularization. When the

input regularization is omitted, the proposed model reduces

to the Gaussian process latent variable model. When the

input regularization is strong enough to perfectly preserve

the neighbor relationships, the proposed model becomes

Gaussian process regression. The degree of the regular-

ization is controlled by a hyperparameter, which can be

automatically selected by cross-validation using the given

data. We demonstrate the effectiveness of the proposed model

with real-world spatial data sets in terms of interpolation

performance of multiple output values.

Keywords: Gaussian processes, latent variable models, visualiza-

tion, spatial data

1. Introduction
Analyzing spatial data is an important task in a wide

variety of fields such as geology, ecology, climatology, soci-

ology and urban planning. Gaussian process regression [1],

or which is known as Kriging [2] in geostatistics, is a repre-

sentative method for analyzing and interpolating spatial data.

In Gaussian process regression, a covariance function plays

a crucial role to define its behavior. With spatial data, kernels

that solely depend on distance between two locations, e.g.

Gaussian kernels, are usually used for covariance functions,

since closely located points are assumed to have similar

output values. However, some closely located locations can

have different output values, and distant locations can have

correlated output values. For example, weather at coastal

area would be different from inland area in the same city,

people’s cultural behavior in two cities divided by a river

would be dissimilar, and seismic activity would be related

in distant areas when they share a fault line. In other words,

the observed input space would be different from its intrinsic

space that reflects relationships among locations. Revealing

the intrinsic space is beneficial to understand the given

spatial data as well as to improve interpolation performance.

In this paper, we propose the input-regularized Gaussian

process latent variable model (IGPLVM) that visualizes the

latent intrinsic space. The proposed model assumes that each

observed input location has its own latent location, and

the covariance function is determined by distance between

the latent locations. Since neighbor relationships in the

latent space should be similar to those in the observed

input space as long as the output covariance of the given

data is captured by the latent locations, latent locations are

regularized to preserve the neighbor relationships. When the

regularization is omitted, the proposed model becomes the

Gaussian process latent variable model (GPLVM) [3], [4],

which is an unsupervised method that learns latent locations

using output values without input information. When the

regularization is strong enough to perfectly preserve the

neighbor relationships, it corresponds to Gaussian process

regression, where input locations are assumed to be noise

free. The proposed model adaptively uses input information

so that output variables are modeled properly.

The proposed model improves interpolation performance

by flexibly defining the covariance function by adjusting

latent locations. Since the proposed model learns a common

latent intrinsic space shared by multiple output variables,

it can be used for multi-task learning. The latent space

learned by using output values in a task helps to interpolate

output values in another related task, even if data are too

sparse to learn latent locations with a single task. Note

that, although we motivate the proposed model for analyzing

spatial data, the proposed model is applicable to other data

for any regression problems where input and output values

are contained, such as time-series, spatio-temporal, high

dimensional input, and multiple output data.

The remainder of this paper is organized as follows.

In Section 2, we present our task and introduce Gaussian

process regression, on which the proposed model is based.

In Section 3, we formulate the proposed model and provide

its learning procedures. We review related work in Section 4.

In Section 5, the effectiveness of the proposed method is

demonstrated by experiments with real-world spatial data

sets in terms of interpolation performance of multiple out-

put values. Finally, we present concluding remarks and a

discussion of future work in Section 6.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 363

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 363

ISBN: 1-60132-444-8, CSREA Press ©

2. Preliminaries
Suppose that we have a set of input and output instances,

{(xn,yn)}Nn=1, where xn ∈ R
L and yn ∈ R

D. For example,

in a case of spatial climate data, xn is th nth location

vector such as latitude and longitude, and yn is an observed

weather condition vector at the location such as temperature,

humidity and precipitation.

With standard regression methods, an output yn is as-

sumed to be generated by mapping input xn using nonlinear

functions,

ynd = fd(xn) + ε, (1)

where fd(·) is the nonlinear function for the dth feature,

and ε ∼ N (0, β−1) is a Gaussian noise. Gaussian process

regression uses a Gaussian process for a prior distribution

of the nonlinear function,

fd(x) ∼ GP(m(x), k(x,x′)), (2)

where m(x) is a mean function, which is often set to

zero, and kernel function k(x,x′) specifies the covariance

of outputs between two locations as follows,

k(x,x′) = E[(fd(x)−m(x))(fd(x
′)−m(x′))]. (3)

Since the kernel determines the behavior of the nonlinear

functions, it is important to use an appropriate kernel for the

given data. For real-valued input data, such as time-series

and spatial data, kernels that are negatively correlated to

distance between two locations ‖ x − x′ ‖ are often used,

such as Gaussian kernels. However, output values can be

different even if two locations are close together, and they

can be similar even if two locations are far apart.

3. Input-regularized Gaussian Process

Latent Variable Models
We propose the input-regularized Gaussian process latent

variable model (IGPLVM), which is a method to obtain

kernels that appropriately capture the output covariance

between inputs by distorting the input space in the Gaussian

process regression framework. The distorted input space

reveals intrinsic characteristics of the input space.

The proposed model assumes that an output yn is gener-

ated from its latent intrinsic location zn ∈ R
K , instead of

input location xn, as follows,

ynd = fd(zn) + ε. (4)

The dimensionality of the latent space K can be different

from that of the input space L. Then, the probability of

the output observations Y = (y1, · · · ,yN)� given the

latent locations Z = (z1, · · · , zN)�, by integrating out the

nonlinear functions, is given by

p(Y|Z,θ) = (2π)−
DN

2 |K|−D

2 exp

(
−1

2
tr(Y�K−1Y)

)
,

(5)

where K is the N × N covariance matrix defined by the

kernel function k(zn, zn′), and θ is the kernel hyperparam-

eter vector. In this paper, we use a Gaussian kernel with an

additive noise term,

k(zn, zn′) = α exp

(
− 1

2�2
‖ zn − zn′ ‖2

)
+ δnmβ−1,

(6)

where δnm = 1 if n = m and δnm = 0 otherwise,

and θ = (α, �, β) are the kernel parameters. Note that

the GPLVM [3] finds latent locations Z that minimizes the

negative log likelihood of (5),

EY = − log p(Y|Z,θ), (7)

where input information X = (x1, · · · ,xN)� is not used.

We assume that neighbor relationships in the latent space

should be similar to those in the input space as long as

the output covariance that is specified by the latent space is

appropriate to the given data. The proposed method models

the neighbor relationships by defining a probability of being

selected as neighbors as defined in stochastic neighbor

embedding [5], [6]. In the latent space, the probability that

n selects n′ as its neighbors is given by

p(n′|n,Z) = exp(− 1
2 ‖ zn − zn′ ‖2)∑

n′′
�=n

exp(− 1
2 ‖ zn − zn′′ ‖2) , (8)

where locations with small Euclidean distance ‖ zn − zn′ ‖
in the latent space are likely to be selected as its neighbors.

Similarly, in the input space, the neighborhood probability

is given by

p(n′|n,X) =
exp(− 1

2 ‖ xn − xn′ ‖2)∑
n′′

�=n
exp(− 1

2 ‖ xn − xn′′ ‖2) . (9)

The neighbor relationships are preserved when these two

probabilities are matched. This is achieved by minimizing

the following sum of Kullback-Leibuler divergences between

the probabilities,

EX =

N∑
n=1

∑
n′

�=n

p(n′|n,X) log
p(n′|n,X)

p(n′|n,Z) . (10)

The proposed method finds latent locations that properly

capture the output covariance while preserving the neighbor

relationships by minimizing the following sum of (7) and

(10),

E = EY + λEX, (11)

where λ > 0 is a hyperparameter that controls how the

neighbor relationships are preserved. When λ = 0, it

corresponds to GPLVM. When λ = ∞ and dimensionality

of the latent space is the same with the input space K =
L, it corresponds to Gaussian process regression since the

latent locations become the same with the input locations

Z = X. The proposed method can be seen as a multi-task

364 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

364 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

learning method based on Gaussian process regression. Since

the latent locations are learned by using all of the output

variables, the learned covariance matrix can improve multi-

task regression performance when the output variables are

related.

A local optimum solution of latent locations Z and kernel

hyperparameters θ is obtained by minimizing (11) using

gradient-based optimization methods such as the quasi-

Newton method [7]. The gradients of the GPLVM term EY

with respect to a latent location are calculated by

∂EY

∂K
=

1

2
DK−1 − 1

2
K−1YY�K−1, (12)

∂k(zn, zn′)

∂zn
= − α

�2
exp

(
− 1

2�2
‖ zn − zn′ ‖2 (zn − zn′)

)
,

(13)

using the chain rule. The gradients of the regularization term

EX with respect to a latent location are calculated by

∂Ex

∂zn
=
∑
n′

�=n

(
p(n′|n,X)− p(n′|n,Z)

)
(zn − zn′), (14)

where a sum of forces pulling or pushing z depends on

difference of the neighborhood probability p(n′|n,X) −
p(n′|n,Z).

We can select the hyperparameter value λ by cross-

validation on an interpolation problem of the output matrix

Y. The cross-validation procedure is as follows. The ele-

ments of the output matrix are randomly split into multiple

subsets. While the elements in a subset are supposed to

be missing, the latent locations and kernel hyperparameters

are estimated with a fixed hyperparameter value λ. The

interpolation performance of the learned model is evaluated

by the rooted mean squared error for the missing elements.

The error is averaged over different subsets, and a hyper-

parameter value that achieved the lowest error is selected.

When ynd is missing, its estimated value is given by ŷnd =
k�

n
K−1yd, where kn = (k(zn, z1), · · · , k(zn, zN))� and

yd = (y1d, · · · , yNd)
�, and they are calculated using the

observed data. Note that even when all of the output vari-

ables are missing with an instance, the latent location can

be estimated by using its neighbor relationships.

The proposed model can be seen as a probabilistic gen-

erative model. An output value ynd is generated from a

Gaussian distribution with mean fd(zn) using the latent

location zn, where the nonlinear function fd(·) is generated

from a Gaussian process prior. The input locations xn are

not directly generated, but we can consider that the neigh-

bors of the input locations are generated by a multinomial

distribution, where the multinomial parameters are defined

by latent locations Z as in (8).

Although we considered that the input variables are real-

valued, the proposed method is applicable to other types

of input variables that can calculate similarity between two

input locations to define neighbor relationships in (9). For

example, we can use normalized tree kernels and graph

kernels for tree and graph data, respectively, instead of

normalized Gaussian kernels in (9).

4. Related Work
With Gaussian process regression, the covariance function

is usually defined parametrically, e.g. Gaussian kernels, and

its hyperparameters are estimated, e.g. length-scale and noise

variance in Gaussian kernels, by maximizing the marginal

likelihood. However, the hyperparameter tuning would not

be enough to capture the covariance structure when the

intrinsic space is different from the observed input space.

The proposed model can define the covariance function

by flexibly tuning latent locations. A complex form of

covariance functions is learned by using multiple kernels [8],

by concatenation different kernels [9], and by modeling a

spectral density with Gaussian mixtures [10]. These methods

are not designed for revealing the latent intrinsic space.

The manifold Gaussian process [11] is related to our work.

It transforms input locations by multi-layer neural networks

so as to model complex nonsmooth functions. Since the

proposed model optimizes a latent location for each input

location nonparametrically so as to preserve the neighbor

relationships, it can be used for visualizing the latent intrinsic

space. In addition, by tuning a single hyperparameter, the

proposed model can become the GPLVM and Gaussian

process regression, which are successfully used in a wide

variety of applications [12], [13], [14], [15]. The warped

Gaussian process [16] transforms the output space. Gaussian

process regression with input noise [17] assumes that each

input location is independently corrupted by Gaussian noise,

and does not give latent locations explicitly. On the other

hand, with the proposed model, distortion of each location

is not independent since latent locations are estimated so as

to preserve the neighbor relationships. This enables us to

estimate latent locations even without output values.

The GPLVM [3] is an unsupervised method for imputating

output values by assuming latent locations. The GPLVM

is not designed for regression tasks, and it does use input

information. The discriminative GPLVM [18] is a type of

regularized GPLVMs. It is used for classification, and out-

puts are required to be categorical variables. The Gaussian

process latent variable set model [19] is a regression method

that learns latent locations to model a flexible covariance

function. It assumes bag-of-features input, and each feature

has a latent location. On the other hand, the proposed model

can take any input type, such as real-valued, tree, graph, bag-

of-features data, as long as similarity can be calculated, and

each instance has a latent location.

Many visualization methods have been proposed, such

as multidimensional scaling, principle component analy-

sis, GPLVM, Isomap [20], Laplacian eigenmap [21] and

stochastic neighbor embedding (SNE) [5]. They embeds

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 365

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 365

ISBN: 1-60132-444-8, CSREA Press ©

high dimensional unlabeled data into a low dimensional

space. Supervised visualization methods have been also

proposed, such as canonical correlation analysis (CCA),

kernel CCA [22], Fisher linear discriminant analysis and

discriminant GPLVM. For example, CCA embeds input and

output pairs into a low dimensional space so as to maximize

the correlation. The proposed model is a supervised visual-

ization method that reveals an intrinsic input space for better

output interpolation. The proposed model can be seen as a

combination of GPLVM and SNE, where GPLVM is used

for modeling output values, and SNE is used for preserving

the neighbor relationships of input locations. In particular,

the objective function is simply defined by a weighed sum

of the objective functions of GPLVM and SNE.

5. Experiments

5.1 Data

We evaluated the proposed method by using a real-world

spatial data set: the comprehensive climate data of North

America (NA) 1. The NA data set consists of monthly

climate reports from 1990 to 2002 [23], [24]. We used 16

output variables, such as carbon dioxide and temperature,

which were interpolated on 2.5 × 2.5 degree grid with 125

locations. We normalized all output values to mean zero and

unit variance, and conducted experiments with data for each

month, where the input variables were latitude and longitude.

5.2 Comparing Methods

We compared the proposed IGPLVM (Proposed) with the

following five methods: GP, MTGP, GPLVM, MF and KNN.

GP is a Gaussian process regression method, which assumes

that output values are determined by the input locations using

nonlinear functions with Gaussian process priors. MTGP

is a multi-task Gaussian process regression method [25],

which learns relationships between output variables. We used

the code provided by the authors2. GPLVM is a Gaussian

process based nonlinear matrix imputation method [3]. MF

is a matrix factorization method [26]. It imputates missing

values by the product of two low-rank matrices. Both

GPLVM and MF do not use input information. KNN is

a k-nearest neighbor regression method, which estimates a

missing value by the average value of its four neighbors.

The dimensionality of the latent space with the proposed

method, GPLVM and MF was set at K = 2, which is the

same with that of the input space. With the proposed method,

we selected a hyperparameter λ for each output variable by

five-fold cross-validation from {0, 1, 10, 102, 103, 104, 105}.

The latent locations were initialized by the input locations.

1http://www-bcf.usc.edu/~liu32/data/
NA-1990-20002-Monthly.csv

2https://github.com/ebonilla/mtgp

5.3 Results

We measured the effectiveness of the proposed method

by interpolation tasks. Ten percent of output values were

randomly selected as test data. The performance was evalu-

ated by rooted mean squared error (RMSE). Table 1 shows

the RMSE with the NA data set. The proposed method

achieved the lowest average RMSE. This result indicates

that the output covariance is properly modeled by distorting

the input space with the proposed method. GP achieved low

RMSE with output variables whose covariance is determined

by the input locations, such as WET and DTR. GPLVM

achieved low RMSE with output variables which can be esti-

mated easily from other output variables. Since the proposed

method can become the GP and GPLVM by controlling the

hyperparameter for each output variable, the RMSE of the

proposed method was low for all output variables.

The computational time of the proposed method was 18

seconds with a one-month data using a computer with Xeon

7350 2.93GHz CPU.

Figure 1 shows the original input space and the estimated

latent space by the proposed method. When λ = 0, the latent

locations were different from the input locations, since the

latent locations did not regularized by the input locations at

all. When λ = 105, the latent space was the same with

the input space, since the effect of preserving neighbor

relationships became dominant. With λ = 10 and λ = 103,

the some neighbor relationships were preserved but some

latent locations were transformed so as to model the output

covariance. The latent locations of west coast were separated

from the other locations (b,c,d), because west coast exhibits

different weather from the other area.

6. Conclusion
In this paper, we have proposed a probabilistic model for

discovering a latent intrinsic space. The proposed method

is based on Gaussian processes, where a latent location

is associated with each input location, and output values

are determined by the latent locations. The latent locations

are estimated so as to preserve the neighbor relationships

as well as to capture the output covariance of the given

data. Although our results have been encouraging, our

framework can be further improved upon in a number of

ways. Firstly, we would like to estimate the hyperparameter

for controlling input regularization by using the variational

Bayesian framework [27]. Secondly, we plan to estimate re-

lationships among output variables using multi-task learning

techniques [25]. With the proposed method a single latent

space is shared by all output variables. By using estimated

task relationships, we can obtain multiple latent spaces that

capture the characteristics of individual output variables,

and it leads to better interpolation performance for missing

values. Finally, we would like to extend our method more

scalable by using scalable Gaussian process techniques [28],

[29].

366 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

366 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

Table 1: RMSE on interpolation tasks with the NA data set for each output variable averaged over all locations and all

timestamps. The last row shows the RMSE averaged over all output variables. Values in bold typeface are statistically better

at the 5% level from those in normal typecface as indicated by a paired t-test.

Proposed GP MTGP GPLVM MF KNN

CO2 0.0532 0.0536 1.3110 0.2342 0.5448 0.1474
CH4 0.0520 0.0528 1.3751 0.1966 0.4935 0.1473
CO 0.0496 0.0501 1.3807 0.2007 0.5150 0.1411
H2 0.0479 0.0484 1.3669 0.1614 0.4116 0.1358
WET 0.3672 0.3684 1.3502 0.5033 0.6242 0.3773
CLD 0.2483 0.2543 1.3201 0.3580 0.5253 0.2817
VAP 0.1911 0.2071 1.3712 0.2511 0.3957 0.2495
PRE 0.5289 0.5201 1.3420 0.5991 0.6857 0.5098
FRS 0.3502 0.4480 1.3528 0.3371 0.5613 0.4409
DTR 0.4579 0.4611 1.3947 0.5098 0.5873 0.4704
TMN 0.1832 0.3315 1.3694 0.2039 0.3661 0.3531
TMP 0.1568 0.3190 1.3786 0.1762 0.3294 0.3419
TMX 0.1866 0.3319 1.3706 0.2082 0.3435 0.3578
GLO 0.1901 0.1901 1.3755 0.2755 0.3618 0.2311
ETR 0.0641 0.0647 1.3677 0.1376 0.3714 0.1733
ETRN 0.0568 0.0572 1.3034 0.1239 0.3190 0.1547
Average 0.1990 0.2349 1.3581 0.2798 0.4647 0.2821

Acknowledgments

A part of the research results has been achieved by

“Research and Development on Fundamental and Utiliza-

tion Technologies for Social Big Data,” the Commissioned

Research of National Institute of Information and Commu-

nications Technology (NICT), JAPAN.

References

[1] C. E. Rasmussen and C. Williams, Gaussian Processes for Machine

Learning. MIT Press, 2006.

[2] N. Cressie, Statistics for spatial data. Wiley New York, 1993.

[3] N. D. Lawrence, “Gaussian process latent variable models for visual-
isation of high dimensional data,” in Advances in Neural Information

Processing Systems, 2004, pp. 329–336.

[4] N. Lawrence, “Probabilistic non-linear principal component analysis
with Gaussian process latent variable models,” Journal of Machine

Learning Research, vol. 6, pp. 1783–1816, 2005.

[5] G. E. Hinton and S. T. Roweis, “Stochastic neighbor embedding,” in
Advances in Neural Information Processing Systems, 2002, pp. 833–
840.

[6] L. Van der Maaten and G. Hinton, “Visualizing data using t-SNE,”
Journal of Machine Learning Research, vol. 9, no. 2579–2605, p. 85,
2008.

[7] D. C. Liu and J. Nocedal, “On the limited memory BFGS method for
large scale optimization,” Mathematical Programming, vol. 45, no.
1-3, pp. 503–528, 1989.

[8] A. Melkumyan and F. Ramos, “Multi-kernel Gaussian processes,”
in Proceedings of the International Joint Conference on Artificial

Intelligence, 2011, pp. 1408–1413.

[9] D. Duvenaud, J. R. Lloyd, R. Grosse, J. B. Tenenbaum, and Z. Ghahra-
mani, “Structure discovery in nonparametric regression through com-
positional kernel search,” in Proceedings of the 30th International

Conference on Machine Learning, 2013, pp. 1166–1174.

[10] A. G. Wilson and R. P. Adams, “Gaussian process kernels for pattern
discovery and extrapolation,” in Proceedings of the International

Conference on Machine Learning, 2013.

[11] R. Calandra, J. Peters, C. E. Rasmussen, and M. P. Deisen-
roth, “Manifold gaussian processes for regression,” arXiv preprint

arXiv:1402.5876, 2014.

[12] J. Wang, A. Hertzmann, and D. M. Blei, “Gaussian process dynamical
models,” in Advances in Neural Information Processing Systems,
2005, pp. 1441–1448.

[13] S. Hou, A. Galata, F. Caillette, N. Thacker, and P. Bromiley, “Real-
time body tracking using a Gaussian process latent variable model,”
in Proceedings of the 11th International Conference on Computer

Vision, 2007, pp. 1–8.

[14] M. A. Alvarez, D. Luengo, and N. D. Lawrence, “Linear latent force
models using Gjaussian processes,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 35, no. 11, pp. 2693–2705,
2013.

[15] S. Bratieres, N. Quadrianto, S. Nowozin, and Z. Ghahramani, “Scal-
able Gaussian process structured prediction for grid factor graph
applications,” in Proceedings of the 31st International Conference on

Machine Learning, 2014, pp. 334–342.

[16] E. Snelson, C. E. Rasmussen, and Z. Ghahramani, “Warped Gaussian
processes,” in Advances in Neural Information Processing Systems,
2004, pp. 337–344.

[17] A. McHutchon and C. E. Rasmussen, “Gaussian process training with
input noise,” in Advances in Neural Information Processing Systems,
2011, pp. 1341–1349.

[18] R. Urtasun and T. Darrell, “Discriminative Gaussian process latent
variable model for classification,” in Proceedings of the 24th Interna-

tional Conference on Machine Learning, 2007, pp. 927–934.

[19] Y. Yoshikawa, T. Iwata, and H. Sawada, “Non-linear regression for
bag-of-words data via Gaussian process latent variable set model,”
in Proceedings of th 28th AAAI Conference on Artificial Intelligence,
ser. AAAI, 2015.

[20] J. B. Tenenbaum, V. De Silva, and J. C. Langford, “A global geometric
framework for nonlinear dimensionality reduction,” Science, vol. 290,
no. 5500, pp. 2319–2323, 2000.

[21] M. Belkin and P. Niyogi, “Laplacian eigenmaps for dimensionality
reduction and data representation,” Neural computation, vol. 15, no. 6,
pp. 1373–1396, 2003.

[22] S. Akaho, “A kernel method for canonical correlation analysis,” in In

Proceedings of the International Meeting of the Psychometric Society,
2001.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 367

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 367

ISBN: 1-60132-444-8, CSREA Press ©

(a) observed input space

λ = 0 λ = 10 λ = 103 λ = 105

(b) latent space at 2001 January

(c) latent space at 2001 July

(d) latent space at 2001 October

Fig. 1: The observed input space (a), and the latent space estimated by the proposed method (b,c,d) with the NA data set.

The locations that are closely located at the input space are connected by edges. The color represents the locations in the

input space.

[23] M. T. Bahadori, Q. R. Yu, and Y. Liu, “Fast multivariate spatio-
temporal analysis via low rank tensor learning,” in Advances in Neural

Information Processing Systems, 2014, pp. 3491–3499.

[24] A. C. Lozano, H. Li, A. Niculescu-Mizil, Y. Liu, C. Perlich, J. Hosk-
ing, and N. Abe, “Spatial-temporal causal modeling for climate change
attribution,” in Proceedings of the 15th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining. ACM, 2009,
pp. 587–596.

[25] E. Bonilla, K. M. Chai, and C. Williams, “Multi-task Gaussian process
prediction,” in Advances in Neural Information Processing Systems,
2008.

[26] Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization techniques
for recommender systems,” Computer, vol. 42, no. 8, pp. 30–37, 2009.

[27] M. Titsias and N. Lawrence, “Bayesian gaussian process latent
variable model,” in International Conference on Artificial Intelligence

and Statistics, 2010, pp. 844–851.
[28] E. Snelson and Z. Ghahramani, “Sparse Gaussian processes using

pseudo-inputs,” in Advances in Neural Information Processing Sys-

tems 18, 2006, pp. 1257–1264.
[29] J. Hensman, N. Fusi, and N. D. Lawrence, “Gaussian processes for

big data,” in Uncertainty in Artificial Intelligence, 2013.

368 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

368 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

Effect of a Label on Items for Their Popularity

Yuki Sonoda1 and Daisuke Ikeda2

Department of Informatics, Kyushu University
744 Moto-oka, Fukuoka 819-0395, Japan.
1yuki.sonoda@inf.kyushu-u.ac.jp

2daisuke@inf.kyushu-u.ac.jp

Abstract— We study popularity dissemination on items,
such as products. Popularity is characterized by extreme
imbalances since it is a typical rich-get-richer phenomenon.
Existing researches focused on effect of consumers to dis-
semination, but not on effect of target items. Inspired by
the result in [1], we hypothesize that some structure, called
a label, on items increases imbalances of popularity. A
category of products attached by a firm is a directly attached
label while consumers can put a label on items. The goal
of this paper is to confirm effect of a label on items to
information dissemination. To this end, we have conducted
multi-agent simulations about a virtual market in which firms
produce items and consumers buy some of them. Comparing
sales figures of items with labels and those without labels, we
have confirmed that labels cause imbalances of popularity.

Keywords: Multi-agent simulation, Consumer behavior, Power

law distribution

1. Introduction
In this paper, we consider popularity of various things,

such as smash hits of songs or movies and bursty words of

blog entries, from the prospect of information dissemination.

Counting target objects, we call items, in various fields,

the common phenomenon, the power law distribution for

popularity, emerges [2], [3].

In general, consumers have a lot of chances to see popular

items and thus we see rich-get-richer phenomena [4], [5].

Moreover, consumers utilize information from many kinds of

communication, such as word-of-mouth communication. As

a result, such communications cause extreme imbalances and

lead to the power law distribution. In this sense, we can think

that popularity is caused by information dissemination [2].

From the view point of effective dissemination, existing

researches focused on users, their network structures, and

interactions of them [6], [7], [8], while the structure of target

items has been ignored.

Generally speaking, however, an extremely popular trend

does include many items. For example, there exists a trend

of “premium” products in Japan, where a smash hit of a

high-quality, high-price product yields this trend and then

conversely this trend gathers similar high-quality, high-

price products among different categories. We show another

example of “Yuru-chara”, which is

a Japanese term for a category of mascot charac-

ters; usually created to promote a place or region,

event, organization or business,

according to this page1. This concept became very popular

after some popular characters, such as Hikonyan and Kuma-

mon, became famous, and then the popularity of the concept

created a huge number of new characters.

We can think that such a trend is a kind of categories of

items. We call it a label of items and expect that a popular

label can create an extremely large hit phenomenon. This

idea was inspired by an earlier result of the authors [1],

which is a research to predict potentially popular hash-tags,

that is labels, of a micro-blog service. In this research,

we experimentally showed that, for any label, the ratio of

the number of items used with the label to the number of

different items with the same label is constant over time. In

other words, if the ratio is high for a label, we see many

different items with the label as the label is used. Using this

interesting property, we proposed a method to find latent

popular labels. Although the proposed method works fine,

we can not elucidate why such a phenomenon happens for

labels and items.

As a first step to elucidate the mechanism of labels

and items, we try to show that we see more smash hits

if we can use labels. That is, the goal of this paper is

to verify the following hypothesis: a label on items can

increase imbalances of popularity of them. A typical label,

for example, is a category of news articles while we can

think anything we can attach to one or more items as a

label, such as a catchy copy, an attribute, and a hash-tag.

To achieve this goal, we utilize multi-agent simulations,

where we prepare consumer agents and firm ones, consumer

agents can attach a label on items, both types of agents can

recognize popular labels, and firm agents tends to create a

new product with a popular label. Calculating sales figures

in this virtual market, we compare sales of items with and

without labels, and verify the effect of labels.

This paper is organized as follows: After reviewing related

work in Section 2, we will explain our assumption about

1https://en.wikipedia.org/wiki/Yuru-chara

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 369

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 369

ISBN: 1-60132-444-8, CSREA Press ©

labels and the model for simulation in Section 3. Then we

will show experimental results in Section 4. Finally, we

conclude in Section 5.

2. Related Work
Popularity of items has been extensively studied in terms

of information dissemination.

Some researches focused on consumers and proposed

types of consumers, according to their behaviors. In [6],

diffusion of innovations were studied and consumers were

categorized, such as innovators and early adopters. Similary,

the concept of connectors, mavens, and salesmen was pro-

posed in [8].

There exists researches that studied dynamics of changes

in popularity, basically using differential equations. For

example, the Bass model was proposed in [7], considering

innovation and imitation effects of consumers. Similarly,

in [9], both direct communication and indirect one, such

as the rummor effect, were considered and shown that the

proposed equation well describes hit phenomena of movies.

Some other researches, such as [10], focused on the

network structure of consumers.

However, these existing researches studied effects of com-

munication among consumers, but not effects of structures

among target items, w.r.t information dissemination. Of

course, practitioners in marketing segments must know about

effects and impacts of catchy slogans and copies, which

can be seen as labels, since we see a lot of them on the

media. However, there does not exist a quantitative research

on effect of labels w.r.t information dissemination as far as

the authors know.

3. Methods
In this section, we first explain, using examples, our

assumption on labels for consumer behaviors, and then show

our model of simulations.

3.1 Assumption of Effect on Labels
Consider that there exists a label attached with some

items (see Fig. 1). Originally, the main target of a consumer

is items and a label is just an attachment. For example,

consider mascot characters, called “Yuru-chara.” Although

this term was coined in the early 2000’s, the term was not

so popular initially. In this case, the term “Yuru-chara” is just

an attribute of mascot characters (the top figure of Fig. 1).

However, after appearance of some attractive characters,

such as Kumamon and Hikonyan, which are left- and right-

hand side chracters in Fig. 1, the popularity of the term is

risen sharply. Then we see this term many times on the media

and many new characters were created. Now consumers first

recognize the label on items (the bottom figure of Fig. 1).

This is a reverse phenomenon since a popular label itself has

its own popularity and increases popularity of items with the

label.

item item

label

1.consumption

behavior

2. recognition

consumer

item item

label

2. consumption

behavior

1. recognition

consumer

Fig. 1: Two processes of consumption behaviors of items

and recognision of labels on them

One import property of labels is that the same label

can be used in different fields of products. In other words,

firms of other types of products can receive a label as a

message. Then they can produce other types of products with

the same label. An example of this phenomenon, we use

“The Premium Malt’s”2. From its name, outlook, and price,

many consumers recognize “premium” as a label for it. The

product was a blockbuster in Japan and made “premium”

label as a popular label. In fact, we saw many high-quality,

high-price products, such as premium pet food, premium

canned coffee, and premium bananas, after this product.

Therefore consumers have a lot of chances to see a popular

label and so the popularity of the label could be drastically

increasing. Then some consumers choose some products

because they have the popular label.

We should note that hit products do not always create

popular labels. In fact, a similar high-quality and blockbuster

beer “Yebis”3, which started to sell long before “The Pre-

mium Malt’s” and a long-seller product. But it did not cause

similar labels.

From the above observation, we hypothesize that a popular

label on items encourages hit products and this causes

imbalances of popularity among items.

3.2 Our Model
There exists two types of agents, consumer and firm

agents. A consumer agent has perceived recognition rate

for each label [11], choose items based on information,

including the rate and rumors, and exchange information

about items with other agents, where each consumer agent

has randomly decided receiving and sending rates. A firm

agent receives information about consumers’ recognition of

labels via market researches, recognize labels of product

2http://the-premium.jp/pc/index.html
3http://www.sapporobeer.jp/yebisu/

370 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

370 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

label recognition!

prior evaluation

decision!

posteriori evaluation

dissemination!

Step="

Step=t+1!

market research!

product development!

advertisement!

Step % 50

== 0 Yes!

No!

Firm!

Consumer!
Term=t’!

label recognition!

Fig. 2: The flow chart of our simulation

created by other firms, development a new product based

on the sales of the last year.

The recognition of labels of other firms’ product can be

seen as information exchange among firms. In a simulation

with labels, popularity of labels is important to develop new

products, that is, a firm is likely to create a product with a

popular label.

Fig. 2 shows the flow chart of consumer and firm agents.

Based on AISAS model, which is a hierarchy model of

advertisements and says consumer behavior changes in order

attention, interest, search, action, and share [12], we decide

one step of consumer agents as follows: they first recognize

labels, then evaluate items before purchase, then choose an

item, then evaluate purchased item, and finally disseminate

information about the item. Similarly, we decide one step

of firm agents as follows: they first recognize labels, then

conduct market researches, then develop new products, and

finally advertise them. In simulations without labels, both

types of agent ignore tasks related to labels.

Every step of the firm agents is executed after 50 steps

of the consumer agents because one step of firm agents

takes longer time, compared to daily consumer behavior. For

simplicity, one firm creates only one product and thus if a

firm creates a new product, the current product of the firm

is removed.

4. Results
After explaining environments for our experiments, we

show results of our experiments, including preliminary ones

for choosing some parameters, such as the number of trials.

4.1 Environments
Based on the model described in the previous section,

we implemented the simulation program in Python and

compiled with Cython. All experiments were executed on

MacBook Pro (OS:Mac OS X 10.8.5, CPU:2.9GHz Intel

Core i7, Memory:8GB 1600MHz DDR3).

Table 1: Parameters for our simulation
parameter its value

consumers 900
firms 100
types of labels 50

Table 1 shows the values for some parameters used in

our simulation program. The initial values for the follow-

ing parameters are real values randomly decided in [0, 1]:
preference of consumers, sending and receiving moods of

word-of-mouth, and advertisements of firms.

To evaluate results of simulations, we basically use his-

tograms of sales among all firms since popularity of products

are known to follow the power law distribution.

4.2 Preliminary Experiments
In this section, we show two results of preliminary

experiments and decide the values for the following two

parameters: the number of trials for stable results and the

number of types of labels. To reduce the times required by

preliminary experiments, we set the number of consumers

to be 100 while it is 900 in the main experiments.

As described above, random numbers are used for some

parameters. To obtain stable results, we should create his-

tograms after several trials of our simulation program. First,

to decide the number of trials, we compare two histograms

of sales for 30 and 100 trials.

Fig. 3 shows two histograms: red one is from 30 trials and

blue one 100. The horizontal axis is bins of sales, where

Sales

D
e
n
s
it
y

0 500 1000 1500 2000 2500 3000 3500

0
.0
0
0
0

0
.0
0
0
5

0
.0
0
1
0

0
.0
0
1
5

0
.0
0
2
0

30

300
30

300

Fig. 3: Two histograms of sales for 30 and 100 trials, red

one is from 30 trials and blue one 100.

the width of each bin is 100, and the vertical axis is the

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 371

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 371

ISBN: 1-60132-444-8, CSREA Press ©

probability of firms, which shows how many firms go into

one bin.

From Fig. 3, we can see that 30 trials are enough stable,

compared to 100 ones.

Since the goal of this paper is to show effect of labels

for popularity of items, we compare simulations with and

without labels. In this perspective, we need the large number

of different labels. However, we expect that there exists two

or more items which have the common label since the label

is a category of items. In this sense, the number of different

labels must be smaller than the number of items, which is

equal to the number of firms in our setting.

Thus the second preliminary experiment is to decide the

number of different labels for main experiments. In this

experiments, we compare histograms of simulations in case

that the number of different labels is 5, 20, or 50. Fig. 4

shows the three histograms, where the vertical axis shows

Sales

F
re
q
u
e
n
c
y

0 500 1000 1500 2000 2500 3000 3500

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

label50

label20

label5label50

label20

label5

Fig. 4: Three hisgrams of sales in case that the number of

types of labels is 5, 20, or 50.

the number of firms, that is the frequency, whose sales fall

in the corresponding bin, the horizontal axis is bins of sales,

where the width of bins is 100, and yellow (resp. blue and

red) histograms are in case that the number of different labels

is 5 (resp. 20 and 50).

From Fig. 4, we find that the shape of a histogram become

skewed and the mode value become smaller as the number

of different labels is increasing.

Table 2 shows statistics, such as averages, in case that the

number of labels is 5, 20, or 50. As the number of different

Table 2: Statistics in case that the number of labels is 5, 20,

or 50.
types of labels average median skewness

5 906.2183 900 0.1032524
20 849.9577 631 0.8267709
50 834.0787 549 0.9537798

labels is decreasing, values of the average and median is

increasing. In this sense, the fewer the number of different

labels is, the more total sales are achieved. On the other

hand, the skewness become much larger as the the number

of different labels is increasing. In this sense, the number of

labels has impact on imbalances of popularity. Considering

our goal of this paper, we use 50 as the value for the number

of different labels.

4.3 Main Results
As the main results, we show three types of graphs: one

is dynamics of one trial and the other two are distributions

of all trials.

Fig. 5 shows transitions of sales for each label in one trial

of simulation, where the horizontal axis shows the total 1500,

which equals to 50 steps times 30 trials, and the vertical axis

the sales. In this graph, we see that the sales of the blue label

steps

s
a
le
s

Fig. 5: Transitions of sales for each label in one trial of

simulation, where each line shows the total sales of the

products with the same label.

is drastically risen around 400 steps. This is a typical rich-

get-richer phenomenon. We confirmed similar phenomena in

all the other trials.

We created two types of graphs from 30 trials: one is

rank-size plots (see Fig. 6) and the other histograms of sales

(see Fig. 7).

Fig. 6 shows two rank-size plots, where the vertical axis

shows sales for firms and the horizontal axis ranks of firms

in decreasing order of sales. The left-hand (resp. right-hand)

side graph is one created from 30 trials of simulations

without (resp. with) labels.

We find that the amount of sales at the top rank in the

right-hand side graph is about twice of that in the left-

hand one, and the curve in the left-hand graph is smoothly

declined, compared to that in the right-hand one.

Fig. 7 shows two histograms, where the horizontal axis

shows sales bins, each of whose width is 300, and the vertical

372 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

372 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

0 500 1000 1500 2000 2500 3000

0
50

00
10

00
0

15
00

0

Company

S
al

e

0 500 1000 1500 2000 2500 3000

0
50

00
10

00
0

15
00

0
20

00
0

25
00

0
30

00
0

Company

S
al

es
Fig. 6: Totals sales of 100 firms in 30 trials without labels (left-hand side) and those with labels (right-hand side) are plotted

in decreasing order.

axis the frequency, that is, the number of firms whose sales

figures is in some bin. The blue (resp. red) histogram is

created from 30 trials of simulations without (resp. with)

labels.

We find that the blue histogram is unimodal, where the

mode is around the average value (see Table 3). In the red

one, the mode is at the lowest bin of sales and there exists

many firms achieving much higher sales, compared to top

sales in the blue one.

From Fig. 7 and Fig. 6, we can conclude that labels cause

imbalance of pupularity.

5. Conclusion
In this paper, we have considered impact of the label

on items w.r.t popularity of them, conducting multi-agent

simulations. We have compared two types simulations, that

is, one without labels and the other with them. Although

the histogram created from the simulation without labels

is unimodal and the mode is at around the average, only

introducing the structure into target items by labels causes

imbalance of popularity of items. While existing researches

about popularity of items focused on interactions and/or

structures of consumers, imbalance of popularity can be

achieved by the structure of items. As far as the authors

knows, this is the first result which reveals that the structure

of items is critical to popularity of items.

Acknowledgment
This work was supported by JSPS KAKENHI Grant

Number 15H02787.

References
[1] Y. Sonoda and D. Ikeda, “Predicting Latent Trends of Labels in the

Social Media Using Infectious Capacity,” International Journal of
Future Computer and Communication, vol. 4, no. 6, pp. 374–380,
2015.

[2] M. E. J. Newman, “Power Laws, Pareto Distributions and Zipf’s Law,”
Contemporary Physics, vol. 46, pp. 323–351, 2005.

[3] D. Sornette, Rank-Ordering Statistics and Heavy Tails. Springer,
2000, ch. 6 of Critical Phenomena in Natural Sciences.

[4] A.-L. Barabási and R. Albert, “Emergence of Scaling in Random
Networks,” Science, vol. 286, pp. 509–512, 1999.

[5] D. Easley and J. Kleinberg, Networks, Crowds, and Markets: Reason-
ing about a Highly Connected World. Cambridge University Press,
2010.

[6] E. M. Rogers, Diffusion of Innovations, 3rd ed. Free Press, 1982.
[7] F. M. Bass, “A New Product Growth for Model Consumer Durables,”

Management Science, vol. 15, no. 5, pp. 215–227, 1969.
[8] M. Gladwell, The Tipping Point: How Little Things Can Make a Big

Difference. Little Brown, 2000.
[9] A. Ishii, H. Arakaki, N. Matsuda, S. Umemura, T. Urushidani, N. Ya-

magata, and N. Yoshida, “The ‘Hit’ Phenomenon: a Mathematical
Model of Human Dynamics Interactions as a Stochastic Process,” New
Journal of Physics, vol. 14, 2012.

[10] J. J. Brown and P. H. Reingen, “Social Ties and Word-of-Mouth
Referral Behavior,” Journal of Consumer Research, vol. 14, no. 3,
pp. 350–362, 1987.

[11] H. Yamamoto, S. Nishida, S. Morioka, and S. Yamakawa, “The Effect
of "Perceived Recognition Rate" on Consumer Behavior,” Journal of
Marketing Science, vol. 19, no. 1, pp. 73–89, 2011, in Japanese.

[12] R. Akiyama and K. Sugiyama, Holistic Communication. Sendenkaigi,
2004, in Japanese.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 373

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 373

ISBN: 1-60132-444-8, CSREA Press ©

Sales

F
re
q
u
e
n
c
y

0 5000 10000 15000 20000 25000 30000

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

label50

nolabel

label50

nolabel

Fig. 7: Histogram of sales for simulations without labels (the blue histogram) and with labels (the red one)

Table 3: Statistics with or without labels.

average median skewness

without labels 7540.16 7895 -0.4017727

with labels 8042.85 7056 0.6286133

374 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

374 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

Time Series Analysis on the Determinants of
Environmental Costs Expenditure Using Text

Mining Technique

Toshiyuki MAEDA∗, Naoya KAWAKAMI∗, Yoshimi CHUJO∗, and Eunjee PARK†

∗ Faculty of Management Information, Hannan University, Japan

† Faculty of Economics, Kagawa University, Japan

Abstract—This study aims to read from environmental report
which corporate management policy and strategy would promote
the motivation of corporate behavior, especially the environment-
related activities by listed companies. To do that, we analyze the
relation between qualitative data and quantitative description
using text mining technique. Our study aims to derive the result
of more detailed analysis to confirm the change of positiveness
factor by analyzing with text mining technique such as cor-
responding analysis, for environmental report in 2000-2011 in
Japan. Time series analysis reveals that as CSR concept is widely
disseminated, the focus of massage shifts from pollution aids to
more comprehensive activities, which implicitly indicates that the
environmental report is currently recognized as a useful tool to
effectively communicate a firm’s social activities.

Keywords: Environmental report; Corporate Social Responsibility;

Text mining; Corresponding analysis

I. INTRODUCTION

This study aims to read from environmental report which

corporate management policy and strategy would promote the

motivation of corporate behavior, especially the environment-

related activities by listed companies. To do that, we analyze

the relation between qualitative data and quantitative descrip-

tion using text mining technique.

These days, disclosure of social-related information by

company has been expanding by dissemination of Corporate

Social Responsibility (CSR). In other hand, the method of

text mining in various researches has spread as main tool of

information gathering. However, this text mining has hardly

been applied in management study fields except marketing.

Shirata et al. analyzed the annual securities report qualita-

tively and descriptively, and tried to read the type of corporate

behavior from text data. In general, many studies which

have analyzed the annual securities report are interested in

quantitative data, the financial information included. Her study

used the text mining with several kinds of indices to extract

keywords to characterize the bankrupt company and going

concern [1]. The results from her analysis provide a new clue

for management studies in Japan that they are able to analyze

the dynamism of corporate behavior in a different viewpoint.

To retain and improve various society and environment-

related activities is becoming a factor to gain an advantage of

the corporate competitiveness. This attribute will be reflected

in the information of company’s disclosure [2]. For example,

Kitora [3] analyzed the descriptive answer of CSR policy in

“the CSR Corporate Survey 2006” of Toyo Keizai Shinpo Sya

with the text mining.

In contrast, Murai et al. even analyzed the factor to define

the positiveness. They regarded the amount that companies

pay for the environment conservation cost as a proxy of the

positiveness for environmental activities in Japanese com-

panies. They extracted directly keywords which support the

positiveness from the description of environmental report, and

then analyzed with the environmental information [4]. To

develop further, our study aims to derive the result of more

detailed analysis to confirm the change of positiveness factor

by analyzing with text mining technique for environmental

report in 2000-2011 in Japan.

II. ENVIRONMENTAL REPORT

A. Definition of the environmental report

Ministry of the Environment in Japan defines as follows in

the Environmental Reporting Guidelines (2012 Version) [5];

Environmental reporting allows enterprises to fulfill their ac-

countability to society as businesses that use natural resources,

to provide stakeholders with useful information that may affect

their judgment, and to promote environmental communication

with them.

These days, environmental report is becoming a basic

tool in environmental communication between company and

stakeholders including consumer. Many companies disclose

“the sustainability report,” or “the social and environmental

report,” or “the CSR report” except “the environmental report”

which describes initiatives intended to fulfill CSR. We study to

regard them as environmental report because any report used

for environmental reporting, regardless of name, is regarded

as “an environmental report” in the guidelines [5].

The main contents of the environmental report are always

“environment issues” , but they also add economic and social

aspects related the environment in the 2012 version. Our study

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 375

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 375

ISBN: 1-60132-444-8, CSREA Press ©

omits explanations for particular items because the subject is

not all of them. The environmental accounting information of

our study’s subject is in “the Economic Contexts of environ-

mentally focused management” in the new guideline.

B. Environmental accounting

Ministry of the Environment in Japan defines as follows in

the Environmental Accounting Guidelines (2005 Version) [6];

Environmental accounting aims at achieving sustainable

development, maintaining a favorable relationship with the

community, and pursuing effective and efficient environmental

conservation activities. These accounting procedures allow a

company to identify the cost of environmental conservation

during the normal course of business, identify benefit gained

from such activities, and provide the best possible means of

quantitative measurement (in monetary value or physical units)

and support the communication of its results.

In other words, environmental accounting is the system

to measure how much capital investment and what kind of

the environmental conservation activities, and provide them

to inter- and intra-company stakeholders. Even if the inter-

company stakeholders can read the environmental accounting

and will understand the situation of environmental conserva-

tion activities of the company. These days, many companies

in Japan adapt this environmental accounting system.

The reasons why companies introduce the environmental

accounting and disclose the information are as follows. First,

companies need to grasp and evaluate cost vs benefit in aspects

of environmental activities for themselves. These can be by

using in monetary value or physical units for environmental

conservation activities, environmental conservation benefit and

economic benefit. Second, companies have an accountability

widely for society in aspects of CSR, so companies dis-

close the information by environmental accounting as one of

methods to accomplish the accountability. Third, the society

with comprised various stakeholders asks the environment-

related information. Consumers who are interested in the

environmental issue would positively buy the environmentally

focused products and services. Investors who are interested

in the environmental issues would positively have one of

information when they choice the invested company. Like

these, companies and stakeholders would need to use the

environmental accounting [7].

The contents of environmental accounting information in

environmental report are comprised of “the Environmental

Conservation Cost” , “the Environmental Conservation Ben-

efit” , and “the Environmental Benefit Associated with En-

vironmental Conservation Activities” . Our study target that

companies pay “the Environmental Conservation Cost” of

them. The environmental conservation cost is divided into the

investment and costs, measured in monetary value, allocated

for the prevention, reduction, and/or avoidance of environmen-

tal impact, removal of such impact, restoration following the

occurrence of a disaster, and other activities [6].

III. RESEARCH METHODOLOGY

A. Research target

In this study, we use environmental reports published in

2010, which are based on the period from April in 2009 to

March in 2010. We especially focus on "top messages" in

environmental reports as the targets of text mining analysis.

"Top messages" present swearness of CEO to consumers

and stake-holders, and concentrated Those imply that contents

of environmental reports

Among the companies which present environmental reports

for 12 years on Web, we sorted companies which make groups

more than five companies per one group.

We thus have ten groups such as home electric industry,

precise industry, chemical industry, transportation industry,

communication industry, control industry, other electric indus-

try, construction industry, food industry, metal industry.

We collect the environmental report data from various

Web sites such as corporation Web pages linked from METI

(Ministry of Economy, Trade and Industry), Internet Archives,

and so on.

B. Research method

We extract the top messages of the environmental reports

mentioned above, and make groups from those reports with

three high ranks and low ranks at the environmental cost ratio

with the sales amounts.

We furthermore divide into three periods of each four-year

time so that it is easy to capture the trend of changes, and

then analyses with respect to the change of the top messages

for 12 years.

The reason we analyze the ratio of environmental cost in

the sales, is that analysis should be independent with company

size, and should find the characteristics of the environmental

cost ratio for each industry.

In addition, the reason for the split 12 years into three

periods by four years for the analysis of time series is that

the number of documents for each period is easily comparable

because of the same amount of documents, and the number

of groups is not so much for the analysis of the time series

variation.

Extracted data from the top message are grouped and

normalized as follows.

1) Cost ratio is it be classified in descending order and

small order in three companies group of every industry.

Each group is named as "upper group" and "lower

group" respectively.

2) 12 years are divided into the period of 2000 - 2003, 2004

- 2007, and 2008 - 2011 by the year of report publication

with the above groups. Each period is named as “former

period”, “middle period”, and “later period” respectively.

3) Morphemes extracted from the top message are limited

only to nouns (except proper noun, person’s name, and

place name) and adjectives.

4) The word usage frequency for each report is normalized

with 200 words, and the top 50 words are extracted by

376 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

376 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

usage frequency, though some keywords, which do not

make sense for analysis purpose such as "year", "billion"

and so on, are omitted.

5) Above extracted Keywords are checked, and the key-

words that are used in more than one group are picked

up.

After above arrangement, the corresponding analysis are

performed to confirm visually the relationship between the

keywords and the frequency of respective group.

In addition, the analysis for multi-sector is performed as

described above, and then groups are re-summarized based on

the per-cost ratio. After that the correspondence analysis are

performed in the same manner as above.

To enable to compare numerically with the environmental

conservation costs of the sample companies, we calculate the

"cost rate (%) = [environmental conservation costs] / [sales]

* 100".

This allows us to compare how much the environmental

conservation cost is spent by companies comparing to the

percentage expenditure to sales.

C. Analysis method

First of all, sentences must be split into words to analyze

with the text mining techniques. If words are separated by

white space as English, it is quite easy. However, we do not

write Japanese sentences leaving some space between words

or grammatical units so that it is very difficult to separate the

words correctly.

Therefore, we use a technique called morphological analysis

in order to extract words accurately from the sentence in

Japanese. The morpheme is the “the smallest semantic unit”

in terminology used in linguistics [8]. Accuracy to split from

the sentence to the morphemes (keywords) is achieved over

90 percent in the current state of the art.

D. Analysis environment

We introduce “RMecab”, “R” with “Mecab” module. “R” is

a programming language and its developing environment born

in 1992, and that has graphics making functions and statistical

techniques. In this study, "MeCab" is used for morphological

analysis, because word or phrase sets are said to be better than

letters to extract semantic information in Japanese.

IV. RESULTS AND DISCUSSION

A. Comparison of EC ratio

Table I exhibits the average proportion of environmental

costs expenditure to sales revenue (hereafter EC ratio) for each

industry. The mean EC ratio across industries is 0.90%, vary-

ing from 0.34% (precision equipment) to 1.87% (construction).

It is argued that over half of the sample firms expend over time

for the environmental conservation by as much as 1% of the

amount of sales.

B. Frequency of key words

Typically, the result of text mining is accompanied with the

frequency of key words gauged by the morphological analysis.

Focusing on those key words which appear many times in the

text usually provides a practical measure with which to know

the general characteristics describing the overall text. Hence,

this study initially classifies the sample firms of each industry

into 3 groups, which consist of top (HIGH), medium (MID)

and bottom (LOW) 3 firms in terms of EC ratio, to investigate

whether there is any relationship between environmental costs

expenditure and the word choices. As is explained in the

previous section, the sample period (2000-2011) is divided

threefold: first (2000-2003), second (2004-2007), and third

(2008-2011) period. Given the 3 firm groups and the 3 time

periods, this study normalizes the morphemes as well as the

key words extracted from the management message section

included in the environmental report. Then, it compares the

common characteristics of the words or morphemes across

these groups.

C. Correspondence analysis of industry specific words

Figure 1: Correspondence analysis of Construction.

Figure 1 shows the correspondence analysis of construction

industry. Construction is located in the left-hand side for

the first period and in the right-hand side for the second

and third period, indicating that the emphasis of the top

message has significantly changed between the periods. The

HIGH group appears for the first time near an array of words

such as ’reduction of environmental load’ or ’reduction of

wastes’, while the Great East Japan Earthquake and subsequent

economic stagnation likely make this group more involved in

the CSR activities. The LOW group also recognized issues

regarding the pollution from early stages, and started actions

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 377

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 377

ISBN: 1-60132-444-8, CSREA Press ©

Type Construction Chemistry Transport Iron & Metal Home Electric Food
Proportion(percent) 1.87 1.56 1.49 0.81 0.70 0.64

Type Control Machinery Communication Precision Machinery Others All
Proportion 0.53 0.49 0.34 0.52 0.90

Table I: Average proportion of environmental costs expenditure.

to resolve the issues by adopting more efficient environmental

techniques, but due to the occurrence of the earthquake such

activities come to be largely constrained. For transportation

device, subsequent to the first time period, there arises a

significant difference between the EC ratio groups. Especially,

the HIGH group consistently stresses the importance of the

’product concepts’ such as ’diesel engine’ or ’truck’, which

results in the nontrivial distance from the LOW group.

Figure 2: Correspondence analysis of chemical industry.

Figure 2 shows the correspondence analysis of chemical

industry. That indicates a disperse deployment of characteristic

words between time periods. From the second period, the

HIGH group begins to depart from the remaining two groups.

It is suggested from the words that this group tries to shift

its focus toward a new direction following the occurrence

of the great earthquake. Likewise, in the iron non-ferrous

industry, the HIGH group initially promotes activities such

as ’energy-saving’ or ’recycling’, whereas switches the target

into ’CSR activities’ from the second period. On the other

hand, in the latter periods, the LOW group is surrounded by

those words, the contexts of which are somewhat inconsistent.

Consumer electronics is initially centered with how to resolve

the environmental problems, but from the second period, there

arises a significant difference between the HIGH and LOW

group: the former heads toward ’innovation’ and the latter

toward ’CSR activities’.

Figure 3: Correspondence analysis of food industry.

Figure 3 shows the correspondence analysis of food in-

dustry. Food would be a peculiar case in that there is no

identifiable difference except for the inter-temporal one. Alter-

natively, whether to spend for the environment does not matter

for food firms, and common targets such as ’responsibility’

(second period) and ’consumers’ health’ (third period) are

shared. Anyhow, the words seem to commonly represent the

strategic characteristics of this industry.

Figure 4 shows the correspondence analysis of control

equipment industry. As for controlled equipment, the words

appearing in the third period considerably departs from those

characterizing the beginning two periods. Currently the HIGH

group mainly advocates innovation and the LOW group is

stuck to customer services.

Figure 5 shows the correspondence analysis of communi-

cation industry. As for communication, similar to the con-

struction, the distinction of words manifests itself between the

first and subsequent time periods but there is little difference

between the EC ratio groups. In the latter periods, the dis-

aster recovery actions might become a common objectives to

undertake for both HIGH and LOW groups.

Figure 6 shows the correspondence analysis of precision

machine industry. As for precision mechanical equipment,

the same trend can be observed in that there is a significant

378 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

378 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

Figure 4: Correspondence analysis of control equipment

industry.

Figure 5: Correspondence analysis of communication indus-

try.

Figure 6: Correspondence analysis of precision machine

industry.

divergence between the first and subsequent periods. Simul-

taneously, even in the latter period, while the HIGH group is

located near many words addressing various kind of visions

this group encompasses, the LOW group is surrounded by

a few words, which indicates that this group is encountered

with some difficulties in actively conducting environmental

activities since the occurrence of the earthquake.

V. CONCLUDING REMARKS

This study applies the text mining to exploring what kind

of key words exclusively characterize the top management

message attached to the environmental report which Japanese

firms have disclosed. Not only addressing the key words, it

also visualize the relationship between the words and the

firm group based on how much expenditure is devoted for

environmental activities.

As Murai et al. suggest, the more a firm expends for

environment, the more involved it would be in developing

new products and commercializing such products as well as

more interested in the CSR activities [4]. Oppositely, the less

expenditure for environment means that the firm does not

envisage any clear objectives to conduct the environmental

conservation and CSR activities.

Time series analysis reveals that as CSR concept is widely

disseminated, the focus of massage shifts from pollution aids

to more comprehensive activities, which implicitly indicates

that the environmental report is currently recognized as a

useful tool to effectively communicate a firm’s social activities.

In addition, despite the variability of targets in developing

new products across industries, Japanese firms become more

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 379

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 379

ISBN: 1-60132-444-8, CSREA Press ©

sensitive regarding the extent to which they should understand

the needs of their surrounding society as well as they can

receive the approval from the community. In this sense, this

study gives some realities to CSR literature by linking the

amount of environmental cost expenditure to the text with

which management speaks to not only shareholders but also

communities.

The limitations of the study should also be noted. The

sample included in the analysis consists of only ten industries

which are deemed to be substantially subject to environmental

regulations, so the results derived above do not suffice to ad-

dress a general conclusion about the motivations for Japanese

firms to invest more in environmental activities. Further, this

study deals with the environmental report available on line:

those reports undisclosed via website are hardly acquired. A

potential sample selection bias might work toward favoring

those key words reported in the previous section. The future

study would be directed to incorporate the missing samples

and elaborate on the results presented in this study.

ACKNOWLEDGMENT

Part of this research was supported by JSPS KAKENHI

Grant Number 15K03802. This research was also partially

conducted under a sponsorship of Grant of Institute of Indus-

trial and Economic Research, Hannan University. The authors

greatly appreciates the supports.

REFERENCES

[1] Y. Shirata, H. Takeuchi, S. Ogino, and H. Watanabe, “Financial analysis
using text mining technique : Empirical analysis of bankrupt companies
(in japanese),” Business Analysis Association Annual Report, vol. 25, pp.
40–47, 2009.

[2] T. Toyosumi, Strategic Environment Management. Chuo Keizaisha, 2007.
[3] Y. Kitora, “Classification of companies based on the basic corporate

social responsibility (csr) policy by using the text mining approach (in
japanese),” Journal of Socio-Informatics, vol. 13, no. 1, pp. 17–29, 2009.

[4] T. Murai, Y. Chujo, E. Park, and T. Maeda, “An analysis of environmental
reports using text mining methods [in japanese],” in Abstracts of Annual
Conference of Japan Society for Management Information 2011f, 2011,
pp. F3–2.

[5] G. o. J. Ministry of Environment, “Environmen-
tal reporting guidelines (fiscal year 2012 version),”
http://www.env.go.jp/en/policy/economy/erg2012.pdf, 2012.

[6] ——, “Environmental accounting guidelines 2005,”
https://www.env.go.jp/en/policy/ssee/eag05.pdf, 2005.

[7] H. Ishibashi, Environment and Consumers (in Japanese). Keiou Gijuku
University Publishing, 2010.

[8] M. Ishida, Introduction of Text Mining Using R (in Japanese). Morikita
Shuppan, 2009.

380 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

380 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

Feature Selection for Diffuse Lung Disease using Exchange Markov
Chain Monte-Carlo Method

Makoto KOIWAI1, Nodoka IIDA1, Hayaru SHOUNO1, Shoji KIDO2

1 Graduate School of Informatics and Engineering, University of Electro-Communications,

Chofugaoka 1-5-1, Chofu, JAPAN
2 Graduate School of Medicine, Yamaguchi University,

Tokiwadai 2-16-1, Ube, JAPAN

Abstract— Diffuse lung disease (DLD) in high resolution
computed tomography images show a lot of variations even
in the same class, and this variations make difficulty in
diagnosis. In this study, we treat a effective feature selection
problem for this DLD pattern classification using machine
learning approach. In order to obtain the best feature selec-
tion for classification, we should search whole combination
of features, which requires exponential order calculation
cost. Recently, Nagata et al. proposed an application of
Exchange Markov Chain Monte Carlo (ExMCMC) method
for this problem, and suggested that they reveals hidden fea-
ture structures for classification. Thus, we tried their method
to select the effective feature combination for each DLD
classification from 39 types of features, which are obtained
from typical texture analysis method in the image processing.
As the result, we obtained the effective feature combination
candidates for each DLD classification problem.

Keywords: Feature Selection, Medical Image, replica exchange

MCMC

1. Introduction
In this research, we apply a feature selection method to

classify the diffuse lung disease (DLD). The DLD is a kind

of inflaming which is spread in the wide are of the lung. In

the last stage of the DLD, the disease site lose function of

lung and the patient becomes hard to recover, so that early

detection of the DLD is desired[1][2]. To diagnose the DLD,

the high resolution computed tomography (HRCT) images

are regarded as the effective detection of DLD, because

diagnosing physician can diagnose the spreading site of the

candidate area from several directions. However, there exists

large varieties of the DLD patterns on the HRCT image.

Thus, the early detection influenced to the skill of physician

who should diagnose whole lung volumes, which has over

hundreds HRCT slice images. Moreover, the introducing the

second opinion system increase the burden of the physician.

So the computer aided diagnosis (CAD) system for DLD

is desired to construct. In order to apply this requirement,

many researchers introduce pattern classification technology

into the DLD diagnosis[3][4][5][6].

In the field of machine learning, the pattern classification

technology consists of both feature extraction part and clas-

sifier part[7]. In these decades, several classifiers, such like

support vector machine (SVM), logistic regression, Bayes

method and so on, are discussed. However the discussion

about feature extraction and selection method looks not

enough. So, we focus on the feature selection method to

find a good feature set for classification for DLD patterns.

In the previous works, Sugata et al. proposed a set of

texture features for DLD pattern representation and apply

it for classification with Naive Bayes method[1]. Wada

and Hayakawa applied semi-supervised learning method

for this feature representation[2][8]. In their research, they

pointed out that using the full set of feature representa-

tion makes worse classification rather than that of some

selected features. Wada et al. uses only about 4 selected fea-

ture for their experiment. The excess feature representation

makes classification performance worse. This phenomenon

is known as “curse of dimensionality”. so that, the feature

selection is important factor for classification performance

essentially. The most rigid method for feature selection is

using a Brute-force style method. Ichikawa et al. applied the

exhaustive search of features for classifying attention deficit

hyper-activity disorder (ADHD) from electroencephalogram

(EEG)[9]. Unfortunately, the feature selection method is a

kind of combinatorial problem, which requires exponential

order calculation for exact solution search, which is some-

times called Brute-force search.

Therefore, the larger the number of whole feature set

becomes, the more difficult the feature selection becomes.

For this feature selection problem, Nagata et al. applied a

Markov Chain Monte Carlo (MCMC) sampling with replica

exchange system[10][11]. Hereinafter, we call that MCMC

method as ExMCMC (replica Exchange MCMC) method.

The ExMCMC is known as a powerful sampling method,

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 381

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 381

ISBN: 1-60132-444-8, CSREA Press ©

Test
Test

Test
Test

CV score = Average Accuracy for Test Patterns

Fig. 1: Measuring method for generalization error using

cross validation. Cross validation divides dataset into two

parts called “training” and “test” samples. The training set

is applied for constructing the classifier, and the test is for

evaluation.

CT image

ROI

Texture Features
Gray-level Hist.
Gray-level difference stat.
Co-Occurance Matrix...

Classifier with selected feature
(Linear SVM)

Selection Vector s

Classification Performance
(CV score)

Cost function H(s)

State Variable s

Enumeration with
Ext Search/MCMC

Fig. 2: Schematic diagram of ES-SVM method with MCMC.

Regarding the CV score as a kind of cost function H(s),

our purpose is to find better solution candidates {s}, which

provides low H(s)

which runs the parallel MCMC in several relaxed conditions,

and exchange states between parallelized run when several

conditions are satisfied. Nagata et al. introduces the ExM-

CMC method for detecting information carrier neuron in the

brain[10]. Thus, in this research, we apply ExMCMC based

feature selection method for texture feature representation

for DLD patterns, and evaluate the feature for classification.

2. Method

In this section, we explain feature selection method.

The key idea comes from feature selection with exhaustive

search with SVM [9][10], and ExMCMC method for sample

enumeration.

2.1 Feature extraction with Exhaustive Search
SVM method

The most sure method for feature selection is to apply

exhaustive search which means “Brute-force” search. Here

let us consider the following situation, that is, we have D

features in the observation and want to find the most effective

features combination for classifying. Before constructing a

classifier, we must choose a feature set for the input of

the classifier. When we choose a feature set with some

method, we can evaluate the performance of the classifier

with cross validation (CV) method. Cross validation is a

kind of measure for generalization error[12]. Fig. 1 shows

a concept for cross validation method. When we divide K

sub-dataset, we can choose one subset as a ‘test set’ and the

other as a ‘training set’. We train the classifier with training

set and evaluate the classification performance with test set.

Thus, we can regard the classification performance for the

novel input pattern. But it contains some arbitrary selection

for the test set, so that we evaluate whole combination of the

training set and test set. The cross validation score means

the average of the whole combination of the classification

performance. This is the concept of the K-fold CV method.

The most sure way for feature selection is to search the

feature set, which shows the best CV score, from the whole

combination of feature sets. Ichikawa et al. search the most

effective for classifying ADHD disease from the 24 channel

EEG[9]. Also, Nagata et al. introduce this feature selection

method for picking up a neuron set in the brain to determine

the information carrier for face recognition.

Unfortunately, the calculation cost for search whole com-

binations becomes O(2D), so that this method requires ex-

ponential order calculation cost. The more convenient way is

to introduce some sparse prior, such like L1 prior, automatic

relevant determination (ARD), and so on. However, Nagata

pointed out the results of the L1 sparse logistic regression

and the one with ARD showed different results. From the

viewpoint of the accuracy of the feature set, we should not

discard the exhaustive search method if we can calculate

whole combination.

We introduce linear SVM as the classifier in this research.

Thus, hereinafter, we call the exhaustive search method

as “ES-SVM” method. The linear SVM is a simple linear

classifier which divide input space into a hyper-plane, which

is called decision boundary or discrimination plane, charac-

terized normal vector w and interception b. The decision

boundary is formulated as y(x) = wTx + b = 0. When a

novel input xnovel is input to the system, the SVM evaluate

whether the novel input is included in the target class or not

with the value of y(xnovel). If y(xnovel) > 0, the novel input

382 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

382 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

M = 1

0 ~ 0

Fig. 3: Landscape of the the replica exchange MCMC

method. The horizontal axis shows the state space, and the

vertical shows the cost function Hm(s). Preparing paral-

lelized Monte Carlo sampling system with different inverse

temperature systems, the state vectors move into another

local minima easily via low β system.

is in the target class. Thus, the training of the SVM is to

find an appropriate set of w, b with the principle of margin

maximization[13].

2.2 Sample Enumeration with replica exchange
Markov-chain Monte Carlo method

The problem for the exhaustive search for feature selection

is the exponential calculation cost. We introduce a kind

of Markov chain Monte-Carlo (MCMC) method for the

enumeration of the feature set. Fig.2 shows the schematic

diagram for the ES-SVM with MCMC method. In the figure,

we have D feature candidates. Thus, we represent a feature

set as state variable s = {sd}d=1...D in which each element

sd has binary value sd ∈ {0, 1} that means the selected

feature or not. Our purpose is to enumerate the s, which

minimize the CV score in the previous section. Thus, we

introduce the cost function H(s) as the CV score. Using

optimization method for minimization H(s), we can only

find one vector set of s. Our purpose is to find some

candidates set of s, so that, enumeration method is better

rather than the optimization. In this research we adopt a

Markov chain Monte Carlo (MCMC) sampling method for

enumeration. The procedure for the MCMC is summarized

as following:

1) Select one site s
(t)
i in the state vector s(t) where t

means the time index.

2) Prepare a candidate vector s∗ in which only s
(t)
i is

inverted from the vector s(t).

3) Calculate the costs H(s(t)) and H(s∗) and evaluate

the probability

r = min

(
1,

exp(−H(s∗))
exp(−H(s(t)))

)
. (1)

4) Generate an unit random value u ∈ [0, 1], and compare

u with the r. If u < r then accept the state s∗ as a

new state s(t+1), and the other case the state is hold

as s(t+1) = s(t)

5) Goto the 1st step while t satisfies the iteration limit

This method is known as Metropolis-Hasting (MH)

method[14], and hereinafter we call this successive pro-

cedures as Monte Carlo step (MCS). Using the MCMC

method, we can obtain samples {s(t)} which obeys the

probability p(s) ∝ exp(−H(s)).

The MH method is a strong method for enumerating,

however, it requires long calculation time to sample from

wide spreading multiple peak distribution. For transition

from a peak to another, there exists low probability region

in any transition paths. The driving force of the MCMC

depends on the odds ratio of the pre- and post- state in

eq.(1). So that, too much low probability region prohibits

desirable transition.

The replica exchange MCMC method is to overcome

the transition problem[11][10]. We introduce temperature

parameter T > 0 and its inverse β = 1/T . Considering

the probability with inverse temperature β of probability,

we can re-define the probability with weight by inverse

temperature p(s) ∝ exp(−βH(s)). The temperature β = 1

means our original cost function. When β becomes small,

the efficacy of the cost function H(s) also becomes small.

So the landscape of the weighted cost function βH(s)

becomes smooth. Fig.3 shows the concept of the replica

exchange method. We prepare L parallel replicated MCMC

system, and we run each MCMC with different temperature

Tl. After several MCS, we exchange several replica states.

As the result, we can obtain sample from wide spreading

multiple peak distribution via low temperature Markov-chain

transitions. The procedure for the ExMCMC is summarized

as following:

1) Prepare M replicated systems, and assign appropriate

inverse temperature 0 < β0 < β1 < · · · < βM−1 = 1.

Denoting each system status variable as sm where m

means the index of system.

2) Carrying out several MCSs under the probability of

p(sm) ∝ exp(−βmH(sm)) for mth system. Now, we

describe the exchange timing as τ .

3) Select one temperature site denoted as j.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 383

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 383

ISBN: 1-60132-444-8, CSREA Press ©

IIPs

(a) (b) (c) (d)
GGO Honeycomb

(e) (f) (g)
Emphysema

Fig. 4: Typical ROI samples for each class. Classes from (a)

to (d) are involved in the idiopathic interstitial pneumonias

(IIPs). Classes (e) and (f) is another disease. The class (g)

means the normal class.

4) Calculate transition probability W (s(τ)j , s
(τ)

j+1) as

W (s(τ)j , s
(τ)

j+1) = min (1, exp(−Δ)) (2)

Δ = (βj − βj+1)(H(s(τ)j)−H(s(τ)j+1)) (3)

5) Generate a unit random variable u′ ∈ [0, 1], and

compare it with W (sj , sj+1).

6) If u′ < W (s(τ)j , s
(τ)

j+1), exchange the states s(τ)j
and s(τ)j+1.

7) Goto 2 for several MCSs.

So that, this parallel MCMC mechanism work as a outer

loop of the each MH method. Applying the replica exchange

MCMC method, escape from the the local minima is just

easier rather than that of the single MCMC method.

3. Experiments
3.1 Materials

In this research, we prepare 360 labeled images.

Each class has following number of images: Consoli-

dation(CON):38, Ground-Grass-Opacity(GGO):76, Honey-

comb(HCM):49, Reticular(RET):37, Emphysema(EMP):54,

Nodular(NOD):48, and Normal(NOR):58 cases. We assume

the 32×32 [pixels] ROIs, and each ROI is segmented under

the direction of a physician, and diagnosed by 3 physicians.

The acquisition parameters of those HRCT images are as

follows: Each images are obtained from Toshiba “Aquilion

16” imaging device. Each slice image consists of 512× 512

pixels, and pixel size corresponds to 0.546 ∼ 0.826 [mm],

slice thickness are 1 [mm]. The number of patients is 69

males and 42 females with age 66.3± 13.4. The number of

normal donor is 4 males and 2 females with age 44.3±10.3.

The origin of these image data is provided Tokushima

University Hospital. Fig.4 shows segmented images of typ-

ical examples of each disease in HRCT image. The CON

and GGO patterns are often appeared with the cryptogenic

organizing pneumonia diseases (COPD). The GGO pattern is

also often appeared in the non-specific interstitial pneumonia

(NSIP). The RET pattern which sometimes includes GGO

patterns is also appeared in the NSIP. The HCM pattern has

more rough mesh structure rather than that of the crazy-

paving, and it appeared in the idiopathic pulmonary fibrosis

(IPF) or the usual interstitial pneumonia (UIP).

3.2 Texture features from Region of Interest
We introduce several texture representations proposed by

Sugata et al. for features[15][1]. From the input HRCT

ROI image, we calculate gray-level histogram, gray-level

difference statistics, the co-occurrence matrix, run length

matrix, and Fourier power spectrum, at first. After that,

from these 5 quantities, we derive 39 texture statistics as

the candidates for features[1]. From each of the gray-level

histogram, gray-level difference statistics, Fourier power

spectrum for the radial direction and for the angle, we extract

mean, contrast, variance, skewness, kurtosis, energy and

entropy. From the co-occurrence matrix, we extract energy,

contrast, correlation, variance, entropy. From the run length

matrix, we extract short/long run emphasizes, gray level no-

uniformity, run length no-uniformity, and run percentage.

3.3 Configuration of replica exchange Markov
Chain Monte Carlo method

We prepare M = 7 temperature replica systems, and

iterate Tmax = 20, 000 times. We use ‘libsvm’ as the linear

SVM implementation. We use the default parameters for the

SVM. For the CV method, we apply 10-fold CV score as the

cost function H(s). The number of target class is 7, so that

we adopt ’one-versus-rest’ (OVR) classification method. The

OVR method construct the class specific classier, so that, the

one classifier identify the input is belongs to the class or not.

4. Results
Fig.5 shows the result of the density of H(s) with

ExMCMC method. Each figure shows the density histogram,

and the horizontal axis shows the CV score, and the vertical

one shows the density. The solid bar shows the histogram

and the red line shows the estimated density with Gaussian

kernel method. The top row shows the results for CON,

GGO, HCM, RET classes, and the bottom shows the ones

for the EMP, NOD, and NOR classes. The left limit of each

384 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

384 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

Fig. 5: Density of target cost function H(s) for each class. The horizontal axis shows the CV error, and the vertical shows

the density. In each figure, the solid bars show the density histogram, and the red curve shows the estimated density with a

Gaussian kernel.

Fig. 6: Selected features for each class with top-5 CV scores. The left column shows selected features for CON, HCM, EMP,

and NOR classes. The right shows for GGO, RET, and NOD classes. The black boxes show the locations of the selected

features in each class.

histogram shows the best CV score for the class. We can

see the CON class is easy to classify since it has a lot of

CV = 0 state. Moreover, the CON class is insensitive to the

feature selection because it has a lot of state in the CV = 0

mode. On the contrary, we can see the construction of the

other classifier is not so easier than the CON class. The

minimum CV state has not so very few state, and we confirm

the performance is very sensitive to the feature selection.

Especially, we can also see the both GGO and NOD classes

are hard classify since the left limit value of the histogram

has the just larger than the other histograms.

Fig.6 shows the selected features for top-5 CV scores.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 385

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 385

ISBN: 1-60132-444-8, CSREA Press ©

The left column shows the result for CON, HCM, EMP,

and NOR classes. The right one shows for GGO, RET, and

NOD classes. Each horizontal axis shows the feature indices.

Features from 0 to 5 come from co-occurrence matrix, from

6 to 10 come from run-length matrix, from 11 to 17 come

from gray-level histograms, from 18 to 24 come from gray-

difference statistics, and from 25 to 38 come from Fourier

power spectrum. For CON class, the almost all features ex-

cept coming from run-length matrix looks effective features.

For GGO class, the gray-difference statistics, and the Fourier

power spectrum in the angle direction looks important. For

HCM class, gray-level histogram, gray-difference statistics,

and Fourier power spectrum in the angle direction are impor-

tant. For RET class, gray-level histograms, gray-difference

statistics, and Fourier power spectrum in the radial direction

are important. For EMP class, the co-occurrence matrix,

and Fourier power spectrums might be important. For NOD

and NOR classes, the co-occurrence matrix, and gray-level

histogram might be important.

5. Conclusion & Discussion
In this research, we propose a feature selection method

in the manner of Nagata’s method. The original idea of

this feature selection method comes from exhaustive search,

however the calculation complexity of the feature selection

problem is O(2D) where D means the number of total

features. For small D, we can search the best combina-

tion with exhaustive search, but it becomes hard when D

becomes large. So, we introduce replica exchange MCMC

method for enumeration. Applying the MCMC method, we

can obtain the density curve as well as the quasi-optimal

solution. We can see the how many solutions around the

quasi-optimal solution, so that, we can guess the difficulties

of the classification problem.

In the future work, we should compare the result with

the feature selection using some classification methods with

sparse prior. Introducing a sparse prior is a powerful method,

however, sometimes the solutions comes from different

sparse priors show different feature selection[10]. So that,

we should take it carefully. In such case, the result for the

ExMCMC method might be a good indicator.

Acknowledgment
We thank Professor Junji Ueno, Tokushima University.

He provided several advice for this study as well as a set of

high resolution HRCT image of IIPs. This work is supported

by Grant-in-Aids for Scientific Research (C) 16K00328, and

Innovative Areas 16H01452, MEXT, Japan.

References
[1] Y. Sugata, S. Kido, and H. Shouno, “Comparison of two-

dimensional with three-dimensional analyses for diffuse lung

diseases from thoracic ct images,” Medical Imaging and Information
Sciences, vol. 25, no. 3, pp. 43–47, 2008. [Online]. Available:

http://ci.nii.ac.jp/naid/130000097652/en/

[2] M. Wada, H. Shouno, and S. Kido, “An idiopathic interstitial pneumo-

nia classification for ct image by use of a semi-supervised learning,”

in Intl. Forum on Medical Imaging in Asia (IFMIA), November 2012,

pp. P1–34.

[3] M. J. Gangeh, L. Sorensen, S. B. Shaker, M. S. Kamel, M. de Bruijne,

and M. Loog, “A texton-based approach for the classification of

lung parenchyma in ct images,” in MICCAI, ser. LNCS 6363, no. 3.

Springer-Verlag Berlin Heidelberg, 2010, pp. 595–602.

[4] R. Xu, Y. Hirano, R. Tachibana, and S. Kido, “Classification of diffuse

lung disease patterns on high-resolution computed tomography by a

bag of words approach,” in MICCAI, vol. 14. Springer-Verlag Berlin

Heidelberg, 2011, pp. 183–190.

[5] H. Shouno and M. Okada, “Bayesian Image Restoration for

Medical Images Using Radon Transform,” Journal of the Physical
Society of Japan, vol. 79, p. 074004, 2010. [Online]. Available:

http://jpsj.ipap.jp/link?JPSJ/79/074004/

[6] H. Shouno and S. Kido, “Semi-supervised based learning for Idio-

pathic Interstitial Pneumonia on High Resolution CT images,” in In
Proc. PDPTA, Jul. 2015, pp. 270–275.

[7] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification (2nd
edition), 2nd ed. Wiley-Interscience, 2000.

[8] Y. Hayakawa, H. Shouno, and S. Kido, “Classification of Idiopathic

Interstitial Pneumonias using Transductive Support Vector Machine

(in Japaese),” IEICE Tech. Rep. (MI), Tech. Rep. 271, Oct 2012.

[Online]. Available: http://ci.nii.ac.jp/naid/110009636793/

[9] H. Ichikawa, J. Kitazono, K. Nagata, A. Manda, K. Shimamura,

R. Sakuta, M. Okada, M. Yamaguchi, S. Kanazawa, and R. Kakigi,

“Novel method to classify hemodynamics response obtained using

multi-channel fNIRS measurements into two groups: Exploring the

combinations of channels,” Frontiers in Human Neuroscience, vol. 8,

p. 480, 2014.

[10] K. Nagata, J. Kitazono, S.-i. Nakajima, S. Eifuku, R. Tamura, and

M. Okada, “An exhaustive search and stability of sparse estimation

for feature selection problem,” IPSJ Transactions on Mathematical
Modeling and Its Applications, vol. 8, no. 2, pp. 23–30, 2015.

[11] H. Koji and N. Koji, “Exchange monte carlo method and application

to spin glass simulations,” Journal of the Physical Society of
Japan, vol. 65, no. 6, pp. 1604–1608, 1996. [Online]. Available:

http://dx.doi.org/10.1143/JPSJ.65.1604

[12] M. Stone, “Cross-validation: A review.” Math.Operations.Stat.Ser.Stat,
vol. 9, no. 1, pp. 127–139, 1978.

[13] V. Vapnik, The Nature of Statistical Learning Theory. Springer, 1995.

[14] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller,

and E. Teller, “Equation of State Calculations by Fast Computing

Machines,” The Journal of Chemical Physics, vol. 21, no. 6, pp. 1087–

1092, 1953.

[15] R. Uppaluri, E. Heitmman, M. Sonka, P. Hartley, G. Hunninghake,

and G. Mclennan, “Computer recognition of regional lung disease pat-

terns.” American Journal of Respiratory and Critical Care Medicine,

vol. 160, no. 2, pp. 648–654, 1999.

386 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

386 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

Architecture Design of Deep Convolutional Neural Network for
Diffuse Lung Disease Using Representation Separation Information

Satoshi Suzuki1, Nodoka Iida1, Hayaru Shouno1, and Shoji Kido2
1 Graduate School of Informatics and Engineering, University of Electro-Communications,

Chofugaoka 1-5-1, Chofu, 182-8585, JAPAN
2 Applied Medical Engineering Science, Graduate School of Medicine, Yamaguchi University

Tokiwadai 2-16-1, Ube, 755-8611, JAPAN

Abstract— In this work, we propose a new architecture
design of Deep Convolutional Neural Network (DCNN) with
representation separation information of intermediate layers.
The DCNN is one of the multi-layer neural network models.
In recent years, the DCNN is attracting attention by its state-
of-the-art performance in the image and speech recognition
tasks. For example, Krizhevsky et al. showed the state-of-
the-art performance in the large scale image recognition
in 2012 [5]. However, the design for the architecture of
the DCNN has not been discussed much since we have
not found effective guideline to construct. We try to modify
the architecture of the DCNN for the Diffuse Lung Disease
(DLD) image classification task [9], [8], and confirm that
the modified DCNN shows better performance than that of
the original one.

1. Introduction
In recent years, the performance of the image classifica-

tion task has dramatically improved by Deep Convolutional

Neural Network (DCNN) models [3]. Most notable work,

which is known as the AlexNet that was proposed by

Krizhevsky et al., shows the highest performance in the

image recognition task contest called the ILSVRC (Ima-

geNet Large Scale Visual Recognition Challenge) 2012 [5].

In the contest, the AlexNet shows far and away the best

score, which is 16.4% error rate, compared to the 2nd place,

which is 26.1%. The DCNN has the almost same structure

to the Neocognitron proposed by Fukushima [4], [6], which

can automatically extract feature expression from input data.

The DCNN is now going to become a de facto standard
classification tool in the image classification field, and the

related research has been increased [3]. Many of the learn-

ing algorithms for the DCNN have been proposed various

method since Fukushima proposed the basic structure [7],

however, in recent years, the error back propagation (BP)

method is typically used [6]. On the other hand, there is few

design guidelines with respect to the architecture of DCNNs.

So that, if we obtain a good clue for the architecture design,

we can reduce the number of trial-and-error times to obtain

a good DCNN for the specific purpose. For example, Zeiler

et al. focused on the weight shapes, which is described as

convolution kernel. They reduced the useless kernel, and

obtain the improved performance [10].

In this work, we focus on a within-class variance of

support vector machine (SVM) histogram representation

which is proposed in our previous work [8] for each layer.

In the previous work, we found the shape of the SVM

histogram becomes narrower throughout the DCNN pattern

transformation. Hence, we try to apply a quantity for repre-

sentation of the shape of SVM histogram as a clue of the

DCNN architecture design. In this paper, we apply the idea

to the classification problem of diffuse lung disease (DLD)

patterns, which typically appear with idiopathic interstitial

pneumonias (IIPs). Fig.1 shows an example of the CT

images of the DLD. The IIP spreads in the lung and is hard to

cure at the last stage. Thus, early detection and classification

are desired. For classifying DLD patterns, a high-resolution

computed tomography (HRCT) image is considered to be

effective since we can observe any cross section of the lung.

Unfortunately, the IIPs site is difficult to diagnose, since

the DLD patterns on HRCT image show a lot of variations

in terms of texture. So we apply DCNN for such complex

texture classification. However the obtaining cost of such

labeled data is expensive in the medical imaging since it

requires physicians’ decision for proper disease labels. It

is known that it is difficult to directly apply to large-scale

DCNN like AlexNet [8].

2. Method
2.1 Deep Convolutional Neural Network

Deep Convolutional Neural Network (DCNN) has the

similar structure to Neocognitron, which has a character-

istic connection weight structure described as a convolution

operation [4]. In this work, we fixed the training method for

the DCNN as the BP, which is used as the standard training

method in these decades [6]. Generally, the DCNN for the

visual task takes 2-dimensional image input, and the input

is transformed to the representation throughout the layers.

The output layer of the DCNN provides class probability for

the input image. Fig.2 shows a CaffeNet architecture used in

previous work. This CaffeNet is used as the baseline DCNN.

This CaffeNet has a similar architecture to the AlexNet [5].

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 387

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 387

ISBN: 1-60132-444-8, CSREA Press ©

Fig. 1: An example of the CT images of a patient diagnosed

with Diffuse Lung Disease (DLD). The right lung portion

on the left side, it can be seen that spreads out the white

lesions in the red border.

The DCNN consists of following four types of layers, that

is, “convolution”, “rectified linear unit (ReLU)”, “normal-

ized”, and “Polling” layers. The Convolution layer extracts

a feature representation from the previous layer with a set of

learned filters. The ReLU layer modifies the output of the

convolution layer. The response of the ReLU layer is de-

scribed as a rectified linear function (relu(x) = max(x, 0)).
The normalized layer is used as the optional layer, which is

for reducing the contrast variance. The pooling layer applies

max-pooling operation, which is used for reducing the effect

of the local pattern deformation.

2.2 Layer Response Representation with SVM
Histogram

This section explains about the SVM histogram for layer

representation in the DCNN [8]. In the previous works, we

introduced linear SVM for each layer in order to observe

how representations in the DCNN develops throughout layer

transformations. Let us consider about the linear SVM which

is for finding a descision boundary. The decision boundary is

decribed as y(x) = wtφ(x) + b = 0, where φ(x) denotes

the layer representation for the input pattern x. Here we

introduce t as the teacher signal, which is described as tn ∈
{1,−1} in the case of two-class classification problem where

n means the index for the test class pattern. In the feature

space, the decision boundary of the linear SVM is obtained

by maximizing the margin, 1/||w|| minn[tn(w
Tφ(xn)+b)]

[1].

In our previous work, we introduced a distance from the

decision boundary for each layer representation φ(x) as a

measure of discriminability, which is described as y(x) =
wTφ(x) + b where w and b are optimized by the linear

SVM. Then, we can obtain a test class projection {y(xn)}.

We analyze the projection {y(xn)} as a histogram in the

previous work[8]. Hereafter, we call it as “SVM histogram”

for layer representation. Using the SVM histogram for each

layer, we can visualize the distribution of each class data

for intermediate layer of the DCNN. Here, Fig.3 shows the

overview of the SVM histogram.

According to the previous work, the SVM histogram

becomes narrower through the hierarchical development

of representation in the DCNN layers. As the result, we

concluded the narrower representation of each class plays

important role for the class discriminability [8]. Therefore, in

this study, we focus on the within-class variance of the SVM

histogram as a design guideline for the DCNN architecture.

3. SVM Histogram of the CaffeNet
First of all, in order to evaluate the SVM histogram of the

CaffeNet, trained by only DLD images, we make the SVM

histogram of it.

3.1 Experiment Data
In this work, we used the HRCT images which were

intended for DLD, provided by Osaka University Hospital.

Under the doctor guidance, we labeled them into seven

classes. Fig.4 shows a typical image example of each disease

in HRCT image. The left shows an overview of the axial

HRCT images of lungs including lesion, and the right shows

segmented images of typical examples of lesion from the left

image collections. The consolidation (CON) and ground-

grass opacity (GGO) patterns are often appeared with the

cryptogenic organizing pneumonia diseases (COPD). The

GGO pattern is also often appeared in the non-specific

interstitial pneumonia (NSIP). The reticular (RET) pattern,

which also imply the NSIP, sometimes appears together with

partial GGO patterns. The honeycomb (HCM) pattern has

more rough mesh structure rather than that of the reticular

pattern, and it appears in idiopathic pulmonary fibrosis (IPF)

or usual interstitial pneumonia (UIP). Both of the nodular

(NOD) and emphysema (EMP) are not DLDs, however,

these patterns sometimes confuse physician, so that, we

include these classes into the experiment. The normal (NOR)

pattern appears in the normal tissue.

Under the doctor guidance, we split the HRCT images of

the DLD into the two data sets, “Dataset 1” and “Dataset

2” in Table 1, and collected training data of the DCNN

and validation data respectively. The seven-type lesions of

DLD patterns on each HRCT images on the selected slices

separately are marked by three radiologists. We extracted the

patch images of 32 × 32 [pixel] from these lesions, and used

as data. We call these images the ROI (Region of Interest)

images. However, since the lesions are not always cut out in

a square area of 32 × 32 [pixel], we selected the ROIs to be

388 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

388 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

Convolution
ReLU Normalize

Convolution
ReLU

Convolution
ReLU

Pooling

Pooling

Normalize Convolution
ReLU

Convolution
ReLU

Pooling

Fully-connected

conv1
ReLU1

pool1 norm1 conv2
ReLU2

pool2 norm2 conv3
ReLU3

conv4
ReLU4

conv5
ReLU5

pool5 fc8fc6
ReLU6

fc7
ReLU7

convi ReLUi
Pooli

Pooli-1

x k

l

x x

Fig. 2: Top: The summary of a kind of DCNN model CaffeNet. Bottom: The details of the process. In general, DCNN

model acquire feature representation by repeating the processing Convolution → ReLU → Pooling.

occupied by the marked lesion with 80% area. Table 1 shows

the number of collected ROI images. In Table 1, “Train”

data and “Validation” has different order of numbers of the

ROI images; this phenomenon is caused by the difference of

the extraction. “Train” data are ROIs extracted from HRCT;

ROIs are allowed to be overlapped itself when extracted. In

contrast, “Validation” data are no-overlapped ROIs.

3.2 Experiment
In this experiment, we train the CaffeNet with Dataset

1 Train data in Table 1 and we make the SVM histogram

with feature representation extracted from each intermediate

layer, explained in section 2.2, of this CaffeNet with Dataset

2 Validation data in Table 1.

3.3 Result and Evaluation
The figure on the left of the Fig.5 shows the result of the

SVM histogram for HCM vs RET classifier. Going through

the hierarchy the overlapping part of the SVM histogram

reduces, which implies that the classification performance

is improving. Further, double-headed arrows shown on the

top of the histogram are connecting the maximum and

the minimum value of the SVM histogram. In our pre-

vious work, we found that it gets narrower through the

hierarchical development of representation in the DCNN

layers. In this figure, we can see that the SVM histogram

becomes narrower in Pool1 and Pool2 than previous layers

respectively. However, after Conv3 layer, the shape of the

SVM histogram is almost unchanged, and class separation

does not progress at all. We consider that this phenomenon

prevents the improvement of the classification accuracy of

the CaffeNet.

However, these discussions are only from the qualitative

evaluation from the SVM histogram. In addition to this

qualitative evaluation, we also carried out quantitative eval-

uation. We made all combination of the SVM histogram like

HCM vs RET classifier shown in Fig.5, and summarize their

within-class variances as boxplot in the figure on the right

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 389

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 389

ISBN: 1-60132-444-8, CSREA Press ©

Table 1: Dataset size for training and evaluation. The dataset is provided by Osaka University Hospital. Each item shows

the number of ROIs, and the number of patients. For DCNN representation training, we extract square ROIs from the area

pointed to by the physicians with overlapping. For validation of SVM histogram, we also extract ROIs without overlapping.

Dataset 1 Dataset 2

Patients Train Val. Patients Train Val.

CON 13 143 26 14 247 16

GGO 14 609 46 14 443 53

HCM 10 282 73 9 782 32

RET 8 210 66 9 210 66

EMP 10 4406 296 11 3760 296

NOD 9 762 65 10 591 85

NOR 11 5371 355 11 4595 406

Total ——- 11783 927 ——- 10628 916

Discrimination plane

Support Vector

Margin

Train Data

Discrimination plane

Test DataProjection

Using same discrimination plane

Fig. 3: Linear SVM finds the support vector which maximize

the margin from feature space input data, and it make

discrimination plane between the support vectors (Top). We

create the histogram of the distance to the test data of

discrimination plane (Bottom).

of the Fig.5. The within-class variance got smaller in all

pooling layers, but it got larger in layers higher than Conv3.

4. Proposal Method and Accuracy Eval-
uation

In previous work, we attributed the improvement of the

classification performance of DCNN to the phenomenon

that the SVM histogram got narrower through the DCNN

hierarchy [8]. On the other hand, section 3.3 shows that

the CaffeNet with DLD ROIs cannot have such mechanism.

Specifically, we can observe that within-class variance did

not decrease in layers higher than Conv3. We think that

the phenomenon is due to the architecture tuning of the

CaffeNet not for DLD ROI recognition but for natural

images recognition. Therefore, we attempt to modify the

architecture design using the within-class variance for the

guideline of the SVM histogram shown in Fig.5. In Fig.5, we

can see that the within-class variance increase in Conv3 and

Conv4 layer. So we think that these two layers do not adapt

for DLD ROIs. Hence we propose a new DCNN architecture

by removing the Conv3 and Conv4 layer from CaffeNet as

shown in Fig.6 to tune for the DLD ROIs. In this section,

we compare the CaffeNet and our new architecture for DLD

ROIs classification.

4.1 Accuracy Evaluation

We train our new architecture shown in Fig.6 using train

data in Table 1 of section 3.1, and calculate the classification

accuracy of this DCNN with validation data in Table 1. Here,

we used the 2-fold Cross-Validation (CV) method using the

dataset 1 and 2 in Table 1 for calculation for classification

accuracy. Table 2 compares the accuracy between the con-

ventional CaffeNet and our proposal architecture. Here, we

use top-1 accuracy calculation.

In Table 2, our proposal architecture beats the conven-

tional CaffeNet. So this result shows that we succeeded to

modify the architecture for DLD ROIs.

390 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

390 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

IIPs

(a) (b) (c) (d)
GGO Honeycomb

(e) (f) (g)
Emphysema

Fig. 4: Typical CT images of diffuse lung diseases: The top row shows each overview, and the bottom shows the magnified

part (ROI) of each lesion. (a) to (g) represent Consolidation (CON) , GGO , Honeycomb (HCM) , Reticular

(RET) , Nodular (NOD) Emphysema (EMP) , and Normal (NOR) image, respectively.

Conv1

0
5

Pool1

0
5

Conv2

0
5

Pool2

0
5

Conv3

0
5

Conv4

0
5

Conv5

0
5

Pool5

0
5

Fc6

0
5

0
2

4
5

con
conv2

pool2
con

conv4
conv5

pool5
fc6

Layer

V

Fig. 5: Left: The SVM histogram of HCM class and RET class in CaffeNet. In the figure, each column shows the same layer

results, and each row shows same epochs results. In each graph, the horizontal axis shows the distance from the decision

plane, where the origin indicates the decision boundary, and the vertical axis shows the frequency of the test examples. Right:

Boxplot of the within-class variance of SVM histogram in all of the combination 7 classes in the feature representation

extracted from CaffeNet. The horizontal axis show layers, the vertical axis show the within-class variance.

Table 2: The accuracy comparison in the Top-1 accuracy of

our model and CaffeNet.
DCNN Accuracy

CaffeNet (5-conv + 3-full connect) 85.26 ± 2.16 [%]
Ours (3-conv + 3-full connect) 88.39 ± 0.01 [%]

4.2 Separation Analysis Using SVM Histogram
We try to modify the architecture using the within-class

variance of the SVM histogram. We confirm whether the

within-class variance of our proposal architecture decrease

or not. Hence we make the SVM histogram and boxplot

such as Fig.5 in Fig.7. The figure on the left of Fig.7

also shows the result of the SVM histogram of HCM vs

RET classifier. In this figure, the SVM histogram of our

proposal architecture looks narrower than CaffeNet. Most

notably, though the SVM histogram of the CaffeNet becomes

flat in Fc6 layer, the SVM histogram of our proposal

architecture make clear clusters. Therefore, as Table 2 it is

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 391

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 391

ISBN: 1-60132-444-8, CSREA Press ©

Fig. 6: Overview of the new DCNN architecture removing the conv3,4 layer from CaffeNet. The number of convolution

filters and neuron of fully-connected layer is not changed.

considered that the classification accuracy of our proposal

architecture beats the conventional CaffeNet. In the view

point of quantitative evaluation, the figure on the right of

Fig.7 shows that the within-class variance of our proposal

architecture decrease in all Pooling layers and is smaller

than the conventional CaffeNet. These results suggest that

our proposal architecture works as expected.

5. Summary and Discussion
In this study, we proposed a new architecture guideline us-

ing the representation separation for the architecture design

of DCNN, and modified the CaffeNet for DLD classifier.

As a result, the classification accuracy of our proposal

architecture beats that of the CaffeNet.

Architecture design of DCNN has not been made much

research, because it is difficult to determine the design

guideline, and the architecture design of DCNN had been

a black box. On the other hand, it is difficult to directly

apply DCNN to small datasets such as medical images,

because generally, DCNNs such as AlexNet and CaffeNet

have large scale free parameter. Thus in previous work,

we used transfer learning with natural images for training.

On the other hand, it is known that we are able to obtain

better classification accuracy when extracted features from

3D images such as DLD HRCT images, note that it is

different from DLD ROIs. We cannot apply the transfer

learning method for 3D datasets, because natural images

usually 2D images. However, our architecture design does

not use transfer learning method, hence, our method may be

extended for 3D images.

The residual problem is that the within-class variance in

Fig.7 is not lower than our previous proposal model [8]. We

think this problem is caused by not tuning various parameters

as well such as the number of filters, filter size and kernel

stride size. Hence, we consider that this problem will be

solved by tuning such parameters using Zeiler’s method [10].

Acknowledgment
This work is partly supported by MEXT/JSPS KAKENHI

Grant number 26120515 and 16H01542. We thank Osaka

University Hospital for providing valuable data for the

experiment.

References
[1] C. M. Bishop. Pattern Recognition and Machine Learning. Springer,

2006.
[2] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei.

ImageNet: A Large-Scale Hierarchical Image Database. In CVPR09,
2009.

[3] L. Deng and D. Yu. Deep learning: Methods and applications.
Technical Report MSR-TR-2014-21, Microsoft Research, May 2014.

[4] K. Fukushima. Neocognitron: A self-organizing neural network model
for a mechanism of pattern recognition unaffected by shift in position.
Biological Cybernetics, Vol. 36, No. 4, pp. 193–202, 1980.

[5] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification
with deep convolutional neural networks. In F. Pereira, C. J. C.
Burges, L. Bottou, and K. Q. Weinberger, editors, Advances in
Neural Information Processing Systems 25, pp. 1097–1105. Curran
Associates, Inc., 2012.

[6] Y. LeCun, B. Boser, J.S. Denker, D. Henderson, R. E. Howard,
W. Hubbard, and L.D. Jackel. Backpropagation applied to handwritten
zip code recognition. Neural Computation, Vol. 1, No. 4, pp. 541–551,
1989.

[7] H. Shouno. Recent studies around the neocognitron. In M. Ishikawa,
K. Doya, H. Miyamoto, and T. Yamakawa, editors, Neural Information
Processing, 14th International Conference, ICONIP 2007, Kitakyushu,
Japan, November 13-16, 2007, Revised Selected Papers, Part I, Vol.
4984 of Lecture Notes in Computer Science, pp. 1061–1070. Springer,
2007.

392 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

392 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

Conv1

0
5

Pool1

0
5

Conv2

0
5

Pool2

0
5

Conv3

0
5

Pool3

0
5

Fc4

0
5

0
2

4
5

con
conv2

pool2
con

fc4

Layer

V

Fig. 7: Left: The SVM histogram of HCM class and RET class in CaffeNet. The manners of figure is followed Fig.5. Right:

In the feature representation extracted from our proposal architecture, boxplot of the within-class variance of SVM histogram

which in all of the combination 7 classes.

[8] H. Shouno, S. Suzuki, and S. Kido. A transfer learning method
with deep convolutional neural network for diffuse lung disease
classification. In Neural Information Processing, 22nd International
Conference, ICONIP 2015, Istanbul, Turkey, November 9-12, 2015,
Proceedings, Part I, Vol. 9489 of Lecture Notes in Computer Science,
pp. 199–207. Springer, 2015.

[9] R. Xu, Y. Hirano, R. Tachibana, and S. Kido. Classification of diffuse
lung disease patterns on high-resolution computed tomography by a
bag of words approach. In MICCAI, Vol. 14, pp. 183–190. Springer-
Verlag Berlin Heidelberg, 2011.

[10] M. D. Zeiler and R. Fergus. Visualizing and understanding convolu-
tional networks. In Computer Vision - ECCV 2014 - 13th European
Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings,
Part I, pp. 818–833, 2014.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 393

ISBN: 1-60132-444-8, CSREA Press ©

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 393

ISBN: 1-60132-444-8, CSREA Press ©

Biometric Authentication based on
Multi-feature Combination using EEG

Yu Ishikawa, Kaori Nishibata, Masami Takata, Hiroyasu Kamo, Kazuki Joe

Nara Women’s University, Nara, 630-8506, Japan

Abstract – The Brain-Machine Interface (BMI) technology

directly linking brain and machine has been actively studied.

As authentication technologies are used in BMIs, we propose

a personal authentication method using electroencephalogram

(EEG). Research on EEG-based personal authentication has

advanced in many fields. In this paper, we try to improve the

accuracy of an EEG-based authentication with multi-feature

combination proposed in existing researches. An ensemble-

learning algorithm AdaBoost is used for multi-feature

combination. A more suitable classifier is generated by

considering the combination patterns of both features and

electrode placements. In addition, we propose an

authentication method using reliability calculated with

AdaBoost. This method obtained an Equal Error Rate of 2.0%.

Keywords: Biometric authentication, Brain waves, feature
extraction, AdaBoost

1 Introduction
 The Brain-Machine Interface (BMI) technology that
links directly brain and machine has attracted attention. Non-
invasive BMIs using EEG have been widely developed
because it is safe and simple to be used for healthy people.
Today, researches have advanced in various fields such as
artificial arms and feet operated by EEG, wheelchair control
systems that autonomously move using recorded EEG, and
direct brain communication from person to person. In
addition, some BMI technologies are already commercially
available such as in “Necomimi” [1] and “MindRDR” [2].
Necomimi is a device that moves by reading user’s emotions.
MindRDR is an application that operates Google Glass by
EEG. As just described, the BMI technology permeates daily
life and improvement of authentication technology is thus
demanded. In existing researches, personal authentications
that use ID and password are widespread. However, such
methods are easily at risk of spoofing when authentication is
attempted from plagiarism or brute-force attacks. Therefore,
biometrics are used nowadays to prevent authentication
spoofing.

 Biometric authentications are personal authentications
that use biometric information. Today, biometric
authentications through fingerprint, iris, face, and voiceprint
analysis are studied and developed. It is difficult to plagiarize
compared to existing password authentications. The
authentications using fingerprint or iris offer high

performance and are already put to practical use. However,
reports emerge that authentication systems using them have
been falsified [3]. One of the main reasons is the fact that
such information is always exposed to the outside.

 Therefore, authentication using EEG is devised. Since
EEG includes the information inside the body, we need a
dedicated measurement equipment. Thus, EEG authentication
is difficult to plagiarize. In addition, considering its use in an
BMI, since the authentication uses the same EEG as the BMI,
it is more efficient than other biometric authentication
methods. Researches of biometric authentications using EEG
have already advanced in many fields. For example, a report
proposed a personal authentication method with an accuracy
of 80% by using EEGs of forty subjects during open-eye and
closed-eye periods [4], and another report presented an
accuracy of above 90% by analyzing EEG rhythms of four
subjects during closed-eye periods [5]. There are other reports
where personal authentication uses visual evoked potential [6]
and verbal recall problems or potential recall movement [7].
As described above, various features and learning methods
are proposed in existing researches.

 In addition, the progress of electroencephalograph
technology has been significant in recent years. Until now,
multi-channel electroencephalographs were used only in the
medical field and were applied by a professional engineer.
However, personal measurement is now possible because
many types of multi-channel electroencephalographs are
developed and available in daily life. Advantages of using
multi-channel electroencephalographs include the acquisition
of space information that cannot be provided by a single-
channel. Space information is widely applied in fields related
to emotion identification using EEG [8] [9]. In this paper, in
order to utilize space information as a feature, we perform
authentication with a multi-channel electroencephalograph.

 The rest of the paper is organized as follows: Section 2
reviews the related works about authentication using EEG.
Section 3 describes the feature extraction used in this paper.
Section 4 proposes a personal authentication method using
the features extracted in Section 3. Section 5 reports the
evaluation results of the proposed method. Section 6
concludes by discussing future work.

394 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

2 Related works
 Necessary processes for personal authentications with
EEG include feature extraction, feature learning, and
authentication decision. Existing methods to accomplish
these are introduced below.

 Current methods for EEG authentications use the power
spectrum obtained from frequency analysis as the main
feature. However, not only the power spectrum is always
used. There are researches that use content rates by dividing
frequency bands into multiple intervals [10] [11], the
differences of spectrum between two hemisphere electrodes
[12], convexo-concave patterns, maximal values, variances
obtained from spectrum [13], and so on. In addition, there are
several methods based on space information that use cross-
correlation coefficients and mutual information to calculate
similarities between electrodes [14] [15] [16]. Moreover,
coherence is evaluated to show the phase-amplitude
relationship [14] [15] and used as a feature. In this paper, we
make efficient use of these features.

 Machine learning has become the mainstream methods
such as Linear Discriminant Analysis (LDA), Support Vector
Machine (SVM), and Neural Network (NN) [10] [17] [18].
Besides machine learning, there are other methods using
Gaussian Mixture Model (GMM) [7] and Bayesian
Probability Model [19] too. In this paper, we classify EEGs
using an SVM. Since SVM is usually used for classification,
and not authentication, it is necessary to determine the
acceptance or rejection against approval requests from
classification results when applied as an authentication
method.

 A method in existing research [10] classifies each data
by SVM after measuring multiple data. The number of
correctly classified data is used for authentication decision.
The authentication is accepted if the number is above a
certain threshold, otherwise the authentication is rejected.
This method makes SVM-based authentication available.
However, this method requires long measurement times to set
the threshold compared to the classification itself. Therefore,
we propose in this paper an authentication method using

AdaBoost to perform the authentication only from a one-time
measurement.

3 Features extraction
3.1 EEG measurement and preprocessing
 In this paper, we measure EEGs by using BioSemi that
is a commercially available multi-channel
electroencephalograph. A bipolar lead method is used for
deriving the reference electrode. The sampling frequency of
BioSemi is up to 2,048 Hz, and the electrode number is up to
256. In our measurement, we use a sampling frequency of
2,048 Hz with 16 electrodes. The electrodes are arranged
according to the International 10-20 system [20] as shown in
Figure 1.

 With the following preprocessing, the measured data are
corrected to the data suitable for the feature extraction
described in subsection 3.2:

i. Band-pass filter,

ii. Noise reduction,

iii. Normalization.

 First, the EEG frequency band of 4-40 Hz is extracted
from the measured data using a band-pass filter with a
Hamming window function. Although 1-3 Hz are defined as δ
waves, in this paper, we exclude them because they include
myopotential, oculogyration, and artifacts. In addition, the
artifacts caused by the environment such as AC interference
appearing at 60 Hz are also removed by the band-pass filter.
Next, in order to remove pulse noises appearing temporarily,
standard deviations are calculated from the filtered data and
the data above 3σ are converted to 3σ. Finally, the data are
normalized to [0,1] after noise reduction. Applying this
preprocessing, the data are reconstructed with removing the
bias and making them suitable for authentication.

3.2 Features
3.2.1 Power spectrum
 As like in most popular EEG analysis methods, the
power spectrum calculated by Fast Fourier Transform (FFT)
is used. EEGs are classified according to frequency bands. It
is known that EEG’s characteristics are different depending
on their classes. Therefore, the frequency analysis is the most
efficient way to obtain features from EEG.

 When applying FFT, the data length must be a power of
two. As in the preprocessing, a window function is applied to
data before FFT. The power spectrum (PS) is calculated with
the real part (𝑅𝑒) and the imaginary part (𝐼𝑚) obtained from
FFT given in the following equation:

𝑃𝑆 = √𝑅𝑒2 + 𝐼𝑚2.

Figure 1 Electrode placement

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 395

ISBN: 1-60132-444-8, CSREA Press ©

 The power spectrum is obtained for each channel.
Average content rates are calculated for each frequency band,
including θ waves (4-8 Hz), α waves (8-14 Hz), β waves (14-
26 Hz), and γ waves (26-40 Hz) which are obtained from the
results of the power spectrum. We use these four frequency
bands as features.

3.2.2 Cross spectrum
 The cross spectrum is used for frequency analysis
between two electrodes. FFT is applied to the data after
multiplying them by a window function as in the power
spectrum evaluation. The cross spectrum (CS) between two
electrodes (𝑎 and 𝑏) is presented in the following equation:

𝐶𝑆

= √(𝑅𝑒𝑎 ∙ 𝑅𝑒𝑏 + 𝐼𝑚𝑎 ∙ 𝐼𝑚𝑏)2 + (𝑅𝑒𝑎 ∙ 𝐼𝑚𝑏 + 𝐼𝑚𝑎 ∙ 𝑅𝑒𝑏)2.

 As in the power spectrum evaluation, the average
content rates are calculated for each frequency band from the
cross spectrum and are used as features.

3.2.3 Coherence
 Coherence (COH) is used to obtain the phase-amplitude
relationship of waves obtained from two electrodes.

𝐶𝑂𝐻 =
𝐶𝑃𝑆𝑎𝑏 ∗ 𝐶𝑃𝑆𝑎𝑏

𝑃𝑆𝑎 ∗ 𝑃𝑆𝑏

.

 As in the power spectrum evaluation, the average
content rates are calculated for each frequency band from the
coherence and are used as features.

3.2.4 Cross-correlation
 By using cross-correlation, the similarities between
electrodes are used as features. Cross-correlation is applied in
a wide range of fields, such as emotion estimation of
pleasant/unpleasant states and EEG analysis during exercise.

 The cross-correlation (CC) between two electrodes is
calculated according to the following equation:

𝐶𝐶 =
∑ (𝑎𝑖 − �̅�)(𝑏𝑖 − �̅�)𝑁

𝑖=1

√∑ (𝑎𝑖 − �̅�)2𝑁
𝑖=1

√∑ (𝑏𝑖 − �̅�)
2𝑁

𝑖=1

,

where 𝑁 is the data length. Two electrodes are positively
correlated when the cross-correlation is 1, negatively
correlated when -1, and not correlated when 0. The length of
each data set is divided into four parts and the cross-
correlation is calculated for each part.

3.2.5 Mutual information
 The mutual information (MI) is calculated to evaluate
the interdependence between two electrodes as in the
following equation:

𝑀𝐼 = ∑ ∑ 𝑝(𝑎𝑖 , 𝑏𝑗) log
𝑝(𝑎𝑖 , 𝑏𝑗)

𝑝(𝑎𝑖)𝑝(𝑏𝑗)

𝑁

𝑗=1

𝑁

𝑖=1

.

 Discretization of data is necessary as preprocessing. The
data length is divided into four parts, and the mutual
information of each part is calculated.

3.3 Electrode combination
 In order to confirm if the electrodes are suitable for
personal authentication, we have to consider the combination
patterns of electrodes. Figure 2 shows a list of the electrode
combination patterns. In addition to the 20 patterns in the list,
we use a total of 21 patterns by including an extra pattern
using all 16 channels.

4 Authentication method
4.1 AdaBoost
 We apply AdaBoost to perform the personal
classification using EEG. AdaBoost is one of ensemble-
learning algorithms which combine some weak classifiers by
Boosting. In particular, it is a method which adaptively
updates learning data weight. The final classifier is
determined by a weighted majority vote of the weak
classifiers. The AdaBoost algorithm is as follows, with 𝑀 the
number of learning epochs:

1 Calculate feature 𝑥𝑛(𝑛 = 1, … , 𝑁) from learning data
and label each subject.

2 Initialize the learning data weights 𝑤𝑛 to 1/𝑁.

3 Calculate candidate weak classifiers 𝑓𝑙(𝑙 = 1, … , 𝐿).

4 Repeat 4.1 to 4.4 with 𝑚 = 1, … , 𝑀:

4.1 Repeat 4.1.1 with each candidate 𝑙 = 1, … , 𝐿:

Figure 2 Electrode combination patterns

396 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

4.1.1 Calculate the error rate 𝜖𝑚 from each
candidate weak classifier. The target value
of 𝑓𝑙(𝑥𝑛) is defined as 𝑡𝑛:

𝜖𝑚 =
∑ 𝑤𝑛𝐼(𝑓𝑙(𝑥𝑛))𝑁

𝑛=1

∑ 𝑤𝑛
𝑁
𝑛=1

,

𝐼(𝑓𝑙(𝑥𝑛)) = {
0, 𝑓𝑙(𝑥𝑛) = 𝑡𝑛

1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
.

4.2 Choose a weak classifier 𝑦𝑚 which has the
smallest error rate among the candidate weak
classifiers.

4.3 Calculate the reliability 𝛼𝑚 using the error rate of
the chosen weak classifier:

𝛼𝑚 =
1

2
ln (

(1 − 𝜖𝑚)

𝜖𝑚

).

4.4 Update weights. The total of the weights is 1.

5 Constitute a strong classifier:

𝑌(𝑥) = ∑ 𝛼𝑚𝑦𝑚(𝑥𝑛)

𝑀

𝑚=1

.

 As features, we use a combination of 5 different features,
as described in subsection 3.2, and the 21 electrode placement
patterns described in subsection 3.3. By applying an SVM to
these features, 105 candidate weak classifiers are created. The
SVM uses the Radial Basis Function (RBF) kernel. In this
paper, the number of learning epochs 𝑀 is 80. The created
strong classifier is used as the learning model for personal
authentication.

4.2 Authentication system
 We perform authentication with the personal
classification results obtained using AdaBoost. The

authentication system flow is shown in Figure 3. The system
is composed of a registration phase and an authentication
phase. In the registration phase, multiple features are
extracted from the measured data after the preprocessing, as
described in section 3. The learning model is then created
based on these obtained data by using AdaBoost, as presented
in subsection 4.1. In the authentication phase, as in the
registration phase, the features are extracted from the
measured data. Using the learning model created in the
registration phase, authentication data are classified into a
registrant with the highest reliability. The decision is given by
the total of reliabilities calculated in AdaBoost:

𝑅 = ∑ 𝛼𝑚

𝑀

𝑚=1

.

 If the total reliability 𝑅 exceeds a threshold, the data are
accepted and considered as a registrant. Otherwise, the data
are rejected and considered as a non-registrant.

Figure 3 Authentication system flow

0

5

10

15

PS CS COH MI CC Proposed

method

E
rr

o
r

ra
te

 (
%

)

Feature

Figure 4 Classification rate of each feature

4

5

6

7

8

0 10 20 30 40 50 60 70 80

E
rr

o
r

ra
te

 (
%

)

Number of Learning epochs M

Figure 5 Error rate by number of learning epochs
using AdaBoost

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 397

ISBN: 1-60132-444-8, CSREA Press ©

5 Results
 In this paper, we show two kinds of the classification
and the authentication results. The test subjects are 26
females in their twenties. The subjects are measured in a
sitting state and a relaxing state. A ten-second measurement is
performed five times in one session per subject. This is
repeated ten times. The total number of data is 26 ∗ 5 ∗ 10 =
1,300. Since the data length must be a power of two, we use
the data of the first eight seconds (2,048 Hz ∗ 8). The number
of data for the classification is 1,300 of 26 subjects. The
number of data for the authentication is 1,000 of 20
registrants and 300 of 6 intruders. We use 10 cross-validation
to calculate these results.

5.1 Classification results
 The classification accuracy is validated as follows. First,
the classification error rates of the five features (PS, CS, COH,
CC, MI) are calculated by using an SVM. We use electrode
data from all 16 channels. Next, the classification rate of the
proposed method using AdaBoost is calculated. Figure 4
shows a graph of the classification rates for PS, CS, COH, CC,
MI, and the proposed method using AdaBoost. The vertical
axis shows the error rate. Among the five features, MI
provides the best results, followed by CC, PS, COH, and CS.

In these features, the classification error rates using frequency
analysis are relatively low. On the other hand, classification
rates exceeding 90% using only one feature are obtained from
CC and MI.

 Next, the results of the proposed method using
AdaBoost are considered. The error rate is 5.2% when the
number of learning epochs is from 49 to 51 and is the best.
Figure 5 shows the relation between the number of learning
epochs and the classification rate. The graph shows the
average after 10 cross-validations. At the first learning, the
error rate is 7.6 %, which is comparable to the results using
one feature. The error rate gradually decreases as repeating
the learning. The error rate then decreases down to 5.2% at
the 49th learning epoch, and saturates around 5.2-5.4% as the
number of learning epochs increases. From this result, we set
the number of learning epochs used for the authentication at
50.

5.2 Authentication results
 To examine the authentication accuracy, it is necessary
to perform two types of validation:

A) A registrant authentication test,

B) An intruder authentication test.

 A) validates the case of legal and impostor
authentications of registrants. B) validates the case of
impostor authentications of intruders.

 Figure 6 and Figure 7 show the results of two case
examples acquired by calculating the reliability of the
approval request data. The horizontal axis shows the subject
number among the 20 registrants, and the vertical axis shows
the reliability. Figure 6 shows the case where subject 9
requests an approval. According to this graph, the reliability
of the subject 9 is 41, which is highest value among the all
registrants. Although the results of registrants 4 and 17 show
a small reaction, their reliabilities are low enough. Figure 7
shows the case where an intruder requests an approval. A
reaction is obtained from multiple registrants (8, 14, 15, 18,
20). However, all of the reacts are less than 10. Therefore, we
consider that we can use the classification as an
authentication by setting the threshold of reliability between
10-40.

 Figure 8 and Figure 9 show the reliability of all of
approval request data. The horizontal axes show the subjects
of approval request data which is obtained from registrants
and intruders, and the vertical axes show the registrants.
Figure 8 shows the reliability of validation A). There is clear
difference in reliability between the legal and impostor
approval requests. A lot of data with a reliability of more than
30 appear in the case of legal authentications. On the other
hand, the reliability of most data is less than 15 in the case of
impostor authentications. Figure 9 shows the reliability of

0

10

20

30

40

50

1 3 5 7 9 11 13 15 17 19

R
el

ia
b

il
it

y

Subject

Figure 6 Reliability of approval request data
 (in the case of subject 9)

0

10

20

30

40

50

1 3 5 7 9 11 13 15 17 19

R
el

ia
b

il
it

y

Subject

Figure 7 Reliability of approval request data
(in the case of an intruder)

398 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

validation B). No data are considered reliable as the reliability
of almost all data is less than 15.

 In order to determine the acceptance or rejection of
approval requests, the relation between the authentication rate
and the threshold variation is investigated. The authentication
performance is evaluated by Equal Error Rate (EER). EER is
calculated from False Rejection Rate (FRR) and False
Acceptance Rate (FAR). FRR is calculated from the correct
data of registrants (20 ∗ 5 ∗ 10 = 1000), and FAR is
calculated from the impostor data of registrants (20 ∗ 19 ∗ 5 ∗
10 = 19000) and the intruder data (6 ∗ 5 ∗ 10 = 300). By
definition, EER is the value obtained when FRR equals FAR.
Figure 10 shows the results of FRR and FAR, with EER at
their intersection. When the threshold is 8.3, EER is 2.0%.
Thus, a high authentication rate is obtained by using this
method. When setting a threshold of higher reliability,
although FRR increases, FAR stays reasonably low.
Therefore, safety becomes higher. From these results, we
consider that it is possible to prevent the misrecognition of
impostor data by setting a suitable threshold.

6 Conclusions
 In this paper, we proposed a biometric authentication
based on multi-feature combination using EEG. We apply
AdaBoost using SVM to data as the method to combine

multi-feature. Therefore, it is possible to perform the
authentication from one-time measurement. A combination of
5 different features and 21 electrode placement patterns are
used as features to create the candidate weak classifiers
applied to AdaBoost. The classification rate result is 94.8%.
In general authentication methods using SVM, we need to
determine the acceptance or rejection by a majority vote from
multiple measured data. In this proposed method, we are able
to perform the approval decision from a one-time
measurement using the reliability provided by AdaBoost. We
obtained an EER of 2.0% when validating the proposed
system results with 20 registrants and 6 intruders. From these
results, we consider that it is possible to prevent impostor data
by setting a suitable threshold.

 Future work will focus on improving the authentication
accuracy by selecting more suitable features. Although eight
seconds of data are still needed for our present authentication
method, we may perform faster authentications using shorter
measurement by selecting the features appropriately. In
addition, we need to consider the setting method of the
suitable threshold.

Acknowledgments
 This work was partly supported by Grant-in-Aid for
JSPS Fellows (16J10436).

References
[1] Neurowear, Projects/necomimi, <http://neurowear.com/
projects_detail/necomimi.html>, accessed 5 Aug 2016

[2] This Place, MindRDR, < http://mindrdr.thisplace.com/st
atic/index.html>, accessed 5 Aug 2016

[3] Matsumoto T., Matsumoto H., Yamada K., & Hoshino S.
 (2002, April). Impact of artificial gummy fingers on fingerpri
nt systems. In Electronic Imaging 2002 (pp. 275-289). Interna
tional Society for Optics and Photonics.

Figure 8 Reliability of validation A)

Figure 9 Reliability of validation B)

0

2

4

6

8

10

12

1 3 5 7 9 11 13 15

F
R

R
-F

A
R

 (
%

)

Threshold

FRR FAR

Figure 10 FRR and FAR

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 399

ISBN: 1-60132-444-8, CSREA Press ©

[4] Paranjape R. B., Mahovsky J., Benedicenti L., & Koles
Z. (2001). The electroencephalogram as a biometric. In
Electrical and Computer Engineering, 2001. Canadian
Conference on (Vol. 2, pp. 1363-1366). IEEE.

[5] Poulos M., Rangoussi M., Chrissikopoulos V., &
Evangelou A. (1999, September). Parametric person
identification from the EEG using computational geometry.
In Electronics, Circuits and Systems, 1999. Proceedings of
ICECS'99. The 6th IEEE International Conference on (Vol. 2,
pp. 1005-1008). IEEE.

[6] Palaniappan R., & Mandic D. P. (2007). Biometrics
from brain electrical activity: A machine learning approach.
IEEE transactions on pattern analysis and machine
intelligence, 29(4), pp. 738-742.

[7] Marcel S., & Millán J. D. R. (2007). Person
authentication using brainwaves (EEG) and maximum a
posteriori model adaptation. IEEE transactions on pattern
analysis and machine intelligence, 29(4), pp. 743-752.

[8] Schaaff K., & Schultz T. (2009, September). Towards
emotion recognition from electroencephalographic signals. In
2009 3rd International Conference on Affective Computing
and Intelligent Interaction and Workshops (pp. 1-6). IEEE.

[9] Petrantonakis P. C., & Hadjileontiadis L. J. (2011). A
novel emotion elicitation index using frontal brain asymmetry
for enhanced EEG-based emotion recognition. IEEE
Transactions on Information Technology in Biomedicine,
15(5), pp. 737-746.

[10] Yoshikawa T., Nakanishi I., Li S., (2013). Person
Authentication Using EEG -Verification Based on 1vs1SVM
with Divided EEG Spectra-. Proc. of the 2013 International
Workshop on Smart Info-Media System in Asia, pp. 367-371.

[11] Chuang J., Nguyen H., Wang C., & Johnson B. (2013,
April). I think, therefore I am: Usability and security of
authentication using brainwaves. In International Conference
on Financial Cryptography and Data Security (pp. 1-16).
Springer Berlin Heidelberg.

[12] Palaniappan R. (2008). Two-stage biometric
authentication method using thought activity brain waves.
International Journal of Neural Systems, 18(01), pp. 59-66.

[13] Nakanishi I., Baba S., & Miyamoto C. (2009, January).
EEG based biometric authentication using new spectral
features. In Intelligent Signal Processing and Communication
Systems, 2009. ISPACS 2009. International Symposium on
(pp. 651-654). IEEE.

[14] Riera A., Soria-Frisch, A., Caparrini M., Grau C., &
Ruffini G. (2007). Unobtrusive biometric system based on
electroencephalogram analysis. EURASIP Journal on
Advances in Signal Processing, 2008(1), pp. 1-8.

[15] Safont G., Salazar A., Soriano A., & Vergara L. (2012,
October). Combination of multiple detectors for EEG based
biometric identification/authentication. In Security
Technology (ICCST), 2012 IEEE International Carnahan
Conference on (pp. 230-236). IEEE.

[16] Ursulean R., & Lazar A. M. (2009). Detrended cross-
correlation analysis of biometric signals used in a new
authentication method. Electronics and Electrical Engineering.
Kaunas: Technologija, (1), 89.

[17] Ashby C., Bhatia A., Tenore F., & Vogelstein J. (2011,
April). Low-cost electroencephalogram (eeg) based
authentication. In Neural Engineering (NER), 2011 5th
International IEEE/EMBS Conference on (pp. 442-445).
IEEE.

[18] Brigham K., & Kumar B. V. (2010, September). Subject
identification from electroencephalogram (EEG) signals
during imagined speech. In Biometrics: Theory Applications
and Systems (BTAS), 2010 Fourth IEEE International
Conference on (pp. 1-8). IEEE.

[19] He C., Lv X., & Wang Z. J. (2009, April). Hashing the
mAR coefficients from EEG data for person authentication.
In 2009 IEEE International Conference on Acoustics, Speech
and Signal Processing (pp. 1445-1448). IEEE.

[20] Jasper H. H. (1958). The ten twenty electrode system of
the international federation. Electroencephalography and
clinical neurophysiology, 10, 371-375.

400 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

Correlation of proximity voluntary muscles EMG and
EEG

Hitomi Oigawa 1, Yu Ishikawa1, Tomohiro Umeda 2, Masami Takata1, Kazuki Joe1

1Nara Women’s University, Nara, JAPAN
2Nara Medical University, Nara, JAPAN

Abstract - In this paper, we study correlations of proximity
voluntary muscles and EEG. We simultaneously measure the
acceleration of fingertips, EMG of a forearm and EEG. The
respective time-series data are preprocessed for the correction
of positional deviation. We apply frequency analysis and
cross-correlation coefficient analysis. As the results, we find
correlations between fingers, arms and brain waves. In
particular, the correlations of acceleration/EMG and
acceleration/EEG seem to be effective. Also we find
meaningful difference between right and left hands.

Keywords: BMI, BCI, EEG, EMG, Acceleration

1 Introduction
 As a communication pathway between brain and
external machines in recent years, Brain-Machine Interface
(BMI) or Brain-Computer Interface (BCI) is widely known.
The existing BMIs are divided in two groups. The first group
is to control the neurotransmission directly from computer to
brain. For example, Deep Brain Stimulation (DBS) directly
sends electrical pulses to a chip embedded in a brain and it
manipulates brain activity [1]. The second group is to transmit
some information from brain to machine. For example,
wheelchair manipulation techniques use
electroencephalogram (EEG) [2].

 A lot of challenges are in progress such as reproduction
technologies for physical function, say prosthetic hands. A
disable person may comfortably and freely walk in a virtual
space for the sake of such reproduction technologies.
However, the challenges have not been succeeded yet. Brain
is too complicated to get real pattern recognition information.
Especially, human’s hands and fingers are very sensitive even
in everyday life. They say a large part of brain may be used
for the movement of hands and fingers [3]. We think they are
deeply related, but no one proved it so far. Of course, there
are intellectual activities of human’s hands and fingers but
they are far away from the current technology. For example,
studies with invasive EEG or fMRI with a constraint state are
under heavy restrictions on the measurement conditions for
use in real life [4]. Although the averaging method using for
pattern extraction of EEG is common, it requires a lot of trials
and long time.

 To study brain, we propose a sort of data mining applied
to brain waves. We call the method EGG pattern mining. Our
research purpose is to increase the efficiency of the EEG
pattern mining. We try to achieve it in a reasonably short
period of time with a high degree of accuracy. As a solution,
we consider deep learning neural network (DL).

 Neural network is a kind of machine learning using a
neuron model. The techniques for classifying EEG pattern
have been proposed in [5]. DL learns to increase the layers in
the structure of a conventional neural network in a reasonably
short period of time with a high degree of accuracy. It has
great achievements in the field of image recognition [6]. As
the processing capacity of computer has been improved, it
becomes a very useful technique. However, determination of
the structure and parameter choices in neural network is
known as common problem. So, we use DL based on vital
data obtained from a human body as well as EEG for the
solution.

 In this paper, as the first step toward the above solution,
we study correlations of proximity voluntary muscles and
EMG. We simultaneously measure the information of
proximity voluntary muscles and brain waves. The
information of proximity voluntary muscle refers to the
acceleration of fingertips and EMG from forearm that is
obtained from a multi-channel sensor device. EMG obtained
from forearm receives a command from the brain and plays
the fundamental for generating a motion of fingers. As for
extraction of EMG patterns, there are many research reports
[7] [8]. In this paper, since we use a multi-channel sensor
device Myo, we can get several states of closely spaced
voluntary muscles. The acceleration of fingertips captures the
movement of fingers to be moved by some proximity
voluntary muscles. By correlating fingertips acceleration and
EMG information with brain waves, efficient EGG pattern
mining based on the vital data obtained from a body is
expected.

 The rest of the paper is organized as follows. In section
2, we describe related works. We describe a calculation
method for correlation of proximity voluntary muscles EMG
and EEG in section 3. The experimental results and
discussions are presented in Section 4.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 401

ISBN: 1-60132-444-8, CSREA Press ©

Fig.1 HapLog

2 Related works
 There are many research reports about the effects of
EEG regarding to a motion or an image of body movement.
The frequency of brain waves is analyzed when stimulated in
sight and hearing [9]. According to the existing research, a
frequency component increases or decreases before or after
the given stimulus. They are referred to Event Related
Synchronization (ERS) or Event Related Desynchronization
(ERD). In [10], it is reported that different body parts of
motion give different brain regions where ERS and ERD are
observed. The movement or its image of hands and feet varies
the rhythm components of α and β waves in the motor area
(central region of the brain). The difference between left and
right parts of body causes the same kind of reaction appearing
in the hemisphere opposite to the activity parts.

 The above research results show that the movement of
body parts and brain wave patterns are clearly correlated
although they are from the measurement of brain waves.
Namely, by combining EEG measurement and several body
sensors, the relationship between body movement and EEG
pattern is analyzable. We propose the following technique and
present experimental results in later sections.

3 Calculation method for correlation
 We propose a calculation method for the correlation of
acceleration of fingertips or proximity voluntary muscles
EMG with EEG. The method is shown as follows.

1. Simultaneous measurement of three sensors

2. Preprocessing

3. Analysis of measurement results

In the first step, we use three sensors to measure acceleration
of fingertips, forearm EMG and EEG with opening and
closing a palm several times. In the next step, we preprocess
the data obtained from each sensor. Then, we correct the
position deviation because the timing of the measurements of
three vital data may be slightly deviated. Finally, we analyze
the results to get the correlation of fingertips
acceleration/proximity voluntary muscles EMG and EEG.

Fig.2 Myo

3.1 Measurement and Preprocessing

3.1.1 Acceleration of fingertips movement
 For the acceleration of fingertips movement, we use
HapLog shown in Fig.1 [11]. It has three sensor channels to
measure the 3-axis direction accelerations and the finger
pressures with sampling rates of 1 to 1,000Hz. In this paper,
we set the sampling rate to 200Hz. Then, we get five
fingertips data from a pair of HapLogs. The three sensors of
the first HapLog (H1) is put to the thumb, the index finger and
the middle finger while the second one (H2) is put to the
thumb, the ring finger and the little finger.

 In the analysis, the 3-axis direction accelerations are
synthesized. We correct the position deviation using a pair of
thumb data because the timing of the measurements of two
Haplogs may be slightly deviated. By correcting the positional
deviation on the thumb, we obtain the data measured
simultaneously. We use a cross-correlation function for the
correction. The expression is shown as

(1)

where a is the range of shifting. We determine the start point k
as the maximum value of the cross-correlation coefficient. In
this experiment, a is 200 and k is 1 second. EMG and EEG
data are extracted according to the deviation position with the
same time stamp. Furthermore, we interpolate the acceleration
data to adjust the EEG data length using a spline interpolation.

3.1.2 EMG
 For measuring the forearm EMG, we use Myo [12].
Figure 2 shows the EMG sensor Myo with 8 myoelectric
sensors, a 3-axis direction acceleration sensor, a 3-
axisdirection magnetic force sensor and a sensitive 9-axis
Inertial Measurement Unit (IMU) including a 3-axis direction
gyroscope sensor with the sampling rate of 200Hz. The
electrode with an LED light is channel 4, and the channel
number decreases and increases toward the left and right
direction, respectively.

402 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

Fig.3 Biosemi(left) and the electrodes(right)

 As in the same way to the correction of acceleration data,
we interpolate EMG data for EEG using a spline interpolation.
There is electrical activity in muscles. When muscles are tense
a large amount of current flows. We capture the movement of
palm opening and closing to get the average amplitude of
EMG. We use the root mean square (RMS) method shown
below with the range of 50 msec (N=200).

(2)

3.1.3 EEG
 For measuring the EEG, we use a Biosemi [13] with 16
channels and the sampling rate of 2, 4, 8 or 16 kHz. In this
paper, we set the sampling rate to 2,048Hz. Figure 3 shows
the sensor and the electrodes placement based on International
10–20 system. A bipolar lead method is used for deriving the
reference electrode. The preprocessing for EEG is as follows.

i. Cepstrum analysis
ii. Band-pass filter

iii. Addition average
iv. Comparison
v. RMS

 The raw data of EEG sometimes contains envelopes
because of voltage trace change. To remove the envelopes, a
cepstrum analysis is applied. Next, we apply a band-pass
filter of 0.5-40Hz to perform averaging. This is needed for
noise reduction. Averaging EEGs is calculated with adjusting
the deviation based on the measured EEGs as a bias to be
averaged. It is required for the comparison with other vital
data of the EMG and the acceleration. In terms of adding to
the average, the position deviation is corrected by the cross-
correlation coefficient. In this experiment, we adopt a = 2000
and k is 1 second.

 For comparison, we subtract the relaxed state data from
the active state data to reduce noises. This time we also use
the cross-correlation coefficient to adjust the deviation. We
use a = 2000 and k is 1 second. The electrical activity of brain

Fig.4 Wearing three kinds of sensors

wave is recorded just like EMG. Finally, we obtain the
average amplitude of the data using RMS.

3.2 Analysis
 In the analysis phase, we perform frequency analysis and

cross-correlation coefficient analysis. In the frequency
analysis, we apply FFT to the following data.

 Fingers movement acceleration
 Forearm EMG (RMS)
 EEG (RMS)

In the cross-correlation coefficient analysis, we obtain the
maximum value of cross-correlation coefficients assuming =
2000 and is 1 second. We compare the following three
cross-correlation coefficients.

 Acceleration vs Forearm EMG (RMS)
 Acceleration vs EEG (RMS)
 Forearm EMG (RMS) vs EEG (RMS)

We compare the channels each other.

4 Experiments
4.1 Measurement
 Figure 4 shows an examinee wearing HapLogs, a Myo
and a Biosemi. The way of gripping is to put the thumb in the
palm of her hand. The examinees are 3 females in 20s. The
number of measurement trials is 100. The measuring state is
sitting and eyes closed. The detail of states is as follows.

 Relaxed state
 Silent×10 trials
 Sound stimulus (Once a second) ×10 trials
 Sound stimulus (Twice a second) ×10 trials

 Active state(Opening and closing movement of palm)
 Sound stimulus (Once a second) ×10 trials
 Sound stimulus (Twice a second) ×10 trials

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 403

ISBN: 1-60132-444-8, CSREA Press ©

Tab. 1 Concordance rate of the acceleration (Right)

R thumb index middle ring little

A 90 95 90 90 85
B 100 100 100 100 100
C 65 75 60 65 90

Tab. 2 Concordance rate of the acceleration (Left)

L thumb index middle ring little

A 95 95 95 95 95
B 100 100 100 100 100
C 65 65 65 65 70

Tab. 3 Concordance rate of the EMG (Right)

R 1 2 3 4 5 6 7 8

A 95 70 90 75 95 95 95 50
B 95 100 100 80 95 90 100 95
C 75 80 100 95 100 90 100 75

Tab. 4 Concordance rate of the EMG (Left)

L 1 2 3 4 5 6 7 8

A 100 65 65 95 90 95 90 90
B 100 60 100 100 100 100 100 40
C 100 90 100 95 95 40 60 45

Tab. 5 Concordance rate of the EEG (Right)

R Fp1 Fp2 F4 Fz F3 T7 C3 Cz

A 50 55 50 55 55 15 40 25
B 30 5 20 20 40 25 30 20
C 35 20 20 10 40 35 30 25

R C4 T8 P4 Pz P3 O1 Oz O2

A 20 5 30 30 20 45 45 45
B 20 5 35 15 25 40 35 10
C 40 45 30 25 35 25 35 35

Tab. 6 Concordance rate of the EEG (Left)

L Fp1 Fp2 F4 Fz F3 T7 C3 Cz

A 45 25 20 25 20 30 20 5
B 50 35 30 30 30 35 35 30
C 40 20 35 30 20 30 20 20

L C4 T8 P4 Pz P3 O1 Oz O2

A 30 35 35 35 30 30 30 30
B 20 25 50 30 40 25 25 30
C 20 45 40 30 30 25 25 25

The 20 trials of active state are to open and close the palm
along to the sound from a metronome once a second and twice
a second. Examinees do them both in the right and the left
hands. We measure each task for 30 seconds and adopt 10
seconds data out of the 30 seconds data to be preprocessed.

4.2 Results

4.2.1 Frequency analysis
 Tables 1-6 show the results of the concordance rates of

the top frequency peak and the number of opening and closing
times obtained by frequency analysis. In the tables R and L
indicate the result of the right and the left hand, respectively.
A, B and C represent examinees. Since opening and closing a
hand is performed once or twice per second, the frequency of
the operation is 1Hz or 2 Hz.

Tables 1 and 2 show the result of frequency analysis on
the acceleration of fingertips. The column label shows the
names of fingers. The average of the concordance rate is 87%
both on the right hand and the left hand. In particular, the
concordance rate of B is 100% in all fingers and both hands.
On the other hand, the left hand of A and the right hand of C
show higher concordance rates. In terms of fingers, the little
fingers show the highest consistent rates.

Tables 3 and 4 show the result of frequency analysis on
the forearm EMG (after RMS). The column label shows the
electrode number. The averages of the concordance rates are
89% and 84% for the right hand and the left hand,
respectively. In terms of examinees, the concordance rate of B
is the highest in both arms. In terms of channels, channel 3
and 7 show higher concordance rates in the right hand. In the
case of the left hand, channel 1 and 5 show higher ones. On
the other hand, channel 8 shows the lowest rates in both arms.

 Tables 5 and 6 show the results of EEG (after RMS).
The column label shows electrode names. The averages of the
concordance rates are 28% and 26% for the right hand and the
left hand, respectively. In terms of examinees, the
concordance rate of the right hand is the highest for C and the
concordance rate of the left hand is the highest for B. In terms
of channels, when examinees move the left hand, the right
hemisphere shows higher concordance rates, and vice versa.

4.2.2 Cross-correlation coefficient analysis
 We analyze the fingertips acceleration and the forearm
EMG correlation. We have 480 sets of data (3 examinees × 2
stimulus × 2 hands ×5 accelerations × 8 EMGs). The cross-
correlation coefficient average is 0.51. Then, we normalize
the cross-correlation coefficients by trial to average them.
Figure 5 shows averages of five fingers of all trials calculated
for each channel. The upper figure shows the left arm results
and the lower figure shows the right arm results. The more
they are highly correlated, the darker the color is. The right
has high correlations of channel 3 and 7 while the left has
high correlations of channel 1 and 5. In addition, the right has
low correlations of channel 2 and 8 while the left has low
correlations of channel 6 and 8.

404 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

Fig.5 Acceleration and EMG correlation

Fig.6 Acceleration and EEG correlation

 Next, we analyze the fingertips acceleration and the
EEG correlation. We have 960 sets of data (3 examinees × 2
stimulus × 2 hands × 5 accelerations ×16 EEGs). The cross-
correlation coefficient average is 0.17. As in the fingertips
acceleration and the forearm EMG correlation, they are
normalized to calculate averages. Figure 6 shows averages of

Tab.7 Difference between pairs of symmetrical

channels along the midline (Right)

 Fp1-Fp2 F3-F4 T7-T8 C3-C4 P3-P4 O1-O2
R 0.079 -0.063 0.026 0.026 0.039 0.050
L 0.039 0.015 -0.020 -0.021 -0.046 -0.033

Figure 7 EMG and EEG correlation

Table 8 Difference between pairs of symmetrical

channels along the midline (Left)

 Fp1-Fp2 F3-F4 T7-T8 C3-C4 P3-P4 O1-O2
R -0.002 -0.038 0.000 0.022 -0.013 0.002
L -0.005 -0.001 -0.001 -0.004 -0.028 -0.019

five fingers of all trials calculated for each channel. The upper
figure shows the left arm results and the lower figure shows
the right hand results. The more they are highly correlated, the
darker the color is. Table 7 shows the differences between
pairs of symmetrical channels along the midline. The right
hand is advantageous in the case of positive values while the
left hand is advantageous in the case of negative values.

 Finally, we show the EMG – EEG correlation. We get 1,
536 sets of data (3Examinees × 2Stimulus × 2Hands ×
8EMGs×16EEGs). The cross-correlation coefficient average
is 0.16. Figure 7 are EMG 8 channels all trials means

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 405

ISBN: 1-60132-444-8, CSREA Press ©

calculated for each channel. The above figure is the left result,
the lower figure is the right result. The more highly correlated
color is dark. Table 8 is the difference between the
symmetrical channels bordering the midline. Right is
advantageous if a positive number, left is advantageous if a
negative number.

4.3 Discussions
 The results of frequency analysis on the fingertips
acceleration show relatively good concordance rates. The
acceleration sensor is suitable for capturing the motion of an
object. However, there are individual differences in the
concordance rates. Although the method of opening and
closing a palm is the same, the momentum and the strength to
hold the hand by examinee are different or the degree of
holding the hand is different.

 The results of frequency analysis on the forearm EMG
show relatively good concordance rates, too. Especially, we
find several channels with high concordance rates near the
little finger in the palm side and the thumb in the back of the
hand. It is explainable by the distributions of arm muscles and
another reason is that the EMG sensors put at the places with
more muscles on the forearm capture more muscular reaction.
On the other hand, the concordance rates of channel 8 are not
good because channel 8 is located on a bone and therefore the
muscles are thin. In addition, the muscles corresponding to the
channels in the left and the right hands show the same
tendency if the channel numbers are symmetrically exchanged
along the line between channel 4 and 8. The concordance
rates in the left hand are a little bit lower than the right. This is
because the left hand is not dominant so the amount of muscle
is inferior.

 The results of frequency analysis on the EEG show
inferior concordance rates compared to the other two. We find
the peak frequencies are almost half. It seems that some other
activities are carried out at the same time. However it may be
because of noises that are not completely removed at the
preprocessing stage. We cannot explain the phenomena
whether the frequency peak is involved in the palm opening
and closing at this point. It requires more investigation.

5 Conclusions
 In this paper, we study the correlation of proximity

voluntary muscles and EEG. Specifically, we focus on the
acceleration of fingertips and the EMG of forearms as the
information of the proximity voluntary muscles. We
simultaneously measured them as well as EEGs. The
respective time-series data were corrected regarding to the
positional deviation to be preprocessed. The analysis was
performed as the frequency analysis and the cross-correlation
coefficient analysis. As the results, we find that there are
correlations between fingers, arms and a brain. In particular,
the correlations of the acceleration/EMG and the

acceleration/EEG seem effective. Also we find meaningful
difference between the right and the left.

Our future work includes extensions of the experiment
conditions to adopt other hand movements. We try to detect
some EEG patterns using the information of fingertips
acceleration and forearms EMG. It is expected that the
efficient EGG pattern mining is applicable to prosthetic hands.

6 References
[1] Benabid AL, Pollak P, Gao D, Hoffmann D, Limousin P,
Gay E, Payen I, Benazzouz A. “Chronic electrical stimulation
of the ventralis intermedius nucleus of the thalamus as a
treatment of movement disorders”; Journal of neurosurgery,
Vol. 84, Issue 2, 203—214, Feb 1996.

[2] Choi, Kyuwan, Andrzej Cichocki. “Control of a
wheelchair by motor imagery in real time”; In International
Conference on Intelligent Data Engineering and Automated
Learning, 330—337, Nov 2008.

[3] Penfield, Wilder; Rasmussen, Theodore. “The cerebral
cortex of man; a clinical study of localization of function”;
1950.

[4] Guy Hotson, David P McMullen, Matthew S Fifer,
Matthew S Johannes, Kapil D Katyal, Matthew P Para, Robert
Armiger, William S Anderson, Nitish V Thakor, Brock A
Wester, Nathan E Crone. “Individual finger control of a
modular prosthetic limb using high-density
electrocorticography in a human subject”; Journal of neural
engineering, Vol. 13, Issue 2, 026017, Feb 2016.

[5] Shima Keisuke, Takata Daisuke, Bu Nan, Tsuji Toshio.
“A Recurrent Probabilistic Neural Network with Dimensional
Reduction and Its Application to Time Series EEG
Discrmination”; Transactions of the Society of Instrument and
Control Engineers, Vol. 48, Issue 4, 199—206, 2012.

[6] Quoc V Le. “Building high-level features using large
scale unsupervised learning”; In 2013 IEEE international
conference on acoustics, speech and signal processing,
8595—8598, May 2013.

[7] Giulia C Matrone, Christian Cipriani, Maria Chiara
Carrozza, Giovanni Magenes. “Real-time myoelectric control
of a multi-fingered hand prosthesis using principal
components analysis”; Journal of neuroengineering and
rehabilitation, Vol. 9.1, Jun 2012.

[8] Kasuya Masahiro, Ryu Kato, Hiroshi Yokoi.
“Development of a Novel Post-Processing Algorithm for
Myoelectric Pattern Classification”; Transactions of Japanese
Society for Medical and Biological Engineering, Vol. 53,
Issue 4, 217—224, Dec 2015.

406 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

[9] G Pfurtscheller. “Central beta rhythm during
sensorimotor activities in man”; Electroencephalography and
clinical neurophysiology, Vol.51, Issue 3, 253—264, Mar
1981.

[10] G Pfurtscheller, F.H. Lopes da Silva. “Event-related
EEG/MEG synchronization and desynchronization:Basic
principles”; Clinical Neurophysiology, Vol. 110, Issue 11,
1842—1857, Nov 1999

[11] Kato Tech Co., Ltd. “HapLog“;
Available (accessed 2016-08-20),
from < http://www.keskato.co.jp/products/haplog.html >

[12] Thalmic Labs. “Myo“; Available (accessed 2016-08-20),
from < https://www.myo.com/ >

[13] Biosemi. “Biosemi EEG ECG EMG BSPM NEURO
amplifier electrodes“ , Available (accessed 2016-08-20)
from < http://www.biosemi.com>

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 407

ISBN: 1-60132-444-8, CSREA Press ©

Comparison of Feature Extraction Methods for

Early-Modern Japanese Printed Character

Recognition

Kazumi Kosaka, Kaori Fujimoto, Yu Ishikawa, Masami Takata, and Kazuki Joe,

Dept. of Advanced Information & Computer Sciences, Nara Women’s University, Nara, Japan

Abstract – In this paper, we compare feature extraction

methods for early-modern Japanese printed character

recognition. The national diet library in Japan provides a lot of

early-modern (AD1868-1945) Japanese printed books in the

web, but full-text search is essentially impossible. In order to

perform advanced search in historical literatures, the

extraction of texts from images is required. To solve this

problem, we have already proposed a multi-font Kanji

character recognition method using the PDC feature. For

achieving more performance, we compare three feature

extraction methods to analyze the recognition results.

Keywords: early-modern Japanese printed books, multi-font

Kanji character recognition method, PDC feature, weighted

direction index histogram feature, the cellular feature

1. Introduction

The National Diet Library (NDL) [1][4][5][6] in Japan keeps

about 350,000 books as well as 8,000 journals/magazines

dating from the Meiji era to the first half of Showa era

(AD1868-1945). The books cover a broad range including

philosophies, industry, literatures, technologies, natural

sciences, art, etc. Most of them have gone out of print and

scholarly valuable materials in a study of early-modern. The

NDL started a project called “The Digital Library from the

Meiji Era” in 2002. In the project, early-modern Japanese

printed books are optically recorded on microfiches page by

page. The microfiches are converted into digital images and

viewable at the project Web site [2]. Converting the books into

digital images enabled the valuable books to be opened to the

public while they are in good condition against loss or damage.

Users can view the digital images whenever or wherever with

Internet connection for free. ”The Digital Library from the

Meiji Era” will be closed at the end of May in 2016 to be

integrated into ”The National Diet Library Digital

Collections”[3]1. After integration, the books in the Digital

Library will be available on ”The National Diet Library Digital

Collections” Web site. At the NDL Web site, user can search

the materials by giving just book information, such as title,

author, publisher, and publication year. Since the text of

early-modern Japanese printed books is exhibited as picture

images, full-text search is essentially impossible. In order to

perform the full-text search, it is required to extract texts from

images. As described above, the number of the target books is

so enormous that text extraction by hand is impossible in cost.

Since there was no existing research on early-modern

Japanese printed character recognition, we decided to

collaborate with the NDL to start the research project of

automatic text extraction for ”Digital Library from the Meiji

Era”. Indeed, when commercially available OCRs are applied

to the image data, the recognition rates are too low to be

practical. This is because any standard character font sets for

early-modern Japanese printed books did not exist in those

days. Thus, we have presented that a method of hand written

Kanji character recognition [4][5][6] can be used for the

recognition of early-modern Japanese printed characters. In

early-modern Japanese printed books, it is reasonably inferred

that a different typography is adopted by publisher. Even if

within the same publisher, we have reported that typography

differs by age [7]. For these reasons, we decided to use a

method of hand written Kanji character recognition for text

extraction of early-modern Japanese printed books. We have

proposed a multi-fonts Japanese character recognition method

for early-modern printed books [4][5][6]. In this method, the

PDC feature is extracted from early-modern Japanese printed

character images. The recognition rate using the PDC features

is approximately 92% for 2634 types of Kanji characters [8]. In

general the miss-recognitions depend on the number and the

types of learning character samples. In the meanwhile we have

never used any feature other than the PDC as the feature

1 In June 2016, ”The Digital Library from the Meiji Era” has ended and
we can use ”The National Diet Library Digital Collection”.

408 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

extraction methods for early-modern Japanese printed

character recognition. Thus, in this paper, we try to use some

other features. As high recognition accuracy methods for low

quality printed characters, the weighted direction index

histogram feature and the cellular feature as well as the PDC

are well known [9]. They are useful features for hand written

character recognition. In this paper, we compare recognition

rates of the three feature extraction methods. Then, we

analyze the miss-recognition results of each feature and exploit

their tendency. The rest of the paper is organized as follows. In

section 2, we briefly explain the three feature extraction

methods. In section 3, we perform experiments using each

feature described in section 2 and compare the results. Also,

we analyze character types of miss-recognitions and exploit the

tendency.

2. Features used for recongition

For our multi-fonts Japanese character recognition method

for early-modern printed books we adopt the PDC feature as

the feature extraction method. In this section, we briefly

explain the weighted direction index histogram feature and

the cellular feature in addition to the PDC feature.

2.1 The PDC Feature

The Peripheral Direction Contributivity (PDC) feature [4][5][6][10] is
a feature focused on the direction of character strokes. The PDC feature,
superior to straight strokes, is one of very efficient features for the
recognition of Japanese characters, containing many straight strokes,
written carefully in the standard style by hand.
The PDC feature reflects four statuses of character strokes: complexity,

direction, connectivity and relative position. The complexity of character
strokes is represented by their density. The relative position is
represented by n-th peripheral form. The direction and the connectivity
are represented by direction contributivity. The direction contributivity is

given as a four dimensional vector, which is calculated by dots of
character bit-map images. 𝑑𝑃, the direction contributivity of the dot P
shown in Fig.1, is defined as 𝑑𝑃= (𝑑1𝑃 , 𝑑2𝑃,𝑑3𝑃,𝑑4𝑃). Each element
𝑑𝑚𝑃(𝑚=1, 2, 3, 4) is defined as

𝑑𝑚𝑃 =
𝑙𝑚 + 𝑙𝑚+4

√∑ (𝑙𝑗 + 𝑙𝑗+4)
24

𝑗=1

where 𝑙𝑗 (𝑗= 1,2,…,8) is the length of connected dots scanned in eight
directions as shown in Fig.1. The n-th peripheral form is calculated as
follows. A character bit-map image is scanned in eight directions (each
45 degree). A scan finds and passes over several strokes, the 1-st to the
n-th strokes, of the character to plot the dots representing each crossing.
The form drawn by the crossing dots is called the n-th peripheral form,
where n is the number of crossing within a scan. Fig. 2 shows an
example of an original image and the 3-rd peripheral form.
Direction contributivity values for each dot, where each eight direction

of vertical, horizontal and diagonal scans meets the contour of the target
character, are projected to the corresponding axis. Fig. 3 shows a
scanning state toward a direction when n is 3. The range of projected
axis is divided by 16 to calculate average values. Thus, the average
values are used as a PDC feature vector. A PDC feature vector 𝑃𝑛
consists of 512*n dimensions. For example, when n is 3, we get 𝑃𝑛 =

512 × 3 = 1,536 dimensions.

2.2 The Weighted Direction Index Histogram Feature

 The weighted direction index histogram feature [11] is based on the
directions along the contour lines of character strokes.
 First, an input character image is smoothed in order to extract contour
lines. Then, the contour line image is divided into 35 × 35 regions,
where a 4 direction histogram is calculated in each region. The contour
lines of the target pixel (𝑆𝑖) are tracked counterclockwise so that the next
4 directions are determined at the pixel (𝑆𝑖+1) next to the target pixel.
Fig. 4 shows the target pixel (𝑆𝑖) and the exact values for 4 directions.

Fig.5 : weight coefficients of 2-dimensional Gaussian filter, the
scope and the center position for integrating into 4 × 4 regions

P

Fig. 2 : example of original image and 3-rd peripheral form

Fig.3 : scanning state toward a direction when n is 3

Fig.4 : target pixel and exact values for 4 directions

Original 3-rd peripheral form

direction1

direction3
direction2

direction4

Fig. 1 : direction contributivity of dot P

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 409

ISBN: 1-60132-444-8, CSREA Press ©

The direction index of 35 × 35 regions is a histogram of these direction
values.
 Then, the direction index of 35 × 35 regions is integrated into 18 ×
18regions using a 2-dimensional Gaussian filter. As the result, a 4
direction index is obtained in each 18 × 18 region after integration and
the feature vector consists of 18 × 18 × 4 = 1,296 dimensions. This
is the weighted direction index histogram feature. Fig. 5 shows weight
coefficients of 2-dimensional Gaussian filter, and the scope and the
center position for integrating into 4 × 4 regions. The weight coefficients
are applied to integrate the direction indices of the target pixel and 20
circumferential pixels.

2.3 The Cellular Feature

The cellular feature [12] is based on the edge directions that indicate
rapid changes of brightness of an image.

First, microscopic feature is calculated by the edge directions and
lengths in a 3 × 3 local region at the target pixel and its eight neighbor
pixels. The obtained edge directions are divided into eight directions.

Next, the feature of a cell space is calculated with integrating the
microscopic features around 4 neighbor pixels. This is represented by the
linear sum of the edge lengths in each cell by direction.

Thereafter, a fan-shaped area within ±45 degrees by direction is
defined in order to extend the local regions by direction. The fan-shaped
area has two patterns with the different number of cells included in the
area. Fig. 6 shows a fan-shaped area by direction and inside cells are
presented in green. Integrating the fan-shaped area, the area is enlarged
similarly and monotonically. The integration is repeated until it hits
against a stroke in the original image. The decision of stopping
integration is obtained by the following formula.

G(𝑖𝑐 , 𝑗𝑐) = 𝑓(2 ∙ 𝑖𝑐 , 2 ∙ 𝑗𝑐) + 𝑓(2 ∙ 𝑖𝑐 + 1, 2 ∙ 𝑗𝑐)

 +𝑓(2 ∙ 𝑖𝑐 , 2 ∙ 𝑗𝑐 + 1) + 𝑓(2 ∙ 𝑖𝑐 + 1, 2 ∙ 𝑗𝑐 + 1)

where 𝑖𝑐 𝑎𝑛𝑑 𝑗𝑐 are the position of each cell. When G(𝑖𝑐 , 𝑗𝑐) is
greater than 2, (𝑖𝑐 , 𝑗𝑐) hits against a stroke of the original image and the
integration is stopped.

The integration is carried out by direction using the following
formula.

In the case of θ𝑐 = 1,3,5,7:

t=1:

 D(θ𝑐 , 1) = 𝐴(θ𝑐 , 0) + 𝐸(θ𝑐 , 0) + 𝐶(θ𝑐 , 0) + 𝐷(θ𝑐 , 0)

𝑡 ≥ 2:

D(θ𝑐 , 1)

= {

D(θ𝑐 , 𝑡 − 1) 𝑖𝑓 G(𝑖𝑐 , 𝑗𝑐) ≥ 2

𝑀𝑖𝑛(17.0, 𝑀𝑎𝑥(D(θ𝑐 , 𝑡 − 1), A(θ𝑐 , 𝑡 − 1) + C(θ𝑐 , 𝑡 − 1)

−B(θ𝑐 , 𝑡 − 2) + E(θ𝑐 , 0) + D(θ𝑐 , 0))) ∶ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

In the case of θ𝑐 = 2,4,6,8:

t=1:

D(θ𝑐 , 1) = 𝐴(θ𝑐 , 0) + 𝐶(θ𝑐 , 0) + 𝐷(θ𝑐 , 0)

𝑡 ≥ 2:

 D(θ𝑐 , 1)

= {

D(θ𝑐 , 𝑡 − 1) 𝑖𝑓 G(𝑖𝑐 , 𝑗𝑐) ≥ 2

𝑀𝑖𝑛(17.0, 𝑀𝑎𝑥(D(θ𝑐 , 𝑡 − 1), A(θ𝑐 , 𝑡 − 1) + C(θ𝑐 , 𝑡 − 1)

−B(θ𝑐 , 𝑡 − 2) + D(θ𝑐 , 0))) ∶ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Let the neighbor pixels of D(𝑖𝑐 , 𝑗𝑐) be (A), (B), (C), and (E). The
internal information is represented as 𝐴(θ𝑐 , 𝑡) where θ𝑐 is a direction
represented by a number from 1 to 8 and 𝑡 represents the number of
integrations to be executed. The Cellular Feature is determined using
the features of the target cell and the cells in the fan-shaped area. This
feature is updated when integration is executed. When the size of the cell
space is 60×60, the feature of a Kanji is represented with 13 times
integrations. When the size of the cell space is 148×148, the feature
consists of 1,152 dimensions.

3 Experiments

In this section, we show the experimental results to compare

the recognition rates with three different features, the PDC

feature, the weighted direction index histogram feature and

the cellular feature, as described in section 2.

3.1 Recognition Experiments

 As the method of recognition process, we adopt the Support

Vector Machine (SVM), which is one of the most efficient

supervised machine learning methods [13]. We use 2,678 types

of JIS level-1 Kanji, JIS level-2 Kanji and Hiragana in the

experiments [6][14]. Each type consists of six different font,

namely different publisher’s images.

 Five images are used as training data while one image data is

used as test data. Six recognition experiments are performed

by changing the test data.

In order to perform the experiments, we use a high-end

computer with 96 Xeon (8core, 2.0GHz, L3 18MB,

QPI6.4GT/sec) and 769GB (8GB × 96) memory and a PC with

Core i7-4770K and 16GB memory. In this section, we refer the

high-end computer and the PC to I and II, respectively.

Tab. 1 shows the recognition rates for the three features. Tab.

2 shows the platforms for the experiments and processing

times for the learning.

In Tab.1, the recognition rate of the PDC feature achieves the

highest accuracy, 86.8%. The recognition rates of the weighted

direction index histogram feature and the cellular feature are

Fig.6 : fan-shaped area by direction
a)𝛉 = 𝟏 b) 𝛉 = 𝟐

410 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

85.5% and 81.1%, respectively. In the meanwhile, Tab.2

indicates that the PDC feature takes the longest learning time.

Tab. 1 : recognition rates for the three features

 Tab.2 : platforms and processing times for the learning

 The reason of the heavy computational cost is that the PDC

feature requires the largest number of dimensions for its

feature vector.

3.2 Analysis of miss-recognitions

We focus on miss-recognized characters in the experiments, and

analyze the tendency of miss-recognitions. The character types

of miss-recognitions are classified using the following

conditions. In classifying miss-recognitions, we use radicals

described in Appendix of this paper. Radicals used in this

analysis are “hen”, ”tsukuri”, ”kanmuri”, ”ashi”, “kamae”, and

“tare”.
Also, the classifying conditions include “old-form” of Kanji

when it is miss-recognized. The old-form refers to Kanji

characters previously used. In 1946, the government

determined a common set of Kanji, and the Kanji characters

not-included in the common set are old-forms.

a) Hiragana

 b) Characters with different hen and the same tsukuri

 c) Characters with different tsukuri and the same hen

d) Characters with different contents (components inside

tare, kanmuri, ashi and kamae) and the same tare

 e) Characters with different contents and the same kanmuri

f) Characters with different contents and the same ashi

 g) Characters with different contents and the same kamae

 h) Strokes with different thickness

 i) Blurred strokes

 j) Characters with hardly understandable contents

 k) old-forms

The difference of stroke thickness is shown in Fig.7, which

frequently causes miss-recognitions. Similarly, Fig.8 shows

examples of two Kanji characters with blurred strokes. Kanji

characters in Fig.9 are very difficult to recognize because of

inkblots and complexity of the Kanji structures.

Tab.3 : Miss-recognition Rates

We also classify the miss-recognitions by which feature is

used as shown below.

A) cellular feature

 B) weighted direction index histogram feature

C) PDC feature

D) weighted direction index histogram feature and cellular

feature

E) PDC feature and cellular feature

F) PDC feature and weighted direction index histogram

feature

G) PDC feature, weighted direction index histogram

feature and cellular feature

For each of A) to G), we analyze miss-recognitions based on

the conditions a) to k). A) means miss-recognitions only with

the cellular feature.

Tab. 3 indicates the miss-recognition rates of A) to G).

The cellular feature, which has the lowest recognition rate

from Tab.2, often miss-recognizes in the case of A) from Tab.3.

In the case of the weighted direction index histogram feature,

the miss-recognition rate of D) is larger than B). In the case of

the PDC feature, the rates of E) and F) are small, and major

miss-recognitions are divided into two types of C) and G).

Furthermore, G) has the second largest rate. Then, we

Feature Recognition rate

(%, average of 6 times)

PDC feature 86.8

Weighted direction index

histogram feature

85.5

Cellular feature 81.1

Environment Feature Processing

time(hour)

Ⅰ PDC feature 486

Ⅰ Weighted direction index

histogram feature

431

Ⅱ PDC feature 428

Ⅱ Weighted direction index

histogram feature

183

Ⅱ Cellular feature 174

Feature that incorrectly recognize Rate(%)

A 26.8

B 9.5

C 14.0

D 17.8

E 6.1

F 7.1

G 18.7

Fig.7: difference of stroke thickness

Fig. 8: examples of Kanji characters with blurred strokes

Fig.9: examples of inkbots and complexity of the Kanji structures

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 411

ISBN: 1-60132-444-8, CSREA Press ©

investigate the rates of classified miss-recognitions based on a)

to k).

Tab.4: A) Cellular Feature

Classification Rate (%) (ex)Correct answer :Miss-recognition

a 21.3 ：

b 6.8 ：：

c 27.1 ：

d 1.7 ：

f 0.8 ：

h 18.6 ：

i 16.1 ：

j 4.2 ：

k 3.4 ：

Tab.5: B) weighted direction index histogram feature
Classification Rate (%) (ex)Correct answer :Miss-recognition

c 14.3 ：

g 42.9 ：

h 14.3 ：

i 28.6 ：

Tab.6 : C) PDC feature

Classification Rate (%) (ex)Correct answer :Miss-recognition

b 2.7 ：

c 10.8 ：

d 8.1 ：

g 8.1 ：

h 2.7 :

i 29.7 ：

j 18.9 ：

k 18.9 ：

Tab.4 shows the classified results of A). The rates of a) and c)

are over 20%. Namely, Hiragana and characters with different

hen and the same tsukuri tend to be incorrectly recognized.

Then, h) and i) are the large rates because of image quality

problem. The cellular feature is affected by the difference of

stroke thickness and blur. In the case of Hiragana, it is also

affected by the connection of curve strokes. This is because the

cellular feature focuses on edge directions.

Tab.5 shows the classified results of B). From Tab.5, the

largest rate is g) followed by i). The weighted direction index

histogram feature is apt to incorrectly recognize characters

with different contents and the same kamae in addition to

characters with blurred strokes. This is because the weighted

direction index histogram feature divides the target region in

four directions to integrate each direction feature.

The classified results of C) are shown in Tab.6. From i), j),

and k) the miss-recognitions are caused by characters with

blurred strokes and complicated contents or old-forms. The

PDC feature is affected by blurred characters but unaffected

by characters with different thickness of strokes. In the cause

of miss-recognition by old-form, it is because old-forms are

partly similar to the current versions of Kanji in general.

Tab.7:D)weighted direction index histogram feature and

cellular feature

Classification Rate (%) (ex)Correct answer :Miss-recognition

a 5.7 ：

b 5.7 ：

c 23.1 ：

h 19.2 ：

i 30.8 ：

j 9.6 ：

k 5.7 ：

Tab. 8 : E) PDC feature and cellular feature

Classification Rate (%) (ex)Correct answer :Miss-recognition

c 33.3 ：

i 66.7 ：

Next, we analyze the results incorrectly recognized by two

features to be classified in D) to F). Tab..7 shows the classified

result of D). From the rates of h) and i) the difference of

thickness and blur of strokes have great influence. The

influence by image quality is considerable because the cellular

feature and the weighted direction index histogram feature

focus on the contour of character strokes or the edge directions.

Tab..8 shows the result of E). The number of miss-recognized

character types is small to be classified into two types of c) and

i). Tab..9 shows the result of F). As well as E), the number of

miss-recognized character types is small to be classified into

three types of b), c) and k).

Finally, we analyze the results incorrectly recognized by all

three features, namely, G). The result of G) is shown in Tab.10.

It indicates that image quality problems such as h) and i), and

the similar structures of k) are the major reason of

miss-recognitions.

Thus, we observe that when the image quality is poor such

as different thickness and blurs of strokes, the

miss-recognition easily goes to any features. Especially, the

weighted direction index histogram feature and the cellular

feature are apt to be affected. Also, we observe that similar

characters but partly different structures easily cause

miss-recognition.

3.3 Character types and miss-recognitions

We analyze the character types that all three features

incorrectly recognize namely G) in sub-section 3.2. Tab. 11 lists

up the three times miss-recognized characters by all three

features out of six recognition experiments. The columns of

412 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

Tab.11 include character ID number, correct characters, most

frequently miss-characters, and the numbers of correct

answers for each feature. Tab.12 lists up the four times

miss-recognized characters by all three features. In this

experiment, we do not have any characters that are

miss-recognized more than four times by all three features.

Tab.9 : F) PDC feature and weighted direction index histogram feature
Classification Rate (%) (ex)Correct answer :Miss-recognition

b 16.7 ：

c 33.3 ：

k 50.0 ：

Tab.10: G) PDC feature, weighted direction index histogram

feature and cellular feature

Classification Rate (%) (ex)Correct answer :Miss-recognition

c 18.9 ：

e 10.1 ：

g 5.8 ：

h 24.6 ：

i 11.6 ：

k 28.9 ：

We try to classify the miss-recognized characters from

Tab.11 and 12. The character ID 2, 3, 7, 8, 15 and 16 are

incorrectly recognized with different tsukuri and the same hen.

The character ID 5 is incorrectly recognized with different

contents and the same tare. The characters ID 1, 6 and 13 are

incorrectly recognized with different contents and the same

kanmuri. The characters ID 4 and 9 are incorrectly recognized

with different contents and the same kamae. In the causes of

character ID 18, 19 and 20, and character ID 10, 11, 12, 14, 17

and 21, blurred strokes and old-forms are the main reason,

respectively. On the other hand, the number of correct answers

for each feature evenly varies for any characters.

Tab.13 shows the total numbers of correct answers and

character types in the recognition result of all experiments

performed 6 times using three features. The numbers of

correct answers are more than 3. In other words, there are no

characters that are not correctly recognized in experiments

performed 6 times using three features.

We conclude that the recognition experiment proves a high

recognition rate using three features. Indeed, no characters are

incorrectly recognized using any of the three features. We will

investigate a new recognition method to compensate three

features to get more effective recognition results.

4. Conclusions

In this paper, we describe the comparison of three feature

extraction methods for early-modern Japanese printed

character recognition. In order to empirically compare them,

Tab.11 : three times miss-recognized characters by all three

features out of six recognition experiments

Character

ID

number

Correct

character

Miss-recogn

ized

character

PDC

feature

Weighted

direction index

histogram

feature

Cellular

feature

1 3 3 3

2 3 3 3

3 3 3 3

4 3 3 2

5 1 3 2

6 3 3 1

7 / 2 1 2

8 3 3 3

9 1 2 3

10 1 2 2

11 1 0 3

12 1 2 2

13 3 3 3

14 2 3 3

15 2 3 3

16 2 1 1

Tab.12: four times miss-recognized characters by all three

features

Character

ID

number

Correct

character

Miss-recog

nized

character

PDC

feature

Weighted

direction index

histogram

feature

Cellular

feature

17 1 2 1

18 1 2 1

19 1 2 1

20 1 2 2

21 2 0 2

Tab.13: total numbers of correct answers and character types

The number of correct answers The number of character types

18 579

16~17 883

11~15 1072

6~10 130

5 9

4 5

0~3 0

we use the PDC feature, the weighted direction index

histogram feature and the cellular feature. It takes the longest

computing time for the PDC feature that has the longest

feature vector and the highest recognition rate.

Next, we analyze the miss-recognitions to be classified by

feature and group of features. The highest rate of classified

miss-recognitions is 26.8% in the case of cellular feature. Then,

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 413

ISBN: 1-60132-444-8, CSREA Press ©

the second highest rate is 18.7% in the case of all three

features.

From the result of classified miss-recognitions, we find that

the weighted direction index histogram feature and the

cellular feature are apt to be affected by image quality such as

the different thickness and the blur of strokes. The cause of

miss-recognitions in all three features is invoked by characters

that are similar and with partly different structures as well as

the different thickness and the blurs of strokes. Furthermore,

there are no characters incorrectly recognized in the

experiments performed 6 times with three features.

We believe that the recognition rate will increase when we

use the majority method where a character appearing most

frequently in a recognition result is assumed as the final

recognition result.

Acknowledgment

This work is partially supported by Grant-in-Aid for scientific

research from the Ministry of Education, Culture, Sports,

Science and Technology of Japan (MEXT) No.26280119. We

would like to give heartful thanks to Prof. Ryuichi Oka of Aizu

University for his guidance and Prof. Shinji Tsuruoka and Prof.

Fumitaka Kimura of Mie University for his programs.

References

[1] National Diet Library :http://www.ndl.go.jp/

[2] Digital Library From the Meiji Era:http://kindai.ndl.go.jp/

[3] National Diet Library Digital Collections:

http://dl.ndl.go.jp/

[4] Ishikawa.C,Ashida,N,Enomoto.Y,Takata,,Kimesawa,T.a

nd Joe,K: Recognition of Multi-Fonts Character in

Early-ModernPrintedBooks,PDPTA2009,Vol.Ⅱ,pp.728-7

34(2009).

[5] Fukuo,M.,Enomoto,Y,Yoshii,N.,Takata,M.,Kimesawa,T.

and Joe,K.: Evaluation of the SVM based Multi-Fonts

Kanji Character Recognition Method for Early-Modern

Japanese Printed Books, PDPTA2011, Vol.Ⅱ,

pp.727-732(2011).

[6] Kosaka,K., Awazu,T., Ishikawa,Y., Takata,M., Joe,K : An

Effective and Interactive Training Data Collection

Method for Early-Modern Japanese Printed Character

Recognition, PDPTA2015, Vol.Ⅱ, pp.263-269 (2015. 07).

[7] Fukuo,M. , Takata, M., and Joe, K. :“The Kanji character

recognition evalution for the modern book of the same

publisher”(in Japanese), MPS, 26:1–6 (2012).

[8] Awazu,T., Kazumi,K., Takata,M., Joe,K. : A Multi-Fonts

Kanji Character Recognition Method for Early-Modern

Japanese Printed Books.(in Japanese), IPSJTOM, (in

press)

[9] Miyamoto, K., Kumano, S., Sugimoto, K., Tamagawa,M.,

Eiho,S : A Recognition Method of Low Quality Printed

Characters by Multiple Features (in Japanese), IEICE,

Vol.J82-D,No4,pp.771-779(1999).

[10] Hagita,N.,Naito, S. and Masuda, I : Handprinted Chinese

Characters Recognition by Peripheral Direction

Contributivity Feature (in Japanese), IEICE, Vol.J66-D,

10, pp.1185-1192, 1983.

[11] Tsuruoka.S,Kurita,M., Harada,T., Kimura,F., Miyake,Y :

Handwritten“KANJI”and“HIRAGANA”Character

Recognition Using Weighted Direction Index Histogram

Method, IEICE, Vol.J70-D,No.7,pp.1390–1397 (1987).

[12] Oka,R. : “Handwritten Chinese-Japanese Characters

Recognition Using Celllular Features”(in Japanese),

IEICE, Vol.J66-D, No.1, pp.17–24 (1983).

[13] Cristianini,N.andShawe-Taylor,J.: Support vector

machine Introduction, Kyoritsu Publisher(2005).

[14] National Institute of Informatics : https ://www.jisc.go.jp/

[15] Soga,M.,Yusa,M.: BASIC KANJI, Taisyukan

Publisher(1989).

[16] Matsuura,M. , Kamiduma,N., Handa, K. : Build Up Your

KANJI SENSE , ASK Publisher(2009)

Appendix

According to [15][16], we introduce that Kanji are made up of

sevral phonetic and semantic components.

In the kanji dictionary, Ka nji are classified into seven types

such as left, right, up and down c omponents. These seven

components are called radicals. The seven radicals are hen,

tsukuri, kanmuri, ashi, tare, kamae, and nyou.

As shown Fig.a, a radical (a component) on the left side of a

Kanji is called hen. Fig. b shows a right component called

tsukuri. In the same manner, Fig.c and Fig.d show a top and a

bottom components called kanmuri and ashi, respectively.

Some radicals which enclose a Kanji, either totally or partially

are called kamae as shown in Fig.e. Fig. f and Fig.g show tare

and nyou. When a radical is composed to genenrate a

complicated Ka nji, the radical itself alos gener ates a simple

and basic Kanji. For example, (hen, person) (kamae,

mouth)， (hen or tare, earth), etc. are basic Kanji as well as

composing difficult Kanji characters. a basic kanji meaning

metal or gold is a radical for various metals, such as “silver,”

“iron”, and “lead.”

Fig.a: Fig.b Fig.c Fig.d

Fig. : Structures of Kanji

Fig.e Fig.f Fig.g

414 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

http://kindai.ndl.go.jp/
http://dl.ndl.go.jp/

Real-Time Super Resolution:

FPGA Implementation for the ICBI Algorithm

Takashi Matsumoto, Arisa Yamamoto and Kazuki Joe

Dept. of Advanced Information & Computer Sciences,
Nara Women’s University, Nara, Japan

Abstruct – In recent years, display devices have been improved
in resolution and data transmission speed through the Internet
allows the use of FHD contents. In the meanwhile, we have huge
amount of low resolution contents in both data and devices. To
make efficient use of such low resolution contents on FHD, the
super resolution imaging is one of the hottest research topics. In
this paper, we present an FPGA implementation of ICBI in real
time. We show how we reduce the repetition time of the ICBI
smoothing phase for the FPGA implementation keeping the
hardware resource amount reasonable small and real-time
processing ability.

Keywords: Super resolution imaging, FPGA, Real-time processing,
FHD

1. Introduction

Recently, display devices have been improved in resolution
and Full High Definition (FHD) of 1,920 by 1,080 becomes quite
popular. In the meanwhile, now we have an enormous amount of
low resolution contents across the reaches of the world. For
example, we have small and existing inexpensive video such as
surveillance camera or robot built-in camera, broadcast contents
in a good old days, subminiature camera such as endscope or
other inspection cameras. Of course, these low resolution
contents do not make full use of FHD displays. These old
contents and devices should be kept and if possible improved for
the current use. To make full use of Toshiba and Sharp FHD
displays, the old contents should be reconstructed as if they are
high resolution. The question is how we improve old contents to
high resolution.

Super resolution imaging is a technique that enhances the
resolution of an imaging system. Namely, it improves low
resolution contents to high resolution contents. In super
resolution imaging, reconstruction process super resolution
imaging [1], learning based super resolution imaging [2] and
new edge directed interpolation [3] are widely known.

Reconstruction process super resolution imaging, known as
Toshiba’s Regza, requires multiple low resolution images taken
in different conditions. Learning based super resolution imaging
requires a lot of degraded images for learning to generate a
database for image improving. New edge directed interpolation
(NEDI) is superior to the others but needs large computational
cost against real time process.

Recently, Iterative curvature-based interpolation (ICBI) is
reported [4], which is as effective as NEDI with small amount of
computational cost. In [4], it is also reported that an ICBI
implementation using a CUDA based GPU (240cores) achieves
a real-time up-scaling of 128x128 color images to 256-256
images in 12.3ms per frame. It means that real-time ICBI
software implementations are possible using high-end platforms.

We are interested in implementing real-time ICBI with
reasonable cost, say an FPGA implementation instead of the
CUDA implementation.

The rest of the paper is organized as follows. In section 2, we
briefly explain the ICBI. In section 3, the FPGA implementation
issue is presented. In section 4, we report experiment results
using a prototype FPGA implementation with hardware resource
cost.

2. ICBI

The ICBI is an iterative algorithm to repeat two phases: the
Fast Curvature-Based Interpolation (FCBI) algorithm [4] and a
smoothing algorithm. We briefly explain the original algorithm
to make the difference with our implementation version clear.

2.1 FCBI

The FCBI algorithm is the first process of ICBI. It
interpolates a pixel by the pixel brightness values in the neighbor.
First, it compares the curvatures toward both diagonal directions.
The curvature is calculated by the second order derivatives. In
this paper, when we want to generate the red pixel by
interpolation in Fig.1, we first use the following expression [4].

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 415

ISBN: 1-60132-444-8, CSREA Press ©

(2i − 2, 2j + 2)+(2i, 2j)+(2i + 2, 2j − 2) −3(2i, 2j + 2)
−3(2i + 2, 2j)+(2i, 2j + 4)+(2i + 2, 2j + 2)+(2i + 4, 2j)
Namely, we sum the blue pixels and subtract weighted

yellow pixels. After calculating another curvature, we compare
the curvatures of both diagonal directions and assign to (2i+1,
2j+1) the average of the two neighbors in the diagonal direction
where the curvature is lower. For example, when the curvature
on the upper right diagonal is smaller, we calculate the average
of the two blue pixels surrounded by a yellow ellipse to
interpolate the red pixel in Fig.1. The other pixels are
interpolated in the same way. When all the pixel interpolation
toward both diagonal directions is completed, the next phase of a
smoothing method described in the next subsection is applied.
Then, we interpolate the pixels toward the horizontal and vertical
directions as in the same manner as shown in Fig.2.

Figure 1 Curvature calculation for diagonal directions

Figure 2 Curvature calculation for horizontal and vertical
directions

2.2 Smoothing

ICBI consists of two parts: FCBI and a smoothing process. I
explain the latter part, namely, smoothing. Since FCBI
interpolate the red pixels with two neighbor pixels, the red pixels
themselves are already smoothed. But the curvature is different
from other curvatures and they are not smoothed from the wide
range view. To smooth them, a sophisticated smoothing is
needed as the past process of FCBI. The following expression
represents the total summation of each curvature and it is to be
minimized using a hill-climb method, where a~e and the red star
are shown in Fig.3.

The star means that the previous curvature value is subtracted

from the total summation so that the original image is not
degraded. After the smoothing process toward diagonal
directions, FCBI is applied for horisontal and vertical directions.
Then another smoothing is applied toward horizontal and vertical
directions.

Figure 3 Smoothing process

Figure 4 Smoothing for vertical direction

3 Hardware Implementation

As presented in [4], the ICBI algorithm has a problem of
computation cost if it is processed just by software. Actually, it is
impossible to use the ICBI with the processing speed of 30
frames per second. So we implement it by hardware for the real
time process. Here we propose a hardware implementation
method for ICBI. We use an FPGA for the hardware
implementation. As the concrete platform, we use a ZedBoard
[5].

3.1 Data

We explain input data. Since FCBI interpolates pixels based
on their brightness values, we adopt YUV422 as the color
information for input data. It is known that human’s visual
perception has better ability for brightness resolution rather than
color information. Taking this ability into account, the format of

|a-b|+|a-c|+|a-d|+|a-e|-★

416 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

Figure 5

Table 1 Pipeline stage

YUV422 is to use half of information bits for the brightness
with reducing the color information, and the rest of half to put U,
color difference for blue, and V, color difference for red,
alternately.

In our proposed implementation, the flow of data is as
follows. First, we take video data by a camera module OV7670
[6], and send the data to the frame buffer to synchronize the
camera and the display. The camera module OV7670 is very
cheap to generate 16bit VGA color information per pixel. The
resolution of the display is 1,280 by 768. Since we develop a
prototype first, we do not adopt FHD yet. Then, the pixel
coordinate data is sent to the image processing pipeline that
includes the interpolation pipeline. In the interpolation pipeline,
we support nearest neighbor, bilinear, bicubic, FCBI and ICBI in
this implementation. The processed data is sent to the display in
real time. Figure 5 shows the flow of YUV422 data.

3.2 Pipeline

We do not explain the hardware implementation in detail in
this paper except interpolation pipeline. The ICBI algorithm has
the flow of pixel interpolation followed by smoothing toward
diagonal directions and pixel interpolation followed by
smoothing toward horizontal-vertical directions. Since the
horizontal-vertical pixel interpolation cannot be executed until
the diagonal pixel interpolation is completed, they must be
executed in sequential.

In our interpolation implementation, diagonal interpolation is
executed at the first clock. At the next clock, horizontal-vertical
interpolation is executed with the next diagonal interpolation. At
the third clock, diagonal and horizontal-vertical smoothing are
executed with the next diagonal and horizontal-vertical
interpolation. The smoothing process may be repeated to get
more smoothed images. Table 1 shows the pipeline stages.

In our proposed ICBI implementation, the smoothing
process occupies one stage pipeline, so it takes too much
computation to be completed in a clock. So we use two clocks.
The repeat of smoothing may degrade the resultant images.
Namely, too many repeat times of smoothing generate noises on
the resultant images. For example, when we repeat the
smoothing four times, we find unexpected pixels close to edges.
That means FCBI with four times smoothing may degrade the
resultant images. So we try to enhance the effect by one
smoothing instead of repeating it many times. In the smoothing
process, we use a hill-climb method to minimize the summation
of curvatures. We enhance the amount of change more than
twice. We confirm this enhancement by software implementation
to get enough results. We call this enhancement boost version of
ICBI. In our hardware implementation, we use the boost version
of ICBI.

Figure 6 show the basic structure of 5-line x 5-pixel pipeline
flow. Using this structure, the interpolation pipeline is
implemented for ICBI, FCBI and other basic methods.

1 pixel interpolation

diagonal directions

2 pixel interpolation

horizontal-vertical

directions

pixel interpolation

diagonal directions

3 diagonal and

horizontal-vertical

smoothing

pixel interpolation

horizontal-vertical

directions

pixel

interpolation

diagonal

directions

4 diagonal and

horizontal-vertical

smoothing

diagonal and

horizontal-vertical

smoothing

pixel

interpolation

horizontal-vertic

al directions

pixel

interpolation

diagonal

directions

Figure 6 Basic structure of 5-line x 5-pixel pipeline

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 417

ISBN: 1-60132-444-8, CSREA Press ©

3.3 Validation of boost version

In the previous subsection, we propose the boost version of
ICBI that enhances the step length for the hill-climb method to
get enough results compared with repeating the smoothing phase.
In this subsection, we show some preliminary experiment result
to validate our boost version.

Figure 7 shows several images generated by software
implementation to investigate the reduction of smoothing repeat
times and the effect of boost version of ICBI. Comparing the
normal FCBI with the boost version, we observe that the boost
version generates a better image. As for the comparison between
twenty times and four times smoothing, although twenty times
smoothing generate higher resolution, we think we cannot detect
the resolution difference by eye.

So we conclude that the boost version ICBI is efficient if the
up-scaled images are used for human’s watch. Quantitative
evaluation is required for analytical use.

4. Experiment

Given the improvement and investigation, we implement the
ICBI algorithm on an FPGA. In this implementation, we use
640x400x16bit BRAM in ZedBoard as frame buffer to achieve
real-time 2x2 upscaling, namely 1,280x768 display format. As
for color information, since we focus on brightness information
for the ICBI algorithm, we do not translate the U and V
information of YUV422 but just use Y (brightness) information.
So the prototype implementation generates gray scale images.

Figure 8 shows the resultant images generated by our
implementation. We take a movie by the camera module, and it
is sent to the frame buffer, processed for interpolation including
the boost version of ICBI pipeline, and displayed in real time (30
frames per second). The interpolation results are nearest neighbor,
bilinear, FCBI and boost version of ICBI for up-left, up-right,
down-left and down-right, respectively. Since the result image is
optically taken by an ordinal camera, we cannot evaluate the
results in detail. This is because we did not have a way to capture
the resultant frame buffer data to external data storage in
real-time yet.

(b) FCBI (c) twenty times smoothing

(d) four times smoothing (e) four times smoothing
boost version

(a) Original image
256×256pixel

Figure 7 Validation of boost version ICBI by software interpolation

418 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

 Table 2 Total HW resources

We explain the resource issue of the prototype. We
enumerate look up tables, Flip Flops and block RAM for the
total amount of FPGA as shown in Tab.2. XC7Z020 is the
FPGA installed in ZedBoard. In each row below XC7Z020, each
number represents the amount of HW resource and each number
in parentheses represents the expected amount of HW resource at
compile time.

Table 3 HW resources for interpolation pipeline

 As for the hardware resources for interpolation pipeline,
Tab.3 shows the detail. In the ICBI, the resource FCBI uses is
limited compared with ICBI smoothing multiple times. The more
times of smoothing, the more amounts of hardware resources.
Note that we plan to implement ICBI with 9 times smoothing but
it turned out that the implementation exceeds the hardware
limitation.

5. Conclusions

Since pixel interpolation by FCBI has relatively small
computation cost, real time implementation is possible without
huge amount of hardware resources. In the meanwhile, ICBI
requires multiple times smoothing processes, so the pipeline
must be designed with multiple stages to require huge amount of
hardware resources. Improving the ICBI algorithm, we reduce
the amount of resource to develop an FPGA implementation.
The evaluation of real time process is confirmed by the
prototype.

The current version of our ICBI prototype provides a
standard enlargement factor of two. As explained in the
introduction of the paper, one of the purposes of the super
resolution imaging is to convert low resolution contents into
FHD. However, the pixel number of low resolution existing
cameras does not reach to FHD just by two times. The prototype
provides just two times enlargement because of hardware
resource. Our future work includes more enlargements with
reducing the amount of hardware resource.

References

[1] Park, S.C., Park, M.K., Kang, M.G.: Super-resolution
image reconstruction: a technical overview, IEEE Signal
Processing Magazine. 20 (3): 21–36 (2003).

[2] Joshi, M.V., Chaudhuri S., Panuganti R. : A learning-based
method for image super-resolution from zoomed
observations, IEEE Trans Syst Man Cybern B Cybern.
35(3):527-37 (2005).

[3] Xin Li: New edge-directed interpolation, IEEE Trans on
Image Processing. 10(10); 1521-1527 (2001).

[4] Giachetti, A., Asuni, N.: Real-Time Artifact-Free Image
Upscaling, IEEE Trans on Image Processing. 20(10):
2760–2768 (2011).

[5] ZedBoard :<https://www.avnet.co.jp/kits/Xilinx/AES-Z7EV-
7Z020-G-J.aspx> (2016/6/8 accessed)

[6] http://www.ovt.com/ (2016/6/8 accessed)

name LUTs FFs BRAM
(36kb)

XC7Z020
Total

53,200 106,400 140

Nearest
Neighbor

1,197 (1,161) 814 (812) 120 (120)

Bilinear 1,892 (1,865) 971 (973) 121 (121)

Bicubic 5,667 (5,871) 1,506 (1,508) 120 (120)

FCBI 6,975 (7,007) 1,520 (1,525) 122 (122)

ICBI 4 times
smoothing

22,716 (24,386) 4,529 (4,551) 126 (126)

ICBI 7 times
smoothing

34,510 (41,825) 7487 (6716) 130 (129)

ICBI 9 times
smoothing

---- (46,165) ---- (8,212) ---- (131)

name LUTs FFs BRAM
(36kb)

Nearest
Neighbor

0 (0) 0 (0) 0 (0)

Bilinear 595 (604) 157 (161) 1 (1)

Bicubic 4,470 (4,710) 692 (696) 0 (0)

FCBI 5,778 (5,846) 706 (713) 2 (2)

ICBI 4 times
smoothing

21,519(23,225) 3,715 (3,739) 6 (6)

ICBI 7 times
smoothing

33,313 (40,664) 6,673 (5,904) 10 (9)

ICBI 9 times
smoothing

---- (45,004) ---- (7,400) ---- (11)

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 419

ISBN: 1-60132-444-8, CSREA Press ©

http://www.ovt.com/

Figure 8 Validation of boost version

420 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

SESSION

LATE BREAKING PAPERS

Chair(s)

TBA

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 421

ISBN: 1-60132-444-8, CSREA Press ©

422 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

Search Space Segmentation for Distributed Stochastic Algorithms

J. Mange1, S. Pace1, A. Dunn1, and S. Enck1

1Computational Methods and System Behavior, US Army - TARDEC, Warren, MI, USA

Abstract— For distributed algorithms, many different meth-
ods of problem- and search-space segmentation have been
defined within various problem contexts. In particular, for
distributed processing of certain types of stochastic algo-
rithms, a natural question is whether this search space
segmentation provides any practical advantages over run-
ning multiple instances of the algorithm over the entire
space and combining the results appropriately. In this paper,
we examine that question, first in the context of a simple
algorithm for estimating the value of π, and then in the more
complex context of a stochastic algorithm for calculating
Ramsey number lower bounds. For each algorithm, we
present comparison results of different levels of search space
segmentation and the effect on performance.

Keywords: Parallel processing, distributed computing, space seg-
mentation, Ramsey theory

1. Introduction
Efficient segmentation of problem and search spaces for

distributed processing is a complex issue that has been the
subject of much research (e.g., [1], [5], [6]). For many
optimization and search algorithms, this kind of space seg-
mentation has been shown to provide enormous advantages
in performance. However, for some types of stochastic
algorithms, it is unclear whether these same advantages
apply. Since these algorithms involve random searches and
operations, it is not immediately apparent whether limiting
each instance to operate within a defined sub-space will yield
better results than allowing each to operate within the full
space and combining the results in a way appropriate to the
problem context (e.g., averaging).

Ultimately, we applied a search space segmentation
method to a stochastic algorithm for the calculation of
Ramsey number lower bounds, which will be explained in
detail in a later section. However, to introduce the concepts
more clearly, we first apply it to a basic algorithm for
estimating the value of π.

2. Estimation of π
As a trivial example of the space segmentation concept,

we use a simple algorithm for estimating the value of π.
Since π is defined as the ratio of a circle’s area to the
square of its radius, one can use the Monte Carlo approach
of randomly generating a number of points in a unit square
to estimate π. As the number of generated points increases,

the ratio of the number that fall within a circle inscribed in
the unit square to the total number approaches the ratio of
the area of the circle to the area of the square, which is:

area of circle

area of square
=
π · 1

2

2

1

This ratio can then be used to estimate the value of π. This
algorithm is often used as an introduction to Monte Carlo
algorithms, although its practical application is limited,
because it converges much more slowly than many other
algorithms for estimating π.

Figure 1 shows the average relative error for this algorithm
as the number of generated points increases.

Fig. 1: Estimation of π.

2.1 Search Space Segmentation
Consider now that four processors are available for a

distributed version of this algorithm. We considered three
alternative methods of segmenting the search space (in this
case, the unit square) for this problem:

• Full segmentation - All 4 processors operate on a
separate quarter unit square, results added

• Partial segmentation - 2 processors each operate on a
half unit square, results averaged between those 2, then
added

• No segmentation - All 4 processors operate on the full
unit square, results averaged

This has the effect of testing no segmentation of the
search space, a partial segmentation, and full segmentation,
respectively. See figures 4-2 for a representation of the search
space for each.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 423

ISBN: 1-60132-444-8, CSREA Press ©

Fig. 2: Full Segmentation.

Fig. 3: Partial Segmentation.

2.2 Analysis
As one might expect with this simple algorithm, there was

essentially no difference between the three different methods
of segmentation. Figure 5 shows a graph of the results of the
methods, and one can see that all produced almost identical
results. However, this is only true because of the simplicity
of this example problem; with more complex algorithms,
different methods of segmentation are not all equivalent, as
will be seen in the follow sections.

3. Ramsey Numbers
The Ramsey numbers are a set of numbers related to

combinatorics and graph theory [4]. These numbers have
a fairly straightforward definition, yet their exact values
are difficult to determine. Stated in graph theory terms, a
Ramsey number r = R(x1, x2, ..., xk) is defined as the
smallest number r such that any edge coloring of a complete
graph of order r with k colors must contain a complete
subgraph of color i on xi vertices, for some 1 ≤ i ≤ k.

Some general proofs exist for lower and upper bounds
for the Ramsey numbers, but these bounds are often very
loose. Establishing exact values for these numbers has
proven extremely difficult, as evidenced by the fact that
today, over 80 years after Ramsey theory was introduced,
only a few non-trivial Ramsey number values are known
[9]. These values are:

Fig. 4: No Segmentation.

Fig. 5: Segmentation Results on Estimating π.

R(3, 3) = 6 R(3, 4) = 9 R(3, 5) = 14
R(3, 6) = 18 R(3, 7) = 23 R(3, 8) = 28
R(3, 9) = 36 R(4, 4) = 18 R(4, 5) = 25
R(3, 3, 3) = 17

Other work has been done on tightening the general
bounds for specific other Ramsey numbers or classes
thereof, but currently these 10 values are the only known
exact values.

3.1 Computation of Lower Bounds

While historically most of both the bounds and actual
values for the Ramsey numbers have come from mathemati-
cal proofs or constructions, it is now increasingly feasible to
use computer algorithms to attempt to generate colorings that
establish new lower bounds. Since the definition of a Ramsey
number is the smallest number such that a complete graph
of that order must contain one of the subgraphs in question,
lower bounds can be proven simply by providing an edge
coloring of a complete graph of the desired order that does
not contain any of these subgraphs. The stochastic algorithm
we used in this paper employs this approach – it utilizes a
randomized search algorithm to find a desired edge coloring,
in order to provide a lower bound for the Ramsey number
in question.

424 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

3.2 Stochastic Search Algorithm
The goal of the stochastic search algorithm described here

is to find the lower bound for a specific Ramsey number by
finding a valid edge coloring of the graph from the definition
of a Ramsey number that does not violate the conditions
specified. This is, in essence, a search problem with a very
large search space for all but the smallest Ramsey numbers.

The basic function of the algorithm is to first construct
a random graph coloring for a graph of the appropriate
size with the appropriate number of colors, then iteratively
attempt to “improve" the coloring by replacing edge colors
with others that reduce the total number of subgraphs that
violate the conditions. After a set interval, if the algorithm
has failed to improve the coloring, it is replaced by a new
random coloring and the process starts again.

The number of colorings for a graph of order n with k
colors is given by:

k
n·(n−1)

2

This number quickly grows large as n increases, and it
becomes infeasible to search even a significant portion of
the total search space on a single processor. For this reason,
distributed computing is an attractive option. However, it
is not clear whether segmenting the search space over
multiple processors would yield better performance than
simply allowing the same randomized algorithm to execute
multiple times over the entire search space. In either case,
different portions of the search space would be explored – in
the first, by explicitly limiting the space each processor can
investigate, and in the second, by allowing the randomness
of the algorithm to determine which areas to explore. In the
following section, we examine how to efficiently segment
the search space for this problem.

3.3 Search Space Segmentation
In order to construct an edge coloring with k colors,

each edge can be one of the k options. Therefore, a
straightforward efficient search space segmentation involves
assigning a specific color of k to each of n edges, using
p = kn total processors. Some care must be given to ensure
that the assigned edges do not themselves form one of the
subgraphs that violate the constraints of the problem, but
with a selection of specific edges that do not form any
subgraphs of the order of any of the constraints, this problem
can be avoided.

This is the segmentation approach we adopt for the testing
of different search space segmentation methods. As in the
example of estimating the value of π, we examine three
different methods:

• Full segmentation - each processor is assigned a
mutually exclusive area of the search space

• Partial segmentation - Half of the processors are
assigned mutually exclusive areas of the search space,

the other half are assigned the same spaces as the first
half

• No segmentation - the same stochastic algorithm is run
on each processor over the entire search space

4. Experimental Design
In order to test each of the segmentation methods defined

previously, for several specific known Ramsey numbers, we
run the stochastic search algorithm for a graph of order one
less than the value of the Ramsey number – that is, the
largest graph for which a valid coloring exists. As a meaning-
ful measure of performance, we choose to count the number
of times the most expensive operation involved is executed,
namely the operation that counts the number of subgraphs
that violate the constraints. This is roughly equivalent to an
objective function for an optimization problem (and indeed
has been formulated as such, see [2], [7]).

This count is then compared for different numbers of
processors, for each of the three segmentation methods. In
order to reduce the impact of the randomness involved with
the algorithm on the performance results, the same tests were
run 1000 times, and the average subgraph violation counts
were averaged over these runs. The results of these tests are
presented in the following section.

5. Results
Table 1 lists the results for each segmentation method

on the stochastic algorithm for calculating the largest
lower bound for the Ramsey numbers R(3, 3), R(3, 4), and
R(3, 5), respectively. Figures 6, 7, and 8 show this same
performance graphically for each of the Ramsey numbers
examined. As can be seen, the choice of segmentation meth-
ods significantly affected the performance of this algorithm,
with the full search space segmentation strategy exhibiting
the best performance across all problem instances and all
levels of distribution aside from a single processor.

Table 1: Ramsey Number algorithm segmentation results.
Ramsey Number of No Partial Full
Number Processors Segmentation Segmentation Segmentation

R(3, 3) 1 6.7318 6.8580 6.7576
R(3, 3) 2 6.7972 5.8916 6.7190
R(3, 3) 4 6.8032 5.0784 5.8745
R(3, 3) 8 6.7604 4.3268 5.0368

R(3, 4) 1 35.0736 35.1856 35.4264
R(3, 4) 2 35.7344 33.2012 34.7824
R(3, 4) 4 35.1464 31.4112 32.7638
R(3, 4) 8 36.0648 28.1150 30.5584

R(3, 5) 1 324.9200 322.1200 323.0000
R(3, 5) 2 315.5600 296.1300 307.4480
R(3, 5) 4 295.2800 284.7200 294.9960
R(3, 5) 8 301.5200 280.7500 294.1440

As in the estimation of π example, there is little variation
among the performance for the "no segmentation" method,

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 425

ISBN: 1-60132-444-8, CSREA Press ©

Fig. 6: Segmentation method comparison on R(3, 3).

Fig. 7: Segmentation method comparison on R(3, 4).

since on average, the same number of subgraph violation
counts is required regardless of the number of processors
executing the same stochastic algorithm.

6. Conclusions
From these results, we can conclude that full segmentation

of the search space is indeed the best strategy for the more
complex stochastic algorithm to calculate Ramsey number
lower bounds. These results are rather problem-specific,
and the same choice may not hold for all such stochastic
algorithms, since many elements of the problem context can
affect the distributed performance of search and optimization
algorithms.

It is also significant to note that there is something of a
“diminishing returns" effect as the problem size increases.
Since the search space for Ramsey numbers grows expo-
nentially with the order of the graph being examined, the
segmentation of this search space yields lower performance
improvements as the order increases. Nevertheless, a full,
efficient segmentation of the search space still yields the
best performance of this algorithm.

Although we demonstrated the results of this approach
on relatively small, known instances of Ramsey numbers,
the same strategy is likely to yield valuable performance
gains as we and other researchers push forward to find
new bounds and new values for the as-yet-unknown Ramsey

Fig. 8: Segmentation method comparison on R(3, 5).

numbers, using distributed computing resources to make
possible searches of increasingly large search spaces.

References
[1] Bentley, Jon Louis. "Multidimensional divide-and-conquer." Commu-

nications of the ACM 23.4 (1980): 214-229.
[2] Exoo, Geoffrey. "On the Ramsey Number R(4, 6)." the electronic

journal of combinatorics 19.1 (2012): P66.
[3] Gourdain, N., et al. "High performance parallel computing of flows in

complex geometries: I. methods." Computational Science and Discov-
ery 2.1 (2009): 015003.

[4] Graham, Ronald L., Bruce L. Rothschild, and Joel H. Spencer. Ramsey
theory. Vol. 20. John Wiley and Sons, 1990.

[5] Happ, P. N., et al. "Multiresolution segmentation: a parallel approach
for high resolution image segmentation in multicore architectures." The
International Archives of the Photogrammetry, Remote Sensing and
Spatial Information Sciences 38.4 (2010).

[6] Korting, Thales Sehn, Emiliano Ferreira Castejon, and Leila Maria
Garcia Fonseca. "Divide And Segment - An Alternative For Parallel
Segmentation." GeoInfo. 2011.

[7] Mange, Jeremy, and Andrew Dunn. "Luus-Jaakola Optimization Pro-
cedure for Ramsey Number Lower Bounds." International Journal of
Mathematics and Computer Science 10.1 (2015): 57-68.

[8] Melanz, Daniel J. On the Validation and Applications of a Parallel
Flexible Multi-body Dynamics Implementation. Diss. University of
Wisconsin-Madison, 2012.

[9] Radziszowski, Stanislaw P. "Small ramsey numbers." Electron. J.
Combin 1.7 (1994).

[10] Sammeth, Michael, Burkhard Morgenstern, and Jens Stoye. "Divide-
and-conquer multiple alignment with segment-based constraints."
Bioinformatics 19.suppl 2 (2003): 189-195.

[11] Seidl, Andrew A. Parallel Implementation of a Vehicle-Tire-Terrain
Interaction Model. Diss. University of Wisconsin-Madison, 2012.

[12] Yang, Weitao, and Tai-Sung Lee. "A density-matrix divide-and-
conquer approach for electronic structure calculations of large
molecules." The Journal of chemical physics 103.13 (1995): 5674-
5678.

426 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

An Optimized Approach for ETL in Real-Time Data
Warehouses based on (m, k)-firm Constraints

Issam Hamdi1, Emna Bouazizi2, and Jamel Feki2

1Miracl Laboratory, University of Sfax, BP. 1088, Sfax 3018, Tunisia
2Faculty of Computing and IT, University of Jeddah, Jeddah, Saudi Arabia

Abstract - Nowadays the update frequency for traditional
data warehouses cannot meet the objectives of real-time data
analysis relying on data freshness. To alleviate this problem,
the real-time data warehouse (RTDW) technology has
emerged. A RTDW allows decision makers to access and
analyze very recent data as fast as possible in order to support
real-time decision processes. The RTDW must often deal with
transient usage charges, due to the unpredictability of access
to data. In this paper, we propose an architecture called
DETL-(m, k)-firm-RTDW architecture (Decentralized Extract-
Transform-Load approach based on (m, k)-Firm constraint for
Real-Time Data Warehouse). This architecture deals with
diversity and disparities in data source systems to reduce the
time for ETL and it has threefold objectives: i) guarantee the
data freshness, and ii) enhance the deadline miss ratio even in
the presence of conflicts and unpredictable workloads. DETL-
(m, k)-firm-RTDW architecture is designed for complex
analytical queries that are very costly due to several join
operations. Despite the complexity of their queries, decision
makers want their requests to be processed rapidly. Therefore,
we focus on optimization techniques and more precisely data
partitioning optimization and materialized views in order to
guarantee the user access to the required information with
reasonable response time, as short as possible. Finally, we
evaluate our feedback control scheduling architecture which
considers both materialized views and data fragmentation
using the TPC-DS [18] benchmark; the preliminary results
are quite promising.

Keywords: RTDW; ETL; Quality of Service; Data sources
partitioning; (m, k) -firm constraints.

1 Introduction
 The traditional data warehouse uses historical data to
provide strategic decision making and product management
for corporate decision makers. However, enterprise hopes data
warehouse to provide real-time strategic decision making,
such as real-time marketing. For example, financial
institutions require accurate and up-to-date analytical reports
regarding available prices and stocks. Too much latency in the
data may cause the organization to lose a large amount of
money.

The real-time data warehouse is a new data warehouse
architecture which is based on the traditional data warehouse
development. Real-time means detect and capture the changed
data from the data source in time, and load changed data in
time when the data in the data source are changed by
transaction processing, in order to meet user’s real-time
analysis and decision-making requirements.
To accumulate data in one place, we need an extract,
transform and load (ETL) software. But, such software takes
enormous time for this purpose. This is exactly the problem
we are dealing with in this paper.
The remaining of the paper is organized as follows. In Section
2, we present pertinent works related to QoS management in
RTDW, real-time ETL and the (m, k)-firm constraints in real-
time systems. Section 3 describes our proposed approach
called DETL-(m, k)-firm-RTDW to manage ETL process in
RTDW with QoS guarantees for RTDW. Our work is
evaluated according to a set of simulation results in Section 4.
We conclude the paper, in Section 5, by briefly discussing our
approach and by presenting our future work.

2 Related Works
In this section, we describe our real-time data warehouse
model by presenting data and transaction models, and defining
the basic performance metric we consider. Then, we mention
some works related to real-time ETL. We finish by giving an
overview of the previous work in which the (m,k)-firm
approach is used for the QoS enhancement.

2.1 Management of QoS in real-time data

warehouse
In traditional data warehouses, updates are typically applied
during downtimes, e.g., every night. In contrast, a real-time
data warehouse attempts to load new data as they arrive. In
this paper, we limit ourselves to a RTDW that receives write-
only update transactions in order to reflect the state of the real
and read-only query transactions.
The data in this model are stored in relational databases called
ROLAP (Relational Online Analytical Processes) using the
star schema. Therefore, the RTDW maintains two types of
tables: base tables that are sourced directly, and derived tables
corresponding to materialized views that are recomputed
results of SQL queries.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 427

ISBN: 1-60132-444-8, CSREA Press ©

1) Transaction Model.
Transactions are classified into two classes: update
transactions and user transactions as explained below:
 User OLAP (On-line Analytical Processing) transactions,

representing user requests, arrive randomly (not
periodically) and can only read data. In order to allow
users to express their real needs, each OLAP transaction
is provided with two parameters [13], acceptable response
time delay ∆trl and acceptable result staleness ∆s, when it
is submitted so that it can satisfy the requirements of users
well. We use the absolute deadline (AD) to determine the
priorities of OLAP transactions and solve the scheduling
problem between short and long queries with a deadline.

AD (qi) = ta(qi)+ ∆trl(qi) + te(qi) (1)
Where ta (qi) is the arrival time of the transaction qi, te (qi)
is the execution time of qi and ∆trl (qi) is the acceptable
response time delay.

 Update transactions update the values of real-time data
(sensor data) in order to reflect the real world status. They
are executed periodically and have only to write new
sensor data. Each update transaction loads new data into a
table. So tables are updated repeatedly over time. If the
period is unknown or unpredictable, we let the user
choose a period when the warehouse should check for
new data. For each update transaction Ti, the deadline of
Ti is estimated to be (ri+Pi) where ri is its release time and
Pi is its period [13].

2) The quality of service in RTDW.
The QoS can be seen as a metric that permits to measure the
overall system performance. Indeed QoS is a collective
measure of the service level provided to the customer. It is
characterized by different performance criteria that include
basic availability, error rate, response time and the rate of
successful transactions before deadlines.
In [13], authors introduce the main performance metrics for
QoS management in real-time data warehouses. Indeed, the
QoS introduces two concepts that they are defined as follows:

 Quality of Transactions (QoT): denotes the ratio of the
number of OLAP transactions that miss their deadlines to
the number of OLAP transactions that have already been
executed.

dm

e

Q
DMR= (2)

Q

Where, Qdm is the set of OLAP transactions that miss their
deadlines, Qe represents the set of OLAP transactions that
have already been executed, |Qdm| is the number of Qdm
and |Qe| is the number of Qe.

 Quality of Data (QoD): is the ratio of the number of
queries for which the result staleness is
unacceptable to the number of queries that have
already been executed.

urs

e

Q
URSR (3)

Q

Where, Qurs is the set of OLAP transactions of which the
result staleness is unacceptable, Qe represents the set of
OLAP transactions that have already been executed, |Qurs|
is the number of Qurs and |Qe| is the number of Qe.

The staleness is computed only from those unapplied updates
that are already in the system at the time the user runs the
query; this is because the user does not expect to see “future
results” [16]. In RTDW, the data staleness is calculated
according to the partition unit. The staleness of a partition pi
is defined as the difference between the maximum arrival
timestamp of each unapplied update on pi and the freshness of
pi [13]:

 i a j i iS(p) = max(t (u),p) - F(p) (4)

Where F(pi) is the freshness of the partition pi as the
maximum timestamp of all records in pi and max(ta(uj),pi) is
the maximum arrival timestamp of each unapplied update on
pi. Because a query is only concerned about the update tasks
that arrive before it, the staleness of a partition pi related to a
query q is changed as follows:

a j a ii t (u) t (p) a j i iS(p ,q) = max (t (u),p) - F(p)

 (5)

For a query task q, the staleness S(q) is the maximum
staleness of all partitions pq that affect query results:

i qp p iS(q) = max (S(p ,q))

 (6)

Nowadays, few researching works focus on the QoS
management in RTDWs which allows users to express their
real needs and to control the transient overshoot of RTDW.
The authors in [16] proposed a workload scheduling WINE in
RTDW. The algorithm is based on partitions of data
warehouses and allows users to specify the Quality of Service
(QoS) and Quality of Data (QoD) of queries. But it does not
monitor the system resources and the running status of the
update and query queues.
In [5], Issam et al. proposed an architecture using local
feedback controller. This architecture, called FCSA-RTDW,
on which we base our work, aims an efficient management of
transactions workload fluctuations to guarantee the data
freshness, enhance the deadline miss ratio even in the presence
of conflicts and therefore it enhances the QoS. But, FCSA-
RTDW architecture has a main lack: it does not deal with ETL
process management.
2.2 Real-time ETL
The ETL process extracts the data from source systems,
transforms the data according to business rules, and loads the
results into the target data warehouse. In traditional ETL
tools, loading is done periodically during the downtime and

428 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

during this time no one can access the data in the data
warehouse. In today’s fast-paced, companies must be able to
quickly integrate vast amounts of data from disparate systems.

In this context, the authors in [3] proposed an E-LT
(Extraction, Loading, Transformation) as a newer approach to
populating data warehouses that moves the data
transformation step to the target data warehouse, then it
changes the order of operations to extract the data from the
source tables, to load the tables into the destination server,
and then to transform the data in the target data warehouse.
However, this approach imposes a significant overhead in
RTDW

In [17], [19] authors discuss another technique for data
warehouse refreshment. This technique differs from
conventional data warehouse refresh technology in which data
warehouse is updated in an off-line fashion. But there is still a
gap that is how to resolve bursts of streams due to the
unpredictability of incoming data streams. Therefore, an
efficient technique is desirable to balance the load of incoming
data streams.
Another approach called External Real-time Data Cache
(RTDC) [12] stores real time data outside the data warehouse
and thus it does not affect traditional data warehouse
resources. The function of RTDC is to load the real time data
into database from source systems. With this approach, there
is no additional load on the data warehouse as the real time
data lie on separate cache database.
The downside of using a RTDC solution, with or without just-
in-time data merging, is that it involves an additional database
that needs to be installed and maintained. Also, there is
additional work required to configure the applications that
need to access the real-time data [12].
In [9], the authors propose a triggering and scheduling
approach for the real-time ETL which supports triggering the
ETL task according to the integration rules (cf. Fig.1), and
balances the execution of updates and queries dynamically.
But this approach needs to invade the business system by a set
of triggers to capture real-time changed data that will bring a
great load to business system.

Figure 1. Integration based scheduling real-time ETL system.

2.3 The (m, k)-firm constraints in real-time
systems

The (m, k)-firm approach was initially introduced for periodic
tasks in real-time systems [14], in order to relax strict real-
time constraints. Indeed, the authors defined the (m, k)-firm
deadline as 0<m ≤ k. The (m, k)-firm deadline expresses the
acceptable quality of service, where at least m instances of a
task in any window of k consecutive instances meet their
deadlines [14].
In addition, (m, k)-firm approach has also been adapted to
transactions in real-time databases, aiming to decrease the
number of missed deadlines [1] [4]. In this paper, we adapt
this method to the context of RTDWs.
3 The Proposed DETL-(m, k)-firm

architecture for QoS Enhancement in
RTDWs

In this section, we present the design of DETL-(m, k)-firm
architecture that provides data services with QoS guarantees
for RTDWs. Fig. 2 shows the DETL-(m, k) -firm architecture.
It consists of operational data source systems, a change data
capture (CDC) module that uses incremental extraction, i.e.
only the changes made to the source systems will be extracted
with respect to the previous extraction, a data transition to
transform data to format required by the target system. The
ETL engine transfers the ETL task to INSERT statements and
send them to (m, k)-firm controller which is used to regulate
the system workload in order to prevent its overloading by the
reject of some optional update transactions.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 429

ISBN: 1-60132-444-8, CSREA Press ©

Figure 2. DETL-(m, k)-firm architecture.

The admission controller is used to regulate the system
workload in order to prevent its overloading. The update
transaction load is reduced by discarding update transactions
according to an upper bound for the data error given by the
maximum data error, denoted MDE. The transaction manager
handles the transactions’ execution. It consists of a
concurrency controller (CC), a freshness manager (FM), a
scheduler (SC). The CC solves accessing data conflicts
appearing between transactions. The FM checks the data
freshness. The SC is used to schedule transactions according
to the EDF (Earliest Deadline First) algorithm. In addition,
DETL-(m, k)-firm architecture contains an execution mode
(EM) module that determines the execution mode of the
present system according to two parameters [13]: (i) the
response delay ratio (Rrl) and (ii) the result staleness ratio (Rs).
If (Rs ≤ Rrl), the query scheduler will run. Otherwise, the
system mode is updated, the update scheduler will run.
Moreover, Rs and Rrl are recalculated whenever an update or
OLAP transaction is processed completely. The view manager
(i) selects a set of materialized views according to a dynamic
selection of materialized views algorithm (DynaSeV) which
selects views from results of incoming queries under the
execution time and the storage space constraints of the system
and (ii) maintains materialized views according to their access
frequency and the system workload [4].
The ETL process can involve a number of challenges. Since a
data warehouse is assembled by integrating data from a
number of heterogeneous sources, the ETL process has to
bring all the data together in a homogeneous environment.
Bellow, we present a real-time data extraction method for
RTDWs and we propose a geographic data sources
partitioning algorithm to deal with diversity and disparities in
data source systems.
3.1 Real-time data extraction method
The first part of an ETL process is to extract the data from
various source systems. Indeed, changed data capture is used
to capture the data that is inserted, updated and deleted at the

source side and insert the same at the target using incremental
extraction.
In the traditional data warehouse, incremental data extraction
technology is divided into trigger, whole table contrast and log
analysis. The whole table contrast method has to copy the
needed table from data source. But this method consumes lots
of storage when the data table is large, also it will bring a great
load.
Indeed, database management systems have a transaction log
file that records all changes and modifications in a database.
The log analysis method can scan and analyze the contents of
the database transaction log. This method does not affect the
RTDW and does not need additional storage space, which
makes it suitable for RTDW.
3.2 Data sources partitioning
The major problem with the existing ETL models is the time
taken by the process. In order to improve the performance of
ETL, software parallel processing may be implemented to
make ETL processes run faster because there is more CPU
runs it. This has enabled the evolution of a number of methods
to improve the overall performance of ETL processes when
dealing with large volumes of data.
The requirement on the data propagation delay is highly
related to the geographical distance between two data sources
since the travel speed of physical disturbances is linearly
proportional to the geographical distance. Let TP be the
traveling delay of physical disturbance between the two data
sources

p
distance between the two data sourcesT

propagation speed

 (7)

To minimize Tp, data sources are partitioned into a set of
clusters based on the geographical distance. Indeed, the
traditional ETL task needs to handle large amount of data and
process data with batch mode, which impacts performance of
the data warehouse a lot.
One of the most famous partition algorithms is the K-means.
The K-means is the simplest and most commonly used
algorithm [8]. It starts with random initial centroids and keeps
reassigning the patterns to clusters based on the similarity
between the pattern and the cluster centroids until a
convergence criterion is met after some number of iterations.

430 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

However, finding the right number of data source clusters is a
difficult task. To alleviate this problem, we propose a new data
source partitioning algorithm. The objective of our proposed
algorithm is to partition data sources recursively until the
intra-cluster distance (cf. Fig.3) in each cluster is less than a
maximum acceptable intra-cluster distance called Maxintra.
As shown in Fig 4, the maximum acceptable intra-cluster
distance represents the distance that across a circle through its
center point and touches the two farthest data sources.

Figure 4. The maximum acceptable intra-cluster distance.

Our proposed algorithm works as follows:

 Algorithm 1 Geographic data sources partitioning
algorithm

Input: The set of data source DS.
Input: Acceptable data propagation delay

called Max

Begin

Let C be the initial center (usually C

← { x }).
2: Let Dij be the distance of a data source

DS to the center Cj.

3: Let R be the radius of the circle

 R intra
Max

2

3: Let S= {DS | Dij < R} be the set of

data sources assigned to center Cj.

4: Remove the data sources set S from the

original data sources set DS.

5: do

{Repeat from step 1 to select next
initial center from other set of data

sources
}

While (|DS|>1 and (|S|>1).
End.

This algorithm takes as input the maximum acceptable intra-
cluster distance value. Then, it divides the data sources set
into clusters. Indeed, the geographic data sources partitioning
algorithm starts by calculating the initial center. Then, it finds
the Euclidean distance of all objects from the initial center. If
this distance is less than Maxintra, the object is in that center of
centroids. From other objects, it selects next initial centroid
and we repeat from step 1. This algorithm repeats step 1 until
the number of objects that are assigned to cluster is greater
than 0 and there are other sources in the DS set (|DS|>1 and
(|S|>1)).
Let us give an illustrative example: suppose that the RTDW
has 6 data sources {DS1, DS2, DS3,DS4, DS5, DS6} that they
were dispersed in various places and the DW administrator
sets the acceptable intra-cluster distance value to 4.
The data sources are illustrated into two-dimensional
coordinate system (X, Y). Indeed, each point in space in the
Cartesian coordinate system locates a data source.

Figure 5. Geographic data sources partitioning algorithm test.

From the data source points, our proposed algorithm
calculates a point whose attribute values are averages of data
source points attribute values. So, the first initial centroid is
average of data source points. Then, it finds distance of all
data source points from the first initial centroid and it assigns
each data source point in the training set to the first cluster
until the intra-cluster distance in each cluster is less than an
Maxintra. Our proposed algorithm repeats step 1 to select next
initial centroids from the other data source points and it stops
when the number of assigned data source points is less than 1.
Finally, as shown in Fig. 5, we form the following cluster:
Cluster 1: {DS2, DS3, DS4, DS5}
Also, the distance between DS1 and DS5 is longer than
Maxintra, so they cannot belong to the same cluster.
 Cluster 2: {DS1} and Cluster 3: {DS5}

Figure 3. Data source clusters.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 431

ISBN: 1-60132-444-8, CSREA Press ©

3.3 The (m, k) -firm Constraints Model for
Update Transactions

The (m, k)-firm deadline expresses the acceptable quality of
service, where at least m instances of a task in any window of
k consecutive instances must meet their deadlines. For
example, a (4, 5)-firm specification implies a 20 % maximum

allowable loss rate (k m 100
k

). A (8, 10)-firm specification,

which also implies a 20% maximum allowable loss rate, is less
stringent than a (4, 5)-firm specification. A task that violates
its own (m, k)-firm deadline, that is, when there are fewer than
m deadline satisfactions occurring in a window of k
consecutive instances, introduces a dynamic failure. Thus, the
occurrence rate of dynamic failures can be used as a metric to
measure how often the quality of service falls below the
required level. For example, a control system can have a few
occasional deadline misses without a significant degradation
in control performance, provided that there are only a limited
number of consecutive deadline misses.
3.4 Query Optimization in RTDW
To respect such a time constraint, the optimization techniques
used with traditional DWs are continuing to be used in
RTDWs. Among the most efficient optimization techniques
are materialized views and data partitioning.

1) Dynamic Management of Materialized Views in
RTDW
Roughly, a materialized view is a stored query result that may
be re-built after changes have been made in its data source.
The frequency of the re-reconstruction of the materialized
view depends on the required freshness of data. Obviously,
this frequency should be high in RTDWs so then it imposes
new challenges, including efficient management of
materialized views.
There have been works on view management for DWs. In
[11], the authors proposed a dynamic view management
system for DWs called DynaMat that has two separate phases
called On-line phase and Update phase. The goal of the On-
line phase is to answer as many queries as possible. During the
Update phase materialized views get refreshed; queries are
prohibited during this phase. Therefore, DynaMat cannot well
meet the requirements of the users in RTDW that should be
refreshed periodically in order to prevent OLAP transactions
reading extremely stale data.
The common materialized view management activities include
identifying which materialized view to be created, and
ensuring that all materialized views are refreshed properly
each time the RTDW is updated.
To do so, the authors in [6] propose a dynamic materialized
views selection algorithm called DynaSeV to select a proper
set of materialized views based on the OLAP transactions
importance and their execution times under the storage
constraint. In order to maintain materialized views, the authors
in [6] determine dynamically an update policy for them based
on update adaptation threshold (UAT) for selecting a right
update policy for a materialized view. Thus, this approach

provides a new way to deal with materialized views
management in RTDWs focusing on both data freshness and
timing constraints.

Immediate
Update

UAT = 1

UAT1

UAT 1

On-demand
updates

Materialized view is updated
at most as frequently as

it is accessed

Materialized view is accessed
at most as frequently as

it is updated

Figure 6. Dynamic Adaptation of Materialized Views
Maintenance Policy [6].

2) A Data Partitioning Approach for Real-Time Data
Warehouses
Nowadays enterprises run RTDWs of hundreds of Gigabytes
in size (or terabytes) stored in relational database tables,
consequently data retrieval processes are time consuming. So,
to speed up query processing, breaking a large table into
several smaller ones is a must. In contrast, few papers in the
literature have tried to address the issue of partitioning in the
context of RTDW [16].
To alleviate this problem, the authors in [7] propose a two
levels efficient horizontal partitioning approach in the context
of RTDW, 2LPA-RTDW. During the first-level, 2LPA-
RTDW uses the G-means based fragmentation approach to set
the initial partitions. Then, it adjusts the existing partitions
when data amount increases by merging and splitting the
existing partitions. The adjustment checks the data amount of
each partition; adjust them by merging two small partitions or
splitting large partitions. Indeed, each partition is processed
one by one, if the current one is too bigger, it will be split; or
if it is too small, try to merge into next, or such merging
cannot be done because the next one is bigger, try to split the
next. The data amount of each partition is controlled in an
acceptable range. 2LPA-RTDW offers two advantages: firstly,
we find automatically the initial number of partitions.
Secondly, we keep the data amount of each partition more
balanced by specifying a floating factor parameter [7].
4 Experiments

In this section, we aim to evaluate the QoS performance
provided by the proposed DETL-(m, k)-firm architecture in
which we apply the two optimization techniques: materialized
views and data partitioning techniques, based on simulation
results.
4.1 Simulation Principle
We have evaluated our approach according to a set of
simulation experiments, where a set of parameters have been

432 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

varied. Each simulation result represents the average of 10
simulations. The Oracle Data Integrator (ODI) is used to
capture changed data from source data stores. It reduces the
volume of processed data by extracting only the changed data;
it is performed by journalizing models to implement the
CDC mechanism. The system parameters for simulations are
shown in Table 1.
Parameter Meaning Default
Nq Number of queries 500 transactions
Nu Number of updates 500 transactions
MDE

1
 Maximum Data Error

ratio
0.2

m
k

 ratio
The ratio of mandatory
update transactions

[0.5, 0.7]

Table 1. Simulation Parameters.

We generate a set of 500 queries and 500 updates; SQL
statements are from TPC-DS decision support benchmark
[18]. ESCC (Extended Speculative Concurrency Control) [4]
is used to address conflicts with the simultaneous accessing or
altering of data that can occur. It uses both the duplication of
reading transaction when a conflict is detected to resolve
conflicts as read-write and write-read conflicts and the
scheduling of real-time transaction based on their deadline.
The arrival numbers of queries in a second under high,
medium and low loads are two, five and ten, respectively. The
arrival numbers of updates in a second under high, medium
and low loads are five, eight and twelve, respectively. Query
execution time ranges from 100 to 1,000 milliseconds and
update execution time ranges from 20 to 50 milliseconds. The
acceptable response time delay ranges from 100 to 1500
milliseconds and the acceptable result staleness ranges from
10 to 100 milliseconds.
In the set of our experiments, we varied the ratio of mandatory

update transactions value
m
k

 in order to show the effect of

either increasing or decreasing the number of mandatory
update transactions.
4.2 Results and Discussions
We performed a series of experiments to test the validity of
our geographic data sources partitioning algorithm and to
compare the performance of our DETL-(m, k)-firm approach
with an existing work.

1) Data sources partitioning Performance.
In the next experiment, we consider a range of the number of
data source clusters K to test the validity of our geographic
data sources partitioning algorithm.
Theoretically, the ETL process speeding up SETL can be
formulated as follows.

n
ETL

p

S
K N 1 T

N * T

()*

 (8)

1 Maximum Data Error

Where, N is the number of tasks. Indeed, the ETL process in
our model is divided into three sub-operations (change data
capture (CDC) module, a data transition module and the ETL
engine); Tn is the time to execute a task in the traditional ETL
process (without data source partitioning); K is the number of
the data source clusters and Tp is the time to execute a task
using data source partitioning.
So, in this way all ETL process works together simultaneously
and then we will be able to save a lot of clock cycles and will
be able to speed up the ETL process. We can demonstrate it
with the help of an example, let the time taken to process a sub
operation in each module be equal to tp= 1ms. We assume
that the data sources are partitioned into K= 4 clusters and
executes N= 3 process in sequence.

Clock
Pulse

Change data
capture (CDC)
Process

Data
transition
process

ETL engine
process

 1 Data_Cluster 1
2 Data_Cluster 2 Data_Cluster 1
3 Data_Cluster 3 Data_Cluster 2 Data_Cluster 1
4 Data_Cluster 4 Data_Cluster 3 Data_Cluster 2
5 Data_Cluster 4 Data_Cluster 3
6 Data_Cluster 4

Table 2. The ETL process speeding up example.

In our example, the ETL process speeding up SETL is equal to

n
ETL

p

3 4S 2
K N 1 T 4 3 1 1

N * T *

()* ()*

So we have sped up the ETL process approximately 2 times.
In order to improve experimentally the performance of ETL
when dealing with disparities in data source systems, ETL
parallel processing is implemented.
The Oracle Data Integrator (ODI) captures changed data from
source data stores and more precisely from .dat data file for
TPC-DS benchmark [18]. Indeed, ODI’s changed data capture
identifies and captures data from the set of data sources in the
same cluster and it makes the changed data available for
integration processes. The simulation results show that our
geographic data sources partitioning algorithm is effective in
reducing the average response time in the order of
milliseconds (ms) (see Fig. 7).

Figure 7. Average response time comparaisons.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 433

ISBN: 1-60132-444-8, CSREA Press ©

2) Performance Comparison.

As shown in Fig. 8, we can assert that the DETL-(m, k)-firm
architecture, with different ratios of mandatory update
transactions, yields the lowest DMR of OLAP transactions,
compared to the result provided by the conventional FCSA-
RTDW [5]. Therefore, the applicability of our approach led to
the average diminution of the DMR value by 10%. In addition,
the simulation results shown in Fig. 9 affect the staleness
result on the other hand. Indeed, less than the value of the ratio
of mandatory update transactions implies a maximum
allowable loss rate. So, the data freshness will be affected and
thus a little degradation in QoD. In this case, URSR
degradation is about 1%.
Therefore, a graceful QoS degradation is accepted in such a
way that the RTDW continues to operate for providing an
acceptable reduced level of service. Indeed, under the concept
of the (m, k)-firm constraints, a real-time stream miss some
deadlines without degrading drastically the QoS to optimize
the resource use and to reduce significantly the RTDW
overloads.

Figure 8. DMR performances.

Figure 9. URSR performance.

5 Conclusion and Future Work.
In this paper, we have presented the DETL-(m,k)-Firm
architecture as an optimized approach for ETL in RTDW
which considers both materialized view and data
fragmentation to improve query performance and, finally to
ensure a high QoS for RTDW. In our work, we have applied
the (m, k)-firm approach to update transactions. Experimental
results confirmed the benefit of the proposed approach on
increasing the number of transactions which meet their
deadlines, even in the presence of unpredictable workload. To
reduce the time for ETL process considerably, we have
divided the data sources into clusters so that more than one
ETL process works simultaneously to enhance the overall
performance of ETL processes.
We plan to extend this work in several ways. We will propose
to apply the (m, k)-firm approach on OLAP transactions,
aiming to allow for more transactions to meet their deadlines
without affecting the data freshness.

References

[1] Ben Salem, M., Achour F. , Bouazizi E., Bouaziz, R., and Duvallet C.,
Applicability of the (m, k) -firm Approach for the QoS Enhancement in
Distributed RTDBMS, 13th International Conference on Algorithms
and Architectures for Parallel Processing (ICA3PP 2013), pp. 166–175,
2013.

[2] Golab Lukasz, Johnson Theodore and Shkapenyuk Vladislav, Scalable
Scheduling of Up-dates in Streaming Data Warehouses, IEEE
Transaction on Knowledge and Data Eng., vol. 24, No. 06, 2012.

[3] G.X. Zhou, Q.S. Xie, Y. Hu, E-LT Integration to Heterogeneous Data
Information for SMEs Networking based on E-HUB, Fourth
International Conference on Natural Computation, pp. 212-216, 2008.

[4] Haubert, J., Amanton, L., Sadeg, B., Mammeri, Z., Admission Control
for Relaxed Real-Time Transactions, IEEE International Computer
Systems and Information Technology Conference, pp. 328–334, 2005.

[5] Issam Hamdi, Emna Bouazizi, Jamel Feki, Management of QoS and
Data Freshness in Real-Time Data Warehouses using Feedback Control
Scheduling, International Conference on Information Technology
(ACIT), 2013.

[6] Issam Hamdi, Emna Bouazizi, Jamel Feki, Dynamic Management of
Materialized Views in Real-Time Data Warehouses, 6th International
Conference of Soft Computing and Pattern Recognition (SoCPaR), pp
168-173, 2014.

[7] Issam Hamdi, Emna Bouazizi, Saleh Alshomrani, Jamel Feki, 2LPA-
RTDW, A Two-Level Data Partitioning Approach for Real-time Data),
IEEE/ACIS 14th International Conference on Warehouse, Computer
and Information Science (ICIS), 632-638, 2015.

[8] J. MacQueen. Some Methods for classification and Analysis of
Multivariate Observations. In 5th Berkeley Symposium on
Mathematical Statistics and Probability, Berkeley, USA, pages 281–
297. University of California Press, 1967.

[9] Jie Song, Yubin Bao, Jingang Shi, A Triggering and Scheduling
Approach for ETL in A Real-time Data Warehouse, 10th IEEE
International Conference on Computer and Information Technology
(CIT), 2010.

[10] Jingang Shi, Yubin Bao, Fangling Leng and Ge Yu: Priority-Based
Balance Scheduling in Real-Time Data Warehouse, Hybrid Intelligent
Systems (HIS), Vol. 3, 2009.

[11] Kotidis and N. Roussopoulus, DynaMat: A dynamic view management
system for data warehouses, Proc. of the ACM SIGMOD Int’l Conf. on
Management of Data, 1999.

[12] Langseth, J., Real-Time Data Warehousing: Challenges and Solutions,
DSSRe-sources.COM, 2008.

434 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

[13] Leng Fangling, Bao Yubin, Yu Ge, Shi Jingang and Cai Xiaoyan,
Requirement-based Query and Update Scheduling in Real-time Data
Warehouses, 12th international con-ference on Web-age information
management (WAIM), 2011.

[14] Ramanathan, P., Hamdaoui, M.: A Dynamic Priority Assignment
Technique for Streams with (m, k) -firm Deadlines. IEEE Trans.
Comput. 44, 1443–1451, 1995.

[15] Ricardo Jorge Santos and Jorge Bernardino, Real-time data warehouse
loading methodology, IDEAS, pages 49-58, 2008.

[16] Thiele Maik, Fischer Ulrike and Lehner Wolfgang: Partition-based
workload scheduling in living data warehouse environments,
Information Systems, vol. 34, No. 04, 2009.

[17] Thomsen, T. Pedersen, and W. Lehner, RiTE: Providing On-Demand
Data for Right-Time Data Warehousing, 24th International Conference
on Data Engineering (ICDE), 2008.

[18] TPC, Transaction processing performance council, http://www.tpc.org,
2014.

[19] Vassiliadis, P., Simitsis A., Near Real-Time ETL: Annals of
Information Systems: New Trends in Data Warehousing and Data
Analysis, Vol. 3, New York: Springer Publishing Company, 2008.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 435

ISBN: 1-60132-444-8, CSREA Press ©

Building genomics foundation for
precision medicine research:

A portable multitask data
management system

Yifan Zhang, Emre Ermisoglu,
Dan Li

David Geisert, William Yang,
Kenji Yoshigoe, Chad Haydan

MidSouth Bioinformatics Center and Joint
Bioinformatics Ph.D. Program of

University of Arkansas at Little Rock and
University of Arkansas for Medical Sciences,

2801 S. Univ. Ave, Little Rock, Arkansas 72204
U.S.A.

Department of Computer Science, George

Washington Donaghey College of Engineering
& Information Technology, University of

Arkansas at Little Rock, 2801 S. University
Ave, Little Rock, Arkansas 72204 U.S.A.

Mary Yang
MidSouth Bioinformatics Center, Department of Information Science and Joint Bioinformatics
Ph.D. Program of University of Arkansas at Little Rock and University of Arkansas for Medical

Sciences, 2801 S. University Avenue, Little Rock, Arkansas 72204 U.S.A
mqyang@ualr.edu

I. INTRODUCTION
With the advent of high-throughput Next
Generation Sequencing (NGS) technology,
unprecedented amounts of sequence data
have been generated. The exponential
growth of sequence data not only poses
challenges in data processing, transfer,
storage and analysis, but also fosters the
development of novel high-performance
computing approaches for precision
medicine research. To this end, we
developed a portable data management
system for automated process of large-scale
multidivisional genomic big data.
 Precision medicine is a relatively new
term that is now gradually replacing the
personalized medicine regarding to how
genome-scale information can be used for

accurate diagnose and treatment planning of
diseases. While personalized medicine
would eventually reform the current
healthcare based on average patient, it
generated a misunderstanding to the general
populace beyond our current ability, in
which the diagnosis, treatment and
prevention of diseases are based on
individual patient uniquely. Precision
medicine on the other hand, focuses on the
holistic consideration of genetics,
environment, risk factors and life styles to
provide an optimized treatment panning
tailored toward individual patient rather
uniquely individual treatment distinctively.
While the goals between precision medicine
and personalized medicine need to be further
clarified, it is still common that these two
terms are often used interchangeably.

436 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

Figure 1: Overview of the NGS Data
Management System

The advances of precision medicine clearly
rely on the effective handling of big data to
facilitate the direct clinical decision-making
and outcome assessments for individual
patients. To catalysis the process, developing
big-data analytics infrastructures and
approaches for data collection, quality
control, storage, processing, sharing and
applications are demanded. This will
continuously foster a hybrid research –
healthcare system that seamlessly integrates
genomics research into practical healthcare.

Presently, NGS is becoming more accessible
and affordable to many laboratories since
sequencing cost continues to decrease. The
Systems Genomics Laboratory of University
of Arkansas at Little Rock aims to integrate

multidimensional genomic data to facilitate
the precision medicine research [1]. We have
developed an online tool called IDEAS to
Identify Differential Expression of genes for
Applications in genome-wide Studies [2].
The online tool IDEAS has been tested to
obtain genome-wide differential expression
of genes for The Cancer Genome Atlas
(TCGA) datasets such as the Kidney Rental
Clear Cell Carcinoma data that we have
studied [3]. IDEAS online tool provides an
open access freeware for to facilitate
precision medicine [4]. In this paper, we
developed an NGS data management system
in parallel to address more challenges in
handling genomic big data. Our system not
only automates data processing and analysis,
but also allows efficient utilization of
available resources. The system integrates
the processing of data inputs and outputs,
storage, sharing, utilization and applications.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 437

ISBN: 1-60132-444-8, CSREA Press ©

Since NGS data are usually very big, high
performance computing is often needed. We
recently developed new high performance
computing techniques for High-throughput
state-machine replication using software
transactional memory [5]. In this project,
we consider that Docker [6] is a platform
that can package an application and its
dependencies so that the application is able
to run in any Linux server, our NGS
workflows were built using Docker container
technology.

Figure 2: Web Interface for Tasks List

In our system, a Job Scheduler and a Docker
service manager work together to ensure
efficient allocation of resources, such as
CPUs and memories, to the jobs in the
queue. The Job Scheduler determines

appropriate cores, memory, and order of
execution of a job. Given physical memory
limitation, we determine the optimal
allocation of CPUs to accelerate job
processing. In our system, the Docker
Service Manager keeps track of available
Docker servers, executes commands on each
Docker server using the Docker remote
APIs, and keeps track of the computational
resources used by each running Docker
container. Therefore the NGS management
system is highly flexible and portable, and
can run on local servers as well as in cloud

services. This web tool was designed to
facilitate biological discovery from large-
scale sequence data with easy to operate
features.

II. MATERIALS AND METHODS
We developed the NGS Data Management
System as a standalone, scalable, and easy to

438 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

use platform for managing NGS data
efficiently. The system’s user interface is a
web application and it can be accessed with
any device that has an internet connection.
Users can track and analyze their data via the
web interface similar to IDEAS that we
developed. The system streamlines the

quality control, read alignment, variant

calling and functional annotation. The user
interface was designed to be intuitive and
easy to operate for users.

Figure 3 - Web User Interface for Task
Detail

On the backend, the Docker engine is used to
achieve scalability. New processing servers
and storage units can be added to the system
easily. We developed a Job Scheduler to
organize tasks efficiently and maximize the
usage of each processing unit. The overall
architecture of the tool is shown in figure 1.
Our system contains an easy to user web
interface that allows users to create an
account so that they can login and manage
their projects. This provides users a
functionality to upload their data files,
choose available pipelines in our system and
submit the job.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 439

ISBN: 1-60132-444-8, CSREA Press ©

All jobs are executed on our server, and the
results are stored in the FTP server of the
Systems Genomics Laboratory of University
of Arkansas at Little Rock. Users can see all
the information about their jobs through the
web interface including the status of their
submitted jobs and the results of completed
jobs. Figures 2 and 3 show the Tasks List
and Task Detail pages of our websites. Since
PHP [7] is particularly designed as a
scripting language for server-side web
development, we use a free open source PHP
framework named Laravel in our server and
use HTML and JaveScrpit to build our web
pages. Our framework uses MVC model [8]
to boost the features such as authentication,
email and queue services.

Figure 4: Job Scheduler infrastructure

We store the job and user information to
share the information with other part of the
system. For example, when a new job was
submitted, the system initially set “waiting”
status, so that the Job Scheduler starts to
schedule it. The system then collects all the
waiting jobs in the database and builds a
queue base on the priority of each job. The
system communicates with each component
with the information in the database to
enable low coupling. The Job Scheduler is
responsible for handling a job queue that
consists of the jobs submitted by the users
from the web interface. As shown in Figure
4, this part collects the information such as
free CPU cores and available memory in
each server as well as the resource needs of
every job.

440 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

Based on the information, the Job Scheduler
determines which jobs shall run at given
time and how many resources need to be
allocated to each individual job.

The Job Scheduler was designed to
maximize the usage of server resources and
to ensure that the jobs are executed in the
correct order efficiently. To optimize the
scheduling, we assess the influences of
memories and CPUs and runtime of jobs.
For example, we measure the total running
time for processing and mapping paired-end
human RNA-seq data (~6.7GB) to the
reference genome by assigning different
number of cores and amount of memory
(Figures 5 and 6). From both figures, we can
see that the multicores boost the speed of
processing a job up to about 6 cores given
4G physical memory. Using 7 or more cores
without allocating more memory virtually
slows down the running speed. This is
because the more cores that a job occupy,
much more amount of memory are needed
for coordination. Therefore once the total
memory exceeds physical capacity, the CPU
cores spend more time to wait for IO, and
the running time indeed increases
accordingly. On another experiment, we
tested that 12-20 cores with 8/16G physical
memory, then we increased memory to 20G.
In this experiment, more cores actually
reduce the running time. To conclude,
allocation of CPUs shall be appropriate to
available physical memory and our system
can handle this optimally to ensure that all
jobs are executed in the correct order with
appropriate resources.

The system also selects the best practiced
RNA-seq data analysis algorithms and tools
to build the processing pipeline. FastQC was
used to assess the quality of input RNA-seq
data. The reads failed to pass the test were
then trimmed by Trimmomatic [9]. The users

were allowed to check the quality of testing,
adjust the parameters and redo the quality
control. We apply Tophat2 [10] for the reads
alignment and the toolkit Cufflinks [11] to
assemble transcripts. Several alignment
assessment tools such as Samtools [12],
Picard [13] and QualiMap [14] were also
added to the pipeline. The index data of
model organisms such as human and mouse
were stored in our storage unit. In our
system, Docker uses Linux Containers to
allow for a scalable and lightweight
computing infrastructure that is easy to
deploy to multiple environments and
platforms. Each NGS pipeline has an image
that creates a container for every initialized
pipeline job.

Figure 5 - The relationship between the
running time and the allocated CPU cores &
memory (smaller size)

Each Docker server is set up with a volume,
for containers to temporarily store data, and
a container, for transferring files between the
pipeline containers and the data storage unit.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 441

ISBN: 1-60132-444-8, CSREA Press ©

Each pipeline container attaches to its own
directory with input files and output files.
There is a data transfer container which
transfers the input files for the execution of
each pipeline container. After a job is
complete, its associated pipeline container
will be deleted, and the output files will be
copied to the storage unit for users to view.
We introduce a newly developed NGS Data
Management System and present the
development of a high performance
computing based web tool to improve the
acquisition, analysis, integration and
utilization of NGS data as shown in Figure 7.
The system is fully automated to process
NGS data.

Figure 6 - The relationship between the
running time and the allocated CPU cores &
memory (larger size)

III. Discussions and Conclusion

The newly developed system consists of web
user interface, data transfer component, and

server management tool. The user friendly
web interface facilitates users to control and
process the data. The data transfer portion
enables users to transfer data using a fast and
secure protocol, while the server
management tool manages, stores, and
processes the data interactively. The newly
developed NGS Data Management System
can process genomic big data and facilitate
precision medicine research.

The system also integrates Docker into
computational pipelines. With Docker, we
are able to package an application to an
image and run multiple instances of the
image in containers using a runtime
environment that is unique to the container.
This allows for a lightweight and viable
solution for distributing computing
environments in the cloud. In addition, the
system allows us to manage and maintain
multiple Docker servers through the usage of
the remote APIs. Given available physical
memory, the running time decreased when
appropriate CPU cores are assigned to a job.
A reference mapping based pipeline requires
much less memory than a de novo assembly
based pipeline. As far as the minimum
required memory was allocated for a job,
allocating additional memory did not reduce
the running time significantly. While this
project was tested with various data, further
development of this tool includes parallel
processing of multidimensional genomic
big-data and the identification of disturbed
gene networks and pathways utilizing this
tool. Further utilization of this tool to
facilitate precision medicine research will be
reported in the forthcoming publications of
the Systems Genomics Laboratory of
University of Arkansas at Little Rock.

442 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

Figure 7 – The workflow of processing
pipelines in the system.

IV. Acknowledgements

This project was supported by NIH
1R15GM114739, FDA BAA-15-00121 -
HHSF223201510172C and ASTA 15-B-23
(PI: Mary Yang). The Systems Genomics
Laboratory of University of Arkansas at
Little Rock provided computing resources

and supports of graduate and undergraduate
students. The computational resources of
William Yang and Kenji Yoshigoe were also
supported by NSF MRI Award #1429160.
Research activities at MidSouth
Bioinformatics Center were also supported
by NCRR P20RR016460 and NIGMS
P20GM103429. Elizabeth Pierce, Chair of
Information Science Department of
University of Arkansas at Little Rock is
acknowledged for providing generous
academic supports to faculty and students.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 443

ISBN: 1-60132-444-8, CSREA Press ©

V. References

[1]. Yang, M., (2016). Keynote Lecture:
“Developing Synergistic Intelligent
Computing and Big Data Analytics
Approaches to Facilitate Precision Medicine
Research”.
http://worldcomp.org/events/2016/keynotes/
mary_yang_keynote

[2]. Yang, W., Yoshigoe K. et. al. (2016).
“IDEAS, an online to Identify Differential
Expression of genes for Applications in
genome-wide Studies”.
http://worldcomp.ucmss.com/cr/main/papers
New/LFSCSREApapers/ABD7587.pdf

[3] Yang, W., Yoshigoe, K. et al. (2014).
Identification of genes and pathways
involved in kidney renal clear cell
carcinoma. BMC Bioinformatics, Vol. 15
(Suppl 17), S2. http://doi.org/10.1186/1471-
2105-15-S17-S2

[4]. Yang, W., (2016). “Tutorial Lecture:
Resonance of big-data analytics and
precision medicine research is producing a
profound impact on optimized individual
healthcare”.
http://worldcomp.org/events/2016/tutorials/
william_yang_tutorial

[5]. Zhao, W, Yang, W., et. al. (2016). High-
throughput state-machine replication using
software transactional memory. Journal of
Supercomputing, DOI: 10.1007/s11227-016-
1747-2

 [6]. Docker source code (2015).
https://github.com/docker/distribution

 [7]. PHP: http://www.php.net

[8]. What are the benefits of MVC? (2008)

http://blog.iandavis.com/2008/12/what-are-
the-benefits-of-mvc/

[9] Bolger, A. et. al. (2014). “Trimmomatic:
a flexible trimmer for Illumina sequence
data”. Bioinformatics, 30(15): 2114–2120.
doi: 10.1093/bioinformatics/btu170.
PMCID: PMC4103590.

[10]. Kim, D. et. al. (2013) “TopHat2:
accurate alignment of transcriptomes in the
presence of insertions, deletions and gene
fusions” Genome Biology, 201314:R36,
DOI: 10.1186/gb-2013-14-4-r36, BioMed
Central, 2013

[11]. Cufflinks:
http://cole-trapnell-lab.github.io/cufflinks/

[12]. Samtools:
http://www.htslib.org

[13]. Picard:
https://broadinstitute.github.io/picard

[14]. García-Alcalde, F. et. al. “Qualimap:
evaluating next-generation sequencing
alignment data”. Bioinformatics. 2012 Oct
15; 28(20):2678-9. doi:
10.1093/bioinformatics/bts503. Epub 2012
Aug 22.

444 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

http://worldcomp.ucmss.com/cr/main/papersNew/LFSCSREApapers/ABD7587.pdf
http://worldcomp.ucmss.com/cr/main/papersNew/LFSCSREApapers/ABD7587.pdf
http://doi.org/10.1186/1471-2105-15-S17-S2
http://doi.org/10.1186/1471-2105-15-S17-S2

Optimization and Parallelization of typical Polyhedron
Program

Omar Ben Maaouia, Emna Hammami

University of Tunis El Manar, Faculty of Sciences of Tunis,
University Campus - 2092 Manar II, Tunis, Tunisia

Abstract - Polyhedron programs (PP) i.e. DO nested loops
with affine bounds are basic modules in large scientific
applications. We address here a theoretical and experimental
study of various techniques and transformations for the
optimization of sequential PP and their parallelization. The
first part deals with techniques for improving data locality
and memory accesses through loop interchange and loop
invariant. We then study the parallelization of PP’s through
dependency analysis and the use of specific transformations:
one unimodular (loop interchange) and one general (partial
loops partition). One specific PP corresponding to matrix
computing kernels structured in 3-loop nests have been
chosen to illustrate our contribution: the Gaussian
Elimination. By applying the techniques mentioned above, we
could derive various versions that were theoretically
compared. In order to validate our contribution, we then
achieved an experimental study covering the sequential and
parallel versions where a quadcore bi-processor machine was
targeted.

Keywords. Loop interchange, Multicore platforms,
Optimization , Parallelization, Partial Loop Partition,
Polyhedron program.

1 Introduction
 Parallel computing (PC) has become the dominant
paradigm in computer architecture, mainly in the form of
multicore processors in diverse scientific areas. The PC's
basic idea is to simultaneously distribute different parts of
complex application on multiple cores to be processed in a
relatively short time. In the literature, the most used program
structure in scientific computing is the polyhedron programs
(PP) i.e. structured programs in nested loops with affine
bounds translated by DO or FOR nested loop. Thus, starting
from a sequential PP, there are several transformations which
have been proposed in the literature in order to improve the
exploitation of parallelism, e.g. loop interchange [1], loop
unrolling [2] [3], skewing [4], partial loop partition (PLP) [5],
strip mining [6], etc. All these techniques are designed to
optimize the code parallelization depending on the intrinsic
characteristics of the given code and the target platform.
Besides, code parallelization requires an important
preliminary step namely the dependency analysis [6][7]. In
this work, we are interested in the theoretical and the
experimental study of performance improvement techniques

and parallelization of polyhedron programs. We targeted as a
PP benchmark the Gaussian Elimination algorithm (EG)
which is used in many scientific applications. In fact, such
benchmark is composed of three nested loops, and flexible for
generating semantically diverse equivalent versions,
illustrating different intrinsic properties in sequential as well
as in parallel case.
The remainder of the paper involves six sections, organized as
follows: In the second section, we define our target PP which
is the EG algorithm. Section 3 is devoted to the description of
our theoretical study for both sequential and parallel cases of
PP in general and EG in particular. There, we present various
versions, analyze their characteristics, evaluate their
performance and make comparisons according some specific
criteria. Section 4 will illustrate our experimental study of the
sequential versions and section 5 will show the experimental
evaluation of the different parallel versions, which allows our
theoretical contribution validation. We finally conclude and
present some perspectives in section 6.

2 Our target benchmark
 The Gaussian Elimination algorithm (EG) is a
benchmark used for the resolution of non-singular dense
linear equations. If we note this system (S) Ax = b, the EG
consists in converting (S) into an equivalent system (S')
A'x=b' where A' is an upper triangular matrix. Then, the
resolution of the system (S') is handled by the back-
substitution [8].

We retain here only the triangulation algorithm of the matrix
A without pivoting. We assume that A has the right properties
which ensure the algorithm constructability [8]. For a given
system (S) in order n, the studied algorithm has n-1 steps and
consisting at the step k (1…n-1) in eliminating the unknown
xk in the equations k+1…n. This involves constructing, from
the matrix A (denoted by A(0)), matrixes sequence A(k),
k=1…n-1, such that A(n-1) is upper triangular. The elements of
A(k) are obtained from those of A(k-1) by the following
recursive formulas:

where k=1…n-1 ; i, j=k+1…n

The standard version denoted KIJ is a perfect nest of three
loops as follows:

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 445

ISBN: 1-60132-444-8, CSREA Press ©

DO k=1, n-1 / B1 /
 DO i=k+1,n / B2 /
 DO j=k+1, n / B3 /
 A(i,j)=A(i,j)-A(i,k)*A(k,j)/A(k,k) / S(k,i,j)/
 ENDDO
 ENDDO
ENDDO

3 Our Proposed approach
 From the Gaussian Elimination (EG), we can derive two
main versions as follows: the first is a perfect nested loop
(NP) and the second one is a non-perfect nested loop (NNP).
From each one, other sub-versions can be derived by applying
the loop interchange technique.

3.1 Perfect Nest versions
3.1.1 Sequential versions

 By examining the innermost loop of the standard version
of EG, denoted KIJ, we notice that the elements A(i,j),
j=k+1…n, are computed line per line. The access to A(i,k) is
performed per column and that of to A(k,j) is made per row.
The computation is as follows: vector=vector+ scalar*vector.
It is a kernel whose type is AXPY. Its complexity is
C(n)=n33n2/2+n/2. When we applied the loop interchange on
the EG, five other valid versions can be derived. Thus, we
obtain five NP permutations denoted KJI, JKI, IKJ, and JIK
IJK. for each version, the complexity C(n) = n3-3n2/2+n/2.
Table I illustrates more characteristics of the different
permutations, where we note loops bounds and the access
types (L for row and C for column). Note that in versions IJK
and JIK, the upper bound of the third loop K is not affine
(min(i-1,j-1)).

TABLE I. COMPARISON OF THE DIFFERENT PERMUTATIONS OF EG_NP

Versions KIJ KJI IKJ JKI IJK JIK

Loop
bounds

B1 1, n-1 1,n-1 2, n 2, n 2, n 2, n
B2 k+1,n k+1, n 1, i-

1
1, j-1 2, n 2, n

B3 k+1,n k+1, n k+1, n k+1, n 1,min(i-1,j-1) 1,min(i-1,j-1)

Access
Type

A(i,j
)

L C L C L C
A(i,k) C C L C L L
A(k,j) L L L C C C
Kernel AXPY AXPY GAXPY GAXPY DOT DOT

Notice that the best version is IKJ with the GAXPY-L kernel
where the programming environment is C. In fact, it is related
to the arrays storage which is performed line per line in C.
This shows the effect of data reuse and highlights data
locality.

3.1.2 Initial parallelization
 In this section, we study the KIJ version in sequential and
then parallel case, by performing the direct dependencies
analysis [9] [5] [10]. Through the semantic of the algorithm
based on recursion formulas mentioned above (see section
3.1.1), it is clear that the K loop is sequential. In other terms,
we have S(i,j,k) δ* S(i,j,k+1).

For fixed k, we see that all updates of A (i, j), for i and j
ranging from 1 to n + k are independent. Thus, loops i and j
are parallel. We deduce that the vector of signs distances
dependencies VSDD is (+ 0 0)T. Notice that the other five
versions derived by loop interchange are all valid.
So, the KIJ parallel algorithm can be written as follows:

DOSER k=1, n-1 / B1 /
 DOPAR i=k+1, n / B2 /
 DOPAR j=k+1, n / B3 /

S(k,i,j)
 ENDDOPAR

 ENDDOPAR

 ENDDOSER

We denote Ts the sequential time of all versions whose the
complexity i.e. C(n)=n3-3n2/2+n/2, We mention that the
following notations are adopted in table II of the studied
codes:
Type of loop: S for sequential, P for parallel
pmax: the maximum degree of parallelism (i.e. the maximum
number of iterations that could be executed in parallel)
Tp: parallel time (for a processors number equal to pmax)
S: speed-up = Ts / Tp
Sa: asymptotic speed-up (S for very high n)
E: Efficiency = 1 / S
Ea: asymptotic efficiency (E for very high n)

TABLE II. PARALLELIZATION OF THE DIFFERENT VERSIONS OF EG_NP

Version KIJ KJI IKJ JKI IJK JIK

Loop Type SPP SPP SSP SSP SSS SSS

Tp

3(n-1) 3(n-) 3(n-)2 3(n-)2
- -

pmax (n-1)2 (n-1)2 n-1 n-1 - -

Sa n2/3 n2/3 n/3 n/3 - -

Ea 1/3 1/3 1/3 1/3 - -

3.1.3 Parallel versions with PLP

 When the number of available processors, denoted p, is
strictly less than pmax, we may apply the PLP technique for
rewriting the four versions in order to obtain at least one
parallel loop. Note that for SPP, we set p=p1*p2, knowing that
p1 (resp. p2) processors will be allocated to the parallel loop
whose depth is 2 (resp. 3). The KIJ_PLP version can be
rewritten as follows:

 DOSER k=1,n-1 / B1/
 DOPAR s=1,p1 / B2/
 DOSER i=k+s,n,p1 / B3/
 DOPAR q=1,p2 / B4/
 DOSER j=k+s,n,p2 / B5/

 S(k,i,j)
 ENDDOSER

 ENDDOPAR

 ENDDOSER

 ENDDOPAR
ENDDOSER

446 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

We obtain a nest of 5 loops SPSPS. The KJI version can also
turn into five-nested loops as the same type SPSPS. For the
IKJ and JKI versions, they could only switch to four-nested
loops SSPS. Table III summarizes the new results rewriting
the four versions KIJ, KJI, IKJ and JKI.

TABLE III. PARALLELIZATION OF THE EG_NP VERSIONS WITH PLP

Versions KIJ (KsIqJ) KJI (KsJqI) IKJ (IKsJ) JKI (JKsI)

Loop

Bounds

B1 1, n-1

1, n-1

2, n

2, n

B2 1, p1 1, p1 1, i-1 1, j-1

B3 k+ s, n, p1

k+ s, n, p1

1, p 1, p

B4 1,p2

1,p2

k+ s, n, p

k+ s, n, p

B5 k+q, n, p2 k+q, n, p2 - -

Loop Types SPSPS SPSPS SSPS SSPS

3.2 Imperfect Nest versions
3.2.1 Sequential versions

 By applying a movement of the loop invariant, it is
possible to derive from the perfect nest KIJ (KIJ-NP), a non-
perfect nest (KIJ-NNP) as follows::

KIJ-NNP

DO k=1,n- 1 / B1 /
 coef =1/A(k,k) / S1 /
 DO i= k+1,n / B2 /
 T(i)=coef*A(i,k) / S2 /
 DO j= k+1,n / B3 /
 A(i,j)=A(i,j)-T(i)*A(k,j) / S3 /
 ENDDO

 ENDDO
 ENDDO

This transformation allows reducing the complexity to:
C(n)=2n3/3 - n2/2+5n/6-1. Then, we derive the other 5 NNP
versions corresponding to these permutations, KJI, JKI, IKJ,
JIK and IJK. The complexity is still 2 /3+O(n2) with a bit
difference in order 2, 1 and 0 (see Table IV).

TABLE IV. COMPARISON OF THE PERMUTATIONS OF EG_NNP

Versions KIJ KJI IKJ JKI JIK :
J(IK-IK)

IJK :
I(JK-
JK)

Complexity

2n3/3-
n2/2+
5n/6-1

2n3/3-
n2/2+
5n/6-1

2n3/3-
n2/2

-n/6 -
2

2n3/3-
n2/2-
n/6-2

2 n3/3-n2
+n/3-2

2 n3/3-
n2/2

-7n/6-4

L
oo

p
bo

un
ds

B1 1, n-
1 1,n-1 2, n 2, n 2, n 2, n

B2 k+1,
n k+1, n 1, i-1 1, j-

1
2, j-1 2, i

B3 k+1,
n k+1, n j+1,

n
k+1,

n
1, i-1 1, j-1

B4 - - - - j, n i+1, n

B5 - - - - 1, j-1 1, i-1

A
cc

es
s T

yp
e

A(i,j) L C L C C L

A(i,k) C C L C L L

A(k,j) L L L C C C

kernel AXPY AXPY GAXPY GAXPY DOT DOT

Nest Scheme

Moreover, since the initial version KIJ is a non-perfect nest,
we rely on various well-known works in the literature [8] to
derivate the five other versions. This was quite hard compared
to the previous case (EG-NP).

Table IV summarizes the major features of all the studied
versions. The IKJ version is theoretically the best because it
has a GAXPY line as kernel if we assume a line storage
method (C environment). Notice that for perfect nests, the IKJ
permutation was also a GAXPY-L kernel.

3.2.2 Initial parallelization

 The dependencies analysis carried for the different
versions have determined a type for each loop as mentioned in
Table V below.

TABLE V. PARALLELIZATION OF THE EG_NNP PERMUTATIONS

Versions KIJ KJI JKI IKJ J(IK-IK) I(JK-JK)

Loop
Type SPP SPP SSP SSP S (SS-SS) S (SS-SS)

Tp 3(n-1) 3(n-1) 3(n-1)2 3(n-1)2 - -

pmax (n-1)2 (n-1)2 n-1 n-1 - -

Sa 2n2/9 2n2/9 2n/9 2n/9 - -

Ea 2/9 2/9 2/9 2/9 - -

3.2.3 Parallel versions with PLP

 As studied in the NP case, where the number of available
processors is less than pmax, we may use the PLP technique
consisting in replacing each parallel loop by a two nested
loop, the first one is parallel and the second is sequential.

In the other nest, the first loop is sequential and the second is
parallel. Table VI shows the diverse characteristics of the new
obtained nests.

TABLE VI. COMPARISON OF THE PERMUTATIONS OF EG_NNP_PLP

 Versions KIJ :KsIqJ KJI :KsJqI IKJ :IKsJ JKI :JKsI

Loop
bounds

B1 1, n-1

1, n-1

2, n

2, n

B2 1, p1 1, p1 1, i-1

1, j-1

B3 k+ s, n, p1

k+ s, n, p1
 1, p 1, p

B4 1,p2

1,p2

k+ s, n, p

k+ s, n, p

B5 k+q, n, p2 k+q, n, p2 - -

Loop Type SPSPS SPSPS SSPS SSPS

A comparison between the NP and NNP versions shows that,
although the sequential NNP versions (for large n) are faster
1.5 times than the NP -(2n3/3+O(n2)) for the NNP against
(n3+O(n2)) for NP- NNP still less efficient 1.5 times than NP
especially for parallel versions (whose asymptotic speed-up is
2n2/9 and the asymptotic efficiency is 2/9).

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 447

ISBN: 1-60132-444-8, CSREA Press ©

4 Experimental study of sequential
algorithms

 This section is devoted to the experimental computation
of the several EG sequential versions.

To ensure the constructability of the EG algorithm, we chose
12 different values of N in the range [250, 3000] with a step
equal to 250. For each N, the execution time is the mean of
five runs. The matrixes are chosen according to the condition:
the absolute value of any diagonal coefficient is equal to the
sum of all the absolute values of the coefficients belonging to
the corresponding row.

We therefore achieved 72 tests for the sequential computation
illustrated by Table VII. We mention that the following
notations are adopted:

 N : matrix size
 T : execution time (s)

We present excerpts from the different results through table
VII, VIII.

4.1 Perfect Nest permutations
 On one hand, Fig.1 highlights the cubic complexity for
the 6 permutations. On the other hand, we notice from Table
VII and Fig.1 that the best versions are KIJ (AXPY-LCC
kernel) and IKJ (GAXPY- LLL kernel). IJK and JIK are the
worst (DOT kernel). The relative gap between the two
extreme versions increases with n, and ranges between 35%
and 56%. These results evince satisfactorily that the row
access is better than the column one.

TABLE VII. EXECUTION TIME (S) OF THE DIFFERENT EG_NP
PERMUTATIONS

N KIJ IKJ JKI KJI JIK IJK
50 0.084 0.086 0.097 0.137 0.128 0.129

500 0.676 0.704 1.056 1.302 1.232 1.236
750 2.288 2.336 3.818 3.847 4.467 4.521
1000 5.435 5.560 9.312 9.380 10.960 11.291
1250 10.629 10.737 18.256 18.386 21.850 22.739
1500 18.361 18.518 31.970 32.513 38.268 39.931
1750 29.151 29.448 51.143 51.140 61.370 64.081
2000 43.516 44.059 76.292 76.887 92.304 96.408
2250 61.919 62.090 109.425 111.801 132.345 138.133
2500 84.848 87.000 151.369 155.322 182.849 190.503
2750 112.891 114.332 203.576 207.992 245.494 254.966
3000 146.654 147.083 267.596 274.396 321.845 332.936

Fig. 1. Execution time (s) of the EG_NP sequential permutations

4.2 Imperfect Nest permutations
 Table VIII and Fig.2 show that the best permutations are
IKJ (GAXPY-LLL kernel) and KIJ (AXPY- LCC kernel). KJI
is the worst one (AXPY-CCL kernel). The relative gap
between the two extreme permutations increases with n and
ranges between 21% and 57%. Thus, this also confirms the
efficiency of the row access for this case.

TABLE VIII. EXECUTION TIME (S) OF THE DIFFERENT EG_NNP
PERMUTATIONS

N KIJ IKJ JKI KJI JIK IJK
50 0.057 0.058 0.063 0.065 0.062 0.072

500 0.455 0.463 0.626 0.723 0.671 0.742
750 1.537 1.56 2.330 2.581 2.652 2.702
1000 3.665 3.703 6.079 6.520 6.606 6.587
1250 7.185 7.228 12.209 13.140 13.244 13.200
1500 12.411 12.471 21.707 23.166 23.773 23.046
1750 19.697 19.798 34.429 37.148 38.231 36.990
2000 29.375 29.546 53.037 56.234 57.516 55.980
2250 41.807 42.048 77.454 80.937 82.299 80.543
2500 57.321 57.637 108.100 112.593 114.298 112.021
2750 76.286 76.693 143.394 151.483 153.437 156.626
3000 99.010 99.559 185.967 200.352 203.245 231.901

Fig. 2. Execution time (s) of the EG_NNP sequential permutations

4.3 Comparative study of EG-NP and EG-
NNP

 We summarize in Table IX and Fig.3 (resp. Table X and
Fig.4) the execution time of both NP and NNP of KIJ version
(resp. IKJ), and we define the following notation for the
reducing time ratio R:
R(version)= T(version_NP)/ T(version_NNP)
where version ϵ {KIJ, KJI, IKJ, JKI, IJK, JIK}

TABLE IX. COMPARISON OF KIJ_NP AND KIJ_NNP

N T(KIJ_NP) T(KIJ_NNP) R
250 0.084 0.059 1.42
500 0.676 0.463 1.46
750 2.288 1.560 1.47
1000 5.435 3.703 1.47
1250 10.629 7.228 1.47
1500 18.361 12.472 1.47
1750 29.151 19.799 1.47
2000 43.516 29.547 1.47
2250 61.919 42.049 1.47
2500 84.848 57.637 1.47
2750 112.891 76.693 1.47
3000 146.654 99.559 1.47

y = 0,0869x2,9945

y = 0,1374x3,1509

y = 0,0845x3,0024

0

50

100

150

200

250

300

350

400

250 500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000

E
xe

cu
tio

n
tim

e
(s

)

N

T(KJI)

T(IKJ)

T(JKI)

T(IJK)

T(JIK)

T(KIJ)

y = 0,057x3,0033

y = 0,0671x3,21

0

50

100

150

200

250

250 500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000

E
xe

cu
tio

n
tim

e
(s

)

N

IKJ

KIJ

JIK

JKI

IJK

KJI

448 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

Fig. 3. Comparison of KIJ_NP and KIJ_NNP

From Fig.3, we notice that the non-perfect nest (NNP) for the
KIJ permutation is faster than the perfect nest (NP) version
with an important ratio ranging from 1.42 to 1.47.

TABLE X. COMPARISON OF IKJ_NP AND IKJ_NNP

N T(IKJ_NP) T(IKJ_NNP) R
250 0.086 0.057 1.51
500 0.704 0.455 1.55
750 2.336 1.537 1.52
1000 5.560 3.665 1.52
1250 10.737 7.185 1.49
1500 18.518 12.411 1.49
1750 29.448 19.697 1.50
2000 44.059 29.375 1.50
2250 62.090 41.807 1.49
2500 87.000 57.321 1.52
2750 114.332 76.286 1.50
3000 147.083 99.010 1.49

Fig. 4. Comparison of IKJ_NP and IKJ_NNP

A comparison between the IKJ-NP and IKJ-NNP versions
shows that the Gaussian Elimination algorithm in non-perfect
nest (EG_NNP) is almost 1.5 times (1.49-1.52) faster than the
EG_NP versions.
 The improvement of execution time for the best versions is
about 33% (for large n). Thus, these experimental studies of
the EG in all its sequential versions confirm the theoretical
complexities i.e. n3+O(n2) for NP and 2n3/3+O(n2) for the
NNP.

5 Experimental study of parallel
algorithms

 In this section, we present our experimental study of the
parallelization of the EG algorithm with its diverse
permutations. Let us mention that our target machine (TM) is

an Intel ® Xeon quad-processor 10-cores, CPU E E7-4850 @
2.00GHz. Its forty cores have dedicated cache L1 with 32 KB
size, dedicated cache L2 with 256 KB size. Each ten cores
belonging to the same chip share the L3 cache level whose
size is 24MB. The RAM size is 94.4 GB. To measure the
performance evolution, we compute the sequential execution
time (Tex) then the parallel Tex (on p cores). Note that each Tex
is the mean of 5 runs expressed in seconds (s). The computed
matrixes were generated randomly. Twelve different sizes
ranging from 500 to 6000 for several target cores (1, 2, 4, 6, 8,
12, 16, 24 and 32) were launched on our MA. The parallel
experimentation was divided into two types: the initial
parallelization and the PLP technique where the computation
is adapted to the cores number and each parallel loop is split
into two successive loops: a parallel then a sequential one.
Excerpts of the obtained results are depicted below (see
Tables XI, XII for parallel EG-NP and Tables XIII, XIV for
parallel EG-NNP).

5.1 Perfect Nest versions
5.1.1 Initial parallelization
 Only the KIJ version of the EG algorithm is retained
because it's the best in terms of completion time we obtained
from the above sequential study (see section 4.1). This nested
loop has an SPP (i.e. K is a sequential loop; I and J are both
parallel loops).
Table XI and Fig.6 illustrate the obtained execution time
Tex(s) of the parallelization of KIJ-EG in its perfect nest.

TABLE XI. EXECUTION TIME (S) OF THE PARALLEL KIJ_EG_NP

 P

N

1 2 4 6 8 12 16 24 32
Tex

500 0.64 0.55 0.16 0.11 0.17 0.112 0.09 0.06 0.04
1000 4.74 3.69 1.32 0.89 1.33 0.86 0.68 0.45 0.36
1500 16.00 9.76 4.46 3.03 4.77 2.87 2.22 1.52 1.46
2000 37.90 24.58 10.46 7.19 10.20 6.84 5.60 3.75 3.73
2500 74.27 47.85 20.17 14.01 20.56 13.77 10.61 11.40 6.54
3000 128.7 84.11 41.84 24.07 25.12 24.25 18.46 17.51 11.82
3500 209.6 124.5 61.94 38.27 33.15 38.79 30.61 28.31 21.21
4000 306.5 185.7 81.67 57.17 52.06 56.27 44.73 38.76 33.45
4500 437.8 277.9 118.5 81.49 67.60 76.95 63.90 58.43 44.04
5000 607.8 417.5 162.9 112.1 92.81 109.26 86.87 67.67 56.87
5500 808.7 553.0 219.2 156.0 115.1 149.7 111.7 94.60 80.05
6000 1045 751.5 285.7 195.6 152.8 201.8 156.5 118.7 95.63

Fig. 5. Execution time (s) of the parallel KIJ_EG_NP on TM

y = 0,0845x3,0024

y = 0,0583x2,9952

0

20

40

60

80

100

120

140

160

250 500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000

E
xe

cu
tio

n
tim

e
(s

)

N

KIJ_NP

KIJ_NNP

y = 0,0869x2,9945

y = 0,057x3,0033

0

20

40

60

80

100

120

140

160

250 500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000

E
xe

cu
tio

n
tim

e
(s

)

N

IKJ_NP

IKJ_NNP

y = 0,6167x2,9873

0

200

400

600

800

1000

1200

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000

Ex
ec

u
ti

o
n

 t
im

e(
s)

N

P_1

P_4

P_8

P_16

P_32

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 449

ISBN: 1-60132-444-8, CSREA Press ©

From Fig.5, the time evolution curve is an almost cubic:
y=0.6167x2.9873. This confirms satisfactorily the theoretical
complexity of the formula C(n)=n3+O(n2). Note that the
execution time decreases when p increases (from 1 to 32).

5.1.2 Parallelization with PLP
 The PPS type is becoming a SPSPS nest.

TABLE XII. EXECUTION TIME (S) OF THE PARALLEL KIJ_EG_NP_PLP

 P
N

1 2 4 6 8 12 16 24 32
Tex

500 0.625 0.563 0.260 0.240 0.193 0.110 0.083 0.060 0.051

1000 5.004 4.141 2.330 1.823 1.439 0.816 0.684 0.499 0.421

1500 16.90 15.788 7.526 3.120 4.986 2.629 2.445 1.597 1.718

2000 38.29 35.411 17.728 11.425 12.315 6.475 5.501 3.872 4.134

2500 78.31 69.273 35.701 19.223 24.079 28.148 24.735 28.847 32.579

3000 132.1 137.39 59.861 43.260 41.767 38.118 34.797 44.117 45.437

3500 203.7 180.33 89.819 43.835 63.092 58.247 50.080 62.216 60.119

4000 307.0 243.26 124.39 82.395 95.003 86.042 74.876 83.061 88.080

4500 445.1 350.37 182.91 93.960 131.34 124.26 109.07 112.94 90.640

5000 650.5 412.68 233.41 129.00 185.10 156.62 131.60 138.02 111.53

5500 869.6 678.31 330.05 157.36 246.99 204.00 164.98 170.22 135.06

6000 1116 877.30 421.32 204.81 332.67 257.92 215.04 206.95 148.89

Fig. 6. Execution time (s) of the parallel KIJ_EG_NP_PLP on TM

Fig.6 shows the cubic evolution of the execution time of the
Gaussian Elimination algorithm (EG) in perfect nest after
undergoing the PLP parallelization: y=0.6167x3.0079. This
proves the theoretical complexity C(n)=n3+O(n2). The
execution time decreases when p increases.

We notice that the initial parallelization is better than the PLP
parallelization.

5.2 Imperfect nest versions
5.2.1 Initial parallelization

 We only retain the KIJ version because it was the best
sequential permutation of the EG. Its loops are SPP (i.e. K is
sequential however I and J are parallel).

We denote its execution time Tex (s) whose variation depends
on the matrix size. Tex is illustrated through Fig.7.

We notice that Tex decreases when p increases, except for the
case p=12 and p=16 where it is bigger than the Tex obtained
for p=8. This overhead is due to the frequent use of the target
machine by several users.

TABLE XIII. EXECUTION TIME (S) OF THE PARALLEL KIJ_EG_NNP

 P
N

1 2 4 6 8 12 16 24 32
Tex

500 0.447 0.253 0.127 0.089 0.074 0.090 0.095 0.050 0.060

1000 3.596 2.008 1.003 0.685 0.528 0.612 0.628 0.291 0.360

1500 12.124 6.865 3.381 2.293 1.737 1.965 1.666 1.375 0.916

2000 28.862 16.27 8.135 5.448 4.174 4.631 3.974 3.085 2.204

2500 56.647 31.854 15.972 10.945 8.478 10.876 8.802 6.112 4.376

3000 98.127 54.99 27.718 19.543 15.140 18.899 13.695 9.809 7.563

3500 168.432 87.712 43.754 30.801 25.343 29.842 20.731 15.880 11.875

4000 233.258 132.536 65.036 45.837 34.328 43.129 33.864 23.081 17.283

4500 343.697 186.634 92.758 62.463 49.190 56.602 50.095 34.113 23.914

5000 480.005 264.973 123.637 86.289 66.953 88.757 85.085 46.388 33.015

5500 627.724 365.722 161.186 120.177 89.589 110.410 98.326 61.882 45.045

6000 851.076 504.729 218.651 169.042 112.361 152.314 137.388 79.840 59.484

Fig. 7. Execution time (s) of the parallel KIJ_EG_NNP on TM

5.2.2 Parallelization with PLP

From Fig.8, the time evolution curve is an almost cubic:
y=0.6167x3.0358. This confirms satisfactorily the theoretical
complexity of the formula C(n)=n3+O(n2).

TABLE XIV. EXECUTION TIME (S) OF THE PARALLEL
KIJ_EG_NNP_PLP

P
N

1 2 4 6 8 12 16 24 32
Tex

500 0.493 0.367 0.253 0.230 0.218 0.139 0.133 0.094 0.054

1000 3.870 2.584 1.956 1.597 1.259 0.656 0.644 0.440 0.414

1500 13.315 11.299 6.083 3.640 4.825 1.861 1.708 1.322 1.179

2000 31.848 23.540 15.533 10.621 10.983 8.751 5.114 2.876 2.845

2500 64.460 48.396 29.359 15.715 19.444 18.146 24.860 7.161 7.778

3000 118.616 73.606 47.782 28.693 36.535 34.370 35.002 14.056 11.697

3500 175.217 113.200 74.444 44.973 52.312 41.790 45.580 19.356 18.594

4000 274.132 156.013 107.271 67.898 73.900 52.495 57.803 25.346 21.558

4500 389.966 226.062 149.905 109.148 103.126 78.191 82.042 39.096 34.168

5000 516.942 321.561 212.205 122.117 145.855 106.716 105.226 50.960 41.347

5500 688.107 436.047 291.428 151.822 183 .538 143.954 124.481 66.468 58.718

6000 899.742 587.527 397.157 204.816 205.275 188.750 167.882 88.545 75.267

y = 0,6139x3,0079

0

200

400

600

800

1000

1200

Ex
ec

u
ti

o
n

 t
im

e
(s

)

N

P_1

P_4

P_8

P_16

P_32

y = 0,4377x3,0345

0
100
200
300
400
500
600
700
800
900

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000

Ex
ec

ut
io

n
tim

e
(s

)

N

P_1

P_2

P_8

P_16

P_32

450 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

Fig. 8. Execution time (s) of the parallel KIJ_EG_NNP_PLP on TM

Note that Tex decreases when p increases (p =1, 2, 4, 8, 16 and
32), except for the case p=8 where it is bigger than the Tex
obtained for p=6. This overhead is due to the frequent use of
the target machine by parallel users.
A comparison of the initial and the PLP technique shows that
the initial parallelization is better than the PLP.
Ultimately, we compare the initial parallelization of the
perfect nested loop (NP) (resp. the PLP parallelization) and
that of the imperfect nested loop (NNP) (resp. the PLP
parallelization), then we conclude that the NNP is almost 1.5
times faster than the NP version.

6 Conclusion
 In this work, we carried out a theoretical and
experimental study of the Gaussian Elimination (EG)
benchmark targeting two shared memory multicore machines:
first of all a quad-core bi-processor architecture then a 10-
cores quad-processors platform in order to ensure the
validation of our contribution and to highlight the code
performance improvement through our code optimization on
the both versions: sequential and parallel. Notice that we have
relied on several optimization techniques and polyhedral loop
transformation in the parallelization.
 In the first part, our purpose was essentially the improvement
of data locality and memory access of the EG as our target
polyhedron program and the display of the most efficient
computing kernel through, invariant extraction and loop
interchange. The second part was devoted to the
parallelization, where we adopted the traditional technique
relied on the dependencies analysis and some transformations
e.g. loop interchange, then the partial partition loop (PLP), in
order to improve the parallelism degree.

Then, from the Gaussian Elimination benchmark, we have
derived diverse permutations, studied the performance of
several sequential (resp. parallel) versions in a perfect (resp.
imperfect) nested loop, and compared them.
 The obtained results in the sequential case satisfactorily
confirmed the theoretical temporal complexity and ensured
the importance of array access type and the target computation
kernel for all the studied permutations. In the parallel case, the
obtained results highlight the interest of the parallelization of
both EG-NP and EG-NNP algorithms.

 However, we remark that from a certain value of the cores
number, the performance degrades relatively.

 Several interesting points remain to be seen, particularly: (i)
Completion of other experiments on other parallel
architectures e.g. GPUs in order to study the scalability, (ii)
extension of the theoretical and experimental study to other
benchmarks e.g. QR factorization and Cholesky, (iii) study of
other PP transformations to extract more parallelism.

Acknowledgment
We would like to thank Pr. Zaher Mahjoub for his valuable
help.
7 References
[1] J.R. Allen and K. Kennedy, “Optimizing compilers for
modern architectures: a dependence-based approach”, book,
Morgan Kaufmann Publishers Inc. ISBN “1-55860-286-0”,
San Francisco, CA, USA, 2002.

[2] D.H. Kim, “ARM NEON Assembly Optimization”,
Journal of Multidisciplinary Engineering Science and
Technology (JMEST), ISSN: 2458-9403, vol. 3(4), April
2016.
[3] H. Venturin, “Le débogage de code optimisé dans le
contexte des systèmes embarqués”, PhD thesis, University
Joseph Fourier, Grenoble, France, October 2008.

[4] Y. Zhao and K. Kennedy, “Computer Scalarization
Using Loop Alignment and Loop Skewing”, Journal of
Supercomputing, Kluwer Academic Publishers Hingham,
MA, USA, vol. 31(1), pp. 5-46, January 2005.

[5] Z. Mahjoub and M. Jemni, “Restructuring and
parallelizing a static conditional loop”, Journal Parallel
Computing, vol. 21(2), pp. 339-347, February 1995.

[6] A. Krall and S. Lelait, “Compilation Techniques for
Multimedia Processors”, International Journal of Parallel
Programming, Kluwer Academic Publishers Norwell, MA,
USA, vol. 28(4), pp. 347-361, August 2000.

[7] Y. Slama, “Etude de la parallélisation de nids de boucles
par le modèle polyédrique ”, DEA thesis, University of Tunis
el Manar, Tunisia, October 1999.

[8] M. Cosnard and D. Trystram, “Algorithmes et
Architectures Parallèles”, Inters Editions, July 1993.

[9] P. Delisle, “Parallélisation d'un algorithme
d'Optimisation par Colonies de Fourmis pour la résolution
d'un problème d'ordonnancement industriel”, Master thesis,
University Québec in Chicoutimi, June 2002.

[10] V. Louvet, “Performances et Optimisations”, Doctoral
School MathIf, Institute Camille jordan-CNRS, September
2011.

y = 0,484x3,0358

0

100

200

300

400

500

600

700

800

900

1000

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000

E
xe

cu
tio

n
tim

e
(s

)

N

P_1

P_2

P_4

P_8

P_16

P_32

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 451

ISBN: 1-60132-444-8, CSREA Press ©

Parallel Transcoding using the CA-Cloud Architecture

Prof Avinash Shankaranarayanan1and Prof Christine Amaldas 2
1Royal Melbourne Institute of Technology (RMIT) International University

2Ritsumeikan University, Japan

Abstract - These days, video processing and content delivery
are being expended in more ways than the over assortment of
systems available including streaming and storage of varying
formats and codecs. Transcoding is the process of interpreting
or changing over one coded signal representation to another.
However, more often than not transcoding turns out to be
computationally expensive due to the sheer volume of data
generated in real time. Because of this computational
complexity, one needs to sort for other distributed
mechanisms including Clustering, Grids and the recently
evolving Cloud computing platforms available for distributed
transcoding. The rest of the paper makes a comparative
analysis of the singular node processing x265/HEVC codec
based transcoding to that of samples transcoded using the
CA-Cloud architectural framework wherein additional
computational assets accessible among numerous machines,
multicore CPUs, and circulated processing assets which are
evaluated here are compared to that of the CA-Cloud
architecture previously researched by the authors.

Keywords: CA-Cloud Architecture, Distributed Computing,
Transcoding, x265/HEVC.

1 Introduction

In this milieu, video content is being produced, transported
and consumed in more ways through a variety of devices
including mobile phones, tablets, PCs, etc., than yester years.
Meanwhile, a seamless interaction between video content
production, transportation and consumption is taking place in
majority of the devices. The difference in the device, the
network and the video representation categories results in the
necessity for a unified mechanism for video content adoption.

Transcoding is one such mechanism utilized here. Video
transcoding is a process of converting an independent signal
representation of a given video to another. At present,
transcoding is being applied for such drives as: bit-rate
reduction (in order to meet network bandwidth availability);
resolution reduction (for display size adoption); temporal
transcoding (for frame rate reduction); and error resilience
(transcoding for insuring high QOS) [23][26].

Transcoding is a computationally heavy process and
numerous methods has been proposed in order to increase its
efficiency [18] [28]. Among them, many attempts have been
made to decrease its computational complexity by reusing

information like DCT coefficients and the motion vectors
extracted from the original coded data instead of fully re-
encoding the video content. To realize multiple transcoding
and speed up, studies has been done to integrate multiple
processors to fully decode and re-encode incoming video
[21].

However, there has been limited research work done in the
analysis of how distributed transcoding architecture could be
utilized. In lieu of real-time transcoding where quality of
users’ experience: startup time and jitter free video
experience, matters a lot. Furthermore, the advances in the
utilization and economics of the distributed computing has
widened such possibilities, namely, elastic computing in the
cloud which requires a different type of distributed
transcoding architecture [14][29].

In this paper, we will try to propose a possible scalable
distributed architecture as previously researched by the
authors: a transcoder designed with the cloud in mind and
evaluate its implementation performance for x265/HEVC
video transcoding.

2 Literature
In this section, we will commence with a brief overview of

the video compression. This is crucial as it raises the
knowledge of the fundamental concepts associated with it as
deemed necessary especially when it comes to proper
partitioning and scheduling of a video stream on a distributed
platform for transcoding. It is also useful for understanding
the underlying concepts that make up a video transcoder
[12][25][13]. Moreover, a summary of video transcoding and
its associated theories will be presented giving an overview
of the current practices.

2.1 Video Compression

Row video contains a substantial amount of data.
Communication and storage capabilities are inadequate and
hence, it becomes more exorbitant. For example a given
SD/HD video signal might have the following resolution rates
as illustrated in Figure 1: 720x576/frame, 1280x720 and
1920∗1080 pixels/frame, respectively.

A playback speed of 40frames/sec with 3 colors namely RGB
and 8bit color information is displayed on a standard HDTV
depending on the technology utilized including LCD, LED,

452 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

OLED and other technologies. This produces an information
flow of 398.13 MB/sec, 884.74 MB/sec and 1990.66 MB/sec
increasing the bandwidth needed dramatically for higher pixel
display as calculated in Figure 2.

Figure 1: SD/HDTV Native Resolution & Transmission Rates

Figure 2: Pixel Frame Rates Calculated for a typical Video
Source

Comparing these results for a channel with a bandwidth of
50Mb/sec will require the video to be compressed by a factor
of about 18. The way this is achieved is through video
compression which is a typical NP complete problem with
relevance to distributed computing. Video compression is
done through reduction of redundancy and irrelevancy
[12][15][13].

 Redundancy reduction involves typically the use of
consecutive frames in a video signal which are highly
correlated and exhibit temporal redundancy. It usually
contains the same content with the only difference in
placement (movement) of objects that makes up the content.
Redundancy also exists inside a single frame due to the fact
that neighboring pixels exhibit some sort of correlation and
this type of redundancy is called spatial redundancy. Video
compression utilizes these two sources of redundancies.

 Irrelevancy reduction on the other hand has all the
required information in a video signal which is not
perceptually important. The human brain perceives the world
in a certain way and this fact can be utilized to reduce some
irrelevant information that is unimportant [12][15][13][10].

2.2 Transcoding and Codecs

On one hand, transcoding is the process of encoding or
compressing specific frames with the chosen bit rate. Codecs
on the other hand, enable the decoding process while taking
care of performance versus quality that is specific to the
hardware and software being deployed for viewing. Although
codecs comprises of filters for both audio and video streams,
our focus of the discussions includes both with relevance to
HEVC standards.

The HEVC codec have been an adoption from its previous
incarnation of the x264 format (very similar to MPEG/2 and
H.264 standards with relevance to encoding perspectives)
with variable bitrates and unique frame rates for processing.
High level compression is achieved through the use of smart
decision making algorithms when encoding with HEVC
tweaks applied to I-frames and B-frames intervals, data rate
selection, bitrate control technique (VBR, CBR) and most
essentially, video resolution [31].

Most advanced codecs have various options for tweaking
(spanning zillions of configurations made possible) which
can lead to de-standardization of the adopted codec followed
by issues pertaining to playback on many devices and
playback environments. To avoid these pitfalls, several
presets have been built around these codecs to enable
simplified operations for end users (encoders). These include
various software encoders including FFMpeg and x265 which
has default presets created to avoid recreation of trade-offs
between encoding time and output quality.

We have chosen the FFMpeg encoder for optimization within
the CA-Cloud environment with storage and stripping of
datasets occurring transparently within the cloud
environment.

With FFMpeg specific preset were utilized and customized
for utilizing the HEVC encoder by inserting command-line
arguments like CRF selection, which ranges from 1 (Fastest
Encode/Poorest Quality) to 30 (Slowest Encode/Best Quality)
with FFMpeg 25 being the default setting. When using either
codec(x265/HEVC), the most ideal setting was selected for
determining which preset was relevant during single node
encode and parallel encoding operations.

The next section focusses on how distributed encoding takes
place leading to the CA-Cloud encoding methodology.

4.2 Distributed Transcoding and Codecs

As opposed to the classic distributed systems, in distributed
transcoding systems, it is required that these systems should
be able to deal with a stream of unbounded data and certain
time constraints.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 453

ISBN: 1-60132-444-8, CSREA Press ©

Data stream processing is a way to support real-time
processing of continuous data streams. Typical scenarios
includes multimedia processing and sensor data analysis from
large sensor networks. These applications need low latencies
for real-time responses. Usually stream data rates vary in
time.

How to insure some real-time stream processing is one of the
key technical challenges in the area of distributed stream
processing systems. One of the simple solutions is to add new
physical nodes to guarantee that the overall system
performance is adequate to handle the largest possible burst
of data.

However, various problems often prevent the use of this
solution, for example, even if we can solve the problems and
provide sufficient computational resources to handle the
highest possible data rate, most of those resources may be
wasted if the normal data rate is/becomes low. Fortunately,
the emergence of cloud computing as an extension of
distributed computing gives us the chance for an utility type
of computing and essentially solves both problems of over
provisioning and under provisioning [29, 31].

Cloud computing is a new paradigm in distributed computing
in which computing is offered as a utility by third parties
whereby the user is billed only as per their consumption in a
service oriented manner. In the next section, we shall see
what the cloud means and how it has a role in distributed
computing and particularly, to video transcoding.

3 Transcoding on the CA-Cloud Arch
Communication over different types of networks becomes
effective only when the overall latency of the data
transmissions are effective. If the transmission or transfer rate
is higher, then, process migration is ineffective and the
process is best suitable for local processing. Most of the
current Cloud infrastructures face more or less, a similar
bottleneck [21].

Hence, it becomes cumbersome to build a global Cloud
infrastructure that can effectively use distributed computing
as a base to migrate processes from different parts of the
globe for effective distributed computing and parallel
executions of program threads. Instead of approaching a
theoretic global infrastructure, the CA-Cloud utilizes a local
approach that is more cost effective and would drastically
bring down the idle time of systems operating at the selected
geography. Another problem faced by most researchers, is the
use of Cloud service and its related infrastructure.

The CA-Cloud [21] works on the principle of the power
server model of computing. Each of the clients, runs the CA-
Cloud server which is a simplistic http web server running
services based on common scripting languages such as Perl,
Hypertext Pre-Processor (PHP) or Common Gateway

Interface (CGI). The client side coding model enables the
developer to upgrade the services using the CGI framework
which can use any of the languages that support CGI
scripting.

Figure 3: Transcoding on the CA-Cloud Architecture

For the sake of simplicity and rapid development of services,
we have used Perl as the default language of choice due to its
availability and portability to most platforms. Different
components are utilized for parallel/distributed video
transcoding using the CA-Cloud Architecture as shown in
Figure 3 with the results obtained for our sample video files
(as discussed in the next section).

4 Results
For these series of tests, we have applied, five 10-second
video files of varying and constant resolutions including
1080p content, ranging from a low-motion, low-detail to
high-detail and high-motion shot videos with a High
resolution Samsung camera. The varying content were
applied to stress the codecs in different scenarios, while the
short to medium duration of the video clips helped us to run
numerous discrete encodes with both singular nodes and on
our cloud platform with load balancing enabled by default.

A typical 1080p resolution test file was encoded using the
FFMpeg transcoding software with a HEVC profile at 4Mbps
per second, encoding to 1-pass CBR with a key frame interval
of 40 frames per second as shown using our Figure 4 results.
Each codec was tested using five standardized presets namely
the: Ultra Fast, Very Fast, Medium, Slow and Placebo with
CR rates ranging from CRF 23 to 28 on average for
individual single core node performance to parallel
processing of the same job over multiple nodes.

The x265/HEVC output files were produced via command
line using the FFMpeg version 3.0.2 x265 video encoder over
the selected nodes. With all encodes, the encoding rates were

454 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

verified to check if the encoder met the target rate, which in
comparison to Handbrake was significant. With FFMpeg, we
tested CRF values 18 (lowest quality / fastest encode), 22 (the
default), 23, 25, and 28 (slowest encode / highest quality)
while keeping other variables constant. The idea was to
understand the qualitative versus performance trade-offs
associated with the various presets with both single node and
parallel settings initially undertaken during this research. The
summary of the results can be viewed in Table 1 and Table 2
comparing single node vs cloud based transcoding using the
x265/HEVC codecs used during the transcoding of the
selected video clips.

Table 1 : FFMpeg x265/HEVC Results from Single Node

Settings
Avg

Encoding
Time

% Increase in
Encoding Time

Avg CR
Score

Ultra Fast 2.4 0% 1.3
Very Fast 4.3 76% 2.4
Medium 7.4 66% 4.1
Slow 92.4 1,390% 5.1
Placebo 321.6 287% 1.8
Total 1,819%

Table 2 : FFMpeg x265/HEVC Results from CA-Cloud

Presets
Avg Encoding

Time
(CA-Cloud)

% Increase in
Encoding Time

(CA-Cloud)

Avg CR
Score

Ultra Fast 2.1 0% 1.2
Very Fast 3.3 66% 1.8
Medium 4.4 56% 2.4
Slow 56.6 990% 3.1
Placebo 196.4 112% 1.1
Total 1,224%

This was then compared to the scores received from encoding
using the CA-Cloud Architecture based on two variables:
duration and quality. The Average Encoding Time column
enumerates the average encoding time for all the selected
clips encoded using the presets as identified previously
followed by the average percentage scores. Likewise, the
percentage of Increase in Encoding Time Column shows the
increase in time between the selected presets along with the
differences representing the total change from CRF 23 to CRF
28.

By changing from CRF 28 to CRF 23, we were able to
generate on average, a 22 percent improvements towards
quality over five of the test video clips, while the encoding
time rose to a whopping 73 percent. Likewise, encoding at CR
23 created a total quality difference of 55 percent between the
two extreme presets while increasing the encoding time by 52

percent. This makes CRF 23 an interesting default preset for
many encoders of this transcode.

With the new x265 codec, the following presets were tested as
follows the: Ultra Fast, Very Fast, Medium (Default), Slower,
and Placebo presets which resulted in a quality drop noticably
from the Ultra Fast to Very Fast, and the Ultra Fast to slightly
Medium in quality (as shown in Figure 4 and 5).

Figure 4: Transcoding time on CA-Cloud Virtual Machines.

Figure 5: Percentage of Transcoding time on CA-Cloud
Virtual Machines.

5 Conclusion
Currently, the advances in distributed computing has
provided us with new ways of utilizing computational
resources. Cloud computing which is one form of distributed
computing offers special features such as delivering high
grade distributed computing infrastructures as a utility. This
means that any user can obtain an easy access to
computational resources matching his demand on “pay as you
use” basis. The idea behind distributed computing approaches
for transcoding was due to the fact that resources were
insufficient over singular nodes. However, proper utilization
of resources without over provisioning is also vital, hence,

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 455

ISBN: 1-60132-444-8, CSREA Press ©

the cloud provides for the required elasticity needed by a
distributed transcoder.

The distributed transcoder was made using the existing
transcoder implementation tool, FFMpeg. This tool is used as
a process running on several nodes that are distributed across
a network. In addition, the CA-Cloud Architecture was used
to enable both the communication and process management
mechanisms providing most of the required communication
protocols needed for proper scheduling and the management
of distributed tasks.

6 Acknowledgments
I would like to take this opportunity to thank Royal
Melbourne Institute of Technology International University
for funding this research in the form of a Research Grant and
Professional Development International Travel Grant which
was received by the first author in June 2016 for outstanding
research.

7 References
[1] Folding@home: A distributed computing project which
studies protein folding. http://folding.stanford.edu/. Accessed:
Jan 20, 2012.

[2] Fujitsu MB86H52: ASIC MPEG-2 to H.264 HD
transcoder from fujitsu.
http://www.fujitsu.com/downloads/MICRO/fme/documentati
on/m13.pdf. Accessed: Jan 20, 2016.

[3] The MPI standard: A specification for MPI
implementations.
http://www.mcs.anl.gov/research/projects/mpi/. Accessed:
Jan 20, 2016.

[4] Starcluster: An open source cluster computing tool kit
for amazon’s EC2.
http://web.mit.edu/stardev/cluster/index.html. Accessed: Jan
20, 2016.

[5] MPI: The complete reference.
http://www.netlib.org/utk/papers/mpibook/mpi-book.html,
1996. Accessed: Jan 20, 2016.

[6] Ffmpeg: Cross platform solution to record and convert
and stream audio and video. http://ffmpeg.org/, Dec 2000.
Accessed: Jan 20, 2016.

[7] Big Buck Bunny: A short computer animated film by
the blender institute. http://bigbuckbunny.org, Apr 2008.
Accessed: Jan 20, 2016.

[8] Amazon elastic compute cloud: Delivers scalable pay-
as-you-go compute capacity in the cloud.

http://aws.amazon.com/ec2/, Nov 2010. Accessed: Jan 20,
2016.

[9] Cloud Software Finland: Finland national cloud
software program. http://www.cloudsoftwareprogram.org/,
2010. Accessed: Jan 20, 2016.

[10] ISO/IEC 144 6. Information technology a coding of
audio-visual objects.Technical report, 2003.

[11] Jokhio Fareed Ahmed, Lafond Sebastien, and Lilius
Johan. Analysis of video segmentation for spatial resolution
reduction video transcoding. In Proceedings of the
International Symposium on Intelligent Signal Processing and
Communication Systems, 2011.

[12] J.G. Apostolopoulos and S.J. Wee. Video Compression
Standards. Wiley Encyclopedia of Electrical and Electronics
Engineering, JohnWiley and Sons, Inc., New York, 1999.

[13] John G. Apostolopoulos, Wai tian Tan, and Susie J.
Wee. Video streaming: Concepts, algorithms,and systems.
Technical report, HP Laboratories Palo Alto, Sep 2002.

[14] Michael Armbrust, Armando Fox, Rean Griffith,
Anthony D. Joseph,

[15] Randy H. Katz, Andrew Konwinski, Gunho Lee, David
A. Patterson,

[16] Ariel Rabkin, Ion Stoica, and Matei Zaharia. Above the
clouds: A berkeley view of cloud computing. Technical
report, EECS Department, University of California, Berkeley,
Feb 2009.

[17] V. Bhaskaran and K. Konstantinides. Image and Video
Compression Standards: Algorithms and Architectures.
Kluwer Academic Publishers, Boston, Massachusetts, 1997.

[18] Hamann C.J., Roitzsch M., Reuther L., Wolter J., and
Hartig H. Probabilistic admission control to govern real-time
systems under overload. In 19th Euromicro Conference Real-
Time Systems, pages 211–222, 2007.

[19] Andrey Khorlin. Scheduling in distributed stream
processing systems. Master’s thesis, 2006.

[20] G. Morrison. Video transcoders with low delay. In
IEICE Trans.Communication, pages 963–969, 1997.

[21] Shankaranarayanan, Avinash. and Amaldas, Christine,
(2013), The Art of Cloud Computing for Businesses, Aries
Media Publishers, ISBN: 978-981-09-0152-3.

[22] Michael Roitzsch and Martin Pohlack. Principles for the
prediction of video decoding times applied to mpeg-1/2 and
mpeg-4 part 2 video. In Real-Time Systems Symposium,

456 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

2006. RTSS ’06. 27th IEEE International, pages 271–280,
2006.

[23] Michael Roitzsch and Martin Pohlack. Video quality
and system resources: Scheduling two opponents. In Journal
of Visual Communication and Image Representation, pages
473–488, 2007.

[24] Yasuo Sambea, Shintaro Watanambe, Dong Yu, Taichi
Nakamura, and Naoki Wakamiya. High-speed distributed
video transcoding for multiple rates and formats. In IEICE
TRANSACTIONS on Information and Systems, pages 1923–
1931, 2005.

[25] Gary Shao. Adaptive scheduling of master/worker
applications on distributed computational resources. Master’s
thesis, 2005.

[26] A. Vetro, C. Christopoulos, and H. Sun. Video
transcoding architectures and techniques: An overview. In
Signal Processing Magazine, IEEE, pages 18–29, 2003.

[27] Clemens C. W, Liesbeth Steffens, Reinder J. Bril, and
Wim F.J. Verhaegh. Qos control strategies for high-quality
video processing. In 15th Euromicro Conference on Real-
Time Systems, 2007.

[28] J. Watkinson. The MPEG Handbook. Focal Press,
Woburn, Massachusetts, 2001.

[29] Jeongnam Youn, Ming-Ting Sun, and Jun Xin. Video
transcoder architectures for bit rate scaling of h.263 bit
streams. In Proc. ACM Multimedia, pages 243–250, 1999.

[30] Andreopoulos Y. and Van der Schaar M. Adaptive
linear prediction for resource estimation of video decoding.
In Circuits and Systems for Video Technology, IEEE, pages
751–764, 2007.

[31] Encode to HEVC, https://www.viastream.com.au/,
Accessed: Jul 1, 2016.

Prof Avinash Shankaranarayanan is
currently working as an
Academic/Consultant teaching Accounting
and Finance, Business Communication and
Computing, Internet of Things, ICT,

International Human Resource Management and Financial
Risk Management courses at RMIT International University.
He is also an Adjunct Professor at VELS University, India;
Trier University, Germany; and the Institute for Applied
Sciences (IFaS), Germany. Avinash has been actively
involved in publishing several research papers and
periodicals in International Conferences and Journals of high
standards such as the IEEE and ACM. His research and
teaching interests includes: Applied Social and Cognitive
Psychology in Education; Game Dynamics; High
Performance Grid Computing; Bioinformatics; Material Flow
Management; Renewable Energy Systems; Policy and
Decision Making. Avinash comes from a diverse discipline of
Engineering and Social Sciences and is fluent in a wide range
of scholarly domains specializing in Higher Education and
Engineering. He serves as an Editor and Steering Committee
member on numerous research entities including, the Journal
of the Environmentalist and Biologica.

Prof Christine Amaldas is currently
teaching core Business and IT technologies
at Ritsumeikan while serving as a visiting
Professor and Consultant for numerous
organizations and international tertiary
institutions spanning the Asia Pacific

region. As an expert researcher and academic, she has been
the author of several Books, Chapters, Conferences and
Journal periodicals. She has Chaired and presided over a
number of Conferences and has given numerous Keynote
speeches and Guest talks. She specializes in Asia Pacific
Studies, Education, Information Security and Fraudulence,
Ethics and Ethical Governance in ICT, Holistic Medicine and
Energy Healing and Governance (Corporate, Public, IT and
Dynamic). In 2010, she was the first person to receive the
2010 Teaching and Research Award from the Royal
Melbourne Institute of Technology University, Australia for
her excellence in teaching and research methodology.
Moreover, she was the recipient of the prestigious Best Paper
Award at the ANNA World Congress 2011, Chennai, India.
Furthermore, she was the recipient of the prestigious ‘2012
Young Scientists Award’ from ASTER, Japan and has
received multitude of Grants and Awards since 2012. She is
currently busy writing many articles and books in
multidisciplinary areas of research.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 457

ISBN: 1-60132-444-8, CSREA Press ©

Towards Efficient Mapping on Multicore processors
according to Cache sharing

Emna Hammami, Yosr Slama, Wafa Benboubaker

University of Tunis El Manar, Faculty of Sciences of Tunis,
University Campus - 2092 Manar II, Tunis, Tunisia

Abstract - The multicore architecture evolution requires
updating the automatic parallelization, taking into
consideration the intrinsic features of the target parallel
architectures. In this context, we focus on parallel polyhedron
programs (PP) i.e. programs structured in nested loops with
affine bounds on which we aim at adapting the mapping to
multicore architecture. In fact, thread placement is a
technique widely used on parallel machines to reduce the
overall communication time. For instance, two threads which
communicate frequently are mapped close to each other.
Finding the optimal mapping between threads and cores in a
shared-memory environment is a complex task due to implicit
communication. This paper presents a brief state-of-the art of
the well-known mapping techniques based on hardware
characteristics of the target platform and introduces a new
theoretical model for predicting the cache sharing effect on
the target architecture which can be a source of performance
improvement. Besides, our proposal tries to adapt the PP
mapping taking into account the cache memory sharing.
Ultimately, we carry out a series of experiments targeting a
quadcore bi-processor machine in order to evaluate the
interest of our contribution.

Keywords: Cache sharing, data locality, mapping, multicore
architecture, nested loops, thread.

1 Introduction
 Several studies have been done on program
parallelization for multicores. To improve this trend, it is
necessary to define a new model that allows adapting the
parallelization to the variety of constraints imposed by
multicore processors. Thus, exploiting such architectures
becomes a main subject of lots of research. That revolves
around studying the effects of hardware topology and
intrinsic characteristics of contemporary machines on
program implementation as well as adapting programming to
the recent platforms. Indeed, there are new constraints in
multicore architecture related to the different affinities that
may exist between some cores sharing one or more than
cache memory level.

It is in this context that we aim at studying cache effects on a
multicore architecture when mapping tasks of a given parallel
program to the available cores. In particularly, we take a
special interest in polyhedron programs (PP); i.e. programs

structured in nested loops with affine bounds, which are the
most used codes in scientific computing. Thus, given a
parallel PP, which does not take into consideration the target
architecture, we propose to study the adaptation of tasks
mapping with taking into account some hardware
characteristics of the target multicore machine (TM), e.g.
cache sharing, cache memory organization, etc.

The remainder of the paper involves four sections organized
as follows. In section 2, we present a brief state-of-the art on
the most known methods adapting the mapping to multicore
architectures. Section 3 is devoted to the description of the
proposed approach, where we detail an experimental study on
a multicore parallel platform that allows our theoretical
contribution validation and evaluation. Finally, we conclude
and present some perspectives in section 4.

2 Related work
 Studying the processors coordination, the cores position,
the memory size and the cache levels organization, is
essential to improve application performance and to optimize
completion time. Indeed, when two tasks are accessing to the
same data (D), it would be much better if they shared D on
the same cache memory (L2 or L3) rather than fetching it
through the main memory. Moreover, when tasks require
intensive memory access simultaneously, it is preferred to
place them on separate chips. Each one is linked to the
memory and takes advantage of the maximal bandwidth. In
the following, we present a summary of existing works based
on architectural hardware features to find the best mapping.

In the literature, Thekkath and al. [1] proposed a placement
algorithm fed by trace-driven simulators then evaluated the
impact of thread mapping on multithreaded platforms.
However, the obtained results don’t show performance
improvements due to the memory access patterns of the
applications.

From the previous works, we notice that, in one hand, the
problem of finding the optimal mapping between processes
and processors for optimizing parallel programs in distributed
memory environments is almost solved by constructing the
task graph where vertices represent communication is
straightforward. In fact, the obtained communication pattern
which represents the exchanged messages gives enough

458 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

information about the sender and the receiver, so that is useful
to calculate the amount of data exchanged between tasks to be
considered in the optimization of the placement. In other
hand, Klug and al. [2] proved that the behavior of SPEC OMP
programs is very depending on the thread-core binding. In
fact, they implemented a framework which uses the hardware
counters to extract the best binding between threads of a
running parallel application and processor cores in a shared
memory system. In addition, the study of Rodrigues and al.
[3] justified that optimizing thread placement on multicore
machines improves well the codes performance.

However, although the communication is implicit in shared
memory (SM) applications, the previous mapping methods in
MPI environment could be adapted to be used in SM
platforms in order to improve the quality of OpenMP codes.
Indeed, Diener and al. [4] proposed a mechanism examining
data sharing patterns between OpenMP threads in different
workloads then used those patterns in a similar way as
messages are used to map processes in cluster computers. In
fact, such mechanism transforms memory accesses from
different threads to communication patterns, regardless of
cache parameters. It allows placing threads that share data on
cores that share levels of cache. Targeting two different
multicore architectures, such mapping approach achieved
considerable improvements reducing execution time by up to
45%. Besides, Chen and al. [5] proposed to automatically
detect the optimized mapping using a profile-guided method
for SMP clusters and multiclusters which is able to minimize
the cost of point-to-point communications for arbitrary MPI
applications.

Moreover, many works depend on architectural topology to
optimize data dependencies, i.e. residual inter-cores
communications. In this context, by gathering information on
the hardware distributed-memory architecture and the
implementation of the communication model, J. Clet [6]
proposed a match between the ranks of the MPI processes and
the target cores. Such method is not dependent on any MPI
application. It analyzes different mapping strategies applied
to NAS tests. J. Clet noticed that increasing the
communication rate on the same node is not enough to
improve the application performance. However, a good cache
management can optimize the target application. The
proposed work chooses the amount of data (AD) exchanged
between processes as discriminating criterion, computes the
AD exchanged for each pair of processes and determines the
communication scheme. The obtained pattern is represented
by a matrix. Then after generating, by the Hwloc tool [7], a
matrix representation of the target topology whose the values
are the distance coefficients between the cores, the process
mapping is deduced by performing a static correspondence
between the two obtained matrixes. In other terms, each
process is assigned to a close core of the cores executing the
most interacting processes in order to enhance data locality
[8] and to improve the overall performance of the MPI
application communication.

To conclude, we notice that most of these related works,
though effective in placing processes according to their
communication patterns in a distributed-memory
environment, the problem of detecting the best mapping of
OpenMP threads in a shared-memory application is still a
large subject of recent research [9] due to the architecture
evolution. Subsequently, through this paper, we aim to
present our approach for optimizing the quality of a parallel
polyhedron program by taking into account some physical
characteristics of the TM and choosing the best placement of
OpenMP threads on the target cores. For this purpose, based
on a selective study of hardware architecture detection tools,
we have chosen the Hwloc package [7]. Indeed, it allows
displaying a portable abstraction of the hierarchical topology
of multicore architectures with gathering information about
NUMA memory nodes, sockets, shared caches, cores and
simultaneous multi-threading.

3 Proposed approach
 In this section, we present our theoretical constructive
contribution targeting a multicore architecture based on
matching the parallel program's behavior to the cache
memory sharing (SCM) in order to enhance data locality as
well as data reuse. A series of experiments was performed on
the chosen target architecture to evaluate the interest of our
approach.

3.1 Theoretical study
 In this work, given a program containing dependencies
(see Nest 1.), we aim at defining a task mapping policy (tasks
here are loop iterations) on the available cores, which takes
into account the target multicore architecture, in particular the
cache hierarchy. Indeed, when two iterations access the same
data, the placement should consider the shared memory
between cores.

In this paper, we try to affect dependent iterations which can't
be run on the same core on cores sharing at least a cache
level. Thus, we have taken into consideration some hardware
features e.g. cache sharing and cores organization. In other
words, we try to adapt the placement of the parallel program
to the cache hierarchy, by imposing the physical choice of
cores during the program compilation.

Indeed, the original placement (e.g. with OpenMP), launches
threads that are randomly allocated on physical cores without
taking into account the architectural topology. However,
changing the threads distribution on the different cores may
reduce data exchanges and thus improve data locality as well
as data reuse. For these reasons, it is important to
appropriately choose the allocation of parallel tasks on the
cores and consider the SCM in order to reduce as much as
possible cores communications (which represent
dependencies between threads). Such optimization could be
applied to any cache hierarchy. However, in this paper, we
target the following multicore architecture: a multicore

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 459

ISBN: 1-60132-444-8, CSREA Press ©

machine with n cores (C1, C2, C3,.., Cn) where each pair
shares a cache memory (see Fig 1.).

Fig. 1. Target Multicore architecture (MA)

In the following subsections, we study nested loops
containing dependencies and we are going to choose the best
task mapping depending on cache memory sharing (SCM)
through a theoretical and an experimental study. In fact, our
method aims to improve the quality of the parallel code and it
is evaluated through a series of experiments.
Let us consider the following program (see Nest 1) which is a
two nested loops with a single dependency distance (q, r).
We mention that DV denotes the dependency distance vector.

Nest1. (A, n)
FOR i=1,n
FOR j=1,n
A[i , j]=A[i +q , j + r]
ENDFOR

ENDFOR

We take a special interest in the following particular cases
according to the values of n, q and r:

 n = 4; q = 0; r != 0 :
When (r = 1), we get the parallel code of the below nested
loops N1.

N1. (A, n)
FORALL i=1,n
FOR j=1,n
A[i , j]=A[i , j + 1]
ENDFOR

ENDFORALL

N1 contains a dependency by the j loop, with a dependency
distance vector DV equal to (0.1). Thus, the i loop is parallel.
We notice from Fig.2 that all the threads P1, P2, P3 and P4
are independent, so the placement of any one on any core
does not generate inter-communications. Consequently, the
mapping relying on cache hierarchy is useless in this case and
can't be adapted to the physical core organization.

Fig. 2. Iteration space of the nest N1 (q = 0; r = 1)

 n = 4; q != 0; r = 1 || r = -1 :
From the nest (N2), the dependency distance vector DV is:

 or

N2. (A, n)
FOR i=1,n
FORALL j=1,n
A[i , j]=A[i + 1 , j + 1]
ENDFORALL

ENDFOR

According to the iteration space of N2 (see Fig.3), it is hard to
find a suitable thread mapping that influences the quality of a
such parallel nested loops . Indeed, the Pi thread is still
dependent on Pj (when i<j). Therefore, there is no adaptation
to the cache hierarchy in this case because of the continued
communication between cores even they share or not the
same memory cache.

Fig. 3. Iteration space of the nest N2 (q = 1; r = 1)

 n = 4; q != 0; r = 2 || r = -2 :

The dependency direction vector when (q= 1) is the
following:

 or

N3. (A, n)
FOR i=1,n
FORALL j=1,n
A[i , j]=A[i + 1 , j + 2]
ENDFORALL

ENDFOR

From Fig.4, we notice that it is better to involve dependent
threads on cores sharing a cache memory in order to reduce
the communication rate. So, we propose to map the threads
P1 and P3 respectively to the cores C1 and C2, then to map
P2 and P4 respectively to C3 and C4.

460 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

Fig. 4. Iteration space of the nest N3 (q = 1; r = 2)

As there is a dependency between P3 and P5, they shall be
affected to the same core C2. Similarly for the thread P6
which depends on P4, so it will be allocate on C4.

P7 and P8 shall be mapped respectively to C1 and C3 in order
to ensure data locality (see Fig.5).

Fig. 5. Mapping threads of N3 on cores (n=4)

In this case, we can divide the OpenMp threads into 4 groups
as follows:

We precise that the threads of Group1 (resp. Group2, Group3,
Group4) are allocated respectively on the core C1 (resp. C2,
C3 and C4).

 n = 4; q != 0; r = 3 || r = -3 :
The dependency distance vector DV of the bellow N4 nested
loops when (q= 1) is the following:

 or

N4. (A, n)
FOR i=1,n
FORALL j=1,n
A[i , j]=A[i + 1 , j + 3]
ENDFORALL

ENDFOR

From Fig.6, we notice that when we intend to exploit the
cache memory sharing, even if we map the P1 and P4 threads
respectively to the cores C1 and C2, and the threads P2 and
P5 to C3 and C4, it is still hard to find a suitable placement
that minimizes communication between cores sharing cache
memory.

Fig. 6. Iteration space of N4 (q = 1; r = 3)

In fact, when repeating this process for P3, P6, P7 and P10
(see Fig.6), even if P4 and P7 are dependent, they will be
allocated on cores non-sharing cache. Note that the
dependency distance (r = 3) does not divide the cores number
(n=4).

 n = 4; q != 0; r = 4 || r = -4 :
The DV of the obtained nested loops (N5) when (q= 1) is:

 or

In this case, since r = n (the cores number), the threads could
be placed cyclically without respecting the hierarchy cache.

Fig. 7. Mapping threads of N5 on cores (n=4)

Following to the previous study of the different dependency
cases targeting a quadcore machine, we notice that the only
time in which the placement can be improved by adapting it
to the cache memory sharing, is when the dependency
distance vector is DV(q, r) where q! = 0 and r = 2 = n/2.
Otherwise, in other cases, the obtained placement is: either
that maximizes communications, or cannot be improved.
Besides, we have studied the case of n = 6 and n = 8, and we
also found that we can benefit from adapting the threads
placement to a multicore architecture as mentioned in Fig.1 if
and only if q != 0 and r = n/2. In the following, we are going

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 461

ISBN: 1-60132-444-8, CSREA Press ©

to show the proposed groups allocation and to summarize this
study for any cores number (n).

 n = 6; q != 0; r = 3 || r = -3 :
The dependency distance vector of the bellow N6 nested
loops when (q= 1) is the following:

 or

N6. (A, n)
FOR i=1,n
FORALL j=1,n
A[i , j]=A[i + 1 , j + 3]
ENDFORALL

ENDFOR

This case is the only one where we could predict a mapping
that minimizes communications and respects the cache
sharing.

Fig. 8. Mapping threads of N6 on cores (n=6)

Fig.8 shows that the threads could be divided into 6 groups:

We mention that threads of Group1 (resp. Group2, Group3,
Group4, Group5, Group6) are allocated respectively on the
core C1 (resp. C2, C3, C4, C5, C6).

 n = 8; q != 0; r = 4 || r = -4 :
The dependency distance vector (DV) of the N8 nested loops
when (q= 1) is the following:

 or

N7. (A, n)
FOR i=1,n
FORALL j=1,n
A[i , j]=A[i + 1 , j + 4]
ENDFORALL

ENDFOR

Fig.9 shows the best placement of the OpenMP threads on an
8-cores architecture.

Fig. 9. Mapping threads of N7 on cores (n=8)

In this case, the above threads could be divided into 8 groups
as follows:

Notice that threads of Group1 (resp. Group2, Group3,
Group4, Group5, Group6, Group7, Group8) are allocated
respectively on C1 (resp. C2, C3, C4, C5, C6, C7, C8).

 Summary for any cores number n :

The theoretical study can be generalized for any cores number
(n) of a given target multicore machine (MA) respecting the
hierarchy mentioned from Fig.1, where each pair of cores
shares a memory cache.
We consider the case of a dependency distance vector
DV(q,r) where q != 0 and r = n/2. Then, we define n groups as
follows:

The Groups j are mapped to the cores C 2(j-1)+1 .

The Groups r+j are mapped to the cores C 2j.

The Group r is mapped to the core C n-1.

In the following section, we evaluate our theoretical
contribution through a series of experiments.

462 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

3.2 Experimental study
 First of all, let us mention that our multicore target
machine (TM) is an Intel ® Xeon dual quadcore processor
CPU E5420 @ 2.50GHz. Its eight cores have dedicated L1
cache with 32 KB size, and share in pairs the L2 cache level
whose size is 6MB. The RAM size is 4 GB.

An experimental study covering the previous programs (N3,
N6 and N7) was carried out on our TM in order to validate
our theoretical proposal.

We compute the execution time of such codes in terms of the
array size (N). Then we illustrate the speed-up (S),
respectively for N3, N6 and N7. Our purpose is to ensure our
general formula (see section 3.1) which maps dependent
iterations on cores sharing the same cache in order to
minimize the dependences and reduce the communication
rate.

We mention that the following notations are adopted in this
section to indicate the studied codes:
- N3_PC, N6_PC and N7_PC: are the parallel codes
respectively of the nested loops N3, N6 and N7 undergoing
the mapping depending on SCM.
- N3_PA, N6_PA and N7_PA: are the parallel codes obtained
with the random placement (automatically generated by
OpenMP) respectively of the nested loops N3, N6 and N7.

The following versions are derived from our target codes; the
first is sequential and denoted N3(1th) (resp. N6(1th), resp.
N7(1th)), the second version is N3_PC (resp. N6_PC, resp.
N7_PC) and the third one is N3_PA (4 threads) (resp.
N6_PC, resp. N7_PC).

They were coded in C under Linux. For the parallel
experiments, we used the shared memory OpenMP
environment. We point out that for each code; we chose 12
values of N in the range [500, 6000] with a step equal to 500.
For each N, the execution time (Tex) is the mean of five runs.
We therefore achieved 180 tests in total (60 for each version).
Excerpts of the results we obtained are depicted below.

TABLE I. EXECUTION TIME (S) AND SPEED-UP OF N3(1TH),N3_PC AND
N3_PA ON TM

Table I and Fig.10 show that the obtained execution time
(Tex) for the N3_PC is less than the Tex of N3_PA.

Moreover, they illustrate that the speed-up (S) does not vary
uniformly with N, but S of the N3_PC is still better than that
of N3_PA.

Fig. 10. Experimental comparison of the different versions N3(1th), N3_PC

and N3_PA on MA: (a) Execution time (s), (b) Speed-up

We notice from Table II and Fig.11 that the N6_PC relying
on the sharing cache memory (SCM) is the best. This is
obvious because the mapping depending on the SCM takes
advantage of data locality and minimizes cores
communication. Fig.11 shows that the speed-up doesn't vary
uniformly with N. This may be related to the OpenMP
overheads.

TABLE II. EXECUTION TIME (S) AND SPEED-UP OF N6(1TH),N6_PC
AND N6_PA ON TM

Fig. 11. Experimental comparison of the different versions N6(1th),N6_PC

and N6_PA on MA: (a) Execution time (s), (b) Speed-up

N Execution time (s)

Speed-up
N3(1th) N3_PC N3_PA N3_PC N3_PA

500 0.048 0.005 0.021 9.6 2.28
1000 0.174 0.010 0.085 17.4 2.04
1500 0.254 0.018 0.150 14.11 1.69
2000 0.438 0.031 0.194 14.12 2.25
2500 0.659 0.048 0.223 13.72 2.95
3000 0.866 0.068 0.267 12.73 3.24
3500 1.078 0.113 0.316 9.53 3.41
4000 1.492 0.152 0.401 9.81 3.72
4500 1.990 0.188 0.465 10.58 4.27
5000 2.625 0.231 0.536 11.36 4.89
5500 3.268 0.282 0.658 11.58 4.96
6000 4.521 0.335 0.797 13.49 5.67

N Execution time (s)

Speed-up
N6(1th) N6_PC N6_PA N6_PC N6_PA

500 0.296 0.016 0.046 18.5 6.43
1000 0.351 0.025 0.087 14.04 4.03
1500 0.792 0.041 0.122 19.31 6.49
2000 1.671 0.056 0.173 29.83 9.65
2500 2.618 0.080 0.244 32.72 10.72
3000 3.359 0.113 0.315 29.72 10.66
3500 4.793 0.161 0.382 29.77 12.54
4000 5.084 0.208 0.494 24.44 10.29
4500 6.433 0.263 0.589 24.46 10.92
5000 7.061 0.329 0.719 21.46 9.82
5500 8.334 0.397 0.806 20.99 10.33
6000 8.827 0.475 0.918 18.58 9.61

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 463

ISBN: 1-60132-444-8, CSREA Press ©

Table III and Fig.12 display that N7_PC, which considers the
SCM, is better than N7_PA.

TABLE III. EXECUTION TIME (S) AND SPEED-UP OF N7(1TH),N7_PC
AND N7_PA ON TM

Fig. 12. Experimental comparison of the different versions N7(1th),N7_PC

and N7_PA on MA: (a) Execution time (s), (b) Speed-up

4 Conclusion
 The work reported in this paper aims to propose a
solution for the problem of OpenMP threads mapping on
multicore platform , taking into account the cache memory
sharing since it has a very important impact on performance.
In this context, we were interested in automatic parallelization
of polyhedron programs. We first studied the most well-
known methods focusing on adapting the mapping to the
target architecture. Then, we presented our approach which
consists in matching the program structure to the target
hardware hierarchy relying on the residual dependencies. In
fact, starting from a parallel program with a single level of
dependency, we have proposed a grouping model of
dependent threads to be mapped on the close cores sharing
one or more than cache level. This took advantage of the data
reuse and data locality and improves the performance of the
target parallel code. Finally, experiments were carried in
sequential and parallel environments on a quadcore bi-
processor machine to validate our theoretical proposal.
However, several interesting points remain to be seen, in
particularly: (i) extension of the theoretical study to multiple
nested loops with more than one dependency, (ii) taking into
account other architectural features of the target platform, (iii)
extension of the experimental study to other programs and
other parallel architectures.

5 References
[1] R. Thekkath and S.J. Eggers, “Impact of sharing-based
thread placement on multithreaded architectures”, In
International Symposium on Computer Architecture (ISCA),
Chicago, IL, pp. 176–186, April 1994.

[2] T. Klug, M. Ott, J. Weidendorfer, and T. Carsten,
“autopin: automated optimization of thread-to-core pinning
on multicore systems”, Transactions on high-performance
embedded architectures and compilers III, Springer-Verlag,
Berlin, Heidelberg, pp. 219-235, January 2011.

[3] E.R. Rodrigues, F.L. Madruga, P.O.A. Navaux, and J.
Panetta, “Multi-core aware process mapping and its impact on
communication overhead of parallel applications”, In IEEE
Symposium on Computers and Communications (ISCC),
Sousse, Tunisia, pp. 811–817, July 2009.

[4] M. Diener, F. Madruga, E. R. M. Alves, J. Schneider, P.
Navaux, and H.U. Heiss, “Evaluating thread placement based
on memory access patterns for multi-core processors”, 12th
IEEE International Conference on High Performance
Computing and Communications (HPCC), Melbourne, VIC,
pp. 491–496, September 2010.

[5] H. Chen, W. Chen, J. Huang, B. Robert, and H. Kuh,
“MPIPP: an automatic profile-guided parallel process
placement toolset for SMP clusters and multiclusters”, In the
Proceedings of the 20th annual international conference on
Supercomputing (ICS), Cairns, Queensland, Australia,
pp.353-360, June 2006.

[6] J. Clet-Ortega, “Une stratégie efficace pour le placement
de processus en environnement multicoeur”, 19ème
Rencontres Francophones du Parallélisme (RenPar’19),
SympA’13, CFSE’7, University Bordeaux 1,Toulouse,
France, September 2009.

[7] F. Broquedis, J. Clet-Ortega, S. Moreaud, N. Furmento,
B. Goglin, G. Mercier, S. Thibault, and N. Namyst, “hwloc: a
Generic Framework for Managing Hardware Affinities in
HPC Applications”, Proceedings of the 18th Euromicro
International Conference PDP 2010: Parallel, Distributed and
Network-Based Processing, IEEE Computer Society Press,
Pisa, Italia, pp 180-186, February 2010.

[8] C. Bastoul, “Improving Data Locality in Static Control
Programs”, PhD thesis, University Paris 6, Pierre et Marie
Curie, France, December 2004.

[9] M. Kandemir, T. Yemliha, S. Muralidhara, S.
Srikantaiah, M. Irwin, and Y. Zhnag, “Cache topology aware
computation mapping for multicores”, In Proceedings of the
31st ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), vol. 45(6), pp. 74–85,
June 2010.

N Execution time (s)

Speed-up
N7(1th) N7_PC N7_PA N7_PC N7_PA

500 0.252 0.067 0.115 3.76 2.19
1000 0.730 0.070 0.381 10.42 1.91
1500 1.359 0.102 0.455 13.32 2.98
2000 2.159 0.117 0.542 18.45 3.98
2500 3.279 0.168 0.619 19.51 5.29
3000 3.951 0.181 0.702 21.82 5.62
3500 5.123 0.217 0.853 23.60 6.00
4000 5.606 0.297 0.972 18.87 5.76
4500 6.471 0.350 1.089 18.48 5.94
5000 7.130 0.432 1.254 16.50 5.68
5500 8.518 0.553 1.387 15.40 6.14
6000 9.562 0.694 1.491 13.77 6.41

464 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

Parallel machine scheduling problems with machine and job

correlations

Yang-Kuei Lin
Department of Industrial Engineering and Systems Management, Feng Chia University, P.O. Box 25-097,

Taichung, 40724, Taiwan, ROC

Abstract - We study the problem of
scheduling parallel machines with release
time to minimize total weighted tardiness.
We consider different levels of machine
correlation and job correlation in the
processing times. The problem is NP-hard
in the strong sense since the single
machine case is already NP-hard in the
strong sense. A mathematical model is
applied to evaluate the influence of
machine correlation and job correlation on
the computation results and computation
time. Computational results show that as
the machine and job correlations increase,
the problem instances become more
difficult for mathematical models to
resolve.

Keywords: scheduling, parallel machines,
correlation, release time, total weighted
tardiness.

1 Introduction
This research consider the problem

of scheduling n jobs on m parallel
machines with release times to minimize
total weighted tardiness. Each job j has a
release date (rj), a processing time (pij) on
machine i, a due date (dj) and a weight
(wj). Job preemptions are not allowed. We
consider different levels of machine
correlations and job correlations in the
processing times. The total weighted

tardiness (jjTw∑) is a measure of

customer satisfaction where the tardiness

of job j is defined as

,0)(= jjj dCmaxT − . This problem is

NP-hard.

Traditionally, parallel machine scheduling
problems have been classified as identical
parallel machines (Pm), uniform parallel
machines (Qm), and unrelated parallel
machines(Rm) (Pinedo, 2012). Although
there is an extensive amount of literature
sources on parallel machine scheduling
problems, it is mostly limited to the above
three traditional defined environments.

In addition to the three traditional
definitions of parallel machine
environments, research has been evolving
to recognize dependencies between jobs
and machines within a workgroup. For
example, based on surveys of real-world
manufacturing facilities, Panwalkar et al.
(1973) have surveyed real-world
manufacturing facilities and concluded
that the correlation structures existing
among jobs and machines in industry.
Machine correlation means that
processing times might be ordered by a
machine due to the processing speed of
the machines. Job correlation means that
processing times might be ordered by a
job if the jobs have large differences in
size or complexity. Both machine and job
correlated means that the processing time
of a job depends on the complexity of the
job, and the speed of the processing

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 465

ISBN: 1-60132-444-8, CSREA Press ©

machine.

Moreover, researchers have been aware
that the amounts of job correlations and
machine correlations may impact the
performance of an algorithm or heuristic.
In order to allow for possible variations in
heuristic performance, some researchers
tested their heuristics in various correlated
environments (Hariri and Potts, 1991 and
Vredeveld and Hurkens 2002). Although
both Hariri and Potts (1991) and
Vredeveld and Hurkens (2002) tested
their heuristics in various correlated
environments, they did not explore how
these different types of correlated
environments affect solution quality.
There was no determination of whether or
not the heuristics would be robust in
relation to different types of correlated
environments.

Recently, Lin et al. (2014) have provided
a comprehensive classification of parallel
machine environments. It defined nine
cases that considered different levels and
combinations of machine correlations and
job correlations, as shown in Table 1. Lin
et al. (2014) also proposed processing
time generation schemes for the nine
cases. Lin et al. (2014) introduced
parameters Γ and ∆ to control the
relatedness of the generated processing
times for the machine-correlated and
job-correlated environments, respectively.
Γ is inversely proportional to the relative
dispersion of processing times between
machines, and ∆ is inversely
proportional to the relative dispersion of
processing times between jobs. The Γ
and ∆ values are passed into the
generation scheme and the scheme
generates a problem instance. Table 1

shows the nine cases and the
corresponding environments based on
traditional definitions of parallel machine
environments. In Table 1, we can see the
following nine different types of
correlated environments:
Case 1 is the uncorrelated environment;
Case 2 is the machine-correlated
environment;
Case 3 is the job-correlated environment;
Case 4 is an environment with several
identical machines, all of which have full
job uniformity;
Case 5 is an environment with full job
uniformity and different levels of machine
relatedness;
Case 6 is an environment with full
machine correlation and different levels
of job uniformity;
Case 7 is an environment with equal
levels of machine relatedness and job
uniformity;
Case 8 is an environment in which
machine relatedness is larger than job
uniformity;
Case 9 is an environment in which job
uniformity is larger than machine
relatedness.

Table1Nine cases of parallel machine
environments (Lin et al. 2014)

0.0 0.2 0.4 0.6 0.8 1.0

0.0 1 2 2 2 2 2

0.2 3 7 8 8 8 6

0.4 3 9 7 8 8 6

0.6 3 9 9 7 8 6

0.8 3 9 9 9 7 6

1.0 3 5 5 5 5 4

 : This is a special case of

 : job uniformity factor

Superscript shows case number
Center shows corresponding environment

 : machine relatedness factor

Γ
∆

mR *
mQ

mP ijp p=

Γ
∆

*
mQ
*
mQ
*
mQ
*
mQ

mPmPmPmP mPmPmP

*
mQ mQ

466 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

Lin et al. (2014) compared the performance
of various heuristics and one metaheuristic
for unrelated parallel machine scheduling
problems. The objective functions to be
minimized are makespan, total weighted
completion time, and total weighted
tardiness. They use the Least Significant
Difference (LSD) test to identify robust
heuristics that perform significantly better
than others for the nine cases mentioned
above with these three performance
measures.
In this research, we try to solve the
problem of scheduling parallel machines
with release times to minimize total
weighted tardiness. We consider different
levels and all combinations of machine
correlations and job correlations, as
defined by Lin et al. (2014). We analyze
the nine cases by using an existing
mathematical model to determine if some
cases are more difficult to solve than
others.

2 Mathematical model

As mentioned before, some
researchers have been aware that the
amounts of job correlations and machine
correlations may impact the performance
of an algorithm or heuristic. Hence, some
of them tested their heuristics or algorithms
on different variations of job correlation
and machine correlation environments.
Here, we test the nine cases defined by Lin
et al. (2014) by using a mathematical
model proposed by Lin and Lin (2013).
The mathematical model can be used to
solve scheduling unrelated parallel
machines with release times to minimize
total weighted tardiness. The mathematical
model is described below. A binary

variable, ijtx , which is equal to 1 if job j is

scheduled on machine i starts at time t and
is equal to zero otherwise. Assuming

∑∑+≥
= =≤≤

m

i

n

j
ijj

nj
prT

1 11
 max .

objective: ∑
=

n

j
jjTw

1
 min (1)

subject

to:
1

1

1

=∑ ∑
=

+−

=

m

i

pT

rt
ijt

ij

j

x j∀ (2)

1

1)1,max(
≤∑ ∑

= +−=

n

j

t

ptrs
ijs

ijj

x

ti,∀

(3)

 0
1 0

=∑ ∑
= =

m

i

r

t
ijt

j

x

j∀
 (4)

 ∑ ∑
=

+−

=
+−=

m

i

pT

t
ijijtj

ij

ptxC
1

1

0
)1(

j∀
 (5)

 jjj TdC ≤− j∀ (6)

 0≥jT j∀ (7)

 { }1,0∈ijtx

tji ,,∀
 (8)

Equation (1) as an objective function.
Constraints (2) enforce that each job can
start only at exactly one particular time on
exactly one machine. Constraints (3)
ensure that at any given time on each
machine at most one job can be processed.
Constraints (4) enforce that each job
cannot be processed before it is released.
Using the time-indexed variables, the

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 467

ISBN: 1-60132-444-8, CSREA Press ©

completion time of a job j can be written as
constraints (5). Constraints (6) calculate
total tardiness. Constraints (7) are
non-negative constraints. Constraints (8)
state the integrality restriction.

3 Computational Results

In this section, we present
computational results of the mathematical
model for different levels of machine
correlations and job correlations. The
mathematical model is coded in AMPL and
implemented in CPLEX 11.2. Also, the
mathematical model is executed on a
computer with a 3.4 GHz CPU and 8GB of

memory. Processing times ijp are

generated based on Lin et al. (2014). The

value of jw for each j is generated

from the uniform distribution [1,10].
Release dates and due dates are generated
in a manner similar to that of Mönch et al.

(2005). We first generate release dates jr

from the uniform distribution

] 0[1 1

m

p

m

α
,

m

i

n

j
ij∑∑

= = . In the next step, we

generate slack times between due dates and
earliest completion times from a uniform

distribution] 0[1 1

m

p

m
,

m

i

n

j
ij∑∑

= =β
, i.e.,

)(jjj prd +− where mpp
m

i

n

j
ijj /

1 1
∑∑=
= =

, α

controls the range of release dates, and β

controls the range of due dates. Higher
values of α tend to produce widely
separated release dates, while higher values

of β tend to produce loose due dates. As

in Mönch et al. (2005), and β were

set at 0.25, 0.5, and 0.75. Since solving a
mathematical model can be very time
consuming, we only test it on 4 machines
with 20 jobs (nm204). For each

combination of α , β and problem

instance size, 5 problem instances were
randomly generated and tested.

We evaluate the average computation time
and proportion of problem solved by
mathematical model on the nine cases
defined by Lin et al. (2014) to determine
whether if some cases are more difficult to
resolve than others. Table 2 showed the
results of the nine cases. The second
column of Table 2 shows the percentage of
problem instances be solved within a time
limit of two hours by using a mathematical
model. It shows that Case 1 (unrelated
parallel machines environment) is the
easiest one for the mathematical model to
solve. 100% of the problem instances has
been solved quickly. When machine or job
correlations got involved in the generated
processing times, the problems became
difficult for the mathematical model to
solve. For example, Case 5 is the same as
the traditional definition of identical
parallel machines (Pm). Only 40% of
problem instances has been solved within
the time limit for Case 5. Most problem
instances failed to be solved due to
memory ran out, or the solving time
exceeded the time limit. This is probably
because as the machine correlation and/or
job correlation increase(s), the job
processing times become very similar to
each other on all machines. The

α

468 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

branch-and-bound algorithm imbedded in
CPLEX cannot fathom non-optimal
solutions efficiently during branching. It

ends with running out of memory.
Moreover, for Case 5, in average it takes
3862.96 seconds to solve an instance.

Table2 Computation results for nine cases

% of problem solved by

Mathematical model

Computation

time(s)

Parameters setting

Num. of instances tested

Case1 100% 9.12
Γ=0.0; ∆=0.0

5 instances

Case2 60% 1633.34
Γ=0.2, 0.4, 0.6, 0.8, 1.0; ∆=0.0

25 instances

Case3 56% 2452.27
Γ=0.0; ∆=0.2, 0.4, 0.6, 0.8, 1.0

25 instances

Case4 40% 1128.08
Γ=1.0; ∆=1.0

5 instances

Case5 45% 3862.96
Γ=0.2, 0.4, 0.6, 0.8; ∆=1.0

20 instances

Case6 55% 1075.28
Γ=1.0; ∆=0.2, 0.4, 0.6, 0.8

20 instances

Case7 75% 2453.12
Γ=0.2, 0.4, 0.6, 0.8; ∆=0.2, 0.4, 0.6, 0.8

20 instances

Case8 43% 3185.51
Γ=0.4, 0.6, 0.8; ∆=0.2, 0.4, 0.6

30 instances

Case9 53% 2909.83
Γ=0.2, 0.4, 0.6; ∆=0.4, 0.6, 0.8

30 instances

Average 58.56% 2078.84

Table 3 shows the results of all
combination settings of machine
correlation and job correlation. It is a 6×6
matrix. We use a;b;c to indicate the
proportion of solving status for the 5
instances. 'a' represents the proportion of
problem has been solved, and an optimal
solution has been found within 2 hours of
time limit. 'b' represents the proportion of
problem cannot be solved due to memory
ran out. 'c' represents the proportion of
problem cannot be solved within the time
limit. For example, when Γ =1.0 and ∆

=0.2, it corresponding to Case 5. 2/5 of
problem instances has been solved within 2
hours time limit; 2/5 of problem instances
failed to be solved due to memory ran out,
and 1/5 of problem instances failed to be
solved within the time limit. Moreover, it
takes 4757.1 seconds to solve an instance
on average. Again, when machine or job
correlations got involved in the generated
processing times, the problems became
difficult for the mathematical model to
solve.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 469

ISBN: 1-60132-444-8, CSREA Press ©

Γ

∆

4 Conclusions

In this research, we study the problem of
scheduling parallel machines with release
time to minimize total weighted tardiness.
Several different levels and combinations of
machine correlation and job correlation in
the processing times are considered. A
mathematical model has been applied to
examine if some problems are more
difficult to olve than the others when
machine correlation or job correlation get
involved in generating processing times.
Computational results show that both
machine correlation and job correlation
influence the performance and computation
time of the mathematical model.

References

Hariri AMA, Potts CN. Heuristics for
scheduling unrelated parallel
machines. Computers and Operations
Research 1991;(18):323-31.

Vredeveld T, Hurkens C. Experimental

comparison of approximation
algorithms for scheduling unrelated
parallel machines. INFORMS Journal
on Computing Linthicum
2002;(14):175-90.

Pinedo, M. 2012. Scheduling Theory,
Algorithms, and Systems (4th ed.).
Prentice Hall.

Panwalkar, S. S., Dudek, R. A., and Smith,
M. L. 1973. Sequencing research and
the industrial scheduling problem.
Elmaghraby, S.E. editor. Proceedings
of Symposium on Theory of
Scheduling and its Applications,
Springer-Verlag, New York, 29-38.

Hall, N.G., Posner, M.E. 2001. Generating
experimental data for computational
testing with machine scheduling
applications. Operations Research 49
854-865.

Lin, Yang-Kuei, Lin, Chi-Wei, 2013.
Dispatching rules for unrelated
parallel machine scheduling with
release dates. International Journal of
Advanced Manufacturing Technology,

470 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

67, 269-279.
Lin, Y. K., Pfund, M. E., & Fowler, J. W.

2014. Processing time generation
schemes for parallel machine
scheduling problems with various
correlation structures. Journal of
Scheduling, 17(6), 569-586.

Mönch L, Balasubramanian H, Fowler JW,
Pfund ME (2005) Heuristic
scheduling of jobs on parallel batch
machines with incompatible job
families and unequal ready times.
Computers and Operations Research
32:2731-2750

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 471

ISBN: 1-60132-444-8, CSREA Press ©

The 2016 World Congress in Computer Science,

Computer Engineering and Applied Computing

Keynote Speech: Developing Synergistic Intelligent Computing
and Big Data Analytics Approaches to Facilitate

Precision Medicine Research

Prof. Mary Yang
Director of MidSouth Bioinformatics Center and Director of Joint Bioinformatics Ph.D.
Program, University of Arkansas Little Rock George Washington Donaghey College of

Engineering & Information Technology and University of Arkansas for Medical Sciences,
2801 S. University Avenue, Little Rock, Arkansas 72204 U.S.A. Email: mqyang [at] ualr.edu

Advances of new technologies have generated massive big data that can facilitate the
emerging precision medicine research. This has created tremendous demands for the
development of novel intelligent computing approaches to handle the massive amount of
genomic big data effectively and timely. In particular, cancer is a disease that is not only
complex, in that many genetic variations contribute to malignant transformation, but also
wildly heterogeneous, in that genetic mechanisms can vary significantly between patients.
Early diagnosis and effective treatment of cancer have been always remained challenging.
Synergistic integration of multidimensional genomic big data at systems level can shed new
light on molecular mechanisms at cellular level such as disease initiation and progression, and
also lead to new pathway-based biomarker and drug target identifications. The Systems
Genomics Laboratory along with the MidSouth Bioinformatics Center and Joint
Bioinformatics Program of University of Arkansas Little Rock College of Engineering &
Information Technology and University of Arkansas for Medical Sciences aims to leverage
the research by combining different genomic information including genetic mapping, long
non-coding RNA (lncRNA) studies, differential expression of genes (DEG), protein-protein
and protein–nucleotide interactions to construct gene networks for integrative genome-
phoneme studies at higher systems level. To this end, synergistic integration of multi-layer
genomic big data can further advance biomedical research and contribute to precision
medicine research.

 In this keynote lecture, I will present synergistic intelligent computing, statistical and
biochemical approaches to effectively integrate gene expression profiles with protein
interactions in constructing gene networks that can be used for identification of biomarkers
and disease associated pathways. By further combing with genotype information, we have
discovered important genomic alterations in cancer development. Furthermore, our synergistic
approaches also incorporate the study of lncRNAs and have identified differentially expressed
lncRNAs in cancer. We found that many over-regulated lncRNAs were bidirectionally
oriented with neighboring protein-coding genes. These protein-coding genes are enriched in
biological processes implicated in cancer. In addition, we have developed an online tool
called IDEAS to Identify Differential Expression of genes for Applications in genome-wide

472 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

Studies. We have utilized this tool to facilitate synergistic knowledge discovery from multi-
layer genomic big data and made a number of discoveries. Our integrative systems genomics
approaches enable comprehensive identification of biomarkers, drug targets and disturbed
pathways to facilitate precision medicine research.

Biography of the Keynote Speaker

Dr. Mary Yang is the Director of MidSouth Bioinformatics
Center and Director of the Joint Bioinformatics Ph.D. Program of University of Arkansas
Little Rock College of Engineering & Information Technology and University of Arkansas
for Medical Sciences. After finishing her M.S.E.C.E. (Computer Engineering), M.S.
(Biological Physics), and Ph.D. degrees from Purdue University with interdisciplinary
Bilsland Dissertation Fellowship award, she joined the National Human Genome Research
Institute at the National Institutes of Health (NIH) in Washington DC area in 2005. During
her tenure at NIH, she made significant contributions to various large-scale genomics and
systems biology research projects. Dr. Yang has been Founding Editor-in-Chief of
International Journal of Computational Biology and Drug Design, a NIH PubMed fully
indexed journal and is on editorial broads of Journal of Supercomputing and International
Journal of Pattern Recognition and Artificial Intelligence. She was recruited to the University
of Arkansas in 2013 to guide the MidSouth Bioinformatics Center and joint bioinformatics
program. She has served on Steering Committee for NIH funded Arkansas INBRE and
Review Committee for United States National Science Foundation (NSF) Advances in
Biological Informatics (ABI). She has been the recipient of NIH Fellows Award for Research
Excellence, NIH Academic Research Enhancement Award, Purdue Research Foundation
Fellowship, IEEE and ISIBM Bioinformatics and Bioengineering Outstanding Achievement
Awards, and Basic Science Research Award of Arkansas Science and Technology Authority
(ASTA). Dr. Yang is a tenured faculty with the University of Arkansas and her Systems
Genomics Laboratory is currently supported by NIH, FDA and ASTA. She has published over
one hundred research articles in computer science and biomedical sciences.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 | 473

ISBN: 1-60132-444-8, CSREA Press ©

474 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'16 |

ISBN: 1-60132-444-8, CSREA Press ©

	PDPTA'16 Papers 1-393
	PDPcombined - 394-end

