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Abstract - In modern day stabilizing distributed systems, each 
process/node or each administrative domain may have sel�sh 
motives to optimize its payoff. While maximizing/minimizing 
own payoffs, the nodes or the domains do not require to give 
up their stabilization property. Optimizing individual pay offs 
without sacri�cing the stabilization property is a relatively 
new trend and this characteristic of the system is termed as 
sel�sh stabilization

The focus of this paper is to investigate the problem of finding 
a stable shortest path tree for two-colored graphs, where the 
colors represent different types of processes or domains. In a 
shortest path tree, for every node, its path along the tree has 
the minimum possible distance of any path to the root. In this 
paper we study the impact of selfishness on stabilization, 
provide examples to demonstrate the effects of different types 
of schedulers, and explore how the stabilization time is 
affected by parameter changes. 

Keywords: Graph theory, stabilization, distributed systems, 
shortest path tree, algorithms, fault tolerance.

1 Introduction
Stabilization is an important model of fault-tolerance for 

distributed computation. The appeal of a stabilizing system 
lies in its robustness and ability to recover from any transient 
fault. A stabilizing distributed system has a subset of desirable 
states to which the system converges. These are called the set 
of legal states. A state not belonging to the set of legal states is 
called an illegal state. A system is stabilizing if and only if it 
satisfies two properties: a) starting from any state, it is 
guaranteed that the system will eventually reach a legal state 
(convergence), and b) given that the system is in a legal state, 
it is guaranteed to stay in a legal state, provided that no fault 
happens (closure) [1]. The above two properties guarantee that
a stabilizing system will eventually recover from any transient 
faults that take the system to some arbitrary configuration and 
this recovery procedure does not require any manual 
intervention. For the above reasons, stabilizing systems do not 
need initialization and they can be spontaneously deployed. 
Because a stabilizing algorithm does not require correct 
initialization and can recover from any transient failures of 
arbitrary types occurring at any time, stabilization is an 
interesting and active research field and it is used in a large 
number of applications, including sensor networks, peer-to-

peer networks, mobile computing, topology update, clock 
synchronization, and many others.

Selfish stabilization combines the concept of game theory and
stabilization together. There are some strong similarities 
between selfish stabilization and game theory, but there are 
significant differences too. The players in games are 
analogous to processes in a stabilizing system, and the 
equilibrium in games is comparable to the stable configuration 
of stabilizing systems, in as much as both satisfy the 
convergence and closure properties. However, games usually 
start from predefined initial configurations, and mostly ignore 
faulty moves or transient state corruptions, which are not 
necessarily true for stabilizing systems [2].

In traditional stabilizing distributed systems [3], we assume 
that all processes run some predefined programs or 
algorithms. These algorithms are mandated by an external 
agency and most often the agency is the owner or the 
administrator of the entire distributed system. The model is 
widely recognized by the stabilization community. This works
fine when processes cooperate with one another and share a 
purely global goal. But in modern times in the Internet, it is 
possible for the processes to have some private goals besides 
the common global goal. It is quite realistic and fairly 
common these days to have a distributed system spanning 
over multiple administrative domains and therefore processes 
having individual goals are not a rare occurrence. On Internet-
scale distributed systems, each process or each domain may 
have selfish motives to optimize its own payoff besides the 
global goal. So the spirit of competition in such cases does not 
conflict with the general spirit of cooperation. Optimizing 
individual payo� s without sacri�cing the stabilization 
property of the system is termed as sel�sh stabilization [4].

The focus of this paper is to finding a selfish-stabilizing 
shortest path tree algorithm for two-colored graphs, where the 
colors represent different types of processes or domains. In a 
shortest path tree, for every node, its path along the tree has 
the minimum possible distance of any path to the root. In the 
subsequent sections, we study the impact of selfishness on 
stabilization, provide examples to demonstrate the effects of 
different types of schedulers, and explore how the stabilization 
time is affected by changes to a given graph's parameter 
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changes. We also present examples to show how competition 
blends with cooperation in a stabilizing environment and 
provide some experimental results. 

2 Background
2.1 Model and Notation

Assume a graph G = (V, E). Let V = {1, 2, …, n} denote the 
set of nodes or processes and E be the set of edges connecting 
pairs of nodes. Let there are p different subsets or colors of 
nodes. In our case, p = 2, but in general p could be any value 
greater than 1. For each subset, we define a separate cost 
function to map the set of edges to the set of positive integers. 
Following our selfish stabilization algorithm, starting from any
random initial configuration, the different subsets or colors of 
nodes will cooperate with one another to form a rooted 
shortest path tree and simultaneously compete against each 
other to minimize their distance with the root node. 

We will assume the shared memory model for the 
communication among the nodes. According to this model, 
each process can read the states of its 1-distance neighbors
and update its own state if required. In each individual step, a 
process checks a guarded action g � A: where g is a Boolean 
variable. The value of g is a function of the process’s own 
state and the states of its immediate neighbors. If g is true, the 
process executes action A to perform an update of its own 
state. If g is false, no action is taken. The global state or 
configuration of the system consists of the local states of all 
the processes. Unless stated otherwise, a serial 
scheduler/daemon schedules the action by randomly choosing 
a process with an enabled guard to execute its action.

Let us convert G into a multi-weighted graph by de�ning a 
cost function w of E � Np, where N is the set of positive 
integers. For every i � [1. . . p], the function wi : E � N
denotes the cost of using edge e (the distance value). Starting 
from any arbitrary initial con�guration, the p di� erent colors 
of nodes cooperate with one another to form a rooted spanning
tree, and at the same time compete against each other to 
minimize their distance value to the root. 

All nodes in the graph have a common global goal in this 
problem: starting from an arbitrary initial con�guration, each 
node collaborate with one another to form a rooted shortest 
path tree. But in addition to the common goal, the subsets or 
colors have their private goals. The private goal of each node 
is to optimize (in this case, it is a minimization problem) its 
distance value without violating the spanning tree constraints.

Fig. 1 shows an example of a two-colored graph (a) in which 
three spanning trees could be obtained at some point of a 
computation (none of these necessarily denotes the terminal 
configuration). The root is denoted by r and we chose grey 
color to indicate the root. For example, the cost of tree (b) is 
(10, 9), while the cost of tree (c) is (9, 9) and the cost of tree 

(d) is (11, 8). So, different trees yield different costs for 
different colors [4].

Fig. 1: Different spanning trees of the graph in part (a) (note 
that not all trees are terminal configurations)

2.2 Related Work

Our work is directly related to the paper by Cohen et al. [5] in 
which the authors described a selfish stabilization algorithm 
for the minimum spanning tree problem. The algorithm for the 
minimum spanning tree and the shortest path tree is 
essentially the same. In another paper, Dasgupta et al. [6] 
described a probabilistic fault-containment algorithm that 
stabilizes a system from minor failures with a stabilization 
time independent of the network size. In [7], the author
described a selfish stabilization algorithm for the maximum 
flow tree problem. Cobb et al. [8] proposed a stabilizing 
solution to the stable path problem. Mavronicolas [9] used a 
game theoretic presentation to model security in wireless 
sensor networks where the network security is viewed as a 
game between the attackers and the defenders. The last one is 
only tangentially related to our work. It involves the spirit of 
competition and co-operation simultaneously as in our case, 
but stabilization is not an issue.

3 Algorithm

In accordance with the shared memory model, each node i can 
read the states of N(i), the set of its neighbors (excluding i
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itself). Each node i is also aware of the cost of each of its 
adjacent edges e = (i, j) : j � N(i). The cost of an edge e is a 
distance vector w(e) = (w1(e),w2(e),w3(e), . . . ,wp(e)) where 
wk(e) denotes the cost of the edge e for a node of color k (1 � k 
� p). Also, i maintains two variables: �(i) and d(i). The 
variable �(i) denotes the parent node of i in the shortest path 
tree. By definition, the root does not have any parent. So, �(r)
is non-existent. Every other node picks a neighboring node as 
its parent following the stabilization algorithm. The variable 
d(i) denotes the vector d(i) = (d1(i), d2(i), d3(i), . . . , dp(i))
where dk(i) denotes the distance for a node of the kth color 
from node i to the root. 

The stabilization algorithm for k-colored graph is described 
below [5] -

Conditions

LevelOK(i) �  d(i) = d(�(i)) + �(i, �(i)) 
ParentOK(i)i�Vk � dk(�(i)) + �k(i, �(i)) = min{dk(j) + �k(i, j) : j 
� N(i)} 

Actions

FixLevel(i) � d(i) := d(�(i)) + �(i, �(i)) 
FixParent(i)i�Vk � select �(i): dk(�(i)) + �k(i, �(i)) = min{dk(j) 
+ �k(i, j) : j � N(i)} 

The proposed algorithm has a two guarded actions. The root r 
is exempt from any action. The other nodes update their labels 
to make them consistent with their parent’s labels. This is in 
order to locally minimize the cost of the metric for the node 
color. The label adjustment action is taken prior to the parent 
adjustment action. 

The actions for node i � r are described in the following 
algorithm: 

Program for process i

{ Fix level }
¬ LevelOK(i) � FixLevel(i); 

{ Fix parent }
LevelOK(i) �¬ ParentOK(i) � FixParent(i);

4 Observations
We make a couple of crucial observations when the algorithm 
is applied with different types of schedulers/daemons. The 
observations are listed below with suitable examples [10].

Observation1. Stabilization may not be feasible if at the same 
time, more than one process make moves i.e., if a distributed 
synchronous scheduler is used, it can play the role of an 
adversary and the configurations can repeat infinitely (Fig. 2).

Fig. 2: Example execution with a distributed synchronous 
scheduler. Configuration (a) and (c) are the same, so the 
system can alternate between the two configurations via (b)
and may never stabilize.

Observation2. More than one equilibrium are possible with 
the same setting for specific graphs (Fig. 3).

Consider the graph in Fig. 3. Both configurations are stable 
but they yield different shortest path trees, one is the best 
choice from the black nodes’ perspective, the other being the 
best from white nodes’ point of view.
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Fig. 3: Examples of multiple equilibria in a graph.

5 Experimental Results

The algorithm was implemented using a central scheduler on 
graphs of two colors, i.e., for p = 2. We experimented how 
stabilization time gets affected by changes to a given graph's 
color compositions and edge arrangements. In case of multiple 
equilibria, any one of the solutions would lead to a stable 
configuration and hence, it is an acceptable solution.  

The first set of experiments was done by varying a given 
graph's color composition. We did the experiments with two 
colors, namely color0 and color1. This can be thought of as 
using white nodes and black nodes as in our previous 
examples. We started out with 10% color0 nodes and 90% 
color1 nodes on a graph of 500 nodes. We gradually increased 
the color0 percentage up to 90%, the color1 percentage 
decreased accordingly. The stabilization times were measured 
in nanoseconds. The experiment results are listed in Table 1 
and Fig. 4.

From the results, we observed that the stabilization time 
reaches the maximum value near the 90% mark of color0
nodes. The stabilization time on average is the same for the 
range of 30%-80% range of color0 nodes. This is intuitive as 
stabilization is expected to take more time when the system is 
tilted towards one type of color (10% of color0 or 10% of 
color1). The trend in stabilization time variation with respect 
to color percentage variation is not linear towards the extreme 
ends, although it is somewhat linear when the graph consists 
of considerable percentages of both colors.

Table 1:  Stabilization time variation for 500 nodes with 
respect to percentage of color change (Initially, there were 
10% color0 nodes and 90% color1 nodes. We gradually 
increased the color0 percentage up to 90%).

Fig. 4: Stabilization time variation for 500 nodes with respect 
to changes for percentage color0 nodes and color1 nodes.

The second set of experiments was done by varying the edge 
arrangements on a graph of 500 nodes.  The total number of 
nodes is kept intact, but unlike the first experiment, this time 
there were equal number of color0 and color1 nodes. 
Complete graphs are considered to have 100% connectivity.
We initially started with 40% connectivity. Then the number
of edges for both colors was evenly increased to 90% 
connectivity. The experiment results are listed in Table 2 and 
Fig. 5.

The stabilization time steadily increases as we increment the 
connectivity percentages. This is expected because increasing 
connectivity means the degree of a node is also increased. As 
the degree increases, a node has to go through a list of all its 
neighbors before it can determine its parent node. In other 
words, the stabilization time computation becomes more time 
consuming. 

color0 nodes% color1nodes% Stabilization Time (ns)

10% 90% 0.30102
20% 80% 0.310594
30% 70% 0.282257
40% 60% 0.283535
50% 50% 0.286158
60% 40% 0.286584
70% 30% 0.282772
80% 20% 0.285366
90% 10% 0.347891
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Table 2:  Stabilization time variation with respect to connectivity 
variation (The number of edges are increased to change connectivity 
level from 40% to 90%).

Fig. 5: The graph for stabilization time variation with respect 
to connectivity variation (The number of edges are increased 
to change connectivity level from 40% to 90%).

In the third set of experiments, we varied the total number of 
nodes, but kept equal number of color0 and color1 nodes in 
the graph. The experiment results are provided in Table 3 and 
Fig. 6.

The stabilization time steadily increases up to a certain point
as we increment the total number of nodes. This makes sense
as increasing the number of node means experimenting with a 
larger graph. Then after a certain point we observe a sudden 
growth in stabilization time. The ‘knee’ in the graph is 
consistent with the exponential nature of many graph 
algorithms. As we increased the total number of nodes, 
beyond a threshold value, when the algorithm has to go 
through a larger set of neighbors before it can determine a 
parent node, there is a sudden increase in the stabilization 
time. 

Table 3: Stabilization time variation with respect to total 
number of nodes (The experiment was done by increasing the 
total number of nodes but keeping equal number of color0 and 
color1 nodes in the graph).

Fig. 6: Stabilization time variation with respect to total 
number of nodes (The stabilization time steadily increases as 
the total number of nodes was increased).

6 Conclusions
In the future, we would like to conduct experiments for higher 
values of p as there is no restriction to limit the number of 
colors of the graph to 2; implementing more colors would 
provide more insight on how changing a graph's properties 
affect the algorithm’s run time. It is also to be seen how 
different topologies can affect the stabilization time. It will be 
interesting to see if any graph-theoretic structures can provide 
overall improved stabilization time. 
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Abstract- Counting the number of edge cover on graphs is 
well known as the edge cover problem. This problem is  #P-
complete [5]. There are algorithms that are designed to 
address the edge cover problem for acyclic graphs or graphs 
with nonintersecting cycles. In this paper we propose an 
algorithm that helps to compute number of edge covers for 
graphs with intersecting cycles as well. 

1. Introduction 
 Graphs can be utilized to model numerous sorts of relations 
and procedures in physical, biological, social and 
information systems [2]. For example, the link structure of 
a website can be represented by a directed graph, in which 
the vertices represent the web pages and directed edges 
represent links from one web page to other. The 
improvement of algorithms to handle the graphs can even 
improve the performance of the system and therefore is of 
major interest in computer science. 

An edge cover is a subset of graph edges e � E such that the 
union of edge endpoints corresponds to the entire vertex set 
V of the graph G. The problem of counting the number of 
edge covers of a graph is denoted as #Edge_Covers. In [1] 
#Edge_Covers was studied for path graphs, trees, cycles and 
trees with nonintersecting cycles. In this paper we present 
algorithms for #Edge_Covers for graphs with intersecting 
cycles. 

2. Counting Edge Covers Based on the 
Structure of the Graph[3] 
Let G= (V, E) be a graph. If two edges of a graph G have a 
common vertex  v � V(G), then the edges are incident, 
likewise if the vertex v is on edge e � E(G) then the vertex 
is said to be the incident vertex of edge e. 

A cyclic graph G is a graph that has at least one cycle in the 
graph. A graph is a directed cyclic graph if the edge set of 
the graph contains the ordered vertex pairs. In the case of 
undirected cyclic the edge set does not have any ordered 
vertex pairs. 

 

Let G = (V, E) be a graph then S = (V1 , E1 ) is a subgraph 
of G if V1  V and E1 contain edges {v, w}  E such that v, 
w  V1. 

The algorithms given in this section was presented in [1]. 
We briefly go through them in order to motivate our 
algorithms in Section 3. In Section 3 we present algorithms 
for counting the number of edge covers for graphs with 
multiple (intersecting) cycles. In Section 2 only the 
situations of trees with added non-intersecting cycles are 
considered. 

Case 1: Path Graph 

A path graph is a graph that can be drawn so that all of its 
vertices and edges lie on a single straight line. Before 
counting the edge covers lets first consider few terms that 
are necessary.  

Fixed edge: Fixed edge is an edge E that appears in all the 
edge covers of a graph G = (V, E). 

Based on the status of the edge (i.e. edge visited or not) we 
find the two states on the vertex  

1. Vertex free-that is the vertex is not covered by any edge 
in the edge cover 

2. Vertex covered- that is the vertex is covered by at least 
one edge in the edge cover 

Each edge in an edge cover is associated with a pair of 
integers (α, β) where α indicates the number of edge covers 
where this particular edge occurs to cover its preceding 
vertex and β indicates the number of edge covers where this 
particular does appear in order to cover its preceding vertex. 

Counting the Edge covers for a linear structure (Path 
graph):  For example consider a linear graph G with 7-
vertices with 6 edges. 
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    e1            e2              e3               e4           e5              e6       

 v1               v2             v3           v4            v5            v6         v7 

                      Figure 1: path graph 

The edge covers for a linear graph follows a Fibonacci series 
pattern. Let F(n) be the number of edge covers for a linear 
graph of n edges, then we have 

Lemma 1: F(1)=1, F(2)=1, and F(n)= F(n-1)+F(n-2). 

Proof: For a linear graph the existence and non-existence of 
a particular edge is proportional to the existence or non-
existence of the previous edge. Let us consider the linear 
graph with n edges- the edges e1 and en should be selected 
in all cases of edge covers because we have to cover vertex 
v1 and vertex vn+1. If edge e2 is also selected then the case 
becomes from edge e2 to en as shown in Figure 2a and thus 
there are F(n-1) edge covers. If edge e2 is not selected then 
edge e3 must be selected as we have to cover v3. In this case 
the situation is from edge e3 to en as shown in Figure 2b and 
thus there F(n-2) edge covers. F(1)=F(2)=1 an be easily 
verified.   

    e1            e2              e3               e4           e5              e6       

 v1               v2             v3           v4            v5            v6         v7 

Figure 2a 

    e1            e2              e3               e4           e5              e6       

 v1               v2             v3           v4            v5            v6         v7 

Figure 2b 

F(n) is a Fibonacci number and solution for it is known as 

+ , where c1 and c2 are 

determined by F(1) and F(2).  

 Case 2: Tree Graph  

A graph in which any two vertices are connected by exactly 
one path is known as a tree graph. In a tree graph we can 
distinguish three different types of edges.  

i) Root Edge: An edge with one incident vertex is a root 
node 

ii) Leaf Edge: An edge with one incident vertex is a leaf 
node 

iii) Child Edge: All edges other than the above two types of 
edges are child edges i.e. the internal edges of the tree graph.  

The leaf edge in the graph has (1,1) as an integer pair 
because the leaf vertex are only incident to leaf edge so in 

order to cover the leaf vertices in the edge cover these edge 
should be considered in all the edge covers. 

Counting Edge covers for a Tree structure: 

Counting the edge covers for a tree structure is a bottom-up 
[7] approach which follows the below form. For an edge (p, 
c) from parent p to child c, if c has k children then the (α, β) 
value for (p, c) can be written as  

 

α= � �          β=� � - �  

 

where  = �  

        

While calculating the ordered pair for an edge we should use 
its descendant edge order pairs only.  

Consider the below figure as an example for the tree graph 

 

                              e1              e2 

 

 

                e3                 e4                   e5 

 

 

                                  Figure 2: Tree Graph 

The edges e4, e5 and e6 are the leaf edges so (1, 0) are integer 
pair associated with these edges. For the ordered pair (α1, β1) 
of e1 we consider the (α, β) of its descendant edges in the 
graph (i.e. e3 and e4) and calculate.  

α1= α3* α4+ α3* β4+ α4* β3+ β3* β4 

= 1*1+1*0+1*0+0*0   = 1 

β1= α3* α4+ α3* β4+ α4* β3+ β3* β4- β3* β4 

=1*1+1*0+1*0+0*0-0*0 = 1 

(α1, β1) = (1, 1) 

 

 

1

2 

65 4 

3 
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For the edge e2 

α2= α5+ β5 

=1+0 

=1 

β2= α5+ β5- β5 

=1+0-0 

=1 

(α2, β2)= (1,1) 

The number of edge covers for the tree is β� = α1* α2+ α1* 
β2+ α2* β1  = 1*1+1*1+1*1 = 2 

Case 3: Circular Graph (Ring) 

A graph C in the ring form and with all the vertices have the 
same number of incident edges.  

Counting Edge covers for a Cyclic Structure:  

Let C(n) be the number of edge covers for a cycle of n edges. 
Then 

Lemma 2:  C(n) = F(n-1)+F(n-1)+F(n-
2)……+F(2)+F(1)+1. 

Proof: Let us consider a circular graph with n edges. When 
dealing with any edge ei in the graph and considered the case 
if it is not selected then we end up with the graph similar as 
a linear graph. So, the n-edge graph follows the following 
paradigm 

Algorithm Cycle: 

If (the edge e1 is not selected then we have F(n-1) 
edge covers)                                                                  

else if (e1 is selected and e2 is not selected then we      
have F(n-1) edge covers) 

else if (e1 and e2 are selected and e3 is not selected 
then we have F(n-2) edge covers) 

else if (e1,e2,e3 are selected and e4 is not selected 
then we have F(n-3) edge covers) 

… 

… 

else if (e1 through en-2 are selected and en-1 is not 
select then we have F(2) edge covers) 

else if (e1 through en-1 are selected and en is not 
selected then we have F(1) edge covers) 

else if (all the edges in the graph are selected then 
we have only one possible edge cover to represent 
it) 

Thus the formula is derived. 

For instance let us consider a circular graph G with 6- 
vertices. Counting the number of edge covers from  

                              e1 

             e6                                    e2 

 

 

             e5                                 e3 

                                 e4 

                         Figure 3: Circular Graph 

without considering the edge1 and assuming the edge e6 and 
e2 exists in order to cover the both vertices 1 and 2 and the 
existence of other edges is optional. With considering all the 
possible cases we will retain with the 5 edge covers which 
is denoted by F(5). 

Edge Cover1 

                               e1 

             e4                                    e2 

 

 

            e5                                   e3 

                                 e4 

Edge Cover2 

                               e1 

             e4                                    e2 

 

 

             e5                                  e3 

                               e4    

1 2 

6 3 

5 4

1 2 

6 3 

5 4

1 2 

6 3 

5 4

Int'l Conf. Foundations of Computer Science |  FCS'16  | 11

ISBN: 1-60132-434-0, CSREA Press ©



 
 

Edge Cover3 
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Edge Cover4 
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Edge Cover 5 

                               e1 
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                                 e4 

Figure 3a: edge covers for the edge e1 

The case is similar when dealing with edge e2 but as the edge 
e1 is visited before we consider the e1 as fixed edge in the 
all the cases when dealing with edges e2 to e6 and e3 is fixed 
because vertex 3 has to be covered, This results F(5) (i.e. 5 
different edge covers). When edge e3 is considered we will 
make e1 and e2 as fixed edges and also e4 because the vertex 
4 has to be covered this results F(4). This process continues 
for all other edges in the graph so finally we will end with 
the form C(n).  

In our case C(6) = F(5)+F(5)+F(4)+F(3)+F(2)+F(1)+1 

                           = 5+5+3+2+1+1+1 

                        =18 (the total number of edge covers) 

3. Counting the Number of Edge Covers 
for Graphs with Intersecting Cycles 
Graphs with intersecting cycles is built from trees, then trees 
with one cycle, trees with two cycles, trees with three cycles, 
and so on. Below is the procedure to solve it. 

Tree graph with one cycle: Let Tree(T, S1, S2) be the 
procedure returning the number of edge covers for tree T 
with S1 being the set of edges of T that are not selected and 
S2 being the set of edges of T that are selected.  

Let Tree-with-One-Cycle(TC, S1, S2) be the procedure 
returning the number of edge covers for the tree with one 
cycle TC assuming that edges in set S1 are not selected and 
edges in S2 are selected. 

Tree-with-One-Cycle(TC, �, �) 

{ 

 Let e1, e2, e3,…, ec be the edges in the cycle in TC. 

  num_edge_cover=0; 

  for(i=1; i<=c; i++) 

  { 

         num_edge_cover +=Tree(TC, {ei}, {e1, e2, …, e(i-1)}); 

  } 

    num_edge_cover+=Tree-Modify1(TC, {e1, e2, …, ec}) 

} 

Tree-Modify1(TC, {e1, e2, …, ec}) is the procedure 
returning the number of edge covers for the tree obtained by 
replacing the cycle {e1, e2, e3, …, ec} with one vertex v. All 
vertices in TC that was incident to any of e1, e2, …, ec are 
now neighbors of v. The difference for computing Tree and 
Tree-Modify1 is that in the procedure for Tree there must be 
an edge incident to v while in Tree-Modify1 we may not 
select all edges incident to v as all edges in the cycle are 
assumed to have been selected. 

Tree graph with two or more cycles: A Tree graph with 
two or more cycles is an iterative process of the tree graph 
with one cycle procedure. 

Let Tree-with-Two-Cycles(TC, S1, S2) be the procedure 
returning the number of edge covers for the tree with two 
(intersecting) cycles TC assuming that edges in set S1 are 
not selected and edges in S2 are selected. 
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Tree-with-Two-Cycles(TC, �, �) 

{  

Let e1, e2, e3,…, ec be the edges in the two cycles in TC. 

  num_edge_cover=0; 

  for(i=1; i<=c; i++) 

  { 

         num_edge_cover +=Tree-with-One-Cycle(TC, {ei}, 
{e1, e2, …, ei-1}); 

  } 

    num_edge_cover+=Tree-Modify2(TC, {e1, e2, …, ec}) 

} 

Tree-Modify2 is the procedure returning the number of edge 
covers for TC after we collapse the two cycles into two 
vertices if these two cycles do not intersect, or collapse the 
two cycles into one vertex is these two cycles intersect. After 
collapsing cycles to vertices we obtain a tree. The difference 
for computing Tree and Tree-Modify2 is that in the 
procedure for Tree there must be an edge incident to every 
vertex while in Tree-Modify2 we may not select all edges 
incident to the collapsed vertices as all edges in the cycle are 
assumed to have been selected. 

Example1: Consider the tree graph with one cycle in it. For 
the finding the number of edge covers for a graph with one 
cycle we will follow the procedure Tree-with-One-
Cycle(TC, �, �) which is presented above. 

 

                              e1              e2       e3 

                                                           e8 

 

                e4                 e5                   e6            

 

 

Figure 4a: tree graph with one cycle 

For the above we will first remove the edge e3 as shown in 
Figure 4a(i) then we are left with a simple tree graph and the 
procedure for discovering the edge covers for a simple tree 
graph is presented in Case 2. After finding the number of 
edge covers we will now remove the edge e2 and have edge 
e3 selected as shown in Figure 4a(ii)  then we are again left 

with a simple tree graph follow the same procedure 
presented in Case 2 above. 
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Figure 4a(i):removing the edge e3 

 

                              e1              e2       e3 

                                                          e8 
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Figure 4a(ii): removing the edge e2 

Now consider the edge e8 is removed and the edges e2, e3 

are selected as shown in Figure 4a(iii) then apply the 
simple tree graph procedure to obtain the number of edge 
covers 
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  Figure 4a(iii): Removing the edge e8 

Now all the edges in the cycle are selected 
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Figure 4a(iv): All the edges in the cycle are selected 

After the solving the edge covers for the cycle we will 
collapse the entire cycle into a single vertex v1as shown in 
the Figure 4a(v) below. 

 

 

                              e1              e2        

                                                         

 

                e4                 e5                   e6            

 

 

Figure 4a(v): Collapse the cycle into one vertex v1 

Example2: Consider the below figure as an example for the 
tree graph with two intersecting cycles 

 

                              e1              e2       e3 

                                                          e8 

 

                e4                 e5                   e6            e7 

 

 

Figure 4b: Tree graph with two cycles 

Form the above example we assume the edge e3 is deleted 
then we ended up with a graph with one cycle shown as 
below Figure 4a(i). For a graph with one cycle we will 
follow the procedure Tree-with-One-Cycle(TC, {e3}, �) 

and then we assume that the edge e2 is not selected and e3 is 
selected as shown in Figure 4b(ii) then we will again end up 
with a graph with one cycle and follow the procedure 
presented in the case of single cycle. 
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Figure 4b(i): tree graph with one cycle 
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                                                            e8 

 

                e4                 e5                   e6          e7 

 

 

Figure 4b(ii): tree graph with one cycle 

Similar is the cases with e3 and e2 selected and e8 
unselected, with e3, e2, e8 selected and e6 unselected, with 
e3, e2, e8, e6 selected and e7 unselected. And finally with 
e3, e2, e8, e, e7 all selected and then we will collapse the 
two cycles into a single vertex v1 in the graph as shown 
below Figure 4b(iii) which will result in the simple tree 
graph. But when we count the number of edge covers in this 
tree we may unselect e1 as all edges in the cycles are already 
selected. 

                              e1               

                                                         

 

                e4                 e5                 

 

Figure 4b(iii): Simple tree after collapse of the two cycles 
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The example which we considered in the case of two cycles 
graph is a graph with two intersecting non overlapping 
cycles. The graph is with two overlapping cycles is actually 
considered as a graph with three intersecting cycles as 
shown in below Figure 4c. in which there are two 
overlapping cycles: {e1, e2, e6, e9, e5} and {e2, e8, e9, e7, 
e3}.  

 

                              e1              e2       e3 

                                                         

 

                e4                 e5               e8        e6            e7 

 

                                                           e9 

 

 

 

Figure 4c: Graph with three intersecting cycles 

Our approach can solve the edge cover problem for graphs 
of any number of intersecting cycles.                               
The computation of number of edge covers for a graph 
G(V,E) with a simple cycle has a time complexity of �(n) 
where n being the number of edges. Likewise for a graph 
with two intersecting non-overlapping cycles - The first 
cycle can be computed in �(n) and after computation the 
whole cycle collapse into a single vertex then the second 
cycle can be solved in an another �(n) time. Therefore the 
total graph be computed in �(n2). The time complexity of 
the graph increases with respect to the number of non-
overlapping intersecting cycles. 

4. Conclusion and Future work 
With the help of the edge covers algorithm for the simple 
graph structure we can even the find the edge covers for the 
graph with complex by applying the same procedure 
repetitively. This paper has shown the examples of tree 
graphs with two cycles in it. When the tree graph with more 
than two cycles similar is the case. Though finding the edge 
covers for the complex structure seems to be difficult but for 
the same structure when we solve it in a sub problems it 
quite easy.  
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Abstract – Designing a fast keyword search algorithm is 

one of the many challenges search engines face today. A 

search engine usually receives a conjunctive query as input 

and has to deliver a set of relevant results as output to users. 

The main factors of consideration while proposing such an 

algorithm is efficiency and pragmatism. In this paper, we 

discuss effective search algorithms for keywords search by 

set intersection. The main idea is to use a ‘least frequent 

first search’ approach, thereby reducing the number of set 

intersection computations. We also discuss better ways to 

perform set intersection showing trie and graph structure 

approaches. 

Keywords:  Search engine; set intersection; trie; graph; 

perfect hash;  

1. Introduction 

The notion of algorithm has existed for centuries and 

the perception of writing an algorithm to solve a 

computational problem has been changing rapidly ever 

since. With new requirements come new challenges, and 

designing an effective search engine algorithm is one of the 

many popular and heuristic computational problems today. 

There have been many approaches proposed to design 

text matching techniques like inverted lists [4], signature 

trees [5] [6], treaps [7], etc. In this paper, we will propose 

better approaches and substantially different techniques to 

achieve better performance keeping in mind the real time 

scenarios. We consider the problem of retrieval of 

documents containing multiple keywords as a conjunctive 

query of the form   q1 ^ q2 ^ q3 ^…..^qn. If a document D  

 

 

 

 

 

is retrieved by the system, then it implies that D contains a 

positive result for each query qi  Q where 1  i n and Q 

is set of such queries Q = {q1, q2, q3…..,qn}. Each query 

in this set returns a set of documents containing that query 

word. We need to perform an intersection on all of these 

sets and come up with an efficient technique to do so, so 

that both time and resources are minimized. 

We suggest a ‘least frequent first search’ method where 

in, we reduce the time and resources consumption by 

starting our keyword search from the keyword with the 

least frequency among all documents. We implement this 

idea using a trie structure [8] and graph structure. The trie 

structure approach was first presented in [1]. However, in 

[1] the most frequent first search method was used. We 

shall show that by using the least frequent first search 

method, the performance is be more efficient. 

2. New Approaches 

Consider the problem of finding a list of documents 

containing a set of words. Since we have a set of documents 

which contain a specific word, we have to perform set 

intersection on multiple sets. For example, if word w1 is in 

set of documents S1={d1,d3,d4,d7} and word w2 is in set 

of documents S2={ d2,d3,d5,d6,d7}, then a set intersection 

S1∩S2 is required to find documents which contain both 

words w1 and w2, which is {d3,d7}. In order to speed up 

this computation, we pre-compute some data structures. 

A trie is a special tree structure, where the node 

positions represent their associated keys unlike in other 

search trees where nodes store their associated keys. In [1] 
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a trie structure was built and a word search algorithm 

searching from higher to lower frequent words was 

presented. In Section 3, we show that a search algorithm 

searching from lower to higher frequent words is much 

more efficient.  

A graph is a set of vertices and edges where vertices 

represent objects and edges between them represent any 

result or relationship obtained by mathematical or logical 

computations. In Section 4, we propose a completely new 

approach to keywords search using undirected graph 

design. We design an algorithm much more efficient than 

that discussed in Section 3 and it achieves higher 

performance. We retain our main idea of ‘least frequent 

first search’ in this algorithm. We also discuss the data 

structures to implement the graph approach in real time and 

show the detailed computation results.  

3. The Trie Approach 

In this section, we discuss various steps involved in 

constructing a trie structure by applying the ‘least frequent 

first search’ idea and compute results to evaluate and show 

that this approach gives much better performance. The trie 

approach was first presented in [1]. However, the most 

frequent first search method was used there. Here we 

follow the example of the trie constructed in [1] but use a 

least frequent first search approach. 

	 Constructing Trie and Assigning Intervals 

We construct a trie structure with keywords as vertices 

such that keywords in the same document fall in the same 

path, with least frequent words at top level of the trie. 

Consider eleven documents D={1,2,3,4,5,6,7,8,9,10,11} 

and keywords in the documents as shown in Fig. 1a . The 

inverted list for these keywords is shown in Fig. 1b.  

The root vertex of the trie is taken as a virtual vertex 

with empty word є. We now add the least frequent keyword 

to the tree i.e. b and then add the next least frequent 

keyword, c, and so on to the tree in such a way that 

keywords in same document are in the same path. 

Whenever we do not have a compatible path for a keyword, 

we try adding it to another vertex in the tree at which a 

compatibility can be established. Only when there is no 

possibility of adding it to the existing vertices, we add a 

new subtree to the root.  

DocID   Words sorted with frequency 
1 a,f,d 
2 a,d 
3 a,d,e 
4 b,a,f 
5 c,d,e 
6 c,f,d,a 
7 a,f,d,e 
8 b,f,d,e 
9 c,e 
10 a,f,e 
11 c,f,e 

 

Fig. 1a 

                          b:   {4,8} 
                          c:   {5,6,9,11} 
                          a:   {1,2,3,4,7,10} 
                          f:    {1,4,6,7,8,10,11} 
                          d:   {1,2,3,5,6,7,8} 
                          e:   {3,5,6,7,8,9,10,11} 
 

Fig. 1b: Inverted lists for keywords. 
 

We follow the digital encoding discussed in detail in [1] 

using concepts in [3] [9], which uses lowest rank of the 

sub-tree and rank of the vertex in post order traversal as 

starting and ending interval bounds respectively. The 

resultant interval sequences are shown in Fig. 1c. The 

complete trie and interval sequences marked to the 

respective vertices is shown in Fig. 1d.  

b:  [9,14] 
c:  [1,8]  
a:  [9,10] [15,21] 
f:   [4,7] [9,9] [11,13] [15,18] 
d:  [2,3] [4,5] [11,12] [15,16] [19,20] 
e:  [1,1] [2,2] [4,4] [6,6] [11,11] [15,15] [17,17] [19,19] 

 
Fig. 1c:  Interval Sequences. 
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We observe that there is no path with a higher 

frequency keyword above a lower frequency keyword i.e. 

the ‘least frequency first search’ approach is implemented. 

Also, vertices on the same path in the trie are in the same 

document.  

Fig. 1d: Resultant Trie structure. 

	 Assigning Document Sets to Intervals 

We will also need document identifier information at 

each vertex to be able to find the documents corresponding 

to each interval or vertex. We use information from Fig. 1b 

and allocate document IDs to vertices such that at each 

vertex, the document identifiers allocated contains all 

words taken from root to itself. Fig. 1e shows such a trie 

structure. 

 

   Fig. 1e: Trie with document identifiers. 

 

	 Search Query Evaluation 

We now check interval containment to conclude if two 

words are in the same document. Choosing least frequent 

word first, reduces the number of interval comparisons to 

find a document containing all words in query. 

We take the example of finding documents containing 

the words ‘a’ and ‘b’. We choose these nodes keeping in 

mind that ‘b’ is of least frequency and ‘a’ has an average 

frequency among all other nodes. We first put words in 

increasing order of their frequency, i.e. b, a. Interval 

sequences for these are Ib = [9, 14], Ia = [9, 10] [15, 21]. 

Using the process proposed to check for interval 

containment in [1] or by observation, we have that interval 

[9, 10] is contained in interval [9, 14]. Here, we check if an 

interval of higher frequency word is contained in an 

interval of lower frequency word as lower frequency 

intervals are above higher frequency intervals in our trie. 

Thus by matching the resultant interval [9, 10], to 

document Identifiers from Fig. 1d and Fig. 1e, we conclude 

that document {4} contains both the words b and a. 

As discussed in [1], for the same query search, intervals 

for b and a respectively will be I’b = [5,5], [12,12], I’a = 

[1,1] [3,3], [5,6] [8,8], [11,11] [16,16]. As compared to our 

approach of ‘least frequency first search’, we observe the 

below improvements: 

a. Number of intervals for ‘b’ and ‘a’ are lesser, reducing 

the time to perform interval containment. 
b. We search from lower frequency to higher frequency 

keyword intervals. From intervals in Fig. 1c we 

observe that each time we check two interval 

sequences, we check lesser number of intervals with 

another lesser number of intervals as compared in [1].  
c. It is more likely that we get no interval containment 

when checking two less frequent words than when 

checking two more frequent words. Thus, by 

following this new approach, if there is no document 
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satisfying the conjunctive query, we can conclude it 

earlier and eliminate useless checking steps. 

4. Graph Approach 

We propose another solution to this problem using 

graph structure instead of a trie structure. Our graph will 

have words as vertices and a link between two vertices 

would represent the documents which contain both words. 

Similarly we could represent multiple words in a document 

with a clique which is a subset of vertices of a graph such 

that every two distinct vertices are adjacent. We implement 

this method using matrix along with linked lists and perfect 

hash tables. We retain the approach of ‘least frequent first 

search’ approach in this method.  

4.1 Building Graph and Matrix 

Suppose a graph G’ represents a subset of a complete 

graph formed from the keywords and document IDs used 

in previous sections in Fig. 1a, such that it shows the graph 

structure for only c, a, f and d keywords. The document sets 

with any two keywords is found by using the inverted lists 

of keywords in Fig b. The Figure 1 represents the structure 

of such graph G’.  

 

Fig. 2a: G’ (c,a,f,d) 

As we see in the graph G’, there is no edge joining c 

and a as there are no documents which contain both the 

keywords c, a. We can represent this type of graph structure 

using a 4×4 matrix as shown in Fig. 2b. 

  C a f d 
c Pc Pca Pcf Pcd 
 a Pca Pa Paf Pad 
f Pcf Paf Pf Pfd 
d Pcd Pad Pfd Pd 

 

Fig. 2b: Matrix M’(c,a,f,d) 

Here M’[c,c] = Pc can represent the set of documents 

containing c and element M’[c,a] = Pca represents the set of 

documents containing c and a, and so on. In this scenario, 

we have Pca = Ø if there are no documents which contain 

both c and a.  

These sets can be implemented as linked lists in real 

time. In such a scenario, any element M’[x,y] = pxy in the 

above matrix will be considered as a pointer to the start of 

a linked list, where x and y value range from c to f. Fig. 2c 

shows the linked list for M’[a,f] = Paf and represents the set 

of documents containing both a and f which is  [1-> 4-> 7-> 

10-> NULL].  

We will also build perfect hash tables for each of the 

document sets in Matrix M, by using a perfect hash 

function. A perfect hash function is a hash function which, 

for each unique value as key, will map to a distinct integer 

such that there are zero collisions. The build time and look 

up time for a perfect hash table for n elements is 

O(n(lglgn)2) and constant time of O(1) respectively [2]. 

Example hash table for combinations of words Hbc , Hca  

and Haf are represented in Fig. 2d where H represents a 

perfect hash function. 

 

Fig. 2c: Linked List for paf     
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   Fig. 2d: Hash Tables Hbc , Hca  and Haf 

4.2 Computing Intersection 

From the example in Fig. 1a, we construct a full graph 

by following process explained in Section 4.1. We will 

have a graph G as shown in Fig. 3. We will represent this 

graph as a 6×6 Matrix M as shown in Fig. 4. By looking up 

for the pointers we can jump to the start of linked lists 

containing set of resultant documents 

 

Fig. 3: Graph G 

  b C a F d E 
b pb pbc pba pbf pbd pbe 
c pbc pc pca pcf pcd pce 
a pba pca pa paf pad pae 
f pbf pcf paf pf pfd pfe 
d pbd pcd pad pfd pd pde 
e pbe pce pae pfe pde pe 

 

Fig. 4: Matrix M(b,c,a,f,d,e) 

In Fig. 4 , pb = [ 4-> 8->NULL]; pc = [5-> 6-> 9-> 11-> 

NULL]; pbc = [NULL]; pca = [NULL]; paf = [1-> 4-> 7-> 

10-> NULL]; pfd = [1-> 6-> 7-> 8-> NULL]; pde = [3-> 

5-> 6-> 7-> 8-> NULL]; …so on computed from inverted 

lists in Fig. 1b. 

We will now show how to perform set intersection on 

these sets (Step 1-7). We will consider the same scenario 

as discussed in Sections 3 and 4. If we have an inverted list 

as in Fig. 1b and we want to find documents containing a, 

f, d and e.  

1. Start with the least frequent word and the next least 

frequent word in the query. Since, ‘a’ and ‘f’ have the least 

frequency, we choose ‘a’ and ‘f’ first. 

2. Look up in the matrix M for the element representing 

pointer to document set containing both ‘a’ and ‘f’, which 

is M[a,f]. We get Paf, pointer to the linked list of 

Documents LinkListaf = [1-> 4-> 7-> 10-> NULL] as 

represented in Fig. 2d. 

3. Now, we choose the least frequent word and next least 

frequent word after ‘f’ in the query, which is ‘a’ and ‘d’ 

respectively. We look up for the perfect hash structure for 

‘ad’ i.e. Had= [1, 2, 3, 7]. 

4. Next, we perform a search using perfect hash structure 

Had, for each document in LinkListaf, by hashing each 

documentID from [1-> 4-> 7-> 10-> NULL] in  Had= [1, 2, 

3, 7].and return the matching document IDs to result set Rd 

= {7}. 

5. We now have result set from previous steps 

representing documents containing all the words ‘a’, ‘d’ 

and ‘f’. We repeat the above process for next least frequent 

word in the list which is e, but this time we will hash each 

document ID in the result from previous step (Rd) to hash 

table Hae.  
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 In Hae= [3, 7, 10], we search for elements in result set 

Rd = {7} from previous computation. We finally return 

matching document IDs to result set Re = {7}. 

6. The final output is the last result sets we get after we 

cover all keywords. In this case, it is Re = {7}, which is the 

final set of documents containing all words a, f, d and e. 

7. At any point in the above process, if we encounter an 

empty set as a result set, we terminate the process and 

return an empty set as the result set, which concludes that 

there are no documents containing all the keywords given 

in conjunctive query. In this example tough, we do not 

encounter an empty result set. 

4.3 Algorithm for Graph Approach and 

Evaluation 

 Consider a conjunctive query containing n words to be 

input which is sorted by their frequencies, in the increasing 

order. We denote such a query as W[2..n]. n must be at least 

two here as our conjunctive query must have a minimum 

of two keywords for the algorithm to compute intersection. 

 We resultant output is a set of documents containing all 

n words. As discussed in Section 4.2, we build a Matrix M 

with each pointer (pxy) pointing to start of a linked list 

LinkListxy. To access each document ID in the linked list 

in constant time, we built a perfectly hashed Hash table Hxy 

for all linked lists represented in matrix M. 

ALGORITHM docSearchG(W [2..n], R)                                                  

begin 
1. R � Փ;              /* initialize result set to empty set */     
2. if n = 2                                /* two keywords query */ 
3.     then do /*add all docs in LinkList12 to result set */  
4.     LinkList12 � M [W[1],W[2] ] ; 
5.     while (LinkList12 ! = NULL)   
6.            R  � R  (LinkList12 �data); 
7.            LinkList12 � (LinkList12 � next); 
8.     end while 
9.  else                    /* more than two keywords query */ 
10.      l � W[1] ;            /* set least frequent word to l */ 
11.      i=3                         
12.      k � W[i]; 
13.      while (LinkList12 ! = NULL) 

14.           if  searchHash (LinkList12 � data, Hlk) is true 
15.                 then do /* if key found, add to result set */ 
16.                    R  � R  (LinkList12 �data); 
17.           end if 
18.           LinkList12 � (LinkList12 � next); 
19.       end while             
20.       while (R != Փ and  i ≤ n) 
21.              Rp = R ;  /* assign previous result set to Rp */ 
22.              R = Փ;                     /* initialize result set R*/ 
23.              k � W[i++];   /* move to next word in W */ 
24.             for each r in Rp  
25.                if searchHash ( r, Hlk) is true 
26.                  then do /*if key found, add to result set */ 
27.                         R  � R  r; 
28.                end if 
29.             end for 
30.       end while     
31.  end if 
32.  return R 
 end 
 

From line 1-8, we check if the input has only two 

keywords. If so, we make result R as all the documents in 

LinkList12. As we discussed before, LinkList12 will 

contains documents containing both the words W[1] and 

W[2]. From line 9-31, we show computation if there are 

more than two keywords in the input. The 

searchHash(r,Hlk) at line 25 of the algorithm is a function 

which takes a document ID as first parameter and searches 

this documentID in the Hash table provided in the second 

parameter. If found, it returns true. In the second parameter 

(Hlk), the value of l is fixed to the least frequent word W[1] 

and the value of k varies from 3..n during each iteration, 

till all keywords are processed. This above algorithm is 

designed my mirroring the seven steps discussed in Section 

4.2. 

The output of the above algorithm is set R which 

contains all document identifiers, each containing the n 

words in them. If no document exists, which contains all 

the n words, this algorithm returns an empty set. The above 

algorithm can be evaluated for performance as discussed 

below. 

 The advantages of using a perfect hash for set 

intersection over linear or binary search algorithms are 
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significant. In case of binary search, we need to sort the 

input, which takes O(nlgn) time. Additional average time 

of O(lgn) is required for performing search on these sorted 

values. In our case, building a perfect hash requires 

O(n(lglgn)2) and search requires O(1). 

 Since we search from less frequent to more frequent 

words in the conjunctive query, we search relatively less 

number of documents on relatively smaller hash tables. 

Also, results from previous step are used to perform search 

in the next step. This hugely reduces the probability of 

checking same document IDs in multiple hash tables. Also, 

there are more chances of getting an empty set at an earlier 

step in the process, if we have no documents satisfying the 

query while using ‘least frequent first search’ approach.  

5.  Conclusion 

 In this paper, two approaches are discussed to solve the 

problem of set intersection for a conjunctive query. We 

mainly emphasize on the ‘least frequent first search’ 

method of searching keywords from a conjunctive query. 

This paper also explains how searching from lower 

frequency to higher frequency keywords considerably 

reduces the time required for such a search using set 

intersection.  

 In Section 3, we improved the method discussed in [1] 

by implementing it using ‘least frequency first search’. In 

Section 4, we propose a complete new approach of 

representing keywords and documents intersections using 

graphs, linked lists and perfect hash functions.  

 Future scope of topics discussed in this paper would be 

look at possibilities of improving the search performance 

in Section 4, by using better algorithmic approaches or data 

structure which help in better searching.  

 These methods will be specifically useful in designing 

search engines more efficiently and offer better 

performance to programmers and end users.  
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Abstract—Quantum computing is an exciting 
technology which utilizes the unique properties of 
quantum mechanics to increase the speed of 
classical computational operations in certain cases. 
However, understanding quantum computing 
requires knowledge of both computer science and 
quantum mechanics in order to develop and employ 
quantum algorithms. Thus, this paper provides an 
understandable introduction to quantum 
computing, and more specifically, quantum 
algorithms for computer scientists and practitioners. 
First, a number of foundational topics such as 
quantum measurement, RSA security, and Simon’s 
algorithm are discussed. Next, a detailed case study 
of Shor’s algorithm is presented as an example of 
how quantum algorithms can be utilized to solve 
computationally difficult problems. 

Keywords—Quantum Computing; Quantum 
Algorithms; Shor’s Algorithm; Simon’s Algorithm; 
RSA Encryption 

I. INTRODUCTION 

Currently RSA encryption is widely employed to 
protect digital information including e-mails, bank 
transactions, and even things as simple as text 
messages. The security of RSA is typically measured 
in the amount of time it would take to break the 
scheme and decrypt the data. Because the decryption 
process is relatively quick once the scheme is broken, 
the inherent strength of RSA relies on the tedious 
nature of finding prime factors to large numbers.  

Shor’s algorithm grants the ability to find these 
prime numbers much faster than current methods. It is 
because the current encryption scheme is relied on so 
heavily by both the private and government sectors—
to include the military, which drives a new field of 
study dubbed “post-quantum cryptography”. This 
field is concentrated on what to do after the physical 
implementation of sufficiently large quantum 
computers and the realization of Shor’s algorithm. 

In 1994 Peter Shor developed a quantum 
algorithm (i.e., a mathematical or quantum 
mechanical algorithm to be executed on quantum 

computer) to factor large numbers with prime factors 
extremely quickly [11]. This discovery threatens the 
security of RSA encryption directly. Although a large 
part of the algorithm is run on a classical computer, 
the key component that allows Shor’s algorithm to be 
so effective relies on quantum computing technology. 
Although quantum computing is still in nascent 
stages, researchers at MIT and the University of 
Innsbruck in Austria have published findings for a 
scalable architecture to execute Shor’s algorithm [1]. 
Although there are challenges associated with scaling 
this architecture to solve larger problems, this 
breakthrough is instrumental in the downfall of the 
RSA encryption scheme [13], [21], [22], [23]. 

Shor’s algorithm incorporates several quantum 
phenomena which are fundamental to quantum 
mechanics. It is vital to understand these quantum 
properties and effects before studying Shor’s quantum 
algorithm. Additionally, Simon’s quantum algorithm 
is also useful to understand before approaching Shor’s 
work because it is a much more simplified period 
finding algorithm. A brief introduction to quantum 
phenomena and an abbreviated RSA encryption 
overview will give us the background needed to 
approach both Simon’s then Shor’s algorithm in 
detail. 

II. QUANTUM PHENOMENA  

Quantum computing offers the ability to solve 
relational problems rather than execute set processes. 
Extracting this relational information is at the heart of 
quantum computing. In this section, we introduce 
several areas of quantum mechanics necessary for 
understanding quantum algorithms. 

A. Quantum Bits 
A classical bit is restricted to existing in one of 

two states (either a 0 or a 1), while a quantum bit or 
“qubit” is a quantum-mechanical system that exists in 
a superposition of states (a continuum between 0 and 
1). These qubits differ significantly from classical bits 
and because of the qubit’s unique properties (i.e., the 
ability to put qubits into a superposition of states and 
entangle them with each other) means that qubits can 
interact naturally, and in these interactions is where 
large amounts of relational information is stored [17]. 
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With regard to the Bloch Sphere in Figure 1, 
classical bits can exist as a unit vector in the z-
direction, straight up or down. These two states can 
also be described in a 2-dimensional vector space as 
two orthonormal vectors  and . Qubits on the 
other hand, are able to exist in a linear combination 
(superposition) of these two states [16]. This is best 
illustrated as the state of a qubit which can exist as 
any unit vector in the Bloch Sphere 

, subject to the constraint . The 
key difference is that the classical bit is restricted to 
existing solely in the direction of the unit vectors  
and , while the qubit can exist in any combination 
of  and . This means, the qubit can exist in an 
infinite number of states. 

 
Figure 1. Bloch Sphere [9].  

Many options are being considered for physical 
implementation of qubits including photons, trapped 
ions, electrons, superconducting materials, and atomic 
nuclei [2], [14], [15], [18], [19], [20]. 

B. Hadamard Gate 
The Hadamard gate is often one of the first 

operations in a quantum circuit model, as the ability to 
leverage the superposition principle of the qubit is 
what gives a quantum computer its power. The 
Hadamard gate, when used to operate on a qubit, 
maps a single qubit into a superposition of  and  
basis vectors with equal weight 

 where . This is best 

described as a horizontal unit vector (perpendicular to 
the z-vector, ) in the Bloch Sphere—a 
superposition of both states  and . For example, 
if there are 100 qubits in the model, and each is acted 
upon by a Hadamard gate, there now exists a 
superposition of all  possible solutions within the 
model. However, it is not possible to measure all these 
solutions. In a quantum system it is only possible to 
measure each qubit once, and thus, obtain a single 
solution. 

C. Measuring Qubits 
In a classical computer, bits can be measured and 

then remain in the same state afterwards; in a quantum 
computer, measuring the qubits forces the qubits to 
collapse into a particular state of the measurement 
basis (e.g., either  or ) [16]. Any superposition, 
which is where relational data is held, disappears once 
the qubit has been measured. This phenomenon is 
called the “collapse” of the qubit. It is important to 
note that no further data from the quantum system can 
be taken from the qubit after the measurement is 
performed, it is an irreversible process. 

D. Qubit Decoherence 
While purposefully measuring a qubit causes it to 

collapse, outside factors such as environmental noise 
(e.g., errant electro-magnetic waves) may also cause 
the quantum system to collapse before a proper 
measurement can be taken [8]. Quantum computing 
requires precisely controlled conditions in order for 
qubits to maintain superposition and become 
entangled (that the state of one qubit is dependent on 
the state of one or more other qubits) [17]. For 
example, the qubits maintained in D-wave’s adiabatic 
quantum computer must be kept at near absolute zero 
in order to effectively function in superposition [12]. 
Whether it be isolation from electro-magnetic waves, 
extreme temperatures, or other unknown factors, 
decoherence can cause major problems with the 
integrity of the data stored in the qubits. Solutions to 
this problem include isolation from environmental 
factors (e.g., controlled environments and shielding), 
as well as quantum error correction techniques to 
mitigate the effects of decoherence. 

E. Quantum Error Correction 
In a classical computer, in order to reliably store 

information for long periods of time, bits can be 
copied, re-copied, and stored redundantly. However, 
in a quantum computer, it is not possible to perfectly 
clone an unknown quantum state [6]. This is because 
the measurement inherently affects the qubit you wish 
to copy. However, it is possible to create a series of 
entangled qubits and use that series as a representation 
of a single qubit of information, this is called a 
“logical qubit” [3]. If one or a few of those entangled 
qubits erroneously change state due to decoherence it 
can be corrected by assessing its conformity with the 
other qubits within the logical qubit. 

III. RSA ENCRYPTION 

Modern computer systems use public-key 
cryptography such as RSA which relies on the 
difficulty of factoring the product of two large prime 
numbers. For most computer systems the time it 
would take to factor these large numbers becomes 
unreasonable, and therefore public key cryptography 
is able to provide strong security [10].  
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A. Key Creation 
The architecture of the RSA schema is comprised 

of three parts: a private key , a public key , and a 
publicly available very large number . The process 
of creating these keys starts with picking two very 
large prime numbers; typically called  and . Next, 
these numbers are multiplied to create a very large 
number : 

 (1) 

After the creation of , Euler’s totient of  is 
created, which is the total number of integers less than 

 which are relatively prime to  (i.e., all the integers 
in the totient and N have a greatest common divisor of 
1). Because Euler’s totient is multiplicative we know:  

 (2) 

Also, because we chose  and  as prime numbers, 
we know  and . This 
allows us to create the totient of : 

 (3) 

We now choose the public key  which is 
relatively prime to the totient of , meaning the 
greatest common divisor of the totient of  and  is 1. 
The fastest way to know if a chosen number and the 
totient of  are relatively prime is by using the 
Euclidian algorithm to calculate the greatest common 
divisor and check if it really is 1:  

 (4) 

Next, in order to calculate the private key, , we 
need to calculate the modular inverse of our public 
key . This is done by using the extended Euclidian 
algorithm. This process solves the following equation 
for  [2]: 

 (5) 

After the creation of the private key , the 
cryptosystem is complete and the 
encryption/decryption process can begin. At this point 
it is important to understand that only the large 
number  and the public key  are publicly available. 
The private key  is only known by the individual to 
whom it belongs and the totient  is discarded. 

B. Encrypting/Decrypting with RSA 
Once the private-public key pairs are created and 

appropriate distribution techniques are established, the 
encryption process is relatively straightforward. To 
encrypt the message  Bob wants to send to Alice, it 
is first encrypted using both Alice’s public key, , and 
the large number  which are available to Bob 
because they are public knowledge. The encrypted 
message is denoted by the letter : 

 (6) 

When Alice receives the encrypted message she is 
able to decrypt the message using her private key: 

(7) 

A simple overview of the public key encryption 
scheme is provided in Figure 2. 

 
Figure 2. Illustration of public key cryptography. 

IV. UNDERSTANDING QUANTUM ALGORITHMS 

Before moving on to a complex quantum 
algorithm such as Shor’s algorithm, understanding 
another—Simon’s algorithm makes the approach 
significantly easier. As Shor’s algorithm is a specific 
implementation of Simon’s algorithm, an overview of 
Simon’s period finding algorithm is useful. The 
quantum Fourier transform will be introduced later 
because it is used in Shor’s algorithm to speed up the 
period finding process. 

A. Simon’s Algorithm 
In 1997, Daniel Simon introduced a quantum 

algorithm to reduce the number of measurements 
required to solve an unknown period problem [5]. In a 
classical computer, finding an unknown period  
takes order  measurements, while Simon’s 
technique only requires  measurements where  
is the number of bits needed to represent the period in 
base 2 [3]. The classical method is akin to a guess and 
check until the unknown period is found and as the 
size of the period  grows, the number of 
measurements grows exponentially along with it. 
Using Simon’s algorithm, as the size of the period  
grows, the number of measurements only grows 
linearly with . 

Simon’s algorithm works through a series of 
quantum operations and measurements. First, the 
input and output registers must be initialized, which is 
by convention done in the state . Next, each qubit 
in the input register is operated on by a Hadamard 
transformation, putting the qubits into a state of equal 
superposition of all possible combinations. The state 
of the system is described as [4]: 

 (8) 

where  represents the input register after the 
Hadamard transformation such that  is in a 
superposition state and  represents the output 
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register still in its initialization state. Next, the unitary 
transform Ûf is applied to the superposition state of 
the input register  and stored in the output register, 
the new state of the system becomes [3]: 

 (9) 

After the unitary transform Ûf operates, the output 
register holds the results of the function , while 
the input register  is still in a state of superposition. 
Now suppose a measurement of the output register 

 is taken, and thus, collapses both the output 
and input registers. The output register collapses to a 
random evaluation of  called . The input 
register can now only exist in one of two states:  
or  according to the generalized Born rule 
[7]. This is because the function (the unitary transform 
Ûf) is defined as having the same result for two 
specific inputs (i.e., the function is periodic under 
bitwise modulo-2 addition) and . 
The resulting state of the input register is [3]: 

 (10) 

The input register, although it now contains 
valuable information (i.e., we can solve for  given 
both states), is not as useful as it seems because the 
register can only be measured one time. Successive 
trials would yield more random values for  and 

 satisfying different measured outputs, which 
would not help solve for the unknown period  
efficiently.  

The next step in this process is to again apply the 
Hadamard transformation to the input register 

, and the state of the quantum system 
becomes [3]:  

 (11) 

where  represents the output register. More simply, 
the input register can be interpreted as the expansion 
coefficient of the output register (

 becomes ) and Eq. (11) simplifies to 
[4]: 

 (12) 

From Eqs. (11) and (12), we know that the 
coefficient of the output register  will be 0 if 

. Because the probability of a measurement 
is represented by the absolute value squared of the 
expansion coefficient, , this means the 
probability of measuring a solution in which  

is 0. Thus, the output register  is limited only to 
solutions in which .  

For this reason, any measurement of Eq. (12) must 
yield a random  in which , where each  
value obtained reduces the possible choices for the 
period  by half. This allows the unknown period  to 
be found in only  invocations of Simon’s 
algorithm by the creation of a system of equations for 

 which is comprised of  equations. 

B. Quantum Fourier Transform 
The quantum Fourier transform (QFT) is an 

important part of Shor’s algorithm because when 
introduced, it emphasizes a relationship between the 
states of an input register, the period of the function, 
and the total size of the register. The QFT (denoted as 

) like all other valid quantum operations is a 
linear, unitary operator. The QFT maps  qubits to  
qubits (the output size of the QFT is the same as the 
input size in terms of number of qubits), and the effect 
of the QFT on a register is [3]: 

(13) 

The QFT operates on the input register  to 
create a set of states in the output register  with the 

probabilities of measurement of  for each 
state. The QFT, like the other operators, can also 
operate on a superposition of states which is 
invaluable for Shor’s algorithm. 

V. SHOR’S ALGORITHM 

Introduced in 1994, Shor’s algorithm is a quantum 
algorithm designed to quickly solve prime factors of a 
given number which is of great concern in modern 
cryptography—specifically the RSA public key 
cryptography [11]. The method Shor created to solve 
these prime factors utilizes a number of classical 
computing processes and only leverages quantum 
computing to solve one aspect of the problem—
finding the period. This piece of Shor’s algorithm is a 
specific realization of Simon’s algorithm.  

As shown in Table 1, Shor’s factoring process can 
be summarized in five steps, of which only the fourth 
step is quantum in nature—the very same step is the 
most computationally intensive part of the process [4]. 
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Table 1. A summary of the factoring process [4]. 
1.  If N is even, return a factor of 2. Otherwise, continue to the next 
step. 
2.  Check whether  for integers  and  such that  
and . If  then return the factor . 
3.  Randomly choose an integer  and compute 

. If  then return the factor . If 
 (i.e., if  is a coprime of ) then continue to the 

next step. 
4.  Find out the order  [period] of . If  is even and  

 then continue to the next step. Otherwise, 
restart from Step 3 with a different x. 
5.  Compute  and check whether one of them is 
(or both of them are) nontrivial factor (factors) of . If so, then 
return the factor (factors). Otherwise, restart from Step 3 with a 
different . 

The remainder of the paper focuses specifically on 
understanding Shor’s quantum algorithm contribution 
as described in step 4, where the order  is the period 
of the function which needs to be found. Just as in 
Simon’s algorithm, we will consider both an input and 
an output register throughout each step.  

A. Understanding Shor’s Quantum Algorithm  
The output register must be able to hold , in 

binary form. This means, for example, if  the 
output register must contain at least 6 qubits because 
64 is represented within 6 binary digits ( ). 
The size of the output register (the number of qubits 
required), will be denoted as .  

The input register generally needs to have twice as 
many qubits as the output register ( ). This 
configuration is desirable so that the input register can 
contain at least  different states that produce the 
same output — this gives us more “workspace” with 
which to capture the period of the function. The size 
of the input register is denoted as . 

Entering step 4 of the process, we know that the 
number to be factored is  and we have already 
chosen an which is coprime to . First, the input 
and output registers must be initialized to a known 
value (typically ): 

(14) 

The quantum system or total wave function of the 
system is written as |  at step 0 with the input and 
output registers (  and , respectively) initialized to 

. Next, the input register is put through  Hadamard 
gates, placing the input register  into a state of 
superposition represented as  [4]: 

(15) 

Next, the superposition state  is operated on by 
a modular exponent and the result is stored in the 
output register [4]: 

(16) 

Notice the similarity with Simon’s problem with 
this method. Next, a measurement of the output 
register, yields a random value of  called 

. This measurement forces the input register into a 
state of superposition of all the possible inputs that 
would yield the measured value , satisfying the 
generalized Born rule [7]. The total number of valid 
input states is represented as . The function is 
periodic so we know that the valid inputs for a 
particular solution are , where the 
value of  is the smallest possible input for this 
function that yields  and any multiple  of the 
period  added to the smallest value  will yield the 
same . 

Focusing on the input register, which now 
contains the values of interest, and temporarily 
disregarding the output register, the total wave 
function at step 3, without the output register is now 
[4]: 

(17) 

Similar to Simon’s problem, valuable information 
is stored in the input register and if it was possible to 
make a copy of it, the period  could be found in a 
small number of measurements. However, only one 
measurement yielding a random number can be taken 
and successive measurements would yield more 
random numbers for different measured outputs.  

Since, the number of qubits in the input register is 
double the output register, the number of solutions 
that can simultaneously exist in the input register 
satisfying   is large. Thus, the next step is to 
apply a quantum Fourier transform to the input 
register yielding [4]: 

 
(18) 

where the input register is now represented as  and 
useful information can now be measured.  
B. Finding the Period 

Simplifying Eq. (18) and using the substitution 

 gives a wave function of the input register 
[4]: 

(19) 

From this wave function, the probability of measuring 
any particular  is given by [4]: 

Int'l Conf. Foundations of Computer Science |  FCS'16  | 29

ISBN: 1-60132-434-0, CSREA Press ©



(20) 

This means the inputs will constructively interfere 
when  is close to an integer and destructively 

interfere when  is otherwise. This raises the 
probability of measuring a particular input  that, if C 
is an integer, satisfies  . Moreover, if this value 
of  is close to an integer, we know that , and 
therefore the probability of measurement is [4]: 

(21) 

Thus, the probability of measuring a specific value 
in the input register  that satisfies  is 

approximately , which is much higher than the values 
in the input register which destructively interfere. 

The final quantum step of Shor’s algorithm is to 
measure the input register . The result of this 
measurement is assumed to follow the high likelihood 
that . Assuming this is true, we can rearrange 
the equation to understand the relationship better [4]: 

(22) 

The quantum part of Shor’s algorithm is now 
complete and the rest can be handled by a classical 
computer. The quantum aspects of Shor’s algorithm 
result in a high likelihood of a solution which satisfies 
a relationship between the period , the solution space 

, an integer , and the measured result . Since the 
result  and solution space  are known, we can 
solve for the left half of Eq. (22) and find an 
equivalent integer fraction to solve the right hand side. 
More specifically, the continued fraction method is 
used to solve for the period .  

Since we know that  is likely an integer, thus , 
,…,etc. are also likely integers. This means that 

when we find the equivalent fraction for the right 
hand side we must also consider that   and 

  and so on, are valid solutions as well. Using 

the number of steps to convergence in the continued 
fraction, an initial value for the period  is generated. 
The initial period  must be double checked by 
substituting the value  back into the original equation 
we are trying to solve: 

(23) 

If the statement is incorrect, then small multiples of  
can be tried, since , , ,…,etc. are all integers. 

This process is used to find the smallest period  that 
satisfies Eq. (23). 

Lastly, the value  must also be even and satisfy 
the condition . If  does not satisfy 
these conditions, the quantum algorithm must be re-
accomplished with a new value for our initial coprime 
number . Once this step has been accomplished 
successfully and one or both prime factors of  has 
been found—the factoring process would be 
complete. If only one prime factor is found, simple 
division of by the known value would yield the 
other prime factor. Knowing the prime factors to  
would effectively break the RSA encryption because 
once the prime factors are known the private key can 
be computed easily. 

C. Breaking RSA 
To break the RSA encryption an alternate step 

may also be used. An overview of this attack on RSA 
public-key encryption is provided in Figure 3.  

After finding the period , a pseudo-private key  
can be created satisfying [3]: 

(24) 

Using this value for , the original content of the 
encrypted message  can be easily decrypted [3]: 

(25) 

 
Figure 3. An overview of the alternate method to break public key 

encryption using the period. 
 

VI. CONCLUSIONS 

Peter Shor made a very important contribution to 
the field of quantum algorithms with his realization of 
quantum period finding—its relation to the RSA 
encryption scheme has drawn international acclaim 
and notoriety from renowned security specialists. 
However, there have been many other discoveries as 
to the types of computations quantum computers can 
perform. Currently, three classes of algorithms: (i) 
algebraic and number theoretic; (ii) oracular; and (iii) 
approximation and simulation are highlighted in the 
“quantum zoo,” the most complete compendium of 
quantum algorithms available [24]. Unfortunately, 
each of these algorithms needs to be further studied 
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and expanded upon as they wait to be applied on a 
quantum computer. 

Further study of this area needs to run parallel 
with the kinds of difficult problems we are facing 
using classical computers to determine how we can 
leverage the strengths of quantum computing. In this 
work, we have built a foundation for understanding 
quantum algorithms by first understanding the 
quantum phenomena necessary for quantum 
computing and then demonstrated the importance of 
applying quantum algorithms by using Shor’s 
algorithm. This work provides a starting point for 
those interested in quantum computing and quantum 
algorithms. 

DISCLAIMER 

The views expressed in this paper are those of the 
authors and do not reflect the official policy or 
position of the United States Air Force, the 
Department of Defense, or the U.S. Government. 
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Abstract—We present a new design for reversible adder
that realizes quantum arrays in one-dimensional Ion Trap
technology. In this architecture all gates are built from 2x2
quantum primitives that are located only on neighbor qubits
in a one dimensional space, which is also called Linear Nearest
Neighbor (LNN) architecture. This proposed reversible adder
circuits are different from most of reversible adder circuits
obtained by synthesis methods that use only high level quantum
cost based on the number of quantum gates. This means
that most of the previous works have not considered the
cost depending on the distance between two qubits in a gate,
even if these qubits are located far away in physical space
one from another. From a practical point of view and with
respect to nanotechnologies such as quantum optics, nuclear
magnetic resonance (NMR), and Linear Ion Trap technology,
our proposed design of reversible adder is very cost effective.

Keywords-Reversible Adder circuits; Quantum Cost;
Quantum gate Linear Nearest Neighbor Architecture;
Nanotechnology;

I. INTRODUCTION

The basis of thermodynamics of information processing

was shown that conventional irreversible circuits unavoid-

ably generate heat because of losses of information during

the computation. It has been shown by Landauer that for

every bit of information lost in logic computations that are

not reversible, kT ∗log2 joules of heat energy per computing

cycle is generated, where k is Boltzmanns constant and T
the absolute temperature at which computation is performed

[1]. This resulting dissipated heat also causes noise in

the remaining circuitry, which results in computing errors.

Bennett showed that the dissipated energy directly correlated

to the number of lost bits, and that computers can be

logically reversible, maintain their simplicity and provide ac-

curate calculations at practical speeds [2]. Therefore, logical

reversibility is a necessary (although not sufficient) condition

for physical reversibility. In fact less power dissipation in

logic circuits is possible only if a circuit is composed of

reversible logic gates.

Most papers in the literature about automated synthesis of

quantum and reversible (permutative) circuits are not related

to any particular quantum realization technology [3], [4],

[5], [6], [7], [8]. The model used in most of the previous

permutative quantum circuit synthesis assumes that there

can exist a gate located between any two qubits, even if

these qubits are located far away in physical space (in

vector) one from another. This assumption was accepted in

a theoretical framework but from a practical point of view

and with respect to particular technologies (such as Ion trap

in this case) creating gates on arbitrary qubits is not only

extremely difficult but also cost ineffective; each gate has to

be properly converted and realized in an LNN architecture.

Thus, in general architecture independent synthesis models

are sufficient to approximate the real cost of small circuits.

For larger quantum circuits realized in the future as well

as for currently realizable circuits with about 12 qubits,

architecture dependent cost models and synthesis methods

are required. For instance in quantum optics [6], [7] such

architectural models require more development to take into

account more complex constraints such as time propagation

and physical size. In quantum optics, qubits also interact

by proximity using optical wires or crystals [6], [9], [10].

Therefore, it is safe to assume that the LNN cost model

is currently one of the most appropriate models for current

technologies. Circuits realized in LNN use quantum gates

defined only on neighbor qubits and the gates are built

from 1x1 and 2x2 quantum primitives. We believe that LNN

model should be used for Ion Trap and similar technologies

and new quantum cost models should be developed for other

specific technologies.

Adders are a key element in any arithmetic logic unit. It

is therefore important to have fast reversible adders. Early

implementations of binary adders using reversible logic,

such as [11], suffered from the generation of garbage bits

(n in the case of an n-bit ripple-carry adder). The novel

approach to ripple-carry adders introduced by Vedral et al.

[12] (VBE-adder ) solves the problem with generation of

garbage. It is obvious that the VBE-adder is not optimal

in the number of gates, logic width and logic depth. Two

n-bit adders based on this optimization were suggested by

Cuccaro et al. [13] (CDKM-adder). Another improvement

is the VanRentergem-adder [14], which has the lowest gate

costs compared to the VBE-adder and the two CDKM-

adders. However, all the mentioned adder only uses for

reversible modular arithmetic and we know that, the modular

arithmetic result does not reflect the overflow (carry out) of
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arithmetic operations. Moreover, some quantum technology

required to realize the circuit in an LNN architecture but

all the existing works neglect the restrictions of LNN based

quantum circuits. The implementation of adder circuit using

LNN model is not yet done by any researcher. With respect

to general quantum circuits the LNN model was introduced

by Fowler et al [14] for designing a Quantum Fourier

transform circuit and their work was improved in [15]. The

paper [16] considers theoretical aspects of techniques for

translating quantum circuits between various architectures.

This paper shows that the realization of an efficient

reversible adder with LNN for a programmable computing

device is possible and that the proposed design is a very

versatile approach to the design of quantum networks. In this

work we proposed n-bit adder circuits using LNN model

and we believe that LNN model of adder circuits should

be used for Ion Trap and similar technologies and new

quantum cost models should be developed for other specific

technologies. The work [18] uses the concept of merge gates

if both Controlled-NOT and Controlled-V or Controlled-V †

acting on the same two qubits in a symmetric pattern, their

total cost is considered as unit. Due to the fact that gates in

quantum circuits can be reordered in many different ways.

So, the question is whether more than two quantum gates

acting on the same two qubits can be replaced with a single

two-qubit gate of unit cost. This question also suffices which

elementary quantum gate sequences can be formed as single

gates that can be used cost effectively, and hence results

in reduced the search space in synthesis procedure. Paper

[19],[23] has shown that if a sequence of 1-qubit and 2-

qubit quantum primitives in a circuit act on the same two

qubits, then the sequence of gates can be represented by

a unitary matrix, and the logic operations in the sequence

can be performed as a two-qubit function of unit cost. In this

work, the rectangle box represented as a single gate with unit

cost. This section shows a complete set of reversible adders

for 1-bit and n-bit with LNN model. We apply optimization

technique [20] and 2-qubit gate library [19] to obtain the

optimized circuit after the elementary gate representation

and LNN circuit of the adder circuit.

The paper is organized into the following sections. Section

2 is an overview of reversible logic, quantum computing and

motivation for the LNN model. Section 3 is the proposed

design. Result analysis of the proposed design is presented

in section 4 and conclusions are contained in section 5.

II. PRELIMINARIES

We present the basic concepts of reversible and quantum

circuits with logic operation and the motivation for the LNN

model for quantum technology in this section.

In a binary boolean context, a reversible gate is an

elementary circuit component that realizes a bijection. To

satisfy this requirement, the function must have the same

number of inputs and outputs and commonly used traditional

NOT gate is the only reversible gate. A reversible function

can be realized by cascading reversible gates with fanout-

free and feed back free realization. Many reversible gates

have been proposed, in which Toffoli, Peres and Fredkin

are conventionally used to synthesize reversible circuits.

On the other hand, the logic representation in quantum

computation is quite different from the logic representation

in classical computation. The basic unit of information in

quantum computation is a qubit represented by a state vector.

The states |0〉 or |1〉 are known as the computational basic

states. The state of an arbitrary qubit is described by the

following vector [23]

|Ψ〉 = α |0〉+ β |1〉 =
(
α
β

)
, (1)

where α and β are complex numbers which satisfy the

constraint
∣∣α2

∣∣+∣∣β2
∣∣ = 1. The measurement of qubit results

in either 0 with probability
∣∣α2

∣∣, that is, the state |0〉 =
(
1
0

)

or 1 with probability
∣∣β2

∣∣, that is, the state |1〉 =

(
0
1

)
.

Contrary, a classical bit has a state either 0 or 1, which is

analogous to the measurement of a qubit state either |0〉 or

|1〉 respectively. The main difference between bits and qubits

is that a bit can be either state 0 or 1 whereas a qubit can

be a state other than |0〉 or |1〉 according to (1).

Many quantum gates have been defined and studied but we

concentrate on the elementary quantum gates NOT, CNOT,

Controlled-V and Controlled-V † , also known as quantum

primitives. This gates have been widely used to synthesis

of binary reversible functions. The elementary gates are

represented by their graphical representation [23] as shown

in Table I.

Table I
ELEMENTARY QUANTUM GATES AND THEIR GRAPHICAL

REPRESENTATIONS.

Gate Name Gate Symbols

NOT
x0 o0

CNOT

x0 o0

x1 o1

Controlled-V

x0 o0

x1 o1v

Controlled-V †

x0 o0

x1 o1v†

Any one primitive among CNOT, Controlled-V and

Controlled-V † can be formed by cascading the other two

primitives, referred to as splitting rules [23] that are shown

in Fig. 1 (a) and (b) respectively. Moreover, Controlled-V
and Controlled-V † can be replaced with each other resulting

in two more splitting rules shown in Fig. 1 (c) and (d)

respectively. The inverse of splitting rules is referred to as

merge rules. However, in quantum computation, the splitting

of a quantum primitives does not increase the number of
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two-qubit operations. If two adjacent gates are identity then

delete two gates and known as deletion rules in quantum

primitives [23]. Therefore, two NOT gates, two CNOT gates

and an adjacent V , V † pair (any order) with the same target

and control can be removed that are shown in Fig. 2.

Figure 1. Splitting and Merge rules in Quantum Primitives

Figure 2. Deletion rules in Quantum Primitives

Definition 1: The size of a circuit C is defined as the

number of its gates and denoted by |C|. The size of an

NCV circuit is also known as quantum cost.

From the denition [23], we can say that the number of

elementary quantum gates required for an implementation

of a reversible circuit.Consider the following Fig.3, which

is the elementary quantum gates representation of Toffoli-3

gate with quantum primitives. The quantum cost of Toffoli-3

is 5 as it required 5 quantum primitives for implementation.

Figure 3. Toffoli-3 gate with Quantum Primitives

The mobility of gates is determined by the moving rule

that relies on the following property [24]:

Property 1: Two adjacent gates g1 and g2 with controls c1
and c2 and targets t1 and t2 can be interchanged if c1∩t2 = ∅
and c2 ∩ t1 = ∅.

To prove this property, consider Fig. 3 where gates g1 and

g2 with controls x3 and x3 and targets x1 and x2 can be

interchanged because x3 ∩ x2 = ∅ and x3 ∩ x1 = ∅. After

that, gates g1 and g3 with controls x3 and x2 and targets x1

and x1 can be interchanged because it satisfies the condition.

In this way, gate g1 can be moved anywhere in the circuit.

A gate between any two qubits would mean an immediate

direct interaction between any two qubit in the circuit, which

is physically impossible some technology such as Ion Trap

due to space separation [21], [22]. In the simplest case, all

ions in Ion Trap are placed linearly (as a One-Dimensional

vector). Every qubit can interact with at most one neighbor

above and one neighbor below. This physical constraint

of 2-neighbor quantum layout of the substrate has much

influence on practical designs. Fig.4 shown the LNN circuit

for Toffoli-3 with quantum cost 9 which is however quite

expensive. It has 9 2x2 gates in 2-neighbors-only topology

after the minimization of certain gates. Conventional way

to calculate the quantum cost of the gate as a function of

number of inputs regardless of what is the distance of the

qubits used in this gate. This is not accurate when the circuit

is realized in linear Ion Trap technology. Nor is it good for

quantum optics or NMR technology that is currently in use.

There are other ways to realize this gate in layout, even

without ancilla bit. They are however even more expensive

when realized in linear Ion Trap.

Figure 4. Toffoli-3 gates when mapped to linear-neighborhood quantum
array

III. PROPOSED MODEL

A. Half Adder

Reversible half adder is implemented with two reversible

gates of which one Toffoli-3 and one NOT gate is shown

in Figure 5(a) [25]. The number of garbage outputs is one

represented as G and garbage input is one represented by

logical zero. The equation of the half adder is as follows.

Sum = A⊕B

Cout = AB

The elementary quantum gate realization is shown in Figure

5(b). Initial quantum cost of the elementary quantum gate

realization of half adder circuit is six. After optimized

the circuit shown in figure 5(b) quantum cost is four as

it requires two controlled-V gates each costing one, one

Controlled-V † gate with costing one and one NOT gate with

cost one which is shown in figure 5(c). This would be fine

if every two qubits can interact directly but they cannot.

So we required to transform Figure 5(c) to an LNN circuit.

To obtain the LNN circuits we use swap gate. Finally we

optimized the LNN circuits using quantum primitives rules
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such as splitting, merging and deletion rules and also used

gate library [19]. The final circuit for the half adder from

Figure 5(d) is then shown in Figure 5(e). The quantum cost

of LNN based half adder is 6 which is however expensive

than previous one.

Figure 5. (a) reversible half adder using reversible gate, (b) elementary
quantum gate realization, (c) optimized quantum circuit, (d) LNN realiza-
tion of optimized quantum circuit, and (e) optimized LNN realization

B. Full Adder

The design of reversible full adder with two Toffoli-3

gates and two NOT gates is as shown in Figure 6(a) [25].

The three inputs are A, B and Cin and the outputs are Sum

and Cout. The number of garbage input is one represented

by logical zero. The garbage outputs are two represented by

G. The equation of the full adder circuit is as follows.

Sum = A⊕B ⊕ Cin

Cout = AB ⊕ (A⊕B)Cin

Initial quantum cost of the elementary quantum gate real-

ization full adder circuit is eight. After optimized the adder

circuit, quantum cost is six as it requires three Controlled-

V gates each costing one, one Controlled-V † gate with

costing one and two NOT gate with cost one which is shown

in Figure 6(b). If we observe the optimized elementary

quantum gate realization of full adder circuit we can see that

gate 3 and gate 5 cannot interact directly. So we required

to transformations Figure 6(b) to create LNN circuits. We

obtained LNN circuits by using swap gate which is shown

in Figure 6(c). Finally we optimized the LNN circuits

using quantum primitive rules such as splitting, merging

and deletion rules and also using gate library [19]. The

rectangle box represents single gate which is obtained from

gate library. The final optimized circuit for the full adder

from Figure 6(c) is then shown in Figure 6(d). The quantum

cost of LNN based full adder circuit is ten. Our main goal

is to build n-bit adder circuit with LNN architecture. We

can build n-bit adder circuit by integrating the full adder

and half adder. We found that to build n-bit adder circuit

with LNN architecture the final optimized LNN circuit

for full adder shown in Figure 6(d) not satisfy the LNN

restrictions when integrate with half adder or full adder.

To satisfy the LNN restrictions we modify the design of

full adder by moving line shown in Figure 7(a). Optimized

quantum circuit using elementary quantum gate realization

is shown in Figure 7(b). LNN realization of the optimized

quantum circuit and optimized LNN circuit are shown in

Figure 7(c) and 7(d) respectively. The new quantum cost of

the modified optimized LNN realization is sixteen which is

however expensive than the previous realization. But the new

optimized LNN realization is maintain the LNN restriction.

Figure 6. (a) reversible full adder using reversible gate, (b) optimized
quantum circuit, (c) LNN realization of optimized quantum circuit, and (d)
optimized LNN realization

Figure 7. After moving Cin(a) reversible full adder using reversible gates,
(b) optimized quantum circuit, (c) LNN realization of optimized quantum
circuit, and (d) optimized LNN realization

Table II
QUANTUM COST OF ADDER CIRCUITS WITHOUT LNN ARCHITECTURE

Half Full
Adder Adder

Quantaum
Cost 4 6

Table III
QUANTUM COST OF ADDER CIRCUITS WITH LNN ARCHITECTURE

BEFORE AND AFTER OPTIMIZATION

Half Adder Full adder Full adder
(Modified)

Before After Before After Before After

Quantaum
Cost 10 6 18 10 24 16

C. Reversible n-bit binary adder

Integrating the optimized LNN circuit of half adder and

full adder, reversible n-bit adder can be constructed [25].

First we construct the n-bit adder using reversible gates
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which shown in Figure 8(a) for n-bit adder and Figure 9(a)

for n-bit adder with Cin. Note that in both adders the carry

is propagated immediately from one stage to the next. This

property helps to construct a fast n-bit adder to reducing

the circuit delay by immediately propagating the carry-out.

Figure 8(b) and 9(b) show the n-bit adder circuits using

LNN model for Figure 8(a) and 9(a) respectively. Table V

shows the results of the n-bit adder in terms of quantum

cost. As we discussed in the previous sections, we use new

optimized LNN realization of full adder circuit to build

the n-bit adder circuit with LNN architecture due to the

LNN restrictions. It will increase the quantum cost of the

n-bit adder circuit but this circuit is applicable in the recent

technologies. We also tried to design full adder with different

line arrangement but our new design shows the better result

than other arrangement.

Figure 8. (a) reversible n-bit adder, (b) and optimized LNN realization
of reversible n-bit adder

Figure 9. (a) reversible n-bit adder using full adder with Cin, (b) and
optimized LNN realization of reversible n-bit adder with Cin

Table IV
RESULT OF n-BIT ADDER WITHOUT LNN ARCHITECTURE

N -bit Adder N -bit Adder
with Cin

Quantaum
Cost 6n − 2 6n

Table V
RESULT OF n-BIT ADDER WITH LNN ARCHITECTURE

N -bit Adder N -bit Adder with Cin

Before After Before After

Quantaum
Cost 24n − 14 16n − 10 24n 16n

IV. RESULT ANALYSIS

There are many existing designs of reversible full adder

circuits which mainly concentrate the quantum cost in terms

of the number of elementary quantum gates required to

design. They assume that there can exist a gate located

between any two qubits, even if these qubits are located

far away in physical space one from another. This as-

sumption was accepted in a theoretical framework but from

a practical point of view and with respect to particular

technologies (such as Ion trap) creating gates on arbitrary

qubits is not only extremely difficult but also cost ineffective;

each gate has to be properly converted and realized in an

LNN architecture. Considering the physical constraint we

proposed new design for n-bit adder circuits. It has been

shown that the quantum cost of LNN circuits are higher

that non LNN circuits. The Tables III and V show the

result of our proposed model. Tables II and III show the

quantum cost of adder circuits without LNN architecture

and with LNN architecture before and after optimization

respectively. Without LNN the quantum cost of half adder

and full adder is 4 and 6 respectively which is the best

known result till now. To make this circuit applicable for

the LNN architectures, SWAP gates are applied for the each

non-adjacent quantum gate. More precisely, SWAP gates are

added in front of gate with non-adjacent control line to move

the control line of gate towards the target line until they

become adjacent. We can move the target line towards the

control line until they become adjacent as well. Afterwards,

SWAP gates are added to restore the original ordering of

circuit lines. The initial quantum cost of the LNN circuit

was 10 but after optimization we obtain a quantum cost of

6. Similar way, the quantum cost of the initial LNN circuit of

full adder was 18 and after optimization the quantum cost is

10. However, to build n-bit adder circuit we need to satisfy

the LNN restriction. To do so we modify the design of full

adder by moving line which we already discussed earlier

section. In Table III, the last two columns show the result of

the modified design of full adder circuit. The initial quantum

cost of the LNN circuit was 24 but after optimization we

obtain a quantum cost of 16. However, as can easily be

seen, synthesizing quantum circuits for LNN architectures

using this method often leads to a significant increase in the

quantum cost but, from the practical point of view and with

respect to particular technologies this circuit is applicable.

Table IV and V show the result of n-bit adder circuits with

and without LNN architecture.
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V. CONCLUSIONS

This paper presents reversible adders for n-bit using LNN

architecture which should be used in quantum optics, linear

Ion Trap, NMR and similar technologies where every qubit

can interact with at most one neighbor above and one neigh-

bor below. This physical constraint of 2-neighbor quantum

layout of the substrate has much influence on practical

designs. We also have shown that to design n-bit adder

circuit we need to design full adder by line reordering, which

leads to a significant increase in the quantum cost. With

respect to practical point of view and recent technologies this

circuit is applicable. In future, the design can be extended to

other different types of Adder/Subtractor unit, Multipliers,

Dividers and finally full phase low power Reversible ALUs

for recent technologies such as quantum optics, linear Ion

Trap, NMR where LNN architecture has much influence on

practical designs.
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Abstract—Since recent development and dissemination of
ICTs activate information exchange on social networks, the
dynamics for describing propagation of activities on the networks
has became an interesting research object. This paper proposes an
oscillation model describing the propagation of activities on social
and information networks. In order to analyze such dynamics, we
generally need to model asymmetric interaction between nodes.
This paper discusses a symmetric matrix-based model that can
describe some types of link asymmetry. Although the proposed
model is simple, it can reproduce well-known indices of node
centrality and can be considered as the underlying mechanism
of network dynamics. As an application of the proposed model,
we show a framework to estimate natural frequency of networks
by utilizing resonance.

Keywords—Laplacian matrix, coupled oscillators, node central-
ity, resonance

I. INTRODUCTION

Information exchange on social networks is being activated
by the popularity of information networks. So, complex dy-
namics for describing propagation of activities on the social
and information networks is a rich source of research topics.
In complex network analysis, there are a lot of indices that
can describe the characteristics of networks, including degree
distribution, clustering coefficient, and many kinds of node
centralities [1], [2], [3].

Spectral graph theory is a key approach for investigating
the structure of networks [4], and the eigenvalues and the
eigenvectors of the Laplacian matrix are important when inves-
tigating network structure. Spectral graph theory is applicable
to many problems including clustering of networks, graph
drawing, graph cut, node coloring, and image segmentation [4].
One of the most significant properties of spectral graph theory
is the fact that we can introduce graph Fourier transforma-
tion [6], [7], which is the diagonalization of the Laplacian
matrix. The advantage of graph Fourier transformation can be
found in its ability to decompose network dynamics into scales
appropriate for the network’s structure. As a result, complex
network dynamics can be understood as the superposition of
simple dynamics for each Fourier mode, and network dynamics
can be completely understood algebraically.

However, the decomposition of dynamics into Fourier
modes is effective only if the Laplacian matrix is symmetric.

This is because symmetric matrices always can be diago-
nalized. User dynamics on a social or information networks
is generated by the interaction of nodes on the networks.
This interaction is generally asymmetric. In other words, the
actions between nodes depend on the direction of links. To
represent asymmetric actions on links, directed graphs are
frequently used. Since the structure of a directed graph is
normally expressed by an asymmetric matrix, graph Fourier
transformation cannot be applied.

One proposal on spectral graph theory for directed graphs
transforms asymmetric Laplacian matrixes in Jordan canonical
form via elementary transformation [8], [9]. However, since
asymmetric Laplacian matrices cannot always be diagonalized,
decomposition of the dynamics into simple Fourier modes
remains unavailable.

This paper focuses on some types of link asymmetry that
can be represented as node characteristics, and represents the
structure of a directed graph by a symmetric scaled Lapla-
cian matrix. In addition, we analyze oscillation dynamics on
networks to describe the propagation of activities on directed
networks by using symmetric scaled Laplacian matrixes.

Typical examples of the asymmetric interaction of links
include the relationship between a popular blogger and the fol-
lowers. The strength of the interaction between them depends
on the direction of links, and the strength of activity propa-
gation on links is asymmetric. However, link directionality in
this case can be reduced to node characteristics. Furthermore,
since similar relations frequently appear in human relations,
we expect that various asymmetric links on networks can
be analyzed in terms of node characteristics. By using a
symmetric matrix to model asymmetric links, we can apply
graph Fourier transformation based on the symmetric scaled
Laplacian matrix and thus analyze oscillation dynamics on
asymmetric networks. Our framework adopts the mass of the
node as the node characteristic.

In our model, oscillation dynamics on directed networks
can be expressed by the equation of motion of the harmonic
oscillator for each Fourier mode. Since the phase of the
oscillation cannot be determined by the equation of motion,
oscillation dynamics may exhibit complicated behavior that
inhibits any intuitive understanding. Our solution is to use
the oscillation energy of each node, a phase-free index, to
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represent the strength of node activity. In simple cases, the
oscillation energy can reproduce well-known node centralities
of the degree centrality and the betweenness centrality. In
general, the oscillation energy depends on the propagation
attributes of network activity. Therefore, the oscillation energy
is an extended notion of the well-known node centrality. So,
we can expect that the proposed oscillation model is the
underlying mechanism of activity propagation on networks.

Since the oscillation energy can be measured as the strength
of node activity, the way of the usage of the measured value
of energy is important for applications. We introduce models
that describe the damped oscillation and the forced oscillation
on networks. As an application, we propose a method for
estimating the eigenvalues of the scaled Laplacian matrix;
called the network resonance method. The network resonance
method can estimate the eigenvalues by applying resonance of
the forced oscillation on networks even if components of the
scaled Laplacian matrix is not known.

This paper is organized as follows. In Section II, after
defining the Laplacian matrix for directed networks, we intro-
duce a scaled Laplacian matrix that allows asymmetric node
interactions to be described by a symmetric matrix. In Sec. III,
we analyze oscillation models to describe the propagation
of node activity on networks by using the scaled Laplacian
matrix. In Sec. IV, we propose the oscillation energy of each
node as an extended index of node centrality and discuss the
relationship to the well-known node centralities. In Sec. V, we
propose the network resonance method to estimate eigenvalues
of the scaled Laplacian matrix. Finally, we conclude this paper
in Sec. VI.

II. SCALED LAPLACIAN MATRIX FOR DESCRIBING

ASYMMETRIC LINK DIRECTION

A. Definition of the Laplacian Matrix

Network structure is frequently expressed as a matrix. Let
us consider loop-free directed graph G with n nodes. Let the
set of nodes be V = {1, 2, . . . , n} and the set of directed links
be E. In addition, let the link weight for link (i → j) ∈ E
be wij > 0. We define the following n × n square matrix
A = [Aij ] as

Aij :=

{
wij ((i → j) ∈ E),
0 ((i → j) �∈ E).

(1)

This matrix represents link presence and weights, and is called
the (weighted) adjacency matrix.

Next, we define the weighted out-degree, di, of node i
(i = 1, 2, . . . , n) as

di :=
∑
j∈∂i

wij , (2)

where ∂i denotes the set of nodes adjacent to node i. Also,
weighted out-degree matrix D is defined as

D := diag(d1, d2, . . . , dn).

If all link weights are wij = 1 for ∀(i → j) ∈ E, di is reduced
to out-degree, i.e. the number of outgoing links from node i.

Based on the above preparation, we define the Laplacian
matrix L of directed graph G as follows [4], [5].

L := D −A. (3)

The Laplacian matrix is also called the graph Laplacian.

B. Symmetrization of Laplacian Matrix and the Scaled Lapla-
cian Matrix

Let us consider left eigenvectors tm and their eigenvalues
λ as

tmL = λ tm. (4)

If there is a (left) eigenvector tm = (m1, m2, . . . , mn)
associated with eigenvalue λ = 0, and mi > 0 satisfies

mi wij = mj wji (≡ kij), (5)

then the link asymmetry of L can be expressed by using a
symmetric Laplacian matrix. Note that the oscillation dynamics
discussed in the following sections satisfies these conditions.
The procedure to represent L by a symmetric matrix is shown
as follows. First, we consider a undirected graph and introduce
its Laplacian matrix L as L := D − A, where A = [Aij ] is
defined as

Aij :=

{
kij ((i, j) ∈ E),
0 ((i, j) �∈ E),

(6)

and D = diag(
∑

j A1j ,
∑

j A2j , . . . ,
∑

j Anj). Since kij =
kji, L is a symmetric Laplacian matrix for a certain undirected
graph. By using L, the asymmetric Laplacian matrix L is
expressed as

L = M−1 L, (7)

where M := diag(m1, m2, . . . , mn) means the scaling fac-
tors of nodes. Figure 1 shows a simple example of the above
procedure: where wij = kij/mi is decomposed into 1/mi and
kij .

Here, we introduce the scaled Laplacian matrix that is
defined as

S := M−1/2 LM−1/2. (8)

Note that S is a symmetric matrix. Let x = t(x1, x2, . . . , xn)
be a (right) eigenvector associated with an eigenvalue λ, that is,
Lx = λx. By multiplying M+1/2 to the eigenvalue equation
from the right, we obtain

M+1/2 Lx = S (M+1/2 x) = λ (M+1/2 x). (9)

3
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Fig. 1. An example of the Laplacian matrix for a directed graph and its
symmetrization.
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This means the scaled Laplacian matrix S has the same
eigenvalues of L, and its eigenvector is y := M+1/2 x. Since
the quadratic form of S is

ty S y =
∑

(i,j)∈E

kij

(
yi
mi

− yj√
mimj

)2

≥ 0,

the eigenvalues of S (also L) are nonnegative. Let us sort the
eigenvalues in ascending order,

0 = λ0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λn−1.

We can choose eigenvector vμ (μ = 0, 1, . . . , n − 1) as the
orthonormal eigenvector associated with λμ. That is,

S vμ = λμ vμ, vμ · vν = δμν , (10)

where δμν denotes the Kronecker delta.

III. OSCILLATION MODELS ON NETWORKS

A. Oscillation Model Based on Asymmetric Interactions

To describe the propagation of activity of a node through
networks, let us consider oscillation dynamics on networks.
The relationship between the oscillating phenomena and well-
known indices for network dynamics is be discussed in
Sec. IV.

Let weight xi of node i be displacement from the equi-
librium, and let its restoring force be proportional to the
difference in the displacements of adjacent nodes. Figure 2
is a representative image of our oscillation model. Although
the figure shows a 1-dimensional network, it is easily extended
to general networks. To represent diverse oscillating behavior,
we allow the spring constant of each link to be different and
the mass of each node to also be different.

Here, it is worthy to note about the validity of oscillation
model whose restoring force is proportional to the difference of
displacements. Let the restoring force of node i be a function
f(Δx) of the difference Δx := xi − xj of the displacements
of adjacent nodes i and j. It is natural to assume f(Δx) = 0
if Δx = 0. For small Δx, we can expand f(Δx) as

f(Δx) = −kij Δx+O(Δx2),

where kij is a positive constant corresponding to the spring
constant. So, our oscillation model can be considered as the
basic and universal model if nonlinear effects in O(Δx2) are
relatively small.

Incidentally, there is a well-known oscillation model, called
the Kuramoto model (Fig. 3)[10]. This model consists of the
same (or similar) oscillators coupled by weak interaction, and
mainly describes the synchronization of these oscillators. Thus
our oscillation model differs from Kuramoto model.

We assign a spring constant to each link and express it as
link weight kij > 0. In addition, we assign mass mi > 0 to
each node i. Let xi be the displacement of node i and pi be
its conjugate momentum. Then, Hamiltonian H of our coupled
oscillator system is expressed as

H :=
∑
i∈V

(pi)
2

2mi
+

∑
(i,j)∈E

kij
2

(xi − xj)
2

=
∑
i∈V

(pi)
2

2mi
+

1

2
(txLx).

equilibrium

i

xi

j

xj

Fig. 2. Oscillation model on networks.

weak interaction

Fig. 3. Kuramoto model.

By applying canonical formalism, the equations of motion are
derived as follows.

dpi
dt

= −∂H
∂xi

= −
n∑

j=1

Lij xj ,
dxi

dt
=

∂H
∂pi

=
pi
mi

.

By eliminating pi from these equations, we have the following
wave equation as the equation of motion,

mi
d2xi

dt2
= −

n∑
j=1

Lij xj ,

or written in vector form as

M
d2x

dt2
= −Lx, (11)

where M := diag(m1, . . . , mn) and x := t(x1, . . . , xn). By
multiplying M−1 from the left, we have the equation of motion
as

d2x

dt2
= −M−1 Lx = −Lx; (12)

note that it is based on asymmetric interactions. To diagonalize
the equation of motion, we introduce vector y which is defined
by

y = M1/2 x,

and the equation of motion can be written as

d2y

dt2
= −S y. (13)

It follows that the equation of motion will yield the eigenvalue
problem of the symmetric scaled Laplacian matrix, and node
mass can be understood as the node scaling factor. Node
mass can represent the strength of inertia, and is related to
the strength of the asymmetric influence to adjacent nodes.
In addition, the spring constant of links can represent the
strength of influence between each pair of adjacent nodes.
Furthermore, the condition (5) corresponds to Newton’s 3rd
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law (about equivalency of the strength between an action and
its reaction).

Let y = y(t) be expanded by the eigenbasis of S, vμ,

as y(t) =
∑n−1

μ=0 aμ(t)vμ and solve the equation of motion

for the Fourier mode aμ(t) (μ = 0, 1, . . . , n − 1). The
procedure of expansion by eigenbasis is known as graph
Fourier transformation [6], [7]. The solution is given by

aμ(t) = cμ e
i (ωμ t+θμ), (14)

where ω2
μ = λμ, i =

√−1, θμ denotes phase, and cμ is a
constant. The solution of oscillation on networks (the solution
of (12)) is expressed as

x(t) = M−1/2

(
n−1∑
μ=0

cμ e
i (ωμ t+θμ) vμ

)
. (15)

Note that the phase cannot be determined by the equation of
motion, but the oscillation behavior varies widely with the
phase. Consequently, to understand the universal aspect of
oscillation dynamics, a kind of phase-free index is required.
This issue is discussed in Sec. IV.

B. Damped Oscillation Model

In actual situations, any oscillation is damped with time.
This subsection shows a model for the damped oscillation on
networks.

Let us consider the equation of motion for the damped
oscillation

M
d2x(t)

dt2
+ γM

dx(t)

dt
= −Lx(t), (16)

where γ is a constant. Here γM means the viscous damping
coefficient, where it is important to note that the viscous
damping coefficient is assumed to be proportional to node
mass. By using vector y = M1/2 x, we can diagonalize the
equation of motion as

d2y(t)

dt2
+ γ

dy(t)

dt
= −S y(t).

The equation of motion for Fourier mode aμ(t) is expressed
as

d2aμ(t)

dt2
+ γ

daμ(t)

dt
+ ω2

μ aμ(t) = 0, (17)

where ω2
μ = λμ. To analyze the solution of this equation,

we assume the solution takes the form of aμ(t) ∝ eαt. By
substituting this into the equation of motion, we obtain the
characteristic equation

α2 + γα+ ω2
μ = 0. (18)

There are three different solutions to the equation of motion
according to the solution of the characteristic equation, α =

−(γ/2) ±
√

(γ/2)2 − ω2
μ. In the case of (γ/2)2 < ω2

μ, the

solution describes damped oscillations,

aμ(t) = cμ e
−(γ/2)t cos

[√
ω2
μ − (γ/2)2 t+ θμ

]
, (19)

where cμ and θμ are constants. In the case of (γ/2)2 = ω2
μ,

the solution describes critical damping,

aμ(t) = (aμ(0) + cμ t) e
−(γ/2) t, (20)

where cμ is a constant. Finally, in the case of (γ/2)2 > ω2
μ, the

solution describes overdamping. Let α+ and α− (both values
are negative) denote the solutions of the characteristic equation,
the solution of the equation of motion is

aμ(t) = c+μ eα+t + c−μ eα−t, (21)

where c+μ and c−μ are constants.

C. Forced Oscillation Model

This subsection introduces a forced oscillation model on
networks. Let us consider the situation that we impose forced
oscillation with angular frequency ω on a certain node, j, as an
external force. The equation of motion of the forced oscillation
is

M
d2x

dt2
+ γM

dx(t)

dt
+ Lx(t) = (F cosωt)1{j}, (22)

where F is a constant and 1{j} is only the j-th component
that is 1, all other components are 0, that is,

1{j} = t(0, . . . , 0,

j
∨
1, 0, . . . , 0).

By using vector y = M1/2 x, the equation of motion can be
diagonalized as

d2y(t)

dt2
+ γ

dy(t)

dt
+ S y(t) =

F cosωt√
mj

1{j}. (23)

Since y(t) depends on ω, we redefine y(ω, t) := y(t). By
expanding y(ω, t) and 1{j} using the eigenbasis of the scaled
Laplacian matrix S, we introduce the Fourier modes aμ(ω, t)
and bμ as

y(ω, t) =

n−1∑
μ=0

aμ(ω, t)vμ, 1{j} =

n−1∑
μ=0

bμ vμ. (24)

The equation of motion of Fourier mode aμ(ω, t) is expressed
as

∂2aμ(ω, t)

∂t2
+ γ

∂aμ(ω, t)

∂t
+ ω2

μ aμ(ω, t) =
F cosωt√

mj
bμ

(25)

The solution of the inhomogeneous equation (25) is the
sum of the solutions of the corresponding homogeneous equa-
tion (17) and the particular solution of (25). Since the solution
of homogeneous equation (17) is dampened with time, only
the oscillation of the particular solution of (25) remains after
some long time. Since the angular frequency of the particular
solution should be ω, the particular solution can be expressed
as

aμ(ω, t) = Aμ(ω) cos(ωt+ θμ)

= Aμ(ω)(cosωt cos θμ − sinωt sin θμ). (26)
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Fig. 4. Network model.

By substituting it into the equation of motion (25), the ampli-
tude Aμ(ω) and phase θμ of the particular solution are obtained
as

Aμ(ω) =
F bμ√
mj

1√
(ω2

μ − ω2)2 + (γ ω)2
, tan θμ =

−γ ω

ω2
μ − ω2

.

(27)

IV. NODE CENTRALITY

As shown in Sec. III-A, the wave equation (12) cannot
describe the phase of oscillations. Since the behavior of
oscillating phenomenon has extremely different appearance if
the phase changes, it is hard to extract useful information
from direct observation of oscillating aspects. Of course, since
aμ(t) of (14) is a complex-valued function, the value of aμ(t)
cannot be observed in actual networks. This section introduces
the oscillation energy of each node as a non-negative-valued
phase-free index, and shows that it can reproduce the well-
known indices of node centrality. This means that our oscilla-
tion model can be considered as an underlying mechanism of
the propagation of activities on networks.

For the oscillation model described in Sec. III-A, we define
node activity as the oscillation energy of the node. From (14),
the amplitude of the Fourier mode aμ(t) is cμ = |aμ(t)|. In
addition, let vμ be the eigenbasis associated with the eigen-
value λμ of scaled Laplacian matrix S, and let its components
be expressed as

vμ = (vμ(1), vμ(2), . . . , vμ(n)).

Since the oscillation of node i is the superposed oscillations
for Fourier modes of the node, the oscillation energy Ei of
node i is obtained by summing the oscillation energy for each
Fourier mode, as

Ei =
1

2

n−1∑
μ=0

ω2
μ (cμ vμ(i))

2.

To demonstrate the calculation of the oscillation energy of
each node, we use the network model shown in Fig. 4, where
all the link weights are set at 1. As the initial condition of the
wave equation (12), we can give the displacement only at a
certain node. We call the node as a source node of activity.
First of all, let us consider the situation that the source node
of activity is chosen at random. In this case, all the Fourier
modes contribute at the same strength. Figures 5 (a) and (b)
are the results for evaluation of oscillation energy for each
node, for two different scaling factors (node mass): M = I
(the unit matrix) and M = D2, respectively. The condition
M = I means that the strength of interaction between nodes
is symmetric, and the condition M = D2 gives an example of
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Fig. 5. Oscillation energy for each node for the case that the source node is
at random.
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Fig. 6. Oscillation energy for each node for a specific source node.

asymmetric node interaction. From Fig. 5 (a), we can recognize
that the oscillation energy is proportional to the node degree
centrality (the oscillation energy for each node is proportional
to its node degree). So, Fig. 5 (b) can be regarded as an
extension of node degree centrality considering asymmetry of
node interaction.

If a certain specific node is the source of activity, node os-
cillation energy would be quite different. Figures 6 (a) and (b)
show the oscillation energy of each node for different source
nodes, 1 and 12, respectively, where the scaling factors is
chosen as M = I . The results show that the oscillation energy
strongly depends on the source node of activity. Therefore, the
oscillation energy is changed not only by network topology,
but also node mass (Fig. 5) and the propagation scenario of
activity on networks (Fig. 6). In other words, the oscillation
energy also depends on link asymmetry, and strength and
location distributions of source nodes. Since the oscillation
energy is reduced to the well-known degree node centrality in
the simplest case, the oscillation energy for each node can be
understood as an extended notion of the degree centrality.

The betweenness centrality is another well-known node
centrality. Let the number of shortest paths between node j
and node k be σjk, and the number of those paths passing
through the node i be σjk(i). The betweenness centrality g(i)
for node i is defined as

g(i) :=
∑

j, k∈V\{i}

σjk(i)

σjk
.

The normalized betweenness centrality ḡ(i) is defined as

ḡ(i) :=
2 g(i)

(n− 1) (n− 2)
.
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Fig. 7. Relationship between the difference of oscillation energy and the
betweenness centrality.

The physical meaning of ḡ(i) is the ratio of the number of
shortest paths including node i to the number of combination
of node pairs in V \{i}, that is (n− 1) (n− 2)/2.

Next, we set the link weight kij of the network model
shown in Fig. 4 as the number of the shortest paths passing
through the link (i, j). Figure 7 (a) shows the difference
between the oscillation energy Ei for each node and the
minimum energy Emin defined as

Emin := min
i∈V

Ei.

Figure 7 (b) shows the normalized betweenness centrality ḡ(i)
for each node. We can recognized that the difference between
the oscillation energy is proportional to the betweenness
centrality. From the same reason for degree centrality, the
oscillation energy Ei gives an extension of the well-known
betweenness centrality.

The oscillation energy gives extensions of node centralities
even if we consider the damped oscillation on networks.
Detailed discussion is presented in [11].

V. NETWORK RESONANCE METHOD FOR INVESTIGATING

THE EIGENVALUES OF NETWORK DYNAMICS

Since the actual structure of a network is difficult to know,
it is almost impossible to measure components of the scaled
Laplacian matrix S, directly. For example, in social networks,
the strength and significance of friendships (links) are hard to
observe. Thus the eigenvalues of S, the key to describing the
oscillation dynamics on networks, cannot be calculated from
S. However, since the oscillation energy is related to the node
centrality that is the strength of activity of node on networks,
we probably be able to measure the oscillation energy as a
real solid object. The oscillation energy is related to the natural
frequency and the amplitude. In this section, we discuss a way
to estimate natural frequency (square root of eigenvalue) of
S from observation of the amplitude that is obtained from
observation of the oscillation energy.

As recognized from discussion in Sec. III-C, amplitude
Aμ(ω) of (27) takes maximal value at

ω =
√

ω2
μ − γ2/2.

This phenomenon is called the resonance. When we observe
the oscillation of a node caused by forced oscillation, the
mixture of oscillation (26) for each μ, that is, y(ω, t) of the
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Fig. 8. Concept of network resonance.

first equation of (24) is observed. We propose a method to
estimate eigenvalue λμ (or ωμ =

√
λμ) and damping factor γ

from observations of the amplitude A(ω) := |y(ω, t)| of the
response oscillation (Fig. 8). In actual, the amplitude A(ω) is
indirectly obtained from observations of oscillation energy.

The Q-factor represents the sharpness of amplitude Aμ(ω)
with respect to ω. On both sides of the peak of amplitude
Aμ(ω), we define frequencies ω+

μ and ω−
μ that give the

amplitudes Aμ(ω
+
μ ) and Aμ(ω

−
μ ) that are 1/

√
2 times the

peak value of Aμ(ω) (ω+
μ > ω−

μ ). Since oscillation energy is

proportional to the square of the amplitude, ω+
μ − ω−

μ means
the half width for energy. The Q-factor is defined as

Qμ :=

√
ω2
μ − γ2/2

ω+
μ − ω−

μ
.

We assume γ 
 ωμ and approximate Aμ(ω) around ω =
ωμ. By using ω2 − ω2

μ � 2ωμ (ω − ωμ),

Aμ(ω) � F bμ√
mj

1√
(2ωμ (ω − ωμ))2 + (γ ωμ)2

=
F bμ√
mj ωμ

1√
4 (ω − ωμ)2 + γ2

. (28)

Therefore,

Aμ(ωμ) � F bμ√
mj ωμ γ

, Aμ(ωμ ± γ/2) � 1√
2
Aμ(ωμ),

and we have ω±
μ = ωμ±γ/2 (double-sign indicates correspon-

dance). Consequently, we have

Qμ � ωμ

γ
. (29)

These relations enable us to estimate natural frequency ωμ (or
the eigenvalue λμ = ω2

μ) and damping factor γ.

We use the network model shown in Fig. 4, where all link
weights are 1 and node mass is also set to M = I . Figures 9
(a) and (b) show examples of network resonance for external
force input by node 1 and 12, respectively: the amplitude
A(ω) = |y(ω, t)| is observed at node 1 (red line) and node 10
(blue line) as the response of the external force with angular
frequency ω. Depending on the pair of input node and observed
node selected, the amplitude A(ω) exhibits a different aspect.
Therefore, we expect that eigenvalues of the scaled Laplacian
matrix can be estimated from appropriate pairs of input and
observed nodes.
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Fig. 10. Estimation of the natural frequency ωμs.

Figure 10 compares the actual values of natural frequencies
ω1, ω2, . . . , ω6 and their estimated values obtained from Fig. 9
(a) and (b). For example, “Estimation 01-10” in Fig. 10 means
the input node is 1 and the observed node is 10. The estimated
natural frequencies are close to the actual values. Depending
on the positions of both the input node of forced oscillation and
the observed node, there are natural frequencies that cannot be
observed. For example, the values of ω2, ω3, ω4 and ω5 cannot
be estimated from the node pair of input node 1 and observed
node 1. Selecting the appropriate pair of input and observed
nodes avoids this problem.

VI. CONCLUSIONS

This paper showed how to use the scaled symmetric Lapla-
cian matrix to model oscillation dynamics on networks caused
by a certain kind of asymmetric interaction between nodes.
Although our asymmetric node interactions are restricted to
models that are characterized by the intrinsic property (mass)
of the nodes themselves, these interactions are common in
actual networks (e.g., the relations between a popular blogger
and his/her followers).

Although solutions of the proposed oscillation model are
complex numbers and they cannot be observed directly, the
oscillation energy can reproduce well-known node central-
ity on the networks. In addition, the oscillation energy is
an extended notion of node centrality reflecting propagation
scenarios of activity on networks, and we expect that the
proposed oscillation model can be considered as the underlying
mechanism of activity propagation on networks.

Since the oscillation energy is expected to be observed via
measurement of the strength of node activity, the framework

of usage of the measured value of energy is important. We
proposed a network resonance method that can estimate the
eigenvalues of the scaled Laplacian matrix and the damping
factor, from measurements.

We also expect that this method can estimate the abso-
lute value of the component of eigenvectors. If the sign of
the components are determined by orthogonal condition of
eigenvectors, we obtain pairs of eigenvalues and eigenvectors
of the scaled Laplacian matrix, from measurements. This
means the original Laplacian matrix (including the weight of
directed link and network topology) can be reproduced. So,
our framework is applicable to investigate network structure
that is not observed directly; for example, social networks of
users, networks of malicious hosts generating cyber attacks,
etc.

In security application, we probably can use the framework
of [12], for example. First, we access malicious web site
with the frequency of ω. These accesses induce that malicious
users attack to a honeypot, and we observe their response.
The framework corresponds to the network resonance method
based on forced oscillation.
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Abstract— Computational complexity is an important epit-
ome in computing research. However, a vast majority of the
related results involving temporal and spatial complexities
are purely of theoretical interest. Only a few have treated
the model of complexity as applied to real-life computation.
Besides, some of these results would be hard to realize in
practice. A majority of these papers lack in simultaneous
contemplation of temporal and spatial complexities, which
collectively depict the overall computational scenario. This
paper surpasses some of these limitations through a clearly
depicted model of computation and a meticulous analysis
of spatial and temporal complexities. The paper deliberates
computational complexities due to a wide variety of coding
constructs arising frequently in practice. Moreover, a struc-
tured, formal approach to temporal and spatial complexities
treated harmoniously as applied to real computation is also
explored. There is a prevailing muddle as per the big_oh
complexity is concerned. Common trend is to consider it as
a function rather than as a set of functions. This perplexity
is clarified with illustration. Disparate recursive data struc-
tures are contemplated for spatial complexity due to their vi-
tal role in computing. Experimental results acquired through
physical measurements are also accentuated. At length, both
temporal and spatial complexities are deliberated in a single
scaffold, and the concept relating to space-time bandwidth
product is introduced, and significance revealed. The space-
time bandwidth products of common sorting algorithms are
contemplated.

Keywords: Big_oh complexity, Set of functions, Sorting algo-

rithms, Space-time bandwidth product, Spatial complexity, Tempo-

ral complexity

1. Introduction
Computation time and memory space requirements are

two major constraints in computer implementation of real-

life algorithms. With a wide variety of formal notation

for expressing these computational constraints, big-oh is

the most commonly used. This paper primarily focuses

on upper-bounds as expressed through big-oh notation for

temporal and spatial complexities.

Temporal complexity is the CPU time necessitated by an

algorithm for its computer implementation. Spatial complex-

ity is the number of memory cells that an algorithm truly

requires for computation. A good algorithm tends to keep

both of these requirements as small as possible. Computer

memory is a re-usable resource from the operating system

standpoint and may be released for further reallocation.

Temporal resources are consumable, and once spent, there is

no return to that point in time. Though there is a significant

difference between temporal and spatial complexities from

reallocation standpoint, spatial complexity shares many of

the same features due to temporal complexity.

To express the upper bound in computational resource

requirements, big_oh (O) notation is used. For expressing

the lower bound in computational resources, Ω notation is

adopted. To express both of these resource constraints in

a single framework, the Θ notation is prevalent. Among

all three different notations, big_oh (O) complexity is the

most prominent one. Often it becomes necessary to have

an estimate on upper-bound of the computational resource

requirements. Therefore, the focus of this paper is on big_oh

notational temporal and spatial complexities.

In Section 2, specific terms and notations used in this

paper are discussed briefly. Section 3 deals with a variety of

coding constructs frequently arising in realistic computation

and provides big-oh time complexity for each. Section 4
considers spatial complexity. Section 5 explores realistic

issues in temporal and spatial complexity models discussed

in this paper. Section 6 is the conclusion based on models

of analysis in the paper.

2. Terminology and Notations
In this paper, following notations are used.

n: Input or instance size.

g(n): Highest order term in complexity expression without

coefficients.

f (n): Complexity function with an input size, n.

f́ (n): Complexity function without constant coefficients.

O(g(n)): Big-oh complexity with problem size, n, represent-

ing a set corresponding to the complexity class, g(n).
T (n): Temporal complexity of an algorithm or a function

with an input size n.

S(n): Spatial complexity of an algorithm or a function with

an input of size, n.
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B(n): Space-time Bandwidth Product for input size n.

C: Any constant value.

DSPACE (f ,n): DSPACE stands for the Deterministic

Space Computation. Therefore, DSPACE(f , n) denotes

the total number of memory cells used during deterministic

computation of f (n). Here, f indicates the algorithm or func-

tion under consideration, and n is the input of size, |n|. It is

often abbreviated as DSPACE (f ). Hence, DSPACE(f ,

n) ∈ O(g(n)). However, DSPACE (f ) is not defined if the

computation of f (n) does not halt.

Please refer to [2] and [4] for the definition of big-oh

complexity. Following forms the basis of Complexity Order

using big-oh, and provides the complexity class hierarchy.

log2n < n < nlog2n < n2 < . . . < nk < 2n < Cn < n!

3. Temporal Complexity of Algorithms
In determining temporal complexity, there are: operations

count and step count. Operations count is the number of

additions, multiplications, comparisons and other operations

used during computation. Success in operations count de-

pends on the ability to identify crucial operations that

contribute most to temporal complexity. Step count accounts

for all time spent in all parts of the program/function.

Big-oh complexity is usually expressed by the fastest
growing term in the complexity function. There are 4 algo-

rithmic steps in determining the big-oh complexity, which

may be implemented as a computer program. The algorithm

is described below:

Algorithm big_ohComplexity(n)
Purpose: This algorithm determines big_oh complexity

with instance size n (single instance variable).

Input: Complexity function, f (n) on n with k terms.

Output: Big_oh complexity, O(g(n)).

int[] arr1 = new int[k] {array, arr1 holds the power of

n for each term in the k-term complexity function, f (n).}

int highest_power = arr1[0] {Because the terms are not

ordered, determine the true highest order term in f (n).}

for j=1 to k − 1 do
if arr1[j] > highest_power then
highest_power = arr1[j]

end if
end for
g_n = power(n, highest_power)

Print O(g_n) as the big_oh complexity.

Above algorithm is general, and may be extended to com-

plexity functions involving multiple instance characteristics.

Example 1: Consider the complexity function, f(n,m) =

(h(n,m)2+4n−3m+2) on n and m. Function, h(n,m) =
2n2 +m. Here, h(n,m) is nested within function, f(n,m).
Hence, f(n,m) = (2n2 + m)2 + 4n − 3m + 2 = 4n4 +
m2+4n2m+4n−3m+2. Removing constant coefficients,

f́(n,m) = (n4 + m2 + n2m + n + m + 1). As the order

of n2m is, 3, the highest order term without coefficients is,

g(n,m) = n4, and f(n,m) ∈ O(n4). This Upper-bound

is independent of m. Examples are the Graph algorithms,

where n corresponds to the set of vertices, and m represents

the set of edges.

3.1 Big_oh Complexity As a Set
The big_oh complexity as denoted by O is a set rather

than a single function. However, it is a common practice

in the prevailing literature to use notions, such as f (n) =
O(g(n)) [8]. A function cannot be equal to a set. In fact,

O(g(n)) is a set of functions that incorporates all functions

in the order of g(n) as well as any lower order function. For

instance, consider f1(n) = 2n2 + 3n + 5 and f2(n) = 7n2 +

9. If g(n) = n2, then the set O(g(n)) = {f1(n), f2(n), . . . },

which incorporates any function in the order of n2 and any

lower order function. Therefore, f (n) ∈ O(g(n)).

Another common practice is to use expression, such as

f (n) = h(n) + O(g(n)) [8]. However, a function may not

be added to a set. With sets, valid operations are set union,

set intersection, etc. A function may be added to another

function. Therefore, the proper notation would be, f (n) ∈
O(h(n) + g(n)). In this context, following result is obvious.

Theorem 2 (Big_oh Complexity Set Theorem): If a

function f (n) is a member of the set O(h(n)), then it is

also a member of the set O(h(n) + g(n)).

Proof: There are three different cases that are required to be

considered.

1) Case 1: h(n) and g(n) are of the same order: The

function y(n) = h(n) + g(n) will have the same order

as that of both h(n) and g(n). As f (n) ∈ O(h(n)),

therefore, f (n) ∈ O(y(n)), since both y(n) and h(n)

have the same order. Hence, f (n) ∈ O(h(n) + g(n)).

2) Case 2: h(n) has a higher order than g(n): The function

obtained through addition y(n) = h(n) + g(n) will

have the same order as that of h(n) since the order of

h(n) > g(n). As f (n) ∈ O(h(n)), therefore definitely,

f (n) ∈ O(y(n)) or f (n) ∈ O(h(n) + g(n)).

3) Case 3: h(n) has a lower order than g(n): In this case,

the overall function y(n) = h(n) + g(n) will have the

same order as that of g(n) as the order of h(n) < the

order of g(n). From the above discussions, O(h(n) +

g(n)) is a set that incorporates any function in the order

of y(n) = h(n) + g(n) or any lower order function.

Therefore, it will also include the lower order function,

f (n) in the set. To be precise, the order of h(n) +

g(n) is the order of g(n), which is higher than the

order of h(n), and thus, higher than the order of f (n).

Therefore, f (n) ∈ O(y(n)) or f (n) ∈ O(h(n) + g(n)).

Only a combination of two functions are considered in

Theorem 2. Instead of 2, the above result may be extended to

any number of m such functions. Following result is obvious.

Corollary 3 (Combination of Functions Corollary): If

a function f (n) is in the set O(h1(n)), then it is also in the

set O(h1(n) + h2(n) + . . . + hm(n)).
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Proof: Similar to Theorem 2, there are three different cases

that are required to be considered.

1) Case 1: h1(n), h2(n) . . . hm(n) are of the same order:

The function y(n) = h1(n) + h2(n) + . . . + hm(n) will

have the same order as that of h1(n), h2(n) . . . hm(n).

As f (n) ∈ O(h1(n)), therefore, f (n) ∈ O(y(n)), since

both y(n) and h1(n) have the same order. Hence, f (n)

∈ O(h1(n) + h2(n) + . . . + hm(n)).

2) Case 2: h1(n) has a higher order than any other

function hj(n), j ≥ 2 in the combination: The function

obtained through addition y(n) = h1(n) + h2(n) + . . .
+ hm(n) will have the same order as that of h1(n)

since the order of h1(n) > the order of hj(n), for

some j where j ≥ 2. As f (n) ∈ O(h1(n)), therefore

definitely, f (n) ∈ O(y(n)) or f (n) ∈ O(h1(n) + h2(n)

+ . . . + hm(n)).

3) Case 3: h1(n) has a lower order than some other

function hj(n), j ≥ 2 in the combination: In this case,

the overall function y(n) = h1(n) + h2(n) + . . . +

hm(n) will have the same order as that of hj(n), j ≥ 2
as the the order of h1(n) < the order of hj(n), for some

j, where j ≥ 2. From Theorem 3, O(h1(n) + h2(n)

+ . . . + hm(n)) is a set that incorporates any function

in the order of y(n) = h1(n) + h2(n) + . . . + hm(n)

or any lower order function. Therefore, it will also

include the lower order function, f (n) in the set. To

be precise, the order of h1(n) + h2(n) + . . . + hm(n)

is the order of hj(n), for some j, where j ≥ 2, which

is higher than the order of h1(n), and thus, higher than

the order of f (n). Therefore, f (n) ∈ O(y(n)) or f (n)

∈ O(h1(n) + h2(n) + . . . + hm(n)).

3.2 Determining Temporal Complexity
Common coding constructs with guidelines to their tem-

poral complexity analysis are presented as follows. Real-life

coding contains one or more of these fundamental structures.

1) Simple Statement Sequence: A set of independent

statements following one after another. A general

structure is, S1; S2; . . . ;Sk, where k is a constant,

and each Si, 1 ≤ i ≤ k represents an independent

program statement. If ci designates the CPU time

consumed to execute statement, Si, for i = 1, 2, . . . , k,

then the total time consumed is,
∑k

i=1 ci = C, which

is a constant. Applying the algorithm to determine the

big-oh complexity, the complexity order is, O(1).

2) Simple Loops: Following is a proto-

type for loop found in many pro-

grams.

for(i = 0; i < n; i++) {St;}

Total time to execute the loop = (the number of

times the loop executes)× (the time required for each

execution of the loop). The statement sequence, St

consumes C amount of constant time. With the loop,

St executes n different times. Therefore, aggregate

time spent in the loop is, Cn. Utilizing algorithm for

big-oh complexity, this simple loop is, O(n).

3) Nested Loops:
for(i = 0; i < n; i++)

for(j = 0; j < n; j ++) {St;}

Here, the statement sequence St consumes C amount

of constant time. The nested loop executes n times

for each execution of the outer for loop. Therefore,

it executes n×n = n2 times in total. Total CPU time

consumed is, C ×n2. Big-oh complexity is, O(n2). If

there are k nested loops, each executing n times, the

complexity order will be O(nk).

4) Inner Loop Index Depends on Outer Loop In-
dex:

for(i = 0; i < n; i++)

for(j = 0; j < i; j ++) {St;}

Here, for n execution of the outer loop, the nested loop

executes, (0 + 1 + 2 + · · · + (n − 1)) or
∑n−1

k=0 k or
(n−1)×(n−1+1)

2 times. The complexity order is, O(n2).

5) If-then-else statements: With If-then-else statements,
the worst-case time complexity is important. The

worst-case time is the time required by the

test, plus either the then part or the else part
time, whichever is larger. Consider the following

code:

if (x is equal to y) then
return false;

else
{ for(i = 0; i < n; i++) { St; }

return true; }

end if
In this example, either the if or the else part will be

executed. Let the time for if test be c0. If each return

statement takes c1 amount of time, then the else part

(larger) will yield with the time complexity function,

f(n) = (c0 + c1 + Cn). This if-then-else structure has

a linear time complexity, O(n).

6) Loop Index Varies Nonlinearly: These are also known

as Logarithmic loops, since their complexity order is

always logarithmic. There are three types of logarith-

mic loops: Multiplication loops, Division loops, and a

Combination.

a) Multiplication Loops: Here, the loop control vari-

able is initialized to its minimum value, which

is usually 1. The control variable then increases

by a constant real or integer multiplication factor

greater than 1.0 (k > 1.0) at each loop iteration

up to the upper-bound (n). Once the value of

the loop control variable exceeds the upper-

bound, the looping terminates. The following is

an example:
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j = 1;

//In above, j is the loop control variable.

while (j ≤ n) { St; j = j ∗ k; }

Suppose the while loop executes i times. There-

fore, 1× ki ≤ n. Using properties of logarithm,

i ≤ logk(n). Hence, the maximum possible value

for i, imax = logk(n). If each execution of the

while loop takes C amount of constant time, the

total time required is, C × imax = C × logk(n).
Using the properties of logarithm, logk(n) =
log2(n) × logk(2). But logk(2) is a constant.

Hence, the big-oh complexity for the multiply

loop is, O(log2(n)).
b) Division Loops: A division loop commences

with the loop control variable initialized to its

upper bound (the maximum value, n), which

then gradually decreases by a constant divi-

sion factor (k) greater than 1.0 (k > 1.0)

at each loop iteration up to the given lower-

bound (usually 1). Once the value of the control

variable becomes less than the pre-set mini-

mum, the loop terminates. Following is an ex-

ample:

j = n;

// Here, j is the loop control variable.

while (j ≥ 1) { St; j = j/k; }

Suppose the while loop executes i times. There-

fore, n
ki ≤ 1. This provides, n ≤ ki, or

logk(n) ≤ i. Hence, the minimum i is, imin =
logk(n). Each execution of the while loop con-

sumes C amount of time. Therefore, the total

time required is, C × imin. Also, logk(n) =
log2(n)×logk(2), with logk(2) being a constant.

Using the algorithm, big-oh complexity for the

division loop is O(log2(n)).
c) Multiplication and Division Loops Combined:

Complex coding constructs might include a com-

bination of multiplication and division loops, one

being nested within the other. The complexity

order of such nested loops is, O((log2n)
r)).

Here, r is the total number of loops. An example

follows.

j = n;

// Here, j is a loop control variable.

while (j ≥ 1) { l = 1;

// Here, l is another loop control variable.

while (l ≤ n) { S1;

l = l ∗ k1; } // Here, k1 > 1.0.

S2;

j = j/k2; }

// Here, k2 is an integer or a real factor.

// Always, k2 > 1.0.

Suppose that the inner loop executes d1 times and

the outer loop executes d2 times. The inner loop

continues as long as, 1 × k1
d1 ≤ n. This even-

tually provides, logk1(n) ≥ d1. The maximum

possible iteration of the inner loop is, d1max =
logk1(n). Similarly, the minimum possible itera-

tion of the outer loop is, d2min = logk2(n). For

each execution of the outer loop, the inner loop

executes a maximum of logk1(n) times. Hence,

for logk2(n) iteration of the outer loop, the inner

loop executes for a total of logk2(n)× logk1(n)
times. Suppose each execution of the inner loop

takes C1 amount of constant time. Hence, total

time consumed in executing the inner loop is,

C1 × logk2(n) × logk1(n), which is the highest

order term in complexity function. Using the

properties of logarithm, logk2(n) × logk1(n) =

log2(n) × logk2(2) × log2(n) × logk1(2). Here,

both logk2(2) and logk1(2) are constants. Assum-

ing logk2(2) × logk1(2) = C, the highest order

term becomes C1×C×log2(n)×log2(n). There-

fore, the complexity order is, O((log2(n))
2).

If there are r nested loops, exercising a sim-

ilar approach, the overall time complexity is,

O((log2(n))
r). Here, r is an integer, and r ≥ 2.

Following result is obvious.

Theorem 4 (Loop Control Factor Theorem): For Mul-

tiplication and/or Division Loop(s) to converge, the mul-

tiplication and/or the division factor, k used together with

the Loop Control Variable(s) should be an integer or a real

number strictly greater than 1.0.

Proof: The factor k is used to gradually reduce the loop

control variable (LCV ) to converge it to its set pre-

determined maximum for multiplication loop(s), or to the

pre-determined minimum for division loop(s). Looping con-

tinues until k reaches or exceeds the preset value. If k < 1.0,

the LCV value will decrease for multiplication loop(s),

and will increase for the division loop(s). As a result, the

variable will never reach or exceed the preset maximum

and/or minimum value, and will generate an infinite loop.

If k = 1.0, the LCV value will never change, and as a

result, will never reach or transcend the preset value, also

resulting in an infinite loop. Therefore, strictly, k > 1.0.

From the above theorem, following result is obvious.

Corollary 5 (Nested Multiplication/Division Loops):
For any number, m of nested Multiplication and/or Division

Loops, if the corresponding loop control factors are

k1, k2, . . . , km, respectively, and if k = k1 × k2 × . . .× km
represents the overall loop control factor for the entire

nested coding construct, then k is an integer or a real

number strictly greater than 1.0.

Proof: For nested Multiplication and/or Division loops, the

loop control factors, kj , j = 1, 2, . . . ,m for each loop needs

to be strictly larger than 1.0 for the individualized loop to

terminate. The factor k is the overall loop control factor for
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the entire nested coding construct, and k = k1×k2×. . .×km.

Therefore, using Theorem 4, k1 > 1.0, k2 > 1.0, . . ., km >
1.0. From the principle of mathematics, the multiplication

of any number of factors each strictly greater than 1.0 will

result in a value strictly larger than 1.0. Hence, k > 1.0, for

the nested coding construct to terminate.

4. Spatial Complexity Through Big-Oh
Big-oh complexity may provide upper-bound on memory

requirements as well. Recursive and dynamic data structures

most frequently influence the big-oh space complexity. For

spatial requirement, there are 2 parts. The Fixed Part, which

is independent of input and instance characteristic, includes

the instruction space and the data space for holding simple

variables, constants, compiler generated temporary variables,

etc. The Variable Memory Requirement depends on the

size of the input parameters and the particular problem in-

stance being solved. This part involves dynamically allocated

memory, recursive stack space, etc. The total computational

memory (RAM for PCs) requirement may be expressed

as, S = Sf + Sv = C + Sv . Here, S is total spatial

requirement, Sf is the Fixed Space (which is a constant

C for a specific computer program), and Sv is the Variable

Space. Using the DSPACE notation introduced earlier in

section 2, DSPACE(f, n) = S = (C + Sv). Following

represents a comprehensive guideline to spatial complexity

analysis of algorithms and functions.

4.1 Spatial Complexity of Algorithms
Spatial complexity plays a major role in dynamic memory

allocation and recursive computation. When it comes to

recursion, it is not recommended to look at the Average

Space Complexity, since failure to comply with the recursive

space requirement would eventually lead to program crash.

Therefore, in most of the cases, the analysis is done for the

worst-case spatial complexity.

1) Simple Dynamic Array: Java frequently supports

dynamic array declaration inside its heap

space.

// Following determines the minimum in an array.

int k = 0, n;

String n_string = keyboard.readLine();

n = Integer.parseInt(n_string);

int A[] = new int[n];
Random generator = new Random(1000000);

for (int i = 0; i < n; i++) {

A[i] = (generator.nextInt(3 ∗ n) + 1); }

for (int i = 1; i < n; i++) {if (A[i] < A[k])
{ k = i; } }

Assuming, each of an integer and a string type element

occupies 1 unit of memory, C1 = 1 + 1 + 1 + 1 =

4 for holding the values of k, n_string, n and i.

Also, generator takes up a fixed k units of mem-

ory space. Hence, C = (4 + k). The actual value

of n will depend on the keyboard input, which in

turn determines the dynamic array size. Hence, Sv

= n. Therefore, DSPACE(f, n) = n + 4 + k, and

DSPACE(f, n) ∈ O(n).
2) Nested Dynamic Arrays: Java supports

dynamically allocated nested arrays on its heap

space.

// Java code that performs matrix addition.

int n, i, j;

String n_string = keyboard.readLine();

n = Integer.parseInt(n_string);

int P [ ][ ] = new int[n][n];
int Q[ ][ ] = new int[n][n];
int R[ ][ ] = new int[n][n];
Random generator = new Random(1000000);

for (i = 0; i < n; i++) {

for (j = 0; j < n; j ++) {

P [i][j] = (generator.nextInt(4 ∗ n) + 1);

Q[i][j] = (generator.nextInt(4 ∗ n) + 1);

R[i][j] = P [i][j] + Q[i][j]; } }

There are 3, n×n matrices required for the above code

inside dynamic memory area. The size of each matrix

is contingent on input size, n. Hence, total dynamic

memory requirement, Sv = 3n2. The fixed space for

storing i, j, n_string, n and generator is, C = 4+
k units. Therefore, DSPACE(f, n) = 3n2 + 4 + k.

Accordingly, DSPACE(f, n) ∈ O(n2), which is a

quadratic space complexity.

3) Recursive Data Structures: In any recursive method,

space is always required to hold the stack frames [4]

created by the recursive calls inside the dynamic

memory area. Maximum dynamic memory required

to hold the stack frames is, SFn = (size of each stack

frame)× (the depth of recursion). Here, n is the input

size. For a specific recursive data structure, the size of

each stack frame is a constant, Csf . Hence, SFn =
Csf × (depth of recursion). Stated another way, SFn

∝ (depth of recursion). The depth of recursion, DRn

is a function of input size, n, and SFn ∝ DRn.

4) Sorting Algorithms: Quick Sort works by partitioning

the list elements, and is an in-place sorting algorithm.

The algorithm is fundamentally recursive [3], and fits

nicely with the recursive data structure. All extra space

required for sorting with quick sort comes from the

stack of the recursive calls in the environment stack
space. Its space complexity is O(n), since in worst-

case computation, the number of activation records [4]

on the recursive stack space can be in O(n).

The average Merge Sort exacts an amount of space

proportional to the average height of the tree structure

describing the recursive calls, which is O(log2(n)) [3].
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Hence, the algorithm designers might think that

O(log2(n)) space is sufficient in general. If applica-

tions are designed with the average space in mind,

and if for sufficiently large values of n, the worst

case space complexity occurs due to a given problem

instance, and the size of the allocated memory is

exceeded, the program will simply crash!

Merge Sort works by coalescing the sorted sublists.

If implemented as a recursive algorithm, the depth

of recursion for Merge Sort with an input of size

n is, log(n). Hence, for Recursive Merge Sort, the

space complexity is, O(log(n)). For Iterative Merge

Sort using an array, the dynamic memory requirement

depends on input size, n. The iterative merge sort is

usually performed using a scratch pad buffer in the

dynamic memory area, which is proportional to the

size of the array. Hence, the iterative merge sort space

complexity is, O(n). This is also the lower-bound on

memory requirement due to the size of the scratch pad

buffer. Hence, S(n) ∈ Θ(n). Table 1 shows the spatial

complexity of common sorting algorithms.

Table 1: Spatial complexity of sorting algorithms.

Sorting Algorithm Space Complexity

Quick Sort O(n)
Merge Sort(recursive) O(log(n))
Merge Sort(iterative) O(n)

Bubble Sort O(1)
Selection Sort O(1)
Insertion Sort O(1)

Shell Sort O(1)
Heap Sort O(1)
Radix Sort O(n)

5. Coalescing Complexities
Both temporal and spatial complexities largely influence

algorithm design. Algorithms for Fibonacci sequence are

widely researched in computing. There are four major al-

gorithms for the Fibonacci sequence.

1) Recursive Fibonacci Sequence: The following pro-

gram recursively computes the Fibonacci sequence. In

the program code, F [n] computes the nth fibonacci

number.

int F (int n) { if (n ≤ 2) return 1;

else return F [n− 1] + F [n− 2]; }

The temporal complexity of this recursive version

is, T (n) ∈ O(tn), which is exponential. Here, t =
1.61803, and is the golden ratio. Space complexity

is, S(n) ∈ O(n), which is linear on the size of

the recursive stack space. The algorithm needs to

perpetuate two recursive stacks at the same time due

to the nature of recursion. The space-time bandwidth

product, B(n) ∈ O(ntn), is pseudo-exponential.
2) Dynamic Programming (DP) Fibonacci

Sequence: The dynamic programming-based

fibonacci sequence uses the following coding

construct.

int[ ] fibonacci(int n) {

int[ ] F = new int[n+ 1];

int F [1] = F [2] = 1;

for (int i = 3; i ≤ n; i++)

F [i] = F [i− 1] + F [i− 2];
return F ;}

The recursive fibonacci algorithm is exponentially
slow, since for many of the intermediate values, the

algorithm recomputes the same subproblems for the

same fibonacci numbers repeatedly. The DP version

surmounts this problem by storing the intermediate

fibonacci numbers in a table inside the computational

memory when they are initially computed once. As

a result, it is necessary to have a one dimensional

array F with (n+1) elements. Each fibonacci number

F [i] within the array is computed iteratively, by adding

together F [i− 1] and F [i− 2], which can be retrieved

from the dynamically filled table within the computer’s

main memory area.

Time complexity function, f (n) for this DP version

is, f (n) = (n − 1) + (n − 2) + 3 = 2n. The constant

additive term 3 in f(n) is due to the fact that the

first 3 statements are always executed. Also, T (n) ∈
O(n). Java implementation of the algorithm requires

a dynamic array of size (n+ 1) to hold the fibonacci

numbers. As a result, the spatial complexity for this

implementation is also, S(n) ∈ O(n), which may be

reduced to O(1) through using a static instead of a

dynamic array.

3) Space Efficient Fibonacci Sequence Algorithm: The

DP algorithm for fibonacci sequence may be modi-

fied to use a much smaller amount of computational

memory.

// Code to compute the nth fibonacci number.

int fibonacci(int n) { int a = 1, b = 1;

for (int i = 3; i ≤ n; i++) {int c = a + b;
a = b; b = c;}
return b;}

In the above program, c represents F [i], b represents

F [i − 1], and a represents F [i − 2]. The 2 extra

assignments after the sum shift those 2 values over in

preparation for the next iteration. The time complexity

for this iterative algorithm is, T (n) ∈ O(n).
With this modified version, each step through the

loop uses only two previous values of F (n). Instead

of storing these values in a static or in a dynamic

array, they are stored as two independent variables.
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Though this requires some swapping around of values,

the computational memory requirement substantially

reduces.

4) Fibonacci Sequence Through Binet’s Formula: Bi-

net’s formula is efficacious considering both time

& space, since it does not use recursion or itera-

tion.

// Binet’s Formula: The nth fibonacci number.

F (n) = Round(
(
(
√

5+1)
2 )n√
5

);

6. Conclusion
Both the temporal and the spatial requirements are of

paramount importance in computer implementation of algo-

rithms. Time and Space requirements are expressed jointly

through a unique parameter known as the space-time band-
width product, denoted as B(n). For a temporal complexity,

T (n) ∈ O(g1(n)), and the corresponding spatial complexity,

S(n) ∈ O(g2(n)), the space-time bandwidth product is,

B(n) ∈ O(g1(n) × g2(n)). Bandwidth product shows the

upper-bound on computational resources requirements for a

given coding construct. Following table shows the bandwidth

products for frequently used sorting algorithms. In Table 2,

n is the input size and k is the number of digits in each

input.

Table 2: Space-Time Bandwidth Product for sorting algo-

rithms.

Sorting Algorithm Bandwidth Product

Quick Sort O(n2log2(n))
Merge Sort(recursive) O(n(log2(n))2)

Merge Sort(iterative) O(n2log2(n))
Bubble Sort O(n2)

Selection Sort O(n2)

Insertion Sort O(n2)

Shell Sort O(n1.25)
Heap Sort O(nlog2(n))
Radix Sort O(kn2)

The heap sort has the best bandwidth product, which

is O(nlog2(n)). The algorithm also has the best tempo-

ral complexity in the order of O(nlog2(n)). However, the

best known sorting algorithm with O(nlog2(n)) temporal

complexity is the quick sort [4]. Hence, the algorithm with

the best bandwidth product is not necessarily the algorithm

with the best performance. The bandwidth product is just an

indicator of the upper-bound on the overall computational

resource requirement.

Spatial complexity plays a significant role in the Re-

cursive Models of Computation. Recursive data structures

consume considerable amount of dynamic memory inside

the computer’s recursive stack space [6]. Knuth’s Spatial

Complexity Theorem [6] relates the lower bound on the

computational space requirement for an algorithm to its

temporal complexity. According to Knuth, an algorithm that

takes up O(g(n)) time consumes Ω(log(g(n))) space. The

result implies that if an algorithm consumes g(n) time, then

for executing the algorithm, at least log(g(n)) space will be

required. Suppose an algorithm is exponential and executes

in Cn time. Hence, g(n) = Cn, where C is a constant, and

C ≥ 2. Therefore, the algorithm requires at least log(g(n))

= log(Cn) space for its execution. However, log(Cn) =

n×log(C). As C is a constant, for any logarithmic base,

log(C) = C1 will also be a constant. Hence, the minimum

space requirement = C1×n ∈ Ω (n). Hence, any exponential

time algorithm will require at least a linear space for its

implementation. Space-efficient exponential time algorithms

run in linear space in the order of n.

There is a simple packet classification algorithm in com-

puter networking that takes up O(m) time to perform a

lookup. Here, m is the number of packet fields. However, the

algorithm requires Θ(nm) storage, where m is the number

of packet fields and n is the number of rules. Therefore,

the algorithm may not be used with large databases. There

are alternative algorithms that require only O(nm) storage,

which are more suitable for large database applications.

Therefore, it is always prudent that polynomial or pseudo-

polynomial complexity algorithms are preferred over the

exponential complexity algorithms. However, the factorial

complexity algorithms are the worst.

In future, the model presented in this paper will be

considered with real-life computation. This avenue is not

well-explored yet, and may unveil a new paradigm in com-

putational research.
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Abstract - Any system is evaluated in terms of performance, 
taking into account performance of elements and system as a 
whole. Good systems exceed performance of their components, 
sometimes exceed a production of component performance. 
Poorly designed systems overall performance is much less that 
production, or even sum of performances of their components. 
In terms of   this classification our computer systems are 
poorly designed.  These notes are about performance and 
ways to analyze it. We also introduce some simple models for 
thinking through system performance and ways to improve it. 

Keywords: Distributed Computing, System Performance, 
Parallel Computing, Amdahl Ratio, Run-time Systems 

 
 

1 Introduction 
Suppose one element - active zone az on the Figure 1 has a 
performance Pi; then system of n elements if we can add 
performance will have maximum performance as n*Pi; i.e., 
linear growth is assumed. Unfortunately, properties of both: 
an external interaction zone (EIZ on Figure 1) and task 
structure reduce our expectations about unlimited, or just 
linear performance growth, while we introduced more 
elements Figure 1. 

Fig. 1 Distributed system, az - active zone 

System performance we can see as a function of performance 
of elements Pi, number of elements and EIZ:  

  Ps = f( Pi, EIZ,  n)  

Thus, the structure of EIZ and its dynamic features (the 
ability to connect, transparently, an arbitrary number of 
elements with heavy interactions (in our case information 
exchange)) will impact on performance of both: system level 
of performance and element level.  

It is clear that element with interaction will waste some own 
performance to provide interaction with others: Figure 2. 

         Fig. 2. Performance grow limitations by structure 

Above all, a program structure that impacts on the 
performance of system is crucial, as well as ability of program 
to split into independent elements.  
 
In late 80’s John Gustafson did show [Gustafson88] that when 
map of a program fit map of available hardware almost linear 
growth of system performance is possible. This result in fact 
denies Von Neumann architecture arguing that special 
purpose system should be build to execute special purpose 
programs.  
 
Turning back to analysis of what is possible and feasible a 
program structure should be for sure analyzed in details. One 
of possible approach consider program as three connected 
graphs. Three graphs that represent a program: control, 
predicate, and data dependency [Blaeser14] can help to 
analyze limits of performance gain for various types of 
program and on performance of the system as a whole. 
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2 Information processing aspects    
 

On the information processing level, we can consider a system 
as a black box with input x and output y, with arbitrary 
function F, Figure 3; 
 

 

   Fig. 3. System as a black box, with arbitrary function F 

A function F, or a task of this function execution - a box on 
Figure 3 illustrates the delivery of result (y) from an input x 
within allocated time.  

For some functions or programs that execute them we do not 
need all inputs available to begin execution. In principle, 
input and output timing very often are loosely dependent, 
input x might have its own duration in time while readiness of 
output y has its own duration, both might be overlapped, see 
Figure 4. 

     Fig 4. Input appearance overlapped with outcome 

Thus we can consider x and y not as variables but as functions 
or processes; this distinct computing from mathematics.  
Further research might be required to compare ways and 
durations of x and y possible overlapping. 
 

2.1 Information systems task wise performance 

 
Information systems are a combination of three-wares: 
userware, software and hardware: UW, SW and HW 
respectively, see  Figure 5. 
 
 
 
 

 
Fig. 5. Information system components 

 
For information processing system one has to consider a 
performance of all three: UW, SW, HW. In the long run 
performance and efficiency of the system depends on user-
ware, software and hardware performance. Their combination 
varies in various applications - one case is illustrated by 
Figure 6. 

                              Fig 6. IS box:  x+time = y 

Over the last 40 years, user features of computer applications 
were largely ignored in all domains of computer market: 
general purpose, embedded, high performance computer 
systems. 
   
This is a subject of special study on UW-SW-HW systems. 
Here we present a simple model that helps to estimate an 
impact of system software (SSW) on overall system 
performance. We attempt to answer a question  
 
What is the performance and efficiency of a computer system 
in terms of missions or tasks?   
 
Performance is about task completion in time allocated.  The 
task allocation and analysis of this process should account for 
a hierarchy of components:  UW, SSW, HW. In principle, one 
might introduce into this estimation a role and efficiency of 
management, but it goes well beyond the scope of our work. 
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2.2 SSW-HW performance model 

 
User tasks that were developed as a program (usually called 
“an application”) present a sequence of instructions executed 
by hardware.  Several supportive programs – (parts of run-
time system), accompany any user task; these programs are 
generally called system software, further SSW.  Figure 7 
illustrates a sequence of user tasks accompanied by system 
software tasks.   
 

 
 

Fig. 7 User and System task sequence  
 
 
An efficiency of a system in terms of user tasks depends on 
use of informational and structural and time resources  
[Castano15]. 
 
A total amount of hardware workload in number of 
instructions Wux to perform user task x   can be expressed as 
(1) where i, j indexes stand for number of hardware 
instructions required to complete supportive actions (system 
software need) and user ones (1):   
 

                             
                    (1)  
 

Indexes m and n stand for system software and user software 
instructions execution time. Assuming that all hardware 
instructions have similar execution time (for RISC systems it 
is essential design condition) one might introduce an 
efficiency of an architecture or a system as a ratio as shown 

below, (2): 
 

                                (2) 

 

 
We will dig deeper on performance and efficiency  but here it 
is worth summarizing an existing relation of efficiency and 
performance.  
 

Definition 1. Efficiency Eux of computer system is a ratio 
number of instructions required to perform user task to the 
total number of instructions performed by computer system.  
 
Naturally, efficiency Eux  � 1, while m � 0, and no matter 
what frequency a processor is using  if m >> n,  Eux � 0.  
 
Regretfully, it is the case for current state of the art in 
computer systems. 
  
Regretfully again, our implementations in terms of efficiency 
are causing mostly pessimistic observations: 
 
� Application of Java, or support of modified standard 

operating system unavoidably reduce system efficiency of 
general system; 

� In the case of embedded systems runs out our computer 
batteries for nothing; 

� For military systems availability and reactiveness of the 
system is substantially lower than it could be;  

� For office systems – in terms of user efficiency - 
employees are sitting and waiting for Windows or Cisco 
service more than they work… 
 
 

2.3 Distributed computing 

 
In the late 1960s, an idea for the parallelization of computer 
program using distributed computing paradigm instead of 
single processor scheme was proposed [Amdahl67]. 
 
It was declared that parallelization of tasks and programs and 
use of available distributed hardware for support of parallel 
execution is the most feasible way to boost system 
performance.  
 
Later, Sun [Sun94] introduced “system fallacies” of 
distributed computing (Table 1). Omitting topologic factors 
and paying attention to Fallacy 2, 3 and 7, we discover that 
these fallacies fit into the area of parallel, closely connected 
computers with multiprocessors – in fact, all  modern 
computers. 
 

Table 1 Sun fallacies of distributed computing  
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If we look harder these fallacies might be not strong enough 
and some of declared features described became obsolete.  

Besides, again, when definition includes eight other elements 
that are not connected or have vague relation to each other it 
seems odd or at least inconsistent.  

If we follow Sun definition we are not including Internet into 
the distributed computing even as a supportive hardware 
infrastructure.  Anyway, we’ve proposed our own définition 
of distributed computing: 

 

Definition 2. Distributed computing is a paradigm that 
assumes an execution of functionally connected tasks as a 
single process over distributed media and resources. 
Clearly, a joint collaborative work of thousands of processors 
at once might bring substantial profit for both - loosely 
connected tasks (when they share HW resources, but not 
logically connected, such as Google cluster), or closely tight 
models that include of several thousands of DE.  
 
But in the second case, it is much harder to get the gain from 
distributed computing, and it is not a surprise.  
 
Amdahl described drawbacks of distributed computing in the 
late 1960s [Amdhl67], highlighting that even small parts of a 
program must be parallelized to reach their full potential. This 
way linear growth of speedup is not possible at all. 
 
In other words, if 1 is a length of a sequential program and we 
have managed to parallelize p fraction of it then sequential 
part is shrinking down to 1-p, while parallel part requires p/n 
time where n stands for number of processors, (3) and Fig. 8. 
 

                                                  (3) 

Fig. 8 System speedup by Amdahl [Goth09] 
 
 

3 Real Performance & Amdahl “Law” 
 
Relative gain in performance is usually referred to as 
“Amdahl’s law”. Well, “law” in terms of science, not society 
is “a regularity in the material world” (Shorter Oxford English 
Dictionary, 6e, Vol 1).  Thus, defining “the law” as two 
simple proportions (3), (4) of performance after improvement 
Pai with performance before improvement Pbi is, to put it 
politely, too ambitious. 
 

������� � �
���

���
                              (4) 

 
But this proportion is useful to evaluate a success of the 
modification of processor structure in re-iterative design. 
What is interesting here is that the expectation of linear 
growth of performance by improving element performance 
(Figures 1 and  2) has nothing near to the real situation. 
 
It means that if we make super parallel execution of 80% of a 
program, we still have to complete another 20% sequentially. 
Amount of speedups vs. number of processors as a family of 
functions, is presented on Figure 8 above, taken from 
[Goth09]. 
 
 

3.1 A Fine-tuning of Parallel Speedup Model 

 
The theory behind computational work in parallel has some 
limitations that reduce the advantages of parallelization. 
Usually, the goal in large-scale computation is to get as much 
work done as possible in the shortest time within the budget.  
 
Furthermore, the system can be considered good and well-
designed when it is able to get a big job done in less time, or a 
bigger job done in the same amount of time without any 
problem; in other words, a system should be a scalable. 
 
Therefore, the power of a computational system can be 
represented as the amount of computational work done, 
divided by the total time it takes to do it. It is important to 
emphasize that usually the aim is to increase power per unit 
cost, or more importantly nowadays, cost-benefit, and in this 
regard physics and economics conspire to limit the raw power 
of individual single processor systems available to perform 
any particular piece.  
 
It is agreed within the research community that the cost- 
benefit scaling of increasingly power single processor systems 
is usually non-linear and very poor. For instance, one 
processor that is twice as fast might cost four times as much, 
yielding only half the cost-benefit per pound.  
 
Physics sets its own limit as well – a so-called “thermal 
barrier” [Castano15] - an amount of heat that material is 
capable to dissipate is limited making endless increase of 
frequency of operation impossible.   

� = �

�−�+���
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These two arguments are usually applied to justify an 
alternative solutions and development of parallel designs. 
There are some drawbacks though, as Amdahl pointed out, 
and they are serious. 
 
Let us rewrite Amdahl ratio in terms of time: T(N) will be the 
time necessary to finish the task on N processors.  The 
speedup S(N) is expressed by the ratio (5): 
 

 
                                  (5) 
                                  
 

 
In many cases the time T(1) possesses, as represented above, 
both the serial part Ts and the parallel-able part Tp.  
 
Unfortunately, Amdahl ratio ignores a role of run-time system 
tasks (see a section 2.1) that must be taken into account when 
a parallel execution is assumed.  
 
A more detailed analysis of parallel speedup would include 
two more parameters of interest, namely: 
 
- Ts – the original single-processor serial time;   
- Tis – the average additional serial time spent performing for 

example inter-processor communication (IPCs), see Figure 1 
where is it introduced as EIZ, setup, and so forth in parallelized 
tasks. It is important to note that this time can depend on N in a 
variety of ways, nonetheless the simplest assumption is that each 
system has to spend this much time one after the other, so that 
the additional serial time is for example N*Tis; 

- Tp – the original single-processor parallel-able time; 
- Tip – the average additional time spent by each processor 

performing just the setup and work that it does in parallel, this 
may as well include idle times, which is also very important and 
should be accounted for separately. 

 
The most important element that contributes to Tis is the time 
required for communication between the parallel sub-tasks. 
This communication time is always there – even in the 
simplest parallel models where identical jobs are farmed out 
and run in parallel on a cluster of networked computers, the 
remote jobs must begin and be controlled with message 
passing over the system.  
 
In systems with more complex jobs, partial results developed 
on each CPU may have to be sent to all other CPUs in the 
distributed computing system for the calculation to proceed, 
which can be very costly in scaled time.  The (average) 
additional serial time (Tis) plays an extremely important role 
in defining the speedup scaling of a given calculation. 
 
Most computer systems process information sequentially. 
Lines of code in a computer program get translated into 
assembly language by the compiler, and the latter gets 
decoded into microcode in the processor. Everything and 
every step along the way is done sequentially. For example, a 
flowchart processing usually includes multiplication or 

comparison of two digits, it starts with the first digit, then the 
second digit is introduced and the working register is set to 0.  
 
To explain what is real and what is not and why Amdahl rule 
is mostly misleading we have developed a simple model – so 
called “fence making model”, illustrated by Figure 9 and 
following expert recommendations [Doit]. 
 
 

3.2 Parallel vs. Sequential: A fence model 

 
Our task is to make a fence with N planks and two horizontal 
rails; each plank needs two nails and has to be “pre-
processed”. Two rails have to be placed at the assembling site. 
Each plank needs to be placed at site and finally nailed. We 
also need hammers and nails and sequence and instruction to 
operate. 
 

 
 

Figure 9 Fence model of processing 
 
Task requirements:  number of planks N; number of rows – 2. 
 
Each plank needs to be nailed half-way through before 
placement for final processing and assembling a fence.   
 
There are two principally different options to make this fence: 
A) by distributing tasks; 
B) by making all tasks on site sequentially. 
 
In A) case, distributing task scheme assumes existence of 
agents-workers and distributers and their abilities to act: 
 
- N workers for plank processing are available and ready; 
- a distributor of the nails is in place; 
- a distributer of the hammers is in place; 
- a distributer of the planks is in place; 
- a distributer of rails is in place; 
- a collector of the fence segments initially is and placing the planks; 
- nailing the planks at two rows are performed by workers; 
- collecting the hammers is performed; 
- garbage collector is in place and complete the task execution. 

 

N Planks 

S(N ) = T (1)

T (N )
= Ts +Tp
Ts +Tp / N
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Case B) assumes that the same worker is doing all actions, 
like “a jack for all trade”, has one hammer, bucket of nails and 
does the following: 
 
- takes nails; 
- planks where they are; 
- half-nail planks; 
- places them on the rails; 
- nails them all; 
- place fence where necessary, collect garbage. 
 
Let us consider the process of making the fence from N planks 
in more details for both cases, assuming that nails, hammers, 
planks and rails are ready and placed in the local warehouse 
(storage and executed by “a system officers”, while workers 
execute user task). Sequences are presented in Table 2. 
 
 

Table 2 Parallel vs. sequential execution in more details 
 

Our task now is about: giving elementary time slot te and 
constant coefficients equal for both variants of fence 
processing prepare two variants of the fence completion as a 
sequence of steps for A and B cases. This will illustrate a gain 
from distribution of works. 

We need to compare these cases as well as explain what is 
possible to prepare in preprocessing and what is possible only 
during operation. One might find useful to make a table of all 
works mentioned and using own experience and case estimate 
a concrete gain for concrete case. 

Now we have to answer the following questions: 
 
 When distributed computing is efficient in comparison with 
sequential; 
 
What impact system software makes on parallelization of task 
and efficiency of a system. 
 
It is clear that planks are data, nails and hammers are 
programs to process data on site, and distributer is run-time 
system; 
Let us leave an arithmetic exercise with various values of 
parameters from job descriptions above to good master 
students.  
 
Our estimation indicates that overheads of run-time system for 
distributed execution might achieve almost 60% of user task 
cost (time). We add in denominator of (5) a coefficient k, a 
relative value of system software overheads per user task (6).  
 

(6)          
 

 
Following (6) the graph of Figure 10 presents three curves in 
three colors: green, blue and red k=0,0.1, 04 respectively. . 
The top one stands for known “pure” Amdahl ratio (k=0).  
Figure 10 shows that for extremely good run-time system one 
can double performance with 4 cores…  It is still too 
optimistic statement, especially recalling Multics 85% and 
Window 65% of total workload time. 

 Figure 10. System software role in distributed computing 

PARALLEL OPERATION SEQUENTIAL OPERATION 

Distributor Distributor 

Gets pack of planks Activate worker 

Distribute planks Check garbage left 

Distribute rails  

Distribute nails  

Distribute hammers  

Distribute planks along rails  

Activate N workers start  

Collect hammers and left garbage  

Place two rails in assembling area  

Clean garbage  

Worker Worker 

Receive planks Gets packs of planks 

Receive nails Gets buckers of nails 

Receive hammer Gets a hammer 

Preprocess plank (two nails nailed 
half-way through) 

Places (distribute) planks to the 
assembling area 

Spread planks along rails (fine tuning) Places rails in assembling area 

Nail plank (two nails) to the rails at 
the final assembling 

Preprocess N planks (two nails per 
each) 

Prepare to final assembling Places (distribute) planks along the 
rails 

 Nails N planks 

 Assemble fence 

 Clean garbage 
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4 Conclusions and observations 
 
The obvious observations/conclusions here are:  
 
� Properties of distributed computing paradigm in terms of 

performance gain/loss are outlined. 
� Models of performance and efficiency are proposed from 

the point of view of information processing. 
� Shown how to evaluate an efficiency of computer system 

including role of application and system software as well 
as hardware. 

� Amdahl ratio is analyzed taking into account  system 
software overheads. 

� System software, applications and hardware designs 
should be considered together when we design or try to 
analyze system efficiency, this paper is just one step into 
this direction. 
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A simple instructional approach for proving the Non-RE status of Non-monotonic 
properties of formal languages 
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Abstract - This paper presents a relatively simple and easy to 
apply technique for proving a significant number of formal 
language properties to be Non-RE. Using the results of Rice’s 
Theorem and the more generalized observations of the Rice-
Shapiro Theorem, we derive a result that is easy for students 
to apply when attempting to prove that a formal language 
property is not Recursively Enumerable (Non-RE) . To our 
knowledge, this particular instructional approach has not been 
presented in this applicable form to date. 

While Rice’s theorem provides an easy to apply technique for 
proving the undecidability (Non-recursiveness) of a 
problem/language, it cannot be applied directly to determine 
whether said undecidable problem is RE-Non-recursive or 
Non-RE.  This paper provides an easy to state and relatively 
easy to understand approach to proving that a language lies 
outside of the Recursively Enumerable (RE) family of 
languages and is thus Non-RE.  

Keywords: Computational Theory, Rice’s Theorem, 
computer science instruction, undecidabilty. 

1 Introduction  
 A key aspect of most Theory of Computation courses is the 

study of what is known as the Chomsky Hierarchy of 
languages.  Although the particular approaches or models 
used to explore these families of languages (e.g. Recursive 
Function Theory, Automata, etc.) may vary, as may the 
specific language categories explored, it is generally accepted 
that a fundamental understanding of the hierarchy is essential 
to a quality theoretical comprehension and background for 
students [1,10,11]. 

1.1 Chomsky Hierarchy 
In some sense, the key question addressed in most theory 

courses is “What are the boundaries of computing?”. That is, 
are there problems for which no complete computational 
solution exists? The Chomsky Hierarchy is instrumental in 
understanding the nature of these boundaries and the variety 
of language families that are known to exist and are frequently 
encountered in the computational solving of problems.  

For the purposes of this paper, it will suffice for us to 
explore only a simplified version of the hierarchy. In 
particular we are concerned with problems that are decidable 
(i.e. Recursive Languages),  semi-decidable (i.e. RE Non-
Recursive languages) and those that are strongly undecidable 
(i.e. Non-RE languages).   

 
 
Figure 1. The specific version of the hierarchy that we are 
addressing. 
 

As the figure indicates, we are interested, for any given 
language, which of the three regions of the chart it lies. If the 
language lies within the recursive family of languages then we 
know that it does yield a computational solution that will meet 
the definitions of an algorithm and can thus be programmed. 
We are neither addressing nor interested in the question of 
whether or not the problem yields an efficient solution but 
whether or not it has any solution at all.  
 

Should the language in question lie within the Recursively 
Enumerable region (but not within the Recursive domain), 
then we say that it is semi-decidable. Although these 
languages are formally undecidable, in the sense that they 
yield no true algorithmic solutions guaranteed to halt for all 
input cases, they do yield recognizers/acceptors. For our 
purposes, a recognizer is a program that is guaranteed to halt 
and correctly recognize an input word if it is, in fact, a 
member of the language but provide no such guarantees if the 
input word is not a member of the language.  

The final possibility for any language considered is that it 
lies within the Non-Recursively Enumerable languages (Non-
RE). We shall refer to these languages as strongly-
undecidable as they yield no algorithms that are guaranteed to 
halt on input words whether or not the word is a member of 
the language. 
 

2 Traditional approaches to teaching and 
proving undecidability 

 As most textbooks approach the topic of undecidability 
through the exploration of Turing machines, we shall briefly 
examine the traditional, historic approach to the topic. 
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2.1 Early pedagogical approaches 
Early theory of computation/formal languages 

textbooks, though rigorous, formally correct, and effective in 
providing the underlying theoretical justifications for the 
discipline of computer science, often lacked the intuitive 
exposition that many students require for an effective and 
operational understanding of the concepts at hand. Hidden 
within 2-3 page proofs, the key observations and techniques 
were often lost on students who failed to see the forest for the 
trees. A rare exception to this rule was the inclusion in most 
textbooks of Rice’s theorem. 

2.2 Standard Turing machine approach 
A common approach to exploring the topic of 

decidability is to first explore the languages accepted by a 
standard Turing Machine [2,10].  Although the specific 
Turing Machine model may vary from text to text or course to 
course, students are usually taught that any number of 
variations in Turing Machine constructions/rules yield no 
additional power with respect to language recognition (e.g. 
multiple tapes, multiple tape-tracks, non-determinism, etc.).  

Once students are comfortable with the basic operations 
of the model, they are often exposed to concept of a Turing 
Machine encoding and the Universal Turing Machine. This 
universal machine is one which expects, as input, two items, 
an encoded Turing Machine and an input word for the 
encoded machine.  The universal machine can effectively 
simulate the step by step operations of the given encoded 
machine and provide the result that the encoded machine 
would give on the supplied input word. It is, in effect, an 
interpreter capable of simulating any supplied program on 
any supplied input.  

The concepts of Recursive languages and RE languages, 
in general, are usually also discussed. Students learn that a 
language that can be processed by a Turing Machine that is 
guaranteed to always halt in finite time and correctly identify 
an input word’s membership or lack thereof in the language is 
known as a “recursive” language (Figure 2).   

 

Figure 2. A recursive Turing Machine that is guaranteed 
to halt on all inputs and provide a correct membership 
determination for all inputs.  

Similarly, if the membership in the language can only be 
recognized by a Turing Machine that is guaranteed to halt on 
inputs that are members of the language but are not 

guaranteed to halt and reject non-members, then the language 
is said to be “Recursively Enumerable but not recursive” (RE 
Non-Recursive – Figure 3). It is then usually explained that 
the latter are not true algorithms, as they are not required to 
halt in a finite amount of time on all possible inputs and thus 
are not decidable languages/problems [ 2,9,10 ]. 

 

Figure 3. An RE Non-recursive Turing Machine which is 
only guaranteed to halt and accept on inputs that are 
members of the machine’s recognized language. 

2.3 Presentation of an undecidable problem 
 The next essential step in exploring decidability is to 
introduce a language that is provably not recursive/decidable 
[3,4,5].  The standard approach to introducing this concept is 
to use a diagonalization argument similar in style to Cantor’s 
proof technique for proving the uncountable infinity of the 
cardinality of Real numbers. In short, one conceptually 
constructs and infinite matrix whose rows and columns are 
indexed by a countable enumeration of binary strings {0, 1, 
00, 01, 10, 11, 000, 001, 010, 011, 100, 101, 110, 111, …} . 
The rows of the matrix are assumed to be the binary 
encodings of Turing Machines, while the columns are 
assumed to represent the possible binary strings that can be 
used as input to a Turing Machine.  The actual entries of the 
table are Boolean values where Matrix[ x] [y] == true if the 
Turing Machine whose encoding is the binary string x halts 
and accepts the input binary string represented by y and is 
false otherwise. Figure 4. represents a hypothetical portion of 
the countably-infinite matrix. Therefore, one can consider any 
row x of the matrix as representing the language accepted by 
Turing Machine x. That is, if entry Matrix[x][y] is true then 
binary string y is a member of the language of machine x. 
Conversely, if string y is a member of the language 
recognized by machine x then the entry Matrix[x][y] is true.   

 

Figure 4. A portion of the countably-infinite, Boolean 
Matrix[x][y]. 
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2.3.1 The introduction of diagonalization and Ld 
 Students are then asked to consider what the entry 
Matrix[x][x] represents. Most will quickly realize that the 
Boolean entry at position Matrix[x][x] indicates how Turing 
Machine x behaves when given its own binary encoding as 
input.  If the entry is true, then machine x accepts its own 
encoding as a member of its language and if it is false then it 
does not. Please note that a false entry does not indicate that 
the machine in question halts and rejects the membership, it 
simply indicates that the machine does not halt and accept.  

 Once the nature of the matrix is understood, students are 
usually asked to imagine the complement of the matrix, 
¬Matrix. That is, the matrix with all true values 
complemented to false and all false values complemented to 
true.   

  Next, students are asked to consider what the newly 
complemented diagonal represents. The diagonal from 
¬Matrix[0][0] through ¬Matrix[�0][�0 ]. That is, they are 
asked, “What does the language ∀∀x  ¬Matrix[x][x] actually 
represent?” After some consideration, most students will 
recognize that the language in question, which we will call Ld, 
is actually the language consisting of the binary encodings of 
Turing Machines that do not accept their own encodings.  
That is Ld = { <M> | <M> ∉ L(M)} where <M> represents an 
encoding of some Turing Machine M and L(M) represents the 
language accepted by a Turing Machine M.  Figure 5. 
Presents the complemented diagonal (Ld) for the portion of 
the matrix shown in Figure 4. 

Ld = { TRUE, TRUE, TRUE, FALSE, FALSE, TRUE, TRUE, FALSE…} 

Figure 5.  Ld for complemented Matrix shown in Figure 4. 

 Once they understand the meaning and nature of the 
diagonalization language Ld, students are reminded of how 
the original matrix was actually constructed. The rows of the 
matrix were indexed by an enumeration of all Turing 
Machine encodings. Therefore, if a Turing Machine M can be 
constructed, then it can be encoded and thus it’s encoding will 
index some row of the matrix.  If Ld is a language that is 
recognizable by some Turing Machine M then M must have a 
binary encoding z and thus row z of the matrix would 
represent the language Lz == Ld.  It is at this point that 
students are usually posed the question “What is in entry 
¬Matrix[z][z]?”  

 If the student answers “true”, then it is quickly pointed 
out that this would mean that Turing Machine z accepted its 
own encoding z which contradicts the actual definition of Lz 
== Ld which is the language of machines that do not accept 
their own encodings.  It is also shown that if the entry was 
false, then this would mean that machine z did not accept its 
own encoding which means it should be in the language Lz 
== Ld and thus should have had an entry of true. This 
resulting paradox leads us to the conclusion that there could 
not exist any Turing Machine for any row z of the matrix 

which corresponds to our language Ld.  Therefore, there does 
not exist any Turing Machine whose accepted language is Ld 
and thus Ld cannot be RE and as a result cannot possibly be 
recursive/decidable.  

2.3.2 The Universal language 
Once students are introduced to a language that is provably 

undecidable and in fact is Non-RE, it is often the case that 
they are asked to look at the language Lu (the “Universal 
Language”) which consists of machine/string pairs 
(represented <M,w>) such that the given machine M halts and 
accepts the given word/string w.  That is, Lu = { <M,w> | w 
� L(M) }.  Students are often asked whether Lu has a Turing 
Machine that accepts it. It is not uncommon for many students 
to respond “No” as they have recently seen a language (Ld) for 
which no Turing Machine exists that recognizes it. However, 
it can usually be easily explained that Lu is simply the 
language of the Universal Turning Machine.  At this point, 
student are asked if the Universal Turing Machine is always 
guaranteed to halt on all <M,w> input pairs.  Since the 
Universal Machine is simply an interpreter that simulates the 
actions of its given input machine it is a relatively simple 
observation to note that if the input machine M were to go 
into an infinite loop or an endless computation on some input 
w then clearly the Universal Turing Machine would also 
infinitely execute on the input <M,w>.  Thus, the language Lu 
has a machine that accepts/recognizes it (the Universal 
Machine) but said machine is not guaranteed to halt and reply 
correctly for all possible inputs and thus Lu is Recursively 
Enumerable but not Recursive and like Ld it is not 
decidable/recursive (though Lu is Turing recognizable/semi-
decidable). 

 

2.4 Turing Reductions 
 Once languages such as Lu and Ld have been explored 
and their placement in Chomsky’s hierarchy determined, 
most theory courses will explore other undecidable problems 
and techniques to their decidability-status.  The most common 
method presented is that of Turing Reducibility [3,10,11].  

2.4.1 Fundamental concepts of Turing reductions 
Simply stated, the idea of any Turing reduction is to 

determine the classification of some unknown language 
(which we ill refer to as L? ) via a proof by contradiction. For 
example, to prove that L? is not recursive, we would assume 
that it is recursive and then using this assumption we would 
show that this would imply that Lu is also recursive which has 
already been shown to be false and thus we have our 
contradiction and can assume that our assumption was wrong 
and L? must not be recursive. Similarly, if we wished to show 
that L? was Non-RE, we would begin by assuming that it was 
RE and then show that this assumption would lead to Ld also 
being RE which has been shown to be false and therefore the 
resulting contradiction implies that L? cannot be RE.  Via 
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exposure to reductions, students should come to recognize that 
the problems that are undecidable are those that deal with 
properties of the languages that arbitrary Turing Machines 
accept [3,10,11,12].  
 

A key aspect of any Turing reduction is the construction of 
a Turing machine to serve as input for the assumed machine 
for L? [3,4].  This machine is constructed from the input to the 
Lu or Ld machine under construction. That is, the input for Lu 
or Ld is assumed to be the encoding for some Turing Machine 
<M> and using this input, a machine Mx is constructed which 
is designed so that the language it accepts either has the 
language property P in question for L? or it does not have said 
property depending upon whether the input machine <M> 
accepts its own encoding or not when run using the Universal 
Turing machine [3,4].  
 

2.5 Rice-Myhill-Shapiro Theorem 
 The Rice-Myhill-Shapiro theorem, commonly known as 
“Rice’s Theorem”, states that any non-trivial property of the 
language accepted by an arbitrary Turing machine is 
undecidable [4,6]. Although the original paper deals with 
Partial Functions, it extends directly to the subject of 
computability theory.  The Rice-Shapiro Theorem is a more 
generalized presentation of the key ideas expressed in the 
original paper. 

2.5.1 Properties and Rice’s Theorem 
A property of Turing machine languages is simply the set of 

machine languages that exhibit the said property. For 
example, “languages that contain more than 5 strings”, 
“languages that are regular”, “languages that are context-
free”, “non-empty languages” and so on. A trivial property is 
one that holds either for the languages of all Turing machines 
or for no Turing machine languages [4,5,7,8]. 
 
  Rice’s theorem has long been a godsend to many students 
studying the theory of computation. It states that any language 
property can be easily shown to be undecidable (non-
recursive) simply by exhibiting that at least one but not all 
Turing machines recognize languages with the property in 
question. For example, the property Preg = { <M> | L(M) is a 
regular language }. Clearly there are some Turing machines 
that accept regular languages but there are others that accept 
languages that are not regular (e.g. context-free languages 
such as the language consisting of all palindromes) and 
therefore it is an undecidable problem to determine whether or 
not the language of an arbitrary Turing machine is regular.  
  

A common way of introducing students to Rice’s Theorem 
is by explaining that it provides a generalization of Turing 
Reducibility for the language Lu. That is, it generalizes the 
construction of the machine Mx for input into the assumed 
machine for the language L?. In essence, we need only 
recognize that our default construction of Mx always 
recognizes the empty set ∅ as one of its two possible 

languages. Therefore we need only ask the question “Does the 
empty set have the property P or not?”  
 
  If the empty set does have property P, then we need only 
identify a Turing recognizable language that does not have the 
property and define Mx to accept this language as its second 
possible language. If the empty language does not have the 
property P, then we accept, as our second possible language, a 
Turing recognizable language that does have the property. A 
generalized pseudo-code construction of an Mx for the case 
that the empty language does not have the property P, inspired 
by Rice’s Theorem is presented in figure 6.  
 
Program MX( w : input_string )   
{ 
  If (<M>  ��  L(M)) then 
    accept w �  L | L�P      // L is possibly Σ* 
  Else  
     reject w   
}��
 
Figure 6.  Example MX for the case that the empty 
language does not have the given property P. 
 

3 Proving languages to be Non-RE with an 
analogue of Rice’s Theorem 

 It is essential to understand that Rice’s Theorem is 
intended and used only to determine the decidability of a 
language. That is, it is not designed, as stated, to distinguish 
whether or not the language property is RE Non-recrusive 
(semi-decidable) or Non-RE (strongly undecidable) [1,4,12]. 

3.1 Confusion and limitations of Rice’s 
Theorem 

The fact that Rice’s Theorem does not distinguish between 
the two classes of undecidable languages often results in 
difficulties for many students studying theory. They have 
learned that there are two classes of problems that prove to be 
undecidable – those that are semi-decidable (i.e. RE Non-
recursive) and those that are strongly undecidable (i.e. Non-
RE). A common query that most instructors in such courses 
inevitably receives is “How do I use Rice’s theorem to prove 
that a language in Non-RE?” The usual response is “You 
don’t use Rice’s theorem to prove Non-RE status you use it to 
prove that a language is not recursive and thus is undecidable. 
It says nothing about the property of the language other than it 
is not decidable.”   
 

The response is obviously correct but often leaves students 
confused as to why Rice’s theorem is the godsend they 
initially believed it to be (and were told it is). If it does not 
assist them in determining if a language is semi-decidable or 
strongly undecidable then it appears to be less than optimal 
for answering the many homework and exam questions they 
are confronted with which ask them to categorize and 
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unknown language as decidable, semi-decidable, or strongly 
undecidable.  
 

Although Rice’s Theorem answers the question that is of 
utmost importance to computer scientists which is “Is the 
given language/problem recursive/decidable or not?” it does 
not provide any further information as to the nature of the 
exact classification of the undecidable problem. 

 

3.2 Corollaries of Rice’s Theorem 
A corollary of Rice’s Theorem implies that if a language L1 

has property P which is Recursively Enumerable and L1⊂⊂L2 
for some language L2 then L2 will also have property P and be 
Recursively Enumerable. That is, the Recursively Enumerable 
languages are monotonic due to the lattice structure of RE 
languages and thus if a language is RE with property P then 
all supersets of the language are also RE with property P.  
Rice’s Theorem also implies that if a language property P is 
not monotonic, then it is Non-RE [ 3,9,10].  
 

It must be noted that not all Non-RE properties are non-
monotonic. For example, any property  P that requires, by 
definition of P itself, that the language L1 must have infinite 
cardinality may not yield a secondary superset language L2 
that does not have the property.  For example, the language 
property Linf = { <M> | L(M) is infinite} or LΣ* = { <M> | 
L(M) == Σ*}.  Such properties are clearly monotonic as once 
satisfied by a language L1 all supersets of L1 will also have the 
property. Such languages require the use of closure properties 
(e.g. Showing that ¬Linf = { <M> | L(M) is finite } is RE non-
recursive ) or via diagonalization proofs. 
 

3.3 Altering and extending Rice’s Theorem 
An examination of Rice’s Theorem, along with its 

corollaries leads us to a relatively minimal alteration to our 
construction of the machine Mx as implied by Rice’s theorem 
and provides us with a machine that does not have to 
recognize the empty language as a default in the case that 
<M> ∉ L(M). 

 

3.3.1 Altering the Mx of Rice’s construction 
The alteration to the traditional Rice approach is simply to 

have the constructed machine Mx “pre-filter” its inputs and 
accept them when they satisfy some Turing recognizable 
language.  

 
In particular, Mx could examine its input before testing the 

machine encoded by <M> upon its own encoding and accept 
it if it satisfies the recognition condition. For example, if we 
wished the machine Mx to recognize the language of all 
palindromes as a minimal language, then prior to testing the 
machine M upon its encoding <M> we would examine Mx’s 
own input to see if it was in fact a palindrome and if so accept 
it and not even bother testing M upon its own encoding. This 
would result in a constructed machine Mx which either 

accepted Lpal (the language of all palindromes) or possibly a 
super-set of the language Lpal as indicated by the pseudo-code 
in figure 7. As shown in figure 7, Mx now either accepts Lpal , 
if <M> ∉ M, or it accepts the language of all strings ( usually 
represented as Σ*)  if <M> � L(M). 
 
Program MX( w : input_string ) 
If ( w is a palindrome)  
    accept w 
Else If ( <M> �   L(M) ) then 
    accept w 
Else  
   reject w 
 
Figure 7.  Example MX used to prove that the language of 
all palindromes is Non-RE.  
 
 The key observation here is that the constructed machine Mx 
as implied by Rice’s Theorem always defaults, when <M> ∉ 
L(M), to the empty language ∅ . The new construction allows 
Mx to recognize/accept any Turing Recognizable language L 
that is, by definition of the new Mx , a superset of L .  
 

3.3.2 An intuitive understanding of the approach 
Just as an operational application of Rice’s Theorem 

requires the student to ask if the empty language has the 
property in question or not, this analogue approach asks the 
student to perform the same operation. If the answer to this 
question is “Yes”, then the student need only identify a 
superset of the empty set that does not have the property P.  
For example if the property P was “Languages that have fewer 
than 20 strings”, then clearly the empty language has the 
property and the student need only select a Turing 
Recognizable language that does not have the property (e.g. 
Σ*). Thus Mx either recognizes ∅ or Σ*.  Since ∅  ⊂ Σ* and  
has property P and Σ* does not have property P we know that 
P is a Non-RE property.  
 
 The more interesting case is when the empty language ∅ does 
not have the given property P. It is then that we need to alter 
our Mx so that it’s default language does have the property P 
in question. As an example, consider Lpal (the language 
consisting of all palindromes only Lpal). Clearly, the empty 
language does not have the property P (∅ ≠ Lpal). Now we 
alter our default language for Mx to be one that does have the 
property P. In this case, we pre-filter Mx ‘s input and if it is a 
palindrome we accept it without ever running machine M 
upon its own encoding. Now the default language for Mx is 
the language consisting of any and all palindromes only (Lpal). 
Next, all we need do is identify a superset of this language 
which does not exhibit the property P.  Clearly Σ* does not 
consist solely of all palindromes and it will suffice. Since Lpal 
⊂ Σ* and Lpal has the property P but Σ* does not we know that 
the property P is Non-RE. 
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In general, the approach to proving a language to be Non-RE 
via the construction of Mx can be expressed as shown in figure 
8. 
 

1. Ask if ∅∅�P?  
2. If Yes, then design Mx so that it accepts the empty 

language ∅  if <M> ∉  L(M) and accepts some other 
language L≠∅  such that L∉P if M accepts <M>. 

3. If No, then design Mx so that it accepts one of two 
languages L1,L2 such that L1�P and is accepted if 
<M> ∉  L(M) and L1 ⊂  L2 and L2∉P. 

 
Figure 8.  The algorithm for a Rice-analogue to determine 
if a property of a language is Non-RE. 
 
Since L1 will always have property P, and RE languages are 
monotonic, if a superset of L1 can be found that does not have 
property P can be found then P cannot be an RE property and 
is thus Non-RE.  
 

4 Examples, limitations and inability to 
prove RE languages to be NON-RE 

Like Rice’s Theorem, this approach is relatively easy to 
apply. Also like Rice’s Theorem, the analogue cannot be 
used to prove an incorrect result. Although this approach 
can be used to prove the vast majority of Non-RE languages 
to, in fact, be Non-RE, there are a handful of languages for 
which it cannot be directly used. 
 

4.1 Three examples of applying the approach 
Consider the language Lnon5 = { <M> | L(M) does not 

contain at least 5 distinct strings}. We prove that this language 
is Non-RE by recognizing that the empty language has the 
property P ( cardinality less than 5). So we select our 
secondary language to be any language whose cardinality is 
greater than or equal to 5 (e.g. Σ*). Clearly, the empty set is a 
subset of Lnon5 and our secondary language does not have 
property P and thus the language property of “having fewer 
than 5 strings” is Non-RE. 
 

As a second example, consider L∅ = { <M> | L(M) == ∅ }. 
Clearly the empty language has the property. Selecting our 
secondary language to be Σ* suffices to prove the property to 
be Non-RE.  
 

Finally, consider the language Lnon-CFG = { <M> | L(M) is 
not a context-free language}. The empty language does not 
have the property P of being non-context-free. This means 
that we should select our primary/default language to be one 
that is not context-free. We can select L1 = { 0N1N0N | N≥1} 
which is known not to be a context-free language and thus has 
the property P. Now we need only identify a superset of L1 
that does not have the property of being non-context-free. We 
can easily select Σ* as it is context-free. This language is 
context-free and thus is not an element of the set for property 

P but it clearly contains the subset L1.  Therefore the property 
of not being context-free is a Non-RE property.  
 

4.2 Limitations to the approach 
Consider the Non-RE language L∞ = { <M> | L(M) is 
infinite}. If we follow the algorithm we first ask if the 
empty language has the property (infinite cardinality). Since 
the empty language is clearly not infinite, we would proceed 
to step 3. Now we are tasked with selecting two languages 
L1 and L2 such that L1 has the property (infinite cardinality) 
and L2 is a superset of L1 that does not have the property in 
question. Clearly, any superset of an infinite set must also 
be infinite and the approach fails. 
 
 Although the approach succeeds for the majority of Non-
RE properties, the fact that some Non-RE properties are 
monotonic prevents the approach from 100% effectiveness.  
 

4.3 RE languages cannot be proven to be Non-RE 
Many students frequently perceive Rice’s theorem to be a 

form of “magic” and wishful thinking. They often believe that 
they can use this “magical approach” to prove that any 
language is not recursive. Similarly, students may believe that 
the approach presented in this paper suffers from a similar 
weakness. Neither belief is accurate and this can be easily 
shown.  
 

Consider an attempt to “prove”, using this approach, that 
the language L5 = {<m> | L(M) contains at least one string 
whose length is greater than or equal to 5} is Non-RE. 
 

We ask if the empty language has the property and easily 
determine that it does not have the property of containing a 
string of at least length 5. So we select some language L1 as 
our primary language that does contain at least one such string 
which we will call w. Now, any attempt to identify a super-set 
of L1 that does not contain w is doomed to fail, by the 
definition of a super-set. It cannot be done.  
 
  As a second example of the failure to incorrectly apply the 
approach, consider an attempt to prove that the language Lnon∅ 

= { <M> | L(M) ≠ ∅ }. That is the language of Turing 
machines whose languages are non-empty.  This language is 
an RE Non-recursive language. Using the approach described, 
we ask if the empty set has the property of being non-empty 
and obviously the answer is “No”. So we select a language L1 
as our primary language which has the property of being non-
empty. Once again, it really does not matter which Turing 
recognizable language we select as it must be selected so that 
it contains at least some string w. Any attempt to define a 
language L2 as a super-set of L1 is destined to produce a set 
with at least the string w within it and we cannot find the 
required super-set that does not have the property P of being 
non-empty. 
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The fact that RE languages are monotonic makes the task of 
identifying a super-set of any RE language that does not share 
the property impossible and will always fail. 
 

5 Conclusion 
This paper presents a relatively easy to understand and 

apply approach to proving the Non-RE status of language 
properties based upon the fundamental ideas of Turing 
reductions and the inherent properties of RE languages. 
 
  The majority of computer science students enrolled in 
theory courses are capable of learning the simple process of 
identifying a primary and secondary language that either 
exhibit the language property or do not, respectively. The 
concept of super-sets is usually well understood and requires 
little in the way of additional mathematical background for 
most of these students.  
 
  Although this approach is not a necessary or sufficient tool 
for proving the Non-RE status of a given property, it is 
usually more quickly understood, accepted, and applied than 
the more standard approaches of using diagonalization 
arguments, or traditional Turing Reductions, closure 
properties or introducing and exploring the concept of Index-
sets and monotonic functions. It is also a reasonably close 
analogue to the traditional application of Rice’s Theorem as 
presented in many theory courses and provides students with a 
level of “comfort” in identifying and discriminating between 
the three classes of recursive, RE Non-recursive and Non-RE 
classes of language properties.  
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Abstract
An important fundamental idea in formal methods is that pro-

grams are mathematical objects one can reason about. Here

we introduce students and developers to these ideas in the

context of formal programming language semantics. We use

first-order Horn clause logic as implemented by Prolog both

as a specification and a proof scripting language. A mod-

ule we have written facilitates using Prolog as a proof assis-

tant and insures that Prolog implements a sound logic. In

order to illustrate our approach we specify the semantics of a

small functional language and demonstrate various proof ap-

proaches and styles.

1 Introduction
An important fundamental idea in formal methods is that pro-

grams are mathematical objects one can reason about [1].

This fundamental idea appears in many areas of software

development including algorithm correctness, programming

language semantics, compiler correctness, system validation,

and system security. For instance, in security sensitive sys-

tems one could look at a program as a mathematical object

and then formally reason about the safety of that program

with respect to some metric. Given the importance of this

topic every software developer should be exposed to at least

the fundamental concepts and ideas of formal methods [2, 3].

In our curriculum we expose students to ideas in formal meth-

ods in the context of formal programming language seman-

tics. Here, programs are structures with corresponding mod-

els and the idea is to be able to formally reason about the

behavior of programs. The advantage of using programming

language semantics as a tool for teaching formal methods is

that students have an intuition of what the behavior of a pro-

gram is and can bring that intuition to the construction of

proofs.
After experimenting with many different formalisms in-

cluding denotational semantics, algebraic semantics, and
structural operational semantics we settled on using first-

order logic as the formalism for specifying programming lan-
guage semantics and the corresponding proofs in the context
of operational semantic specifications. There are a number of
advantages to using first-order logic:

1. It is a formalism most students (and developers) are already

familiar with and therefore can concentrate on semantic prob-

lems rather than notational issues.

2. It can serve both as a specification language and as a language

for constructing proofs.

3. It (or at least the Horn clause subset) is machine executable

giving rise to executable specifications and the notion of auto-

matic proof assistants.

We consider the last point extremely important in that stu-

dents and software developers need to be exposed to auto-

matic theorem proving ideas in the context of formal meth-

ods. There exist many first- and higher-order proof assistant

systems [4, 5]. However, most of them have difficult notations

and concepts of proof construction making them inaccessible

for a one or two semester course in formal methods. It turns

out that Prolog [6] together with a proof-module that we have

developed is more than adequate for an introduction to for-

mal specification of programming language semantics and the

construction of the corresponding proofs. Here we describe

the proof-module we have developed for Prolog and then we

briefly step through an exercise defining the semantics of a

small functional programming language together with corre-

sponding proofs.

Using Prolog for the specification of programming lan-

guage semantics is not new, e.g., [7]. In particular, the work

by Christiansen [8] and Mosses [9] stands out because it

shares our goal of using Prolog to teach programming lan-

guage semantics and uses a style of semantic specification

similar to the natural semantics style we use in our approach

[10]. However, none of the above works takes advantage of

Prolog as a theorem prover. The work by Gupta and Pon-

telli [11] shares our approach by integrating language specifi-

cation and the corresponding proofs all under the umbrella

of logic programming. However, their approach is based

on constraint logic programming as opposed to first-order
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Horn clause logic [12]. Furthermore, their view of a proof

is a single query showing that a particular property holds in

their specification. This is very different from our view of a

proof as a program over the meta-language of Prolog includ-

ing queries, assertions, and retractions. It was paramount for

us to stay in the confines of first-order Horn clause logic in or-

der to satisfy our teaching goal. As far as we are aware using

Prolog as a proof assistant in the context formal specifications

is novel.

The remainder of this paper is structured as follows. Sec-

tion 2 discusses Prolog as a theorem prover or more precisely

as an automatic proof assistant. In Section 3 we discuss our

approach to the semantic specification of programming lan-

guages using Prolog. Section 4 discusses proofs. As men-

tioned above, we view proofs as programs over the meta lan-

guage of Prolog and here we showcase a number of different

proof techniques applicable to semantic specifications. Fi-

nally, in Section 5 we present conclusions and further work.

2 Prolog as a Theorem Prover

2.1 The Logic
The first-order Horn clause logic Prolog implements is per-
haps one of the simplest machine executable, Turing com-
plete logics. This makes Prolog attractive as a specification
language since its learning curve is not as steep as other logic
implementations. Under the following considerations Prolog
implements a sound but incomplete logic [13, 14]:

1. The unification algorithm implements the occurrence-check

– Most Prologs omit the required occurrence-check for effi-

ciency reasons. However, some Prolog systems such as SWI-

Prolog [6] make the occurrence-check user selectable.

2. The proof search strategy is a depth-first search of the refu-

tation proof tree – This is the standard implementation of the

search strategy for Prolog due to efficiency reasons.

3. Only ground terms are negated in rule bodies and proof goals.

Our Prolog proof-module for SWI Prolog insures that the

three conditions above are met.
For the last condition above it can be shown that under cer-

tain circumstances deduction will flounder when negation of
non-ground terms is involved [13, 14]. Our module circum-
vents this problem by introducing a new negation predicate
neg/1 which checks whether the negated term is ground or
not:

neg(G) :- ground(G),!,call(not(G)).
neg(_) :- throw(’term is not ground’).

Note that it is necessary to abort deduction if a non-ground
term is found since simple failure is interpreted as a negation
result. The following is a classic example where deduction
flounders under negation [14],

on_top(X) :- not(blocked(X)).
blocked(X) :- on(Y,X).
on(a,b).

Now given the query of ‘do there exist any objects Q on top?’
Prolog returns the incorrect answer ‘false’,

?- on_top(Q).
false
?-

However, it does produce the correct result given the query,

?- on_top(a).
true
?-

Now, replacing the first line in the program above with the
line which includes our new negation predicate,

on_top(X) :- neg(blocked(X)).

prevents Prolog from performing unsound deductions and
will abort the computation.

?- on_top(Q).
ERROR: Unhandled exception: term is not ground
?-

And it still does produce the correct result given the query,

?- on_top(a).
true
?-

Even though the incompleteness of the logic is disconcert-

ing it does not have as much an impact on our proofs as one

might think due to the fact that we use Prolog as a proof assis-
tant along the lines of Coq [4] and Isabelle [5]1 where proofs

are composed of many small steps each verified by Prolog

rather than a fully automatic theorem prover where the sys-

tem is tasked with also finding the proof steps. That is, we

view proofs as programs over the meta-language of Prolog in-

cluding queries, assertions, and retractions. We refer to these

programs as proof scores. It is our experience that it is highly

unlikely to encounter problems with incompleteness of the

logic in this approach. Even if one did, the problems are eas-

ily remedied by either reordering the predicates in a proof

step (in the case of an infinite search) or including additional

lemmas in the proof to work around incompleteness problems

due to the restriction of negation to ground terms only.

2.2 Notation
Our style of specification of programming language seman-
tics was inspired by the natural semantics of Kahn [10]. The
overall structure of a semantic rule is as follows,

<context>:: <syntax> -» <value> :- <conditions>

The intended interpretation of these rules is: given a context,
a piece of abstract syntax is mapped into a semantic value if
the conditions hold. In Prolog the symbol :- represents the
keyword if. The rules can be abbreviated to,

<syntax> -» <value> :- <conditions>

if no context is required by the rule. Our module defines this

notation to make specifications and proofs more readable.

1Neither Coq nor Isabelle is complete due to their use of higher order

logics.
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2.3 Universally Quantified Queries
Queries in Prolog allow only for existentially quantified vari-

ables. However, when constructing proofs it is often neces-

sary to have queries over universally quantified variables. We

can simulate universally quantified variables in queries using

the following rule from quantification theory [15]:

q ∈ U
P (q)
∴ ∀x ∈ U [P (x)]

If a predicate P is true for an arbitrary object q in some do-
main U it follows that the predicate is true for all objects in
that domain. We can use this to pose universally quantified
queries in our semantics such as,

?- s:: plus(1,1) -->> 2.

where we can interpret s as a constant representing some state

and the query poses the question whether in some state s the

operation plus(1,1) evaluates to the value 2. If the query

is successful then we can use the above quantification rule to

conclude that the query holds for all possible states. Since

this kind of reasoning is always possible we abuse notation

slightly and interpret symbolic constants in queries as uni-

versally quantified variables unless it is obvious from context

that a particular constant is meant, for example, s0 for the

initial state.

2.4 The xis/2 Predicate
Prolog implements a machine executable logic. Given this we
are interested in using programming language specifications
both as executable prototypes as well as for proving proper-
ties of the specified language. When we use a specification as
a prototype we want to appeal to Prolog’s efficiency as a pro-
gramming language which includes the efficient evaluation
of arithmetic expressions. When we want to perform proofs
we appeal to the declarative side of Prolog [14]. It turns out
that these two notions clash in the evaluation of arithmetic ex-
pressions using the is/2 predicate. The is predicate is very
efficient for evaluating arithmetic expressions,

?- X is 1 + 1.
X = 2.

However, when performing proofs it is often necessary to
write arithmetic expressions involving universally quantified
variables,

X is k + 1.

and this leads to problems because is does not know how to
handle these quantities,

?- X is k + 1.
ERROR: is/2: Arithmetic: ‘k/0’ is not a function

In order to accommodate proofs involving universally quan-
tified variables our module implements the xis/2 predicate
(eXtended is) which behaves just like is but allows univer-
sally quantified variables,

?- X xis k + 1.
X = k+1.

It does perform partial evaluation of the expressions where
possible,

?- X xis 0, Y xis k + 3 * cos(X).
X = 0,
Y = k+3.0.

2.5 Additional Predicates
In order to make proofs more readable and easier to follow

at runtime our module defines some additional predicates.

These predicates do not add new meta-language functionality

to Prolog but rather act as wrappers for existing functionality

that provide better self-documentation of proofs and a better

runtime trace. Among the newly defined predicates are:

assume/1 – this is the same as asserta/1.

remove/1 – this is the same as retract/1.

show/1 – this is the same as a Prolog query.

Each of these predicates preserves the original functionality
but outputs additional information when executed. Here is an
example of a very simple (and perhaps silly) proof score:

:- consult(’preamble.pl’).
:- >>> ’assume the commutative property’.
:- >>> ’of integer addition’.
:- assume equiv(A+B,B+A).

:- >>> ’show that expressions X and Y’.
:- >>> ’are related by commutativity’.
:- show

X xis a + b,
Y xis b + a,
equiv(X,Y).

Here is the runtime trace of this proof score,

% xis.pl compiled 0.00 sec, 33 clauses
% preamble.pl compiled 0.00 sec, 45 clauses
>>> assume the commutative property
>>> of integer addition

Assuming: equiv(_G1202+_G1203,_G1203+_G1202)
>>> show that expressions X and Y
>>> are related by commutativity

Showing:
_G1214 xis a+b,
_G1262 xis b+a,
equiv(_G1214,_G1262)

% proof-simple.pl compiled 0.03 sec, 1,343 clauses

Note that in queries Prolog replaces variable names with inter-

nally generated unique names. In the case above, for example,

the variable A is replaced by _G1202. Also, the consult
predicate at the beginning of the proof score loads our module

preamble.pl. Also note the “executable” comments.

3 Semantic Specifications
In order to illustrate the use of our semantic rules we will

specify the semantics of a small functional language inspired

by Winskel’s REC language [16]. The abstract syntax for this

language is shown in Figure 1 with the concrete syntax shown

in brackets.
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E ::= X
| I
| mult(E,E) [E * E]
| plus(E,E) [E + E]
| minus(E,E) [E - E]
| if(B,E,E) [if B then E else E end]
| let(X,E,E) [let X = E in E end]
| letrec(F,X,E,E) [let rec F X => E in E end]
| fn(X,E) [fn X => E]
| apply(E,E) [E E]

B ::= true
| false
| le(E,E) [E <= E]
| eq(E,E) [E == E]
| not(E) [not E]

I ::= <any integer digit>
X ::= <any variable name>
F ::= <any function name>

Figure 1: The abstract syntax of a small functional language.

As usual, we have to give at least one semantic rule for each
syntactic unit in the grammar. The distinguishing feature of
the semantics for this language is that it has a declaration en-
vironment for functions we call D and a binding environment
for variables we call S. Therefore, a state in our semantics is
a pair consisting of a declaration environment and a binding
environment, e.g. (D,S). We start our discussion by giving
the rule for the arithmetic operator mult,

(D,S):: mult(E1,E2) -->> V :-
(D,S):: E1 -->> V1,
(D,S):: E2 -->> V2,
V xis V1 * V2,!.

This rule can be paraphrased as follows:

In the context of state (D,S), the operator

mult(E1,E2) with subexpressions E1 and E2

evaluates to the value V if under state (D,S) the

subexpressions E1 and E2 evaluate to the values V1 and

V2, respectively, and the integer multiplication of V1

and V2 is the value V.

In Prolog commas represent the boolean connective and.

Also, in Prolog variables start with a capital letter, that means

E1, E2, S, etc. are all variables or more precisely meta-

variables, i.e., variables of the specification language. Also

noteworthy is the cut (!) at the end of the rule. We can in-

terpret this cut in one of two ways. First, from a procedural

point of view each semantic rule constitutes a state transition

and once a state transition was made it is not allowed to be

reversed. Second, from a declarative point of view the set of

semantic rules constitute an inductively defined set of rules.

Therefore, once it has been shown that a rule has been suc-

cessfully applied to a piece of syntax all other branches of the

proof tree can be safely pruned because they will not contain

another success. This holds even if there are multiple rules

for a particular syntactic unit because those rules will be mu-

tually exclusive (e.g., see the if-then-else rules).
The rules for plus and minus are analogous to the rule

for mult. Next we look at integer constants and variables.
The rule,

I -->> I :- is_int(I),!.

states that integer constants are treated as integer values re-
gardless of state. The following rules interpret variables in
expressions. The first rule gives an interpretation to function
variables and the second rule to variables that range over in-
teger values,

(D,_):: F -->> [[X,E,S]] :-
is_var(F),
lookup(F,D,[[X,E,S]]),!.

(_,S):: X -->> V :-
is_var(X),
lookup(X,S,V),!.

The first rule looks up the name F in the function declaration
environment D and returns the closure of a function which in-
corporates the formal parameter, the function body, and the
binding environment in which the function was defined. We
denote closures with a double bracket notation, [[ ]]. The
second rule looks up the variable X in the binding environ-
ment S and returns the bound integer value. The predicate
is_var insures that the variable names conform to the lexi-
cal rules. This predicate is not strictly necessary but here we
are dealing with abstract syntax and we do not have a parser
enforcing lexical rules. The lookup predicate is an auxiliary
predicate defined as part of our semantics. The underscore in
the rules represents an anonymous variable meaning that the
corresponding structure is matched but ignored by the rule.
Next, the if expression has its usual interpretation,

(D,S):: if(B,E,_) -->> V :-
(D,S):: B -->> true,
(D,S):: E -->> V,!.

(D,S):: if(B,_,E) -->> V :-
(D,S):: B -->> false,
(D,S):: E -->> V,!.

Here the first rule states that if the boolean expression evalu-
ates to the value true within the context of state (D,S) then
the first expression is evaluated. The second rule states that
otherwise the second expression is evaluated. Let expressions
allow us to bind values to variables,

(D,S):: let(X,E1,E2) -->> V :-
is_var(X),
(D,S):: E1 -->> V1,

(D,[(X,V1)|S]):: E2 -->> V,!.

Here we first evaluate expression E1 under the original state
(D,S). Once we have the corresponding value V1 we ex-
tend the original binding environment Swith the binding term
(X,V1) making use of Prolog’s list manipulation abilities
and evaluate the expression E2 under this new extended state.
The resulting value V is the return value of the overall let ex-
pression. A special case of the let expression is the let-rec
expression which allows us to define recursive functions,

(D,S):: letrec(F,X,E1,E2) -->> V :-
is_var(F),
is_var(X),

([(F,[[X,E1,S]])|D],S):: E2 -->> V,!.

The let-rec expression computes the function closure and as-

sociates the closure with the function name F in the function

declaration environment D. The expression E2 is then evalu-

ated in this extended state.
Our programming language also supports anonymous

functions envisioned in the style of ML [17]. In the abstract
syntax this is denoted by the operator fn. As before, the
semantic value of a function definition is the closure of the
function,
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(_,S):: fn(X,E) -->> [[X,E,S]] :- is_var(X),!.

Finally, we define function application as follows,

(D,S):: apply(E1,E2) -->> V :-
(D,S):: E1 -->> [[X,E,Sfn]],
(D,S):: E2 -->> V2,

(D,[(X,V2)|Sfn]):: E -->> V,!.

Here we see that in order for function applications to make

sense the first expression E1 has to evaluate to a function clo-

sure. We then evaluate the second expression E2 and its value

V2 is used to create a binding term (X,V2) where X is the

formal parameter of the function. This binding term is used

to extend the function binding environment Sfn and the body

of the function E is evaluated under this extended state.

The semantics of boolean expressions can be specified

analogously to the arithmetic expression with the big differ-

ence of course that we only have two constant values: true
and false. A complete listing of all the semantic specifica-

tion rules is available from the authors website.

4 Proofs
Everything in Prolog is a proof – in particular, running a logic

program in Prolog is a proof. However, here we are interested

in Prolog as a proof assistant in order to prove characteristics

of our language specifications. Our view of proofs as pro-

grams over the meta language of Prolog seems to be novel

and we explore this here. We explore three types of proofs:

• Tests - which are proofs over a particular input-output

pair of a program.

• Proofs of language properties - these proofs examine

features of the language such as program equivalence.

• Program correctness proofs - proofs whether a program

conforms to a given requirement or not.

Here we take a look at each of these proof categories.

4.1 Tests
In testing we are interested in the behavior of language fea-
tures and want to show that a certain feature behaves as ex-
pected given some particular input value. In Prolog we ac-
complish this by setting up a proof that relates an input to
a program to its expected outcome. The following is a sim-
ple proof for integer multiplication in our functional program-
ming language assuming that the language definition has been
loaded,

?- show (d,[(x,10)|s]):: mult(x,10) -->> 100.
Showing: (d,[ (x,10)|s])::mult(x,10)-->>100

true.

We can paraphrase this proof as follows,

Show that for all declaration environments d and all

binding environments s that contain the binding term

(x,10) the code snippet mult(x,10) evaluates to the

value 100.

In order to illustrate how these tests can be used to explore
features let us take a look at function calls. Here is a more
ambitious test proof regarding function calls,

:- consult(’functional-rec-sem.pl’).
:- assume program

let(inc,
fn(x,plus(x,1)),
apply(inc,1)).

:- >>> ’we have for all states (d,s), (d,s):: P -->> 2’.
:- show

program P,
(d,s):: P -->> 2.

The above program can be rewritten in concrete syntax as fol-
lows,

let inc = (fn x => x + 1) in inc 1 end

The actual test checks whether for all possible states the pro-
gram evaluates to the value 2. Here is the corresponding run-
time trace of the proof score assuming that the proof score is
called ‘proof-inc.pl’,

?- consult(’proof-inc.pl’).
% xis.pl compiled 0.00 sec, 33 clauses
% preamble.pl compiled 0.00 sec, 45 clauses
% functional-rec-sem.pl compiled 0.01 sec, 68 clauses

Assuming: program let(inc,fn(x,plus(x,1)),apply(inc,1))
>>> we have for all states (d,s), (d,s):: P -->> 2

Showing: program _G117, (d,s)::_G117-->>2
% proof-inc.pl compiled 0.01 sec, 72 clauses
true.

We can also experiment with the higher-order nature of our
functional programming language using currying,

:- >>> ’Higher order functions: curried plus’.
:- assume program

let(add,
fn(x,

fn(y,plus(x,y))),
apply(apply(add,1),1)).

:- >>> ’we have for all states (d,s), (d,s):: P -->> 2’.
:- show

program P,
(d,s):: P -->> 2.

In terms of concrete syntax the above program is written as:

let add = (fn x => (fn y => x + y)) in add 1 1 end

4.2 Proofs of Language Properties
In order to prove properties of a programming language it is
convenient to define the notion of program equivalence,

p1 ∼ p2 iff ∀s, ∃v1, v2[s :: p1 → v1 ∧ s :: p2 → v2 ∧ v1 = v2]

That is, two programs p1 and p2 are equivalent if and only
if under all states s they produce the same semantic value.
We can use this to prove that the multiplication operator in
our language is commutative. Looking at the semantic rule
for multiplication defined above it is clear that commutativity
follows directly from the commutativity of integer multipli-
cation but it is still nice to actually prove that this is so,

:- >>> ’Assume that we have expressions a and b’.
:- assume (d,s):: a -->> va.
:- assume (d,s):: b -->> vb.

:- >>> ’Integer multiplication is commutative’.
:- assume equiv(A*B,B*A).

:- show
(d,s):: mult(a,b) -->> V1,
(d,s):: mult(b,a) -->> V2,
equiv(V1,V2).
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Next we prove that our functional language implements by-
value parameter passing. We show this by proving that func-
tion application is equivalent to an appropriate let-expression,

:- >>> ’By-value parameter passing’.

:- assume (d,s):: a -->> va.
:- assume (d,[(x,va)|s]):: e(x) -->> ve.

:- show
(d,s):: let(x,a,e(x)) -->> V1,
(d,s):: apply(fn(x,e(x)),a) -->> V2,
V1=V2.

The proof itself is straightforward with perhaps the exception

of the second assumption which states that any expression e
parameterized over the variable x evaluates to the value ve
under some state whose binding environment s contains the

variable binding (x,va).
The following is a proof that in our functional language

without function application all programs terminate, i.e., al-
ways produce a value. The proof is by structural induction
over the expressions,

:- >>> ’Base cases:’.

:- >>> ’Variables’.
:- >>> ’Assume that states are finite’.
:- assume lookup(x,s,vx).
:- show (d,s):: x -->> vx.
:- remove lookup(x,s,vx).

:- >>> ’Constants’.
:- assume is_int(n).
:- show (d,s):: n -->> n.
:- remove is_int(n).

:- >>> ’anonymous function definitions’.
:- assume is_var(x).
:- show (d,s):: fn(x,e) -->> [[x,e,s]].
:- remove is_var(x).

:- >>> ’Inductive cases’.

:- >>> ’Operators’.
:- >>> ’mult’.
:- assume (d,s):: a -->> va.
:- assume (d,s):: b -->> vb.
:- show (d,s):: mult(a,b) -->> va*vb.
:- remove (d,s):: a -->> va.
:- remove (d,s):: b -->> vb.

:- >>> ’the remaining operators and boolean’.
:- >>> ’expressions can be proved similarly’.

:- >>> ’programming constructs’.
:- >>> ’let-expression’.
:- assume (d,s):: a -->> va.
:- assume (d,[(x,va)|s]):: e(x) -->> ve.
:- show (d,s):: let(x,a,e(x)) -->> ve.
:- remove (d,s):: a -->> va.
:- remove (d,[(x,va)|s]):: e(x) -->> ve.

:- >>> ’similarly for the let-rec expression’.

:- >>> ’if-expression with case analysis’.
:- assume (d,s):: e1 -->> v1.
:- assume (d,s):: e2 -->> v2.

:- assume (d,s):: b -->> true.
:- show (d,s):: if(b,e1,e2) -->> v1.
:- remove (d,s):: b -->> true.

:- assume (d,s):: b -->> false.
:- show (d,s):: if(b,e1,e2) -->> v2.
:- remove (d,s):: b -->> false.

:- remove (d,s):: e1 -->> v1.
:- remove (d,s):: e2 -->> v2.

The structural induction argument as encoded by this proof

score is pretty straight forward. Perhaps the only surprising

aspects are the ‘remove’ statements which remove assump-

tions from the Prolog database. They are necessary in order

to prevent assumptions from one step of the proof to “bleed”

into another step of the proof.

4.3 Program Correctness Proofs
Program correctness proofs are very similar to testing as dis-

cussed above with the exception that we want to show that

the program behaves as expected for all inputs. Here we use

techniques described in [18] and [19].
We start with the correctness proof a program that com-

putes the maximum of two values. The proof makes use of
the Prolog built-in predicate max/2 as a model for the com-
putation of our program.

:- >>> ’show that program’.
:- >>> ’ P = "let(z,if(le(n,m),m,n),z)"’.
:- >>> ’computes the maximum of’.
:- >>> ’the values assigned to m and n’.

:- assume program let(z,if(le(n,m),m,n),z).

:- >>> ’assume values for m and n’.
:- assume (d,s):: m -->> vm.
:- assume (d,s):: n -->> vn.

:- >>> ’case analysis on values vm and vn’.
:- >>> ’case vm = max(vm,vn)’.
:- assume vm xis max(vm,vn).
:- >>> ’this implies that’.
:- assume true xis (vn =< vm).
:- show

program P,
(d,s):: P -->> vm.

:- remove vm xis max(vm,vn).
:- remove true xis (vn =< vm).

:- >>> ’case vn = max(vm,vn)’.
:- assume vn xis max(vm,vn).
:- >>> ’this implies that’.
:- assume false xis (vn =< vm).
:- show

program P,
(d,s):: P -->> vn.

:- remove vn xis max(vm,vn).
:- remove false xis (vn =< vm).

The proof performs a case analysis on the values of m and

n and shows that in each case our program evaluates to the

correct value for all possible states s.
Our next proof is the correctness proof of the factorial func-

tion,

let
rec fact x => if x == 1 then 1 else x * fact(x-1) end

in
fact(1)

end

Here is the proof,

:- >>> ’Factorial: show that program P:’.
:- assume program

letrec(fact,
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x,
if(eq(x,1),

1,
mult(x,

apply(fact,
minus(x,1)))),

apply(fact,i)).
:- >>> ’is correct for all inputs i > 0’.

:- >>> ’proof by induction on i’.

:- >>> ’base case: i=1’.
:- assume i -->> 1.
:- show

program P,
(d,s):: P -->> 1.

:- >>> ’inductive step: i=n’.
:- assume i -->> n.
:- assume false xis n==1.
:- >>> ’inductive hypothesis:’.
:- assume

apply(fact,minus(x,1)) -->> factorial(n-1).

:- show
program P,
(d,s):: P -->> n*factorial(n-1).

The proof is by induction over the input to the fact function.
As a model for the computation we use the factorial operator
defined in the standard recursive way for k > 0,

factorial(k) =

j
1 if k = 1
k ∗ factorial(k − 1) otherwise

5 Conclusions

Every software developer should be exposed to the fundamen-

tal idea in formal methods that programs are mathematical

objects one can reason about. We introduce this idea in the

context of formal programming language semantics. Here,

programs are structures with corresponding models and the

idea is to be able to formally reason about the behavior of

programs. We have shown that the first-order Horn clause

logic as implemented by Prolog is a suitable framework to

introduce these ideas. Using the specification of a small func-

tional language we have shown that a variety of proof types

and styles can be implemented using Prolog as a proof assis-

tant, from simple implication based proofs to induction based

arguments. In our view proofs are programs over the meta-

language of Prolog and our custom module assists in writing

these proofs. Our module also insures that Prolog deduction

is sound and allows the use of universally quantified vari-

ables in proofs. The advantages of using Prolog is that it is

a straightforward language to learn and the underlying logic

is likely a formalism most students and software developers

have already encountered.

In the future we interested in developing bisimulation and

co-inductive techniques using Prolog which would prove use-

ful when proving compilers and translators correct.

This paper is dedicated to Angel.
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Abstract - The alarmingly low numbers of women pursuing 
Computer Science degrees in the United States continues to be 
significant concern. Because of such low participation, related 
organizations have been considering potential ways to 
integrate more women; however, it is the underlying general 
causes and their sources of the decline that need to be 
considered methodically from various contexts.  In 
understanding the causes, we can redirect the efforts as a 
solvable problem. 
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1 Introduction 
  By 2024, there will be half a million Computer Science 
related jobs that need filled according to the Bureau of Labor 
and Statistics, and at the current graduating rate of Computer 
Scientists, the supply is much lower than the demand [1]. 
Companies are so desperate for employees to fill those 
positions that many are hiring fresh college graduates or 
attempting to create more enticing internship programs. 
Surprisingly, women have been found to outnumber men in 
Universities, yet very few are pursuing careers in Computer 
Science. The National Bureau of Economic Research states 
“in 2003, there were 1.35 females for every male who 
graduated from a four-year college” [2]. Comparing this to 
Randal Olson’s findings that show less than 18% of Computer 
Science degrees are earned by women begs the question of 
what is steering women away from technology [3].  

A 2014 Google study [4] found that the four (controllable) 
key factors in the decrease of numbers are 1)  social 
encouragement, 2) self-perception, 3) academic exposure, and 
4) career perception.  In addition, the study found peripheral 
roles (uncontrollable factors) that also have a negative 
influence in the pursuit of a Computer Science degree by 
women.  These include a) ethnicity b) family income, c) and 
parental occupation. 

For women (and men) studying and working in the field of 
Computer Science, these numbers and accompanying figures 
are not new.  Having had the experience of being or seeing 
only a handful of women in a) undergraduate and graduate 
classes (which were taught by mostly men) and b) in the 

workplace, the numbers while unsurprising continue to be 
problematic.   

Through training, Computer Scientists are taught to problem 
solve and to do so in the most efficient manner possible.  To 
Computer Scientists, the world of possibilities lies in the 
problems that can be solved, logically and systematically; 
however, to people outside the realm of technology, it is not 
clear at all what Computer Scientists do or what Computer 
Science is.  That is a problem because the vague 
understanding of what computer science is and what computer 
scientists do feed directly to the four key factors identified in 
the Google study. 

 

2   The Career Landscape for Women 
and Motivating Factors 

  In 2014, the fields in which there were more than 75% 
women employed in the US [4] were secretaries, elementary & 
middle school teachers, nurses, psychiatric and home health 
aides, receptionists, office clerks, maids and housekeeping, 
social workers, secondary school teachers, personal care aides, 
waitresses, teaching assistants, preschool and kindergarten 
teachers.   A 2012 Wall Street Journal [5] indicated that 
"women account for a third of the nation's lawyers and 
doctors, a major and positive shift from a generation ago."   

The presence and “popularity” for women in the 
aforementioned careers could be functions of opportunities 
available, and also the built-in bias in recruitment in a male 
dominated workforce over the years.   But from a pragmatic 
perspective, we can consider what these occupations have in 
common.   

1) There is a clear perception regarding the 
aforementioned careers.  People and media have a 
comfortable summary understanding of what teachers 
do, what nurses and doctors do, what administrative 
assistants do, what lawyers do.  Women have been 
pigeon-holed into these professions. 
 

2) There is a sense of manageability of hours which 
would allow women to “have it all” (an income, a 
career, independence, while also being able to nurture 
a functional household/ family.) 
 

3) Counselors, parents, and mentors are able to give 
social, academic, professional exposure, guidance 
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and encouragement to students interested in pursuing 
these careers. 

4) Each of the professions is useful and necessary in
everyday life, and they involve meaningful social and
human interaction.

3 The Solvable Parts of the Problem

Part I:  A study on adolescent (teenagers indicative of a pre-
college age-group) girls has shown that “girls reported greater 
likability and similarity to the self for women in appearance-
focused occupations compared with women in non-
appearance-focused occupations” [10].  The girls were shown 
photographs of appearance-based career women (model Heidi 
Klum and actress Jennifer Anniston) and non-appearance 
based career women (CEO Carly Fiorina, and military pilot 
Sarah Deal Burrow).  The girls rated women in appearance-
focused photos as more competent than the other women. 
However, the study also found that the same teenage girls 
found CEOs and military pilots to be better role models.  The 
research also concluded from the findings that “girls know they 
should look up to female doctors and scientists, but they also 
know that women in appearance-focused jobs get rewarded by 
society.  It is therefore reasonable to think they would prefer 
women in those jobs.” What is encouraging is that the finding 
also showed that there is an “interest and hunger for a more 
diverse image of working women in media and advertising.”

An additional study found “that image search results for 
occupations slightly exaggerate gender stereotypes and portray 
the minority gender for an occupational less professionally” 
[6].  To address these concerns LeanIn.org and Getty Images 
have collaborated to create and curate and present the “Lean 
In Collection,” a library of images devoted to the powerful 
depiction of women, girls, and people who support them.  The 
pictures in this collaborative collection are geared to depict 
images of female leadership, and equal partnership in 
contemporary work and life. [7]

Part II:  In a survey conducted by the authors of this paper, we 
identify 1) the lack of clear understanding of what computer 
scientists do, and 2) the lack of clear perception of the field of 
computer science, as additional components to the low 
enrollment of women in computer science in the United States. 

4 Methodology 
Part I:  To assess, compare, and contrast the images of the 
profession of Computer Science and the image of women in 
Computer Science, simple searches were carried out on 
Google.  In line with the Google study [4], the objective was 
to gauge the perception and exposure of Computer Science 
and Computer Scientists that are projected by online media to 

precollege female students, and their circle of influence 
(counselors, peers, parents). 

Part II:  The authors conducted a survey of a wide range of 
people as a means of gauging their perceptions and “un-
researched” understanding of what computer scientists do, and 
what computer science is, in general.  We asked each 
respondent to give us their immediate and un-researched 
answers.

5 Results 
Part I: 
Googling the words “Computer Science” gives us the 
following image (Figure 1).   

Fig 1:  the images retrieved on 3/21/16 upon googling 
“computer science”

Googling the words “women Computer Science” gives us the 
following picture (Figure 2). 
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Fig 2:  the images retrieved on 3/21/16 upon googling “women 
in computer science”

These images are a visual indication of how computer science 
is perceived and how that perception is further propagated in 
the media, and funneled through and accepted by high school 
students, their counselors, and guardians.   

All images from the first set were advertisement styled with a 
plethora of 1s, 0s, and various code bits plastered on objects 
that generally do not define Computer Science at all. The 
closest image was one that included a keyboard. This indicates 
that society, especially those instilled with the job of promoting 
Computer Science, have a narrow understanding of the field.  

The second set shows a lot of promotional material for 
women, further showing that there is a lack of women and 
support for the field. Beyond that, it is just people looking at a 
computer. There is nothing showing what the actual field can 
accomplish, or that Computer Science and coding is a big part 
of everyday life. There is nothing illustrating how code affects 
people and that it is in almost everything we handle in this 
decade. 

The images of “computer science” and a “computer scientist” 
visually indicate:  

1) Computer Scientists and Computer Science are not
defined clearly.

2) there is little relevance or connection with the pictures
to everyday lives.

3) there is no depiction of social or human interaction.
4) Computer Science is abstract and non-dynamic field.
5) Computer Scientists do little beyond sitting around a

computer.
6) there is a widening gap/ problems in the recruitment

of women in computer science.

As a contrast to the images for “Computer Science” and 
“Computer Scientist”, the images for the careers that women 
pursue, or in which there is a majority of women, showcase a 
different narrative.  Figures 3, 4, and 5 represent Google 
images for elementary school teacher, receptionist, and health 
care respectively.   

 Fi 3:  the images retrieved on 3/21/16 upon googling 
“elementary school teacher” (most of us have had one – we 
know what they do, they made an impression on us) 

 Fig 4:  the images retrieved on 3/21/16 upon googling 
“receptionist”  (images of attractive women, which is 
important to people) 

Int'l Conf. Foundations of Computer Science |  FCS'16  | 81

ISBN: 1-60132-434-0, CSREA Press ©



Fig 5:  the images retrieved on 3/21/16 upon googling “health 
care” (important to all os us, meaningful, we have interaction 
with someone in the health field social interaction, making a 
difference, prestige)  

Part II 
A random group of college educated, non-computer scientists 
were asked the following  questions a) what do you think a 
Computer Scientist does and b) what exactly is Computer 
Science.  (The complete set of responses is in the Appendix.) 

6. Analysis and Discussion
Part I:  The images portray computer science to be a counter 

to the images portrayed for professions that women typically 

choose.  The images are impersonal, abstract, (Fig 1) static, 

and do not illustrate the varied functions of computer scientists 

(Fig 2).  In addition, the images generally do not demonstrate 

any women in leadership roles, nor do they exemplify 

meaningful human or social interaction.  The messages for 

computer science and women in computer science (Fig 1, 2) 

are in contrast to the more dynamic images depicting “happy” 
women interacting with others in careers that appear to be 

meaningful (Fig 3, 4, 5) like elementary teachers, and health 

care professionals.  Adolescent girls are self-conscience and 

want a career in which women are perceived to be attractive 

and thus likable and rewarded by society [10].  The abstract 

images portraying computer science do not allow adolescent 

girls and their circle of influence (high school counselors, 

parents. guardians) to connect with the career that is known to 

be “male-dominated.”  

Part II:  The survey carried out by the authors confirms that 

there is not a clear or summary understanding of what 

computer scientists do, or what computer science is.  There is 

a specific connection to coding, and computers, but there is 

not a comprehensive scope of understanding of the  broad 

spectrum of meaningful contributions that is directly influenced 

by computer science and computer scientists. 

7. Conclusions
 To attract women to Computer Science, a field we know 
to be dynamic, progressive, meaningful, broad, flexible, 
and impactful, it is necessary to: 

1) define clearly what computer science is and what
computer scientists do, so that it can be conveyed to
girls in middle and high school

2) define clearly to high school counselors, and the
general population what computer science is and
what computer scientists do, so that they would be
articulate the field to potential and interested students

3) work with organizations like LeanIn.org and Getty
Images, to create and propagate dynamic images of
actual female computer scientists carrying out jobs in
computer science, especially ones in which they are
engaging with others (e.g. professors, filed
researchers, experts speaking at conferences,
working on rockets, building robots in a team)

4) showcase computer science as the field that creates
devices and programs that  girls enjoy using and find
useful and meaningful to use (e.g. iTunes, Google,
apps, FitBit, computerized medical devices etc.)

5) redefine the field as one that, due to its pervasive
nature, allows women to pursue any area of interest
while also allowing them to have the family life and
social time that leads to a balanced life.

6) invest in conferences that have females Computer
Scientists as role models and presenters.  A model for
such a conference is the  Women in Math and
Science Conference at Millersville University [8].

7) invest in courses (at both the High School and
College level) that give Freshman an example-based
understanding of what Computer Science is and what
Computer Scientists have done and are doing [9].
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Abstract—Having customers wait at a full-service restaurant 
before they are seated is a common sight at most full-service 
restaurants located in the United States. Yet, it presents a 
difficult situation for both the restaurant and the customer. 
Restaurants may lose customers if the wait is too long because 
customers will view that time as unproductive and many will 
chose to avoid that experience which costs the restaurant 
revenue. Additionally, the wait time estimates given to potential 
customers by the hostess or manager are notorious for being 
inexact and are probably better described as guesstimates. If the 
wait time estimate given to potential customers is too long, the 
potential customer may depart. If the given number is too small, 
the potential customer may become irate if the actual wait time 
exceeds it. Given the importance of providing customers with an 
accurate wait time estimate, little has been done in this industry 
to develop or implement a better method of doing so.
Participants in the industry place so little value on wait time 
estimates or on the actual wait time numbers that the sheets used 
to track these during a shift are routinely discarded at the end of 
the day.   

All of the recently proposed solutions to this problem require 
either that additional hardware be added to each restaurant 
location or that the customer provide their own hardware 
(smartphone) for use by the planned system. This paper surveys 
these methods and discusses the benefits and drawbacks of these 
proposals. As an alternative, this paper suggests using a time 
series equation to forecasting future wait time values that can be 
implemented purely through software and through the existing 
hardware available in the restaurants. The initial results of the 
time series model are presented. Finally, the paper proposes the 
development of a wait time estimation algorithm that would be 
used to generate wait time forecasts using readily available 
Internet data. The development of this algorithm would be based 
on dynamic regression which allows forecasts to be developed 
with external variables.

Keywords—algorithm development; forecasting; queue; time 
series, restaurant

I. INTRODUCTION

Research has shown that the keys to success for full-service 
restaurants in the United States are specializing the menu, 
offering healthy options, maintaining a clean and well managed 
restaurant, and having quick service [1]. There are times when 

these restaurants are busy, and they must place their customers 
and their potential customers in a queue particularly during 
peak times. Forcing customers to wait before they are even 
seated at a table violates the industry’s goal of quick service.
For this industry, it is a wide spread problem. Ninety-three 
percent of full-service restaurants have wait time periods at 
some point during the week and the average wait time is thirty 
minutes [2]. Given that there are expected to be approximately 
257,000 casual dining restaurants in America by the year 2019 
[3] and that sixty-eight percent of Americans visit casual dine 
restaurants at least once each week [4], waiting at restaurants is 
and will remain a wide spread problem that negatively impacts 
both customers and the restaurant industry.

Customers are even adding to the problem by extending the 
amount of time they are in the restaurant due to their usage of 
smartphones and mobile devices [5]. One restaurant examined 
video surveillance from the years 2004 and 2014 and 
discovered that their increases in wait time were due to 
customers taking on average thirteen minutes longer to order, 
spending twenty minutes longer eating, and taking an extra 
fifteen minutes to pay the check. These delays were frequently 
caused by customers’ preoccupation with their smartphones 
throughout the dining process. Examples of this include 
checking social media, email, and texts; asking wait staff to 
connect their mobile devices to the restaurant’s Wi-Fi hot spot 
or to take a group photo; and taking photos of food and posting 
them to the Internet.

Restaurants are presented with several challenges when 
trying to manage this problem. How do restaurants accurately 
calculate the correct wait time estimate for customers? This is a 
critical number for the restaurant to get correct. If the wait time 
number quoted to the customer underestimates the real wait 
time, then a customer may become irate or think that the 
restaurant has not been honest when them when the wait time 
exceeds the actual amount of time waited. On the other hand, if 
the restaurant overstates the estimated wait time, customers 
may decide that the wait is too long and chose to leave and 
dine with a competitor. The restaurant may cost itself business 
and profits by simply being inaccurate with its wait time 
estimations. Surprisingly, given the importance of accurate 
wait time estimates, these numbers are usually not based on 
any real data or mathematical calculations. They are simply 

84 Int'l Conf. Foundations of Computer Science |  FCS'16  |

ISBN: 1-60132-434-0, CSREA Press ©



based on the experience of the hostess or the manager who 
gives their best guesstimate at the time.

Having the ability to generate accurate wait time estimates
would give restaurant managers the ability to use this data to
make better business decisions such as proper staffing levels 
and marketing choices. Providing accurate wait time 
information to customers makes them more informed to make 
a better decision about restaurant selection. Customers select 
restaurants by considering several parameters including price, 
quality, convenience, and speed [6]. Without an accurate wait 
time number for each restaurant the customer is considering, 
the ability of the customer to make rational fully informed 
decisions is impaired. Providing customers with adequate wait 
time estimates allows them to accurately perceive and weigh 
the convenience and speed factors during their decision making 
process.

II. RELATED WORK

Queueing theory is the study of wait times and was first 
developed and published by Agner Erlang in 1909 [7]. Erlang, 
an engineer, mathematician, and statistician who worked for a 
telephone company, was attempting to determine how many 
telephone circuits were necessary to process a given number of 
telephone calls for a local area [8]. As further research into 
queueing theory occurred, Little’s Law was developed and 
implemented into multiple fields. The equation for Little’s Law 
consists of the long term average number of customers in a 
system (L), the average time a customer spends in the system 
(W), and the long term average arrival rate of new customers 
(
) and is shown as Equation 2.1.

(2.1)

Given the mean customer arrival rate (
), the mean service 
rate (�), and the utilization factor (�=
/�) in an M/M/1 
queuing model, a restaurant can determine queuing factors 
such as:

	 The probability that n customers are in the restaurant.

(2.2)

	 The average number of customers in the restaurant.

(2.3)

	 The average number of customers in the queue.

(2.4)

	 The average amount of time customers spend in the 
restaurant. (This includes wait time and service time.)

(2.5)

	 The average amount of time a customer spends 
waiting in the queue.

(2.6)

Gupta, Dharmadhikari, Bector, and Chow stated, “…if both 
the arrival and service time distributions are completely
specified, we can, in principle, find all the performance 
distributions. However problems arise when only partial 
information is available about these distributions…[7].” In 
regards to Little’s Law, Little and Graves stated that, “we are
observing and measuring not forecasting” because while the 
relationship L=
W remains true, it is being conducted after the 
fact [9]. Therefore, other techniques must be used to overcome 
these issues.

The most obvious method to measure human queue 
parameters is to use trained human observers to do so. They 
can observe and measure wait times in queues, the number of 
people in a queue, and service times at the service point among 
other factors. However, it is not practical to do this for an 
extended period. Human observers are expensive to implement, 
would be costly to use on a wide-scale basis, and may not be 
generate consistent results among different individuals [10]. A 
potential solution is to replace visual observation and counting 
techniques used by a human with some piece of technology 
that can perform the same functions. Recent research exists 
detailing how this has been done with several different 
technological solutions.

2.1 Using Wi-Fi Signal Strength to Determine Queue Factors

One option used to determine wait times in human queues 
is to analyze and measure the signal strength of the 
smartphones of the people in the queue. The queue is 
categorized into three zones: waiting period, service period, 
and leaving period [11]. This monitoring station passively 
monitors packets sent from the smartphones of the individuals 
in the queue. It is expected that the signal strength of the 
packets will increase as the phone gets closer to both the 
service point and to the monitoring station. Once the person is 
at the service point, the signal strength is expected to stay 
steady as he is serviced and then experience a drastic drop off 
as service is finished and the individual leaves the service area 
[11]. This approach allows organizations to determine the 
beginning of the service point, the leaving point, and the end of 
leaving point in real time of a single user. These values are 
then used to calculate the amount of time that individual was in 
the waiting period (or the wait time the individual experienced 
in the queue), the service time for the individual, and the time 
when the individual left the queue. In calculating the beginning 
of service and leaving point times, this approach was 
determined to be accurate within four seconds [11].

Challenges using this technique include determining the 
exact point in time when a user transitions between the waiting 
period, the service period, and the leaving period. Determining 
exactly when these transitions occur is complicated by wireless 
signal propagation issues such as multipath interference and 
attenuation. Also, implementation in a full-service restaurant 
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may be problematic since the user may stay in the vicinity of 
the monitoring station during their entire dining experience.

2.2 Using Bluetooth to Determine Wait Times

Another option explored in literature is the possibility of using 
Bluetooth signals to determine passenger wait times in a 
security queue in an U.S. airport. The system was used to 
measure the transition times as passengers progressed through 
the pre-security area of the airport and through the security
screening queue and checkpoint. The measurements concluded 
when the walk to a particular concourse was completed [12]. 
The idea for this came from a method used to take passenger
vehicle traffic counts on roadways using the media access 
control (MAC) addresses of Bluetooth devices embedded in 
modern automobiles. The system developed in this case was 
composed of a pair of low powered Bluetooth receivers. As 
any passenger with a Bluetooth device approached the first 
receiver in the pre-screening area, his MAC address and a 
timestamp of the transaction were recorded. Once the 
passenger progressed through the queue for security and then 
completed the security checkpoint process, he entered the 
concourse where a second Bluetooth recording device again 
recorded the MAC address of his Bluetooth device and the 
transactional timestamp data [12]. An example of this would be 
a passenger carrying a Bluetooth device through this process 
with the unique MAC address of “00:21:06:8C:7A”, the pre-
security timestamp of 08:49, and concourse timestamp of 08:59 
[12]. With these three pieces of data, it can be seen that the 
passenger entered security at 8:49 AM on a particular date and 
arrived in the concourse ten minutes later at 8:59 AM. The 
advantages of this approach are that it is inexpensive and 
simple to implement. Even though only five percent of 
passengers had their Bluetooth feature engaged, meaningful 
data was collected [12]. Disadvantages include concerns over 
personal privacy issues through the capture of the unique MAC 
address of passengers’ Bluetooth devices. However, the MAC 
address may be discarded after the passenger has been detected 
by both Bluetooth receivers and the transit time has been 
calculated. Another disadvantage is that some passengers may 
not take a direct trip through the screening process. They may 
be diverted by take a side trip to a restaurant or restroom or an 
interaction with family members or friends.

2.3 Using Light and Switching Mats to Calculate Service 
Times

Another system implemented in an airport involved using 
light sensors and switching mats to measure passenger queue 
parameters. A light sensor is a piece of equipment that is low 
cost and has been in use for decades [10]. The transmitter 
transmits a continuous beam that was aimed across the queue 
and is redirected back by the reflector. Anyone passing though 
the beam breaks the connection and is counted as a single 
passenger. In addition, a timestamp of the event is created and 
stored. This method has limitations since two people walking 
side-by-side would still be counted as only one passenger and 
the transmitter and reflector need to be located where 
passengers cannot reach and tamper with them. A switching 
mat is made with two conductive plates. When the top plate 
does not have weight on it, it will not touch the bottom plate 
and no connection is made. However, when someone stands on 

the mat, both plates touch and a connection is made. When this 
occurs, the passenger count is increased by one and again a 
timestamp is taken [10]. This technology also has some 
limitations. During the data collection phase of the research, 
the switching mat failed for four days due to a defective power 
supply. With these devices, it is possible to count the number 
of passengers given that their movement is in one direction 
only with a reasonably high degree of accuracy. In one test, the 
light sensor counted 3,735 people compared to a manual count 
of 3,745 [10]. Results were not as good in a situation where 
people could walk bi-directionally in the queue, the sensors 
overstated the count at 205 versus the manual count of 182 
[10]. Overall, the sensors were able to count the number of 
people in the queue to an acceptable level of accuracy. Given 
the timestamp data created by a crossing event, service and 
wait times in the queue may be calculated using these 
technologies. However, forcing all of the customers waiting at 
a restaurant to walk in only one direction in a single file line is 
not realistic.

2.4 Using Video Images to Estimate Queue Parameters

Another approach is to determine queue factors such as 
wait time, service time, and queue length is to use surveillance 
videos of the queue area. To accomplish this, numerous 
parameters must be addressed such as the type of queue, the 
type of service, lighting levels, camera angles, and the 
appearance of people (e.g. carrying a bag versus not carrying 
one) for this type of system to function properly [13]. To 
analyze an image, the system has a queue module and a 
counter module. The queue module estimates the number of 
individuals located in the queue area while the counter module 
detects an individual at a counter and estimates how long it 
takes each person to be serviced at the counters. These
numbers are used to determine the service time of the counters.

Given the probability density function of the number of 
people waiting in the queue, �N(x), and the service time 
density, �s, then the average waiting time, Tavg, for individuals 
in the queue is determined by Equation 2.7.

(2.7)

Proper camera placement is a key to success using this method. 
A top down installation versus a side view offers better 
performance and accuracy. Additionally, multiple cameras 
improve the performance but may not be practical due to 
economic concerns.

2.5 Using Smartphones to Determine Queue Wait Times

Another technique to determine customer wait time only 
(the service time and number of customers in the queue was 
not a goal of the system) involved installing an app on 
customers’ smartphones to estimate line wait time through 
crowdsensing at a coffee shop located on a college campus. 
This coffee shop only handled pedestrians (no drive-thru for 
automobile traffic), had a First-In First-Out (FIFO) customer 
queue, and had a wireless access point (WAP) available for 
customer use with Internet connectivity.
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An app was created and approximately 1000 students 
installed it on their smartphones. Having users manually enter 
wait time data was determined to be inefficient, so the app was 
modified to calculate queue wait times without user 
involvement through the localization features of the phone 
itself. The app uses the Basic Service Set Identification 
(BSSID) of the nearby WAPs as the basis for wait time 
estimation. When the app is activated, it scans for WAPs 
within range. Since the beacons of the WAP located in the café 
are unique, the arrival and exit of the customer from the shop 
may be detected. However, the system has no way of 
determining if the customer is waiting in the queue, being 
serviced, or has been serviced and is now sitting at a table 
drinking his coffee. Having a customer linger in the area 
generates a false positive for the system and returns an 
excessive value for his wait time. Also, having a potential 
customer visit the café but quickly exit without ordering 
generates another false positive value that is too low. The lack 
of ability to distinguish between customer states required the 
app to utilize different techniques that are implemented in the 
back end of the system when the wait time is calculated. For 
example, observational data showed that most wait times 
ranged between two and twenty minutes. Therefore, any wait 
times in excess of twenty minutes were viewed as a lingering 
customer and discarded as noise [14]. Those under two minutes 
were viewed as a quick entrance and exit by a person and were 
thrown out as well. The architecture of the app created by 
Bulut, Yilmaz, Demirbas, Ferhatosmanoglu, and 
Ferhatosmanoglu was divided into subsystems and organized 
as shown in Figure 1 [14].

The characteristics of the system and its subsystems are as 
follows: 

	 A client side of the app shown on the left of Figure 1
resides and runs on customers’ smartphones. The 
server side application shown on the right of Figure 1
is stored and runs on the cloud.

	 The Phone State Receiver subsystem listens for 
specific changes in the state of the phone. If an event 
is triggered such as Wi-Fi status change, then a 
special object is fired. This can quickly drain the 
battery of the smartphone.

	 The Wi-Fi Sense subsystem uses Wi-Fi beacons 
generated by the coffee shop’s WAP which are cheap 
for the smartphone electrically. The beacons are used 
to calculate the smartphone’s movements in the coffee 
shop without having to log into the WAP. This data is 
then sent to the cloud to calculate the current wait 
time for the customer. The app also operates under the 
assumption that if a user starts the app then they are 
going to travel to and enter the coffee shop.

	 The Location Sense subsystem seeks to determine if 
the user is in close proximity to the coffee shop. If it is 
determined that the distance is less than 100 meters, 
the subsystem will set an alert to discover the 
timestamp at the point the customer enters the coffee 
shop and the moment when he exits the café.

	 The Uploader subsystem collects the client side data 
from the application and transmits it to the cloud as 
input into the cloud side wait time estimation system. 

	 The Web Service subsystem is an interface between 
the client side app and the server side of the program. 
It accepts wait time data from smartphones and it
provides wait time estimates to smartphones 
requesting this information.

	 The Pre-Processor subsystem receives wait time data 
from the Web Services subsystem and removes any 
outliers and smooths the data.

	 The Model Builder subsystem periodically makes the 
model based on the wait time data provided to it by 
the Pre-Processor.

	 The Wait Time Forecaster subsystem uses the model 
created by the Model Builder subsystem to forecast 
future wait times.

There are several complications that arise as the wait time 
data is processed on the server side. First, it was determined 
that customer wait times in the coffee shop queue were based 
mostly on the time of the day, the day of the week, and the 
seasonality of the date [15]. For example, an on-campus coffee 
shop is going to have little or no wait times during spring break 
when most of the students and faculty are not present on 
campus. Time series analysis uses a data set that was attained 
by taking measurements sequentially over time and is a 
mathematical method used to extract information from the 
shape of data that reflect the trends and patterns contained in 
the data [15]. This technique was used to forecast the future 
wait times for the app. However, it was discovered that even 
with hundreds of users’ smartphones automatically reporting 
the wait time data of the café on a regular basis, there were not 
enough readings available to use time series estimation without 
accounting for the sparseness of the data. Therefore, statistical 
techniques such as exponential smoothing, heuristic regression, 
and the Holt-Winters (HW) forecasting method were needed to 
supplement the time series method by smoothing out and
filling in the missing data [14]. Also, observation data was 
collected by having someone sit in the coffee shop on a
periodic basis with a stopwatch and manually record wait time 
data [15]. This was done in ten-minute intervals and was 
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referred to as ground truth data (GD). The GD data was not 
used for forecasting purposes; instead, it was used to measure 
error only. 

The data were applied to two different estimation 
approaches. The first approach was to use Nearest Neighbor 
Estimation (NNE) method, which works well with sparse data 
sets and the algorithm requires O(n) computation time. NNE is 
a technique that categorizes new data into a known set or class. 
It is assigned based on what is most common among its   
nearest neighbors. For example, k = 1, would mean that the 
new data point would be assigned to the class of its nearest 
neighbor.

For this system, each data point was classified by 
three dimensions ([w, d, i]) where w is the week of the year (1-
52), d is the day of the week (1-7), and i is the interval of the 
day (1-54). (There are 54 ten-minute intervals between 8:00 
AM – 5:00 PM.) The next step was to determine the similarity 
between the vectors using a weighted Euclidean distance (Lij)
formula as shown in in Equation 2.8 [14]. Then, linear 
regression determined the relationship between the data ([w, d, 
i]) and the wait time (i) and optimized the weights �, �, and �
of Equation 2.9 [13].

(2.8)

(2.9)

Using eight weeks of collected data that has the outliers 
removed, it was determined that the weight for the week (�)
was .991, the day (�) was .130, and the ten minute interval of 
the day (�) was .032. This means that the day and interval of 
the day have a high similarity to the values collected in 
previous weeks. However, the weight for the week indicates 
that the importance of the weekly data decreases as time goes 
by. In other words, the data from the closest week is the most 
valuable in forecasting. The final step in this process is to find 
the data points in the historical data distance and take the 
average of their wait times. This result is then presented at the 
new estimated wait time [15].

The second estimation approach attempted to fill in the 
sparseness of the data by using exponential smoothing and the 
Holt-Winters forecasting model. The Holt-Winters is popular 
because it is easy to automate and has low data storage 
requirements [16]. The Holt-Winters method does have some 
potential problems. It is susceptible to data outliers that can 
misrepresent forecasts and it can only accommodate a single 
seasonal pattern [16]. The equation for Holt-Winters is shown 
as Equation 2.10.

[Current Level + Trend] * Seasonal Index (2.10)

Exponential smoothing is a method that considers previous 
values of the time series data and assigns weights to those data. 
The weights decrease as the data get older which gives fresh or 
newer data greater weight. Given a forecasted value of st, a
smoothing value of �, and a current value of xt, the formula for 
exponential smoothing is shown as Equation 2.11.

(2.11)

Overall, the system can estimate the wait time of each 
customer with a twenty seconds accuracy rate [15]. Modeling 
error was determined by calculating the Mean Absolute Error 
(MAE) with a set of n wait times: y1, y2, …, yn and their 
estimated wait time values f1, f2, …, fn MAE is given as 
Equation 2.12 [12].

(2.12)

Given this equation, modeling error was determined for the 
NNE, exponential smoothing, and Holt-Winters techniques 
over a two-week period. The forecasting errors for the three 
models are 227 seconds for NNE, 156 seconds for exponential 
smoothing, and 155 seconds for Holt-Winters. The forecasting 
error for the three models developed by Bulut, Yilmaz, 
Demirbas, Ferhatosmanoglu, and Ferhatosmanoglu covering 
the entire eight week period of collected data is shown as 
Figure 2. [14].

Finally, the accuracy of the forecasting ability of the app
developed by Bulut, Yilmaz, Demirbas, Ferhatosmanoglu, and 
Ferhatosmanoglu is shown in Figure 3 [14]. It covers a two day 
period during the last week of data collection and uses the 
Holt-Winters method. The forecasted data is in blue while the 
collected data is in red. 

The accuracy of the wait time estimation does not have to 
be exact since most customers have a tendency to misjudge 
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time intervals (overestimating short periods and 
underestimating longer ones) [17]. The majority of customers 
will not be upset if the estimated wait time is accurate within 
an acceptable range and will feel relief if the actual wait time is 
shorter than it was predicted to be [17]. Given all of this, the 
performance of the system as shown in Figure 3 is quite good.

The developers of the app state that they want to add 
additional features to their system such as determining the 
service time and being able to calculate and broadcast the 
length of the queue in addition to the forecasted wait times. 
Integrating with social networks would enable the app to be 
able to service other locations and other types of businesses 
that experience customer wait times such as banks or post 
office buildings. Expanding to other businesses would require 
the longitude and latitude of the location and the BSSID of the 
WAP located at the site. The business could be added to the 
app and wait time data could be collected as users visit the new 
business. Once enough data has been acquired, a new model 
could be developed to start forecasting wait times for the new
location [15].

2.5 Research Objective

With varying degrees of success, each solution reviewed 
here presents a technological solution to overcome the problem
of incomplete queuing parameter data. All of the techniques 
surveyed offer a solution that requires the placement of on-site 
infrastructure to determine different queueing parameters for 
that specific location. This infrastructure is provided either by 
the restaurant or by the customer. However, each method has 
its drawbacks and limitations. For example, using sensor mats 
and light barriers to count people and to estimate other queuing 
factors works well in a situation where passengers are required 
to walk in a limited amount of space all in the same direction. 
If passengers can walk in a bi-directional manner, then the 
results using these methods are overstated and misleading. 
Obviously, potential customers located in most restaurant 
waiting areas cannot be asked to physically line up and walk in 
a single direction so these technologies would not be 
appropriate for implementation in a full-service restaurant.

All of these methods start with the same assumption: it is 
necessary to have some device(s) in place at a specific location 
in order to determine queue parameters for that area. 
Overcoming this assumption is a research area with potential 
for advancement and progress. The ideal solution to forecasting 
future wait times for a full-service restaurant queue would be 
to do this in some mathematical fashion based on commonly 
and readily available data from the Internet. To reach this goal, 
a good starting point lies with historical wait time data and 
historical wait time estimates provided by the restaurants 
themselves. While this eliminates the need for additional 
technology on site, it has not been practical in the past on a 
large scale because either restaurants are not measuring or they 
are not maintaining their wait time numbers. This research 
seeks to determine if it is possible to simply this approach by
avoiding adding any technology on site. Yet, the authors wish 
to generate similar or better results compared to what is 
currently available. This next section will show the initial steps
of the process for developing an algorithm that uses freely
available data from the Internet to infer or calculate the wait 

times of a queue of a full-service restaurant at specific U.S. 
locations. Furthermore, it is hoped that it will be possible to 
apply this algorithm to different full-service restaurants from 
various chains and brands to locations throughout the United 
States. If this approach is successful, applying it to numerous 
restaurants within an urban area, a region, or the entire country 
will be much simplified because this research is proposing a 
software solution rather than a hardware one.

III. IMPLEMENTATION

To develop this algorithm, it was decided that duplicating 
the work shown in section 2.5 by using a similar time series 
approach was a logical place to start. However, historical wait 
time data was needed from multiple restaurant locations to 
begin. The limitation of adding no new technology to collect 
this data from the restaurants was a significant limiting factor
to obtaining this data. It was learned that very few people in the 
full-service restaurant industry view their wait time data and 
wait time estimates as a resource. Almost all of it is discarded 
at the end of the business day. For months, all of the data that 
was acquired for this research were data that were destined for 
the trash but simply had not been discarded yet.

Fortunately, a relationship was established with a full-
service restaurant chain that covers most of the U.S. with over 
500 locations. This chain agreed to provide its wait time 
estimates in fifteen minute increments for all of its U.S. stores 
to the authors electronically. At the last count, over 3 million 
data points of wait time data have been made available to 
support this research. One week of this data for this chain has 
been plotted and is shown as Figure 4.

Using the R programming language, four weeks of this 
historical data was used to train forecasting models using the 
Holt-Winters, the Seasonal Trend Decomposition procedure 
using Loess (STL), exponential smoothing, and ARIMA 
methods to determine the trend, seasonality, and remainder 
components of the data. The mean absolute error calculation 
was performed for each model using equation 2.12 to 
determine which model gave the best fit for the data. 

I V. RESULTS & FUTURE WORK

The initial results of this work are encouraging. The best 
results came from the STL model which is shown in Figure 5. 
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A weekly forecast was made using the STL approach and the 
forecast and the actual wait times are shown in Figure 6.

The next step in the process is to continue collecting wait 
time data and to refine the model currently being used. When a 
satisfactory level of performance of the model has been 
reached, it will be used to predict the wait times for the 
restaurant chain providing the data. In this case, satisfactory 
performance will be based on several different methods used to 
measure error such as the Mean Absolute Error as shown in 
Equation 2.12, the Mean Absolute Percentage Error (MAPE), 
and the Root Mean Square Deviation (RMSD).

All of this shows that if a restaurant or restaurant chain 
provides historical wait time information about its locations, 
then highly accurate wait time forecasts may be made by 
simply using a time series approach. After this has been 
completed, the next goal is to determine if this same collected 
data can be used to calculate the customer wait times for other 
restaurant chains that have similar characteristics such as size, 
location, and menu similarities. If this is possible, then a model 
will be developed and implemented. The final step will be to 
determine if there is a statistical correlation between restaurant 
wait times and commonly available data on the Internet such as 
traffic, weather, etc. The ultimate goal is to be able to develop 
an algorithm that will forecast restaurant wait times using only 
this Internet data as inputs into the model. An anticipated 
method of developing this algorithm will be through the use of 
a dynamic regression model which is a time series model that 
takes into account exogenous predictor variables which are 

totally independent from the other variables in a standard time 
series model. These external variables add the dynamic effects 
of causal factors to the model. For example, when modeling 
farming or crop output levels, the amount of rainfall would be 
an exogenous variable of the model.
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Abstract – Super symmetry is a type of matrix-based 
symmetry that extends the concept of total symmetry. Super 
symmetric functions are “even more symmetric” than totally 
symmetric functions. Even if a function is not super symmetric, 
the super symmetric transpose matrices can be used to detect 
partial super symmetries. These partial symmetries can be mixed 
arbitrarily with ordinary symmetric variable pairs to create large 
sets of mutually symmetric variables. In addition, one can detect 
subsets of super symmetric inputs, which are distinct from 
partial super symmetries. Super symmetry allows many new 
types of Boolean function symmetry to be detected and exploited. 

1 Introduction 
Symmetric Boolean functions have many applications in the 

field of Electrical Computer Aided Design (ECAD) [ref]. A 
symmetric Boolean function is a function of n  variables, whose 
input variables can be rearranged in some fashion without changing 
the output of the function. An example is 1 2 3 4x x x x� , (multiplication 

is AND, and addition is OR) in which the variables 1x , 2x  and 3x  

can be rearranged arbitrarily. 
This concept can be made more precise using permutations [1, 

2]. Let f  be an n-input Boolean function and 1 2{ , ,..., }nX x x x�  be 

its set of input variables. If p  is a permutation on the set X  that 

leaves f  unchanged, then f  is symmetric and is said to be 

invariant with respect to p . Also, f  and p  are said to be 
compatible. The set of all permutations of X  is called the symmetric 
group of X , and is designated XS . The symmetry group, fG , of an 

n-input Boolean function, f , is the set of all permutations Xp S�  

that are compatible with f . Because the identity permutation, which 

leaves X  unchanged, is compatible with every function, fG  is 

always non-empty. A function, f , is said to be symmetric if fG  

contains more than one element. 
The only thing that affects the structure of XS  is the size of X . 

If X  and Y  are two different sets such that X Y� , then XS  is 

isomorphic to YS . For simplicity, we will usually assume that 

� �1,2,3,...,X n� , and will designate XS  as nS . There is a natural 

mapping between � �1,2,3,...,n  and sets of variables such as 

1 2{ , ,..., }nx x x  or elements of vectors such as � �1 2 3, , ,..., nv v v v . When 

applying members of nS  to these sets, we will assume that the 

natural mapping between � �1,2,3,...,n  and the set of indices is being 

used. 
Symmetric Boolean functions were first studied by Shannon [3], 

who gave us Shannon’s theorem, the basis of most symmetry 
detection algorithms. Shannon’s theorem is based on the cofactors of 
a Boolean function, f , which are obtained by setting one or more 

input variables of f  to constant values. For example, 2 3 4x x x�  is 

the cofactor obtained by setting 1x  to 1 in the function 1 2 3 4x x x x� . 

Cofactors can be designated in several different ways. One can 
specify the variable and the value in a subscript, as in 1af � . If there is 

a natural ordering to the variables, one can specify a list of variable 
values such as 10xx xf , where the x  represents a variable that has not 

been replaced. Most often, when the variables in question are 
understood, we simply use lists of values as in 0f , 1f  or 101f . 

Shannon’s theorem states that two input variables, 1x  and 2x , 

of a function f  are symmetric variable pairs if and only if 01 10f f� , 

where the cofactors are taken with respect to 1x  and 2x . The 

variables of a symmetric pair can be exchanged in arbitrary fashion 
without altering the output of the function. Symmetric variable pairs 
are transitive in the sense that if 1 2( , )x x  is a symmetric variable pair, 

and 2 3( , )x x , is a symmetric variable pair, then so is 1 3( , )x x . 

Since [3], there have been much work on detecting and 
exploiting symmetric functions.[4-24]. Symmetries can be broken 
into three broad categories, total symmetry which allows the inputs of 
a function to be permuted arbitrarily, partial symmetry, which allows 
one or more subsets of inputs to be permuted arbitrarily, and strong 
symmetry, which includes everything else. Some subclasses of strong 
symmetry, such as hierarchical symmetry [16], and rotational 
symmetry [17] have been identified and studied. The Universal 
Symmetry Detection Algorithm [25] is capable of detecting any type 
of strong symmetry. 

2 Super Symmetry 
As pointed out in [26], permutation-based symmetry can be 

recast in terms of matrices over GF(2). If one views an n-input 
function as a function of a single n-element vector, then traditional 
symmetry can be defined in terms of permutation matrices on these 
vectors. Permutation matrices are matrices that have a single 1 in 
each row and in each column. A permutation matrix is so called 
because it permutes the elements of a vector without changing them. 
One can obtain any permutation matrix p  by permuting the rows of 
the identity matrix, I . 

There is a one-to-one correspondence between permutations and 
permutation matrices. The set of all permutations on a set of n  

elements, nS , and the set of all n n�  permutation matrices, nSR , are 

mathematical groups that are isomorphic to one another. Since the 
class of n n�  non-singular matrices is much larger than the class of 
permutations on n  input variables, matrices can be used to define a 
much larger class of symmetries than permutations. 

For example, matrices can be used to define conjugate 
symmetry. Let nSR  be the set of all n n�  permutation matrices, and 

let M  be an arbitrary non-singular n n�  matrix. Then the matrices 

in the set � �1 | nG M NM M SR�� �  define a new type of symmetry 
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called conjugate symmetry. Conjugate symmetry cannot be defined 
directly in terms of permutations and is a type of matrix-based 
symmetry. 

Super symmetry is another type of matrix-based symmetry that 
extends the concept of total symmetry and the concept of permutation 
matrices. We start with nSR , the n n�  permutation matrices. Every 

matrix nM SR�  is both a row-permutation and a column-

permutation of the identity matrix. For example, if 4n � , then every 

element of 4SR  can be constructed by arranging the rows (or 

columns) 0001, 0010, 0100, and 1000 in some order. We can expand 

nSR  by adding an 1stn �  row containing all ones to the existing set 

of n rows. Let nHR  be the set of all matrices that can be formed from 

these 1n �  rows, without choosing duplicates. nHR  is closed under 

matrix multiplication, and is isomorphic to the symmetric group  

1nS � . Figure 1 shows an example with 3n � . By the same token, we 

can start with the columns that contain a single 1, and add a column 
of all 1’s. The set of all matrices that can be formed from these 
columns, without choosing duplicate columns, is nVR . nVR  is also 

closed under matrix multiplication, and is isomorphic to 1nS � . If 

2n �  then n nHR VR� . We call nHR  and nVR  the super symmetric 
groups of degree n. 

 

1 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 1

0 1 0 1 0 0 0 1 0 0 0 1 0 0 1 1 0 0

0 0 1 0 0 1 1 0 0 0 1 0 1 0 0 0 1 0

� �� �� �� �� �� �
� �� �� �� �� �� �
� �� �� �� �� �� �
� �� �� �� �� �� �
� �� �� �� �� �� �
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 1 0 1 0 0 0 1 0 0 0 1 0 0 1 1 0 0

0 0 1 0 0 1 1 0 0 0 1 0 1 0 0 0 1 0

� �� � � � � �� � � �
� �� � � � � �� � � �
� �� � � � � �� � � �
� �� � � � � �� � � �
� �� � � � � �� � � �
1 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 1 0 0 1 1 0 0 0 1 0 1 0 0 0 1 0

� �� � � � � �� � � �
� �� � � � � �� � � �
� �� � � � � �� � � �
� �� � � � � �� � � �
� �� � � � � �� � � �
1 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 1

0 1 0 1 0 0 0 1 0 0 0 1 0 0 1 1 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

� �� � � � � �� � � �
� �� � � � � �� � � �
� �� � � � � �� � � �
� �� � � � � �� � � �
� �� � � � � �� � � �
 

Figure 1. The Super Symmetric Group 3HR . 

 
To prove that nHR  and nVR  are groups isomorphic to 1nS �  we 

start with the following theorem which proves that the matrices of 

nHR  and nVR  are non-singular. 

 
Theorem 1. Every element of nHR  and nVR  is non-singular. 
Proof. Let nM HR� . If M  is singular then some subset of the 

rows of M  must sum to zero. If there is no row of all ones, then M  
is a permutation matrix and non-singular. Let us assume that row i  
of M  is all ones. Other than row i , there are 1n �  rows of M , 
each containing a single 1. These rows are part of some permutation 
matrix, and therefore, no subset of rows that does not include row i  
can sum to zero. Other than the 1’s in row i , the matrix M  contains 
exactly 1n �  1’s. Therefore there must be at least one column that 
contains no 1’s, except the 1 in row i . No sum of rows that includes 
row i  can have a zero in column i , because every other row has a 

zero in this column. Therefore no subset of the rows of M  sums to 
zero, and M  is non-singular. Now consider nN VR� . By a similar 

argument, we can show that no subset of the columns of N  can sum 
to zero, therefore N  is nonsingular.� 

 
Now we can prove that nHR and nVR  are groups isomorphic to 

1nS � . 

 
Theorem 2: nHR  and nVR  are closed under matrix 

multiplication, and are isomorphic to 1nS � . 
Proof: Let , nM N HR�  and consider the form of K M N� � . 

Because M  and N  are nonsingular, K  must be nonsingular. If no 
row of M  is all ones, then M  is a permutation matrix. In this case, 
K  is a row-permutation of N , and nK HR� . So let us assume that 

row i  of M  is all 1’s. Now, suppose N  is a permutation matrix. 
Because every row of N  has a single 1, every row, except row i , of 
K  has a single 1. Row i  of K  is the sum of all rows of N , which is 

a row of all 1’s. Therefore nK HR� . If N  is not a permutation 

matrix, then it must have a row, j  of all 1’s. In this case, the rows of 
K , except for row i  must be a permutation of the rows of N , not 
including row i . Row i  of K  must be the sum of the rows of N . 
Every column of N , except one, must have exactly 2 ones. The 
remaining column must have a single one. Therefore the sum of the 
rows of N  must contain a single one in some position, and zeroes 
elsewhere. Because the product is non-singular, row i  cannot 
duplicate any other row of K . Therefore, K  must either be a 
permutation matrix, or a permutation matrix with one row replaced 
by a row of all ones. Thus nK HR� , and nHR  is closed under 

multiplication. A similar argument shows that nVR  is also closed 

under multiplication. To show that nHR  is isomorphic to 1nS � , it 

suffices to show that nHR  is the set of permutations of a set of size 

1n � . This follows from the fact that every matrix in nHR  is a 

permutation of the 1n �  rows used to form the elements of nHR , 

each element, M , of nHR  has n  rows from the set of 1n �  rows. 

The missing row is always unique, and we can imagine it as being 

appended as the 1stn �  row of M . Thus nHR  is isomorphic to 1nS � . 

A similar argument on the columns of the elements of nVR  shows 

that nVR  is also isomorphic to 1nS � .� 

 
Any finite set of non-singular matrices that is closed under 

multiplication is a group. Because nHR  and nVR  are groups, they 

can serve as the symmetry group of certain functions. We say that a 
function f  is super symmetric if either nHR  or nVR  leaves f  

invariant. If we wish to be more specific, we will call f  H-super 
symmetric or V-super symmetric. 

3 Boolean Orbits 
Let G  be a group of n n�  matrices. Two n-element vectors v  

and w  are said to be in the same Boolean orbit of G  if there is a 
matrix M G�  such that v M w� � . Being in the same Boolean orbit 
is an equivalence relation that breaks the set of all n-element vectors 
into a collection of disjoint subsets. The Boolean orbits of a group 
can be used to determine whether a group G  is the compatible with 
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a function f . The function f  is compatible with G  if and only if 

f  maps every element of each Boolean orbit of G  to the same 

value. For example, the symmetric group 3S  has the Boolean orbits 

{(0,0,0)} , {(0,0,1),(0,1,0),(1,0,0)} , {(0,1,1),(1,0,1),(1,1,0)}  and 

{(1,1,1)} . A 3-input function f  is totally symmetric if and only if f  

maps the three vectors {(0,0,1),(0,1,0),(1,0,0)}  to the same value, 

and the three vectors {(0,1,1),(1,0,1),(1,1,0)}  to the same value. 
The Universal Symmetry Detection algorithm can detect any 

type of symmetry as long as the Boolean orbits of that symmetry are 
known. The Boolean orbits of V and H super symmetry are relatively 
easy to compute. Since every super symmetric function is also totally 
symmetric, all vectors of the same weight must be contained in a 
single orbit. The Boolean orbits of V and H symmetry can be 
obtained by combining the Boolean orbits of total symmetry. 

Let us first derive the Boolean orbits of H super symmetry. We 
will designate the set of all vectors of weight k  as kW . The sets kW  

are just the Boolean orbits of total symmetry. We will designate the 
Boolean orbits of H super symmetry as kO , where k  is the weight 

of the lightest vector in kO . Note that if an orbit iO  contains any 

vector of weight k , then k iW O . In particular, k kW O . Consider 

the orbit 0O . This orbit must contain a single vector, since every 

linear transformation maps the zero vector onto itself. The orbit 1O , 

contains all vectors of weight 1 and must also contain the vector of 
all 1’s. Let v  be an n-element vector of weight 1, and let nM HR� . 

The vector v M�  must be equal to some row of M , and must either 
be a vector of weight 1 or a vector of all 1’s. If v  is a vector of all 
1’s, and M  is a permutation matrix, then v M�  is a vector of all 
1’s. If M  contains a row of all 1’s then v M�  is the sum of the 
rows of M . Every column except one of M  contains exactly two 
ones. The other column contains exactly one 1. Thus the sum of the 
rows of M  is a vector of weight 1, and 1 1 nO W W� � . Now consider 

the orbit 2O containing all vectors of weight 2. Let M  be any 

element of nHR . Any vector that can be formed by adding two rows 

i  and j  of M  must be an element of 2O . If rows i  and j  of M  

are both of weight 1, then their sum is of weight 2 and is already 
contained in 2O . Let us assume that one of the rows is all ones. Then 

the sum of rows i  and j  is of weight 1n �  and 1 2nW O�  . Now 

suppose that v  is of weight 1n � . If M  is a permutation matrix or 
if M  contains a row of all 1’s and this row corresponds to the zero 
element of v , then v M�  is of weight 1n � . If M  contains a row 
of all 1’s and this row does not correspond to the zero element of v , 
then v M�  is the sum of a vector of all 1’s and 2n �  distinct 
vectors of weight 1. Thus v M�  is a vector of weight 2, and 

2 2 1nO W W �� � . Continuing in this vein, we can show that any H 

super symmetry Boolean orbit, kO , is equal to 1k n kW W � �� , where 

k  runs from 1 through 
2

n! "
# $# $

. 

Now let us derive the Boolean orbits of V super symmetry. We 
will designate each orbit as iQ , where i  is the smallest weight of 

any element of iQ . Note that if j iW Q ���  then j iW Q . In 

particular, i iW Q . As before, 0Q  contains only the zero vector. 

When a vector 1( ,..., )nv a a�  is multiplied by a matrix i nV VR� , 

the result is 1 1 1( ,... , , ..., )i i nv a a p a a� �% � , where p  is the parity of v . 

(i.e., p  is 1 if the number of bits in v  is odd.) If 0ia �  and 0p � , 

or if 1ia �  and 1p � , then v v%� . If 0ia �  and 1p �  then the 

weight of v%  is one larger than that of v . If 1ia �  and 0p �  then 

the weight of v%  is one smaller than that of v . Note that the weight 
of v  can increase only if it is odd, and can decrease only if it is even. 

Thus 1i i iQ W W �� � , where i  is odd, i  running from 1 to m  where 

m  is the largest odd number less than or equal to n . The other 

matrices of nVR  will not affect these orbits because they are either 

permutation matrices that do not change the weight of a vector, or 
they are permutation matrices with a single column set to ones. Such 
matrices combine a permutation of v  with parity insertion, and do 
not change the orbits described above. 

We have created a super symmetry detection module to the 
universal symmetry detector using the Boolean orbits describe above. 

4 Symmetric Variable Pairs 
Although the universal symmetry detection algorithm can detect 

super symmetry, super symmetric functions are comparatively rare. 
The same is true, of course, for totally symmetric functions. 
However, when a function is not totally symmetric, it may be 
partially symmetric, and using symmetric variable pairs, we can 
detect such partial symmetries. By the same token, we can detect 
super symmetric variable pairs and partial super symmetries. The 
super symmetric variable pairs can be mixed arbitrarily with ordinary 
symmetric variable pairs. 

Ordinary symmetric variable pairs correspond to a type of a 
permutation called a transposition. A transposition of a set, X , is a 
permutation that swaps two elements of X , leaving everything else 
fixed. In the matrix domain, a transposition corresponds to a 
transpose matrix. A transpose matrix swaps two elements of an input 
vector, leaving all other elements fixed. We designate a transpose 
matrix that swaps elements i  and j  of a vector as ,i jT . Every row, 

k , of ,i jT  except rows i  and j , is identical to row k  of the identity 

matrix. Row i  of ,i jT  has a 1 in column j  and zeros elsewhere. 

Row j  has a 1 in column i  and zeros elsewhere. Figure 2 has 
several examples of transpose matrices. 

 

0 1 0

1 0 0

0 0 1

� �
� �
� �
� �
� �

 

0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1

� �
� �
� �
� �
� �
� �

 
0 0 1

0 1 0

1 0 0

� �
� �
� �
� �
� �

 

1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

� �
� �
� �
� �
� �
� �

 0 1

1 0

� �
� �
� �

 

Figure 2. Some transpose matrices. 
 
Super symmetry introduces 2n  new transpose matrices known 

as the super symmetric transpose matrices. Half of these matrices are 
taken from nHR  and half are taken from nVR . 

In permutation matrices, we consider a row containing a 1 in 

position i  and zeroes elsewhere to represent the thi  input variable. 

Alternatively, we could consider a column containing a 1 in the thi  

position to represent the thi  input variable. In the super symmetric 
matrices, we consider the row of all 1’s or a column of all 1’s to 
represent an 1stn �  “invisible” variable. In nHR  a super symmetric 

transpose matrix is a matrix that is identical to the identity matrix 
except for row i , which is a row of all 1’s. In nVR  a super 
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symmetric transpose matrix is identical to the identity matrix except 
for column i  which is a column of all 1’s. We designate these 
matrices as iH  and iV  respectively. Figure 3 gives some examples of 

such matrices. 
 

1 0 0 0

0 1 0 0

1 1 1 1

0 0 0 1

� �
� �
� �
� �
� �
� �

  

1 1 1

0 1 0

0 0 1

� �
� �
� �
� �
� �

  

1 0 0 1

0 1 0 1

0 0 1 1

0 0 0 1

� �
� �
� �
� �
� �
� �

  

1 1 0

0 1 0

0 1 1

� �
� �
� �
� �
� �

  
1 1

0 1

� �
� �
� �

 

Figure 3. Super Symmetric Transpose Matrices. 
 
For any ordinary transpose matrix ,i jT , the matrix is self-

inverting. That is, , ,i j i jT T I� . As the Theorem 3 shows, the same is 

true for the matrices iV  and iH . 

 
Theorem 3. i iH H I�  and i iVV I�  for all 1 i n& & . 
Proof: Since iH  is identical to the identity matrix, except for 

row i , every row of i iH H  is identical to the identity matrix, except 

for row i . Because row i  of iH  is all ones, row i  of i iH H  is the 

sum of the rows of iH . Every column of iH  contains exactly two 

1’s, except for column i  which contains exactly one 1. Thus the sum 
of the rows of iH  has a 1 in column i  and zeroes elsewhere, and is 

equal to row i  of the identity matrix. 
Similarly, since every column k  of iV , except for column i , is 

identical to column k  of the identity matrix, every column k  of 

i iVV  is identical to column k  of the identity matrix. Because column 

i  of iV  is all ones, column i  of i iVV  is the sum of the columns of 

iV . Every row of iV , except row i  has exactly two 1’s. Row i  has 

exactly one 1. Therefore the sum of the columns of iV  has a 1 in row 

i  and zeroes elsewhere, and column i  of i iVV  is identical to column 

i  of the identity matrix.� 
 
It is convenient to think of the matrices iH  and iV  as being 

transpose matrices between ix  and the “invisible” 1stn �  variable, 

1nx � . This makes the transitivity of the new matrices more obvious. 

For example, because of transitivity, a function is H super symmetric 
if it is compatible with 1,2T , 1,3T , …, 1,nT  and 1H . For V super 

symmetry, we substitute 1V  for 1H . 

Another important and useful property of the super symmetric 
transpose matrices is that the conjugate of any matrix iH  with 

another matrix jH  ( )i j�  is an ordinary transpose matrix. The same 

is true for matrices iV  and jV , as the following theorem shows. 

 
Theorem 4. Suppose i j� . Then 1

,j i j i jH H H T� �  and 
1

,j i j i jV VV T� � . 

Proof: By Theorem 3, 1
j jH H� �  and 1

j jV V� �  , so 
1

j i j j i jH H H H H H� �  and 1
j i j j i jV VV V VV� � . j iH H  has the following 

form. Since every row of jH , except row, is identical to the 

corresponding row of the identity matrix, every row, except row j  

of j iH H  is identical to the corresponding row of iH . Because row 

j  of jH  is all ones, row j  of j iH H is the sum of the rows of iH . 

Every column of iH  has exactly two 1’s, except for column i , 

which has exactly one 1. Thus row j  of j iH H  has a one in column 

i  and zeroes elsewhere. Row i  of j iH H  contains all 1’s. We can 

use the structure of j iH H  to deduce the structure of j i jH H H . 

Because every row of j iH H  except rows i  and j  is identical to the 

corresponding row of the identity matrix, every row of j i jH H H , 

except rows i  and j  is identical to the corresponding row of the 
identity matrix. Because row j  has a 1 in column i  and zeroes 

elsewhere, row j  of j i jH H H  is identical to row i  of jH , and has 

a 1 in column i  and zeroes elsewhere. Because row i  of j iH H  

contains all 1’s, row i  of j i jH H H  is the sum of the rows of jH . 

Every column of jH  has exactly two ones, except for column j  

which has exactly one 1. Therefore row i  of j i jH H H  has a 1 in 

column j  and zeroes elsewhere. Therefore j i jH H H  is the transpose 

matrix ,i jT . 

Now consider the structure of i jVV . Because every column of 

jV  is identical to the corresponding column of the identity matrix, 

except for column j , every column of i jVV  is identical to the 

corresponding column of iV , except for column j . Because column 

j  of iV  is all ones, column j  of i jVV  is equal to the sum of the 

columns of iV . Every column of iV  contains exactly two 1’s, except 

for column i  which has exactly one 1. Thus column j  of i jVV  has a 

1 in row i  and zeroes elsewhere. Column i  of i jVV  contains all 

ones. We can now deduce the structure of j i jV VV . Since every 

column of i jVV  except for columns i  and j , is identical to the 

corresponding column of the identity matrix, every column of j i jV VV
, except for columns i  and j , is identical to the corresponding 

column of jV . But these columns are identical to the corresponding 

columns of the identity matrix, so every column of j i jV VV , except for 

columns i  and j , is identical to the corresponding column of the 

identity matrix. Column j  of j i jV VV  is equal to column i  of jV , 

which has a 1 in row i  and zeroes elsewhere. Because column i  of 

i jVV  is all ones, column i  of j i jV VV  is the sum of the columns of jV

. Every row of jV  has exactly two 1’s, except for row j , which has 

exactly one 1. Thus the sum of the columns of jV  has a 1 in row j  

and zeroes elsewhere. Thus j i jV VV  is the transpose matrix ,i jT .� 

 
Let f  be an n-input function with input variables  

1 2{ , ,..., }nx x x . To determine whether f  is compatible with iH , we 

select some variable other than ix , say jx  with i j� , and 

conditionally invert every variable except jx  itself with respect to jx
. These conditional inversions can be done simultaneously using the 
matrix jH . We compute ( ) ( ( ))jf v f H v% � . The function f  is 

compatible with iH  if and only if ( , )i jx x  is a symmetric variable 
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pair of f % . The correctness of this procedure stems from the fact that 

if i j�  then 1
,j i j i jH H H T� � . Super symmetry can be viewed as a 

type of conjugate symmetry requiring multiple simultaneous 
conditional inversions. 

Given the same function, f , we can determine whether f  is 

compatible with iV  by selecting any input variable other than ix , say 

jx  with i j� , and conditionally invert jx  with respect to every 

variable other than jx  itself. This gives us the new function, 

( ) ( ( ))if v f V v%% � . The function f  is compatible with iV  if and only 

if ( , )i jx x  is a symmetric variable pair of f %% . Again, the correctness 

of this procedure depends on the fact that 1
,j i j i jV VV T� � . 

Because super symmetric transpose matrices can be equated 
with a type of conjugate symmetry, they can be detected and utilized 
by the hyperlinear algorithm for digital simulation [26, 27], and by 
other algorithms that detect symmetry using symmetric variable 
pairs. 

5 Sub-Symmetries
For a Boolean function f  to possess X  symmetry in variables 

1 2{ , ,..., }kx x x  every cofactor of the form 
1... ...k nxx xa af
�

 must possess X  

symmetry. We usually do this by ensuring the symmetry relations 
exist between cofactors of the form 

1... ...ka a xx xf . It is possible for an n-

input function to be super symmetric in any proper subset of its input 
variables, and it is possible for a function to have several subsets of 
variables in which it is super symmetric. 

This is not the same as partial symmetry, because the super 
symmetric variable pairs involve all inputs of a function, while sub-
super symmetries involve only a subset of variables. It is possible to 
test a subset of variables for super symmetry, and to test the same 
subset for compatibility with the super symmetric transpose matrices 
of the sub-symmetry. This gives us many more opportunities to 
detect symmetries in a Boolean function, because there are 2 2n �  

proper subsets of variables, and 
1

2

2

( 1)
2 2 1 2

2

n

i

n ni n n
�

�

�� �� � � � �� �
� �

'  

additional super symmetric transpose matrices. 

6 Experimental Data 
To determine the prevalence of super symmetry in real circuits, 

we tested the ISCAS 85 benchmarks for the presence of super 
symmetries. We tested for total super symmetry, for super symmetric 
variable pairs, and for sub symmetries. The results of our tests are 
given in Figure 4. These results show that super symmetries do 
indeed exist in real circuits, and are, in fact, quite numerous. The 
results for super symmetric variable pairs and for sub symmetries are 
especially encouraging. Because, in several cases, the number of 
symmetries exceeds the number of functions, it is clear that there are 
many functions that exhibit multiple sub-super symmetries and that 
there are functions that are compatible with many super symmetric 
variable pairs. 

 
Circuit Super Sym. Var. Pairs Sub-Sym. 
c432 78 213 1097 
c499 0 56 728 
c880 122 33 902 
c1355 288 44 704 
c1908 158 59 5326 
c2670 276 90 3145 
c3540 710 1310 2093 

c5315 830 2313 6206 
c6288 512 528 928 
c7552 582 1660 10093 

Figure 4. Experimental Results. 
 

7 Conclusion
The various aspects of super symmetry allow many different 

types of Boolean function symmetry to be detected and exploited. In 
addition to super symmetry itself we have partial super symmetries 
which are generated by the super symmetric transposition matrices. 
These partial symmetries can be mixed and matched in an arbitrary 
fashion with ordinary symmetric variable pairs. In addition, there are 
sub-super symmetries and partial sub-super symmetries which greatly 
expand the opportunity for detecting and exploiting symmetries in a 
Boolean function. 

What is even more exciting, super symmetry allows us to exploit 
more of the full power of matrix-based symmetry. For example, for 
4-input functions, there are 24 permutations of the inputs, but 20160 
non-singular 4 4�  matrices. There are obviously many more kinds 
of matrix-based symmetry than permutation-based symmetry, and 
super symmetry is only one of these. 

We expect this work to be the basis of much more extended 
work in the future. 
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Abstract— Given an integer r, a set C of customers, a set F
of facilities, and a connecting cost co(c, f) for each pair of

c ∈ C and f ∈ F , an r-gathering of customers C to facilities

F is an assignment A of C to open facilities F
′

⊂ F such

that r or more customers are assigned to each open facility.

We wish to find an r-gathering with the minimum cost, where

the cost is maxci∈C{co(ci, A(ci))}. When all C and F are

on a line an algorithm to find such an r-gathering is known.

In this paper we give a faster algorithm with time complexity

O(|C|+ |F | log2 r + |F | log |F |).

Keywords: algorithm, facility location, gathering

1. Introduction
The facility location problem and many of its variants are

studied[7], [8]. In the basic facility location problem we are

given (1) a set C of customers, (2) a set F of facilities, (3)

an opening cost op(f) for each f ∈ F , and (4) a connecting

cost co(c, f) for each pair of c ∈ C and f ∈ F , then we

open a subset F ′ ⊂ F of facilities and find an assignment

A of C to F ′ so that a designated cost is minimized.

An r-gathering[6] of customers C to facilities F is an

assignment A of C to open facilities F
′

⊂ F such that r
or more customers are assigned to each open facility. (This

means each open facility has enough number of customers.)

We assume |C| >> r holds. Then we define the cost of (the

max version of ) a gathering as maxci∈C{co(ci, A(ci))}.

We assume op(fj) = 0 for each fj ∈ F in this paper, as in

[4]. The min-max version of the r-gathering problem finds

an r-gathering having the minimum cost. For the min-sum

version see the brief survey in [6].

Assume that F is a set of locations for emergency shelters,

and co(c, f) is the time needed for a person c ∈ C to

reach a shelter f ∈ F . Then an r-gathering corresponds

to an evacuation assignment such that each opened shelter

serves r or more people, and the r-gathering problem finds

an evacuation plan minimizing the evacuation time span.

Armon[6] gave a 3-approximation algorithm for the r-

gathering problem and proves that with assumption P �=
NP the problem cannot be approximated within a factor

less than 3 for any r ≥ 3. Akagi and Nakano[4] gave an

O((|C| + |F |) log(|C| + |F |)) time algorithm to solve the

r-gathering problem when all C and F are on a line. In this

paper we give a faster O(|C|+ |F | log2 r+ |F | log |F |) time

algorithm. Since we can assume in general |F | << |C| and

r << |C| our algorithm is faster than the one in[4].

The remainder of this paper is organized as follows.

Section 2 gives an algorithm to solve a decision version of

the r-gathering problem, which is used as a subroutine in our

main algorithm in Section 4. In Section 3 we describe the

computation of left and right boundaries. Section 4 contains

our main algorithm for the r-gathering problem. Section 5
analyze the running time of the algorithm tightly. Finally

Section 6 is a conclusion.

2. (k,r)-gathering on the line
In this section we give an algorithm to solve a decision

version of the r-gathering problem.

Given customers C = {c0, c1, · · · , c|C|−1} and facilities

F = {f0, f1, · · · , f|F |−1} on a line (we assume they are

distinct points and appear in those order from left to right)

and two numbers k and r, (k, r)-gathering is an r-gathering

such that maxci∈C{co(ci, A(ci))} ≤ k. Because there are

|C||F | possible co(ci, A(ci)) values we can do log(|C||F |)
binary searches using (k, r)-gathering algorithms to find

the minA maxci∈C{co(ci, A(ci))} (the min-max value). In

[4] Akagi and Nakano observed that the number of binary

searches can be reduced to O(log(|C|+ |F |)).
For a facility f , the index of its left boundary is l(f) =

min{i||f − ci| ≤ k} and its left boundary is cl(f) and the

index of its right boundary is r(f) = max{i||f − ci| ≤ k}
and its right boundary is cr(f). Two facilities fa < fb are

intersecting if r(fa) ≥ l(fb)− 1.

To find out whether a (k, r)-gathering exits we first

compute the (indices of) left and right boundaries for every

facility. The algorithm for computing these will be explained

in the next section. In this section we just assume we can

have them. For a facility f , if r(f)− l(f) + 1 < r then we

close it.

We can assume that the customers assigned to a facility is

consecutive. A consecutive r′ customers going to a facility

are called a complete interval if r′ ≥ r. If r′ < r then they

are called an incomplete interval.

We will use the Left-to-Right Maximal Scan and the

Right-to-Left Minimal Scan. The Left-to-Right Maximal

Scan is shown below:

Left-to-Right Maximal Scan

1. Find the rightmost non-closing facility fa with |c0−fa| ≤
k. Set i = a. Set border = 0.

2. Find the rightmost non-closing intersecting facility fb to

the right of fi.
if fb does not exist then there is no solution; exit;
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if l(fb) > border + r − 1 then

begin

Mark cborder, cborder+1, ..., cl(fb)−1 as a complete inter-

val of customers going to fi;
Set border = l(fb);

end

else

begin

if r(fb) ≥ border + 2r − 1 then

begin

Mark cborder, cborder+1, ..., cborder+r−1 as a com-

plete interval of customers going to fi;
Set border = border + r;

end

else goto Step 3;

end

if r(fb) = |C| − 1 then

begin

Mark cborder, cborder+1, ..., c|C|−1 as a complete interval

of customers going to fb;

(k, r)-gathering found; exit;

end

else

begin

i = b; goto Step 2;

end

3 /*Here we reached a breakpoint because fi and fb cannot

have 2r customers going to them.*/

if r(fb) = |C| − 1 then

begin

Mark cborder, cborder+1, ..., cborder+r−1 as a com-

plete interval of customers going to fi and mark

cborder+r, cborder+r+1, ..., c|C|−1 as an incomplete interval

of customers going to fb;

exit;

end

else

begin

Let fc be the immediate next non-closing facility right

to fb;

Mark cborder, cborder+1, ..., cborder+r−1 as a complete

interval of customers going to fi;
If fb is not intersecting fc then there is no solution for

a (k, r)-gathering and we exit;

Mark cborder+r, cborder+r+1, ..., cl(fc)−1 as an incom-

plete interval of customers going to fb;

Treat cl(fc) through c|C|−1 and fc, fc+1, ..., f|F |−1 as a

separate problem using divide-and-conquer;

/* Here we say that we break between cl(fc)−1 and cl(fc)
and between fc−1 and fc.*/

exit;

end

Note that the Left-to-Right Maximal Scan for all facilities

takes O(|F |) time after the left and right boundaries are

computed. If the Scan results in no breakpoints then we

obtained a (k, r)-gathering. We will say that such a Scan is

a successful Scan. If there is only one breakpoint then this

breakpoint results in one incomplete interval and it is at the

rightmost position among all formed intervals. In the case

there is only one breakpoint we will say that the Scan is a

complete Scan.

Now the Right-to-Left Minimal Scan:

Right-to-Left Minimal Scan

1. Find the rightmost non-closing facility fa with |fa −
c|C|−1| ≤ k. Set i = a. Set border = |C| − 1.

2. Find the rightmost intersecting neighbor fb to the left of

fi such that border − l(fb) + 1 ≥ 2r.

if fb does not exist then goto Step 3.

if r(fb) ≤ border − r then

begin

Mark cr(fb)+1, cr(fb)+2, ..., cborder as a complete interval

of customers going to fi;
Set border = r(fb);

end

else

begin

Mark cborder−r+1, cborder−r+2, ..., cborder as a complete

interval of customers going to fi;
Set border = border − r;

end

if l(fb) = 0 then

begin

Mark c0, c1, ..., cborder as a complete interval of cus-

tomers going to fb;

(k, r)-gathering found; exit;

end

else

begin

i = b; goto Step 2;

end

3 /*We reached a breakpoint because fb cannot have r
customers going to it.*/

Let fb be the leftmost facility left to fi and intersects with

fi.
if l(fb) = 0 then

begin

Mark cborder−r+1, cborder−r+2, ..., cborder as a com-

plete interval of customers going to fi and mark

c0, c1, ..., cborder−r as an incomplete interval of customers

going to fb;

exit;

end

else

begin

Let fc be the immediate next non-closing facility left to

fb;

Mark cborder−r+1, cborder−r+2, ..., cborder as a complete
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interval of customers going to fi;
If |cr(fc)+1 − fb| > k then there is no solution for a

(k, r)-gathering and we exit;

Mark cr(fc)+1, cr(fc)+2, ..., cborder−r as an incomplete

interval of customers going to fb;

Treat c0 through cr(fc) and f0, f1, ..., fc as a separate

problem using divide-and-conquer;

/* We say that we break between cr(fc) and cr(fc)+1 and

between fc and fc+1.*/

exit;

end

Note that the Right-to-Left Minimal Scan for all facilities

takes O(|F |) time after the left and right boundaries are

computed. If the Scan results in no breakpoints then we

obtained a (k, r)-gathering. We will say that such a Scan

is a successful Scan. If there is only one breakpoint then

this breakpoint results in one incomplete interval and it is

at the leftmost position among all formed intervals. In the

case there is only one breakpoint we will say that the Scan

is a complete Scan.

Let i be an interval of customers going to f . The extended

interval of i is {cl(f), cl(f)+1, ...cr(f)}.

Lemma 1: If a complete Left-to-Right Maximal Scan S
results in a set S(S) of I intervals then at least I facilities

has to open for a (k, r)-gathering.

Proof: Let A be any set of intervals and we will use E(A)
to denote the set of extended intervals in A. Assume that

a (k, r)-gathering G has a set S(G) of I ′ < I complete

intervals. Then there is an extended interval i1 in E(G) that

proper contains an extended interval i2 in E(S) and the

rightmost customer in i1 is to the right of the rightmost

customer in i2. This can be seen by starting from the left

side and going to the right, comparing extended intervals

one in E(S) against one in E(G). This says that S is not

a maximal scan as in the Left-to-Right Maximal Scan we

always find the rightmost intersecting neighbor in Step 2.

Lemma 2: If a complete Right-to-Left Minimal Scan S
results in a set S(S) of I intervals then at most I−1 facilities

can open for a (k, r)-gathering.

Proof: Assume a (k, r)-gathering G has a set S(G) of I ′ >
I − 1 complete intervals. Let E(G) be the set of extended

intervals of S(G). Let E(S) be the set of extended intervals

of S(S). Then there is an extended interval i1 in E(S) that

proper contains an extended interval i2 in E(G) and the

leftmost customer in i1 is to the left of the leftmost customer

in i2. This can be seen by starting from the right side and

going to the left, comparing extended intervals one in E(S)
against one in E(G). This says that S is not a minimal scan

as in the Right-to-Left Minimal Scan we always find the

rightmost intersecting neighbor in Step 2.

Lemmas 1 and 2 explains why the Left-to-Right Maximal

Scan is called a maximal scan and why the Right-to-Left

Minimal Scan is called a minimal scan.

Lemma 3: If a complete Left-to-Right Maximal Scan has

Imax intervals and a complete Right-to-Left Minimal Scan

has Imin intervals then Imin ≥ Imax.

Proof: From Lemmas 1 and 2.

Theorem 1: Assume we have a complete Left-to-Right

Maximal Scan Smax with Imax intervals and a complete

Right-to-Left Minimal Scan Smin with Imin intervals. If

Imax = Imin then there is no solution for a (k, r)-gathering.

If Imax < Imin then the two Scans can be combined into a

solution for (k, r)-gathering.

Proof: If Imax = Imin then Lemma 1 says that any (k, r)-
gathering has ≥ Imax facilities open while Lemma 2 says

that any (k, r)-gathering has < Imin facilities open. Thus it

is impossible to have a (k, r)-gathering.

If Imax < Imin then there is a complete interval imin

created in Smin that is contained in a complete interval

imax created in Smax. Let cmin,l be the leftmost customer

in imin, cmin,r be the rightmost customer in imin, cmax,l be

the leftmost customer in imax and cmax,r be the rightmost

customer in imax. Let imin be the jmin-th interval counting

from right to left created by Smin and imax be the jmax-

th interval counting from left to right created by Smax. We

create a (k, r)-gathering by using the 0th through (jmax−1)-
th intervals created by Smax and the 0th through (jmin−1)-
th intervals created by Smin. We then add a complete interval

for cmax,l through cmin,r and let them go to the facility

opened in Smax for cmax,l through cmax,r. This creates a

(k, r)-gathering. We say that we combined Smax with Smin

at imax and imin.

Now we consider the situation where we have multiple

breakpoints in the Scans. We use the following Fix proce-

dure:

Fix

1. Start with the Right-to-Left Minimal Scan Smin.

2. if Smin is successful then we obtained a (k, r)-gathering

and we exit;

else we stop when we reach the first breakpoint. This

breakpoint partitions the customers into two sets

{c0, ..., ca−1} and {ca, ..., c|C|−1} and partitions the

facilities into two sets {f0, ..., fb−1} and {fb, ..., f|F |−1}.

{ca, ..., c|C|−1} has been put into I(Smin) intervals (with

one incomplete interval at the leftmost position and other

I(Smin)− 1 complete intervals).

3. Now we start the Left-to-Right Maximal Scan Smax for

{ca, ..., c|C|−1}.

4. /* If Smax is successful then Smax created ≤ I(Smin)−1
complete intervals by Lemma 2.*/

5. (Case 1) If Smax is successful or is complete with

≤ I(Smin) − 1 intervals then we find the leftmost

(complete) interval imax created by Smax that contains

a (complete) interval imin created by Smin and combine

the intervals created by Smax and Smin at imax and

imin to get a (minimal) solution for the (k, r)-gathering

for {ca, ..., c|C|−1}. If there are more than one complete
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intervals created by Imin that are contained in imax then

we will pick the leftmost one to be combined with imax. It

is a minimal solution because we used "leftmost".

6. (Case 2) If Smax is complete with I(Smin) intervals then

by Theorem 1 there is no solution for a (k, r)-gathering

for {ca, ..., c|C|−1}. If there is a solution S for a (k, r)-
gathering for {c0, c1, ..., c|C|−1} then let f be the facility ca
goes to in S. Let I be the number of open facilities to the

right of and including f opened by S. Because ca goes to

f in S therefore f is to the right of fc where cr(fc) = ca−1

and fc would be the first open facility if we would resume

the Right-to-Left Minimal Scan after the first breakpoint.

Thus the extended interval of f intersects with the extended

interval of the last complete interval of Smin. However,

Smin reached a breakpoint and thus I ≤ I(Smin) − 1 by

Lemma 2 (Note here that we may move the breakpoint to

between cl(f)−1 and cl(f)). However, if we take the set Fo

of open facilities right to and include f opened by S, then

|Fo| ≤ I(Smin)− 1. On the other hand Smax has I(Smin)
intervals and thus the number of intervals in Fo has to be

≥ I(Smin). This contradiction says that there is no solution

for (k, r)-gathering for {c0, c1, ..., c|C|−1}. Exit.

7. (Case 3) If Smax is not complete. Then stop at

the first breakpoint of Smax. This breakpoint will

partition {ca, ..., c|C|−1} into P = {ca, ...ca1
} and

{ca1+1, ..., c|C|−1} and partition {fb, ..., f|F |−1} into

{fb, ..., fb1} and {fb1+1, ..., f|F |−1}. Let ca1
be a member

of a complete interval i created by Smin. If ca1
is not the

rightmost customer in i then we add ca1+1, ca1+2, ..., ca2
to

P , where ca2
is the rightmost customer in i. The situation

for customers {ca, .., ca2
} can be analyzed in the same way

as we analyzed in Steps 5 and 6.

Theorem 2: After the left and right boundaries have been

computed we can find whether a solution for a (k, r)-
gathering exists in O(|F |) time.

Alternatively after computing the boundaries we can use

the O(|F |) time decision algorithm in [4].

3. Computing Left and Right Bound-

aries

For two neighboring facilities fa and fa+1, let 2r cus-

tomers Fa,a+1 = {cb, cb+1, ..., cb+2r−1} be such that |fa −
cb+2r−2| < |fa+1 − cb−1| and |fa − cb+2r| > |fa+1 − cb+1|.
Fa,a+1 is called the boundary set of customers between fa
and fa+1.

Lemma 4: Let Fa,a+1 = {cb, cb+1, ..., cb+2r−1} be the

boundary set of fa and fa+1, then in an optimal r-gathering

or an (k, r)-gathering cd, d > b + 2r − 1, will not go to

facility fa and ce, e < b, will not go to facility fa+1.

Proof: Suppose in an optimal r-gathering or a (k, r)-
gathering cb+2r goes to facility fa. Let the leftmost customer

going to fa be ct. If t ≥ b + 1 then we can delete fa and

let all customers going to fa now go to fa+1. If t ≤ b then

we can let cb+r, cb+r+1, ..., cl go to fa+1, where cl was the

rightmost customer of fa.

The other situation can be proved similarly.

In order to use Lemma 4 we need place a dummy

customer dl at the left of f0 and a dummy customer dr
at the right of f|F |−1 and let |f0 − dl| and |f|F |−1 − dr|
larger than max{|f0 − c|C|−1|, |f|F |−1 − c0|}.

We will let ll(fa+1) = rl(fa) = cb and lr(fa+1) =
rr(fa) = cb+2r−1.

Lemma 4 says that for computing an optimal r-gathering

or a (k, r)-gathering we need consider no more than 4r
distances corresponding to customers in [ll(fa), lr(fa)] and

[rl(fa), rr(fa)] for each facility. Thus the total number of

distances to be considered is 4|F |r. We may collect all these

4|F |r distances and then do binary search log(4|F |r) times

to find the minimum k value for an optimal r-gathering. This

will result in O(|C|+|F |r log(|F |r)+|F |(log r)(log(|F |r)))
time for r-gathering by (1) preprocess them in O(|C| +
|F |) time to compute the boundary sets Fa,a+1, (2) sort

4|F |r distances in O(|F |r log(|F |r)) time, (3) binary search

log(4|F |r) rounds among the 4|F |r possible minimum dis-

tances where each round consists of computing the left

and right boundaries in O(|F | log r) time and Right-to-Left

Minimal Scan and Left-to-Right Maximal Scan in O(F )
time.

We maintain the set M of possible minimum costs, then

repeatedly compute the median k of possible minimum costs,

then compute left and right boundaries and call Right-to-Left

Minimal Scan and Left-to-Right Maximal Scan for value k
to find whether a (k, r)-gathering exits. If it returns YES

then the minimum cost is less than or equal to k and we can

remove the larger half of costs from M . If it returns NO

then the minimum cost is larger than k and we can remove

the smaller half of costs from M . After log(4|F |r) rounds

we can find the minimum cost k∗. In later sections we show

we can do better than this.

4. r-gathering on the line
If all C and F are on the line, an O((|C|+ |F |) log(|C|+

|F |)) time algorithm to solve the r-gathering problem is

known[4]. In this section we give a faster algorithm. Our

algorithm runs in O(|C|+|F | log3 r+|F | log |F | log r) time.

Since C >> F and C >> r holds in general, or if we can

assume r as a constant, our algorithm is faster.

We can observe that the minimum cost k∗ of a solution

of an r-gathering problem is co(c, f) for some c ∈ C
and some f ∈ F . Since the number of possible minimum

cost, say some co(c, f), is at most 4|F |r by Lemma 4, one

can find the minimum cost in O(|C| + |F |r log(|F |r) +
|F |(log r)(log(|F |r)) time as we explained before.

However we can design a faster algorithm which runs in

O(|C| + |F | log3 r + |F | log |F | log r) time. Our algorithm

maintains a set M of possible minimum costs, then repeat-

edly computes the “median of medians” k, defined below,
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then call Right-to-Left Minimal Scan and Left-to-Right Max-

imal Scan for k. Depending whether a (k, r)-gathering exists

the algorithm removes some subset of possible minimum

costs from M . After O(log2 r) rounds M has at most 2|F |
distances remaining, then we can find the minimum cost k∗

by an ordinary binary search. Now we explain the detail.

Set initially M�(fj) = {co(ci, fj)|ci ∈ [ll(fj), lr(fj)]},

and Mr(fj) = {co(ci, fj)|ci ∈ [rl(fj), rr(fj)]}. We are

going to repeatedly remove the half of distances from some

M�(fj) and/or Mr(fj). M is the set of all M�(fj) and

Mr(fj), j = 1, 2, · · · , |F |, however if M�(fj) has exactly

one distance then M�(fj) is removed from M . Similar for

Mr(fj).

We will use a weighing scheme similar to the one used

in [5]. If M�(fj) has 2r/2x customers we define the weight

w�(fj) of M�(fj) as (1+ log r−x). The weight wr(fj) of

Mr(fj) is defined similarly. The weight of M is the sum

of the weights of M�(fj) and Mr(fj) in M .

Initially each M�(fj) has exactly 2r customers, so x = 0,

and its weight is 1 + log r. So initially the weight of M is

2|F |(1 + log r).

Say there are N ≤ 2|F | M�(fj)’s and Mr(fj)’s with

more than one distance remaining and the total weights in

them is T . In each round we find the median of M�(fj)
and the median of Mr(fj) and this gives us N medians.

This takes constant time for each facility. We then find

the median k of these N medians and this takes O(|F |)
time. Say that k is the median of M�(fi) then we place all

M�(fj)’s and Mr(fj)’s whose median is < k above M�(fi)
and all M�(fj)’s and Mr(fj)’s whose median is > k below

M�(fi). Because k is the median of the medians we have

put half (N/2) of M�(fj)’s and Mr(fj)’s above M�(fi)
and the other half (N/2) of M�(fj)’s and Mr(fj)’s below

M�(fi). If a (k.r)-gathering exists then we remove half of

the distances in each of the M�(fj)’s and Mr(fj)’s below

M�(fi). If a (k, r)-gathering does not exists then we remove

half of the distances in each of the M�(fj)’s and Mr(fj)’s
above M�(fi)’s. Thus in any case we remove half of the

distances from half of the M�(fj)’s and Mr(fj)’s. Thus

we remove total N/2 weights with one weight from each of

the M�(fj)’s or Mr(fj)’s from which we removed half of

the distances. Let us say that M�(fj) has 2r/2x distances

remaining and thus has weight 1+log r−x and we removed

half of distances in it and thus removed one weight. Then we

removed (1/(1 + log r− x))-th ≥ (1/(1 + log r))-th weight

from it. If we pair one M�(fj) from which we removed

half of the distances and one M�(ft) from which we did

not remove half of the distances and say that M�(fj) has

2r/2x distances and log r + 1− x weights and M�(ft) has

2r/2y distances and log r+1−y weights then the one weight

we removed from M�(fj) is at least 1/(2(log r + 1))-th of

the sum of the weights of M�(fj) and M�(ft). This says

that in one round we reduce weights from T to at most

T (1 − 1/(2(log r + 1)). Initially we have 2|F |(1 + log r)

weights. So after 4(1 + log r) log r rounds the weights are

at most

2|F |(1+log r)(1−1/(2(1+log r)))(2(1+log r))2 log r) = 2|F |(1+log r)(1/e

≤ 2|F |(1+log r)(1/2)(2 log r) = 2|F |(1+log r)/r2 ≤ |F |/r.

After 4(1 + log r) log r rounds, as explained above, the

weight T is at most |F |/r. Since each weight accounts for

2r/2x customers for some 1 ≤ x ≤ log r + 1, one weight

always account for at most r customers. Thus the number

of remaining distances is at most |F | because weights T ≤
|F |/r. Note that we have to place back the the last remaining

distance in M�(fj)’s and Mr(fj)’s where all distances

except one have been removed.There are iat most 2|F | of

them. Thus we have at most 3|F | distances remaining.

Finally sort the remaining 3|F | remaining distances in

O(|F | log |F |) time, then binary search them log(3|F |)
rounds each of which takes O(|F | log r) time for computing

the left and right boundaries and O(|F |) time for Right-to-

Left Minimal Scan and Left-to-Right Maximal Scan. Then

we find the minimum cost.

Theorem 3: One can solve the r-gathering problem in

O(|C|+ |F | log3 r+ |F | log |F | log r) time when all C and

F are on the real line.

5. Tighter Analysis

In this section we analyze the running time of our algo-

rithm in the preceding section more tightly.

We analyze again the running time to compute the bound-

aries in Section 3, in which we find some indices from

[ll(fj), lr(fj)] and [rl(fj), rr(fj)] for each fj ∈ F by

binary search. We repeat this in O(log2 r) rounds.

For the first round we find the boundaries by binary search

from the 2r distances. However for later round the number

of distances from which we find the boundary is smaller.

Assume that for the first round the number of computation

to compute the boundaries is at most c|F | log r for some

constant c. For the second round the number of computation

for the boundaries is at most

c|F | log r/2 + c|F |(log r − 1)/2) (1)

= c|F | log r(1/2 + 1/2− 1/(2 log r)) (2)

= c|F | log r(1− 1/(2 log r)). (3)

So for the x-th round the number of computation for the

boundaries is at most c|F | log r(1 − 1/(2 log r))x−1 Thus

the total number of computation for the boundaries for all

round is at most

c|F | log r+c|F | log r(1−1/(2 log r))+· · ·+c|F | log r(1−1/(2 log r))x−1

Except for the computation for the boundaries above

and the computation for the weighted median, which runs

in O(|F |) time for each round and O(|F | log2 r) time in

total, the algorithm consists of O(log2 r) rounds, in which
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each round call Right-to-Left Minimal Scan and Left-to-

Right Maximal Scan, which runs in O(|F |) time. This will

accounts for O(|C| + |F | log2 r) time. After that there are

3|F | distances remaining, and we use O(log |F |) rounds in

which each x-th round computes the median of 3|F |/2x−1

distances, computes the left and right boundaries and call

Right-to-Left Minimal Scan and Left-to-Right Maximal

Scan, which runs in O(|F | log r) time.

Thus the running time of the algorithm is O(|C| +
|F | log2 r + |F | log |F | log r).

Note that after M ≤ 3|F | distances remaining, each round

consists of finding the median (value k) in O(|M |) time,

compute left and right boundaries and this takes O(|M |)
time as follows. Assume that mi distances are from fi, that

is co(c, fi) for some c. We have
∑

i logmi = O(M) since∑
i mi = M . Thus we need O(|F |) time for each round and

O(|F | log |F |) time over all rounds.

Theorem 4: Optimal r-gathering of |C| customers and |F |
facilities can be found in O(|C| + |F | log2 r + |F | log |F |)
time.

6. Conclusion
In this paper we have given an algorithm to solve the r-

gathering problem when all C and F are on the real line.

The running time of the algorithm is O(|C| + |F | log2 r +
|F | log |F |) and faster than the known algorithm in [4].
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Abstract—In a standard strongly NP-hard single-machine
scheduling problem the jobs are characterized by release times
and due-dates and the objective to minimize the maximum
job lateness. We develop a heuristic method for solving this
problem based on the partition of the schedule horizon into
two types of time intervals containing urgent and non-urgent
jobs, respectively. We report the results of the preliminary
computational experiments testing the practical performance of
the proposed algorithm.
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I. INTRODUCTION

In scheduling problems have a finite set of resources
(machines or processors) that may perform orders (jobs or

tasks) from another finite set. The objective is to arrange the

assignment of the orders to the resources to minimize some

overall (usually time) criteria.

In this paper we address a single-machine scheduling

problem when every job j is characterized by its release time
rj and due-date dj ; rj is the time moment when job j arrives

to the system hence becomes available for processing on the

machine, and dj is the desired completion time for job j.

The problem of scheduling jobs with release times and due-

dates on a single machine with the objective to minimize

the maximum job lateness, with the common abbreviation

1/rj/Lmax (Graham et al. [4]), can be stated as follows.

We are given n jobs in {1, 2, . . . , n}. Each job j has (non-

interruptible) processing time pj , release time rj and due-date

dj . The n jobs are to be scheduled on a single machine that

can process at most one job at a time. A feasible schedule
S is a mapping that assigns to each job j a starting time

tj(S), such that tj(S) ≥ rj and tj(S) ≥ tk(S) + pk, for

any job k included earlier in S (for notational simplicity, we

use S also for the corresponding job-set); the first inequality

says that a job cannot be started before its release time, and

the second one reflects the restriction that the machine can

handle only one job at any time. cj(S) = tj(S) + pj is

the completion time of job j. We aim to find out if there

is a schedule which meets all job due-dates, i.e., every j
is completed by time dj . If there is no such schedule then

we look for an optimal schedule, i.e., one minimizing the

maximum job lateness Lmax = max{j|cj − dj}. We denote

by L(S) (Lj(S), respectively) the maximum lateness in S
(the lateness of job j in S, respectively).

The problem is known to be strongly NP-hard (Garey &

Johnson [2]). Hence, the development of efficient heuristics

with a good practical behavior is of a primary interest. The

earliest proposed and the most widely used heuristics for

an approximate solution of problem 1/rj/Lmax is the ED

(Earliest Due-date) heuristic, suggested by Jackson [6]. This

heuristic, iteratively, at each scheduling time t (given by job

release or completion time), among the jobs released by time

t schedules one with the largest delivery time or the smallest

due-date (breaking ties by selecting a longest one).

In the worst-case, Jackson’s heuristic delivers a solution

which is twice worse than an optimal one, i.e., ED-heuristic

is a 2-approximation algorithm. Potts [8] has proposed an

alternative approximation algorithm with an improved approx-

imation ratio of 3/2, in which Jackson’s heuristic is repeatedly

applied O(n) times. Hall and Shmoys [5] have proposed

polynomial approximation schemes for the same problem, and

also an 4/3-approximation an algorithm for its version with

the precedence relations with the same time complexity of

O(n2 log n) as the above algorithm from [8].

Implicit enumerative algorithms have also been developed

for problem 1/rj/Lmax. Among the most efficient such

algorithms are ones proposed by McMahon & Florian [7]

and Carlier [1].

The problem can naturally be simplified by imposing

some restrictions on job processing times. Two such versions

are known to be polynomially solvable. Garey et al. [3]

have developed a sophisticated O(n log n) algorithm for the

case when all jobs have equal integer length p (abbrevi-

ated 1/pj = p, rj/Lmax). Later in [10] was proposed an

O(n2 log n log p) algorithm solving a more general setting

when a job processing time can be either p or 2p (abbreviated

1/pj ∈ {p, 2p}, rj/Lmax).

Recently in [11] certain conditions which satisfaction guar-

antees the obtainment of an optimal solution to problem

1/rj/Lmax were presented. These conditions take an advan-

tage of a close relationship between the scheduling problem

and a version of the bin packing problem with different bin

capacities. The heuristic method that we build here also takes

an advantage of this relationship. The schedules that we create

are partitioned into two types of intervals, containing, roughly

classifying, urgent and non-urgent jobs. We call the intervals

containing urgent jobs kernel intervals, and the intervals

containing non-urgent jobs bin intervals. In every optimal

schedule, kernel jobs form a tight sequence in the sense that
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the delay of its earliest scheduled job (i.e., the difference

between the starting and release times of that job) cannot

exceed some precalculable magnitude δ ∈ [0, pmax], where

pmax is the maximal job processing time.

Because of a little degree of the flexibility, it is easier

to arrange kernel intervals. Our heuristic method uses ED-

heuristic to schedule these intervals. The rest of the scheduling

horizon consists of the bin intervals, within which all the non-

urgent jobs are to be distributed. Our task is then to find

a proper such job distribution. We use a variation of LPT

(Longest Processing Time) heuristic to find such distribution

of the non-urgent jobs. The LPT-heuristic, iteratively, at each

scheduling time t (given by job release or completion time),

among the jobs released by time t schedules one with the

largest processing time (breaking ties by selecting a most

urgent one).

The practical behavior of our algorithm was tested for a

number of randomly generated problem instances, described

in the concluding section.

II. PRELIMINARY CONCEPTS AND NOTIONS

From here on, let S be an ED-schedule, one created by

ED-heuristic.

Schedule S may contain a gap, that is its maximal consec-

utive time interval in which the machine is idle. We assume

that there occurs a 0-length gap (cj , ti) whenever job i starts

at its release time immediately after the completion of job j.

A block in S is its consecutive part consisting of the

successively scheduled jobs in without any gap in between,

which is preceded and succeeded by a (possibly a 0-length)

gap.

Given schedule S, let i be a job that realizes the maximum

job lateness in S, i.e., Li(S) = maxj{Lj(S)}. Let, further,

B be the block in S that contains job i. Among all the jobs

in B with this property, the latest scheduled one is called an

overflow job in S (not necessarily it ends block B).

Note that if schedule S contains two or more overflow jobs

then they belong to different blocks in S.

A kernel in S is a maximal (consecutive) job sequence

ending with an overflow job o such that no job from this

sequence has a due-date more than do. For a kernel K, we let

r(K) = mini∈K{ri}, and will denote by L(K) the maximum

lateness of a job in K.

It follows that every kernel is contained in some block in

S, and the number of kernels in S equals to the number of

the overflow jobs in it. Furthermore, since any kernel belongs

to a single block, it may contain no gap.

In schedule S, the delay of kernel K is the difference

between the starting time of its earliest scheduled job and

r(K).
Observation 1: The maximum job lateness in a kernel K

cannot be reduced if it has no delay (i.e., the earliest scheduled

job in K starts at time r(K)). Hence, if an ED-schedule S
contains a kernel with this property, then it is optimal.

Proof. Recall that all jobs in K are no less urgent than the

overflow job o, and that jobs in K form a tight sequence (i.e.,

without any gap). Then since the earliest job in K starts at

its release time, no reordering of jobs in K can reduce the

current maximum lateness, which is Lo(S). Hence, there is no

feasible schedule S′ with L(S′) < Lo(S), i.e., S is optimal.

Due to the above observation, assume, without loss of

generality, that the condition in Observation 1 does not hold.

Then there exists a job, less urgent than o, scheduled before

all jobs in K that delays the starting of jobs in K. By

rescheduling such a job to a later time moment behind K,

the jobs in K can be restarted earlier. We define now this

operation formally.

Suppose i precedes j in S. We will say that i pushes j in

S if ED-heuristic will reschedule j earlier if i is discarded.

It follows that the earliest scheduled job of every kernel is

immediately preceded and pushed by a job e with de > do.

In general, we may have more than one such a job scheduled

before kernel K in block B (one containing K). We call such

a job an emerging job for K, and we call the latest scheduled

one (job e above) the delaying emerging job.

Aiming in restarting the kernel jobs earlier, we may activate
an emerging job e for K; that is, we force e and all passive

emerging jobs to be rescheduled after K (the latter jobs are

also said to be in the state of activation for K). This we

achieve by increasing the release times of all these jobs to

a sufficiently large magnitude, say r(K), so that when ED-

heuristic is newly applied, neither job e nor any passive

emerging job will surpass any kernel job, and hence the

earliest job in K will start at time r(K). We note that more

than one emerging job can be activated for K and the same

emerging job may be activated for two or more successive

kernels.

III. THE HEURISTIC

As we have mentioned in the introduction, our heuristic is

based on the idea of partitioning the scheduling horizon into

the urgent (kernel) and non-urgent (bin) intervals. It consists

of the two basic stages. First, at the partitioning stage, all the

kernel and bin intervals are determined. At the construction
stage, kernel and bin intervals are filled in by urgent and the

non-urgent jobs, respectively.

A. The partitioning stage

We have implemented two versions for extracting the kernel

intervals at the partitioning stage. In both of these versions,

the initial ED-schedule σ is created; σ is obtained by ED-

heuristic, which is applied to the originally given problem

instance. In schedule σ, one or more kernels in different

blocks (with the same value of the maximum job lateness,

may arise). Note that the corresponding overflow jobs have

the same lateness and they pertain to different block in σ. This

set of kernels in schedule σ form the initial set of kernels.

If we will have a deeper look into the structure of the

ED-schedules we may see that extra potential kernels may

be “hidden” within schedule σ. Consider a simple instance

with three jobs with the parameters: (job 1) r1 = 0, p1 =
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10, d1 = 100, (job 2) r2 = 1, p2 = 3, d2 = 4 and (job 3)

r3 = 5, p3 = 3, d3 = 9.

Since at time 0 only job 1 is released, the initial schedule

σ assigns job 1 at time 0, then it assigns job 2 right at the

completion time 10 of job 1, and finally it assigns job 3 at time

10 + 3 = 13. There is a single kernel in σ consisting of job

2, which is the overflow job with the lateness 10+3−4 = 9,

whereas job 1 is the delaying emerging job. Note that the

lateness of job 3 in σ is 13 + 3− 9 = 7.

If we activate the delaying emerging job 1 for the above

kernel, we obtain another ED-schedule σ1, in which job 1

starts at time 1 and completes at time 4 with 0 lateness; at that

completion time, only job 1 is released, hence it is assigned

at time 4 and is completed at time 14; at that time, job 3 is

assigned. The lateness of job 3 in schedule σ1 is 14+3−9 = 8.

Hence, there arises a new kernel consisting of a single job 3

in schedule σ1 (the former kernel of schedule σ consisting of

job 2 disappears in σ1).

During the partitioning stage of our heuristic, the aug-

mentation of the initial set of kernels in schedule σ by the

above kind of the “hidden” kennels yields an improved, more

accurate, performance results.

The kernel augmentation procedure has two versions. In

the first one, whenever a new kernel arises, the delaying

emerging job is temporally omitted, the corresponding kernel

is rescheduled by ED-heuristic (being correspondingly left-

shifted), and the construction proceeds similarly by ED-

heuristic (with the rescheduled kernel though) until another

kernel is encountered or schedule σ∗, consisting of all the jobs

except the omitted delaying emerging jobs, is constructed.

Note that the earliest scheduled job of every arisen during

the procedure kernel K will start at its release time r(K) in

σ∗.

Let L∗
i be the (reduced) lateness of a kernel job i in σ∗,

and let δ(K) = L∗−L(K). Since every kernel K is restarted

at time r(K) in σ∗, L∗(K) = maxi∈K{L∗
i }, and hence L∗ =

maxκ{L∗(Kκ)} are lower bounds on the objective value:

Observation 2: The maximum lateness in schedule σ∗

obtained on the partitioning stage is a lower bound on the

optimal objective value.

Proof. By the definition of schedule σ∗, every kernel K arisen

during the partitioning stage starts at its earliest possible

starting time r(K) in σ∗. Then our claim immediately follows

from Observation 1.

The kernels intervals can be defined with some degree of

the flexibility, due to the observation.

Observation 3: Every kernel K can be delayed by δ(K)
without increasing the maximum lateness.

Proof. Let K ′ be a kernel that realizes maxκ{L∗(Kκ)}. By

definition of δ(K), the completion time of every job in K 	=
K ′ can be increased by δ(K) so that none of the jobs in K
will be completed later than a job realizing maxi∈K′{L∗

i }.

This clearly proves the observation.

From Observation 3, we may assert that in an optimal

schedule Sopt every kernel K starts either no later than at

time r(K) + δ(K) or it is delayed by some δ ≥ 0 (the latter

delay, as we will see later, may be unavoidable for a proper

accommodation of the non-kernel jobs). Let Δ = Lo(σ)−L∗,

where o is an overflow job in σ. Then note that the maximum

lateness in any feasible ED-schedule in which the delay of

some kernel is more than Δ is no less than that in σ, i.e.

Hence, no such schedule will be created by our heuristic.

We shall refer to the magnitude L∗+ δ (0 ≤ δ ≤ Δ) as the

δ-boundary.

Recall that the first version of the kernel augmentation

procedure, in schedule σ∗, each delaying job is omitted. In

the second version of the procedure, every delaying emerging

job is activated for the corresponding kernel. Thus the second

version of the kernel augmentation procedure is similar to

the first one, with the difference that, for every arisen kernel,

the corresponding delaying emerging job is activated for that

kernel (instead of being omitted).

B. The construction stage

At the construction stage, the heuristic schedules kernel

jobs so that none of them surpasses δ-boundary, for any

given choice of δ. The kernel intervals are given some degree

of flexibility, depending on the value of δ according to

Observation 3. The value of δ can be taken arbitrarily from

the interval [0,Δ]. In general, we have a bin between two

adjacent kernel intervals, and a bin before the first and after

the last kernel interval. Because of the allowable right-shift

(Observation 3) the starting and completion times of the

corresponding kernel and bin intervals are defined with the

allowable flexibility, determined by the current value of the

parameter δ (note that, since there may exist no gap within

any kernel segment, the length of every kernel interval and

hence the corresponding bin intervals are fixed).

Bin intervals are scheduled by LPT-heuristic so that the

bin interval before every kernel K is extended up to the time

moment r(K) + δ(K) + δ. If the next job selected by LPT-

heuristic completes by time r(K)+ δ(K)+ δ, it is scheduled

the next; otherwise, among the available jobs, the next shortest

job is similarly selected, until none of the released jobs fits

into the bin (within still available interval before time moment

r(K) + δ(K) + δ). Then the next bin is similarly scheduled

until all bins are scheduled.

IV. PRELIMINARY COMPUTATIONAL EXPERIMENTS AND

FINAL REMARKS

We have implemented our heuristic (with both versions

of the kernel augmentation procedure) in Java using the

development environment Eclipse IDE for Java Developers

(version Luna Service Release 1 (4.4.1)) under Windows 8.1

operative system for 64 bits, and have used a laptop with

Intel Core i7 (2.4 GHz) and 8GB of RAM DDR3 to run the

code. The inputs in our main program are plain texts with job

data that we have generated randomly, as we briefly describe

below. The program for the generation of our instances was
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constructed under the same development environment as our

main program.

The computational experiments are at an early stage of

development, still an ongoing research. So far, job release

times and due dates were generated with the rdn() function

in Java, with an open range (0, 50n), where n is the number of

jobs in a corresponding instance. The processing times were

generated from the interval [1, 50] and also from the interval

[1, 100].
For a majority of the created problem instances the heuristic

with the second version of the kernel augmentation proce-

dure gave a solution with the objective value equal to the

corresponding lower bound (as in Observation 2), whereas

about 60% of the solutions with the first version of the kernel

augmentation procedure achieved this lower bound. Since the

heuristic runs in time n log n, all the instances were solved

instantly.

In the instances that were not solved optimally, the activated

delaying emerging jobs have converted to the overflow jobs,

hence the objective value could have been improved. We

intend to extend the heuristic with an additional subroutine

dealing with that kind of scenario. This, we believe, will

improve its performance. Besides, we plan to test the heuris-

tic for larger amount of problem instances, also generated

randomly but in several different ways. For instance, the set

of jobs can be divided into two or more subsets and job

parameters for each subset can be derived independently, from

different time intervals.
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Abstract—We will discuss the following three problems: (1) the
number of m×n matrices over {0, 1} with each row summing to
s and each column summing to t; (2) the number of nonnegative
integer matrices of size m×n with each row sum equal to s and
each column sum equal to t; (3) the number of (0, 1) - matrices
of size n × n such that each row has exactly s 1’s and each
column has exactly s 1’s and with the restriction that no 1 stands
on the main diagonal. We will present many conjectures and
three algorithms. Integer sequences which arise from many areas
are widely used in many disciplines. We can get many integer
sequences based on our conjectures which could be verified by
our computation.

Keywords: Algorithm, integer matrix, closed formula, in-
teger sequence

I. INTRODUCTION

Let m,n, s, t be positive integers such that sm = tn. Let
f(m,n, s, t) be the number of m × n Matrices over {0, 1}
with each row summing to s and each column summing to
t. Equivalently, f(m,n, s, t) is the number of semiregular
bipartite graphs with m vertices of degree s and n vertices of
degree t. This problem has been the subject of considerable
study, and it is unlikely that a simple formula exists. The
asymptotic value of f(m,n, s, t) has been much studied but
the results are incomplete. Historically, the first significant
result was that of Read, who obtained the asymptotic behavior
for s = t = 3 [1]. McKay and Wang (2003) solved the sparse
case λ(1 − λ) = o((mn)−1/2) using combinatorial methods
[3] . Canfield and McKay used analytic methods to solve the
problem for two additional ranges. In one range the matrix is
relatively square and the density is not too close to 0 or 1. In
the other range, the matrix is far from square and the density
is arbitrary. Interestingly, the asymptotic value of f(m,n, s, t)
can be expressed by the same formula in all cases where it
is known. Based on computation of the exact values for all
m; n<30, they got the conjecture that the same formula holds
whenever m+n→∞ regardless of the density (they defined
the density λ = s/m = t/m).

We are concerned in this paper with the closed formulas
of f(m,n, s, t). The number in question can be related in
various ways to the representation theory of the symmetric
group or of the complex general linear group, but this does
not make their computation any easier. The case s = t = 2 is
solved by Anand, Dumir, and Gupta [4]. A formula for the case
s = t = 3 appears in L. Comtet’s Advanced Combinatorics
[5], without proof.

Let t(m,n, s, t) be the number of nonnegative integer
matrices of size m × n with each row sum equal to s and
each column sum equal to t (sm = nt). The enumeration of
nonnegative integer matrices has been the subject of consid-
erable study, The determination of t(m,n, s, t) is an unsolved
problem and it is unlikely that a simple formula exists except
for very small s, t. Equivalently, t(m,n, s, t) counts 2−way
contingency tables of order m×n such that the row marginal
sums are all s and the column marginal sums are all t. Another
equivalent description is that t(m,n, s, t) is the number of
semiregular labelled bipartite multigraphs with m vertices of
degree s and n vertices of degree t. The matrices counted by
t(m,n, s, t) arise frequently in many areas of mathematics, for
example enumeration of permutations with respect to descents
and statistics. The last field in particular has an extensive
literature in which such matrices are studied as contingency
tables or frequency table.

An integer sequence is a sequence (i.e., an ordered list)
of integers. An integer sequence may be specified explicitly
by giving a formula for its nth term, or implicitly by giving
a relationship between its terms. For example, the sequence
0, 1, 1, 2, 3, 5, 8, 13, . . . (the Fibonacci sequence) is formed by
starting with 0 and 1 and then adding any two consecutive
terms to obtain the next one: an implicit description. The
sequence 0, 3, 8, 15, . . . is formed according to the formula
n2−1 for the nth term: an explicit definition. Alternatively, an
integer sequence may be defined by a property which members
of the sequence possess and other integers do not possess
[6], [7]. An integer sequence is a computable sequence, if
there exists an algorithm which given n, calculates an, for
all n > 0. An integer sequence is a definable sequence,
if there exists some statement P (x) which is true for that
integer sequence x and false for all other integer sequences.
The set of computable integer sequences and definable integer
sequences are both countable, with the computable sequences
a proper subset of the definable sequences (in other words,
some sequences are definable but not computable). The set of
all integer sequences is uncountable (with cardinality equal to
that of the continuum); thus, almost all integer sequences are
incomputable and cannot be defined.[6]

Why does one integer follow another? What is the pat-
tern? What rule or formula dictates the position of each
integer? Most people think deeply about sequences only
when confronted by one on a test, but for mathematicians,
computer scientists, and others, sequences are part and parcel
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of their work. Today sequences are especially important in
number theory, combinatorics, and discrete mathematics, but
sequences have been known and wondered about even before
the time of Pythagoras, who discovered an infinite sequence
of integers such that a2 + b2 = c2. In medieval times,
bell ringers relied on sequences to cycle through all possible
combinations of bells. But no one in the intervening millennia
had thought to compile sequences into a collection that could
be referenced by others. Neil Sloane started collecting integer
sequences as a graduate student in 1965 to support his work
in combinatorics. The database was at first stored on punch
cards. He published selections from the database in book
form twice: [12] containing 2372 sequences in lexicographic
order and assigned numbers from 1 to 2372. [13] containing
5488 sequences. These books were well received and, espe-
cially after the second publication, mathematicians supplied
Sloane with a steady flow of new sequences. The collection
became unmanageable in book form, and when the database
had reached 16, 000 entries Sloane decided to go online—
first as an e-mail service (August 1994), and soon after as
a web site (1996). As a spin-off from the database work,
Sloane founded the Journal of Integer Sequences in 1998. The
database continues to grow at a rate of some 10, 000 entries
a year. Sloane has personally managed ’his’ sequences for
almost 40 years, but starting in 2002, a board of associate
editors and volunteers has helped maintain the database. The
On-Line Encyclopedia of Integer Sequences (OEIS), also cited
simply as Sloane’s, is an online database of integer sequences,
created and maintained by N. J. A. Sloane, a researcher at
AT&T Labs. OEIS records information on integer sequences
of interest to both professional mathematicians and amateurs,
and is widely cited. As of 25 September 2015 it contains
over 260, 000 sequences, making it the largest database of
its kind. And 15, 000 new entries are added each year. Each
entry contains the leading terms of the sequence, keywords,
mathematical motivations, literature links, and more, including
the option to generate a graph or play a musical representation
of the sequence. The database is searchable by keyword and
by subsequence. [9], [10], [11], [12], [13]

Sequences can come from anywhere. Computational fields
not surprisingly generate a lot of sequences. Computer science,
to a large extent based on discrete math, also makes use
of sequences (number of steps to sort n things). While it
makes sense that sequences appear in mathematics, they are
all around. The Fibonacci sequence in particular appears in
nature: the growth of branches, pinecone rows, sandollar, and
the number petals in many flowers all relate to the Fibonacci
sequence. The sequence appears in art and literature too.
Sloane originally started the sequence collection as an aid
to research so that anyone coming upon a sequence in their
calculations could immediately get additional terms and maybe
a formula. This use of the OEIS is more important than ever to-
day, since many computer-related tasks can be stated in terms
of a sequence: minimizing the number of steps needed to count
a set of items, ranking a list of unsorted numbers from lowest
to highest, even characterizing the behavior of a program or

algorithm. As more applications today depend on ideas and
concepts taken from pure mathematics—cryptography, the use
of graphs to study social networks, the ranking of search
engine listings—sequences increasingly play a more direct role
in solving real-world problems. [14]

Sequence data is pervasive in our lives, and understanding
sequence data is of grand importance. Much research has
been conducted on sequence data mining in the last dozen
years. Hundreds if not thousands of research papers have
been published in forums of various disciplines, such as
data mining, database systems, information retrieval, biology
and bioinformatics, industrial engineering, etc. The area of
sequence data mining has developed rapidly, producing a
diversified array of concepts, techniques and algorithmic tools.
[15]

There are many research topics on integer sequence. For
example: (1) How to find a good formula for a sequence with
a bad formula or no formula at all? Sometimes it is not very
hard to find the first several terms of a sequence by hand
computation. It is might be very tough to find a formula. (2)
How to find a good algorithm to compute more times for a
sequence if you could not get a formula? People have been
working on some sequences for more than one hundred years.
However, they still could not get the first one hundred terms,
or even not the first thirty terms. (3) The applications and data
structure of some sequences. (4) Find some new sequences.

You can obtain many integer sequence from this paper.

II. CONJECTURES ON ZERO-ONE MATRICES

“Let f(n) be the number of n × n matrices M of zeros
and ones such that every row and column of M has exactly
three ones, f(0) = 1, f(1) = f(2) = 0, f(3) = 1. The most
explicit formula known at present for f(n) is

f(n) = 6−n
∑ (−1)βn!2(β + 3γ)!2α3β

α!β!γ!26γ
((ii))

where the sum is over all (n + 2)(n + 1)/2 solutions to
α+β+γ = n in nonnegative integers. This formula gives very
little insight into the behavior of f(n), but it does allow one to
compute f(n) faster than if only the combinatorial definition
of f(n) were used. Hence with some reluctance we accept (ii)
as a “determination” of f(n). Of course if someone were later
to prove f(n) = (n− 1)(n− 2)/2 (rather unlikely), then our
enthusiasm for (ii) would be considerably diminished.” [16]

The enumeration of Integer-matrices has been the subject
of considerable study. It has been the subject of considerable
study, and it is unlikely that a simple formula exists. The
number in question can be related in various ways to the rep-
resentation theory of the symmetric group or of the complex
general linear group, but this does not make their computation
any easier.

Let f(m,n, s, t) be the number of (0, 1) - matrices of
size m × n such that each row has exactly s ones and each
column has exactly t ones (sm = nt). The determination of
f(m,n, s, t) is an unsolved problem, except for very small s,
t.
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In some row, let xi1xi2 · · ·xikdenote the i1 − th column,
the i2 − th column, · · · , the ik − th column entries
are 1 in some row and other entries are all 0,where
i1, i2, · · · , ik ∈ {1, 2, · · · , n}.

Example: Let m = n = 4, s = t = 3 , then
x1x2x3|x1x2x4|x1x3x4|x2x3x4 denotes the matrix as
follows:

⎛
⎜⎜⎝
1 1 1 0
1 1 0 1
1 0 1 1
0 1 1 1

⎞
⎟⎟⎠

Obviously, f(m,n, s, t) equals the coefficient of xt1x
t
2 · · ·xtn

in the symmetric polynomial( ∑
i1<i2<···<is

xi1xi2 · · ·xis
)m

where i1, i2, · · · , is ∈ {1, 2, · · · , n}, and the sum is over all
the possible of s− combinations from {1, 2, · · · , n} with i1 <
i2 < · · · < is. It is easy to get,

f(m,n, s, t) = f(n,m, t, s), (sm = tn)

f(m,n, s, t) = f(n,m, n− s,m− t), (sm = tn)

f(m,n, 1, t) =
m!

(t!)n
(m = tn)

f(m,n, s, 1) =
n!

(s!)m
(sm = n)

Conjecture 1. f(n, n, 2, 2) = n!
2n

∑n
r0=0

(
n
r0

) (−1)n−r0 (2r0)!
2r0r0!

Conjecture 2. f(m,n, 3, 2) =
n!
2n

∑m
r0=0

(
m
r0

) (−1)m−r0 (2r0+m)!
(n−m+r0)!6r0

Conjecture 3. f(m,n, 4, 2) = n!
2n

∑m
r0=0

∑m−r0
r1=0

m!
r0!r1!(m−r0−r1)!

(−1)2(m−r0)−r1
(n−2m+2r0+r1)!

(4r0+2r1)!

24r02(m−r0)

Conjecture 4. f(m,n, 5, 2) = n!
2n

∑m
r0=0

∑m−r0
r1=0

m!
r0!r1!(m−r0−r1)!

(−1)r1+2(m−r0−r1)(4r0+2r1+m)!
(n+r1−2m+2r0)!120r06r12(m−r0−r1)

Conjecture 5. f(m,n, 6, 2) = n!
2n

∑m
r0=0

∑m−r0
r1=0

∑m−r0−r1
r2=0

m!
r0!r1!r2!(m−r0−r1−r2)!

(−1)3m−3r0−2r1−r2
(n+2r1+r2−3m+3r0)!

III. ALGORITHM ONE

The algorithm used to verify the equations presented counts
all the possible matrices, but does not construct them.It is best
described with an example. Suppose we wanted to compute
f(12, 9, 3, 4). We first create a state vector of length 9, filled
with 4s:

#(4 4 4 4 4 4 4 4 4)
Each state vector can be thought of as a container to

inform us how many ones need to go into each column. The
’#’ symbol reminds us that we must count the number of

possibilities that we can put the indicated number of ones into
each column. We assign where the ones will go in the first
row. Clearly, 3 ones need to go in the first row somewhere,
and there are (9 take 3) = 84 possibilities for this placement.
Hence, we simply assign them to go in the leftmost positions.
Then, our state vector drops to #(3 3 3 4 4 4 4 4 4) noting that
however many possibilities there are to fill in the remaining
11 rows, we multiply this by (9 take 3). Thus, we have

#(4 4 4 4 4 4 4 4 4) = 84 * #(3 3 3 4 4 4 4 4 4).
Eventually, we would like to drop the state vector to #(0 0

0 0 0 0 0 0 0) after (exactly) all 12 rows have been assigned,
reflecting a properly filled-in matrix. Now, for the second row,
there are again 3 ones to place. Some of them can go in
columns where ones are above, and some of them can go in
columns where ones haven’t been placed yet. The possibilities
are as follows: 3/0, 2/1, 1/2, and 0/3, where x/y denotes putting
x ones in the "left part" (where ones have been placed before)
and y ones in the "right part" (where ones haven’t been placed
yet). We calculate each in turn.

For 3/0, there is only (3 take 3) = 1 way to place all 3 ones
in the left part, and (6 take 0) = 1 way to place 0 ones in the
right part. Hence, in this case we drop our state vector to #(2
2 2 4 4 4 4 4 4), since 2 ones will need to be placed in the
leftmost three columns during subsequent row assignments,
and we note that we’ll multiply the ways to fill in a matrix
this way by (3 take 3) * (6 take 0) = 1 * 1.

We also consider 2/1. There are (3 take 2) = 3 ways to place
2 ones in the left part, and (6 take 1) = 1 way to place a one
in the right part. Now, as before, we will elect to place these
ones in the leftmost area of each part.

Since 2 ones will be placed in the leftmost area of the left
part, and 1 one will be placed in the leftmost area of the right
part, our state vector in this case drops to

#(2 2 3 3 4 4 4 4 4).
We also consider 1/2. There are (3 take 1) = 3 ways to place

1 one in the left part, and (6 take 2) = 15 ways to place a one
in the right part. Hence, our state vector in this case drops to

#(2 3 3 3 3 4 4 4 4).
We also consider 0/3. There is (3 take 0) = 1 way to place

0 ones in the left part, and (6 take 3) = 20 ways to place a one
in the right part. Hence, our state vector in this case drops to

#(3 3 3 3 3 3 4 4 4).
Thus, in total, we have
#(3 3 3 4 4 4 4 4 4) = (1 * 1 * #(2 2 2 4 4 4 4 4 4)) + (3

* 1 * #(2 2 3 3 4 4 4 4 4)) + (3 * 15 * #(2 3 3 3 3 4 4 4 4))
+ (1 * 20 * #(3 3 3 3 3 3 4 4 4)).

We would then proceed to work on each sub-state vector in
turn. One final example: to compute #(2 2 3 3 4 4 4 4 4), we
see that we have three parts: the left part (consisting of two
columns) where 2 ones have already been placed, the middle
part (consisting of two columns) where 1 one has already been
placed, and the right part (consisting of five columns) where
0 ones have been placed. To assign our third row, we (again)
need to place 3 ones, so we consider all the possibilities.

We see that 3/0/0 is not possible since there are only two
columns in the left part. Similarly, 0/3/0 is not possible. We

Int'l Conf. Foundations of Computer Science |  FCS'16  | 113

ISBN: 1-60132-434-0, CSREA Press ©



then compute the remaining possibilities: 2/1/0, 2/0/1, 1/2/0,
1/1/1, 1/0/2, and 0/0/3, and continue on.

After 11 of the 12 row assignments, we will either get state
vectors like #(0 0 0 0 0 0 1 1 1) in which case we can terminate
with a 1, or vectors like

#(0 0 0 0 0 0 0 0 1) or #(0 0 0 0 0 0 0 1 2)
in which case we can terminate with a 0, since it is

impossible to fill in 3 ones in the last row in the prescribed
manners.

This is the backbone of the algorithm. We remark that
it is very possible to take different paths to get the same
state vector later on, so we only compute its count once,
storing it for later use if it shows up again. In its current
implementation, the calculation engine is completely separated
from the storage object, so improvements to reading/writing
from/to the storage object can be explored independently.
We’ve found that in Scheme, a tree with ten branches at each
node seems to optimize reading and writing, once the state
vector is hashed (uniquely) into a whole number. Other node
widths are certainly possible.

IV. ALGORITHM TWO

Conjecture 6. The number of (0, 1) - matrices of
size n × n such that each row has exactly s 1’s
and each column has exactly s 1’s and with the re-
striction that no 1 stands on the main diagonal is∑n

k=0

∑k
s=0

∑n−k
j=0

(−1)k+j−sn!(n−k)!(2n−k−2j−s)!
s!(k−s)!((n−k−j)!)2j!22n−2k−j .

Enclosed is a walkthrough for the Lefty algorithm which
computes the number of nxn 0-1 matrices with t ones in each
row and column, but none on the main diagonal.

The algorithm used to verify the equations presented counts
all the possible matrices, but does not construct them.

It is called "Lefty", it is reasonably simple, and is best
described with an example.

Suppose we wanted to compute the number of 6x6 0-1
matrices with 2 ones in each row and column, but no ones
on the main diagonal. We first create a state vector of length
6, filled with 2s:

#(2 2 2 2 2 2)
This state vector symbolizes the number of ones we must

yet place in each column. We accompany it with an integer
which we call the "puck", which is initialized to 1. This puck
will increase by one each time we perform a ones placement
in a row of the matrix (a "round"), and we will think of the
puck as "covering up" the column that we won’t be able to
place ones in for that round.

Since we are starting with the first row (and hence the first
round), we place two ones in any column, but since the puck is
1, we cannot place ones in the first column. This corresponds
to the forced zero that we must place in the first column, since
the 1,1 entry is part of the matrix’s main diagonal.

The algorithm will iterate over all possible choices, but to
show each round, we shall make a choice, say the 2nd and

6th columns. We then drop the state vector by subtracting 1
from the 2nd and 6th values, and advance the puck:

#(2 1 2 2 2 1); 2
For the second round, the puck is 2, so we cannot place a

one in that column. We choose to place ones in the 4th and
6th columns instead and advance the puck:

#(2 1 2 1 2 0); 3
Now at this point, we can place two ones anywhere but the

3rd and 6th columns. At this stage the algorithm treats the
possibilities differently: We can place some ones before the
puck (in the column indexes less than the puck value), and/or
some ones after the puck (in the column indexes greater than
the puck value). Before the puck, we can place a one where
there is a 1, or where there is a 2; after the puck, we can place
a one in the 4th or 5th columns. Suppose we place ones in the
4th and 5th columns. We drop the state vector and advance
the puck once more:

#(2 1 2 0 1 0); 4
For the 4th round, we once again notice we can place some

ones before the puck, and/or some ones after.
Before the puck, we can place:
(a) two ones in columns of value 2 (1 choice)
(b) one one in the column of value 2 (2 choices)
(c) one one in the column of value 1 (1 choice)
(d) one one in a column of value 2 and one one in a column

of value 1 (2 choices).
After we choose one of the options (a)-(d), we must multiply

the listed number of choices by one for each way to place any
remaining ones to the right of the puck.

So, for option (a), there is only one way to place the ones.
For option (b), there are two possible ways for each possible

placement of the remaining one to the right of the puck. Since
there is only one nonzero value remaining to the right of the
puck, there are two ways total.

For option (c), there is one possible way for each possible
placement of the remaining one to the right of the puck. Again,
since there is only one nonzero value remaining, there is one
way total.

For option (d), there are two possible ways to place the
ones.

We choose option (a). We drop the state vector and advance
the puck:

#(1 1 1 0 1 0); 5
Since the puck is "covering" the 1 in the 5th column, we can

only place ones before the puck. There are (3 take 2) ways to
place two ones in the three columns of value 1, so we multiply
3 by the number of ways to get remaining possibilities. After
choosing the 1st and 3rd columns (though it doesn’t matter
since we’re left of the puck; any two of the three will do), we
drop the state vector and advance the puck one final time:

#(0 1 0 0 1 0); 6
There is only one way to place the ones in this situation, so

we terminate with a count of 1. But we must take into account
all the multiplications along the way: 1*1*1*1*3*1 = 3. So,
this string of rounds counts the following three matrices:

0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1
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0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1
0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0
1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0
1 1 0 0 0 0 1 0 1 0 0 0 0 1 1 0 0 0 <– only variation
0 0 1 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0
Another way of thinking of the varying row is to start with

the first matrix, focus on the lower-left 2x3 submatrix, and
note how many ways there were to permute the columns of
that submatrix. Since there are only 3 such ways, we get 3
matrices.

We cannot optimize by permuting submatrices that contain
an entry of the main diagonal, since that is a ’fixed’ position
that must contain a zero.

We note that, in the actual implementation, after each round,
the state vector values to the left of the puck are sorted (but the
values to the right of the puck maintain their exact positions)
to make counting possibilities easier. Hence, we would have
in the third and fourth rounds, respectively,

#(1 2 2 1 2 0); 3
#(1 2 2 0 1 0); 4
In a larger example (13x13 matrix with 3 ones in each

row/column), we might come across the following state:
#(0 1 1 1 2 2 3 3 0 1 0 0 1); 9
To place three ones in this case, the algorithm would branch

depending on how many ones it wishes to place to the right
of the puck, make that choice, and then multiply by the
possibilities for placing the remaining ones to the left of the
puck. Hence,

Case 1: Right of the puck gets 3 ones.
Not possible since there are only two nonzero columns

there.
Case 2: Right of the puck gets 2 ones.
Only one way to do this, but there are three different ways

to place the third one to the left of the puck:
(a) under a column with a 1 value (3 ways), with resultant

state #(0 0 1 1 2 2 3 3 0 0 0 0 0); 10
(b) under a column with a 2 value (2 ways), with resultant

state #(0 1 1 1 1 2 3 3 0 0 0 0 0); 10
(c) under a column with a 3 value (2 ways), with resultant

state #(0 1 1 1 2 2 2 3 0 0 0 0 0); 10.
Case 3: Right of the puck gets 1 one.
There are two ways to do this, so we have to branch

depending on if it’s going in the 10th column or 13th column.
Subcase 1: 10th column.
To place the other two ones to the left of the puck, we have

choices:
(d) both ones under a 1-value ((3 take 2) ways),
with resultant state #(0 0 0 1 2 2 3 3 0 0 0 0 1); 10
(e) one one under 1-value, one under 2-value ((3 take 1)*(2

take 1) ways),
with resultant state #(0 0 1 1 1 2 3 3 0 0 0 0 1); 10
(f) one one under 1-value, one under 3-value ((3 take 1)*(2

take 1) ways),
with resultant state #(0 0 1 1 2 2 2 3 0 0 0 0 1); 10
(g) both ones under 2-value ((2 take 2) ways),
with resultant state #(0 1 1 1 1 1 3 3 0 0 0 0 1); 10

(h) one one under 2-value, one under 3-value ((2 take 1)*(2
take 1) ways),

with resultant state #(0 1 1 1 1 2 2 3 0 0 0 0 1); 10
(i) both ones under 3-value ((2 take 2) ways),
with resultant state #(0 1 1 1 2 2 2 2 0 0 0 0 1); 10.
Subcase 2: 13th column.
The options (j)-(o) are the same as (d)-(i) in the above

subcase, but the resultant states have #(... 0 1 0 0 0) at the
end instead.

Case 4: Right of the puck gets 0 ones.
So all three ones go to the left of the puck. We have choices:
(p) all ones under 1-value ((3 take 3) ways),
with resultant state #(0 0 0 0 2 2 3 3 0 1 0 0 1); 10
(q) two ones under 1-value, one under 2-value ((3 take 2)*(2

take 1) ways),
with resultant state #(0 0 0 1 1 2 3 3 0 1 0 0 1); 10
(r) two ones under 1-value, one under 3-value ((3 take 2)*(2

take 1) ways),
with resultant state #(0 0 0 1 2 2 2 3 0 1 0 0 1); 10
(s) two ones under 2-value, one under 3-value ((2 take 2)*(2

take 1) ways),
with resultant state #(0 1 1 1 1 1 2 3 0 1 0 0 1); 10
(t) one one under 2-value, two under 3-value ((2 take 1)*(2

take 2) ways),
with resultant state #(0 1 1 1 1 2 2 2 0 1 0 0 1); 10
In all options (a)-(t), the state would be resorted: since the

puck moved from the 9th column to the 10th column, it will
reveal a 0 in the 9th column, which will then get moved to
the front of the state vector.

In general, Lefty will iterate over all possible choices
(optimizing for permutations below the main diagonal by
multiplying by the indicated cofactors), add up the values,
and produce the result. To provide a further speedup, a storage
object is used to store each state vector for which a count has
been acquired, so that if that state vector is seen again, the
count can be produced from memory instead of recalculated.
This speedup is necessary, and without it the algorithm will
take too long.

V. ALGORITHM THREE

Let t(m,n, s, t) be the number of nonnegative integer
matrices of size m × n with each row sum equal to s and
each column sum equal to t (sm = nt).

Conjecture 7. t(n, n, 2, 2) = 4−n
∑n

i=0
2i(n!)2(2n−2i)!
i!((n−i)!)2

Conjecture 8. t(n,m, 3, 2) = 2−m
∑n

i=0
m!n!(2m−2i)!

i!(m−i)!(n−i)!6n−i

Conjecture 9. t(m,n, 4, 2) =

24−m
∑

α+β+γ=m
3α6γm!n!(4β+2γ)!
α!β!γ!(2β+γ)!22β+γ

where the sum is
over all

(
m+2
2

)
solutions of α + β + γ = m in nonnegative

integers.

Conjecture 10. t(m,n, 5, 2) =

120−m
∑

α+β+γ=m
10β15γm!n!(5α+3β+γ)!
α!β!γ!(n−β−2γ)!2n−β−2γ ,

Algorithm Description For t(m, n, s, t)
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The algorithm used to verify the equations presented counts
all possible matrices, but does not construct them.

It is a bit involved, so it is best described with an example.
Suppose we wanted to compute the number of 4x6 matrices

over nonnegative integers with row sum 12 and column 8. We
first create a list of all nonincreasing partitions of 12: 12, 11
1, 10 2, 10 1 1, 9 3, etc., and store this in memory. We make
sure that each partition stored is not of length greater than
the number of columns of the matrix. We then create a state
vector of length 6 filled with 8s:

#(8 8 8 8 8 8)
This state vector symbolizes the sum of integers we must

place in each column, and each time the state changes, it is
sorted in nondecreasing order.

An additional vector, called the cap vector, is created
when we deal with a new state. It records the length of the
contiguous blocks of numbers found in the state. Here, it is

#(6).
Next, we iterate over each of the (valid) partitions of 12

that we could possibly use for the choice of the first row of
the matrix. Here, our first partition is 8 4. We then create a
partition block (pb) vector, which is exactly a "cap vector" of
the partition, instead of the state. Here, it is

#(1 1).
Finally, we create all the assignment vectors that are valid

for this partition and this cap vector. An assignment vector
dictates where the indicated element of the partition will be
placed in the row. Assignment vectors always have the same
length as the partition we are planning to use. The entries of
the assignment vector refer to the (zero-based) indices of the
cap vector. Since the cap vector in this case only has one index
(namely, 0) and both 8 and 4 can be elements in the matrix
row, we assign 8 and 4 to the 0th index:

#(0 0)
In other words, both the 8 and the 4 will appear in block

0 of the state. Now, there are (6 take 1)*(5 take 1) ways of
placing the 8 and 4, so we note that when we drop the state
vector. We pretend that the first row of the matrix will be (8
4 0 0 0 0), and so, dropping the state vector, the remaining
three rows must sum to

#(0 4 8 8 8 8)
and we record that the number of ways of obtaining a matrix

of state #(8 8 8 8 8 8) is 30 times the number of ways we can
obtain a matrix of state #(0 4 8 8 8 8).

Of course, we must add to our count the other ways to
assign the 8 and 4. Since there are no other ways, no more
assignment vectors can be constructed. We then add to our
count the ways in which we can use the partition 8 3 1 (with
all applicable assignment vectors), and then 8 2 2 (with all
applicable assignment vectors), and so forth.

To get a better feel for how the assignment vectors are
created, let’s say that, in the middle of our counting, we
achieve the state

#(1 1 4 6 6 6)
with two rows left to fill. Our cap vector is then
#(2 1 3)

and suppose we are considering the partition 4 4 3 1. Its
pb is #(2 1 1). Since the cap vector has length 3, the indices
for it are 0, 1, and 2, so the entries of each assignment vector
can be comprised only of 0, 1, and/or 2.

To create the first assignment vector, we note that the first
element of the partition, 4, cannot be placed in block 0 of
the state (the block of two 1s), since 4 > 1. A single 4 can
be placed in block 1 of the state (the block consisting of the
single 4), so the first 4 in the partition can be assigned to block
1:

#(1 ? ? ?)
But block 1 is only length 1 (as noted by the cap vector’s

entry of 1 at index 1), so no more 4s can go in that block.
The second 4 in the partition can also be placed in block 2
of the state (the block of three 6s), since 4 <= 6. Thus, our
assignment vector changes to

#(1 2 ? ?).
Next in the partition, we have a 3, which is also greater

than 1, so it too cannot go into block 0. Block 1 has already
been taken by the 4. Hence the only remaining place for it is
in block 2:

#(1 2 2 ?)
Finally, the last element of the partition is a 1, which can

go anywhere in the state. We begin by assigning it to block
0, giving the resulting assignment vector as

#(1 2 2 0).
How many ways could these assignments be carried out?

The first 4 has only one way. The second 4 and the 3 are
both in block 2, but they are different numbers, so they can
be inserted in (3 take 1)*(2 take 1) ways. Finally, the 1 has (2
take 1) ways to be inserted into block 0. Hence we multiply
to get 12 ways for this assignment vector, and dropping the
state, we get #(0 1 0 2 3 6). Sorting it, it becomes #(0 0 1 2
3 6), which we will process after we deal with the remaining
assignment vectors possible for 4 4 3 1.

To get the next assignment vector, we note that we can keep
everything the same, but the 1 in the partition can be put in
block 2. This gives

#(1 2 2 2)
and to compute the number of ways, we have 1*(3 take

1)*(2 take 1)*(1 take 1) = 6.
To get the next assignment vector, we note we’ve exhausted

all possibilities for #(1 2 ? ?), so we then find the ’next’ way to
assign the two 4s in the partition. The only remaining option
is to put them both in block 2, so we start with

#(2 2 ? ?).
Now, the 3 can go in block 1 and the 1 can go in block 0,

giving
#(2 2 1 0)
and total number of ways (3 take 2)*(1 take 1)*(2 take 1)

= 6.
Now, we think of a "block" of the assignment vector as the

entries that correspond to an equal number in the partition;
here, the first two entries correspond to the partition entry 4,
so they form a block. The pb tells us the length of each block
of the assignment vector. For example, recall that here, pb
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is #(2 1 1), so each assignment vector corresponding to this
partition has three blocks, the first of which has length two, and
the remaining two have length one. We construct assignment
vectors that are nondecreasing in each block, though we can
have a decrease when we move to a new block from an old
one. The remaining three assignment vectors and the number
of ways to make the assignment are then

#(2 2 1 2) with ways (3 take 2)*(1 take 1)*(1 take 1) = 6
#(2 2 2 0) with ways (3 take 2)*(1 take 1)*(2 take 1) = 12
#(2 2 2 1) with ways (3 take 2)*(1 take 1)*(1 take 1) = 6.
Let’s consider a larger example. Suppose the state was
#(0 1 1 1 1 2 2 2 3 3 3 3 4 5 5)
with row sum 18. This state will produce a cap vector of #(4

3 4 1 2) (since zeroes in the state are ignored). Let’s suppose
we were considering the partition

3 3 3 2 2 2 1 1 1,
which gives a pb of #(3 3 3). There are 433 total assignment

vectors for this partition. The first one we could construct is
#(2 2 2 1 1 1 0 0 0) with ways (4 take 3)*(3 take 3)*(4

take 3) = 16,
an intermediate one we could construct is
#(2 3 4 1 1 2 0 1 2) with ways (4 take 1)*(1 take 1)*(2

take 1) for placing the three 3s
*(3 take 2)*(3 take 1) for placing the three

2s
*(4 take 1)*(1 take 1)*(2 take 1) for

placing the three 1s (total 576),
and the last one we could construct is
#(3 4 4 2 2 2 1 1 2) with ways (1 take 1)*(2 take 2) for

placing the three 3s
*(4 take 3) for placing the three 2s
*(3 take 2)*(1 take 1) for placing the

three 1s (total 12).
Notice that each block of each assignment vector has its

entries in nondecreasing order, but often there is a decrease
when we move from block to block. Since the state vectors
are nondecreasing, this is to be expected.

In general, for each state vector that is achieved, this
algorithm will iterate over all assignment vectors for each valid
partition, multiplying cofactors and adding the results. When
fitting the last row, though, the calculation is surprisingly easy:
continuing the example we had above, if we examine the state
#(0 0 1 2 3 6), we see that there is only one possible partition
of 12 that fits it (namely 6 3 2 1) and there is only one way
to fit it in. Hence, there is only one way to achieve this state.
The situation is the same for every state with one row left to
be filled.

For further speedup, a fast storage object must be used,
so that if a given state is seen again, we can recall from
memory how many partially-filled matrices can produce it.
This speedup is necessary, for without it, the algorithm will
take too long. Other approaches are certainly possible.
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Abstract 
The transportation sector has proven to be a 
particularly difficult area to overcome for the 
advancement of sustainable development. The economic 
and demographic development of urban agglomerations 
heavily depends on a reliable supply of goods and 
material thus making urban freight transportation a 
major concern for the sustainable development of cities. 
A number of strategies ranging from implemented 
policies to localized technology and modal shifts 
options in different countries have been researched to 
reduce the urban freight transport impacts. Modern 
technology has also made it easier for everyone to 
accurately measure and control the impacts of urban 
freight transportation. This paper addresses some of the 
concerns related to sustainable transport systems for 
urban freight. 
Keywords: Sustainable transport system, Freight 
transportation 

1 Introduction 
For the past few years, there has been a worldwide 
concern to set up sustainable development strategies in 
order to achieve a continuous improvement in quality of 
life. Since the 1987 Brundtland Commission report 
(Oxford University Press 1987) brought global attention 
to the concept of sustainable development, scholars and 
policy professionals have worked to apply its principles 
in the urban and metropolitan context. However, not 
every aspect of a city’s function has been studied in 
depth. According to Hicks [1], “any urban area depends 
for its existence on a massive flow of commodities into, 
out of, and within its boundaries. Yet the transport of 
goods remains a forgotten aspect of urban transportation 
study”. The transportation sector has proven to be 
particularly difficult for the advancement of sustainable 
development.  
The UN-HABITAT report [2], states that 
“transportation alone is responsible for approximately 
23 percent of total energy related greenhouse (GHG) 
emissions and 13 percent of global GHG emissions”. 

Furthermore, transportation has a direct relationship 
with the growth of urban areas, which continues to grow 
at a rapid rate. Even the most efficient cities’ 
transportation systems are facing escalating 
motorization and mobility demands. Travels throughout 
all regions of the world have increased at the rate equal 
to or greater than most countries economic growth and 
development.  
The economic and demographic development of urban 
agglomerations depends heavily on a reliable supply of 
goods and materials. Nevertheless, freight 
transportation in urban centers contributes considerably 
to the GHG emissions, noise and traffic congestion. In 
fact, in most cities around the world, these negative 
effects have reached levels at which the quality of urban 
life has been significantly affected. 

2 Background Review 
Freight transportation is primarily a business to business 
industry, and for firms established within city limits it 
forms a vital link with suppliers and customers. Figure 1 
presents the role of freight transportation in an effective 
production and distribution system [14].  

 
            Fig.1 Efficient Freight Transportation System  
Freight is carried by vehicles that move on the same 
streets and arteries used by private and public vehicles. 
Urban freight traffic also contributes to the belief that 
cities are not safe, which causes numerous citizens to 
move out of the city limits. The already significant 
volume of freight vehicles moving within city limits is 
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growing, and is expected to continue to grow at a rate 
faster than expected. Major contributing factors to this 
phenomenon are the current production and distribution 
practices based on low inventories and timely deliveries 
as well as the explosive growth of business-to-customer 
electronic business activities that generates significant 
volumes of personal deliveries. [3] 
Urban freight transportation is considered a grave 
problem for the sustainable development of cities. Apart 
from a comprehensive solution to the freight 
transportation problem, a specific study on urban freight 
transportation is needed. 
Different types of freight flow in, out, and throughout 
the urban areas including consumer goods, waste 
products, construction materials, mail, etc. [4].  Changes 
in modern society influence the continuing growth of 
urban freight transportation such as movement towards 
a post-industrial society, urbanization, aging,  
individualization and also the increasing awareness of 
sustainable development [5].  
Concurrently, businesses are also moving towards the 
just-in-time (JIT) operations which require timely 
delivery with small shipments and less storage space. 
The rapid growth of online shopping has also generated 
significant increase in the volumes of home deliveries 
as well as the level of freight traffic. According to 
Dablanc [4], “urban freight represents ten to fifteen 
percent of vehicle equivalent miles travelled in city 
streets and two to five percent of the employed urban 
workforce. Also, three to five percent of urban land is 
devoted to freight transportation and logistics”. 
Last kilometer freight distribution emphasizes the last 
link of the supply chain that delivers goods to retailers 
in urban areas. Traditionally, the retailer as the last party 
in the supply chain is the one who finally sells the 
product to the consumer. The key characteristics of last 
kilometer freight distribution are: (1) a wide variety of 
goods being delivered over relatively short distances in 
a congested urban setting and small shipment size with 
high frequency of delivery and (2) Freight carriers will 
serve a number of locations in one delivery round with 
less capacity utilization in comparison with long-
distance freight transport. Allen [8] states that the 
degree of centralization in the supply of goods to retail 
outlets also influences the level of freight transport.  
The growth in freight is a major contributor to 
congestion in urban areas and on intercity routes 
producing congestion that affects the timeliness and 
reliability of freight transportation. A long-distance 
freight movement also plays a significant contributor to 
local congestion which typically delays the freight from 
getting to its destination and as such affects the local 
economy. 

The current growing urban freight demand increases 
recurring congestion at “freight bottlenecks”- places 
where freight and passenger service conflict with one 
another, and where there is not enough room for local 
pickup and delivery.   
Congestion could also be caused by restrictions on 
urban freight movement, such as the lack of space for 
trucks to load and unload as well as limitations on 
delivery and pick-up times. One estimate of urban 
congestion attributes 947,000 hours of vehicle delay to 
delivery trucks parked at curbside in dense urban areas 
where office buildings and stores lack off-street loading 
facilities. [6] 
In addition, the environmental impacts caused by urban 
freight are imposing a large toll on urban centers. Urban 
freight pollutes more than long distance freight 
transportation, due to the average age of the vehicles 
and the high number of short trips and stops. Freight 
transportation generates between 20% and 60% 
(according to the pollutants considered) of local 
transport-based pollution. 

3 Addressing the Concerns 
Usually, freight transportation is considered to be a 
private industry on both the supplier and user sides and 
it is driven by economic parameters. A large majority of 
cities have not yet found adequate solutions to help 
optimize the movement of goods in urban areas. It is 
proposed that sustainable urban freight transportation 
systems could play a major role in this optimization 
process. According to Behrends [9], a sustainable urban 
freight transportation system should fulfill four main 
objectives. First, it should ensure the accessibility 
offered by the transportation system of a city to all 
categories of freight transportation. Second, it should 
have reduced levels of air pollution, greenhouse gas 
emissions, waste and noise and no negative impacts on 
health of the citizens or nature. Third, it has to improve 
the energy efficiency and cost-effectiveness of the 
transportation of goods, taking into account the external 
costs. Lastly, it has to contribute to the enhancement of 
the attractiveness and quality of the urban environment, 
by avoiding accidents, minimizing the use of land and 
without compromising the mobility of citizens.  
To achieve these objectives related to sustainable urban 
freight transportation systems, different strategies are at 
present being implemented including “demand 
management, operations management, pricing policies, 
vehicle technology improvements, clean fuels, and 
integrated land use and transportation planning” [11]. 
Currently, there are several cities around the world that 
have implemented programs and regulations to pursue 
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sustainability in their urban freight transportation 
system [12]. 
Most of these plans, such as reducing GHG emissions, 
are not directly targeted in most government policies or 
regulations. There is therefore still a chance to make a 
difference by implementing these goals and generating 
more benefits for the community. 
Land use patterns, urban design, or the built form of a 
city, can have an impact on reducing the GHG 
emissions and traffic congestion from urban goods 
movement by supporting the efficient delivery of goods. 
It is clear that innovation and new technologies are 
critical to achieve a more sustainable way to move 
goods among cities. A survey by the Supply Chain and 
Logistics Association of Canada and Industry Canada 
[10] after examining green supply chain management 
strategies for logistics and transportation services from a 
Canadian perspective, concluded that for green 
technology initiatives to be successful, environmental 
benefits and a positive financial result for the service 
provider must both be achieved at the same time. While 
the study was not strictly focused on urban goods 
movement, it still provides some background on the 
drivers behind technology adoption and the types of 
tools that are being used to achieve a sustainable urban 
freight system.  
There are numerous tests projects on the applicability of 
alternative fuels namely hybrid-electric, complete 
electric, compressed natural gas (CNG), biodiesel and 
ethanol. In most cases, fleet based transportation 
companies are usually in the best position to test these 
alternative fuels by using some of their vehicles as test 
cases and switching to others while still keeping the 
vehicles operating on comparable routes. Fleets with a 
large variety of vehicle types on set routes are good 
candidates to be in the test and in the end benefit from 
new fuels. A large percentage of their operating costs 
are fuel, so reducing these costs is critical to their long-
term success. Both UPS and FedEx, two of the largest 
courier companies, have several on-going tests in 
various markets. Also, they are constantly testing 
routing technology to improve their operations. 
In the United States, California has started a statewide 
effort to better the efficiency of freight transportation 
and to transition their freight transportation system to 
zero-emission technologies [13]. In 2015, Governor 
Brown requested that the California Department of 
Transportation, the California Energy Commission, the 
California Air Resources Board, and the Governor’s 
Office of Business and Economic Development take 
part in this initiative. The goal of this action plan is to 
come up with strategies for a sustainable freight 
transportation freight system. 

Technology is making it easier for everyone to 
accurately measure and control the impacts of urban 
freight transportation by constantly monitoring the 
outcomes. Researching for innovative strategies and 
technologies to reduce the impacts of urban freight 
transport in both big and small companies is ongoing. 
The field of Operation Research plays an important part 
within most studies to determine the optimal selection 
of routes to transport goods. 

4 Minimizing Freight Impact 
The implementation of city based programs promote 
and direct research over successful best practices across 
the world on reducing impacts of urban freight 
transportation [7,13].  
The implementation of policies and regulations by the 
city or state governments are critical for the reduction of 
pollution and congestion.   
The implementation of land use and urban design 
strategies to create a freight transportation system is 
being considered. It will contribute to the city dynamics  
making it a better place to live. In fact, if well planned, 
some of these strategies may not only have one outcome 
but several. For example, designing small self-service 
booths around the city could not only reduce trips and 
therefore emissions, but also alleviate the congestion 
problems that urban freight generates. Moreover, land 
patterns and urban design can successfully be 
influenced by policy which could regulate the need of 
the presence of centralized loading docks, or the 
implementation of ideas like the self-service booths in 
most commercial buildings. 
The implementation of mode shifting alternatives 
among the cities is also addressed. Currently, there are 
more resources to take advantage of one’s transportation 
knowledge and all that is needed is to know how to 
efficiently implement these assets.  For example, by 
creating a similar system to the self- serving booth for 
bicycles, couriers can find ways to avoid congestion in 
the urban core as well as reducing emissions and create 
a more pedestrian friendly environment for city 
dwellers. 
Finally, we deal with the implementation of innovative 
technologies to help the accurate measure and control of 
the urban freight transportation impacts.  These 
approaches would make it possible to improve the way 
people handle new technologies by constantly 
monitoring the outcomes from their own devices. It is a 
matter of taking chances and looking for the 
implementation of innovative technologies in both big 
and small companies so that the benefits of the 
implementation of a sustainable urban freight system 
can be accountable in every sector of the city.  
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5 Conclusion 

In conclusion, this paper reviewed a number of 
strategies ranging from implemented policies to 
localized technology and modal shifts options in 
different countries to reduce the urban freight transport 
impacts. From this assessment we realize that there are 
cracks along the different strategies and programs that 
have not been tested. Also, we observe that we still need 
effective methods to collect data and develop tools to 
support the evaluation of different measures in terms of 
the short and long term potential and that there is an 
important gap relating to information about key 
stakeholders able to tackle the impacts of the 
transportation of goods in urban areas. 
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Abstract – I-EAS, which is a low power management using 
process scheduler, scales frequency by calculating workload 
for purely core usage. On the basis of this, we determine the 
energy-efficient frequency. In the low power policy of CPU, I-
EAS calculates workload that the CPU imposes load on the 
memory using the performance monitoring unit (PMU), In the 
low power policy of GPU, I-EAS finds a job that uses a lot of 
memory to analyze the characteristics of the job of GPU to run 
and calculates workload that the GPU imposes load on the 
memory using a memory-intensive job. It is difficult to 
determine the energy-efficient frequency with the environment 
without PMU, we can solve the problem through the platform 
performance monitoring unit (PPMU). And analysis of I-EAS’s 
GPU job did not take into account the characteristics of job 
excepting tiler job, our system considers characteristics of all 
job. In our system, we more specifically calculate workload to 
use memory in order to determine the energy-efficient 
frequency. 

Keywords: Dynamic Voltage Frequency Scaling (DVFS), 
Performance Monitoring Unit (PMU), Platform Performance 
Monitoring Unit (PPMU), Governor, Memory decomposition 

 

1 Introduction 
Current mobile devices despite their small size provide 

functionalities like a desktop computer, such as 3D gaming, 
drawing, editing documents, web browsing. However, the 
increasing performance of these mobile devices comes with the 
cost of high energy consumption. Charging these mobile 
devices frequently is not possible, therefore minimizing the 
energy consumption of mobile devices is a hot research topic.  
In order to reduce the energy consumption while the processor 
is actively running, dynamic voltage frequency scaling (DVFS) 
is used which decreases the operating voltage and frequency of 
the processor. However, by reducing the operating frequency 
of the processor the execution time of a task is increased. 
Therefore, to reduce energy consumption while meeting the 
real-time deadlines of tasks, energy aware Scheduling (EAS) 
schemes have been proposed [1, 2]. Another approach in 
reducing the power consumption of computing devices is 
advanced configuration and power interface (ACPI) which 
specifies how a computer’s I/O system, operating system and 
peripheral devices communicate to each other about their 

power consumption requirements [3]. However, these existing 
techniques have the limit to optimize the energy consumption.  

In DVFS, when a CPU core is running its optimum operating 
frequency is determined by the workload. The low energy 
consumption policy is implemented by measuring the 
workload during a given period and then corresponding 
frequency is determined using this workload. In Linux based 
systems, CPU, GPU and memory are all targets to reduce the 
power consumption. In previous research [4, 5], the 
implemented policy measures the memory workload through 
performance measuring unit (PMU) and the workload for the 
CPU core is calculated by excluding the memory workload. 
The low power policy of GPU used the information of GPU 
core provided by Linux system and calculated the workload. 
The low power policy of memory measured the workload using 
platform performance monitoring unit (PPMU). A 
performance analysis unit, PPMU, provided by Exynos SoC 
can measure performance data and can be used to analyze the 
system performance. The low power policy of memory 
measures the workload and determines the frequency using this 
workload measured by PPPMU. This workload is a rate of the 
CPU cycle count that of the memory bus used by CPU and 
devices over the entire cycle count used by memory bus. 

However, if there is no PMU so low power policy of CPU 
cannot calculate workload using CPU core, CPU will not 
achieve efficient power management. In low power policy of 
GPU, it only considers tiler job used to memory decomposition. 
But when CPU gives jobs to GPU, only vertex job but also tiler 
job is transferred to GPU as a job. [6]. Therefore, both 
execution time are always equal when Linux system measures 
the time of vertex job and tiler job. Tiler job's phase of increase 
and decrease is similar to memory's workload phase, also 
vertex job's phase is equal to tiler job. So it is important to 
consider vertex job and tiler job for memory decomposition. 

In this paper, we suggest two portions that are 
complemented with low power policy of CPU and low power 
policy of GPU. Low power policy of CPU calculates redefined 
CPU workload, and it entire memory bus cycle count from 
PPMU. And this rate is used in memory workload to calculate 
the workload to purely use the CPU core. Low power policy of 
CPU calculates memory workload of vertex job and tiler job 
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using the memory and workload using GPU core by utilizing 
memory workload. 

2 Effective workload 
Tasks that use CPU, GPU and memory intricately impose 

certain workloads on each of these components. The workload 
of a task in a given period is defined as the amount of time for 
which the task was using a CPU/GPU core or memory during 
that particular period. Two types of operations can be defined 
for CPU and GPU, those currently running on the core and 
those waiting for results of memory operations. If the effective 
workload that is workload using the core except workload is 
calculated, waiting the memory is possible, and if a decision of 
frequency using this effective workload is done, system can 
achieve effective power management with nearly equivalent 
performance. 

 

3 Low power policy using effective workload 
3.1 Low power policy of CPU  
 When the CPU is operating, it is possible to divide up into 
workload using the CPU and workload using the memory. 
Then, it is easy to calculate purely effective workload. As 
calculating purely core usage, I-EAS system obtains bus access 
cycle count for memory access and the executed instruction 
count through PMU. 
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CPU DVFS of I-EAS measures workload and determines 
the frequency of CPU using Linaro GPU governor when the 
scheduling events occur such as task wake up, enqueuer and 
dequeue. The workload that is measured by the kernel is 
calculated as effective workload purely using the CPU core 
except workload using the memory. Workload that the CPU 
imposes load on the memory is bus access cycle count portion 
of the executed instruction count. It represents equation (1). 
After that, we considered that effective workload is CPU 
utilization multiplied by the core usage rate (2). 
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 In the environment there is no PMU, we can measure effective 
workload. The PPMU measures both cycle count that 
peripherals use memory bus and total cycle count. We obtain 
the time that peripherals use memory bus during memory 
execution period. In Equation (3), The result must multiple a 
value of α. α means that each system is different and is tunable. 
After excluding the time using the memory from the entire time 
that CPU measure, we figure a rate of the time using the CPU 
core over the entire time. This rate is used to calculate the new 
effective workload of CPU in Equation (4). 

3.2 Low power policy of GPU  
  GPU jobs measured in Linux system are vertex job, tiler job 
and fragment job. Vertex job transforms 3D geometry and 
projects onto 2D render target. Tiler job calculates updated 
region of render target and update region to frame buffer. 
Fragment job generates the final color for the render target for 
each pixel covered by a primitive. I-EAS found the result of 
the GPU job characteristics analysis that tiler job used a lot of 
memory when it did memory workload decomposition. The 
execution time of tiler job was similar to memory utilization at 
increase and decrease, so I-EAS analyzed that tiler job was a 
lot of memory workload. 
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Figure 1. The relation between vertex, tiler job execution time 

and memory utilization  

We analyze the relation among vertex job, tiler job and 
memory utilization through the experiment of Basemark ES2 
is GPU benchmark. Memory utilization appears the increase 
and decrease according to vertex job and tiler job. The 
execution time of vertex job and tiler job is equal in Linux 
system because CPU gives GPU a job that includes vertex and 
tiler job. We concluded that vertex job and tiler job have 
workload to use the memory considering this relation.  

Figure 2. Figure 1. The relation between fragment job 
execution time and GPU utilization 

We found that the flow of fragment job conversely moves to 
memory utilization and is similar to GPU utilization in Figure 
2. So we analyze that fragment job use a lot of GPU core 
through this experiment. In consideration of the characteristics 
of the GPU job, it is essential to consider not only tiler job but 
also vertex job in memory workload decomposition.

max

_

_
(1 )

GPU
GPU GPU current tiler

GPUnew current
total

Exec time

Exec time

Freq

Freq
UtilUtil � � � �  (5) 

In order to calculate workload using purely GPU core, I-EAS 
calculated memory workload that is the rate of execution time 
of tiler job over entire execution time. Memory workload 
obtained by memory workload decomposition is used for 
calculating core workload in Equation (5). 
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In consideration of between GPU job and memory utilization, 
we improve memory workload decomposition to figure the 
new utilization. For calculating memory workload, we add 
execution time of vertex job and execution time of tiler job. 
Then, We multiple this sum by α. The value of α is the rate of 
execution time of vertex job and tiler job using the memory 
over entire execution time. We measure each job execution 
time using memory through GPU benchmark test, then we 
calculate the α. GPU benchmarks are Basemark ES2, Antutu 
and Quardrant for 2D and 3D graphic.  [7, 8, 9]  
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After 10 runs of each benchmark, we get the linear equation 
with three unknown workload vales and coefficients averaged 
among benchmark execution times. The formula is composed 
entire time using memory and execution time of each job. In 
the formula, workload of vertex job and tiler job is processed 
as one. As a result, we calculate that workload value of 
fragment job almost is 0 and workload value of vertex job and 
tiler job almost is 0.63. 

 

4 Conclusions 
 In this paper, we analyze that task complexly impose load on 
CPU, GPU and memory and do memory workload 
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decomposition. Low power policy of CPU and GPU calculate 
effective workload purely using core for energy efficient 
frequency by using workload decomposition. In the low power 
policy of CPU, we calculate effective workload purely using 
CPU core through PPMU and use it to find energy effective 
frequency on this basis. Also in the low power policy of GPU, 
we calculate effective workload purely using GPU core through 
characteristic of GPU job and use it to find energy effective 
frequency on this basis. 
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Abstract – The size and complexity of computer software
programs has rapidly increased in the recent years, therefore 
the possibility of occurrence of faults and bugs in the software 
is also amplified. Most of these bugs can be eliminated by 
repetitive debugging and execution of software during the 
software development and testing process. However, there are 
some exceptions such as synchronization problems which
cannot be reproduced through repeated program executions.
Such synchronization problems arise due to the occurrence of 
nondeterministic events, for example, interrupts or Inter-
Process Communication (IPC). Record and Replay tools that 
capture the state of software by recording non-deterministic 
events are often used for software debugging. In the current 
research, we suggest a record-replay mechanism for user –level 
application running in single threaded environment based on 
kernel to user data transfer. The proposed approach is able to 
replay an application by capturing all the kernel-to-user level 
data transfers.

Keywords: Software debugging, deterministic replay 
mechanism, analysis kernel and user interaction

1 Introduction
In order to provide necessary functionalities and resource 

optimization for a wide variety of hardware platforms, a large 
increase in the size of computer software programs along with 
complexity is witnessed in the recent years. The ever-evolving
process of software development process therefore, has 
become difficult and the possibility of existence of software 
bugs has also increased. In order to eliminate these bugs, many 
debuggers are developed such as GNU Debugger that are 
useful in many situations. These debuggers can help to 
reproduce a problem in software by repeated program 
executions. However, all of the bugs cannot be resolved with 
the aid of debuggers, for example, synchronization issues.
Such faults cannot be reproduced by simple debuggers because 
their occurrence depends on various external factors, which we 
call non-deterministic events. These non-deterministic events 
are generated by the external hardware devices generally 
through interrupts. In order to analyze and get rid of subtle bugs 
like synchronization, such non-deterministic events need to be 
captured and executed repetitively. A promising approach to 
solve such complex bugs is to record necessary events and then 

replay the software based on those recorded events. This 
approach is called deterministic replay as it allows to 
deterministically reproduce the events, analyze and fix the fault 
that appear in the recorded run. An example of the repetitive 
execution of nondeterministic events in debugger is UndoDB
[1] ,which is an extension of GNU Debugger by Undo 
Software. UndoDB catches every nondeterministic event to
create the snapshots and has the functionality to play-back the 
flow of program execution using these snapshots. But, this 
approach is adopted in initial software development and 
debugging environments and is not suitable for recording and 
reproducing a fault in real runtime environments. 

In the past few years, a number of approaches for 
recording the runtime behavior of program and then replaying 
it offline have been proposed. Most of the suggested methods 
achieve it through record and replay of hardware interrupts [2-
4]. Recording the hardware interrupts and replaying them later 
encompasses the whole system behavior. However, the 
behavior of a particular user application cannot be determined 
by tracing the hardware interrupts only. In order to record and 
replay a particular user application efficiently, the adopted 
methodology should be able to capture all the non-
deterministic events that affect the application including the 
hardware interrupts.

The user-level application developers assume that their
code is deterministic and will always give the same results. 
However, the non-deterministic events occurring in the system 
strongly influence program behavior in real run-time 
environments. Modern operating system abstracts the 
hardware-related services, (e.g. accessing network card), IPC 
and other kernel services from user-level applications. If the 
application needs to use such services, it is achieved through 
system calls. The results of execution of non-deterministic 
events in kernel mode as a result of system call invocation are 
stored in kernel memory area and sent to user space by kernel 
to user memory copy function, or the return values of the 
system call.

A number of record and replay approaches have been 
proposed in literature for replaying user-level applications 
based on analyzing, recording and replaying of invoked system 
calls, for example see [5-7]. System call analysis is performed 
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by keeping track of the changes in a particular memory address 
space which will be updated by kernel as a result of system call 
execution. However, such system calls analysis can detect the 
change in an address space through an address pointer passed 
as an argument to the system call and its returned value. 
However, there are few system calls for example, Linux system 
call exec() does not pass the address pointer as an argument, 
instead it writes the contents of executable file at user address 
space. Similarly, there are few arguments which are passed as 
opaque parameters whose type and function cannot be 
determined at the time of declaration, for example, Linux 
system call ioctl(). The purpose of each argument of the ioctl()
system call is determined by its peripheral device driver, so it 
is not possible to figure out those arguments in advance.
Therefore, such the methods using system calls cannot be used 
to accurately record and replay user applications.

In this paper, we suggest a record-replay mechanism for
user application running in a single threaded environment 
using kernel to user data transfer. It detects all the non-
deterministic events by capturing kernel-to-user data transfers
which other approaches are unable to do. To be more specific 
we focus on non-determinism that is associated with copying 
data to user memory area from kernel area.

The paper consists of three sections. Section 2 describes 
our proposed mechanism for logging kernel to user data and 
replaying it. Section 3 gives a brief conclusion.

2 Overview of Record-Replay
2.1 Main Idea

The main purpose of our record-replay approach is 
logging of all the non-deterministic events during record time 
and generate those events during replay time. All non-
deterministic events influencing a particular user application 
occur thorough invocation of various system calls. So, the basis 
of our proposed approach is logging all those system calls.

Note that all system calls may not trigger non-deterministic 
events. Therefore, selecting which system calls to log is 
important. Keeping in view this fact, we categorize the system 
calls as follows.

- I/O Function: I/O device and IPC system calls 
including disk I/O, network I/O such as file operation 
and socket operation

- Process control Function: fork, exec, exit

- Memory control Function: mmap, brk

I/O function calls are used for interacting with external
peripherals or processes and so, the result of these system calls 
cannot be predicted by the user application, so we consider 
these as non-deterministic events. Second, process control 
functions manage a process status. Such calls only change or 
get the value of process control block, so the associated events 
can be considered deterministic. Finally, memory control 
functions manage a virtual memory address space which is not 

Figure 1. Record-Replay Mechanism
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affected by any hardware or external events, so they are 
deterministic. 

The non-deterministic results of a system call are forwarded 
to user space by updating a particular user memory area and by 
the return values of the system call, depending on specific 
environment. For example, read() system call writes data from 
an I/O device or socket to user address space that is passed by 
an argument and its return value is the size of data. Thus, 
logging the non-deterministic factors caused by system call 
means to store that data and return value in a log. During replay, 
when the same system call is invoked, record-replay does not 
pass the data from hardware, instead the data is passed from 
the log.

2.2 Implementation

The general procedure of invoking a system call is shown 
in figure 1. First a user application invokes a system call and 
switches to kernel mode. Kernel processes a system call and if 
it needs to use hardware resources, it sends a request to 
hardware. When the I/O transaction has been completed, it 
sends the result of execution to kernel using interrupts. If the 
kernel needs to send data to user application, it copies the data 
to user area.

The proposed flow of recording a user application is as 
follows. As shown in Figure 1, when user application invokes 
a system call, in view of the categories defined in section 2.1, 
recorder first checks whether the system call needs to be 
recorded or not. If the system call is not a target for recording,
then it is executed normally. However, if a system call is 
identified for recording, then after step when kernel needs to 
send data to user application, record-replay module captures 
the data from kernel . The data is stored in a log which includes 
precise order of events and the data associated. At the same 
time the system call is normally executed. During the replay
process, the target system call is not sent to the kernel, instead, 
the data associated with that particular system call is sent to
user application, through the logged data in the storage.

3 Conclusions
In this paper, we implement deterministic record-replay 

mechanism which handle the data transfer between kernel and 
user application. This mechanism provides to detect 
nondeterministic events more than to analyze only system call 
arguments. Our approach is useful that it can detect more 
events, and perform the deterministic record-replay more 
completely.
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