
SESSION

GRAPH AND NETWORK BASED ALGORITHMS

Chair(s)

TBA

Int'l Conf. Foundations of Computer Science | FCS'16 | 1

ISBN: 1-60132-434-0, CSREA Press ©

2 Int'l Conf. Foundations of Computer Science | FCS'16 |

ISBN: 1-60132-434-0, CSREA Press ©

SELFISH STABILIZATION OF SHORTEST PATH
TREE FOR TWO- COLORED GRAPHS

A. Anurag Dasgupta1, and B. Anindya Bhattacharya2

1Mathematics and Computer Science, Valdosta State University, Valdosta, GA, USA
2Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA, USA

Abstract - In modern day stabilizing distributed systems, each
process/node or each administrative domain may have sel�sh
motives to optimize its payoff. While maximizing/minimizing
own payoffs, the nodes or the domains do not require to give
up their stabilization property. Optimizing individual pay offs
without sacri�cing the stabilization property is a relatively
new trend and this characteristic of the system is termed as
sel�sh stabilization

The focus of this paper is to investigate the problem of finding
a stable shortest path tree for two-colored graphs, where the
colors represent different types of processes or domains. In a
shortest path tree, for every node, its path along the tree has
the minimum possible distance of any path to the root. In this
paper we study the impact of selfishness on stabilization,
provide examples to demonstrate the effects of different types
of schedulers, and explore how the stabilization time is
affected by parameter changes.

Keywords: Graph theory, stabilization, distributed systems,
shortest path tree, algorithms, fault tolerance.

1 Introduction
Stabilization is an important model of fault-tolerance for

distributed computation. The appeal of a stabilizing system
lies in its robustness and ability to recover from any transient
fault. A stabilizing distributed system has a subset of desirable
states to which the system converges. These are called the set
of legal states. A state not belonging to the set of legal states is
called an illegal state. A system is stabilizing if and only if it
satisfies two properties: a) starting from any state, it is
guaranteed that the system will eventually reach a legal state
(convergence), and b) given that the system is in a legal state,
it is guaranteed to stay in a legal state, provided that no fault
happens (closure) [1]. The above two properties guarantee that
a stabilizing system will eventually recover from any transient
faults that take the system to some arbitrary configuration and
this recovery procedure does not require any manual
intervention. For the above reasons, stabilizing systems do not
need initialization and they can be spontaneously deployed.
Because a stabilizing algorithm does not require correct
initialization and can recover from any transient failures of
arbitrary types occurring at any time, stabilization is an
interesting and active research field and it is used in a large
number of applications, including sensor networks, peer-to-

peer networks, mobile computing, topology update, clock
synchronization, and many others.

Selfish stabilization combines the concept of game theory and
stabilization together. There are some strong similarities
between selfish stabilization and game theory, but there are
significant differences too. The players in games are
analogous to processes in a stabilizing system, and the
equilibrium in games is comparable to the stable configuration
of stabilizing systems, in as much as both satisfy the
convergence and closure properties. However, games usually
start from predefined initial configurations, and mostly ignore
faulty moves or transient state corruptions, which are not
necessarily true for stabilizing systems [2].

In traditional stabilizing distributed systems [3], we assume
that all processes run some predefined programs or
algorithms. These algorithms are mandated by an external
agency and most often the agency is the owner or the
administrator of the entire distributed system. The model is
widely recognized by the stabilization community. This works
fine when processes cooperate with one another and share a
purely global goal. But in modern times in the Internet, it is
possible for the processes to have some private goals besides
the common global goal. It is quite realistic and fairly
common these days to have a distributed system spanning
over multiple administrative domains and therefore processes
having individual goals are not a rare occurrence. On Internet-
scale distributed systems, each process or each domain may
have selfish motives to optimize its own payoff besides the
global goal. So the spirit of competition in such cases does not
conflict with the general spirit of cooperation. Optimizing
individual payo� s without sacri�cing the stabilization
property of the system is termed as sel�sh stabilization [4].

The focus of this paper is to finding a selfish-stabilizing
shortest path tree algorithm for two-colored graphs, where the
colors represent different types of processes or domains. In a
shortest path tree, for every node, its path along the tree has
the minimum possible distance of any path to the root. In the
subsequent sections, we study the impact of selfishness on
stabilization, provide examples to demonstrate the effects of
different types of schedulers, and explore how the stabilization
time is affected by changes to a given graph's parameter

Int'l Conf. Foundations of Computer Science | FCS'16 | 3

ISBN: 1-60132-434-0, CSREA Press ©

changes. We also present examples to show how competition
blends with cooperation in a stabilizing environment and
provide some experimental results.

2 Background
2.1 Model and Notation

Assume a graph G = (V, E). Let V = {1, 2, …, n} denote the
set of nodes or processes and E be the set of edges connecting
pairs of nodes. Let there are p different subsets or colors of
nodes. In our case, p = 2, but in general p could be any value
greater than 1. For each subset, we define a separate cost
function to map the set of edges to the set of positive integers.
Following our selfish stabilization algorithm, starting from any
random initial configuration, the different subsets or colors of
nodes will cooperate with one another to form a rooted
shortest path tree and simultaneously compete against each
other to minimize their distance with the root node.

We will assume the shared memory model for the
communication among the nodes. According to this model,
each process can read the states of its 1-distance neighbors
and update its own state if required. In each individual step, a
process checks a guarded action g � A: where g is a Boolean
variable. The value of g is a function of the process’s own
state and the states of its immediate neighbors. If g is true, the
process executes action A to perform an update of its own
state. If g is false, no action is taken. The global state or
configuration of the system consists of the local states of all
the processes. Unless stated otherwise, a serial
scheduler/daemon schedules the action by randomly choosing
a process with an enabled guard to execute its action.

Let us convert G into a multi-weighted graph by de�ning a
cost function w of E � Np, where N is the set of positive
integers. For every i � [1. . . p], the function wi : E � N
denotes the cost of using edge e (the distance value). Starting
from any arbitrary initial con�guration, the p di� erent colors
of nodes cooperate with one another to form a rooted spanning
tree, and at the same time compete against each other to
minimize their distance value to the root.

All nodes in the graph have a common global goal in this
problem: starting from an arbitrary initial con�guration, each
node collaborate with one another to form a rooted shortest
path tree. But in addition to the common goal, the subsets or
colors have their private goals. The private goal of each node
is to optimize (in this case, it is a minimization problem) its
distance value without violating the spanning tree constraints.

Fig. 1 shows an example of a two-colored graph (a) in which
three spanning trees could be obtained at some point of a
computation (none of these necessarily denotes the terminal
configuration). The root is denoted by r and we chose grey
color to indicate the root. For example, the cost of tree (b) is
(10, 9), while the cost of tree (c) is (9, 9) and the cost of tree

(d) is (11, 8). So, different trees yield different costs for
different colors [4].

Fig. 1: Different spanning trees of the graph in part (a) (note
that not all trees are terminal configurations)

2.2 Related Work

Our work is directly related to the paper by Cohen et al. [5] in
which the authors described a selfish stabilization algorithm
for the minimum spanning tree problem. The algorithm for the
minimum spanning tree and the shortest path tree is
essentially the same. In another paper, Dasgupta et al. [6]
described a probabilistic fault-containment algorithm that
stabilizes a system from minor failures with a stabilization
time independent of the network size. In [7], the author
described a selfish stabilization algorithm for the maximum
flow tree problem. Cobb et al. [8] proposed a stabilizing
solution to the stable path problem. Mavronicolas [9] used a
game theoretic presentation to model security in wireless
sensor networks where the network security is viewed as a
game between the attackers and the defenders. The last one is
only tangentially related to our work. It involves the spirit of
competition and co-operation simultaneously as in our case,
but stabilization is not an issue.

3 Algorithm

In accordance with the shared memory model, each node i can
read the states of N(i), the set of its neighbors (excluding i

4 Int'l Conf. Foundations of Computer Science | FCS'16 |

ISBN: 1-60132-434-0, CSREA Press ©

itself). Each node i is also aware of the cost of each of its
adjacent edges e = (i, j) : j � N(i). The cost of an edge e is a
distance vector w(e) = (w1(e),w2(e),w3(e), . . . ,wp(e)) where
wk(e) denotes the cost of the edge e for a node of color k (1 � k
� p). Also, i maintains two variables: �(i) and d(i). The
variable �(i) denotes the parent node of i in the shortest path
tree. By definition, the root does not have any parent. So, �(r)
is non-existent. Every other node picks a neighboring node as
its parent following the stabilization algorithm. The variable
d(i) denotes the vector d(i) = (d1(i), d2(i), d3(i), . . . , dp(i))
where dk(i) denotes the distance for a node of the kth color
from node i to the root.

The stabilization algorithm for k-colored graph is described
below [5] -

Conditions

LevelOK(i) � d(i) = d(�(i)) + �(i, �(i))
ParentOK(i)i�Vk � dk(�(i)) + �k(i, �(i)) = min{dk(j) + �k(i, j) : j
� N(i)}

Actions

FixLevel(i) � d(i) := d(�(i)) + �(i, �(i))
FixParent(i)i�Vk � select �(i): dk(�(i)) + �k(i, �(i)) = min{dk(j)
+ �k(i, j) : j � N(i)}

The proposed algorithm has a two guarded actions. The root r
is exempt from any action. The other nodes update their labels
to make them consistent with their parent’s labels. This is in
order to locally minimize the cost of the metric for the node
color. The label adjustment action is taken prior to the parent
adjustment action.

The actions for node i � r are described in the following
algorithm:

Program for process i

{ Fix level }
¬ LevelOK(i) � FixLevel(i);

{ Fix parent }
LevelOK(i) �¬ ParentOK(i) � FixParent(i);

4 Observations
We make a couple of crucial observations when the algorithm
is applied with different types of schedulers/daemons. The
observations are listed below with suitable examples [10].

Observation1. Stabilization may not be feasible if at the same
time, more than one process make moves i.e., if a distributed
synchronous scheduler is used, it can play the role of an
adversary and the configurations can repeat infinitely (Fig. 2).

Fig. 2: Example execution with a distributed synchronous
scheduler. Configuration (a) and (c) are the same, so the
system can alternate between the two configurations via (b)
and may never stabilize.

Observation2. More than one equilibrium are possible with
the same setting for specific graphs (Fig. 3).

Consider the graph in Fig. 3. Both configurations are stable
but they yield different shortest path trees, one is the best
choice from the black nodes’ perspective, the other being the
best from white nodes’ point of view.

Int'l Conf. Foundations of Computer Science | FCS'16 | 5

ISBN: 1-60132-434-0, CSREA Press ©

Fig. 3: Examples of multiple equilibria in a graph.

5 Experimental Results

The algorithm was implemented using a central scheduler on
graphs of two colors, i.e., for p = 2. We experimented how
stabilization time gets affected by changes to a given graph's
color compositions and edge arrangements. In case of multiple
equilibria, any one of the solutions would lead to a stable
configuration and hence, it is an acceptable solution.

The first set of experiments was done by varying a given
graph's color composition. We did the experiments with two
colors, namely color0 and color1. This can be thought of as
using white nodes and black nodes as in our previous
examples. We started out with 10% color0 nodes and 90%
color1 nodes on a graph of 500 nodes. We gradually increased
the color0 percentage up to 90%, the color1 percentage
decreased accordingly. The stabilization times were measured
in nanoseconds. The experiment results are listed in Table 1
and Fig. 4.

From the results, we observed that the stabilization time
reaches the maximum value near the 90% mark of color0
nodes. The stabilization time on average is the same for the
range of 30%-80% range of color0 nodes. This is intuitive as
stabilization is expected to take more time when the system is
tilted towards one type of color (10% of color0 or 10% of
color1). The trend in stabilization time variation with respect
to color percentage variation is not linear towards the extreme
ends, although it is somewhat linear when the graph consists
of considerable percentages of both colors.

Table 1: Stabilization time variation for 500 nodes with
respect to percentage of color change (Initially, there were
10% color0 nodes and 90% color1 nodes. We gradually
increased the color0 percentage up to 90%).

Fig. 4: Stabilization time variation for 500 nodes with respect
to changes for percentage color0 nodes and color1 nodes.

The second set of experiments was done by varying the edge
arrangements on a graph of 500 nodes. The total number of
nodes is kept intact, but unlike the first experiment, this time
there were equal number of color0 and color1 nodes.
Complete graphs are considered to have 100% connectivity.
We initially started with 40% connectivity. Then the number
of edges for both colors was evenly increased to 90%
connectivity. The experiment results are listed in Table 2 and
Fig. 5.

The stabilization time steadily increases as we increment the
connectivity percentages. This is expected because increasing
connectivity means the degree of a node is also increased. As
the degree increases, a node has to go through a list of all its
neighbors before it can determine its parent node. In other
words, the stabilization time computation becomes more time
consuming.

color0 nodes% color1nodes% Stabilization Time (ns)

10% 90% 0.30102
20% 80% 0.310594
30% 70% 0.282257
40% 60% 0.283535
50% 50% 0.286158
60% 40% 0.286584
70% 30% 0.282772
80% 20% 0.285366
90% 10% 0.347891

6 Int'l Conf. Foundations of Computer Science | FCS'16 |

ISBN: 1-60132-434-0, CSREA Press ©

Table 2: Stabilization time variation with respect to connectivity
variation (The number of edges are increased to change connectivity
level from 40% to 90%).

Fig. 5: The graph for stabilization time variation with respect
to connectivity variation (The number of edges are increased
to change connectivity level from 40% to 90%).

In the third set of experiments, we varied the total number of
nodes, but kept equal number of color0 and color1 nodes in
the graph. The experiment results are provided in Table 3 and
Fig. 6.

The stabilization time steadily increases up to a certain point
as we increment the total number of nodes. This makes sense
as increasing the number of node means experimenting with a
larger graph. Then after a certain point we observe a sudden
growth in stabilization time. The ‘knee’ in the graph is
consistent with the exponential nature of many graph
algorithms. As we increased the total number of nodes,
beyond a threshold value, when the algorithm has to go
through a larger set of neighbors before it can determine a
parent node, there is a sudden increase in the stabilization
time.

Table 3: Stabilization time variation with respect to total
number of nodes (The experiment was done by increasing the
total number of nodes but keeping equal number of color0 and
color1 nodes in the graph).

Fig. 6: Stabilization time variation with respect to total
number of nodes (The stabilization time steadily increases as
the total number of nodes was increased).

6 Conclusions
In the future, we would like to conduct experiments for higher
values of p as there is no restriction to limit the number of
colors of the graph to 2; implementing more colors would
provide more insight on how changing a graph's properties
affect the algorithm’s run time. It is also to be seen how
different topologies can affect the stabilization time. It will be
interesting to see if any graph-theoretic structures can provide
overall improved stabilization time.

7 References

[1] A. Arora, M.G. Gouda, Closure and convergence: A
foundation of fault-tolerant computing. Software Engineering,
19(11), 1993, 1015-1027.

Number of nodes Stabilization Time (ns)

100 0.021436
500 0.324317
1000 1.216871
1500 2.872554
2000 7.256624

% of connectivity Stabilization Time (ns)

40% 0.290089
50% 0.293069
60% 0.301307
70% 0.314228
80% 0.335802
90% 0.34899

Int'l Conf. Foundations of Computer Science | FCS'16 | 7

ISBN: 1-60132-434-0, CSREA Press ©

[2] J. Y. Halpem, Computer Science and Game Theory: A
Brief Survey, CoRRabs/cs, 2007.

[3] E.W. Dijkstra, Self-stabilizing systems in spite of
distributed control. Commun. ACM, 17(11), 1974, 643-644.

[4] A. Dasgupta, S. Ghosh, & S. Tixeuil, Selfish
Stabilization. SSS 2006: 231-243. Dallas, TX.

[5] J. Cohen, A. Dasgupta, S. Ghosh, & S. Tixeuil, An
Exercise in Selfish stabilization. ACM TAAS, 3(4): 2008, 1-12.

[6] A. Dasgupta, S. Ghosh, & X. Xiao, Fault-Containment in
Weakly-Stabilizing Systems, Theor. Comput. Sci., 412(33),
2011, 4297-4311.

[7] A. Dasgupta, Selfish stabilization of maximum flow tree
for two colored graphs, The Pennsylvania Association of
Computer and Information Science Educators, California, PA,
2014.

[8] J. A. Cobb, M. G. Gouda, & R Musunari, A stabilizing
solution to the stable path problem, Self-Stabilizing Systems,
San Francisco, CA, 2003, 169-183.

[9] M. Mavronicolas, V. G. Papadopoulou, A. Philippou, & P.
G. Spirakis, A graph-theoretic network security game, WINE,
Hong Kong, SAR of China, 2005, 969-978.

[10] A. Dasgupta, Extensions and refinements of stabilization.
PhD thesis, Department of Computer Science, The University
of Iowa, Iowa City, IA, 2009.

8 Int'l Conf. Foundations of Computer Science | FCS'16 |

ISBN: 1-60132-434-0, CSREA Press ©

An Algorithm for Counting the Number of Edge
Covers for Graphs with Intersecting Cycles

 Aparna Pamidi1, Yijie Han2
12School of Computing and Engineering, University of Missouri at Kansas City, Kansas City, MO-64110

Abstract- Counting the number of edge cover on graphs is
well known as the edge cover problem. This problem is #P-
complete [5]. There are algorithms that are designed to
address the edge cover problem for acyclic graphs or graphs
with nonintersecting cycles. In this paper we propose an
algorithm that helps to compute number of edge covers for
graphs with intersecting cycles as well.

1. Introduction
 Graphs can be utilized to model numerous sorts of relations
and procedures in physical, biological, social and
information systems [2]. For example, the link structure of
a website can be represented by a directed graph, in which
the vertices represent the web pages and directed edges
represent links from one web page to other. The
improvement of algorithms to handle the graphs can even
improve the performance of the system and therefore is of
major interest in computer science.

An edge cover is a subset of graph edges e � E such that the
union of edge endpoints corresponds to the entire vertex set
V of the graph G. The problem of counting the number of
edge covers of a graph is denoted as #Edge_Covers. In [1]
#Edge_Covers was studied for path graphs, trees, cycles and
trees with nonintersecting cycles. In this paper we present
algorithms for #Edge_Covers for graphs with intersecting
cycles.

2. Counting Edge Covers Based on the
Structure of the Graph[3]
Let G= (V, E) be a graph. If two edges of a graph G have a
common vertex v � V(G), then the edges are incident,
likewise if the vertex v is on edge e � E(G) then the vertex
is said to be the incident vertex of edge e.

A cyclic graph G is a graph that has at least one cycle in the
graph. A graph is a directed cyclic graph if the edge set of
the graph contains the ordered vertex pairs. In the case of
undirected cyclic the edge set does not have any ordered
vertex pairs.

Let G = (V, E) be a graph then S = (V1 , E1) is a subgraph
of G if V1 V and E1 contain edges {v, w} E such that v,
w V1.

The algorithms given in this section was presented in [1].
We briefly go through them in order to motivate our
algorithms in Section 3. In Section 3 we present algorithms
for counting the number of edge covers for graphs with
multiple (intersecting) cycles. In Section 2 only the
situations of trees with added non-intersecting cycles are
considered.

Case 1: Path Graph

A path graph is a graph that can be drawn so that all of its
vertices and edges lie on a single straight line. Before
counting the edge covers lets first consider few terms that
are necessary.

Fixed edge: Fixed edge is an edge E that appears in all the
edge covers of a graph G = (V, E).

Based on the status of the edge (i.e. edge visited or not) we
find the two states on the vertex

1. Vertex free-that is the vertex is not covered by any edge
in the edge cover

2. Vertex covered- that is the vertex is covered by at least
one edge in the edge cover

Each edge in an edge cover is associated with a pair of
integers (α, β) where α indicates the number of edge covers
where this particular edge occurs to cover its preceding
vertex and β indicates the number of edge covers where this
particular does appear in order to cover its preceding vertex.

Counting the Edge covers for a linear structure (Path
graph): For example consider a linear graph G with 7-
vertices with 6 edges.

Int'l Conf. Foundations of Computer Science | FCS'16 | 9

ISBN: 1-60132-434-0, CSREA Press ©

 e1 e2 e3 e4 e5 e6

 v1 v2 v3 v4 v5 v6 v7

 Figure 1: path graph

The edge covers for a linear graph follows a Fibonacci series
pattern. Let F(n) be the number of edge covers for a linear
graph of n edges, then we have

Lemma 1: F(1)=1, F(2)=1, and F(n)= F(n-1)+F(n-2).

Proof: For a linear graph the existence and non-existence of
a particular edge is proportional to the existence or non-
existence of the previous edge. Let us consider the linear
graph with n edges- the edges e1 and en should be selected
in all cases of edge covers because we have to cover vertex
v1 and vertex vn+1. If edge e2 is also selected then the case
becomes from edge e2 to en as shown in Figure 2a and thus
there are F(n-1) edge covers. If edge e2 is not selected then
edge e3 must be selected as we have to cover v3. In this case
the situation is from edge e3 to en as shown in Figure 2b and
thus there F(n-2) edge covers. F(1)=F(2)=1 an be easily
verified.

 e1 e2 e3 e4 e5 e6

 v1 v2 v3 v4 v5 v6 v7

Figure 2a

 e1 e2 e3 e4 e5 e6

 v1 v2 v3 v4 v5 v6 v7

Figure 2b

F(n) is a Fibonacci number and solution for it is known as

+ , where c1 and c2 are

determined by F(1) and F(2).

 Case 2: Tree Graph

A graph in which any two vertices are connected by exactly
one path is known as a tree graph. In a tree graph we can
distinguish three different types of edges.

i) Root Edge: An edge with one incident vertex is a root
node

ii) Leaf Edge: An edge with one incident vertex is a leaf
node

iii) Child Edge: All edges other than the above two types of
edges are child edges i.e. the internal edges of the tree graph.

The leaf edge in the graph has (1,1) as an integer pair
because the leaf vertex are only incident to leaf edge so in

order to cover the leaf vertices in the edge cover these edge
should be considered in all the edge covers.

Counting Edge covers for a Tree structure:

Counting the edge covers for a tree structure is a bottom-up
[7] approach which follows the below form. For an edge (p,
c) from parent p to child c, if c has k children then the (α, β)
value for (p, c) can be written as

α= � � β=� � - �

where = �

While calculating the ordered pair for an edge we should use
its descendant edge order pairs only.

Consider the below figure as an example for the tree graph

 e1 e2

 e3 e4 e5

 Figure 2: Tree Graph

The edges e4, e5 and e6 are the leaf edges so (1, 0) are integer
pair associated with these edges. For the ordered pair (α1, β1)
of e1 we consider the (α, β) of its descendant edges in the
graph (i.e. e3 and e4) and calculate.

α1= α3* α4+ α3* β4+ α4* β3+ β3* β4

= 1*1+1*0+1*0+0*0 = 1

β1= α3* α4+ α3* β4+ α4* β3+ β3* β4- β3* β4

=1*1+1*0+1*0+0*0-0*0 = 1

(α1, β1) = (1, 1)

1

2

65 4

3

10 Int'l Conf. Foundations of Computer Science | FCS'16 |

ISBN: 1-60132-434-0, CSREA Press ©

For the edge e2

α2= α5+ β5

=1+0

=1

β2= α5+ β5- β5

=1+0-0

=1

(α2, β2)= (1,1)

The number of edge covers for the tree is β� = α1* α2+ α1*
β2+ α2* β1 = 1*1+1*1+1*1 = 2

Case 3: Circular Graph (Ring)

A graph C in the ring form and with all the vertices have the
same number of incident edges.

Counting Edge covers for a Cyclic Structure:

Let C(n) be the number of edge covers for a cycle of n edges.
Then

Lemma 2: C(n) = F(n-1)+F(n-1)+F(n-
2)……+F(2)+F(1)+1.

Proof: Let us consider a circular graph with n edges. When
dealing with any edge ei in the graph and considered the case
if it is not selected then we end up with the graph similar as
a linear graph. So, the n-edge graph follows the following
paradigm

Algorithm Cycle:

If (the edge e1 is not selected then we have F(n-1)
edge covers)

else if (e1 is selected and e2 is not selected then we
have F(n-1) edge covers)

else if (e1 and e2 are selected and e3 is not selected
then we have F(n-2) edge covers)

else if (e1,e2,e3 are selected and e4 is not selected
then we have F(n-3) edge covers)

…

…

else if (e1 through en-2 are selected and en-1 is not
select then we have F(2) edge covers)

else if (e1 through en-1 are selected and en is not
selected then we have F(1) edge covers)

else if (all the edges in the graph are selected then
we have only one possible edge cover to represent
it)

Thus the formula is derived.

For instance let us consider a circular graph G with 6-
vertices. Counting the number of edge covers from

 e1

 e6 e2

 e5 e3

 e4

 Figure 3: Circular Graph

without considering the edge1 and assuming the edge e6 and
e2 exists in order to cover the both vertices 1 and 2 and the
existence of other edges is optional. With considering all the
possible cases we will retain with the 5 edge covers which
is denoted by F(5).

Edge Cover1

 e1

 e4 e2

 e5 e3

 e4

Edge Cover2

 e1

 e4 e2

 e5 e3

 e4

1 2

6 3

5 4

1 2

6 3

5 4

1 2

6 3

5 4

Int'l Conf. Foundations of Computer Science | FCS'16 | 11

ISBN: 1-60132-434-0, CSREA Press ©

Edge Cover3

 e1

 e6 e2

 e5 e3

 e4

Edge Cover4

 e1

 e6 e2

 e5 e3

 e4

Edge Cover 5

 e1

 e6 e2

 e5 e3

 e4

Figure 3a: edge covers for the edge e1

The case is similar when dealing with edge e2 but as the edge
e1 is visited before we consider the e1 as fixed edge in the
all the cases when dealing with edges e2 to e6 and e3 is fixed
because vertex 3 has to be covered, This results F(5) (i.e. 5
different edge covers). When edge e3 is considered we will
make e1 and e2 as fixed edges and also e4 because the vertex
4 has to be covered this results F(4). This process continues
for all other edges in the graph so finally we will end with
the form C(n).

In our case C(6) = F(5)+F(5)+F(4)+F(3)+F(2)+F(1)+1

 = 5+5+3+2+1+1+1

 =18 (the total number of edge covers)

3. Counting the Number of Edge Covers
for Graphs with Intersecting Cycles
Graphs with intersecting cycles is built from trees, then trees
with one cycle, trees with two cycles, trees with three cycles,
and so on. Below is the procedure to solve it.

Tree graph with one cycle: Let Tree(T, S1, S2) be the
procedure returning the number of edge covers for tree T
with S1 being the set of edges of T that are not selected and
S2 being the set of edges of T that are selected.

Let Tree-with-One-Cycle(TC, S1, S2) be the procedure
returning the number of edge covers for the tree with one
cycle TC assuming that edges in set S1 are not selected and
edges in S2 are selected.

Tree-with-One-Cycle(TC, �, �)

{

 Let e1, e2, e3,…, ec be the edges in the cycle in TC.

 num_edge_cover=0;

 for(i=1; i<=c; i++)

 {

 num_edge_cover +=Tree(TC, {ei}, {e1, e2, …, e(i-1)});

 }

 num_edge_cover+=Tree-Modify1(TC, {e1, e2, …, ec})

}

Tree-Modify1(TC, {e1, e2, …, ec}) is the procedure
returning the number of edge covers for the tree obtained by
replacing the cycle {e1, e2, e3, …, ec} with one vertex v. All
vertices in TC that was incident to any of e1, e2, …, ec are
now neighbors of v. The difference for computing Tree and
Tree-Modify1 is that in the procedure for Tree there must be
an edge incident to v while in Tree-Modify1 we may not
select all edges incident to v as all edges in the cycle are
assumed to have been selected.

Tree graph with two or more cycles: A Tree graph with
two or more cycles is an iterative process of the tree graph
with one cycle procedure.

Let Tree-with-Two-Cycles(TC, S1, S2) be the procedure
returning the number of edge covers for the tree with two
(intersecting) cycles TC assuming that edges in set S1 are
not selected and edges in S2 are selected.

1 2

6 3

5 4

1 2

6 3

5 4

1 2

6 3

5 4

12 Int'l Conf. Foundations of Computer Science | FCS'16 |

ISBN: 1-60132-434-0, CSREA Press ©

Tree-with-Two-Cycles(TC, �, �)

{

Let e1, e2, e3,…, ec be the edges in the two cycles in TC.

 num_edge_cover=0;

 for(i=1; i<=c; i++)

 {

 num_edge_cover +=Tree-with-One-Cycle(TC, {ei},
{e1, e2, …, ei-1});

 }

 num_edge_cover+=Tree-Modify2(TC, {e1, e2, …, ec})

}

Tree-Modify2 is the procedure returning the number of edge
covers for TC after we collapse the two cycles into two
vertices if these two cycles do not intersect, or collapse the
two cycles into one vertex is these two cycles intersect. After
collapsing cycles to vertices we obtain a tree. The difference
for computing Tree and Tree-Modify2 is that in the
procedure for Tree there must be an edge incident to every
vertex while in Tree-Modify2 we may not select all edges
incident to the collapsed vertices as all edges in the cycle are
assumed to have been selected.

Example1: Consider the tree graph with one cycle in it. For
the finding the number of edge covers for a graph with one
cycle we will follow the procedure Tree-with-One-
Cycle(TC, �, �) which is presented above.

 e1 e2 e3

 e8

 e4 e5 e6

Figure 4a: tree graph with one cycle

For the above we will first remove the edge e3 as shown in
Figure 4a(i) then we are left with a simple tree graph and the
procedure for discovering the edge covers for a simple tree
graph is presented in Case 2. After finding the number of
edge covers we will now remove the edge e2 and have edge
e3 selected as shown in Figure 4a(ii) then we are again left

with a simple tree graph follow the same procedure
presented in Case 2 above.

 e1 e2 e3

 e8

 e4 e5 e6

Figure 4a(i):removing the edge e3

 e1 e2 e3

 e8

 e4 e5 e6

Figure 4a(ii): removing the edge e2

Now consider the edge e8 is removed and the edges e2, e3

are selected as shown in Figure 4a(iii) then apply the
simple tree graph procedure to obtain the number of edge
covers

 e1 e2 e3

 e8

 e4 e5 e6

 Figure 4a(iii): Removing the edge e8

Now all the edges in the cycle are selected

1

2

765

3 4

1

2

765

3 4

1

2

765

3 4

1

2

765

3 4

Int'l Conf. Foundations of Computer Science | FCS'16 | 13

ISBN: 1-60132-434-0, CSREA Press ©

 e1 e2 e3

 e8

 e4 e5 e6

Figure 4a(iv): All the edges in the cycle are selected

After the solving the edge covers for the cycle we will
collapse the entire cycle into a single vertex v1as shown in
the Figure 4a(v) below.

 e1 e2

 e4 e5 e6

Figure 4a(v): Collapse the cycle into one vertex v1

Example2: Consider the below figure as an example for the
tree graph with two intersecting cycles

 e1 e2 e3

 e8

 e4 e5 e6 e7

Figure 4b: Tree graph with two cycles

Form the above example we assume the edge e3 is deleted
then we ended up with a graph with one cycle shown as
below Figure 4a(i). For a graph with one cycle we will
follow the procedure Tree-with-One-Cycle(TC, {e3}, �)

and then we assume that the edge e2 is not selected and e3 is
selected as shown in Figure 4b(ii) then we will again end up
with a graph with one cycle and follow the procedure
presented in the case of single cycle.

 e1 e2 e3

 e8

 e4 e5 e6 e7

Figure 4b(i): tree graph with one cycle

 e1 e2 e3

 e8

 e4 e5 e6 e7

Figure 4b(ii): tree graph with one cycle

Similar is the cases with e3 and e2 selected and e8
unselected, with e3, e2, e8 selected and e6 unselected, with
e3, e2, e8, e6 selected and e7 unselected. And finally with
e3, e2, e8, e, e7 all selected and then we will collapse the
two cycles into a single vertex v1 in the graph as shown
below Figure 4b(iii) which will result in the simple tree
graph. But when we count the number of edge covers in this
tree we may unselect e1 as all edges in the cycles are already
selected.

 e1

 e4 e5

Figure 4b(iii): Simple tree after collapse of the two cycles

1

2

765

3 4

1

2 7

65

3 4

1

2

7
65

3 4

1

2

65

1

2

765

3

1

2

7

65

3 4

14 Int'l Conf. Foundations of Computer Science | FCS'16 |

ISBN: 1-60132-434-0, CSREA Press ©

The example which we considered in the case of two cycles
graph is a graph with two intersecting non overlapping
cycles. The graph is with two overlapping cycles is actually
considered as a graph with three intersecting cycles as
shown in below Figure 4c. in which there are two
overlapping cycles: {e1, e2, e6, e9, e5} and {e2, e8, e9, e7,
e3}.

 e1 e2 e3

 e4 e5 e8 e6 e7

 e9

Figure 4c: Graph with three intersecting cycles

Our approach can solve the edge cover problem for graphs
of any number of intersecting cycles.
The computation of number of edge covers for a graph
G(V,E) with a simple cycle has a time complexity of �(n)
where n being the number of edges. Likewise for a graph
with two intersecting non-overlapping cycles - The first
cycle can be computed in �(n) and after computation the
whole cycle collapse into a single vertex then the second
cycle can be solved in an another �(n) time. Therefore the
total graph be computed in �(n2). The time complexity of
the graph increases with respect to the number of non-
overlapping intersecting cycles.

4. Conclusion and Future work
With the help of the edge covers algorithm for the simple
graph structure we can even the find the edge covers for the
graph with complex by applying the same procedure
repetitively. This paper has shown the examples of tree
graphs with two cycles in it. When the tree graph with more
than two cycles similar is the case. Though finding the edge
covers for the complex structure seems to be difficult but for
the same structure when we solve it in a sub problems it
quite easy.

5. References
[1] J.Raymundo Marcial-Romero, Guillermo D Ita, J. A.
Hernandez and R.M. Valdovinos. An algorithm for counting
the number of edge covers on acyclic graphs. Proc. 2015 Int.
Conf. on Foundations of Computer Science (FCS’2015), 34-
39(2015).

[2] https://en.wikipedia.org/wiki/Graph_theory

[3] De Ita G., Marcial-Romero J. Raymundo, Montes-
Venegas Hector., ´ Counting the number of edge covers on
common network topologies, Electronic Notes in Discrete
Mathematics, Vol. 36, pp. 247-254, 2010.

[4] Bubley R., Dyer M., Greenhill C., Jerrum M., On
approximately counting colourings of small degree graphs,
SIAM Jour. on Computing, 29, (1999), pp. 387-400.

[5] Dyer M., Greenhill C., Some #P-completeness Proofs for
Colourings and Independent Sets, Research Report Series,
University of Leeds, 1997.

[6] Bubley R., Randomized Algorithms: Approximation,
Generation, and Counting, Distinguished dissertations
Springer, 2001.

[7] Tarjan R., Depth-First Search and Linear Graph
Algorithms, SIAM Journal on Computing, Vol. 1, pp.146-
160, 1972.

[8] Vadhan Salil P., The Complexity of Counting in Sparse,
Regular, and Planar Graphs, SIAM Journal on Computing,
Vol. 31, No.2, pp. 398-427, 2001.

[9] Garey M., Johnson D., Computers and Intractability a
Guide to the Theory of NP-Completeness, W.H. Freeman
and Co., 1979

[10] Roth D., On the hardness of approximate reasoning,
Artificial Intelligence 82, (1996), pp. 273-302.

[11] Greenhill Catherine, The complexity of counting
colourings and independent sets in sparse graphs and
hypergraphs”, Computational Complexity, 9(1): 52-72,
2000.

[12] Levit V.E., Mandrescu E., The independence
polynomial of a graph - a survey, To appear, Holon
Academic Inst. of Technology, 2005.

[13] Darwiche Adnan, On the Tractability of Counting
Theory Models and its Application to Belief Revision and
Truth Maintence, Jour. of Applied Non-classical Logics,11
(1-2),(2001), 11-34

1

2

765

3 4

9 10 5

8

Int'l Conf. Foundations of Computer Science | FCS'16 | 15

ISBN: 1-60132-434-0, CSREA Press ©

Abstract – Designing a fast keyword search algorithm is

one of the many challenges search engines face today. A

search engine usually receives a conjunctive query as input

and has to deliver a set of relevant results as output to users.

The main factors of consideration while proposing such an

algorithm is efficiency and pragmatism. In this paper, we

discuss effective search algorithms for keywords search by

set intersection. The main idea is to use a ‘least frequent

first search’ approach, thereby reducing the number of set

intersection computations. We also discuss better ways to

perform set intersection showing trie and graph structure

approaches.

Keywords: Search engine; set intersection; trie; graph;

perfect hash;

1. Introduction

The notion of algorithm has existed for centuries and

the perception of writing an algorithm to solve a

computational problem has been changing rapidly ever

since. With new requirements come new challenges, and

designing an effective search engine algorithm is one of the

many popular and heuristic computational problems today.

There have been many approaches proposed to design

text matching techniques like inverted lists [4], signature

trees [5] [6], treaps [7], etc. In this paper, we will propose

better approaches and substantially different techniques to

achieve better performance keeping in mind the real time

scenarios. We consider the problem of retrieval of

documents containing multiple keywords as a conjunctive

query of the form q1 ^ q2 ^ q3 ^…..^qn. If a document D

is retrieved by the system, then it implies that D contains a

positive result for each query qi Q where 1 i n and Q

is set of such queries Q = {q1, q2, q3…..,qn}. Each query

in this set returns a set of documents containing that query

word. We need to perform an intersection on all of these

sets and come up with an efficient technique to do so, so

that both time and resources are minimized.

We suggest a ‘least frequent first search’ method where

in, we reduce the time and resources consumption by

starting our keyword search from the keyword with the

least frequency among all documents. We implement this

idea using a trie structure [8] and graph structure. The trie

structure approach was first presented in [1]. However, in

[1] the most frequent first search method was used. We

shall show that by using the least frequent first search

method, the performance is be more efficient.

2. New Approaches

Consider the problem of finding a list of documents

containing a set of words. Since we have a set of documents

which contain a specific word, we have to perform set

intersection on multiple sets. For example, if word w1 is in

set of documents S1={d1,d3,d4,d7} and word w2 is in set

of documents S2={ d2,d3,d5,d6,d7}, then a set intersection

S1∩S2 is required to find documents which contain both

words w1 and w2, which is {d3,d7}. In order to speed up

this computation, we pre-compute some data structures.

A trie is a special tree structure, where the node

positions represent their associated keys unlike in other

search trees where nodes store their associated keys. In [1]

Set Intersection and Document Search Algorithms using
Tries and Graphs

Nikhita Sharma1, Yijie Han2

12School of Computing and Engineering, University of Missouri at Kansas City, Kansas City, Missouri, 64110

16 Int'l Conf. Foundations of Computer Science | FCS'16 |

ISBN: 1-60132-434-0, CSREA Press ©

a trie structure was built and a word search algorithm

searching from higher to lower frequent words was

presented. In Section 3, we show that a search algorithm

searching from lower to higher frequent words is much

more efficient.

A graph is a set of vertices and edges where vertices

represent objects and edges between them represent any

result or relationship obtained by mathematical or logical

computations. In Section 4, we propose a completely new

approach to keywords search using undirected graph

design. We design an algorithm much more efficient than

that discussed in Section 3 and it achieves higher

performance. We retain our main idea of ‘least frequent

first search’ in this algorithm. We also discuss the data

structures to implement the graph approach in real time and

show the detailed computation results.

3. The Trie Approach

In this section, we discuss various steps involved in

constructing a trie structure by applying the ‘least frequent

first search’ idea and compute results to evaluate and show

that this approach gives much better performance. The trie

approach was first presented in [1]. However, the most

frequent first search method was used there. Here we

follow the example of the trie constructed in [1] but use a

least frequent first search approach.

	 Constructing Trie and Assigning Intervals

We construct a trie structure with keywords as vertices

such that keywords in the same document fall in the same

path, with least frequent words at top level of the trie.

Consider eleven documents D={1,2,3,4,5,6,7,8,9,10,11}

and keywords in the documents as shown in Fig. 1a . The

inverted list for these keywords is shown in Fig. 1b.

The root vertex of the trie is taken as a virtual vertex

with empty word є. We now add the least frequent keyword

to the tree i.e. b and then add the next least frequent

keyword, c, and so on to the tree in such a way that

keywords in same document are in the same path.

Whenever we do not have a compatible path for a keyword,

we try adding it to another vertex in the tree at which a

compatibility can be established. Only when there is no

possibility of adding it to the existing vertices, we add a

new subtree to the root.

DocID Words sorted with frequency
1 a,f,d
2 a,d
3 a,d,e
4 b,a,f
5 c,d,e
6 c,f,d,a
7 a,f,d,e
8 b,f,d,e
9 c,e
10 a,f,e
11 c,f,e

Fig. 1a

 b: {4,8}
 c: {5,6,9,11}
 a: {1,2,3,4,7,10}
 f: {1,4,6,7,8,10,11}
 d: {1,2,3,5,6,7,8}
 e: {3,5,6,7,8,9,10,11}

Fig. 1b: Inverted lists for keywords.

We follow the digital encoding discussed in detail in [1]

using concepts in [3] [9], which uses lowest rank of the

sub-tree and rank of the vertex in post order traversal as

starting and ending interval bounds respectively. The

resultant interval sequences are shown in Fig. 1c. The

complete trie and interval sequences marked to the

respective vertices is shown in Fig. 1d.

b: [9,14]
c: [1,8]
a: [9,10] [15,21]
f: [4,7] [9,9] [11,13] [15,18]
d: [2,3] [4,5] [11,12] [15,16] [19,20]
e: [1,1] [2,2] [4,4] [6,6] [11,11] [15,15] [17,17] [19,19]

Fig. 1c: Interval Sequences.

Int'l Conf. Foundations of Computer Science | FCS'16 | 17

ISBN: 1-60132-434-0, CSREA Press ©

We observe that there is no path with a higher

frequency keyword above a lower frequency keyword i.e.

the ‘least frequency first search’ approach is implemented.

Also, vertices on the same path in the trie are in the same

document.

Fig. 1d: Resultant Trie structure.

	 Assigning Document Sets to Intervals

We will also need document identifier information at

each vertex to be able to find the documents corresponding

to each interval or vertex. We use information from Fig. 1b

and allocate document IDs to vertices such that at each

vertex, the document identifiers allocated contains all

words taken from root to itself. Fig. 1e shows such a trie

structure.

 Fig. 1e: Trie with document identifiers.

	 Search Query Evaluation

We now check interval containment to conclude if two

words are in the same document. Choosing least frequent

word first, reduces the number of interval comparisons to

find a document containing all words in query.

We take the example of finding documents containing

the words ‘a’ and ‘b’. We choose these nodes keeping in

mind that ‘b’ is of least frequency and ‘a’ has an average

frequency among all other nodes. We first put words in

increasing order of their frequency, i.e. b, a. Interval

sequences for these are Ib = [9, 14], Ia = [9, 10] [15, 21].

Using the process proposed to check for interval

containment in [1] or by observation, we have that interval

[9, 10] is contained in interval [9, 14]. Here, we check if an

interval of higher frequency word is contained in an

interval of lower frequency word as lower frequency

intervals are above higher frequency intervals in our trie.

Thus by matching the resultant interval [9, 10], to

document Identifiers from Fig. 1d and Fig. 1e, we conclude

that document {4} contains both the words b and a.

As discussed in [1], for the same query search, intervals

for b and a respectively will be I’b = [5,5], [12,12], I’a =

[1,1] [3,3], [5,6] [8,8], [11,11] [16,16]. As compared to our

approach of ‘least frequency first search’, we observe the

below improvements:

a. Number of intervals for ‘b’ and ‘a’ are lesser, reducing

the time to perform interval containment.
b. We search from lower frequency to higher frequency

keyword intervals. From intervals in Fig. 1c we

observe that each time we check two interval

sequences, we check lesser number of intervals with

another lesser number of intervals as compared in [1].
c. It is more likely that we get no interval containment

when checking two less frequent words than when

checking two more frequent words. Thus, by

following this new approach, if there is no document

18 Int'l Conf. Foundations of Computer Science | FCS'16 |

ISBN: 1-60132-434-0, CSREA Press ©

satisfying the conjunctive query, we can conclude it

earlier and eliminate useless checking steps.

4. Graph Approach

We propose another solution to this problem using

graph structure instead of a trie structure. Our graph will

have words as vertices and a link between two vertices

would represent the documents which contain both words.

Similarly we could represent multiple words in a document

with a clique which is a subset of vertices of a graph such

that every two distinct vertices are adjacent. We implement

this method using matrix along with linked lists and perfect

hash tables. We retain the approach of ‘least frequent first

search’ approach in this method.

4.1 Building Graph and Matrix

Suppose a graph G’ represents a subset of a complete

graph formed from the keywords and document IDs used

in previous sections in Fig. 1a, such that it shows the graph

structure for only c, a, f and d keywords. The document sets

with any two keywords is found by using the inverted lists

of keywords in Fig b. The Figure 1 represents the structure

of such graph G’.

Fig. 2a: G’ (c,a,f,d)

As we see in the graph G’, there is no edge joining c

and a as there are no documents which contain both the

keywords c, a. We can represent this type of graph structure

using a 4×4 matrix as shown in Fig. 2b.

 C a f d
c Pc Pca Pcf Pcd
 a Pca Pa Paf Pad
f Pcf Paf Pf Pfd
d Pcd Pad Pfd Pd

Fig. 2b: Matrix M’(c,a,f,d)

Here M’[c,c] = Pc can represent the set of documents

containing c and element M’[c,a] = Pca represents the set of

documents containing c and a, and so on. In this scenario,

we have Pca = Ø if there are no documents which contain

both c and a.

These sets can be implemented as linked lists in real

time. In such a scenario, any element M’[x,y] = pxy in the

above matrix will be considered as a pointer to the start of

a linked list, where x and y value range from c to f. Fig. 2c

shows the linked list for M’[a,f] = Paf and represents the set

of documents containing both a and f which is [1-> 4-> 7->

10-> NULL].

We will also build perfect hash tables for each of the

document sets in Matrix M, by using a perfect hash

function. A perfect hash function is a hash function which,

for each unique value as key, will map to a distinct integer

such that there are zero collisions. The build time and look

up time for a perfect hash table for n elements is

O(n(lglgn)2) and constant time of O(1) respectively [2].

Example hash table for combinations of words Hbc , Hca

and Haf are represented in Fig. 2d where H represents a

perfect hash function.

Fig. 2c: Linked List for paf

Int'l Conf. Foundations of Computer Science | FCS'16 | 19

ISBN: 1-60132-434-0, CSREA Press ©

 Fig. 2d: Hash Tables Hbc , Hca and Haf

4.2 Computing Intersection

From the example in Fig. 1a, we construct a full graph

by following process explained in Section 4.1. We will

have a graph G as shown in Fig. 3. We will represent this

graph as a 6×6 Matrix M as shown in Fig. 4. By looking up

for the pointers we can jump to the start of linked lists

containing set of resultant documents

Fig. 3: Graph G

 b C a F d E
b pb pbc pba pbf pbd pbe
c pbc pc pca pcf pcd pce
a pba pca pa paf pad pae
f pbf pcf paf pf pfd pfe
d pbd pcd pad pfd pd pde
e pbe pce pae pfe pde pe

Fig. 4: Matrix M(b,c,a,f,d,e)

In Fig. 4 , pb = [4-> 8->NULL]; pc = [5-> 6-> 9-> 11->

NULL]; pbc = [NULL]; pca = [NULL]; paf = [1-> 4-> 7->

10-> NULL]; pfd = [1-> 6-> 7-> 8-> NULL]; pde = [3->

5-> 6-> 7-> 8-> NULL]; …so on computed from inverted

lists in Fig. 1b.

We will now show how to perform set intersection on

these sets (Step 1-7). We will consider the same scenario

as discussed in Sections 3 and 4. If we have an inverted list

as in Fig. 1b and we want to find documents containing a,

f, d and e.

1. Start with the least frequent word and the next least

frequent word in the query. Since, ‘a’ and ‘f’ have the least

frequency, we choose ‘a’ and ‘f’ first.

2. Look up in the matrix M for the element representing

pointer to document set containing both ‘a’ and ‘f’, which

is M[a,f]. We get Paf, pointer to the linked list of

Documents LinkListaf = [1-> 4-> 7-> 10-> NULL] as

represented in Fig. 2d.

3. Now, we choose the least frequent word and next least

frequent word after ‘f’ in the query, which is ‘a’ and ‘d’

respectively. We look up for the perfect hash structure for

‘ad’ i.e. Had= [1, 2, 3, 7].

4. Next, we perform a search using perfect hash structure

Had, for each document in LinkListaf, by hashing each

documentID from [1-> 4-> 7-> 10-> NULL] in Had= [1, 2,

3, 7].and return the matching document IDs to result set Rd

= {7}.

5. We now have result set from previous steps

representing documents containing all the words ‘a’, ‘d’

and ‘f’. We repeat the above process for next least frequent

word in the list which is e, but this time we will hash each

document ID in the result from previous step (Rd) to hash

table Hae.

20 Int'l Conf. Foundations of Computer Science | FCS'16 |

ISBN: 1-60132-434-0, CSREA Press ©

 In Hae= [3, 7, 10], we search for elements in result set

Rd = {7} from previous computation. We finally return

matching document IDs to result set Re = {7}.

6. The final output is the last result sets we get after we

cover all keywords. In this case, it is Re = {7}, which is the

final set of documents containing all words a, f, d and e.

7. At any point in the above process, if we encounter an

empty set as a result set, we terminate the process and

return an empty set as the result set, which concludes that

there are no documents containing all the keywords given

in conjunctive query. In this example tough, we do not

encounter an empty result set.

4.3 Algorithm for Graph Approach and

Evaluation

 Consider a conjunctive query containing n words to be

input which is sorted by their frequencies, in the increasing

order. We denote such a query as W[2..n]. n must be at least

two here as our conjunctive query must have a minimum

of two keywords for the algorithm to compute intersection.

 We resultant output is a set of documents containing all

n words. As discussed in Section 4.2, we build a Matrix M

with each pointer (pxy) pointing to start of a linked list

LinkListxy. To access each document ID in the linked list

in constant time, we built a perfectly hashed Hash table Hxy

for all linked lists represented in matrix M.

ALGORITHM docSearchG(W [2..n], R)

begin
1. R � Փ; /* initialize result set to empty set */
2. if n = 2 /* two keywords query */
3. then do /*add all docs in LinkList12 to result set */
4. LinkList12 � M [W[1],W[2]] ;
5. while (LinkList12 ! = NULL)
6. R � R (LinkList12 �data);
7. LinkList12 � (LinkList12 � next);
8. end while
9. else /* more than two keywords query */
10. l � W[1] ; /* set least frequent word to l */
11. i=3
12. k � W[i];
13. while (LinkList12 ! = NULL)

14. if searchHash (LinkList12 � data, Hlk) is true
15. then do /* if key found, add to result set */
16. R � R (LinkList12 �data);
17. end if
18. LinkList12 � (LinkList12 � next);
19. end while
20. while (R != Փ and i ≤ n)
21. Rp = R ; /* assign previous result set to Rp */
22. R = Փ; /* initialize result set R*/
23. k � W[i++]; /* move to next word in W */
24. for each r in Rp
25. if searchHash (r, Hlk) is true
26. then do /*if key found, add to result set */
27. R � R r;
28. end if
29. end for
30. end while
31. end if
32. return R
 end

From line 1-8, we check if the input has only two

keywords. If so, we make result R as all the documents in

LinkList12. As we discussed before, LinkList12 will

contains documents containing both the words W[1] and

W[2]. From line 9-31, we show computation if there are

more than two keywords in the input. The

searchHash(r,Hlk) at line 25 of the algorithm is a function

which takes a document ID as first parameter and searches

this documentID in the Hash table provided in the second

parameter. If found, it returns true. In the second parameter

(Hlk), the value of l is fixed to the least frequent word W[1]

and the value of k varies from 3..n during each iteration,

till all keywords are processed. This above algorithm is

designed my mirroring the seven steps discussed in Section

4.2.

The output of the above algorithm is set R which

contains all document identifiers, each containing the n

words in them. If no document exists, which contains all

the n words, this algorithm returns an empty set. The above

algorithm can be evaluated for performance as discussed

below.

 The advantages of using a perfect hash for set

intersection over linear or binary search algorithms are

Int'l Conf. Foundations of Computer Science | FCS'16 | 21

ISBN: 1-60132-434-0, CSREA Press ©

significant. In case of binary search, we need to sort the

input, which takes O(nlgn) time. Additional average time

of O(lgn) is required for performing search on these sorted

values. In our case, building a perfect hash requires

O(n(lglgn)2) and search requires O(1).

 Since we search from less frequent to more frequent

words in the conjunctive query, we search relatively less

number of documents on relatively smaller hash tables.

Also, results from previous step are used to perform search

in the next step. This hugely reduces the probability of

checking same document IDs in multiple hash tables. Also,

there are more chances of getting an empty set at an earlier

step in the process, if we have no documents satisfying the

query while using ‘least frequent first search’ approach.

5. Conclusion

 In this paper, two approaches are discussed to solve the

problem of set intersection for a conjunctive query. We

mainly emphasize on the ‘least frequent first search’

method of searching keywords from a conjunctive query.

This paper also explains how searching from lower

frequency to higher frequency keywords considerably

reduces the time required for such a search using set

intersection.

 In Section 3, we improved the method discussed in [1]

by implementing it using ‘least frequency first search’. In

Section 4, we propose a complete new approach of

representing keywords and documents intersections using

graphs, linked lists and perfect hash functions.

 Future scope of topics discussed in this paper would be

look at possibilities of improving the search performance

in Section 4, by using better algorithmic approaches or data

structure which help in better searching.

 These methods will be specifically useful in designing

search engines more efficiently and offer better

performance to programmers and end users.

6. References

[1]. Y. Chen, W. Shen. On the Intersection of Inverted Lists.

Proc. 2015 Int. Conf. Foundations of Computer Science

FCS’2015, in WORLDCOMP’2015. 51-57(2015).

[2]. M. Ruzic. Constructing efficient dictionaries in close

to sorting time. ICALP 2008, Part 1, LNCS 5125, 84-95

(2008)

[3] Y. Chen and Y.B. Chen: Decomposing DAGs into

spanning trees: A new way to compress transitive closures,

in Proc. 27th Int. Conf. on Data Engineering (ICDE 2011),

IEEE, April 2011, pp. 1007-1018.

 [4]. J. Zobel and A. Moffat: Inverted Files for Text Search

Engines, ACM Computing Surveys, 38(2):1-56, July 2006.

[5]. Y. Chen, Y.B. Chen: On the Signature Tree

Construction and Analysis, IEEE TKDE, Sept. 2006,

Vol.18, No. 9, pp 1207 – 1224.

[6]. Y. Chen: Building Signature Trees into OODBs,

Journal of Information Science and Engineering, 20, 275-

304 (2004).

[7]. G.E. Blelloch and M. Reid-Miller. Fast Set Operations

using Treaps. In ACM SPAA, pp. 16-26, 1998.

[8]. D.E. Knuth, The Art of Computer Programming, Vol.

3, Massachusetts, Addison-Wesley Publish Com., 1975.

[9]. Y. Chen and Y.B. Chen: An Efficient Algorithm for

Answering Graph Reachability Queries, in Proc. 24th Int.

Conf. on Data Engineering (ICDE 2008), IEEE, April

2008, pp. 892-901.

22 Int'l Conf. Foundations of Computer Science | FCS'16 |

ISBN: 1-60132-434-0, CSREA Press ©

SESSION

QUANTUM COMPUTING + NANOTECHNOLOGY
AND RELATED ISSUES + MODELING AND

SIMULATION

Chair(s)

TBA

Int'l Conf. Foundations of Computer Science | FCS'16 | 23

ISBN: 1-60132-434-0, CSREA Press ©

24 Int'l Conf. Foundations of Computer Science | FCS'16 |

ISBN: 1-60132-434-0, CSREA Press ©

Understanding Quantum Computing:
A Case Study Using Shor’s Algorithm

Casey J. Riggs, Charlton D. Lewis, Logan O. Mailloux, Michael Grimaila

Air Force Institute of Technology, Wright-Patterson Air Force Base, Ohio 45433, United States
{Casey.Riggs, Charlton.Lewis, Logan.Mailloux, Michael.Grimaila}@afit.edu

Abstract—Quantum computing is an exciting
technology which utilizes the unique properties of
quantum mechanics to increase the speed of
classical computational operations in certain cases.
However, understanding quantum computing
requires knowledge of both computer science and
quantum mechanics in order to develop and employ
quantum algorithms. Thus, this paper provides an
understandable introduction to quantum
computing, and more specifically, quantum
algorithms for computer scientists and practitioners.
First, a number of foundational topics such as
quantum measurement, RSA security, and Simon’s
algorithm are discussed. Next, a detailed case study
of Shor’s algorithm is presented as an example of
how quantum algorithms can be utilized to solve
computationally difficult problems.

Keywords—Quantum Computing; Quantum
Algorithms; Shor’s Algorithm; Simon’s Algorithm;
RSA Encryption

I. INTRODUCTION

Currently RSA encryption is widely employed to
protect digital information including e-mails, bank
transactions, and even things as simple as text
messages. The security of RSA is typically measured
in the amount of time it would take to break the
scheme and decrypt the data. Because the decryption
process is relatively quick once the scheme is broken,
the inherent strength of RSA relies on the tedious
nature of finding prime factors to large numbers.

Shor’s algorithm grants the ability to find these
prime numbers much faster than current methods. It is
because the current encryption scheme is relied on so
heavily by both the private and government sectors—
to include the military, which drives a new field of
study dubbed “post-quantum cryptography”. This
field is concentrated on what to do after the physical
implementation of sufficiently large quantum
computers and the realization of Shor’s algorithm.

In 1994 Peter Shor developed a quantum
algorithm (i.e., a mathematical or quantum
mechanical algorithm to be executed on quantum

computer) to factor large numbers with prime factors
extremely quickly [11]. This discovery threatens the
security of RSA encryption directly. Although a large
part of the algorithm is run on a classical computer,
the key component that allows Shor’s algorithm to be
so effective relies on quantum computing technology.
Although quantum computing is still in nascent
stages, researchers at MIT and the University of
Innsbruck in Austria have published findings for a
scalable architecture to execute Shor’s algorithm [1].
Although there are challenges associated with scaling
this architecture to solve larger problems, this
breakthrough is instrumental in the downfall of the
RSA encryption scheme [13], [21], [22], [23].

Shor’s algorithm incorporates several quantum
phenomena which are fundamental to quantum
mechanics. It is vital to understand these quantum
properties and effects before studying Shor’s quantum
algorithm. Additionally, Simon’s quantum algorithm
is also useful to understand before approaching Shor’s
work because it is a much more simplified period
finding algorithm. A brief introduction to quantum
phenomena and an abbreviated RSA encryption
overview will give us the background needed to
approach both Simon’s then Shor’s algorithm in
detail.

II. QUANTUM PHENOMENA

Quantum computing offers the ability to solve
relational problems rather than execute set processes.
Extracting this relational information is at the heart of
quantum computing. In this section, we introduce
several areas of quantum mechanics necessary for
understanding quantum algorithms.

A. Quantum Bits
A classical bit is restricted to existing in one of

two states (either a 0 or a 1), while a quantum bit or
“qubit” is a quantum-mechanical system that exists in
a superposition of states (a continuum between 0 and
1). These qubits differ significantly from classical bits
and because of the qubit’s unique properties (i.e., the
ability to put qubits into a superposition of states and
entangle them with each other) means that qubits can
interact naturally, and in these interactions is where
large amounts of relational information is stored [17].

Int'l Conf. Foundations of Computer Science | FCS'16 | 25

ISBN: 1-60132-434-0, CSREA Press ©

With regard to the Bloch Sphere in Figure 1,
classical bits can exist as a unit vector in the z-
direction, straight up or down. These two states can
also be described in a 2-dimensional vector space as
two orthonormal vectors and . Qubits on the
other hand, are able to exist in a linear combination
(superposition) of these two states [16]. This is best
illustrated as the state of a qubit which can exist as
any unit vector in the Bloch Sphere

, subject to the constraint . The
key difference is that the classical bit is restricted to
existing solely in the direction of the unit vectors
and , while the qubit can exist in any combination
of and . This means, the qubit can exist in an
infinite number of states.

Figure 1. Bloch Sphere [9].

Many options are being considered for physical
implementation of qubits including photons, trapped
ions, electrons, superconducting materials, and atomic
nuclei [2], [14], [15], [18], [19], [20].

B. Hadamard Gate
The Hadamard gate is often one of the first

operations in a quantum circuit model, as the ability to
leverage the superposition principle of the qubit is
what gives a quantum computer its power. The
Hadamard gate, when used to operate on a qubit,
maps a single qubit into a superposition of and
basis vectors with equal weight

 where . This is best

described as a horizontal unit vector (perpendicular to
the z-vector,) in the Bloch Sphere—a
superposition of both states and . For example,
if there are 100 qubits in the model, and each is acted
upon by a Hadamard gate, there now exists a
superposition of all possible solutions within the
model. However, it is not possible to measure all these
solutions. In a quantum system it is only possible to
measure each qubit once, and thus, obtain a single
solution.

C. Measuring Qubits
In a classical computer, bits can be measured and

then remain in the same state afterwards; in a quantum
computer, measuring the qubits forces the qubits to
collapse into a particular state of the measurement
basis (e.g., either or) [16]. Any superposition,
which is where relational data is held, disappears once
the qubit has been measured. This phenomenon is
called the “collapse” of the qubit. It is important to
note that no further data from the quantum system can
be taken from the qubit after the measurement is
performed, it is an irreversible process.

D. Qubit Decoherence
While purposefully measuring a qubit causes it to

collapse, outside factors such as environmental noise
(e.g., errant electro-magnetic waves) may also cause
the quantum system to collapse before a proper
measurement can be taken [8]. Quantum computing
requires precisely controlled conditions in order for
qubits to maintain superposition and become
entangled (that the state of one qubit is dependent on
the state of one or more other qubits) [17]. For
example, the qubits maintained in D-wave’s adiabatic
quantum computer must be kept at near absolute zero
in order to effectively function in superposition [12].
Whether it be isolation from electro-magnetic waves,
extreme temperatures, or other unknown factors,
decoherence can cause major problems with the
integrity of the data stored in the qubits. Solutions to
this problem include isolation from environmental
factors (e.g., controlled environments and shielding),
as well as quantum error correction techniques to
mitigate the effects of decoherence.

E. Quantum Error Correction
In a classical computer, in order to reliably store

information for long periods of time, bits can be
copied, re-copied, and stored redundantly. However,
in a quantum computer, it is not possible to perfectly
clone an unknown quantum state [6]. This is because
the measurement inherently affects the qubit you wish
to copy. However, it is possible to create a series of
entangled qubits and use that series as a representation
of a single qubit of information, this is called a
“logical qubit” [3]. If one or a few of those entangled
qubits erroneously change state due to decoherence it
can be corrected by assessing its conformity with the
other qubits within the logical qubit.

III. RSA ENCRYPTION

Modern computer systems use public-key
cryptography such as RSA which relies on the
difficulty of factoring the product of two large prime
numbers. For most computer systems the time it
would take to factor these large numbers becomes
unreasonable, and therefore public key cryptography
is able to provide strong security [10].

26 Int'l Conf. Foundations of Computer Science | FCS'16 |

ISBN: 1-60132-434-0, CSREA Press ©

A. Key Creation
The architecture of the RSA schema is comprised

of three parts: a private key , a public key , and a
publicly available very large number . The process
of creating these keys starts with picking two very
large prime numbers; typically called and . Next,
these numbers are multiplied to create a very large
number :

 (1)

After the creation of , Euler’s totient of is
created, which is the total number of integers less than

 which are relatively prime to (i.e., all the integers
in the totient and N have a greatest common divisor of
1). Because Euler’s totient is multiplicative we know:

 (2)

Also, because we chose and as prime numbers,
we know and . This
allows us to create the totient of :

 (3)

We now choose the public key which is
relatively prime to the totient of , meaning the
greatest common divisor of the totient of and is 1.
The fastest way to know if a chosen number and the
totient of are relatively prime is by using the
Euclidian algorithm to calculate the greatest common
divisor and check if it really is 1:

 (4)

Next, in order to calculate the private key, , we
need to calculate the modular inverse of our public
key . This is done by using the extended Euclidian
algorithm. This process solves the following equation
for [2]:

 (5)

After the creation of the private key , the
cryptosystem is complete and the
encryption/decryption process can begin. At this point
it is important to understand that only the large
number and the public key are publicly available.
The private key is only known by the individual to
whom it belongs and the totient is discarded.

B. Encrypting/Decrypting with RSA
Once the private-public key pairs are created and

appropriate distribution techniques are established, the
encryption process is relatively straightforward. To
encrypt the message Bob wants to send to Alice, it
is first encrypted using both Alice’s public key, , and
the large number which are available to Bob
because they are public knowledge. The encrypted
message is denoted by the letter :

 (6)

When Alice receives the encrypted message she is
able to decrypt the message using her private key:

(7)

A simple overview of the public key encryption
scheme is provided in Figure 2.

Figure 2. Illustration of public key cryptography.

IV. UNDERSTANDING QUANTUM ALGORITHMS

Before moving on to a complex quantum
algorithm such as Shor’s algorithm, understanding
another—Simon’s algorithm makes the approach
significantly easier. As Shor’s algorithm is a specific
implementation of Simon’s algorithm, an overview of
Simon’s period finding algorithm is useful. The
quantum Fourier transform will be introduced later
because it is used in Shor’s algorithm to speed up the
period finding process.

A. Simon’s Algorithm
In 1997, Daniel Simon introduced a quantum

algorithm to reduce the number of measurements
required to solve an unknown period problem [5]. In a
classical computer, finding an unknown period
takes order measurements, while Simon’s
technique only requires measurements where
is the number of bits needed to represent the period in
base 2 [3]. The classical method is akin to a guess and
check until the unknown period is found and as the
size of the period grows, the number of
measurements grows exponentially along with it.
Using Simon’s algorithm, as the size of the period
grows, the number of measurements only grows
linearly with .

Simon’s algorithm works through a series of
quantum operations and measurements. First, the
input and output registers must be initialized, which is
by convention done in the state . Next, each qubit
in the input register is operated on by a Hadamard
transformation, putting the qubits into a state of equal
superposition of all possible combinations. The state
of the system is described as [4]:

 (8)

where represents the input register after the
Hadamard transformation such that is in a
superposition state and represents the output

Int'l Conf. Foundations of Computer Science | FCS'16 | 27

ISBN: 1-60132-434-0, CSREA Press ©

register still in its initialization state. Next, the unitary
transform Ûf is applied to the superposition state of
the input register and stored in the output register,
the new state of the system becomes [3]:

 (9)

After the unitary transform Ûf operates, the output
register holds the results of the function , while
the input register is still in a state of superposition.
Now suppose a measurement of the output register

 is taken, and thus, collapses both the output
and input registers. The output register collapses to a
random evaluation of called . The input
register can now only exist in one of two states:
or according to the generalized Born rule
[7]. This is because the function (the unitary transform
Ûf) is defined as having the same result for two
specific inputs (i.e., the function is periodic under
bitwise modulo-2 addition) and .
The resulting state of the input register is [3]:

 (10)

The input register, although it now contains
valuable information (i.e., we can solve for given
both states), is not as useful as it seems because the
register can only be measured one time. Successive
trials would yield more random values for and

 satisfying different measured outputs, which
would not help solve for the unknown period
efficiently.

The next step in this process is to again apply the
Hadamard transformation to the input register

, and the state of the quantum system
becomes [3]:

 (11)

where represents the output register. More simply,
the input register can be interpreted as the expansion
coefficient of the output register (

 becomes) and Eq. (11) simplifies to
[4]:

 (12)

From Eqs. (11) and (12), we know that the
coefficient of the output register will be 0 if

. Because the probability of a measurement
is represented by the absolute value squared of the
expansion coefficient, , this means the
probability of measuring a solution in which

is 0. Thus, the output register is limited only to
solutions in which .

For this reason, any measurement of Eq. (12) must
yield a random in which , where each
value obtained reduces the possible choices for the
period by half. This allows the unknown period to
be found in only invocations of Simon’s
algorithm by the creation of a system of equations for

 which is comprised of equations.

B. Quantum Fourier Transform
The quantum Fourier transform (QFT) is an

important part of Shor’s algorithm because when
introduced, it emphasizes a relationship between the
states of an input register, the period of the function,
and the total size of the register. The QFT (denoted as

) like all other valid quantum operations is a
linear, unitary operator. The QFT maps qubits to
qubits (the output size of the QFT is the same as the
input size in terms of number of qubits), and the effect
of the QFT on a register is [3]:

(13)

The QFT operates on the input register to
create a set of states in the output register with the

probabilities of measurement of for each
state. The QFT, like the other operators, can also
operate on a superposition of states which is
invaluable for Shor’s algorithm.

V. SHOR’S ALGORITHM

Introduced in 1994, Shor’s algorithm is a quantum
algorithm designed to quickly solve prime factors of a
given number which is of great concern in modern
cryptography—specifically the RSA public key
cryptography [11]. The method Shor created to solve
these prime factors utilizes a number of classical
computing processes and only leverages quantum
computing to solve one aspect of the problem—
finding the period. This piece of Shor’s algorithm is a
specific realization of Simon’s algorithm.

As shown in Table 1, Shor’s factoring process can
be summarized in five steps, of which only the fourth
step is quantum in nature—the very same step is the
most computationally intensive part of the process [4].

28 Int'l Conf. Foundations of Computer Science | FCS'16 |

ISBN: 1-60132-434-0, CSREA Press ©

Table 1. A summary of the factoring process [4].
1. If N is even, return a factor of 2. Otherwise, continue to the next
step.
2. Check whether for integers and such that
and . If then return the factor .
3. Randomly choose an integer and compute

. If then return the factor . If
 (i.e., if is a coprime of) then continue to the

next step.
4. Find out the order [period] of . If is even and

 then continue to the next step. Otherwise,
restart from Step 3 with a different x.
5. Compute and check whether one of them is
(or both of them are) nontrivial factor (factors) of . If so, then
return the factor (factors). Otherwise, restart from Step 3 with a
different .

The remainder of the paper focuses specifically on
understanding Shor’s quantum algorithm contribution
as described in step 4, where the order is the period
of the function which needs to be found. Just as in
Simon’s algorithm, we will consider both an input and
an output register throughout each step.

A. Understanding Shor’s Quantum Algorithm
The output register must be able to hold , in

binary form. This means, for example, if the
output register must contain at least 6 qubits because
64 is represented within 6 binary digits ().
The size of the output register (the number of qubits
required), will be denoted as .

The input register generally needs to have twice as
many qubits as the output register (). This
configuration is desirable so that the input register can
contain at least different states that produce the
same output — this gives us more “workspace” with
which to capture the period of the function. The size
of the input register is denoted as .

Entering step 4 of the process, we know that the
number to be factored is and we have already
chosen an which is coprime to . First, the input
and output registers must be initialized to a known
value (typically):

(14)

The quantum system or total wave function of the
system is written as | at step 0 with the input and
output registers (and , respectively) initialized to

. Next, the input register is put through Hadamard
gates, placing the input register into a state of
superposition represented as [4]:

(15)

Next, the superposition state is operated on by
a modular exponent and the result is stored in the
output register [4]:

(16)

Notice the similarity with Simon’s problem with
this method. Next, a measurement of the output
register, yields a random value of called

. This measurement forces the input register into a
state of superposition of all the possible inputs that
would yield the measured value , satisfying the
generalized Born rule [7]. The total number of valid
input states is represented as . The function is
periodic so we know that the valid inputs for a
particular solution are , where the
value of is the smallest possible input for this
function that yields and any multiple of the
period added to the smallest value will yield the
same .

Focusing on the input register, which now
contains the values of interest, and temporarily
disregarding the output register, the total wave
function at step 3, without the output register is now
[4]:

(17)

Similar to Simon’s problem, valuable information
is stored in the input register and if it was possible to
make a copy of it, the period could be found in a
small number of measurements. However, only one
measurement yielding a random number can be taken
and successive measurements would yield more
random numbers for different measured outputs.

Since, the number of qubits in the input register is
double the output register, the number of solutions
that can simultaneously exist in the input register
satisfying is large. Thus, the next step is to
apply a quantum Fourier transform to the input
register yielding [4]:

(18)

where the input register is now represented as and
useful information can now be measured.
B. Finding the Period

Simplifying Eq. (18) and using the substitution

 gives a wave function of the input register
[4]:

(19)

From this wave function, the probability of measuring
any particular is given by [4]:

Int'l Conf. Foundations of Computer Science | FCS'16 | 29

ISBN: 1-60132-434-0, CSREA Press ©

(20)

This means the inputs will constructively interfere
when is close to an integer and destructively

interfere when is otherwise. This raises the
probability of measuring a particular input that, if C
is an integer, satisfies . Moreover, if this value
of is close to an integer, we know that , and
therefore the probability of measurement is [4]:

(21)

Thus, the probability of measuring a specific value
in the input register that satisfies is

approximately , which is much higher than the values
in the input register which destructively interfere.

The final quantum step of Shor’s algorithm is to
measure the input register . The result of this
measurement is assumed to follow the high likelihood
that . Assuming this is true, we can rearrange
the equation to understand the relationship better [4]:

(22)

The quantum part of Shor’s algorithm is now
complete and the rest can be handled by a classical
computer. The quantum aspects of Shor’s algorithm
result in a high likelihood of a solution which satisfies
a relationship between the period , the solution space

, an integer , and the measured result . Since the
result and solution space are known, we can
solve for the left half of Eq. (22) and find an
equivalent integer fraction to solve the right hand side.
More specifically, the continued fraction method is
used to solve for the period .

Since we know that is likely an integer, thus ,
,…,etc. are also likely integers. This means that

when we find the equivalent fraction for the right
hand side we must also consider that and

 and so on, are valid solutions as well. Using

the number of steps to convergence in the continued
fraction, an initial value for the period is generated.
The initial period must be double checked by
substituting the value back into the original equation
we are trying to solve:

(23)

If the statement is incorrect, then small multiples of
can be tried, since , , ,…,etc. are all integers.

This process is used to find the smallest period that
satisfies Eq. (23).

Lastly, the value must also be even and satisfy
the condition . If does not satisfy
these conditions, the quantum algorithm must be re-
accomplished with a new value for our initial coprime
number . Once this step has been accomplished
successfully and one or both prime factors of has
been found—the factoring process would be
complete. If only one prime factor is found, simple
division of by the known value would yield the
other prime factor. Knowing the prime factors to
would effectively break the RSA encryption because
once the prime factors are known the private key can
be computed easily.

C. Breaking RSA
To break the RSA encryption an alternate step

may also be used. An overview of this attack on RSA
public-key encryption is provided in Figure 3.

After finding the period , a pseudo-private key
can be created satisfying [3]:

(24)

Using this value for , the original content of the
encrypted message can be easily decrypted [3]:

(25)

Figure 3. An overview of the alternate method to break public key

encryption using the period.

VI. CONCLUSIONS

Peter Shor made a very important contribution to
the field of quantum algorithms with his realization of
quantum period finding—its relation to the RSA
encryption scheme has drawn international acclaim
and notoriety from renowned security specialists.
However, there have been many other discoveries as
to the types of computations quantum computers can
perform. Currently, three classes of algorithms: (i)
algebraic and number theoretic; (ii) oracular; and (iii)
approximation and simulation are highlighted in the
“quantum zoo,” the most complete compendium of
quantum algorithms available [24]. Unfortunately,
each of these algorithms needs to be further studied

30 Int'l Conf. Foundations of Computer Science | FCS'16 |

ISBN: 1-60132-434-0, CSREA Press ©

and expanded upon as they wait to be applied on a
quantum computer.

Further study of this area needs to run parallel
with the kinds of difficult problems we are facing
using classical computers to determine how we can
leverage the strengths of quantum computing. In this
work, we have built a foundation for understanding
quantum algorithms by first understanding the
quantum phenomena necessary for quantum
computing and then demonstrated the importance of
applying quantum algorithms by using Shor’s
algorithm. This work provides a starting point for
those interested in quantum computing and quantum
algorithms.

DISCLAIMER

The views expressed in this paper are those of the
authors and do not reflect the official policy or
position of the United States Air Force, the
Department of Defense, or the U.S. Government.

REFERENCES
[1] T. Monz, D. Nigg, E. A. Martinez, M. F. Brandl, P. Schindler,
R. Rines, S. X. Wang, I. L. Chuang, and R. Blatt. "Realization of a
scalable Shor algorithm." arXiv preprint arXiv:1507.08852 (2015).

[2] M. A. Nielsen., and I. L. Chuang. Quantum computation and
quantum information. Cambridge university press, 2010.

[3] N. D. Mermin. Quantum computer science: an introduction.
Cambridge University Press, 2007.

[4] A. Pathak. Elements of quantum computation and quantum
communication. Taylor & Francis, 2013.

[5] D. R. Simon. "On the power of quantum computation." SIAM
journal on computing 26, no. 5 (1997): 1474-1483.

[6] W. K. Wootters, and W. H. Zurek. "A single quantum cannot
be cloned." Nature 299, no. 5886 (1982): 802-803.

[7] Born, Max. "Quantenmechanik der stoßvorgänge." Zeitschrift
für Physik 38, no. 11-12 (1926): 803-827.

[8] M. Schlosshauer. "Decoherence, the measurement problem,
and interpretations of quantum mechanics." Reviews of Modern
Physics 76, no. 4 (2005): 1267.

[9] [Bloch Sphere]. Retrieved February 25, 2016 from
https://upload.wikimedia.org/wikipedia/commons/thumb/f/f4/Bloc
h_Sphere.svg/2000px-Bloch_Sphere.svg.png

[10] R. L. Rivest, A. Shamir, and L. Adleman. "A method for
obtaining digital signatures and public-key cryptosystems."
Communications of the ACM 21, no. 2 (1978): 120-126.

[11] P. W. Shor. "Polynomial-time algorithms for prime
factorization and discrete logarithms on a quantum computer."
SIAM review 41, no. 2 (1999): 303-332.

[12] R. Harris, J. Johansson, A. J. Berkley, M. W. Johnson, T.
Lanting, S. Han, P. Bunyk et al. "Experimental demonstration of a
robust and scalable flux qubit." Physical Review B 81, no. 13
(2010): 134510.

[13] R. Van Meter, and C. Horsman. "A blueprint for building a
quantum computer." Communications of the ACM 56, no. 10
(2013): 84-93.

[14] L. M. K. Vandersypen, M. Steffen, G. Breyta, C.S. Yannoni,
M. H. Sherwood, and I. L. Chuang. "Experimental realization of
Shor's quantum factoring algorithm using nuclear magnetic
resonance." Nature 414, no. 6866 (2001): 883-887.

[15] D.Kielpinski, C. Monroe, and D. J. Wineland. "Architecture
for a large-scale ion-trap quantum computer." Nature 417, no.
6890 (2002): 709-711.

[16] E. Schrödinger. "Discussion of probability relations between
separated systems." In Mathematical Proceedings of the
Cambridge Philosophical Society, vol. 31, no. 04, pp. 555-563.
Cambridge University Press, 1935.

[17] A. Einstein, B. Podolsky, and N. Rosen. "Can quantum-
mechanical description of physical reality be considered
complete?." Physical review 47, no. 10 (1935): 777.

[18] C. Lu, D. E. Browne, T. Yang, and J. Pan. "Demonstration of
a compiled version of shor’s quantum factoring algorithm using
photonic qubits." Physical Review Letters 99, no. 25 (2007):
250504.

[19] B. P. Lanyon, T. J. Weinhold, N. K. Langford, M. Barbieri, D.
F. V. James, A. Gilchrist, and A. G. White. "Experimental
demonstration of a compiled version of shor’s algorithm with
quantum entanglement." Physical Review Letters 99, no. 25
(2007): 250505.

[20] A. Politi, J. C.F. Matthews, and J. L. O'brien. "Shor’s
quantum factoring algorithm on a photonic chip." Science 325, no.
5945 (2009): 1221-1221.

[21] I. Chuang, R. Laflamme, P. Shor, and W. Zurek. "Quantum
computers, factoring, and decoherence." arXiv preprint quant-
ph/9503007 (1995).

[22] R. Landauer. Is quantum mechanically coherent computation
useful?. IBM Thomas J. Watson Research Division, 1994.

[23] W. G. Unruh. "Maintaining coherence in quantum
computers." Physical Review A 51, no. 2 (1995): 992.

[24] National Institute of Standards and Technology. “The
Quantum Zoo.” Available at: http://math.nist.gov/quantum/zoo/.

Int'l Conf. Foundations of Computer Science | FCS'16 | 31

ISBN: 1-60132-434-0, CSREA Press ©

Design of n-bit Reversible Adder with LNN architecture

Md. Belayet Ali

GS of Electrical Engineering and Computer Science
Iwate University

4-3-5 Ueda Morioka Iwate, 020-8551 Japan
Email: belayet@kono.cis.iwate-u.ac.jp

Takashi Hirayama, Katsuhisa Yamanaka, Yasuaki Nishitani

Department of Systems Innovation Engineering
Iwate University

4-3-5 Ueda Morioka Iwate, 020-8551 Japan
{hirayama,yamanaka,nisitani}@kono.cis.iwate-u.ac.jp

Abstract—We present a new design for reversible adder
that realizes quantum arrays in one-dimensional Ion Trap
technology. In this architecture all gates are built from 2x2
quantum primitives that are located only on neighbor qubits
in a one dimensional space, which is also called Linear Nearest
Neighbor (LNN) architecture. This proposed reversible adder
circuits are different from most of reversible adder circuits
obtained by synthesis methods that use only high level quantum
cost based on the number of quantum gates. This means
that most of the previous works have not considered the
cost depending on the distance between two qubits in a gate,
even if these qubits are located far away in physical space
one from another. From a practical point of view and with
respect to nanotechnologies such as quantum optics, nuclear
magnetic resonance (NMR), and Linear Ion Trap technology,
our proposed design of reversible adder is very cost effective.

Keywords-Reversible Adder circuits; Quantum Cost;
Quantum gate Linear Nearest Neighbor Architecture;
Nanotechnology;

I. INTRODUCTION

The basis of thermodynamics of information processing

was shown that conventional irreversible circuits unavoid-

ably generate heat because of losses of information during

the computation. It has been shown by Landauer that for

every bit of information lost in logic computations that are

not reversible, kT ∗log2 joules of heat energy per computing

cycle is generated, where k is Boltzmanns constant and T
the absolute temperature at which computation is performed

[1]. This resulting dissipated heat also causes noise in

the remaining circuitry, which results in computing errors.

Bennett showed that the dissipated energy directly correlated

to the number of lost bits, and that computers can be

logically reversible, maintain their simplicity and provide ac-

curate calculations at practical speeds [2]. Therefore, logical

reversibility is a necessary (although not sufficient) condition

for physical reversibility. In fact less power dissipation in

logic circuits is possible only if a circuit is composed of

reversible logic gates.

Most papers in the literature about automated synthesis of

quantum and reversible (permutative) circuits are not related

to any particular quantum realization technology [3], [4],

[5], [6], [7], [8]. The model used in most of the previous

permutative quantum circuit synthesis assumes that there

can exist a gate located between any two qubits, even if

these qubits are located far away in physical space (in

vector) one from another. This assumption was accepted in

a theoretical framework but from a practical point of view

and with respect to particular technologies (such as Ion trap

in this case) creating gates on arbitrary qubits is not only

extremely difficult but also cost ineffective; each gate has to

be properly converted and realized in an LNN architecture.

Thus, in general architecture independent synthesis models

are sufficient to approximate the real cost of small circuits.

For larger quantum circuits realized in the future as well

as for currently realizable circuits with about 12 qubits,

architecture dependent cost models and synthesis methods

are required. For instance in quantum optics [6], [7] such

architectural models require more development to take into

account more complex constraints such as time propagation

and physical size. In quantum optics, qubits also interact

by proximity using optical wires or crystals [6], [9], [10].

Therefore, it is safe to assume that the LNN cost model

is currently one of the most appropriate models for current

technologies. Circuits realized in LNN use quantum gates

defined only on neighbor qubits and the gates are built

from 1x1 and 2x2 quantum primitives. We believe that LNN

model should be used for Ion Trap and similar technologies

and new quantum cost models should be developed for other

specific technologies.

Adders are a key element in any arithmetic logic unit. It

is therefore important to have fast reversible adders. Early

implementations of binary adders using reversible logic,

such as [11], suffered from the generation of garbage bits

(n in the case of an n-bit ripple-carry adder). The novel

approach to ripple-carry adders introduced by Vedral et al.

[12] (VBE-adder) solves the problem with generation of

garbage. It is obvious that the VBE-adder is not optimal

in the number of gates, logic width and logic depth. Two

n-bit adders based on this optimization were suggested by

Cuccaro et al. [13] (CDKM-adder). Another improvement

is the VanRentergem-adder [14], which has the lowest gate

costs compared to the VBE-adder and the two CDKM-

adders. However, all the mentioned adder only uses for

reversible modular arithmetic and we know that, the modular

arithmetic result does not reflect the overflow (carry out) of

32 Int'l Conf. Foundations of Computer Science | FCS'16 |

ISBN: 1-60132-434-0, CSREA Press ©

arithmetic operations. Moreover, some quantum technology

required to realize the circuit in an LNN architecture but

all the existing works neglect the restrictions of LNN based

quantum circuits. The implementation of adder circuit using

LNN model is not yet done by any researcher. With respect

to general quantum circuits the LNN model was introduced

by Fowler et al [14] for designing a Quantum Fourier

transform circuit and their work was improved in [15]. The

paper [16] considers theoretical aspects of techniques for

translating quantum circuits between various architectures.

This paper shows that the realization of an efficient

reversible adder with LNN for a programmable computing

device is possible and that the proposed design is a very

versatile approach to the design of quantum networks. In this

work we proposed n-bit adder circuits using LNN model

and we believe that LNN model of adder circuits should

be used for Ion Trap and similar technologies and new

quantum cost models should be developed for other specific

technologies. The work [18] uses the concept of merge gates

if both Controlled-NOT and Controlled-V or Controlled-V †

acting on the same two qubits in a symmetric pattern, their

total cost is considered as unit. Due to the fact that gates in

quantum circuits can be reordered in many different ways.

So, the question is whether more than two quantum gates

acting on the same two qubits can be replaced with a single

two-qubit gate of unit cost. This question also suffices which

elementary quantum gate sequences can be formed as single

gates that can be used cost effectively, and hence results

in reduced the search space in synthesis procedure. Paper

[19],[23] has shown that if a sequence of 1-qubit and 2-

qubit quantum primitives in a circuit act on the same two

qubits, then the sequence of gates can be represented by

a unitary matrix, and the logic operations in the sequence

can be performed as a two-qubit function of unit cost. In this

work, the rectangle box represented as a single gate with unit

cost. This section shows a complete set of reversible adders

for 1-bit and n-bit with LNN model. We apply optimization

technique [20] and 2-qubit gate library [19] to obtain the

optimized circuit after the elementary gate representation

and LNN circuit of the adder circuit.

The paper is organized into the following sections. Section

2 is an overview of reversible logic, quantum computing and

motivation for the LNN model. Section 3 is the proposed

design. Result analysis of the proposed design is presented

in section 4 and conclusions are contained in section 5.

II. PRELIMINARIES

We present the basic concepts of reversible and quantum

circuits with logic operation and the motivation for the LNN

model for quantum technology in this section.

In a binary boolean context, a reversible gate is an

elementary circuit component that realizes a bijection. To

satisfy this requirement, the function must have the same

number of inputs and outputs and commonly used traditional

NOT gate is the only reversible gate. A reversible function

can be realized by cascading reversible gates with fanout-

free and feed back free realization. Many reversible gates

have been proposed, in which Toffoli, Peres and Fredkin

are conventionally used to synthesize reversible circuits.

On the other hand, the logic representation in quantum

computation is quite different from the logic representation

in classical computation. The basic unit of information in

quantum computation is a qubit represented by a state vector.

The states |0〉 or |1〉 are known as the computational basic

states. The state of an arbitrary qubit is described by the

following vector [23]

|Ψ〉 = α |0〉+ β |1〉 =
(
α
β

)
, (1)

where α and β are complex numbers which satisfy the

constraint
∣∣α2

∣∣+∣∣β2
∣∣ = 1. The measurement of qubit results

in either 0 with probability
∣∣α2

∣∣, that is, the state |0〉 =
(
1
0

)

or 1 with probability
∣∣β2

∣∣, that is, the state |1〉 =

(
0
1

)
.

Contrary, a classical bit has a state either 0 or 1, which is

analogous to the measurement of a qubit state either |0〉 or

|1〉 respectively. The main difference between bits and qubits

is that a bit can be either state 0 or 1 whereas a qubit can

be a state other than |0〉 or |1〉 according to (1).

Many quantum gates have been defined and studied but we

concentrate on the elementary quantum gates NOT, CNOT,

Controlled-V and Controlled-V † , also known as quantum

primitives. This gates have been widely used to synthesis

of binary reversible functions. The elementary gates are

represented by their graphical representation [23] as shown

in Table I.

Table I
ELEMENTARY QUANTUM GATES AND THEIR GRAPHICAL

REPRESENTATIONS.

Gate Name Gate Symbols

NOT
x0 o0

CNOT

x0 o0

x1 o1

Controlled-V

x0 o0

x1 o1v

Controlled-V †

x0 o0

x1 o1v†

Any one primitive among CNOT, Controlled-V and

Controlled-V † can be formed by cascading the other two

primitives, referred to as splitting rules [23] that are shown

in Fig. 1 (a) and (b) respectively. Moreover, Controlled-V
and Controlled-V † can be replaced with each other resulting

in two more splitting rules shown in Fig. 1 (c) and (d)

respectively. The inverse of splitting rules is referred to as

merge rules. However, in quantum computation, the splitting

of a quantum primitives does not increase the number of

Int'l Conf. Foundations of Computer Science | FCS'16 | 33

ISBN: 1-60132-434-0, CSREA Press ©

two-qubit operations. If two adjacent gates are identity then

delete two gates and known as deletion rules in quantum

primitives [23]. Therefore, two NOT gates, two CNOT gates

and an adjacent V , V † pair (any order) with the same target

and control can be removed that are shown in Fig. 2.

Figure 1. Splitting and Merge rules in Quantum Primitives

Figure 2. Deletion rules in Quantum Primitives

Definition 1: The size of a circuit C is defined as the

number of its gates and denoted by |C|. The size of an

NCV circuit is also known as quantum cost.

From the denition [23], we can say that the number of

elementary quantum gates required for an implementation

of a reversible circuit.Consider the following Fig.3, which

is the elementary quantum gates representation of Toffoli-3

gate with quantum primitives. The quantum cost of Toffoli-3

is 5 as it required 5 quantum primitives for implementation.

Figure 3. Toffoli-3 gate with Quantum Primitives

The mobility of gates is determined by the moving rule

that relies on the following property [24]:

Property 1: Two adjacent gates g1 and g2 with controls c1
and c2 and targets t1 and t2 can be interchanged if c1∩t2 = ∅
and c2 ∩ t1 = ∅.

To prove this property, consider Fig. 3 where gates g1 and

g2 with controls x3 and x3 and targets x1 and x2 can be

interchanged because x3 ∩ x2 = ∅ and x3 ∩ x1 = ∅. After

that, gates g1 and g3 with controls x3 and x2 and targets x1

and x1 can be interchanged because it satisfies the condition.

In this way, gate g1 can be moved anywhere in the circuit.

A gate between any two qubits would mean an immediate

direct interaction between any two qubit in the circuit, which

is physically impossible some technology such as Ion Trap

due to space separation [21], [22]. In the simplest case, all

ions in Ion Trap are placed linearly (as a One-Dimensional

vector). Every qubit can interact with at most one neighbor

above and one neighbor below. This physical constraint

of 2-neighbor quantum layout of the substrate has much

influence on practical designs. Fig.4 shown the LNN circuit

for Toffoli-3 with quantum cost 9 which is however quite

expensive. It has 9 2x2 gates in 2-neighbors-only topology

after the minimization of certain gates. Conventional way

to calculate the quantum cost of the gate as a function of

number of inputs regardless of what is the distance of the

qubits used in this gate. This is not accurate when the circuit

is realized in linear Ion Trap technology. Nor is it good for

quantum optics or NMR technology that is currently in use.

There are other ways to realize this gate in layout, even

without ancilla bit. They are however even more expensive

when realized in linear Ion Trap.

Figure 4. Toffoli-3 gates when mapped to linear-neighborhood quantum
array

III. PROPOSED MODEL

A. Half Adder

Reversible half adder is implemented with two reversible

gates of which one Toffoli-3 and one NOT gate is shown

in Figure 5(a) [25]. The number of garbage outputs is one

represented as G and garbage input is one represented by

logical zero. The equation of the half adder is as follows.

Sum = A⊕B

Cout = AB

The elementary quantum gate realization is shown in Figure

5(b). Initial quantum cost of the elementary quantum gate

realization of half adder circuit is six. After optimized

the circuit shown in figure 5(b) quantum cost is four as

it requires two controlled-V gates each costing one, one

Controlled-V † gate with costing one and one NOT gate with

cost one which is shown in figure 5(c). This would be fine

if every two qubits can interact directly but they cannot.

So we required to transform Figure 5(c) to an LNN circuit.

To obtain the LNN circuits we use swap gate. Finally we

optimized the LNN circuits using quantum primitives rules

34 Int'l Conf. Foundations of Computer Science | FCS'16 |

ISBN: 1-60132-434-0, CSREA Press ©

such as splitting, merging and deletion rules and also used

gate library [19]. The final circuit for the half adder from

Figure 5(d) is then shown in Figure 5(e). The quantum cost

of LNN based half adder is 6 which is however expensive

than previous one.

Figure 5. (a) reversible half adder using reversible gate, (b) elementary
quantum gate realization, (c) optimized quantum circuit, (d) LNN realiza-
tion of optimized quantum circuit, and (e) optimized LNN realization

B. Full Adder

The design of reversible full adder with two Toffoli-3

gates and two NOT gates is as shown in Figure 6(a) [25].

The three inputs are A, B and Cin and the outputs are Sum

and Cout. The number of garbage input is one represented

by logical zero. The garbage outputs are two represented by

G. The equation of the full adder circuit is as follows.

Sum = A⊕B ⊕ Cin

Cout = AB ⊕ (A⊕B)Cin

Initial quantum cost of the elementary quantum gate real-

ization full adder circuit is eight. After optimized the adder

circuit, quantum cost is six as it requires three Controlled-

V gates each costing one, one Controlled-V † gate with

costing one and two NOT gate with cost one which is shown

in Figure 6(b). If we observe the optimized elementary

quantum gate realization of full adder circuit we can see that

gate 3 and gate 5 cannot interact directly. So we required

to transformations Figure 6(b) to create LNN circuits. We

obtained LNN circuits by using swap gate which is shown

in Figure 6(c). Finally we optimized the LNN circuits

using quantum primitive rules such as splitting, merging

and deletion rules and also using gate library [19]. The

rectangle box represents single gate which is obtained from

gate library. The final optimized circuit for the full adder

from Figure 6(c) is then shown in Figure 6(d). The quantum

cost of LNN based full adder circuit is ten. Our main goal

is to build n-bit adder circuit with LNN architecture. We

can build n-bit adder circuit by integrating the full adder

and half adder. We found that to build n-bit adder circuit

with LNN architecture the final optimized LNN circuit

for full adder shown in Figure 6(d) not satisfy the LNN

restrictions when integrate with half adder or full adder.

To satisfy the LNN restrictions we modify the design of

full adder by moving line shown in Figure 7(a). Optimized

quantum circuit using elementary quantum gate realization

is shown in Figure 7(b). LNN realization of the optimized

quantum circuit and optimized LNN circuit are shown in

Figure 7(c) and 7(d) respectively. The new quantum cost of

the modified optimized LNN realization is sixteen which is

however expensive than the previous realization. But the new

optimized LNN realization is maintain the LNN restriction.

Figure 6. (a) reversible full adder using reversible gate, (b) optimized
quantum circuit, (c) LNN realization of optimized quantum circuit, and (d)
optimized LNN realization

Figure 7. After moving Cin(a) reversible full adder using reversible gates,
(b) optimized quantum circuit, (c) LNN realization of optimized quantum
circuit, and (d) optimized LNN realization

Table II
QUANTUM COST OF ADDER CIRCUITS WITHOUT LNN ARCHITECTURE

Half Full
Adder Adder

Quantaum
Cost 4 6

Table III
QUANTUM COST OF ADDER CIRCUITS WITH LNN ARCHITECTURE

BEFORE AND AFTER OPTIMIZATION

Half Adder Full adder Full adder
(Modified)

Before After Before After Before After

Quantaum
Cost 10 6 18 10 24 16

C. Reversible n-bit binary adder

Integrating the optimized LNN circuit of half adder and

full adder, reversible n-bit adder can be constructed [25].

First we construct the n-bit adder using reversible gates

Int'l Conf. Foundations of Computer Science | FCS'16 | 35

ISBN: 1-60132-434-0, CSREA Press ©

which shown in Figure 8(a) for n-bit adder and Figure 9(a)

for n-bit adder with Cin. Note that in both adders the carry

is propagated immediately from one stage to the next. This

property helps to construct a fast n-bit adder to reducing

the circuit delay by immediately propagating the carry-out.

Figure 8(b) and 9(b) show the n-bit adder circuits using

LNN model for Figure 8(a) and 9(a) respectively. Table V

shows the results of the n-bit adder in terms of quantum

cost. As we discussed in the previous sections, we use new

optimized LNN realization of full adder circuit to build

the n-bit adder circuit with LNN architecture due to the

LNN restrictions. It will increase the quantum cost of the

n-bit adder circuit but this circuit is applicable in the recent

technologies. We also tried to design full adder with different

line arrangement but our new design shows the better result

than other arrangement.

Figure 8. (a) reversible n-bit adder, (b) and optimized LNN realization
of reversible n-bit adder

Figure 9. (a) reversible n-bit adder using full adder with Cin, (b) and
optimized LNN realization of reversible n-bit adder with Cin

Table IV
RESULT OF n-BIT ADDER WITHOUT LNN ARCHITECTURE

N -bit Adder N -bit Adder
with Cin

Quantaum
Cost 6n − 2 6n

Table V
RESULT OF n-BIT ADDER WITH LNN ARCHITECTURE

N -bit Adder N -bit Adder with Cin

Before After Before After

Quantaum
Cost 24n − 14 16n − 10 24n 16n

IV. RESULT ANALYSIS

There are many existing designs of reversible full adder

circuits which mainly concentrate the quantum cost in terms

of the number of elementary quantum gates required to

design. They assume that there can exist a gate located

between any two qubits, even if these qubits are located

far away in physical space one from another. This as-

sumption was accepted in a theoretical framework but from

a practical point of view and with respect to particular

technologies (such as Ion trap) creating gates on arbitrary

qubits is not only extremely difficult but also cost ineffective;

each gate has to be properly converted and realized in an

LNN architecture. Considering the physical constraint we

proposed new design for n-bit adder circuits. It has been

shown that the quantum cost of LNN circuits are higher

that non LNN circuits. The Tables III and V show the

result of our proposed model. Tables II and III show the

quantum cost of adder circuits without LNN architecture

and with LNN architecture before and after optimization

respectively. Without LNN the quantum cost of half adder

and full adder is 4 and 6 respectively which is the best

known result till now. To make this circuit applicable for

the LNN architectures, SWAP gates are applied for the each

non-adjacent quantum gate. More precisely, SWAP gates are

added in front of gate with non-adjacent control line to move

the control line of gate towards the target line until they

become adjacent. We can move the target line towards the

control line until they become adjacent as well. Afterwards,

SWAP gates are added to restore the original ordering of

circuit lines. The initial quantum cost of the LNN circuit

was 10 but after optimization we obtain a quantum cost of

6. Similar way, the quantum cost of the initial LNN circuit of

full adder was 18 and after optimization the quantum cost is

10. However, to build n-bit adder circuit we need to satisfy

the LNN restriction. To do so we modify the design of full

adder by moving line which we already discussed earlier

section. In Table III, the last two columns show the result of

the modified design of full adder circuit. The initial quantum

cost of the LNN circuit was 24 but after optimization we

obtain a quantum cost of 16. However, as can easily be

seen, synthesizing quantum circuits for LNN architectures

using this method often leads to a significant increase in the

quantum cost but, from the practical point of view and with

respect to particular technologies this circuit is applicable.

Table IV and V show the result of n-bit adder circuits with

and without LNN architecture.

36 Int'l Conf. Foundations of Computer Science | FCS'16 |

ISBN: 1-60132-434-0, CSREA Press ©

V. CONCLUSIONS

This paper presents reversible adders for n-bit using LNN

architecture which should be used in quantum optics, linear

Ion Trap, NMR and similar technologies where every qubit

can interact with at most one neighbor above and one neigh-

bor below. This physical constraint of 2-neighbor quantum

layout of the substrate has much influence on practical

designs. We also have shown that to design n-bit adder

circuit we need to design full adder by line reordering, which

leads to a significant increase in the quantum cost. With

respect to practical point of view and recent technologies this

circuit is applicable. In future, the design can be extended to

other different types of Adder/Subtractor unit, Multipliers,

Dividers and finally full phase low power Reversible ALUs

for recent technologies such as quantum optics, linear Ion

Trap, NMR where LNN architecture has much influence on

practical designs.

REFERENCES

[1] R. Landauer, “Irreversibility and Heat Generation in the
Computing Process ”, IBM J. Research and Development, vol.
3, pp. 183-191, July 1961.

[2] C. Bennett, “Logical Reversibility of Computation ”, IBM
Journal of Research and Development, vol. 17, pp. 525-532,
1973.

[3] A. Mischenko and M. Perkowski, “Logic synthesis of re-
versible wave cascades ”, Proceedings of IWLS, pp. 197-202,
2002.

[4] A. Khlopotine, M. Perkowski, and P. Kerntopf “Reversible
logic synthesis by gate composition ”, Proceedings of IWLS,
pp. 261-266, 2002.

[5] D. M. Miller, D. Maslov, and G. W. Dueck, “ Synthesis of
quantum multiple-valued circuits”, Journal of Multiple-Valued
Logic and Soft Computing, vol. 12, no. 5-6, pp. 431-450, 2006.

[6] G. Yang, W. Hung, X. Song, and M. Perkowski, “Majority-
based reversible logic gates ”, Theoretical Computer Science,
vol. 334, no. 1-3, 2005.

[7] W. N. N. Hung, X. Song, G. Yang, J. Yang, and M. Perkowski,
“Optimal synthesis of multiple output boolean functions using
a set of quantum gates by symbolic reachability analysis ”,
IEEE Transaction on Computer-Aided Design of Integrated
Circuits and systems, vol. 25, no. 9, pp. 1652-1663, 2006.

[8] N. Alhagi, M. Hawash, and M. Perkowski, “Synthesis of
Reversible Circuits for Large Reversible Functions ”, Facta
Universitais, Series: Electronics and Energetics, vol. 24, no. 3,
pp. 273-289, December 2010.

[9] Lihui Ni, Zhijin Guan, and Wenying Zhu, “A General Method
of Constructing the Reversible Full-Adder ”, Third Interna-
tional Symposium on Intelligent Information Technology and
Security Informatics, pp. 109-113, 2010.

[10] Irina Hashmi and Hafiz Md. Hasan Babu, “An Efficient
Design of a Reversible Barrel Shifter ”, Twenty Third Inter-
national Conference on VLSI Design, pp. 93-98, 2010.

[11] H Thapliyal and N Ranganathan, “Design of Reversible
Latches Optimized for Quantum Cost, Delay and Garbage Out-
puts ”, Proceedings of Twenty Third International Conference
on VLSI Design, pp. 235-240, 2010.

[12] Vlatko Vedral, Adriano Barenco, and Artur Ekert, “Quantum
networks for elementary arithmetic operations ”, Physical
Review A, 54(1):147-153, Jul 1996.

[13] S. Cuccaro, T. Draper, S. Kutin, and D. Moutlon, “A new
quantum ripple-carry addition circuit ”, quant-ph/0410184,
2004.

[14] Yvan Van Rentergem and Alexis De Vos, “Optimal Design
of a Reversible Full Adder ”, International Journal of Uncon-
ventional Computing, vol. 1, pp. 339-355, 2005.

[15] A. Fowler, S. Devitt, and L. Hollenberg, “Implementation of
shors algorithm on a linear nearest neighbor qubit array ”,
Quantum Information and Computation, vol. 4, no. 4, pp. 237-
251, 2004.

[16] Y. Takahashi, N. Kunihiro, and K. Ohta, “The quantum
fourier transform on a linear nearest neighbor architecture ”,
Quantum Information and Quantum Computation, vol. 7, no.
4, pp. 383-391, 2007.

[17] D. Chang, D. Maslov, and S. Severini, “Translation
techniques between quantum circuits architecture ”,
http://www.iqc.ca/severin/qipabs.pdf.

[18] W. Hung, X. Song, G. Yang, J. Yang, and M. Perkowski,
“Optimal synthesis of multiple output Boolean functions using
a set of quantum gates by symbolic reachability analysis ”,
Transactions on Computer Aided Design, vol. 25, no. 9, pp.
1652-1663, 2006.

[19] M. B. Ali, T. Hirayama, K. Yamanaka and Y. Nishitani, “
New Two- Qubit Gate Library with Entanglement ”, Note on
Multiple-Valued Logic in Japan, Vol.38, No.1, (8):1-8, 12-13,
September, 2015.

[20] M. B. Ali, T. Hirayama, K. Yamanaka and Y. Nishitani,
“Quantum Cost Reduction of Reversible Circuits Using New
Toffoli Decomposition Techniques ”, International Conference
on Computational Science and Computational Intelligence
(CSCI’15), pp. 59-64 Las Vegas, USA, December 7-9, 2015.

[21] J. Cirac and P. Zoller, “Quantum computation with cold
trapped ions ”, Physical Review letters, vol. 74, no. 20, p.
4091, 1995.

[22] D. Wineland and T. Heinrichs, “Ion trap approaches to
quantum information processing and quantum computing ”,
A Quantum Information Science and Technology Roadmap,
vol. N/A,2004.

[23] M. M. Rahman, “Synthesis of Reversible Logic ”, Doctor
of Philosophy, In the Graduate Academic Unit of Faculty
of Computer Science, The University of New Brunswick,
December, 2014.

[24] D.Miller R. Wille and R. Drechsler, “Reducing reversible
circuit cost by adding lines”, IEEE International Symposium
on Multiple-Valued Logic, pp. 217-222, 2010.

[25] R. Feynman, “Quantum mechanical computers”, Optics

News 11, pp. 11-20, 1985.

Int'l Conf. Foundations of Computer Science | FCS'16 | 37

ISBN: 1-60132-434-0, CSREA Press ©

Oscillation Model for Network Dynamics Caused by
Asymmetric Node Interaction Based on the

Symmetric Scaled Laplacian Matrix

Masaki Aida
Graduate School of System Design

Tokyo Metropolitan University

Hino-shi 191–0065, Japan

Email: aida@tmu.ac.jp

Chisa Takano
Graduate School of Information Sciences

Hiroshima City University

Hiroshima-shi 731–3194, Japan

Email: takano@hiroshima-cu.ac.jp

Masayuki Murata
Graduate School of Information Sciences

Osaka University

Suita-shi 565–0871, Japan

Email: murata@ist.osaka-u.ac.jp

Abstract—Since recent development and dissemination of
ICTs activate information exchange on social networks, the
dynamics for describing propagation of activities on the networks
has became an interesting research object. This paper proposes an
oscillation model describing the propagation of activities on social
and information networks. In order to analyze such dynamics, we
generally need to model asymmetric interaction between nodes.
This paper discusses a symmetric matrix-based model that can
describe some types of link asymmetry. Although the proposed
model is simple, it can reproduce well-known indices of node
centrality and can be considered as the underlying mechanism
of network dynamics. As an application of the proposed model,
we show a framework to estimate natural frequency of networks
by utilizing resonance.

Keywords—Laplacian matrix, coupled oscillators, node central-
ity, resonance

I. INTRODUCTION

Information exchange on social networks is being activated
by the popularity of information networks. So, complex dy-
namics for describing propagation of activities on the social
and information networks is a rich source of research topics.
In complex network analysis, there are a lot of indices that
can describe the characteristics of networks, including degree
distribution, clustering coefficient, and many kinds of node
centralities [1], [2], [3].

Spectral graph theory is a key approach for investigating
the structure of networks [4], and the eigenvalues and the
eigenvectors of the Laplacian matrix are important when inves-
tigating network structure. Spectral graph theory is applicable
to many problems including clustering of networks, graph
drawing, graph cut, node coloring, and image segmentation [4].
One of the most significant properties of spectral graph theory
is the fact that we can introduce graph Fourier transforma-
tion [6], [7], which is the diagonalization of the Laplacian
matrix. The advantage of graph Fourier transformation can be
found in its ability to decompose network dynamics into scales
appropriate for the network’s structure. As a result, complex
network dynamics can be understood as the superposition of
simple dynamics for each Fourier mode, and network dynamics
can be completely understood algebraically.

However, the decomposition of dynamics into Fourier
modes is effective only if the Laplacian matrix is symmetric.

This is because symmetric matrices always can be diago-
nalized. User dynamics on a social or information networks
is generated by the interaction of nodes on the networks.
This interaction is generally asymmetric. In other words, the
actions between nodes depend on the direction of links. To
represent asymmetric actions on links, directed graphs are
frequently used. Since the structure of a directed graph is
normally expressed by an asymmetric matrix, graph Fourier
transformation cannot be applied.

One proposal on spectral graph theory for directed graphs
transforms asymmetric Laplacian matrixes in Jordan canonical
form via elementary transformation [8], [9]. However, since
asymmetric Laplacian matrices cannot always be diagonalized,
decomposition of the dynamics into simple Fourier modes
remains unavailable.

This paper focuses on some types of link asymmetry that
can be represented as node characteristics, and represents the
structure of a directed graph by a symmetric scaled Lapla-
cian matrix. In addition, we analyze oscillation dynamics on
networks to describe the propagation of activities on directed
networks by using symmetric scaled Laplacian matrixes.

Typical examples of the asymmetric interaction of links
include the relationship between a popular blogger and the fol-
lowers. The strength of the interaction between them depends
on the direction of links, and the strength of activity propa-
gation on links is asymmetric. However, link directionality in
this case can be reduced to node characteristics. Furthermore,
since similar relations frequently appear in human relations,
we expect that various asymmetric links on networks can
be analyzed in terms of node characteristics. By using a
symmetric matrix to model asymmetric links, we can apply
graph Fourier transformation based on the symmetric scaled
Laplacian matrix and thus analyze oscillation dynamics on
asymmetric networks. Our framework adopts the mass of the
node as the node characteristic.

In our model, oscillation dynamics on directed networks
can be expressed by the equation of motion of the harmonic
oscillator for each Fourier mode. Since the phase of the
oscillation cannot be determined by the equation of motion,
oscillation dynamics may exhibit complicated behavior that
inhibits any intuitive understanding. Our solution is to use
the oscillation energy of each node, a phase-free index, to

38 Int'l Conf. Foundations of Computer Science | FCS'16 |

ISBN: 1-60132-434-0, CSREA Press ©

represent the strength of node activity. In simple cases, the
oscillation energy can reproduce well-known node centralities
of the degree centrality and the betweenness centrality. In
general, the oscillation energy depends on the propagation
attributes of network activity. Therefore, the oscillation energy
is an extended notion of the well-known node centrality. So,
we can expect that the proposed oscillation model is the
underlying mechanism of activity propagation on networks.

Since the oscillation energy can be measured as the strength
of node activity, the way of the usage of the measured value
of energy is important for applications. We introduce models
that describe the damped oscillation and the forced oscillation
on networks. As an application, we propose a method for
estimating the eigenvalues of the scaled Laplacian matrix;
called the network resonance method. The network resonance
method can estimate the eigenvalues by applying resonance of
the forced oscillation on networks even if components of the
scaled Laplacian matrix is not known.

This paper is organized as follows. In Section II, after
defining the Laplacian matrix for directed networks, we intro-
duce a scaled Laplacian matrix that allows asymmetric node
interactions to be described by a symmetric matrix. In Sec. III,
we analyze oscillation models to describe the propagation
of node activity on networks by using the scaled Laplacian
matrix. In Sec. IV, we propose the oscillation energy of each
node as an extended index of node centrality and discuss the
relationship to the well-known node centralities. In Sec. V, we
propose the network resonance method to estimate eigenvalues
of the scaled Laplacian matrix. Finally, we conclude this paper
in Sec. VI.

II. SCALED LAPLACIAN MATRIX FOR DESCRIBING

ASYMMETRIC LINK DIRECTION

A. Definition of the Laplacian Matrix

Network structure is frequently expressed as a matrix. Let
us consider loop-free directed graph G with n nodes. Let the
set of nodes be V = {1, 2, . . . , n} and the set of directed links
be E. In addition, let the link weight for link (i → j) ∈ E
be wij > 0. We define the following n × n square matrix
A = [Aij] as

Aij :=

{
wij ((i → j) ∈ E),
0 ((i → j) �∈ E).

(1)

This matrix represents link presence and weights, and is called
the (weighted) adjacency matrix.

Next, we define the weighted out-degree, di, of node i
(i = 1, 2, . . . , n) as

di :=
∑
j∈∂i

wij , (2)

where ∂i denotes the set of nodes adjacent to node i. Also,
weighted out-degree matrix D is defined as

D := diag(d1, d2, . . . , dn).

If all link weights are wij = 1 for ∀(i → j) ∈ E, di is reduced
to out-degree, i.e. the number of outgoing links from node i.

Based on the above preparation, we define the Laplacian
matrix L of directed graph G as follows [4], [5].

L := D −A. (3)

The Laplacian matrix is also called the graph Laplacian.

B. Symmetrization of Laplacian Matrix and the Scaled Lapla-
cian Matrix

Let us consider left eigenvectors tm and their eigenvalues
λ as

tmL = λ tm. (4)

If there is a (left) eigenvector tm = (m1, m2, . . . , mn)
associated with eigenvalue λ = 0, and mi > 0 satisfies

mi wij = mj wji (≡ kij), (5)

then the link asymmetry of L can be expressed by using a
symmetric Laplacian matrix. Note that the oscillation dynamics
discussed in the following sections satisfies these conditions.
The procedure to represent L by a symmetric matrix is shown
as follows. First, we consider a undirected graph and introduce
its Laplacian matrix L as L := D − A, where A = [Aij] is
defined as

Aij :=

{
kij ((i, j) ∈ E),
0 ((i, j) �∈ E),

(6)

and D = diag(
∑

j A1j ,
∑

j A2j , . . . ,
∑

j Anj). Since kij =
kji, L is a symmetric Laplacian matrix for a certain undirected
graph. By using L, the asymmetric Laplacian matrix L is
expressed as

L = M−1 L, (7)

where M := diag(m1, m2, . . . , mn) means the scaling fac-
tors of nodes. Figure 1 shows a simple example of the above
procedure: where wij = kij/mi is decomposed into 1/mi and
kij .

Here, we introduce the scaled Laplacian matrix that is
defined as

S := M−1/2 LM−1/2. (8)

Note that S is a symmetric matrix. Let x = t(x1, x2, . . . , xn)
be a (right) eigenvector associated with an eigenvalue λ, that is,
Lx = λx. By multiplying M+1/2 to the eigenvalue equation
from the right, we obtain

M+1/2 Lx = S (M+1/2 x) = λ (M+1/2 x). (9)

3
1 4

22

2

1

1

1

3
11

3
3L =

⎡
⎢⎢⎣

4 −3 −1 0
−2 4 −1 −1
−2 −3 6 −1
0 −3 −1 4

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

4 −6/2 −2/2
−6/3 −3/3
−2/1 −3/1 −1/1

0

⎤
⎥⎥⎦

0
4 −3/3

6
−3/1 −1/1 4

=

⎡
⎢⎢⎣
1/2

0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

8 −6 −2
−6 −3 −3
−2 − −1
0 −3 −1

⎤
⎥⎥⎦

1/3
0
0

0
0

0

0
1
0

1
0

00
0 12

3 6
4

0

3
1 4

2
6

2

3

3

1
2 1

1

3symmetrization

asymmetrization

Fig. 1. An example of the Laplacian matrix for a directed graph and its
symmetrization.

Int'l Conf. Foundations of Computer Science | FCS'16 | 39

ISBN: 1-60132-434-0, CSREA Press ©

This means the scaled Laplacian matrix S has the same
eigenvalues of L, and its eigenvector is y := M+1/2 x. Since
the quadratic form of S is

ty S y =
∑

(i,j)∈E

kij

(
yi
mi

− yj√
mimj

)2

≥ 0,

the eigenvalues of S (also L) are nonnegative. Let us sort the
eigenvalues in ascending order,

0 = λ0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λn−1.

We can choose eigenvector vμ (μ = 0, 1, . . . , n − 1) as the
orthonormal eigenvector associated with λμ. That is,

S vμ = λμ vμ, vμ · vν = δμν , (10)

where δμν denotes the Kronecker delta.

III. OSCILLATION MODELS ON NETWORKS

A. Oscillation Model Based on Asymmetric Interactions

To describe the propagation of activity of a node through
networks, let us consider oscillation dynamics on networks.
The relationship between the oscillating phenomena and well-
known indices for network dynamics is be discussed in
Sec. IV.

Let weight xi of node i be displacement from the equi-
librium, and let its restoring force be proportional to the
difference in the displacements of adjacent nodes. Figure 2
is a representative image of our oscillation model. Although
the figure shows a 1-dimensional network, it is easily extended
to general networks. To represent diverse oscillating behavior,
we allow the spring constant of each link to be different and
the mass of each node to also be different.

Here, it is worthy to note about the validity of oscillation
model whose restoring force is proportional to the difference of
displacements. Let the restoring force of node i be a function
f(Δx) of the difference Δx := xi − xj of the displacements
of adjacent nodes i and j. It is natural to assume f(Δx) = 0
if Δx = 0. For small Δx, we can expand f(Δx) as

f(Δx) = −kij Δx+O(Δx2),

where kij is a positive constant corresponding to the spring
constant. So, our oscillation model can be considered as the
basic and universal model if nonlinear effects in O(Δx2) are
relatively small.

Incidentally, there is a well-known oscillation model, called
the Kuramoto model (Fig. 3)[10]. This model consists of the
same (or similar) oscillators coupled by weak interaction, and
mainly describes the synchronization of these oscillators. Thus
our oscillation model differs from Kuramoto model.

We assign a spring constant to each link and express it as
link weight kij > 0. In addition, we assign mass mi > 0 to
each node i. Let xi be the displacement of node i and pi be
its conjugate momentum. Then, Hamiltonian H of our coupled
oscillator system is expressed as

H :=
∑
i∈V

(pi)
2

2mi
+

∑
(i,j)∈E

kij
2

(xi − xj)
2

=
∑
i∈V

(pi)
2

2mi
+

1

2
(txLx).

equilibrium

i

xi

j

xj

Fig. 2. Oscillation model on networks.

weak interaction

Fig. 3. Kuramoto model.

By applying canonical formalism, the equations of motion are
derived as follows.

dpi
dt

= −∂H
∂xi

= −
n∑

j=1

Lij xj ,
dxi

dt
=

∂H
∂pi

=
pi
mi

.

By eliminating pi from these equations, we have the following
wave equation as the equation of motion,

mi
d2xi

dt2
= −

n∑
j=1

Lij xj ,

or written in vector form as

M
d2x

dt2
= −Lx, (11)

where M := diag(m1, . . . , mn) and x := t(x1, . . . , xn). By
multiplying M−1 from the left, we have the equation of motion
as

d2x

dt2
= −M−1 Lx = −Lx; (12)

note that it is based on asymmetric interactions. To diagonalize
the equation of motion, we introduce vector y which is defined
by

y = M1/2 x,

and the equation of motion can be written as

d2y

dt2
= −S y. (13)

It follows that the equation of motion will yield the eigenvalue
problem of the symmetric scaled Laplacian matrix, and node
mass can be understood as the node scaling factor. Node
mass can represent the strength of inertia, and is related to
the strength of the asymmetric influence to adjacent nodes.
In addition, the spring constant of links can represent the
strength of influence between each pair of adjacent nodes.
Furthermore, the condition (5) corresponds to Newton’s 3rd

40 Int'l Conf. Foundations of Computer Science | FCS'16 |

ISBN: 1-60132-434-0, CSREA Press ©

law (about equivalency of the strength between an action and
its reaction).

Let y = y(t) be expanded by the eigenbasis of S, vμ,

as y(t) =
∑n−1

μ=0 aμ(t)vμ and solve the equation of motion

for the Fourier mode aμ(t) (μ = 0, 1, . . . , n − 1). The
procedure of expansion by eigenbasis is known as graph
Fourier transformation [6], [7]. The solution is given by

aμ(t) = cμ e
i (ωμ t+θμ), (14)

where ω2
μ = λμ, i =

√−1, θμ denotes phase, and cμ is a
constant. The solution of oscillation on networks (the solution
of (12)) is expressed as

x(t) = M−1/2

(
n−1∑
μ=0

cμ e
i (ωμ t+θμ) vμ

)
. (15)

Note that the phase cannot be determined by the equation of
motion, but the oscillation behavior varies widely with the
phase. Consequently, to understand the universal aspect of
oscillation dynamics, a kind of phase-free index is required.
This issue is discussed in Sec. IV.

B. Damped Oscillation Model

In actual situations, any oscillation is damped with time.
This subsection shows a model for the damped oscillation on
networks.

Let us consider the equation of motion for the damped
oscillation

M
d2x(t)

dt2
+ γM

dx(t)

dt
= −Lx(t), (16)

where γ is a constant. Here γM means the viscous damping
coefficient, where it is important to note that the viscous
damping coefficient is assumed to be proportional to node
mass. By using vector y = M1/2 x, we can diagonalize the
equation of motion as

d2y(t)

dt2
+ γ

dy(t)

dt
= −S y(t).

The equation of motion for Fourier mode aμ(t) is expressed
as

d2aμ(t)

dt2
+ γ

daμ(t)

dt
+ ω2

μ aμ(t) = 0, (17)

where ω2
μ = λμ. To analyze the solution of this equation,

we assume the solution takes the form of aμ(t) ∝ eαt. By
substituting this into the equation of motion, we obtain the
characteristic equation

α2 + γα+ ω2
μ = 0. (18)

There are three different solutions to the equation of motion
according to the solution of the characteristic equation, α =

−(γ/2) ±
√

(γ/2)2 − ω2
μ. In the case of (γ/2)2 < ω2

μ, the

solution describes damped oscillations,

aμ(t) = cμ e
−(γ/2)t cos

[√
ω2
μ − (γ/2)2 t+ θμ

]
, (19)

where cμ and θμ are constants. In the case of (γ/2)2 = ω2
μ,

the solution describes critical damping,

aμ(t) = (aμ(0) + cμ t) e
−(γ/2) t, (20)

where cμ is a constant. Finally, in the case of (γ/2)2 > ω2
μ, the

solution describes overdamping. Let α+ and α− (both values
are negative) denote the solutions of the characteristic equation,
the solution of the equation of motion is

aμ(t) = c+μ eα+t + c−μ eα−t, (21)

where c+μ and c−μ are constants.

C. Forced Oscillation Model

This subsection introduces a forced oscillation model on
networks. Let us consider the situation that we impose forced
oscillation with angular frequency ω on a certain node, j, as an
external force. The equation of motion of the forced oscillation
is

M
d2x

dt2
+ γM

dx(t)

dt
+ Lx(t) = (F cosωt)1{j}, (22)

where F is a constant and 1{j} is only the j-th component
that is 1, all other components are 0, that is,

1{j} = t(0, . . . , 0,

j
∨
1, 0, . . . , 0).

By using vector y = M1/2 x, the equation of motion can be
diagonalized as

d2y(t)

dt2
+ γ

dy(t)

dt
+ S y(t) =

F cosωt√
mj

1{j}. (23)

Since y(t) depends on ω, we redefine y(ω, t) := y(t). By
expanding y(ω, t) and 1{j} using the eigenbasis of the scaled
Laplacian matrix S, we introduce the Fourier modes aμ(ω, t)
and bμ as

y(ω, t) =

n−1∑
μ=0

aμ(ω, t)vμ, 1{j} =

n−1∑
μ=0

bμ vμ. (24)

The equation of motion of Fourier mode aμ(ω, t) is expressed
as

∂2aμ(ω, t)

∂t2
+ γ

∂aμ(ω, t)

∂t
+ ω2

μ aμ(ω, t) =
F cosωt√

mj
bμ

(25)

The solution of the inhomogeneous equation (25) is the
sum of the solutions of the corresponding homogeneous equa-
tion (17) and the particular solution of (25). Since the solution
of homogeneous equation (17) is dampened with time, only
the oscillation of the particular solution of (25) remains after
some long time. Since the angular frequency of the particular
solution should be ω, the particular solution can be expressed
as

aμ(ω, t) = Aμ(ω) cos(ωt+ θμ)

= Aμ(ω)(cosωt cos θμ − sinωt sin θμ). (26)

Int'l Conf. Foundations of Computer Science | FCS'16 | 41

ISBN: 1-60132-434-0, CSREA Press ©

1

2 3

4

5 7

6

8 9

10 11 12

13

14

15

16

1817

19

20

21 22

23

Fig. 4. Network model.

By substituting it into the equation of motion (25), the ampli-
tude Aμ(ω) and phase θμ of the particular solution are obtained
as

Aμ(ω) =
F bμ√
mj

1√
(ω2

μ − ω2)2 + (γ ω)2
, tan θμ =

−γ ω

ω2
μ − ω2

.

(27)

IV. NODE CENTRALITY

As shown in Sec. III-A, the wave equation (12) cannot
describe the phase of oscillations. Since the behavior of
oscillating phenomenon has extremely different appearance if
the phase changes, it is hard to extract useful information
from direct observation of oscillating aspects. Of course, since
aμ(t) of (14) is a complex-valued function, the value of aμ(t)
cannot be observed in actual networks. This section introduces
the oscillation energy of each node as a non-negative-valued
phase-free index, and shows that it can reproduce the well-
known indices of node centrality. This means that our oscilla-
tion model can be considered as an underlying mechanism of
the propagation of activities on networks.

For the oscillation model described in Sec. III-A, we define
node activity as the oscillation energy of the node. From (14),
the amplitude of the Fourier mode aμ(t) is cμ = |aμ(t)|. In
addition, let vμ be the eigenbasis associated with the eigen-
value λμ of scaled Laplacian matrix S, and let its components
be expressed as

vμ = (vμ(1), vμ(2), . . . , vμ(n)).

Since the oscillation of node i is the superposed oscillations
for Fourier modes of the node, the oscillation energy Ei of
node i is obtained by summing the oscillation energy for each
Fourier mode, as

Ei =
1

2

n−1∑
μ=0

ω2
μ (cμ vμ(i))

2.

To demonstrate the calculation of the oscillation energy of
each node, we use the network model shown in Fig. 4, where
all the link weights are set at 1. As the initial condition of the
wave equation (12), we can give the displacement only at a
certain node. We call the node as a source node of activity.
First of all, let us consider the situation that the source node
of activity is chosen at random. In this case, all the Fourier
modes contribute at the same strength. Figures 5 (a) and (b)
are the results for evaluation of oscillation energy for each
node, for two different scaling factors (node mass): M = I
(the unit matrix) and M = D2, respectively. The condition
M = I means that the strength of interaction between nodes
is symmetric, and the condition M = D2 gives an example of

0

1

2

3

wij = 1, m =
node ID

os
ci

lla
tio

n
en

er
gy

(a) i 1

E
i

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23

node ID

0

0.1

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

os
ci

lla
tio

n
en

er
gy

0.2

0.3

wij = 1,(b) m =i di
2

E
i

23

Fig. 5. Oscillation energy for each node for the case that the source node is
at random.

0

0.1

0.2

0.3

= 1 (source node
node ID

os
ci

lla
tio

n
en

er
gy

(a))m =i 1

E
i

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23 0

0.4

0.8

1.2

= 1 ()source node 2
node ID

os
ci

lla
tio

n
en

er
gy

(b) m =i 1

E
i

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23

Fig. 6. Oscillation energy for each node for a specific source node.

asymmetric node interaction. From Fig. 5 (a), we can recognize
that the oscillation energy is proportional to the node degree
centrality (the oscillation energy for each node is proportional
to its node degree). So, Fig. 5 (b) can be regarded as an
extension of node degree centrality considering asymmetry of
node interaction.

If a certain specific node is the source of activity, node os-
cillation energy would be quite different. Figures 6 (a) and (b)
show the oscillation energy of each node for different source
nodes, 1 and 12, respectively, where the scaling factors is
chosen as M = I . The results show that the oscillation energy
strongly depends on the source node of activity. Therefore, the
oscillation energy is changed not only by network topology,
but also node mass (Fig. 5) and the propagation scenario of
activity on networks (Fig. 6). In other words, the oscillation
energy also depends on link asymmetry, and strength and
location distributions of source nodes. Since the oscillation
energy is reduced to the well-known degree node centrality in
the simplest case, the oscillation energy for each node can be
understood as an extended notion of the degree centrality.

The betweenness centrality is another well-known node
centrality. Let the number of shortest paths between node j
and node k be σjk, and the number of those paths passing
through the node i be σjk(i). The betweenness centrality g(i)
for node i is defined as

g(i) :=
∑

j, k∈V\{i}

σjk(i)

σjk
.

The normalized betweenness centrality ḡ(i) is defined as

ḡ(i) :=
2 g(i)

(n− 1) (n− 2)
.

42 Int'l Conf. Foundations of Computer Science | FCS'16 |

ISBN: 1-60132-434-0, CSREA Press ©

0

2

4

6

node ID

(a) difference from minimum energy

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23

di
ffe

re
nc

e
of

 o
sc

ill
at

io
n

en
er

gy
E

i
E

m
in

0

0.1

0.2

0.3

node ID

no
rm

al
iz

ed
 b

et
w

ee
nn

es
s

ce
nt

ra
lit

y

(b) normalized betweenness centrarity

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23

Fig. 7. Relationship between the difference of oscillation energy and the
betweenness centrality.

The physical meaning of ḡ(i) is the ratio of the number of
shortest paths including node i to the number of combination
of node pairs in V \{i}, that is (n− 1) (n− 2)/2.

Next, we set the link weight kij of the network model
shown in Fig. 4 as the number of the shortest paths passing
through the link (i, j). Figure 7 (a) shows the difference
between the oscillation energy Ei for each node and the
minimum energy Emin defined as

Emin := min
i∈V

Ei.

Figure 7 (b) shows the normalized betweenness centrality ḡ(i)
for each node. We can recognized that the difference between
the oscillation energy is proportional to the betweenness
centrality. From the same reason for degree centrality, the
oscillation energy Ei gives an extension of the well-known
betweenness centrality.

The oscillation energy gives extensions of node centralities
even if we consider the damped oscillation on networks.
Detailed discussion is presented in [11].

V. NETWORK RESONANCE METHOD FOR INVESTIGATING

THE EIGENVALUES OF NETWORK DYNAMICS

Since the actual structure of a network is difficult to know,
it is almost impossible to measure components of the scaled
Laplacian matrix S, directly. For example, in social networks,
the strength and significance of friendships (links) are hard to
observe. Thus the eigenvalues of S, the key to describing the
oscillation dynamics on networks, cannot be calculated from
S. However, since the oscillation energy is related to the node
centrality that is the strength of activity of node on networks,
we probably be able to measure the oscillation energy as a
real solid object. The oscillation energy is related to the natural
frequency and the amplitude. In this section, we discuss a way
to estimate natural frequency (square root of eigenvalue) of
S from observation of the amplitude that is obtained from
observation of the oscillation energy.

As recognized from discussion in Sec. III-C, amplitude
Aμ(ω) of (27) takes maximal value at

ω =
√

ω2
μ − γ2/2.

This phenomenon is called the resonance. When we observe
the oscillation of a node caused by forced oscillation, the
mixture of oscillation (26) for each μ, that is, y(ω, t) of the

angular frequency of the forced oscillation

ob
se
rv
ed
 a
m
pl
itu
de

freqency of a peak

peak

ω+ω−

γ

ω2
μ − γ2/2 ωμ

A ω2
μ − γ2/2

√
2
A ω2

μ − γ2/2

μ
μ

A
ω

ω

1

Fig. 8. Concept of network resonance.

first equation of (24) is observed. We propose a method to
estimate eigenvalue λμ (or ωμ =

√
λμ) and damping factor γ

from observations of the amplitude A(ω) := |y(ω, t)| of the
response oscillation (Fig. 8). In actual, the amplitude A(ω) is
indirectly obtained from observations of oscillation energy.

The Q-factor represents the sharpness of amplitude Aμ(ω)
with respect to ω. On both sides of the peak of amplitude
Aμ(ω), we define frequencies ω+

μ and ω−
μ that give the

amplitudes Aμ(ω
+
μ) and Aμ(ω

−
μ) that are 1/

√
2 times the

peak value of Aμ(ω) (ω+
μ > ω−

μ). Since oscillation energy is

proportional to the square of the amplitude, ω+
μ − ω−

μ means
the half width for energy. The Q-factor is defined as

Qμ :=

√
ω2
μ − γ2/2

ω+
μ − ω−

μ
.

We assume γ
 ωμ and approximate Aμ(ω) around ω =
ωμ. By using ω2 − ω2

μ � 2ωμ (ω − ωμ),

Aμ(ω) � F bμ√
mj

1√
(2ωμ (ω − ωμ))2 + (γ ωμ)2

=
F bμ√
mj ωμ

1√
4 (ω − ωμ)2 + γ2

. (28)

Therefore,

Aμ(ωμ) � F bμ√
mj ωμ γ

, Aμ(ωμ ± γ/2) � 1√
2
Aμ(ωμ),

and we have ω±
μ = ωμ±γ/2 (double-sign indicates correspon-

dance). Consequently, we have

Qμ � ωμ

γ
. (29)

These relations enable us to estimate natural frequency ωμ (or
the eigenvalue λμ = ω2

μ) and damping factor γ.

We use the network model shown in Fig. 4, where all link
weights are 1 and node mass is also set to M = I . Figures 9
(a) and (b) show examples of network resonance for external
force input by node 1 and 12, respectively: the amplitude
A(ω) = |y(ω, t)| is observed at node 1 (red line) and node 10
(blue line) as the response of the external force with angular
frequency ω. Depending on the pair of input node and observed
node selected, the amplitude A(ω) exhibits a different aspect.
Therefore, we expect that eigenvalues of the scaled Laplacian
matrix can be estimated from appropriate pairs of input and
observed nodes.

Int'l Conf. Foundations of Computer Science | FCS'16 | 43

ISBN: 1-60132-434-0, CSREA Press ©

angular frequency of the forced oscillation

0

10

20

30

ob
se

rv
ed

 a
m

pl
itu

de

1.00 2.0 3.0

(a) observed amplitude (input node: 1)

ω

 observed
at node 1

 observed
at node 10

A
ω

angular frequency of the forced oscillation

0

4

8

12

1.00 2.0 3.0

(b) observed amplitude (input node: 12)

ω

 observed at node 1

 observed at node 10

16

ob
se

rv
ed

 a
m

pl
itu

de
A

ω
Fig. 9. Examples of network resonance: the amplitude of oscillation as a
response to input oscillation with ω.

Ac
tu

al
 v

al
ue

0

0.1

0.2

0.4

na
tir

al
 fr

eq
ue

nc
y

0.3

Es
tim

at
io

n
01

-0
1

Es
tim

at
io

n
12

-0
1

Es
tim

at
io

n
12

-1
0

Ac
tu

al
 v

al
ue

Es
tim

at
io

n
01

-1
0

Es
tim

at
io

n
12

-0
1

Es
tim

at
io

n
12

-1
0

Ac
tu

al
 v

al
ue

Es
tim

at
io

n
01

-1
0

Es
tim

at
io

n
12

-0
1

Es
tim

at
io

n
12

-1
0

Ac
tu

al
 v

al
ue

Es
tim

at
io

n
01

-1
0

Es
tim

at
io

n
12

-0
1

Es
tim

at
io

n
12

-1
0

Ac
tu

al
 v

al
ue

Es
tim

at
io

n
12

-0
1

Es
tim

at
io

n
12

-1
0

Ac
tu

al
 v

al
ue

Es
tim

at
io

n
01

-0
1

Es
tim

at
io

n
01

-1
0

Es
tim

at
io

n
12

-0
1

ω1

ω5

ω2

ω3

ω4

ω6

Fig. 10. Estimation of the natural frequency ωμs.

Figure 10 compares the actual values of natural frequencies
ω1, ω2, . . . , ω6 and their estimated values obtained from Fig. 9
(a) and (b). For example, “Estimation 01-10” in Fig. 10 means
the input node is 1 and the observed node is 10. The estimated
natural frequencies are close to the actual values. Depending
on the positions of both the input node of forced oscillation and
the observed node, there are natural frequencies that cannot be
observed. For example, the values of ω2, ω3, ω4 and ω5 cannot
be estimated from the node pair of input node 1 and observed
node 1. Selecting the appropriate pair of input and observed
nodes avoids this problem.

VI. CONCLUSIONS

This paper showed how to use the scaled symmetric Lapla-
cian matrix to model oscillation dynamics on networks caused
by a certain kind of asymmetric interaction between nodes.
Although our asymmetric node interactions are restricted to
models that are characterized by the intrinsic property (mass)
of the nodes themselves, these interactions are common in
actual networks (e.g., the relations between a popular blogger
and his/her followers).

Although solutions of the proposed oscillation model are
complex numbers and they cannot be observed directly, the
oscillation energy can reproduce well-known node central-
ity on the networks. In addition, the oscillation energy is
an extended notion of node centrality reflecting propagation
scenarios of activity on networks, and we expect that the
proposed oscillation model can be considered as the underlying
mechanism of activity propagation on networks.

Since the oscillation energy is expected to be observed via
measurement of the strength of node activity, the framework

of usage of the measured value of energy is important. We
proposed a network resonance method that can estimate the
eigenvalues of the scaled Laplacian matrix and the damping
factor, from measurements.

We also expect that this method can estimate the abso-
lute value of the component of eigenvectors. If the sign of
the components are determined by orthogonal condition of
eigenvectors, we obtain pairs of eigenvalues and eigenvectors
of the scaled Laplacian matrix, from measurements. This
means the original Laplacian matrix (including the weight of
directed link and network topology) can be reproduced. So,
our framework is applicable to investigate network structure
that is not observed directly; for example, social networks of
users, networks of malicious hosts generating cyber attacks,
etc.

In security application, we probably can use the framework
of [12], for example. First, we access malicious web site
with the frequency of ω. These accesses induce that malicious
users attack to a honeypot, and we observe their response.
The framework corresponds to the network resonance method
based on forced oscillation.

ACKNOWLEDGMENT

The authors would like to thank Mr. Satoshi Furutani of
Tokyo Metropolitan University for his help with the numerical
experiments. This research was supported by Grant-in-Aid for
Scientific Research (B) No. 26280032 from JSPS.

REFERENCES

[1] S. Wasserman and K. Faust, Social Network Analysis: Methods and
Applications, Cambridge University Press, 1994.

[2] P.J. Carrington, J. Scott and S. Wasserman, Models and Methods in
Social Network Analysis, Cambridge University Press, 2005.

[3] A. Mislove, M. Marcon, K.P. Gummadi, P. Druschel and B. Bhattachar-
jee, “Measurement and analysis of online social networks,” Proc. of
ACM SIGCOMM conference on Internet measurement, pp. 29–42, 2007.

[4] D. Spielman, “Spectral graph theory,” Chapter 18 of Combinatorial
Scientific Computing (Eds. U. Naumann & O. Schenk), pp. 495–524,
Chapman and Hall/CRC, 2012.

[5] M.E.J. Newman, “The graph Laplacian,” Section 6.13 of Networks: An
Introduction, pp. 152–157, Oxford University Press, 2010.

[6] D.K. Hammond, P. Vandergheynst, and R. Gribonval, “Wavelets on
graphs via spectral graph theory,” Applied and Computational Harmonic
Analysis, vol. 30, no. 2, pp. 129–150, 2011.

[7] D.I. Shuman, S.K. Narang, P. Frossard, A. Ortega, and P. Vandergheynst,
“The emerging field of signal processing on graphs: Extending high-
dimensional data analysis to networks and other irregular domains,”
IEEE Signal Process. Mag., vol. 30, no. 3, pp. 83–98, 2013.

[8] A. Sandryhaila and J.M.F. Moura, “Discrete signal processing on
graphs,” IEEE Trans. Signal Process., vol. 61, no. 7, pp. 1644–1656,
2013.

[9] A. Sandryhaila and J.M.F. Moura, “Big data analysis with signal
processing on graphs: Representation and processing of massive data
sets with irregular structure,” IEEE Signal Process. Mag., vol. 31, no. 5,
pp. 80–90, 2014.

[10] Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence, Dover
Books on Chemistry, 2003.

[11] C. Takano and M. Aida, “Proposal of new index for describing node
centralities based on oscillation dynamics on networks,” IEICE Tech.
Rep., CQ2015-123, 2016. (in Japanese)

[12] M. Akiyama, T. Yagi, Y. Kadobayashi, T. Hariu and S. Yamaguchi,
“Client honeypot multiplication with high performance and precise
detection,” IEICE Trans. Inf&Syst., vol. E98-D, no. 4, pp. 775–787,
2015.

44 Int'l Conf. Foundations of Computer Science | FCS'16 |

ISBN: 1-60132-434-0, CSREA Press ©

SESSION

ALGORITHM EFFICIENCY STUDIES AND
PERFORMANCE RELATED ISSUES

Chair(s)

TBA

Int'l Conf. Foundations of Computer Science | FCS'16 | 45

ISBN: 1-60132-434-0, CSREA Press ©

46 Int'l Conf. Foundations of Computer Science | FCS'16 |

ISBN: 1-60132-434-0, CSREA Press ©

Assimilated Deliberation of Spatial and Temporal Complexities of
Computational Algorithms

A. Tarek1, and A. Farhan2

1Engineering, Physical and Computer Sciences, Montgomery College, Rockville, Maryland, United States of America
2College of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America

Abstract— Computational complexity is an important epit-
ome in computing research. However, a vast majority of the
related results involving temporal and spatial complexities
are purely of theoretical interest. Only a few have treated
the model of complexity as applied to real-life computation.
Besides, some of these results would be hard to realize in
practice. A majority of these papers lack in simultaneous
contemplation of temporal and spatial complexities, which
collectively depict the overall computational scenario. This
paper surpasses some of these limitations through a clearly
depicted model of computation and a meticulous analysis
of spatial and temporal complexities. The paper deliberates
computational complexities due to a wide variety of coding
constructs arising frequently in practice. Moreover, a struc-
tured, formal approach to temporal and spatial complexities
treated harmoniously as applied to real computation is also
explored. There is a prevailing muddle as per the big_oh
complexity is concerned. Common trend is to consider it as
a function rather than as a set of functions. This perplexity
is clarified with illustration. Disparate recursive data struc-
tures are contemplated for spatial complexity due to their vi-
tal role in computing. Experimental results acquired through
physical measurements are also accentuated. At length, both
temporal and spatial complexities are deliberated in a single
scaffold, and the concept relating to space-time bandwidth
product is introduced, and significance revealed. The space-
time bandwidth products of common sorting algorithms are
contemplated.

Keywords: Big_oh complexity, Set of functions, Sorting algo-

rithms, Space-time bandwidth product, Spatial complexity, Tempo-

ral complexity

1. Introduction
Computation time and memory space requirements are

two major constraints in computer implementation of real-

life algorithms. With a wide variety of formal notation

for expressing these computational constraints, big-oh is

the most commonly used. This paper primarily focuses

on upper-bounds as expressed through big-oh notation for

temporal and spatial complexities.

Temporal complexity is the CPU time necessitated by an

algorithm for its computer implementation. Spatial complex-

ity is the number of memory cells that an algorithm truly

requires for computation. A good algorithm tends to keep

both of these requirements as small as possible. Computer

memory is a re-usable resource from the operating system

standpoint and may be released for further reallocation.

Temporal resources are consumable, and once spent, there is

no return to that point in time. Though there is a significant

difference between temporal and spatial complexities from

reallocation standpoint, spatial complexity shares many of

the same features due to temporal complexity.

To express the upper bound in computational resource

requirements, big_oh (O) notation is used. For expressing

the lower bound in computational resources, Ω notation is

adopted. To express both of these resource constraints in

a single framework, the Θ notation is prevalent. Among

all three different notations, big_oh (O) complexity is the

most prominent one. Often it becomes necessary to have

an estimate on upper-bound of the computational resource

requirements. Therefore, the focus of this paper is on big_oh

notational temporal and spatial complexities.

In Section 2, specific terms and notations used in this

paper are discussed briefly. Section 3 deals with a variety of

coding constructs frequently arising in realistic computation

and provides big-oh time complexity for each. Section 4
considers spatial complexity. Section 5 explores realistic

issues in temporal and spatial complexity models discussed

in this paper. Section 6 is the conclusion based on models

of analysis in the paper.

2. Terminology and Notations
In this paper, following notations are used.

n: Input or instance size.

g(n): Highest order term in complexity expression without

coefficients.

f (n): Complexity function with an input size, n.

f́ (n): Complexity function without constant coefficients.

O(g(n)): Big-oh complexity with problem size, n, represent-

ing a set corresponding to the complexity class, g(n).
T (n): Temporal complexity of an algorithm or a function

with an input size n.

S(n): Spatial complexity of an algorithm or a function with

an input of size, n.

Int'l Conf. Foundations of Computer Science | FCS'16 | 47

ISBN: 1-60132-434-0, CSREA Press ©

B(n): Space-time Bandwidth Product for input size n.

C: Any constant value.

DSPACE (f ,n): DSPACE stands for the Deterministic

Space Computation. Therefore, DSPACE(f , n) denotes

the total number of memory cells used during deterministic

computation of f (n). Here, f indicates the algorithm or func-

tion under consideration, and n is the input of size, |n|. It is

often abbreviated as DSPACE (f). Hence, DSPACE(f ,

n) ∈ O(g(n)). However, DSPACE (f) is not defined if the

computation of f (n) does not halt.

Please refer to [2] and [4] for the definition of big-oh

complexity. Following forms the basis of Complexity Order

using big-oh, and provides the complexity class hierarchy.

log2n < n < nlog2n < n2 < . . . < nk < 2n < Cn < n!

3. Temporal Complexity of Algorithms
In determining temporal complexity, there are: operations

count and step count. Operations count is the number of

additions, multiplications, comparisons and other operations

used during computation. Success in operations count de-

pends on the ability to identify crucial operations that

contribute most to temporal complexity. Step count accounts

for all time spent in all parts of the program/function.

Big-oh complexity is usually expressed by the fastest
growing term in the complexity function. There are 4 algo-

rithmic steps in determining the big-oh complexity, which

may be implemented as a computer program. The algorithm

is described below:

Algorithm big_ohComplexity(n)
Purpose: This algorithm determines big_oh complexity

with instance size n (single instance variable).

Input: Complexity function, f (n) on n with k terms.

Output: Big_oh complexity, O(g(n)).

int[] arr1 = new int[k] {array, arr1 holds the power of

n for each term in the k-term complexity function, f (n).}

int highest_power = arr1[0] {Because the terms are not

ordered, determine the true highest order term in f (n).}

for j=1 to k − 1 do
if arr1[j] > highest_power then
highest_power = arr1[j]

end if
end for
g_n = power(n, highest_power)

Print O(g_n) as the big_oh complexity.

Above algorithm is general, and may be extended to com-

plexity functions involving multiple instance characteristics.

Example 1: Consider the complexity function, f(n,m) =

(h(n,m)2+4n−3m+2) on n and m. Function, h(n,m) =
2n2 +m. Here, h(n,m) is nested within function, f(n,m).
Hence, f(n,m) = (2n2 + m)2 + 4n − 3m + 2 = 4n4 +
m2+4n2m+4n−3m+2. Removing constant coefficients,

f́(n,m) = (n4 + m2 + n2m + n + m + 1). As the order

of n2m is, 3, the highest order term without coefficients is,

g(n,m) = n4, and f(n,m) ∈ O(n4). This Upper-bound

is independent of m. Examples are the Graph algorithms,

where n corresponds to the set of vertices, and m represents

the set of edges.

3.1 Big_oh Complexity As a Set
The big_oh complexity as denoted by O is a set rather

than a single function. However, it is a common practice

in the prevailing literature to use notions, such as f (n) =
O(g(n)) [8]. A function cannot be equal to a set. In fact,

O(g(n)) is a set of functions that incorporates all functions

in the order of g(n) as well as any lower order function. For

instance, consider f1(n) = 2n2 + 3n + 5 and f2(n) = 7n2 +

9. If g(n) = n2, then the set O(g(n)) = {f1(n), f2(n), . . . },

which incorporates any function in the order of n2 and any

lower order function. Therefore, f (n) ∈ O(g(n)).

Another common practice is to use expression, such as

f (n) = h(n) + O(g(n)) [8]. However, a function may not

be added to a set. With sets, valid operations are set union,

set intersection, etc. A function may be added to another

function. Therefore, the proper notation would be, f (n) ∈
O(h(n) + g(n)). In this context, following result is obvious.

Theorem 2 (Big_oh Complexity Set Theorem): If a

function f (n) is a member of the set O(h(n)), then it is

also a member of the set O(h(n) + g(n)).

Proof: There are three different cases that are required to be

considered.

1) Case 1: h(n) and g(n) are of the same order: The

function y(n) = h(n) + g(n) will have the same order

as that of both h(n) and g(n). As f (n) ∈ O(h(n)),

therefore, f (n) ∈ O(y(n)), since both y(n) and h(n)

have the same order. Hence, f (n) ∈ O(h(n) + g(n)).

2) Case 2: h(n) has a higher order than g(n): The function

obtained through addition y(n) = h(n) + g(n) will

have the same order as that of h(n) since the order of

h(n) > g(n). As f (n) ∈ O(h(n)), therefore definitely,

f (n) ∈ O(y(n)) or f (n) ∈ O(h(n) + g(n)).

3) Case 3: h(n) has a lower order than g(n): In this case,

the overall function y(n) = h(n) + g(n) will have the

same order as that of g(n) as the order of h(n) < the

order of g(n). From the above discussions, O(h(n) +

g(n)) is a set that incorporates any function in the order

of y(n) = h(n) + g(n) or any lower order function.

Therefore, it will also include the lower order function,

f (n) in the set. To be precise, the order of h(n) +

g(n) is the order of g(n), which is higher than the

order of h(n), and thus, higher than the order of f (n).

Therefore, f (n) ∈ O(y(n)) or f (n) ∈ O(h(n) + g(n)).

Only a combination of two functions are considered in

Theorem 2. Instead of 2, the above result may be extended to

any number of m such functions. Following result is obvious.

Corollary 3 (Combination of Functions Corollary): If

a function f (n) is in the set O(h1(n)), then it is also in the

set O(h1(n) + h2(n) + . . . + hm(n)).

48 Int'l Conf. Foundations of Computer Science | FCS'16 |

ISBN: 1-60132-434-0, CSREA Press ©

Proof: Similar to Theorem 2, there are three different cases

that are required to be considered.

1) Case 1: h1(n), h2(n) . . . hm(n) are of the same order:

The function y(n) = h1(n) + h2(n) + . . . + hm(n) will

have the same order as that of h1(n), h2(n) . . . hm(n).

As f (n) ∈ O(h1(n)), therefore, f (n) ∈ O(y(n)), since

both y(n) and h1(n) have the same order. Hence, f (n)

∈ O(h1(n) + h2(n) + . . . + hm(n)).

2) Case 2: h1(n) has a higher order than any other

function hj(n), j ≥ 2 in the combination: The function

obtained through addition y(n) = h1(n) + h2(n) + . . .
+ hm(n) will have the same order as that of h1(n)

since the order of h1(n) > the order of hj(n), for

some j where j ≥ 2. As f (n) ∈ O(h1(n)), therefore

definitely, f (n) ∈ O(y(n)) or f (n) ∈ O(h1(n) + h2(n)

+ . . . + hm(n)).

3) Case 3: h1(n) has a lower order than some other

function hj(n), j ≥ 2 in the combination: In this case,

the overall function y(n) = h1(n) + h2(n) + . . . +

hm(n) will have the same order as that of hj(n), j ≥ 2
as the the order of h1(n) < the order of hj(n), for some

j, where j ≥ 2. From Theorem 3, O(h1(n) + h2(n)

+ . . . + hm(n)) is a set that incorporates any function

in the order of y(n) = h1(n) + h2(n) + . . . + hm(n)

or any lower order function. Therefore, it will also

include the lower order function, f (n) in the set. To

be precise, the order of h1(n) + h2(n) + . . . + hm(n)

is the order of hj(n), for some j, where j ≥ 2, which

is higher than the order of h1(n), and thus, higher than

the order of f (n). Therefore, f (n) ∈ O(y(n)) or f (n)

∈ O(h1(n) + h2(n) + . . . + hm(n)).

3.2 Determining Temporal Complexity
Common coding constructs with guidelines to their tem-

poral complexity analysis are presented as follows. Real-life

coding contains one or more of these fundamental structures.

1) Simple Statement Sequence: A set of independent

statements following one after another. A general

structure is, S1; S2; . . . ;Sk, where k is a constant,

and each Si, 1 ≤ i ≤ k represents an independent

program statement. If ci designates the CPU time

consumed to execute statement, Si, for i = 1, 2, . . . , k,

then the total time consumed is,
∑k

i=1 ci = C, which

is a constant. Applying the algorithm to determine the

big-oh complexity, the complexity order is, O(1).

2) Simple Loops: Following is a proto-

type for loop found in many pro-

grams.

for(i = 0; i < n; i++) {St;}

Total time to execute the loop = (the number of

times the loop executes)× (the time required for each

execution of the loop). The statement sequence, St

consumes C amount of constant time. With the loop,

St executes n different times. Therefore, aggregate

time spent in the loop is, Cn. Utilizing algorithm for

big-oh complexity, this simple loop is, O(n).

3) Nested Loops:
for(i = 0; i < n; i++)

for(j = 0; j < n; j ++) {St;}

Here, the statement sequence St consumes C amount

of constant time. The nested loop executes n times

for each execution of the outer for loop. Therefore,

it executes n×n = n2 times in total. Total CPU time

consumed is, C ×n2. Big-oh complexity is, O(n2). If

there are k nested loops, each executing n times, the

complexity order will be O(nk).

4) Inner Loop Index Depends on Outer Loop In-
dex:

for(i = 0; i < n; i++)

for(j = 0; j < i; j ++) {St;}

Here, for n execution of the outer loop, the nested loop

executes, (0 + 1 + 2 + · · · + (n − 1)) or
∑n−1

k=0 k or
(n−1)×(n−1+1)

2 times. The complexity order is, O(n2).

5) If-then-else statements: With If-then-else statements,
the worst-case time complexity is important. The

worst-case time is the time required by the

test, plus either the then part or the else part
time, whichever is larger. Consider the following

code:

if (x is equal to y) then
return false;

else
{ for(i = 0; i < n; i++) { St; }

return true; }

end if
In this example, either the if or the else part will be

executed. Let the time for if test be c0. If each return

statement takes c1 amount of time, then the else part

(larger) will yield with the time complexity function,

f(n) = (c0 + c1 + Cn). This if-then-else structure has

a linear time complexity, O(n).

6) Loop Index Varies Nonlinearly: These are also known

as Logarithmic loops, since their complexity order is

always logarithmic. There are three types of logarith-

mic loops: Multiplication loops, Division loops, and a

Combination.

a) Multiplication Loops: Here, the loop control vari-

able is initialized to its minimum value, which

is usually 1. The control variable then increases

by a constant real or integer multiplication factor

greater than 1.0 (k > 1.0) at each loop iteration

up to the upper-bound (n). Once the value of

the loop control variable exceeds the upper-

bound, the looping terminates. The following is

an example:

Int'l Conf. Foundations of Computer Science | FCS'16 | 49

ISBN: 1-60132-434-0, CSREA Press ©

j = 1;

//In above, j is the loop control variable.

while (j ≤ n) { St; j = j ∗ k; }

Suppose the while loop executes i times. There-

fore, 1× ki ≤ n. Using properties of logarithm,

i ≤ logk(n). Hence, the maximum possible value

for i, imax = logk(n). If each execution of the

while loop takes C amount of constant time, the

total time required is, C × imax = C × logk(n).
Using the properties of logarithm, logk(n) =
log2(n) × logk(2). But logk(2) is a constant.

Hence, the big-oh complexity for the multiply

loop is, O(log2(n)).
b) Division Loops: A division loop commences

with the loop control variable initialized to its

upper bound (the maximum value, n), which

then gradually decreases by a constant divi-

sion factor (k) greater than 1.0 (k > 1.0)

at each loop iteration up to the given lower-

bound (usually 1). Once the value of the control

variable becomes less than the pre-set mini-

mum, the loop terminates. Following is an ex-

ample:

j = n;

// Here, j is the loop control variable.

while (j ≥ 1) { St; j = j/k; }

Suppose the while loop executes i times. There-

fore, n
ki ≤ 1. This provides, n ≤ ki, or

logk(n) ≤ i. Hence, the minimum i is, imin =
logk(n). Each execution of the while loop con-

sumes C amount of time. Therefore, the total

time required is, C × imin. Also, logk(n) =
log2(n)×logk(2), with logk(2) being a constant.

Using the algorithm, big-oh complexity for the

division loop is O(log2(n)).
c) Multiplication and Division Loops Combined:

Complex coding constructs might include a com-

bination of multiplication and division loops, one

being nested within the other. The complexity

order of such nested loops is, O((log2n)
r)).

Here, r is the total number of loops. An example

follows.

j = n;

// Here, j is a loop control variable.

while (j ≥ 1) { l = 1;

// Here, l is another loop control variable.

while (l ≤ n) { S1;

l = l ∗ k1; } // Here, k1 > 1.0.

S2;

j = j/k2; }

// Here, k2 is an integer or a real factor.

// Always, k2 > 1.0.

Suppose that the inner loop executes d1 times and

the outer loop executes d2 times. The inner loop

continues as long as, 1 × k1
d1 ≤ n. This even-

tually provides, logk1(n) ≥ d1. The maximum

possible iteration of the inner loop is, d1max =
logk1(n). Similarly, the minimum possible itera-

tion of the outer loop is, d2min = logk2(n). For

each execution of the outer loop, the inner loop

executes a maximum of logk1(n) times. Hence,

for logk2(n) iteration of the outer loop, the inner

loop executes for a total of logk2(n)× logk1(n)
times. Suppose each execution of the inner loop

takes C1 amount of constant time. Hence, total

time consumed in executing the inner loop is,

C1 × logk2(n) × logk1(n), which is the highest

order term in complexity function. Using the

properties of logarithm, logk2(n) × logk1(n) =

log2(n) × logk2(2) × log2(n) × logk1(2). Here,

both logk2(2) and logk1(2) are constants. Assum-

ing logk2(2) × logk1(2) = C, the highest order

term becomes C1×C×log2(n)×log2(n). There-

fore, the complexity order is, O((log2(n))
2).

If there are r nested loops, exercising a sim-

ilar approach, the overall time complexity is,

O((log2(n))
r). Here, r is an integer, and r ≥ 2.

Following result is obvious.

Theorem 4 (Loop Control Factor Theorem): For Mul-

tiplication and/or Division Loop(s) to converge, the mul-

tiplication and/or the division factor, k used together with

the Loop Control Variable(s) should be an integer or a real

number strictly greater than 1.0.

Proof: The factor k is used to gradually reduce the loop

control variable (LCV) to converge it to its set pre-

determined maximum for multiplication loop(s), or to the

pre-determined minimum for division loop(s). Looping con-

tinues until k reaches or exceeds the preset value. If k < 1.0,

the LCV value will decrease for multiplication loop(s),

and will increase for the division loop(s). As a result, the

variable will never reach or exceed the preset maximum

and/or minimum value, and will generate an infinite loop.

If k = 1.0, the LCV value will never change, and as a

result, will never reach or transcend the preset value, also

resulting in an infinite loop. Therefore, strictly, k > 1.0.

From the above theorem, following result is obvious.

Corollary 5 (Nested Multiplication/Division Loops):
For any number, m of nested Multiplication and/or Division

Loops, if the corresponding loop control factors are

k1, k2, . . . , km, respectively, and if k = k1 × k2 × . . .× km
represents the overall loop control factor for the entire

nested coding construct, then k is an integer or a real

number strictly greater than 1.0.

Proof: For nested Multiplication and/or Division loops, the

loop control factors, kj , j = 1, 2, . . . ,m for each loop needs

to be strictly larger than 1.0 for the individualized loop to

terminate. The factor k is the overall loop control factor for

50 Int'l Conf. Foundations of Computer Science | FCS'16 |

ISBN: 1-60132-434-0, CSREA Press ©

the entire nested coding construct, and k = k1×k2×. . .×km.

Therefore, using Theorem 4, k1 > 1.0, k2 > 1.0, . . ., km >
1.0. From the principle of mathematics, the multiplication

of any number of factors each strictly greater than 1.0 will

result in a value strictly larger than 1.0. Hence, k > 1.0, for

the nested coding construct to terminate.

4. Spatial Complexity Through Big-Oh
Big-oh complexity may provide upper-bound on memory

requirements as well. Recursive and dynamic data structures

most frequently influence the big-oh space complexity. For

spatial requirement, there are 2 parts. The Fixed Part, which

is independent of input and instance characteristic, includes

the instruction space and the data space for holding simple

variables, constants, compiler generated temporary variables,

etc. The Variable Memory Requirement depends on the

size of the input parameters and the particular problem in-

stance being solved. This part involves dynamically allocated

memory, recursive stack space, etc. The total computational

memory (RAM for PCs) requirement may be expressed

as, S = Sf + Sv = C + Sv . Here, S is total spatial

requirement, Sf is the Fixed Space (which is a constant

C for a specific computer program), and Sv is the Variable

Space. Using the DSPACE notation introduced earlier in

section 2, DSPACE(f, n) = S = (C + Sv). Following

represents a comprehensive guideline to spatial complexity

analysis of algorithms and functions.

4.1 Spatial Complexity of Algorithms
Spatial complexity plays a major role in dynamic memory

allocation and recursive computation. When it comes to

recursion, it is not recommended to look at the Average

Space Complexity, since failure to comply with the recursive

space requirement would eventually lead to program crash.

Therefore, in most of the cases, the analysis is done for the

worst-case spatial complexity.

1) Simple Dynamic Array: Java frequently supports

dynamic array declaration inside its heap

space.

// Following determines the minimum in an array.

int k = 0, n;

String n_string = keyboard.readLine();

n = Integer.parseInt(n_string);

int A[] = new int[n];
Random generator = new Random(1000000);

for (int i = 0; i < n; i++) {

A[i] = (generator.nextInt(3 ∗ n) + 1); }

for (int i = 1; i < n; i++) {if (A[i] < A[k])
{ k = i; } }

Assuming, each of an integer and a string type element

occupies 1 unit of memory, C1 = 1 + 1 + 1 + 1 =

4 for holding the values of k, n_string, n and i.

Also, generator takes up a fixed k units of mem-

ory space. Hence, C = (4 + k). The actual value

of n will depend on the keyboard input, which in

turn determines the dynamic array size. Hence, Sv

= n. Therefore, DSPACE(f, n) = n + 4 + k, and

DSPACE(f, n) ∈ O(n).
2) Nested Dynamic Arrays: Java supports

dynamically allocated nested arrays on its heap

space.

// Java code that performs matrix addition.

int n, i, j;

String n_string = keyboard.readLine();

n = Integer.parseInt(n_string);

int P [][] = new int[n][n];
int Q[][] = new int[n][n];
int R[][] = new int[n][n];
Random generator = new Random(1000000);

for (i = 0; i < n; i++) {

for (j = 0; j < n; j ++) {

P [i][j] = (generator.nextInt(4 ∗ n) + 1);

Q[i][j] = (generator.nextInt(4 ∗ n) + 1);

R[i][j] = P [i][j] + Q[i][j]; } }

There are 3, n×n matrices required for the above code

inside dynamic memory area. The size of each matrix

is contingent on input size, n. Hence, total dynamic

memory requirement, Sv = 3n2. The fixed space for

storing i, j, n_string, n and generator is, C = 4+
k units. Therefore, DSPACE(f, n) = 3n2 + 4 + k.

Accordingly, DSPACE(f, n) ∈ O(n2), which is a

quadratic space complexity.

3) Recursive Data Structures: In any recursive method,

space is always required to hold the stack frames [4]

created by the recursive calls inside the dynamic

memory area. Maximum dynamic memory required

to hold the stack frames is, SFn = (size of each stack

frame)× (the depth of recursion). Here, n is the input

size. For a specific recursive data structure, the size of

each stack frame is a constant, Csf . Hence, SFn =
Csf × (depth of recursion). Stated another way, SFn

∝ (depth of recursion). The depth of recursion, DRn

is a function of input size, n, and SFn ∝ DRn.

4) Sorting Algorithms: Quick Sort works by partitioning

the list elements, and is an in-place sorting algorithm.

The algorithm is fundamentally recursive [3], and fits

nicely with the recursive data structure. All extra space

required for sorting with quick sort comes from the

stack of the recursive calls in the environment stack
space. Its space complexity is O(n), since in worst-

case computation, the number of activation records [4]

on the recursive stack space can be in O(n).

The average Merge Sort exacts an amount of space

proportional to the average height of the tree structure

describing the recursive calls, which is O(log2(n)) [3].

Int'l Conf. Foundations of Computer Science | FCS'16 | 51

ISBN: 1-60132-434-0, CSREA Press ©

Hence, the algorithm designers might think that

O(log2(n)) space is sufficient in general. If applica-

tions are designed with the average space in mind,

and if for sufficiently large values of n, the worst

case space complexity occurs due to a given problem

instance, and the size of the allocated memory is

exceeded, the program will simply crash!

Merge Sort works by coalescing the sorted sublists.

If implemented as a recursive algorithm, the depth

of recursion for Merge Sort with an input of size

n is, log(n). Hence, for Recursive Merge Sort, the

space complexity is, O(log(n)). For Iterative Merge

Sort using an array, the dynamic memory requirement

depends on input size, n. The iterative merge sort is

usually performed using a scratch pad buffer in the

dynamic memory area, which is proportional to the

size of the array. Hence, the iterative merge sort space

complexity is, O(n). This is also the lower-bound on

memory requirement due to the size of the scratch pad

buffer. Hence, S(n) ∈ Θ(n). Table 1 shows the spatial

complexity of common sorting algorithms.

Table 1: Spatial complexity of sorting algorithms.

Sorting Algorithm Space Complexity

Quick Sort O(n)
Merge Sort(recursive) O(log(n))
Merge Sort(iterative) O(n)

Bubble Sort O(1)
Selection Sort O(1)
Insertion Sort O(1)

Shell Sort O(1)
Heap Sort O(1)
Radix Sort O(n)

5. Coalescing Complexities
Both temporal and spatial complexities largely influence

algorithm design. Algorithms for Fibonacci sequence are

widely researched in computing. There are four major al-

gorithms for the Fibonacci sequence.

1) Recursive Fibonacci Sequence: The following pro-

gram recursively computes the Fibonacci sequence. In

the program code, F [n] computes the nth fibonacci

number.

int F (int n) { if (n ≤ 2) return 1;

else return F [n− 1] + F [n− 2]; }

The temporal complexity of this recursive version

is, T (n) ∈ O(tn), which is exponential. Here, t =
1.61803, and is the golden ratio. Space complexity

is, S(n) ∈ O(n), which is linear on the size of

the recursive stack space. The algorithm needs to

perpetuate two recursive stacks at the same time due

to the nature of recursion. The space-time bandwidth

product, B(n) ∈ O(ntn), is pseudo-exponential.
2) Dynamic Programming (DP) Fibonacci

Sequence: The dynamic programming-based

fibonacci sequence uses the following coding

construct.

int[] fibonacci(int n) {

int[] F = new int[n+ 1];

int F [1] = F [2] = 1;

for (int i = 3; i ≤ n; i++)

F [i] = F [i− 1] + F [i− 2];
return F ;}

The recursive fibonacci algorithm is exponentially
slow, since for many of the intermediate values, the

algorithm recomputes the same subproblems for the

same fibonacci numbers repeatedly. The DP version

surmounts this problem by storing the intermediate

fibonacci numbers in a table inside the computational

memory when they are initially computed once. As

a result, it is necessary to have a one dimensional

array F with (n+1) elements. Each fibonacci number

F [i] within the array is computed iteratively, by adding

together F [i− 1] and F [i− 2], which can be retrieved

from the dynamically filled table within the computer’s

main memory area.

Time complexity function, f (n) for this DP version

is, f (n) = (n − 1) + (n − 2) + 3 = 2n. The constant

additive term 3 in f(n) is due to the fact that the

first 3 statements are always executed. Also, T (n) ∈
O(n). Java implementation of the algorithm requires

a dynamic array of size (n+ 1) to hold the fibonacci

numbers. As a result, the spatial complexity for this

implementation is also, S(n) ∈ O(n), which may be

reduced to O(1) through using a static instead of a

dynamic array.

3) Space Efficient Fibonacci Sequence Algorithm: The

DP algorithm for fibonacci sequence may be modi-

fied to use a much smaller amount of computational

memory.

// Code to compute the nth fibonacci number.

int fibonacci(int n) { int a = 1, b = 1;

for (int i = 3; i ≤ n; i++) {int c = a + b;
a = b; b = c;}
return b;}

In the above program, c represents F [i], b represents

F [i − 1], and a represents F [i − 2]. The 2 extra

assignments after the sum shift those 2 values over in

preparation for the next iteration. The time complexity

for this iterative algorithm is, T (n) ∈ O(n).
With this modified version, each step through the

loop uses only two previous values of F (n). Instead

of storing these values in a static or in a dynamic

array, they are stored as two independent variables.

52 Int'l Conf. Foundations of Computer Science | FCS'16 |

ISBN: 1-60132-434-0, CSREA Press ©

Though this requires some swapping around of values,

the computational memory requirement substantially

reduces.

4) Fibonacci Sequence Through Binet’s Formula: Bi-

net’s formula is efficacious considering both time

& space, since it does not use recursion or itera-

tion.

// Binet’s Formula: The nth fibonacci number.

F (n) = Round(
(
(
√

5+1)
2)n√
5

);

6. Conclusion
Both the temporal and the spatial requirements are of

paramount importance in computer implementation of algo-

rithms. Time and Space requirements are expressed jointly

through a unique parameter known as the space-time band-
width product, denoted as B(n). For a temporal complexity,

T (n) ∈ O(g1(n)), and the corresponding spatial complexity,

S(n) ∈ O(g2(n)), the space-time bandwidth product is,

B(n) ∈ O(g1(n) × g2(n)). Bandwidth product shows the

upper-bound on computational resources requirements for a

given coding construct. Following table shows the bandwidth

products for frequently used sorting algorithms. In Table 2,

n is the input size and k is the number of digits in each

input.

Table 2: Space-Time Bandwidth Product for sorting algo-

rithms.

Sorting Algorithm Bandwidth Product

Quick Sort O(n2log2(n))
Merge Sort(recursive) O(n(log2(n))2)

Merge Sort(iterative) O(n2log2(n))
Bubble Sort O(n2)

Selection Sort O(n2)

Insertion Sort O(n2)

Shell Sort O(n1.25)
Heap Sort O(nlog2(n))
Radix Sort O(kn2)

The heap sort has the best bandwidth product, which

is O(nlog2(n)). The algorithm also has the best tempo-

ral complexity in the order of O(nlog2(n)). However, the

best known sorting algorithm with O(nlog2(n)) temporal

complexity is the quick sort [4]. Hence, the algorithm with

the best bandwidth product is not necessarily the algorithm

with the best performance. The bandwidth product is just an

indicator of the upper-bound on the overall computational

resource requirement.

Spatial complexity plays a significant role in the Re-

cursive Models of Computation. Recursive data structures

consume considerable amount of dynamic memory inside

the computer’s recursive stack space [6]. Knuth’s Spatial

Complexity Theorem [6] relates the lower bound on the

computational space requirement for an algorithm to its

temporal complexity. According to Knuth, an algorithm that

takes up O(g(n)) time consumes Ω(log(g(n))) space. The

result implies that if an algorithm consumes g(n) time, then

for executing the algorithm, at least log(g(n)) space will be

required. Suppose an algorithm is exponential and executes

in Cn time. Hence, g(n) = Cn, where C is a constant, and

C ≥ 2. Therefore, the algorithm requires at least log(g(n))

= log(Cn) space for its execution. However, log(Cn) =

n×log(C). As C is a constant, for any logarithmic base,

log(C) = C1 will also be a constant. Hence, the minimum

space requirement = C1×n ∈ Ω (n). Hence, any exponential

time algorithm will require at least a linear space for its

implementation. Space-efficient exponential time algorithms

run in linear space in the order of n.

There is a simple packet classification algorithm in com-

puter networking that takes up O(m) time to perform a

lookup. Here, m is the number of packet fields. However, the

algorithm requires Θ(nm) storage, where m is the number

of packet fields and n is the number of rules. Therefore,

the algorithm may not be used with large databases. There

are alternative algorithms that require only O(nm) storage,

which are more suitable for large database applications.

Therefore, it is always prudent that polynomial or pseudo-

polynomial complexity algorithms are preferred over the

exponential complexity algorithms. However, the factorial

complexity algorithms are the worst.

In future, the model presented in this paper will be

considered with real-life computation. This avenue is not

well-explored yet, and may unveil a new paradigm in com-

putational research.

References
[1] A. Tarek, "A Generalized Set Theoretic Approach for Time and

Space Complexity Analysis of Algorithms and Functions," WSEAS
TRANSACTIONS ON MATHEMATICS, issue 1, vol. 6, pp. 60-68, Jan.
2007.

[2] D. E. Knuth, The Art of Computer Programming, Volume 3 Sorting
and Searching, 2nd ed., New Jersey, USA: Addison-Wesley, 1998.

[3] E. L. Leiss, A Programmer’s Companion to Algorithm Analysis,
Florida, USA: CRC Press, 2006.

[4] R. F. Gilberg, and B. A. Forouzan, Data Structures - A Pseudocode
Approach with C++, California, USA: Brooks/Cole, Thomson
Learning, 2001.

[5] A. Tarek, and A. Farhan, "A Realistic Approach to Spatial and Tem-
poral Complexities of Computational Algorithms," in Proc. MCBE’13,
2013, paper 70606-106.

[6] A. Tarek, "A New Paradigm for the Computational Complexity Anal-
ysis of Algorithms and Functions," INTERNATIONAL JOURNAL OF
APPLIED MATHEMATICS AND INFORMATICS, issue 1, vol. 1, pp.
5-12, 2007.

[7] A. Tarek, "Computational Complexity Simplified," in Proc. WSEAS
American Conference on Applied Mathematics, 2008, p. 130-135.

[8] A. Tarek, "A Generalized Set Theoretic Approach for Time and Space
Complexity Analysis of Algorithms and Functions," in Proc. 10th
WSEAS International Conference on APPLIED MATHEMATICS, 2006,
p. 316 - 324.

[9] G. Varghese, Network Algorithmics - An Interdisciplinary Approach
to Designing Fast Networked Devices, California, USA: Morgan
Kaufmann, 2005.

Int'l Conf. Foundations of Computer Science | FCS'16 | 53

ISBN: 1-60132-434-0, CSREA Press ©

On Performance of Distributed Computer Systems

H Cai1, S Monkman2, I Schagaev2 and O Santos Naval3
1Shantou University, China

2IT-ACS LTD, Stevenage, UK
3Londonmet, UK

Abstract - Any system is evaluated in terms of performance,
taking into account performance of elements and system as a
whole. Good systems exceed performance of their components,
sometimes exceed a production of component performance.
Poorly designed systems overall performance is much less that
production, or even sum of performances of their components.
In terms of this classification our computer systems are
poorly designed. These notes are about performance and
ways to analyze it. We also introduce some simple models for
thinking through system performance and ways to improve it.

Keywords: Distributed Computing, System Performance,
Parallel Computing, Amdahl Ratio, Run-time Systems

1 Introduction
Suppose one element - active zone az on the Figure 1 has a
performance Pi; then system of n elements if we can add
performance will have maximum performance as n*Pi; i.e.,
linear growth is assumed. Unfortunately, properties of both:
an external interaction zone (EIZ on Figure 1) and task
structure reduce our expectations about unlimited, or just
linear performance growth, while we introduced more
elements Figure 1.

Fig. 1 Distributed system, az - active zone

System performance we can see as a function of performance
of elements Pi, number of elements and EIZ:

 Ps = f(Pi, EIZ, n)

Thus, the structure of EIZ and its dynamic features (the
ability to connect, transparently, an arbitrary number of
elements with heavy interactions (in our case information
exchange)) will impact on performance of both: system level
of performance and element level.

It is clear that element with interaction will waste some own
performance to provide interaction with others: Figure 2.

 Fig. 2. Performance grow limitations by structure

Above all, a program structure that impacts on the
performance of system is crucial, as well as ability of program
to split into independent elements.

In late 80’s John Gustafson did show [Gustafson88] that when
map of a program fit map of available hardware almost linear
growth of system performance is possible. This result in fact
denies Von Neumann architecture arguing that special
purpose system should be build to execute special purpose
programs.

Turning back to analysis of what is possible and feasible a
program structure should be for sure analyzed in details. One
of possible approach consider program as three connected
graphs. Three graphs that represent a program: control,
predicate, and data dependency [Blaeser14] can help to
analyze limits of performance gain for various types of
program and on performance of the system as a whole.

P
E

R
FO

R
M

A
N

C
E

NUMBER OF ELEMENTS

�����
���	
���

ACTIVE
ZONE
(AZ)

EXTERNAL
INTERACTION
ZONE (EIZ)

ACTIVE
ZONE
(AZ)

ACTIVE
ZONE
(AZ)

ACTIVE
ZONE
(AZ)

ACTIVE
ZONE
(AZ)

ACTIVE
ZONE
(AZ)

ACTIVE
ZONE
(AZ)

ACTIVE
ZONE
(AZ)

ACTIVE
ZONE
(AZ)

ACTIVE
ZONE
(AZ)

ACTIVE
ZONE
(AZ)

54 Int'l Conf. Foundations of Computer Science | FCS'16 |

ISBN: 1-60132-434-0, CSREA Press ©

2 Information processing aspects

On the information processing level, we can consider a system
as a black box with input x and output y, with arbitrary
function F, Figure 3;

 Fig. 3. System as a black box, with arbitrary function F

A function F, or a task of this function execution - a box on
Figure 3 illustrates the delivery of result (y) from an input x
within allocated time.

For some functions or programs that execute them we do not
need all inputs available to begin execution. In principle,
input and output timing very often are loosely dependent,
input x might have its own duration in time while readiness of
output y has its own duration, both might be overlapped, see
Figure 4.

 Fig 4. Input appearance overlapped with outcome

Thus we can consider x and y not as variables but as functions
or processes; this distinct computing from mathematics.
Further research might be required to compare ways and
durations of x and y possible overlapping.

2.1 Information systems task wise performance

Information systems are a combination of three-wares:
userware, software and hardware: UW, SW and HW
respectively, see Figure 5.

Fig. 5. Information system components

For information processing system one has to consider a
performance of all three: UW, SW, HW. In the long run
performance and efficiency of the system depends on user-
ware, software and hardware performance. Their combination
varies in various applications - one case is illustrated by
Figure 6.

 Fig 6. IS box: x+time = y

Over the last 40 years, user features of computer applications
were largely ignored in all domains of computer market:
general purpose, embedded, high performance computer
systems.

This is a subject of special study on UW-SW-HW systems.
Here we present a simple model that helps to estimate an
impact of system software (SSW) on overall system
performance. We attempt to answer a question

What is the performance and efficiency of a computer system
in terms of missions or tasks?

Performance is about task completion in time allocated. The
task allocation and analysis of this process should account for
a hierarchy of components: UW, SSW, HW. In principle, one
might introduce into this estimation a role and efficiency of
management, but it goes well beyond the scope of our work.

FUNCTION F
�����

x y

FUNCTION F

FIRST
APPEARANCE

OF x

FIRST
APPEARANCE

OF y

�����

INFORMATION PROCESSING SYSTEM

USERWARE SOFTWARE HARDWARE

 INFORMATION PROCESSING SYSTEM

USERWARE

SOFTWARE HARDWARE
y x

Int'l Conf. Foundations of Computer Science | FCS'16 | 55

ISBN: 1-60132-434-0, CSREA Press ©

2.2 SSW-HW performance model

User tasks that were developed as a program (usually called
“an application”) present a sequence of instructions executed
by hardware. Several supportive programs – (parts of run-
time system), accompany any user task; these programs are
generally called system software, further SSW. Figure 7
illustrates a sequence of user tasks accompanied by system
software tasks.

Fig. 7 User and System task sequence

An efficiency of a system in terms of user tasks depends on
use of informational and structural and time resources
[Castano15].

A total amount of hardware workload in number of
instructions Wux to perform user task x can be expressed as
(1) where i, j indexes stand for number of hardware
instructions required to complete supportive actions (system
software need) and user ones (1):

 (1)

Indexes m and n stand for system software and user software
instructions execution time. Assuming that all hardware
instructions have similar execution time (for RISC systems it
is essential design condition) one might introduce an
efficiency of an architecture or a system as a ratio as shown

below, (2):

 (2)

We will dig deeper on performance and efficiency but here it
is worth summarizing an existing relation of efficiency and
performance.

Definition 1. Efficiency Eux of computer system is a ratio
number of instructions required to perform user task to the
total number of instructions performed by computer system.

Naturally, efficiency Eux � 1, while m � 0, and no matter
what frequency a processor is using if m >> n, Eux � 0.

Regretfully, it is the case for current state of the art in
computer systems.

Regretfully again, our implementations in terms of efficiency
are causing mostly pessimistic observations:

� Application of Java, or support of modified standard

operating system unavoidably reduce system efficiency of
general system;

� In the case of embedded systems runs out our computer
batteries for nothing;

� For military systems availability and reactiveness of the
system is substantially lower than it could be;

� For office systems – in terms of user efficiency -
employees are sitting and waiting for Windows or Cisco
service more than they work…

2.3 Distributed computing

In the late 1960s, an idea for the parallelization of computer
program using distributed computing paradigm instead of
single processor scheme was proposed [Amdahl67].

It was declared that parallelization of tasks and programs and
use of available distributed hardware for support of parallel
execution is the most feasible way to boost system
performance.

Later, Sun [Sun94] introduced “system fallacies” of
distributed computing (Table 1). Omitting topologic factors
and paying attention to Fallacy 2, 3 and 7, we discover that
these fallacies fit into the area of parallel, closely connected
computers with multiprocessors – in fact, all modern
computers.

Table 1 Sun fallacies of distributed computing

���������	
������������������������������������
����������������
��
������	������������������
 ��������	
��������������
!��
"
�
#���
���$������#���
%����������
��������������
���
&������"
����
���������
��
'��������	
�������
�
#���
����

� UWT �SSWT � UWT SSWT UWT

 Wux = hj (sswt)
j=1

m

∑ + hi (uwt)
i=1

n

∑

Eux =
hi (uwt)

i=1

n

∑

hj (sswt)
j=1

m

∑ + hi (uwt)
i=1

n

∑

56 Int'l Conf. Foundations of Computer Science | FCS'16 |

ISBN: 1-60132-434-0, CSREA Press ©

If we look harder these fallacies might be not strong enough
and some of declared features described became obsolete.

Besides, again, when definition includes eight other elements
that are not connected or have vague relation to each other it
seems odd or at least inconsistent.

If we follow Sun definition we are not including Internet into
the distributed computing even as a supportive hardware
infrastructure. Anyway, we’ve proposed our own définition
of distributed computing:

Definition 2. Distributed computing is a paradigm that
assumes an execution of functionally connected tasks as a
single process over distributed media and resources.
Clearly, a joint collaborative work of thousands of processors
at once might bring substantial profit for both - loosely
connected tasks (when they share HW resources, but not
logically connected, such as Google cluster), or closely tight
models that include of several thousands of DE.

But in the second case, it is much harder to get the gain from
distributed computing, and it is not a surprise.

Amdahl described drawbacks of distributed computing in the
late 1960s [Amdhl67], highlighting that even small parts of a
program must be parallelized to reach their full potential. This
way linear growth of speedup is not possible at all.

In other words, if 1 is a length of a sequential program and we
have managed to parallelize p fraction of it then sequential
part is shrinking down to 1-p, while parallel part requires p/n
time where n stands for number of processors, (3) and Fig. 8.

 (3)

Fig. 8 System speedup by Amdahl [Goth09]

3 Real Performance & Amdahl “Law”

Relative gain in performance is usually referred to as
“Amdahl’s law”. Well, “law” in terms of science, not society
is “a regularity in the material world” (Shorter Oxford English
Dictionary, 6e, Vol 1). Thus, defining “the law” as two
simple proportions (3), (4) of performance after improvement
Pai with performance before improvement Pbi is, to put it
politely, too ambitious.

������� � �
���

���
 (4)

But this proportion is useful to evaluate a success of the
modification of processor structure in re-iterative design.
What is interesting here is that the expectation of linear
growth of performance by improving element performance
(Figures 1 and 2) has nothing near to the real situation.

It means that if we make super parallel execution of 80% of a
program, we still have to complete another 20% sequentially.
Amount of speedups vs. number of processors as a family of
functions, is presented on Figure 8 above, taken from
[Goth09].

3.1 A Fine-tuning of Parallel Speedup Model

The theory behind computational work in parallel has some
limitations that reduce the advantages of parallelization.
Usually, the goal in large-scale computation is to get as much
work done as possible in the shortest time within the budget.

Furthermore, the system can be considered good and well-
designed when it is able to get a big job done in less time, or a
bigger job done in the same amount of time without any
problem; in other words, a system should be a scalable.

Therefore, the power of a computational system can be
represented as the amount of computational work done,
divided by the total time it takes to do it. It is important to
emphasize that usually the aim is to increase power per unit
cost, or more importantly nowadays, cost-benefit, and in this
regard physics and economics conspire to limit the raw power
of individual single processor systems available to perform
any particular piece.

It is agreed within the research community that the cost-
benefit scaling of increasingly power single processor systems
is usually non-linear and very poor. For instance, one
processor that is twice as fast might cost four times as much,
yielding only half the cost-benefit per pound.

Physics sets its own limit as well – a so-called “thermal
barrier” [Castano15] - an amount of heat that material is
capable to dissipate is limited making endless increase of
frequency of operation impossible.

� = �

�−�+���

Int'l Conf. Foundations of Computer Science | FCS'16 | 57

ISBN: 1-60132-434-0, CSREA Press ©

These two arguments are usually applied to justify an
alternative solutions and development of parallel designs.
There are some drawbacks though, as Amdahl pointed out,
and they are serious.

Let us rewrite Amdahl ratio in terms of time: T(N) will be the
time necessary to finish the task on N processors. The
speedup S(N) is expressed by the ratio (5):

 (5)

In many cases the time T(1) possesses, as represented above,
both the serial part Ts and the parallel-able part Tp.

Unfortunately, Amdahl ratio ignores a role of run-time system
tasks (see a section 2.1) that must be taken into account when
a parallel execution is assumed.

A more detailed analysis of parallel speedup would include
two more parameters of interest, namely:

- Ts – the original single-processor serial time;
- Tis – the average additional serial time spent performing for

example inter-processor communication (IPCs), see Figure 1
where is it introduced as EIZ, setup, and so forth in parallelized
tasks. It is important to note that this time can depend on N in a
variety of ways, nonetheless the simplest assumption is that each
system has to spend this much time one after the other, so that
the additional serial time is for example N*Tis;

- Tp – the original single-processor parallel-able time;
- Tip – the average additional time spent by each processor

performing just the setup and work that it does in parallel, this
may as well include idle times, which is also very important and
should be accounted for separately.

The most important element that contributes to Tis is the time
required for communication between the parallel sub-tasks.
This communication time is always there – even in the
simplest parallel models where identical jobs are farmed out
and run in parallel on a cluster of networked computers, the
remote jobs must begin and be controlled with message
passing over the system.

In systems with more complex jobs, partial results developed
on each CPU may have to be sent to all other CPUs in the
distributed computing system for the calculation to proceed,
which can be very costly in scaled time. The (average)
additional serial time (Tis) plays an extremely important role
in defining the speedup scaling of a given calculation.

Most computer systems process information sequentially.
Lines of code in a computer program get translated into
assembly language by the compiler, and the latter gets
decoded into microcode in the processor. Everything and
every step along the way is done sequentially. For example, a
flowchart processing usually includes multiplication or

comparison of two digits, it starts with the first digit, then the
second digit is introduced and the working register is set to 0.

To explain what is real and what is not and why Amdahl rule
is mostly misleading we have developed a simple model – so
called “fence making model”, illustrated by Figure 9 and
following expert recommendations [Doit].

3.2 Parallel vs. Sequential: A fence model

Our task is to make a fence with N planks and two horizontal
rails; each plank needs two nails and has to be “pre-
processed”. Two rails have to be placed at the assembling site.
Each plank needs to be placed at site and finally nailed. We
also need hammers and nails and sequence and instruction to
operate.

Figure 9 Fence model of processing

Task requirements: number of planks N; number of rows – 2.

Each plank needs to be nailed half-way through before
placement for final processing and assembling a fence.

There are two principally different options to make this fence:
A) by distributing tasks;
B) by making all tasks on site sequentially.

In A) case, distributing task scheme assumes existence of
agents-workers and distributers and their abilities to act:

- N workers for plank processing are available and ready;
- a distributor of the nails is in place;
- a distributer of the hammers is in place;
- a distributer of the planks is in place;
- a distributer of rails is in place;
- a collector of the fence segments initially is and placing the planks;
- nailing the planks at two rows are performed by workers;
- collecting the hammers is performed;
- garbage collector is in place and complete the task execution.

N Planks

S(N) = T (1)

T (N)
= Ts +Tp
Ts +Tp / N

58 Int'l Conf. Foundations of Computer Science | FCS'16 |

ISBN: 1-60132-434-0, CSREA Press ©

Case B) assumes that the same worker is doing all actions,
like “a jack for all trade”, has one hammer, bucket of nails and
does the following:

- takes nails;
- planks where they are;
- half-nail planks;
- places them on the rails;
- nails them all;
- place fence where necessary, collect garbage.

Let us consider the process of making the fence from N planks
in more details for both cases, assuming that nails, hammers,
planks and rails are ready and placed in the local warehouse
(storage and executed by “a system officers”, while workers
execute user task). Sequences are presented in Table 2.

Table 2 Parallel vs. sequential execution in more details

Our task now is about: giving elementary time slot te and
constant coefficients equal for both variants of fence
processing prepare two variants of the fence completion as a
sequence of steps for A and B cases. This will illustrate a gain
from distribution of works.

We need to compare these cases as well as explain what is
possible to prepare in preprocessing and what is possible only
during operation. One might find useful to make a table of all
works mentioned and using own experience and case estimate
a concrete gain for concrete case.

Now we have to answer the following questions:

 When distributed computing is efficient in comparison with
sequential;

What impact system software makes on parallelization of task
and efficiency of a system.

It is clear that planks are data, nails and hammers are
programs to process data on site, and distributer is run-time
system;
Let us leave an arithmetic exercise with various values of
parameters from job descriptions above to good master
students.

Our estimation indicates that overheads of run-time system for
distributed execution might achieve almost 60% of user task
cost (time). We add in denominator of (5) a coefficient k, a
relative value of system software overheads per user task (6).

(6)

Following (6) the graph of Figure 10 presents three curves in
three colors: green, blue and red k=0,0.1, 04 respectively. .
The top one stands for known “pure” Amdahl ratio (k=0).
Figure 10 shows that for extremely good run-time system one
can double performance with 4 cores… It is still too
optimistic statement, especially recalling Multics 85% and
Window 65% of total workload time.

 Figure 10. System software role in distributed computing

PARALLEL OPERATION SEQUENTIAL OPERATION

Distributor Distributor

Gets pack of planks Activate worker

Distribute planks Check garbage left

Distribute rails

Distribute nails

Distribute hammers

Distribute planks along rails

Activate N workers start

Collect hammers and left garbage

Place two rails in assembling area

Clean garbage

Worker Worker

Receive planks Gets packs of planks

Receive nails Gets buckers of nails

Receive hammer Gets a hammer

Preprocess plank (two nails nailed
half-way through)

Places (distribute) planks to the
assembling area

Spread planks along rails (fine tuning) Places rails in assembling area

Nail plank (two nails) to the rails at
the final assembling

Preprocess N planks (two nails per
each)

Prepare to final assembling Places (distribute) planks along the
rails

 Nails N planks

 Assemble fence

 Clean garbage

Int'l Conf. Foundations of Computer Science | FCS'16 | 59

ISBN: 1-60132-434-0, CSREA Press ©

4 Conclusions and observations

The obvious observations/conclusions here are:

� Properties of distributed computing paradigm in terms of

performance gain/loss are outlined.
� Models of performance and efficiency are proposed from

the point of view of information processing.
� Shown how to evaluate an efficiency of computer system

including role of application and system software as well
as hardware.

� Amdahl ratio is analyzed taking into account system
software overheads.

� System software, applications and hardware designs
should be considered together when we design or try to
analyze system efficiency, this paper is just one step into
this direction.

5 Acknowledgements

Authors would like to express their very great appreciation to
two reviewers of this paper for their valuable and constructive
suggestions especially pointing us to Prof. Gustafson works.

6 References

[Amdahl67], Amdahl G. M. [1967]. “Validity of the single
processor approach to achieving large scale computing
capabilities,” Proc. AFIPS Spring Joint Computer Conf.,
Atlantic City, NJ, (April) 483–85. (Written in response to the
claims of the Illiac IV, this three-page article describes
Amdahl’s law and gives the classic reply to arguments for
abandoning the current form of computing).

[Blaeser14] Blaeser L.Monkman S. Schagaev I. Evolving
system, in Proceedings of the International Conference on
Foundations of Comp. Science FCS’14 2014 CSREA Press,
ISBN: 1-60132-270-4

[Castano15] Castano V, Schagaev I Resilient Computer
System Design, Springer 2014 ISBN 978-3-319-15069-7

[Goth09] Goth G. Entering parallel universe.
DOI:10.1145/1562164.1562171, CACM Sept 2009 vol 52.
No/9 Pp13-16

[Gustafson88] Gustafson J. Reevaluating Amdahl’s Law,
Communicating of the ACM 31(5), 1988.pp 532-533

[Sun94] https://blogs.oracle.com/jag/resource/Fallacies.html

[Doit] Building wood fence
 www.doityourself.com/stry/buildwoodfences

60 Int'l Conf. Foundations of Computer Science | FCS'16 |

ISBN: 1-60132-434-0, CSREA Press ©

SESSION

FORMAL METHODS AND LANGUAGES

Chair(s)

TBA

Int'l Conf. Foundations of Computer Science | FCS'16 | 61

ISBN: 1-60132-434-0, CSREA Press ©

62 Int'l Conf. Foundations of Computer Science | FCS'16 |

ISBN: 1-60132-434-0, CSREA Press ©

A simple instructional approach for proving the Non-RE status of Non-monotonic
properties of formal languages

Dr. Gary L. Newell (newellg@nku.edu)

Department of Computer Science, Northern Kentucky University, Highland Heights, Kentucky, US

Abstract - This paper presents a relatively simple and easy to
apply technique for proving a significant number of formal
language properties to be Non-RE. Using the results of Rice’s
Theorem and the more generalized observations of the Rice-
Shapiro Theorem, we derive a result that is easy for students
to apply when attempting to prove that a formal language
property is not Recursively Enumerable (Non-RE) . To our
knowledge, this particular instructional approach has not been
presented in this applicable form to date.

While Rice’s theorem provides an easy to apply technique for
proving the undecidability (Non-recursiveness) of a
problem/language, it cannot be applied directly to determine
whether said undecidable problem is RE-Non-recursive or
Non-RE. This paper provides an easy to state and relatively
easy to understand approach to proving that a language lies
outside of the Recursively Enumerable (RE) family of
languages and is thus Non-RE.

Keywords: Computational Theory, Rice’s Theorem,
computer science instruction, undecidabilty.

1 Introduction
 A key aspect of most Theory of Computation courses is the

study of what is known as the Chomsky Hierarchy of
languages. Although the particular approaches or models
used to explore these families of languages (e.g. Recursive
Function Theory, Automata, etc.) may vary, as may the
specific language categories explored, it is generally accepted
that a fundamental understanding of the hierarchy is essential
to a quality theoretical comprehension and background for
students [1,10,11].

1.1 Chomsky Hierarchy
In some sense, the key question addressed in most theory

courses is “What are the boundaries of computing?”. That is,
are there problems for which no complete computational
solution exists? The Chomsky Hierarchy is instrumental in
understanding the nature of these boundaries and the variety
of language families that are known to exist and are frequently
encountered in the computational solving of problems.

For the purposes of this paper, it will suffice for us to
explore only a simplified version of the hierarchy. In
particular we are concerned with problems that are decidable
(i.e. Recursive Languages), semi-decidable (i.e. RE Non-
Recursive languages) and those that are strongly undecidable
(i.e. Non-RE languages).

Figure 1. The specific version of the hierarchy that we are
addressing.

As the figure indicates, we are interested, for any given
language, which of the three regions of the chart it lies. If the
language lies within the recursive family of languages then we
know that it does yield a computational solution that will meet
the definitions of an algorithm and can thus be programmed.
We are neither addressing nor interested in the question of
whether or not the problem yields an efficient solution but
whether or not it has any solution at all.

Should the language in question lie within the Recursively
Enumerable region (but not within the Recursive domain),
then we say that it is semi-decidable. Although these
languages are formally undecidable, in the sense that they
yield no true algorithmic solutions guaranteed to halt for all
input cases, they do yield recognizers/acceptors. For our
purposes, a recognizer is a program that is guaranteed to halt
and correctly recognize an input word if it is, in fact, a
member of the language but provide no such guarantees if the
input word is not a member of the language.

The final possibility for any language considered is that it
lies within the Non-Recursively Enumerable languages (Non-
RE). We shall refer to these languages as strongly-
undecidable as they yield no algorithms that are guaranteed to
halt on input words whether or not the word is a member of
the language.

2 Traditional approaches to teaching and
proving undecidability

 As most textbooks approach the topic of undecidability
through the exploration of Turing machines, we shall briefly
examine the traditional, historic approach to the topic.

Int'l Conf. Foundations of Computer Science | FCS'16 | 63

ISBN: 1-60132-434-0, CSREA Press ©

2.1 Early pedagogical approaches
Early theory of computation/formal languages

textbooks, though rigorous, formally correct, and effective in
providing the underlying theoretical justifications for the
discipline of computer science, often lacked the intuitive
exposition that many students require for an effective and
operational understanding of the concepts at hand. Hidden
within 2-3 page proofs, the key observations and techniques
were often lost on students who failed to see the forest for the
trees. A rare exception to this rule was the inclusion in most
textbooks of Rice’s theorem.

2.2 Standard Turing machine approach
A common approach to exploring the topic of

decidability is to first explore the languages accepted by a
standard Turing Machine [2,10]. Although the specific
Turing Machine model may vary from text to text or course to
course, students are usually taught that any number of
variations in Turing Machine constructions/rules yield no
additional power with respect to language recognition (e.g.
multiple tapes, multiple tape-tracks, non-determinism, etc.).

Once students are comfortable with the basic operations
of the model, they are often exposed to concept of a Turing
Machine encoding and the Universal Turing Machine. This
universal machine is one which expects, as input, two items,
an encoded Turing Machine and an input word for the
encoded machine. The universal machine can effectively
simulate the step by step operations of the given encoded
machine and provide the result that the encoded machine
would give on the supplied input word. It is, in effect, an
interpreter capable of simulating any supplied program on
any supplied input.

The concepts of Recursive languages and RE languages,
in general, are usually also discussed. Students learn that a
language that can be processed by a Turing Machine that is
guaranteed to always halt in finite time and correctly identify
an input word’s membership or lack thereof in the language is
known as a “recursive” language (Figure 2).

Figure 2. A recursive Turing Machine that is guaranteed
to halt on all inputs and provide a correct membership
determination for all inputs.

Similarly, if the membership in the language can only be
recognized by a Turing Machine that is guaranteed to halt on
inputs that are members of the language but are not

guaranteed to halt and reject non-members, then the language
is said to be “Recursively Enumerable but not recursive” (RE
Non-Recursive – Figure 3). It is then usually explained that
the latter are not true algorithms, as they are not required to
halt in a finite amount of time on all possible inputs and thus
are not decidable languages/problems [2,9,10].

Figure 3. An RE Non-recursive Turing Machine which is
only guaranteed to halt and accept on inputs that are
members of the machine’s recognized language.

2.3 Presentation of an undecidable problem
 The next essential step in exploring decidability is to
introduce a language that is provably not recursive/decidable
[3,4,5]. The standard approach to introducing this concept is
to use a diagonalization argument similar in style to Cantor’s
proof technique for proving the uncountable infinity of the
cardinality of Real numbers. In short, one conceptually
constructs and infinite matrix whose rows and columns are
indexed by a countable enumeration of binary strings {0, 1,
00, 01, 10, 11, 000, 001, 010, 011, 100, 101, 110, 111, …} .
The rows of the matrix are assumed to be the binary
encodings of Turing Machines, while the columns are
assumed to represent the possible binary strings that can be
used as input to a Turing Machine. The actual entries of the
table are Boolean values where Matrix[x] [y] == true if the
Turing Machine whose encoding is the binary string x halts
and accepts the input binary string represented by y and is
false otherwise. Figure 4. represents a hypothetical portion of
the countably-infinite matrix. Therefore, one can consider any
row x of the matrix as representing the language accepted by
Turing Machine x. That is, if entry Matrix[x][y] is true then
binary string y is a member of the language of machine x.
Conversely, if string y is a member of the language
recognized by machine x then the entry Matrix[x][y] is true.

Figure 4. A portion of the countably-infinite, Boolean
Matrix[x][y].

64 Int'l Conf. Foundations of Computer Science | FCS'16 |

ISBN: 1-60132-434-0, CSREA Press ©

2.3.1 The introduction of diagonalization and Ld
 Students are then asked to consider what the entry
Matrix[x][x] represents. Most will quickly realize that the
Boolean entry at position Matrix[x][x] indicates how Turing
Machine x behaves when given its own binary encoding as
input. If the entry is true, then machine x accepts its own
encoding as a member of its language and if it is false then it
does not. Please note that a false entry does not indicate that
the machine in question halts and rejects the membership, it
simply indicates that the machine does not halt and accept.

 Once the nature of the matrix is understood, students are
usually asked to imagine the complement of the matrix,
¬Matrix. That is, the matrix with all true values
complemented to false and all false values complemented to
true.

 Next, students are asked to consider what the newly
complemented diagonal represents. The diagonal from
¬Matrix[0][0] through ¬Matrix[�0][�0]. That is, they are
asked, “What does the language ∀∀x ¬Matrix[x][x] actually
represent?” After some consideration, most students will
recognize that the language in question, which we will call Ld,
is actually the language consisting of the binary encodings of
Turing Machines that do not accept their own encodings.
That is Ld = { <M> | <M> ∉ L(M)} where <M> represents an
encoding of some Turing Machine M and L(M) represents the
language accepted by a Turing Machine M. Figure 5.
Presents the complemented diagonal (Ld) for the portion of
the matrix shown in Figure 4.

Ld = { TRUE, TRUE, TRUE, FALSE, FALSE, TRUE, TRUE, FALSE…}

Figure 5. Ld for complemented Matrix shown in Figure 4.

 Once they understand the meaning and nature of the
diagonalization language Ld, students are reminded of how
the original matrix was actually constructed. The rows of the
matrix were indexed by an enumeration of all Turing
Machine encodings. Therefore, if a Turing Machine M can be
constructed, then it can be encoded and thus it’s encoding will
index some row of the matrix. If Ld is a language that is
recognizable by some Turing Machine M then M must have a
binary encoding z and thus row z of the matrix would
represent the language Lz == Ld. It is at this point that
students are usually posed the question “What is in entry
¬Matrix[z][z]?”

 If the student answers “true”, then it is quickly pointed
out that this would mean that Turing Machine z accepted its
own encoding z which contradicts the actual definition of Lz
== Ld which is the language of machines that do not accept
their own encodings. It is also shown that if the entry was
false, then this would mean that machine z did not accept its
own encoding which means it should be in the language Lz
== Ld and thus should have had an entry of true. This
resulting paradox leads us to the conclusion that there could
not exist any Turing Machine for any row z of the matrix

which corresponds to our language Ld. Therefore, there does
not exist any Turing Machine whose accepted language is Ld
and thus Ld cannot be RE and as a result cannot possibly be
recursive/decidable.

2.3.2 The Universal language
Once students are introduced to a language that is provably

undecidable and in fact is Non-RE, it is often the case that
they are asked to look at the language Lu (the “Universal
Language”) which consists of machine/string pairs
(represented <M,w>) such that the given machine M halts and
accepts the given word/string w. That is, Lu = { <M,w> | w
� L(M) }. Students are often asked whether Lu has a Turing
Machine that accepts it. It is not uncommon for many students
to respond “No” as they have recently seen a language (Ld) for
which no Turing Machine exists that recognizes it. However,
it can usually be easily explained that Lu is simply the
language of the Universal Turning Machine. At this point,
student are asked if the Universal Turing Machine is always
guaranteed to halt on all <M,w> input pairs. Since the
Universal Machine is simply an interpreter that simulates the
actions of its given input machine it is a relatively simple
observation to note that if the input machine M were to go
into an infinite loop or an endless computation on some input
w then clearly the Universal Turing Machine would also
infinitely execute on the input <M,w>. Thus, the language Lu
has a machine that accepts/recognizes it (the Universal
Machine) but said machine is not guaranteed to halt and reply
correctly for all possible inputs and thus Lu is Recursively
Enumerable but not Recursive and like Ld it is not
decidable/recursive (though Lu is Turing recognizable/semi-
decidable).

2.4 Turing Reductions
 Once languages such as Lu and Ld have been explored
and their placement in Chomsky’s hierarchy determined,
most theory courses will explore other undecidable problems
and techniques to their decidability-status. The most common
method presented is that of Turing Reducibility [3,10,11].

2.4.1 Fundamental concepts of Turing reductions
Simply stated, the idea of any Turing reduction is to

determine the classification of some unknown language
(which we ill refer to as L?) via a proof by contradiction. For
example, to prove that L? is not recursive, we would assume
that it is recursive and then using this assumption we would
show that this would imply that Lu is also recursive which has
already been shown to be false and thus we have our
contradiction and can assume that our assumption was wrong
and L? must not be recursive. Similarly, if we wished to show
that L? was Non-RE, we would begin by assuming that it was
RE and then show that this assumption would lead to Ld also
being RE which has been shown to be false and therefore the
resulting contradiction implies that L? cannot be RE. Via

Int'l Conf. Foundations of Computer Science | FCS'16 | 65

ISBN: 1-60132-434-0, CSREA Press ©

exposure to reductions, students should come to recognize that
the problems that are undecidable are those that deal with
properties of the languages that arbitrary Turing Machines
accept [3,10,11,12].

A key aspect of any Turing reduction is the construction of
a Turing machine to serve as input for the assumed machine
for L? [3,4]. This machine is constructed from the input to the
Lu or Ld machine under construction. That is, the input for Lu
or Ld is assumed to be the encoding for some Turing Machine
<M> and using this input, a machine Mx is constructed which
is designed so that the language it accepts either has the
language property P in question for L? or it does not have said
property depending upon whether the input machine <M>
accepts its own encoding or not when run using the Universal
Turing machine [3,4].

2.5 Rice-Myhill-Shapiro Theorem
 The Rice-Myhill-Shapiro theorem, commonly known as
“Rice’s Theorem”, states that any non-trivial property of the
language accepted by an arbitrary Turing machine is
undecidable [4,6]. Although the original paper deals with
Partial Functions, it extends directly to the subject of
computability theory. The Rice-Shapiro Theorem is a more
generalized presentation of the key ideas expressed in the
original paper.

2.5.1 Properties and Rice’s Theorem
A property of Turing machine languages is simply the set of

machine languages that exhibit the said property. For
example, “languages that contain more than 5 strings”,
“languages that are regular”, “languages that are context-
free”, “non-empty languages” and so on. A trivial property is
one that holds either for the languages of all Turing machines
or for no Turing machine languages [4,5,7,8].

 Rice’s theorem has long been a godsend to many students
studying the theory of computation. It states that any language
property can be easily shown to be undecidable (non-
recursive) simply by exhibiting that at least one but not all
Turing machines recognize languages with the property in
question. For example, the property Preg = { <M> | L(M) is a
regular language }. Clearly there are some Turing machines
that accept regular languages but there are others that accept
languages that are not regular (e.g. context-free languages
such as the language consisting of all palindromes) and
therefore it is an undecidable problem to determine whether or
not the language of an arbitrary Turing machine is regular.

A common way of introducing students to Rice’s Theorem
is by explaining that it provides a generalization of Turing
Reducibility for the language Lu. That is, it generalizes the
construction of the machine Mx for input into the assumed
machine for the language L?. In essence, we need only
recognize that our default construction of Mx always
recognizes the empty set ∅ as one of its two possible

languages. Therefore we need only ask the question “Does the
empty set have the property P or not?”

 If the empty set does have property P, then we need only
identify a Turing recognizable language that does not have the
property and define Mx to accept this language as its second
possible language. If the empty language does not have the
property P, then we accept, as our second possible language, a
Turing recognizable language that does have the property. A
generalized pseudo-code construction of an Mx for the case
that the empty language does not have the property P, inspired
by Rice’s Theorem is presented in figure 6.

Program MX(w : input_string)
{
 If (<M> �� L(M)) then
 accept w � L | L�P // L is possibly Σ*
 Else
 reject w
}��

Figure 6. Example MX for the case that the empty
language does not have the given property P.

3 Proving languages to be Non-RE with an
analogue of Rice’s Theorem

 It is essential to understand that Rice’s Theorem is
intended and used only to determine the decidability of a
language. That is, it is not designed, as stated, to distinguish
whether or not the language property is RE Non-recrusive
(semi-decidable) or Non-RE (strongly undecidable) [1,4,12].

3.1 Confusion and limitations of Rice’s
Theorem

The fact that Rice’s Theorem does not distinguish between
the two classes of undecidable languages often results in
difficulties for many students studying theory. They have
learned that there are two classes of problems that prove to be
undecidable – those that are semi-decidable (i.e. RE Non-
recursive) and those that are strongly undecidable (i.e. Non-
RE). A common query that most instructors in such courses
inevitably receives is “How do I use Rice’s theorem to prove
that a language in Non-RE?” The usual response is “You
don’t use Rice’s theorem to prove Non-RE status you use it to
prove that a language is not recursive and thus is undecidable.
It says nothing about the property of the language other than it
is not decidable.”

The response is obviously correct but often leaves students
confused as to why Rice’s theorem is the godsend they
initially believed it to be (and were told it is). If it does not
assist them in determining if a language is semi-decidable or
strongly undecidable then it appears to be less than optimal
for answering the many homework and exam questions they
are confronted with which ask them to categorize and

66 Int'l Conf. Foundations of Computer Science | FCS'16 |

ISBN: 1-60132-434-0, CSREA Press ©

unknown language as decidable, semi-decidable, or strongly
undecidable.

Although Rice’s Theorem answers the question that is of
utmost importance to computer scientists which is “Is the
given language/problem recursive/decidable or not?” it does
not provide any further information as to the nature of the
exact classification of the undecidable problem.

3.2 Corollaries of Rice’s Theorem
A corollary of Rice’s Theorem implies that if a language L1

has property P which is Recursively Enumerable and L1⊂⊂L2
for some language L2 then L2 will also have property P and be
Recursively Enumerable. That is, the Recursively Enumerable
languages are monotonic due to the lattice structure of RE
languages and thus if a language is RE with property P then
all supersets of the language are also RE with property P.
Rice’s Theorem also implies that if a language property P is
not monotonic, then it is Non-RE [3,9,10].

It must be noted that not all Non-RE properties are non-
monotonic. For example, any property P that requires, by
definition of P itself, that the language L1 must have infinite
cardinality may not yield a secondary superset language L2
that does not have the property. For example, the language
property Linf = { <M> | L(M) is infinite} or LΣ* = { <M> |
L(M) == Σ*}. Such properties are clearly monotonic as once
satisfied by a language L1 all supersets of L1 will also have the
property. Such languages require the use of closure properties
(e.g. Showing that ¬Linf = { <M> | L(M) is finite } is RE non-
recursive) or via diagonalization proofs.

3.3 Altering and extending Rice’s Theorem
An examination of Rice’s Theorem, along with its

corollaries leads us to a relatively minimal alteration to our
construction of the machine Mx as implied by Rice’s theorem
and provides us with a machine that does not have to
recognize the empty language as a default in the case that
<M> ∉ L(M).

3.3.1 Altering the Mx of Rice’s construction
The alteration to the traditional Rice approach is simply to

have the constructed machine Mx “pre-filter” its inputs and
accept them when they satisfy some Turing recognizable
language.

In particular, Mx could examine its input before testing the

machine encoded by <M> upon its own encoding and accept
it if it satisfies the recognition condition. For example, if we
wished the machine Mx to recognize the language of all
palindromes as a minimal language, then prior to testing the
machine M upon its encoding <M> we would examine Mx’s
own input to see if it was in fact a palindrome and if so accept
it and not even bother testing M upon its own encoding. This
would result in a constructed machine Mx which either

accepted Lpal (the language of all palindromes) or possibly a
super-set of the language Lpal as indicated by the pseudo-code
in figure 7. As shown in figure 7, Mx now either accepts Lpal ,
if <M> ∉ M, or it accepts the language of all strings (usually
represented as Σ*) if <M> � L(M).

Program MX(w : input_string)
If (w is a palindrome)
 accept w
Else If (<M> � L(M)) then
 accept w
Else
 reject w

Figure 7. Example MX used to prove that the language of
all palindromes is Non-RE.

 The key observation here is that the constructed machine Mx
as implied by Rice’s Theorem always defaults, when <M> ∉
L(M), to the empty language ∅ . The new construction allows
Mx to recognize/accept any Turing Recognizable language L
that is, by definition of the new Mx , a superset of L .

3.3.2 An intuitive understanding of the approach
Just as an operational application of Rice’s Theorem

requires the student to ask if the empty language has the
property in question or not, this analogue approach asks the
student to perform the same operation. If the answer to this
question is “Yes”, then the student need only identify a
superset of the empty set that does not have the property P.
For example if the property P was “Languages that have fewer
than 20 strings”, then clearly the empty language has the
property and the student need only select a Turing
Recognizable language that does not have the property (e.g.
Σ*). Thus Mx either recognizes ∅ or Σ*. Since ∅ ⊂ Σ* and
has property P and Σ* does not have property P we know that
P is a Non-RE property.

 The more interesting case is when the empty language ∅ does
not have the given property P. It is then that we need to alter
our Mx so that it’s default language does have the property P
in question. As an example, consider Lpal (the language
consisting of all palindromes only Lpal). Clearly, the empty
language does not have the property P (∅ ≠ Lpal). Now we
alter our default language for Mx to be one that does have the
property P. In this case, we pre-filter Mx ‘s input and if it is a
palindrome we accept it without ever running machine M
upon its own encoding. Now the default language for Mx is
the language consisting of any and all palindromes only (Lpal).
Next, all we need do is identify a superset of this language
which does not exhibit the property P. Clearly Σ* does not
consist solely of all palindromes and it will suffice. Since Lpal
⊂ Σ* and Lpal has the property P but Σ* does not we know that
the property P is Non-RE.

Int'l Conf. Foundations of Computer Science | FCS'16 | 67

ISBN: 1-60132-434-0, CSREA Press ©

In general, the approach to proving a language to be Non-RE
via the construction of Mx can be expressed as shown in figure
8.

1. Ask if ∅∅�P?
2. If Yes, then design Mx so that it accepts the empty

language ∅ if <M> ∉ L(M) and accepts some other
language L≠∅ such that L∉P if M accepts <M>.

3. If No, then design Mx so that it accepts one of two
languages L1,L2 such that L1�P and is accepted if
<M> ∉ L(M) and L1 ⊂ L2 and L2∉P.

Figure 8. The algorithm for a Rice-analogue to determine
if a property of a language is Non-RE.

Since L1 will always have property P, and RE languages are
monotonic, if a superset of L1 can be found that does not have
property P can be found then P cannot be an RE property and
is thus Non-RE.

4 Examples, limitations and inability to
prove RE languages to be NON-RE

Like Rice’s Theorem, this approach is relatively easy to
apply. Also like Rice’s Theorem, the analogue cannot be
used to prove an incorrect result. Although this approach
can be used to prove the vast majority of Non-RE languages
to, in fact, be Non-RE, there are a handful of languages for
which it cannot be directly used.

4.1 Three examples of applying the approach
Consider the language Lnon5 = { <M> | L(M) does not

contain at least 5 distinct strings}. We prove that this language
is Non-RE by recognizing that the empty language has the
property P (cardinality less than 5). So we select our
secondary language to be any language whose cardinality is
greater than or equal to 5 (e.g. Σ*). Clearly, the empty set is a
subset of Lnon5 and our secondary language does not have
property P and thus the language property of “having fewer
than 5 strings” is Non-RE.

As a second example, consider L∅ = { <M> | L(M) == ∅ }.
Clearly the empty language has the property. Selecting our
secondary language to be Σ* suffices to prove the property to
be Non-RE.

Finally, consider the language Lnon-CFG = { <M> | L(M) is
not a context-free language}. The empty language does not
have the property P of being non-context-free. This means
that we should select our primary/default language to be one
that is not context-free. We can select L1 = { 0N1N0N | N≥1}
which is known not to be a context-free language and thus has
the property P. Now we need only identify a superset of L1
that does not have the property of being non-context-free. We
can easily select Σ* as it is context-free. This language is
context-free and thus is not an element of the set for property

P but it clearly contains the subset L1. Therefore the property
of not being context-free is a Non-RE property.

4.2 Limitations to the approach
Consider the Non-RE language L∞ = { <M> | L(M) is
infinite}. If we follow the algorithm we first ask if the
empty language has the property (infinite cardinality). Since
the empty language is clearly not infinite, we would proceed
to step 3. Now we are tasked with selecting two languages
L1 and L2 such that L1 has the property (infinite cardinality)
and L2 is a superset of L1 that does not have the property in
question. Clearly, any superset of an infinite set must also
be infinite and the approach fails.

 Although the approach succeeds for the majority of Non-
RE properties, the fact that some Non-RE properties are
monotonic prevents the approach from 100% effectiveness.

4.3 RE languages cannot be proven to be Non-RE
Many students frequently perceive Rice’s theorem to be a

form of “magic” and wishful thinking. They often believe that
they can use this “magical approach” to prove that any
language is not recursive. Similarly, students may believe that
the approach presented in this paper suffers from a similar
weakness. Neither belief is accurate and this can be easily
shown.

Consider an attempt to “prove”, using this approach, that
the language L5 = {<m> | L(M) contains at least one string
whose length is greater than or equal to 5} is Non-RE.

We ask if the empty language has the property and easily
determine that it does not have the property of containing a
string of at least length 5. So we select some language L1 as
our primary language that does contain at least one such string
which we will call w. Now, any attempt to identify a super-set
of L1 that does not contain w is doomed to fail, by the
definition of a super-set. It cannot be done.

 As a second example of the failure to incorrectly apply the
approach, consider an attempt to prove that the language Lnon∅

= { <M> | L(M) ≠ ∅ }. That is the language of Turing
machines whose languages are non-empty. This language is
an RE Non-recursive language. Using the approach described,
we ask if the empty set has the property of being non-empty
and obviously the answer is “No”. So we select a language L1
as our primary language which has the property of being non-
empty. Once again, it really does not matter which Turing
recognizable language we select as it must be selected so that
it contains at least some string w. Any attempt to define a
language L2 as a super-set of L1 is destined to produce a set
with at least the string w within it and we cannot find the
required super-set that does not have the property P of being
non-empty.

68 Int'l Conf. Foundations of Computer Science | FCS'16 |

ISBN: 1-60132-434-0, CSREA Press ©

The fact that RE languages are monotonic makes the task of
identifying a super-set of any RE language that does not share
the property impossible and will always fail.

5 Conclusion
This paper presents a relatively easy to understand and

apply approach to proving the Non-RE status of language
properties based upon the fundamental ideas of Turing
reductions and the inherent properties of RE languages.

 The majority of computer science students enrolled in
theory courses are capable of learning the simple process of
identifying a primary and secondary language that either
exhibit the language property or do not, respectively. The
concept of super-sets is usually well understood and requires
little in the way of additional mathematical background for
most of these students.

 Although this approach is not a necessary or sufficient tool
for proving the Non-RE status of a given property, it is
usually more quickly understood, accepted, and applied than
the more standard approaches of using diagonalization
arguments, or traditional Turing Reductions, closure
properties or introducing and exploring the concept of Index-
sets and monotonic functions. It is also a reasonably close
analogue to the traditional application of Rice’s Theorem as
presented in many theory courses and provides students with a
level of “comfort” in identifying and discriminating between
the three classes of recursive, RE Non-recursive and Non-RE
classes of language properties.

6 References
[1] J.E. Hopcroft and J. D. Ullman, Introduction to
Automata Theory, Languages, and Computation (1st ed.),
Addison-Wesley, 500 pages, 1979.

[2] J.E. Hopcroft and R. Motwani, Introduction to
Automata Theory, Languages, and Computation (3rd ed.),
Pearson, pp. 315-370, 2007.

[3] J.E. Hopcroft, R. Motwani, and J.D. Ullman,
Introduction to Automata Theory, Languages, and
Computation (3rd ed.), Pearson, pp. 377-419, 2007.

[4] H.G. Rice, Classes of Recursively Enumerable Sets and
their Decision Problems, Vol. 74, No. 2, pp. 358-366, March
1953.

[5] R. L. Epstein and W. A. Carnielli. Computability,
Computable Functions, Logic, and the Foundations of
Mathematics.(3rd ed.) Advanced Reasoning Forum, 2008.

[6] I.C. Oliveira and W. Carnielli, The Ricean Objection:
An Analogue of Rice's Theorem for First-order Theories,
 Logic Journal of the IGPL 16(6): pp. 585-590,(2008).

[7] A. Tarski. Undecidable Theories. North-Holland, 1953.

[8] E. Börger, E. Grädel and Y. Gurevich. The Classical
Decision Problem. Springer-Verlag, Berlin, 1997.

[9] R. I. Soare. Recursively Enumerable Sets and Degrees.
Perspectives in Mathematical Logic. Springer-Verlag, 1987.
XVIII + 437 pages.

[10] H. Lewis and C. H. Papadimitriou, Elements of the
Theory of Computation (2nd ed.), Pearson, 1998.

[11] D. C. Kozen, Theory of Computation , Springer-Verlag,
London, XIV+418 pages, 2006.

[12] R. Murawski. Decidability vs. undecidability. Logico-
philosophico-historical remarks, Annales UMCS Informatica
AI 3, pp. 105–117, 2005.

Int'l Conf. Foundations of Computer Science | FCS'16 | 69

ISBN: 1-60132-434-0, CSREA Press ©

Formal Methods: A First Introduction using Prolog to specify
Programming Language Semantics

Lutz Hamel
Department of Computer Science and Statistics

University of Rhode Island
Kingston, Rhode Island, USA

hamel@cs.uri.edu

Abstract
An important fundamental idea in formal methods is that pro-

grams are mathematical objects one can reason about. Here

we introduce students and developers to these ideas in the

context of formal programming language semantics. We use

first-order Horn clause logic as implemented by Prolog both

as a specification and a proof scripting language. A mod-

ule we have written facilitates using Prolog as a proof assis-

tant and insures that Prolog implements a sound logic. In

order to illustrate our approach we specify the semantics of a

small functional language and demonstrate various proof ap-

proaches and styles.

1 Introduction
An important fundamental idea in formal methods is that pro-

grams are mathematical objects one can reason about [1].

This fundamental idea appears in many areas of software

development including algorithm correctness, programming

language semantics, compiler correctness, system validation,

and system security. For instance, in security sensitive sys-

tems one could look at a program as a mathematical object

and then formally reason about the safety of that program

with respect to some metric. Given the importance of this

topic every software developer should be exposed to at least

the fundamental concepts and ideas of formal methods [2, 3].

In our curriculum we expose students to ideas in formal meth-

ods in the context of formal programming language seman-

tics. Here, programs are structures with corresponding mod-

els and the idea is to be able to formally reason about the

behavior of programs. The advantage of using programming

language semantics as a tool for teaching formal methods is

that students have an intuition of what the behavior of a pro-

gram is and can bring that intuition to the construction of

proofs.
After experimenting with many different formalisms in-

cluding denotational semantics, algebraic semantics, and
structural operational semantics we settled on using first-

order logic as the formalism for specifying programming lan-
guage semantics and the corresponding proofs in the context
of operational semantic specifications. There are a number of
advantages to using first-order logic:

1. It is a formalism most students (and developers) are already

familiar with and therefore can concentrate on semantic prob-

lems rather than notational issues.

2. It can serve both as a specification language and as a language

for constructing proofs.

3. It (or at least the Horn clause subset) is machine executable

giving rise to executable specifications and the notion of auto-

matic proof assistants.

We consider the last point extremely important in that stu-

dents and software developers need to be exposed to auto-

matic theorem proving ideas in the context of formal meth-

ods. There exist many first- and higher-order proof assistant

systems [4, 5]. However, most of them have difficult notations

and concepts of proof construction making them inaccessible

for a one or two semester course in formal methods. It turns

out that Prolog [6] together with a proof-module that we have

developed is more than adequate for an introduction to for-

mal specification of programming language semantics and the

construction of the corresponding proofs. Here we describe

the proof-module we have developed for Prolog and then we

briefly step through an exercise defining the semantics of a

small functional programming language together with corre-

sponding proofs.

Using Prolog for the specification of programming lan-

guage semantics is not new, e.g., [7]. In particular, the work

by Christiansen [8] and Mosses [9] stands out because it

shares our goal of using Prolog to teach programming lan-

guage semantics and uses a style of semantic specification

similar to the natural semantics style we use in our approach

[10]. However, none of the above works takes advantage of

Prolog as a theorem prover. The work by Gupta and Pon-

telli [11] shares our approach by integrating language specifi-

cation and the corresponding proofs all under the umbrella

of logic programming. However, their approach is based

on constraint logic programming as opposed to first-order

70 Int'l Conf. Foundations of Computer Science | FCS'16 |

ISBN: 1-60132-434-0, CSREA Press ©

Horn clause logic [12]. Furthermore, their view of a proof

is a single query showing that a particular property holds in

their specification. This is very different from our view of a

proof as a program over the meta-language of Prolog includ-

ing queries, assertions, and retractions. It was paramount for

us to stay in the confines of first-order Horn clause logic in or-

der to satisfy our teaching goal. As far as we are aware using

Prolog as a proof assistant in the context formal specifications

is novel.

The remainder of this paper is structured as follows. Sec-

tion 2 discusses Prolog as a theorem prover or more precisely

as an automatic proof assistant. In Section 3 we discuss our

approach to the semantic specification of programming lan-

guages using Prolog. Section 4 discusses proofs. As men-

tioned above, we view proofs as programs over the meta lan-

guage of Prolog and here we showcase a number of different

proof techniques applicable to semantic specifications. Fi-

nally, in Section 5 we present conclusions and further work.

2 Prolog as a Theorem Prover

2.1 The Logic
The first-order Horn clause logic Prolog implements is per-
haps one of the simplest machine executable, Turing com-
plete logics. This makes Prolog attractive as a specification
language since its learning curve is not as steep as other logic
implementations. Under the following considerations Prolog
implements a sound but incomplete logic [13, 14]:

1. The unification algorithm implements the occurrence-check

– Most Prologs omit the required occurrence-check for effi-

ciency reasons. However, some Prolog systems such as SWI-

Prolog [6] make the occurrence-check user selectable.

2. The proof search strategy is a depth-first search of the refu-

tation proof tree – This is the standard implementation of the

search strategy for Prolog due to efficiency reasons.

3. Only ground terms are negated in rule bodies and proof goals.

Our Prolog proof-module for SWI Prolog insures that the

three conditions above are met.
For the last condition above it can be shown that under cer-

tain circumstances deduction will flounder when negation of
non-ground terms is involved [13, 14]. Our module circum-
vents this problem by introducing a new negation predicate
neg/1 which checks whether the negated term is ground or
not:

neg(G) :- ground(G),!,call(not(G)).
neg(_) :- throw(’term is not ground’).

Note that it is necessary to abort deduction if a non-ground
term is found since simple failure is interpreted as a negation
result. The following is a classic example where deduction
flounders under negation [14],

on_top(X) :- not(blocked(X)).
blocked(X) :- on(Y,X).
on(a,b).

Now given the query of ‘do there exist any objects Q on top?’
Prolog returns the incorrect answer ‘false’,

?- on_top(Q).
false
?-

However, it does produce the correct result given the query,

?- on_top(a).
true
?-

Now, replacing the first line in the program above with the
line which includes our new negation predicate,

on_top(X) :- neg(blocked(X)).

prevents Prolog from performing unsound deductions and
will abort the computation.

?- on_top(Q).
ERROR: Unhandled exception: term is not ground
?-

And it still does produce the correct result given the query,

?- on_top(a).
true
?-

Even though the incompleteness of the logic is disconcert-

ing it does not have as much an impact on our proofs as one

might think due to the fact that we use Prolog as a proof assis-
tant along the lines of Coq [4] and Isabelle [5]1 where proofs

are composed of many small steps each verified by Prolog

rather than a fully automatic theorem prover where the sys-

tem is tasked with also finding the proof steps. That is, we

view proofs as programs over the meta-language of Prolog in-

cluding queries, assertions, and retractions. We refer to these

programs as proof scores. It is our experience that it is highly

unlikely to encounter problems with incompleteness of the

logic in this approach. Even if one did, the problems are eas-

ily remedied by either reordering the predicates in a proof

step (in the case of an infinite search) or including additional

lemmas in the proof to work around incompleteness problems

due to the restriction of negation to ground terms only.

2.2 Notation
Our style of specification of programming language seman-
tics was inspired by the natural semantics of Kahn [10]. The
overall structure of a semantic rule is as follows,

<context>:: <syntax> -» <value> :- <conditions>

The intended interpretation of these rules is: given a context,
a piece of abstract syntax is mapped into a semantic value if
the conditions hold. In Prolog the symbol :- represents the
keyword if. The rules can be abbreviated to,

<syntax> -» <value> :- <conditions>

if no context is required by the rule. Our module defines this

notation to make specifications and proofs more readable.

1Neither Coq nor Isabelle is complete due to their use of higher order

logics.

Int'l Conf. Foundations of Computer Science | FCS'16 | 71

ISBN: 1-60132-434-0, CSREA Press ©

2.3 Universally Quantified Queries
Queries in Prolog allow only for existentially quantified vari-

ables. However, when constructing proofs it is often neces-

sary to have queries over universally quantified variables. We

can simulate universally quantified variables in queries using

the following rule from quantification theory [15]:

q ∈ U
P (q)
∴ ∀x ∈ U [P (x)]

If a predicate P is true for an arbitrary object q in some do-
main U it follows that the predicate is true for all objects in
that domain. We can use this to pose universally quantified
queries in our semantics such as,

?- s:: plus(1,1) -->> 2.

where we can interpret s as a constant representing some state

and the query poses the question whether in some state s the

operation plus(1,1) evaluates to the value 2. If the query

is successful then we can use the above quantification rule to

conclude that the query holds for all possible states. Since

this kind of reasoning is always possible we abuse notation

slightly and interpret symbolic constants in queries as uni-

versally quantified variables unless it is obvious from context

that a particular constant is meant, for example, s0 for the

initial state.

2.4 The xis/2 Predicate
Prolog implements a machine executable logic. Given this we
are interested in using programming language specifications
both as executable prototypes as well as for proving proper-
ties of the specified language. When we use a specification as
a prototype we want to appeal to Prolog’s efficiency as a pro-
gramming language which includes the efficient evaluation
of arithmetic expressions. When we want to perform proofs
we appeal to the declarative side of Prolog [14]. It turns out
that these two notions clash in the evaluation of arithmetic ex-
pressions using the is/2 predicate. The is predicate is very
efficient for evaluating arithmetic expressions,

?- X is 1 + 1.
X = 2.

However, when performing proofs it is often necessary to
write arithmetic expressions involving universally quantified
variables,

X is k + 1.

and this leads to problems because is does not know how to
handle these quantities,

?- X is k + 1.
ERROR: is/2: Arithmetic: ‘k/0’ is not a function

In order to accommodate proofs involving universally quan-
tified variables our module implements the xis/2 predicate
(eXtended is) which behaves just like is but allows univer-
sally quantified variables,

?- X xis k + 1.
X = k+1.

It does perform partial evaluation of the expressions where
possible,

?- X xis 0, Y xis k + 3 * cos(X).
X = 0,
Y = k+3.0.

2.5 Additional Predicates
In order to make proofs more readable and easier to follow

at runtime our module defines some additional predicates.

These predicates do not add new meta-language functionality

to Prolog but rather act as wrappers for existing functionality

that provide better self-documentation of proofs and a better

runtime trace. Among the newly defined predicates are:

assume/1 – this is the same as asserta/1.

remove/1 – this is the same as retract/1.

show/1 – this is the same as a Prolog query.

Each of these predicates preserves the original functionality
but outputs additional information when executed. Here is an
example of a very simple (and perhaps silly) proof score:

:- consult(’preamble.pl’).
:- >>> ’assume the commutative property’.
:- >>> ’of integer addition’.
:- assume equiv(A+B,B+A).

:- >>> ’show that expressions X and Y’.
:- >>> ’are related by commutativity’.
:- show

X xis a + b,
Y xis b + a,
equiv(X,Y).

Here is the runtime trace of this proof score,

% xis.pl compiled 0.00 sec, 33 clauses
% preamble.pl compiled 0.00 sec, 45 clauses
>>> assume the commutative property
>>> of integer addition

Assuming: equiv(_G1202+_G1203,_G1203+_G1202)
>>> show that expressions X and Y
>>> are related by commutativity

Showing:
_G1214 xis a+b,
_G1262 xis b+a,
equiv(_G1214,_G1262)

% proof-simple.pl compiled 0.03 sec, 1,343 clauses

Note that in queries Prolog replaces variable names with inter-

nally generated unique names. In the case above, for example,

the variable A is replaced by _G1202. Also, the consult
predicate at the beginning of the proof score loads our module

preamble.pl. Also note the “executable” comments.

3 Semantic Specifications
In order to illustrate the use of our semantic rules we will

specify the semantics of a small functional language inspired

by Winskel’s REC language [16]. The abstract syntax for this

language is shown in Figure 1 with the concrete syntax shown

in brackets.

72 Int'l Conf. Foundations of Computer Science | FCS'16 |

ISBN: 1-60132-434-0, CSREA Press ©

E ::= X
| I
| mult(E,E) [E * E]
| plus(E,E) [E + E]
| minus(E,E) [E - E]
| if(B,E,E) [if B then E else E end]
| let(X,E,E) [let X = E in E end]
| letrec(F,X,E,E) [let rec F X => E in E end]
| fn(X,E) [fn X => E]
| apply(E,E) [E E]

B ::= true
| false
| le(E,E) [E <= E]
| eq(E,E) [E == E]
| not(E) [not E]

I ::= <any integer digit>
X ::= <any variable name>
F ::= <any function name>

Figure 1: The abstract syntax of a small functional language.

As usual, we have to give at least one semantic rule for each
syntactic unit in the grammar. The distinguishing feature of
the semantics for this language is that it has a declaration en-
vironment for functions we call D and a binding environment
for variables we call S. Therefore, a state in our semantics is
a pair consisting of a declaration environment and a binding
environment, e.g. (D,S). We start our discussion by giving
the rule for the arithmetic operator mult,

(D,S):: mult(E1,E2) -->> V :-
(D,S):: E1 -->> V1,
(D,S):: E2 -->> V2,
V xis V1 * V2,!.

This rule can be paraphrased as follows:

In the context of state (D,S), the operator

mult(E1,E2) with subexpressions E1 and E2

evaluates to the value V if under state (D,S) the

subexpressions E1 and E2 evaluate to the values V1 and

V2, respectively, and the integer multiplication of V1

and V2 is the value V.

In Prolog commas represent the boolean connective and.

Also, in Prolog variables start with a capital letter, that means

E1, E2, S, etc. are all variables or more precisely meta-

variables, i.e., variables of the specification language. Also

noteworthy is the cut (!) at the end of the rule. We can in-

terpret this cut in one of two ways. First, from a procedural

point of view each semantic rule constitutes a state transition

and once a state transition was made it is not allowed to be

reversed. Second, from a declarative point of view the set of

semantic rules constitute an inductively defined set of rules.

Therefore, once it has been shown that a rule has been suc-

cessfully applied to a piece of syntax all other branches of the

proof tree can be safely pruned because they will not contain

another success. This holds even if there are multiple rules

for a particular syntactic unit because those rules will be mu-

tually exclusive (e.g., see the if-then-else rules).
The rules for plus and minus are analogous to the rule

for mult. Next we look at integer constants and variables.
The rule,

I -->> I :- is_int(I),!.

states that integer constants are treated as integer values re-
gardless of state. The following rules interpret variables in
expressions. The first rule gives an interpretation to function
variables and the second rule to variables that range over in-
teger values,

(D,_):: F -->> [[X,E,S]] :-
is_var(F),
lookup(F,D,[[X,E,S]]),!.

(_,S):: X -->> V :-
is_var(X),
lookup(X,S,V),!.

The first rule looks up the name F in the function declaration
environment D and returns the closure of a function which in-
corporates the formal parameter, the function body, and the
binding environment in which the function was defined. We
denote closures with a double bracket notation, [[]]. The
second rule looks up the variable X in the binding environ-
ment S and returns the bound integer value. The predicate
is_var insures that the variable names conform to the lexi-
cal rules. This predicate is not strictly necessary but here we
are dealing with abstract syntax and we do not have a parser
enforcing lexical rules. The lookup predicate is an auxiliary
predicate defined as part of our semantics. The underscore in
the rules represents an anonymous variable meaning that the
corresponding structure is matched but ignored by the rule.
Next, the if expression has its usual interpretation,

(D,S):: if(B,E,_) -->> V :-
(D,S):: B -->> true,
(D,S):: E -->> V,!.

(D,S):: if(B,_,E) -->> V :-
(D,S):: B -->> false,
(D,S):: E -->> V,!.

Here the first rule states that if the boolean expression evalu-
ates to the value true within the context of state (D,S) then
the first expression is evaluated. The second rule states that
otherwise the second expression is evaluated. Let expressions
allow us to bind values to variables,

(D,S):: let(X,E1,E2) -->> V :-
is_var(X),
(D,S):: E1 -->> V1,

(D,[(X,V1)|S]):: E2 -->> V,!.

Here we first evaluate expression E1 under the original state
(D,S). Once we have the corresponding value V1 we ex-
tend the original binding environment Swith the binding term
(X,V1) making use of Prolog’s list manipulation abilities
and evaluate the expression E2 under this new extended state.
The resulting value V is the return value of the overall let ex-
pression. A special case of the let expression is the let-rec
expression which allows us to define recursive functions,

(D,S):: letrec(F,X,E1,E2) -->> V :-
is_var(F),
is_var(X),

([(F,[[X,E1,S]])|D],S):: E2 -->> V,!.

The let-rec expression computes the function closure and as-

sociates the closure with the function name F in the function

declaration environment D. The expression E2 is then evalu-

ated in this extended state.
Our programming language also supports anonymous

functions envisioned in the style of ML [17]. In the abstract
syntax this is denoted by the operator fn. As before, the
semantic value of a function definition is the closure of the
function,

Int'l Conf. Foundations of Computer Science | FCS'16 | 73

ISBN: 1-60132-434-0, CSREA Press ©

(_,S):: fn(X,E) -->> [[X,E,S]] :- is_var(X),!.

Finally, we define function application as follows,

(D,S):: apply(E1,E2) -->> V :-
(D,S):: E1 -->> [[X,E,Sfn]],
(D,S):: E2 -->> V2,

(D,[(X,V2)|Sfn]):: E -->> V,!.

Here we see that in order for function applications to make

sense the first expression E1 has to evaluate to a function clo-

sure. We then evaluate the second expression E2 and its value

V2 is used to create a binding term (X,V2) where X is the

formal parameter of the function. This binding term is used

to extend the function binding environment Sfn and the body

of the function E is evaluated under this extended state.

The semantics of boolean expressions can be specified

analogously to the arithmetic expression with the big differ-

ence of course that we only have two constant values: true
and false. A complete listing of all the semantic specifica-

tion rules is available from the authors website.

4 Proofs
Everything in Prolog is a proof – in particular, running a logic

program in Prolog is a proof. However, here we are interested

in Prolog as a proof assistant in order to prove characteristics

of our language specifications. Our view of proofs as pro-

grams over the meta language of Prolog seems to be novel

and we explore this here. We explore three types of proofs:

• Tests - which are proofs over a particular input-output

pair of a program.

• Proofs of language properties - these proofs examine

features of the language such as program equivalence.

• Program correctness proofs - proofs whether a program

conforms to a given requirement or not.

Here we take a look at each of these proof categories.

4.1 Tests
In testing we are interested in the behavior of language fea-
tures and want to show that a certain feature behaves as ex-
pected given some particular input value. In Prolog we ac-
complish this by setting up a proof that relates an input to
a program to its expected outcome. The following is a sim-
ple proof for integer multiplication in our functional program-
ming language assuming that the language definition has been
loaded,

?- show (d,[(x,10)|s]):: mult(x,10) -->> 100.
Showing: (d,[(x,10)|s])::mult(x,10)-->>100

true.

We can paraphrase this proof as follows,

Show that for all declaration environments d and all

binding environments s that contain the binding term

(x,10) the code snippet mult(x,10) evaluates to the

value 100.

In order to illustrate how these tests can be used to explore
features let us take a look at function calls. Here is a more
ambitious test proof regarding function calls,

:- consult(’functional-rec-sem.pl’).
:- assume program

let(inc,
fn(x,plus(x,1)),
apply(inc,1)).

:- >>> ’we have for all states (d,s), (d,s):: P -->> 2’.
:- show

program P,
(d,s):: P -->> 2.

The above program can be rewritten in concrete syntax as fol-
lows,

let inc = (fn x => x + 1) in inc 1 end

The actual test checks whether for all possible states the pro-
gram evaluates to the value 2. Here is the corresponding run-
time trace of the proof score assuming that the proof score is
called ‘proof-inc.pl’,

?- consult(’proof-inc.pl’).
% xis.pl compiled 0.00 sec, 33 clauses
% preamble.pl compiled 0.00 sec, 45 clauses
% functional-rec-sem.pl compiled 0.01 sec, 68 clauses

Assuming: program let(inc,fn(x,plus(x,1)),apply(inc,1))
>>> we have for all states (d,s), (d,s):: P -->> 2

Showing: program _G117, (d,s)::_G117-->>2
% proof-inc.pl compiled 0.01 sec, 72 clauses
true.

We can also experiment with the higher-order nature of our
functional programming language using currying,

:- >>> ’Higher order functions: curried plus’.
:- assume program

let(add,
fn(x,

fn(y,plus(x,y))),
apply(apply(add,1),1)).

:- >>> ’we have for all states (d,s), (d,s):: P -->> 2’.
:- show

program P,
(d,s):: P -->> 2.

In terms of concrete syntax the above program is written as:

let add = (fn x => (fn y => x + y)) in add 1 1 end

4.2 Proofs of Language Properties
In order to prove properties of a programming language it is
convenient to define the notion of program equivalence,

p1 ∼ p2 iff ∀s, ∃v1, v2[s :: p1 → v1 ∧ s :: p2 → v2 ∧ v1 = v2]

That is, two programs p1 and p2 are equivalent if and only
if under all states s they produce the same semantic value.
We can use this to prove that the multiplication operator in
our language is commutative. Looking at the semantic rule
for multiplication defined above it is clear that commutativity
follows directly from the commutativity of integer multipli-
cation but it is still nice to actually prove that this is so,

:- >>> ’Assume that we have expressions a and b’.
:- assume (d,s):: a -->> va.
:- assume (d,s):: b -->> vb.

:- >>> ’Integer multiplication is commutative’.
:- assume equiv(A*B,B*A).

:- show
(d,s):: mult(a,b) -->> V1,
(d,s):: mult(b,a) -->> V2,
equiv(V1,V2).

74 Int'l Conf. Foundations of Computer Science | FCS'16 |

ISBN: 1-60132-434-0, CSREA Press ©

Next we prove that our functional language implements by-
value parameter passing. We show this by proving that func-
tion application is equivalent to an appropriate let-expression,

:- >>> ’By-value parameter passing’.

:- assume (d,s):: a -->> va.
:- assume (d,[(x,va)|s]):: e(x) -->> ve.

:- show
(d,s):: let(x,a,e(x)) -->> V1,
(d,s):: apply(fn(x,e(x)),a) -->> V2,
V1=V2.

The proof itself is straightforward with perhaps the exception

of the second assumption which states that any expression e
parameterized over the variable x evaluates to the value ve
under some state whose binding environment s contains the

variable binding (x,va).
The following is a proof that in our functional language

without function application all programs terminate, i.e., al-
ways produce a value. The proof is by structural induction
over the expressions,

:- >>> ’Base cases:’.

:- >>> ’Variables’.
:- >>> ’Assume that states are finite’.
:- assume lookup(x,s,vx).
:- show (d,s):: x -->> vx.
:- remove lookup(x,s,vx).

:- >>> ’Constants’.
:- assume is_int(n).
:- show (d,s):: n -->> n.
:- remove is_int(n).

:- >>> ’anonymous function definitions’.
:- assume is_var(x).
:- show (d,s):: fn(x,e) -->> [[x,e,s]].
:- remove is_var(x).

:- >>> ’Inductive cases’.

:- >>> ’Operators’.
:- >>> ’mult’.
:- assume (d,s):: a -->> va.
:- assume (d,s):: b -->> vb.
:- show (d,s):: mult(a,b) -->> va*vb.
:- remove (d,s):: a -->> va.
:- remove (d,s):: b -->> vb.

:- >>> ’the remaining operators and boolean’.
:- >>> ’expressions can be proved similarly’.

:- >>> ’programming constructs’.
:- >>> ’let-expression’.
:- assume (d,s):: a -->> va.
:- assume (d,[(x,va)|s]):: e(x) -->> ve.
:- show (d,s):: let(x,a,e(x)) -->> ve.
:- remove (d,s):: a -->> va.
:- remove (d,[(x,va)|s]):: e(x) -->> ve.

:- >>> ’similarly for the let-rec expression’.

:- >>> ’if-expression with case analysis’.
:- assume (d,s):: e1 -->> v1.
:- assume (d,s):: e2 -->> v2.

:- assume (d,s):: b -->> true.
:- show (d,s):: if(b,e1,e2) -->> v1.
:- remove (d,s):: b -->> true.

:- assume (d,s):: b -->> false.
:- show (d,s):: if(b,e1,e2) -->> v2.
:- remove (d,s):: b -->> false.

:- remove (d,s):: e1 -->> v1.
:- remove (d,s):: e2 -->> v2.

The structural induction argument as encoded by this proof

score is pretty straight forward. Perhaps the only surprising

aspects are the ‘remove’ statements which remove assump-

tions from the Prolog database. They are necessary in order

to prevent assumptions from one step of the proof to “bleed”

into another step of the proof.

4.3 Program Correctness Proofs
Program correctness proofs are very similar to testing as dis-

cussed above with the exception that we want to show that

the program behaves as expected for all inputs. Here we use

techniques described in [18] and [19].
We start with the correctness proof a program that com-

putes the maximum of two values. The proof makes use of
the Prolog built-in predicate max/2 as a model for the com-
putation of our program.

:- >>> ’show that program’.
:- >>> ’ P = "let(z,if(le(n,m),m,n),z)"’.
:- >>> ’computes the maximum of’.
:- >>> ’the values assigned to m and n’.

:- assume program let(z,if(le(n,m),m,n),z).

:- >>> ’assume values for m and n’.
:- assume (d,s):: m -->> vm.
:- assume (d,s):: n -->> vn.

:- >>> ’case analysis on values vm and vn’.
:- >>> ’case vm = max(vm,vn)’.
:- assume vm xis max(vm,vn).
:- >>> ’this implies that’.
:- assume true xis (vn =< vm).
:- show

program P,
(d,s):: P -->> vm.

:- remove vm xis max(vm,vn).
:- remove true xis (vn =< vm).

:- >>> ’case vn = max(vm,vn)’.
:- assume vn xis max(vm,vn).
:- >>> ’this implies that’.
:- assume false xis (vn =< vm).
:- show

program P,
(d,s):: P -->> vn.

:- remove vn xis max(vm,vn).
:- remove false xis (vn =< vm).

The proof performs a case analysis on the values of m and

n and shows that in each case our program evaluates to the

correct value for all possible states s.
Our next proof is the correctness proof of the factorial func-

tion,

let
rec fact x => if x == 1 then 1 else x * fact(x-1) end

in
fact(1)

end

Here is the proof,

:- >>> ’Factorial: show that program P:’.
:- assume program

letrec(fact,

Int'l Conf. Foundations of Computer Science | FCS'16 | 75

ISBN: 1-60132-434-0, CSREA Press ©

x,
if(eq(x,1),

1,
mult(x,

apply(fact,
minus(x,1)))),

apply(fact,i)).
:- >>> ’is correct for all inputs i > 0’.

:- >>> ’proof by induction on i’.

:- >>> ’base case: i=1’.
:- assume i -->> 1.
:- show

program P,
(d,s):: P -->> 1.

:- >>> ’inductive step: i=n’.
:- assume i -->> n.
:- assume false xis n==1.
:- >>> ’inductive hypothesis:’.
:- assume

apply(fact,minus(x,1)) -->> factorial(n-1).

:- show
program P,
(d,s):: P -->> n*factorial(n-1).

The proof is by induction over the input to the fact function.
As a model for the computation we use the factorial operator
defined in the standard recursive way for k > 0,

factorial(k) =

j
1 if k = 1
k ∗ factorial(k − 1) otherwise

5 Conclusions

Every software developer should be exposed to the fundamen-

tal idea in formal methods that programs are mathematical

objects one can reason about. We introduce this idea in the

context of formal programming language semantics. Here,

programs are structures with corresponding models and the

idea is to be able to formally reason about the behavior of

programs. We have shown that the first-order Horn clause

logic as implemented by Prolog is a suitable framework to

introduce these ideas. Using the specification of a small func-

tional language we have shown that a variety of proof types

and styles can be implemented using Prolog as a proof assis-

tant, from simple implication based proofs to induction based

arguments. In our view proofs are programs over the meta-

language of Prolog and our custom module assists in writing

these proofs. Our module also insures that Prolog deduction

is sound and allows the use of universally quantified vari-

ables in proofs. The advantages of using Prolog is that it is

a straightforward language to learn and the underlying logic

is likely a formalism most students and software developers

have already encountered.

In the future we interested in developing bisimulation and

co-inductive techniques using Prolog which would prove use-

ful when proving compilers and translators correct.

This paper is dedicated to Angel.

References
[1] E. M. Clarke and J. M. Wing, “Formal methods: State of the

art and future directions,” ACM Computing Surveys (CSUR),
vol. 28, no. 4, pp. 626–643, 1996.

[2] S. Skevoulis and V. Makarov, “Integrating formal methods

tools into undergraduate computer science curriculum,” in

Frontiers in Education Conference, 36th Annual, pp. 1–6,

IEEE, 2006.

[3] A. Zamansky and E. Farchi, “Exploring the role of logic and

formal methods in information systems education,” in Software
Engineering and Formal Methods, pp. 68–74, Springer, 2015.

[4] Y. Bertot and P. Castéran, Interactive theorem proving and pro-
gram development: Coq’Art: the calculus of inductive con-
structions. springer, 2004.

[5] L. C. Paulson, Isabelle: A generic theorem prover, vol. 828.

Springer, 1994.

[6] J. Wielemaker, T. Schrijvers, M. Triska, and T. Lager, “SWI-

Prolog,” Theory and Practice of Logic Programming, vol. 12,

no. 1-2, pp. 67–96, 2012.

[7] B. R. Bryant and A. Pan, “Rapid prototyping of programming

language semantics using prolog,” in Computer Software and
Applications Conference, 1989. COMPSAC 89., Proceedings
of the 13th Annual International, pp. 439–446, IEEE, 1989.

[8] H. Christiansen, “Using prolog as metalanguage for teaching

programming language concepts,” Issues in Information Tech-
nology, EXIT, Warszawa, pp. 59–82, 2000.

[9] P. D. Mosses, “Modular structural operational semantics,”

The Journal of Logic and Algebraic Programming, vol. 60,

pp. 195–228, 2004.

[10] G. Kahn, “Natural semantics,” in 4th Annual Symposium on
Theoretical Aspects of Computer Science (STACS 87), pp. 22–

39, Springer-Verlag, 1987.

[11] G. Gupta and E. Pontelli, “Specification, implementation,

and verification of domain specific languages: a logic

programming-based approach,” in Computational Logic:
Logic Programming and Beyond, pp. 211–239, Springer, 2002.

[12] T. Swift and D. S. Warren, “Xsb: Extending prolog with tabled

logic programming,” Theory and Practice of Logic Program-
ming, vol. 12, no. 1-2, pp. 157–187, 2012.

[13] J. Lloyd, Foundations of Logic Programming. Berlin:

Springer-Verlag, 1987.

[14] U. Nilsson and J. Małuszyński, Logic, programming and Pro-
log. Wiley Chichester, 1990.

[15] I. Copi, “Introduction to logic (6th ed),” 1982.

[16] G. Winskel, The formal semantics of programming languages:
an introduction. MIT press, 1993.

[17] R. Milner, M. Tofte, R. Harper, and D. B. MacQueen, The Def-
inition of Standard ML (Revised). MIT Press, 1997.

[18] R. Bird et al., Introduction to functional programming using
Haskell, vol. 2. Prentice Hall Europe London, 1998.

[19] J. A. Goguen and G. Malcolm, Algebraic Semantics of Imper-
ative Programs. MIT Press, 1996.

76 Int'l Conf. Foundations of Computer Science | FCS'16 |

ISBN: 1-60132-434-0, CSREA Press ©

SESSION

SURVEYS AND NEW STUDIES

Chair(s)

TBA

Int'l Conf. Foundations of Computer Science | FCS'16 | 77

ISBN: 1-60132-434-0, CSREA Press ©

78 Int'l Conf. Foundations of Computer Science | FCS'16 |

ISBN: 1-60132-434-0, CSREA Press ©

Reframing the Gender Gap in Computer Science as a
Solvable Problem

Nazli Hardy 1, Emmali Montgomery1

1Computer Science, Millersville University, Millersville, PA, USA

Abstract - The alarmingly low numbers of women pursuing
Computer Science degrees in the United States continues to be
significant concern. Because of such low participation, related
organizations have been considering potential ways to
integrate more women; however, it is the underlying general
causes and their sources of the decline that need to be
considered methodically from various contexts. In
understanding the causes, we can redirect the efforts as a
solvable problem.

Keywords: Women in Computer Science, Gender Gap in
Computer Science, Attracting Women to Computer Science

1 Introduction
 By 2024, there will be half a million Computer Science
related jobs that need filled according to the Bureau of Labor
and Statistics, and at the current graduating rate of Computer
Scientists, the supply is much lower than the demand [1].
Companies are so desperate for employees to fill those
positions that many are hiring fresh college graduates or
attempting to create more enticing internship programs.
Surprisingly, women have been found to outnumber men in
Universities, yet very few are pursuing careers in Computer
Science. The National Bureau of Economic Research states
“in 2003, there were 1.35 females for every male who
graduated from a four-year college” [2]. Comparing this to
Randal Olson’s findings that show less than 18% of Computer
Science degrees are earned by women begs the question of
what is steering women away from technology [3].

A 2014 Google study [4] found that the four (controllable)
key factors in the decrease of numbers are 1) social
encouragement, 2) self-perception, 3) academic exposure, and
4) career perception. In addition, the study found peripheral
roles (uncontrollable factors) that also have a negative
influence in the pursuit of a Computer Science degree by
women. These include a) ethnicity b) family income, c) and
parental occupation.

For women (and men) studying and working in the field of
Computer Science, these numbers and accompanying figures
are not new. Having had the experience of being or seeing
only a handful of women in a) undergraduate and graduate
classes (which were taught by mostly men) and b) in the

workplace, the numbers while unsurprising continue to be
problematic.

Through training, Computer Scientists are taught to problem
solve and to do so in the most efficient manner possible. To
Computer Scientists, the world of possibilities lies in the
problems that can be solved, logically and systematically;
however, to people outside the realm of technology, it is not
clear at all what Computer Scientists do or what Computer
Science is. That is a problem because the vague
understanding of what computer science is and what computer
scientists do feed directly to the four key factors identified in
the Google study.

2 The Career Landscape for Women
and Motivating Factors

 In 2014, the fields in which there were more than 75%
women employed in the US [4] were secretaries, elementary &
middle school teachers, nurses, psychiatric and home health
aides, receptionists, office clerks, maids and housekeeping,
social workers, secondary school teachers, personal care aides,
waitresses, teaching assistants, preschool and kindergarten
teachers. A 2012 Wall Street Journal [5] indicated that
"women account for a third of the nation's lawyers and
doctors, a major and positive shift from a generation ago."

The presence and “popularity” for women in the
aforementioned careers could be functions of opportunities
available, and also the built-in bias in recruitment in a male
dominated workforce over the years. But from a pragmatic
perspective, we can consider what these occupations have in
common.

1) There is a clear perception regarding the
aforementioned careers. People and media have a
comfortable summary understanding of what teachers
do, what nurses and doctors do, what administrative
assistants do, what lawyers do. Women have been
pigeon-holed into these professions.

2) There is a sense of manageability of hours which
would allow women to “have it all” (an income, a
career, independence, while also being able to nurture
a functional household/ family.)

3) Counselors, parents, and mentors are able to give
social, academic, professional exposure, guidance

Int'l Conf. Foundations of Computer Science | FCS'16 | 79

ISBN: 1-60132-434-0, CSREA Press ©

and encouragement to students interested in pursuing
these careers.

4) Each of the professions is useful and necessary in
everyday life, and they involve meaningful social and
human interaction.

3 The Solvable Parts of the Problem

Part I: A study on adolescent (teenagers indicative of a pre-
college age-group) girls has shown that “girls reported greater
likability and similarity to the self for women in appearance-
focused occupations compared with women in non-
appearance-focused occupations” [10]. The girls were shown
photographs of appearance-based career women (model Heidi
Klum and actress Jennifer Anniston) and non-appearance
based career women (CEO Carly Fiorina, and military pilot
Sarah Deal Burrow). The girls rated women in appearance-
focused photos as more competent than the other women.
However, the study also found that the same teenage girls
found CEOs and military pilots to be better role models. The
research also concluded from the findings that “girls know they
should look up to female doctors and scientists, but they also
know that women in appearance-focused jobs get rewarded by
society. It is therefore reasonable to think they would prefer
women in those jobs.” What is encouraging is that the finding
also showed that there is an “interest and hunger for a more
diverse image of working women in media and advertising.”

An additional study found “that image search results for
occupations slightly exaggerate gender stereotypes and portray
the minority gender for an occupational less professionally”
[6]. To address these concerns LeanIn.org and Getty Images
have collaborated to create and curate and present the “Lean
In Collection,” a library of images devoted to the powerful
depiction of women, girls, and people who support them. The
pictures in this collaborative collection are geared to depict
images of female leadership, and equal partnership in
contemporary work and life. [7]

Part II: In a survey conducted by the authors of this paper, we
identify 1) the lack of clear understanding of what computer
scientists do, and 2) the lack of clear perception of the field of
computer science, as additional components to the low
enrollment of women in computer science in the United States.

4 Methodology
Part I: To assess, compare, and contrast the images of the
profession of Computer Science and the image of women in
Computer Science, simple searches were carried out on
Google. In line with the Google study [4], the objective was
to gauge the perception and exposure of Computer Science
and Computer Scientists that are projected by online media to

precollege female students, and their circle of influence
(counselors, peers, parents).

Part II: The authors conducted a survey of a wide range of
people as a means of gauging their perceptions and “un-
researched” understanding of what computer scientists do, and
what computer science is, in general. We asked each
respondent to give us their immediate and un-researched
answers.

5 Results
Part I:
Googling the words “Computer Science” gives us the
following image (Figure 1).

Fig 1: the images retrieved on 3/21/16 upon googling
“computer science”

Googling the words “women Computer Science” gives us the
following picture (Figure 2).

80 Int'l Conf. Foundations of Computer Science | FCS'16 |

ISBN: 1-60132-434-0, CSREA Press ©

Fig 2: the images retrieved on 3/21/16 upon googling “women
in computer science”

These images are a visual indication of how computer science
is perceived and how that perception is further propagated in
the media, and funneled through and accepted by high school
students, their counselors, and guardians.

All images from the first set were advertisement styled with a
plethora of 1s, 0s, and various code bits plastered on objects
that generally do not define Computer Science at all. The
closest image was one that included a keyboard. This indicates
that society, especially those instilled with the job of promoting
Computer Science, have a narrow understanding of the field.

The second set shows a lot of promotional material for
women, further showing that there is a lack of women and
support for the field. Beyond that, it is just people looking at a
computer. There is nothing showing what the actual field can
accomplish, or that Computer Science and coding is a big part
of everyday life. There is nothing illustrating how code affects
people and that it is in almost everything we handle in this
decade.

The images of “computer science” and a “computer scientist”
visually indicate:

1) Computer Scientists and Computer Science are not
defined clearly.

2) there is little relevance or connection with the pictures
to everyday lives.

3) there is no depiction of social or human interaction.
4) Computer Science is abstract and non-dynamic field.
5) Computer Scientists do little beyond sitting around a

computer.
6) there is a widening gap/ problems in the recruitment

of women in computer science.

As a contrast to the images for “Computer Science” and
“Computer Scientist”, the images for the careers that women
pursue, or in which there is a majority of women, showcase a
different narrative. Figures 3, 4, and 5 represent Google
images for elementary school teacher, receptionist, and health
care respectively.

 Fi 3: the images retrieved on 3/21/16 upon googling
“elementary school teacher” (most of us have had one – we
know what they do, they made an impression on us)

 Fig 4: the images retrieved on 3/21/16 upon googling
“receptionist” (images of attractive women, which is
important to people)

Int'l Conf. Foundations of Computer Science | FCS'16 | 81

ISBN: 1-60132-434-0, CSREA Press ©

Fig 5: the images retrieved on 3/21/16 upon googling “health
care” (important to all os us, meaningful, we have interaction
with someone in the health field social interaction, making a
difference, prestige)

Part II
A random group of college educated, non-computer scientists
were asked the following questions a) what do you think a
Computer Scientist does and b) what exactly is Computer
Science. (The complete set of responses is in the Appendix.)

6. Analysis and Discussion
Part I: The images portray computer science to be a counter

to the images portrayed for professions that women typically

choose. The images are impersonal, abstract, (Fig 1) static,

and do not illustrate the varied functions of computer scientists

(Fig 2). In addition, the images generally do not demonstrate

any women in leadership roles, nor do they exemplify

meaningful human or social interaction. The messages for

computer science and women in computer science (Fig 1, 2)

are in contrast to the more dynamic images depicting “happy”
women interacting with others in careers that appear to be

meaningful (Fig 3, 4, 5) like elementary teachers, and health

care professionals. Adolescent girls are self-conscience and

want a career in which women are perceived to be attractive

and thus likable and rewarded by society [10]. The abstract

images portraying computer science do not allow adolescent

girls and their circle of influence (high school counselors,

parents. guardians) to connect with the career that is known to

be “male-dominated.”

Part II: The survey carried out by the authors confirms that

there is not a clear or summary understanding of what

computer scientists do, or what computer science is. There is

a specific connection to coding, and computers, but there is

not a comprehensive scope of understanding of the broad

spectrum of meaningful contributions that is directly influenced

by computer science and computer scientists.

7. Conclusions
 To attract women to Computer Science, a field we know
to be dynamic, progressive, meaningful, broad, flexible,
and impactful, it is necessary to:

1) define clearly what computer science is and what
computer scientists do, so that it can be conveyed to
girls in middle and high school

2) define clearly to high school counselors, and the
general population what computer science is and
what computer scientists do, so that they would be
articulate the field to potential and interested students

3) work with organizations like LeanIn.org and Getty
Images, to create and propagate dynamic images of
actual female computer scientists carrying out jobs in
computer science, especially ones in which they are
engaging with others (e.g. professors, filed
researchers, experts speaking at conferences,
working on rockets, building robots in a team)

4) showcase computer science as the field that creates
devices and programs that girls enjoy using and find
useful and meaningful to use (e.g. iTunes, Google,
apps, FitBit, computerized medical devices etc.)

5) redefine the field as one that, due to its pervasive
nature, allows women to pursue any area of interest
while also allowing them to have the family life and
social time that leads to a balanced life.

6) invest in conferences that have females Computer
Scientists as role models and presenters. A model for
such a conference is the Women in Math and
Science Conference at Millersville University [8].

7) invest in courses (at both the High School and
College level) that give Freshman an example-based
understanding of what Computer Science is and what
Computer Scientists have done and are doing [9].

82 Int'l Conf. Foundations of Computer Science | FCS'16 |

ISBN: 1-60132-434-0, CSREA Press ©

8 References
[1] “Computer and Information Technology Occupations.”
Bureau of Labor Statistics. Retrieved on 5/9/2016.
http://www.bls.gov/ooh/computer-and-information-
technology/home.htm retrieved on 3/21/16

[2] “Why Do Women Outnumber Men in College?” the
National Bureau of Economic Research.
http://www.nber.org/digest/jan07/w12139.html retrieved on
5/9/2016.

[3] Olson, Randal. “Percentage of Bachelors Degrees
Conferred to Women, by Major (1970- 2012).” Wordpress.
http://www.randalolson.com/2014/06/14/percentage-of-
bachelors-degrees-conferred-to-women-by-major-1970-2012/
retrieved on 3/10/2016

[4] Women Who Choose Computer Science – What Really
Matters: The Critical Role of Encouragement and Exposure,
http://static.googleusercontent.com/media/www.wenca.cn/en/
us/edu/pdf/women-who-choose-what-really.pdf retrieved on
3/21/16

[5]http://www.wsj.com/articles/SB100014241278873237170
04578159433220839020 retrieved on 3/21/16

[6]https://dub.washington.edu/djangosite/media/papers/unequ
alrepresentation.pdf retrieved on 3/21/16

[7] http://www.gettyimages.com/collections/leanin retrieved
on 3/21/16

[8] http://www.millersville.edu/wmsc/ retrieved on 4/10/16

[9]http://www.matematicalia.net/index.php?option=com_cont
ent&task=view&id=2302&Itemid=453 retrieved on 4/10/16

[10]http://jar.sagepub.com/content/early/2015/05/15/0743558
415587025 retrieved on 3/21/16

Int'l Conf. Foundations of Computer Science | FCS'16 | 83

ISBN: 1-60132-434-0, CSREA Press ©

A Survey of Recent Developments in Queue Wait
Time Forecasting Methods

Ron Davis
Department of Electrical &

Computing Engineering
Tennessee State University
Nashville, Tennessee 37209

rdavis8@my.tnstate.edu

Tamara Rogers
Department of Computer Science

Tennessee State University
Nashville, Tennessee 37209

trogers3@tnstate.edu

Yingping Huang
Florence, Alabama, 35630

yingping@gmail.com

Abstract—Having customers wait at a full-service restaurant
before they are seated is a common sight at most full-service
restaurants located in the United States. Yet, it presents a
difficult situation for both the restaurant and the customer.
Restaurants may lose customers if the wait is too long because
customers will view that time as unproductive and many will
chose to avoid that experience which costs the restaurant
revenue. Additionally, the wait time estimates given to potential
customers by the hostess or manager are notorious for being
inexact and are probably better described as guesstimates. If the
wait time estimate given to potential customers is too long, the
potential customer may depart. If the given number is too small,
the potential customer may become irate if the actual wait time
exceeds it. Given the importance of providing customers with an
accurate wait time estimate, little has been done in this industry
to develop or implement a better method of doing so.
Participants in the industry place so little value on wait time
estimates or on the actual wait time numbers that the sheets used
to track these during a shift are routinely discarded at the end of
the day.

All of the recently proposed solutions to this problem require
either that additional hardware be added to each restaurant
location or that the customer provide their own hardware
(smartphone) for use by the planned system. This paper surveys
these methods and discusses the benefits and drawbacks of these
proposals. As an alternative, this paper suggests using a time
series equation to forecasting future wait time values that can be
implemented purely through software and through the existing
hardware available in the restaurants. The initial results of the
time series model are presented. Finally, the paper proposes the
development of a wait time estimation algorithm that would be
used to generate wait time forecasts using readily available
Internet data. The development of this algorithm would be based
on dynamic regression which allows forecasts to be developed
with external variables.

Keywords—algorithm development; forecasting; queue; time
series, restaurant

I. INTRODUCTION

Research has shown that the keys to success for full-service
restaurants in the United States are specializing the menu,
offering healthy options, maintaining a clean and well managed
restaurant, and having quick service [1]. There are times when

these restaurants are busy, and they must place their customers
and their potential customers in a queue particularly during
peak times. Forcing customers to wait before they are even
seated at a table violates the industry’s goal of quick service.
For this industry, it is a wide spread problem. Ninety-three
percent of full-service restaurants have wait time periods at
some point during the week and the average wait time is thirty
minutes [2]. Given that there are expected to be approximately
257,000 casual dining restaurants in America by the year 2019
[3] and that sixty-eight percent of Americans visit casual dine
restaurants at least once each week [4], waiting at restaurants is
and will remain a wide spread problem that negatively impacts
both customers and the restaurant industry.

Customers are even adding to the problem by extending the
amount of time they are in the restaurant due to their usage of
smartphones and mobile devices [5]. One restaurant examined
video surveillance from the years 2004 and 2014 and
discovered that their increases in wait time were due to
customers taking on average thirteen minutes longer to order,
spending twenty minutes longer eating, and taking an extra
fifteen minutes to pay the check. These delays were frequently
caused by customers’ preoccupation with their smartphones
throughout the dining process. Examples of this include
checking social media, email, and texts; asking wait staff to
connect their mobile devices to the restaurant’s Wi-Fi hot spot
or to take a group photo; and taking photos of food and posting
them to the Internet.

Restaurants are presented with several challenges when
trying to manage this problem. How do restaurants accurately
calculate the correct wait time estimate for customers? This is a
critical number for the restaurant to get correct. If the wait time
number quoted to the customer underestimates the real wait
time, then a customer may become irate or think that the
restaurant has not been honest when them when the wait time
exceeds the actual amount of time waited. On the other hand, if
the restaurant overstates the estimated wait time, customers
may decide that the wait is too long and chose to leave and
dine with a competitor. The restaurant may cost itself business
and profits by simply being inaccurate with its wait time
estimations. Surprisingly, given the importance of accurate
wait time estimates, these numbers are usually not based on
any real data or mathematical calculations. They are simply

84 Int'l Conf. Foundations of Computer Science | FCS'16 |

ISBN: 1-60132-434-0, CSREA Press ©

based on the experience of the hostess or the manager who
gives their best guesstimate at the time.

Having the ability to generate accurate wait time estimates
would give restaurant managers the ability to use this data to
make better business decisions such as proper staffing levels
and marketing choices. Providing accurate wait time
information to customers makes them more informed to make
a better decision about restaurant selection. Customers select
restaurants by considering several parameters including price,
quality, convenience, and speed [6]. Without an accurate wait
time number for each restaurant the customer is considering,
the ability of the customer to make rational fully informed
decisions is impaired. Providing customers with adequate wait
time estimates allows them to accurately perceive and weigh
the convenience and speed factors during their decision making
process.

II. RELATED WORK

Queueing theory is the study of wait times and was first
developed and published by Agner Erlang in 1909 [7]. Erlang,
an engineer, mathematician, and statistician who worked for a
telephone company, was attempting to determine how many
telephone circuits were necessary to process a given number of
telephone calls for a local area [8]. As further research into
queueing theory occurred, Little’s Law was developed and
implemented into multiple fields. The equation for Little’s Law
consists of the long term average number of customers in a
system (L), the average time a customer spends in the system
(W), and the long term average arrival rate of new customers
(
) and is shown as Equation 2.1.

(2.1)

Given the mean customer arrival rate (
), the mean service
rate (�), and the utilization factor (�=
/�) in an M/M/1
queuing model, a restaurant can determine queuing factors
such as:

	 The probability that n customers are in the restaurant.

(2.2)

	 The average number of customers in the restaurant.

(2.3)

	 The average number of customers in the queue.

(2.4)

	 The average amount of time customers spend in the
restaurant. (This includes wait time and service time.)

(2.5)

	 The average amount of time a customer spends
waiting in the queue.

(2.6)

Gupta, Dharmadhikari, Bector, and Chow stated, “…if both
the arrival and service time distributions are completely
specified, we can, in principle, find all the performance
distributions. However problems arise when only partial
information is available about these distributions…[7].” In
regards to Little’s Law, Little and Graves stated that, “we are
observing and measuring not forecasting” because while the
relationship L=
W remains true, it is being conducted after the
fact [9]. Therefore, other techniques must be used to overcome
these issues.

The most obvious method to measure human queue
parameters is to use trained human observers to do so. They
can observe and measure wait times in queues, the number of
people in a queue, and service times at the service point among
other factors. However, it is not practical to do this for an
extended period. Human observers are expensive to implement,
would be costly to use on a wide-scale basis, and may not be
generate consistent results among different individuals [10]. A
potential solution is to replace visual observation and counting
techniques used by a human with some piece of technology
that can perform the same functions. Recent research exists
detailing how this has been done with several different
technological solutions.

2.1 Using Wi-Fi Signal Strength to Determine Queue Factors

One option used to determine wait times in human queues
is to analyze and measure the signal strength of the
smartphones of the people in the queue. The queue is
categorized into three zones: waiting period, service period,
and leaving period [11]. This monitoring station passively
monitors packets sent from the smartphones of the individuals
in the queue. It is expected that the signal strength of the
packets will increase as the phone gets closer to both the
service point and to the monitoring station. Once the person is
at the service point, the signal strength is expected to stay
steady as he is serviced and then experience a drastic drop off
as service is finished and the individual leaves the service area
[11]. This approach allows organizations to determine the
beginning of the service point, the leaving point, and the end of
leaving point in real time of a single user. These values are
then used to calculate the amount of time that individual was in
the waiting period (or the wait time the individual experienced
in the queue), the service time for the individual, and the time
when the individual left the queue. In calculating the beginning
of service and leaving point times, this approach was
determined to be accurate within four seconds [11].

Challenges using this technique include determining the
exact point in time when a user transitions between the waiting
period, the service period, and the leaving period. Determining
exactly when these transitions occur is complicated by wireless
signal propagation issues such as multipath interference and
attenuation. Also, implementation in a full-service restaurant

Int'l Conf. Foundations of Computer Science | FCS'16 | 85

ISBN: 1-60132-434-0, CSREA Press ©

may be problematic since the user may stay in the vicinity of
the monitoring station during their entire dining experience.

2.2 Using Bluetooth to Determine Wait Times

Another option explored in literature is the possibility of using
Bluetooth signals to determine passenger wait times in a
security queue in an U.S. airport. The system was used to
measure the transition times as passengers progressed through
the pre-security area of the airport and through the security
screening queue and checkpoint. The measurements concluded
when the walk to a particular concourse was completed [12].
The idea for this came from a method used to take passenger
vehicle traffic counts on roadways using the media access
control (MAC) addresses of Bluetooth devices embedded in
modern automobiles. The system developed in this case was
composed of a pair of low powered Bluetooth receivers. As
any passenger with a Bluetooth device approached the first
receiver in the pre-screening area, his MAC address and a
timestamp of the transaction were recorded. Once the
passenger progressed through the queue for security and then
completed the security checkpoint process, he entered the
concourse where a second Bluetooth recording device again
recorded the MAC address of his Bluetooth device and the
transactional timestamp data [12]. An example of this would be
a passenger carrying a Bluetooth device through this process
with the unique MAC address of “00:21:06:8C:7A”, the pre-
security timestamp of 08:49, and concourse timestamp of 08:59
[12]. With these three pieces of data, it can be seen that the
passenger entered security at 8:49 AM on a particular date and
arrived in the concourse ten minutes later at 8:59 AM. The
advantages of this approach are that it is inexpensive and
simple to implement. Even though only five percent of
passengers had their Bluetooth feature engaged, meaningful
data was collected [12]. Disadvantages include concerns over
personal privacy issues through the capture of the unique MAC
address of passengers’ Bluetooth devices. However, the MAC
address may be discarded after the passenger has been detected
by both Bluetooth receivers and the transit time has been
calculated. Another disadvantage is that some passengers may
not take a direct trip through the screening process. They may
be diverted by take a side trip to a restaurant or restroom or an
interaction with family members or friends.

2.3 Using Light and Switching Mats to Calculate Service
Times

Another system implemented in an airport involved using
light sensors and switching mats to measure passenger queue
parameters. A light sensor is a piece of equipment that is low
cost and has been in use for decades [10]. The transmitter
transmits a continuous beam that was aimed across the queue
and is redirected back by the reflector. Anyone passing though
the beam breaks the connection and is counted as a single
passenger. In addition, a timestamp of the event is created and
stored. This method has limitations since two people walking
side-by-side would still be counted as only one passenger and
the transmitter and reflector need to be located where
passengers cannot reach and tamper with them. A switching
mat is made with two conductive plates. When the top plate
does not have weight on it, it will not touch the bottom plate
and no connection is made. However, when someone stands on

the mat, both plates touch and a connection is made. When this
occurs, the passenger count is increased by one and again a
timestamp is taken [10]. This technology also has some
limitations. During the data collection phase of the research,
the switching mat failed for four days due to a defective power
supply. With these devices, it is possible to count the number
of passengers given that their movement is in one direction
only with a reasonably high degree of accuracy. In one test, the
light sensor counted 3,735 people compared to a manual count
of 3,745 [10]. Results were not as good in a situation where
people could walk bi-directionally in the queue, the sensors
overstated the count at 205 versus the manual count of 182
[10]. Overall, the sensors were able to count the number of
people in the queue to an acceptable level of accuracy. Given
the timestamp data created by a crossing event, service and
wait times in the queue may be calculated using these
technologies. However, forcing all of the customers waiting at
a restaurant to walk in only one direction in a single file line is
not realistic.

2.4 Using Video Images to Estimate Queue Parameters

Another approach is to determine queue factors such as
wait time, service time, and queue length is to use surveillance
videos of the queue area. To accomplish this, numerous
parameters must be addressed such as the type of queue, the
type of service, lighting levels, camera angles, and the
appearance of people (e.g. carrying a bag versus not carrying
one) for this type of system to function properly [13]. To
analyze an image, the system has a queue module and a
counter module. The queue module estimates the number of
individuals located in the queue area while the counter module
detects an individual at a counter and estimates how long it
takes each person to be serviced at the counters. These
numbers are used to determine the service time of the counters.

Given the probability density function of the number of
people waiting in the queue, �N(x), and the service time
density, �s, then the average waiting time, Tavg, for individuals
in the queue is determined by Equation 2.7.

(2.7)

Proper camera placement is a key to success using this method.
A top down installation versus a side view offers better
performance and accuracy. Additionally, multiple cameras
improve the performance but may not be practical due to
economic concerns.

2.5 Using Smartphones to Determine Queue Wait Times

Another technique to determine customer wait time only
(the service time and number of customers in the queue was
not a goal of the system) involved installing an app on
customers’ smartphones to estimate line wait time through
crowdsensing at a coffee shop located on a college campus.
This coffee shop only handled pedestrians (no drive-thru for
automobile traffic), had a First-In First-Out (FIFO) customer
queue, and had a wireless access point (WAP) available for
customer use with Internet connectivity.

86 Int'l Conf. Foundations of Computer Science | FCS'16 |

ISBN: 1-60132-434-0, CSREA Press ©

An app was created and approximately 1000 students
installed it on their smartphones. Having users manually enter
wait time data was determined to be inefficient, so the app was
modified to calculate queue wait times without user
involvement through the localization features of the phone
itself. The app uses the Basic Service Set Identification
(BSSID) of the nearby WAPs as the basis for wait time
estimation. When the app is activated, it scans for WAPs
within range. Since the beacons of the WAP located in the café
are unique, the arrival and exit of the customer from the shop
may be detected. However, the system has no way of
determining if the customer is waiting in the queue, being
serviced, or has been serviced and is now sitting at a table
drinking his coffee. Having a customer linger in the area
generates a false positive for the system and returns an
excessive value for his wait time. Also, having a potential
customer visit the café but quickly exit without ordering
generates another false positive value that is too low. The lack
of ability to distinguish between customer states required the
app to utilize different techniques that are implemented in the
back end of the system when the wait time is calculated. For
example, observational data showed that most wait times
ranged between two and twenty minutes. Therefore, any wait
times in excess of twenty minutes were viewed as a lingering
customer and discarded as noise [14]. Those under two minutes
were viewed as a quick entrance and exit by a person and were
thrown out as well. The architecture of the app created by
Bulut, Yilmaz, Demirbas, Ferhatosmanoglu, and
Ferhatosmanoglu was divided into subsystems and organized
as shown in Figure 1 [14].

The characteristics of the system and its subsystems are as
follows:

	 A client side of the app shown on the left of Figure 1
resides and runs on customers’ smartphones. The
server side application shown on the right of Figure 1
is stored and runs on the cloud.

	 The Phone State Receiver subsystem listens for
specific changes in the state of the phone. If an event
is triggered such as Wi-Fi status change, then a
special object is fired. This can quickly drain the
battery of the smartphone.

	 The Wi-Fi Sense subsystem uses Wi-Fi beacons
generated by the coffee shop’s WAP which are cheap
for the smartphone electrically. The beacons are used
to calculate the smartphone’s movements in the coffee
shop without having to log into the WAP. This data is
then sent to the cloud to calculate the current wait
time for the customer. The app also operates under the
assumption that if a user starts the app then they are
going to travel to and enter the coffee shop.

	 The Location Sense subsystem seeks to determine if
the user is in close proximity to the coffee shop. If it is
determined that the distance is less than 100 meters,
the subsystem will set an alert to discover the
timestamp at the point the customer enters the coffee
shop and the moment when he exits the café.

	 The Uploader subsystem collects the client side data
from the application and transmits it to the cloud as
input into the cloud side wait time estimation system.

	 The Web Service subsystem is an interface between
the client side app and the server side of the program.
It accepts wait time data from smartphones and it
provides wait time estimates to smartphones
requesting this information.

	 The Pre-Processor subsystem receives wait time data
from the Web Services subsystem and removes any
outliers and smooths the data.

	 The Model Builder subsystem periodically makes the
model based on the wait time data provided to it by
the Pre-Processor.

	 The Wait Time Forecaster subsystem uses the model
created by the Model Builder subsystem to forecast
future wait times.

There are several complications that arise as the wait time
data is processed on the server side. First, it was determined
that customer wait times in the coffee shop queue were based
mostly on the time of the day, the day of the week, and the
seasonality of the date [15]. For example, an on-campus coffee
shop is going to have little or no wait times during spring break
when most of the students and faculty are not present on
campus. Time series analysis uses a data set that was attained
by taking measurements sequentially over time and is a
mathematical method used to extract information from the
shape of data that reflect the trends and patterns contained in
the data [15]. This technique was used to forecast the future
wait times for the app. However, it was discovered that even
with hundreds of users’ smartphones automatically reporting
the wait time data of the café on a regular basis, there were not
enough readings available to use time series estimation without
accounting for the sparseness of the data. Therefore, statistical
techniques such as exponential smoothing, heuristic regression,
and the Holt-Winters (HW) forecasting method were needed to
supplement the time series method by smoothing out and
filling in the missing data [14]. Also, observation data was
collected by having someone sit in the coffee shop on a
periodic basis with a stopwatch and manually record wait time
data [15]. This was done in ten-minute intervals and was

Int'l Conf. Foundations of Computer Science | FCS'16 | 87

ISBN: 1-60132-434-0, CSREA Press ©

referred to as ground truth data (GD). The GD data was not
used for forecasting purposes; instead, it was used to measure
error only.

The data were applied to two different estimation
approaches. The first approach was to use Nearest Neighbor
Estimation (NNE) method, which works well with sparse data
sets and the algorithm requires O(n) computation time. NNE is
a technique that categorizes new data into a known set or class.
It is assigned based on what is most common among its
nearest neighbors. For example, k = 1, would mean that the
new data point would be assigned to the class of its nearest
neighbor.

For this system, each data point was classified by
three dimensions ([w, d, i]) where w is the week of the year (1-
52), d is the day of the week (1-7), and i is the interval of the
day (1-54). (There are 54 ten-minute intervals between 8:00
AM – 5:00 PM.) The next step was to determine the similarity
between the vectors using a weighted Euclidean distance (Lij)
formula as shown in in Equation 2.8 [14]. Then, linear
regression determined the relationship between the data ([w, d,
i]) and the wait time (i) and optimized the weights �, �, and �
of Equation 2.9 [13].

(2.8)

(2.9)

Using eight weeks of collected data that has the outliers
removed, it was determined that the weight for the week (�)
was .991, the day (�) was .130, and the ten minute interval of
the day (�) was .032. This means that the day and interval of
the day have a high similarity to the values collected in
previous weeks. However, the weight for the week indicates
that the importance of the weekly data decreases as time goes
by. In other words, the data from the closest week is the most
valuable in forecasting. The final step in this process is to find
the data points in the historical data distance and take the
average of their wait times. This result is then presented at the
new estimated wait time [15].

The second estimation approach attempted to fill in the
sparseness of the data by using exponential smoothing and the
Holt-Winters forecasting model. The Holt-Winters is popular
because it is easy to automate and has low data storage
requirements [16]. The Holt-Winters method does have some
potential problems. It is susceptible to data outliers that can
misrepresent forecasts and it can only accommodate a single
seasonal pattern [16]. The equation for Holt-Winters is shown
as Equation 2.10.

[Current Level + Trend] * Seasonal Index (2.10)

Exponential smoothing is a method that considers previous
values of the time series data and assigns weights to those data.
The weights decrease as the data get older which gives fresh or
newer data greater weight. Given a forecasted value of st, a
smoothing value of �, and a current value of xt, the formula for
exponential smoothing is shown as Equation 2.11.

(2.11)

Overall, the system can estimate the wait time of each
customer with a twenty seconds accuracy rate [15]. Modeling
error was determined by calculating the Mean Absolute Error
(MAE) with a set of n wait times: y1, y2, …, yn and their
estimated wait time values f1, f2, …, fn MAE is given as
Equation 2.12 [12].

(2.12)

Given this equation, modeling error was determined for the
NNE, exponential smoothing, and Holt-Winters techniques
over a two-week period. The forecasting errors for the three
models are 227 seconds for NNE, 156 seconds for exponential
smoothing, and 155 seconds for Holt-Winters. The forecasting
error for the three models developed by Bulut, Yilmaz,
Demirbas, Ferhatosmanoglu, and Ferhatosmanoglu covering
the entire eight week period of collected data is shown as
Figure 2. [14].

Finally, the accuracy of the forecasting ability of the app
developed by Bulut, Yilmaz, Demirbas, Ferhatosmanoglu, and
Ferhatosmanoglu is shown in Figure 3 [14]. It covers a two day
period during the last week of data collection and uses the
Holt-Winters method. The forecasted data is in blue while the
collected data is in red.

The accuracy of the wait time estimation does not have to
be exact since most customers have a tendency to misjudge

88 Int'l Conf. Foundations of Computer Science | FCS'16 |

ISBN: 1-60132-434-0, CSREA Press ©

time intervals (overestimating short periods and
underestimating longer ones) [17]. The majority of customers
will not be upset if the estimated wait time is accurate within
an acceptable range and will feel relief if the actual wait time is
shorter than it was predicted to be [17]. Given all of this, the
performance of the system as shown in Figure 3 is quite good.

The developers of the app state that they want to add
additional features to their system such as determining the
service time and being able to calculate and broadcast the
length of the queue in addition to the forecasted wait times.
Integrating with social networks would enable the app to be
able to service other locations and other types of businesses
that experience customer wait times such as banks or post
office buildings. Expanding to other businesses would require
the longitude and latitude of the location and the BSSID of the
WAP located at the site. The business could be added to the
app and wait time data could be collected as users visit the new
business. Once enough data has been acquired, a new model
could be developed to start forecasting wait times for the new
location [15].

2.5 Research Objective

With varying degrees of success, each solution reviewed
here presents a technological solution to overcome the problem
of incomplete queuing parameter data. All of the techniques
surveyed offer a solution that requires the placement of on-site
infrastructure to determine different queueing parameters for
that specific location. This infrastructure is provided either by
the restaurant or by the customer. However, each method has
its drawbacks and limitations. For example, using sensor mats
and light barriers to count people and to estimate other queuing
factors works well in a situation where passengers are required
to walk in a limited amount of space all in the same direction.
If passengers can walk in a bi-directional manner, then the
results using these methods are overstated and misleading.
Obviously, potential customers located in most restaurant
waiting areas cannot be asked to physically line up and walk in
a single direction so these technologies would not be
appropriate for implementation in a full-service restaurant.

All of these methods start with the same assumption: it is
necessary to have some device(s) in place at a specific location
in order to determine queue parameters for that area.
Overcoming this assumption is a research area with potential
for advancement and progress. The ideal solution to forecasting
future wait times for a full-service restaurant queue would be
to do this in some mathematical fashion based on commonly
and readily available data from the Internet. To reach this goal,
a good starting point lies with historical wait time data and
historical wait time estimates provided by the restaurants
themselves. While this eliminates the need for additional
technology on site, it has not been practical in the past on a
large scale because either restaurants are not measuring or they
are not maintaining their wait time numbers. This research
seeks to determine if it is possible to simply this approach by
avoiding adding any technology on site. Yet, the authors wish
to generate similar or better results compared to what is
currently available. This next section will show the initial steps
of the process for developing an algorithm that uses freely
available data from the Internet to infer or calculate the wait

times of a queue of a full-service restaurant at specific U.S.
locations. Furthermore, it is hoped that it will be possible to
apply this algorithm to different full-service restaurants from
various chains and brands to locations throughout the United
States. If this approach is successful, applying it to numerous
restaurants within an urban area, a region, or the entire country
will be much simplified because this research is proposing a
software solution rather than a hardware one.

III. IMPLEMENTATION

To develop this algorithm, it was decided that duplicating
the work shown in section 2.5 by using a similar time series
approach was a logical place to start. However, historical wait
time data was needed from multiple restaurant locations to
begin. The limitation of adding no new technology to collect
this data from the restaurants was a significant limiting factor
to obtaining this data. It was learned that very few people in the
full-service restaurant industry view their wait time data and
wait time estimates as a resource. Almost all of it is discarded
at the end of the business day. For months, all of the data that
was acquired for this research were data that were destined for
the trash but simply had not been discarded yet.

Fortunately, a relationship was established with a full-
service restaurant chain that covers most of the U.S. with over
500 locations. This chain agreed to provide its wait time
estimates in fifteen minute increments for all of its U.S. stores
to the authors electronically. At the last count, over 3 million
data points of wait time data have been made available to
support this research. One week of this data for this chain has
been plotted and is shown as Figure 4.

Using the R programming language, four weeks of this
historical data was used to train forecasting models using the
Holt-Winters, the Seasonal Trend Decomposition procedure
using Loess (STL), exponential smoothing, and ARIMA
methods to determine the trend, seasonality, and remainder
components of the data. The mean absolute error calculation
was performed for each model using equation 2.12 to
determine which model gave the best fit for the data.

I V. RESULTS & FUTURE WORK

The initial results of this work are encouraging. The best
results came from the STL model which is shown in Figure 5.

Int'l Conf. Foundations of Computer Science | FCS'16 | 89

ISBN: 1-60132-434-0, CSREA Press ©

A weekly forecast was made using the STL approach and the
forecast and the actual wait times are shown in Figure 6.

The next step in the process is to continue collecting wait
time data and to refine the model currently being used. When a
satisfactory level of performance of the model has been
reached, it will be used to predict the wait times for the
restaurant chain providing the data. In this case, satisfactory
performance will be based on several different methods used to
measure error such as the Mean Absolute Error as shown in
Equation 2.12, the Mean Absolute Percentage Error (MAPE),
and the Root Mean Square Deviation (RMSD).

All of this shows that if a restaurant or restaurant chain
provides historical wait time information about its locations,
then highly accurate wait time forecasts may be made by
simply using a time series approach. After this has been
completed, the next goal is to determine if this same collected
data can be used to calculate the customer wait times for other
restaurant chains that have similar characteristics such as size,
location, and menu similarities. If this is possible, then a model
will be developed and implemented. The final step will be to
determine if there is a statistical correlation between restaurant
wait times and commonly available data on the Internet such as
traffic, weather, etc. The ultimate goal is to be able to develop
an algorithm that will forecast restaurant wait times using only
this Internet data as inputs into the model. An anticipated
method of developing this algorithm will be through the use of
a dynamic regression model which is a time series model that
takes into account exogenous predictor variables which are

totally independent from the other variables in a standard time
series model. These external variables add the dynamic effects
of causal factors to the model. For example, when modeling
farming or crop output levels, the amount of rainfall would be
an exogenous variable of the model.

REFERENCES

[1] Webstaurantstore.com, “Casual Dining vs. Fine Dining”, 2016. [Online].
Available: http://www.webstaurantstore.com/article/2/casual-dining-vs-fine-
dining.html. [Accessed: 01- Feb- 2016].

[2] FSR magazine, “Study Released on Average Restaurant Wait Times”,
2013. [Online]. Available: https://www.fsrmagazine.com/new-restaurant-
concepts/study-released-average-restaurant-wait-times. [Accessed: 11- Feb-
2016].

[3] Euromonitor.com, “Full-Service Restaurants in the US”, 2016. [Online].
Available: http://www.euromonitor.com/full-service-restaurants-in-the-
us/report. [Accessed: 10- Feb- 2016].

[4] Deloitte Development, “Second helpings: Building consumer loyalty in
the fast service and casual dining restaurant sector”, 2014. [Online]. Available:
https://www2.deloitte.com/content/dam/Deloitte/us/Documents/Tax/us-tax-thl-
restaurant-loyalty-survey-032814.pdf. [Accessed: 15- Feb- 2016].

[5] J. Dodge, “Restaurant Wait Times Skyrocket, And Customers May Be To
Blame”, Chicago.cbslocal.com, 2016. [Online]. Available:
http://chicago.cbslocal.com/2014/07/23/restaurant-wait-times-skyrocket-and-
customers-may-be-to-blame/. [Accessed: 07- Feb- 2016].

[6] E. Duecy, “NPD: Diners look for menu variety, ‘buzz’ in full-service
eateries”, Nation's Restaurant News, 2006.

[7] Y. Gupta, A. Dharmadhikari, C. Bector and Wing Sing Chow,
“Information theoretic approximations for single server queueing systems”,
Computers & Industrial Engineering, vol. 12, no. 1, pp. 23-38, 1987.

[8] R. Cooper, Introduction to Queueing Theory, 2nd ed. New York: North
Holland, 1981.

[9] S. Graves and J. Little, Building Intuition: Insights from Basic Operations
Management Models and Principles. New York: Springer Science+Business
Media, LLC, 2008, pp. 81-100.

[10] D. Bauer, M. Ray and S. Seer, “Simple Sensors Used for Measuring
Service Times and Counting Pedestrians”, Transportation Research Record:
Journal of the Transportation Research Board, vol. 2214, pp. 77-84, 2011.

[11] Y. Wang, Y. Chen and R. Martin, “Leveraging Wi-Fi Signals to Monitor
Human Queues”, IEEE Pervasive Computing, vol. 13, no. 2, pp. 14-17, 2014.

[12] D. Bullock, R. Haseman, J. Wasson and R. Spitler, “Automated
Measurement of Wait Times at Airport Security”, Transportation Research
Record: Journal of the Transportation Research Board, vol. 2177, pp. 60-68,
2010.

[13] V. Parameswaran, V. Shet and V. Ramesh, “Design and Validation of a
System for People Queue Statistics Estimation”, Studies in Computational
Intelligence, pp. 355-373, 2012.

[14] M. Bulut, Y. Yilmaz, M. Demirbas, N. Ferhatosmanoglu and H.
Ferhatosmanoglu, “LineKing: Crowdsourced Line Wait-Time Estimation
Using Smartphones”, Lecture Notes of the Institute for Computer Sciences,
Social Informatics and Telecommunications Engineering, pp. 205-224, 2012.

[15] M. Bulut, M. Demirbas and H. Ferhatosmanoglu, “LineKing: Coffee
Shop Wait-Time Monitoring Using Smartphones”, IEEE Transactions on
Mobile Computing, vol. 14, no. 10, pp. 2045-2058, 2015.

[16] P. Goodwin, "The Holt-Winters Approach to Exponential Smoothing: 50
Years Old and Going Strong", Foresight: The International Journal of Applied
Forecasting, no. 19, 2010.

[17] A. Pruyn and A. Smidts, "Customers' reaction to waiting: Effects of the
presence of 'fellow sufferers' in the waiting room", Advances in Consumer
Research, vol. 26, pp. 211-216, 1999.

90 Int'l Conf. Foundations of Computer Science | FCS'16 |

ISBN: 1-60132-434-0, CSREA Press ©

SESSION

NOVEL ALGORITHMS

Chair(s)

TBA

Int'l Conf. Foundations of Computer Science | FCS'16 | 91

ISBN: 1-60132-434-0, CSREA Press ©

92 Int'l Conf. Foundations of Computer Science | FCS'16 |

ISBN: 1-60132-434-0, CSREA Press ©

Super Symmetric Boolean Functions
Peter M. Maurer

Dept. of Computer Science
Baylor University

Waco, Texas 76798-7356
 Waco, Texas 76798

Abstract – Super symmetry is a type of matrix-based
symmetry that extends the concept of total symmetry. Super
symmetric functions are “even more symmetric” than totally
symmetric functions. Even if a function is not super symmetric,
the super symmetric transpose matrices can be used to detect
partial super symmetries. These partial symmetries can be mixed
arbitrarily with ordinary symmetric variable pairs to create large
sets of mutually symmetric variables. In addition, one can detect
subsets of super symmetric inputs, which are distinct from
partial super symmetries. Super symmetry allows many new
types of Boolean function symmetry to be detected and exploited.

1 Introduction
Symmetric Boolean functions have many applications in the

field of Electrical Computer Aided Design (ECAD) [ref]. A
symmetric Boolean function is a function of n variables, whose
input variables can be rearranged in some fashion without changing
the output of the function. An example is 1 2 3 4x x x x� , (multiplication

is AND, and addition is OR) in which the variables 1x , 2x and 3x

can be rearranged arbitrarily.
This concept can be made more precise using permutations [1,

2]. Let f be an n-input Boolean function and 1 2{ , ,..., }nX x x x� be

its set of input variables. If p is a permutation on the set X that

leaves f unchanged, then f is symmetric and is said to be

invariant with respect to p . Also, f and p are said to be
compatible. The set of all permutations of X is called the symmetric
group of X , and is designated XS . The symmetry group, fG , of an

n-input Boolean function, f , is the set of all permutations Xp S�

that are compatible with f . Because the identity permutation, which

leaves X unchanged, is compatible with every function, fG is

always non-empty. A function, f , is said to be symmetric if fG

contains more than one element.
The only thing that affects the structure of XS is the size of X .

If X and Y are two different sets such that X Y� , then XS is

isomorphic to YS . For simplicity, we will usually assume that

� �1,2,3,...,X n� , and will designate XS as nS . There is a natural

mapping between � �1,2,3,...,n and sets of variables such as

1 2{ , ,..., }nx x x or elements of vectors such as � �1 2 3, , ,..., nv v v v . When

applying members of nS to these sets, we will assume that the

natural mapping between � �1,2,3,...,n and the set of indices is being

used.
Symmetric Boolean functions were first studied by Shannon [3],

who gave us Shannon’s theorem, the basis of most symmetry
detection algorithms. Shannon’s theorem is based on the cofactors of
a Boolean function, f , which are obtained by setting one or more

input variables of f to constant values. For example, 2 3 4x x x� is

the cofactor obtained by setting 1x to 1 in the function 1 2 3 4x x x x� .

Cofactors can be designated in several different ways. One can
specify the variable and the value in a subscript, as in 1af � . If there is

a natural ordering to the variables, one can specify a list of variable
values such as 10xx xf , where the x represents a variable that has not

been replaced. Most often, when the variables in question are
understood, we simply use lists of values as in 0f , 1f or 101f .

Shannon’s theorem states that two input variables, 1x and 2x ,

of a function f are symmetric variable pairs if and only if 01 10f f� ,

where the cofactors are taken with respect to 1x and 2x . The

variables of a symmetric pair can be exchanged in arbitrary fashion
without altering the output of the function. Symmetric variable pairs
are transitive in the sense that if 1 2(,)x x is a symmetric variable pair,

and 2 3(,)x x , is a symmetric variable pair, then so is 1 3(,)x x .

Since [3], there have been much work on detecting and
exploiting symmetric functions.[4-24]. Symmetries can be broken
into three broad categories, total symmetry which allows the inputs of
a function to be permuted arbitrarily, partial symmetry, which allows
one or more subsets of inputs to be permuted arbitrarily, and strong
symmetry, which includes everything else. Some subclasses of strong
symmetry, such as hierarchical symmetry [16], and rotational
symmetry [17] have been identified and studied. The Universal
Symmetry Detection Algorithm [25] is capable of detecting any type
of strong symmetry.

2 Super Symmetry
As pointed out in [26], permutation-based symmetry can be

recast in terms of matrices over GF(2). If one views an n-input
function as a function of a single n-element vector, then traditional
symmetry can be defined in terms of permutation matrices on these
vectors. Permutation matrices are matrices that have a single 1 in
each row and in each column. A permutation matrix is so called
because it permutes the elements of a vector without changing them.
One can obtain any permutation matrix p by permuting the rows of
the identity matrix, I .

There is a one-to-one correspondence between permutations and
permutation matrices. The set of all permutations on a set of n

elements, nS , and the set of all n n� permutation matrices, nSR , are

mathematical groups that are isomorphic to one another. Since the
class of n n� non-singular matrices is much larger than the class of
permutations on n input variables, matrices can be used to define a
much larger class of symmetries than permutations.

For example, matrices can be used to define conjugate
symmetry. Let nSR be the set of all n n� permutation matrices, and

let M be an arbitrary non-singular n n� matrix. Then the matrices

in the set � �1 | nG M NM M SR�� � define a new type of symmetry

Int'l Conf. Foundations of Computer Science | FCS'16 | 93

ISBN: 1-60132-434-0, CSREA Press ©

called conjugate symmetry. Conjugate symmetry cannot be defined
directly in terms of permutations and is a type of matrix-based
symmetry.

Super symmetry is another type of matrix-based symmetry that
extends the concept of total symmetry and the concept of permutation
matrices. We start with nSR , the n n� permutation matrices. Every

matrix nM SR� is both a row-permutation and a column-

permutation of the identity matrix. For example, if 4n � , then every

element of 4SR can be constructed by arranging the rows (or

columns) 0001, 0010, 0100, and 1000 in some order. We can expand

nSR by adding an 1stn � row containing all ones to the existing set

of n rows. Let nHR be the set of all matrices that can be formed from

these 1n � rows, without choosing duplicates. nHR is closed under

matrix multiplication, and is isomorphic to the symmetric group

1nS � . Figure 1 shows an example with 3n � . By the same token, we

can start with the columns that contain a single 1, and add a column
of all 1’s. The set of all matrices that can be formed from these
columns, without choosing duplicate columns, is nVR . nVR is also

closed under matrix multiplication, and is isomorphic to 1nS � . If

2n � then n nHR VR� . We call nHR and nVR the super symmetric
groups of degree n.

1 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 1

0 1 0 1 0 0 0 1 0 0 0 1 0 0 1 1 0 0

0 0 1 0 0 1 1 0 0 0 1 0 1 0 0 0 1 0

� �� �� �� �� �� �
� �� �� �� �� �� �
� �� �� �� �� �� �
� �� �� �� �� �� �
� �� �� �� �� �� �
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 1 0 1 0 0 0 1 0 0 0 1 0 0 1 1 0 0

0 0 1 0 0 1 1 0 0 0 1 0 1 0 0 0 1 0

� �� � � � � �� � � �
� �� � � � � �� � � �
� �� � � � � �� � � �
� �� � � � � �� � � �
� �� � � � � �� � � �
1 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 1 0 0 1 1 0 0 0 1 0 1 0 0 0 1 0

� �� � � � � �� � � �
� �� � � � � �� � � �
� �� � � � � �� � � �
� �� � � � � �� � � �
� �� � � � � �� � � �
1 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 1

0 1 0 1 0 0 0 1 0 0 0 1 0 0 1 1 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

� �� � � � � �� � � �
� �� � � � � �� � � �
� �� � � � � �� � � �
� �� � � � � �� � � �
� �� � � � � �� � � �

Figure 1. The Super Symmetric Group 3HR .

To prove that nHR and nVR are groups isomorphic to 1nS � we

start with the following theorem which proves that the matrices of

nHR and nVR are non-singular.

Theorem 1. Every element of nHR and nVR is non-singular.
Proof. Let nM HR� . If M is singular then some subset of the

rows of M must sum to zero. If there is no row of all ones, then M
is a permutation matrix and non-singular. Let us assume that row i
of M is all ones. Other than row i , there are 1n � rows of M ,
each containing a single 1. These rows are part of some permutation
matrix, and therefore, no subset of rows that does not include row i
can sum to zero. Other than the 1’s in row i , the matrix M contains
exactly 1n � 1’s. Therefore there must be at least one column that
contains no 1’s, except the 1 in row i . No sum of rows that includes
row i can have a zero in column i , because every other row has a

zero in this column. Therefore no subset of the rows of M sums to
zero, and M is non-singular. Now consider nN VR� . By a similar

argument, we can show that no subset of the columns of N can sum
to zero, therefore N is nonsingular.�

Now we can prove that nHR and nVR are groups isomorphic to

1nS � .

Theorem 2: nHR and nVR are closed under matrix

multiplication, and are isomorphic to 1nS � .
Proof: Let , nM N HR� and consider the form of K M N� � .

Because M and N are nonsingular, K must be nonsingular. If no
row of M is all ones, then M is a permutation matrix. In this case,
K is a row-permutation of N , and nK HR� . So let us assume that

row i of M is all 1’s. Now, suppose N is a permutation matrix.
Because every row of N has a single 1, every row, except row i , of
K has a single 1. Row i of K is the sum of all rows of N , which is

a row of all 1’s. Therefore nK HR� . If N is not a permutation

matrix, then it must have a row, j of all 1’s. In this case, the rows of
K , except for row i must be a permutation of the rows of N , not
including row i . Row i of K must be the sum of the rows of N .
Every column of N , except one, must have exactly 2 ones. The
remaining column must have a single one. Therefore the sum of the
rows of N must contain a single one in some position, and zeroes
elsewhere. Because the product is non-singular, row i cannot
duplicate any other row of K . Therefore, K must either be a
permutation matrix, or a permutation matrix with one row replaced
by a row of all ones. Thus nK HR� , and nHR is closed under

multiplication. A similar argument shows that nVR is also closed

under multiplication. To show that nHR is isomorphic to 1nS � , it

suffices to show that nHR is the set of permutations of a set of size

1n � . This follows from the fact that every matrix in nHR is a

permutation of the 1n � rows used to form the elements of nHR ,

each element, M , of nHR has n rows from the set of 1n � rows.

The missing row is always unique, and we can imagine it as being

appended as the 1stn � row of M . Thus nHR is isomorphic to 1nS � .

A similar argument on the columns of the elements of nVR shows

that nVR is also isomorphic to 1nS � .�

Any finite set of non-singular matrices that is closed under

multiplication is a group. Because nHR and nVR are groups, they

can serve as the symmetry group of certain functions. We say that a
function f is super symmetric if either nHR or nVR leaves f

invariant. If we wish to be more specific, we will call f H-super
symmetric or V-super symmetric.

3 Boolean Orbits
Let G be a group of n n� matrices. Two n-element vectors v

and w are said to be in the same Boolean orbit of G if there is a
matrix M G� such that v M w� � . Being in the same Boolean orbit
is an equivalence relation that breaks the set of all n-element vectors
into a collection of disjoint subsets. The Boolean orbits of a group
can be used to determine whether a group G is the compatible with

94 Int'l Conf. Foundations of Computer Science | FCS'16 |

ISBN: 1-60132-434-0, CSREA Press ©

a function f . The function f is compatible with G if and only if

f maps every element of each Boolean orbit of G to the same

value. For example, the symmetric group 3S has the Boolean orbits

{(0,0,0)} , {(0,0,1),(0,1,0),(1,0,0)} , {(0,1,1),(1,0,1),(1,1,0)} and

{(1,1,1)} . A 3-input function f is totally symmetric if and only if f

maps the three vectors {(0,0,1),(0,1,0),(1,0,0)} to the same value,

and the three vectors {(0,1,1),(1,0,1),(1,1,0)} to the same value.
The Universal Symmetry Detection algorithm can detect any

type of symmetry as long as the Boolean orbits of that symmetry are
known. The Boolean orbits of V and H super symmetry are relatively
easy to compute. Since every super symmetric function is also totally
symmetric, all vectors of the same weight must be contained in a
single orbit. The Boolean orbits of V and H symmetry can be
obtained by combining the Boolean orbits of total symmetry.

Let us first derive the Boolean orbits of H super symmetry. We
will designate the set of all vectors of weight k as kW . The sets kW

are just the Boolean orbits of total symmetry. We will designate the
Boolean orbits of H super symmetry as kO , where k is the weight

of the lightest vector in kO . Note that if an orbit iO contains any

vector of weight k , then k iW O . In particular, k kW O . Consider

the orbit 0O . This orbit must contain a single vector, since every

linear transformation maps the zero vector onto itself. The orbit 1O ,

contains all vectors of weight 1 and must also contain the vector of
all 1’s. Let v be an n-element vector of weight 1, and let nM HR� .

The vector v M� must be equal to some row of M , and must either
be a vector of weight 1 or a vector of all 1’s. If v is a vector of all
1’s, and M is a permutation matrix, then v M� is a vector of all
1’s. If M contains a row of all 1’s then v M� is the sum of the
rows of M . Every column except one of M contains exactly two
ones. The other column contains exactly one 1. Thus the sum of the
rows of M is a vector of weight 1, and 1 1 nO W W� � . Now consider

the orbit 2O containing all vectors of weight 2. Let M be any

element of nHR . Any vector that can be formed by adding two rows

i and j of M must be an element of 2O . If rows i and j of M

are both of weight 1, then their sum is of weight 2 and is already
contained in 2O . Let us assume that one of the rows is all ones. Then

the sum of rows i and j is of weight 1n � and 1 2nW O� . Now

suppose that v is of weight 1n � . If M is a permutation matrix or
if M contains a row of all 1’s and this row corresponds to the zero
element of v , then v M� is of weight 1n � . If M contains a row
of all 1’s and this row does not correspond to the zero element of v ,
then v M� is the sum of a vector of all 1’s and 2n � distinct
vectors of weight 1. Thus v M� is a vector of weight 2, and

2 2 1nO W W �� � . Continuing in this vein, we can show that any H

super symmetry Boolean orbit, kO , is equal to 1k n kW W � �� , where

k runs from 1 through
2

n! "
$# $

.

Now let us derive the Boolean orbits of V super symmetry. We
will designate each orbit as iQ , where i is the smallest weight of

any element of iQ . Note that if j iW Q ��� then j iW Q . In

particular, i iW Q . As before, 0Q contains only the zero vector.

When a vector 1(,...,)nv a a� is multiplied by a matrix i nV VR� ,

the result is 1 1 1(,... , , ...,)i i nv a a p a a� �% � , where p is the parity of v .

(i.e., p is 1 if the number of bits in v is odd.) If 0ia � and 0p � ,

or if 1ia � and 1p � , then v v%� . If 0ia � and 1p � then the

weight of v% is one larger than that of v . If 1ia � and 0p � then

the weight of v% is one smaller than that of v . Note that the weight
of v can increase only if it is odd, and can decrease only if it is even.

Thus 1i i iQ W W �� � , where i is odd, i running from 1 to m where

m is the largest odd number less than or equal to n . The other

matrices of nVR will not affect these orbits because they are either

permutation matrices that do not change the weight of a vector, or
they are permutation matrices with a single column set to ones. Such
matrices combine a permutation of v with parity insertion, and do
not change the orbits described above.

We have created a super symmetry detection module to the
universal symmetry detector using the Boolean orbits describe above.

4 Symmetric Variable Pairs
Although the universal symmetry detection algorithm can detect

super symmetry, super symmetric functions are comparatively rare.
The same is true, of course, for totally symmetric functions.
However, when a function is not totally symmetric, it may be
partially symmetric, and using symmetric variable pairs, we can
detect such partial symmetries. By the same token, we can detect
super symmetric variable pairs and partial super symmetries. The
super symmetric variable pairs can be mixed arbitrarily with ordinary
symmetric variable pairs.

Ordinary symmetric variable pairs correspond to a type of a
permutation called a transposition. A transposition of a set, X , is a
permutation that swaps two elements of X , leaving everything else
fixed. In the matrix domain, a transposition corresponds to a
transpose matrix. A transpose matrix swaps two elements of an input
vector, leaving all other elements fixed. We designate a transpose
matrix that swaps elements i and j of a vector as ,i jT . Every row,

k , of ,i jT except rows i and j , is identical to row k of the identity

matrix. Row i of ,i jT has a 1 in column j and zeros elsewhere.

Row j has a 1 in column i and zeros elsewhere. Figure 2 has
several examples of transpose matrices.

0 1 0

1 0 0

0 0 1

� �
� �
� �
� �
� �

0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1

� �
� �
� �
� �
� �
� �

0 0 1

0 1 0

1 0 0

� �
� �
� �
� �
� �

1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

� �
� �
� �
� �
� �
� �

 0 1

1 0

� �
� �
� �

Figure 2. Some transpose matrices.

Super symmetry introduces 2n new transpose matrices known

as the super symmetric transpose matrices. Half of these matrices are
taken from nHR and half are taken from nVR .

In permutation matrices, we consider a row containing a 1 in

position i and zeroes elsewhere to represent the thi input variable.

Alternatively, we could consider a column containing a 1 in the thi

position to represent the thi input variable. In the super symmetric
matrices, we consider the row of all 1’s or a column of all 1’s to
represent an 1stn � “invisible” variable. In nHR a super symmetric

transpose matrix is a matrix that is identical to the identity matrix
except for row i , which is a row of all 1’s. In nVR a super

Int'l Conf. Foundations of Computer Science | FCS'16 | 95

ISBN: 1-60132-434-0, CSREA Press ©

symmetric transpose matrix is identical to the identity matrix except
for column i which is a column of all 1’s. We designate these
matrices as iH and iV respectively. Figure 3 gives some examples of

such matrices.

1 0 0 0

0 1 0 0

1 1 1 1

0 0 0 1

� �
� �
� �
� �
� �
� �

1 1 1

0 1 0

0 0 1

� �
� �
� �
� �
� �

1 0 0 1

0 1 0 1

0 0 1 1

0 0 0 1

� �
� �
� �
� �
� �
� �

1 1 0

0 1 0

0 1 1

� �
� �
� �
� �
� �

1 1

0 1

� �
� �
� �

Figure 3. Super Symmetric Transpose Matrices.

For any ordinary transpose matrix ,i jT , the matrix is self-

inverting. That is, , ,i j i jT T I� . As the Theorem 3 shows, the same is

true for the matrices iV and iH .

Theorem 3. i iH H I� and i iVV I� for all 1 i n& & .
Proof: Since iH is identical to the identity matrix, except for

row i , every row of i iH H is identical to the identity matrix, except

for row i . Because row i of iH is all ones, row i of i iH H is the

sum of the rows of iH . Every column of iH contains exactly two

1’s, except for column i which contains exactly one 1. Thus the sum
of the rows of iH has a 1 in column i and zeroes elsewhere, and is

equal to row i of the identity matrix.
Similarly, since every column k of iV , except for column i , is

identical to column k of the identity matrix, every column k of

i iVV is identical to column k of the identity matrix. Because column

i of iV is all ones, column i of i iVV is the sum of the columns of

iV . Every row of iV , except row i has exactly two 1’s. Row i has

exactly one 1. Therefore the sum of the columns of iV has a 1 in row

i and zeroes elsewhere, and column i of i iVV is identical to column

i of the identity matrix.�

It is convenient to think of the matrices iH and iV as being

transpose matrices between ix and the “invisible” 1stn � variable,

1nx � . This makes the transitivity of the new matrices more obvious.

For example, because of transitivity, a function is H super symmetric
if it is compatible with 1,2T , 1,3T , …, 1,nT and 1H . For V super

symmetry, we substitute 1V for 1H .

Another important and useful property of the super symmetric
transpose matrices is that the conjugate of any matrix iH with

another matrix jH ()i j� is an ordinary transpose matrix. The same

is true for matrices iV and jV , as the following theorem shows.

Theorem 4. Suppose i j� . Then 1

,j i j i jH H H T� � and
1

,j i j i jV VV T� � .

Proof: By Theorem 3, 1
j jH H� � and 1

j jV V� � , so
1

j i j j i jH H H H H H� � and 1
j i j j i jV VV V VV� � . j iH H has the following

form. Since every row of jH , except row, is identical to the

corresponding row of the identity matrix, every row, except row j

of j iH H is identical to the corresponding row of iH . Because row

j of jH is all ones, row j of j iH H is the sum of the rows of iH .

Every column of iH has exactly two 1’s, except for column i ,

which has exactly one 1. Thus row j of j iH H has a one in column

i and zeroes elsewhere. Row i of j iH H contains all 1’s. We can

use the structure of j iH H to deduce the structure of j i jH H H .

Because every row of j iH H except rows i and j is identical to the

corresponding row of the identity matrix, every row of j i jH H H ,

except rows i and j is identical to the corresponding row of the
identity matrix. Because row j has a 1 in column i and zeroes

elsewhere, row j of j i jH H H is identical to row i of jH , and has

a 1 in column i and zeroes elsewhere. Because row i of j iH H

contains all 1’s, row i of j i jH H H is the sum of the rows of jH .

Every column of jH has exactly two ones, except for column j

which has exactly one 1. Therefore row i of j i jH H H has a 1 in

column j and zeroes elsewhere. Therefore j i jH H H is the transpose

matrix ,i jT .

Now consider the structure of i jVV . Because every column of

jV is identical to the corresponding column of the identity matrix,

except for column j , every column of i jVV is identical to the

corresponding column of iV , except for column j . Because column

j of iV is all ones, column j of i jVV is equal to the sum of the

columns of iV . Every column of iV contains exactly two 1’s, except

for column i which has exactly one 1. Thus column j of i jVV has a

1 in row i and zeroes elsewhere. Column i of i jVV contains all

ones. We can now deduce the structure of j i jV VV . Since every

column of i jVV except for columns i and j , is identical to the

corresponding column of the identity matrix, every column of j i jV VV
, except for columns i and j , is identical to the corresponding

column of jV . But these columns are identical to the corresponding

columns of the identity matrix, so every column of j i jV VV , except for

columns i and j , is identical to the corresponding column of the

identity matrix. Column j of j i jV VV is equal to column i of jV ,

which has a 1 in row i and zeroes elsewhere. Because column i of

i jVV is all ones, column i of j i jV VV is the sum of the columns of jV

. Every row of jV has exactly two 1’s, except for row j , which has

exactly one 1. Thus the sum of the columns of jV has a 1 in row j

and zeroes elsewhere. Thus j i jV VV is the transpose matrix ,i jT .�

Let f be an n-input function with input variables

1 2{ , ,..., }nx x x . To determine whether f is compatible with iH , we

select some variable other than ix , say jx with i j� , and

conditionally invert every variable except jx itself with respect to jx
. These conditional inversions can be done simultaneously using the
matrix jH . We compute () (())jf v f H v% � . The function f is

compatible with iH if and only if (,)i jx x is a symmetric variable

96 Int'l Conf. Foundations of Computer Science | FCS'16 |

ISBN: 1-60132-434-0, CSREA Press ©

pair of f % . The correctness of this procedure stems from the fact that

if i j� then 1
,j i j i jH H H T� � . Super symmetry can be viewed as a

type of conjugate symmetry requiring multiple simultaneous
conditional inversions.

Given the same function, f , we can determine whether f is

compatible with iV by selecting any input variable other than ix , say

jx with i j� , and conditionally invert jx with respect to every

variable other than jx itself. This gives us the new function,

() (())if v f V v%% � . The function f is compatible with iV if and only

if (,)i jx x is a symmetric variable pair of f %% . Again, the correctness

of this procedure depends on the fact that 1
,j i j i jV VV T� � .

Because super symmetric transpose matrices can be equated
with a type of conjugate symmetry, they can be detected and utilized
by the hyperlinear algorithm for digital simulation [26, 27], and by
other algorithms that detect symmetry using symmetric variable
pairs.

5 Sub-Symmetries
For a Boolean function f to possess X symmetry in variables

1 2{ , ,..., }kx x x every cofactor of the form
1... ...k nxx xa af
�

 must possess X

symmetry. We usually do this by ensuring the symmetry relations
exist between cofactors of the form

1... ...ka a xx xf . It is possible for an n-

input function to be super symmetric in any proper subset of its input
variables, and it is possible for a function to have several subsets of
variables in which it is super symmetric.

This is not the same as partial symmetry, because the super
symmetric variable pairs involve all inputs of a function, while sub-
super symmetries involve only a subset of variables. It is possible to
test a subset of variables for super symmetry, and to test the same
subset for compatibility with the super symmetric transpose matrices
of the sub-symmetry. This gives us many more opportunities to
detect symmetries in a Boolean function, because there are 2 2n �

proper subsets of variables, and
1

2

2

(1)
2 2 1 2

2

n

i

n ni n n
�

�

�� �� � � � �� �
� �

'

additional super symmetric transpose matrices.

6 Experimental Data
To determine the prevalence of super symmetry in real circuits,

we tested the ISCAS 85 benchmarks for the presence of super
symmetries. We tested for total super symmetry, for super symmetric
variable pairs, and for sub symmetries. The results of our tests are
given in Figure 4. These results show that super symmetries do
indeed exist in real circuits, and are, in fact, quite numerous. The
results for super symmetric variable pairs and for sub symmetries are
especially encouraging. Because, in several cases, the number of
symmetries exceeds the number of functions, it is clear that there are
many functions that exhibit multiple sub-super symmetries and that
there are functions that are compatible with many super symmetric
variable pairs.

Circuit Super Sym. Var. Pairs Sub-Sym.
c432 78 213 1097
c499 0 56 728
c880 122 33 902
c1355 288 44 704
c1908 158 59 5326
c2670 276 90 3145
c3540 710 1310 2093

c5315 830 2313 6206
c6288 512 528 928
c7552 582 1660 10093

Figure 4. Experimental Results.

7 Conclusion
The various aspects of super symmetry allow many different

types of Boolean function symmetry to be detected and exploited. In
addition to super symmetry itself we have partial super symmetries
which are generated by the super symmetric transposition matrices.
These partial symmetries can be mixed and matched in an arbitrary
fashion with ordinary symmetric variable pairs. In addition, there are
sub-super symmetries and partial sub-super symmetries which greatly
expand the opportunity for detecting and exploiting symmetries in a
Boolean function.

What is even more exciting, super symmetry allows us to exploit
more of the full power of matrix-based symmetry. For example, for
4-input functions, there are 24 permutations of the inputs, but 20160
non-singular 4 4� matrices. There are obviously many more kinds
of matrix-based symmetry than permutation-based symmetry, and
super symmetry is only one of these.

We expect this work to be the basis of much more extended
work in the future.

8 References
[1] D. S. Passman, Permutation Groups. New York: W. A. Benjamin,

1968.
[2] D. Robinson, A Course in the Theory of Groups. New York:

Springer, 1995.
[3] C. E. Shannon, "The synthesis of two-terminal switching

circuits," Bell System Technical Journal, vol. 28, pp. 59-98,
1949.

[4] A. Abdollahi and M. Pedram, "Symmetry detection and Boolean
matching utilizing a signature-based canonical form of Boolean
functions," IEEE Trans. on Computer-Aided Design, vol. 27,
pp. 1128-1137, June, 2008.

[5] N. N. Biswas, "On Identification of Totally Symmetric Boolean
Functions," Computers, IEEE Transactions On, vol. 19, pp. 645-
648, 1970.

[6] R. C. Born and A. K. Scidmore, "Transformation of switching
functions to completely symmetric switching functions," IEEE
Transactions on Computers, vol. 17, pp. 596-599, 1968.

[7] J. T. Butler, G. W. Dueck, V. P. Shmerko and S. Yanuskevich,
"Comments on “Sympathy: fast exact minimization of fixed
polarity Reed-Muller expansion for symmetric functions”," IEEE
Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 19, pp. 1386-1388, 2000.

[8] M. Chrzanowska-Jeske, "Generalized symmetric variables," in
The 8th IEEE International Conference on Electronics, Circuits
and Systems, 2001, pp. 1147-1150.

[9] K. S. Chung and C. L. Liu, "Local transformation techniques for
multi-level logic circuits utilizing circuit symmetries for power
reduction," in Proceedings of the 1998 International Symposium
on Low Power Electronics and Design, 1998, pp. 215-220.

[10] P. T. Darga, K. A. Sakallah and I. L. Markov, "Faster symmetry
discovery using sparsity of symmetries," in Proceedings of the
45th Annual Design Automation Conference, 2008, pp. 149-154.

[11] R. Drechsler and B. Becker, "Sympathy: Fast exact
minimization of fixed polarity reed-muller expressions for
symmetric functions," in European Design and Test Conference,
1995, pp. 91-97.

[12] Y. Hu, V. Shih, R. Majumdar and L. He, "Exploiting
Symmetries to Speed Up SAT-Based Boolean Matching for

Int'l Conf. Foundations of Computer Science | FCS'16 | 97

ISBN: 1-60132-434-0, CSREA Press ©

Logic Synthesis of FPGAs," IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 27, pp.
1751-1760, 2008.

[13] B. Hu and M. Marek-sadowska, "In-place delay constrained
power optimization using functional symmetries," in Design
Automation and Test in Europe, 2001, pp. 377-382.

[14] W. Ke and P. R. Menon, "Delay-testable implementations of
symmetric functions," IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 14, pp. 772-775,
1995.

[15] N. Kettle and A. King, "An anytime algorithm for generalized
symmetry detection in ROBDDs," IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol.
27, pp. 764-777, 2008.

[16] V. N. Kravets and K. A. Sakallah, "Generalized symmetries in
boolean functions," Advanced Computer Architecture Laboratory
Department of Electrical Engineering and Computer Science, The
University of Michigan, Ann Arbor, MI 48109, 2002.

[17] J. Mohnke, P. Molitor and S. Malik, "Limits of using signatures
for permutation independent Boolean comparison," Formal
Methods Syst. Des., vol. 21, pp. 167-191, 2002.

[18] D. Moller, J. Mohnke and M. Weber, "Detection of symmetry of
boolean functions represented by ROBDDs," in IEEE
International Conference on Computer-Aided Design, 1993, pp.
680-684.

[19] J. C. Muzio, D. M. Miller and S. L. Hurst, "Multivariable
symmetries and their detection," IEE Proceedings on Computers
and Digital Techniques, vol. 130, pp. 141-148, 2008.

[20] S. Panda, F. Somenzi and B. F. Plessier, "Symmetry detection
and dynamic variable ordering of decision diagrams," in IEEE
International Conference on Computer-Aided Design, 1994, pp.
628-631.

[21] J. Rice and J. Muzio, "Antisymmetries in the realization of
boolean functions," in IEEE International Symposium on Circuits
and Systems, 2002, pp. 69-72.

[22] C. Scholl, D. Moller, P. Molitor and R. Drechsler, "BDD
minimization using symmetries," IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol.
18, pp. 81-100, 1999.

[23] C. C. Tsai and M. Marek-Sadowska, "Generalized Reed-Muller
forms as a tool to detect symmetries," IEEE Transactions on
Computers, vol. 45, pp. 33-40, 1996.

[24] K. H. Wang and J. H. Chen, "Symmetry detection for
incompletely specified functions," in Proceedings of the 41st
Annual Design Automation Conference, 2004, pp. 434-437.

[25] P. Maurer, "A universal symmetry detection algorithm," Baylor
University, 2013.

[26] P. M. Maurer, "Conjugate Symmetry," Formal Methods
Syst. Des., vol. 38, pp. 263-288, 2011.

[27] P. M. Maurer. Efficient event-driven simulation by exploiting
the output observability of gate clusters. Computer-Aided Design
of Integrated Circuits and Systems, IEEE Transactions On
22(11), pp. 1471-1486. 2003.

98 Int'l Conf. Foundations of Computer Science | FCS'16 |

ISBN: 1-60132-434-0, CSREA Press ©

On r-gatherings on the Line

Yijie Han1 and Shin-ichi Nakano2

1School of Computing and Engineering, University of Missouri at Kansas City, Kansas City, MO 64110, USA
2Department of Computer Science, Gunma University, City, Kiryu 376-8515, Japan

Abstract— Given an integer r, a set C of customers, a set F
of facilities, and a connecting cost co(c, f) for each pair of

c ∈ C and f ∈ F , an r-gathering of customers C to facilities

F is an assignment A of C to open facilities F
′

⊂ F such

that r or more customers are assigned to each open facility.

We wish to find an r-gathering with the minimum cost, where

the cost is maxci∈C{co(ci, A(ci))}. When all C and F are

on a line an algorithm to find such an r-gathering is known.

In this paper we give a faster algorithm with time complexity

O(|C|+ |F | log2 r + |F | log |F |).

Keywords: algorithm, facility location, gathering

1. Introduction
The facility location problem and many of its variants are

studied[7], [8]. In the basic facility location problem we are

given (1) a set C of customers, (2) a set F of facilities, (3)

an opening cost op(f) for each f ∈ F , and (4) a connecting

cost co(c, f) for each pair of c ∈ C and f ∈ F , then we

open a subset F ′ ⊂ F of facilities and find an assignment

A of C to F ′ so that a designated cost is minimized.

An r-gathering[6] of customers C to facilities F is an

assignment A of C to open facilities F
′

⊂ F such that r
or more customers are assigned to each open facility. (This

means each open facility has enough number of customers.)

We assume |C| >> r holds. Then we define the cost of (the

max version of) a gathering as maxci∈C{co(ci, A(ci))}.

We assume op(fj) = 0 for each fj ∈ F in this paper, as in

[4]. The min-max version of the r-gathering problem finds

an r-gathering having the minimum cost. For the min-sum

version see the brief survey in [6].

Assume that F is a set of locations for emergency shelters,

and co(c, f) is the time needed for a person c ∈ C to

reach a shelter f ∈ F . Then an r-gathering corresponds

to an evacuation assignment such that each opened shelter

serves r or more people, and the r-gathering problem finds

an evacuation plan minimizing the evacuation time span.

Armon[6] gave a 3-approximation algorithm for the r-

gathering problem and proves that with assumption P �=
NP the problem cannot be approximated within a factor

less than 3 for any r ≥ 3. Akagi and Nakano[4] gave an

O((|C| + |F |) log(|C| + |F |)) time algorithm to solve the

r-gathering problem when all C and F are on a line. In this

paper we give a faster O(|C|+ |F | log2 r+ |F | log |F |) time

algorithm. Since we can assume in general |F | << |C| and

r << |C| our algorithm is faster than the one in[4].

The remainder of this paper is organized as follows.

Section 2 gives an algorithm to solve a decision version of

the r-gathering problem, which is used as a subroutine in our

main algorithm in Section 4. In Section 3 we describe the

computation of left and right boundaries. Section 4 contains

our main algorithm for the r-gathering problem. Section 5
analyze the running time of the algorithm tightly. Finally

Section 6 is a conclusion.

2. (k,r)-gathering on the line
In this section we give an algorithm to solve a decision

version of the r-gathering problem.

Given customers C = {c0, c1, · · · , c|C|−1} and facilities

F = {f0, f1, · · · , f|F |−1} on a line (we assume they are

distinct points and appear in those order from left to right)

and two numbers k and r, (k, r)-gathering is an r-gathering

such that maxci∈C{co(ci, A(ci))} ≤ k. Because there are

|C||F | possible co(ci, A(ci)) values we can do log(|C||F |)
binary searches using (k, r)-gathering algorithms to find

the minA maxci∈C{co(ci, A(ci))} (the min-max value). In

[4] Akagi and Nakano observed that the number of binary

searches can be reduced to O(log(|C|+ |F |)).
For a facility f , the index of its left boundary is l(f) =

min{i||f − ci| ≤ k} and its left boundary is cl(f) and the

index of its right boundary is r(f) = max{i||f − ci| ≤ k}
and its right boundary is cr(f). Two facilities fa < fb are

intersecting if r(fa) ≥ l(fb)− 1.

To find out whether a (k, r)-gathering exits we first

compute the (indices of) left and right boundaries for every

facility. The algorithm for computing these will be explained

in the next section. In this section we just assume we can

have them. For a facility f , if r(f)− l(f) + 1 < r then we

close it.

We can assume that the customers assigned to a facility is

consecutive. A consecutive r′ customers going to a facility

are called a complete interval if r′ ≥ r. If r′ < r then they

are called an incomplete interval.

We will use the Left-to-Right Maximal Scan and the

Right-to-Left Minimal Scan. The Left-to-Right Maximal

Scan is shown below:

Left-to-Right Maximal Scan

1. Find the rightmost non-closing facility fa with |c0−fa| ≤
k. Set i = a. Set border = 0.

2. Find the rightmost non-closing intersecting facility fb to

the right of fi.
if fb does not exist then there is no solution; exit;

Int'l Conf. Foundations of Computer Science | FCS'16 | 99

ISBN: 1-60132-434-0, CSREA Press ©

if l(fb) > border + r − 1 then

begin

Mark cborder, cborder+1, ..., cl(fb)−1 as a complete inter-

val of customers going to fi;
Set border = l(fb);

end

else

begin

if r(fb) ≥ border + 2r − 1 then

begin

Mark cborder, cborder+1, ..., cborder+r−1 as a com-

plete interval of customers going to fi;
Set border = border + r;

end

else goto Step 3;

end

if r(fb) = |C| − 1 then

begin

Mark cborder, cborder+1, ..., c|C|−1 as a complete interval

of customers going to fb;

(k, r)-gathering found; exit;

end

else

begin

i = b; goto Step 2;

end

3 /*Here we reached a breakpoint because fi and fb cannot

have 2r customers going to them.*/

if r(fb) = |C| − 1 then

begin

Mark cborder, cborder+1, ..., cborder+r−1 as a com-

plete interval of customers going to fi and mark

cborder+r, cborder+r+1, ..., c|C|−1 as an incomplete interval

of customers going to fb;

exit;

end

else

begin

Let fc be the immediate next non-closing facility right

to fb;

Mark cborder, cborder+1, ..., cborder+r−1 as a complete

interval of customers going to fi;
If fb is not intersecting fc then there is no solution for

a (k, r)-gathering and we exit;

Mark cborder+r, cborder+r+1, ..., cl(fc)−1 as an incom-

plete interval of customers going to fb;

Treat cl(fc) through c|C|−1 and fc, fc+1, ..., f|F |−1 as a

separate problem using divide-and-conquer;

/* Here we say that we break between cl(fc)−1 and cl(fc)
and between fc−1 and fc.*/

exit;

end

Note that the Left-to-Right Maximal Scan for all facilities

takes O(|F |) time after the left and right boundaries are

computed. If the Scan results in no breakpoints then we

obtained a (k, r)-gathering. We will say that such a Scan is

a successful Scan. If there is only one breakpoint then this

breakpoint results in one incomplete interval and it is at the

rightmost position among all formed intervals. In the case

there is only one breakpoint we will say that the Scan is a

complete Scan.

Now the Right-to-Left Minimal Scan:

Right-to-Left Minimal Scan

1. Find the rightmost non-closing facility fa with |fa −
c|C|−1| ≤ k. Set i = a. Set border = |C| − 1.

2. Find the rightmost intersecting neighbor fb to the left of

fi such that border − l(fb) + 1 ≥ 2r.

if fb does not exist then goto Step 3.

if r(fb) ≤ border − r then

begin

Mark cr(fb)+1, cr(fb)+2, ..., cborder as a complete interval

of customers going to fi;
Set border = r(fb);

end

else

begin

Mark cborder−r+1, cborder−r+2, ..., cborder as a complete

interval of customers going to fi;
Set border = border − r;

end

if l(fb) = 0 then

begin

Mark c0, c1, ..., cborder as a complete interval of cus-

tomers going to fb;

(k, r)-gathering found; exit;

end

else

begin

i = b; goto Step 2;

end

3 /*We reached a breakpoint because fb cannot have r
customers going to it.*/

Let fb be the leftmost facility left to fi and intersects with

fi.
if l(fb) = 0 then

begin

Mark cborder−r+1, cborder−r+2, ..., cborder as a com-

plete interval of customers going to fi and mark

c0, c1, ..., cborder−r as an incomplete interval of customers

going to fb;

exit;

end

else

begin

Let fc be the immediate next non-closing facility left to

fb;

Mark cborder−r+1, cborder−r+2, ..., cborder as a complete

100 Int'l Conf. Foundations of Computer Science | FCS'16 |

ISBN: 1-60132-434-0, CSREA Press ©

interval of customers going to fi;
If |cr(fc)+1 − fb| > k then there is no solution for a

(k, r)-gathering and we exit;

Mark cr(fc)+1, cr(fc)+2, ..., cborder−r as an incomplete

interval of customers going to fb;

Treat c0 through cr(fc) and f0, f1, ..., fc as a separate

problem using divide-and-conquer;

/* We say that we break between cr(fc) and cr(fc)+1 and

between fc and fc+1.*/

exit;

end

Note that the Right-to-Left Minimal Scan for all facilities

takes O(|F |) time after the left and right boundaries are

computed. If the Scan results in no breakpoints then we

obtained a (k, r)-gathering. We will say that such a Scan

is a successful Scan. If there is only one breakpoint then

this breakpoint results in one incomplete interval and it is

at the leftmost position among all formed intervals. In the

case there is only one breakpoint we will say that the Scan

is a complete Scan.

Let i be an interval of customers going to f . The extended

interval of i is {cl(f), cl(f)+1, ...cr(f)}.

Lemma 1: If a complete Left-to-Right Maximal Scan S
results in a set S(S) of I intervals then at least I facilities

has to open for a (k, r)-gathering.

Proof: Let A be any set of intervals and we will use E(A)
to denote the set of extended intervals in A. Assume that

a (k, r)-gathering G has a set S(G) of I ′ < I complete

intervals. Then there is an extended interval i1 in E(G) that

proper contains an extended interval i2 in E(S) and the

rightmost customer in i1 is to the right of the rightmost

customer in i2. This can be seen by starting from the left

side and going to the right, comparing extended intervals

one in E(S) against one in E(G). This says that S is not

a maximal scan as in the Left-to-Right Maximal Scan we

always find the rightmost intersecting neighbor in Step 2.

Lemma 2: If a complete Right-to-Left Minimal Scan S
results in a set S(S) of I intervals then at most I−1 facilities

can open for a (k, r)-gathering.

Proof: Assume a (k, r)-gathering G has a set S(G) of I ′ >
I − 1 complete intervals. Let E(G) be the set of extended

intervals of S(G). Let E(S) be the set of extended intervals

of S(S). Then there is an extended interval i1 in E(S) that

proper contains an extended interval i2 in E(G) and the

leftmost customer in i1 is to the left of the leftmost customer

in i2. This can be seen by starting from the right side and

going to the left, comparing extended intervals one in E(S)
against one in E(G). This says that S is not a minimal scan

as in the Right-to-Left Minimal Scan we always find the

rightmost intersecting neighbor in Step 2.

Lemmas 1 and 2 explains why the Left-to-Right Maximal

Scan is called a maximal scan and why the Right-to-Left

Minimal Scan is called a minimal scan.

Lemma 3: If a complete Left-to-Right Maximal Scan has

Imax intervals and a complete Right-to-Left Minimal Scan

has Imin intervals then Imin ≥ Imax.

Proof: From Lemmas 1 and 2.

Theorem 1: Assume we have a complete Left-to-Right

Maximal Scan Smax with Imax intervals and a complete

Right-to-Left Minimal Scan Smin with Imin intervals. If

Imax = Imin then there is no solution for a (k, r)-gathering.

If Imax < Imin then the two Scans can be combined into a

solution for (k, r)-gathering.

Proof: If Imax = Imin then Lemma 1 says that any (k, r)-
gathering has ≥ Imax facilities open while Lemma 2 says

that any (k, r)-gathering has < Imin facilities open. Thus it

is impossible to have a (k, r)-gathering.

If Imax < Imin then there is a complete interval imin

created in Smin that is contained in a complete interval

imax created in Smax. Let cmin,l be the leftmost customer

in imin, cmin,r be the rightmost customer in imin, cmax,l be

the leftmost customer in imax and cmax,r be the rightmost

customer in imax. Let imin be the jmin-th interval counting

from right to left created by Smin and imax be the jmax-

th interval counting from left to right created by Smax. We

create a (k, r)-gathering by using the 0th through (jmax−1)-
th intervals created by Smax and the 0th through (jmin−1)-
th intervals created by Smin. We then add a complete interval

for cmax,l through cmin,r and let them go to the facility

opened in Smax for cmax,l through cmax,r. This creates a

(k, r)-gathering. We say that we combined Smax with Smin

at imax and imin.

Now we consider the situation where we have multiple

breakpoints in the Scans. We use the following Fix proce-

dure:

Fix

1. Start with the Right-to-Left Minimal Scan Smin.

2. if Smin is successful then we obtained a (k, r)-gathering

and we exit;

else we stop when we reach the first breakpoint. This

breakpoint partitions the customers into two sets

{c0, ..., ca−1} and {ca, ..., c|C|−1} and partitions the

facilities into two sets {f0, ..., fb−1} and {fb, ..., f|F |−1}.

{ca, ..., c|C|−1} has been put into I(Smin) intervals (with

one incomplete interval at the leftmost position and other

I(Smin)− 1 complete intervals).

3. Now we start the Left-to-Right Maximal Scan Smax for

{ca, ..., c|C|−1}.

4. /* If Smax is successful then Smax created ≤ I(Smin)−1
complete intervals by Lemma 2.*/

5. (Case 1) If Smax is successful or is complete with

≤ I(Smin) − 1 intervals then we find the leftmost

(complete) interval imax created by Smax that contains

a (complete) interval imin created by Smin and combine

the intervals created by Smax and Smin at imax and

imin to get a (minimal) solution for the (k, r)-gathering

for {ca, ..., c|C|−1}. If there are more than one complete

Int'l Conf. Foundations of Computer Science | FCS'16 | 101

ISBN: 1-60132-434-0, CSREA Press ©

intervals created by Imin that are contained in imax then

we will pick the leftmost one to be combined with imax. It

is a minimal solution because we used "leftmost".

6. (Case 2) If Smax is complete with I(Smin) intervals then

by Theorem 1 there is no solution for a (k, r)-gathering

for {ca, ..., c|C|−1}. If there is a solution S for a (k, r)-
gathering for {c0, c1, ..., c|C|−1} then let f be the facility ca
goes to in S. Let I be the number of open facilities to the

right of and including f opened by S. Because ca goes to

f in S therefore f is to the right of fc where cr(fc) = ca−1

and fc would be the first open facility if we would resume

the Right-to-Left Minimal Scan after the first breakpoint.

Thus the extended interval of f intersects with the extended

interval of the last complete interval of Smin. However,

Smin reached a breakpoint and thus I ≤ I(Smin) − 1 by

Lemma 2 (Note here that we may move the breakpoint to

between cl(f)−1 and cl(f)). However, if we take the set Fo

of open facilities right to and include f opened by S, then

|Fo| ≤ I(Smin)− 1. On the other hand Smax has I(Smin)
intervals and thus the number of intervals in Fo has to be

≥ I(Smin). This contradiction says that there is no solution

for (k, r)-gathering for {c0, c1, ..., c|C|−1}. Exit.

7. (Case 3) If Smax is not complete. Then stop at

the first breakpoint of Smax. This breakpoint will

partition {ca, ..., c|C|−1} into P = {ca, ...ca1
} and

{ca1+1, ..., c|C|−1} and partition {fb, ..., f|F |−1} into

{fb, ..., fb1} and {fb1+1, ..., f|F |−1}. Let ca1
be a member

of a complete interval i created by Smin. If ca1
is not the

rightmost customer in i then we add ca1+1, ca1+2, ..., ca2
to

P , where ca2
is the rightmost customer in i. The situation

for customers {ca, .., ca2
} can be analyzed in the same way

as we analyzed in Steps 5 and 6.

Theorem 2: After the left and right boundaries have been

computed we can find whether a solution for a (k, r)-
gathering exists in O(|F |) time.

Alternatively after computing the boundaries we can use

the O(|F |) time decision algorithm in [4].

3. Computing Left and Right Bound-

aries

For two neighboring facilities fa and fa+1, let 2r cus-

tomers Fa,a+1 = {cb, cb+1, ..., cb+2r−1} be such that |fa −
cb+2r−2| < |fa+1 − cb−1| and |fa − cb+2r| > |fa+1 − cb+1|.
Fa,a+1 is called the boundary set of customers between fa
and fa+1.

Lemma 4: Let Fa,a+1 = {cb, cb+1, ..., cb+2r−1} be the

boundary set of fa and fa+1, then in an optimal r-gathering

or an (k, r)-gathering cd, d > b + 2r − 1, will not go to

facility fa and ce, e < b, will not go to facility fa+1.

Proof: Suppose in an optimal r-gathering or a (k, r)-
gathering cb+2r goes to facility fa. Let the leftmost customer

going to fa be ct. If t ≥ b + 1 then we can delete fa and

let all customers going to fa now go to fa+1. If t ≤ b then

we can let cb+r, cb+r+1, ..., cl go to fa+1, where cl was the

rightmost customer of fa.

The other situation can be proved similarly.

In order to use Lemma 4 we need place a dummy

customer dl at the left of f0 and a dummy customer dr
at the right of f|F |−1 and let |f0 − dl| and |f|F |−1 − dr|
larger than max{|f0 − c|C|−1|, |f|F |−1 − c0|}.

We will let ll(fa+1) = rl(fa) = cb and lr(fa+1) =
rr(fa) = cb+2r−1.

Lemma 4 says that for computing an optimal r-gathering

or a (k, r)-gathering we need consider no more than 4r
distances corresponding to customers in [ll(fa), lr(fa)] and

[rl(fa), rr(fa)] for each facility. Thus the total number of

distances to be considered is 4|F |r. We may collect all these

4|F |r distances and then do binary search log(4|F |r) times

to find the minimum k value for an optimal r-gathering. This

will result in O(|C|+|F |r log(|F |r)+|F |(log r)(log(|F |r)))
time for r-gathering by (1) preprocess them in O(|C| +
|F |) time to compute the boundary sets Fa,a+1, (2) sort

4|F |r distances in O(|F |r log(|F |r)) time, (3) binary search

log(4|F |r) rounds among the 4|F |r possible minimum dis-

tances where each round consists of computing the left

and right boundaries in O(|F | log r) time and Right-to-Left

Minimal Scan and Left-to-Right Maximal Scan in O(F)
time.

We maintain the set M of possible minimum costs, then

repeatedly compute the median k of possible minimum costs,

then compute left and right boundaries and call Right-to-Left

Minimal Scan and Left-to-Right Maximal Scan for value k
to find whether a (k, r)-gathering exits. If it returns YES

then the minimum cost is less than or equal to k and we can

remove the larger half of costs from M . If it returns NO

then the minimum cost is larger than k and we can remove

the smaller half of costs from M . After log(4|F |r) rounds

we can find the minimum cost k∗. In later sections we show

we can do better than this.

4. r-gathering on the line
If all C and F are on the line, an O((|C|+ |F |) log(|C|+

|F |)) time algorithm to solve the r-gathering problem is

known[4]. In this section we give a faster algorithm. Our

algorithm runs in O(|C|+|F | log3 r+|F | log |F | log r) time.

Since C >> F and C >> r holds in general, or if we can

assume r as a constant, our algorithm is faster.

We can observe that the minimum cost k∗ of a solution

of an r-gathering problem is co(c, f) for some c ∈ C
and some f ∈ F . Since the number of possible minimum

cost, say some co(c, f), is at most 4|F |r by Lemma 4, one

can find the minimum cost in O(|C| + |F |r log(|F |r) +
|F |(log r)(log(|F |r)) time as we explained before.

However we can design a faster algorithm which runs in

O(|C| + |F | log3 r + |F | log |F | log r) time. Our algorithm

maintains a set M of possible minimum costs, then repeat-

edly computes the “median of medians” k, defined below,

102 Int'l Conf. Foundations of Computer Science | FCS'16 |

ISBN: 1-60132-434-0, CSREA Press ©

then call Right-to-Left Minimal Scan and Left-to-Right Max-

imal Scan for k. Depending whether a (k, r)-gathering exists

the algorithm removes some subset of possible minimum

costs from M . After O(log2 r) rounds M has at most 2|F |
distances remaining, then we can find the minimum cost k∗

by an ordinary binary search. Now we explain the detail.

Set initially M�(fj) = {co(ci, fj)|ci ∈ [ll(fj), lr(fj)]},

and Mr(fj) = {co(ci, fj)|ci ∈ [rl(fj), rr(fj)]}. We are

going to repeatedly remove the half of distances from some

M�(fj) and/or Mr(fj). M is the set of all M�(fj) and

Mr(fj), j = 1, 2, · · · , |F |, however if M�(fj) has exactly

one distance then M�(fj) is removed from M . Similar for

Mr(fj).

We will use a weighing scheme similar to the one used

in [5]. If M�(fj) has 2r/2x customers we define the weight

w�(fj) of M�(fj) as (1+ log r−x). The weight wr(fj) of

Mr(fj) is defined similarly. The weight of M is the sum

of the weights of M�(fj) and Mr(fj) in M .

Initially each M�(fj) has exactly 2r customers, so x = 0,

and its weight is 1 + log r. So initially the weight of M is

2|F |(1 + log r).

Say there are N ≤ 2|F | M�(fj)’s and Mr(fj)’s with

more than one distance remaining and the total weights in

them is T . In each round we find the median of M�(fj)
and the median of Mr(fj) and this gives us N medians.

This takes constant time for each facility. We then find

the median k of these N medians and this takes O(|F |)
time. Say that k is the median of M�(fi) then we place all

M�(fj)’s and Mr(fj)’s whose median is < k above M�(fi)
and all M�(fj)’s and Mr(fj)’s whose median is > k below

M�(fi). Because k is the median of the medians we have

put half (N/2) of M�(fj)’s and Mr(fj)’s above M�(fi)
and the other half (N/2) of M�(fj)’s and Mr(fj)’s below

M�(fi). If a (k.r)-gathering exists then we remove half of

the distances in each of the M�(fj)’s and Mr(fj)’s below

M�(fi). If a (k, r)-gathering does not exists then we remove

half of the distances in each of the M�(fj)’s and Mr(fj)’s
above M�(fi)’s. Thus in any case we remove half of the

distances from half of the M�(fj)’s and Mr(fj)’s. Thus

we remove total N/2 weights with one weight from each of

the M�(fj)’s or Mr(fj)’s from which we removed half of

the distances. Let us say that M�(fj) has 2r/2x distances

remaining and thus has weight 1+log r−x and we removed

half of distances in it and thus removed one weight. Then we

removed (1/(1 + log r− x))-th ≥ (1/(1 + log r))-th weight

from it. If we pair one M�(fj) from which we removed

half of the distances and one M�(ft) from which we did

not remove half of the distances and say that M�(fj) has

2r/2x distances and log r + 1− x weights and M�(ft) has

2r/2y distances and log r+1−y weights then the one weight

we removed from M�(fj) is at least 1/(2(log r + 1))-th of

the sum of the weights of M�(fj) and M�(ft). This says

that in one round we reduce weights from T to at most

T (1 − 1/(2(log r + 1)). Initially we have 2|F |(1 + log r)

weights. So after 4(1 + log r) log r rounds the weights are

at most

2|F |(1+log r)(1−1/(2(1+log r)))(2(1+log r))2 log r) = 2|F |(1+log r)(1/e

≤ 2|F |(1+log r)(1/2)(2 log r) = 2|F |(1+log r)/r2 ≤ |F |/r.

After 4(1 + log r) log r rounds, as explained above, the

weight T is at most |F |/r. Since each weight accounts for

2r/2x customers for some 1 ≤ x ≤ log r + 1, one weight

always account for at most r customers. Thus the number

of remaining distances is at most |F | because weights T ≤
|F |/r. Note that we have to place back the the last remaining

distance in M�(fj)’s and Mr(fj)’s where all distances

except one have been removed.There are iat most 2|F | of

them. Thus we have at most 3|F | distances remaining.

Finally sort the remaining 3|F | remaining distances in

O(|F | log |F |) time, then binary search them log(3|F |)
rounds each of which takes O(|F | log r) time for computing

the left and right boundaries and O(|F |) time for Right-to-

Left Minimal Scan and Left-to-Right Maximal Scan. Then

we find the minimum cost.

Theorem 3: One can solve the r-gathering problem in

O(|C|+ |F | log3 r+ |F | log |F | log r) time when all C and

F are on the real line.

5. Tighter Analysis

In this section we analyze the running time of our algo-

rithm in the preceding section more tightly.

We analyze again the running time to compute the bound-

aries in Section 3, in which we find some indices from

[ll(fj), lr(fj)] and [rl(fj), rr(fj)] for each fj ∈ F by

binary search. We repeat this in O(log2 r) rounds.

For the first round we find the boundaries by binary search

from the 2r distances. However for later round the number

of distances from which we find the boundary is smaller.

Assume that for the first round the number of computation

to compute the boundaries is at most c|F | log r for some

constant c. For the second round the number of computation

for the boundaries is at most

c|F | log r/2 + c|F |(log r − 1)/2) (1)

= c|F | log r(1/2 + 1/2− 1/(2 log r)) (2)

= c|F | log r(1− 1/(2 log r)). (3)

So for the x-th round the number of computation for the

boundaries is at most c|F | log r(1 − 1/(2 log r))x−1 Thus

the total number of computation for the boundaries for all

round is at most

c|F | log r+c|F | log r(1−1/(2 log r))+· · ·+c|F | log r(1−1/(2 log r))x−1

Except for the computation for the boundaries above

and the computation for the weighted median, which runs

in O(|F |) time for each round and O(|F | log2 r) time in

total, the algorithm consists of O(log2 r) rounds, in which

Int'l Conf. Foundations of Computer Science | FCS'16 | 103

ISBN: 1-60132-434-0, CSREA Press ©

each round call Right-to-Left Minimal Scan and Left-to-

Right Maximal Scan, which runs in O(|F |) time. This will

accounts for O(|C| + |F | log2 r) time. After that there are

3|F | distances remaining, and we use O(log |F |) rounds in

which each x-th round computes the median of 3|F |/2x−1

distances, computes the left and right boundaries and call

Right-to-Left Minimal Scan and Left-to-Right Maximal

Scan, which runs in O(|F | log r) time.

Thus the running time of the algorithm is O(|C| +
|F | log2 r + |F | log |F | log r).

Note that after M ≤ 3|F | distances remaining, each round

consists of finding the median (value k) in O(|M |) time,

compute left and right boundaries and this takes O(|M |)
time as follows. Assume that mi distances are from fi, that

is co(c, fi) for some c. We have
∑

i logmi = O(M) since∑
i mi = M . Thus we need O(|F |) time for each round and

O(|F | log |F |) time over all rounds.

Theorem 4: Optimal r-gathering of |C| customers and |F |
facilities can be found in O(|C| + |F | log2 r + |F | log |F |)
time.

6. Conclusion
In this paper we have given an algorithm to solve the r-

gathering problem when all C and F are on the real line.

The running time of the algorithm is O(|C| + |F | log2 r +
|F | log |F |) and faster than the known algorithm in [4].

References
[1] G. Aggarwal, T. Feder, K. G. Aggarwal, T. ederS, K. Kenthapadi, S.

Khuller, R. Panigrahy, D. Thomas and A. Zhu, Achieving anonymity
via clustering, Transactions on Algorithms, 6, Article No.49 (2010).

[2] P. Agarwal and M. Sharir, Efficient Algorithms for Geometric Opti-
mization, Computing Surveys, 30, pp.412-458 (1998).

[3] T. Akagi and S. Nakano, On (k, r)-gatherings on a Road, Proc. of
Forum on Information Technology, FIT 2013, RA-001 (2013).

[4] T. Akagi and S. Nakano, On r-gatherings on the Line, Proc.of FAW
2015, Guilin, Guangxi, China LNCS 9130, pp.25-32 (2015).

[5] R. J. Anderson, G. L. Miller. Deterministic parallel list ranking.
Algorithmica, Vol. 6, pp. 859-868 (1991).

[6] A Armon, On min-max r-gatherings, Theoretical Computer Science,
412, pp.573-582 (2011).

[7] Z. Drezner, Facility Location: A Survey of Applications and Methods,
Springer (1995).

[8] Z. Drezner and H.W. Hamacher, Facility Location: Applications and
Theory, Springer (2004).

[9] G. Frederickson and D. Johnson, Generalized Selection and Ranking:
Sorted Matrices, SIAM Journal on Computing, 13, pp.14-30 (1984).

[10] H. Fournier, and A. Vigneron, Fitting a Step Function to a Point Set,
Proc of ESA 2008, Lecture Notes in Computer Science, 5193, pp.442-
453 (2008).

[11] J. Y. Liu, A Randomized Algorithm for Weighted Approximation of
Points by a Step Function, Proc. of COCOA 2010, Lecture Notes in
Computer Science, 6508, pp.300-308 (2010).

104 Int'l Conf. Foundations of Computer Science | FCS'16 |

ISBN: 1-60132-434-0, CSREA Press ©

A segment partitioning heuristic for scheduling jobs
with release times and due-dates

Nodari Vakhaniaa,

Federico Alonso-Pecinab, Crispin Zavalab

(a) Centro de Investigación en Ciencias, UAEMor, Mexico.

(b) Facultad de Contadurı́a, Administración e Informática UAEMor, Mexico.

Abstract—In a standard strongly NP-hard single-machine
scheduling problem the jobs are characterized by release times
and due-dates and the objective to minimize the maximum
job lateness. We develop a heuristic method for solving this
problem based on the partition of the schedule horizon into
two types of time intervals containing urgent and non-urgent
jobs, respectively. We report the results of the preliminary
computational experiments testing the practical performance of
the proposed algorithm.

Key words: scheduling single-machine; release-time; due-

date; lateness; bin packing; polynomial-time algorithm

I. INTRODUCTION

In scheduling problems have a finite set of resources
(machines or processors) that may perform orders (jobs or

tasks) from another finite set. The objective is to arrange the

assignment of the orders to the resources to minimize some

overall (usually time) criteria.

In this paper we address a single-machine scheduling

problem when every job j is characterized by its release time
rj and due-date dj ; rj is the time moment when job j arrives

to the system hence becomes available for processing on the

machine, and dj is the desired completion time for job j.

The problem of scheduling jobs with release times and due-

dates on a single machine with the objective to minimize

the maximum job lateness, with the common abbreviation

1/rj/Lmax (Graham et al. [4]), can be stated as follows.

We are given n jobs in {1, 2, . . . , n}. Each job j has (non-

interruptible) processing time pj , release time rj and due-date

dj . The n jobs are to be scheduled on a single machine that

can process at most one job at a time. A feasible schedule
S is a mapping that assigns to each job j a starting time

tj(S), such that tj(S) ≥ rj and tj(S) ≥ tk(S) + pk, for

any job k included earlier in S (for notational simplicity, we

use S also for the corresponding job-set); the first inequality

says that a job cannot be started before its release time, and

the second one reflects the restriction that the machine can

handle only one job at any time. cj(S) = tj(S) + pj is

the completion time of job j. We aim to find out if there

is a schedule which meets all job due-dates, i.e., every j
is completed by time dj . If there is no such schedule then

we look for an optimal schedule, i.e., one minimizing the

maximum job lateness Lmax = max{j|cj − dj}. We denote

by L(S) (Lj(S), respectively) the maximum lateness in S
(the lateness of job j in S, respectively).

The problem is known to be strongly NP-hard (Garey &

Johnson [2]). Hence, the development of efficient heuristics

with a good practical behavior is of a primary interest. The

earliest proposed and the most widely used heuristics for

an approximate solution of problem 1/rj/Lmax is the ED

(Earliest Due-date) heuristic, suggested by Jackson [6]. This

heuristic, iteratively, at each scheduling time t (given by job

release or completion time), among the jobs released by time

t schedules one with the largest delivery time or the smallest

due-date (breaking ties by selecting a longest one).

In the worst-case, Jackson’s heuristic delivers a solution

which is twice worse than an optimal one, i.e., ED-heuristic

is a 2-approximation algorithm. Potts [8] has proposed an

alternative approximation algorithm with an improved approx-

imation ratio of 3/2, in which Jackson’s heuristic is repeatedly

applied O(n) times. Hall and Shmoys [5] have proposed

polynomial approximation schemes for the same problem, and

also an 4/3-approximation an algorithm for its version with

the precedence relations with the same time complexity of

O(n2 log n) as the above algorithm from [8].

Implicit enumerative algorithms have also been developed

for problem 1/rj/Lmax. Among the most efficient such

algorithms are ones proposed by McMahon & Florian [7]

and Carlier [1].

The problem can naturally be simplified by imposing

some restrictions on job processing times. Two such versions

are known to be polynomially solvable. Garey et al. [3]

have developed a sophisticated O(n log n) algorithm for the

case when all jobs have equal integer length p (abbrevi-

ated 1/pj = p, rj/Lmax). Later in [10] was proposed an

O(n2 log n log p) algorithm solving a more general setting

when a job processing time can be either p or 2p (abbreviated

1/pj ∈ {p, 2p}, rj/Lmax).

Recently in [11] certain conditions which satisfaction guar-

antees the obtainment of an optimal solution to problem

1/rj/Lmax were presented. These conditions take an advan-

tage of a close relationship between the scheduling problem

and a version of the bin packing problem with different bin

capacities. The heuristic method that we build here also takes

an advantage of this relationship. The schedules that we create

are partitioned into two types of intervals, containing, roughly

classifying, urgent and non-urgent jobs. We call the intervals

containing urgent jobs kernel intervals, and the intervals

containing non-urgent jobs bin intervals. In every optimal

schedule, kernel jobs form a tight sequence in the sense that

Int'l Conf. Foundations of Computer Science | FCS'16 | 105

ISBN: 1-60132-434-0, CSREA Press ©

the delay of its earliest scheduled job (i.e., the difference

between the starting and release times of that job) cannot

exceed some precalculable magnitude δ ∈ [0, pmax], where

pmax is the maximal job processing time.

Because of a little degree of the flexibility, it is easier

to arrange kernel intervals. Our heuristic method uses ED-

heuristic to schedule these intervals. The rest of the scheduling

horizon consists of the bin intervals, within which all the non-

urgent jobs are to be distributed. Our task is then to find

a proper such job distribution. We use a variation of LPT

(Longest Processing Time) heuristic to find such distribution

of the non-urgent jobs. The LPT-heuristic, iteratively, at each

scheduling time t (given by job release or completion time),

among the jobs released by time t schedules one with the

largest processing time (breaking ties by selecting a most

urgent one).

The practical behavior of our algorithm was tested for a

number of randomly generated problem instances, described

in the concluding section.

II. PRELIMINARY CONCEPTS AND NOTIONS

From here on, let S be an ED-schedule, one created by

ED-heuristic.

Schedule S may contain a gap, that is its maximal consec-

utive time interval in which the machine is idle. We assume

that there occurs a 0-length gap (cj , ti) whenever job i starts

at its release time immediately after the completion of job j.

A block in S is its consecutive part consisting of the

successively scheduled jobs in without any gap in between,

which is preceded and succeeded by a (possibly a 0-length)

gap.

Given schedule S, let i be a job that realizes the maximum

job lateness in S, i.e., Li(S) = maxj{Lj(S)}. Let, further,

B be the block in S that contains job i. Among all the jobs

in B with this property, the latest scheduled one is called an

overflow job in S (not necessarily it ends block B).

Note that if schedule S contains two or more overflow jobs

then they belong to different blocks in S.

A kernel in S is a maximal (consecutive) job sequence

ending with an overflow job o such that no job from this

sequence has a due-date more than do. For a kernel K, we let

r(K) = mini∈K{ri}, and will denote by L(K) the maximum

lateness of a job in K.

It follows that every kernel is contained in some block in

S, and the number of kernels in S equals to the number of

the overflow jobs in it. Furthermore, since any kernel belongs

to a single block, it may contain no gap.

In schedule S, the delay of kernel K is the difference

between the starting time of its earliest scheduled job and

r(K).
Observation 1: The maximum job lateness in a kernel K

cannot be reduced if it has no delay (i.e., the earliest scheduled

job in K starts at time r(K)). Hence, if an ED-schedule S
contains a kernel with this property, then it is optimal.

Proof. Recall that all jobs in K are no less urgent than the

overflow job o, and that jobs in K form a tight sequence (i.e.,

without any gap). Then since the earliest job in K starts at

its release time, no reordering of jobs in K can reduce the

current maximum lateness, which is Lo(S). Hence, there is no

feasible schedule S′ with L(S′) < Lo(S), i.e., S is optimal.

Due to the above observation, assume, without loss of

generality, that the condition in Observation 1 does not hold.

Then there exists a job, less urgent than o, scheduled before

all jobs in K that delays the starting of jobs in K. By

rescheduling such a job to a later time moment behind K,

the jobs in K can be restarted earlier. We define now this

operation formally.

Suppose i precedes j in S. We will say that i pushes j in

S if ED-heuristic will reschedule j earlier if i is discarded.

It follows that the earliest scheduled job of every kernel is

immediately preceded and pushed by a job e with de > do.

In general, we may have more than one such a job scheduled

before kernel K in block B (one containing K). We call such

a job an emerging job for K, and we call the latest scheduled

one (job e above) the delaying emerging job.

Aiming in restarting the kernel jobs earlier, we may activate
an emerging job e for K; that is, we force e and all passive

emerging jobs to be rescheduled after K (the latter jobs are

also said to be in the state of activation for K). This we

achieve by increasing the release times of all these jobs to

a sufficiently large magnitude, say r(K), so that when ED-

heuristic is newly applied, neither job e nor any passive

emerging job will surpass any kernel job, and hence the

earliest job in K will start at time r(K). We note that more

than one emerging job can be activated for K and the same

emerging job may be activated for two or more successive

kernels.

III. THE HEURISTIC

As we have mentioned in the introduction, our heuristic is

based on the idea of partitioning the scheduling horizon into

the urgent (kernel) and non-urgent (bin) intervals. It consists

of the two basic stages. First, at the partitioning stage, all the

kernel and bin intervals are determined. At the construction
stage, kernel and bin intervals are filled in by urgent and the

non-urgent jobs, respectively.

A. The partitioning stage

We have implemented two versions for extracting the kernel

intervals at the partitioning stage. In both of these versions,

the initial ED-schedule σ is created; σ is obtained by ED-

heuristic, which is applied to the originally given problem

instance. In schedule σ, one or more kernels in different

blocks (with the same value of the maximum job lateness,

may arise). Note that the corresponding overflow jobs have

the same lateness and they pertain to different block in σ. This

set of kernels in schedule σ form the initial set of kernels.

If we will have a deeper look into the structure of the

ED-schedules we may see that extra potential kernels may

be “hidden” within schedule σ. Consider a simple instance

with three jobs with the parameters: (job 1) r1 = 0, p1 =

106 Int'l Conf. Foundations of Computer Science | FCS'16 |

ISBN: 1-60132-434-0, CSREA Press ©

10, d1 = 100, (job 2) r2 = 1, p2 = 3, d2 = 4 and (job 3)

r3 = 5, p3 = 3, d3 = 9.

Since at time 0 only job 1 is released, the initial schedule

σ assigns job 1 at time 0, then it assigns job 2 right at the

completion time 10 of job 1, and finally it assigns job 3 at time

10 + 3 = 13. There is a single kernel in σ consisting of job

2, which is the overflow job with the lateness 10+3−4 = 9,

whereas job 1 is the delaying emerging job. Note that the

lateness of job 3 in σ is 13 + 3− 9 = 7.

If we activate the delaying emerging job 1 for the above

kernel, we obtain another ED-schedule σ1, in which job 1

starts at time 1 and completes at time 4 with 0 lateness; at that

completion time, only job 1 is released, hence it is assigned

at time 4 and is completed at time 14; at that time, job 3 is

assigned. The lateness of job 3 in schedule σ1 is 14+3−9 = 8.

Hence, there arises a new kernel consisting of a single job 3

in schedule σ1 (the former kernel of schedule σ consisting of

job 2 disappears in σ1).

During the partitioning stage of our heuristic, the aug-

mentation of the initial set of kernels in schedule σ by the

above kind of the “hidden” kennels yields an improved, more

accurate, performance results.

The kernel augmentation procedure has two versions. In

the first one, whenever a new kernel arises, the delaying

emerging job is temporally omitted, the corresponding kernel

is rescheduled by ED-heuristic (being correspondingly left-

shifted), and the construction proceeds similarly by ED-

heuristic (with the rescheduled kernel though) until another

kernel is encountered or schedule σ∗, consisting of all the jobs

except the omitted delaying emerging jobs, is constructed.

Note that the earliest scheduled job of every arisen during

the procedure kernel K will start at its release time r(K) in

σ∗.

Let L∗
i be the (reduced) lateness of a kernel job i in σ∗,

and let δ(K) = L∗−L(K). Since every kernel K is restarted

at time r(K) in σ∗, L∗(K) = maxi∈K{L∗
i }, and hence L∗ =

maxκ{L∗(Kκ)} are lower bounds on the objective value:

Observation 2: The maximum lateness in schedule σ∗

obtained on the partitioning stage is a lower bound on the

optimal objective value.

Proof. By the definition of schedule σ∗, every kernel K arisen

during the partitioning stage starts at its earliest possible

starting time r(K) in σ∗. Then our claim immediately follows

from Observation 1.

The kernels intervals can be defined with some degree of

the flexibility, due to the observation.

Observation 3: Every kernel K can be delayed by δ(K)
without increasing the maximum lateness.

Proof. Let K ′ be a kernel that realizes maxκ{L∗(Kκ)}. By

definition of δ(K), the completion time of every job in K 	=
K ′ can be increased by δ(K) so that none of the jobs in K
will be completed later than a job realizing maxi∈K′{L∗

i }.

This clearly proves the observation.

From Observation 3, we may assert that in an optimal

schedule Sopt every kernel K starts either no later than at

time r(K) + δ(K) or it is delayed by some δ ≥ 0 (the latter

delay, as we will see later, may be unavoidable for a proper

accommodation of the non-kernel jobs). Let Δ = Lo(σ)−L∗,

where o is an overflow job in σ. Then note that the maximum

lateness in any feasible ED-schedule in which the delay of

some kernel is more than Δ is no less than that in σ, i.e.

Hence, no such schedule will be created by our heuristic.

We shall refer to the magnitude L∗+ δ (0 ≤ δ ≤ Δ) as the

δ-boundary.

Recall that the first version of the kernel augmentation

procedure, in schedule σ∗, each delaying job is omitted. In

the second version of the procedure, every delaying emerging

job is activated for the corresponding kernel. Thus the second

version of the kernel augmentation procedure is similar to

the first one, with the difference that, for every arisen kernel,

the corresponding delaying emerging job is activated for that

kernel (instead of being omitted).

B. The construction stage

At the construction stage, the heuristic schedules kernel

jobs so that none of them surpasses δ-boundary, for any

given choice of δ. The kernel intervals are given some degree

of flexibility, depending on the value of δ according to

Observation 3. The value of δ can be taken arbitrarily from

the interval [0,Δ]. In general, we have a bin between two

adjacent kernel intervals, and a bin before the first and after

the last kernel interval. Because of the allowable right-shift

(Observation 3) the starting and completion times of the

corresponding kernel and bin intervals are defined with the

allowable flexibility, determined by the current value of the

parameter δ (note that, since there may exist no gap within

any kernel segment, the length of every kernel interval and

hence the corresponding bin intervals are fixed).

Bin intervals are scheduled by LPT-heuristic so that the

bin interval before every kernel K is extended up to the time

moment r(K) + δ(K) + δ. If the next job selected by LPT-

heuristic completes by time r(K)+ δ(K)+ δ, it is scheduled

the next; otherwise, among the available jobs, the next shortest

job is similarly selected, until none of the released jobs fits

into the bin (within still available interval before time moment

r(K) + δ(K) + δ). Then the next bin is similarly scheduled

until all bins are scheduled.

IV. PRELIMINARY COMPUTATIONAL EXPERIMENTS AND

FINAL REMARKS

We have implemented our heuristic (with both versions

of the kernel augmentation procedure) in Java using the

development environment Eclipse IDE for Java Developers

(version Luna Service Release 1 (4.4.1)) under Windows 8.1

operative system for 64 bits, and have used a laptop with

Intel Core i7 (2.4 GHz) and 8GB of RAM DDR3 to run the

code. The inputs in our main program are plain texts with job

data that we have generated randomly, as we briefly describe

below. The program for the generation of our instances was

Int'l Conf. Foundations of Computer Science | FCS'16 | 107

ISBN: 1-60132-434-0, CSREA Press ©

constructed under the same development environment as our

main program.

The computational experiments are at an early stage of

development, still an ongoing research. So far, job release

times and due dates were generated with the rdn() function

in Java, with an open range (0, 50n), where n is the number of

jobs in a corresponding instance. The processing times were

generated from the interval [1, 50] and also from the interval

[1, 100].
For a majority of the created problem instances the heuristic

with the second version of the kernel augmentation proce-

dure gave a solution with the objective value equal to the

corresponding lower bound (as in Observation 2), whereas

about 60% of the solutions with the first version of the kernel

augmentation procedure achieved this lower bound. Since the

heuristic runs in time n log n, all the instances were solved

instantly.

In the instances that were not solved optimally, the activated

delaying emerging jobs have converted to the overflow jobs,

hence the objective value could have been improved. We

intend to extend the heuristic with an additional subroutine

dealing with that kind of scenario. This, we believe, will

improve its performance. Besides, we plan to test the heuris-

tic for larger amount of problem instances, also generated

randomly but in several different ways. For instance, the set

of jobs can be divided into two or more subsets and job

parameters for each subset can be derived independently, from

different time intervals.

REFERENCES

[1] J. Carlier (1982). The one–machine sequencing problem. European J.
of Operational Research. 11, 42–47.

[2] Garey M.R. and D.S. Johnson. Computers and Intractability: A Guide
to the Theory of NP–completeness (Freeman, San Francisco, 1979)

[3] M.R. Garey, D.S. Johnson, B.B. Simons and R.E. Tarjan. Scheduling
unit–time tasks with arbitrary release times and deadlines. SIAM J.
Comput. 10, 256–269 (1981)

[4] R.L. Graham, E.L. Lawler, J.K. Lenstra and A.H.G. Rinnooy Kan. Op-
timization and approximation in deterministic sequencing and schedul-
ing: A survey. Annals of Discrete Mathematics, 5: 287 – 328, 1979.

[5] L.A. Hall and D.B. Shmoys. Jackson’s rule for single-machine schedul-
ing: Making a good heuristic better, Mathematics of Operations Re-
search 17 22–35 (1992)

[6] Jackson J.R. Scheduling a production line to minimize the maximum
lateness. Management Science Research Report 43, University of Cal-
ifornia, Los Angeles (1955)

[7] G. McMahon and M. Florian. On scheduling with ready times and
due-dates to minimize maximum lateness. Operations Research. 23,
475–482 (1975)

[8] C.N. Potts. Analysis of a heuristic for one machine sequencing with
release dates and delivery times. Operations Research 28, p.1436-1441
(1980)

[9] Vakhania N. A better algorithm for sequencing with release and delivery
times on identical processors. Journal of Algorithms 48, p.273-293
(2003)

[10] Vakhania N. “Single-Machine Scheduling with Release Times and
Tails”. Annals of Operations Research, 129, p.253-271 (2004)

[11] N. Vakhania, J.A. Hernandez, C. Zavala. A single-machine scheduling
problem to minimize the maximum lateness is tightly related with a
variation of bin packing problem with different bin capacities. Ciencia
e Tecnica Vitivinicola Journal Vol. 30 (2015)

108 Int'l Conf. Foundations of Computer Science | FCS'16 |

ISBN: 1-60132-434-0, CSREA Press ©

SESSION

LATE BREAKING AND POSITION PAPERS

Chair(s)

TBA

Int'l Conf. Foundations of Computer Science | FCS'16 | 109

ISBN: 1-60132-434-0, CSREA Press ©

110 Int'l Conf. Foundations of Computer Science | FCS'16 |

ISBN: 1-60132-434-0, CSREA Press ©

Algorithms, Integer Sequences, and Closed Formulas in the Enumeration of
Integer Matrices

Shanzhen Gao, Keh-Hsun Chen
Department of Computer Science, College of Computing and Informatics

University of North Carolina at Charlotte, Charlotte, NC 28223, USA
Email: sgao3@uncc.edu, chen@uncc.edu

Abstract—We will discuss the following three problems: (1) the
number of m×n matrices over {0, 1} with each row summing to
s and each column summing to t; (2) the number of nonnegative
integer matrices of size m×n with each row sum equal to s and
each column sum equal to t; (3) the number of (0, 1) - matrices
of size n × n such that each row has exactly s 1’s and each
column has exactly s 1’s and with the restriction that no 1 stands
on the main diagonal. We will present many conjectures and
three algorithms. Integer sequences which arise from many areas
are widely used in many disciplines. We can get many integer
sequences based on our conjectures which could be verified by
our computation.

Keywords: Algorithm, integer matrix, closed formula, in-
teger sequence

I. INTRODUCTION

Let m,n, s, t be positive integers such that sm = tn. Let
f(m,n, s, t) be the number of m × n Matrices over {0, 1}
with each row summing to s and each column summing to
t. Equivalently, f(m,n, s, t) is the number of semiregular
bipartite graphs with m vertices of degree s and n vertices of
degree t. This problem has been the subject of considerable
study, and it is unlikely that a simple formula exists. The
asymptotic value of f(m,n, s, t) has been much studied but
the results are incomplete. Historically, the first significant
result was that of Read, who obtained the asymptotic behavior
for s = t = 3 [1]. McKay and Wang (2003) solved the sparse
case λ(1 − λ) = o((mn)−1/2) using combinatorial methods
[3] . Canfield and McKay used analytic methods to solve the
problem for two additional ranges. In one range the matrix is
relatively square and the density is not too close to 0 or 1. In
the other range, the matrix is far from square and the density
is arbitrary. Interestingly, the asymptotic value of f(m,n, s, t)
can be expressed by the same formula in all cases where it
is known. Based on computation of the exact values for all
m; n<30, they got the conjecture that the same formula holds
whenever m+n→∞ regardless of the density (they defined
the density λ = s/m = t/m).

We are concerned in this paper with the closed formulas
of f(m,n, s, t). The number in question can be related in
various ways to the representation theory of the symmetric
group or of the complex general linear group, but this does
not make their computation any easier. The case s = t = 2 is
solved by Anand, Dumir, and Gupta [4]. A formula for the case
s = t = 3 appears in L. Comtet’s Advanced Combinatorics
[5], without proof.

Let t(m,n, s, t) be the number of nonnegative integer
matrices of size m × n with each row sum equal to s and
each column sum equal to t (sm = nt). The enumeration of
nonnegative integer matrices has been the subject of consid-
erable study, The determination of t(m,n, s, t) is an unsolved
problem and it is unlikely that a simple formula exists except
for very small s, t. Equivalently, t(m,n, s, t) counts 2−way
contingency tables of order m×n such that the row marginal
sums are all s and the column marginal sums are all t. Another
equivalent description is that t(m,n, s, t) is the number of
semiregular labelled bipartite multigraphs with m vertices of
degree s and n vertices of degree t. The matrices counted by
t(m,n, s, t) arise frequently in many areas of mathematics, for
example enumeration of permutations with respect to descents
and statistics. The last field in particular has an extensive
literature in which such matrices are studied as contingency
tables or frequency table.

An integer sequence is a sequence (i.e., an ordered list)
of integers. An integer sequence may be specified explicitly
by giving a formula for its nth term, or implicitly by giving
a relationship between its terms. For example, the sequence
0, 1, 1, 2, 3, 5, 8, 13, . . . (the Fibonacci sequence) is formed by
starting with 0 and 1 and then adding any two consecutive
terms to obtain the next one: an implicit description. The
sequence 0, 3, 8, 15, . . . is formed according to the formula
n2−1 for the nth term: an explicit definition. Alternatively, an
integer sequence may be defined by a property which members
of the sequence possess and other integers do not possess
[6], [7]. An integer sequence is a computable sequence, if
there exists an algorithm which given n, calculates an, for
all n > 0. An integer sequence is a definable sequence,
if there exists some statement P (x) which is true for that
integer sequence x and false for all other integer sequences.
The set of computable integer sequences and definable integer
sequences are both countable, with the computable sequences
a proper subset of the definable sequences (in other words,
some sequences are definable but not computable). The set of
all integer sequences is uncountable (with cardinality equal to
that of the continuum); thus, almost all integer sequences are
incomputable and cannot be defined.[6]

Why does one integer follow another? What is the pat-
tern? What rule or formula dictates the position of each
integer? Most people think deeply about sequences only
when confronted by one on a test, but for mathematicians,
computer scientists, and others, sequences are part and parcel

Int'l Conf. Foundations of Computer Science | FCS'16 | 111

ISBN: 1-60132-434-0, CSREA Press ©

of their work. Today sequences are especially important in
number theory, combinatorics, and discrete mathematics, but
sequences have been known and wondered about even before
the time of Pythagoras, who discovered an infinite sequence
of integers such that a2 + b2 = c2. In medieval times,
bell ringers relied on sequences to cycle through all possible
combinations of bells. But no one in the intervening millennia
had thought to compile sequences into a collection that could
be referenced by others. Neil Sloane started collecting integer
sequences as a graduate student in 1965 to support his work
in combinatorics. The database was at first stored on punch
cards. He published selections from the database in book
form twice: [12] containing 2372 sequences in lexicographic
order and assigned numbers from 1 to 2372. [13] containing
5488 sequences. These books were well received and, espe-
cially after the second publication, mathematicians supplied
Sloane with a steady flow of new sequences. The collection
became unmanageable in book form, and when the database
had reached 16, 000 entries Sloane decided to go online—
first as an e-mail service (August 1994), and soon after as
a web site (1996). As a spin-off from the database work,
Sloane founded the Journal of Integer Sequences in 1998. The
database continues to grow at a rate of some 10, 000 entries
a year. Sloane has personally managed ’his’ sequences for
almost 40 years, but starting in 2002, a board of associate
editors and volunteers has helped maintain the database. The
On-Line Encyclopedia of Integer Sequences (OEIS), also cited
simply as Sloane’s, is an online database of integer sequences,
created and maintained by N. J. A. Sloane, a researcher at
AT&T Labs. OEIS records information on integer sequences
of interest to both professional mathematicians and amateurs,
and is widely cited. As of 25 September 2015 it contains
over 260, 000 sequences, making it the largest database of
its kind. And 15, 000 new entries are added each year. Each
entry contains the leading terms of the sequence, keywords,
mathematical motivations, literature links, and more, including
the option to generate a graph or play a musical representation
of the sequence. The database is searchable by keyword and
by subsequence. [9], [10], [11], [12], [13]

Sequences can come from anywhere. Computational fields
not surprisingly generate a lot of sequences. Computer science,
to a large extent based on discrete math, also makes use
of sequences (number of steps to sort n things). While it
makes sense that sequences appear in mathematics, they are
all around. The Fibonacci sequence in particular appears in
nature: the growth of branches, pinecone rows, sandollar, and
the number petals in many flowers all relate to the Fibonacci
sequence. The sequence appears in art and literature too.
Sloane originally started the sequence collection as an aid
to research so that anyone coming upon a sequence in their
calculations could immediately get additional terms and maybe
a formula. This use of the OEIS is more important than ever to-
day, since many computer-related tasks can be stated in terms
of a sequence: minimizing the number of steps needed to count
a set of items, ranking a list of unsorted numbers from lowest
to highest, even characterizing the behavior of a program or

algorithm. As more applications today depend on ideas and
concepts taken from pure mathematics—cryptography, the use
of graphs to study social networks, the ranking of search
engine listings—sequences increasingly play a more direct role
in solving real-world problems. [14]

Sequence data is pervasive in our lives, and understanding
sequence data is of grand importance. Much research has
been conducted on sequence data mining in the last dozen
years. Hundreds if not thousands of research papers have
been published in forums of various disciplines, such as
data mining, database systems, information retrieval, biology
and bioinformatics, industrial engineering, etc. The area of
sequence data mining has developed rapidly, producing a
diversified array of concepts, techniques and algorithmic tools.
[15]

There are many research topics on integer sequence. For
example: (1) How to find a good formula for a sequence with
a bad formula or no formula at all? Sometimes it is not very
hard to find the first several terms of a sequence by hand
computation. It is might be very tough to find a formula. (2)
How to find a good algorithm to compute more times for a
sequence if you could not get a formula? People have been
working on some sequences for more than one hundred years.
However, they still could not get the first one hundred terms,
or even not the first thirty terms. (3) The applications and data
structure of some sequences. (4) Find some new sequences.

You can obtain many integer sequence from this paper.

II. CONJECTURES ON ZERO-ONE MATRICES

“Let f(n) be the number of n × n matrices M of zeros
and ones such that every row and column of M has exactly
three ones, f(0) = 1, f(1) = f(2) = 0, f(3) = 1. The most
explicit formula known at present for f(n) is

f(n) = 6−n
∑ (−1)βn!2(β + 3γ)!2α3β

α!β!γ!26γ
((ii))

where the sum is over all (n + 2)(n + 1)/2 solutions to
α+β+γ = n in nonnegative integers. This formula gives very
little insight into the behavior of f(n), but it does allow one to
compute f(n) faster than if only the combinatorial definition
of f(n) were used. Hence with some reluctance we accept (ii)
as a “determination” of f(n). Of course if someone were later
to prove f(n) = (n− 1)(n− 2)/2 (rather unlikely), then our
enthusiasm for (ii) would be considerably diminished.” [16]

The enumeration of Integer-matrices has been the subject
of considerable study. It has been the subject of considerable
study, and it is unlikely that a simple formula exists. The
number in question can be related in various ways to the rep-
resentation theory of the symmetric group or of the complex
general linear group, but this does not make their computation
any easier.

Let f(m,n, s, t) be the number of (0, 1) - matrices of
size m × n such that each row has exactly s ones and each
column has exactly t ones (sm = nt). The determination of
f(m,n, s, t) is an unsolved problem, except for very small s,
t.

112 Int'l Conf. Foundations of Computer Science | FCS'16 |

ISBN: 1-60132-434-0, CSREA Press ©

In some row, let xi1xi2 · · ·xikdenote the i1 − th column,
the i2 − th column, · · · , the ik − th column entries
are 1 in some row and other entries are all 0,where
i1, i2, · · · , ik ∈ {1, 2, · · · , n}.

Example: Let m = n = 4, s = t = 3 , then
x1x2x3|x1x2x4|x1x3x4|x2x3x4 denotes the matrix as
follows:

⎛
⎜⎜⎝
1 1 1 0
1 1 0 1
1 0 1 1
0 1 1 1

⎞
⎟⎟⎠

Obviously, f(m,n, s, t) equals the coefficient of xt1x
t
2 · · ·xtn

in the symmetric polynomial(∑
i1<i2<···<is

xi1xi2 · · ·xis
)m

where i1, i2, · · · , is ∈ {1, 2, · · · , n}, and the sum is over all
the possible of s− combinations from {1, 2, · · · , n} with i1 <
i2 < · · · < is. It is easy to get,

f(m,n, s, t) = f(n,m, t, s), (sm = tn)

f(m,n, s, t) = f(n,m, n− s,m− t), (sm = tn)

f(m,n, 1, t) =
m!

(t!)n
(m = tn)

f(m,n, s, 1) =
n!

(s!)m
(sm = n)

Conjecture 1. f(n, n, 2, 2) = n!
2n

∑n
r0=0

(
n
r0

) (−1)n−r0 (2r0)!
2r0r0!

Conjecture 2. f(m,n, 3, 2) =
n!
2n

∑m
r0=0

(
m
r0

) (−1)m−r0 (2r0+m)!
(n−m+r0)!6r0

Conjecture 3. f(m,n, 4, 2) = n!
2n

∑m
r0=0

∑m−r0
r1=0

m!
r0!r1!(m−r0−r1)!

(−1)2(m−r0)−r1
(n−2m+2r0+r1)!

(4r0+2r1)!

24r02(m−r0)

Conjecture 4. f(m,n, 5, 2) = n!
2n

∑m
r0=0

∑m−r0
r1=0

m!
r0!r1!(m−r0−r1)!

(−1)r1+2(m−r0−r1)(4r0+2r1+m)!
(n+r1−2m+2r0)!120r06r12(m−r0−r1)

Conjecture 5. f(m,n, 6, 2) = n!
2n

∑m
r0=0

∑m−r0
r1=0

∑m−r0−r1
r2=0

m!
r0!r1!r2!(m−r0−r1−r2)!

(−1)3m−3r0−2r1−r2
(n+2r1+r2−3m+3r0)!

III. ALGORITHM ONE

The algorithm used to verify the equations presented counts
all the possible matrices, but does not construct them.It is best
described with an example. Suppose we wanted to compute
f(12, 9, 3, 4). We first create a state vector of length 9, filled
with 4s:

#(4 4 4 4 4 4 4 4 4)
Each state vector can be thought of as a container to

inform us how many ones need to go into each column. The
’#’ symbol reminds us that we must count the number of

possibilities that we can put the indicated number of ones into
each column. We assign where the ones will go in the first
row. Clearly, 3 ones need to go in the first row somewhere,
and there are (9 take 3) = 84 possibilities for this placement.
Hence, we simply assign them to go in the leftmost positions.
Then, our state vector drops to #(3 3 3 4 4 4 4 4 4) noting that
however many possibilities there are to fill in the remaining
11 rows, we multiply this by (9 take 3). Thus, we have

#(4 4 4 4 4 4 4 4 4) = 84 * #(3 3 3 4 4 4 4 4 4).
Eventually, we would like to drop the state vector to #(0 0

0 0 0 0 0 0 0) after (exactly) all 12 rows have been assigned,
reflecting a properly filled-in matrix. Now, for the second row,
there are again 3 ones to place. Some of them can go in
columns where ones are above, and some of them can go in
columns where ones haven’t been placed yet. The possibilities
are as follows: 3/0, 2/1, 1/2, and 0/3, where x/y denotes putting
x ones in the "left part" (where ones have been placed before)
and y ones in the "right part" (where ones haven’t been placed
yet). We calculate each in turn.

For 3/0, there is only (3 take 3) = 1 way to place all 3 ones
in the left part, and (6 take 0) = 1 way to place 0 ones in the
right part. Hence, in this case we drop our state vector to #(2
2 2 4 4 4 4 4 4), since 2 ones will need to be placed in the
leftmost three columns during subsequent row assignments,
and we note that we’ll multiply the ways to fill in a matrix
this way by (3 take 3) * (6 take 0) = 1 * 1.

We also consider 2/1. There are (3 take 2) = 3 ways to place
2 ones in the left part, and (6 take 1) = 1 way to place a one
in the right part. Now, as before, we will elect to place these
ones in the leftmost area of each part.

Since 2 ones will be placed in the leftmost area of the left
part, and 1 one will be placed in the leftmost area of the right
part, our state vector in this case drops to

#(2 2 3 3 4 4 4 4 4).
We also consider 1/2. There are (3 take 1) = 3 ways to place

1 one in the left part, and (6 take 2) = 15 ways to place a one
in the right part. Hence, our state vector in this case drops to

#(2 3 3 3 3 4 4 4 4).
We also consider 0/3. There is (3 take 0) = 1 way to place

0 ones in the left part, and (6 take 3) = 20 ways to place a one
in the right part. Hence, our state vector in this case drops to

#(3 3 3 3 3 3 4 4 4).
Thus, in total, we have
#(3 3 3 4 4 4 4 4 4) = (1 * 1 * #(2 2 2 4 4 4 4 4 4)) + (3

* 1 * #(2 2 3 3 4 4 4 4 4)) + (3 * 15 * #(2 3 3 3 3 4 4 4 4))
+ (1 * 20 * #(3 3 3 3 3 3 4 4 4)).

We would then proceed to work on each sub-state vector in
turn. One final example: to compute #(2 2 3 3 4 4 4 4 4), we
see that we have three parts: the left part (consisting of two
columns) where 2 ones have already been placed, the middle
part (consisting of two columns) where 1 one has already been
placed, and the right part (consisting of five columns) where
0 ones have been placed. To assign our third row, we (again)
need to place 3 ones, so we consider all the possibilities.

We see that 3/0/0 is not possible since there are only two
columns in the left part. Similarly, 0/3/0 is not possible. We

Int'l Conf. Foundations of Computer Science | FCS'16 | 113

ISBN: 1-60132-434-0, CSREA Press ©

then compute the remaining possibilities: 2/1/0, 2/0/1, 1/2/0,
1/1/1, 1/0/2, and 0/0/3, and continue on.

After 11 of the 12 row assignments, we will either get state
vectors like #(0 0 0 0 0 0 1 1 1) in which case we can terminate
with a 1, or vectors like

#(0 0 0 0 0 0 0 0 1) or #(0 0 0 0 0 0 0 1 2)
in which case we can terminate with a 0, since it is

impossible to fill in 3 ones in the last row in the prescribed
manners.

This is the backbone of the algorithm. We remark that
it is very possible to take different paths to get the same
state vector later on, so we only compute its count once,
storing it for later use if it shows up again. In its current
implementation, the calculation engine is completely separated
from the storage object, so improvements to reading/writing
from/to the storage object can be explored independently.
We’ve found that in Scheme, a tree with ten branches at each
node seems to optimize reading and writing, once the state
vector is hashed (uniquely) into a whole number. Other node
widths are certainly possible.

IV. ALGORITHM TWO

Conjecture 6. The number of (0, 1) - matrices of
size n × n such that each row has exactly s 1’s
and each column has exactly s 1’s and with the re-
striction that no 1 stands on the main diagonal is∑n

k=0

∑k
s=0

∑n−k
j=0

(−1)k+j−sn!(n−k)!(2n−k−2j−s)!
s!(k−s)!((n−k−j)!)2j!22n−2k−j .

Enclosed is a walkthrough for the Lefty algorithm which
computes the number of nxn 0-1 matrices with t ones in each
row and column, but none on the main diagonal.

The algorithm used to verify the equations presented counts
all the possible matrices, but does not construct them.

It is called "Lefty", it is reasonably simple, and is best
described with an example.

Suppose we wanted to compute the number of 6x6 0-1
matrices with 2 ones in each row and column, but no ones
on the main diagonal. We first create a state vector of length
6, filled with 2s:

#(2 2 2 2 2 2)
This state vector symbolizes the number of ones we must

yet place in each column. We accompany it with an integer
which we call the "puck", which is initialized to 1. This puck
will increase by one each time we perform a ones placement
in a row of the matrix (a "round"), and we will think of the
puck as "covering up" the column that we won’t be able to
place ones in for that round.

Since we are starting with the first row (and hence the first
round), we place two ones in any column, but since the puck is
1, we cannot place ones in the first column. This corresponds
to the forced zero that we must place in the first column, since
the 1,1 entry is part of the matrix’s main diagonal.

The algorithm will iterate over all possible choices, but to
show each round, we shall make a choice, say the 2nd and

6th columns. We then drop the state vector by subtracting 1
from the 2nd and 6th values, and advance the puck:

#(2 1 2 2 2 1); 2
For the second round, the puck is 2, so we cannot place a

one in that column. We choose to place ones in the 4th and
6th columns instead and advance the puck:

#(2 1 2 1 2 0); 3
Now at this point, we can place two ones anywhere but the

3rd and 6th columns. At this stage the algorithm treats the
possibilities differently: We can place some ones before the
puck (in the column indexes less than the puck value), and/or
some ones after the puck (in the column indexes greater than
the puck value). Before the puck, we can place a one where
there is a 1, or where there is a 2; after the puck, we can place
a one in the 4th or 5th columns. Suppose we place ones in the
4th and 5th columns. We drop the state vector and advance
the puck once more:

#(2 1 2 0 1 0); 4
For the 4th round, we once again notice we can place some

ones before the puck, and/or some ones after.
Before the puck, we can place:
(a) two ones in columns of value 2 (1 choice)
(b) one one in the column of value 2 (2 choices)
(c) one one in the column of value 1 (1 choice)
(d) one one in a column of value 2 and one one in a column

of value 1 (2 choices).
After we choose one of the options (a)-(d), we must multiply

the listed number of choices by one for each way to place any
remaining ones to the right of the puck.

So, for option (a), there is only one way to place the ones.
For option (b), there are two possible ways for each possible

placement of the remaining one to the right of the puck. Since
there is only one nonzero value remaining to the right of the
puck, there are two ways total.

For option (c), there is one possible way for each possible
placement of the remaining one to the right of the puck. Again,
since there is only one nonzero value remaining, there is one
way total.

For option (d), there are two possible ways to place the
ones.

We choose option (a). We drop the state vector and advance
the puck:

#(1 1 1 0 1 0); 5
Since the puck is "covering" the 1 in the 5th column, we can

only place ones before the puck. There are (3 take 2) ways to
place two ones in the three columns of value 1, so we multiply
3 by the number of ways to get remaining possibilities. After
choosing the 1st and 3rd columns (though it doesn’t matter
since we’re left of the puck; any two of the three will do), we
drop the state vector and advance the puck one final time:

#(0 1 0 0 1 0); 6
There is only one way to place the ones in this situation, so

we terminate with a count of 1. But we must take into account
all the multiplications along the way: 1*1*1*1*3*1 = 3. So,
this string of rounds counts the following three matrices:

0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1

114 Int'l Conf. Foundations of Computer Science | FCS'16 |

ISBN: 1-60132-434-0, CSREA Press ©

0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1
0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0
1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0
1 1 0 0 0 0 1 0 1 0 0 0 0 1 1 0 0 0 <– only variation
0 0 1 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0
Another way of thinking of the varying row is to start with

the first matrix, focus on the lower-left 2x3 submatrix, and
note how many ways there were to permute the columns of
that submatrix. Since there are only 3 such ways, we get 3
matrices.

We cannot optimize by permuting submatrices that contain
an entry of the main diagonal, since that is a ’fixed’ position
that must contain a zero.

We note that, in the actual implementation, after each round,
the state vector values to the left of the puck are sorted (but the
values to the right of the puck maintain their exact positions)
to make counting possibilities easier. Hence, we would have
in the third and fourth rounds, respectively,

#(1 2 2 1 2 0); 3
#(1 2 2 0 1 0); 4
In a larger example (13x13 matrix with 3 ones in each

row/column), we might come across the following state:
#(0 1 1 1 2 2 3 3 0 1 0 0 1); 9
To place three ones in this case, the algorithm would branch

depending on how many ones it wishes to place to the right
of the puck, make that choice, and then multiply by the
possibilities for placing the remaining ones to the left of the
puck. Hence,

Case 1: Right of the puck gets 3 ones.
Not possible since there are only two nonzero columns

there.
Case 2: Right of the puck gets 2 ones.
Only one way to do this, but there are three different ways

to place the third one to the left of the puck:
(a) under a column with a 1 value (3 ways), with resultant

state #(0 0 1 1 2 2 3 3 0 0 0 0 0); 10
(b) under a column with a 2 value (2 ways), with resultant

state #(0 1 1 1 1 2 3 3 0 0 0 0 0); 10
(c) under a column with a 3 value (2 ways), with resultant

state #(0 1 1 1 2 2 2 3 0 0 0 0 0); 10.
Case 3: Right of the puck gets 1 one.
There are two ways to do this, so we have to branch

depending on if it’s going in the 10th column or 13th column.
Subcase 1: 10th column.
To place the other two ones to the left of the puck, we have

choices:
(d) both ones under a 1-value ((3 take 2) ways),
with resultant state #(0 0 0 1 2 2 3 3 0 0 0 0 1); 10
(e) one one under 1-value, one under 2-value ((3 take 1)*(2

take 1) ways),
with resultant state #(0 0 1 1 1 2 3 3 0 0 0 0 1); 10
(f) one one under 1-value, one under 3-value ((3 take 1)*(2

take 1) ways),
with resultant state #(0 0 1 1 2 2 2 3 0 0 0 0 1); 10
(g) both ones under 2-value ((2 take 2) ways),
with resultant state #(0 1 1 1 1 1 3 3 0 0 0 0 1); 10

(h) one one under 2-value, one under 3-value ((2 take 1)*(2
take 1) ways),

with resultant state #(0 1 1 1 1 2 2 3 0 0 0 0 1); 10
(i) both ones under 3-value ((2 take 2) ways),
with resultant state #(0 1 1 1 2 2 2 2 0 0 0 0 1); 10.
Subcase 2: 13th column.
The options (j)-(o) are the same as (d)-(i) in the above

subcase, but the resultant states have #(... 0 1 0 0 0) at the
end instead.

Case 4: Right of the puck gets 0 ones.
So all three ones go to the left of the puck. We have choices:
(p) all ones under 1-value ((3 take 3) ways),
with resultant state #(0 0 0 0 2 2 3 3 0 1 0 0 1); 10
(q) two ones under 1-value, one under 2-value ((3 take 2)*(2

take 1) ways),
with resultant state #(0 0 0 1 1 2 3 3 0 1 0 0 1); 10
(r) two ones under 1-value, one under 3-value ((3 take 2)*(2

take 1) ways),
with resultant state #(0 0 0 1 2 2 2 3 0 1 0 0 1); 10
(s) two ones under 2-value, one under 3-value ((2 take 2)*(2

take 1) ways),
with resultant state #(0 1 1 1 1 1 2 3 0 1 0 0 1); 10
(t) one one under 2-value, two under 3-value ((2 take 1)*(2

take 2) ways),
with resultant state #(0 1 1 1 1 2 2 2 0 1 0 0 1); 10
In all options (a)-(t), the state would be resorted: since the

puck moved from the 9th column to the 10th column, it will
reveal a 0 in the 9th column, which will then get moved to
the front of the state vector.

In general, Lefty will iterate over all possible choices
(optimizing for permutations below the main diagonal by
multiplying by the indicated cofactors), add up the values,
and produce the result. To provide a further speedup, a storage
object is used to store each state vector for which a count has
been acquired, so that if that state vector is seen again, the
count can be produced from memory instead of recalculated.
This speedup is necessary, and without it the algorithm will
take too long.

V. ALGORITHM THREE

Let t(m,n, s, t) be the number of nonnegative integer
matrices of size m × n with each row sum equal to s and
each column sum equal to t (sm = nt).

Conjecture 7. t(n, n, 2, 2) = 4−n
∑n

i=0
2i(n!)2(2n−2i)!
i!((n−i)!)2

Conjecture 8. t(n,m, 3, 2) = 2−m
∑n

i=0
m!n!(2m−2i)!

i!(m−i)!(n−i)!6n−i

Conjecture 9. t(m,n, 4, 2) =

24−m
∑

α+β+γ=m
3α6γm!n!(4β+2γ)!
α!β!γ!(2β+γ)!22β+γ

where the sum is
over all

(
m+2
2

)
solutions of α + β + γ = m in nonnegative

integers.

Conjecture 10. t(m,n, 5, 2) =

120−m
∑

α+β+γ=m
10β15γm!n!(5α+3β+γ)!
α!β!γ!(n−β−2γ)!2n−β−2γ ,

Algorithm Description For t(m, n, s, t)

Int'l Conf. Foundations of Computer Science | FCS'16 | 115

ISBN: 1-60132-434-0, CSREA Press ©

The algorithm used to verify the equations presented counts
all possible matrices, but does not construct them.

It is a bit involved, so it is best described with an example.
Suppose we wanted to compute the number of 4x6 matrices

over nonnegative integers with row sum 12 and column 8. We
first create a list of all nonincreasing partitions of 12: 12, 11
1, 10 2, 10 1 1, 9 3, etc., and store this in memory. We make
sure that each partition stored is not of length greater than
the number of columns of the matrix. We then create a state
vector of length 6 filled with 8s:

#(8 8 8 8 8 8)
This state vector symbolizes the sum of integers we must

place in each column, and each time the state changes, it is
sorted in nondecreasing order.

An additional vector, called the cap vector, is created
when we deal with a new state. It records the length of the
contiguous blocks of numbers found in the state. Here, it is

#(6).
Next, we iterate over each of the (valid) partitions of 12

that we could possibly use for the choice of the first row of
the matrix. Here, our first partition is 8 4. We then create a
partition block (pb) vector, which is exactly a "cap vector" of
the partition, instead of the state. Here, it is

#(1 1).
Finally, we create all the assignment vectors that are valid

for this partition and this cap vector. An assignment vector
dictates where the indicated element of the partition will be
placed in the row. Assignment vectors always have the same
length as the partition we are planning to use. The entries of
the assignment vector refer to the (zero-based) indices of the
cap vector. Since the cap vector in this case only has one index
(namely, 0) and both 8 and 4 can be elements in the matrix
row, we assign 8 and 4 to the 0th index:

#(0 0)
In other words, both the 8 and the 4 will appear in block

0 of the state. Now, there are (6 take 1)*(5 take 1) ways of
placing the 8 and 4, so we note that when we drop the state
vector. We pretend that the first row of the matrix will be (8
4 0 0 0 0), and so, dropping the state vector, the remaining
three rows must sum to

#(0 4 8 8 8 8)
and we record that the number of ways of obtaining a matrix

of state #(8 8 8 8 8 8) is 30 times the number of ways we can
obtain a matrix of state #(0 4 8 8 8 8).

Of course, we must add to our count the other ways to
assign the 8 and 4. Since there are no other ways, no more
assignment vectors can be constructed. We then add to our
count the ways in which we can use the partition 8 3 1 (with
all applicable assignment vectors), and then 8 2 2 (with all
applicable assignment vectors), and so forth.

To get a better feel for how the assignment vectors are
created, let’s say that, in the middle of our counting, we
achieve the state

#(1 1 4 6 6 6)
with two rows left to fill. Our cap vector is then
#(2 1 3)

and suppose we are considering the partition 4 4 3 1. Its
pb is #(2 1 1). Since the cap vector has length 3, the indices
for it are 0, 1, and 2, so the entries of each assignment vector
can be comprised only of 0, 1, and/or 2.

To create the first assignment vector, we note that the first
element of the partition, 4, cannot be placed in block 0 of
the state (the block of two 1s), since 4 > 1. A single 4 can
be placed in block 1 of the state (the block consisting of the
single 4), so the first 4 in the partition can be assigned to block
1:

#(1 ? ? ?)
But block 1 is only length 1 (as noted by the cap vector’s

entry of 1 at index 1), so no more 4s can go in that block.
The second 4 in the partition can also be placed in block 2
of the state (the block of three 6s), since 4 <= 6. Thus, our
assignment vector changes to

#(1 2 ? ?).
Next in the partition, we have a 3, which is also greater

than 1, so it too cannot go into block 0. Block 1 has already
been taken by the 4. Hence the only remaining place for it is
in block 2:

#(1 2 2 ?)
Finally, the last element of the partition is a 1, which can

go anywhere in the state. We begin by assigning it to block
0, giving the resulting assignment vector as

#(1 2 2 0).
How many ways could these assignments be carried out?

The first 4 has only one way. The second 4 and the 3 are
both in block 2, but they are different numbers, so they can
be inserted in (3 take 1)*(2 take 1) ways. Finally, the 1 has (2
take 1) ways to be inserted into block 0. Hence we multiply
to get 12 ways for this assignment vector, and dropping the
state, we get #(0 1 0 2 3 6). Sorting it, it becomes #(0 0 1 2
3 6), which we will process after we deal with the remaining
assignment vectors possible for 4 4 3 1.

To get the next assignment vector, we note that we can keep
everything the same, but the 1 in the partition can be put in
block 2. This gives

#(1 2 2 2)
and to compute the number of ways, we have 1*(3 take

1)*(2 take 1)*(1 take 1) = 6.
To get the next assignment vector, we note we’ve exhausted

all possibilities for #(1 2 ? ?), so we then find the ’next’ way to
assign the two 4s in the partition. The only remaining option
is to put them both in block 2, so we start with

#(2 2 ? ?).
Now, the 3 can go in block 1 and the 1 can go in block 0,

giving
#(2 2 1 0)
and total number of ways (3 take 2)*(1 take 1)*(2 take 1)

= 6.
Now, we think of a "block" of the assignment vector as the

entries that correspond to an equal number in the partition;
here, the first two entries correspond to the partition entry 4,
so they form a block. The pb tells us the length of each block
of the assignment vector. For example, recall that here, pb

116 Int'l Conf. Foundations of Computer Science | FCS'16 |

ISBN: 1-60132-434-0, CSREA Press ©

is #(2 1 1), so each assignment vector corresponding to this
partition has three blocks, the first of which has length two, and
the remaining two have length one. We construct assignment
vectors that are nondecreasing in each block, though we can
have a decrease when we move to a new block from an old
one. The remaining three assignment vectors and the number
of ways to make the assignment are then

#(2 2 1 2) with ways (3 take 2)*(1 take 1)*(1 take 1) = 6
#(2 2 2 0) with ways (3 take 2)*(1 take 1)*(2 take 1) = 12
#(2 2 2 1) with ways (3 take 2)*(1 take 1)*(1 take 1) = 6.
Let’s consider a larger example. Suppose the state was
#(0 1 1 1 1 2 2 2 3 3 3 3 4 5 5)
with row sum 18. This state will produce a cap vector of #(4

3 4 1 2) (since zeroes in the state are ignored). Let’s suppose
we were considering the partition

3 3 3 2 2 2 1 1 1,
which gives a pb of #(3 3 3). There are 433 total assignment

vectors for this partition. The first one we could construct is
#(2 2 2 1 1 1 0 0 0) with ways (4 take 3)*(3 take 3)*(4

take 3) = 16,
an intermediate one we could construct is
#(2 3 4 1 1 2 0 1 2) with ways (4 take 1)*(1 take 1)*(2

take 1) for placing the three 3s
(3 take 2)(3 take 1) for placing the three

2s
(4 take 1)(1 take 1)*(2 take 1) for

placing the three 1s (total 576),
and the last one we could construct is
#(3 4 4 2 2 2 1 1 2) with ways (1 take 1)*(2 take 2) for

placing the three 3s
*(4 take 3) for placing the three 2s
(3 take 2)(1 take 1) for placing the

three 1s (total 12).
Notice that each block of each assignment vector has its

entries in nondecreasing order, but often there is a decrease
when we move from block to block. Since the state vectors
are nondecreasing, this is to be expected.

In general, for each state vector that is achieved, this
algorithm will iterate over all assignment vectors for each valid
partition, multiplying cofactors and adding the results. When
fitting the last row, though, the calculation is surprisingly easy:
continuing the example we had above, if we examine the state
#(0 0 1 2 3 6), we see that there is only one possible partition
of 12 that fits it (namely 6 3 2 1) and there is only one way
to fit it in. Hence, there is only one way to achieve this state.
The situation is the same for every state with one row left to
be filled.

For further speedup, a fast storage object must be used,
so that if a given state is seen again, we can recall from
memory how many partially-filled matrices can produce it.
This speedup is necessary, for without it, the algorithm will
take too long. Other approaches are certainly possible.

REFERENCES

[1] R.C. Read, Some enumeration problems in graph theory, Doctoral
Thesis, University of London, (1958).

[2] B. D. McKay and X. Wang, Asymptotic enumeration of 0-1 matrices
with equal row sums and equal column sums, Linear Alg. Appl., 373
(2003) 273-288.

[3] E. Rodney Canfield and Brendan D. McKay, Asymptotic enumeration
of dense 0− 1 matrices with equal row sums and equal column sums.
Electron. J. Combin. 12 (2005), Research Paper 29, 31 pp.

[4] Anand, Dumir, and Gupta in Duke Math J., 33 (1966) 757-769.
[5] L. Comtet, Advanced Combinatorics (page 236),Kluwer Academic Pub-

lishers,1974(page 236).
[6] http://en.wikipedia.org/wiki/Integer_sequence
[7] The On-Line Encyclopedia of Integer Sequences, http://oeis.org/
[8] http://en.wikipedia.org/wiki/On-Line_Encyclopedia_of_Integer_Sequences
[9] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences,

Proceedings Fifteenth Conference on Fibonacci Numbers, 2012, to
appear.

[10] N. J. A. Sloane, My Favorite Integer Sequences, arXiv:math/0207175v1
[math.CO].

[11] D. Applegate, O. E. Pol, N. J. A. Sloane, The Toothpick Sequence
and Other Sequences from Cellular Automata, Congress. Numer., 206
(2010), 157-191.

[12] N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press,
NY, 1973.

[13] N. J. A. Sloane and S. Plouffe, The Encyclopedia of Integer Sequences,
Academic Press, 1995.

[14] AT&T Labs Research, The Achievement of The Online Encylopedia of
Integer Sequences, March 6, 2012.

[15] G. Dong, J.Pei, Sequence Data Mining, Series: Advances in Database
Systems, Springer, 2007.

[16] R. P. Stanely, Enumerative Combinatorics, Volumes 1, Cambridge Uni-
versity Press (first edition 1986, second edition 2011).

Int'l Conf. Foundations of Computer Science | FCS'16 | 117

ISBN: 1-60132-434-0, CSREA Press ©

 Concerns related to Sustainable Transportation Systems for Urban Freight

Regis Z. Stinson1, Peter Keiller2

1Department of Civil Engineering, 2Department of Computer Science
Howard University

Washington, DC 20059

FCS'16- POSITION PAPER

Abstract
The transportation sector has proven to be a
particularly difficult area to overcome for the
advancement of sustainable development. The economic
and demographic development of urban agglomerations
heavily depends on a reliable supply of goods and
material thus making urban freight transportation a
major concern for the sustainable development of cities.
A number of strategies ranging from implemented
policies to localized technology and modal shifts
options in different countries have been researched to
reduce the urban freight transport impacts. Modern
technology has also made it easier for everyone to
accurately measure and control the impacts of urban
freight transportation. This paper addresses some of the
concerns related to sustainable transport systems for
urban freight.
Keywords: Sustainable transport system, Freight
transportation

1 Introduction
For the past few years, there has been a worldwide
concern to set up sustainable development strategies in
order to achieve a continuous improvement in quality of
life. Since the 1987 Brundtland Commission report
(Oxford University Press 1987) brought global attention
to the concept of sustainable development, scholars and
policy professionals have worked to apply its principles
in the urban and metropolitan context. However, not
every aspect of a city’s function has been studied in
depth. According to Hicks [1], “any urban area depends
for its existence on a massive flow of commodities into,
out of, and within its boundaries. Yet the transport of
goods remains a forgotten aspect of urban transportation
study”. The transportation sector has proven to be
particularly difficult for the advancement of sustainable
development.
The UN-HABITAT report [2], states that
“transportation alone is responsible for approximately
23 percent of total energy related greenhouse (GHG)
emissions and 13 percent of global GHG emissions”.

Furthermore, transportation has a direct relationship
with the growth of urban areas, which continues to grow
at a rapid rate. Even the most efficient cities’
transportation systems are facing escalating
motorization and mobility demands. Travels throughout
all regions of the world have increased at the rate equal
to or greater than most countries economic growth and
development.
The economic and demographic development of urban
agglomerations depends heavily on a reliable supply of
goods and materials. Nevertheless, freight
transportation in urban centers contributes considerably
to the GHG emissions, noise and traffic congestion. In
fact, in most cities around the world, these negative
effects have reached levels at which the quality of urban
life has been significantly affected.

2 Background Review
Freight transportation is primarily a business to business
industry, and for firms established within city limits it
forms a vital link with suppliers and customers. Figure 1
presents the role of freight transportation in an effective
production and distribution system [14].

 Fig.1 Efficient Freight Transportation System
Freight is carried by vehicles that move on the same
streets and arteries used by private and public vehicles.
Urban freight traffic also contributes to the belief that
cities are not safe, which causes numerous citizens to
move out of the city limits. The already significant
volume of freight vehicles moving within city limits is

118 Int'l Conf. Foundations of Computer Science | FCS'16 |

ISBN: 1-60132-434-0, CSREA Press ©

growing, and is expected to continue to grow at a rate
faster than expected. Major contributing factors to this
phenomenon are the current production and distribution
practices based on low inventories and timely deliveries
as well as the explosive growth of business-to-customer
electronic business activities that generates significant
volumes of personal deliveries. [3]
Urban freight transportation is considered a grave
problem for the sustainable development of cities. Apart
from a comprehensive solution to the freight
transportation problem, a specific study on urban freight
transportation is needed.
Different types of freight flow in, out, and throughout
the urban areas including consumer goods, waste
products, construction materials, mail, etc. [4]. Changes
in modern society influence the continuing growth of
urban freight transportation such as movement towards
a post-industrial society, urbanization, aging,
individualization and also the increasing awareness of
sustainable development [5].
Concurrently, businesses are also moving towards the
just-in-time (JIT) operations which require timely
delivery with small shipments and less storage space.
The rapid growth of online shopping has also generated
significant increase in the volumes of home deliveries
as well as the level of freight traffic. According to
Dablanc [4], “urban freight represents ten to fifteen
percent of vehicle equivalent miles travelled in city
streets and two to five percent of the employed urban
workforce. Also, three to five percent of urban land is
devoted to freight transportation and logistics”.
Last kilometer freight distribution emphasizes the last
link of the supply chain that delivers goods to retailers
in urban areas. Traditionally, the retailer as the last party
in the supply chain is the one who finally sells the
product to the consumer. The key characteristics of last
kilometer freight distribution are: (1) a wide variety of
goods being delivered over relatively short distances in
a congested urban setting and small shipment size with
high frequency of delivery and (2) Freight carriers will
serve a number of locations in one delivery round with
less capacity utilization in comparison with long-
distance freight transport. Allen [8] states that the
degree of centralization in the supply of goods to retail
outlets also influences the level of freight transport.
The growth in freight is a major contributor to
congestion in urban areas and on intercity routes
producing congestion that affects the timeliness and
reliability of freight transportation. A long-distance
freight movement also plays a significant contributor to
local congestion which typically delays the freight from
getting to its destination and as such affects the local
economy.

The current growing urban freight demand increases
recurring congestion at “freight bottlenecks”- places
where freight and passenger service conflict with one
another, and where there is not enough room for local
pickup and delivery.
Congestion could also be caused by restrictions on
urban freight movement, such as the lack of space for
trucks to load and unload as well as limitations on
delivery and pick-up times. One estimate of urban
congestion attributes 947,000 hours of vehicle delay to
delivery trucks parked at curbside in dense urban areas
where office buildings and stores lack off-street loading
facilities. [6]
In addition, the environmental impacts caused by urban
freight are imposing a large toll on urban centers. Urban
freight pollutes more than long distance freight
transportation, due to the average age of the vehicles
and the high number of short trips and stops. Freight
transportation generates between 20% and 60%
(according to the pollutants considered) of local
transport-based pollution.

3 Addressing the Concerns
Usually, freight transportation is considered to be a
private industry on both the supplier and user sides and
it is driven by economic parameters. A large majority of
cities have not yet found adequate solutions to help
optimize the movement of goods in urban areas. It is
proposed that sustainable urban freight transportation
systems could play a major role in this optimization
process. According to Behrends [9], a sustainable urban
freight transportation system should fulfill four main
objectives. First, it should ensure the accessibility
offered by the transportation system of a city to all
categories of freight transportation. Second, it should
have reduced levels of air pollution, greenhouse gas
emissions, waste and noise and no negative impacts on
health of the citizens or nature. Third, it has to improve
the energy efficiency and cost-effectiveness of the
transportation of goods, taking into account the external
costs. Lastly, it has to contribute to the enhancement of
the attractiveness and quality of the urban environment,
by avoiding accidents, minimizing the use of land and
without compromising the mobility of citizens.
To achieve these objectives related to sustainable urban
freight transportation systems, different strategies are at
present being implemented including “demand
management, operations management, pricing policies,
vehicle technology improvements, clean fuels, and
integrated land use and transportation planning” [11].
Currently, there are several cities around the world that
have implemented programs and regulations to pursue

Int'l Conf. Foundations of Computer Science | FCS'16 | 119

ISBN: 1-60132-434-0, CSREA Press ©

sustainability in their urban freight transportation
system [12].
Most of these plans, such as reducing GHG emissions,
are not directly targeted in most government policies or
regulations. There is therefore still a chance to make a
difference by implementing these goals and generating
more benefits for the community.
Land use patterns, urban design, or the built form of a
city, can have an impact on reducing the GHG
emissions and traffic congestion from urban goods
movement by supporting the efficient delivery of goods.
It is clear that innovation and new technologies are
critical to achieve a more sustainable way to move
goods among cities. A survey by the Supply Chain and
Logistics Association of Canada and Industry Canada
[10] after examining green supply chain management
strategies for logistics and transportation services from a
Canadian perspective, concluded that for green
technology initiatives to be successful, environmental
benefits and a positive financial result for the service
provider must both be achieved at the same time. While
the study was not strictly focused on urban goods
movement, it still provides some background on the
drivers behind technology adoption and the types of
tools that are being used to achieve a sustainable urban
freight system.
There are numerous tests projects on the applicability of
alternative fuels namely hybrid-electric, complete
electric, compressed natural gas (CNG), biodiesel and
ethanol. In most cases, fleet based transportation
companies are usually in the best position to test these
alternative fuels by using some of their vehicles as test
cases and switching to others while still keeping the
vehicles operating on comparable routes. Fleets with a
large variety of vehicle types on set routes are good
candidates to be in the test and in the end benefit from
new fuels. A large percentage of their operating costs
are fuel, so reducing these costs is critical to their long-
term success. Both UPS and FedEx, two of the largest
courier companies, have several on-going tests in
various markets. Also, they are constantly testing
routing technology to improve their operations.
In the United States, California has started a statewide
effort to better the efficiency of freight transportation
and to transition their freight transportation system to
zero-emission technologies [13]. In 2015, Governor
Brown requested that the California Department of
Transportation, the California Energy Commission, the
California Air Resources Board, and the Governor’s
Office of Business and Economic Development take
part in this initiative. The goal of this action plan is to
come up with strategies for a sustainable freight
transportation freight system.

Technology is making it easier for everyone to
accurately measure and control the impacts of urban
freight transportation by constantly monitoring the
outcomes. Researching for innovative strategies and
technologies to reduce the impacts of urban freight
transport in both big and small companies is ongoing.
The field of Operation Research plays an important part
within most studies to determine the optimal selection
of routes to transport goods.

4 Minimizing Freight Impact
The implementation of city based programs promote
and direct research over successful best practices across
the world on reducing impacts of urban freight
transportation [7,13].
The implementation of policies and regulations by the
city or state governments are critical for the reduction of
pollution and congestion.
The implementation of land use and urban design
strategies to create a freight transportation system is
being considered. It will contribute to the city dynamics
making it a better place to live. In fact, if well planned,
some of these strategies may not only have one outcome
but several. For example, designing small self-service
booths around the city could not only reduce trips and
therefore emissions, but also alleviate the congestion
problems that urban freight generates. Moreover, land
patterns and urban design can successfully be
influenced by policy which could regulate the need of
the presence of centralized loading docks, or the
implementation of ideas like the self-service booths in
most commercial buildings.
The implementation of mode shifting alternatives
among the cities is also addressed. Currently, there are
more resources to take advantage of one’s transportation
knowledge and all that is needed is to know how to
efficiently implement these assets. For example, by
creating a similar system to the self- serving booth for
bicycles, couriers can find ways to avoid congestion in
the urban core as well as reducing emissions and create
a more pedestrian friendly environment for city
dwellers.
Finally, we deal with the implementation of innovative
technologies to help the accurate measure and control of
the urban freight transportation impacts. These
approaches would make it possible to improve the way
people handle new technologies by constantly
monitoring the outcomes from their own devices. It is a
matter of taking chances and looking for the
implementation of innovative technologies in both big
and small companies so that the benefits of the
implementation of a sustainable urban freight system
can be accountable in every sector of the city.

120 Int'l Conf. Foundations of Computer Science | FCS'16 |

ISBN: 1-60132-434-0, CSREA Press ©

5 Conclusion

In conclusion, this paper reviewed a number of
strategies ranging from implemented policies to
localized technology and modal shifts options in
different countries to reduce the urban freight transport
impacts. From this assessment we realize that there are
cracks along the different strategies and programs that
have not been tested. Also, we observe that we still need
effective methods to collect data and develop tools to
support the evaluation of different measures in terms of
the short and long term potential and that there is an
important gap relating to information about key
stakeholders able to tackle the impacts of the
transportation of goods in urban areas.

6 References
[1] Hicks, S. (1977) Urban freight. In: Hensher, D. (Ed.)
 Urban Transport Economics. Cambridge University
 Press.

[2] United Nations HABITAT (UNHABITAT)
 Cities and Climate Change (2011)

[unhabitat.org/pmss/listitemDetails.aspx?
publicationID=3086]

[3] Crainic, T. G., Ricciardi, N. and Storchi, G. (2004),

 ‘Advanced freight transportation systems for
 congested urban areas’, Transportation Research
 Part C: Emerging Technologies, Vol. 12 No. 2,
 pp. 119-137.

[4] Dablanc, L (2007) 'Goods transport in large
 European cities: Difficult to organize, difficult to
 modernize', Transportation Research Part A: Policy
 and Practice, vol. 41, no. 3, pp. 280-285.

[5] OECD/ENV Report (1998) Scenarios for
 Environmentally Sustainable Transport
 Organization for Economic Co-operation and
 Development 2003, Delivering the Goods -21st
 Century Challenges to Urban Goods Transport,
 OECD working group on urban freight logistics,
 Paris.

[6] Freight Transportation Planning for Urban
 Areas Chatterjee, Arun Institute of
 Transportation Engineers. ITE Journal; Dec 2004;
 74, 12; ProQuest Guidance on measuring and
 reporting GHG emissions from freight transport
 operations (PDF guide online)

[7] BESTUFS (2007). Good Practice Guide on Urban
 Freight Transport. http://www.bestufs.net

[8] Allen, J, Anderson, S, Browne, M & Jones, P 2000,
 A framework for considering policies to encourage
 sustainable urban freight traffic and goods/service
 flows Report 1: Approach taken to the project,
 Transport Studies Group, University of Wesminster,
 London.

[9] Behrends, S. (2007), Novel rail transport services,
 Work Package 2 - Deliverable, FastRCargo,
 Department of Technology Management and
 Economics, Chalmers University of Technology,
 Gothenburg.

[10] Industry Canada and Supply Chain & Logistics
 Association of Canada. (2008). Green Supply
 Chain Management: Logistics and Transportation
 Services, A Canadian Perspective.
 www.ic.gc.ca/logistics.

[11] Deakin, E. (2001),'Sustainable Development and
 Sustainable transportation ' , Working paper,
 University of Berkeley, Institute of Urban and
 Regional Development.

[12] Russo, F., and Comi, A. (2011) 'Measures for
 sustainable Freight transportation at Urban
 Expected Goals and Tested results in Europe'.
 Journal Urban Planning and Development, pp.,
 142-152.

[13] California Sustainable Freight Action Plan
 Retrieved July 20, 2016, from
http://www.casustainablefreight.org/app_pages/view/154

[14] Envision Freight
http://www.envisionfreight.com/value/index.html%3Fid
=introduction.html

Int'l Conf. Foundations of Computer Science | FCS'16 | 121

ISBN: 1-60132-434-0, CSREA Press ©

CPU and GPU DVFS via analyzing of workload
characteristic

Kyoungsu Jun1, Hyunmin Yoon2, Yoonsik Choi1 and Minsoo Ryu1

1Department of Computer Science and Engineering, Hanyang University, Seoul, Korea
2Department of Electronics Computer Engineering, Hanyang University, Seoul, Korea

{ksjun, hmyoon, yschoi}@rtcc.hanyang.ac.kr, msryu@hanyang.ac.kr

Abstract – I-EAS, which is a low power management using
process scheduler, scales frequency by calculating workload
for purely core usage. On the basis of this, we determine the
energy-efficient frequency. In the low power policy of CPU, I-
EAS calculates workload that the CPU imposes load on the
memory using the performance monitoring unit (PMU), In the
low power policy of GPU, I-EAS finds a job that uses a lot of
memory to analyze the characteristics of the job of GPU to run
and calculates workload that the GPU imposes load on the
memory using a memory-intensive job. It is difficult to
determine the energy-efficient frequency with the environment
without PMU, we can solve the problem through the platform
performance monitoring unit (PPMU). And analysis of I-EAS’s
GPU job did not take into account the characteristics of job
excepting tiler job, our system considers characteristics of all
job. In our system, we more specifically calculate workload to
use memory in order to determine the energy-efficient
frequency.

Keywords: Dynamic Voltage Frequency Scaling (DVFS),
Performance Monitoring Unit (PMU), Platform Performance
Monitoring Unit (PPMU), Governor, Memory decomposition

1 Introduction
Current mobile devices despite their small size provide

functionalities like a desktop computer, such as 3D gaming,
drawing, editing documents, web browsing. However, the
increasing performance of these mobile devices comes with the
cost of high energy consumption. Charging these mobile
devices frequently is not possible, therefore minimizing the
energy consumption of mobile devices is a hot research topic.
In order to reduce the energy consumption while the processor
is actively running, dynamic voltage frequency scaling (DVFS)
is used which decreases the operating voltage and frequency of
the processor. However, by reducing the operating frequency
of the processor the execution time of a task is increased.
Therefore, to reduce energy consumption while meeting the
real-time deadlines of tasks, energy aware Scheduling (EAS)
schemes have been proposed [1, 2]. Another approach in
reducing the power consumption of computing devices is
advanced configuration and power interface (ACPI) which
specifies how a computer’s I/O system, operating system and
peripheral devices communicate to each other about their

power consumption requirements [3]. However, these existing
techniques have the limit to optimize the energy consumption.

In DVFS, when a CPU core is running its optimum operating
frequency is determined by the workload. The low energy
consumption policy is implemented by measuring the
workload during a given period and then corresponding
frequency is determined using this workload. In Linux based
systems, CPU, GPU and memory are all targets to reduce the
power consumption. In previous research [4, 5], the
implemented policy measures the memory workload through
performance measuring unit (PMU) and the workload for the
CPU core is calculated by excluding the memory workload.
The low power policy of GPU used the information of GPU
core provided by Linux system and calculated the workload.
The low power policy of memory measured the workload using
platform performance monitoring unit (PPMU). A
performance analysis unit, PPMU, provided by Exynos SoC
can measure performance data and can be used to analyze the
system performance. The low power policy of memory
measures the workload and determines the frequency using this
workload measured by PPPMU. This workload is a rate of the
CPU cycle count that of the memory bus used by CPU and
devices over the entire cycle count used by memory bus.

However, if there is no PMU so low power policy of CPU
cannot calculate workload using CPU core, CPU will not
achieve efficient power management. In low power policy of
GPU, it only considers tiler job used to memory decomposition.
But when CPU gives jobs to GPU, only vertex job but also tiler
job is transferred to GPU as a job. [6]. Therefore, both
execution time are always equal when Linux system measures
the time of vertex job and tiler job. Tiler job's phase of increase
and decrease is similar to memory's workload phase, also
vertex job's phase is equal to tiler job. So it is important to
consider vertex job and tiler job for memory decomposition.

In this paper, we suggest two portions that are
complemented with low power policy of CPU and low power
policy of GPU. Low power policy of CPU calculates redefined
CPU workload, and it entire memory bus cycle count from
PPMU. And this rate is used in memory workload to calculate
the workload to purely use the CPU core. Low power policy of
CPU calculates memory workload of vertex job and tiler job

122 Int'l Conf. Foundations of Computer Science | FCS'16 |

ISBN: 1-60132-434-0, CSREA Press ©

using the memory and workload using GPU core by utilizing
memory workload.

2 Effective workload
Tasks that use CPU, GPU and memory intricately impose

certain workloads on each of these components. The workload
of a task in a given period is defined as the amount of time for
which the task was using a CPU/GPU core or memory during
that particular period. Two types of operations can be defined
for CPU and GPU, those currently running on the core and
those waiting for results of memory operations. If the effective
workload that is workload using the core except workload is
calculated, waiting the memory is possible, and if a decision of
frequency using this effective workload is done, system can
achieve effective power management with nearly equivalent
performance.

3 Low power policy using effective workload
3.1 Low power policy of CPU
 When the CPU is operating, it is possible to divide up into
workload using the CPU and workload using the memory.
Then, it is easy to calculate purely effective workload. As
calculating purely core usage, I-EAS system obtains bus access
cycle count for memory access and the executed instruction
count through PMU.

BusAccess
mem

Instruction

CNT
W

CNT
� (1)

(100)

100

CPU CPU

new capacity
memWUtil Util

�
� � (2)

CPU DVFS of I-EAS measures workload and determines
the frequency of CPU using Linaro GPU governor when the
scheduling events occur such as task wake up, enqueuer and
dequeue. The workload that is measured by the kernel is
calculated as effective workload purely using the CPU core
except workload using the memory. Workload that the CPU
imposes load on the memory is bus access cycle count portion
of the executed instruction count. It represents equation (1).
After that, we considered that effective workload is CPU
utilization multiplied by the core usage rate (2).

_ / _

_

_

Mem

Peripherals R W cycle
Mem

Total cycle

Mem
Peripherals use periodCNT

CNTT � � (3)

_

CPU Mem

CPU CPU total Peripherals use
CPU

total

new currentUtil Util
T T

T
�� �

� � (4)

 In the environment there is no PMU, we can measure effective
workload. The PPMU measures both cycle count that
peripherals use memory bus and total cycle count. We obtain
the time that peripherals use memory bus during memory
execution period. In Equation (3), The result must multiple a
value of α. α means that each system is different and is tunable.
After excluding the time using the memory from the entire time
that CPU measure, we figure a rate of the time using the CPU
core over the entire time. This rate is used to calculate the new
effective workload of CPU in Equation (4).

3.2 Low power policy of GPU
 GPU jobs measured in Linux system are vertex job, tiler job
and fragment job. Vertex job transforms 3D geometry and
projects onto 2D render target. Tiler job calculates updated
region of render target and update region to frame buffer.
Fragment job generates the final color for the render target for
each pixel covered by a primitive. I-EAS found the result of
the GPU job characteristics analysis that tiler job used a lot of
memory when it did memory workload decomposition. The
execution time of tiler job was similar to memory utilization at
increase and decrease, so I-EAS analyzed that tiler job was a
lot of memory workload.

Int'l Conf. Foundations of Computer Science | FCS'16 | 123

ISBN: 1-60132-434-0, CSREA Press ©

Figure 1. The relation between vertex, tiler job execution time

and memory utilization

We analyze the relation among vertex job, tiler job and
memory utilization through the experiment of Basemark ES2
is GPU benchmark. Memory utilization appears the increase
and decrease according to vertex job and tiler job. The
execution time of vertex job and tiler job is equal in Linux
system because CPU gives GPU a job that includes vertex and
tiler job. We concluded that vertex job and tiler job have
workload to use the memory considering this relation.

Figure 2. Figure 1. The relation between fragment job
execution time and GPU utilization

We found that the flow of fragment job conversely moves to
memory utilization and is similar to GPU utilization in Figure
2. So we analyze that fragment job use a lot of GPU core
through this experiment. In consideration of the characteristics
of the GPU job, it is essential to consider not only tiler job but
also vertex job in memory workload decomposition.

max

_

_
(1)

GPU
GPU GPU current tiler

GPUnew current
total

Exec time

Exec time

Freq

Freq
UtilUtil � � � � (5)

In order to calculate workload using purely GPU core, I-EAS
calculated memory workload that is the rate of execution time
of tiler job over entire execution time. Memory workload
obtained by memory workload decomposition is used for
calculating core workload in Equation (5).

(

max

)_ _ _

_

GPU
GPU GPU current

GPUnew current

fragment vertex tiler

tiler

Exec time Exec time Exec time

Exec time

Freq

Freq
UtilUtil

� 		 �

� � �

(6)

In consideration of between GPU job and memory utilization,
we improve memory workload decomposition to figure the
new utilization. For calculating memory workload, we add
execution time of vertex job and execution time of tiler job.
Then, We multiple this sum by α. The value of α is the rate of
execution time of vertex job and tiler job using the memory
over entire execution time. We measure each job execution
time using memory through GPU benchmark test, then we
calculate the α. GPU benchmarks are Basemark ES2, Antutu
and Quardrant for 2D and 3D graphic. [7, 8, 9]

 4099 7667 7667 30557

4140 9414 9414 42434

7662 11166 11166 22332

vertex tiler fragment

vertex tiler fragment

vertex tiler fragment

w w w
w w w
w w w

� � 	 � 	 �

� � 	 � 	 �

� � 	 � 	 �

After 10 runs of each benchmark, we get the linear equation
with three unknown workload vales and coefficients averaged
among benchmark execution times. The formula is composed
entire time using memory and execution time of each job. In
the formula, workload of vertex job and tiler job is processed
as one. As a result, we calculate that workload value of
fragment job almost is 0 and workload value of vertex job and
tiler job almost is 0.63.

4 Conclusions
 In this paper, we analyze that task complexly impose load on
CPU, GPU and memory and do memory workload

124 Int'l Conf. Foundations of Computer Science | FCS'16 |

ISBN: 1-60132-434-0, CSREA Press ©

decomposition. Low power policy of CPU and GPU calculate
effective workload purely using core for energy efficient
frequency by using workload decomposition. In the low power
policy of CPU, we calculate effective workload purely using
CPU core through PPMU and use it to find energy effective
frequency on this basis. Also in the low power policy of GPU,
we calculate effective workload purely using GPU core through
characteristic of GPU job and use it to find energy effective
frequency on this basis.

5 Acknowledgment
This research was supported by the MISP(Ministry of Science,

ICT & Future Planning), Korea, under the National Program
for Excellence in SW)(R71161610270001002) supervised by
the IITP(Institute for Information & communications
Technology Promotion), partly by the ICT R&D program of
MSIP/IITP [R01141600460001002, Software Black Box for
Highly Dependable Computing], partly by the National
Research Foundation of Korea(NRF) Grant funded by the
Korean Government(MSIP) (NRF-2015R1A5A7037751) ,
partly by the Materials and Components Technology
Development Program of MOTIE/KEIT [10046595, Storage
solution for smart device], and partly by the MSIP(Ministry of
Science, ICT and Future Planning), Korea, under the C-
ITRC(Convergence Information Technology Research Center)
(IITP-2016-H8601-16-1005) supervised by the IITP(Institute
for Information & communications Technology Promotion)

6 References

[1] Cpu frequency and voltage scaling code in the
linux(tm) kernel.” [Online]. Available:
https://www.kernel.org/doc/Documentation/cpufreq/governor
s.txt

[2] Linaro: Energy Aware Scheduling. [Online]. Available:
https://wiki.linaro.org/WorkingGroups/PowerManagement/R
esources/EAS

[3] Hewlett-Packard: Intel, Microsoft, Phoenix, and
Toshiba. The acpi specification: revision 3.0b (2008),
http://www.acpi.info/spec.htm

[4] Kyoungsu Jun, Hyunmin Yoon, Pyoungsik Park,
Minsoo Ryu, "An Energy aware scheduler and DVFS method
using effective workload" The Korean Institute of
Communications and Information Sciences, pp. 637-640,
2016.

[5] Pyoungsik Park, Hyunmin Yoon, Kyoungsu Jun,
Minsoo Ryu, " A DVFS method using effective workload of
CPU, GPU and Memory" The Korean Institute of
Communications and Information Sciences, pp. 878-881,2015

[6] Ian Bratt, "The ARM Mali -T880 Mobile GPU"
[Online]. Available:
http://www.hotchips.org/wp-
content/uploads/hc_archives/hc27/HC27.25-Tuesday-
Epub/HC27.25.50-GPU-Epub/HC27.25.531-Mali-T880-
Bratt-ARM-2015_08_23.pdf

[7] [Online]. Available: https://www.basemark.com/

[8] [Online]. Available:
http://www.antutu.com/en/index.shtml

[9] [Online]. Available: http://www.aurorasoftworks.com/

Int'l Conf. Foundations of Computer Science | FCS'16 | 125

ISBN: 1-60132-434-0, CSREA Press ©

User-level Deterministic Replay via Copy-to-User
Function Tracking

Hanjun Shin1, Seokyong Jung1 and Minsoo Ryu1*

1Department of Computer Science and Engineering, Hanyang University, Seoul, Korea
{hjshin, syjung}@rtcc.hanyang.ac.kr, msryu@hanyang.ac.kr

Abstract – The size and complexity of computer software
programs has rapidly increased in the recent years, therefore
the possibility of occurrence of faults and bugs in the software
is also amplified. Most of these bugs can be eliminated by
repetitive debugging and execution of software during the
software development and testing process. However, there are
some exceptions such as synchronization problems which
cannot be reproduced through repeated program executions.
Such synchronization problems arise due to the occurrence of
nondeterministic events, for example, interrupts or Inter-
Process Communication (IPC). Record and Replay tools that
capture the state of software by recording non-deterministic
events are often used for software debugging. In the current
research, we suggest a record-replay mechanism for user –level
application running in single threaded environment based on
kernel to user data transfer. The proposed approach is able to
replay an application by capturing all the kernel-to-user level
data transfers.

Keywords: Software debugging, deterministic replay
mechanism, analysis kernel and user interaction

1 Introduction
In order to provide necessary functionalities and resource

optimization for a wide variety of hardware platforms, a large
increase in the size of computer software programs along with
complexity is witnessed in the recent years. The ever-evolving
process of software development process therefore, has
become difficult and the possibility of existence of software
bugs has also increased. In order to eliminate these bugs, many
debuggers are developed such as GNU Debugger that are
useful in many situations. These debuggers can help to
reproduce a problem in software by repeated program
executions. However, all of the bugs cannot be resolved with
the aid of debuggers, for example, synchronization issues.
Such faults cannot be reproduced by simple debuggers because
their occurrence depends on various external factors, which we
call non-deterministic events. These non-deterministic events
are generated by the external hardware devices generally
through interrupts. In order to analyze and get rid of subtle bugs
like synchronization, such non-deterministic events need to be
captured and executed repetitively. A promising approach to
solve such complex bugs is to record necessary events and then

replay the software based on those recorded events. This
approach is called deterministic replay as it allows to
deterministically reproduce the events, analyze and fix the fault
that appear in the recorded run. An example of the repetitive
execution of nondeterministic events in debugger is UndoDB
[1] ,which is an extension of GNU Debugger by Undo
Software. UndoDB catches every nondeterministic event to
create the snapshots and has the functionality to play-back the
flow of program execution using these snapshots. But, this
approach is adopted in initial software development and
debugging environments and is not suitable for recording and
reproducing a fault in real runtime environments.

In the past few years, a number of approaches for
recording the runtime behavior of program and then replaying
it offline have been proposed. Most of the suggested methods
achieve it through record and replay of hardware interrupts [2-
4]. Recording the hardware interrupts and replaying them later
encompasses the whole system behavior. However, the
behavior of a particular user application cannot be determined
by tracing the hardware interrupts only. In order to record and
replay a particular user application efficiently, the adopted
methodology should be able to capture all the non-
deterministic events that affect the application including the
hardware interrupts.

The user-level application developers assume that their
code is deterministic and will always give the same results.
However, the non-deterministic events occurring in the system
strongly influence program behavior in real run-time
environments. Modern operating system abstracts the
hardware-related services, (e.g. accessing network card), IPC
and other kernel services from user-level applications. If the
application needs to use such services, it is achieved through
system calls. The results of execution of non-deterministic
events in kernel mode as a result of system call invocation are
stored in kernel memory area and sent to user space by kernel
to user memory copy function, or the return values of the
system call.

A number of record and replay approaches have been
proposed in literature for replaying user-level applications
based on analyzing, recording and replaying of invoked system
calls, for example see [5-7]. System call analysis is performed

126 Int'l Conf. Foundations of Computer Science | FCS'16 |

ISBN: 1-60132-434-0, CSREA Press ©

by keeping track of the changes in a particular memory address
space which will be updated by kernel as a result of system call
execution. However, such system calls analysis can detect the
change in an address space through an address pointer passed
as an argument to the system call and its returned value.
However, there are few system calls for example, Linux system
call exec() does not pass the address pointer as an argument,
instead it writes the contents of executable file at user address
space. Similarly, there are few arguments which are passed as
opaque parameters whose type and function cannot be
determined at the time of declaration, for example, Linux
system call ioctl(). The purpose of each argument of the ioctl()
system call is determined by its peripheral device driver, so it
is not possible to figure out those arguments in advance.
Therefore, such the methods using system calls cannot be used
to accurately record and replay user applications.

In this paper, we suggest a record-replay mechanism for
user application running in a single threaded environment
using kernel to user data transfer. It detects all the non-
deterministic events by capturing kernel-to-user data transfers
which other approaches are unable to do. To be more specific
we focus on non-determinism that is associated with copying
data to user memory area from kernel area.

The paper consists of three sections. Section 2 describes
our proposed mechanism for logging kernel to user data and
replaying it. Section 3 gives a brief conclusion.

2 Overview of Record-Replay
2.1 Main Idea

The main purpose of our record-replay approach is
logging of all the non-deterministic events during record time
and generate those events during replay time. All non-
deterministic events influencing a particular user application
occur thorough invocation of various system calls. So, the basis
of our proposed approach is logging all those system calls.

Note that all system calls may not trigger non-deterministic
events. Therefore, selecting which system calls to log is
important. Keeping in view this fact, we categorize the system
calls as follows.

- I/O Function: I/O device and IPC system calls
including disk I/O, network I/O such as file operation
and socket operation

- Process control Function: fork, exec, exit

- Memory control Function: mmap, brk

I/O function calls are used for interacting with external
peripherals or processes and so, the result of these system calls
cannot be predicted by the user application, so we consider
these as non-deterministic events. Second, process control
functions manage a process status. Such calls only change or
get the value of process control block, so the associated events
can be considered deterministic. Finally, memory control
functions manage a virtual memory address space which is not

Figure 1. Record-Replay Mechanism

Kernel

User

H/W
Log

Record-Replay
Module

Kernel

User

H/W
Log

Record-Replay
Module

Record Replay

Int'l Conf. Foundations of Computer Science | FCS'16 | 127

ISBN: 1-60132-434-0, CSREA Press ©

affected by any hardware or external events, so they are
deterministic.

The non-deterministic results of a system call are forwarded
to user space by updating a particular user memory area and by
the return values of the system call, depending on specific
environment. For example, read() system call writes data from
an I/O device or socket to user address space that is passed by
an argument and its return value is the size of data. Thus,
logging the non-deterministic factors caused by system call
means to store that data and return value in a log. During replay,
when the same system call is invoked, record-replay does not
pass the data from hardware, instead the data is passed from
the log.

2.2 Implementation

The general procedure of invoking a system call is shown
in figure 1. First a user application invokes a system call and
switches to kernel mode. Kernel processes a system call and if
it needs to use hardware resources, it sends a request to
hardware. When the I/O transaction has been completed, it
sends the result of execution to kernel using interrupts. If the
kernel needs to send data to user application, it copies the data
to user area.

The proposed flow of recording a user application is as
follows. As shown in Figure 1, when user application invokes
a system call, in view of the categories defined in section 2.1,
recorder first checks whether the system call needs to be
recorded or not. If the system call is not a target for recording,
then it is executed normally. However, if a system call is
identified for recording, then after step when kernel needs to
send data to user application, record-replay module captures
the data from kernel . The data is stored in a log which includes
precise order of events and the data associated. At the same
time the system call is normally executed. During the replay
process, the target system call is not sent to the kernel, instead,
the data associated with that particular system call is sent to
user application, through the logged data in the storage.

3 Conclusions
In this paper, we implement deterministic record-replay

mechanism which handle the data transfer between kernel and
user application. This mechanism provides to detect
nondeterministic events more than to analyze only system call
arguments. Our approach is useful that it can detect more
events, and perform the deterministic record-replay more
completely.

4 Acknowledgment
This work was supported partly by the ICT R&D program

of MSIP/IITP. [R01141600460001002 , Software Black Box
for Highly Dependable Computing], partly by the
MSIP(Ministry of Science, ICT and Future Planning), Korea,
under the C-ITRC(Convergence Information Technology

Research Center) support program(IITP-2016-H8601-16-
1005)supervised by the IITP(Institute for Information &
communications Technology Promotion), partly by the
MISP(Ministry of Science, ICT & Future Planning), Korea,
under the National Program for Excellence in
SW)(R71161610270001002) supervised by the IITP(Institute
for Information & communications Technology Promotion),
partly by the Materials and Components Technology
Development Program of MOTIE/KEIT [10046595, Storage
solution for smart device], and partly by the National Research
Foundation of Korea(NRF) Grant funded by the Korean
Government(MSIP). (NRF-2015R1A5A7037751)

5 References
[1] "Increasing software development productivity

with reversible debugging," Undo Software,
2014.

[2] G. Gracioli and S. Fischmeister, "Tracing
interrupts in embedded software," in ACM
Sigplan Notices, 2009, pp. 137-146.

[3] H. Thane, D. Sundmark, J. Huselius, and A.
Pettersson, "Replay debugging of real-time
systems using time machines," in Parallel and
Distributed Processing Symposium, 2003.
Proceedings. International, 2003, p. 8 pp.

[4] D. Stodden, H. Eichner, M. Walter, and C.
Trinitis, "Hardware instruction counting for log-
based rollback recovery on x86-family
processors," in Service Availability, ed: Springer,
2006, pp. 106-119.

[5] Z. Guo, X. Wang, J. Tang, X. Liu, Z. Xu, M. Wu,
et al., "R2: An application-level kernel for record
and replay," in Proceedings of the 8th USENIX
conference on Operating systems design and
implementation, 2008, pp. 193-208.

[6] O. Laadan, N. Viennot, and J. Nieh, "Transparent,
lightweight application execution replay on
commodity multiprocessor operating systems,"
in ACM SIGMETRICS performance evaluation
review, 2010, pp. 155-166.

[7] S. M. Srinivasan, S. Kandula, C. R. Andrews, and
Y. Zhou, "Flashback: A Lightweight Extension
for Rollback and Deterministic Replay for
Software Debugging," in USENIX Annual
Technical Conference, General Track, 2004, pp.
29-44.

128 Int'l Conf. Foundations of Computer Science | FCS'16 |

ISBN: 1-60132-434-0, CSREA Press ©

