
SESSION

FORMAL METHODS + PROCESS AND PRODUCT
LINE IMPROVEMENT + AGILE DEVELOPMENT

AND MANAGEMENT + WORKFLOW
MANAGEMENT + PROJECT MANAGEMENT

ISSUES

Chair(s)

TBA

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 1

2 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

Formal Modelling in the Concept Phase of
Product Development

Mathijs Schuts1, and Jozef Hooman2,3

1Philips HealthTech, Best, The Netherlands
2Embedded Systems Innovation (ESI) by TNO, Eindhoven, The Netherlands

3Radboud University, Nijmegen, The Netherlands

Abstract— The traditional process framework for product
realisation in industry often leads to a long and difficult
integration phase. An important reason is that in the con-
cept phase only informal descriptions are made about the
required product, its decomposition, and the interfaces be-
tween components. We propose a formal modelling approach
for the concept phase, using a new light-weight modelling
tool to formalize system behaviour, decomposition and in-
terfaces. The confidence in the product concept is increased
by simulation, both manual and automatic with random
system characteristics. By means of a dedicated graphical
user interface, communication with different stakeholders
is improved. We discuss the application of the proposed
approach at Philips HealthTech.

Keywords: Formal models; software engineering; concept defini-
tion; simulation

1. Introduction
We propose a method to improve the concept phase of product

realisation by means of formal techniques. A traditional devel-
opment process from concept to a validated product is depicted
in Figure 1, see for instance [1]. It describes six distinct phases
between concept and product. During the concept phase an in-
formal document is being created with a high level description
of the concept. This document is reviewed and agreed upon
by all stakeholders. The document consists of a decomposition
of the developed product, the different hardware and software
components it consists of, the responsibilities per component, and
the interaction between the components, possibly with an informal
interface description. From the concept description, different devel-
opment groups concurrently start developing the component they
are responsible for. This may also include 3rd party components
developed by other companies.

Such a process framework provides a structured way to come
from concept to product and allows the concept to be decomposed
into different components such that multiple development groups
can concurrently work on the different components. A frequently
occurring problem in industry, however, is that the integration
and validation phase takes a large amount of time and is rather
uncontrollable because many problems are detected in this phase
and might require a redesign of components.

An important reason for these problems is the informal nature
of the concept phase. Clearly, this leads to ambiguities and in-
consistencies. Moreover, only a part of the complete behaviour
is described in an informal document, often only a part of the
basic functional behaviour without taking errors or non-functional
aspects into account. The complete behaviour is defined during

the implementation phase of the different components. Hence, a
large part of system behaviour is implicitly defined during the
implementation phase. If multiple development groups work in
parallel in realizing the concept, the integration phase can take
a lot of time because the independently developed components do
not work together seamlessly. Another problem is that during the
integration phase sometimes issues are found in which hardware is
involved. Then it is usually too late to change the hardware and a
workaround in software has to be found.

To prevent these types of problems, we propose the use of formal
modelling techniques in the concepts phase, because it is early in
the process and all consecutive phases can benefit from an improved
unambiguous concept description. Moreover, errors made in this
phase are very costly to repair in a later phase [2], [3].

By making a formal model of the system in the concept phase,
ambiguities, contradictions and errors are removed from the infor-
mal concept description. During modelling one is forced to think
about the exceptional behaviour early in the development process.
Many questions needs to be answered which would be implicitly
defined during the implementation phase otherwise. Moreover,
by formalizing interface descriptions, less problems during the
integration phase are expected. Figure 2 depicts a graphical
representation of the proposed extension of the product realisation
framework.

The formal model is developed incrementally to allow updates
after aligning with stakeholders and to incorporate new insights
frequently. Before choosing a formal method, we first list the
aspects that are important in the concept phase:

• The definition of complete system behaviour, including error
scenarios.

• A clear and unambiguous definition of interfaces and concepts
to support parallel development in subsequent phases.

• The possibilities to explore concepts and design decisions fast.
• Communication with stakeholders to obtain agreement on the

concepts and externally visible behaviour of the product.
• The possibility to deal with a combination of hardware and

software components.

Furthermore, the formal method should be easy to use by
industrial engineers and scalable to large and complex systems.
Based on earlier experiences, see, e.g., [4], we decided not to
aim for exhaustive model checking. Since our applications consist
of many asynchronous components with queues and also timing
aspects are important, one almost immediately runs into state-space
explosion problems.

As an alternative to increase the confidence in the system
model, we will use simulation. Formal models are expressed using
the Parallel Object Oriented Specification Language (POOSL).
The language is supported by a simulator and a new Eclipse
Integrated Development Environment (IDE). The tooling can easily
be combined with a dedicated graphical user interface to support
communication with all stakeholders.

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 3

Fig. 1: Traditional process framework

Fig. 2: Model-based concept phase

The use of formal techniques in the concept phase of hardware
development has been proposed in [5]. The approach uses ACL2
logic [6] for the specification of the communication structure of
a system on chip. Formal proofs of desirable properties, e.g.,
messages reach their destination, show the correctness of the
specifications.

The application of formal methods early in the development
process was already described in [7]. It describes the application
of tools such as PVS [8] to requirements modelling for spacecraft
fault protection systems. Although the specification language of
PVS appears to be easy understandable by engineers, the interactive
proof of properties is far from trivial. Hence, the conclusion of [7]
proposes a rapid prototyping approach, where prototypes are tested
against high level objectives.

The difficulty to use formal methods early in the develop-
ment process, when there are many uncertainties and information
changes rapidly is also observed in [9]. They investigated the use
of formal simulations based on rewriting logic, namely Maude
executable specifications [10]. The approach has been applied to
the design of a new security protocol.

The paper is organised as follows. More details about POOSL
and tool support can be found in Section 2. Section 3 describes the
application at Philips HealthTech where the proposed method has
been used. The models made for this application are presented in
Section 4. Section 5 contains our concluding remarks.

2. POOSL
The long-term goal of the POOSL tooling is to shorten the

development time of complex high-tech systems by providing a
light-weight modelling and simulation approach. It is targeted at
the early phases of system development, where requirements might
not yet be very clear and many decisions have to be taken about
the structure of the system, the responsibilities and behaviour of
the components, and their interaction.

The approach fills a gap between expensive commercial mod-
elling tools (like MATLAB [11] and Rational Rhapsody [12]) that
require detailed modelling, often close to the level of code, and
drawing tools (such as Visio and UML drawing tools) that do
not allow simulation. More related to the POOSL approach is the
OMG specification called the Semantics of a Foundational Subset
for Executable UML Models (fUML) [13] with, e.g., the Cameo
Simulation Toolkit [14].

In Section 2.1 we introduce the POOSL modelling language and
describe the available tool support in Section 2.2.

2.1 POOSL modelling language
POOSL is a modelling language for systems that include both

software and digital hardware. It is not intended for continuous
aspects, e.g., modelling physical processes by differential equations
is not possible. POOSL is an object-oriented modelling language
with the following aspects:

• Concurrent parallel processes A system consists of a number
of parallel processes. A process is an instance of a process
class which describes the behaviour of the process by means
of an imperative language. A process has a number of ports
for message-based communication with its environment.

• Hierarchical structure A number of processes can be grouped
into a cluster. A cluster is an instance of a cluster class which
has a number of external ports and specifies how the ports of
its processes are connected.

• System definition A system is defined by a number of in-
stances of processes and clusters and the connections between
the ports of its instances.

• Synchronization Processes communicate by synchronous mes-
sage passing along ports, similar to CSP [15] and CCS [16].
That is, both sender and receiver of a message have to wait
until a corresponding communication statement is ready to
execute. A process may contain parallel statements which
communicate by shared memory.

• Timing Progress of time can be represented by statements of
the form delay(d). It postpones the execution of the process
by d time units. All other statements do not take time. Delay
statements are only executed if no other statement can be
executed.

• Object-oriented data structures Processes may use data ob-
jects that are instances of data classes. Data objects are
passive sequential entities which can be created dynamically.
A number of structures are predefined, such as set, queue,
stack, array, matrix, etc.

• Stochastic behaviour The language supports stochastic dis-
tribution functions; a large number of standard distribution
functions are predefined, such as DiscreteUniform, Exponen-
tial, Normal, and Weibull.

The formal semantics of POOSL has been defined in [17] by means
of a probabilistic structural operational semantics for the process
layer and a probabilistic denotational semantics for the data layer.

2.2 POOSL tooling
As explained in [17], the operational semantics of POOSL

has been implemented in a high-speed simulation engine called
Rotalumis. It supports the Software/Hardware Engineering (SHE)
methodology [18]. The tool SHESim [19] is intended for editing
POOSL models and validating them by interactive simulation.
Recently, a modern Eclipse IDE has been developed on top of
an improved Rotalumis simulation engine. The combination of the
last two tools have been used for the application described in this
paper.

The Eclipse IDE is free available [20] and supports advanced
textual editing with early validation and extensive model debugging

4 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

possibilities. It is easy to use for industrial users and scalable to
large systems; it is possible to define and simulate systems with
hundreds of components. The tool contains on-line explanation and
documentation.

Model validation is convenient to detect modelling errors early,
before they appear during simulation. It includes checks on un-
declared variables and ports, types, unconnected ports, and mis-
matches between send and receive statements. The debugging view
shown below allows step-wise execution of models, inspection of
variables, setting of breakpoints, and a running sequence diagram
during simulation.

3. Application at Philips
The proposed approach has been applied at Philips HealthTech,

in the context of the innovation of interventional X-ray systems.
These systems are intended for minimally invasive treatment of
mainly cardiac and vascular diseases. The system provides ad-
vanced X-ray images to guide the physician through the arteries of
the patient to the point of interest and to execute a certain medical
procedure, such as placing a stent. For a new product release, we
have created a new concept for starting up and shutting down the
system. This section briefly describes the informal concepts of the
new start-up/shut-down (SU/SD) behaviour.

An interventional X-ray system contains a number of IT devices
such as computers and touch screen modules. All IT devices can
communicate with each other via an internal Ethernet control
network. The IT devices are configured in such a way that they
immediately start-up once they are powered. There is a central
SU/SD controller which coordinates SU/SD scenarios. A user of
the system can initiate a SU/SD scenario by pressing a button on
the User Interface (UI). The SU/SD controller will then instruct
the power distribution component to switch power taps on or off
and send notification messages to the various IT devices over the
internal Ethernet control network. Another scenario can be initiated
by the Uninterruptable Power Supply (UPS), for instance, when
mains power source fails or when mains power recovers.

The system is partitioned into two segments: A and B (for
reasons of confidentiality, some aspects have been renamed). This
partitioning is mainly used in the case of a power failure. When all
segments are powered and the mains power is lost, the UPS takes
over. Once this happens, the A segment is shut down in a controlled
way, leaving the B segment powered by the battery of the UPS.
If the battery energy level of the UPS becomes critical, also the
B segment is shut down in a controlled way. Usually, the diesel
generator of the hospital will provide power before this happens.
An IT device is part of either the A segment or the B segment.

The new SU/SD concept uses the Intelligent Platform Manage-
ment Interface (IPMI) [21], a standard interface to manage and

monitor IT devices in a network. The IT devices in our system are
either IPMI enabled or IPMI disabled.

• IPMI disabled IT devices are started and stopped directly by
switching the power tap on or off.

• IPMI enabled IT devices are on a power tap that is con-
tinuously powered. To start-up these IT devices, the SU/SD
controller sends a command via IPMI to them.

Combined with the two types of segments, this leads to four types
of IT devices, as depicted in Figure 3.

This figure also shows that there are several communication
mechanisms between the components

• Power lines for turning the power on and off.
• Control lines to connect the controller to the UI and the UPS.
• The internal Ethernet network, which is used for different

purposes:

– By the IT devices, to request the SU/SD state of the
SU/SD controller and to receive SU/SD notification
messages from this controller.

– By the SU/SD controller, to ping the Operating System
(OS) of an IPMI disabled IT device to observe its shut
down.

– By the SU/SD controller, to turn on an IPMI enabled IT
device and to observe the shut down of the device.

A mains disconnector switch (MDS) can be used to power the
complete system. An example of a SU/SD scenario is the shut-down
scenario. When all segments are powered and the SU/SD controller
detects that the AllSegmentOff button is pressed by the user, it
will send an AllSegmentOff-pressed notification to all registered IT
devices. Next all IT devices go through the following shut-down
phases:

• The applications and services running on the IT device are
stopped.

• The IPMI disabled IT devices will register themselves and
ask the SU/SD controller to observe their shut-down. This is
needed because the controller does not know which IPMI
disabled devices are connected to a power tap. The IPMI
enabled devices are known to the controller by configuration.

• Once the applications and services are stopped, the OS will
be shut down.

The scenario ends when the SU/SD controller has detected that all
IT devices are shut down. IPMI disabled IT devices are pinged to
observe that they are shut down and IPMI enabled IT devices are
requested for their state via IPMI to detect that they are shut down.
Next the SU/SD controller will instruct the power distribution
component to turn off the switchable power taps with which the
IPMI disabled IT devices are powered. The IT tap that powers the
IPMI enabled IT devices remains powered while these devices are
in the standby state.

In the past, an abstract model of the current start-up and shut-
down concept for a simpler version of the system has been made
for three model checkers: mCRL2 [22], FDR2 [23] and CADP [24].
For reasons of comparison, exactly the same model was made
for all three tools, leading to 78,088,550 states and 122,354,296
transitions. Model checking such a model easily takes hours. The
new concept described here is far more complex because of the
many asynchronous IT devices that all exhibit different behaviour.
For example, the IT devices can sometimes fail to start-up or shut
down. Also the timing and order in which they start-up and shut
down might be different. Hence, the new concept is too complex
to model check. Consequently, we decided to model the system
in POOSL and used simulation to increase the confidence in the
concepts.

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 5

Fig. 3: System overview

4. Modeling the SU/SD Concept in
POOSL

This section describes the incremental approach to model the
SU/SD concepts in POOSL. The scope of the model and the simu-
lation environment is described in Section 4.1. Section 4.2 contains
the modelling steps. A few details of the POOSL models can be
found in Section 4.3. Our approach to test models automatically is
presented in Section 4.4.

4.1 Modelling Scope and Simulator
The aim was to model the Control & Devices part of Figure 3 in

POOSL. Besides the SU/SD Controller and the Power Distribution,
the model should contain all four types of IT devices, i.e., all
combinations of segments (A and B) and IPMI support. Moreover,
to capture as much as possible of the timing and ordering behaviour,
we decided to include two instances of each type.

To be able to discuss the main concepts to stakeholders, we
connect the POOSL model to a simulation of the environment of
the Control & Devices part. We created a Simulator in Java with
the use of WindowBuilder in Eclipse to allow the manual execution
of scenarios. It allows sending commands from the User Interface
and power components to the model and displaying information
received from the model. Additionally, one can observe the status
of IT devices and even influence the behaviour of these devices,
e.g., to validate scenarios in which one or more IT devices do not
start-up or shut down properly. The next figure shows a screenshot
of the SU/SD simulator.

There are three main columns:

• The left column contains three parts:

– On the top, the state and the UI buttons to control the
SU/SD controller are displayed.

– In the middle, the tap state of the segments is displayed.
– On the bottom, the UPS triggers are displayed.

• The middle part contains a column for the B segment and one
for the A segment; each contains a row for the IPMI disabled
IT devices and one for the IPMI enabled IT devices. For each
IT device the state is displayed. The start-up and shut-down
behaviour of an IT device can be simulated automatically or
it can be set to manual to simulate error scenarios, where the
system might fall into a Timeout (see the Internal Event in
the column of the SU/SD controller).

• In the right column, the status updates of the model are
displayed.

The Java simulation is connected to POOSL by means of a
socket. The structure of the POOSL system model is depicted in
the next figure.

The system part to be modelled (the Control & Devices part) is
represented by cluster ControlDevicesCluster. It has 10 external
ports, one to communicate with the SU/SD controller (simc), one
for power commands (simqp) and 8 for the IT devices: sim1,
sim2, sim3, and sim4 for IPMI disabled devices; sim11, sim12,
sim13, sim14 for IPMI enabled devices. These ports are connected
to corresponding ports of the SimulationEnvironmentCluster. This
cluster contains an instance of the standard Socket class provided
by the POOSL library. Class UIinterface is responsible for the
translation between strings of the socket interface and the SU/SD
system interface.

4.2 Modelling steps
After the simulator was build, the ControlDevicesCluster has

gradually been defined in POOSL. The proposed framework defines

6 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

Power
Distribution

ETH-Ctrl

ETH - OS

ETH-IPMI

Interface Interface InterfaceInterface InterfaceInterface Interface

Taps

Interface

SU/SD
Controller

IT device 4
IPMI disabled

A Segment

IT device 3
IPMI disabled

A Segment

IT device 2
IPMI disabled

B Segment

IT device 1
IPMI disabled

B Segment

IT device 11
IPMI enabled

B Segment

Outlet

IT device 12
IPMI enabled

B Segment

IT device 13
IPMI enabled

A Segment

IT device 14
IPMI enabled

A Segment

1 2 3 4 11 12 13 14

C P

Fig. 4: Structure of the POOSL model of the ControlDevicesCluster

an incremental approach to build the model of the concept. We have
used the simulator to validate the intermediate models and align the
behaviour with internal stakeholders.

We started with a model of an IPMI disabled IT device and a
model of the SU/SD controller for shutting down these IT devices
of the A segment. In this model there were two instantiations of
IPMI disabled IT devices. Note that POOSL supports a partial
model where not all ports are used.

This model has been extended gradually to a model where all
8 instances of IT devices are present. Next, the SU/SD controller
was extended with error behaviour to verify, for instance, that the
system is always in a defined state after shut-down, which is an
important requirement.

Finally, we added a model of the interface between the IT
device and the SU/SD controller, because these two components
will be developed concurrently. Hence, it is important to specify
this contract formally and to verify it. Every IT device has an
instance of the same interface model, which is implemented in
such a way that the system will deadlock if the formal interface
is violated. Hence, interface compliance is verified continuously
during simulation.

The structure of the resulting model of this incremental approach
is depicted in Figure 4.

4.3 Modelling Devices and Control

This section provides some details of the POOSL models. The
first part of the model of an IT device with IPMI is shown below.
It imports a library which, e.g., defines queues. Next the process
class is defined, including two parameters for the IP address and the
segment. All IT devices have an IP address to be able to connect
them to the same network. Subsequently, the ports, the messages
(only one is shown here), the variables and the initial method are
defined. Note that the variables define two queues.

In the initial method init()(), the queues are initialized, which are
FIFO by default. Next the method defines three parallel activities.
The first activity defines a state machine, where the states are
represented by methods. It starts the state machine by calling the
initial state ItDevNotPowered()().

Below we show a typical definition of a state, in this case state
ItDevShuttingDown()().

The state is defined as a method with local variable m. It selects
the next state based on the contents of the ipmiQueue or the receipt
(indicated by "?") of a particular message on one of its ports. Since
switching a power tap on or off is instantaneous and cannot be
refused by a process, all states allow the receipt of messages On
and Off via port outlet.

The other two parallel activities of the init()() method are used

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 7

to model the asynchronous nature of the Ethernet communication.
Method MsgReceiveBuffer receives messages on port con and stores
them in queue msgQueue.

Note that POOSL allows a condition on the receive statement to
express that only messages with the corresponding IP address are
received. Similarly, method IpmiReceiveBuffer stores messages in
ipmiQueue.

4.4 Extensive Model Testing
The simulator has been used to align the behaviour with inter-

nal stakeholders and to get confidence in the correctness of the
behaviour. To increase the confidence without the need of many
manual mouse clicks, we created a separate test environment in
POOSL. Therefore, a stub is connected to every IT device. A stub
is a process which randomizes the start-up and shut-down timing of
an IT device. In addition, a stub randomly decides if a device fails
to start-up or shut-down. Also in these random cases the system has
to respond well and it needs to be forced into defined states. The
next POOSL fragment depicts how the random timing and random
behaviour is implemented in the Stub.

The stubs are configured such that they fail to start-up or shut-
down in 10% of the cases.

In reality the IT devices are quite reliable, but to reduce testing
time it is more convenient to make the IT devices less reliable.

Moreover, we are interested in the error handling behaviour of the
system and not in the statistical behaviour.

For the execution of scenarios initiated by a user and the UPS, a
Tester process has been created to automatically drive the system.
Every stub has a feedback channel to the Tester to report the status
of an IT device. The next figure depicts how the Tester and Stubs
are connected to the system.

The definition of the Tester is such that it leads to a deadlock
when the SU/SD controller or the IT devices do not behave as
intended. Already during the first simulation run we experienced
such a deadlock. The cause of the problem was found using the
debug possibilities of the new POOSL IDE. We simulated the
model in debug mode and inspected the sequence diagram when
the deadlock occurred. In this sequence diagram we saw a problem
with a message about the IPMI status of an IT device. Next we
inspected the variables window shown below.

It revealed that the ipmiQueue was empty, which was not
expected at this point in the execution. When checking the code
that handles the IPMI queue, we found that the queue was emptied
after the IPMI status request has been send. The race condition was
fixed by changing the order; first empty the queue and then send
the IPMI status request. After fixing the race condition, the model
has been executed 100 000 random start-up and shut-down cycles
without experiencing a single deadlock.

5. Concluding Remarks
In the concept phase of product definition, we have used a formal

system description in POOSL in combination with a graphical user
interface to align stakeholders and get confidence in the behaviour
of the system. We have added a model with a formal interface
description between two important components of the system that
will be developed concurrently. To increase the confidence in the
concept, we created an automated test driver for the system with
stubs that exhibit random behaviour and random timing.

While modelling, we found several issues that were not foreseen
in the draft concept. We had to address issues that would otherwise
have been postponed to the implementation phase and which might

8 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

easily lead to integration problems. We observed that the definition
of a formal executable model of the SU/SD system required a
number of design choices. We give two examples of such choices.

• If all segments are on and the UPS indicates that the mains
power input fails, then the system will shut down the A
segment. If, however, during this transition one or more of the
IPMI enabled IT devices fail to shut down, then the SU/SD
controller has no way to force these IT devices into the right
state. This could be solved by an additional tap, but given
the costs of an extra tap and the small chance that this will
happen (both mains power and shut down of an IT device
should fail), we have decided to leave it this way. If the user
experiences unexpected behaviour of the system, the user can
always recover the system by turning it off and on again.

• An early version of the SU/SD controller did not track if
an IPMI enabled IT device did in fact start up. However, if
something is wrong with the start-up or shut-down of an IPMI
enabled IT device, we want to toggle the power during shut-
down in the hope that a reset will solve the issue. Once we
found the described issue with the simulator, we extended the
model of the SU/SD controller with a storage of the start-up
status of an IPMI enabled IT device.

In addition, the model triggered many discussions about the
combined behaviour of the hardware and software involved in
start-up and shut-down. This resulted in a clear description of
responsibilities in the final concept. Also the exceptional system
behaviour when errors occur has been elaborated much more
compared to the traditional approach. Note that the modelling
approach required a relatively small investment. The main POOSL
model and the Java simulator were made in 40 hours; the tester
and the stubs required another 10 hours.

The application of exhaustive model-checking techniques to the
full model is not feasible, give the large number of concurrent
processes and the use of queues for asynchronous communication.
Scalability problems are, for instance, reported in [25], where a
transformation of POOSL models to Uppaal [26], a model-checker
for timed systems, is applied to an industrial application. However,
it might be possible to apply these techniques to verify certain
aspects on an abstraction of the model.

In the future, we want to use the test driver for the model
to validate the behaviour of the SU/SD controller by means of
model-based testing. Since the interface between the test driver
and the model is equal to the interface between test driver and the
real implementation, we might also use our test approach for the
realized system when it become available. The idea is to use the test
driver and a thin manually written adapter that makes an Ethernet
connection between the test driver and the real implementation.

References
[1] S. R. Koo, H. S. Son, and P. H. Seong, “Nusee: Nuclear software

engineering environment,” in Reliability and Risk Issues in Large
Scale Safety-critical Digital Control Systems, ser. Springer Series in
Reliability Engineering. Springer London, 2009, pp. 121–135.

[2] B. Boehm and V. Basili, “Software defect reduction top 10 list,” IEEE
Computer, vol. 34, no. 1, pp. 135–137, 2001.

[3] J. Westland, “The cost of errors in software development: evidence
from industry,” The Journal of Systems and Software, vol. 62, pp. 1–9,
2002.

[4] J. Groote, A. Osaiweran, M. Schuts, and J. Wesselius, “Investigating
the effects of designing industrial control software using push and
poll strategies,” Eindhoven University of Technology, the Netherlands,
Computer Science Report 11/16, 2011.

[5] J. Schmaltz and D. Borrione, “A functional approach to the formal
specification of networks on chip,” in Formal Methods in Computer-
Aided Design, ser. LNCS, no. 3312. Springer–Verlag, 2004, pp.
52–66.

[6] M. Kaufmann, J. S. Moore, and P. Manolios, Computer-Aided Rea-
soning: An Approach. Kluwer Academic Publishers, 2000.

[7] S. M. Easterbrook, R. R. Lutz, R. Covington, J. Kelly, Y. Ampo,
and D. Hamilton, “Experiences using lightweight formal methods for
requirements modeling,” IEEE Trans. Software Eng., vol. 24, no. 1,
pp. 4–14, 1998.

[8] S. Owre, J. Rushby, N. Shankar, and F. von Henke, “Formal verifi-
cation for fault-tolerant architectures: prolegomena to the design of
pvs,” Software Engineering, IEEE Transactions on, vol. 21, no. 2, pp.
107–125, Feb 1995.

[9] A. Goodloe, C. A. Gunter, and M.-O. Stehr, “Formal prototyping in
early stages of protocol design,” in Proc. of the 2005 Workshop on
Issues in the Theory of Security, ser. WITS ’05. ACM, 2005, pp.
67–80.

[10] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet, J. Meseguer,
and J. Quesada, “Maude: specification and programming in rewriting
logic,” Theoretical Computer Science, vol. 285, no. 2, pp. 187 – 243,
2002.

[11] MathWorks, “Matlab and Simulink,” 2015. [Online]. Available:
www.mathworks.com

[12] IBM, “Rational Rhapsody,” 2015. [Online]. Available:
www.ibm.com/software/products/en/ratirhapfami

[13] OMG, “Semantics of a foundational subset for exe-
cutable UML models (fUML),” 2015. [Online]. Available:
http://www.omg.org/spec/FUML/

[14] MagicDraw, “Cameo simulation toolkit,” 2015. [Online]. Avail-
able: http://www.nomagic.com/products/magicdraw-addons/cameo-
simulation-toolkit.html

[15] S. D. Brookes, C. A. R. Hoare, and A. W. Roscoe, “A theory of
communicating sequential processes,” J. ACM, vol. 31, pp. 560–599,
1984.

[16] R. Milner, A Calculus of Communicating Systems. Springer-Verlag,
1980.

[17] L. van Bokhoven, “Constructive tool design for formal languages;
from semantics to executing models,” Eindhoven University of Tech-
nology, the Netherlands,” PhD thesis, 2004.

[18] SHE, “System-level design with the SHE methodology,” 2015.
[Online]. Available: www.es.ele.tue.nl/she/

[19] M. Geilen, “Formal techniques for verification of complex real-time
systems,” Eindhoven University of Technology, the Netherlands,” PhD
thesis, 2002.

[20] POOSL, “Parallel Object-Oriented Specification Language,” 2015.
[Online]. Available: poosl.esi.nl

[21] Intel, “Intelligent Platform Management Inter-
face (IPMI) - specifications,” 2015. [Online].
Available: www.intel.com/content/www/us/en/servers/ipmi/ipmi-
specifications.html

[22] J. Groote, J. Keiren, A. Mathijssen, B. Ploeger, F. Stappers,
C. Tankink, Y. Usenko, M. v. Weerdenburg, W. Wesselink,
T. Willemse, and J. v. d. Wulp, “The mCRL2 toolset,” in Proceedings
of the International Workshop on Advanced Software Development
Tools and Techniques (WASDeTT 2008), 2008.

[23] F. Systems, “Failures-Divergences Refinement (FDR),” 2015.
[Online]. Available: www.fsel.com

[24] H. Garavel, F. Lang, R. Mateescu, and W. Serwe, “CADP 2011: a
toolbox for the construction and analysis of distributed processes,”
International Journal on Software Tools for Technology Transfer,
vol. 15, no. 2, pp. 89–107, 2013.

[25] J. Xing, B. Theelen, R. Langerak, J. van de Pol, J. Tretmans, and
J. Voeten, “From POOSL to UPPAAL: Transformation and quanti-
tative analysis,” in 10th Int. Conf. on Application of Concurrency to
System Design (ACSD), 2010, pp. 47–56.

[26] G. Behrmann, A. David, and K. G. Larsen, “A tutorial on Uppaal,”
in Formal Methods for the Design of Real-Time Systems: 4th In-
ternational School on Formal Methods for the Design of Computer,
Communication, and Software Systems, SFM-RT 2004, ser. LNCS, no.
3185. Springer–Verlag, 2004, pp. 200–236.

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 9

On the Agile Development of Virtual Reality Systems

F. Mattioli1, D. Caetano1, A. Cardoso1, and E. Lamounier1
1Faculty of Electrical Engineering, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil

Abstract— Processes for Agile software development pre-
sent an iterative and incremental approach to computer
systems, which focus on users’ needs and embraces changes.
Virtual Reality projects are strongly tied to rapid evolution
of technology, and to the need for clients’ feedback, during
the whole project’s life-cycle. In this work, a comparative
evaluation of existing methodologies is presented and the
application of agile software development methodologies in
Virtual Reality projects is argued. Then, a proposal for
an agile software development process for Virtual Reality
systems is presented and its benefits are discussed.

Keywords: Agile Development, Virtual Reality, Software Engi-

neering

1. Introduction
Agile Software Development has, among its main fea-

tures, an iterative and incremental approach to Software

Engineering principles. This approach is suitable for Virtual

Reality projects and offers, by its evolving nature, many

benefits associated to risk management in software projects

[1].

The word “agile” was first used in Software Engineering

at 2001, by a consortium of software development methods

specialists, who have written, at that time, the “Agile Ma-

nifesto” [2]. This manifesto highlighted some principles,

shared by many different software development methods,

which were thereafter called “Agile Methods” or “Agile

Processes” [2], [3]:

• Individuals and interactions over processes and tools.

• Working software over comprehensive documentation.

• Customer collaboration over contract negotiation.

• Responding to change over following a plan.

Virtual Reality based systems require knowledge in diffe-

rent subjects, such as Computer Graphics, geometric mode-

ling, multimodal interaction among others [4]. Some charac-

teristics of these applications reveal the need for continuous

improvement in their development process. Some of these

characteristics can be highlighted:

• Rapid evolution of visualization and graphical proces-

sing technology [5].

• Customer’s indecision and change of opinion, a critical

concern when high-cost equipment is used [5].

• Need for implementation of prototypes, used to help

customers in the solution’s evaluation process.

Therefore, evolutionary development, adaptive planning

and response to requirements’ changes are major impro-

vements to be considered on agile development of Virtual

Reality systems.

2. Agile Software Development
Agile Software Development is an approach of software

production focused on adaptability, which can be understood

as the process’ capability of responding to changes in

markets, requirements, technology and development teams

[6].

Sections 2.1 and 2.2 present a brief description of two

agile methods: XP and Scrum.

2.1 Extreme Programming (XP)
Extreme Programming (XP) had its origins guided by

the needs of small software development teams, working

on projects with highly volatile requirements. XP is a light

development method, which fundamentals include [7]:

• Unit tests are written before the code being tested.

These tests are executed throughout the project life-

cycle.

• Integration and testing are performed continuously,

many times a day.

• The project begins with a simple architecture, that

constantly evolves in an effort to increase flexibility

and reduce unnecessary complexity.

• A minimal system is rapidly implemented and de-

ployed. This minimal system will evolve according to

project’s directions.

Amongst the main benefits of Extreme Programming, the

following are worth mentioning [7]:

• Do not force premature specialization of team mem-

bers. All team members play different roles inside the

development team, in a daily basis.

• Analysis and design are conducted throughout the

whole project life-cycle, favoring adaptability and rapid

response to project environment changes.

• Project infrastructure is built in an iterative way, fol-

lowing project’s evolution and meeting its real needs.

Figure 1 presents the main elements of the XP process’

life-cycle. User Stories are collected and used in require-

ments’ specification and also in test scenarios definition. An

Architectural Spike is conducted to elucidate the relevant

solution elements, resulting on a System Metaphor.

10 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

Fig. 1: XP life-cycle [8].

During Release Planning, architectural problems may

arise. Each time an architectural problem is detected, a Spike

is conducted to solve this problem. The resulting artifact is

the Release Plan.

Each iteration targets a subset of functionalities. If a

problem is detected during the iteration, Release Planning

is carried again, and an updated Release Plan is written.

At the end of the iteration, a release is made available and

Acceptance Tests are conducted, using the test scenarios

defined from the User Stories. If bugs are found during tests,

another iteration is lead to fix them. If no bugs were found,

the next iteration is started. When customer acceptance is

confirmed, a Small Release (release of a working version of

the software) is performed.

2.2 Scrum
Scrum is an empirical approach for managing software

projects, based on the following principles: adaptability, fle-

xibility, and productivity [9]. In Scrum, projects are divided

into sprints. A sprint is a development iteration, with the

typical duration of 30 days. Each sprint is associated to a

set of tasks, whose priority is rather defined together with

the clients. For each task, the remaining time to finish is

estimated [10]. Tasks can be relocated, according to project’s

constraints.

In a nutshell, the Scrum process is composed by a set of

rules, procedures and practices, favoring software develop-

ment [8]. Figure 2 presents the Scrum process’ life-cycle.

In the Scrum life-cycle, known requirements are grouped

and prioritized in a product backlog [11]. A subset of these

requirements, known as the “Sprint Backlog”, contains the

tasks assigned to a given sprint. From the “Sprint Backlog”,

tasks are elucidated in detail.

During the sprint - which is scaled for no more than

30 days - a daily review meeting is conducted. This daily

meeting should not last long (15 minutes is a general

suggestion), so that all project members can attend it [12].

In the daily meeting, team members are required to briefly

answer three questions [13]:

1) What have I done since the last Daily Scrum?

2) What will I do between now and the next Daily

Scrum?

3) What obstacles and roadblocks are in my way?

These answers have the objective of providing managers

and developers with general information about the sprint’s
progress. Also, efforts can be grouped to help solving

common problems, while experience can be shared in a daily

basis.

Finally, at the end of each sprint, the new functionalities

are demonstrated and tested, looking forward to stakehol-

ders’ approval.

2.3 XP and Scrum
Although complementary, XP and Scrum have different

application, in different aspects of software development.

While Scrum can be considered an agile project management

tool, XP is more focused on the development side [14].

Scrum strengths include project’s visibility in the market’s

context, continuous project management and improved col-

laboration between team members. XP motivation include a

simplified requirements management approach and enhanced

product quality. Both methodologies are based on iterative

and incremental development [15].

Put together, Scrum and XP are valuable approaches,

both on management and technical practices [14]. Therefore,

in this work, an hybrid process is proposed. This hybrid

process can benefit from Scrum management practices (such

as “Sprint Backlog” and daily reviews), together with XP

engineering practices (product quality, short iterations and

test-driven development). This process is presented in detail

on Section 4.

3. Virtual Reality Systems Development
The develpment of Virtual Reality Systems (VRS), as

well as the development of any software, requires processes

and development methods. In the particular case of VRS,

methods and processes should be adequate to a rapidly

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 11

Fig. 2: Scrum life-cycle [8].

changing technological environment and to the particular

aspects of user interaction.

Tori et al. present a development process that aggregates

prototyping with iterative and evolutionary software deve-

lopment [5]. This process is based on Software Engineering

models, adapted to the particularities of Virtual Reality

Systems. The proposed process is composed of 5 stages,

executed in each iteration: Requirement Analysis, Design,

Implementation, Evaluation and Deployment. These stages

are graphically represented in Figure 3.

Another development approach, also suitable for use

on Virtual Reality Systems development is presented by

Kim [16]. At first sight, this approach can be seen as an

extension of the classic spiral model, adapted to Virtual

Reality Systems characteristics, such as interaction models

and scene modeling. Figure 4 presents the main elements of

the proposed process.

Although both processes addressed in this section present

strong influences from the structured approach, some VRS

features are closely related to agile practices. Among them,

one can highlight:

• The evolutionary nature of Virtual Reality Systems.

• The need for models that represent, iteratively, form,

function and behavior of Virtual Reality Systems com-

ponents.

• The better acceptance of systems which are developed

with active participation of stakeholders, due to the

constant need for evaluation and feedback.

• The need for exhaustive tests, aiming at reducing in-

teraction problems between users and Virtual Reality

Systems.

Based on these observations, the application of agile

methods in Virtual Reality Systems development is discussed

in Section 4.

4. Agile Development of Virtual Reality
Systems

No software development process can guarantee, by itself,

any improvement in productivity and reliability [17]. Howe-

ver, some characteristics are common in successful processes

[18]:

• Iterative development: complex projects, with many

modules, are more likely to face integration issues. An

12 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

Fig. 3: VRS development process. Adapted from [5].

Fig. 4: VRS development process [16].

adequate iteration planning can reduce these integration

issues and favor development process management.

• Process’ continuous evaluation: even requirement-

oriented development processes cannot make software

projects totally immune to changes on development

teams and on user requirements. The evaluation (and

consequent adaptation) of the development process has

a major importance throughout the project’s life-cycle.

• Best practices: improvements associated to the use of

development best practices [19], [20] and also design

patterns [21] should be considered and discussed in

software projects.

When adapting an existing process to a given context,

the suggested approach is to customize the existing process,

iteratively testing and refining this customization, in accor-

dance with each project’s characteristics [22]. During this

customization, some principles might be observed [23]:

1) Larger teams require robust processes and methods.

2) Carried-over process complexity represent additional

costs.

3) Critical applications require highly-detailed methods.

4) Clients’ feedback and team communication reduce the

need for intermediate documentation.

5) As the number of legal issues involved in a project

increase, methods’ level of detail should also increase.

From the presented literature review, this work’s objective

was defined: to propose a process model for the agile

development of Virtual Reality systems. The proposed model

- detailed in Section 5 - consists of a hybrid model, gathering

elements from both XP and Scrum, adapted to the context

of Virtual Reality systems development.

5. Results
In this section, a development process for Virtual Reality

systems is proposed. The presented process is composed

by 8 main activities: User stories / storyboards definition,

architectural spike, interactivity requirements elucidation,

iteration planning, spike, development, integration tests and

client tests. Development is executed iteratively, and feed-

back received in past iterations is used to help planning the

next ones.

By reviewing the state of the art of VRS development

methods, some key features of these systems were defined:

• The evolutionary nature of VRS.

• Iterative building of high-fidelity models.

• The need for clients’ feedback.

• The need for interaction and usability tests.

• The need for system modularization.

A VRS development process should keep these features

in focus during the entire project life-cycle, in each of the

activities presented above. In Figure 5, a graphical repre-

sentation of the flow of activities in the proposed process is

displayed. In the following sections, each of these activities

is detailed.

5.1 User stories/storyboards
An user story is a brief description of a system functiona-

lity, from the user point of view. User stories are very helpful

on requirement analysis because they provide developers

with users’ real expectations about the system.

When developing high-complexity graphical systems -

such as VRS - text based user stories can be limited to

detail users’ needs. To overcome this, the proposed process

suggests the use of storyboards, used to complement user

stories. Storyboards are graphical sketches, elaborated by

clients (or with their supervision), whose objective is to help

developers on performing an accurate requirement analysis.

5.2 Interactivity requirements’ analysis
Interactivity is the central aspect of many Virtual Reality

systems, having a major role in these systems’ usability.

Thus, the detailed analysis and definition of interactivity

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 13

Fig. 5: Agile development process for VRS.

requirements has a prominent position ind the development

process. In this activity, test applications - implementing the

desired interaction methods - can be used. These applications

should help developers and clients in the evaluation and

viability analysis of the required interaction methods.

5.3 Architectural spike
In the architectural spike, a viability analysis of the new

requirements is conducted. The requirements are extracted

from user stories, storyboards and interactivity requirements’

analysis. This activity has the goal of reducing risks related

to unknown technology (for example, third-party libraries).

The architectural spike results in the metaphor definition.

This metaphor will be used by the development team to

represent the subset of requirements in focus at the current

iteration.

In the architectural spike, the resources available for

requirements’ implementation are investigated. This activity

is very important in VRS development, since it suggests and

encourages experimentation. Together with the “Interactivity

requirements analysis”, this activity is strongly related to

technological advances in Virtual Reality.

5.4 Iteration planning
Iteration planning takes place at the beginning of each

iteration. The resulting artifact - the iteration plan - addresses

a subset of requirements, elucidated from the user stories,

storyboards and interactivity requirements analysis. During

iteration planning, each time a problem is detected, a spike

is conducted, in order to investigate and propose possible

solutions.

It’s very important to highlight the adaptive behavior of

iteration planning. Ideally, iteration planning should be flexi-

ble enough to embrace changes on application requirements

and solutions to the problems found inside the iteration.

5.5 Spike
A spike is a small development cycle, whose main ob-

jective is to provide developers with possible solutions to

a given problem. Inside the spike, test applications (or

prototypes) can be built, to help developers on testing and

discussing proposed solutions. If possible, clients’ feedback

can be used to guide the development team on the right

direction, according to users’ needs.

5.6 Development
Once the iteration plan is defined, development takes

place. Development is composed by 4 main tasks, adapted

from the consolidated Rational Unified Process [24]: analy-

sis, design, codification and tests.

Analysis and design share the common goal of structuring

the implementation of the iteration plan’s requirements. A

set of tests - proposed by the clients - is used to guide the

development team on the implementation of the most im-

portant requirements, from the clients’ point of view. Then,

developers are requested to propose their own tests. With

clients’ and developers’ tests defined, the codification task

begins. Development activity is finished when the system

successfully executes the proposed tests.

The evolutionary nature of the development activity

should be highlighted. In the beginning, the system is com-

posed by simplified models, that represent the main elements

of the VRS. As the system evolves, these models are refined,

14 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

resulting in components whose shape and behavior are each

time closer to the represented elements.

5.7 Integration tests
In each iteration, integration tests are conducted right after

the development activity. The modifications performed in the

current iteration will be integrated to the main system only

after successfully passing these tests. If any problem is found

during integration tests, development activity is restarted.

Developers will then propose and test possible corrections

to the problems found.

When the new version passes the integration tests, next

iteration planning takes place. New requirements will be

selected, according to the clients’ defined priority. When

a significant number of modifications is integrated to the

main stream, a working version, called “release candidate”,

is produced and submitted to tests by the clients.

5.8 Client’s tests
In this activity, clients are requested to perform functional,

usability and interaction tests on the release candidate. If

any problem is detected, or if any improvement is perceived

by the client, user stories and interactivity requirements

can be redefined. When clients’ approval is obtained, a

small version - which successfully implements a subset of

proposed requirements - is delivered.

Specifically for the case of VRS development, interactivity

tests play a major role in the overall development process.

Therefore, interaction tests should be exhaustively executed

by developers and clients, in order to avoid a significant

drop in system’s usability and efficiency, caused by poor

interactivity.

6. Conclusions and future work
Agile software development processes and practices can

be adapted to the development of Virtual Reality systems. In

particular, the iterative nature, the embrace of requirement’s

changes and the importance given to tests are some of the

characteristics that favors their application in VRS develop-

ment, since these same characteristics are shared by many

VRS projects.

Architectural spikes are considered a major improvement

in the VRS development process, since they allow developers

to conduct experiments in a constantly changing technology

environment. The correct elucidation and definition of inte-

ractivity requirements has a strong effect on system’s resul-

ting usability and efficacy. Finally, given the subjectivity of

some VRS concepts - such as systems’ interactivity quality -

stakeholders’ participation in the development process leads

to the production of improved quality systems, and results

in well satisfied clients.

A quantitative evaluation of the presented process’ appli-

cation in a case study is an interesting proposal for future

works. Also, the extension of the proposed process to other

domains - such as Augmented Reality or mobile application

development - is a valuable subject for future research.

Acknowledgments
This research is supported by FAPEMIG (Minas Gerais

State Agency) to which the authors are deeply grateful, as

well as to CAPES/Brazilian Ministry of Education & Culture

and to the National Counsel of Technological and Scientific

Development (CNPq).

References
[1] G. Booch, R. A. Maksimchuk, M. W. Engle, B. J. Young, C. Jim,

and H. K. A., Object-oriented analysis and design with applications,
3rd ed. Westford: John Wiley & Sons, 2007.

[2] K. Beck, M. Beedle, A. Bennekum, A. Cockburn, W. Cunningham,
M. Fowler, J. Grenning, J. Highsmith, A. Hunt, R. Jeffries, J. Kern,
B. Marick, R. C. Martin, S. J. Mellor, K. Schwaber, J. Sutherland, and
D. Thomas, “Manifesto for agile software development,” Available:
http://www.agilemanifesto.org, 2001, accessed March 25, 2009.

[3] E. G. d. Costa-Filho, R. Penteado, J. C. A. Silva, and R. T. V. Braga,
“Padrões e métodos ágeis: agilidade no processo de desenvolvimento
de software [Agile patterns and methods: agility on software develop-
ment process],” 5th Latin American Conference on Pattern Language
of Programming, vol. 5, pp. 156–169, 2005.

[4] G. J. Kim, K. C. Kang, H. Kim, and L. Jiyoung, “Software engineering
of virtual worlds,” Proceedings of the ACM Symposium on Virtual
Reality Software and Technology, pp. 131–138, 1998.

[5] R. Tori, C. Kirner, and R. Siscoutto, Eds., Fundamentos e tecnologia
de realidade virtual e aumentada [Virtual and augmented reality
fundamentals and technology]. Porto Alegre: SBC, 2006.

[6] A. Cockburn, Agile software development. Boston: Addison-Wesley,
2002.

[7] K. Beck, Extreme programming explained: embrace change, 2nd ed.
Addison-Wesley Professional, 2004.

[8] J. Hunt, Agile software construction. London: Springer, 2006.
[9] M. A. Khan, A. Parveen, and M. Sadiq, “A method for the selection

of software development life cycle models using analytic hierarchy
process,” in Issues and Challenges in Intelligent Computing Techni-
ques (ICICT), 2014 International Conference on. IEEE, 2014, pp.
534–540.

[10] V. Subramaniam and A. Hunt, Practices of an agile developer.
Dallas: Pragmatic Bookshelf, 2006.

[11] G. Kumar and P. K. Bhatia, “Comparative analysis of software
engineering models from traditional to modern methodologies,” in
Advanced Computing & Communication Technologies (ACCT), 2014
Fourth International Conference on. IEEE, 2014, pp. 189–196.

[12] M. Cohn, Succeeding with Agile - Software development using Scrum.
Boston: Pearson, 2010.

[13] A. Stellman and J. Greene, Learning Agile: Understanding Scrum,
XP, Lean, and Kanban. "O’Reilly Media, Inc.", 2014.

[14] M. Cohn, “Scrum & xp: Better together,” Available:
https://www.scrumalliance.org/community/spotlight/mike-cohn/april-
2014/scrum-xp-better-together, 2014, accessed March 10, 2015.

[15] K. Waters, “Extreme programming versus scrum,” Available:
http://www.allaboutagile.com/extreme-programming-versus-scrum,
2008, accessed March 10, 2015.

[16] G. J. Kim, Designing virtual reality systems: the structured approach.
London: Springer, 2005.

[17] F. Brooks, “No silver bullet: essence and accidents of software
engineering,” IEEE computer, vol. 20, no. 4, pp. 10–19, 1987.

[18] D. Pilone and R. Miles, Head first software development. Sebastopol:
O’Reilly Media, 2008.

[19] B. W. Kernighan and R. Pike, The practice of programming. Reading:
Addison-Wesley, 1999.

[20] A. Oram and G. Wilson, Eds., Beautiful code. Sebastopol: O’Reilly
Media, 2007.

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 15

[21] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design patterns:
elements of reusable object-oriented software. Pearson Education,
1994.

[22] J. Shore and S. Warden, The art of agile development. "O’Reilly
Media, Inc.", 2007.

[23] A. Cockburn, Agile software development: the cooperative game
(agile software development series). Boston: Addison-Wesley Pro-
fessional, 2006.

[24] P. Kruchten, The rational unified process: an introduction. Addison-
Wesley Professional, 2004.

16 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

The impacts of absorptive capacity on improving
software development: A preliminary study

Chung-Yang Chen1, and Jung-Chieh Lee1

1 Department of Information Management, National Central University, Jhongli City, Taiwan

Abstract - Because information systems implementations
depend on software development exercise, software process
improvement (SPI) plays a critical role in the development of
information systems. SPI is considered as an organizational
learning process; it often needs external know-how and know-
what that provide useful information and inspiration in
implementation ad-hoc software processes. However, no
research exists that focuses on a firm’s ability to increase
effective external SPI knowledge acquisition and utilization.
Based on the dynamic capability theory, this paper attempts to
explore how a firm’s dynamic capability significantly affects
SPI implementation success.

The entire research consists of the exploration of related
literature, the definition of and development of hypotheses and
the research model, and the empirical investigation with new
knowledge inquiry. This paper serves as a preliminary study
of the research that focuses on the survey of relevant literature
to support the research motivation and the model. Also, in this
paper, a theoretical model draft and the hypotheses are
developed to guide the following research of exploring and
investigating the relationships between absorptive capacity
and SPI success.

Keywords: Software process improvement (SPI); Capability
maturity model integration (CMMI); Dynamic capability;
Potential absorptive capacity (PAC); Realized absorptive
capacity (RAC)

1 Introduction
 Software process improvement (SPI) is particularly
important for firms or business units as it enhances and
sustains their competitive advantage in the business market.
SPI is a complex and continually improving software
processes program. Specifically, SPI is knowledge-intensive
for firms, and the implementation of SPI often requires
innovation and critical thinking to supplement original
knowledge of software development with external knowledge.
Therefore, SPI implementation often relies on SPI knowledge
[4], skills, expertise, experiences, methodologies, and
technical support from external sources (e.g. external
mediating institutions such as SPI consulting firms and
vendors, external knowledge bodies such as Capability
Maturity Model Integration (CMMI), or the International

Standards Organization (ISO)) to deal with challenges that
arise during SPI implementation [6].

 In both practice and theory, SPI is commonly recognized
as an organizational learning process [4] because SPI
implementation requires significant SPI knowledge and
experiences from external sources, and employees must
internalize these lessons [11]. During the learning process, the
gap between the acquisition and the use of the acquired SPI
knowledge within a firm is an important issue [18]. The gap
exists when a company receives external knowledge without
the capability of using it. However, the benefit may still exist
in projects, since project members who have been educated
with the new knowledge are able to tailor the organization’s
standard processes even though the new knowledge is not
built in the standard processes. To achieve the expected SPI
goals and receive the benefits due to the SPI implementation,
the acquisition and utilization, be it at the project level or the
organizational level, of SPI knowledge is required during SPI
implementation. However, few SPI studies have focused on a
firm’s ability to acquire and utilize SPI knowledge to
successfully implement SPI.

 In literature, the concept of dynamic capability refers to
a firm’s latent abilities to renew and adapt its core
competency over time [23, 26]. Further, Zahra and George
[29] extend dynamic capability to include absorptive capacity
(AC), which represents a firm’s dynamic ability to acquire,
assimilate, and apply knowledge from external sources.
Moreover, scholars have noted that AC can be considered as a
specific organizational learning process for the learning,
implementing, and disseminating of external knowledge
internally to strengthen, complement, or refocus on the
knowledge mechanisms [9, 17, 22, 26]. In other words, AC
assists firms in achieving positive outcomes, such as intra-
organizational knowledge transfers [3], inter-organizational
learning [28], and information technology (IT) and
information systems (IS) implementation [2, 14, 19, 21].

 To address a firm’s ability to acquire and utilize SPI
knowledge, this study focuses on the two categories of AC
developed by Zahra and George [29], that is, potential
absorptive capacity (PAC) and realized absorptive capacity
(RAC), and investigates how these may influence SPI success.
In this study, PAC refers to a firm’s ability to identify,
embrace, and assimilate external knowledge. On the other

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 17

hand, RAC represents a firm’s ability to leverage newly
absorbed knowledge and incorporate transformed knowledge
into the development of innovation processes and operations
[7]. Accordingly, insight into a firm’s PAC and RAC is
required for understanding how SPI knowledge acquisition
and utilization affects SPI success.

 Therefore, we are to explore how AC influences the
success of SPI. Specifically, we address three research
questions: (1) how PAC influences the success of SPI
implementation within firms, (2) how RAC influences SPI
success within firms, and (3) how PAC and RAC interrelate
for SPI success. To answer these questions, this study
proposes a research model that links PAC, RAC, and SPI
success.

2 SPI Success
 SPI helps firms integrate traditional organizational
functions, and sets process improvement goals and priorities
that update existing process systems to improve
organizational performance [20]. SPI has played a critical role
in helping firms achieve various business benefits. For
example, SPI improves product quality, reduces the time to
market, leads to better productivity, and reduces costs. To
realize these benefits, the effective implementation of SPI
requires effort and time, careful scheduling, resources, and
suitable and useful knowledge [11, 13]. Decisions about SPI
implementation are influenced by organizational factors, and
several studies have analysed the critical success factors for
SPI [13, 15].

 In literature, Dyba [4] validated a theoretical model of
SPI success factors and proposed an operational definition of
the variables of SPI success. The study suggested that SPI
success is defined by two indicators: improved organizational
performance and the perceived level of SPI success, which
includes cost reduction, decreased cycle time, and increased
customer satisfaction. Dyba’s theoretical model of SPI
success factors has been applied in various studies. For
example, Winter and Ronkko [28] investigated product
usability metrics by adopting Dyba’s SPI success factors.
Egorova et al. [5] evaluated the effect of software engineering
practices for industrial projects based on Dyba’s work. In this
study, we adopt Dyba’s definition of SPI success as the
dependent variable in the proposed model.

 Prior studies have provided insight into identifying
critical success factors for SPI. In spite of this, there is little or
no research that focuses on how a firm’s learning ability are
placed to increase effective external SPI knowledge
acquisition and acquired SPI knowledge utilization. To close
this SPI knowledge gap, a firm’s SPI knowledge activities in
the context of SPI success should be investigated further.
Therefore, this study adopts absorptive capacity (i.e. PAC and
RAC) as the explanatory knowledge mechanism to investigate
how organizational learning impacts SPI success.

3 Absorptive capacity
 In literature, AC has played a critical role in ad-hoc
investigation of IT and IS implementations [17]. According to
the literature, AC was originally defined as a firm’s ability to
recognize the value of new, external information, assimilate it,
and apply it to commercial ends [3]. AC also implies learning
and acting in discovering scientific and technological
activities outside the organization’s limits [8]. It enables firms
to gain superior organizational performance, innovation
capability, and competitive advantage [9, 10].

 Recently, Roberts et al. (2012) suggested several
assumptions that underlie AC. First, AC depends on prior
related knowledge. With some prior related knowledge, a firm
can correctly select valuable and useful external knowledge.
Second, an organization’s AC depends on the AC of its
individual members, which form a mosaic of individual
capabilities. AC is firm-specific and embedded in the
knowledge structures of a particular firm; hence, AC cannot
easily be purchased. Third, accumulating AC is essential for
efficiently utilizing the knowledge needed to face
technological and market turbulence. In literature, AC is
treated as a dynamic capability and a firm’s AC affects its
ability to reconfigure its existing substantive capabilities
(Zahra and George, 2002; Jansen et al., 2005). According to
the dynamic capability theory (Teece et al., 1997), Van den
Bosch et al. [25] deemed AC as a high-level organizational
ability. Zahra and George [29] further divided AC into PAC
and RAC and distinguished the four dimensions of AC as
being acquisition, assimilation, transformation, and
exploitation.

 Specifically, each of the dimensions is considered a
capability that together produce AC, a dynamic capability of
the organization [22], and these dimensions explain how AC
influences a firm’s knowledge mechanisms. Acquisition refers
to a firm’s ability to identify, acquire, and value external
knowledge that is critical to operations. Assimilation refers to
a firm’s ability to analyse, process, interpret, and understand
external knowledge. PAC enables a firm to be receptive to
external knowledge and focus on the acquisition and
assimilation of new external knowledge [29]. Transformation
is a firm’s ability to combine existing knowledge and the
newly acquired and assimilated knowledge for future use.
Exploitation refers to a firm’s ability to integrate acquired,
assimilated, and transformed knowledge into its operations to
develop new processes, routines, operations, and systems.
RAC enables a firm to transform and exploit the knowledge
that has been absorbed [29].

 As mentioned earlier, PAC and RAC can be performed
as two separate, yet complementary, roles of AC in facilitating
the use of new external knowledge [26, 29]. PAC is regarded
critical because it enables a firm to make sense of and respond
to its external business environments and challenges, enabling
firms to adjust to change, explore new methods, and reshape

18 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

their knowledge base. Conversely, RAC is an essential
foundation for forming and performing innovation [7]. From
the organizational point of view, firms cannot exploit and
apply knowledge without first acquiring it. Likewise, firms
may have the capacity to acquire and assimilate external
knowledge, but may not have the capacity to transform and
exploit it into operations that enhance performance [29].
Besides the traditional concept that considering PAC and
RAC as a whole, in this research, we are also to explore the
possibility if PAC and RAC contributes to SPI success
individually.

 In literature, the effect of AC on organization’s
technological adoption and implementation has been an
important subject. Many reports have demonstrated the
importance of AC in IT and IS deployment and
implementation. For example, Harrington and Guimaraes [8]
indicated that AC establishes an external communication
channel to gather useful knowledge that influences the
implementation of new technologies. Srivardhana and
Pawlowski [21] developed a theoretical framework to analyse
AC that enables organizations to build new capabilities in
creating and deploying enterprise resource planning (ERP)
knowledge. Also, Saraf et al. [19] investigated the relationship
between PAC and RAC in the assimilation of ERP systems
and found that both PAC and RAC positively and directly
impact ERP assimilation.

 Although AC has been used in the IS/IT domain, it has
not been addressed for the field of SPI, which is a critical and
challenging task that enables the success of the
aforementioned IT/IS development. Some previous studies
have highlighted that the concept that SPI implementation
depends on external prerequisites and essential SPI
knowledge [12]. Therefore, this study considers that the role
of AC is more pronounced when examining successful SPI
implementation. Thus, we expect that AC as a firm’s dynamic
capability is relatively critical for SPI success. In the
following section, we further review more literature to derive
and develop the research hypotheses.

4 Hypotheses Development
 Based on the dynamic capability theory [23] and
considering the definition of AC, AC can facilitate
organizations to focus on mechanisms of external knowledge.
Vega-Jurado et al. [26] highlighted two important aspects that
differentiate PAC and RAC. First, it is difficult to define a
global measurement system because of the complex nature of
AC and the organization’s functional structure and
arrangement. For example, PAC may be mastered by some
educational units in an organization, while RAC is often
performed by the (software) process group (EPG or SEPG)
(SEI, 2010), since the group’s job is to design and maintain
organization’s standard processes, in which new knowledge is
applied. Based on such an organization’s functional design,
PAC and RAC may be performed and reviewed separately.

Second, even though PAC and RAC are interrelated, their
distinct effects should be examined separately. In other words,
PAC emphasizes what we have learned; while RAC focuses
on how the organization is improved by the learned
knowledge. Therefore, our work focuses on the effects of
PAC and RAC on SPI success, respectively. In the next
paragraphs, the operational mechanisms of PAC and RAC are
further elaborated respectively as follows.

 In the context of SPI implementation, PAC begins with
gathering the idiosyncratic SPI knowledge from external
sources (i.e. SPI consulting firms and vendors). This
facilitates identifying, acquiring, and evaluating external
knowledge to determine what is compatible, suitable [29], and
critical to the needs of SPI. Additionally, the question of how
the acquired SPI knowledge is to coordinate with a firm’s
specific characteristics (e.g. technology, business strategy,
people, and process) should be considered. In the next stage
of PAC, assimilation enables a firm to analyse, interpret, and
comprehend externally acquired SPI knowledge, and then
disseminate the useful knowledge through the organisation.
PAC exposes a firm to the external valuable SPI knowledge
[26] used to stimulate improvement opportunities for software
processes, routines, and operations. When learning from
external sources, firms must be able to obtain and identify the
external knowledge and translate it into ‘local language’. PAC
enables a firm to renew the knowledge base which is
necessary for SPI, and increase the SPI knowledge acquisition
required to implement improvements. Therefore, PAC likely
leads to SPI success. Thus, we hypothesize that:

Hypothesis 1: PAC has a positive influence on SPI success.

 In the entire learning operation of AC, RAC refers to the
knowledge internalization by transforming and exploiting the
acquired external SPI knowledge [29]. Transformation is
regarded as the synthesis and integration of a firm’s existing
knowledge with the newly acquired and assimilated SPI
knowledge. The internal SPI knowledge may be synthesized
by the addition or elimination of knowledge, or by the
conversion of external knowledge, with consideration of the
firm’s specific characteristics. Transformation also ensures
that the synthesized knowledge is effectively and extensively
transferred across the firm [8]. In the next stage, exploitation
facilitates the transformed SPI knowledge to be incorporated
into a firm’s internal processes, operations, and routines for
aligning and articulating the firm’s SPI goals [1]. For
example, a company may transfer the how-to-do from other
company’s implementation into its software process. Without
RAC, organization may not receive a holistic benefit since the
newly acquired knowledge is not able to be built into the
company’s processes and routines. Therefore, RAC seems
critical to SPI success. Thus, we hypothesize that:

 Hypothesis 2: RAC has a positive influence on SPI success.

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 19

Zahra and George [29] argued that external knowledge
may not be transformed and exploited until it has been
acquired and assimilated. Further, SPI is often aided by
external knowledge [16]. As discussed, the development of
AC might enhance SPI knowledge acquisition and utilization,
and the implementation of SPI first requires effective
acquisition of external knowledge (i.e. PAC). However,
external knowledge cannot affect SPI success if the
mechanism to transform and embed the absorbed knowledge
into the firm’s real processes, operations, and routines is not
established (i.e. RAC). Thus, PAC is the first step to acquiring
external SPI knowledge and RAC is the next logical step to
exploit the new SPI knowledge. We therefore assume that
RAC would mediate the relationship between PAC and SPI
success. Thus, we hypothesize that:

Hypothesis 3: RAC mediates the relationship between PAC
and SPI success.

Based on the aforementioned literature review and
hypotheses, we are proposing a theoretical model that
integrates PAC, RAC, and SPI success, as shown in Figure 1.
Based upon this model foundation, we are then to further
explore the variables that significantly impact the model to
comprehend the entire model, as well as to conduct an
empirical investigation to test the proposed research model
and hypotheses accordingly.

Figure 1. The proposed theoretical model.

5 Conclusions: what is next?
As the business environment becomes increasingly

dynamic, many organizations have adopted SPI to achieve
superior organizational performance. The pursuit of
organizational performance relies on the organization’s
learning ability to acquire, process, and comprehend
knowledge. In this paper, we have highlighted the importance
of potential and realized absorptive capacity and have
developed a draft of the theoretical research model to
understand how organizational learning and its mechanisms,
in terms of PAC and RAC, facilitate SPI success. It is hoped
that through the discussion venue of this prestigious
conference, valuable comments and suggestions can be

obtained for helping the development of the model in the next
research stage.

 In the next stage of research, we are to complete the
development of the proposed research model, and to test and
verify the model. An empirical investigation will be
conducted in the following study. We will further use a survey
method for data collection in SPI-certified Taiwanese firms
and examine the hypotheses using the statistical technique of
partial least squares (PLS). PLS has commonly used in the IS
literature. PLS is supposed to be distribution-free (i.e., the
estimation is not affected by the complexity of the model,
small sample size, or nonnormality of the data). Furthermore,
PLS is also orthogonal and overcomes multicollinearlity
problems [24].

Acknowledgement

 This paper thanks the anonymous reviewers for
providing useful comments and suggestions that help
significantly improve the quality of the presentation. This
paper also thanks research assistants, Mrs. Change, Mrs.
Wang and Mr. Lee, for their help on collecting data and
literature.

6 References
[1] Camisón, C. and Forés, B. (2010), “Knowledge
absorptive capacity: new insights for its conceptualization and
measurement”, Journal of Business Research, Vol. 63, No, 7,
pp. 707-715.

[2] Chen, J. S. and Ching, R. K. (2004), “An empirical study
of the relationship of IT intensity and organizational
absorptive capacity on CRM performance”, Journal of Global
Information Management, Vol, 12, No.1, pp. 1-17.

[3] Cohen, W. and Levinthal, D. (1990), “Absorptive
capacity: a new perspective on learning and innovation”,
Administrative Science Quarterly, Vol. 35, No. 1, pp. 128–
152.

[4] Dyba, T. (2005), “An empirical investigation of the key
factors for success in software process improvement”, IEEE
Transactions on Software Engineering, Vol. 31, No. 5, pp.
410-424.

[5] Egorova, E., Torchiano, M. & Morisio, M. (2009).
Evaluating the perceived effect of software engineering
practices in the Italian industry. In: Trustworthy Software
Development Processes, pp. 100-111, Springer Berlin
Heidelberg.

[6] Feher, P. and Gabor, A. (2006), “The role of knowledge
management supporters in software development companies”,

20 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

Software Process: Improvement and Practice, Vol. 11, No. 3,
pp. 251-260.

[7] Fosfuri, A. and Tribó, J. A. (2008), “Exploring the
antecedents of potential absorptive capacity and its impact on
innovation performance”, Omega, Vol. 36, No. 2, pp. 173-
187.

[8] Harrington, S. and Guimaraes, T. (2005), “Corporate
culture, absorptive capacity and IT success”, Information and
Organization, Vol. 15, No. 1, pp. 39–63.

[9] Lane, P., Koka, B. and Pathak, S. (2006), “The
reification of absorptive capacity: a critical review and
rejuvenation of the construct”, Academy of Management
Review, Vol. 31, No. 4, pp. 833-863.

[10] Jansen, J. J., Van Den Bosch, F. A. and Volberda, H. W.
(2005), “Managing potential and realized absorptive capacity:
how do organizational antecedents matter”, Academy of
Management Journal, Vol. 48, No. 6, pp. 999-1015.

[11] Mathiassen, L. and Pourkomeylian, P. (2003),
“Managing knowledge in a software organization”, Journal of
Knowledge Management, Vol. 7, No. 2, pp.63-80.

[12] Meehan, B. and Richardson, I. (2002), “Identification of
software process knowledge management”, Software process
improvement and practice, Vol. 7, No. 2, pp. 47–55.

[13] Niazi, M., Wilson, D. and Zowghi, D. (2006), “Critical
success factors for software process improvement
implementation: an empirical study”, Software Process
Improvement and Practice, Vol. 11, No. 2, pp. 193–211.

[14] Park, J. H., Suh, H. J. and Yang, H. D. (2007),
“Perceived absorptive capacity of individual users in
performance of enterprise resource planning (ERP) usage: the
case for Korean firms”, Information & Management, Vol. 44,
No. 3, pp. 300-312.

[15] Rainer, A. and Hall, T. (2002), “Key success factors for
implementing software process improvement: a maturity-
based analysis”, Journal of Systems and Software, Vol. 62,
No. 2, pp. 71–84.

[16] Ravichandran, T. and Rai, A. (2003), “Structural
analysis of the impact of knowledge creation and knowledge
embedding on software process capability”, IEEE
Transactions on Engineering Management, Vol. 50, No. 3, pp.
270-284.

[17] Roberts, N., Galluch, P., Dinger, M. and Grover, V.
(2012), “Absorptive capacity and information systems
research: review, synthesis, and directions for future research”,
MIS Quarterly, Vol. 36, No. 2, pp. 625-648.

[18] Rus, I. and Lindvall, M. (2002), “Knowledge
management in software engineering”, IEEE software, Vol.
19, No. 3, pp. 26–38.

[19] Saraf, N., Liang, H., Xue, Y. and Hu, Q. (2013), “How
does organisational absorptive capacity matter in the
assimilation of enterprise information systems”, Information
Systems Journal, Vol. 23, No. 3, pp. 245-267.

[20] Software Engineering Institute (SEI) (2010), “Capability
Maturity Model Integration for Development”, Carnegie
Mellon University Press.

[21] Shih, C. and Huang, S. (2010), “Exploring the
relationship between organizational culture and software
process improvement deployment”, Information &
Management, Vol. 47, Nos 5-6, pp. 271-281.

[22] Srivardhana, T. and Pawlowski, S. (2007), “ERP
systems as an enabler of sustained business process
innovation: a knowledge-based view”, Journal of Strategic
Information Systems, Vol. 16, No. 1, pp. 51–69.

[23] Sun, P. Y. and Anderson, M. H. (2010), “An
examination of the relationship between absorptive capacity
and organizational learning, and a proposed integration”,
International Journal of Management Reviews, Vol. 12, No. 2,
pp. 130-150.

[24] Teece, D., G. Pisano, A. and Shuen. 1997. “Dynamic
capabilities and strategic management”, Strategic
Management Journal, Vol. 18, No. 7, pp. 509–533.

[25] Urbach, N., and Ahlemann, F. (2010). Structural
equation modeling in information systems research using
partial least squares. Journal of Information Technology
Theory and Application, Vol. 11, No. 2, pp. 5-40.

[26] Van den Bosch, F., Volberda, H. and De Boer, M.
(1999), “Coevolution of firm absorptive capacity and
knowledge environment: organizational forms and
combinative capabilities”, Organization Science, Vol. 10, No.
5, pp. 551-568.

[27] Vega-Jurado, J., Gutiérrez-Gracia, A. and Fernández-de-
Lucio, I. (2008), “Analyzing the determinants of firm's
absorptive capacity: beyond R&D”, R&D Management, Vol.
38, No. 4, pp. 392-405

[28] Volberda, H., Foss, N. and Lyles, M. (2010),
“Absorbing the concept of absorptive capacity: how to realize
its potential in the organization field”, Organization Science,
Vol. 21, No. 4, pp. 931–951.

[29] Winter, J. and Ronkko, K. (2010) SPI success factors
within product usability evaluation. Journal of Systems and
Software, Vol.83, No.11, pp. 2059-2072.

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 21

[30] Zahra, S. and George, G. (2002), “Absorptive capacity:
a review, reconceptualization, and extension”, Academy of
Management Review, Vol. 27, No. 2, pp. 185–203.

22 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

An Infrastructure to Support Autonomic Control Loops
in Dynamic Software Product Lines

Jane Dirce Alves Sandim Eleutério1,2 and Cecília Mary Fischer Rubira1

1Institute of Computing, University of Campinas, Campinas, SP, Brazil
2Faculty of Computing, Federal University of Mato Grosso do Sul, Campo Grande, MS, Brazil

Abstract - Dynamic Software Product Lines (DSPLs) use
dynamic variability to adapt itself to the environment or
requirements changes. The use of DSPLs is a way to
achieve self-adaptive systems. Most existing DSPL solutions
do not use autonomic control loop, although some solutions
performed same loop activity implicitly. Moreover, there is
the problem of how to identify the autonomic control loop
or patterns present in DSPL solutions. Our approach is
composed of three complementary parts: a product family
of solutions for dependable DSPLs; a product line
architecture for DSPLs, which explicitly use autonomic
control loop patterns; and a model-driven infrastructure for
DSPL to support dynamic applications. In this paper, we
present a feature model of this proposed DSPL family and
the preliminary results of the development of a product line
architecture and our new infrastructure.

Keywords: Self-Adaptive Systems; Dynamic Applications;
Dynamic Software Product Line; Dynamic Composition.

1 Introduction
 A Dynamic Software Product Line (DSPL) is a
software product line that allows dynamic variability.
Dynamic variability, also called late variability or runtime
variability, can be represented using dynamic features, i.e.,
features that can be (de-)activated at runtime [1]. Also,
context awareness, self-adaptation, and autonomous
decision-making are some of the necessary properties for
DSPL [2]. In particular, Self-adaptation can be implemented
in several ways, allowing changes in the software structure
to fix bugs, improve performance, increase availability and
security, and change requirements [3]. Dynamically
Adaptive Systems (DAS) should adapt their behavior or
structure at runtime [4]. Dynamic Software Product Line
could be classified as Dynamically Adaptive Systems [5]. In
DAS, a system is usually composed of managed subsystem
consists of application logic that provides the system
domain functionality, and managing subsystem consists of
adaptation logic that manages the managed subsystem [6].
The adaptation logic in self-adaptive systems typically
involves the implementation of autonomic control loops,
which defines how systems adapt their behavior to keep
goals controlled, based on any regulatory control,
disturbance rejection or optimization requirements [7]. The
autonomic control loop has four components: Monitor,

Analyze, Plan, and Execute, often defined as classic MAPE
loop [6]. Consequently, the concept of self-managing from
Dynamically Adaptive Systems is being increasingly used,
combined with the increasing demand for more dependable
systems [4]. Thus, this leads an advance on research related
to Dependability and Fault Tolerance. Dependability of a
system is the ability to avoid service failures that are more
frequent or more severe than the acceptable [8]. Fault
tolerance is a means to avoid service failures in the presence
of faults during runtime [8].

According to a systematic mapping study about dependable
DSPL [9], each approach often proposes a new framework
or a new infrastructure, by suggesting new methodologies,
commonly without follow a pattern or taxonomy.
However, with all these different solutions, it is difficult to
choose which, when and how to apply each solution in a
particular case. A comparative study [10] analyzed the
feasibility of achieving dynamic variability with DSPL-
oriented approaches for the construction of self-adaptive
systems. They used the following dimensions: “When to
adapt” and “How to adapt”. Moreover, the research on
dynamic variability is still heavily based on the specification
of decisions during design time. Besides, Bencomo et al.
[10] ponder that many existing DSPLs are not as dynamic
as researchers believe to be. Cheng et al. [11] reported the
need to model explicitly the autonomic control loops as one
of the major challenges. More specifically, autonomic
control loops should be explicitly identified, recorded, and
resolved during the development of self-adaptive systems,
following autonomic control loop patterns, or self-adaptive
reference architectures [11], [12]. However, most of the
existing solutions related to DSPL do not apply autonomic
control loops adequately [10], [11].

In this scenario, we detected the problem of how to identify
the autonomic control loop pattern present in the proposed
solutions for DSPL. As discussed in [11], [12], when the
autonomic control loop is clearly identified, the maturity of
the software engineering applied to self-adaptive systems
increases. Moreover, it is also important to promote the
separation of concerns between managed subsystems
(application logic) and managing subsystems (adaptation
logic). Therefore, our proposal describes a solution to
support the creation of dynamic software product lines,
including: (i) a family of solutions for dependable DSPLs;
(ii) a self-adaptive architecture for DSPLs; and (iii) the

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 23

provision of a model-driven infrastructure for developing
DSPL. This paper introduces the current state of our
solution, presenting the preliminary results. Section 2
presents our proposal. We present the preliminary results of
our research in Section 3. Section 4 presents related works.
Finally, we conclude in Section 5.

2 The Proposed Solution
 We propose the specification of a family of solutions
for the development of dependable DSPL, using the studies
found in the literature by means of a systematic mapping
study about dependable DSPL [9]. We made an analysis of
these solutions to identify the autonomic control loops and
the adaptation patterns used. We also propose a definition
of a self-adaptive architecture for DSPL. This self-adaptive
architecture uses our created feature model for the
derivation of DSPLs. We use the FArM method (Feature-
Architecture Mapping) to map the feature model into a
Product Line Architecture (PLA) [13]. Following this
method [13], we refine iteratively the initial feature model
into architectural components. However, we intend to
provide to the software engineer a semi-automatic process
to support the FArM method [13], by combining a set of
process, models, tools, and source code generation. This
semi-automatic process aims to support the creation of
DSPLs by following the activities: (i) creation of the feature
model with dynamic compositions, using a feature
modelling tool; and (ii) generation of the product line
architecture, using the FArM method [13] and the
autonomic control loop patterns.

The generated product line architecture must have
separation of concerns through the clear distinction between
managing and managed subsystems. The managed
subsystem has the components and/or services related to the
application logic. The managing subsystem has the
adaptation logic, including monitoring, analysis, planning
and implementation components for adaptation, according
to the autonomic control loop patterns. For the generation
of self-adaptive architecture, we use the autonomic control
loop patterns presented by Weyns et al. [6]: Coordinated
Control, Information Sharing, Master/Slave, Regional
Planning, and Hierarchical Control.

We also propose a definition and implementation of a
model-driven infrastructure for DSPLs instantiation. Our
infrastructure uses the feature model and the product line
architecture to derivate family members, which are DSPLs.
Our infrastructure is composed of a dynamic component
framework with a reflective architecture. The managed
subsystem (application logic) is oblivious to the managing
subsystem (adaptation logic). At runtime, the managing
subsystem intercepts the running system when an adaptation
is required. Managing subsystem is organized meeting the
MAPE autonomic control loop, which is divided into
Monitor, Analyze, Plan, and Execute [6]. Besides, there is a
knowledge base that supports the required information flow

throughout the loop. Therefore, this proposal specifies a
product line of DSPLs, where each member of the family
would not be a finalized DSPL, but a framework for the
creation of DSPL according to the chosen configuration. It
is possible to use this derived framework for the creation of
a DSPL, and it must have only the chosen features at
derivation time.

3 Preliminary Results
3.1 Feature Model for Dependable DSPLs
 We performed the product family modeling of
solutions for dependable DSPLs, using as inputs the related
solutions presented in [9]. We modeled variability and
commonalities of the family of dependable DSPLs in a
differentiated way to represent the autonomic control loop
activities. Each phase, for example, Monitoring, was
modeled as subdivided features that will compose its
essence. As a result, Fig. 1 shows the feature model of the
DSPL family. This feature model of dependable DSPL
family provides three major variation points: (i) the
selection of MAPE pattern - centralized or decentralized.
Whether decentralized, the designer can choose one of the
five decentralized MAPE patterns; (ii) the selection of
specificity for each MAPE activity; and (iii) the choice of
sensors - the designer will be able to choose the monitoring
sensors to be used.

Fig. 1. The feature model of a family of solutions for dependable DSPLs.

3.2 Feature Model with Dynamic Features
 As we had no tool available to perform the modeling
of dynamic features, we decided to modify the FeatureIDE
plug-in for Eclipse [14] to meet our needs. The feature

24 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

model may contain static and dynamic compositions. On
static composition, decision-making is taken at design time,
unlike on dynamic composition, which occurs at runtime. A
dynamic composition is a relationship between dynamic
features. Therefore, the system can compose and activate
dependent features only at runtime [15]. With the new plug-
in version, it is possible to specify the feature model, by
defining some features as dynamic (green dashed border in
Fig. 2). Therefore, the existing variation points in this
feature become a dynamic composition. Fig. 2 shows the
dynamic feature VisaPaymentService, which its associated
variation points are a dynamic composition, i.e., a choice
between Visa1, Visa2, and Visa3.

Fig. 2. An example of a feature model with dynamic composition.

3.3 Architecture and Infrastructure
 With our model-driven infrastructure, the software
engineer can choose what monitoring sensors will be
applied to each dynamic feature. Thus, these sensors will be
applied to their implemented components and/or services.
From the model feature created by the engineer using our
plug-in, an XML file is generated. With the created XML
file, our infrastructure creates an XML configuration file for
mapping features and components and/or services, that will
be implemented by the programmer. With both XML files
and selected MAPE pattern, our infrastructure generates a
preliminary version of the self-adaptive product line
architecture (PLA). These steps compose a semi-automatic
process to support the FArM method [13], which was
proposed to provide to the software engineer a means to
create DSPLs. This semi-automatic process encompasses a
set of process, models, tools, and source code generation.
Fig. 3 represents this process. The generated self-adaptive
product line architecture consists of: (i) components of
managed subsystem (application components); (ii) MAPE
components of managing subsystem, according to the
selected pattern; and (iii) monitoring sensor components
applied to managed subsystem components. We plan to
generate graphically this architecture to enable the designer
to perform the necessary changes. Fig. 4 shows a
representation of this architecture applied to the example of
VisaPaymentService (Fig. 2). Also, the generated
infrastructure is a framework, which managing subsystem
components will be fulfilled with source code. Besides, the
managed subsystem components are partially implemented.
In other words, the created infrastructure will be composed
of the full source code required by the managing subsystem

and the structure (packages and files) and partial source
code required by the managed subsystem. Our model-driven
infrastructure encompasses the semi-automatic process, the
feature model of DSPL family (Fig. 1), the self-adaptive
architecture, and the tools used to model and to generate
the required source-codes by the subsystems.

Presently, we are ending the coding phase of our
infrastructure. We are implementing Sensors and Effectors
using APIs for introspection and reconfiguration provided
by the OSGi platform. We are implementing software
components according to COSMOS*. At runtime, to bind
software components in the managed subsystem, we employ
a service locator, instead of traditional architectural
connectors. The ‘service locator’ is used by Effectors and
acts as a simple runtime linker.

Fig. 3. Our semi-automatic process.

Fig. 4. An example of a generated Self-adaptive architecture.

4 Related Work
 A systematic mapping study of dependable dynamic
software product line showed us the main contributions and
limitations of these solutions [9]. Batory et al. [16]
proposed a decomposition of framework structures and
instances in primitive and reusable components, reducing
the source-code replication and creating a component-based
product line in the context of object-oriented frameworks.
Camargo and Masiero [17] proposed an aspect-oriented
framework family, called Crosscutting Framework Family,
where during the development of software, only the
resources required by the software are used, resulting in a
well-structured design, providing higher levels of
maintainability and reusability. Oliveira et al. [18] extended
the Camargo and Masiero approach [17] and introduced the
concept of Framework Product Lines (FPL), where each
family member is a framework, applying the concept of

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 25

frameworks in SPL. The approaches described in [16]–[18]
differ from our proposed research. Our proposed approach
is a family of dynamic software product lines, i.e., the
concept of software product line applied to another
(dynamic) software product line. This concept is not
explored by previous studies, making our proposal an
unique contribution in this research field.

5 Conclusions
 In this paper, we presented our research proposal,
which describes a solution that aims to help the creation of
self-adaptive systems using DSPL techniques. Three
complementary parts compose our approach. First, we
proposed a family of solutions for dependable DSPLs, using
as inputs previously identified solutions by means of
systematic mapping study [9]. We concluded this activity
and presented its feature model in Fig. 1. Second, we
proposed a definition of a Product Line Architecture (PLA)
for DSPL, which uses our created feature model for DSPL
derivation. We use a semi-automatic process to support the
creation of DSPLs according to the following activities: (i)
modeling of the feature model with dynamic compositions,
using a feature modelling tool; and (ii) generation of
product line architecture, using the FArM method [13] and
autonomic control loop patterns. Third, we proposed a
model-driven infrastructure for instantiation of DSPL,
aiming to support the creation of self-adaptive systems. Our
primary objective is to build an infrastructure that will
provide several approaches to implementing DSPLs in a
single solution. Our infrastructure will meet the autonomic
control loop patterns, defined by Weyns et al. [6]. This
activity is still under development, but we presented some
preliminary results in the Section 3. Currently, we are
ending the coding phase of our proposed infrastructure.

Despite our research is ongoing, we identified some
contributions. The modeling of the solutions family of
DSPLs helps us in a better understanding of how the
solutions were implemented and what are their advantages
and limitations, helping on the future development of new
solutions. Our infrastructure provides focus on MAPE
patterns and highlights the autonomic control loops,
meeting a part of the challenges listed in [10]–[12].
Otherwise, our proposal focuses on non-functional
variability to explore the actual software variability in the
development of DSPL and its techniques. When ready, our
infrastructure will allow the software engineer to select the
most suitable DSPL techniques at design time in accordance
with its domain, project needs, or requirements. The
infrastructure will automatically generate the major parts of
the source code required by the family of dynamic
applications.

6 Acknowledgement
 The authors thank to the Fundect-MS and Unicamp
for financial and logistic support.

7 References
[1] J. van Gurp, “Variability in Software Systems The Key to
Software Reuse,” Blekinge Institute of Technology, 2000.

[2] S. Hallsteinsen et al., “Dynamic Software Product Lines,”
Computer, vol. 41, no. 4, pp. 93–95, 2008.

[3] P. K. McKinley et al., “Composing adaptive software,”
Computer, vol. 37, no. 7, pp. 56–64, 2004.

[4] H. J. Goldsby et al., “Digitally Evolving Models for
Dynamically Adaptive Systems,” in ICSE Workshops SEAMS
’07., 2007, p. 13.

[5] N. Bencomo et al., “Dynamically Adaptive Systems are
Product Lines too : Using Model-Driven Techniques to Capture
Dynamic Variability of Adaptive Systems,” in 2nd DSPL workshop
(SPLC 2008, Volume 2), 2008, pp. 117–126.

[6] D. Weyns et al., “On patterns for decentralized control in self-
adaptive systems,” Lect. Notes Comput. Sci., vol. 7475 LNCS, pp.
76–107, 2013.

[7] H. A. Müller et al., “Autonomic Computing Now You See It,
Now You Don’t — Design and Evolution of Autonomic Software
Systems,” Softw. Eng., vol. 5413 LNCS, pp. 32–54, 2009.

[8] A. Avizienis et al., “Basic concepts and taxonomy of
dependable and secure computing,” IEEE Trans. Dependable
Secur. Comput., vol. 1, no. 1, pp. 11–33, Jan. 2004.

[9] J. D. A. S. Eleutério et al., “Dependable Dynamic Software
Product Line – a Systematic Literature Review,” Institute of
Computing - UNICAMP, IC-15-03, 2015.

[10] N. Bencomo and J. Lee, “How dynamic is your Dynamic
Software Product Line?,” Softw. Prod. Lines Going Beyond, no.
6287 LNCS, 2010.

[11] B. H. C. Cheng et al., “Software Engineering for Self-
Adaptive Systems: A Research Roadmap,” Softw. Eng. Self-
Adaptive Syst., vol. 5525 LNCS, pp. 1–26, 2009.

[12] Y. Brun et al., “Engineering Self-Adaptive Systems through
Feedback Loops,” Softw. Eng. Self-Adaptive Syst., vol. 5525
LNCS, pp. 48–70, 2009.

[13] P. Sochos et al., The feature-architecture mapping (FArM)
method for feature-oriented development of software product lines.
IEEE, 2006.

[14] T. Thüm et al., “FeatureIDE: An extensible framework for
feature-oriented software development,” Sci. Comput. Program.,
vol. 79, pp. 70–85, 2014.

[15] J. Lee et al., “Engineering Service-Based Dynamic Software
Product Lines,” Computer, vol. 45, no. 10, pp. 49–55, Oct. 2012.

[16] D. Batory et al., “Object-Oriented Frameworks and Product
Lines,” Softw. Prod. Lines - Exp. Res. Dir., vol. 576, pp. 227–247,
2000.

[17] V. V. Camargo and P. C. Masiero, “An approach to design
crosscutting framework families,” in Proc. of the 2008 AOSD,
2008, pp. 1–6.

[18] A. L. de Oliveira et al., “Investigating framework product
lines,” in Proc. of SAC ’12, 2012, p. 1177.

26 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

Psychological Considerations for Agile Development Teams

James A. Crowder
Raytheon Intelligence, Information and Services, Aurora, CO, USA

Abstract— For modern managers, one has to adopt a new
philosophy, or psychology for dealing with agile development
teams. While process is important to ensure the team delivers
quality software that meets customer requirements, it is
important to understand that the Agile Method is geared
around more of an informal approach to management, while
putting more time, effort, and emphasis on flexibility,
communication, and transparency between team members and
between the team and management. It promotes an
environment of less control by managers and more facilitation
by managers. The role of the manager takes on a new
psychological role, one of removing roadblocks, encouraging
openness and communication, keeping track of the change-
driven environment to ensure that the overall product meets in
goals and requirements, while not putting too much control on
the ebb-and-flow of the agile development process. Change is
no longer wrong, the lack of ability to change is now wrong.
Here we discuss the new "soft" people skills required for
modern managers, and how they add/detract from modern
agile development. How to recognize the skills, how to utilize
the skills, and how to build teams with the right "mix" of
personalities and soft people skills for effective and efficient
development efforts [1].

Keywords—Agile Development, Agile Team Building, Agile
Management

1. PEOPLE, NOT PROCESSES AND TOOLS
Companies have spent decades designing, creating,
implementing, and executing tools required to bid and manage
development projects. Once major category of tools is
prediction tools like CiteSeer© and COCOMO© (Constructive
Cost Model) have been used since the late 1990’s to provide
“objective” cost bids for software development. A later
version of COCOMO, COSYSMO© (Constructive Systems
Engineering Model) attempts to provide objective systems
engineering bids also. All of them are based on the
antiquated notion of Software Lines of Code (SLOC).
Productivity metrics are all based on the lines of code
written/unit time. They try to estimate the life-cycle cost of
software, including designing, coding, testing, bug-fixes, and
maintenance of the software. But ultimately it comes down to
Software Lines of Code/Month (SLOC/Month). While many
will claim these are objective tools for helping to determine
the staff loading necessary for a software/systems
development project. In each tool there are dozens of
parameters which are input by the operator, each of which has
an effect on the outcome of the cost model. Parameters like
efficiency (average SLOC/Month), familiarity with the
software language used, average experience level, etc. can be

manipulated, and usually are, to arrive at the answer that was
determined before the prediction tool was used [2].

Many other tools are utilized to measure the performance

(cost and schedule) of projects once they are in execution.
These measurement tools measure how the project is
progressing against its pre-established cost and schedule
profile, determined in the planning phase of the
program/project. What none of these tools, cost estimation,
performance metrics tools, etc. take into account are the actual
agile team and their dynamics. The makeup of the each agile
team and the facilitation of each team is as important, if not
more important, than the initial planning of the project. If the
Agile Manager/Leader is not cognizant of the skills necessary
not to just write code, but to work cohesively as an agile team,
then success is as random as how the teams were chosen
(usually by who is available at the time). Grabbing the
available software engineers, throwing them randomly into
teams, and sending them off to do good agile things will
usually result in abject failure of the project; or at least
seriously reduced efficiency. This may sound like an extreme
example, but you would be surprised how many agile
development projects are staffed in just this fashion. Many
managers point to the following graph (Figure 1) as the
reasons not to go to the expense of changing all their
processes to accommodate agile development.

Figure 1 – Efficiencies between Traditional and Agile Development

While in each category agile development produces a higher
efficiency than traditional software development methods, the
increase is not as dramatic as the promises made by agile
advocates and zealots. Classical managers find this graph
disturbing and feel smugly justified in their classical software
development/execution/control methods. This is especially
true for large teams. The data for this graph was taken from
50 of each size project, both agile and traditional. What are
not illustrated by this graph are the management methods

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 27

utilized across the traditional vs. agile programs/projects; the
team make-up, how the teams were chosen, or any discussion
of the types of issues that were encountered during the
development process. And while it’s clear that under any
team size agile development has increased efficiency over
traditional methods, and, as expected, smaller team sizes
produce better results with agile methods, understanding the
true nature of the agile team process and applying the
psychology of agile management can achieve even greater
efficiencies.

Placing the emphasis on the individuals in the agile
development teams rather than on process or tools means
understanding people, recognizing their strengths (not only in
terms of programming skills, but also in terms of soft people
skills), understanding the differences between people of
different backgrounds and how the differences affect team
dynamics. This is the first generation where it is possible to
have 60 year-old software engineers in the same agile
development teams with software engineers in their early 20s.
The generational differences in perspectives can severely
hamper team dynamics, and therefore team efficiencies will
suffer greatly if they are not dealt with appropriately and the
team members are not trained in how to function in an agile
development team. All members of the teams need to be able
to understand and come to grips with four main components of
agile development, illustrated below in Figure 2. While there
are other components that are important, without a good handle
and agreement on these, agile development teams are in trouble
from the start [3].

Figure 2 – Four Main Components of the Agile Development

Process

As explained, Figure 2 represents four of the major
components of the Agile Development Process that must be
embraced by the agile development team in order to have a
successful and efficient development process. As important
are the skills, or philosophies, that the manager of the
program/project must embrace and practice in order for the
teams to be able to function in an agile environment and have

the best chance for success. Figure 1-4 provided a high-level
look at the skills of the effective agile manager/leader. The
descriptions of these skills are:

1. Effective Communicator: The effective communicator

fosters and increases trust, is transparent, considers cultural
differences, is able to be flexible in delivery of
communications, encourages autonomy, role models,
exudes confidence to solve problems, handle whatever
comes up and has the courage to admit when they are not
sure and willingness to find out. They are willing to work
side by side verses competitive with followers. They have
the ability to communicate clear professional identity and
integrity, their values are clear and so are their
expectations. The effective communicator communicates
congruence with values and goals, as well as being a role
model of ethical and culturally sensitive behavior and
values.

2. Diplomat: The diplomat considers the impacts on all
stakeholders and how to follow up with all those effected,
even if it is delegated. There is willingness to consult
cultural experts.

3. Effective Listener: The effective listener checks that they
understand the meaning being portrayed, and goes with an
idea even if they disagree until the whole idea is expressed
and the originator can think through the complete thoughts
with the leader.

4. Analytical Thinker: The analytical thinker must be able to
see the forest and the trees. The analytical thinking
manager/leader must be able anticipate outcomes and
problems, and explore how they might anticipate handling
them, walking through possible solutions. They must
initiate Professional Development of team members. They
think about the how, not just the what-ifs.

2. ESTABLISHING AGILE TEAM GOALS

For the effective agile project/program manager, it is crucial
early on to establish goals and objectives that establish the
atmosphere for each sprint development team. Understanding
how much independence each developer is allowed, how
much interdependence each team member and each team
should expect, and creating an environment that supports the
agile development style will provide your teams with the best
chance for success. Below is a list of agile team
characteristics and constraints that much be defined in order
for the teams to establish a business or development “rhythm”
throughout the agile development cycle for the
program/project. Each will be explained in detail in its own
section, but general definitions are given below:

1. Define and Create Independence: Independence is

something many developers crave. In order for agile
development to be successful, there must be a large degree
of independence and need to feel an atmosphere of
empowerment; where the developers are free to create and
code the capabilities laid out during the planning phase of
each sprint. This requires a level of trust. Trust that the
developers and the leader all have stakeholders in

28 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

mind. Trust that the developer is working toward the end
product [4]. Empowerment at the organizational level
provides structure and clear expectations [5]. At the
individual level allows for creativity. Independence means
having a voice and yet operating under company structure
of policies and procedures. Independence is also a sense of
knowing that the developer is good and what they
do. There is no need to check in too frequently with the
leader, but enough to keep the teamwork cohesive.

2. Define and Create Interdependence: While
independence is a desired and necessary atmosphere for
agile teams, the agile manager must also establish the
boundaries where individual developers, and development
teams, must be interdependent on each other, given that the
goal is create an integrated, whole system, not just
independent parts. Interdependence is being able to rely
on team members [6]. The end goal will require a level of
commitment from each person with a common mission in
mind. The trust that all individuals on the team have all
stakeholders in mind. This gets the whole team to the
common goal and reduces each member motivated solely
for their own end goal.

3. Establish Overall, Individual, and Team Goals and
Objectives: setting the project/program overall goals, team
goals, and individual goals and objectives up front, and at
the beginning of each sprint help each team and individual
team member to work success at all levels of the
program/project. This can help to identify strengths of
individuals so that the team can use its assets to their
highest production. This also allows room for individual
development and growth along with a place for
passions. This also sets up clear expectations, say of the
overall and team goals. There may be some individual
development that is between the leader and the developer
that stays between them. This would also build individual
trust between members of the team and between the leader
and the developers.

4. Establish Self-Organization Concepts: self-organizing
teams is one of the holy grails of agile development
teams. However, self-organization is sometimes a myth,
mostly because teams are not trained into how to self-
organize. People do not just inherently self-organize
well. If not trained, the stronger personalities will always
run the teams, whether they are the best candidates or not
[7]. Self-organization can be nearly impossible when there
are very structured people coupled with not-so-structured
people. There may be some work that the leader can do to
promote self-organization. Part of that is opening
communication, building dyads, calling behavior what it is,
and being transparent so that others will follow. It may be
helpful for team members to get to know strengths of other
members and how each member can be helpful to each
individual.

5. Establish Feedback and Collaboration Timelines and
Objectives: given the loose structure and nature of agile
development, feedback early and often is crucial to
allowing the teams to adapt to changing requirements or

development environments. Also, customer collaboration
and feedback at each level in the development allows the
teams to adjust and vector their development efforts,
requirements, etc., to match customer expectations at all
points in the development cycle. Feedback timelines can
increase trust and clarify all expectations. It is nice to
know when you need to change a direction, when you need
to change it, instead of later when you had already put so
much work into the project. The more feedback is
modeled and practice the more natural it becomes and
becomes more automatic. This builds on the independence
and interdependence of the team and individual
stakeholders.

6. Establish Stable Sprint Team Membership: choosing
the right teams is important for success in an agile
development program/project. Creating teams that are not
volatile (changing members often) is essential to continued
success across multiple sprints. If the teams constantly
have to integrate new members, efficiency will suffer
greatly. New expectations and explanations will take up
much time that could be used for developing. A trusting
team can be an efficient team. The more often it changes
the more work needs to be done to build the trust. There
may be increased commitment from those that work on a
cohesive team with high trust levels and knowledge of on
another [3].

7. Establish Team’s Ability to Challenge and Question
Sprints: if the teams are going to be allowed individual
and team empowerment, then they must be allowed to
challenge and question sprint capabilities and content
across the development cycle. Forcing solutions on the
teams fosters resentment and a lack of commitment to the
program/project. If you’ve built the right team, you should
listen to them. It seems more productive to work on
something that makes sense to you, instead of handed
down by others. The ability to challenge and question will
lead to better understanding and more commitment to the
end goal.

8. Establish an Environment of Mentoring, Learning, and
Creativity: invariably, teams are composed of a
combination of experience levels. This provides an
excellent atmosphere of mentoring and learning, if the
agile manager allows this. This must be built into the
sprint schedules, understanding that an atmosphere of
mentoring, learning, and creativity will increase
efficiencies as the team progresses; not just on this project,
but on future projects as well, as the team members learn
from each other. Keep in mind that experienced
developers can learn from junior developer too, as the
more junior developer may have learned techniques and
skills that were not previously available to more senior
developers. The learning environment promotes
growth. An environment that fosters learning decreases
negative feelings of one’s self, and thus other people. An
environment that fosters learning isn't run by guilt, or
feelings of not being good enough, or doing something
wrong. A learning environment allows people to grow and

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 29

the mentor helps the individuals self-determine the
direction they want to develop. The learning environment
will foster older members learning from younger members
as well. People will want to learn more and more and
reduce competitiveness that can destroy a team. The
competitiveness can come out as a good product not team
dynamics. Transparency can help individuals feel more
comfortable with learning. This can show that is ok to
have areas of development and that everyone has room to
grow.

9. Keep Mission Vision always out in Front of Teams:
many believe that an established architecture is not
required for agile development. This is absolutely wrong;
a solid architecture is even more important during agile
development, so each team and team member understands
the end goals for the system. However, in order to for the
architecture and software to stay in sync, the systems
engineering must also be agile enough to change as the
system is redesigned (or adapted) over time [8]. Agility is
not free from structure but the ability to move about within
the structure.

3. INDEPENDENCE AND INTERDEPENDENCE:

EMPOWERMENT

Locus of Empowerment has been conceptualized as a function
of informed choice and self-determination and has been linked
to the concepts of self-efficacy and locus of control as it
applies to agile team membership [9]. Self-understanding and
empowerment, in relation to development opportunities and
factual strength/weakness assessment, represents an important
underlying component of feelings of self-empowerment within
an agile development team [10]. Locus of empowerment, and
its counterpart, Locus of Control, help to establish both
independence and interdependence for agile team members.
Determining those things each team member is “empowered”
to make decision on and work independently provides each
person with a sense of autonomy, allowing them to work at
their peak efficiency without interference or too much
oversight control over their work. Establishing the
Interdependence, or those things which are outside of the
control of the team member, defines communication lines and
those things which are necessary to collaborate on, or get
inputs from other team members to facilitate integration and
validation of “system-wide” capabilities [11]. What follows is
a discussion of Locus of Empowerment.

The notion of Locus of Empowerment is an interactive
process that involves an individual team members’ interaction
with the team and the manager [12], allowing each team
member to develop a sense of acceptance into the team,
develop a sense of where they belong in the team, self-
assessment of skills, and determination of their self-efficacy;
their ability to function and participate both on an individual
level, and as part of an agile development team [13]. These
allow each individual team member to participate with others,
based on their understanding of their independence and
interdependence from and to the team, allowing them to deal

with the daily, weekly, monthly, etc., rhythms of the agile
development cycles throughout the program/project [14].

The process of team and team member empowerment is a
continual and active process, the form and efficacy of the
empowerment process is determined by past, current, and on-
going circumstances and events [15]. In essence, the
empowerment process is an ebb and flow of independence and
interdependence relationships that change throughout the agile
development process, including each daily Scrum, each Sprint
planning session, and each Lessons Learned session,
throughout the entire agile development cycle of the
program/project. Figure 3 illustrates this process.

In Figure 3, empowerment becomes an integral part of the
overall agile development process, with evaluation of the team
members’ abilities, roles, independence and interdependence,
based on the capabilities needed to be developed within a
given Sprint, the honest evaluation of skills and abilities; i.e.,
how to develop the heartbeat, or development rhythm required
for each development Sprint. Without an environment of
Empowerment, the team has no real focus, since each team
member does not have a sense of what they are individually
responsible for, what the other team members are individually
responsible for, and what communication is required
throughout the Sprint development [16]. There will
eventually be a breakdown of the team, a loss of efficiency,
and the team will not be successful in their development
efforts within cost and schedule constraints. Next we discuss
the concepts of goal setting for an agile development project;
project/program, team, and individual goals within the context
of Locus of Control.

Figure 3 – Agile Development Process with Empowerment

4. LOCUS OF CONTROL IN AGILE TEAMS

As explained above, the very nature of agile software
development is to create a loose structure both within each
Sprint team and across the Sprint team structure. The purpose

30 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

of agile development is to allow developers, and subsequently
the system being developed to adapt and change as
requirements, features, capabilities, and/or development
environment change over time (and they will change).
However, this does not mean that there are not system-level,
team-level, and individual-level goals at each point in time. In
fact, it is more important in agile development to have well-
defined goals as teams and individual developers write and
test software, to ensure the software integrates and, more
importantly, creates a set of capabilities and a system the
customer wanted and is paying for. Customer and cross team
collaboration and feedback at each level is crucial to allow the
teams to adjust, either from customer needs or inter-team
needs across the agile Sprint developments. Again,
independence and interdependence is essential for overall
successful development. Further refinement of the
Empowerment concept is to define, for each individual
developer, what things are within their own control, and those
things are outside of their control, even if they affect the
individual.

 This notion of internal vs. external control is called “Locus

of Control.” Locus of control refers to the extent to which
individuals believe that they can control events that affect
them [17]. Individuals with a high internal locus of control
believe that events result primarily from their own behavior
and actions. Those with a high external locus of control
believe that powerful others, fate, or chance primarily
determine events (in this case other team members, other
teams, the program/project manager, and/or the customer).
Those with a high internal locus of control have better control
of their behavior, tend to exhibit better interactive behaviors,
and are more likely to attempt to influence other people than
those with a high external locus of control; they are more
likely to assume that their efforts will be successful [18]. They
are more active in seeking information and knowledge
concerning their situation.

Locus of control is an individual's belief system regarding

the causes of his or her experiences and the factors to which
that person attributes success of failure. It can be assessed
with the Rotter Internal-External Locus of Control Scale (see
Figure 4) [17]. Think about humans, and how each person,
experiences an event. Each person will see reality differently
and uniquely. There is also the notion of how one interprets
not just their local reality, but also the world reality [19]. This
world reality may be based on fact or impression.

For further thought let’s then consider Constructivist
Psychology. According to “The internet Encyclopedia of
Personal Construct Psychology” the Constructivist philosophy
is interested more in the people’s construction of the world
than they are in evaluating the extent to which such
constructions are “true” in representing a presumable external
reality. It makes sense to look at this in the form of
legitimacies. What is true is factually legitimate and what is
peoples’ construction of the external reality is another form of
legitimacy. In order to have an efficient, successful agile

development team [20], each member must understand and
accept their internal and external level of Locus of Control, as
well as their Locus of Empowerment level. Figure 5
illustrates how this flows throughout the Sprint development
cycles.
How an individual sees the external vs. internal empowerment
drives their view of internal vs. external Locus of Control.
During each development cycle, evaluations are made
(whether they individual is aware of it or not) as to their
internal and external Empowerment, and subsequent Locus of
Control. Actions are determined, based on this self-
assessment, and self-efficacy determination. Based on the
results of their efforts, individuals, as well as the team, and the
entire program/project re-evaluate the efficacy of the levels of
internal vs. external Empowerment that are allowed, and
adjustments are made. These adjustments to Empowerment
levels drive changes in Locus of Control perception, which
drives further actions. This process is repeated throughout the
project/program. The manager must understand this process
and make the necessary adjustment so that each individual can
operate at their peak self-efficacy, as well as support team
efficacy, providing the best atmosphere for successful
development.

Figure 4 – Locus of Control Scale

Figure 5 – Locus of Control within an Empowerment Cycle

5. SELF ORGAINIZATION: THE MYTHS AND THE REALITIES

One of the holy grails of agile development is self-organizing
teams. Many software developers dream of having a team
with complete autonomy, able to organize however works for
them, completely without management involvement or
interference. However, what most developers fail to realize is
that given to their own devices, without training as to how to
organize and what “organizing” actually means, most would
fail miserably. Often, agile development efforts fail, even
with efforts to educate the team about agile principles [21].
That is because the team doesn’t fail because they don’t

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 31

understand agile software development. It’s because they
don’t understand human nature and the difficulties in taking a
team of highly motivated, strong personalities, and get them to
automatically give up their egos, pre-conceived notions, and
past experiences, and embrace the agile team dynamics
required to put together a highly successful agile development
effort. We call this “Agile Team Dysfunctionality,” and there
are many common dysfunctions that plague improperly
trained teams and team members. Figure 6 illustrates several
of the most serious dysfunctions, most of which come both
from basic human nature and from peoples experience
working programs/projects in the past. Nothing drives failure
of agile development like past failures. Teams that have
experienced failure are hard pressed to through off their
suspicions and embrace agile development processes, team
dynamics, and the entire agile agenda fresh. Management
must be cognizant of these dysfunctions and work within the
teams to dispel them.

Inability to recognize or deal with agile team dysfunctions can
de-stabilize the team(s) and de-rail the agile development
process faster than anything else. Keeping a stable set of
Sprints teams is important, as constantly changing out team
members radically changes team dynamics, and effects both
personal and team Empowerment and Locus of Control [22].

Figure 6 – Common Agile Team Dysfunctions

6. CREATING A STABLE TEAM MEMBERSHIP: CONTAINING
ENTROPY

As previously discussed, it is vital to choose the right teams
for any program/project, but it is even more important for
agile development. Teams with stable memberships across
Sprints is vital, as team members develop trust over time, gain
an understanding of each members strengths, idiosyncrasies,
and, with proper training, mentorship, and facilitation by the
manager, settle into an agile development “rhythm”
throughout the program/project. If the team has to integrate
new members, efficiency will always suffer until the new team
member is properly integrated into the rhythm. New

expectations are created; the new person will most likely have
an entirely different notion of Empowerment and Locus of
Control than the previous team member, throwing the overall
team out of balance. A stable team can be a trusting and
efficient team [22]. There is generally an increase in
commitment over time with a stable team [23]. In order to
facilitate creation of stable agile sprint teams, the Agile
Manager must recognize, understand, and know how to deal
with the dysfunctionalities discussed in Section II. For each
dysfunction, the Agile Manager must take on a role, or
provide guidance that dispels the dysfunction and allows the
team to move toward and independent cohesiveness between
the team members [24]. Figure 7 illustrates the Agile
Manger’s role in dealing with classical agile team
dysfunctions, creating a team that works together, in
Empowered independence and dependence, to develop
software in an efficient agile environment.

As depicted in Figure 7, for each of the agile team
dysfunctions described in Figure 6, Figure 7 illustrates the
Agile Manager’s response required to eliminate the
dysfunction and allow the agile development teams to function
effectively and efficiently:
1. Absence of Trust: In order to build trust within the

teams, the Agile Manager must always be willing to take
the lead and prove to the team members that they will
“roll up their sleeves” and do whatever is necessary to
either get the program/project moving or to keep it
moving along.

2. Fear of Conflict: Many developers are fearful of bringing
up issues; not wanting to start controversy within the
team. Many people, particularly strong introverts, may
internalize the conflict, never bringing it up, but
eventually the conflict will drive controversy between the
developers, create a lack of trust, and may drive the team
to withdraw from each other, destroying the collaborative
nature of agile development teams. In order to diffuse
these situations before they begin, the Agile Manager
must be observant and cue in on body language and
utilize the soft people skills like paying attention to
changes in personal habits, language, friendliness, and
other clues apparent between team members, and facial
expressions to understand when such non-verbal
controversies exist and work to resolve the conflict before
they begin to negatively impact the development efforts.

3. Lack of Commitment: A lack of commitment to either
the agile development team, or the agile process in
general can destroy an agile program/project before it gets
started. Observing a low quality of work, absenteeism,
lack of willingness to communicate, or constantly
seeming to be overwhelmed by the volume of work may
be indications of a lack of commitment. The Agile
Manager needs to understand the developer’s reasons for
the lack of commitment, clarifying for the developer what
is expected, clearing up any misconceptions the developer
may have. In the end, if the Agile Manager does not feel
they have dispelled the lack of commitment, the

32 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

developer must be removed from the team or there is little
hope for successful agile development. I know this
sounds harsh, but agile only works if all parties have buy
in to the agile development process.

4. Avoidance of Accountability: There may be issues
getting developers to step up and take on rolls of
responsibility within the agile teams because they are
afraid that if they take responsibility for the team’s
activities during a given Sprint and there are problems,
they will be punished. This lack of accountability needs
to be dealt with in order for the Sprint development teams
to develop a good business rhythm and operate
effectively. It is up to the Agile Manager to confront
issues, while not assigning blame or punishment, but
working through difficult issues, helping each developer
learn from the issues in order to solidify the teams and
allow the developers to grow and mature as members of
an agile development team. This will pay off in the future
as each developer becomes more embedded in the agile
process and learns to be effective in and excited about
agile programs/projects.

5. Inattention to Results: Some developers like the agile
team process because they feel they can just write code
and let other people worry about the details, results,
testing, etc. But, it is vitally important that the entire
team focus on the results; working, error-free code with
capabilities required for each Sprint that can be
demonstrated. If any of the developers/team members are
not focused on the results the team will never develop a
good agile development rhythm. Also, one member being
inattentive to details and results will breed mistrust
between the members, reducing the effectiveness of the
team(s). Therefore, the Agile Manger must keep the
program/project vision in front of all developers and
teams, making sure everyone is marching down the same
path, ensuring that the collective outcomes of all the
Sprint teams, across all of the Sprints integrates together
and is heading toward a common, customer-focused goal.

Figure 7 – The Agile Manager’s Response to Team Dysfunctions

7. CONCLUSIONG AND DISCUSSION: CREATING AN

ENVIRONMENT OF LEARNING AND GROWTH

Agile development teams, at least the majority of teams, will
be composed of developers at a variety of experience levels.
Each member comes with their own strengths and weaknesses
and should be provided an atmosphere that not only allows
them to succeed, but to grow and learn, both from the
experience of developing code for the program/project across
the Sprints, but from each other as well. If facilitated
correctly by the Agile Manager, the agile development
program/project will allow opportunities for mentoring and
learning. However, this must be designed into the Sprints,
both in schedule and in capability distribution across the team
members. Creating an atmosphere of mentoring, learning and
creativity increases efficiencies, as the team progresses
through the Sprints and help future programs/projects as well.
Given the probable diversity of team members, the Agile
Manager should make sure everyone has the opportunity and
personal attitude of both mentoring and learning from each
other. New software techniques brought by junior developers
may be necessary for certain capabilities that older more
experienced software developers may not be aware of. At the
same time, junior developers should also bring an attitude of
mentoring and learning, as the experienced developers can
aide junior developers from going down disastrous roads
already travelled by senior developers. In short, the
atmosphere the Agile Manager must NOT bring to the agile
development teams is illustrated in Figure 8.

Figure 8 – The “Rigid” Agile Manager

8. REFERENCES
1. Stanhope, D. S., Samuel B., I.,II, and Surface, E. A. 2013.

Core self-evaluations and training effectiveness:
Prediction through motivational intervening mechanisms.
Journal of Applied Psychology, 98(5), 820-831.

2. Jewson, N. and Mason D. 1986. The Theory of Equal
Opportunity Policies: Liberal and Radical Approaches.
Sociological Review, 34(2).

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 33

3. Crowder, J. and Friess, S. 2014. The Agile Manager:
Managing for Success. Springer Publishing, New York,
NY, ISBN 978-3-319-09017-7.

4. Dirks, K. and Ferrin, D. 2002. Trust in leadership: Meta-
analytic findings and implications for research and
practice. Journal of Applied Psychology, 87, 611–628.

5. Crawford, A. 2008. Empowerment and organizational
climate: An investigation mediating effects on the core
self-evaluation, job satisfaction, and organizational
commitment relationship. ProQuest Dissertations and
Theses, 147.

6. Carless, S. 2004. Does psychological empowerment
mediate the relationship between psychological climate
and job satisfaction? Journal of Business and Psychology,
18(4), 405-425.

7. Eysenck, H. and Eysenck, S. 1969. Personality structure
and measurement. San Diego, CA: Robert R. Knapp.

8. Crowder, J. and Friess S. 2013. Systems Engineering
Agile Design Methodologies. Springer Publishing, New
York, NY. ISBN-10: 1461466628.

9. Beck, K. 1999. Extreme Programming Explained -
Embrace Change. Addison-Wesley, Boston, MA.

10. Thomas, K. and Velthouse, B. 1990. Cognitive Elements
of Empowerment, Academy of Management Review, 15:
666-681. American Counseling Association. (2014). Code
of ethics and standards of practice. Alexandria, VA.

11. Barnes, K. 2004. Applying self-efficacy theory to
counselor training and supervision: A comparison of two
approaches. Counselor Education and Supervision, 44(1),
56-69.

12. Spreitzer, G. M. 1995, Psychological Empowerment in
the Workplace: Dimensions, Measurement and
Validation, Academy of Management Journal, 38(5):
1442-1465.

13. Kernis, M. H. 2003. Toward a conceptualization of
optimal self-esteem. Psychological Inquiry, 14, 1–26.

14. Lee, L. 1994. The empowerment approach to social work
practice. New York: Columbia University Press.

15. Speer, P.W. 2000. Intrapersonal and interactional
empowerment: Implication for theory. Journal of
Community Psychology, 20(1), 51-61.

16. Skinner, E. A. 1996. A Guide to Constructs of Control,
Journal of Personality and Social Psychology, 71(3): 549-
70.

17. Rotter, J. 1966. Generalized expectancies for internal
versus external control of reinforcement. Psychological
Monographs, 80(1)

18. Bollen, K. 2001. Indictor: Methodology. In International
Encyclopedia of the Social And Behavioral Sciences, ed.
N. Smelser and P. Baltes, 7282-87. Elsevier Science,
Oxford, UK.

19. Brooks, F. 1975. The Mythical Man-Month. Addison-
Wessley, ISBN 0-201-00650-2.

20. Roope., K. 2003. Efficient Authoring of Software
Documentation Using RaPiD7. icse, pp.255, 25th
International Conference on Software Engineering
(ICSE'03).

21. Lee, L. 1994. The empowerment approach to social work
practice. New York: Columbia University Press.

22. Nichols, J. D. 2006. Empowerment and relationships: A
classroom model to enhance student motivation. Learning
Environments Research, 9(2), 149-161.

23. Larson, R., Walker, K., & Pearce, N. 2005. A comparison
of youth-driven and adult-driven youth programs:
Balancing inputs from youth and adults. Journal of
Community Psychology, 33(1), 57-74.

24. Piotrowski, C. L. 2006. Quantum empowerment: A
grounded theory for the realization of human potential.
(Order No. 3240834, Cardinal Stritch University).
ProQuest Dissertations and Theses, pp. 358.

34 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

An Architecture for Dynamic Self- Adaptation in
Workflows

Sheila Katherine Venero Ferro1 and Cecilia Mary Fischer Rubira1

1Institute of Computing, University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
ra144653@students.ic.unicamp.br, cmrubira@ic.unicamp.br

Abstract - Today several organizations use many kinds of
Process-Aware Information Systems to support their
processes. A typical example of such systems is Workflow
Management Systems. However, due to the complexity of
business processes and its continuously changing environment,
there is an inevitable need to expand the dynamic behavior of
these computational solutions. One of the drawbacks of the
workflow platforms is that they usually cannot dynamically
adapt their processes. The aim of this research is to develop
an architecture for workflow management systems that
provides means of flexibility to dynamically adapt the
workflows during runtime. In order to validate our solution, a
case study was conducted in nursing processes based in a real
diagnosis scenario to show a practical applicability of the
proposed adaptive architecture. Preliminary results have
shown that the architecture successfully supports business
logical adaptations.

Keywords: Workflow Management Systems; dynamic
process adaptation; Process-Aware information systems;
software architecture.

1 Introduction
 Due to the continuous dynamism of the business
environment, organizations should be prepared to respond
different situations and unpredictable events in order to
maintain leadership. To do so, many kinds of Process-Aware
Information Systems are used by the organizations to support
their processes. Workflow Management Systems (WFMSs)
are typical examples of such systems [1] which partially or
totally automate business processes. WFMSs define, create,
and manage the execution of workflows through software,
executing one or more workflow engines that allow process
definition, user interaction, and provide means for invoke IT
tools and other applications [2].

 Traditional Workflows Management Systems usually
work with well-structured processes and typically for
predictable and repetitive activities [3]. However, modern
processes often are required to be flexible in order to reflect
foreseeable or even unforeseeable changes in the
environment. Thus, WFMSs face some limitations in means
of flexibility; they cannot support dynamically changing the
business process or just support them in a rigid manner [1].
Dynamic workflow changes can be either in a single instance

or an evolutionary change in the process schema, so the
adaptations can be at the instance level or at the type level [4].

 Workflow technology can deliver the right information
to the right person and at the right time reflecting all the
changes. And if this technology could adapt the processes
dynamically according to the environment or context they also
would help in the decision-making process and certainly
improve the efficiency of business processes to respond to
unexpected changes. As an illustrative example, considering a
nursing process, a system can alert the nurse that a patient is
allergic to a particular drug, suggest other similar drugs or
redefine on-the-fly the care plan of a patient, because when
planning (at design time) it is almost impossible to prevent all
the situations since the number of different possibilities is too
high.

 Lately adaptability in workflow technology is one of the
hot topics in the academic world [5]. Nevertheless, just a few
of approaches treat adaptation at the business logic level.
Most of the approaches deal adaptation at the technological or
performance level, treating exceptional behavior caused by
errors in the application or errors in the infrastructure or
middleware components on which the process runs. This
paper is focused on dynamic adaptation in workflows at the
business logic level, treating exceptional behaviour caused by
the result of a breach of a business rule, a constraint violation,
a data issue, or an unexpected business behavior.

 Most approaches support changes in the environment,
failures, variations and exception using policy/rule-based
frameworks [3, 6, 7, 8, 9, 10] and explicitly represent paths or
schemas. Many of them use ECA (Event-Condition-Action)
rules to define constraints. These kinds of approaches work
well with well-defined business process; however they are not
suitable for more complex and dynamic processes or for
weakly structured or non-routine process. Other modern
approaches uses knowledge-based techniques [11,12, 13, 14,
15, 16, 17], case-based reasoning [18] or ontology-based
reasoning [19, 20, 21]. These kinds of approaches help with
unpredictability and uncertainty of business processes, and
with non-routine processes and provide human thinking and
decision-making techniques that provide sufficient flexibility
and adaptability for business process [13].

 We believe that the usage of autonomic computing
principles along with some cognitive capabilities can
satisfactory cope with foreseen and unforeseen changes in

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 35

business process and permit adaptation at runtime. In this
paper, we propose an architecture based on the MAPE-K
reference model that provides flexibility for workflow
management systems to dynamically adapt business processes
to suit new conditions at runtime. This paper is organized as
follows: Section 2 describes the background of this work.
Section 3 shows the proposed solution. Section 4 presents the
case study and finally Section 5 presents the conclusions.

2 Background
 This section describes the theoretical foundation used in
the proposed solution.

2.1 Workflow Management System (WFMS)
 A workflow Management system can be defined as a
software system that defines, creates, and manages the
execution of workflows. It possesses one or more workflow
engines capable to interpret the process definition, enable user
interactions, and invoke different IT Tools and applications
[2]. The workflow execution has a specific order of execution
according to business logic [22].

Figure 1. Workflow Reference Model - Components & Interfaces [22]

 Figure 1 shows The major components and interfaces
within the architecture according to [22], which are described
below:

 The workflow enactment service provides a runtime
environment in which one or more workflow management
engines create, manage, and execute workflow instances and
interact with external resources by means of workflow
application programming interface. Several functions can be
handled by the workflow engine, including interpretation of
the process definition, control of process instances, navigation
between process activities, sign-on and sign-off of specific
users, identification of work items for user attention and an
interface to support user interactions, maintenance of
workflow control data and workflow relevant data, passing
workflow relevant data to/from applications or users, an
interface to invoke external applications and link any
workflow relevant data, supervisory actions for control,

administration, and audit purposes. It interacts with the
external resources through the interfaces [22].

 Process Definition Tools are different tools that define
and model business process and its activities, translating them
from the real world to a formal computerized representation.
These tools may be supplied as part of a workflow product or
as a separate. The interface between those tools and the
runtime workflow enactment service is called the process
definition import/export interface [22].

 Workflow Client Applications are activities that require
involving human resources. The interface between these client
applications and workflow engine interacts with the Worklist
handler, responsible for organizing the user interaction with
the process instance. It is the responsibility of the Worklist
handler to choose and advance each element of the Worklist
[22].

 Invoked Applications are other potential applications
without user interaction in a heterogeneous product
environment. The interface allows the workflow engine to
activate a tool to perform a particular activity, for this reason,
there must exist a common format to transfer data among
them [22].

 Administration and monitoring tools provide operations
such as user management, role management, audit
management, resource control, process supervisory functions,
etc. [22].

 There should be interoperability functions that provide
communication between heterogeneous workflow systems
[22].

2.2 Self-Adaptive Systems
 A self-adaptive system adjusts its artifacts or attributes
in response to changes. To accomplish its goal, it should
monitor the software system (self) and its environment
(context) to detect changes, make decisions, and act
appropriately. The basis of self-adaptive software is the
adaptation of dynamic/runtime changes [23]. This kind of
software tries to fulfill its requirements at runtime in response
to changes [24]. These systems make decisions on their own,
using high-level rules and policies. They constantly check and
optimize their status and automatically adapt themselves to
changing conditions, keeping the system’s complexity
invisible to the user and operators.

 According to [24], to contemplate their goals they
should have some features known as self-* properties: Self-
configuration, it is the ability of automatic configuration of
components according to high-level goals. Self-optimization,
it is the ability of automatic monitoring and control of
resources to ensure the optimal functioning. The system may
decide to initiate a change to the system proactively in an
attempt to improve performance or quality of service. Self-
healing, it is the ability of automatic detection, diagnosis,
correction, and recovery of faults. Self-protection, it is the

36 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

ability of identification and protection of malicious attacks but
also from end-users who inadvertently make software
changes.

Figure 2. Hierarchy of the Self-* Properties [23]

 [23] discusses these properties along with some others
and provides a unified hierarchical set, Figure 2 describes a
hierarchy of self-* properties in three levels. In this hierarchy,
self-adaptiveness is in the general level which is decomposed
into major and primitive properties at two different levels. The
primitive properties are Self-awareness and Context-
Awareness. Self-awareness means aware of its self-states and
behaviors according to [25] and context-awareness means
aware of its context its operational environment according to
[26].

2.3 MAPE-K

 MAPE-K is the reference model for autonomic control
loops suggested by IBM [27]. It is a logical architecture that
defines the main architectural blocks for building an
autonomic manager either in a monolithic or distributed
approach.

 The MAPE-K derives its name from the main tasks in
the feedback control loop of self-adaptive systems [27]:

 Monitor, it collects information from the managed
resources. The monitor function aggregates,
correlates, and filters the information until it
determines a symptom that needs to be analyzed.

 Analyze, it performs complex data analysis and
reasoning on the symptoms provided by the monitor
function. This analysis is made with stored
knowledge data. If there is a need of changes, the
request is logically passed to the plan function.

 Plan, it structures the actions needed to achieve goals
and objectives. The plan function creates or selects a
procedure to enact a desired alteration in the
managed resource to cope with the new situation.

 Execute, it carries out the adaptation, changes the
behavior of the managed resource using effectors
based on the actions recommended by the plan
function.

 Knowledge, standard data shared among the monitor,
analyze, plan, and execute functions. The shared
knowledge includes data such as topology
information, historical logs, metrics, symptoms, and

policies. Knowledge is created by the monitor part
while execute part might update the knowledge.

2.4 Intelligent Agents
 An agent is an autonomous software entity situated in
some environment where it takes autonomous actions to
achieve their goals. They are capable of making decisions to
proactively or reactively respond changes in its environment
in real-time [28].

 According to [29], agents are autonomous (operates
without direct human intervention and control their internal
states), social (interact with human and other agents), reactive
(perceive changes in the environment and responds to it in a
timely fashion), proactive (takes the initiative to satisfy its
goals, goal-directed behavior).

2.5 Flexibility in Process
 [30] defines flexibility as the ability to yield to change
without disappearing, without losing identity. In processes,
flexibility is defined as the ability to deal with both foreseen
and unforeseen changes, adapting or varying the affected parts
of the business process and maintaining the essential form of
the parts not impacted [31].

 According to [31] the flexibility types can be classified
as: Flexibility by Design, design alternative execution paths
within a process model at design time. The selection of the
most appropriate path is made at runtime for each process
instance. Flexibility by Deviation, a process instance might
temporarily deviate at runtime from the execution path
prescribed in order to deal changes in their environment
without altering the process model. Flexibility by
Underspecification is the ability to execute an incomplete
process model at runtime. Placeholders are variable points
marked as underspecified, where is not possible design the
activities because the lack of information. E. g. Late binding,
late modeling, etc. Flexibility by Change is the ability to
modify a process model at runtime. This means to migrate all
current process instances to the new process model.

3 The Proposed Solution
To enable dynamic adaptation in workflows, the proposed

architecture (Figure 3) uses the reference model for autonomic
control loops MAPE-K which provides to the workflow
autonomic properties such as self-configuration, self-healing,
self-optimizing, and self-protecting. With these self*
properties along with self-awareness and context-awareness,
the workflow fulfills the requirements to be self-adaptive and
dynamically respond to changes at runtime.

 An important quality attribute of the architecture is the
separation of concerns between the business logic and the
application logic. The adaptation layer is separated from the
workflow engine, therefore the workflow adaptation is
performed in a meta-level, and consequently it is transparent

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 37

to the workflow engine, so we do not modify the structure of
any workflow engine. In addition, it gives us an easy and
independent way to manage changes in the business process.
This paper is focused in the adaptation layer.

Figure 3. Proposed Architecture

 The adaptation layer uses intelligent agents which make
the workflow autonomous, proactive, reactive, and goal
oriented. Since these operate without direct human
intervention, can communicate to each other’s, perceive the
environment, respond to changes, and take initiatives to
achieve the goals. To achieve their goals, agents need to use
knowledge to reason about its current state and the
environment, to generate plans and execute them, for this
reason, a shared centralized knowledge repository is provided.

 The knowledge repository is the core element of our
architecture, which centralizes all the information related to
the business goals, business rules or policies, case data, a
process repository (set of activities that can be chosen at
runtime), and other external knowledge repositories related to
the business domain. According to this information, the agents
monitor, analyze, make decisions, and plan new activities.
The information should be represented in the form of
declarative knowledge to do logical inferences and solve
problems.

 To distribute the roles, the adaptation layer has a monitor
agent, adapter agent, and executor agent, consecutively the
adapter agent comprises the analyzer, the planner, and the
simulator separated according to their capabilities or
functions. All the agents share the knowledge repository.

 The monitor agent has a self-manager and a context
manager. The self-manager acquires the current status of the
executing instance. The context manager interprets the
acquired context information during the execution of an
instance and represents it in a context model interpretable for
the monitor. The context manager can also use some process
mining techniques for discover other context information
from the execution environment in order to update the context
model.

 The monitor agent continuously evaluates the current
state of the process instance and its context provided by the
context manager during all the process execution until it
determines a symptom that need to be analyzed, that could be
caused by the result of a breach of a business rule, a constraint
violation, an unexpected data value or output or any other
unexpected business behavior. This symptom is delivered to
the analyzer.

 The analyzer observes, identifies, and reasons over the
situation according to the business rules and goals and
diagnoses the situation. The analyzer counts with artificial
intelligence techniques to make the data analysis, reason and
make real-time decisions, the analysis is influenced by all the
knowledge base provided. It is responsible for identify
potential adaptations during the process execution. If
adaptations are required, the planner is activated.

 The planner creates or selects activities from the process
repository, it checks if the detected situation has a solution, if
not it makes some inferences of a possible solution also it
counts with artificial intelligence planning techniques to
reconfigure the activities, according with preconditions and
postconditions, interdependencies between activities, business
rules, etc. It reformulates and reconfigures the process at a
high level of abstraction. The solution can be a single activity
or a complex process. It also employs predictions techniques
to make predictions about the planned activities, to watch
their impact.

 The simulator reproduces the activities and verifies if it
has to do some extra changes in the process or if there are
some inconsistencies if so, this new situation is passed to the
analyzer. Otherwise, the solution is suggested to a domain
expert, who will approve the proposal or further adapt it, after
the solution will be learned. Depending on the particular
application domain, processes can be only altered by the
supervision of an expert.

 The executor agent makes the process definition: creates
a computerized representation of the process that will be
interpreted by the workflow engine.

 In order to validate our proposal, the next section
presents a case study based in a real nursing case.

4 Case study: Nursing Process
 This section presents an evaluation of the proposed
architecture to prove its effectiveness and feasibility adapting
workflows at runtime. Thus, the main goal of this case study
is to analyze if the proposed architecture contemplates
dynamic adaptation in workflows at runtime in the context of
a nursing domain. We chose the nursing domain because the
nursing process is typical example of a flexible process. In the
nursing practice, nurses monitor patients during their
treatments, execute different tasks according to each patient
situation and react to unexpected situations. For these reasons
explained above, we believe that a nursing process is a very

38 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

good example of a workflow with unexpected situations and
changes, consequently is excellent to evaluate the proposed
architecture.

4.1 Case Study Context

 Nursing is a service provided to humans focused on
assistance and patient care in different situations related to his
health [32]. Nurses adopt practices based on scientific
knowledge and develop a systematization of their processes.
Thanks to this systematization, the nursing profession
achieved its professional autonomy. With this autonomy,
nurses can give a diagnosis, different from a medical
diagnosis. Thus, nurses should have necessary knowledge and
experience in order to take care a patient and make decisions
about what treatment or procedures they may do.

 A medical diagnosis deals with disease or medical
condition. A nursing diagnosis focuses on the person and their
physiological and/or psychological response to actual or
potential health problems and life processes [33].

 According to the Federal Nursing Council Resolution
No. 358/2009, the nursing process is a methodological tool
that guides professional care and nursing documentation of
professional practice. The steps for realization of the nursing
process (Figure 4) are: collect nursing data, nursing diagnosis,
nursing planning, implementation, and evaluation of nursing.
These five steps are interrelated, interdependent, and recurring
[34].

Figure 4. Nursing Process

 The first step, collect nursing data, is collect relevant
data about the patient, family, and community, to identify
needs, problems, worries, and patient’s human reactions [35].
This is basically through anamnesis and physical examination.
The nursing diagnosis is the process of interpretation of the
data collected, the decision making process based on the
concepts of nursing diagnoses which form the basis for
selecting interventions and expected results [35]. The nursing
planning consists in determining priorities between diagnosed
problems, setting the expected results for each problem and
their respective prescriptions in an organized way. According
of the expected results, a set of nursing interventions is
planned. The implementation of the nursing plan attends the

whole process to minimize risks, solve or control a problem
(nursing diagnosis), assist in daily activities and promote
health. Nurses should be constantly aware of both patient
responses as well as their own performance because the
human being is unpredictable and requires constant
monitoring [36]. The evaluation is a deliberate, systematic,
and continuous process of verification. It consists in follow
the patient responses to the prescribed care through
observation notes in the respective medical record. The nurse
evaluates the progress of the patient, establishes corrective
measures, and if necessary, revises the care plan.

 The nursing process helps nurses to make decisions,
predict, and assess consequences. It improves the nursing
capacity to solve problems, make decisions, maximize
opportunities and resources to form habits, and increase their
expertise.

4.2 Research Questions
 The study answers the following questions.

 RQ1: Does the architecture provide means to adapt the
workflow under new circumstances or unexpected behaviors
during the workflow execution?

 RQ2: What kinds of changes does the architecture
support?

4.3 Case selection and units of analysis
 In case studies, the case and the units of analysis are
selected intentionally [37]. So, the main selection criterion
was that the nurse case scenario should present unexpected
situations or events and provide us a good description of the
events in the nursing process. But also the selected unit was
limited to its availability. The unit for analysis was selected
because its extreme behavior, the real-life medical scenario
analyzed is described in [38].

4.4 Data Analysis
 The data was collected through a documentary analysis.
The medical scenario was reconstructed in order to get the
sequence of events to be mapped into the nursing process. We
made a time -series analysis in order to denote the set of
events that happen over the time and executed a simulation of
a process instance (a nursing scenario) in order to verify if the
architecture supports all unexpected situations that happen in
this nursing scenario. The domain was modeled as follows:

Knowledge Repository

 It was populated with relevant information of the nursing
domain:

 Normal rates for vital signs → Business Rules
 NANDA (North American Nursing Diagnosis

Association) → Business Rules

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 39

 NOC (Nursing Outcomes Classification) → Business
Goals

 NIC (Nursing Intervention Classification) → Process
Repository

 Medical Record → Case Data
 Drugs information’s, evidence- based medicine →

External Knowledge Repositories

Context information

 New symptoms (Adverse reactions, allergies,etc.)
 Abnormal vital signs
 Contraindications
 Active health problems
 Active medications

The procedures of each part of the adaptation layer were:

 Monitor agent: Continuously analyzes the case data
until some unexpected events happen; new context elements
appear or are identified by the context manager.

 Adapter Agent: Divides tasks between the analyzer,
planner, and simulator.

 Analyzer: The analyzer observes, reasons about the
events, characterizes the situation according to the
NANDA taxonomy, search for the defining
characteristics, analyze the medical record, and
finally give the nursing diagnoses for this situation.

 Planner: With this diagnostic, the planner searches
interventions (NIC) for the diagnoses in order to
create a care plan and structures the activities needed
to achieve the goals and objectives (NOC).

 Simulator: Finally, the simulator simulates all the
process and search for potential inconsistencies or
dangerous situations. If some problem is detected, the
process is replanned. Finally it will be suggested to
the nurse. After her approval, the process is stored in
the process repository.

 Executor Agent: After that process, the executor agent
will make the process definition to be delivered to the
workflow engine.

 This cycle is repeated several times in the execution of
the nursing scenario and this information is all the time stored
in the case data.

4.5 Threats of validity
 Construct Validity, The threat of validity is that the

chosen nursing scenario is a real life case
documented in [38], so it counts with expertise of
nurses.

 External Validity, it is not possible to say that the
study case is exhaustive. Other studies for different
processes and domains have to be performed.

 Internal Validity, the simulated scenario is a real-life
nursing case chosen because it shows an extreme
nursing case with many unexpected circumstances.
The proposed workflows were validated by a nurse.

 Reliability, this study presents a limitation related to
its results, which will be considered only as evidence.

4.6 Results
 RQ1: Does the architecture provide means to adapt
the workflow under new circumstances or unexpected
behaviors during the workflow execution?

 Based on the simulated situations during the execution
of the nursing scenario, it was shown that the architecture has
means to adapt the processes at runtime: the monitor agent,
the adapter agent make possible the process adaptation using
the knowledge repository and compose the process in high
level of abstraction to finally the executor agent make the
process definition at runtime in order to be interpretable for
the workflow enactment service. The workflow adaptation is
only possible with a vast knowledge repository. The dynamic
adaptation is imperceptible to the workflow enactment service
because it is being made in a higher level of abstraction.

 RQ2: What kinds of changes does the architecture
support?

 The architecture supports both foreseen and unforeseen
changes in process instances. The foreseen changes are
previously modeled in the process repository at design time,
so the architecture provides flexibility by design. The
unforeseen changes are supported by the adaptation layer at
runtime. The nursing planning is a step in which there is
insufficient information at design time, so as the architecture
provide means to execute an incomplete process model, the
architecture provides flexibility by underspecification.
Flexibility by deviation is also supported by the architecture
because during the process execution we deviate several times
from the initial plan to cope changes in the context over the
time.

 Thus, the proposed architecture contemplates dynamic
adaptation in workflows at runtime in the context of a nursing
domain. We must mention that for this domain, it is very
important to know that every taken decision (diagnosis,
interventions, and activities) by the agents, it is first suggested
to the nurse (domain expert) who approves it or change it.
After its acceptance, the suggested workflow is saved as an
experience then the workflow is created to be interpretable for
the workflow engine. The suggested information helps
medical professionals to identify unexpected situations and
make better clinical decisions, nursing diagnosis, and nursing
interventions.

40 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

5 Conclusions
 In this paper was proposed an architecture for workflow
systems, we focused in the adaptation layer that permits
dynamic adaptation in workflows. The adaptation layer is
based in the autonomic control loop MAPE-K that provides
the means for adaptation, each module of the MAPE-K is
represented by an intelligent agent that follows business rules
in order achieve the business goals. The agents are capable to
make decisions in order to deal with unexpected changes in
both “the self” and “its context”, proactively work together to
achieve the business goals and learn from its experience. We
believe that our approach is simple but potent.

 In order to validate the solution, a case study was made
in the nursing domain. An extreme nursing case scenario was
simulated in the architecture in order to illustrate the use of
our approach. The proposed architecture has showed its
capacity to support different situations and dynamically adapt
the process according to unexpected circumstances.
Therefore, the architecture supports dynamic adaptation at
runtime.

 Our approach is part of an ongoing work. As such, much
remains to be done. As future work, we plan to develop a
system that performs dynamic adaptation in workflows in
order to empirically evaluate the proposal.

Acknowledgment
 Thanks to the National Council for Scientific and
Technological Development – CNPq – for financial support.

References
[1] W. M. P. Van Der Aalst, “Process Aware Information Systems:
Design, Enactment, and Analysis,” Wiley Encycl. Comput. Sci. Eng. , pp. 1–
31, 2009.
[2] M. Weske, Business process management: concepts, languages,
architectures. 2007, no. Second Edition. 2007.
[3] S. Deng, Z. Yu, Z. Wu, and L. Huang, “Enhancement of workflow
flexibility by composing activities at runtime,” … 2004 ACM Symp. …, pp.
667–673, 2004.
[4] M. Reichert, S. Rinderle, and P. Dadam, “On the Common Support of
Workflow Type and Instance Changes under Correctness Constraints,” 2003.
[5] W. M. P. Van Der Aalst and S. Jablonski, “Dealing with workflow
change: Identification of issues and solutions,” Comput. Syst. Sci. Eng. , vol.
15, no. 5, pp. 267–276, 2000.
[6] R. Müller, U. Greiner, and E. Rahm, “AgentWork: a workflow system
supporting rule-based workflow adaptation,” Data Knowl. Eng. , vol. 51, no.
2, pp. 223–256, Nov. 2004.
[7] R. Romeikat, B. Bauer, T. Bandh, G. Carle, H. Sanneck, and L. C.
Schmelz, “Policy-driven Workflows for Mobile Network Management
Automation,” pp. 1111–1115, 2010.
[8] A. Agrawal, “Semantics of business process vocabulary and process
rules,” Proc. 4th India Softw. Eng. , pp. 61–68, 2011.
[9] G. Russello, C. Dong, and N. Dulay, “Personalising Situated Workflow
Systems for Pervasive Healthcare Applications,” 2008.
[10] J. M. Bernal and P. Falcarin, “Dynamic context-aware business process:
a rule-based approach supported by pattern identification,” Proc. 2010 …, pp.
470–474, 2010.

[11] M. Wang, H. Wang, and D. Xu, “The design of intelligent workflow
monitoring with agent technology,” Knowledge-Based Syst. , vol. 18, no. 6,
pp. 257–266, Oct. 2005.
[12] Y. Dai and J. Wang, “Variation knowledge-based approach to handling
business process changes,” 2006, pp. 693–700.
[13] M. Wang and H. Wang, “From process logic to business logic—A
cognitive approach to business process management,” Inf. Manag. , vol. 43,
no. 2, pp. 179–193, Mar. 2006.
[14] Y. Qu, X. Sheng, and W. Jiao, “A Multi-Agent Based Model of
Workflow Management,” 2006, pp. 8–12.
[15] K. Lee, R. Sakellariou, N. W. Paton, and A. A. A. Fernandes,
“Workflow Adaptation As an Autonomic Computing Problem,” in
Proceedings of the 2Nd Workshop on Workflows in Support of Large-scale
Science, 2007, pp. 29–34.
[16] P. Chakravarty, “An Event-Driven Approach for Agent-Based Business
Process Enactment,” vol. 5, pp. 1269–1271, 2007.
[17] W. Duo, L. Yi, L. Wenhui, J. Qi, and Y. Rongqing, “Intelligent Multi-
Agent Based Information System of Business Process Management,” 2008
IEEE Pacific-Asia Work. Comput. Intell. Ind. Appl. , pp. 469–473, Dec. 2008.
[18] Y. Stavenko, N. Kazantsev, and A. Gromoff, “Business Process Model
Reasoning: From Workflow to Case Management,” Procedia Technol. , vol. 9,
pp. 806–811, Jan. 2013.
[19] J. Dang, A. Hedayati, K. Hampel, and C. Toklu, “An ontological
knowledge framework for adaptive medical workflow. ,” J. Biomed. Inform. ,
vol. 41, no. 5, pp. 829–36, Oct. 2008.
[20] A. Z. Abbasi and Z. a. Shaikh, “A Conceptual Framework for Smart
Workflow Management,” 2009 Int. Conf. Inf. Manag. Eng. , pp. 574–578,
2009.
[21] S. Mitsch, W. Gottesheim, F. H. Pommer, B. Pröll, W. Retschitzegger,
W. Schwinger, R. Hutter, G. Rossi, and N. Baumgartner, “Making Workflows
Situation Aware - An Ontology-driven Framework for Dynamic Spatial
Systems,” pp. 5–7, 2011.
[22] D. Hollingsworth, “Workflow Management Coalition: The Workflow
Reference Model,” 1995.
[23] M. Salehie and L. Tahvildari, “Self-adaptive software: Landscape and
research challenges,” ACM Trans. Auton. Adapt. Syst. , vol. 4, no. 2, pp. 1–
42, 2009.
[24] J. O. Kephart and D. M. Chess, “The Vision of Autonomic Computing,”
vol. 36, no. 1, January, pp. 41–50, 2003.
[25] M. G. Hinchey and R. Sterritt, “Self-managing software,” Computer
(Long. Beach. Calif). , vol. 39, no. 2, pp. 107–109, 2006.
[26] M. Parashar and S. Hariri, “Autonomic Computing: An Overview,” Hot
Top. Lect. Notes Comput. Sci. 3566, pp. 257–269, 2005.
[27] IBM Corporation, “An Architectural Blueprint for Autonomic
Computing, Technical Whitepaper (Fourth Edition),” no. June. 2006.
[28] M. Wooldridge, An Introduction to MultiAgent Systems, 2nd Edition,
London, UK, John Wiley & Sons, 2009.
[29] M. Wooldridge, Intelligent Agents Theories, Architectures, and
Languages, Springer-Verkag, 1995.
[30] G. Regev and A. Wegmann, “A Regulation-Based View on Business
Process and Supporting System Flexibility,” Proc. CAiSE 05 Work. Bus.
Process Model. Dev. Support BPMDS 05, no. Section 2, pp. 91–98, 2005.
[31] H. Schonenberg, R. Mans, N. Russell, N. Mulyar, and W. Van der Alst,
“Process flexibility: A survey of contemporary approaches,” Lect. Notes Bus.
Inf. Process. , vol. 10, no. Part I, pp. 16–30, 2008.
[32] W. A. Horta, Processo de Enfermagem. São Paulo: EPU, 1979.
[33] NANDA International, Nursing diagnoses: definitions and
classifications, Wiley Blackwell, 2010.
[34] Brasil, Resolução COFEN n◦ 358 de 15 de outubro de 2009. Conselho
Federal de Enfermagem. Rio de Janeiro; 2009.
[35] M. C. Tannure, A. M. Gonçalvez, SAE: Sistematização da Assistência
de Enfermagem. Guia Prático. Rio de Janeiro, Brasil, 2010.
[36] R. Alfaro-Lefreve, Aplicação do processo de enfermagem: promoção do
cuidado colaborativo. 5 ed. Porto Alegre: Artmed, 2005.
[37] P. Runeson, M, Host, A. Rainer, B. Regnell, Case Study Research in
Software Engineering: Guidelines and Examples, 1st Edition, John Wiley &
Sons, New Jersey, USA, 2012.
[38] J. R. Mancia, “Revista Brasileira de Enfermagem,” Rev. Bras. Enferm. ,
vol. 53, no. 1, pp. 5–6, 2007.

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 41

Distributed Agile Development:
A Survey of Challenges and Solutions

Harneet Kaur, Hisham M. Haddad, and Jing (Selena) He

Department of Computer Science, Kennesaw State University, Kennesaw, GA, USA
fharneet@students.kennesaw.edu, {hhaddad, jhe4}@Kennesaw.edu

Abstract-Global market, constant pressure, and global talent
are major powers that lead to distributed teams. But this is
not an easy task; companies have to deal with several non-
trivial geo-political constraints, such as the willingness of
their employees to relocate, the costs of such relocations,
procedural constraints such as work permit issues, and
others. To circumvent this, companies set up their offices in
multiple locations and hire local employees who work with
their colleagues at different geographical locations. Agility at
Scale 2012 survey found that 57% of the respondents were
having geographically dispersed teams. Having your
resources in different locations may make implementing
certain agile processes harder. However, there are ways of
working around it. This paper is investigates the challenges
faced by distributed agile teams and proposes solutions to
address these issues through an exploratory literature review.
The proposed solutions will help to build successful agile
teams.

Keywords: Distributed agile development, Agile practices,
Outsourcing, Distributed agile challenges, Distributed agile
solutions.

1. Introduction

In the most recent decade, there is a continuous
investment to transform local markets to global market. Many
different challenges have to be managed like additional faults
in software projects and lack of sufficient assets. Software
organizations use Distributed Software Development (DSD)
amenities to deal with these problems. These amenities help
minimize expenses and the way into skilled labour. Their
primary goal is to build up worth goods at reduced prices than
the co-located developments by enhancing resources. At
times, the quest for extreme benefit takes organizations to
seek outside solutions in different nations and this is referred
to as Global Software Development (GSD).

Software is created at multiple locations, in multiple
cultures and in worldwide dispersed locations. The managers,
executives, and engineers have to face many challenges at
different stages of the development process. These challenges

may be social, cultural, or technical. This influences the
manner in which software is planned, executed, and conveyed
to the customer.

Agile methods work well in notably vibrant industry and
IT environment. Organizations are restless in looking for
talent and skills accessible at easier rates. And hence the
desire to outsource the development process to these
countries. The aim of this paper is to understand the
challenges faced by the geographically dispersed agile teams
and propose practices that can be used to overcome these
challenges.

The paper is organized as follows: Section 2 highlights
distributed agile development. Section 3 discusses the
challenges faced by geographically dispersed agile teams.
Section 4 presents solutions for these challenges. The section
5 concludes the paper.

2. Distributed Agile Development

Agile development came into existence in 2001 [1] and
was considered to be the foundation to change the software
development practices. This was accomplished by mediating
the risk of altering needs and evolving technologies. Agility
intends to strip away the complexity associated with
traditional development. Thus concentrates on its deciding
objective to accelerate the project due dates, lift up the brisk
reaction to evolving situations and changes in client
necessities etc.

Distributed development is considered to be an
unavoidable truth for numerous agile teams. Majority of agile
methods presume that the teams to be placed in single room
but unfortunately this does not go with the real world
situations in which the agile teams are distributed globally
throughout the world. The factors that give rise to dispersed
teams are the following:

1. Global Market: Business market is expanding at a very fast
rate and when some new business steps in, it has to match its
standards. For that purpose it needs to advance the knowledge
in those markets with the help of amalgamation and setting up
or gaining subsidiaries situated in those markets.

42 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

2. Global Talent: In this competitive world, companies are
hiring skilled and experienced employees. There are some
factors that lead to distribution of teams such as: Willingness
of employees to relocate, Availability of Work Visa, and Cost
of relocation.

3. Reducing Costs: Nowadays companies are outsourcing to
areas with economical development rates to reduce the
development cost. It is estimated that 25% cost savings are
there if the service providers are located offshore than
domestic.

There are several Agile stories reported in the literature
[2, 3, 4, 5]. The “Agility at Scale 2012” survey [6], illustrates
how distributed were the teams on the successful projects:
49% of the agile teams had team members spread out through
the same building; 29% of the team members were working
within the driving distance; 30% of the agile team members
were working from home; and 52% indicated that some of
their agile teams had team members that were far located.

These facts illustrate that software companies do not go
with the idea of whole agile team working together in one
room. So, there is a strong requirement to combine Agile
practices with distributed development practices. Combining
these approaches introduces some challenges which are
discussed in the following section.

Organizations that choose to be both distributed and
Agile have different ways of implementing that through the
team structure: Isolated, Semi-integrated, and Integrated [7].
With Isolated structure, the organization may decide to
separate all the functionality at a particular location to form
isolated teams. The benefit of this approach is that numerous
issues related to distributed teams are averted. With Semi-
integrated structure, every location develops a team and only
the set of overlapping features with other teams are dealt. This
structure promotes further sharing of knowledge and lesser
knowledge silos. Only drawback of this structure is dealing
with communication problems. With Integrated structure, the
team is composed of members from diverse locations.
Although this maximizes knowledge sharing, it increases the
possibility of miscommunication due to lack of team
cohesiveness.

3. The Challenges

Although distributed teams are considered to be more
effective than co-located teams because of the reduced cost,
global talent, and others, there are certain loopholes in this
approach. The following are the challenges faced by
distributed agile teams:

3.1 Documentation

 Agile teams do not give importance to the
documentation. This may affect the distributed teams as they

will miss some details about the project and hence their
understanding about the project will suffer.

3.2 Pair Programming

 Agile development uses pair programming in which two
members of the team work on the same code side by side.
This approach is totally impossible in distributed
environment. Hence distributed groups will have to find some
other similar methodology.

3.3 Different Work Hours

 Sometimes, there come situations when team members
are located in different time zones and their working hours
doesn’t match. Hence their working hours need to be aligned
so that they can communicate with each other. This helps
avoiding rework and provides clarity of project.

3.4 Communication

 Reduced communication has more effects in case of
distributed teams. Most agile practices like test driven
development can be educated by providing one-on-one
training. Many problems in distributed agile development are
related to communication like unable to understand the
customer, the system architecture or system design. These
have to be solved by participating in discussions or solving
the problem manually.

3.5 Knowledge Transition

 Knowledge transition is absent in project development,
processes of customer support, domain and central product.
The developing teams have to set up the overlap times for
different time zones so as to achieve the 24 hours and 7 days
yield.

3.6 Cultural Differences

 Cultural issues can cause misunderstanding between
team members. Several recent studies [8, 9, 10, 11, 12] have
explored the cultural differences and measures to manage
them in distributed teams.

3.7 Lack of Team Cohesion

 In case of distributed development, members at
distinctive locales are more averse to observe themselves as a
major aspect of the same group when contrasted with co-
placed members. Absence of togetherness, accompanied by
common view of goals, is an issue in that situation. They get
worse when we talk about agile development because it
focuses on regular collaboration on all phases of the software
project.

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 43

3.8 People vs. Process Oriented Approaches

 In agile development, the process is people oriented and
informal methods are used to establish the control whereas
distributed development needs the control to be achieved by
formal methods.

3.9 Knowledge Management

 During the development process the experience of team
members, decisions, methods and skills must be gathered
through knowledge sharing. This helps the team members to
use the experience of the precursor to reduce redundant work
and cost. The benefit of global distribution cannot be acquired
without effective knowledge or information sharing. Hence
knowledge should be managed properly in distributed agile
development.

3.10 Language Barriers

 The language problem arises when the teams are non-
collocated and hence they are not able to understand each
other due to their different languages.

3.11 Role of Specialist

 Typical software organizations always have people with
specialized knowledge like business analyst, testers and user
interface specialists etc. Their knowledge is expected to be
utilized in the project when needed. Agile methodology does
not have any formal mechanism to request such expertise.
Even if the specialists are brought, they may face problems
similar to a new team member about gaining the
understanding of the project requirements [13].

3.12 Developer Fear of Skill Deficiency
Exposure

 Some developers fear that agile processes can bring
forward their deficiencies. Onsite customers, stand-up
meetings, use of storyboards and whiteboards bring the
shortcoming of developers in front of the whole team because
agile methodology involves constant communication and
collaboration. In addition, continuous integration and
automated testing mean that developers can’t hide poor, low-
quality code. Exposing the weaknesses of developers can
prove counterproductive [14].

3.13 Recruitment Challenges

 It is difficult for agile companies to find right people due
to lack of agile-specific recruitment policies. There are only
few universities or colleges that incorporate agile methods and
skills to their programs. Moreover degree programs tend to

rely upon either technical or business skills but rarely involve
both [14].

4 The Solutions

In the preceding section we discussed many challenges
faced by distributed agile development teams. Making a
successful appropriated geographically dispersed agile team is
to a great extent about balancing the hindrances to
communication due to distribution of teams. Actually
numerous geographically distributed groups flounder since
they attempt to act as if their group is co-spotted and don't
successfully address the extra communication troubles put on
them. A large number of the communication problems
confronted require commitments from the group to enhance
and the support of extra practices and instruments.

Below we propose practises and techniques to help
organizations overcome the challenges discussed in the
previous section.

4.1 Documentation

 Good documentation may also lead to collaboration of
agile teams. For example, if the use case diagrams with user
stories reduces misunderstandings and hence enhances
collaboration in teams. Several tools are used for
documentation like issue tracker (Jira) and project
management tool (Scrum Works) [15].

4.2 Pair Programming

 Pair programming can be achieved by using
communication tools, show-and-tell hour (every team member
demonstrates his or her work to the entire team and receives
feedback) and a daily developer scrum (developers meet
briefly to collaborate on technical issues or approaches) etc.

4.3 Different Working Hours

 The agile team members working at different locations
faces some communication challenges due to different time
zones. Although regular scrums and overlapping working
hours helps to minimize this problem but still delays are
encountered in the work. Because sometimes clarification is
required or rework has to be done. Sometimes the changes
made by one person affects the work of other persons at
different location and these changes are not propagated
correctly. The following helps:

 Developer to developer handshakes means that the
development team should communicate all the changes
they have made during their working hours that the team
members at other locations should be aware of.

44 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

 End of day status notes means that every team member
should share with others what he/she did during the work
hours, build status, and any kind of issues that has to be
handled or ignored.

4.4 Communication

 Instead of setting up meetings at 15 different locations, it
is good to set up impromptu meetings using video
conferencing. This saves time, expenses and also provides
flexibility to attend meetings at any time. The different
categories of tools used to achieve effective communication
[16] are discussed as follows:

4.4.1 Social networking tools

Nowadays there are number of social networking tools
as well as social softwares available online which allow
interactions in groups. Some of them are: Live meetings,
email and Video Conferencing etc.

4.4.2 Communication tools

Instant Messaging (IM) is used to get a quick attention
of a team member for a short query. There are some IM
applications in which the conversation can be stored as a
permanent record. This is additionally an extraordinary
method of knowing whether a fellow team member is in the
workplace, in a gathering and not be irritated, or accessible
for discussion.

4.4.3 SCM tools

SCM tools are used to track as well as control the
modifications in the software. Some of the SCM tools are:
Version controlling tools and Repository.

4.4.4 Bug and issue tracking databases

These are the database that records information related
to bugs and issues.

4.4.5 Knowledge centres

Knowledge centres include frequently asked questions as
well as technical references.

4.4.6 Collaborative development environments

These environments provide tools for development in
teams, for example, worksites and project workspaces. Some
of these tools are as follows:

 Visual Studio Team System. It allows team members to
perceive the current state of the project as well as update
the tasks of the individual.

 Scrum for Team System It puts into practice burndown
charts as well as Scrum task boards to aid with tracking
and iteration planning. These tools give the distributed
teams an experience of a team room.

 SharePoint. It is used for sharing data and recording the
team decisions. They also include cameras to capture
pictures of whiteboards.

 Dry Erase board technology. DEBT is not only used to
write and erase but also to store what you wrote. DEBT
also supports add-ons. Team members can also make a
digital copy of board’s data which can be used by the later
reviewers to track how the final product is achieved.

4.5 Knowledge Transition

 It is achieved by using following methodologies [17]:

 Maintain product/process repository: Creating a database
to help the development teams in tracking the status of the
project, reporting the issues and assigning priorities.

 Focus on well-understood functionality rather than
critical new functionality. Creating an atmosphere in
which both the developer and the client get used to the
process, application and tools

 Short cycle but not time-boxed development. Using short
cycle approach, in which 2-3 advancement cycles were
permitted to take 2-4 weeks each one, contingent upon the
practicality and the setup time required to comprehend the
business space.

4.6 Cultural Differences

 This can be accomplished by sharing work practices,
understanding cultural differences, managing language
barriers, rotating team ambassadors, and engendering cultural
awareness [18].

4.7 Team Cohesion

 This problem can be addressed by building trust. The
trust among the team members is very important because of
nominal official control. Some practices were utilized to
fabricate the trust between the groups, such as the following.

 Frequent visits by distributed partners. The regular
meetings between the project manager and the customer
were organized in three companies.

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 45

 Sponsor Visits. During the starting phases senior manager
visited the development team to finalize contracts and to
establish ground rules. These visits established great
amount of trust in teams.

 Build cohesive team culture: Creating a firm group society
by needing that every group was made up of parts that had
advanced former working associations with one another
and aggregately controlled all the needed ability.

4.8 People vs. Process Oriented
 This challenge can be addressed by:

4.8.1 Continuously adjust the process:

 Change the practices to- Planning iterations to finalize
requirements and develop design and Documenting
requirements at different levels of formality.

4.8.2 Verify the trust:

Some of the practices to verify the process and quality of
the product are summarized as follow [17]:

 Distributed QA: The onshore QA team check the offshore
development team for acceptable quality.

 Supplement informal communication with documentation:
Informal communication should be used accompanied by
the documentation of critical artefacts.

4.9 Knowledge Management

 Effective knowledge management is achieved by the
following four processes in distributed agile development
[19]:

 Knowledge Generation: It involves formal training, self-
learning, customer collaboration, inception and
communities of practice.

 Knowledge codification: It involves technical
representation, wiki and documentation.

 Knowledge Transfer: It involves tools, pair programming,
on site customer, discussions etc.

 Knowledge Application: It sprints, similar context or
problem solving.

4.10 Language Barriers

 In geographically distributed agile teams, the frequent
communication among team members and between client and
developer is very important. If they are from different areas
with different language then language barriers may arise in the

communication. The ways to overcome this problem are
discussed below:

 ESL (English as a Second Language) Course: This helps
in reading, listening, speaking and understanding.

 Don’t assume understanding: Check and notice if the
colleague does not ask any question than it means he/she
did not understand it.

 Praise colleagues for asking questions: Employees should

be encouraged to ask questions so that they understand
properly. They should be praised for being honest about
misunderstanding and never allowed to feel inadequate
and powerless.

 Speak slowly and clearly: The native employees should
speak slowly and clearly so that non native can easily
understand and have time to ask questions.

4.11 Role of Specialist

 Specialist knowledge is required irrespective of what
software development methodology is being used. For
example, an architect may join the project to create the
reference implementation and set the technical direction for
the project. The agile team members need to have a certain
degree of technical understanding and maturity to take on
from the architect once the base framework is in place. Some
amount of formalism in form of documentation needs to be
introduced to record the recommendations and decisions of
the specialist [13].

4.12 Developer Fear of Skill Deficiency
Exposure

 The developers should be provided an environment
where they feel safe to expose their weaknesses. This can be
achieved by:

 Allowing feedback outside the stand-ups to document any
fears, issues, or concerns inappropriate for discussion in
open forum.

 Making stand-up meetings voluntary for junior developers.

 Assigning mentors to new staff.

 Pair weaker developers with more experienced developers,
giving them joint responsibility for requirements [14].

4.13 Recruitment Challenges

 These challenges can be solved by developing recruiting
practices for agile methods to hire people and by putting

46 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

newly recruited graduate in agile projects to get hands-on-
experience [14].

5 Conclusion

This survey is conducted to uncover the challenges faced
by geographically dispersed agile teams and the ways to
conquer them. The findings in this work will help
organizations to adopt the distributed agile development
without worrying about its challenges. The organizations can
use the proposed techniques to run successful distributed agile
projects. B. Ramesh in [17] discussed whether we can
implement distributed agile development and also few
challenges and their solutions. J. Sutherland in [7], used the
scrum approach to distributed teams but still this approach did
not address many of the challenges like building trust,
documentation, team distribution and task distribution. D.
Batra in [20] discussed the grounded theory to accomplish the
challenges related to communication and cultural differences.
G. Rodriguez [21] used virtual meetings as the source of
communication between the team members. There are many
other sources of communication as well that can be applied to
distributed teams. The purpose of this literature survey is to
bring up all the challenges, the proposed solutions as well as
their context at one place. So that the organizations can find
the whole picture of different challenges in this paper and can
apply the suitable approach in distributed teams.

More in depth research can be done on the techniques
used to conquer the challenges in the future and hence
distributed teams can have multiple ways out for their
problems; allowing distributed teams to successfully build a
project with minimal obstacles. Table 1 provides the summary
of challenges, proposed solutions and the corresponding
context.

Table 1: Challenges, proposed solutions and Context

No. Challenges Proposed Solutions Context

A Documentation

Use Document
Management Tools:
issue tracker (Jira) and
project management
tool (Scrum Works).

4 teams practised it-
Two of the teams had
participants from
TelAviv, France and
Florida; and the other
two teams had
participants in
TelAviv only

B Pair
Programming

Use of video
conferencing tools or
replace this with
equivalent practices
like Show-and-Tell
hour or a Daily
Developer Scrum.

General case applied
to projects that utilize
pair programming

C Different
Working Hours

Use of Developer to
developer handshakes
and end of the day
status notes.

Studied by majority
of the outsourcers (9
companies) come
from North America
and the majority of

the outsourcees
come from Asia (8
companies)

D Communication

Use of Tools: Live
Meetings, E-mail,
Video Conferencing,
Instant Messaging,
Visual Studio Team
System, Scrum for
Team System, Share
Point, Dry Erase Board,
etc.

Studied by 3
organizations
practising agile

E Knowledge
Transition

Set up overlap time for
different time zones to
get 24 X 7 yield. Apply
knowledge transfer
mechanism.

Studied by 3
organizations
practising agile

F Cultural
Differences

Engendering cultural
awareness,
understanding cultural
differences, rotating
team ambassadors,
sharing work practices,
and managing language
barriers.

18 Agile practitioners
from 10 different
software
organisations in the
USA and India

G Team Cohesion
Maintain team
involvement and
cohesion.

Studied by 3
organizations
practising agile

H
People vs.
Process
Oriented

Addressed by two
groups of practices:
Continuously adjust the
process and Verify the
trust.

Studied by 3
organizations
practicing agile

I Knowledge
Management

Use of Knowledge
Management
Techniques: Knowledge
Generation, Knowledge
Codification,
Knowledge Transfer,
Knowledge
Application.

45 Agile practitioners
from 28 different
software companies
in the USA, India and
Australia.

J Language
Barrier

Speak slowly and
clearly, don’t assume
understanding, praise
others for asking
questions, sign up for
English as a foreign
language course etc.

18 Agile practitioners
from 10 different
software
organisations in the
USA and India

K Role of
Specialist

Need for a specialist,
formal documentation

IT solutions
organization based
out of India serving
customers in US

L Developer’s
Fear

Allow Feedback,
making stand-ups
voluntary, assigning
mentors, pairing

Initially focussed on
group discussions in
2008 and then,
conducted 17 case
studies in 2009, using
in-depth interviews
with
senior personnel

M Recruitment
Challenges

Developing recruiting
practices, assigning
agile projects for
experience

Initially focussed on
group discussions in
2008 and then,
conducted 17 case
studies in 2009, using
in-depth interviews
with
senior personnel

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 47

Acknowledgment

This work is funded in part by the Kennesaw State
University’s Office of the Vice President of Research (OVPR)
Pilot/Seed Grant, and by the College of Science and
Mathematics Interdisciplinary Research Opportunities
(IDROP) Program.

References

[1] J. Sutherland, Agile Principles and Values, MSDN Library
(http://msdn.microsoft.com/en-us/library/dd997578.aspx)

[2] B. Fitzgerald, G. Hartnett, and K. Conboy. “Customising agile
methods to software practices at Intel Shannon”; European
Journal of Information Systems, Vol. 15, Issue 2, 200-213,
April 2006.

[3] B. Fitzgerald, N. Russo, and T. O'Kane. “Software
development method tailoring at Motorola”; Communications
of the ACM, Vol. 46, Issue 4, 64-70, April 2003.

[4] J. M. Bass. “Influences on agile practice tailoring in enterprise
software development”; In AGILE India, 1-9, Feb 2012.

[5] Cao, K. Mohan, P. Xu, and B. Ramesh. “How extreme does
extreme programming have to be? Adapting xp practices to
large-scale projects”; Proceedings of the 37th Annual Hawaii
International Conference on System Sciences, Jan 2004.

[6] Agility at Scale Survey:
http://www.ambysoft.com/surveys/stateOfITUnion201209.htm
l, June-Sept 2012.

[7] J. Sutherland, A. Viktorov, J. Blount, N. Puntikov.
“Distributed Scrum: Agile Project Management with
Outsourced Development Teams”; 40th Hawaii International
Conference on System Science, 274a, Jan 2007.

[8] J. S. Olson and G. M. Olson. “Culture surprises in remote
software development teams”; Distributed Development
Queue, Vol. 1, Issue 9, 52, December/January 2003-2004.

[9] J. D. Herbsleb and D. Moitra. “Global software development”;
IEEE Software, Vol. 18, Issue 2, March/April 2001.

[10] R. Bavani. “Critical success factors in distributed Agile for
outsourced product development”; International Conference
on Software Engineering, 75-79, Dec 2009.

[11] L. R. Abraham. “Cultural differences in software engineering”.
In Proceedings of the 2nd India Software Engineering
Conference. 95-100. 2009.

[12] S. Krishna, S. Sahay, and G. Walsham. “Managing cross-
cultural issues in global software outsourcing”;
Communications of the ACM- Human-computer etiquette,
Vol. 47, Issue 4, 62-66, April 2004.

[13] U. Banerjee, E. Narasimhan, N. Kanakalata. “Experience of
Executing Fixed Price Off-shored Agile Project”; In ISEC’11
Proceedings of the 4th India Software Engineering Conference,
69-75. Feb 2011.

[14] K. Conboy, S. Coyle, X. Wang, M. Pikkarainen, "People over
Process: Key Challenges in Agile Development"; IEEE
Software, Vol. 28, Issue 4, 48-57, July/August 2011.

[15] H. Smits, “Implementing Scrum in a Distributed Software
Development Organization”; Agile Conference, 371-375, Aug
2007.

[16] C. Young, H. Terashima. “How did we Adapt Agile Processes
to our Distributed Development”; Agile Conference, 304-309,
Aug 2008.

[17] B. Ramesh, L. Cao, K. Mohan, P. Xu. “Can distributed
Software Development be Agile?”; Communications of the
ACM, Vol. 49, Issue 10, 41-46, Oct 2006.

[18] S. Dorairaj, J. Noble, P. Malik. “Bridging Cultural
Differences”; In ISEC’11 Proceedings of the 4th India
Software Engineering Conference, 3-10, Feb 2011.

[19] S. Dorairaj, J. Noble, P. Malik. “Knowledge Management in
Distributed Agile Software Development”; Agile Conference,
64-73, Aug. 2012.

[20] D. Batra. “Modified agile practices for outsourced software
projects”; Communications of the ACM-The Status of the P
versus NP Problem, Vol. 52, Issue 9, 143-148, September
2009.

[21] G. Rodriguez, A. Soria, M. Campo. “Supporting Virtual
Meeting in Distributed Scrum Teams”. In Latin America
Transactions, Vol. 10, Issue 6, 2316-2323, Dec 2012.

48 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 49

50 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 51

52 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 53

54 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

SESSION

TESTING, VERIFICATION, VALIDATION
METHODS + SECURITY ANALYSIS, ENERGY

EFFICIENT SOFTWARE + SOFTWARE QUALITY
ISSUES

Chair(s)

TBA

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 55

56 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

Modelling the Energy Cost of Application Software for Developers

Fadwa Abdulhalim, Omar Alghamdi, and Kshirasagar Naik
Dept. of Electrical and Comp. Engineering, University of Waterloo, Waterloo, Ontario, Canada, N2L3G1

Abstract— In this paper, we present a non-exclusive test
bench to measure the power consumption of an application
running on a server. We provide a modelling procedure and
tools to software developers to evaluate energy performance
of their applications. A neural network model (NNM) has
been trained based on process count information gathered by
CollectD and actual real-time power consumption monitored
by a TED5000 power meter. By using measurement of an
actual system running different workloads, power models for
four subsystems (CPU, memory, disk and network interface)
on two platforms (two real servers) are developed and
validated. Through the use of this modeling procedure,
a developer can estimate the system power consumption
without the need of using an actual power meter device.
Overall, this paper helps the developers to analyze their
applications in term of power cost on real servers.

Keywords: Energy Performance Counter, Application Software

Power, Modeling, software developer

1. Introduction
Electrical energy is fundamental to all computer systems

[1], [2]. However, it is not ubiquitous, and it is expensive.

Those in the business of operating high-volume data cen-

tres, servers, and bitcoin mining farms all collectively have

an interest in understanding how their systems’ resources

are utilized. Often times however, fitting vast numbers of

components with thermal detection instrumentation is not

economically feasible.

Reducing power consumption in computational processes

is also important to software developers [3], [4], [5]. Ideally,

a tremendous amount of software design goes into consid-

erations that are critical to power efficiencies of computer

systems. Sometimes, software is designed by a high-level de-

veloper not aware of underlying physical components of the

system architecture, which can be exploited. Furthermore,

even if a developer is aware, they design software geared

towards mass end-user adoption and thus go for cross-

compatibility. The challenge for the software designer is

to utilize dynamic hardware adaptations. Dynamic hardware

adaptations make it possible to reduce power consumption

and overall chip temperature by reducing the amount of

available performance. However these adaptations generally

rely on input from temperature sensors, and due to thermal

inertia in microprocessor packaging [6], [7], [8], [9], the

detection of temperature changes significantly lag the power

events that caused them.

A work-around to dynamically gauge a system’s per-

formance is to use performance counters that have been

demonstrated to effectively proxy power consumption [10],

[11]. Performance counters count the instances of local

processor events and calls, and thus eliminate the need

for sensors distributed about various parts of the system.

However, considerable modelling challenges exist in relating

the statistical count information to what is truly happening

internally with respect to power consumption. Consequently,

there is considerable financial interest in developing accurate

models that use the performance counts to cost-effectively

provide up-to-date power consumption information. With

customization, engineers can target and customize specific

aspects of system responses in response to stress tests.

This work aims to provide energy performance evaluation

and power consumption estimation of an application running

on a server using performance counters. Counter data of

various performance indicators will be collected using the

CollectD tool. Simultaneously during the test, a Power

Meter (TED5000) will be used to monitor the actual power

drawn by the computer server. Furthermore, stress tests

are performed to examine power fluctuations in response

to the performance counts of four hardware subsystems:

CPU, memory, disk, and network interface. We provide a

modelling procedure and tools that help to estimate system

power consumption without the need of using a power meter

device.

The main contribution of the paper is to develop a

methodology to estimate the power profile of an application

software during its development stage. Intuitively, the power

profile of an application software is a sequence of < ti, pi >,

where pi is the power consumed by the hardware execution

platform of the application at the ti (time). The estimation

methodology applies a neural network model, and each

execution platform requires a separate estimation model.

The rest of the paper is organized as follows. In section

2, we briefly present the related work and compare our

approach with the other approaches. Section 3 presents

the system model of our test bench with the modelling

methodology. Collecting and simplifying the data process

has been explained in Section 4. In Section 5, we present

the model and explain how it is used to predict the power

consumption. Model validation and tests have been presented

in Section 6. Finally, some concluding remarks are provided

in Section 7.

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 57

2. Related Works
Diverse models, which are created with performance

counter information, have been used as a predictor of tem-

perature [12], total system power consumption [9], [11],

[13], and subsystem power [10], [14], [15], [16]. Even

though those models are simple and fast, they are sensitive

to benchmarks chosen for model calibration. Furthermore,

those models do not consider full system power consump-

tion. For overall power consumption, each of those models

requires one or more measurement phases to determine the

contribution of each subsystem. Although all the components

vary in their power demands with respect to certain process

calls, on average, microprocessors are the largest consumers

of power, while other subsystems constituted 40-60 percent

of the total power [11].

Must of those models were built using performance coun-

ters, and linear regression has been used to train those mod-

els [10], [11]. The feasibility of using performance events

to model real-time use of power in a computer system has

been effectively demonstrated. Performance events, which

are readily visible and accessible from the CPU, are highly

correlated to power consumption in all the subsystems,

including memory, I/O, disc and processor. The authors

of the paper [10] produced effective performance counter

models that independently measured power for the six main

components within a computer: microprocessor, graphics

processing unit (GPU), chipset, memory, I/O, and disk. The

authors at [17], [18] developed an automated test bench that

developers can use to measure the energy cost of the their

applications for their various design choices.

Our work is different from those works as follows: (i) our

power model of a system is developed through analyzing

the various count information from CPU, memory, disk and

network interactions; (ii) our test bench estimates the power

cost of an application running on server without the need

for power sensing hardware; (iii) neural network model has

been used to train the power consumption model. In order

to properly model system performance via counter-based

models, it is necessary to have a methodology to completely

represent the power consumption of a system, which is what

we do in this work.

3. System Model of Test Bench

Fig. 1: Test Bench Framework

The test bench in our power modeling process has been

shown in Figure 1. The definitions of all the terms are as

follows:

Server: A system that runs the software application that

the developer is interested in evaluating the energy cost of

the application.

Load: It is the software application of which we want to

evaluate the energy performance.

Power Meter: An external device that is used for measuring

the power drawn by the server. We used TED5000.

Wall Power: This supplies the AC power.

Development Environment: This is a computer equipped

with the software tools that are used to analyze and model

the data coming from the Server and the Meter.

Our test bench is used to measure the total power cost

of a server. To set up the test bench for power measure-

ment, we connected the power meter to the server via a

Current Transformers (CRT) and connected the server and

the development environment to the same LAN (Local Area

Network). Our modelling process involves several steps that

have been illustrated in Figure 2.

Fig. 2: Modelling Process

The first step is to run the workload and the performance

counters (collectD) on the server that is connected to the

power meter (TED5000). For the workload, we used a stress

tool called stress, which is a simple tool used to impose

varying amounts of load on the CPU, memory, I/O, and

disk. We used it to produce heavy load on selected subsys-

tems (CPU, memory, and disk) in order to drive the basic

correlation between their utilization and power consumption.

To collect the performance information for each subsystem,

we implemented CollectD. CollectD [19] is an open source

UNIX daemon that collects resource performance metrics

periodically. It has several plugins to collect data from a

specific application or service, and/or to write data to a

particular storage medium [20]. We used cpu, memory, disk
and interface plugins, and stored the data as CSV (Comma

Separated Values) files on the monitoring station.

The second step is to analyze the collected data to perform

modelling. In the development machine, we wrote a Matlab

code that helps to simplify the subsystem performance data

files. Each subsystem has many metrics collected for it. We

reduced the metrics to have only four main metrics, one for

each subsystem: CPU, memory, disk, and interface. We will

explain the reduction process of the metrics in Section 4.

58 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

The final step is to formulate the model based on the

performance metrics and the power meter data that have

been collected during the load process to predict the power.

A Neural Network Fitting (NNF) tool is used to fit the

data relating performance metrics to the power variation

for the system. By using the four subsystem metrics as

input variables and power meter data as a target variable,

we performed network modelling that predicts the power

consumption.

4. Collecting and Simplifying the Data
In this section, we explain how we collect and simplify

the actual power data and the performance metrics for the

CPU, memory, disk and interface subsystems.

4.1 Actual Power
A measurement of the actual power is collected by using

the energy detective device (TED 5000). TED500 has been

used because it is simple to install and its readings are very

accurate [21]. Moreover, this device has a set of Current

Transformers (CRT) that clips over the main power cable of

a machine. In our test bench, we connect it to the server.

The CRT will send the power reading to a Gateway tool

and from this tool to the router over an Ethernet cable. The

machine that has CollectD running on it is connected to

the same router. In this way, CollectD can take the power

reading from TED because they are all on the same local

area network (LAN). We added a plugin to the CollectD
plugins called Python plugin. Python plugin collects the

power measurements from TED5000. The plugin code is as

follows:

< P l u g i n python >

Module p a t h " / u s r / l i b / c o l l e c t d "

Impor t " t ed5000 "

<Module ted5000 >

Host " 1 2 9 . 9 7 . 1 0 . 8 5 "

DkipZeroes " t r u e "

Verbose " f a l s e "

</ Module >

</ P lug in >

The Host Ip address (e.g, 129.97.10.85) is the TED’s

getaway address that collects the actual power read and is

connected to the router.

4.2 CPU
Regarding CPU (Central Processing Unit), the measure-

ment was CPU usage as a percentage. This measurement

was collected via the CPU plugin, which measures the

fraction of the time spent by the CPU in several states: Idle

(idle and without outstanding I/O request), User (executing

at the user level), Nice (executing at the user level with

nice priority), System (executing at the system level), Wait

(idle with an outstanding I/O request), Softer (time the CPU

was interrupted by software), Interrupt (time the CPU was

interrupted by hardware), and Steal (time spent on other

OSs). However, CollectD gives the CPU utilization core by

core. For our system that has 8 cores, CollectD will return

the utilities for each core separately as CPU1,CPU2,...CPU8.

By applying different loads on the server to observe the

CPU states, we found that System and User states have the

most performance count. Thus, we calculate the CPU usage

as the addition of System and User parameters. We will

have CPU Usage = (system + user) and CPU Idle = (idle +

interrupt + nice + softer + steal + wait) for each CPU core.

Then, we add all the eight CPU usage files together to get

one CPU Utilization file.

It is important to note that CollectD collects statistics mea-

sured in jiffies (units of scheduling), instead of percentage.

On most Linux kernels there are 100 jiffies to a second,

but depending on both internal and external variables, this

might not be always true. However, it is a reasonable

approximation.

4.3 Memory
For memory resources, we defined the percentage used as

the core measurement. This percentage used was calculated

using the measurement that was collected via the CollectD

memory plugin. Memory plugin has the four measurement

files: Used (used by applications), Buffered (block devices’

caches), Cached (used to park file data), and Free (not being

used). The Linux kernel minimizes the free memory by

growing the cache, but when an application requires extra

memory, cached and buffered memory are released to give

extra memory to applications. Therefore, we considered in

the calculation of the percentage used only the memory Used
measurement file.

4.4 Disk
For hard-disk, we measured the performance statistics

using the CollectD disk plugin. This plugin gives different

measurement files. Disk-Merged read/write is for number

of read/write operations. Disk-Octets read/write is for bytes

read/write from/to disk per second. Disk-Ops read/write is

for read/write operation from/to disk per second. Disk-time
read/write is for average time an I/O read/write operation

took to complete. However, we took the data from Disk-
Octets read/write files and combined them together in one

file called the disk activities file. If the server platform has

more than one disk, CollectD will return measurement files

for each disk. We add all disk activities’ files coming from

each disk to have one total disk activities file.

4.5 Interface
For network interfaces, we used CollectD interface plugin,

and we chose bytes per second as the unit. The inter-
face plugin in CollectD collects different measurements as

"transfer" or "receive". It provides the rate of error, rate of

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 59

bytes, and rate of packets transferred or received. Here we

are considering the rate of bytes "transfer/receive" because

it is the actual bytes received/transmitted by the network

interface. We combined these data files together to have the

interface activities file. Moreover, utilization is provided by

CollectD for each ethernet port in the machine.

5. Power Estimation Model

5.1 Workload
The workload is important for developing and tuning

the power models. Our workload is chosen based on its

apparent utilization of a subsystem. In order to meet the

requirement of subsystem utilization, we employ the stress
tool to produce very high utilization.

The stress tool is a simple tool used to impose varying

amounts of stress on operating systems. We use it to produce

heavy loads on selected subsystems (CPU, memory and

disk) in order to drive the basic correlation between their

utilization and power consumption.

For a server with eight core CPUs, we fully loaded all

of them gradually one by one for one minute per core until

we reached 100% CPU load. Also, the memory was loaded

gradually to reach 100%. Disk also was loaded with the

stress tool. For the interface, downloading a large file (about

7 Gigabyte) was the load. In Figure 3, we plot the utilization

of the four resources (CPU, memory, disk, and interface)

during the stress test. Fig. 3(a) shows the CPU Utilization

Fig. 3: Resources Utilization During Applying High Load

during stressing of the four subsystems: CPU, memory, disk

and interface. From 0-800 seconds, the load was in the CPU.

Loading the memory was from 800-1200 seconds. However,

the load was in the disk from 1200-2000 seconds, while the

interface load was from 2000-2900 seconds. It is clear that

the CPU utilization is affected by loading each subsystem.

Fig. 3(b) shows how memory utilization has been affected

by the load. Fig. 3(c) shows the disk utilization, and Fig.

3(d) shows the interface utilization during the stress load.

5.2 Modelling process
To formulate the power consumption model, we used

Neural Network Fitting tool. Typically, neural network is

trained so that a specific input leads to a particular target

output. Here, we used the resource utilization matrices as

an input and the actual power watts as a target output.

Both resource utilization metrics and actual power watts are

measured and collected per second during the workload.

The resource utilization measurements are compiled into

one matrix RU with one column for each metric (time, cpu,

memory, disk, interface) and a row for each time sample

(equation 1). The actual power measurements are saved in

another matrix Pa with one column for each metric (time,

watt) and a row for each time sample (equation 2).

RU = [time, cpu,memory, disk, interface] (1)

Pa = [time,watt] (2)

While we are collecting data from different measurements

per second, there are probabilities for missing some data. To

observe any missing data, we matched and unified the time

of the resource utilizations matrix with the time of the actual

power matrix to have one matrix M as follows:

M = [timet, powert, CPUt,memt, diskt, interft] (3)

If there is a cell missing data, we will fill it by the average

value of the previous cell and the next cell. For example, if

we have a missing value (NuN) in CPU column for t second

(cput), we fill the NuN with the average of the previous value

(cput−1) and the next value (cput+1) as follows:

(cput) =
(cput−1) + (cput+1)

2
(4)

After fixing the missing data, we used RU matrix as the

input variable and Pa matrix as the target variable based on

the following equation:

net = f(input, target) (5)

where net is the model network file, and f is the neural

network fitting function.

After training the neural network, we got the estimation of

power as an output file. By using the network file (net), we

can predict the power consumption of a software application

running on the same server platform. The performance of the

neural network prediction model is shown in Figure 5. The

figure presents the actual power, model power (estimated

power) and the average error. It is clear that the estimated

power is very close to the actual power with Mean Absolute

Error (MAE) equal to 14.31 watts.

In Figure 4, we present a generic measurement procedure

that can create instance of information model to estimate

the power consumption of software application. Developers

can follow this simple procedure to get an idea about the

power consumption of their software applications during

60 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

Fig. 4: The Initialization and Operation Phases for The Modelling Process.

Fig. 5: Estimated power consumption (model power) and measured power

consumption (actual power) during the loading of each subsystem to the

maximum load.

the development stage. Our measurement procedure involves

two main phases.

The first phase is the Initialization Phase. This phase

needs to be executed only one time for an execution plat-

form, and it includes four steps:

1) Set up the power meter device with the platform for

which you need to estimate software application power

consumption.

2) Run the workload and the performance counters on the

platform which is connected to the power meter.

3) Simplify and reduce the collected performance data to

create the modelling variables:

• Calculate and reduce data to have only four values

in resource utilization vectors (RU): CPU, Memory,

Disk, Interface (Equation 6):

RU =< cpu,memory, disk, interface > (6)

• Create Resource Utilization matrix RUt (Equation

7) and Actual Power matrix Pat (Equation 8).

RUt = [cput,memoryt, diskt, interfacet] (7)

Pat = [wattt] (8)

• Fix the missing data (NuN) by the average value

of the previous cell and the next cell:

missing(RUt) =
(RUt−1) + (RUt+1)

2
(9)

4) Formulate the model based on the resource utilization

data (RUt) and the actual power data (Pat) to predict

the power consumption (Equation 10 and 11).

net = f(input, target) (10)

net = f(RUt, Pat) (11)

The second phase is the Operation Phase. In this phase, we

predict the power consumption of any application running

on the same platform that is used in the first phase. This

phase is executed once for each case of an application. This

phase includes three steps:

(a) Run the software application (app A) and CollectD
simultaneously with the intended scenario for t
seconds.

(b) Simplify and reduce application resource utiliza-
tion data ARU during the same t time.

ARUt = [< CPUt,Memt, Diskt, Intert >] (12)

(c) Input ARU and training model file net to power es-

timate model function (fpem) to get the estimation

power Pe.

Pet = fpem(net, ARUt) (13)

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 61

Thus, developers need to create the application resource

utilization table (ARU) for the software application that

is running on the server by running the application with

the performance counter. Then, they will use the modelling

network file (net) and ARU table as an input to estimate the

application power consumption. Thus, the operation phase

is ended by giving the estimation power (Pe) data of the

application running on the sever.

After a subsystems power consumption model has been

trained, it does not require retraining when applied to the

same server. So, the developer will train the model once

and then apply their applications to predict their power

consumption. However, if applying the model to another

server platform, retraining is required.

6. Validation
For our experiment, we used two real servers, server 1 and

server 2, as described in Table 1 and Table 2, respectively.

Table 1: Description of server 1

Parameter Real Server (Dell PowerEdge 2950)

Processor 7x Intel Xeon, 3 GHz, 8 cores
Hard Disk 1.7 Tera Bytes SAS
Main Memory 32 GB DIMM
Operating System Linux (Ubuntu 13.10)
Observable Subsystems CPU, Memory, Disk and Interface

Table 2: Description of server 2

Parameter Real Server (HP ProLiant DL385G5)

Processor Quad-Core AMD OperonTM , 2.3 GHz, 4 core
Hard Disk 55.2 Giga Bytes
Main Memory 15.7 GB DIMM
Operating System Linux (Ubuntu 14.04 LTS)
Observable Subsystems CPU, Memory, Disk and Interface

In each server, we applied four different workload sce-

narios to validate the model. In each scenario, we observed

the mean absolute error (MAE) of the model. Specifically,

we evaluated the Mean Absolute Error of power estima-

tion (MAEp), the Minimum Error (MinError), and the

Maximum Error (MaxError) which calculated as Equation

(14,15).

MaxError =
MAEp

MaxPower
∗ 100 (14)

MinError =
MAEp

MinPower
∗ 100 (15)

The MaxPower is the highest point the power reached

during the workload, and MinPower is the lowest point.
Moreover, the Error was calculated as the difference be-
tween the actual power and the model output (the estimation
power), Equation (16)

Error = ActualPower −ModelPower (16)

Also, we calculated the Mean Absolute Error of energy
estimation (MAEe) as Equation 17.

MAEe =
Error

ActualPower
∗ 100 (17)

For one of these scenarios, we downloaded four movie

files at the same time. The total size of the four files was

about 7 Gigabytes, and the downloading took around one

hour. After collecting and simplifying the data that was

collected during the downloading, we applied the model to

estimate the power consumption. Figure 6 shows the actual

power and the estimation power during the downloading

scenario in server 1. The MAEp was 56.45 watts with

minimum rate 13.97% and maximum rate 11.38%, and the

MAEe was 12.64%.

Fig. 6: Estimated power consumption (model power) and measured power

consumption (actual power) during downloading 7GB movie files in server1

The second scenario concerned playing a video game for

30 minutes. This game was downloaded to the server. The

third scenario concerned playing a high quality video file

for about 30 minutes. The video file was also downloaded

to the server. The forth scenario concerned plying an online

video file on Youtube for about 30 minutes. In each scenario,

we observed the mean absolute error of power estimation

(MAEp) and the Mean Absolute Error of energy estimation

(MAEe). The results are presented in Table (3) and Table

(4). The results show that MAEs in server 2 (old system

server) are lesser than the MAEs in server 1 (new system

server).

Table 3: MAEp and MAEe for Various workloads in server 1

Downloading
MAEp (MinError, MaxError) (13.97% , 11.38%)
MAEe 12.64%

Gaming
MAEp (MinError, MaxError) (17.94% , 14.82%)
MAEe 15.30%

Local Movie
MAEp (MinError, MaxError) (14.77% , 11.21%)
MAEe 11.8%

Youtube
MAEp (MinError, MaxError) (15.59% , 12.52%)
MAEe 13.15%

62 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

Table 4: MAEp and MAEe for Various workloads in server 2

Downloading
MAEp (MinError, MaxError) (3.66% , 2.78%)
MAEe 1.52%

Gaming
MAEp (MinError, MaxError) (5.07% , 4.00%)
MAEe 4.17%

Local Movie
MAEp (MinError, MaxError) (3.99% , 3.14%)
MAEe 3.02%

Youtube
MAEp (MinError, MaxError) (5.69% , 4.33%)
MAEe 4.13%

7. Conclusion and Future Work
There is a significant interest in using process count

information to model dynamic power consumption. Due

to the high correlation of certain system activities, such

as CPU utilization, memory accesses and I/O peripherals

with power demand, process counts represent a cheap and

real-time proxy by which one can estimate the power.

In this paper, feasibility of predicting complete system

power consumption using subsystem performance is

demonstrated. The framework’s infrastructure mainly

contains a power meter, server and process count tool. Our

test bench captures the power characteristics of a system by

correlating a few user-level utilization matrices or hardware

performance counters with power consumption during a

high load. We performed various loads on two real servers

(Dell Power Edge 2950 and HP ProLiant DL385G5) using

our test bench. A neural network model (NNM) has been

trained based on the process count information gathered

by CollectD and the actual real-time power consumption

monitored by a TED5000 power meter during applying

the workload. Our experiments show that complete system

power can be estimated in the new system server with an

average MAE of power estimation between 11% to 18%

and an average error of energy estimation between 11% to

15%. While in the old system server, the average MAE of

power estimation is between 3% to 6% and has an average

error of energy estimation between 2% to 5%.

We introduced an easy way to create a model for predict-

ing the power consumption of any application. Moreover,

developers can add this kind of testing to their software

testing stage to be able to understand the software behaviour

from a power consumption point of view. In the future, we

will validate our power model methodology in a variety

of platforms using more sophisticated models. We aim to

reduce the error percentage of the estimated power and

increase the accuracy.

References
[1] T. Mudge, “Power: A first-class architectural design constraint,”

Computer, vol. 34, no. 4, pp. 52–58, 2001.

[2] K. Naik and D. S. Wei, “Software implementation strategies for
power-conscious systems,” Mobile Networks and Applications, vol. 6,
no. 3, pp. 291–305, 2001.

[3] M. Sabharwal, A. Agrawal, and G. Metri, “Enabling green it through
energy-aware software,” IT Professional, vol. 15, no. 1, pp. 19–27,
2013.

[4] D. J. Brown and C. Reams, “Toward energy-efficient computing,”
Communications of the ACM, vol. 53, no. 3, pp. 50–58, 2010.

[5] K. Naik, A survey of software based energy saving methodologies for
handheld wireless communication devices. Department of Electrical
and Computer Engineering, University of Waterloo, 2010.

[6] F. Bellosa, “The benefits of event: driven energy accounting in power-
sensitive systems,” in Proc. of the 9th workshop on ACM SIGOPS
European workshop: beyond the PC: new challenges for the operating
system. ACM, 2000, pp. 37–42.

[7] W. L. Bircher, M. Valluri, J. Law, and L. K. John, “Runtime identifi-
cation of microprocessor energy saving opportunities,” in Low Power
Electronics and Design, 2005. ISLPED’05. Proceedings of the 2005
International Symposium on. IEEE, 2005, pp. 275–280.

[8] C. Isci and M. Martonosi, “Runtime power monitoring in high-end
processors: Methodology and empirical data,” in Proc. of the 36th
annual IEEE/ACM International Symposium on Microarchitecture.
IEEE Computer Society, 2003, pp. 93–104.

[9] T. Li and L. K. John, “Run-time modeling and estimation of oper-
ating system power consumption,” ACM SIGMETRICS Performance
Evaluation Review, vol. 31, no. 1, pp. 160–171, 2003.

[10] W. L. Bircher and L. K. John, “Complete system power estimation
using processor performance events,” Computers, IEEE Transactions
on, vol. 61, no. 4, pp. 563–577, 2012.

[11] K. Singh, M. Bhadauria, and S. A. McKee, “Real time power
estimation and thread scheduling via performance counters,” ACM
SIGARCH Computer Architecture News, vol. 37, no. 2, pp. 46–55,
2009.

[12] F. Bellosa, A. Weissel, M. Waitz, and S. Kellner, “Event-driven energy
accounting for dynamic thermal management,” in Proceedings of
the Workshop on Compilers and Operating Systems for Low Power
(COLPâĂŹ03), vol. 22, 2003.

[13] R. Joseph and M. Martonosi, “Run-time power estimation in high
performance microprocessors,” in Proc. of the 2001 international
symposium on Low power electronics and design. ACM, 2001, pp.
135–140.

[14] Y. Cho, Y. Kim, S. Park, and N. Chang, “System-level power
estimation using an on-chip bus performance monitoring unit,” in
Proceedings of the 2008 IEEE/ACM International Conference on
Computer-Aided Design. IEEE Press, 2008, pp. 149–154.

[15] G. Contreras and M. Martonosi, “Power prediction for intel xscale®
processors using performance monitoring unit events,” in Low Power
Electronics and Design, 2005. ISLPED’05. Proc. of the 2005 Inter-
national Symposium on. IEEE, 2005, pp. 221–226.

[16] R. Bertran, M. Gonzalez, X. Martorell, N. Navarro, and E. Ayguade,
“Decomposable and responsive power models for multicore proces-
sors using performance counters,” in Proceedings of the 24th ACM
International Conference on Supercomputing. ACM, 2010, pp. 147–
158.

[17] J. Singh, V. Mahinthan, and K. Naik, “Automation of energy per-
formance evaluation of software applications on servers,” in Proc. of
SERP, vol. 14, 2014, pp. 7–13.

[18] J. Singh, K. Naik, and V. Mahinthan, “Impact of developer choices
on energy consumption of software on servers,” in Proc. of SCSE’15,
2015.

[19] A. Datt, A. Goel, and S. C. Gupta, “Comparing infrastructure monitor-
ing with cloudstack compute services for cloud computing systems,”
in Databases in Networked Information Systems. Springer, 2015, pp.
195–212.

[20] G. Da Costa and H. Hlavacs, “Methodology of measurement for
energy consumption of applications.” in GRID, 2010, pp. 290–297.

[21] Z. C. Taysi, M. A. Guvensan, and T. Melodia, “Tinyears: spying
on house appliances with audio sensor nodes,” in Proc. of the 2nd
ACM Workshop on Embedded Sensing Systems for Energy-Efficiency
in Building. ACM, 2010, pp. 31–36.

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 63

A Systematic Mapping about Testing of Functional
Programs

Alexandre Ponce de Oliveira1 2, Paulo Sérgio Lopes de Souza1, Simone R. Senger de Souza1,

Júlio Cezar Estrella1, Sarita Mazzini Bruschi1
1: Universidade de São Paulo, ICMC, São Carlos, SP, Brazil

2: Faculdade de Tecnologia de Lins, Lins, SP, Brazil

Abstract - Functional languages, like Erlang, Haskell and
Scala allow the development of real-time and fault-tolerant
parallel programs. In general, these programs are used in
critical systems such as telephone switching networks and
must provide high quality, reliability and efficiency. In this
context, validation, verification and testing activities are
necessary and contribute to improving the quality of
functional programs. This paper presents a systematic
mapping concerning the testing of functional programs,
considering also their parallel/concurrent aspects. The
paper describes the three stages used during the systematic
mapping: planning, execution and presentation of results.
The mapping was able to identify only twenty-two relevant
studies. In these studies, fourteen considered test models,
three used data flow testing, twelve used/proposed testing
tools and five considered concurrent/parallel aspects of
such programs. The results indicate that there are few
researchers working on testing of functional programs and
that few studies are concentrated almost exclusively in the
Erlang language. The main testing technique found in the
papers is the structural one; however, it does not properly
consider the software testing methodology already
established for the imperative programming. Indeed, the
results show gaps in the area of testing of functional
programs, even for Erlang, the most considered language
by the studies. These gaps are presented and discussed at
the end of this paper.

Keywords: Testing, functional programs, Erlang, testing
criteria, test models.

1 Introduction
 Nowadays functional programs are an aim of research
in universities with distinct examples of research and
applications [12]. Parallel and soft-real time features are key
aspects related to functional applications, which stimulate
the interest for new research.
 Functional languages can be used also to build
programs utilizing expressions as mathematical functions,
avoiding both mutable data and changes in the state of the
program that do not depend on the function inputs. The
program behavior can be easier to predict when using this
paradigm, which motivates research on functional

languages. Some examples of functional languages are: Lisp
[24], Haskell [37], Scala [37] and Erlang [3] [4].
 The functional applications are often critical and
failures affect their quality, reliability and efficiency. In this
sense, the testing of functional applications is essential to
prevent potential failures and to ensure that all features are
according to what is expected [6].
 Software testing activity aims to find unrevealed
defects that are responsible for errors during the execution
of programs [25]. A number of studies have been conducted
in sequential and concurrent software testing, investigating
models, criteria and tools for testing.
 Considering the context of concurrent programs, for
example, Taylor et al. [38] proposes to apply coverage
criteria for concurrent programs. Yang et al. [52] adapts
All-Du-path testing criterion for concurrent programs.
 Souza et al. proposes structural coverage criteria for
C/MPI [33] [35], C/Pthreads [32], BPEL [11] and Java
[34]. However, this scenario is not true for the testing of
functional programs, since it is not trivial to find studies
already published in the context of functional programs
(sequential or concurrent).
 Functional programs present concurrent aspects and
therefore these aspects should be properly explored during
the testing activity. In order to contribute to this scenario, it
is important to consider state-of-the-art research on
functional program testing. We could not find a literature
review available in this context, which motivated this work.
Considering this scenario, a systematic mapping process
was used to collect, guide new research and analyze the
papers already published for the testing of functional
programs. A systematic mapping identifies, in the literature,
what type of studies can be considered in a systematic
review, pointing out mainly where those studies have been
published and their main results.
 A systematic mapping allows a wider view of primary
studies, which can reveal the evidences of research [27]. A
systematic mapping process is capable to contribute with
new research insights in a particular area, providing an
initial overview. The systematic review, on the other hand,
tries to identify, evaluate and interpret all the available
works, relevant for a specific research question [7].
 This paper identifies, through a systematic mapping,

64 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

studies related to the testing of functional programs,
classifying and analyzing relevant papers in this context.
The eligible papers were classified under three main
features: a) work that proposes novel models of testing to
functional paradigms; b) work that presents testing criteria
related to this subject; and c) work that presents a software
tool to support the testing activity. This classification
facilitates the analysis of the selected papers.
 The main results indicate that there is little research on
testing of functional programs. These studies are focused,
almost exclusively, on the Erlang language, using the
structural testing technique. However, they do not properly
consider the software testing methodologies already
established for the imperative programming. It is important
to consider this previous research, because the knowledge
produced for imperative programming can guide the
definition of new approaches for new contexts. Indeed, the
results show gaps in the area of testing of functional
programs, even for Erlang, the most considered language by
the studies.
 This paper is structured as follows: Section 2 presents
some of the main features of functional languages that make
the testing of functional programs different from the testing
of imperative programs; Section 3 includes details of the
systematic mapping planning; Section 4 presents the
execution of the systematic mapping planned; The results
are discussed in Section 5 and in Section 6 the main
conclusions are drawn.

2 Functional Programs
Functional languages are based on mathematical

functions. An important feature of mathematical functions is
the use of recursion and conditional expressions to control
the order in which pattern matching is evaluated. The
variables in functional language are immutable, so once a
value is assigned, it cannot be changed; this feature does not
generate side effects to the functions [29].

Functional languages have no side effects (or state
change), because they define the same value given a same
parameter (referential transparency). Functional languages
also use higher-order functions; which are functions that
receive functions as parameters and can generate a function
as a result [43].

A function definition, in functional languages, uses
pattern matching to select a guard among different cases and
to extract components from complex data structures. Erlang
[3] works in that way, combining high level data with
sequences of bits, to enable functions of protocol handling.

Concurrency is a fundamental and native concept of
some functional languages, such as Erlang. Those languages
do not provide threads to share memory, thus each process
runs in its own memory space and has its own heap and
stack. These processes in Erlang employ the
Communicating Sequential Processes (CSP) model [17].
Hoare [17] described how sets of concurrent processes
could be used to model applications. Erlang explores this
idea in a functional framework and uses asynchronous

message passing instead of the synchronous message
passing of CSP. Each process has a mailbox to store
incoming messages, which are selectively obtained [8].

Some functional applications may run transparently in
a distributed environment. In Erlang, a VM (Virtual
Machine) instance is called node. One or more computers
can run multiple nodes independently from the hardware
architecture and even operating system. Processes can be
created in remote nodes, because processes can be
registered in Erlang VM.

Fault Tolerance is a necessary resource for
concurrency applications, in this context. Erlang has
libraries that support supervisors, worker processes,
exception detection and recovery mechanisms. Thus,
processes create links to each other to receive notifications
as messages. This is used, for example, when a process
finishes [23].

3 Systematic Mapping Planning
This systematic mapping was performed according to

the process defined by Kitchenham and Charters [18] and
Petersen et al. [27]. This process consists of three stages: a)
planning – definition of a protocol specifying the plan that
the systematic mapping will follow; b) execution – the
execution of the protocol planned; and c) presentation of the
results [7].

Primarily, our main objective with the systematic
mapping was to identify studies that explore the testing of
concurrent aspects of functional programs. However, we
found few studies in this more restrict context and therefore
we decided to make this systematic mapping broader, in
order to find a wider range of publications about functional
software testing as a whole. Considering this scenario, three
research questions were defined and used to conduct the
systematic mapping carried out in this paper:
Question 1 (Q1): What aspects related to the testing of
functional languages have been identified? Our interest
here is to identify the main features in the functional
paradigm that make the test activity more complex in this
context.
Question 2 (Q2): How is the testing activity of the
functional programs conducted? The aim is to find studies
that apply testing methodologies and to establish which/how
testing criteria are used.
Question 3 (Q3): Are there testing tools for functional
programs? Identifying testing tools that support the testing
activity is important due to the complexity of the testing
activity and the difficulty to apply it manually.

3.1 Search String and Source Selection
The search string was defined as follows: first, the

main search keywords were established based on our
research questions. We considered terms such as functional
language, software testing and testing tools. The languages
Erlang, Haskell and Lisp have been inserted in our search
string because they are the most used functional languages

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 65

for both academic and industrial purposes. However, it must
be observed that the string did not restrict the search just for
these three languages. Next, a set of relevant synonyms for
the search keywords was identified, based on the
terminology used in a set of relevant contributions in the
area of software testing and functional language. Thus, the
main keywords were combined with the chosen synonymous
using the Boolean operators AND and OR. The search
string used in the systematic mapping is:

[(“functional language” or “erlang” or “lisp” or “haskell”)
AND (“software testing” or “structural testing” or “mutation
testing” or “functional testing” or “blackbox” or “whitebox”
or “tools” or “test” or “criteria” or “coverage”)]

In Table 1 the digital libraries selected to conduct the

systematic mapping are presented. These libraries were
chosen because they present the most relevant sources in
software engineering.

Table 1. Selected Digital Libraries.
Digital Library Link

ACM http://dl.acm.org/

IEEE Xplore http://ieeexplore.ieee.org/Xplore/home.jsp

SCOPUS http://www.scopus.com/

3.2 Studies Selection

The following inclusion criteria (IC) were defined in
order to obtain primary studies that could provide answers
to the research questions. It is important to observe that just
one valid inclusion criterion is enough to include a primary
study in the next step (eliminate primary studies).

IC1: Primary studies presenting testing models for
applications written in functional languages;
IC2: Primary studies proposing tools and research for the
context of functional language;
IC3: Primary studies applying case studies in the context of
functional program testing.

The following exclusion criteria (EC) were defined to

eliminate primary studies when they are not related to the
research questions:

EC1: Primary studies presenting testing approaches not
related to functional languages;
EC2: Primary studies presenting approaches related to
hardware testing;
EC3: Primary studies presenting tutorials about software
testing or functional languages.

3.3 Data extraction
A form was filled with the extracted data. This form

was used to record information obtained from primary

studies, as described in Kitchenham and Charters [18]. The
data extraction provides information such as: extraction
source, title, year and authors. The procedure to extract the
data was carried out after the studies. A summary was
written for each examined study, in order to facilitate the
documentation of the responses for the research questions.

4 Systematic Mapping Execution
The systematic mapping was carried out with the

support of the tool StArt (State of the Art through
Systematic Review) [30]. Despite its name, related to
systematic review, this tool offers facilities to support all the
activities of the systematic mappings, including planning,
execution and summarization.

The studies were selected in September, 2014 and
there were three different stages, as described in the
sequence. Initially, 556 studies were retrieved.

In Stage 1, duplicate studies were identified and
eliminated (done automatically by the StArt tool).
Furthermore, we eliminated non relevant data, such as
conference proceedings, abstracts and unavailable papers.
After this stage, only 44 studies remained.

In Stage 2, we applied the inclusion and exclusion
criteria based on title, abstract and keywords. Moreover, we
read the conclusion and the introduction sections of each
study in order to apply the inclusion and exclusion criteria.
After this stage, only 22 studies remained.

At the final phase (Stage 3), the studies were analyzed
completely. In this phase we selected 17 studies. According
to our preliminary studies, five other studies were included:
[47], [48], [49], [50] and [51]. Such studies were not
indexed by digital libraries but were published in local
workshops. Thus, 22 studies were selected.

Table 2 shows the number of studies selected at each
stage, considering the total studies retrieved from the digital
library. All the results of the search procedure were
documented and are available1. If necessary, the search
procedure can be repeated considering, for example, a
different period of time.

5 Systematic Mapping Results
This section presents the mapping results, grouping the

selected studies according to the research question. The
aims of the studies are described as follows.

Q1. What aspects related to the testing of functional
languages have been identified?

Widera [51] explains that generating a control flow
graph (GFC) for functional programs is more complex than
for traditional programs due to the existence of higher-order
functions. The difference in the control structures of
functional languages in relation to imperative languages
also makes the application of the coverage criteria more
complex, in the functional context.

1 http://labes.icmc.usp.br/~alexandre/mapping.pdf, 2014.

66 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

Table 2. Number of Studies Selected During the Search Procedure
Digital
Library

Return
Stage 1 Stage 2 Stage 3

Included Excluded Included Excluded Included Excluded

ACM 72 19 53 8 11 6 2

IEEE 171 4 167 1 3 1 -

SCOPUS 315 23 292 15 8 10 5

Total 556 44 512 22 22 17 7

An example of this occurs when higher-order functions

can receive and send functions as parameters. This dynamic
creation of functions makes the control flow unpredictable
and must be considered during the testing activity.

In this same context, Tóth and Bozo [41] cite that the
aim of a Data Flow Graph (DFG) is to determine how far a
variable definition can reach. This is because variables are
immutable in functional languages. In the context of data
flow, it is important to analyze a value from its first
definition to its last use [50].

Considering the objective of this research question, we
identified two main aspects of functions programs that
impact the testing activity: higher-order functions and
immutable feature of variables. Higher-order functions
influence the control flow, which requires a proper analysis
of the data flow. The immutable feature of variables brings
the necessity of a variable to be copied to another one after
its use, so it is important to identify this sequence of copies
from its first definition up to its last use. All the studies were
related to Erlang language (although, the authors argue that
the studies could be extended to consider other functional
languages, such as Haskell).

Q2. How is the testing activity of the functional
programs conducted?

Tóth and Bozo [41] presented the Semantic Program
Graph (SPG), a model to represent the semantic and
syntactic information from Erlang programs. SPG is the
basis to construct another three graphs: Data Flow Graph
(DFG), Control Flow Graph (CFG) and Dependency Graph
(DG).

The DG can be used to extract parts of the source code
and then identify components that can be parallelized
efficiently with inexpensive synchronization. Graphs are
integrated in the RefactorErl software, which analyzes the
source code and extracts parts of the Erlang code.

Toth et al. [39] investigated the use of SPG during the
regression testing aiming to reduce the number of test cases
that must be considered to rerun. A behavioral dependency
graph is specified and used to represent test cases affected by
changes in the program´s behavior, due to modifications. In a
similar way, Tóth and Bozo [40] investigate the use of a
dependency control graph to support the selection of
effective test cases during the regression testing for Erlang
programs.

Silva et al. [31] specified a graph called the Erlang
Dependency Graph (EDG), which shows the dependencies of

data and control in function calls. The authors propose a
testing tool, named Slicerl to extract relevant parts of the
Erlang program based on the proposed model. Guo et al.
[14] defined a model, named Complete Functional Binary
Tree (CFBT), which transforms each Erlang function into a
tree structure. Each node of the tree corresponds to a
predicate of the original function and the objective is to
represent all predicates in order to apply coverage criteria
based on the CFBT.

Five selected studies, described below in this (Q2)
research question, did not consider concurrent aspects of the
functional programs although all of them considered Erlang.
These studies explore the definition of test models and they
do not specify testing criteria.

Three studies discussed in the previous research
question (Q1) also contribute to the definition of models and
criteria for testing of functional programs. Widera [44]
describes a test model to include a subset of Erlang functions
and proposes a GFC for this model. This model covers only
sequential Erlang programs. In Widera [45] the model is
extended to include higher-order functions. Widera [46]
complements the model to include concurrency aspects of
Erlang programs.

In the context of testing criteria, four studies were
retrieved. Widera [47] proposes a set of coverage criteria
based on data flow testing adapted to functional programs.
These criteria are based on associations of definition and use
of variables (du-pair) that is a triple (v, d, u). In this triple, v
is a variable, d is a definition of v, u is a use of v and there is
a path w from d to u such that v is not redefined on w.
Widera [48] introduces the du-chain concept, which is a
sequence p1;….; pk of du-pairs, such that the definition of
p1 and the use of pk denote the same value. Based on this
concept and considering a flow graph G, a set of five testing
criteria was defined: a-aware (aliasing aware), s-aware
(structure aware), r-aware (result aware), f-aware (freeze
aware) and m-aware (message aware).

Tasharofi et al. [36] presents a scalable and automatic
approach to test non-deterministic behavior of actor-based
Scala programs [1]. This approach uses three schedule
coverage criteria for actor programs, an algorithm to
generate feasible schedules to increase the coverage and a
technique for deterministic execution. Le et al. [19] presents
new mutation operators for functional constructs and also
describes MuCheck, a mutation testing tool for Haskell
programs.

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 67

To summarize, we observed contributions that explore
mainly the structural testing for functional languages. These
papers present propositions to represent and to extract
relevant information for testing of functional programs.

Q3. Are there testing tools for functional programs?
Widera [49] considers data flow tracing of Erlang codes and
describes the properties and implementation of an interpreter
prototype for GFC. The interpreter instruments the source
code with the aim to evaluate parts of the GFC that are
covered by the test cases. The study does not evaluate the
coverage criteria; it only makes a comparison of the runtime
of small code examples with and without the interpreter.

Nagy and Vig [26] present a survey about the main
testing tools used by developers of Erlang systems. The
survey is focused on model-based testing and Test-Driven
Development (TDD). The tools mentioned by the developers
were Dialyzer, EUnit, Wrangler and RefactorErl and
QuickCheck, which was proposed by Claessen and Hughes
[10]. The survey specifies that the tools used by the
developers do not present information about the coverage of
test cases and that it is also difficult to know what was really
tested into the program. These aspects encourage the
improvement of tools available for concurrent functional
programs testing.

Christakis and Sagonas [9] present a technique for
detecting errors related to message passing in Erlang,
considering the dynamic process of creation and
communication based on asynchronous message passing.
Static analysis is used to build a communication graph from
a Dialyzer tool. This graph is traversed during the testing
activity, to obtain data about the message passing coverage.

Arts et al. [5] presented a testing tool called Quviq
QuickCheck to analyze properties in Erlang programs. This
tool uses a model to represent data type information from
specification and during the testing; it can be evaluated
whether the data types of the program meet its specification.

Wrangler and RefactorErl tools aim to support the
refactoring of Erlang programs, the aim of which is to detect
a similar code. Taking this into account, Li and Thompson
[20] used the Quviq QuickCheck testing tool to automate the
refactoring performed by the Wrangler tool. Li and
Thompson [39] and [41] proposed a technique to detect
syntactically identical codes, which was developed and
integrated into the Wrangler testing tool. The authors used
both syntactic analysis and code decomposition to remove
duplicated code and thus reduce code maintenance.

Gotovos et al. [13] developed the Concuerror testing
tool to assist the TDD process. This tool uses test sets to
detect errors related to concurrency, such as deadlocks and
race conditions in Erlang programs.

Therefore, six studies [9], [5], [20], [21], [22] and [13]
are related to model testing, refactoring and TDD. Two
studies [9] and [13] explore concurrency aspects.

5.1 Other Results

Figure 1 shows the number of selected studies by year.

The result of the mapping showed studies only from the last
11 years, while 2011 had the highest score with four selected
studies.

Figure 1. Numbers of studies by year.

Figure 2 groups studies by country, considering the

authors´ affiliation. The results show that the University of
Hagen in Germany has 8 studies, i.e., 36% of the selected
studies. An important feature of these studies is that only
four were conducted in partnership with universities in
different countries. Two studies were conducted by
universities in Greece and Sweden, one study was carried out
by universities in Sweden and Spain and one study between
universities in the USA and Switzerland.

Figure 3 shows the percentage of selected studies by
research question. According to the result, 50% of the
studies are related to Q2, which refers to a testing
specification models and testing criteria. Q3 is related to
testing tools, and 27% of the studies are in this context. Only
9% of the studies specify the challenges of testing activity
for functional languages (Q1). Finally, 9% of the studies are
in the context of Q1 and Q3 together and 50% of the studies
between Q2 and Q3.

6 Concluding Remarks
A systematic mapping conducted to find studies on

software testing for functional languages was presented in
this paper. These studies provide an overview for the testing
of functional languages, revealing the state of the art in terms
of knowledge production in this area. These studies point out
new research insights and can be used to guide further
contributions in this context.

Some studies ([36], [46], [47], [48] and [50]) present
the definition of data flow testing for functional programs in
Erlang, exploring the definition-use of variables. In this
group, five studies ([9], [13], [36], [46] and [48])
investigated the concurrency and parallel aspects existent in
functional programs.

The selected studies proposing testing tools for
functional programs, consider mainly structural aspects of
such programs.

68 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

Figure 2. Numbers of studies by country.

Figure 3. Numbers of studies by research questions.

However, in general, these tools do not apply properly
the testing techniques; they do not explore the testing
process, such as: generation of test cases and testing activity
evaluation.

In summary, 63% of the studies present test models for
Erlang programs; 45% of the studies applied a case study to
evaluate a testing tool; 18% of all papers define testing
criteria exploring sequential aspects of the programs and 9%
investigate concurrent aspects of the programs to define
testing criteria.

Furthermore, this mapping contributed to indicate lack
of research exploring how to derive tests from functional
programs and how to extract relevant information from these
programs, in order to guide the testing activity. Also, there is
a lack of experimental studies to analyze tools and testing
criteria.

These results indicate a gap in research related to
coverage testing applied to functional programs, mainly
related to concurrent aspects of these programs. Considering
this gap, we are investigating the definition of structural
testing, exploring the same aspects in Souza et al. [33] in this
context. We intend to define the coverage testing able to
explore intrinsic aspects of this program, for instance:
synchronization, communication, parallelism and
concurrency considering message passing and other language
features such as: higher order functions and functions call.

References
[1] Agha, G. Actors: a model of concurrent computation in

distributed systems. MIT Press, Cambridge, USA, 1986.
[2] Almasi, G.; Gottlieb, A. Highly parallel computing. The

Benjamin/Cummings series in computer science and
engineering. Benjamin/Cummings Pub. Co., 1994.

[3] Armstrong, J., Virding, R., Wikström, C., and Williams, M.
Concurrent Programming in Erlang. Prentice Hall Europe,
Herfordshire, Great Britain, second edition, 1996.

[4] Armstrong, J. Concurrency Oriented Programming in Erlang.
Invited talk, FFG. 2003.

[5] Arts, T.; Castro, L.M.; Hughes, J. Testing Erlang Data Types
with Quviq QuickCheck. In: Proceedings of the ACM
SIGPLAN Workshop on Erlang, ACM Press , 2008.

[6] Balakrishnan, A. and Anand, N. (2009). Development of an
automated testing software for real time systems. In Industrial
and Information Systems (ICIIS), 2009 International
Conference on, pages 193 - 198.

[7] Biolchini, J.C.A.; Mian, P. G.; Natali, A. C. C.; Conte, T.U.;
Travassos, G. H. Scientific research ontology to support
systematic review in software engineering. Advanced
Engineering Informatics, p.133-151, 2007.

[8] Cesarini, F. and Thompson, S. Erlang Programming - A
Concurrent Approach to Software Development. O’Reilly
Media, 2009. 496p.

[9] Christakis, M.; Sagonas, K. Detection of asynchronous
message passing errors using static analysis. In: Proceedings
of the 13th international conference on Practical aspects of
declarative languages, PADL’11, p.5-18, Austin, USA,
January 24-25, 2011.

[10] Claessen, K.; Hughes, J. QuickCheck: a lightweight tool for
random testing of Haskell programs, Proceedings of the fifth
ACM SIGPLAN international conference on Functional
programming, p.268-279, September 2000.

[11] Endo, A. T.; Simão, A. S.; Souza, S. R. S.; Souza, P. S. L.
Web services composition testing: A strategy based on
structural testing of parallel programs. In: TaicPart: Testing
Academic & Industrial Conference - Practice and Research
Techniques, Windsor, 2008, pp. 3–12.

[12] Erlang FAQ. Who uses Erlang for product development?
http://www.erlang.org/faq/introduction.html, 2014.

[13] Gotovos, A.; Christakis, M.; Sagonas, K. Test-driven
development of concurrent programs using concuerror. In
Proceedings of the 10th ACM SIGPLAN workshop on Erlang
(Erlang '11). ACM, New York, USA, 2011.

[14] Guo, Q.; Derrick, J.; Walkinshaw, N. Applying Testability
Transformations to Achieve Structural Coverage of Erlang
Programs. In Proceedings of the 21st International Conference
on Testing of Software and Communication Systems and 9th
International Workshop FATES, Eindhoven, Netherlands,
November 2-4, 2009.

[15] Grama, A; Gupta, A; Karypis, G; Kumar, V. Introduction to
Parallel Computing. 2nd Ed. Addison Wesley, 2003.

[16] Hansen, M. R.; Rischel, H. Functional Programming Using
F#. Cambridge University Press, 2013.

[17] Hoare, C.A.R. Communicating Sequential Processes. Prentice
Hall, Upper Saddle River, NJ, 1985.

[18] Kitchenham, B.; Charters, S. Guidelines for performing
systematic literature reviews in software engineering.
Technical Report. EBSE 2007-001, Keele University and
Durham University Joint Report, 2007.

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 69

[19] Le, D.; Alipour, M. A.; Gopinath,R.; Groce, A. MuCheck: an
extensible tool for mutation testing of haskell programs. In
Proceedings of the 2014 International Symposium on
Software Testing and Analysis (ISSTA 2014). ACM, New
York, NY, USA, p. 429-432. 2014.

[20] Li, H; Thompson, S. Testing Erlang Refactorings with
QuickCheck. In the 19th International Symposium on
Implementation and Application of Functional Languages,
IFL 2007, LNCS, pages 182-196, Freiburg, Germany.

[21] Li, H; Thompson, S. Clone detection and removal for
Erlang/OTP within a refactoring environment. In Proceedings
of the 2009 ACM SIGPLAN workshop on Partial evaluation
and program manipulation (PEPM '09). ACM, New York,
USA. 2009.

[22] Li, H; Thompson, S. Incremental clone detection and
elimination for erlang programs. In Proceedings of the 14th
international conference on Fundamental approaches to
software engineering: part of the joint European conferences
on theory and practice of software (FASE'11/ETAPS'11).
Springer-Verlag, Berlin, Heidelberg, 2011.

[23] Logan, M., Merritt, E., and Carlsson, R. Erlang and OTP in
Action. Manning Publications. 2010.

[24] McCarthy, John; Abrahams, Paul W.; Edwards, Daniel J.;
Hart, Timothy P.; Levin, Michael I. Lisp 1.5 Programmer´s
Manual. Cambridge, Massachusetts: The MIT Press, 1962.

[25] Myers, G. J. The Art of Software Testing. 2 ed. John Wiley &
Sons, 2004.

[26] Nagy, T., Víg, A.N. Erlang testing and tools survey.
Proceedings of the 7th ACM SIGPLAN workshop on
ERLANG, September 27-27, 2008, Victoria, BC, Canada.

[27] Petersen, K.; Feldt, R.; Mujtaba, S. and Mattsson, M.
Systematic mapping studies in software engineering. In
Proceedings of the 12th International Conference on
Evaluation and Assessment in Software Engineering
(EASE'08), 2008. British Computer Society, Swinton, UK,
68-77.

[28] Rauber, T.; Rünger, G. Parallel programming: for multicore
and cluster systems. Springer, 2010.

[29] Sebesta, R. W. Concepts of Programming Languages. 10. ed.
Pearson. 2012.

[30] StArt. State of the Art through Systematic Review.
http://lapes.dc.ufscar.br/tools/start_tool, 2012.

[31] Silva J.; Tamarit, S; Tomás, C. System dependence graphs in
sequential erlang. In Proceedings of the 15th international
conference on Fundamental Approaches to Software
Engineering (FASE'12). p.486-500, Tallinn, Estonia,
Springer-Verlag, 2012.

[32] Sarmanho, F.; Souza, P. S. L.; Souza, S. R.; Simao, A. S.
Structural testing for semaphore-based multithread programs.
In: ICCS ’08: Proceedings of the 8th international conference
on Computational Science, Part I, Berlin, Heidelberg:
Springer-Verlag, 2008, pp. 337–346.

[33] Souza, S. R. S.; Vergilio, S. R.; Souza, P. S. L.; Simão, A. S.;
Hausen, A. C. Structural testing criteria for message-passing
parallel programs. Concurrency and Computation: Practice
and Experience, p. 1893–1916, 2008.

[34] Souza, P. S. L.; Souza, S. R. S.; Rocha, M. G.; Prado, R. R.;
Batista, R. N. Data flow testing in concurrent programs with
message-passing and shared-memory paradigms. In: ICCS -
International Conference on Computational Science,
Barcelona, Espanha, 2013b, pp. 149–158.

[35] Souza, P. S. L.; Souza, S. R. S.; Zaluska, E. Structural testing
for message-passing concurrent programs: an-extended test

model. Concurrency and Computation, v. 26, n. 1, pp. 21–50,
2014.

[36] Tasharofi, S.; Pradel, M.; Lin, Y. and Johnson, R. Bita:
Coverage-guided, automatic testing of actor programs. In
2013 IEEE/ACM 28th International Conference on
Automated Software Engineering (ASE), 2013.

[37] Tate, Bruce A. Seven Languages in Seven Weeks: A
Pragmatic Guide to Learning Programming Languages.
Pragmatic Bookshelf, 2010.

[38] Taylor, R. N.; Levine, D. L. and Kelly. C. D. Structural testing
of concurrent programs. IEEE Tr Softw Eng, 18(3):206–215,
1992.

[39] Tóth, M.; Bozó, I.; Horváth, Z.; Lövei,L.; Tejfel, M.; Kozsik,
T. Impact Analysis of Erlang Programs Using Behaviour
Dependency Graphs. Proceedings of the 3th Conference on
Central European Functional Programming School, p.372-
390, Komarno, Slovakia, May 25-30, 2009.

[40] Tóth, M. and Bozó I. Building dependency graph for slicing
erlang programs. Conference of PhD Students in Computer
Science, Periodica polytechnica, 2010.

[41] Tóth, M.; Bozó, I. Static analysis of complex software systems
implemented in erlang, Proceedings of the 4th Conference on
Central European Functional Programming School. Budapest,
Hungary, June 14-24, 2011.

[42] Trobec, R.; Vajteršic, M.; Zinterhof, P. Parallel computing:
Numerics, applications, and trends. Parallel Computing:
Numerics, Applications, and Trends. Springer, 2009.

[43] Watt, D. A. Programming Languages: Concepts and
Paradigms. Prentice Hall International Series in Conputer
Science, 1990.

[44] Widera, M. Flow graphs for testing sequential Erlang
programs. In Proceedings of the 3rd ACM SIGPLAN Erlang
Workshop. ACM Press, 2004.

[45] Widera, M. Towards flow graph directed testing of functional
programs. In Draft Proceedings of the 15th International
Workshop on the Implementation of Functional Languages,
IFL, 2003.

[46] Widera, M. Concurrent Erlang flow graphs. In Proceedings of
the Erlang/OTP User Conference 2005, Stockholm, 2005.

[47] Widera, M. Data flow coverage for testing Erlang programs.
In Marko van Eekelen, editor, Proceedings of the Sixth
Symposium on Trends in Functional Programming (TFP’05),
September 2005.

[48] Widera, M. Data flow considerations for source code directed
testing of functional programs. In H.-W. Loidl, editor, Draft
Proceedings of the Fifth Symposium on Trends in Functional
Programming, Nov. 2004.

[49] Widera, M. Flow graph interpretation for source code directed
testing of functional programs. In Implementation an
Application of Functional Languages, 16th International
Workshop, IFL'04. Institut für Informatik und Praktische
Mathematik, Christian-Albrechts-Universit at zu Kiel, 2004.

[50] Widera, M. Adapting structural testing to functional
programming. In International Conference on Software
Engineering Research and Practice (SERP 06), 86-92. CSREA
Press, 2006.

[51] Widera, M. Why Testing Matters in Functional Programming.
7th Symposium on Trends in Functional Programming,
University of Nottingham, TFP, 2006.

[52] Yang, C.-S. D.; Souter, A. L. and Pollock, L. L. All-du-path
coverage for parallel programs. In ISSTA, pages 153–162,
1998.

70 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

Cloud-ODC: Defect Classification and Analysis for the Cloud

M. Alannsary1, and J. Tian12

1Department of Computer Science and Engineering, Southern Methodist University, Dallas, TX, USA
2Northwestern Polytechnical University, Xi’an, China

Abstract— One of the major contributors to software quality
improvement is defect analysis. Current work in this area
does not consider multi-tenancy or isolation, which makes
it inappropriate to implement on a SaaS (Software as a
Service). We propose a defect analysis framework for a
SaaS running in the Cloud. The proposed framework is
inspired by the ODC (Orthogonal Defect Classification)
model, and considers the special characteristics of the SaaS.
The framework is composed of three phases: data source
analysis phase, classification phase, and results analysis
phase. Entries in the web server log file are analyzed to
identify errors based on the values of the “Protocol status”
field, then observed errors are classified according to six
defect attributes specifically tailored to the Cloud environ-
ment. One-way and two-way analysis were implemented
successfully and resulted in better insight on the observed
defects and their resolution. A case study is presented to
demonstrate the viability of the new approach.

Keywords: Cloud, SaaS, SaaS Quality, ODC, and SaaS Defect

analysis.

1. Introduction
In defect analysis, we analyze defects observed in a

software either during development stages or after release

to improve the quality of the software by resolving these

defects and eliminating other potential defects that share

some common characteristics. There has been several ways

and models developed to analyze defects, one of which

is through defect classification and related analysis. One

of the well-known methods of defect analysis is the ODC

(Orthogonal Defect Classification) concept, which has done

a good job for in-process defect feedback to the development

team [1]. Such feedback is essential for defect elimination

and resolution.

Cloud computing is a new technology that has gained a lot

of attention. The Cloud is built on the service concept, where

most of the computing resources are provided as a service

[2], [3]. SaaS (Software as a Service) is using the Cloud to

deliver software to users. SaaS is considered a “strategic tool

to compete in the market" [4]. SaaS applications have the

advantage of multi-tenancy [5], which is serving multiple

tenants (with each tenant having one or more users) at the

same time using a centralized version of the source code.

Adopting any of the multi-tenancy models will enable an

application to be considered as a SaaS. The only difference

between traditional software and SaaS is fulfilling the multi-

tenancy design of the SaaS and assuring isolation in the

software and database between tenants [6]. The process

of developing software has not changed to the extent that

requires a new software development life cycle model for

SaaS.

One of the challenges that face SaaS providers is to

comply with the QoS (Quality of Service) levels promised

in the SLA (Service-Level Agreement). Currently defect

analysis for SaaS is in an early stage. There has not

been a clear defect analysis model designed specifically for

SaaS, despite the differences between SaaS and traditional

software. We propose a new method called Cloud-ODC for

defect analysis. Cloud-ODC will help eliminate and resolve

defects, and on the long run will improve the reliability and

overall quality of the SaaS. The new method will be based on

adopting the ODC concept to a SaaS running in the Cloud.

The remainder of this paper is structured as follows: The

next section presents related work. Section 3 presents our

methodology of SaaS defect analysis by adopting the ODC

concept. Section 4 presents a case study conducted using a

multi-tenant SaaS deployed on Amazon Cloud using AWS

(Amazon Web Services). Section 5 presents analysis of the

case study results and discussion. Section 6 contains the

conclusion and prospectives.

2. Related Work
Software quality is the discipline of software engineering

that studies, analyzes, measures, and improves the quality

aspects of a software product. Generally speaking, a software

product is said to be with high quality if it has none or a

small amount of problems that are caused by the software

itself and have limited damage to its users [7].

Activities to eliminate injected errors or defects from a

system usually consumes more than one quarter or more of

its budget. Defects that are bound to requirements, specifi-

cation, and high level design are damaging and expensive

due to the accompanying chain-effect [8]. Thus it is wise to

prevent the injection of these errors or defects, commonly

by analyzing and eliminating their causes. Such root cause

analysis is usually based on previous versions of the software

or from similar software products from the same develop-

ment company or other similar companies. In addition, it

is possible to study defect distribution and the logical links

between the faults and errors, to predict the infield reliability

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 71

of the software through statistical defect models. ODC is

one of the well-known and documented methods of defect

analysis. It plays a major role in bridging the gap between

statistical defect models and causal analysis.

Fig. 1: SaaS configuration in the Cloud [2]

SaaS quality is the process of assuring the quality of a

SaaS running in the Cloud. Since SaaS has new features

that differentiates it from traditional software, certain mod-

ifications to the models and methods used to assure the

quality of traditional software are needed to accommodate

the new features. SaaS in the Cloud is built using three

layers: the Cloud provider, the SaaS provider /Cloud user,

and the SaaS user [2] as illustrated in Figure 1. In SaaS we

use the Cloud technology to deliver software to tenants and

their users. Software development companies need to adopt

the SaaS paradigm in order to compete in the market. Xu et

al. [9] presented a combined model for defect prediction,

measurement, and management. The proposed model is

mainly designed for software that is based on SOA (Service

Oriented Architecture).

Chillarege et al. [1] proposed ODC (Orthogonal Defect

Classification) as a “concept that enables in-process feedback

to developers by extracting signature on the development

process from defects". In general, ODC is a method of

classifying defects to know which stage of the software de-

velopment process that needs attention. Defects are classified

across the following dimensions: defect type, trigger, source,

severity, impact, and phase found.

Ma and Tian [10] developed a web error classification

and analysis method by adopting ODC to the web environ-

ment. They selected attributes that are related to the web

environment using web access logs to act as the defect

types in ODC. This technique enabled the identification

of problematic areas and provided feedback to the web

applications development team.

Since there are differences between traditional and web

software on one hand and SaaS on the other, specifically in

the way the software is structured, hosted, and delivered to

its intended customers, such as: multi-tenancy, user licens-

ing, and isolation. New or adopted defect analysis techniques

are required for SaaS individually. These techniques must

attend to and consider the issues of SaaS defect analysis such

as: the constant introduction of new features, continuous

update to the SaaS itself, and the capability of selection that

tenants have which gives them the option of renting some

services and not the SaaS solution as a whole.

3. A New Method
Defect analysis has been successfully implemented on

traditional and web software. However, defect analysis for

SaaS is currently in an early stage. As mentioned above,

there has not been a clear defect analysis model designed

specifically for SaaS, to address the new characteristics of

SaaS that were not available in traditional and web software.

Our proposed framework is inspired by the ODC model,

while considering the special characteristics of the SaaS. It

is composed of three phases: the data source analysis phase,

the classification phase, and the results analysis phase. In the

first phase, contents of the data source (the web server log)

are analyzed to locate defects. In the second phase, observed

defects are classified by mapping them to known Cloud-

ODC attributes. In the third phase, classification results

are analyzed either via one-way or two-way analysis. The

proposed Cloud-ODC framework is depicted in Figure 2.

3.1 Attributes
In order to benefit from the classification concept of the

ODC model in SaaS development projects, special steps need

to be taken to accommodate the characteristics of SaaS.

First of all, the list of attributes needs to be modified,

either by adding new attributes or omitting currently used

ones. The “Phase found” attribute will be omitted, this is due

to the fact that all defects are observed during the run of the

SaaS and it is difficult to link them to a specific development

phase. In addition, the “Layer affected” attribute will be

introduced to allow classifying the defects based on its

effect on the cloud layers. Table 1 lists the ODC attributes

or in other words the Cloud-ODC attributes, where newly

introduced attributes are in bold, and partially modified

attributes are in italic.

Second, two more defect types are going to be added

to the defect types suggested in the ODC model. The

first defect type is for classifying defects based on tenant

isolation. Serving multiple tenants at the same time using

the same source code file and/or database requires isolating

each tenant from other tenants. Thus failing to keep the

functionalities, services, or data of a tenant isolated from

other tenants is considered a defect. Defects that arise from

not complying with tenant isolation affect the QoS of a SaaS,

and for that reason it is a necessity to classify them in a new

defect type. Therefore, the first new defect type that will be

introduced is called: “Isolation”.

The second defect type added is related to defects that

were caused or influenced by either the IaaS or the PaaS

layers. One could argue that failures caused by these lay-

ers could be classified as “Interface” defects in the ODC

model. This is true except that our goal is to classify the

defects for better resolution and elimination. Differentiating

between failures caused by either IaaS or PaaS and other

72 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

Fig. 2: Cloud-ODC framework.

Table 1: Cloud-ODC attributes.

ODC attribute

Layer affected.
Defect type.
Trigger.
Source.
Severity.
Impact.

SaaS components, models, or device drivers enables us to

reconfigure or replace either or both IaaS and PaaS so the

SaaS can be fully configured for both.

Moreover, the number of defects caused by the IaaS or

PaaS after the SaaS goes live are expected to be fewer than

the ones that are discovered during development. This is due

to the fact that IaaS and PaaS are the same while developing

the SaaS or running it live. Thus adding a new type to the

ODC model that is focused on IaaS and PaaS will allow

the development team to better reconfigure or replace either

IaaS or PaaS early in the development life-cycle. Therefore,

the second new defect type that will be introduced is called:

“IaaS/PaaS".

It is our intuition that adding the suggested attributes and

defect types will allow SaaS providers to better classify

defects in their applications, which will eventually provide

in-process feedback that will aid in resolving, eliminating,

or managing defects to reach the desired level of QoS. The

original defect types in addition to the newly introduced ones

are listed in Table 2. The newly introduced attributes are in

italic.

3.2 Data Source
In the proposed approach there are several resources that

could be considered as data source candidates by the SaaS

development team to discover defects. Such as the bug

report, the application log file, the security log file, the

user session, the web server log, and other server logs.

However, after experimenting with these resources, it was

Table 2: Original and new defect types - newly added

attributes are in italic.

Version Defect type Description

Original Function. Design change.
Interface. Error interacting with other com-

ponents, Models, or device drivers.
Checking. Program logic that fails to validate

data and values.
Assignment. Control blocks, data structure.
Timing/serialization. Corrected by improved manage-

ment of shared and real time re-
sources.

Build/package/merge. Mistakes in libraries, management
of change, or version control.

Documentation. Publication and maintenance notes.
Algorithm. Efficiency or correctness problems,

corrected without change in design.
New Isolation. Failure to isolate services and data

of tenants.
IaaS / PaaS. Failures that arise from IaaS or

PaaS configuration.

clear that some are not beneficial and do not add value to

the new proposed approach. Following is a description of

the results we observed after experimenting with some of

these resource:

• The bug report is usually based on the feedback that

users submit to the SaaS provider’s technical support or

maintenance team, either via an online form, through

email, or during a phone call. The margin of error

in providing such feedback is considered somewhat

medium, and the categorization of the defect may be

misleading. Thus classifying defects based on the bug

report would involve more data cleansing and analysis

beyond the scope of this research.

• The application log contains too generic information

that is closely related to the defects of the application

which affect the operating system, thus it is not bene-

ficial to our approach.

• The security log is mainly concerned with security

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 73

issues such as user log in or log out, or the attempts

that have been made to breach the security of the

application.

• The user session information is not applicable in our

approach for two reasons. First, the session logging

must be setup prior to using it, and developers rarely

request it from the web server administrators. Second,

the session contains only two generic fields, the first

will store the user’s information, and the second will

store any data the developer wants to save in the post

backs between the client and the server.

• The web server stores information about requests

made to each website and its result in a log file. This

information could be used to determine any malfunction

in the website, such as bad formed requests, or missing

files. The log file is composed of entries that contain

information related to that request. Figure 3 depicts

a sample entry in a web server log file. For example

the request date, the status of the request, the referring

page (see http://technet.microsoft.com/
en-us/library/cc786596(v=WS.10).aspx).

Table 3 explains the fields that are included in each

entry.

Based on our findings, the most suitable resource is the

web server log. Adopting the same methodology imple-

mented in [10] with some modification will allow us to

discover and classify SaaS defects efficiently. These other

data sources will be explored in followup research to further

characterize the discovered defects with additional details.

Fig. 3: Sample entry in a web server log file.

3.3 Data Processing for Cloud-ODC

One of the most important fields to the proposed

approach is the “Protocol Status” field. Information stored

in this field allows us to distinguish between successful and

unsuccessful requests, which will lead us to defects. Protocol

Status codes range from 100 to 599 (see http://www.
iana.org/assignments/http-status-codes/
http-status-codes.xhtml). Table 4 explains these

codes. Status codes that are within the 4xx and 5xx groups

are most important to the proposed new method. The 4xx

status codes refer to defects that are caused by the client

which is the SaaS layer in the proposed approach. And

the 5xx status codes refer to defects that are caused by

the server, which is the IaaS/PaaS layer in the proposed

approach.

Table 3: Fields in a web server log file entry.

Field Description

Date. The date on which the activity occurred.
Time. The time, in coordinated universal time

(UTC), at which the activity occurred.
Client Ip
Address.

The IP address of the client that made the
request.

User Name. The name of the authenticated user who
accessed your server. Anonymous users are
indicated by a hyphen.

Service Name
and Instance
Number.

The Internet service name and instance
number that was running on the client.

Server Name. The name of the server on which the log
file entry was generated.

Server IP
Address.

The IP address of the server on which the
log file entry was generated.

Server Port. The server port number that is configured
for the service.

Method. The requested action, for example, a GET
method.

URI Stem. The target of the action, for example, De-
fault.htm.

URI Query. The query, if any, that the client was trying
to perform. A URI query is necessary only
for dynamic pages.

Protocol Status. The HTTP status code.
Protocol Sub sta-
tus.

The sub status error code.

Win32 Status. The Windows status code.
Bytes Sent. The number of bytes that the server sent.
Bytes Received. The number of bytes that the server re-

ceived.
Time Taken. The length of time that the action took, in

milliseconds.
Protocol Version. The protocol version - HTTP or FTP - that

the client used.
Host. The host header name, if any.
User Agent. The browser type that the client used.
Cookie. The content of the cookie sent or received,

if any.
Referrer. The site that the user last visited. This site

provided a link to the current site.

3.4 Cloud-ODC Classification
Analyzing web server log file fields provides us with

valuable information about the observed defects that will

allow us to classify them. Below is an explanation of how

the information in these fields aid in classifying the defects

to the Cloud-ODC attributes:

• Information in the “date” and “time” fields can be used

to group defects.

• Information in the “Protocol status” field allows classi-

fying defects based on the defect type attribute.

• Information in the “Referrer” field allows classifying

defects based on the trigger attribute.

• Extracting the file name from the “URI stem” field

allows classifying defects based on the source attribute.

• Combining information from the “URI stem” field,

the “User name” field (if known and available), and

the service rented to the tenant allows knowing what

service was effected, and based on that it is possible

74 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

Table 4: Protocol status codes explanation.

Status code Purpose

1xx Informational.
2xx Success.
3xx Redirection.
4xx Client error.
5xx Server error.

to classify defects based on the Impact and Severity

attributes.

There are two more fields that provide us with more

insight and information in the classification process,

the “Protocol Sub status” field, and the “Win32 Status”

field. Information from both allows us to better classify

the type of the defect. For example, if a defect had

a protocol status code of “404”, and a Win32 Status

of “2”, the defect type would probably be listed as a

“Function” defect. A similar defect with the same protocol

status code “404” and a Win32 Status of “64” would

probably be listed as an “Interface” defect (see http:
//support.microsoft.com/kb/943891/en-us,

and http://www.drowningintechnicaldebt.
com/RoyAshbrook/archive/2007/10/04/
http-status-and-substatus-codes.aspx).

Table 5: Severity classification attributes.

Severity

Critical.
High.
Medium.
Low.

The severity of defects will be classified as critical,

high, medium, and low. As shown in Table 5. As for

classifying defects for the impact attribute, there were two

standards to choose between. Either choose the standards

developed by ISO (International Organization for Standard-

ization) which are related to software engineering and quality

(ISO 9126, and ISO 25010). Or choose IBM’s measurement

areas for quality attributes CUPRIMD (Capability, Usability,

Performance, Reliability, Installibility, Maintainability, and

Documentation) [11]. For the proposed approach, IBM’s

standards was chosen to allow for comparison with the

original ODC work. Moreover, since security is an essential

part in any web application, a new attribute called “Security”

was added to the standard. As for the metric area of the

new attribute, the sub categories of the security category

in the ISO 25010 standard were used. Thus enabling the

standard to be used for impact classification. Table 6 shows

the impact classification attributes. The newly introduced

security attribute is in italic.

Table 6: Impact classification attributes.

Attribute Metric Areas

Capability. Functionality delivered versus requirements.
Volume of function to deliver.

Usability. Ease of learning important tasks.
Ease of completing a task .
Intuitiveness.

Performance. Transaction throughput.
Response time to enquiry.
Size of machine needed to run the product.

Reliability. Mean time between failures.
Number of defects.
Severity of defects.
Severity/impact of failures.

Installibility. Ease of making product available for use.
Time to complete installation.
Skill level needed by installer.

Maintainability. Ease of problem diagnosis.
Ease of fixing problem correctly.

Documentation. Ease of understanding.
Ease of finding relevant information.
Completeness of information.

Security. Confidentiality.
Integrity.
Non-repudiation.
Accountability.
Authenticity.
Compliance.

4. Case Study
To verify the viability of the new approach, a SaaS was

installed on an Amazon EC2 (Elastic Computing Cloud).

The SaaS is distributed as an open source CMS (Content

Management System). From within the SaaS we created

several portals, each corresponding to a tenant. Each portal

had several users. After running the SaaS for one week,

we collected the web server log files and examined it for

defects. The log files contained 77475 entries, 342 of which

contained a 4xx and 5xx error code. These error codes as

described above are an indication of defects.

Table 7: Classifying for the defect type attribute.

Error code Win32 status code Defect type

404 0 Interface.
404 2 Function.
404 64 Interface.
404 1236 Interface.
500 All IaaS/PaaS.

In order to benefit from the ODC concept, the observed

defects need to be classified based on the frameworks

attributes. For example, to classify defects based on the

defect type attribute we need to know the error code and

the Win32 status code. Having a specific combination of

these codes results in a specific classification. If a defect

has an error code of 404 and a Win32 status code of 2, the

defect type is then classified as a function defect. Table 7

shows an example of classifying defects for the defect type

attribute.

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 75

Table 8: Classifying for the layer affected attribute.

Error code Layer affected

404 SaaS.
500 IaaS/PaaS.

Another example is classifying defects based on the layer

affected attribute. If the error code was within the 4XX range

then the defect is classified as a SaaS layer defect. On the

other hand, if the error code was within the 5XX range,

then the defect is classified as an IaaS/PaaS layer defect.

Table 8 shows an example of classifying defects for the layer

affected attribute.

5. Analysis of Results and Discussion
The examples in Figures 4, 5, 6, 7 are a demonstration

of one-way classification of the observed defects in the

web server log file based on the attributes: defect type,

impact, layer affected, and severity. One-way classification

is the process of analyzing observed defects based on one

classification attribute.

As stated previously, multi-tenancy and isolation are the

major characteristics that distinguish between SaaS and

traditional software. Since the original ODC does not cater to

both of these characteristics, it is difficult to take advantage

of the concept to provide in-process defect feedback to the

development team. In our work we modified the existing

ODC framework to better accommodate the new SaaS char-

acteristics.

Fig. 4: One-way classification of the “Defect type” attribute.

Fig. 5: One-way classification of the “Impact” attribute.

Figure 4 is a representation of classifying defects based

on the defect type attribute. 107 of the observed defects

Fig. 6: One-way classification of the “Layer affected” at-

tribute.

Fig. 7: One-way classification of the “Severity” attribute.

were classified as functional defects, 161 were classified

as interface defects, and 74 were classified as IaaS/PaaS

defects which is one of the newly introduced defect types. In

addition, Figure 5 is a representation of classifying defects

based on the impact attribute. 127 of the observed defects

were classified as defects related to usability, 213 defects

as related to reliability, and 2 defects as defects related

to installibility. Moreover, Figure 6 is a representation of

classifying defects based on the layer affected attribute. It

is clear that 268 defects affected the SaaS layer and 74

defects affected the IaaS/PaaS layer. Finally, Figure 7 is a

representation of classifying defects based on the severity

attribute. from the collected data the severity of 17 defects

were classified as critical, 102 were classified as high, 98

were classified as medium, and 125 were classified as low

severity.

One-way classification may be informative but may not

provide sufficient information regarding defects and related

Fig. 8: Two-way classification of the “Defect type” and

“Severity” attribute.

76 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

high-risk areas to the development team. Implementing two-

way classification will result in gaining a better view of

the observed defects, and eventually may result in better

informed decisions. For example, Figure 8 shows the number

of defects observed after implementing the two-way classi-

fication method based on the defect type and severity. It

is clear that 10 of the observed defects are classified as

Functional defects (based on the defect type attribute) and

are also classified as critical (based on the severity attribute).

Therefore, using two-way classification it is possible to focus

on resolving high priority defects to improve the reliability

and quality of the SaaS.

In our work, we have demonstrated that adopting the ODC

model to a SaaS is feasible. The new approach aids in

classifying and analyzing defects that may have not been

classified or analyzed using regular testing techniques. Thus

enabling SaaS providers to classify and analyze defects

while considering the special characteristics of SaaS such

as isolation and multi-tenancy. This will be an opportunity

for SaaS providers to improve their product, and eventually

lead to improved SaaS quality.

In addition, we also demonstrated the possibility of im-

plementing one-way and two-way classification of observed

defects. Such classification allows SaaS providers to focus

on the most important defects that significantly affect the

reliability of the SaaS.

6. Conclusions
Locating, analyzing, and resolving defects is considered

a major contributor to improving software quality. ODC is

a defect analysis method, known for providing In-process

defect feedback to the development team. However, there has

not been a clear defect analysis model designed specifically

for SaaS. A SaaS that contains defects is considered with

low quality, and eventually may not comply with the level of

quality promised in the SLA. There has been several ways

and models developed to analyze defects. However, none

is applicable to SaaS due to the fact that these techniques

and models do not address the multi-tenancy and isolation

features of SaaS.

The defect analysis method described in this paper is

based on adopting the ODC concept to a SaaS running

in the Cloud. The dynamic structure of the Cloud requires

a dynamic defect analysis approach that allows benefiting

from the availability of feedback loops in most software de-

velopment life cycles. Adopting the Cloud-ODC framework

allows notifying the development team of discovered defects

through these feedback loops, which is considered a major

contributor to enhancing the overall quality of the software

product. Therefore it is beneficial to SaaS providers.

Using the one-way or two-way analysis of the classified

defect data enables focusing on certain defects to improve

the quality of the SaaS by fixing or resolving the most

important defects. However, there are limitations to our

approach. For example, the experience of the individual

that is conducting the classification plays a role in the

classification results. In addition, this approach has not been

tested towards a realistic industry-strength Cloud application,

which we plan to do in follow-up studies. Moreover, since

the case study was conducted using the web server developed

by Windows, the “Win32 status” field is not applicable to

other web servers. However, other web servers have similar

fields that can be utilized.
In Our work, we have demonstrated the viability of

adopting the ODC concept to characterize SaaS defects. We

modified the current ODC framework to better accommodate

the multi-tenancy and isolation features of a SaaS, and added

the “Layer affected" attribute to the proposed framework.

In addition, we added the “security” attribute to IBM’s

measurement areas for quality attributes. We also imple-

mented one-way and two-way classifications successfully

on a running SaaS in the Cloud. This would enable SaaS

providers to focus on certain defects with high priority,

which would promise cost effective quality improvement to

the service they provide to their customers.

Acknowledgment
This research is supported in part by NSF Grant

#1126747, NSF Net-Centric I/UCRC, and the Institute of

Public Administration (IPA) in the Kingdom of Saudi Ara-

bia.

References
[1] R. Chillarege, I. S. Bhandari, J. K. Chaar, M. J. Halliday, D. S.

Moebus, B. K. Ray, and M.-Y. Wong, “Orthogonal defect classification
- a concept for in-process measurment,” in IEEE Transactions on
Software Engineering, vol. 18, no. 11, November 1992.

[2] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwin-
ski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “A
view of cloud computing,” in Communications of the ACM, vol. 53,
no. 4, April 2010, pp. 50–58.

[3] The National Institute of Standards and Technology, “The NIST
definition of cloud computing, Special Publication 800-145,” 2011.

[4] A. Ojala, “Software renting in the era of cloud computing,” in 2012
IEEE Fifth International Conference on Cloud Computing, 2012, pp.
662–669.

[5] C. J. Guo, W. Sun, Y. Huang, Z. H. Wang, and B. Gao, “A framework
for native multitenancy application development and management,” in
The 9th IEEE International Conference on E-Commerce Technology
and the 4th IEEE International Conference on Enterprise Computing,
ECommerce, and E-Services, 2007.

[6] Y. Zhu and J. Zhang, “Research on key technology for saas,” in
The 7th International Conference on Computer Science & Education
(ICCSE) 2012, Melbourne, Austrailia, July 2012.

[7] J. Tian, Software Quality Engineering. John Wiley & Sons., 2005.
[8] B. Boehm, “Software risk management: principles and practices,”

Software, IEEE, vol. 8, no. 1, pp. 32–41, Jan 1991.
[9] J. Liu, Z. Xu, J. zhong, and S. Lin, “A defect prediction model for

software based on service oriented architecture using expert cocomo,”
in 2009 Chines Control and decision Conference (CCDC 2009), 2009,
dOI 1978-1-4244-2723-9/09.

[10] L. Ma and J. Tian, “Web error classification and analysis for reliability
improvement,” in The Journal of Systems and Software, vol. 80, 2007,
pp. 795–804.

[11] R. A. Radice and R. W. Phillips, Software Engineering: An Industrial
Approach. Prentice-Hall, 1988.

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 77

Support for Security Analysis of Design Models based on
Traceability

Hirokazu Yatsu1, Masaru Matsunami2, Toshimi Sawada3, Go Hirakawa4, Atsushi Noda4,
Naoya Obata4, Takahiro Ando1, Kenji Hisazumi1, Weiqiang Kong5, and Akira Fukuda1

1Kyushu University, Fukuoka, Japan
2Sony Digital Network Applications, Inc., Tokyo, Japan

3Kosakusha, Ltd., Tokyo, Japan
4Network Application Engineering Laboratories, Ltd., Fukuoka, Japan

5Dalian University of Technology, Dalian, China

Abstract - Software systems embedded into the foundation of
information society is required to be secure. Requirements for
the system to be secure should be properly recognized in the
upper process of system development, and accurately reflected
in their specifications and designs. However, security analysis
to decide whether systems are secure or not is usually done at
the implementation phase of system development or later. In
this paper, we propose a universal approach to support
security analysis at the design phase. Our approach is to
detect vulnerable parts of systems based on traceability
established among SysML diagrams, security threats and
countermeasures against threats using SMT solvers.

Keywords: Security Analysis, Traceability, SysML, FTA,
GSN, SMT solver

1 Introduction
 Software systems embedded into the foundation of
information society is required to be secure. Requirements for
the systems to be secure (in this paper, this is abbreviated to
security requirements) should be properly recognized in the
upper process of system development, and accurately
reflected in their specifications and designs. However, in the
current system development, security analysis to decide
whether systems are secure or not is mainly performed on
code created at the system implementation phase with tools,
such as vulnerability scanning on binary code or static
analysis on source code. It might be necessary to correct the
specifications and design of the systems to remove the
security vulnerabilities found through security analysis at the
implementation phase or later. In that case, the overhead to
correct the specifications and design would be large.
Therefore, security analysis on the system specifications and
design (in this paper, this is abbreviated to security design
analysis) is necessary. In security design analysis, we have to
grasp how countermeasures against security threats are
prepared in the systems. Unfortunately, the necessity and
importance of security design analysis have not been
recognized yet.

In this paper, we introduce the attempt of security design
analysis in Sony Digital Network Applications, Inc.
(hereinafter abbreviated to SDNA Inc.) [1] and our tool to
support the security design analysis by detecting vulnerable
parts of the systems using SMT solvers.

2 Security design analysis
 In this section, as an example of the security design
analysis, we will introduce the attempt of SDNA Inc. [1].
This attempt refers to the threat modeling [2]. The subject of
threat modeling is security threats with which a system is
facing, whereas the subject in [1] is situations where assets of
a system such as confidential materials, password, etc., are
protected from security threats.

2.1 Threat modeling
 The threat modeling draws attack trees, whose structure
is same as fault trees drawn in Fault Tree Analysis (FTA for
short) (Figure 1). However, representation of the security
threats in attack trees varies from person to person. It would
be difficult even for practitioners rich in security knowledge
to draw attack trees.

Bribe the
sysadmin

Obtain
encrypted

file

Break into
the system

Steal the
backup

Install the
keylogger

the password
Obtain

company
secrets

Decrypt

&

&

∨

X1 X2 X3 X4

Figure 1 An example of attack tree[3]

2.2 Security design analysis
 As security requirements, [1] describes a desirable
situation where assets of a system are protected from security

78 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

threats. The assets include information and functions stored in
the system. An example of the situation is that a third person
cannot read/call such information/functions through any
security attack. In [1], security threats that cannot be
overlooked in a system are identified as the following two
actions of a third person.

1. Access to assets

2. Prevention of user's access to assets

Security requirements of a system assume that assets of the
system are always protected from any security attacks, that is,
any third person cannot access assets of the system and
cannot prevent user's access to the assets. In [1], a security
threat is not directly described, but a security requirement is
described as a dual(i.e., negation) of existence of some
security threat.

Same as the case of drawing attack trees, representation
of security requirements are likely to vary from person to
person. So, [1] provides a template (Table 1) for description
of security requirements. This template provides practitioners
a uniform description style for security requirements. So it
enables them to represent security requirements similarly to
other practitioners.

Table 1 A template for description of security requirements

Asset Action Security requirement

Information

read

<Attacker> cannot read <Information>

<Attacker> cannot prevent <Users>
from reading <Information>

write
<Attacker> cannot write <Information>

<Attacker> cannot write <Information>

Function execute

<Attacker> cannot write <Information>

<Attacker> cannot prevent <Users>
 from executing <Function>

2.3 Decomposition of security requirements
Security requirements can be decomposed according to

the configuration of a system. Figure 2 shows an example of a
system which manages prescriptions assigned to patients. This
system is called “Medication Notebooks System”[1]. In the
system, all prescription records registered through receipt
computers in pharmacies are gathered in a server. Dotted lines
indicate the flow of prescription records in the system.
Numbered constituents such as server, receipt computer, tablet,
etc. indicate locations where prescription records exist. One of

the security requirements of this system is “prescription
records cannot be read by a third person in the system”.

Figure 2 Flow of a prescription

That security requirement is equivalent to “prescription
records cannot be read by a third person at any location of the
system where they exist”, which is represented as a
conjunction indicated in the Figure 3.

Figure 3 An example of decomposition

3 Support of security design analysis
on traceability

A security requirement for a system that the system is
secure can only be guaranteed by indicating that assets in the
system can be protected from security threats already found.
As described in the previous section, security requirements
derived from the security design analysis can be decomposed
in accordance with the configuration of the system. As a
security requirement is a dual of some security threat, the
threat can also be decomposed in accordance with the
configuration of the system. So security requirements and
security threats should be recognized in association with the
configuration of a system that is a target of security design
analysis. Appropriate traceability should be established
among them.

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 79

.

Figure 4 An example of established traceability

 Figure 4 shows an example of traceability established
among configuration of a system, security threats and security
requirements. Configuration of a system is represented by
SysML[4] block definition diagrams and requirement
diagrams. Security threats are described as constituents which
appear in a fault tree(or an attack tree). Security requirements
are described in Goal Structuring Notation(GSN for short)[5].
The established traceability is interpreted as in Table 2.

Table 2 The interpretation of traceability

Traceability
Interpretation

between

block
B

threat
T block B is faced with threat T

threat
T

security
requirement

M

If security requirement M is satisfied,
then threat T does not occur

security
requirement

M

requirement
(in SysML)

R

If requirement R is satisfied,
security requirement M is also satisfied

requirement
R

block
B block B satisfies requirement R

3.1 Detection of vulnerable parts in a system
 We define that a vulnerable part of a system is a block
which does not satisfy enough security requirements to
prevent security threats from occurring on the block. In this
section, we describe a mechanism to detect vulnerable parts
in a system.

Suppose that traceability is established among a block B,
a threat T, a security requirement M and a requirement R(see
Figure 5).

Figure 5 An example of detection

Then, some propositions can be derived using the

interpretation of traceability in Table 2, same propositions can
be extracted (Table 3).

Table 3 Extraction of propositions

Interpretation extracted proposition

block B is faced with threat T B implies T

If security requirement M is satisfied,
then threat T does not occur M implies not T

If requirement R is satisfied,
security requirement M is also satisfied R implies T

block B satisfies requirement R B implies R

B, T, M and R in the extracted propositions are
propositional variables which denote ‘existence of block B’,
‘occurrence of threat T’, ‘ satisfaction of security requirement
M’ and ‘satisfaction of requirement R’, respectively.

If block B is not vulnerable, there is no assignment to
the propositional variables B, T, M and R. From the last three
propositions in Table 3, we can deduce that B implies not T,
which contradicts the first proposition B implies T. If block
B is vulnerable, there is some assignment F to B, T, M and R
such that F(T) = true. We can easily decide whether there is
such assignment or not using SMT solvers, for example Z3[6]
and Yices[7].

3.2 An assistant to detect vulnerable parts
 In this section, we introduce our tool which assists
detection of vulnerable parts in a system. This tool extracts
propositions from SysML diagrams(block definition diagram
and requirement diagram), fault/attack trees of security threats
and GSN expression of security requirements. Propositions
extracted by the tool are written in SMT-LIBv2[8] which is a
standard input language for SMT solvers.

80 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

Figure 6 Our assistant tool for detection of vulnerable parts

The above Figure 6 is a screen of our tool, where SysML
diagrams, a fault tree of a security threat and a GSN
expression of a security requirement are shown. From these
information appear in the screen, our tool extract propositions,
which is precisely described in the following section.

3.2.1 Inheritance relation between blocks
Suppose that block B2 inherits block B1 (Figure 7).

Figure 7 Inheritance relation between blocks

Then the following proposition (1) is extracted.

 B2⇒ B1 (1)

3.2.2 Traceability between a block and a threat
Suppose that traceability is established between a block B and
a threat T (Figure 8).

Figure 8 Traceability between a block and a threat

Then the following proposition (2) is extracted.

 B⇒ T (2)

3.2.3 Causation relation between security threats
Suppose that threat T is caused from threats T1 and … and Tn
(Figure 9).

Figure 9 Causation relation between threats(AND)

Then the following proposition (3) is extracted.

 T ⇒ (T1∧...∧Tn) (3)

Suppose that threat T is caused from threat T1 or … or Tn
(Figure 10).

Figure 10 Causation relation between threats(OR)

 Then the following proposition (4) is extracted.

 T ⇒ (T1∨...∨Tn) (4)

3.2.4 Traceability between a threat and a security
requirement

Suppose that traceability is established between threat T and
security requirement M (Figure 11).

Figure 11 Traceability between a threat and a security
requirement

 Then, the following proposition (5) is extracted.

 M ⇒¬T (5)

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 81

3.2.5 Constitution of a security requirement
Suppose that security requirement M is decomposed to sub
requirements M1, … ,Mn under the premise P (Figure 12).

Figure 12 Constitution of a security requirement

Then, the following proposition (6) is extracted.

 (P∧M 1∧...∧Mk)⇒M (6)

3.2.6 Traceability between a security requirement and
a requirement

Suppose that traceability is established between security
requirement M and requirement R (Figure 13).

Figure 13 Traceability between a security requirement and a
requirement

Then the following proposition (7) is extracted.

 R⇒M (7)

3.2.7 Relation between requirements
Suppose that requirement R is derived from requirement R1
(Figure 14).

Figure 14 Derivation relation between requirements

Then the following proposition (8) is extracted.

 R1⇒ R (8)

And suppose that requirement R is composed of R1, …, Rn
(Figure 15).

Figure 15 Composition of a requirement

Then the following proposition (9) is extracted.

 R⇒ (R1∧...∧Rn) (9)

3.2.8 Traceability between a block and a requirement
Suppose that traceability is established between block B and
requirement R (Figure 16).

Figure 16 Satisfaction relation between a block and a
requirement

Then the following proposition (10) is extracted.

 B⇒ R (10)

4 Example
 The validity of the proposed mechanism is checked by
several examples. Figure 17 indicates one of such examples.
This example treats the medication notebook system[1].
Pharmacies and mobile terminals in the system are instances
of the block Client. In the example, a security threat is that
prescription records can be read during a communication on
the internet by a third person. A security requirement against
the threat consists of three sub-requirements. In the following
figure, dotted lines indicate traceability established in the
system.

82 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

Figure 17 An example for checking validity of the proposed
mechanism

According to the proposed mechanism introduced in the

section 3, there is no vulnerable part in the example because
each block satisfies enough security requirements to prevent
the security threat. However, when some traceability among
the threat, the security requirements and the requirements (in
SysML requirement diagram) is removed, we can realize that
the threat can occur on the system, because SMT solvers find
a assignment where a propositional variable which represents
the occurrence of the threat to be true.

5 Conclusions
 We proposed a mechanism and introduced a tool to
support security design analysis by detecting vulnerable parts
of a system using SMT solvers. We are going to apply the
mechanism to some systems of the real world to validate the
usefulness of the proposed mechanism for security design
analysis.

6 Acknowledgement
 This research was supported by the Ministry of Internal
Affairs and Communications SCOPE(Strategic Information
and Communications R&D Promotion Programme) No.
142310011.

7 References
[1] Masaru Matsunami. “Security Design Analysis Method

applied to Sony's Electronic Medication Notebooks
System”. proc. of WOCS 2015, 2015 (in Japanese).

[2] Frank Swiderski and Window Snyder. “Threat
Modeling (Microsoft Professional)”. Microsoft Press,
2004.

[3] Aivo Jurgenson and Jan Willemson. “Serial Model for
Attack Tree Computations”. proc. of Information,
Security and Cryptology – ICISC 2009, Lecture Notes in
Computer Science Volume 5984, 2010, pp 118-128.

[4] “OMG Systems Modeling Language Version 1.3”,
available at http://www.omg.org/ spec/SysML/1.3/PDF.

[5] “GSN COMMUNITY STANDARD”, available at
http://www.goalstructuringnotation.info/documents/GS
N_Standard.pdf

[6] http://research.microsoft.com/en-us/um/redmond/project
s/z3/

[7] http://yices.csl.sri.com/

[8] David Cok. “The SMT-LIBv2 Language and Tools: A
Tutorial”, available at
http://www.grammatech.com/resource/smt/SMTLIBTut
orial.pdf

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 83

Automatization of Acceptance Test
for Metrology Algorithms

B. Müller
Ostfalia – University of Applied Sciences

Faculty of Computer Science

Germany – 38302 Wolfenbüttel

bernd.mueller@ostfalia.de

Abstract— Coordinate Measuring Machines use complex
metrology algorithms to compute geometric shapes based on
3-dimensional measuring points. National metrology institutes
are committed to validate that results computed by these
algorithms are correct. We report on a project funded by the
European Union which, beside other topics, develops criteria
to assess the fitness for purpose of computational algorithms
and software in metrology used by coordinate measuring
machines.

Keywords: Testing, verification, validation, TraCIM, coordinate

measuring machines

1. Introduction
Coordinate Measuring Machines (CMM) are used in dif-

ferent manufacturing industries to ensure high accuracy of

manufactured products but also high accuracy of the produc-

tion run itself. The research project TraCIM (Traceability for
Computational-Intensive Metrology), funded by the European

Union, aims for the development of a coherent framework to

ensuring traceability in computationally-intensive metrology, a

basis for ensuring the trustworthiness and fitness for purpose

of metrology software for coming decades. To reach this aim

the software and therefor its underlying algorithms have to be

verified and validated.

We first introduce CMMs (Coordinate Measuring Machines)

and report on the current manual process to check for the cor-

rect and high precision measuring processes of such machines.

Further, we classify the checking process with respect to the

established software engineering concepts of verification and

validation. Finally, we describe the architecture and function-

ality of a system which automates the whole process.

2. Coordinate Measuring Machines
CMM are devices for measuring physical geometrical char-

acteristics of different kind of objects. Maximal permissable

error is typically around 1 μm. The high accuracy measuring

can be achieved by optical, tactile or even computer tomogra-

phy scanner based capturing of probes. CMMs are hardened

against floor induced vibration and are operated in an air

conditioned environment to prevent measuring errors.

The capturing of probes differ from conventional measuring.

Substitution points get captured and represented as x/y/z

coordinates. Based on these substitution points the geometrical

forms are computed. Figure 1 shows a circle and the captured

substitution points in a plane.

In practice, 3-dimensional geometric bodies such as cubes

or cylinders have to be measured and their surfaces or volumes

have to be computed. In modern manufacturing industry high

accuracy measuring is important to verify that manufactured

parts are within designer-specified tolerances and to ensure

that manufacturing processes stay in control during the pro-

duction run.

Fig. 1

SUBSTITUTION POINTS OF A CIRCLE

CMM manufacturers therefore have to implement algo-

rithms in some programming language to compute, for ex-

ample, the circle (diameter, circumference or circular area)

depicted in figure 1 out of the substitution points. This can be

done with different algorithms — for example least-square,

Gaussian and Chebyshev algorithms — and, of course, differ-

ent programming languages. For an introduction of CMM and

used algorithms see [1], [2], [3].

3. Manual Certification Process
National Metrology Institutes (NMI) provide scientific and

technical services for industry, science and society. For ex-

ample, NMIs have to do some certification and support cali-

bration of CMMs to support manufacturing processes of high

technology industries.

At the moment the process of certification is done manually

by NMIs around the world in a variety of ways. For example,

some NMIs own test data sets, which represent substitution

points as introduced in section 2. The test data is sent per

84 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

e-mail or ground mail (CD/DVD) to the requesting CMM

manufacturer. The manufacturer uses the data as input for his

metrology algorithms and sents the computed result back to

the NMI, also per e-mail or ground mail. The NMI compares

the computed result with the expected result and hands over a

certificate if the computed and expected results match within

some tolerances.

This manual certification process is lenghty, error prone and

expensive because of the great portion of human work. Process

automation is therefor an evident demand. However, there exist

many more requirements, for example concerning traceability

which we will detail on in section 5.4.

4. Verification and Validation in Software
Engineering

While there is some confusion regarding the terms and def-

initions of verification and validation across different siences

Boehm defines already 1979 in his seminal paper [4] the terms

with respect to software engineering:

Verification: to establish the truth of the correspondence

between a software product and its specification. (’Am I

building the product right?’)

Validation: to establish the fitness or worth of a software

product for its operational mission. (’Am I building the right

product?’)

In the figure called V-Chart following the above definitions

Boehm depicts that verification is done regarding formal

requirements while validation ist done regarding customer

expectation.

In a complete product development life cycle the transition

from validation to verification and vice versa is fluent by

nature. Relating to CMM the customer expectation of cor-

rect and exact measurement, the implementation of Gaussian

and Chebyshev algorithms from the 19th century with some

programming language and the embedding into some physical

machine has to function correctly as a whole. At the very

end there is some last acceptance test resulting in adoption or

refusal of the product.

From a software engineering point of view component

and integration tests are fully automated while system and

acceptance tests are not. It is therefore helpful to look for the

characteristics of component and integration tests:

• Test method knows the method to test.

• Test method calls method to test. Both are written in the

same programming language.

• Test result is undoubtful.

• Test motivation, test coverage etc. are defined by project

conditions.

In contrast TraCIM tests are characterized by:

• Method to test respectivly the environment knows the test

data set or test data generator.

• Test is executed randomly and application specific.

• Method or algorithm to test written in some programming

language has to obtain test data self-dependent.

• Test result is supposed to be correct but this is not

ensured.

• Successful tests lead subseqently to some certification.

Therefore test motivation, test coverage etc. are defined

by public authorities.

5. Process Automation
Despite long history in formal verification research [5] only

very small and simple software systems can be verified correct

based on formal methods of mathematics. In practice the

only valid choice to get some confidence in proper software

operation is testing as introduced in section 4. Some NMIs

own test data sets with corresponding test solutions. Some

NMIs generate test data sets on the fly and the test solutions

are computed, too.

The TraCIM Software Verification System (TraCIM SVS)

is part of the TraCIM project (Traceability for computational-

intensive metrology). We depict the project further in section

6. A detailed description is also available online [6].

From a software engineering point of view the requirements

for TraCIM SVS are quite standard:

• Clients, humans or other software systems ask for some

(test) data

• After the data is received some computation regarding

the computational coordinate metrology algorithms from

section 2 takes place

• The resulting new data (the test result) is send back to

the system as the solution for the test data

• After verification of the submitted data there is some kind

of result, either success or failure

One of the most popular environments to implement such

systems is the Java Platform Enterprise Edition (Java EE) [7].

TraCIM SVS is build with Java EE 7, the most current version.

Java EE includes different parts, for example JavaServer

Faces (JSF) to build HTML and Web based UIs, Enterprise

JavaBeans (EJB) to implement business logic, Java Persistence

API (JPA) to persist data to relational databases, JAX-RS to

offer REST-like APIs and Context and Dependency Injection

(CDI) to glue all the parts together.

The most important technical requirement of TraCIM SVS

is the ability to handle all kind of tests, not only the 3D coordi-

nate measurements features described in section 2. Therefore,

TraCIM SVS consists of a core system and an innovative

extension mechanism illustrated in the next section.

5.1 Architecture and Base Functionality
Figure 2 represents the main components of TraCIM SVS

together with the client applications built by the CMM manu-

facturer. The TraCIM Server core offers REST based services

and is hosted by a NMI. Functionality and communication

steps are as follows

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 85

TraCIM Server
(Core)

CMM Manufacturer
Expert Extensions

WildFly / JVM

REST/HTTP

REST/HTTP

Fig. 2

TRACIM ARCHITECTURE

1) The client has payed the invoice and received some key,

which enables him to request for test data. The key

encodes also the type of test.

2) The client request TraCIM SVS for test data.

3) Because the request includes the key generated in step 1,

TraCIM SVS is capable to identify the requested expert

module. This special expert module is called and returns

the test data.

4) TraCIM SVS sends back the test data as HTTP response.

5) The client computes the result for the received test data

and sends the result back to the TraCIM SVS per HTTP

request.

6) TraCIM SVS calls the expert module to compare the

expected result for the provided test data and the actual

result from the client. This comparison can succeed or

fail. In both cases the result of the method call is returned

to TraCIM SVS and includes a certificate in PDF in case

of success.

7) TraCIM SVS returns the comparison result to the client.

TraCIM envelopes the expert extension generated PDF

with some administration information from the involved

NMI.

As depicted in figure 2 the server stores management in-

formation in a database. The kind of management information

ranges from CMM manufacturer identification, payment infor-

mation and the number of remaining tests to memorandums

which test data set was delivered to which client, including the

time of test data delivery and the time of result submission of

the client.

As mentioned earlier expert extension can generate test

data on the fly but can also manage a set of static test data

and expected test results stored in a database. This optional

database usage is also depicted in figure 2. TraCIM SVS does

not restrict in any case the inner working of expert extensions.

5.2 Implementation and Used Technologies
Java EE is a well known technology in the area of big

application implementation and in widespread use. Java EE

is an umbrella specification and consists of about 30 single

specifications, depending on the version used. Our project

started with version 6 of Java EE but was migrated to Java

EE 7 in course of the project. Java EE implementations

manifest themselves in so called application servers. There are

many companies which offer application servers, for example

86 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

WebLogic R© from Oracle, WebSphere R© from IBM and JBoss-

AS/WildFly from JBoss. We use JBoss-AS — which was

renamed to WildFly in the last version — because JBoss-

AS is a so called open source implementation of Java EE.

Therefore, there are no costs of purchase as well as no annual

subscription costs. If in later project stages some demand for

commercial assistance will arise, Red Hat the parent company

of JBoss offers a commercial licence called EAP which can

be subscribed to.

TraCIM server core and expert extensions are implemented

as Java EE applications. Because the server core has a JSF

based UI it is deployed as a WAR (Web Archive). The expert

extensions are deployed as JARs (Java Archive). Both, server

as well as expert extensions use some common set of classes.

To prevent code redundancy a so called extension base is the

third kind of Java EE application we use and is also deployed

as a JAR.

The Java EE standard dictates absolute separation of dif-

ferent applications to prevent negative impact from one ap-

plication to another in case of malfunction. In our case we

have the demand that some application modules use some

other modules which is not an uncommon requirement in big

applications. All application servers offer some kind of non

standard mechanism to allow modules to access modules from

different applications. This mechanism is usually based on

Java’s classloader architecture. In TraCIM SVS classes from

the extension base are used by the server as well as by the

expert extensions. The expert extensions are additionally used

by the server.

Finally, TraCIM SVS consists of

• the extension base

• the server core

• one or more expert extensions

If a CMM manufacturer wants his software and in turn the

complete CMM to get certified, he has to pay the mandatory

fee for responsibilities of public administration and get the

authorization to get test data sets and submit in turn test results

for these data sets.

This is done by REST requests (REpresentational State

Transfer), the most up-to-date interpretation of web services.

The details about the communication steps are already de-

scribed in section 5.1.

The most innovative aspect of the system architecture is

based on the extension mechnism for expert extensions which

is similar to plug-in architectures. If a new expert extension

is implemented and has to be integrated into the system, no

code change has to be accomplished. This is possible because

of Java’s concept of a service loader which was introduced in

Java 6 and manifests itself in the class ServiceLoader [8].

The mechanism is based on a simple convention which results

in a self publication of classes implementing a particular

interface. The class ServiceLoader can then be asked for

all known implementation of the particular interface.

5.3 Future Enhancements
Because we describe here some work in progress there will

be of course future enhancements. At the moment we are

working on a design enhancement to allow expert extensions

to run as separate server services. If, for example, some NMI

X hosts the TraCIM server core but the expert extension runs

on behalf of NMI Y on a different server, probably in a

different country the collaboration of TraCIM server core and

expert extensions has to be revised to reflect this requirement.

The generated certificate has also to reflect this separation of

responsibilities. It has to contain a functional part of the NMI

offering the expert extension but also a more administration

part of the NMI hosting the TraCIM server core which reflects

the contractual relationship between the NMI and the CMM

manufacturer. This point directly passes over to some legal

aspects.

5.4 Legal Aspects
Because certificates were assigned by public authorities

there are some legal consequences. The performed tests and

certifications have to be repeatable and traceable. Repeatable

means that if a CMM manufacturer has requested a particular

kind of test and has succeeded this test a consumer of the

CMM can ask many years later for a further test. It has to

be guaranteed that the consumer will get the same test data

set as the manufacturer many years before to ensure that the

outcome of the same submitted test results are the same.

Based on the same rationals and the responsibilities of

public administration all test processes and test results have to

be stored for decades to establish a complete chain of evidence

if some disaster happens because of some earlier certification

of wrong or even right test results.

6. Project and Project partners
The European Community has established the research

project Traceability for Computationally-Intensive Metrology
(TraCIM) which - beside other topics - develops criteria to

assess the fitness for purpose of computational software in

metrology and to verify them. The TraCIM home page [6]

details objectives of this research project. The project started

in 2013 and will be finished in 2015.

The national metrology institutes of the United Kingdom,

Czech Republic, Italy, Germany, Slovenia and Netherlands as

well as 4 CMM manufactures and 3 Universities belong to the

project consortium.

Ostfalia, University of Applied Sciences, located in Ger-

many is responsible for implementing the project supporting

software and therefore TraCIM SVS. Close collaboration takes

place with PTB, the German NMI.

Some NMIs are working on different expert extensions at

the time to complete the bunch of possible test data sets

for different aspects of CMM characteristics. At the moment

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 87

Guassian, Chebyshev and Intercomparison are available and

offered by PTB.

7. Conclusion
We reported on the software system TraCIM SVS which

main task is to support national metrology institutes to proof

and certify the correct working of CMM. CMM are an

important part of manufacturing processes in modern industry.

Workshops in fall 2013 and spring and fall 2014 with

the CMM manufacturers of the TraCIM project demonstrated

the capacity of the design and implementation path we have

chosen. At the moment two manufacturer’s CMM software

was certified by PTB, the German NMI, in a fully automatized

process based on TraCIM SVS.

Acknowledgment
This research was undertaken within the EMRP project

NEW06-REG3 TraCIM. The EMRP is jointly funded by

the EMRP participating countries within EURAMET and the

European Union.

References
[1] V. Srinivasan and C. M. Shakarji and E. P. Morse, On

the Enduring Appeal of Least-Squares Fitting in Compu-
tational Coordinate Metrology, Journal of Computing and

Information Science in Engineering, March 2012, Vol 12.

[2] T. H. Hopp and M. S. Levenson, Performance-Measures
for Geometric Fitting in the NIST Algorithm Testing and
Evaluation Program for Coordinate Measurement Systems,

Journal of Research of the National Institute of Standards

and Technology, 9/1995.

[3] C. Shakarji, Evaluation of one- and two-sided Geometric
Fitting Algorithms in Industrial Software, Proc. American

Society of Precision Engineering Annual Meeting, 2003.

[4] B. W. Boehm, Guidelines for verifying and validation
Software requirements and design specification, Proc. Eu-

ropean Conference of Applied Information Technology of

the International Federation for Information Processing,

London, 1979.

[5] E. M. Clarke and E. A. Emerson and A. P. Sistla,

Automatic verification of finite-state concurrent systems
using temporal logic specifications, ACM Transactions on

Programming Languages and Systems, Vol 8, Apr. 1986.

[6] Traceability for Computationally-Intensive Metrology,

http://www.ptb.de/ emrp/1389.html.

[7] Java Platform, Enterprise Edition,

http://www.oracle.com/technetwork/java/javaee/overview/

index.html.

[8] ServiceLoader Documentation, http://docs.oracle.com/

javase/7/docs/api/java/util/ServiceLoader.html

88 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

Design and Implementation of a Constraint-Based Test Case
Generator with Test Fixture Computation

Chi-Kuang Chang and Nai-Wei Lin
Department of Computer Science and Information Engineering,

National Chung Cheng University, Chaiyi, 168, Taiwan, R.O.C.

Abstract— In this study, we design and implement a
constraint-based test case generator. Test cases for method-
level unit-testing can be generated automatically from UML
class diagrams and OCL specifications. A test case includes
test data (test inputs and expected outputs), and test fixtures.
We adopt a constraint logic graph approach to generating test
data, and a finite model reasoning approach to generating test
fixtures. These two approaches are unified and resolved by
using constraint logic programming. We have also performed
a preliminary experiment to evaluate the applicability of this
test case generator.

Keywords: constraint-based testing; UML/OCL; method-level unit

testing; constraint satisfaction problem; constraint logic program-

ming.

1. Introduction
Manual acquisition of test cases is laborious, time-

consuming, and error-prone. It is beneficial if test cases

can be automatically generated instead. Constraint-based

testing (CBT) is one of the approaches to generate test cases

from formal specifications, against a testing objective, by

means of constraint solving techniques [1]. In this study we

propose a constraint-based approach to generate platform-

independent test data from the software models. Test cases

for different programming languages and test-platforms can

then be generated from the test data.

Method-level unit-testing focuses on verifying the behav-

iors of the method under test(MUT) on the change of the

states. There are two challenges in the generation of test cases

for method-level unit-testing: 1. the generation of test inputs

and expected outputs for a test case, and 2. the generation

of the test fixture for a test case. The first challenge acquires

approaches to partitioning the behaviors of the MUT into a

more manageable collection of equivalence classes, to ensure

that only a few representative test data are generated for each

equivalence class. In our previous work [10], we transform

OCL expressions into constraint logic graphs (CLG), in

which, each complete path represents an equivalence class.

The second challenge is the test fixture computation

problem. This problem states that the object states should be

well initiated and compliant to the constraints specified in

the software model to correctly exercise a test case. However,

most of related works does not address the test fixture

computation. A few related works that address the test fixture

computation explore the space of the object states through

the sequences of method invocations [2], [3]. Our previous

work [10] didn’t address the test fixture computation. This

work extends our previous work to use the constraint-based

approach to addressing the test fixture computation. This work

uses relations, e.g., associations and multiplicities, defined in

the UML class diagrams to generate test fixtures. The reasons

are twofold: First, sequence of method invocations are relating

the testing of the current method with other methods. The

defects of other methods will reduce the adequacy of the

generated test suites. Second, OCL expressions can specify

relations among instances of classes, only the object states

are well initiated and compliant to the relation constraints,

can well perform a test data derived from OCL expressions.

The remainder of this paper is organized as follows: Section

2 describes the the modeling approaches adopted in this study;

Section 3 describes the implementation details; Section 4

presents the performance evaluation; Section 5 provides a

summary of related work; and finally, Section 6 provides our

conclusions.

2. Generation of Test Cases
A test data is an abstract description to a test case, and is

test-platform independent. A test case contains test data (test

inputs and expected outputs) and test fixtures. The problem

of generating test cases from the UML class diagrams and

OCL can be modeled as a constraint satisfaction problem

(CSP). The modeled CSP is composed by three sub-CSPs

and they are, CSPPRE , CSPT and CSPPOST . CSPPRE

is the problem of finding the object states before performing

the test. A solution to CSPPRE is a test fixture candidate.

CSPPOST is the problem of finding the object states after

performing the test. CSPT is the problem of generating test

inputs and expected outputs from the equivalence classes of

the constraints of the MUT. However, the involved pre/post

object states of a solution of CSPT should satisfy CSPPRE

and CSPPOST accordingly.

Consequently, the problem of test case generation can be

modeled as follows. Let spre be a solution to CSPPRE , spost
be a solution to CSPPOST , (a, r) be a solution to CSPT ,

where a is the test inputs and r is the expected outputs, then

a test case t ≡ (spre, a, r, spost).

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 89

Fig. 1: An example UML diagram.

2.1 Generation of Test Fixture
The problems of CSPPRE and CSPPOST are to find

object states that are compliant to the constraints specified

by the software model. The constraints describe the object

states are defined in UML class diagrams and class invariant

constraints of OCL specifications. An UML class diagram

defines the attributes and methods of the classes, relations

of associations and multiplicities among the classes. OCL

class invariants of a class specify the constraints that must be

held for each object of the class. In this work, we adopt the

finite model reasoning approach [5] to model the problems

of CSPPRE and CSPPOST .

The finite model reasoning approach models the problem

of validating an UML class diagram as a problem of finding

a finite initialization of the UML class diagram. If an

UML class diagram can find a finite number of objects

and associations, which can be initialized according to the

definitions and relations defined in the UML class diagram,

this UML class diagram is said to be finite reasonable and

to be a valid model. Consequently, we model the problems

of CSPPRE and CSPPOST in similar ways. If CSPPRE

is finite reasonable and spre is one of the solutions, spre is a

test fixture candidate. If CSPPOST is finite reasonable and

spost is one of the solutions, spost is a candidate of object

states after performing the test.

2.2 Generation of Test Data
The method under test (MUT) is defined by a set of OCL

precondition and postcondition constraints. These constraints

specify the behaviors of the MUT. In this work, we leverage

our previous work to transform the OCL pre/post constraints

of the MUT into a constraint logic graph for the generation of

equivalent classes of test data[10]. A constraint logic graph

is a graphical representation of a disjunctive normal form of

logic constraints.

Laboratory::canRegister postcondition

self.isAvailable()

1

(not self@pre.students->includes(student))

2

(result = true)

3

(not self.isAvailable())

4

self@pre.students->includes(student)

6

(result = false)

5

Fig. 2: The CLG of canRegister() method.

1 context Laboratory
2 inv:
3 self.limit <= 3 and self.limit > 0 and self.students
4 ->size() >= 0 and self.students
5 ->size() <= self.limit and self.students
6 ->iterate(student : Student; acc : Boolean = true | acc and

student.instructor = self.instructor)
7 context Laboratory::isAvailable() : Boolean
8 post:
9 result = self.students@pre->iterate(s:Student; r:Integer = 0 | r

+ 1) < self.limit@pre
10 context Laboratory::canRegister(student : Student) : Boolean
11 post:
12 if (self.isAvailable() and (not self.students@pre->includes(

student))) then
13 result = true
14 else
15 result = false
16 endif

Listing 1: A portion of the OCL specifications.

A constraint logic graph (CLG) is a directed graph with

seven types of nodes: start node, end node, constraint node,

connection node, iterate-start node, iterate-end node and

iterate-conjunction node. The constraint of a complete path,

starts from the start node and ends in the end node, represents

a conjunctive clause of the disjunctive normal form and

corresponds to an equivalence class of test data of the

MUT. Figure 2 is the constraint logic graph of method

canRegister() of class Laboratory as defined in the example

software specifications of Figure 1 and Listing 1. The

complete path of {1, 2, 3} represents the constraints of a

test data generation candidate. The constraints corresponding

to this path is presented as follows:

self.isAvailable()∧
(notself.students− > includes(student))∧

(result = true).

(1)

3. System Implementation
A test case is the solution of a test case predicate.

A test case predicate is composed by several predicates:

instance initialization predicates, path predicates and method

emulation predicates. The instance initialization predicates are

90 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

Fig. 3: The architecture of test case generator

Fig. 4: Inner of each function group.

the representations of the test fixture computation problems

of CSPPRE and CSPPOST . The path predicates represent

the constraints of a complete path of a CLG. Each method

emulation predicate represents the pre/post constraints of

a method of a class defined in the UML class diagram.

Additionally, to support the predefined OCL types and

operations, there is a set of predicates that implement the

functions of the OCL Standard Library.

The architecture of the test case generator is depicted

in Figure 3. This implementation is divided into four

functional groups. The F1 functional group generates method

emulation predicates from the OCL pre/post constraints of

each method of the classes defined in the UML class diagram.

The F2 functional group generates instance initialization

predicates from the UML class diagram and class invariant

constraints. An optional test coverage for class diagram

provides additional coverage hints for the construction of

instance initialization predicates. The F3 functional group

generates path predicates from the OCL pre/post constraints

of the MUT. The path enumeration is guided by a coverage

criterion for the CLG. The F4 functional group constructs the

test case predicates from the output of functional groups of

F1, F2 and F3. The generated test case predicates, combined

with the predicates of OCL Standard Library, are submitted

to ECLiPSe1 to find solutions. The solutions are test cases.

Table 1: Test data of constraint (1)

PRE

[(uml_obj, Teacher, 1)]
[(uml_obj, Laboratory, 1, 1)]
[(uml_obj, Student, 1)]
[(uml_asc, guide, 1, 1)]

ARG
1
[(uml_obj, Laboratory, 1, 1), (uml_obj, Laboratory, 1, 1)]
[(uml_obj, Student, 1), (uml_obj, Student, 1)]

POST

[(uml_obj, Teacher, 1)]
[(uml_obj, Laboratory, 1, 1)]
[(uml_obj, Student, 1)]
[(uml_asc, guide, 1, 1)]

Table 1 is the generated test data for the constraint of (1).

PRE and POST are the solutions for problems of CSPPRE

and CSPPOST . A record with the mark of uml_obj is an

object and with the mark of uml_asc is an instance of an

association. The third element of each object records is the

object identity. The third and fourth elements of an instance

of an association are the participated object identities. ARG
reports the test inputs and expected outputs of a test data. It

is composed by three records. The first record is the expected

output or the return value of the MUT, the second record is

the pre/post states of the receiving object before and after the

invocation of the MUT, the third record contains the inputs

or the argument list to the MUT, the objects/variables in the

argument list are also reported with their pre/post states.

3.1 Generation of Method Emulation Predi-
cates

A method emulation predicate is a predicate that represents

the conjunction of the pre/post constraints of a method.

The procedure to generate method emulation predicates are

depicted in F1 of Figure 4. Each of the pre/post constraints

of the method is translated into an annotated AST, which is

annotated with proper pre/post state information. AST2ECL
translates ASTs into CLP predicates. A method emulation

predicate is a conjunction of the generated CLP predicates.

We use the method isAvailable() of class Laboratory to

demonstrate the generation process of a method emulation

1ECLiPSe is a constraint logic programming solution. It provides a set
of tools and environment for constraint logic programming.

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 91

(114) Laboratory::isAvailable::postcondition

(1 1 3) =

(102) resul t (1 1 2) <

(109) i t e ra te (111) limit

(104) s tuden t s (105) 0 (1 0 8) +

(103) self@pre (106) r@pre (107) 1

(110) self@pre

Fig. 5: The AST of method isAvailable().

predicate. Method isAvailabe() is defined by one postcondi-

tion constraint, and the associated AST is shown in Figure

5. The AST is visited in post-order and predicates for each

visited nodes are generated. Listing 2 shows a portion of the

generated predicates.

1 n_102_variable_result(_, Vars, Result) :-
2 ocl_variable(Vars, 2, Variable),
3 variable_state("postcondition", Variable, Result).
4 n_113_ocl_boolean_equals(Instances, Vars, Result) :-
5 Result = [ResultPre, ResultPost],
6 n_102_variable_result(Instances, Vars, [XPre, XPost]),
7 n_112_ocl_integer_less_than(Instances, Vars, [YPre, YPost]),
8 ocl_boolean_equals(_, _, XPre, YPre, ResultPre),
9 ocl_boolean_equals(_, _, XPost, YPost, ResultPost).

10 n_114_Laboratory_isAvailable_postcondition(Instances, Vars, Result)
:-

11 n_113_ocl_boolean_equals(Instances, Vars, Result).
12 method_body_Laboratory_isAvailable(Instances, Vars, Result) :-
13 append(Vars, [Result|_], NewVars),
14 n_114_Laboratory_isAvailable_postcondition(Instances, NewVars,

[1, 1]).

Listing 2: Predicates for emulating the method of isAvailable()

Instances, V ars and Result are three important vari-

ables. The Instance variable contains the variables repre-

senting the instances of objects and associations. The details

about the construction of the Instance variable is described

in Section 3.2. The Result variable is the variable that

reports the result of the predicate. The variable of V ars
in each predicate is responsible for propagating global and

auto variables between predicates. The V ars is a list of

variables, which is defined as follows,

V ars ≡ [Self, Arg1, Arg2, · · · , Argn, RetV al, ExV ars], (2)

where, Self represents the receiving object under test, Argx
are the variables that associate with the arguments of the

MUT, RetV al is the return value of the MUT, and ExV ars
stores the auto variables propagated between predicates.

3.2 Generation of Instance Initialization Predi-
cates

The construction of the instance initialization predicate is

referring to the work [4], [5]. Listing 3 is an illustration of

a generated instance initialization predicate. This predicate

is composed by three portions of predicate: the cardinality

resolution predicates (line #3 to #13), the instance creation

Fig. 6: An example binary association.

predicates (line #15 to #23), and class invariant predicates

(line #25 to #29). The processes to generate instance

initialization predicates are depicted in F2 of Figure 4.

1 createInstances(Instances):-
2 Instances = [OTeacher, OLaboratory, OStudent, Linstruct,

Lcontains, Lguide],
3 %Cardinality definitions
4 ic:’::’(SLaboratory, 0..10),
5 % ...
6 ic:’::’(Scontains, 0..10),
7 % ...
8 CardVariables=[STeacher, SLaboratory, SStudent, Sinstruct,

Scontains, Sguide],
9 %Adopt cadinality constraints

10 constraintscontainsCard(CardVariables),
11 % ...
12 %Instantiation of cardinality variables
13 ic:’labeling’(CardVariables),
14
15 %Object creation
16 creationLaboratory(OLaboratory, SLaboratory),
17 % ...
18 %Link creation
19 creationcontains(Lcontains, Scontains, Scontains, SStudent),
20 % ...
21 %Adopt multiplicity constraints
22 multiplicityLinkscontains(Instances),
23 % ...
24
25 %Adopt class invariants
26 (foreach(ILaboratory, OLaboratory), param(Instances) do(
27
28 n_34_Laboratory_invariant([Instances, Instances], [[ILaboratory

, ILaboratory]], [1, 1])
29)).

Listing 3: An instance initialization predicate

3.2.1 Generation of Cardinality Resolution Predicates
The cardinality resolution predicates declare a size variable

for each class and association, e.g., SLaboratory for class

Laboratory, Scontains for association contains. The size

variable is to represent the possible number of initialized in-

stances of the class/association. Each size variable is bounded

by a given domain, to ensure the solver search for solutions

in a finite range. The possible value of the size variables

are also restricted by the cardinality constraints defined by

the association relations. This implementation interprets only

binary associations. Predicate constraintscontainsCard/1 in

Listing 3 is one of the predicates specifying the cardinality

constraints. Figure 6 is an example binary association, and

the cardinality constraints are defined as follows [5],

Na ≤ Nc1 ×Nc2

min1 ×Nc1 ≤ Na ≤ max1 ×Nc1

min2 ×Nc2 ≤ Na ≤ max2 ×Nc2,

(3)

where Na, Nc1 and Nc2 are size variables for association a,

class c1 and class c2. Constraint (3) describes the following

92 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

truth: 1. that the number of instance of association a is

bounded by the multiplication of the number of the instance

of class c1 and the number of the instance of class c2. 2.

each instance of class c1 is associated with at least min1 and

at most max1 instances of class c2 through the association

a. 3. class c2 has the similar constraints.

3.2.2 Generation of Instance Creation Predicates

In the work of UMLtoCSP, a class is modeled as a struct
of variables. Instances of the same class are given with

unique object identities, Oid, to make distinction. In our

implementation, we use list of variables to represent a class.

This representation has better flexibility for matching during

the stage of solving for answers. Taking class of Laboratory
as an example, an instance of class Laboratory is a variable

of list. The predicate to create instances of class Laboratory
is defined in Listing 4.

1 creationLaboratory(Instances, Size):-
2 length(Instances, Size),
3 (foreach(Xi, Instances), param(Size) do
4 Xi = [uml_obj, "Laboratory", OidInteger, Integer1],
5 ic:’::’(OidInteger, 1..Size),
6 ic:’::’(Integer1, 0..5)).

Listing 4: Predicate for creating instances of class Laboratory

Associations are modeled in the similar approach, an

instance of association contains is a list of variables. The

predicate to create instances of association contains is listed

in Listing 5.

1 creationcontains(Instances, Size, SStudent, SLaboratory):-
2 length(Instances, Size),
3 (foreach(Xi, Instances), param(SStudent), param(SLaboratory) do
4 Xi = [uml_asc, "contains", ValuePart1, ValuePart2],
5 ic:’#>’(ValuePart1, 0), ic:’#=<’(ValuePart1, SStudent),
6 ic:’#>’(ValuePart2, 0), ic:’#=<’(ValuePart2, SLaboratory)).

Listing 5: Predicate for creating instances of association contains

Multiplicity constraints must also be satisfied by each

individual object of the participant classes. The predicate

multiplicityLinkscontains/1 in Listing 3 is one of the

multiplicity constraints. For the binary association of Figure

6, the multiplicity constraints are defined as the following

FOL assertions [5]:

∀x.c1(x) → (min1 ≤ �{y|a(x, y)} ≤ max1)

∀y.c2(y) → (min2 ≤ �{x|a(x, y)} ≤ max2)
(4)

where each instance of class c1 is associated with at least

min1 and at most max1 instances of class c2 through the

association a. Class c2 has the similar constraints.

3.2.3 Generation of Class Invariant Predicates

The generation of class invariant predicates is similar to

the generation of method emulation predicates. Line #25 to

#29 in Listing 3 are CLP codes to apply the generated class

invariant predicates. In this example model, class Laboratory
is the only class that have class invariant constraint.

3.3 Generation of Path Predicates
A path predicates represents the constraints of a complete

path in the CLG of the MUT. The flow of generation of

path predicates is depicted in F3 of Figure 4. A constraint

logic graph is constructed from the ASTs of the pre/post

constraints of the MUT. The details of the CLG construction

can be found in our previous work [10]. The enumeration

of paths from a CLG is guided by the selected coverage

criterion. The constraints of each generated complete path

represent an equivalence class that can be a candidate for

test data generation.

The constraints of a complete path is a conjunction of

the constraint expressions in the constraint nodes of the

path. Each constraint expression is referring to an AST

representation of the expression, and the associated predicate

can be generated by AST2ECL. Consequently, a path

predicate is a conjunction of the generated predicates of

the constraint expressions. Taking the complete path of {1, 2,

3} of Figure 2 as an example, the generated path predicate

is depicted in Listing 6 of line #11 to #13.

3.4 Generation of Test Case Predicates
A test case predicate is composed by instance initialization

predicate for pre/post states and a path predicate. Listing 6 is

an illustration of a test case predicate for the constraint

(1). If a test data predicate has solution, the variable

InstancesPre will contain the object states (the test fixture)

before performing the test, the variable InstancePost will

contain the object states after the test, and the OutputV ars
will contain the test inputs, expected output and the receiving

object to perform the test. Table 1 is a solution to the test

case predicate of the constraint (1).

In Listing 6, line #7 the instances of pre-state are created,

line #10 to #13 are the path predicates for path {1, 2, 3} of

Figure 2 and line #15 is the instance initialization predicate

for post-state.

1 tcgen_2_LaboratorycanRegister(InstancesPre, OutputVars,
InstancesPost) :-

2 % ...
3 OutputVars = [Result, OLaboratory0, OStudent1],
4 Instances = [InstancesPre, InstancesPost],
5
6 % instance initialization predicate for pre-state
7 createInstances(InstancesPre),
8
9 % ...

10 % the path predicates for the equivalent class of path {1, 2, 3}
11 n_541_Laboratory_isAvailable(Instances, Vars, [1, 1]),
12 n_539_ocl_boolean_not(Instances, Vars, [1, 1]),
13 n_545_ocl_boolean_equals(Instances, Vars, [1, 1]),
14
15 % instance initialization predicate for post-state
16 createInstances(InstancesPost),
17 % ...

Listing 6: Test case generation predicate of path {1, 2, 3}.

3.5 Support of Test Coverage Criteria
The support of possible test coverage criteria are im-

plementation dependent. Our implementation has direct

support on structural based coverage criteria [11] and class

diagram based coverage criteria [9]. The structural coverage

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 93

Fig. 7: Cost on different domains and minimum objects.

criteria are adopted on the generated CLG. For performance

evaluation, we currently implemented structural coverage

criteria of statement coverage (SC) and branch coverage

(BC); and a class diagram coverage criterion of association-

end multiplicity (AEM) [9]. However, more testing criteria

can be supported in the future.

4. Performance and Quality Evaluation
In this section we perform several experiments to evaluate

the performance of our implementation. We also adopt

mutation testing to evaluate the quality of the generated

test cases.

4.1 Performance Evaluation
To evaluate the performance of our implementation, we

create several software models with different characteristics

for the experiment. The characteristics of each model 2 and

the time to generate test cases are summarized in Table 2.

In this table, the info column shows information about the

number of classes, associations and methods of each model;

the clg column shows the total number of nodes and edges

of the generated CLGs; the coverage column shows the

selected coverage criteria.

Table 2: The cost to generate test data for different models.
model info clg coverage tests time

Triangle 1/0/2 49/51 BC 5 331 ms
Date 1/0/2 196/224 BC 47 1786 ms
Laboratory 3/3/5 45/43 BC,AEM 27 4751 ms

According to the experiment results, this implementation

can generate test cases for models of single class efficiently.

Taking the model of Date as an example, this implementation

generates 47 test cases in 1786 ms. The cost is far smaller

comparing with test cases crafted by hand. However, for

models of multiple classes and relations, the cost is increased.

2The UML class diagrams, OCL specifications, AST trees and CLGs
of the listed models are available in the following URL for reference.
http://zeus.cs.ccu.edu.tw/tcgen/

Fig. 8: The result of PIT against the generated test data.

Figure 7 shows the cost to generate test cases for the

canRegister() method by giving restrictions to the minimum

number of participated objects in each test case, and different

values of the domains for classes and associations. According

to the experiment results, the domain of the classes and

associations are the most significant factors that affect the

cost on generating test cases. Since the number of the involved

objects are generally small for a test case of method-level

unit-testing, our implementation is capable to generate test

cases efficiently by giving small values for the domains of

the classes and associations.

4.2 Quality Evaluation
To evaluate the quality of the generated test cases, we

translate the test cases into test cases of JUnit test-platform

for a set of java implementation of the models. We use the

mutation testing tool, PIT [12], to test the quality of the

generated test data. The result is showed in Figure 8. From

the result, we observe that the quality of a test case generator

depends heavily on the information that the generator can

obtain. Classes of Date and Triangle are two classes that

are modeled in detail in their OCL specifications. Thus, even

the line coverage is not high, but the generated test cases

are strong against mutation testing. We also find that the

generated test cases for Laboratory are not good both in line

coverage and mutation coverage. The major reason of the low

score is the implementation of Laboratory contains some

methods, e.g., getter and setter methods, that are not modeled

in the software model. The generated test cases wont help

on the non-modeled methods. However, if we exclude the

survived mutation tests on getter and setter methods, we will

get a score of 93% (14/15).

5. Related Work
In this section, we review related work that applies

constraint-based approach to testing and studies that discuss

the problem of test fixture computation for unit testing.

5.1 Preamble Computation for Unit-Testing
Engels, Guldali and Lohmann, [3] proposed a three steps

approach to generate system states for unit testing. In the

first step, input parameters are generated randomly for the

operation to be tested. In the second step, pre/post constraints

are adopted to compute the object structure containing the

94 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

operation with parameters from the first step. The third

step is to construct a system state graph that represents the

possible system states generated from operations invocations.

By adopting search over the graph of the system states, the

object structure computed in the second step can be eventually

found. The path to the object structure in the system state

graph represents a sequence of operation invocation that can

lead to the system states to perform the test. However, if the

sequence cannot be found, the search process will start over

from the first step.

Colin, Legeard, and Peureux [2] partition each operation

of the specification by determining the different effects of

the operations and the effects are called effect predicates.

Boundary goals are computed on the effect predicates by

minimization and maximization metrics based on boundary

coverage criteria chosen by the tester. This results in one

or several minimum and maximum boundary goals for each

effect predicate. Each boundary goal initiates corresponded

boundary states by using fixture computation. The fixture

computation is a process of discovery of the system states.

The search process can be forward searching or backward

searching.

5.2 Constraint-Based Testing
Constraint-based testing (CBT) is commonly adopted in

different testing methodologies. Gotlieb, Botella, and Rueher,

[6] proposed a method that first transforms the C program

under test into static single assignment form so that each

variable in the program is assigned statically at most once.

This method then derives a system of constraints for different

execution paths in the control flow graph using symbolic

execution. Finally, this method uses dedicated constraint

solvers to automatically generate the test input for each

feasible execution path.

Meudec [7] used symbolic execution to collect a system of

constraints for different execution paths in Ada programs. He

then used constraint logic programming to automatically

generate the test input for each feasible execution path.

Dick and Faivre, presented a technique for automatic test

case generation from the VDM specification [8]. They

symbolically transformed the VDM specification for the

program under test into a first-order predicate calculus in

disjunctive normal form. Each conjunctive clause in the

disjunctive normal form corresponds to an equivalence class.

They also considered the generation of a sequence of method

calls to bring the program into an appropriate system state

for testing.

6. Conclusions
In this work, we implement a constraint-based test case

generator for method-level unit-testing. Test cases can be

generated from UML class diagrams and OCL specifications.

The object states to exercise the generated test cases can also

be generated uniformly. Our work demonstrates the possibility

of generating test cases for unit-testing from interrelated

software models. According to the performance evaluation,

our implementation can generate test cases for method-level

unit-testing efficiently. In this work, we also convert test

cases into test scripts of JUnit test-platform to evaluate the

quality of the test data by using mutation testing tools. The

results show that test cases generated from properly modeled

methods have good mutation coverage.

References
[1] R. A. Demilli and A. J. Offutt, Constraint–based Automatic test

data generation, IEEE Transcations on Software Engineering, 1991,
17(9):900–910.

[2] S. Colin, B. Legeard and F. Peureux, Preamble computation in automated
test case generation using constraint logic programming, Journal of
Software Testing, Verification and Reliability, 2004, 14(3):213–235.

[3] G. Engels, B. Guldali and M. Lohmann, Towards model–driven unit
testing, In Models in Software Engineering,Springer Berlin Heidelberg,
2007, pp. 182–192.

[4] J. Cabot, R. Clariso and D. Riera, Verification of UML/OCL class
diagrams using constraint programming, In Software Testing Verification
and Validation Workshop, April 2008, pp. 73–80.

[5] M. Cadoli, D. Calvanese, G. De Giacomo and T. Mancini, Finite Model
Reasoning on UML Class Diagrams via Constraint Programming, AI*
IA 2007: Artificial Intelligence and Human-Oriented Computing , 2007,
pp. 36–47.

[6] A. Gotlieb, B. Botella and M. Rueher, Automatic test data generation
using constraint solving techniques, In Proc. of the 1998 ACM/SIGSOFT
Symposium on Software Testing and Analysis, March 1998, pp. 53–62.

[7] C. Meudec, ATGen: Automatic test data generation using constraint
logic programming and symbolic execution, Journal of Software Testing,
Verification and Reliability, 2001, 11(2):81–96.

[8] J. Dick and A. Faivre, Automating the generation and sequencing of test
cases from model–based specifications, In Proc. of the 1st International
Symposium on Formal Methods Europe, April 1993, pp. 268–284.

[9] A. Andrews, R. France, S. Ghosh and G. Craig, Test adequacy criteria
for UML design models, Software Testing, Verification and Reliability,
2003, 13(2): 95–127.

[10] C. K. Chang and N. W. Lin, A constraint-based framework for test case
generation in method-level black-box unit testing. To be appeared in
Journal of Information Science and Engineering, paper number 140822
in http://journal.iis.sinica.edu.tw/jise_acceptedpapers.html.

[11] G. J. Myers, C. Sandler and T. Badgett, The art of software testing,
John Wiley and Sons, 2011.

[12] H. Coles, Pit mutation testing, http://pittest.org/.

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 95

1

Taxonomy Dimensions of Complexity Metrics

Bouchaib Falah1, Kenneth Magel2

1Al Akhawayn University, Ifrane, Morocco,
2North Dakota State University, Fargo, ND, USA

1B.Falah@aui.ma, 2Kenneth.magel@ndsu.edu

Abstract

Over the last several years, software engineers have
devoted a great effort to measuring the complexity of
computer programs and many software metrics have been
introduced. These metrics have been invented for the
purpose of identifying and evaluating the characteristics
of computer programs. But, most of them have been
defined and then tested only in a limited environment.
Scientists proposed a set of complexity metrics that
address many principles of object oriented software
production to enhance and improve software development
and maintenance. The aim of this paper is to present
taxonomy of complexity metrics that, separately, evaluate
structural and dynamic characteristics of size, control
flow, and data. While most invented metrics applied to
only the method and class levels of complexity, our
approach uses metrics on each of the three levels: class,
method, and statement.

Keywords: Complexity Metrics; Software Testing,
Effectiveness, Data flow, Data usage; Taxonomy;
Cohesion.

1. Introduction

Measurement makes interesting characteristics of
products more visible and understandable [1, 2].
Appropriate measurement can identify useful patterns
present in the product being measured [3]. It makes
aspects and products more visible and understandable to
us, giving us a better understanding of relationships
among activities and entities. Measurement is not only
useful, but it is necessary. It is needed at least for
assessing the status of our applications, projects, products,
and systems. Measurement does not only help us to
understand what is happening during the development and
maintenance of our projects, but it also allows us to
control the interaction between the components of our

project and encourages us to improve our projects and
products.

There are a multitude of computer program software
metrics that have been developed since the pioneering
work of Halstead [4]. There are also several taxonomies
that have been used to describe these metrics.

Nowadays, software is expected to have an extended
lifespan, which makes the evaluation of its complexity at
the early stages critical in upcoming maintenance. Indeed,
complexity is proportional to the evolution of software.
Software metrics were introduced as tools that allow us to
obtain an objective measurement of the complexity of
software. Hence, enabling software engineering to assess
and manage software complexity. Reducing software costs
is one of the major concerns of software engineering
which creates an increasing need for new methodologies
and techniques to control those costs. Software
complexity metrics can help us to do so. In this paper, we
would provide taxonomy of complexity metrics that can
be served in reducing software costs. These metrics are
used on each of the three levels: class, method, and
statement.

2. Related Work

Many metrics have been invented. Most of them have
been defined and then tested only in a limited
environment. The most commonly used metrics for
software are the number of lines of source code LOC (a
rough measure of size), and Cyclomatic complexity (a
rough measure of control flow).

Halstead software science [4] metrics are other
common object oriented metrics that are used in the
coding phase. Maurice Halstead's approach relies on
mathematical relationships among the number of
variables. His metrics, or what are commonly referred to
as ‘software science’ [4], were proposed as means of
determining quantitative measures directly from the
operators and operands in the program. Halstead metrics

96 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

2

are used during the development phase with the goal of
assessing the code of the program. Halstead’s metrics are
at the statement level, although they can be aggregated to
form method and class level metrics.
Chidamber and Kemerer [5] proposed a set of complexity
metrics that address many principles of object oriented
software production to enhance and improve software
development and maintenance. However, their metrics
applied to only the method and class levels of complexity.
They were evaluated against a wide range of complexity
metrics proposed by other software researchers and
experienced object oriented software developers. When
these metrics are evaluated, small experiments are done to
determine whether or not the metrics are effective
predictors of how much time would be required to
perform some task, such as documentation or answering
questions about the software. Results have been mixed.
Nevertheless, industry has adopted these metrics and
others because they are better than nothing.

In recent years, much attention has been directed
toward reducing software cost. To this end, software
engineers have attempted to find relationships between the
characteristics of programs and the complexity of doing
programming tasks or achieving desirable properties in
the resulting product such as traceability or security. The
aim has been to create measures of software complexity to
guide efforts to reduce software costs.

Our work applies a comprehensive suite of complexity
metrics that can solve the problem of maximizing the
effectiveness of software testing

3. Software Complexity Metrics

This paper uses software complexity metrics for
object-oriented applications. Metrics for code that is not
object oriented are not discussed in this research paper.
A metric is a measurement. Any measurement can be a
useful metric. There are several reasons to use metrics in
measuring the complexity of software, for instance:
 Prediction: metrics form the basis of any method for

predicting schedule, resource needs, performance or
reliability.

 Evaluation: metrics form the basis of determining
how well we have done.

 Targeting: metrics form the basis for deciding how
much effort to assign to which part of a task.

 Prioritization: metrics can form the basis for deciding
what to do next.

Several researchers have proposed a wide variety of

software complexity metrics. Each metric examines only
one characteristic of software. This characteristic is one
of:

 Size: how large is the software.
 Control Flow: either how varied is the possible flow

or how deeply nested is the possible flow or how long
is the possible flow.

 Data Usage: either how many data items are defined
in the software or how many data items are related or
how many values an attribute’s value depend upon.

3.1. Size Metrics

One of the basic measures of a system is its size.
Measures of software size include length, functionality,
and complexity.

The oldest and most widely used size metric is the
lines of code. The lines of code are common object
oriented metrics that are used in the coding phase. There
are two major ways to count the lines of code depending
on what we count: a physical line of code (LOC) and a
logical line of code (LLOC). While the common
definition of LOC is the count of lines in text of the
program’s source code including comment lines, LLOC is
defined to be the number of statements.
For example: if we consider the following Java fragment
code:

 // this is a
line of code example.
In this example: LOC = 1 and LLOC = 2.

Another common OO metrics that are used in the
coding phase were provided by Halstead software science
[4]. Halstead's approach is based on the assumption that a
program should be viewed as an expression of language.
Halstead believed that the complexities of languages are
an essential part of the reasons a programmer might find
complexity in the program code. Therefore, he bases his
approach on the mathematical relationships among the
number of variables, the complexity of the code and the
type of programming language statements

Because our research is related to Object Oriented
Java Application, we will adopt the Halstead metrics to
calculate the number of operators that are contained in
each statement of a Java code program, then we will
extend this metric to compute the total and the maximum
number of operators of all statements within each method,
and furthermore, we will compute the total and the
maximum number of operators in all methods within the
class. That means that we will use the number of operators
in all three levels: class, method, and statement.

3.2. Control Flow Metrics

Another object oriented metric that is used in coding

phase is McCabe Cyclomatic metric [6, 7]. Thomas
McCabe developed his complexity metric in 1976. His
approach was based on the assumption that the complexity

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 97

3

of software is related to the number of control paths
generated by the code [6]. In other words, the code
complexity is determined based on the number of control
paths created by the code. This means that, in order to
compute a code complexity, the number of decisions
(if/then/else) and control statements (do while, while, for)
in the code are the sole criterion for this purpose and
therefore must be determined. For example, a simple
function with no conditionals has only one path; a
function with two conditionals has two paths. This metric
is based on the logic that programs with simple
conditionals are more easy to understand and hence less
complex. Those with multiple conditionals are harder to
understand and hence, more difficult and complex.

The control flow graph, G, of any given program can
be drawn. Each node of the graph G corresponds to a
block of code and each arc corresponds to a branch of
decision in the program. The McCabe cyclomatic metric-
[8] of such graph can be defined as:

 CC(G) = E – N + 2P (1) where,
 E: is the number of edges of G.
 N: is the number of nodes of G.
 P: is the number of connected components.

The formula (1) can also be written as:
CC(G) = D +1 (2) where,
 D: is the number of decisions inside of the code.

Even if this information supplies only a portion of the
complex picture, McCabe [7] tried to extend his metric
into an architectural design and developed a testing
methodology that integrates the notion of design
complexity with the testing requirement.

3.3. Data Metrics

Data complexity metrics car be divided in two
different aspects: data flow and data usage. Data flow is
the number of formal parameters of activities and the
mappings between activities’ data [9]. We will define
Data usage for a statement to be the number of variable
values used in that statement plus the number of variable
assigned new values in that statement.

The development of test cases of many researchers was
based on the program unit’s variables. The emphasis of
test cases was based on data and data flow or Data-Usage
Path [10]. Chidamber and Kemerer metrics [5], also
known as C&K metrics, were among the first family of
related metrics that address many concerns of OO
designers including relationships such as coupling,
cohesion, inheritance, and class size [11]. The notion of
cohesion and the various complexity metrics associated
with the cohesion are also related to data variables. In OO,

the most widely C&K metric used example, when
cohesion is related to instance variables, is Lack of
Cohesion in Methods (LOCM) [12, 13].

 Chidamber and Kemerer proposed a set of metrics

that cover not just the data aspect but also cover other
different aspects.

The C&K metrics are computed for each class in an
application. Most of the metrics are at the class level
while a few are at the method level. Figure 1, for example,
illustrates how the C&K metrics would be apportioned
among taxonomy dimensions.

Figure 1. Taxonomy Dimensions of C&K Metrics.

While C&K metrics are used only at class and method

levels, our approach uses metrics on each of the three
levels: class, method, and statement.

Figure 2 illustrates how our suite of complexity metrics
would be apportioned among our taxonomy dimensions.

Figure 2. Taxonomy Dimensions of Our Approach.

98 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

4

4. Comprehensive Taxonomy of Metrics

Software engineers use measurement throughout the
entire life cycle. Software developers measure the
characteristics of software to get some sense of whether
the requirements are consistent and complete, whether the
design is of high quality, and whether the code is ready to
be tested. Project Managers measure attributes of the
product to be able to tell when the software will be ready
for delivery and whether the budget will be exceeded.
Customers measure aspects of the final product to
determine if it meets the requirements and if its quality is
sufficient. And maintainers must be able to assess and
evaluate the product to see what should be upgraded and
improved.

Software metrics usually are considered in one or two
of four categories:
 Product: (e.g. lines of code)
 Process: (e.g. test cases produced)
 People: (e.g. inspections participated in)
 Value to the customer: (e.g. requirements completed)

In our work, we will concentrate on product metrics as

selectors for test cases. Previous work using metrics
almost always considered only a small set of metrics
which measured only one or two aspects of product
complexity.

Our work starts with the development of a
comprehensive taxonomy of product metrics. We will
base this taxonomy on two dimensions: (1) the level of the
product to which the metric applies; and (2) the
characteristic of product complexity that the metric
measures.

In future work, we hope to produce a comprehensive
taxonomy from the other kinds of metrics.
The scope of consideration dimension includes the
following values:

(1) the product’s context including other software
and hardware with which the product interacts

(2) the entire product
(3) a single subsystem or layer
(4) a single component
(5) a class
(6) a method
(7) a statement

For the initial uses of this taxonomy reported in this

paper, we will use only (5), (6), and (7) since they appear
to be the most relevant scopes for unit testing. Future

work may add (3) and (4) as we consider integration
testing. Values (1) and (2) may be used for system testing.

The complexity kind dimension includes the following
values:

1) Size
2) control flow
3) data

Each of these values in turn has sub-values.

For size, the sub-values are:

a) number of units (e.g. statements)
b) number of interactions (e.g. number of method

calls)

For control flow, the sub-values are:

a) number of decisions
b) depth of decisions

For data, the sub-values are:

a) data usage
b) data flow

4.1. Metrics at Statement Level

4.1.1. Data Complexity. In our research, we consider
two separate aspects, data flow and data usage. Data flow
is based on the idea that changing the value of any
variable will affect the values of the variables depending
upon that variable’s value. However, data usage is based
on the number of data defined in the unit being considered
or the number of data related to that unit. We will define
data usage for a statement to be the number of variable
values used in that statement plus the number of variable
assigned new values in that statement.

Data flow complexity measures the structural
complexity of the program. It measures the behavior of
the data as it interacts with the program. It is a criteria that
is based on the flow of data through the program. This
criteria is developed to detect errors in data usage and
concentrate on the interactions between variable definition
and reference.

 Several testers have chosen testing with data flow
because data flow is closely related to Object Oriented
cohesion [12, 14]. One measure of class cohesion is how
methods are related through common data variables.

Data flow testing is a white box testing technique that
can be used to detect inappropriate usage of data values
due to coding errors [15]. For instance, a programmer
might use a variable without defining it or might define a
variable without initializing it (e.g. int a; if (a==1) {…}).

A program written in an OO language, such as Java,
contains variables. Variables are defined by assigning
values to them and are used in expressions. An assignment

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 99

5

statement such as: x = y + z ; defines the variable x. This
statement also makes use of variables y and z. In this case,
the variable x is called a definition while the variables y
and z are called uses.

The declaration statement such as: int x, y, z; defines
three variables x, y, and z. The three variables are
assumed to be definitions.

In our research, data flow will be estimated for each
statement in a method by counting how many active data
values there are when the method executes. Active data
values will be counted by determining which variable
assignments could still be active when this statement
begins execution plus the number of assignments done in
this statement. As an example, let us consider the
following Java class:

In the first statement of this code, the variable is a

definition. The same variable is a use in the second
statement. Thus, the data flow of this statement is 1.

In the second statement, is a definition and
assigned a value. The variable is a use in the third
assignment. Thus the data flow value of the second
statement is 2.

In the third statement, is a definition and assigns a
new value. The variable is no longer active before the
method executes. Thus the data flow value of this third
statement is 1.

On the other hand, as an example of data usage, let us
consider the statement assignment: .

The variables and are used, and the variable is
assigned a new value in the statement. Thus the data usage
of this statement is 3.

4.1.2. Control Flow Complexity. In our research, we

will use one control flow measure, the scope metric [16].
For each statement, we will count how many control
constructs (do while, if-else, for, while …) contain this
statement.

For example, assume that Figure 3 illustrates a
statement fragment code of a return method named
method C within the class “class C”.

The construct level statements in this code are the
statements numbered (6), (11), and (14).

Figure 3. Java Code – Scope Metric Example.

Table 1 shows the scope metric value of each statement

in the code of Figure 3.

Table 1. Scope Metric Values of Statements of Figure 5.

Statement Construct
Level contains
the statement

Scope
Metric Value

(4), (5) None 0
(8), (9),
(10)

(6) 1

(13) (6), (11) 2
(15) (6), (11), (14) 3
(16) (6), (11) 2
(19) None 0

4.1.3. Size Complexity. Our size metrics relied on the
Halstead Software Science Definition. We will use a
simplified version of Halstead’s operators count discussed
previously. Halstead's software science is one traditional
code complexity measure that approaches the topic of
code complexity from a unique perspective. Halstead
counted traditional operators, such as + and ||, and
punctuations, such as semicolon and (), where
parentheses pair counted as just one single operator.
In our work, we will count just traditional operators for
simplicity by counting the number of operators used in
each statement of the code.
Figure 4 shows the metrics used in this research at the
statement level. These four metrics will be used as roots to
derive other complexity metrics that will be used at the
method level and class level.

100 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

6

Figure 4. Complexity Perspectives and Metrics at
Statement Level.

4.2. Metrics at Method Level

Since the method constitutes different statements, we
will use both the sum of each metric for the statements
within that method and the maximum value of each metric
for the statements within that method. In addition to the
sum and the maximum of these metrics, we will use
another single level metric that counts the number of other
methods within the same module (class) that call this
method.
An example of this additional metric is shown in Figure 5.

Figure 5. Example of Other Methods that Call a Method

within the Same Class.

For each method within the class “ClassA”, the number of
other methods that call that method with the same class is
shown in Table 2.

Table 2. Metric Results of the Code in Figure 5.

Method Other methods that call this method Metric

Value
method1 method2, method3 2

method2 method1, method3 2

method3 None 0

Figure 6 illustrates the nine metrics that will be used to
measure the complexity of a method. Eight of these nine
metrics are derived from the four metrics defined at
statement level.

Figure 6. Complexity Metrics at Method Level.

 4.3. Metrics at Class Level

At the class level, we will use both the sum of each metric
for the methods within the class and the maximum value
of each metric for the methods within the class. We will
then add two additional metrics: the in-out degree of that
class, which is the number of methods outside of that class
that are called by at least one method in that class, and the
number of public members within the class. The public
members within a class are defined as the public fields
and the public methods defined in that class.

As a summary of the comprehensive taxonomy of
metrics that will be used in our research, for each
executable statement within a method we will have 4
metrics that emerged from three complexity dimensions:

 Data Dimension: active data values and Data
usage values.

 Control Dimension: scope metric.
 Size Dimension: number of operators.

Control Flow
Complexity

Number of
Levels

Data
Complexity

Data Flow

Size
Complexity

Number of
Operators Data Usage

of
Levels

Total
of
Level Total

of
DU

Total
of
DF

Max
of
DF

of
Operators

Data
Flow

Data
Usage

Max #
of
Level

Total #
of
Operator

Max # of
Operators Max #

of DU

of
other
Metho
ds

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 101

7

For each method, we will have nine metrics. 2 metrics
constitute the total and the max of the metrics of each
statement within that method plus the number of other
methods that call that method.
For each class, we will have twenty metrics, two metrics
compose the total and the max of each of the 9 metrics
that will be used for the method within that class, plus two
more metrics including the number of methods outside of
that class that are called by at least one method in that
class, and the number of public members within the class.

5. Conclusion

This paper aims at developing a comprehensive
taxonomy of product metrics that can be used to target test
cases. This taxonomy is based on the metric dimension
(product level) and the kind dimension (product
complexity characteristic). We used the scope metric
dimension values of class, method, and statement. We
considered kind dimension values of size, control flow,
and data. The three kind dimension values of product
complexity have sub-categories. The size has the number
of units and the number of interactions. The control flow
has the number of decisions and the depth of decisions.
The data has the data flow and the data usage.

In our work, we used at least one sub-category from
each complexity kind dimension value. For the size, we
used the number of units and the number of interactions.
For the control flow, we used only number of decisions.
For the data, we used data flow and data usage.

Another contribution of this research was the use of
summation and maximum to build larger scope metrics
from smaller scope metrics.

6. References

[1] B. Falah, K. Magel. “Test Case Selection Based on a

Spectrum of Complexity Metrics”. Proceedings of 2012
on International Conference on Information
Technology and Software Engineering (ITSE),
Lecture Notes in Electrical Engineering , Volume
212, 2013, pp. 223-235

[2] B. Falah, K. Magel, O. El Ariss. “A Complex Based
Regression Test Selection Strategy”, Computer Science &
Engineering: An International Journal (CSEIJ), Vol.2,
No.5, October 2012

[3] B. Falah. “An Approach to Regression Test Selection Based
on Complexity Metrics” , Scholar’s Press,
ISBN-10: 3639518683, ISBN-13: 978-3639518689, Pages:
136, October 28, 2013

[4] M.H. Halstead, “Elements of Software Science,”
Operating and programming systems series, New
York: Elsevier North-Holland, 1977.

[5] S. R. Chidamber and C.F. Keremer, “A Metric Suite
for Object Oriented Design,” IEEE Transactions on
Software Engineering, Vol. 20, No 6, June 1994,
pages 476- 493

[6] T. J. McCabe and Charles Butler, "Design Complexity
Measurement and Testing," Communications of the
ACM, Vol. 32, Issue 12, December 1989.

[7] Thomas J. McCabe, “A Complexity Measure,” IEEE
Transactions on Software Engineering, Vol. SE-2,
No.4, December 1976.

[8] M. Clark, B. Salesky, C. Urmson, and D. Brenneman,
“Measuring Software Complexity to Target Risky
Modules in Autonomous Vehicle Systems,” AUVSI
Unmanned Systems North America, June 2008.

 [9] J. Cardoso, “Control-Flow Complexity Measurement
of Processes and Weyuker’s Properties,” Word
Academy of Science, Engineering and Technology,
August 2005.

[10] S. Rapps and E. Weyuker, “Selecting Test Data
Using Data Flow Information,” IEEE Transactions
on Software Engineering, Vol. SE- 11, No. 4, April
1985, pp. 367-375.

[11] R. Harrison, S. J. Counsell, and R.V. Nithi, “An
Investigation into the Applicability and Validity of
Object Oriented Design Metrics,” Empirical Software
Engineering, Vol. 3, Issue 3, September 1998.

[12] S. R. Chidamber and C.F. Keremer, “A Metric Suite
for Object Oriented Design,” IEEE Transactions on
Software Engineering, Vol. 20, No 6, June 1994,
pages 476- 493

 [13] S.R. Chidamber and C. F. Kemerer, “Towards A
Metrics Suite for Object Oriented Design,” In
Proceeding of the ACM Conference on Object-
Oriented Programming Systems, Languages, and
Applications. Vol. 26, Issue 11, November 1991.

[14] F. Damereu, “A Technique for Computer Detection
and Correction of Spelling Errors,” Communications
of the ACM, Vol. 7, Issue 3, March 1964.

[15] J.P. Myers, “The Complexity of Software Testing,”
Software Engineering Journal, January 1992, pp. 13
– 24.

[16] H. F. Li and W. K. Cheung, “An Empirical Study of
Software Metrics,” IEEE Transactions on Software
Engineering, Vol. 13, Issue 6, June 1987.

102 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

Quantitative Software Engineering

Igor Schagaev, London Metropolitan University, i.schagaev@londonmet.ac.uk
Svetlana Anulova, Ins of Problem Control, Russian Academy of Sciences

Hamid R. Arabnia, The University of Georgia, USA

Abstract

This paper proposes an analysis of a project
model with feedbacks as palliative to qualitative
models widely utilized in software engineering. It
demonstrates that software engineering projects
can reliably be modeled and analyzed
quantitatively. Several analytical methods are
introduced aiming to resolve problems of
quantification. A sequence of steps to introduce
rigor in software engineering models is explained
showing how software warehouses can adopt
proposed methods. Proposed approach when
implemented can enhance the quality of produced
software.

Keywords

Software engineering, qualitative models,
feedbacks, quantitative modeling, simulation,
semi-Markov models, analytic tractability.

1. Introduction

Software systems developed using ICT has
become extremely complex and very often
unmanageable. The problems of design and
further maintenance have become a significant
challenge for developers; in particular, in safety
critical systems, including aviation and ground
transport, pipelines, and others. The tangible cost
associated with corrective measures is often
extremely high.

For example, in recent years Chrysler [1],[2],
Toyota [3], and other automobile manufacturers
were forced to re-call hundreds of thousands of
their new vehicles for corrective technological
flaws that were not detected during
manufacturing.

Due to various technological flaws, some
corporations are even considering discontinuing
some of their products; for example, Airbus is
considering stopping the production of their A-
380 [4]. There are many other examples of
corporations discontinuing products solely due to
costs associated with corrective measures and

maintenance. It should be noted that a high
percentage of cost of many products are due to
software and electronics that operate the actual
products. For example, 60% of cost of building
aircrafts is due to ICT systems and the associated
software.

Inherent in the design and creation of most
systems and projects are User, Hardware, and
Software. Obviously, any fault and flaws of one is
intertwined with others. Thus projects with
classic phases of concept, design, and
development are becoming processes and phases
of states that are tightly coupled in all steps of
their development.

The challenge to control, manage, and streamline
such processes have become an immense
challenge. There are many potential solutions,
based on methodologies, assumptions, methods to
apply and follow but none of them considered to
be solutions that would address the problem as a
whole and estimate, let say, an impact of phases
of the project on each other, values or weights of
project phase dependencies or timing of decision
making.

The software engineering researchers and
community are publishing manuals [6], [7], new
methodologies and ontologies (Agile, etc.) [8].
Many top tier international conferences,
workshops, and symposiums report possible
solutions every year. Unfortunately, most reported
solutions, though important contributions, only
address specific problems in isolation to other
problems. Regretfully, there is no breakthrough
on the subject. One of the major reasons is
qualitative analysis and qualitative methodologies
used.

This paper attempts to provide a scheme of
redesign of software engineering models that in
the long run would provide a quantitative
measure. This paper also attempts to highlight
problems of “quantification” and briefly present
some solutions or pathways to find solutions.

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 103

2. Problem of uncertainty and qualitative
approaches

The model of project process with feedbacks was
introduced in [9] and first attempt of its
quantification was introduced using simulation
further developed in [10],[11]. Recent
development [12] and two mentioned previous
were based on various techniques of numerical
solutions.

Project process as Markov process was introduced
more than half a century ago by P. Howard [13],
attempting to analyze project process analytically.

The costs of project phases were never certain,
“generalization” of project phases or work
packages independency failed dramatically even
at the level of elementary projects, forcing us to
accept that phase interdependencies are required
to take into account. Therefore, managing our
projects within budget and time constrains we
have to handle project phases dependencies and
handle them effectively.

Project complexity, primarily software
development projects, growths and only increase
the need develop some tangible solutions.

Indeed, having a quick look at the Figure 1 one
might observe that phases of the project (states 1
to 3, and 4 is completion state) are dependent, and
some redo takes place.

Figure 1 Project phases with full feedbacks

Immediate attempt to resolve this uncertainty was
and still is based on formation of system of
differential equations with assumption of Markov
or semi-Markov properties of the states and
transitions between them.

Regretfully, turning back to Fig.1 we can find that
number of unknown variables (all feedback links
from states 3,2,1 including self-feedbacks)
exceeds number of equations, defined by number
of project states. Thus the first option to solve it

based on numerical solution, one of them is our
own attempt, as it was presented in [10],[11]

Unfortunately, if we follow the same pathway,
instead of solving project of process problems of
improving efficiency, reliability and handling the
cost of project we will be addressing
mathematical complexities instead of project
ones.

There is no doubt that analytical solution of
process of project flow equations is preferable.
This way we are able to determine dependencies
between phases and learn how to cope with
overheads of time or cost.

3. Existing and proposed solutions

There is no doubt, the less we use
“guestimations”, math methods assumptions to
find a quantitative solution the better. We should
avoid a situation when complexity of model
exceeds complexity of a process we try to control.

Using [14], further developed [15],[16],[17] we
might find that three redundancy types can be
applied separately or in combination to reduce
uncertainties existing in the description of the
project as a model. They are:

 Structural (S), Informational (I), Time (T).

Structural redundancy might be considered when
we add new equations that reduce number of
unknown variables.

Informational redundancy might be introduced as
extra knowledge of behavior of the system of
equations – for example number of iterations – i.e.
how many times we have been visiting previous
states, or profiles of values of feedbacks;

Time redundancy might be considered as
introduced longer period of system observation.

Thus, introducing in the description of the system
more equations, or more knowledge on behavior
of unknown variables or observing this process
longer enable us to find analytical solution.

One of the relatively recently developed models is
presented in the next section.

1 2 43

104 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

4. Project as system with feedbacks and
rewards dependent on past

R.A. Howard [13] introduced Markov chain with
rewards to described economic objects and
analysis of strategies for their control. Model
became useful, a lot of research were taken, with
introduction of generalization and special
features.

Up to now there were no researches of Markov
model when gain depends on the number of
iterations of revisit projects states, and analysis of
a reward scheme. Indeed, we are not redoing fully
the project phase (states and Fig.1), but we simply
must accept that further revisits might be reduced
in accompanied cost.

This scheme suites well to software development
project life cycle with feedbacks, where we
assume that we are re-doing some bits of previous
phases of project when errors or incompleteness
of previous phases were detected.

The same models became useful for wider
domains of human activities, including systems
that include information and computer
technologies, and in particular large-scale
software projects.

Naturally, modeling of re-doing some steps of the
project – should be rather typical case in everyday
project practice. Surprisingly, this kind of model
was not developed and missing so far.

Thus, as a first attempt we have to consider
processes when gain depends on number of
iterations of each phase of the project, perhaps
with assumption of some sort of discounting
factors.

Next section presents one of possible method of
calculation of the project result (we use term
reward to indicate that project cost might be too
high) with assumptions of counting number of
iterations and discounting of reward or cost of
redoing.

Problem

Consider Markov chain with states {0,…,K} and
transition { P = pij, i, j = 0,…, K} and absorbing
state K.

State of Markov chain at the moment n = 0,1,…
denote x(n).

Set trajectory x = (x(0), x(1),…) for the state
i ∈ {0,…,K}.

Denote as ϕi(m) number of visits of the state i
during period [0, 1,…, m], then

 , and

For N = 0, 1,…, ∞ consider random value

where

for example

We attempt to derive , including
First impression that this scheme is similar to
discrete Markov chain with reward [18]. But this
is not.

New approach to calculation of assumes

extension of phase space --- and,

therefore process x in a way that enables to create
Markov chain and function f as a fucntion of its
own state only.

Then it becomes possible to apply recurrent
scheme of first segment of Chapter 2 [13],
travelling in simplex

along the layers: from set

to set

 φi (m) = Ii (x(n))
n=0

m

∑
φ(m) = φ1(m),…,φK (m)()

ξ(N) = f (x(n), φ(n))
n=0

N

∑ ,

 f :{0, …, K} × {0, 1, … }K → [0, ∞), f (K , ⋅) ≡ 0,

f i,φ() = K − i
1+max

j≠i
φi
.

 Eiξ(N) Eiξ(∞)

ξ(N)

 {0, … , K}

{φ ∈ 0, 1, …,[)K

 : φi
i=1

K

∑ ≤ N }

 φι
i=1

K

∑ = n
⎧
⎨
⎩

⎫
⎬
⎭

φi
i=1

K

∑ = n −1 ⎧
⎨
⎩

⎫
⎬
⎭

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 105

(These layers play a role in our case that in classic
problem of [13] plays time).

At the moment we are not concentrating on this

similarity, because our goal is to investigate cases

when mean time of request in the network (chain)

is possible to calculate analytically.

Case I: discounting accordingly number of
visits

If

Where ni - vector with non-negative coordinates

in , then classic scheme

of Markov chains with rewards suits [18].

This becomes obvious if we note that

Тheorem 1. Function

is defined by system of linear equiations

Theorem enables immediate generalisation for the
case when reward consists of sum of rewards as
above, for example,

.

Case II Function of reward with two variables

Consider a simplified problem: reward that
received in a state , depends not

on the whole vector , but only on – number
of visist (iterations) of this state. This means that
function depends on smaller number of

variables:

 .

The idea here is to exploit a property of linearity

of by .

Let differ to zero only at the state

, in other words at

. Then

Value depends only on

transitional probabilities and when goes

to , where denotes probability of the fact

that chain leaving node , returns to this node
once more time. To define rigorously this
probability, we introduce for

a random variable - a Markov moment of

chain in the state

(moment of the first visit after 0 iteration for the
state i).

If Markov chain at moment is not in the state i,
then coincident with moment of reaching the

state i; while when process is in the state) then

is a moment of first return to the state i.

Let

Then,

Further, for

.

Theorem 2. Let and

function match system of

linear equations

f i, φ() = f i() e
− ci ,φ()

 ci 0(),ci 1()…,ci K()()

ci ,φ N()() = ci x n()()
n=0

N

∑ .

v : 0,1,…,K{ }→ [0,∞), v(i) = Eiξ(∞)

v(K) = 0,

v(i) = e−c(i) f i() + pijv(j)
j≠i
∑⎛

⎝⎜
⎞

⎠⎟
.

fi x n()()exp − ci x m()()
m=0

n

∑⎧
⎨
⎩

⎫
⎬
⎭n=1

N

∑
i=1

K

∑

 i ∈ 0, … , K{ }
φ φi

f

f : 0,1,…,K{ }× 0,1,…{ }→ [0,∞)

ξ I⎛⎝
⎞
⎠

f

f

 i ∈ 0, … , K{ } f (j,l) = 0
j ≠ i

Eiξ(N) = Pi n ≤φι (N)() f (i,n)
n=0

N

∑

Pi n ≤φι (N)()
N →∞

pi
n pi

i

 i ∈ 0, … , K −1{ }
τι

i

 τ i = min n∈ 1,2,…{ } : x(n) = i{ } min ∅{ } = ∞()

τι

τι

pi = Pi τι ≤ τΚ()

Eiξ(∞) = pi
n f (i,n)

n=0

∞

∑ .

 j ∈ 0, … , K −1{ }

E jξ(∞) = Pj τ i ≤ τΚ()Eiξ(∞)

 i ∈ 0, … , K −1{ }
 v : 0,…,K{ }→ [0,1]

v j() = pjlv l()
l=0, … , K
∑ , j ≠ i,

v i() = 1, v K() = 0.

106 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

Тhen

Proof is based on the well-known fact: value

 – is a probability of the achieving the state i

from state j earlier that in state k,

 .

These two examples illustrate that analytic
solution of possible when we introduce extra
information about system behavior – number of
iterations and rate of discount assumed along the
process.

5. Next steps

Analytic modeling of project flow offers two
areas of further research: a) regarding
mathematical approaches – what else is possible
to apply making analytics and b) which way
analytic results might be applied – i.e. how to use
the results of this analysis?

5.1 In math

Another missing point in creation of Markov
model for project process is behavior of
feedbacks. Indeed, an assumption of neat
execution of phase after phase for any project is
unrealistic; we have to assume non-zero
probabilities of transition backward to previous
phases.

Semantic of feedbacks provides some helpful
dynamic constrain that ease analytic solution. It
based on assumption of value of feedbacks. Clear,
that the last thing project manager wants is total
redoing of all phases of the project from the final
step.

In turn, our assumption on non-zero values of
feedbacks such as self-feedback – redoing of the
same phase, or redoing of some elements of
previous phases is much more natural.

Thus we might introduce an extra information
about behavior of feedbacks assuming that
probability of longer feedbacks is smaller than
short ones and defined by, for example, a Poisson
distribution. This will keep further solutions
within reach of analytic method.

This form of information redundancy - the known
form of ratio of feedbacks might be really useful.
The use of time redundancy to resolve uncertainty
of feedback values in our case present much less
value in finding of project parameters.

5.2 In application for SE

Application of either first introduced here model -
with counted feedbacks or the second mentioned -
with information redundancy fine-tuning of
feedbacks as a function of their length raises the
following questions:

- How can we apply analytic methods of project

evaluation in practice of software projects?
- How can we apply the model of a project

integrated with other projects within company?
- Can we apply integrated model of several

projects as a single entity, using it at the level of
corporation?

The sequence below (Fig.2) presents one of the
possible approaches.

 Figure 2 Implementation of QSE

At first, from existing financial data about project
and project phases we have to extract the values
of project phase planned cost and project phase.

Next we have to create a scheme, similar to Fig.1,
introducing feedbacks between phases. Further –
from corporate data generalized expected cost and
time should be introduced.

Solving equations either with discounted returns
or with introduction of distribution of feedbacks

pi = pii + pijvi j()

j=0, … , K
∑ .

v(j)

j ∈ 0, … , K −1{ }

 
 
 

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 107

as mentioned above we can estimate realistically
project cost of concrete project and apply the
scheme for similar projects.

For serious projects and corporate programs and
state-size programs a customer or state
representative (or - internally quality control
analysts) might be able to provide values of
feedbacks.

Having feedbacks values we can derive which
distribution they obey. Having “golden” standard”
for company data about projects – developers call
it BEP – best existing practice our model enables
to check level of competence and efficiency of
project team in “the small” - per work package or
independent task and “at large”, taking into
account dependencies of work packages and their
impacts on each other.

We did apply this approach for international
projects with respectable Seattle-based companies
and several companies from various European
countries. Very strange behavior of feedbacks was
detected and this result was used as evidence of
weaknesses of some teams or technologies
applied along the phases of large-scale project.

Corporate-wise application is also possible, again
by tuning a model for corporation or industry
typical projects. Derived from this exercise
pattern might helps to create an efficient working
model. This way we might use a model to create
a software tool to evaluate efficiency of corporate
operations. Having this analysis a corporation
might objectively assess when technology or
competence of project teams is becoming obsolete
and need upgrading.

6. Conclusion

- An attempt to introduce analytic schemes to
quantify project process flow with realistic
assumptions of overlapping phases is introduced.

- Shown that taking into account feedbacks
between phases of the project makes model of the
project realistic;
Ways to apply analytic solutions for the model of
project with feedbacks are proposed and

explained, resolving uncertainties along project
progress.

- Further work of the quantification of software
engineering and similar project control is possible
in development of model with discounted
feedbacks as function of their length;

- Proposed analysis and methods might become a
core of application tools or software framework to
enable project engineers and managers to analyze
impact of their actions in advance.

References

[1]www.reuters.com/article/2014/10/16/us-chrysler-recalls-
idUSKCN0I51D620141016
[2]http://money.cnn.com/2014/07/22/news/companies/chrysl
er-jeep-recall/
[3]http://www.washingtonpost.com/business/economy/toyota
-reaches-12-billion-settlement-to-end-criminal-
probe/2014/03/19/5738a3c4-af69-11e3-9627-
c65021d6d572_story.html
[4] http://www.businessweek.com/articles/2014-12-11/the-
double-decker-a380-faces-its-moment-of-truth
[5] http://www.globalresearch.ca/the-f-35-strike-fighter-
technical-failures-of-the-worlds-most-expensive-weapons-
system/5390065
[6] Pressman R., Bruce M., Software Engineering: A
Practitioner's Approach, 8/e ISBN: 0078022126, 2015
[7] Sommerville I., Software Engineering, 9ed.,2010 Pearson
[8] Meyer B. Agile! The Good, the Hype and the Ugly. ISBN
978-3-319-05155-0
[9] Schagaev I. On Software Project Life Cycle, 1989 IAP
Symposium, Savoy Place, London UK
[10] Pliaskota S., Schagaev I. Economic Efficiency of Fault
Tolerance, Automatic and Remote Control, 1018-1026,vol
56., no 7, 1995.
[11] Pliaskota S., Schagaev I Life Cycle Economic Efficiency
Analysis, Proc 2001 IEEE Systems, Man and Cybernetics
Conf, Arizona, Tucson.
[12] arXiv: 1306.2365v2 [stat.ME] 28 Apr 2014
[13] Howard R.A., Dynamic Programming and Markov
Processes. MIT Press, 1960
[14] Schagaev I. Yet Another Approach to Classification of
Redundancy, PP485-491, 7th Symposium on Technical
Diagnostic IMEKO,17-19 September, Helsinki, 1990
[15] Schagaev I., Reliability of malfunction tolerance.
http://www.proceedings2008.imcsit.org/pliks/218.pdf
[16] Kaegi T., Schagaev I., System Software Support of
Hardware Efficiency, IT-ACS Ltd, 2013, ISBN 978-0-
9575049-0-5
[17] Castano V., Schagaev I. Resilient computer system
design, Springer2015, ISBN 978-3-319-15068-0
[18] Mine H. and S. Osaki. (1970) Markovian Decision
Processes. Modern Analytic and Computational Methods in
Science and Mathematics, Elsevier, NY.

108 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

Debugging Multi-Threaded Applications using Pin-Augmented GDB
(PGDB)

Nachiketa Chatterjee1, Srijoni Majumdar2, Shila Rani Sahoo2, and Partha Pratim Das3
1A. K. Choudhury School of Information Technology,University of Calcutta, Kolkata, West Bengal, India

2School of Information Technology,Indian Institute of Technology, Kharagpur, West Bengal, India
3Department of Computer Science and Engineering, Indian Institute of Technology, Kharagpur, West Bengal, India

Abstract— In contrast to single threaded applications, de-
bugging multi-threaded applications is complex because of
the non-deterministic nature of concurrent programs. Mul-
tiple threads in concurrent programs introduce bugs like
datarace, deadlock and livelock. Popular debuggers like
GNU Debugger (GDB), Intel Debugger (IDB) and Microsoft
Visual Studio Debugger (MVSD) typically use static or
compile-time instrumentation and provide many features
to debug single threaded programs. However the features
dealing with debugging concurrency is limited. In this paper
we explore dynamic instrumentation using JIT (Just-In-
Time) compilation techniques for run-time behaviour using
dynamic instrumentation framework from Intel PIN [1].
Using PIN we augment GDB with support for datarace and
deadlock detection with automated breakpoint to GDB. We
call it PGDB or PIN-augmented GDB - a multi-threaded
debugging platform. We present here a prototype of PGDB
for detecting datarace and deadlock during the execution of
multi-threaded programs with the support of new commands
in PGDB.

Keywords: Multi-threaded debugging, datarace, deadlock,PGDB

or PIN-augmented GDB

1. Introduction
Debugging multi-threaded applications is complex be-

cause of the non-deterministic nature of concurrent pro-

grams leading to concurrency issues like race conditions and

deadlocks. Datarace occurs when two or more threads in

a program access the same memory location concurrently

without using any exclusive locks to serialize their accesses

and with atleast one access for write. Deadlock is a condition

in which two or more threads wait for each other to release

a shared resource before resuming their execution.

The classical approach to debugging single threaded appli-

cations (sequential programs) involves repeatedly stopping

the program, examining the state, and then either continuing

or re-executing to stop at an earlier point in execution.

Such debugging cycles help developers trace the sequential

execution paths well but unfortunately do not identify the

concurrency issues in multi-threaded programs.

Most popular debuggers like GNU Debugger (GDB)

[4], Intel Debugger (IDB) [5] and Microsoft Visual Studio

Debugger (MVSD) [6] provide many features to debug

single-threaded programs. However the features dealing with

debugging concurrency is limited (Table 1). Earlier Shi et

al [7] used PIN to extract different threaded behaviours of

applications by displaying the access / change history of a

shared variable, tracking locks held by threads and display-

ing information at the breakpoints but datarace or deadlock

was not detected. Also the method incurs huge overhead

for instrumentation. In this background our objective is to

augment the capabilities of existing debuggers with more

multi-threaded support to help debug concurrency issues.

A debugger typically uses static1 or compile-time in-

strumentation. However, we choose dynamic2 or runtime

instrumentation so that we can attach / detach debugging

support on-the-fly without changing compiled code.For dy-

namic instrumentation we use the PIN [3] framework from

Intel. Using PIN we augment GDB with support for datarace

and deadlock detection with automated breakpoint to GDB.

We call it PGDB or PIN-augmented GDB. Besides new GDB

commands for datarace and deadlock, we also support an

option to selectively enable/disable the detection mechanism

to reduce the overhead of dynamic instrumentation during

program execution.We have tested efficiency and accuracy

of PGDB by developing benchmark test cases.

Though the design of PGDB is agnostic to the platform,

the programming language or the multi-threading model,

our implementation here is based on GDB on Linux with

C/C++ language and pthreads [8] library for multi-threading

support.

This paper is organized as follows. In Section 2 we

outline the architecture of PGDB based on GDB, PIN and

their interconnection. The instrumentation mechanisms to

empower GDB detect concurrency issues like race condition

and deadlock are presented in Section 3 and the implementa-

tion aspects covering new GDB commands for concurrency

1In Static Instrumentation the source code is instrumented during com-
pilation and is used to identify the static program information.

2In Dynamic Instrumentation the binary (executable) code is instru-
mented using JIT (Just-In-Time) compilation to collect run-time informa-
tion.

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 109

Table 1: Comparison of PGDB with Existing Debuggers
Feature/Debugger PGDB GDB [4] IDB [5] MVSD [6]
Examining state of
existing threads

� � � �

Thread specific
breakpoints

� � � �

Thread synchroniz-
ing breakpoints

� � � �

Thread data sharing
events

�� × � �

Automatic notifica-
tion of new threads

� � � �

Logging Feature �� × × ×
Replay Feature × × × ×
Datarace detection �� × × ×
Deadlock detection �� × × ×
Livelock detection × × × ×

�� - Additional Feature �- Feature Present × -Feature Absent

support and enhancement of GDB GUI for user feedback

are discussed in Section 4. We present a sample debugging

session with PGDB in Section 5. The results debugging and

detection for a set of benchmark codes, designed specifically

to cover the corner cases of correctness of PGDB, are

discussed in Section 6. We conclude in Section 7 with

directions for future work.

2. Architecture of PGDB
To augment GDB with the intended multi-threaded de-

bugging features we need the following primitives:

• Control over memory accesses used by program to

identify memory instructions.

• Identification of read and write accesses to know the

purpose (reading or writing) of memory access by an

instruction.

• Control over thread granularity to find the thread ID

executing a given instruction and to notify when a

particular thread gets created or destroyed.

• Control over routine granularity to notify the start and

completion of a routine3.

• Control over lock to notify when the locks of a shared-

exclusive memory are acquired or released.

• Control over memory barrier to identify the user de-

fined synchronization using memory barrier.

We use the dynamic instrumentation framework of

PIN4 to create pintools that extract the above primi-

tives during the execution of an application under the

control of GDB. Since we use pthreads the events

of acquiring and releasing the locks are captured

from the invocations of pthread_mutex_lock() and

3A function is referred to as routine by PIN.
4PIN [1] is a binary instrumentation framework on Linux or Windows.

A wide variety of program analysis tools, called Pintools [3], can be built
using PIN. PIN is a JIT compiler that can inject instrumentation routines
in instruction, basic block, routine or image level units. An instrumentation
routine is attached as a callback either before or after an instrumentation
unit. The design of these callbacks decide the behaviour of the pintool.

pthread_mutex_unlock() functions respectively. The

resulting architecture of PGDB is shown in Figure 1 A. To

use PGDB a developer needs to compile the source code in

debug mode to create a GDB-compatible binary. The binary

then executes in remote mode with PIN having custom

instrumentations (as pintools). Finally, GDB is started and

connects to PIN through remote port to debug and detect

concurrency issues. The developer controls the debugging

by issuing our new concurrency detection commands from

GDB.

2.1 Interconnection of GDB with Pin
GDB supports a remote mode where it can communicate

to the remote stub that understands GDB protocol via a

Serial or TCP/IP connection. In PGDB PIN connects to

GDB via its remote debugging protocol. The communication

with the debugger is two-way as shown in Figure 1 B. GDB

sends commands to PIN and PIN sends notifications back

whenever the program stops on intended breakpoints or ter-

minates. Note that every program instruction that is executed

under the control of the debugger is still instrumented with

the PIN.

(a) (b)

Fig. 1: (A) The Basic Architecture of PGDB (B) Intercon-

nection of GDB with Pin via Remote Debugging Protocol

2.2 Breakpoint Propagation to GDB
PIN provides an API to generate breakpoint in GDB to

stop during program execution. When the Data Race Monitor

pintool identifies a potential Datarace or the Deadlock De-

tection pintool finds a deadlock event, a suitable breakpoint

is generated from within the respective pintool and is passed

on to the GDB console to stop the program execution. This

carries the thread ID and message for GDB console.

3. Design of PGDB
In PGDB we augment GDB with features to detect the

race condition and deadlock. These features may be turned

on or off dynamically during the execution of an application

under debug. We instrument RecordLockBefore()
and RecordLockAfter() before and after the

calls to pthread_mutex_lock() respectively.

Further we instrument RecordUnLockAfter() after

110 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

calls to pthread_mutex_unlock(). Following

instrumentations implement these features:

3.1 Data Race (Detection) Monitor
PIN provides APIs to identify memory accesses and to

detect if the thread holds a lock on it or not during the

access. Thus, to detect datarace we first identify the shared-

exclusive memory locations and then monitor these locations

for accesses with or without lock by a thread.

Instrumentation Policy
To identify whether or not a memory location is

shared among multiple threads, we maintain a hash ta-

ble MemTracker where the key-field is a (32- or 64-

bit) memory address and the value-field is a memory re-

gion structure containing the Thread ID and the Access

type (READ/WRITE). We perform image instrumentation

to get the address range of the main executable image

as loaded into memory and shared library images to fil-

ter out memory accesses for the main executable only as

thread-local and read-only memory accesses do not induce

dataraces.We instrument every instruction belonging to the

main executable image and shared library images. Identify-

ing memory locations is performed in two analysis routines

namely RecordMemRead() andRecordMemWrite()
before Load and Store instructions respectively. We use

thread IDs assigned by PIN for thread identification within

analysis routine

• RecordMemRead Routine is called before the exe-

cution of a Load instruction to analyse read accesses

from memory. The memory address, thread ID and

context are passed to this routine. When a memory

address is accessed for the first time a memory region

structure is populated with READ and is added to the

MemTracker. For subsequent accesses for a memory

location for which a memory region structure already

exists in MemTracker we have the following situa-

tions:

– Existing Access type is READ: This is a case of

READ-after-READ and there is no datarace.

– Existing Access type is WRITE: This is a case

of READ-after-WRITE. There is no action (and

no race) if the thread IDs are same. If the thread

IDs are different, this memory location should be

marked as a shared-exclusive memory.

• RecordMemWrite Routine is called before the exe-

cution of a Store instruction to analyse write accesses

to memory. The memory address, thread ID and context

are passed to this routine. When a memory address

is accessed for the first time a memory region struc-

ture is populated with WRITE and is added to the

MemTracker. For subsequent accesses for a memory

location for which a memory region structure already

exists in MemTracker we have the following situa-

tion:

– Existing Access type is READ or WRITE: This

is a case of WRITE-after-READ or WRITE-after-

WRITE. Hence this memory location should be

marked as a shared-exclusive memory if the thread

IDs are different.

(a) (b)

Fig. 2: (A) Race Detection (B) Identification of Safe / Unsafe

Access

We maintain a boolean variable flag (initialized to false)

for each thread for race detection (Figure 2 B). When

RecordLockAfter() is called, say, by Thread 1, we

enter the critical section and set flag for Thread 1 as

true. Later when RecordUnlockAfter() is called, we

know that the thread has left the critical section and we

reset the flag for Thread 1. Hence any access to a shared-

exclusive memory location is a safe access while flag is

true. Otherwise it is unsafe.A memory location if marked as

shared-exclusive and has an unsafe access is a potential for

datarace invoking the breakpoint.

The above characterization of safety, however, changes

when users employ barriers for explicit synchronization. We

enumerate different cases of safety with and without barriers

in Table 2 and use them to formulate the following analysis

strategy for exploring datarace in the presence of barriers.

• BarrierDetect Routine is called before every call

of pthread_barrier_wait() to track the mem-

ory barriers. The MemTracker is now extended with

additional fields to store the barrier variable associated

with a thread and the order of the occurrence (Before /

After) of variables relative to the barrier. And if there

is no barrier at all then these fields will be NULL.

– When we encounter a variable X in a thread
before crossing a barrier, we insert a new

row in Memtracker as {<Mem_Addr>,
<Thread_ID>, <Access_type>, <No>,
<NULL>}. Now we have two possibilities either

we cross a barrier after this variable or the barrier

is not at all available.

∗ if variable occurs before a barrier then

during crossing the barrier named, say

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 111

BAR_VAR, the pthread_barrier_wait()
callback will update the above row

in Memtracker as {<Mem_Addr>,
<Thread_ID>, <Access_type>,
<BAR_VAR>, <Before>}.

∗ if there is no barrier at all then the row in

Memtracker will remain unchanged.

– If we have already crossed a barrier, say

BAR_VAR, before accessing the variable then

we insert {<Mem_Addr>, <Thread_ID>,
<Access_type>, <BAR_VAR>, <After>}
in Memtracker.

Here BAR_VAR will be the barrier variable name to deal

with multiple barriers. If the memory access in two

(a)

(b)

Fig. 3: (A) No Race Due to Barrier (B) Updating Mem-

tracker

threads appear before and after the barrier respectively

(or vice-versa) like in Figure 3 A we can exclude this

condition from potential data-race factors. Then we

can formulate the additional logic for any variable X
appearing in threads T1 and T2 before or after a barrier

as cases 3, 4 and 5 of the Table 2.

If (((Occurrence of X in T1 is before barrier)
AND
(Occurrence of X in T2 is after barrier))

OR
((Occurrence of X in T2 is before barrier)
AND
(Occurrence of X in T1 is after barrier)))

then NO DATA RACE.

3.2 Deadlock (Detection) Monitor
To detect deadlock we use a Resource Allocation Graph

(RAG). An RAG is a directed bipartite graph with two types

of nodes and two types of edges. A RAG represents a thread

by a Thread Node and a resource by a Resource Node. If

a thread t owns (holds a lock on) a resource r, we draw

an Acquired Edge(Figure 4 B) from r to t. If a thread t
is blocked on a resource r, we draw a Waiting Edge(Figure

4 A) from t to r. Clearly, there is deadlock if and only if

there is a cycle in the RAG. Thus, we can detect deadlock

by building the RAG (Figure 4 C).

Instrumentation Policy

To construct a RAG we identify the waiting and acquired

edges as follows:

• A waiting edge from thread t to resource (mu-

tex) r is added to the RAG when t is blocked in

pthread_mutex_lock(&r) routine because some

other thread holds the lock on the mutex r. This is done

in RecordLockBefore().

• An acquired edge from thread t to resource

(mutex) r is added to the RAG when t ac-

quires the lock on the mutex r by completing

pthread_mutex_lock(&r). While an acquired

edge is added the existing waiting edge is removed.

This is done in RecordLockAfter().

• An acquired edge is removed from the RAG

when thread t releases mutex r by completing

pthread_mutex_unlock(&r). This is done in

RecordUnLockAfter().

(a)

(b)

(c)

Fig. 4: (A) Waiting edge in RAG (B) Acquired edge in RAG

(C) Deadlock detection by RAG

Once the RAG is constructed we detect deadlocks by finding

cycles in it and the deadlock breakpoint is invoked.

112 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

4. Implementation of PGDB
We have implemented the above design over GDB to

create PGDB. For this we have added a set of new commands

to GDB (Section 4.1). The users can use these command as

input to PGDB to control the debugging of concurrency. Fur-

ther we have enhanced the GUI mode of GDB (Section 4.2)

to output debugging information back to the user.

4.1 PGDB Commands
To use the detection monitors from PGDB, we have

designed the following simple commands that the developer

can issue to PIN through PGDB:

• monitor help: Display all customized commands to

debug concurrency issues.

• datarace detection on: Start the detection of shared-

exclusive memory access (datarace).

• datarace detection off: Stop the detection of shared-

exclusive memory access (datarace).

• datarace detection status: Shows whether the detec-

tion of datarace is ON or OFF.

• deadlock detection on: Start the detection of deadlock.

• deadlock detection off: Stop the detection of deadlock.

• deadlock detection status: Shows whether the detec-

tion of deadlock is ON or OFF.

4.2 Enhancement of GUI Mode of GDB
We have enhanced the support of graphical framework of

GDB and built the infrastructure to generate breakpoints by

our profilers. Among all existing graphical gdb in the market,

we have chosen DDD for this purpose which is a well-known

graphical gdb with clean and simple interface. Once DDD

layer comes on top of our PGDB, whenever a breakpoint is

generated by our profiler, it needs to be propagated to the

GUI layer from GDB so as to highlight the cause of the

detection by profiler in the source code of the application.

This is done very interactively using a cursor pointing the

exact line causing the detection of deadlock, datarace.

To integrate our new features with GDB, we designed a

shell script to automatically establish the connection between

PIN and GDB, and instantiate DDD irrespective of the

system architecture on which it is running.Higher level steps

are given below:

• Instantiate PIN with the designed Pintool or Profiler

• Start DDD interface which will run the GDB engine in

the background

• Establish remote connection between GDB and PIN, as

the application to be debugged will be running in PIN

which is outside GDB

• Open a separate source window of DDD displaying the

source code of test application

• Open a separate data window where variable values will

be shown while debugging

• Open the GDB command window to input the custom

commands and run the program

5. Sample Debugging Session in PGDB
We present example debugging in PGDB implementation.

5.1 Data Race Breakpoint Feature
Consider the following code being executed by Thread 1.

Suppose Thread 2 increments shared variable x without a
lock. Hence the value of y is not deterministic due to race.

if (x == 5) // The "Check"
{ y = x * 2; // If another thread changed x

// in between "if (x == 5)" and "y = x * 2";
// y will not be equal to 10.}

PGDB identifies the race and halts the program with a

breakpoint. When Thread 1 reads the value of x, it is

registered as a READ operation in MemTracker and when

Thread 2 increments its value, the race condition is detected

(Figure 2 A).

5.2 Deadlock Detection Breakpoint Feature
An example of deadlock is shown below where two

threads, Thread 1 and Thread 2, invoke transfer() as

shown:

void transfer(Account from_account,
Account to_account, double amount) {
pthread_mutex_lock(&from_account);
pthread_mutex_lock(&to_account);

from_account.withdraw(amount);
to_account.deposit(amount);

pthread_mutex_unlock(&to_account);
pthread_mutex_unlock(&from_account);

}
Thread 1: transfer(account#1, account#2, 1000);
Thread 2: transfer(account#2, account#1, 500);

As Thread 1 starts executing transfer() it holds lock

on account#1 and is suspended as it waits for lock

on account#2. Meanwhile Thread 2 acquires lock on

account#2 and waits indefinitely for Thread 1 to release

account#1. Deadlock results. A cycle in this RAG (Figure

4 C) implies deadlock.

6. Test Result
The benchmark test suite for test datarace and deadlock

are demonstrated in Sections 6.1 and 6.2 respectively. The

behaviour and performance on the benchmarks have been

presented in Sections 6.3 and 6.4.

6.1 Correctness for Datarace
The following scenarios are needed to test the correctness.

• Benign Datarace can occur when:
– One shared variable-two threads: 2 threads T1 and T2 share a variable

x with 2 different modes Read(R) or Write(W).
T1:
A1 x = x +1;
A2 printf("x=%d\n",x);

T2:
B1 x = x +1;
B2 printf("x=%d\n",x);

Datarace is detected in T2 at line B1 and in T1 at line B1 for the
execution sequence A1, B1, A2, B2 and B1, A1, A2, B2 respectively.

– Two shared variables-two threads: 2 threads T1 and T2 share 2 variables
x and y with 2 different modes Read (R) or Write (W).
T1:
A1 x = y +1;
A2 printf("x=%d\n",x);

T2:
B1 y = x +1;
B2 printf("y=%d\n",y);

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 113

Datarace is detected in T2 at line B1 and in T1 at line B1 for the
execution sequence A1, B1, A2, B2 and B1, A1, A2, B2 respectively.

– Datarace in only one thread: T1 and T2 share 2 variables x and y with
2 different modes Read (R) or Write (W).
T1:
A1 pthread_mutex_lock

(&mutex);
A2 x = y +1;
A3 pthread_mutex_unlock

(&mutex);
A4 x++;

T2:
B1 pthread_mutex_lock

(&mutex);
B2 y = x +1;
B3 pthread_mutex_unlock

(&mutex);

Datarace is detected in T1 at line A4 for the execution sequence A1,
A2, A3, B1, B2, A4, B3.

– Datarace in two threads: 2 threads T1 and T2 share 2 variables x and
y with 2 different modes Read (R) or Write (W).
T1:
A1 x = y +1;
A2 y = x;
A3 printf("x=%d\n",x);

T2:
B1 y = x +1;
B2 x = y;
B3 printf("y=%d\n",y);

Datarace is detected in T2 at line B1 and in T1 at line A2 for the
execution sequence A1, B1, A2, A3, B2, B3. Another is detected in T1
at line A1 and in T2 at line B3 for the execution sequence B1, B2, A1,
A2, B3, A3.

• Fatal Datarace can occur when:
– Case 1: 2 threads T1 and T2 share 2 variables x and y with 2 different

modes Read (R) or Write (W).
T1:
A1 x=(int*)

malloc(2*sizeof(int));
A2 x[0] = 1;

T2:
B1 x[1]=1;
B2 free(x);

Datarace is detected in T1 at line A2 for the execution sequence A1,
B1, A2, B2. Also segmentation fault at A2.

– Case 2: 2 threads T1 and T2 share 2 variables x and y with 2 different
modes Read (R) or Write (W).
T1:
A1 x++;
A2 if(x == 0){
A3 free(obj);
A4 }
A5 x--;

T2:
B1 x++;
B2 if(x == 0){
B3 free(obj);
B4 }
B5 x--;

Datarace is detected in T2 at line B1 and in T1 at line A2 for the
execution sequence A1:1, B1, A1:2, A2, A3, B2, B3, B4, A4, A5, B5
and Crash will happen at B3. Here A1:1 is "compute x+1" and A1:2 is
"assign to x".

– Case 3: 2 threads T1 and T2 share a variable x with in Write (W) mode.
T1:
A1 x = x+4;

T2:
B1 x=3;

Datarace is detected in T2 at line B1 for the execution sequence A1:1,
B1, A1:2 where A1:1 is "compute x+1" and A1:2 is "assign to x".

• Benign/Fatal Datarace can occur when:
– Case 1: 2 threads T1 and T2 share 2 variables x and y with 2 different

modes Read (R) or Write (W).
T1:

A1 if (x<y) {
A2 z = x+4;
A3 y = z;
A4 }
A5 z++;
A6 printf("x=%d",x);

T2:
B1 x=y-1;

Datarace is not detected even though there is potential datarace in the
program for the execution sequence B1, A1 , A2, A3, A4, A5, A6.

– Case 2: 2 threads T1 and T2 share 2 variables x and y with 2 different
modes Read (R) or Write (W).
T1:

A1 if (y<0) {
A2 sleep(10);
A3 y = x+4;
A4 }
A5 y++;
A6 printf("x=%d",x);

T2:
B1 x=y-1;

Datarace detected due to execution of sleep(10) by T1 as there is potential
datarace in the program for the execution sequence A1, A2, B1, A3, A4,
A5, A6.

– Case 3: 2 threads T1 and T2 share variable x with 2 different modes
Read (R) or Write (W).

T1:
A1 x=(int*)

malloc(2*sizeof(int));
A2 x[0] = 1;

T2:
B1 x[1]=1;
B2 sleep(10);
B3 free(x);

There exists a Fatal Datarace but it is not detected due to execution of
sleep (10) by T2 for the execution sequence B1, B2, A1, A2, B3.

6.2 Correctness for Deadlock
Since PGDB works on dynamic analysis, there are cases

of deadlock which get overlooked:

• Deadlock detected for the following case:
T1 and T2 share 2 variables x, y with 2 different modes Read(R) or Write(W)
with locking variables mutex1, mutex2.

T1:
A1 pthread_mutex_lock(&mutex1);
A2 pthread_mutex_lock(&mutex2);
A3 x = y+1;
A4 pthread_mutex_unlock(&mutex2);
A5 pthread_mutex_unlock(&mutex1);

T2:
B1 pthread_mutex_lock(&mutex2);
B2 pthread_mutex_lock(&mutex1);
B3 y = x+1;
B4 pthread_mutex_unlock(&mutex1);
B5 pthread_mutex_unlock(&mutex2);

Deadlock is detected in T2 at line B2 and datarace is also detected in T1 at line
A2 for the execution sequence A1, B1, A2, B2, B3, B4, A3, A4, A5, A5 and
for sequence A1, B1, B2, A2, A3, A4, A5, B3, B4, B5 respectively. Though
potential deadlock exists in the application, no deadlock occurred and hence
not detected by PGDB for execution sequence A1, A2, B1, A3, A4, A5, B2,
B3, B4, B5.

6.3 Benchmark Testing
To test the behaviour, accuracy and efficiency of PGDB,

we have used (with modification) a set of benchmarks of

popular dataraces detected by Google’s Thread-Sanitizer

Tool5.
• Case 1: No Datarace condition with one thread. Benchmark has only one

thread and does not have datarace. The result will be negative.
• Case 2: No Datarace condition with synchronization. Benchmark has two

threads accessing one global shared variable which is synchronized with proper
locking mechanism to prevent datarace. Thus the result will be negative.

• Case 3: Datarace condition with synchronized and non-synchronized shared
variables. Benchmark has two threads with two global shared variables. One
global is accessed using locks while the other is accessed without locks. So
access to one of them will lead to datarace. One datarace is reported.

• Case 4: Datarace leading to crash due to write to freed memory or double
freeing. Benchmark has two threads accessing a dynamically allocated memory
location which is freed based on a reference count and a non-synchronized
access to this reference count will lead to being freed more than once hence
leading to program crash. Reported in real time applications like Chrome,
SQLite etc.

• Case 5: Datarace on Boolean flag used for thread synchronization. Benchmark
has two threads and the synchronization between these two threads is done
using a boolean variable which is shared between the threads and due to out
of order execution in latest architectures leads to unexpected results. Datarace
will be reported on the shared Boolean flag.

• Case 6: No Datarace condition by adding memory barriers for in-order
instruction execution. This benchmark consists of two threads with two shared
variables using memory barriers which enforces ordering of memory access for
shared data synchronization to solve unexpected results caused due to out of
order instruction execution. Result of PGDB should be negative.

• Case 7: Datarace condition due to improper usage of memory barrier instruc-
tion. This benchmark consists of two threads with two shared variables. The
access to these shared data is not synchronized due to usage of memory barrier
instructions at improper places leading to datarace. Reported by PGDB.

• Case 8: Datarace condition due to Initializing objects without synchronization.
Benchmark has two threads trying to initialize an object by dynamically
allocating memory. Since the allocation is done without any synchronization,
it might lead to memory leaks. Should be detected by our PGDB.

• Case 9: Datarace on free. This benchmark has two threads where one thread
dynamically allocates memory in the heap whereas the other thread frees this

5https://code.google.com/p/thread-sanitizer/wiki/PopularDataRaces

114 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

Table 2: Different Scenarios of Barrier
Thread 1 Thread 2 Thread 3 Potential of

Datarace between
1 void* func1() { x = 1;

pthread_barrier_wait(&bar);}
void* func2() { x++;

pthread_barrier_wait(&bar); }
NA (T1 & T2)

2 void* func1() { x = 1;
pthread_barrier_wait(&bar);}

void* func2() { x++;
pthread_barrier_wait(&bar);}

void* func3() {
x = 2; }

(T1 & T2) or (T2 &
T3) or (T1 & T3)

3 void* func1() { x = 1;
pthread_barrier_wait(&bar);}

void* func2() {
pthread_barrier_wait(&bar);
y=x;}

NA None

4 void* func1() {
pthread_barrier_wait(&bar);
x = 1; }

void* func2() { y = x;
pthread_barrier_wait(&bar);}

NA None

5 void* func1() { x = 1;
pthread_barrier_wait(&bar);}

void* func2() {
pthread_barrier_wait(&bar);
y = x; }

void* func3() {
x = 2; }

(T1 & T3) or (T2 &
T3)

6 void* func1() { x = 1;
pthread_barrier_wait(&bar); }

void* func2() { y = x;
pthread_barrier_wait(&bar); }

NA (T1 & T2)

7 void* function1() {
pthread_barrier_wait(&bar);
x = 1; }

void* func2() {
pthread_barrier_wait(&bar);
y = x; }

void* func3() {
x = 2; }

(T1 & T2) or (T2 &
T3) or (T1 & T3)

area causing a crash due to datarace. So, the result of PGDB should be positive
with reporting of datarace.

• Case 10: Datarace on exit. This benchmark has two threads created by the
main program which are accessing a shared global object where before both
the threads end, the main program exits thereby making the shared object
unavailable to both of them. Should be detected and reported by PGDB.

• Case 11: Datarace on mutex. consists of two threads that are synchronized
by locking or unlocking a shared mutex and any change in mutex value or its
destruction by one thread will affect the other thread still in execution leading
to datarace of the mutex. This datarace should be reported by PGDB.

• Case 12: Datarace on file descriptor. consists of two threads that are accessing
the same file descriptor for read/write purpose without any synchronisation
leading to data being written on a wrong file or socket causing leaking of
sensitive data into an untrusted network connection in real time. Reported by
PGDB.

Table 3: PGDB Output for Datarace
Benchmark Case Expected Output PGDB Output
Case 1 No Datarace ×
Case 2 No Datarace ×
Case 3 Datarace Exists �
Case 4 Datarace Exists �
Case 5 Datarace Exists �
Case 6 Datarace Exists �
Case 7 Datarace Exists �
Case 8 Datarace Exists �
Case 9 Datarace Exists �
Case 10 No Datarace ×
Case 11 Datarace Exists �
Case 12 Datarace Exists �

�- Data Race detected × -Data Race not detected

6.4 Performance Testing
The user can selectively turn on or off the instrumen-

tation to increase performance. While instrumentation adds

considerable overhead on the execution time, we find that

with PGDB’s selective instrumentation it can be significantly

reduced.

7. Conclusion and Future Work
We have presented strategies to dynamically instrument

multi-threaded programs (written in C/C++ using pthreads

library) using PIN and to integrate the same with GDB

(on Linux) to debug for dataraces and deadlocks, if any.

The support has been implemented with new commands in

PGDB (Table 1). Going forward we would like to support

livelock detection in PGDB, extend the augmentations for

Microsoft Visual Studio Debugger [6] on Windows, and

support other thread libraries / models like Windows threads

[11], Intel TBB [9] and Boost [10]. We would also like to

improve the performance of the pintools to make PGDB

more effective.

References
[1] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur

Klauser, Geoff Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim
Hazelwood. Pin: Building Customized Program Analysis Tools with
Dynamic Instrumentation in PLDI ’05 Proceedings of the 2005 ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation (Chicago, IL, USA, June 12 - 15, 2005). ACM SIGPLAN
Notices, Volume 40 Issue 6, June 2005, Pages 190-200.

[2] Moshe (Maury) Bach, Mark Charney, Robert Cohn, Elena
Demikhovsky, Tevi Devor, Kim Hazelwood, Aamer Jaleel, Chi-
Keung Luk, Gail Lyons, Harish Patil, and Ady Tal. Analyzing Parallel
Programs with PIN, Journal Computer, Volume 43, Issue 3, March
2010, Pages 34-41.

[3] PIN User Manual: http://www.pintool.org
[4] GDB: The GNU Project Debugger: http://www.gnu.org/software/gdb
[5] IDB: Intel Debugger: http://software.intel.com/en-us/articles/idb-linux
[6] Debugging in Visual Studio: http://msdn.microsoft.com/en-

us/library/vstudio/sc65sadd.aspx
[7] Xiaoming Shi, Venkatesh Karthik Srinivasan, Madhu Ramanathan,

and Yiqing Yang. PinDB: A PIN-based Debugger for Multi-threaded
Programming, http://pages.cs.wisc.edu/ madhurm/pindb/pindb.pdf.

[8] pthreads (POSIX Threads): https://computing.llnl.gov/tutorials/pthreads/
[9] Intel TBB (Thread Building Blocks):

http://threadingbuildingblocks.org/
[10] Boost Threads: http://www.boost.org/
[11] Windows Threads: http://msdn.microsoft.com/en-

us/library/windows/desktop/ms684847(v=vs.85).aspx

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 115

116 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

SESSION

SOFTWARE ENGINEERING AND DEVELOPMENT
ISSUES + SOFTWARE SCALABILITY +

APPLICATIONS

Chair(s)

TBA

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 117

118 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

Performance of Lambda Expressions in Java 8

A. Ward1, and D. Deugo1
1School of Computer Science, Carleton University, Ottawa, Ontario, Canada

Abstract – A major feature introduced to developers in Java
8 is language-level support for lambda expressions. Oracle
claims that the use of lambda expressions will allow for the
writing of more concise and efficient code for processing
elements that are stored in collections. We consider the
problem of determining if the runtime of lambda expressions
in Java 8 are faster than non-lambda expressions. By
comparing the speed of a lambda expression with a
corresponding non-lambda expression, that renders the same
result, we describe where lambda expressions have
performance advantages or disadvantages.

Keywords: lambda expression, stream, Java 8

1. Introduction

Lambda expressions in computer programming are
byproducts of the mathematical logic system, lambda calculus.
It was Alonzo Church who came up with lambda calculus [16]
to give structure to the concept of effective computability.
Lambda expressions are also known anonymous functions
because in lambda calculus all functions are anonymous (not
bound to an identifier). Lambda expressions have now been
used in computer programming since their introduction in Lisp
in 1958. Forty-six years later lambda expressions are getting
introduced to Java programmers.

1.1 Problem
The question we are trying to answer is the following:

are lambda expressions in Java 8 faster than non-lambda
expressions at accomplishing the same tasks.

1.2 Motivation
Our motivation for this work came from Oracle’s claim

that the use of lambda expressions would result in more
efficient code [1]. We were interested in determining if there
were advantages to using lambda expressions beyond their
obvious conciseness. Considering Oracle claimed lambda
expressions were more efficient, we decided to validate by
getting a quantitative speed difference in milliseconds and as a
percent.

1.3 Goals
Our main goal is to determine if the newly introduced

lambda expressions have a speed advantage over non-lambda
expressions for an identical task. We also wanted to make a
website that ran our comparisons. The website is also intended

to allow users to educate themselves on the performance and
uses of lambda expressions.

1.4 Objectives
To meet our goals, we have the following objectives:
• Find example lambda expressions to use for

comparisons. These will be found through Java 8
books and Oracle documentation.

• In addition to finding lambda expressions, create
our own lambda expressions. The created lambda
expressions are to show additional uses for lambda
expressions that are not covered in the Java 8 books
or in Oracle’s documentation.

• Using Eclipse, calculate how long a lambda
expression takes to finish its task. Then test the
speed of a non-lambda expression completing the
same task. These results are used to determine the
difference, between the lambda and non-lambda
expression, in milliseconds and as a percentage.

• Complete a website that runs and outputs the
comparison results. This would allow speed
comparisons to be tested across multiple operating
systems and processor speeds.

• Make the website user friendly and provide
thorough instructions on how to allow the website to
run. The purpose of this is to allow users of the site
to run their own performance comparisons and see
the speed difference for themselves.

• Display the code used for comparisons on the
website. This is meant to allow users to learn some
ways that lambda expressions can be used.
Additionally, giving users the ability to see the code
used will allow further discussion about if there is a
better, faster way to code the lambda or non-lambda
expressions.

1.5 Outline

In section 2 we give a brief background on lambda
expressions. In section 3 we give some examples of lambda
expressions and compare them against their equivalent non-
lambda expression. In section 4, report on performance
comparison of the examples discussed in section 3. Finally, in
section 5, we give our conclusions.

2. Background
The use of lambda expressions has long been ubiquitous

in various functional programming languages such as Lisp,

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 119

Scala, Haskell, and F# [2], among others. Before Java 8, Java
programmers have been forced into writing more verbose code
than needed and lacked key functionality such as the ability to
pass in a function as a parameter.

The following subsections give an overview of lambda
expressions. This discussion includes what a lambda
expression is, why they are useful, and finally their
performance in other languages.

2.1 What is a Lambda Expression?
Lambda expressions are also known as anonymous

functions because they are functions without an identifier.
These expressions can make use of already programmed
functional interfaces, such as a Predicate or Function. With no
identifier, a lambda expression isn’t intended to be called
many times like a method. They are actually commonly used
to avoid coding unnecessary methods. Thus, if the
functionality is only needed once or for a short amount of
time, lambda expressions help make code clearer and concise
[3].

Example:
/*to get the total + tax of a list of prices */

 ArrayList<Integer> prices = new
 ArrayList<Integer>(Arrays.asList(90,87,34,21));
 // using lambda expression
 double total = prices.stream()
 .mapToDouble(x -> x*1.14)
 .sum();
 //using non-lambda expression
 double total2 = 0.0;
 for (Integer i : prices) {
 total2 += i*1.14;
 }
For example, the above lambda expression can be written

using one line of code. The non-lambda expression involves
first initializing a variable and then creating a for-loop to add
each item price, with tax, to the total.

2.2 Why Use Lambda Expressions?
As stated in [3], the use of functional interfaces paired

with anonymous inner classes is a common theme in Java. To
simplify the coding, functional interfaces are taken advantage
of for use with lambda expressions, eliminating the need to
program inner classes.

Example:
 // Using inner class
 btn.setOnAction(new EventHandler<ActionEvent>() {
 @Override

public void handle(ActionEvent event) {
 System.out.println("Hello World!");
}

 });

// Using lambda expression
 btn.setOnAction(event->

 System.out.println("Hello World!"));

The “horizontal solution” of using lambda expressions,

solves the “vertical problem” presented by using inner classes
[3]. A lambda expression addresses the bulkiness of an inner
class by converting 5, 6, or even more lines of code into a
single statement.

2.3 Performance in Other Programming
Languages

Performance of lambda expressions differs from one
programming language to another. In some languages, the use
of a lambda expression not only gives the code a more clear
and concise look, but also has a faster execution time.
However, in other programming languages, code runs faster
using the more verbose approach [6]. As stated in [6], the
“lazy” approach can have its costs when it comes to
efficiency; using lambda expressions when needed is slower
than calling a function by name. The following subsections
review the use of lambda expressions in other popular
programming languages.

2.3.1 In Haskell

Haskell is a purely functional programming language,
based on lambda calculus. In the release of Haskell version
1.0, in 1990, it was well known that the use of lambda
expressions caused a significant and constant performance loss
[6]. Haskell 1.0 was also inefficient when it came to defining
streams [6], making it more inefficient to use lambda
expressions on streams of data.

Haskell Prime was released in 2006, where much of the
development focus was on performance [6]. Now competitive
performance is available with Haskell [6]. Haskell
programmers can now use the functionality of lambda
expressions without the inferiority of performance.

2.3.2 In Python

According to Python’s official documentation, lambda
expressions are equivalent to regular function objects [8]. In
Python, lambda expressions are just a better syntactic way to
write a normal function [9]. Thus, the implication is that
lambda expressions have equivalent performance as non-
lambda expressions in Python. However, as stated in [10],
lambda expressions in Python can be more efficient to use for
common programming idioms such as mapping, filtering, and
list comprehension.

2.3.3 In C++

C++11 was released in 2011 and saw major revisions
including the use of lambda expressions [11]. According to the
ISO (International Organization for Standardization), the
addition of lambda expressions to C++ has added much
strength flexibility and efficiency [11]. C++ programmers are

120 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

now enabled to use powerful expressiveness, and write
efficient, high performance code [11].

3. Lambda Comparisons
Lambda expressions allow for a much more concise way

of iterating over a collection of data such as a list. Lambda
expressions can use multiple functions and interfaces to
accomplish a task. The following subsections go over some of
the varying ways that lambda expressions can be used.

3.1 Reduction
The stream.reduce() method is a general reduction

operation. It is comprised of an identity element that is the
starting value of the reduction and default value if there are no
elements in the stream. The method also consists of an
accumulator that takes as parameters, the partial result so far
of the reduction, and the next element in the stream. A new
partial result gets returned.

Example: int total = nums.stream()
 .reduce(0, (a, b) -> a+b);

The non-lambda way of accomplishing the same thing as
in the above example would be creating a variable to store the
sum, and then running a for-each loop where each number in
the list was added to the total.

Example: int total = 0;
 for (int i : nums) {
 total += i;
 }

What would have taken 3 lines of code in previous Java
versions, can now be done in 1 line using lambda expressions.

3.2 Filtering

The stream.filter() method takes a predicate as an

argument and returns a new stream containing the elements
that matched the conditions of predicate. Each predicate can
have multiple conditions that need to be satisfied. A lambda
expression can be passed into the stream.filter() method
instead.

Example: List<String> filtered = strList.stream()
 .filter(x -> x.length()> 3)
 .collect(Collectors.toList());

The above example filters out all strings with a length

less than 3. This creates a new stream with only the remaining
strings. The non-lambda expression once again uses a for-each
loop. Instead of filtering, the non-lambda expression uses an
if-statement.

Example: List<String> filtered = new
 ArrayList<String>();

 for (String str : strList) {
 if (str.length() > 3)
 filtered.add(str);
 }

Once again the lambda expression can be written using

less lines of code.

3.3 Collecting
The stream.Collectors class has a variety of methods that

are of great use to streams and lambda expressions. These
methods from the Collectors class can be used inside the
stream.collect method of the lambda expression.

3.3.1 To List

One method of the Collectors class is the
Collector.toList() method. The method takes all the elements
that are left in a stream, and stores them in a list. This makes it
quick and easy to create a new list, filtering out unwanted
elements from the old list. For example, extracting all the
numbers in a list that are greater than 5.

 Example: List<Integer> above5 = numberList
 .stream()
 .filter(x -> x > 5)
 .collect(Collectors.toList());

In the above example, with 1 line of code a new list is

created, containing only the desired numbers. A non-Lambda
expression to accomplish the same feet requires creating a new
list, using an if-statement to check the value of each number,
and then adding the wanted numbers to the List.

 Example: List<Integer> above5 = new
 ArrayList<Integer>();
 for (Integer i : numberList) {
 if (i > 5)
 above5.add(i);
 }

3.3.2 Joining

Another method in the Collectors class is the joining()
method. The method is a terminal operation that creates a non-
stream result. Inside the stream.collect method, the joining()
method returns a Collector that concatenates all the elements
in the stream. The joining() method can take a CharSequence
as a parameter. In that case a Collector is returned that
concatenates the stream elements with the CharSequence
separating each element.

 Example: String con = names.stream()
 .collect(

Collectors.joining(", "));

In the above example, in 1 line of code, the joining()
method creates a concatenated string with a comma separating

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 121

each element. Using a non-lambda expressions involves first
creating a blank string and then using a for-loop to add each
list element to the string.

 Example: String con = "";
 for (int i = 0; i < names.size(); i ++) {
 con += names.get(i) + ", ";
 }

3.4 Mapping

 Mapping involves taking an object and assigning it to a
new value. If for example there was a stream filled with
Person objects, mapping could create a stream filled with
numbers, such as the Person object’s age. Mapping can be
accomplished with the stream.map() method. The method can
take a lambda expression as a parameter.

 Example: List<String> upperNames = names
 .stream()
 .map(name -> name.toUpperCase())
 .collect(Collectors.toList());

 The above example streams a list of strings and maps each
string to a string with all uppercase letters. The equivalent
non-lambda expression creates a new list, and then iterates
through a for-loop of the original list. Each string from the
original list is converted to all upper case letters before being
added to the new list.

 Example: ArrayList<String> upperNames = new
 ArrayList<String>();

 for (String name : names) {
 upperNames.add(name.toUpperCase());

 }

3.5 Passing In Functions and Predicates

As previously mentioned, a feature lacking in previous
Java versions was the ability to pass in functions. The
java.util.function package can be used to pass in a Function or
Predicate into a stream’s intermediate operation(s) to replace a
lambda expression. Both a Function and Predicate can return
true or false, allowing them to passed in to methods that need
to evaluate a condition (i.e. the stream.filter() method).

3.5.1 Predicates

A predicate is a functional interface that can be used as a
target for a lambda expression or method reference. The
syntax for defining a predicate is Predicate<T> where T is the
type of argument being tested (i.e String, int, etc). The
Predicate<T> then determines if the input object meets some
criteria.

Example: Predicate<String> startWithA = (p) ->
 (p.startsWith(“A”));

 List<String> startingWithA =
 names.stream()

 .filter(startWithA)
 .collect(Collectors.toList());

In the above example a predicate named ‘startWithA’ is

created. The predicate is then passed in to filter the stream. As
mentioned in section 3.2 on filtering, the non-lambda
expression equivalent involves an if-statement and a for loop.

Example: List<String> startingWithA = new

 ArrayList<String>();
 for (String name : names) {
 if (name.startsWith(“A”)) {
 startingWithA.add(name);
 }
 }

3.5.2 Functions

A function is also a functional interface that can be used
as a target for a lambda expression or method reference. The
syntax for defining a function is Function<T, R> where T is
the type of argument being passed in and R is the type of
result for the function. The Function<T, R> takes in a single
argument and returns some result. Unlike the predicate the
result isn’t necessarily a Boolean.

 Example: Function<String, Predicate<String>>
 startsWithLetter = letter -> name ->
 name.startsWith(letter);

 List<String> namesStartingWithA =
 names.stream()
 .filter(startsWithLetter.apply("A"))
 .collect(Collectors.toList());

In the above example, a predicate is returned by the
function. What makes the function different from the predicate
example in section 3.4.1 is the ability to check if the string
started with any letter. Whereas the predicate in section 3.4.1
was hard coded to only check if the string started with the
letter “A”. An equivalent non-lambda expression involves
creating a separate method inside the class file.

 Example: List<String> namesStartingWithA = new
 ArrayList<String>();
 for (String name : names) {
 if (startsWith("A", name))
 namesStartingWithA.add(name);
 }

 public boolean startsWith(String a, String b) {
 return b.startsWith(a);
 }

3.6 Calling Class Methods

Lambda expressions can be used to call methods written
elsewhere in the class or superclass. The method could return

122 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

a boolean for filtering, be used for mapping, or be part of the
terminal operation. For the comparison on the website we used
the following method:

 static boolean isPrime(int n) {
 for(int i=2;i<n;i++) {
 if(n%i==0)
 return false;
 }
 return true;

 }

 Since a Boolean is returned, the isPrime() method is used
in the body of a lambda expression. The lambda expression is
inside the stream.filter() method to filter the stream of
numbers. The stream.count() method is then used to add up
how many elements are left in the stream.
 Example: int counter = (int) nums.stream()
 .filter(p -> isPrime(p)).count();

Yet again the non-lambda expression involves the use of
a for-loop. An integer is created that keeps track of the total
number of prime numbers. The for-loop iterates through each
number in a list. The isPrime() method is used inside an if-
statement. If the number is prime, 1 is added to the total.

 Example: for (int n : nums) {
 if (isPrime(n)) {
 counter++;
 }

 }

4. Results

In this section we provide comparisons of the execution
times of the examples noted in the previous section.

4.1 Comparison Results
The data presented in the Tables 1 and 2 are the result of

executing each lambda expression and non-lambda expression
for problems of size 10,000, repeating each experiment 1000
times and then averaging the results using a Mac Pro laptop,
2.9 GHz Intel Core i7, 8 GB 1600 MHz, DDR3 memory, with
Java 8. The average execution time in milliseconds and the
ratio of improvement between the lambda and non-lambda
expressions are noted in Table 1 and 2. The Lambda
improvement is calculated as follows: (Lambda - Non-
Lambda) / (Non-Lambda) * -100.00. To remove any startup
or Just In Time (JIT) effects [17], the results report in Table 1
where from the fifth iteration of running the above
experiments. We found that by the third iteration the results
were consistent with iterations four and five. Table 2 shows
the results of the first iteration, which are considerably
different from the results reported in Table 1. Table 3 shows
how drastically a small problem size and only one iteration
can affect the results. The results in this table show how using
a problem size of 1000, only running each experiment 100

times, and then looking at the first iteration of this impacts the
performance of Lambdas. To run your own comparisons, visit
http://people.scs.carleton.ca/~deugo/java8

Table 1: Lambda Performance Comparisons (5’th Iteration)

Experiment Lambda
(ms)

Non-
Lambda
(ms)

Lambda
Improvement
(%)

Counting
Primes

16.81 16.42 -2.40

Adding Up
Numbers

16.81 16.42 -2.40

Concatenating
Strings

32.78 73.31 55.29

Mapping 70.58 105.80 33.29
Filter List 72.91 106.18 31.23
Filter List
with Predicate

79.47 107.25 25.90

Filter In List
Function

87.13 108.32 19.57

Table 2: Lambda Performance Comparisons (1’st Iteration)

Experiment Lambda
(ms)

Non-
Lambda
(ms)

Lambda
Improvement
(%)

Counting
Primes

15.96 15.32 2.25

Adding Up
Numbers

15.96 16.33 2.25

Concatenating
Strings

30.44 72.82 58.20

Mapping 66.9 105.19 36.40
Filter List 69.21 105.54 34.42
Filter List
with Predicate

74.71 106.63 29.93

Filter In List
Function

81.15 107.71 24.66

Table 3: Lambda Performance Comparisons (small problem
size and repetitions)

Experiment Lambda
(ms)

Non-
Lambda
(ms)

Lambda
Improvement
(%)

Counting
Primes

0.72 0.01 -7100

Adding Up
Numbers

0.74 0.01 -7300

Concatenating
Strings

2.51 9.34 73.13

Mapping 6.28 12.24 48.70
Filter List 6.47 12.37 47.70
Filter List
with Predicate

6.51 12.5 47.92

Filter In List
Function

6.69 12.63 47.03

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 123

5. Conclusions

The addition of lambda expressions to Java 8 provide for
more functional, concise, and readable coding. In addition,
given enough execution time, the new lambda expressions can
provide a performance advantage. The report entitled ‘Clash
of the Lambdas’ also shows that Java’s lambda expressions
not only held their own, but in many cases outperformed the
lambda expressions in Scala, C#, and F# [15]. These results
held true for Windows and Linux, and varying processor
speeds. This is impressive on many levels considering lambda
expressions have been present in Scala and F# since their
introductions, and in C# since C# 3.0. With this being Java’s
first attempt at lambda expressions, the results are impressive.

5.1 The Future
With Java 8 being the first version of Java with support

for lambda expressions, the future looks promising. Looking
at the performance of lambdas in other programming
languages, Java’s performance not only competes, but also
leads over other languages. More impressively, some of those
languages have supported lambda expressions for years. Java
9 was announced for release in 2016. This provides another
opportunity for Oracle to continue to increase the performance
advantages of lambda.

6. References
[1] Gallardo, R. JDK 8 Documentation - Developer Preview
Release (The Java Tutorials Blog). Oracle Blogs, 9 Sept.
2013. Web 9 May 2015.
<https://blogs.oracle.com/thejavatutorials/entry/jdk_8_docum
entation_developer_preview>.

[2] Odersky, M., & Spoon, L. Programming in Scala (2nd
ed.). Walnut Creek, Calif.: Artima, 2010.

[3] Williams, M., & Nunez, J. Q. (n.d.). Java SE 8: Lambda
Quick Start. Oracle. Web 9 May 2015.
<http://www.oracle.com/webfolder/technetwork/tutorials/obe/
java/Lambda-QuickStart/index.html>.

 [4] Subramaniam, V. Functional programming in Java:
harnessing the power of Java 8 Lambda expressions. United
States of America: The Pragmatic Programmers, 2014.

 [5] Lesson: Aggregate Operations. The Java Tutorials. Web 9
May 2015.
<http://docs.oracle.com/javase/tutorial/collections/streams/>.

 [6] Hudak, P., Hughes, J., Jones, S. P., & Wadler, P. A
History of Haskell: Being Lazy With Class. 16 April 2007.
Web 9 May 2015. <http://research.microsoft.com/en-
us/um/people/simonpj/papers/history-of-haskell/history.pdf>.

 [7] Peyton Jones, Simon, ed. Haskell 98 Language and
Libraries: The Revised Report. Cambridge University Press.
2003.

 [8] 6. Expressions. Python 3.4.1 documentation. Web 9 May
2015. <https://docs.python.org/3/reference/expressions.html>.

 [9] 4. More Control Flow Tools. Python 3.4.1
documentation. Web 9 May 2015.
<https://docs.python.org/3/tutorial/controlflow.html#lambda-
expressions>.

 [10] Erdmann, R. G. Map, Filter, Lambda, and List
Comprehensions in Python. Web 9 May 2015.
<http://www.u.arizona.edu/~erdmann/mse350/to
pics/list_comprehensions.html>.

 [11] Lazarte, M. C++ language gets high marks on
performance with new ISO/IEC standard (2011-10-10). ISO
News. 10 Oct. 2011. Web 9 May 2015.
<http://www.iso.org/iso/home/news_index/news_archive/new
s.htm?refid=Ref1472>.

 [12] Hejlsberg, A., & Torgersen, M. Overview of C# 3.0.
Microsoft Developer Network. 1 Apr. 2007. Web 9 May
2015. <http://msdn.microsoft.com/en-
us/library/bb308966.aspx>.

 [13] Kennedy, A. C# is a functional programming language.
Microsoft Research Cambridge. Web 9 May 2015.
<http://sneezy.cs.nott.ac.uk/fun/nov-06/FunPm.pdf>.

 [14] Parallelism. The Java Tutorials. Web 9 May 2015.
<http://docs.oracle.com/javase/tutorial/collections/streams/par
allelism.html>.

 [15] Biboudis, A., Palladinos, N., & Smaragdakis, Y. Clash
of the Lambdas. Web 9 May 2015.
<http://cgi.di.uoa.gr/~biboudis/clashofthelambdas.pdf>.

[16] A. Church, A set of postulates for the foundation of logic,
Annals of Mathematics, Series 2, 33:346–366

[17] The JIT Compiler, Web 9 May 2015. <http://www-
01.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ib
m.java.aix.80.doc/diag/understanding/jit.html>.

124 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

Programmars: A Revolution in Computer Language Parsing

Steven A. O’Hara, PhD
Eagle Legacy Modernization, LLC

702 Southwick Avenue
Grovetown, GA 30813
steve@eaglegacy.com

Topical keywords: parser, grammar, software analysis

Abstract - This paper presents a revolutionary way to parse
computer programming languages without a traditional
grammar. The motivation behind this approach is to
dramatically increase scalability. The intention is to be able
to parse and analyze billions of lines of code written in
hundreds of programming languages. To achieve that goal, it
is advantageous to have sharable, open-source, modular ways
for defining the syntax and semantics of programming
languages. The new parsing technique replaces a traditional
grammar with a computer program, referred to as a
Programmar (short for program and grammar). All the basic
operations in BNF (sequencing, alternation, optional terms,
repeating and grouping) are supported, and the Java code is
both sharable and modular. This parsing approach enables
dozens or even hundreds of developers to work on computer
program analysis concurrently, while avoiding many of the
consistency issues encountered when building grammars and
associated code analysis tools.

1 Introduction
Businesses around the world today collectively have billions
of lines of production software written in legacy computer
languages like COBOL, RPG, PL/I, Fortran and Natural.
These organizations are highly motivated to modernize their
software for a number of reasons, including difficulties in
maintaining old, brittle code [1] and in hiring people with
legacy skillsets [2]. Unfortunately the modernization process
is often either prohibitively expensive or produces new
software of low quality that is difficult to maintain going
forward into the future [3]. Available modernization tools
(e.g. [4 to 8]) tend not to be scalable enough to handle large,
complex software systems that can be comprised of tens of
millions of lines of code written in multiple programming
languages.

For the past several decades, legacy software analysis tools
have been typified by the type of parser generated by Yet-
Another-Compiler-Compiler (YACC) [9]. Such a parser
interprets computer program code based on a Context-Free
Grammar, which is a declarative description of the syntax of a
specific programming language. This parsing process relies on
a separate token pre-processor (typically LEX, the Lexical
Analyzer [10]) and generates an Abstract Syntax Tree (AST).

Modern programming languages also continue to evolve and
require solid analysis approaches (e.g. [11 to 13]). For
example, managing deprecated code often requires detailed
software analysis similar to application modernization.
Unfortunately, there are many one-off grammars and tools for
source code analysis, but no standard or shared tools that
work well across many programming languages at the same
time. With our technique, we process languages as disparate
as Java, HTML, CSS, DOS, XML, COBOL, Natural and RPG
using a single parser.

This paper introduces a new parsing technique that embeds all
required parsing information within a Java program. All of the
elements needed to describe the computer programming
language(s) to be parsed are embedded in the Java program as
fields, classes or methods within Java classes. The focus of
this work to date is on parsing languages in the context of
legacy application modernization.

Grammar rules can be separated into two categories, those
that depend on other rules (defining non-terminals) and those
that consume characters in the input stream (terminals).
Examples of terminals are string literals, comments, numbers,
keywords, and punctuation.

In the Programmar approach, Java methods are used for
parsing terminals, while classes are defined to enable parsing
of non-terminals. The Programmar API uses Java reflection
[14] to dynamically infer a grammar while parsing.

2 Comparison to Old Grammars
This section describes the relationship between a traditional
BNF-like grammar and our new Programmar.

Given a BNF production rule of the form
<A> ::= <X> <Y> <Z>;

This is represented in a Programmar as in Figure 1.

public class A extends TokenSequence {
public X x;
public Y y;
public Z z;

}

Figure 1: Sequencing Programmar example

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 125

Note that the elements are anonymous in the BNF grammar.
The BNF production rule indicates only that an instance of
type A can consist of an (unnamed) instance of type X,
followed by an instance of type Y, and then an instance of
type Z. In Figure 1, however, the instances are named, which
means these specific instances can be referred to from
elsewhere in the Programmar or in associated source code
analysis programs. This turns out to be extremely valuable
when analyzing computer source code.

Given a BNF production rule of the form
 <A> ::= <X> | <Y> | <Z>;

This is represented in a Programmar as in Figure 2.

public class A extends TokenChooser {
 public X x;
 public Y y;
 public Z z;
}

Figure 2: Alternation Programmar example

This means that exactly one of the three elements must be
present to be recognized as an instance of type A. As a
convenience, anonymous inner classes can be used as well.

Given a BNF production rule of the form
 <A> ::= <X> [<Y>] <Z>;

This is represented in a Programmar as in Figure 3.

public class A extends TokenSequence {
 public X x;
 public @OPT Y y;
 public Z z;
}

Figure 3: Optional item Programmar example

Given a BNF production rule of the form
 <A> ::= <X> <Y>* <Z>;

This is represented in a Programmar as in Figure 4.

public class A extends TokenSequence {
 public X x;
 public @OPT TokenList<Y> y;
 public Z z;
}

Figure 4: Repeating term Programmar example

The ‘+’ BNF notation is handled in a similar manner, without
the @OPT.

Java code is provided by the Programmar API to assist
parsing the most common terminal nodes. For example, string
literals in various programming languages commonly have a
number of features such as:

• Single or double quotes?

• Are pairs of quotes treated as single quote?
• What is the escape character, if any?
• Can a literal span multiple lines?

Similar routines are available for comments, numbers,
punctuation, etc. By using Java code for the terminal nodes,
the parsing speed is greatly improved. In our experience,
writing a BNF-like grammar for a floating point number or a
string literal can be challenging and time consuming.

It is not necessary to use one of the built-in methods for
parsing terminal nodes. For example, Python has very strict
rules for indentation. Rather than pre-processing the input
stream, a Start-of-line terminal node can be used to handle the
indentation logic correctly.

3 Motivating Example – Old Grammar
Consider the two PERFORM statements in Figure 5.

000160 READ-SHARED-LOCK.
000170 READ SHARED WITH LOCK.
000180 IF WS-STATUS = "00"
000190 GO TO READ-SHARED-EXIT.
000200 IF WS-STAT1 = "2" OR "3"
000210 MOVE 33 TO WS-F-ERROR
000220 PERFORM READ-ERROR.
000230 IF RECORD-LOCKED
000240 PERFORM LOCK-USERS-REC
000250 THRU LOCK-REC-EXIT
000260 WS-COUNT TIMES
000270 ADD 1 TO WS-COUNT
000280 IF WS-COUNT > 25
000290 MOVE 1 TO WS-COUNT
000300 END-IF.

Figure 5: Sample COBOL code

In a traditional grammar, the PERFORM verb in COBOL
might be expressed as in Figure 6 (this is greatly simplified).

cPerform ::= "PERFORM" cParagraph
 [("THROUGH" | "THRU") cParagraph]
 [cTimes];
cTimes ::= cExpression "TIMES";
cParagraph ::= cIdentifier;
cExpression ::= cIdentifier | cNumber;
cIdentifier ::= cLetter
 (cLetter | cDigit | "-")*;
cNumber ::= cDigit+;
cLetter ::= "A" .. "Z";
cDigit ::= "0" .. "9";

Figure 6: Traditional grammar example

Once the COBOL program has been parsed, tools can be used
to analyze the AST. Typically, such tools traverse the tree
looking for specific named entities, such as cPerform. These
tools depend heavily on the names used in the grammar. If
somebody changes the name of an element in the grammar,
there is no easy way to detect that change.

Grammars used during a modernization effort tend to require
significant changes when another effort begins, for a variety

126 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

of reasons. This can happen because of language variations,
hardware variations, operating system variations, business-
specific conventions, etc. The tools depend heavily on the
terms in the grammar, and the terms are in flux, so it is very
easy for grammars to get out of sync with the analysis tools.

This is the main reason why parsers and grammars do not
scale well. Minor changes to grammars can have many subtle
adverse effects on how parsers work, as well as the tools that
perform subsequent processing tasks.

Generally, traditional grammars and parsers are successful
when there are only a few people working on them, and they
are working on only one or two computer languages. Most
large-scale businesses deal with dozens of computer
languages. Getting a single parser to handle all languages is
difficult, because many languages require significant pre-
processing. Also, getting some level of consistency between
AST's is difficult.

Our primary goal of parsing all major computer languages in a
unified manner is only possible when the grammar and the
analysis tools are written in the same language. This is the
basis for our claim of scalability with Programmars.

4 Motivating Example – Programmar
With a Programmar, the rules related to COBOL PERFORM
verbs could be expressed in a language like Java as in Figure 7.
Again, this is a simplified version that does not reflect all
possible PERFORM variations.

class CobolPerform extends CobolStatement {
 CobolKeyword PERFORM =
 new CobolKeyword("PERFORM");
 CobolParagraph startPara;
 @OPT CobolPerfThrough through;
 @OPT CobolPerfTimes times;

 class CobolPerfThrough extends TokenSequence {
 CobolKeywordList THRU =
 new CobolKeywordList("THRU", "THROUGH");
 CobolParagraph endPara;
 }

 class CobolPerfTimes extends TokenSequence {
 CobolExpression count;
 CobolKeyword TIMES =
 new CobolKeyword("TIMES");
 }
}

Figure 7: Simplified Programmar example

Terms like TokenSequence are built in to the Programmar
API, and terms like CobolKeyword, CobolExpression, etc. are
defined in other Java classes.

The Java program representation shown serves two distinct
purposes. First, the program can be considered a grammar for
defining the PERFORM statement in COBOL, describing all
the different ways the statement can be formed. Second, rather

than creating an AST, the parsing process creates instances of
this type of class. Collectively these instances form a
Programmar Semantic Tree (PST). The PST can be stored as
an XML file or as Java code that regenerates it.

5 Advantages
Although the Programmar approach is slightly more verbose
than using a context-free grammar (CFG), the new approach
offers four major advantages:

In the Programmar approach, downstream impact of a change
to any part of a Progammar will be detected immediately,
because the Java Programmar won't compile. If somebody
were to change the name of an element in the Programmar, all
references to that name would become invalid until they were
updated to be consistent with the changed element. This
allows projects to scale to much more significant levels. It is
now possible to have dozens of developers working on the
same project, processing many computer languages.

In the AST version, a cParagraph is just an identifier. There is
no further information attached to it. If you write a tool to
analyze or transform a COBOL program, you will have to
search the rest of the AST to find out what is in that other
paragraph. With the PST version, the CobolParagraph
instance contains within it a reference to the actual definition
of that paragraph, including all of its statements, line numbers,
references, etc. This greatly simplifies the task of writing
analysis and conversion tools. Some of the work in connecting
references to definitions is accomplished as part of the parsing
process, which lessens the effort required to create tools for
subsequent processing tasks.

The terminal nodes in a Programmar, such as CobolKeyword,
are represented in Java code. When trying to parse a terminal
node, the Java code has access to the current context. In
Figure 8, COBOL level numbers are very important. A level
number 10 following a level 05 means that the 10 should be
stored in a sub-tree under the 05. But the next 10 should be
stored under the same 05. In a Programmar, COBOL level
number logic can examine the context to decide how to
correctly build the hierarchy, without any post-processing.

01 INV-L7.
 05 FILLER PIC X(02).
 05 INV-REMKS.
 10 INV-SM PIC X(09).
 10 INV-SMAN PIC X(31).
 05 FILLER PIC X(05).
 05 INV-RMKS.
 10 FILLER PIC X(17).
 10 INV-H18 PIC X(12).
 10 INV-TERMS.
 15 INV-ADV PIC Z(06)9.99-.

Figure 8: Traditional grammar example

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 127

Programmars are expressed in a modern programming
language such as Java, which means the development
methodologies associated with such a modern language can be
used when working with Programmars. We identify the five
following benefits.

Abstraction. A traditional grammar is typically built to
describe just one programming language. With the
Programmar approach, the components common to all
variations of a particular programming language can be placed
into an Abstract Programmar class. For example, there are
major variations of languages like Report Program Generator
(RPG). A File specification has the same meaning across each
variation, so an abstract RPGFile class can be used to define
the common elements. The minor syntactic differences
between RPG variations can then be represented by concrete
classes that extend the abstract class.

Inheritance. Frequently, there are variations on a computer
programming language. For example, there are both fixed
width (80 column) and free-format COBOL programs. Their
meanings are virtually identical, but the syntax is very
different. With a traditional grammar, the whole grammar
might get copied and edited for each variation. With
Programmar Inheritance, only the local changes need to be
considered and the rest can be inherited from the main
Programmar.

Encapsulation. Some computer languages, such as HTML for
web pages, often include other languages inside of them;
Javascript, CSS or PHP in the case of HTML. In a traditional
grammar, these are normally combined into a monolithic
grammar covering all sub-languages. With Programmar
Encapsulation, the main Programmar (e.g., HTML) can
simply reference the other Programmar (e.g., Javascript).

Logic. With Programmar logic, the full power of the
programming language used to represent the Programmar
(e.g., Java) is available for complicated cases. Managing the
PICTURE level numbers in COBOL is a good example where
logic is needed to assist the parsing process to build the
correct hierarchy.

Shared Processing. Most terminal tokens are somewhat
similar across programming languages. Generic processors for
numbers, literal strings, punctuation, etc. are all made
available by the Programmar API to use when writing
Programmars. For example, parsing functionality for
hexadecimal (hex, base 16) numbers can generally be
implemented in just a few lines of Java by extending the
generic hex number processor, and simply declaring their hex
prefix or suffix. Comments, floating point numbers and string
literals are simpler to implement in a Programmar than a
traditional grammar, because they can utilize the built-in
generic methods.

6 Programmar Token Types
Every element in a Programmar is an AbstractToken in the
representation of a programming language. The following are
the main types of Abstract Tokens.

When a Programmar class extends TokenSequence, an
instance of this type is identified during parsing when all of
the fields in the class are present in the order specified (unless
they are marked as optional). Inner classes are a convenient
way to define sub-rules for such an element.

Programmar classes that extend TokenChooser have both
fields and inner classes, and the parser will attempt to match
both. Each can be marked with @FIRST or @LAST because
the parser makes three passes. The first looks only at @FIRST
elements, the second looks at neither @FIRST or @LAST
elements, and the third pass looks only at @LAST elements.
This gives another level of control over the parser, and can be
used to speed up the parser.

Care must be used in the order of the elements in a
TokenChooser. Once a token matches from the list of choices,
no other tokens are considered. This is done for efficiency
purposes and doesn't seem to impose any restrictions other
than being careful with ordering. BNF-like rules such as "<A>
::= <X> | <X> <Y>;" need to be written in the other order.

A field may be a TokenList of another token type, typically a
TokenSequence. It will match one or more instances of that
type (or zero if @OPT is also present).

This is a specialized token to help represent expressions in
most computer languages. It allows a declarative specification
of unary operators (like minus and not) and binary operators
(like plus and times). The order of the elements in the
specification determines their precedence. In most BNF-like
grammars, this is a complicated process and often verbose.
The Programmar approach includes a short-cut way to define
operator precedence, which reduces complexity.

The parser also handles the "left-recursion" problem. A
Programmar class can represent a BNF-like rule (essentially)
as "expr ::= expr + expr" without getting into an infinite loop.

Typical AST's built from parsing expressions can be very
long. Our parsing process eliminates needless intermediate
layers, which greatly reduces the size and complexity of the
resulting PST. For example, if there is no multiplication in the
expression, then there is no multiplication node in the PST.

In some situations, we may know there will be some
statements we might not be able to parse. In that case, we can

128 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

add an @LAST UnparsedElement to a TokenChooser. This
may allow parsing to continue in the event of a parse failure,
resulting in a "soft" parse failure.

@OPT is used to indicate that a Token is optional. It is often
used in conjunction with a TokenList to mean zero or more
elements instead of one or more.

There are several types of pre-defined terminal tokens, such
as:

• TerminalLiteralToken

• TerminalNumberToken

• TerminalPunctuationToken

• TerminalKeywordToken

• TerminalCommentToken
Each of these provides built-in generic parsers to support most
programming languages. Furthermore, each has an associated
CSS style for the code inspection modules so it is easy to
visually identify all the literals, numbers, comments, etc. in a
computer program listing.

7 How Programmars Work
The central idea behind parsing with Programmars is to use
Reflection to fill in the PST with the results of the parsing
process. It uses a top-down approach with no look-ahead (i.e.,
it is an LL(0) grammar [15]). No token pre-processor is
required.

The use of a Programmar differs greatly from a Recursive
Descent Parser (RDP) [15] because Programmars use a
declarative way of representing computer languages and rely
on Java reflection to decide how to parse. Other than terminal
nodes, there is no logic in a Programmar. A RDP, in contrast,
uses programming logic for matching each and every node in
the grammar.

The Programmar parsing process is context-sensitive for
terminal nodes in the sense that the current (partial) parse tree
is accessible to the terminal node parser. For example, PL/I
level numbers are hierarchical like COBOL level numbers and
they are parsed by looking at what is already in the parse tree.

Reflection is heavily used in a Programmar parser. The parser
examines all the data fields and classes inside a given class.
Depending on the type of Abstract Token, a different strategy
is used. For a Token Sequence, all the elements must be
present in the given order. If any one element doesn’t match,
the whole Token Sequence fails. Recursion is also heavily
used since Abstract Tokens may contain other Abstract
Tokens.

There is no grammar (other than the Java program), and there
is no AST. The result is a programmatic representation of the
original source program. This technique has been
demonstrated to parse dozens of computer programming
languages such as Assembler, Fortran, PL/I, RPG, Java,

Visual Basic, Delphi, DOS, SQL, Python, C++, and many
more.

One of the available outputs of the Programmar parser is a
traditional grammar. In other words, given the Programmar
representation of the COBOL programming language, the
system can automatically generate a traditional BNF-like
grammar from it.

8 JSON Example
Javascript Object Notation (JSON) is a simple language, so it
is convenient to use for an abbreviated example, with some
key parts omitted from the Programmar shown in Figure 9.

public class JSON_Program extends Language {
 public TokenList<JSON_Element> elements;
}

public class JSON_Element extends TokenChooser {
 public JSON_Literal literal;
 public JSON_Number number;
 public JSON_Object object;
 public JSON_Dict dictionary;
 public JSON_KeywordChoice constants = new
 JSON_KeywordChoice("null", "true", "false");
}

public class JSON_Object extends TokenSequence {
 public JSON_Punctuation leftBracket = new
 JSON_Punctuation('[');
 public @OPT JSON_Element element;
 public @OPT TokenList<JSON_MoreElements> more;
 public JSON_Punctuation rightBracket = new
 JSON_Punctuation(']');
}

public class JSON_Dict extends TokenSequence {
 public JSON_Punctuation leftBrace = new
 JSON_Punctuation('{');
 public @OPT JSON_Entry entry;
 public @OPT TokenList<JSON_MoreEntries> more;
 public JSON_Punctuation rightBrace = new
 JSON_Punctuation('}');
}

public class JSON_Entry extends TokenSequence {
 public JSON_Literal name;
 public JSON_Punctuation colon = new
 JSON_Punctuation(':');
 public JSON_Element value;
}

Figure 9: JSON Programmar

 [
 {
 "pk": "1",
 "model": "fixtures_regress.absolute",
 "fields": {
 "name": "Load Absolute Path Test"
 }
 }
]

Figure 10: Sample JSON source code

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 129

Consider the sample JSON source code in Figure 10. The
trace in Figure 11 shows the parsing process. "Next" is the
current character sequence. "Pattern" is the name of the
Programmar class. The leading periods show the parsing
recursion depth.

Next Pattern
====== =======================================
[? JSON_Program
[.? JSON_Element
[..? JSON_Literal ()
[.. Failed JSON_Literal ()
[..? JSON_Number
[.. Failed JSON_Number
[..? JSON_Object
[...? JSON_Punctuation ([)
{ ... ***** Match JSON_Punctuation ([)
{ ...? JSON_Element
{ ? JSON_Literal ()
{ Failed JSON_Literal ()
{ ? JSON_Number
{ Failed JSON_Number
{ ? JSON_Object
{ ? JSON_Punctuation ([)
{ Failed JSON_Punctuation ([)
{ Failed JSON_Object
{ ? JSON_Dict
{ ? JSON_Punctuation ({)
"pk": ***** Match JSON_Punctuation ({)
"pk": ? JSON_Entry
"pk": ? JSON_Literal ()
: "1" ***** Match JSON_Literal ("pk")
: "1" ? JSON_Punctuation (:)
"1", ***** Match JSON_Punctuation (:)
"1", ? JSON_Element
"1", ? JSON_Literal ()
, ***** Match JSON_Literal ("1")
, ***** Match JSON_Element
, ***** Match JSON_Entry
 (59 lines omitted)
] ***** Match JSON_Punctuation (})
] ***** Match JSON_Dict
] ... ***** Match JSON_Element
] ...? JSON_MoreElements
] ? JSON_Punctuation (,)
] Failed JSON_Punctuation (,)
] ... Failed JSON_MoreElements
] ...? JSON_Punctuation (])
(EOF) ... ***** Match JSON_Punctuation (])
(EOF) .. ***** Match JSON_Object
(EOF) . ***** Match JSON_Element
(EOF) . ? JSON_Element
(EOF) ***** Match JSON_Program

Figure 11: Trace of the parsing process

To parse a JSON_Program, the parser first tries to match a
JSON_Element, which has to be a JSON_Literal, or a
JSON_Number, etc. The parser eventually matches on a
JSON_Object, at the fourth line from the bottom in Figure 11.

Each "?" in Figure 11 represents one parsing step. Each step
should be considered a parsing attempt, which may or may
not match the input text stream.

Figure 12 is an abbreviated version of the generated XML
version of the PST. Starting and ending character and line
positions are in the actual XML file for every token.

<Program Elapsed="1" Steps="52" Tokens="35">
 <Token TT="JSON_Program">
 <Token Name="elements" TT="List">
 <Token TT="JSON_Element">
 <Token TT="JSON_Object">
 <Token Name="leftBracket"
 TT="JSON_Punctuation" V="["/>
 <Token Name="element" TT="JSON_Element">
 <Token TT="JSON_Dict">
 <Token Name="leftBrace"
 TT="JSON_Punctuation" V="{"/>
 <Token Name="entry" TT="JSON_Entry">
 <Token Name="name"
 TT="JSON_Literal" V="pk"/>
 <Token Name="colon"
 TT="JSON_Punctuation" V=":"/>
 <Token Name="value" TT="JSON_Element">
 <Token TT="JSON_Literal" V="1"/>
 </Token>
 </Token>
 <Token Name="more" TT="List"/> (omitted)
 <Token Name="rightBrace"
 TT="JSON_Punctuation" V="}"/>
 </Token>
 </Token>
 <Token Name="rightBracket"
 TT="JSON_Punctuation" V="]"/>
 </Token>
 </Token>
 </Token>
 </Token>
</Program>

Figure 12: XML representation of a PST

According to the first line, this took approximately 1 ms to
parse, with 52 parsing steps. There are 35 tokens in the final
PST. Note that the "more" token was omitted from this listing.

9 Additional Tools
Initial versions of these code analysis tools are available.

We define a project as a (possibly large) collection of
computer programs written in a variety of different
programming languages. In our system, a project is a Java
class that specifies what language to use for each source file,
what character encoding it has, how to interpret tabs in it, etc.
A project also has a very small editor built-in to repair known
problems in specific files. For example, missing semicolons
can be added or typos repaired. A project uses a simple
regular expression matcher on pre-specified line numbers on
specific files.

Given a Programmar, a traditional BNF-like grammar can be
generated from it. However, since terminal nodes are
expressed as Java methods, not as grammar rules, they cannot
be generated automatically. When used on a collection of
computer programs, frequency counts are also available
showing how many instances of each rule are present in that
project.

Once a computer program has been parsed, the parsing results
can also be used to regenerate the original program, but in a

130 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

canonical form. Indentation can be fixed, extra spaces
eliminated, capitalization standardized, etc. Elements in the
Programmar can have annotations on them to assist with the
output formatting, such as @NEWLINE, @NOSPACE,
@INDENT, and @OUTDENT.

The parser can generate a tracing output, either in plain text or
html. Sometimes this output is not sufficient, such as when
debugging a parse failure. A visual debugger is available for
this with commands like Step-in, Step-over, Continue, etc.

Once a program has been parsed, an html report can be
created for it, with color codes for all the different kinds of
terminal nodes. In addition, elements in the Programmar can
be labelled with @DOC("href") to create a hyperlink to an
online document describing that keyword.

While working on large projects, or more than one project, it
is often useful to monitor parsing progress. Web-based tools
are available to show all active projects and all active
languages. For each project, all the files are shown with
statistics like number of lines, size of the resulting parse
output, parsing speed, etc. If a parse fails, a link is provided to
view the details of the parse failure, including the lines around
the failure.

For each language, details are shown as well for each source
file such as parse success rates for that language and average
parse speeds. A BNF-like grammar for that language is also
viewable, with frequency counts.

For many languages such as C, PL/I and COBOL, parsing is
sometimes not possible in a single pass. We have a pre-
processor available to resolve macros. Generally, not all
macros need to be expanded, so controls are available to
choose which macros to expand and which to leave intact.

10 Future Work
We plan to create an open-source repository for Programmars
as well as an API for parsing programs over the web.

Work has already begun on connecting variable references to
their definitions. In some cases, this can be done while
parsing, but in many cases such connections must be done in a
separate step because they depend on successfully parsing
other files.

Ultimately, this work is intended to be helpful in application
modernization, especially from legacy programming
languages to more modern languages.

11 Conclusion
The Programmar approach builds on top of traditional parsing
technologies. It greatly facilitates scalability and cross-
language processing, and it is also context-sensitive (for

terminal nodes). As of this writing, several dozen
programming languages have Programmars built for them,
with varying degrees of completeness. These Programmars
have been used to parse millions of lines of code. A patent is
pending on this technique.

12 References
[1] C. Preimesberger. Updating Legacy IT Systems While
Mitigating Risks: 10 Best Practices, eWeek, Mar. 19, 2014, 7.

[2] R.L. Mitchell, M. Keefe, The COBOL Brain Drain,
Computerworld, Vol. 46, Issue 10, May 2012, 18-25.

[3] A.J. McAllister, Automation-Enabled Code Conversion,
Proceedings SERP ’10: International Conference on Software
Engineering Research and Practice, July 2010, 11-17.

[4] Modern Systems: COBOL Conversion and Migration,
http://www.ateras.com/solutions/legacy-migration/cobol-
migration.aspx

[5] Semantic Designs: COBOL Migration,
http://www.semdesigns.com/Products/Services/COBOLMigra
tion.html

[6] MSS International: COBOL to Java Conversion,
http://www.mssint.com/sites/default/files/MSS-Cobol-to Java-
conversion.pdf

[7] RES – A Pure Java Open Source COBOL To Java
Translator, http://opencobol2java.sourceforge.net

[8] eranea: Modernize your core IT system toward Java,
Web, Linux, http://www.eranea.com

[9] S.C. Johnson, Yacc: Yet Another Compiler-Compiler,
AT&T Bell Laboratories, 1975.

[10] J.R. Levine, T. Mason, & D. Brown Lex & Yacc,
O’Reilly & Associates, 1992.

[11] T.A.Wagner, S.L. Graham, Incremental Analysis of Real
Programming Languages, Proceedings of the ACM
Conference on Programming Language Design and
Implementation, 1997, 31–43.

[12] D. Jackson, M. Rinard, Software analysis: A roadmap,
Conference on The Future of Software Engineering, 2000,
135–145.

[13] Z.P. Fry, D. Shepherd, E. Hill, L. Pollock, K. Vijay-
Shanker, Analysing source code: looking for useful verb–
direct object pairs in all the right places, IET Software, Vol. 2,
Issue 1, Feb. 2008, 27-36.

[14] I.R. Forman, N. Forman, Java Reflection in Action,
Manning Publications, 2004.

[15] A.V. Aho, M.S. Lam, R. Sethi, J.D. Ullman, Compilers:
Principles, Techniques, and Tools (2nd Edition), Addison
Wesley, 2006.

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 131

TD-Manager: a tool for managing technical
debt through integrated catalog

Lucas Borante Foganholi, Rogério Eduardo Garcia,
Danilo Medeiros Eler, Ronaldo Celso Messias Correia, Celso Olivete Junior

Faculdade de Ciências e Tecnologia, UNESP – Univ Estadual Paulista,

Presidente Prudente, Departamento de Matemática e Computação

Presidente Prudente/SP, Brazil

E-mail: borante@gmail.com, {rogerio, daniloeler, ronaldo, olivete}@fct.unesp.br

Abstract—Technical debt is an emergent area that has
stimulated academical concern, its practical application cope
development activities such as documentation, design, code
and test. However, literature review pointed out an integration
gap between identifying and accurately cataloging technical
debt. It also mentioned bunch of tools for most activities on
software development process that could identify technical debt,
but there is not a described solution that supports cataloging
all types of debt. In this context, this work aims to present
an approach to catalog technical debt related to any activity
mentioned, tabulating and managing its properties. This catalog
is implemented by TD-Manager tool, that allows register
technical debt and control debt status. In addition, the tool
can integrate with technical debt identification tools and import
debt to catalog. In order to show the approach, we present an
integration of technical debt identified using Sonar, mapping
relationship and managing external information integrated.

Keywords: Technical Debt, Debt Cataloging, Integration on Debt

Identification, Technical Debt Management, Technical Debt Cata-

loging Tool

I. INTRODUCTION

The term “technical debt” is used as a metaphor to refer

to the likely long-term costs associated with software devel-

opment and maintenance shortcuts taken by programmers

to deliver short-term business benefits [1], [2], [3]. During

software development is usual to prioritize some activities,

leaving others in background, such as defect correction and

documentation. The main reason for that is to reach the

expectations imposed due to time or financial constraints.

Thereby, postpone a technical activity creates technical debt.

Technical Debt (TD) provides useful guidance when a

trade off of code quality must be made against another factor,

e.g., delivering functionality more quickly to achieve time

to market objectives [4]. Seaman and Guo [5] explain that

software managers, to use that trade off, need to balance

the benefit of incurring TD with the associated costs when

planning their projects, taking decisions supported by infor-

mation. Although, the lack of information is a problem.

Letouzey and Ilkiewicz [6] described some of these man-

ager actions such as setting targets for debt and specifying

what level and which debt types are acceptable for the

project or organization; analyzing and understanding debt to

estimate potential impact and provide rationale for decisions;

using TD as input for governance of application assets and

analyzing an application’s debt in correlation with other

information such as business value or user perceived quality;

and institutionalizing the previous practices and putting in

place tools and processes to produce the benefits of proactive

TD management. To assist in those activities, there are

techniques (such as code smells, design patterns, test results

for defect debt and comparing with test plans for testing

debt) and tools (such as FindBugs, Sonar, code coverage

tools) that could potentially be useful in the identification of

TD, even if many of them were not developed for that [7].

In this scenario an existent problem consists in catalog TD

items independent of the debt type, and use contextualized

information when the debt is detected. Thus, the goal of this

paper is to present a tool named TD-Manager, which aims

to create a catalog integrating TD from design/code, test,

documentation, defect and infrastructure activities. It also

intends to integrate with database of identification tools in

order to import technical debt.

The methodology used in this paper consists in extending

the described contents of TD items proposed by Seaman and

Guo [5], creating an integrated catalog, for managing TD of

any type, in a semi automatic process. TD-Manager is a pro-

posed tool that keeps records of technical debts, as described

in this paper. The integration made between TD-Manager

and Sonar allows catalog and manage the information after

TD identification accomplished in the second tool.

This paper is organized as follows: in Section II is

presented a background used in the work, in Section III is

detailed the proposed approach, in Section IV is described

TD-Manager tool which implements the proposed approach,

in Section V is demonstrated a case of study using the tool

integrated with Sonar, in Section VI is presented a discussion

about the proposed approach and in Section VII is presented

the conclusion and future works.

132 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

II. BACKGROUND

A. Identification of Technical Debt

Guo and Seaman [8] proposed a classification of technical

debt into four main types: design (or code), testing, defect

and documentation debt. In each type of TD is possible to

find techniques and tools to identify the debt.

Design or code debt can be identified by statically analyz-

ing source code or inspecting code compliance to standards

[5], Izurieta et al. [7] mentioned techniques and tools that

could potentially be useful in the identification activity.

They presented four specific identification techniques: code

smells, automatic static analysis, modularity violations and

design patterns, described in the following.

Code smells (a.k.a. bad smells), which the concept was in-

troduced by Fowler [9], describes choices in object-oriented

systems that do not uses principles of good-object oriented

design. Automatic approaches have been developed to iden-

tify code smells, as proposed by Marinescu [10]. Former

studies have shown that some code smells are correlated

with defect- and change-proneness [11]. In context of code

smells technique, an example of tool is CodeVizard [11].

Automatic static analysis (ASA) is a reverse engineering

technique that consists in extracting information about a pro-

gram from its source code using automatic tools [12]. ASA

tools search issues based on violations on recommended

programming practices and potential defects that might cause

faults or degrade some dimensions of software quality such

as maintainability, efficiency, among others. Some ASA

issues can indicate TD as they are good candidates for

removal through refactoring to avoid future problems. In

previous work Vetro et al. [13] analyzed the issues detected

by FindBugs on two pools of similar small programs. Some

of the issues identified as good/bad defect detectors by [13]

were also found in similar studies with FindBugs, both in

industry [14] and open source software [15]. Some studies

have also been conducted with other tools (e.g. Sonar) and

the overall finding is: a small set of ASA issues is related to

defects in the software, but the set depends on the context

and type of the software.

Izurieta et al. [7] described a context for modularity

violations and how it connects with technical debt. During

software evolution, if two components always are changed

together to accommodate modifications but they belong to

two separate modules designed to evolve independently, then

there is an unconformity. Such unconformity can indicate

TD, as they may be caused by side effects of a quick and

dirty implementation, or requirements might have changed

such that the original designed architecture could not be

easily adapted. When such discrepancies exist, the software

can deviate from its designed modular structure, which is

called a modularity violation. Wong et al. [16] have demon-

strated the feasibility and utility of this approach. In their

experiment using Hadoop, they identified 231 modularity

violations from 490 modification requests and 152 (65%)

violations were conservatively confirmed. For modularity

violations, another example of tool is CLIO [16].

Design patterns [17] are popular because, and the reasons

are not limited to, it claims to facilitate maintainability and

flexibility of designs, to reduce number of defects and faults,

and to improve architectural designs. Software designs decay

as systems and operational environments evolve, and it can

involve design patterns. Classes that participate in design

pattern realizations accumulate grime non-pattern related

code. Grime represents a form of TD, since the effort to

keep the patterns cleanly instantiated has been deferred. In

prior studies Izurieta and Bieman [18] introduced the notion

of design pattern grime and performed a study on three open-

source systems, JRefactory, ArgoUML and eXist.
The four described techniques focus on source code or

design TD type. There are other types of TD such as testing,

defect and documentation, that will be contextualized in the

following.

Testing debt are tests that were planned but not imple-

mented/executed or got lost, it is also test cases not updated

for new/changed functionality or low code coverage [5].

They can be identified by comparing test plans to their

results, created on planning tests and not executed and,

again, when identified low code coverage [5].

Most testing tools mentioned are not planned to identify

TD, but it can be used in explained situation. Yang and

Li [19] survey Coverage-based tools and compared 17

tools based on three features: code coverage measurement,

coverage criteria and automation and reporting. Shah and

Torchiano [20] present through systematic review the con-

sequences of exploratory testing as TD. Exploratory testing

is an approach that does not rely on the formal test case

definition – instead of designing test cases, the execution

and evaluation of the software behavior are based on tester

intuition and knowledge.

Documentation debt are documentation that is not kept up-

to-date [5], such as API documentation, requirements and

use case documentation. They can be identified by com-

paring change reports to documentation version histories.

If modifications are made without accompanying changes

to documentation, the corresponding not updated documen-

tation is documentation debt [5]. Forward and Lethbridge

[21] identified, through a survey, tools used to deal with

documentation in software projects, including automated

generation of documentation.

Defect debt are known defects that are not yet fixed

[5], such as low priority or severity defects due to rarely

manifest or presented workarounds. They can be identified

by comparing test results to change reports, the defects

found and not fixed are defect debt items [5]. The tools

used to find source code debts and the tools that support

test executions are capable to identify defects. Snipes and

Robinson [22] detailed a technique based on change control

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 133

boards (CCB) to categorize and prioritize defects supporting

manager decisions to fix/defer debts based on cost-benefit

analysis.

B. Cataloging Technical Debt
According to Seaman and Guo [5], the management of TD

is based on a TD list, which is similar to a task backlog. The

backlog contains TD items (in the following simply referred

to as items), each one represents a task left undone that

incurs a risk of causing future problems if not completed.

Each item includes a description of what part of the system

the debt item is related to, why that task needs to be done,

and estimates the TD’s principal and interest, as well as other

attributes described in their work.
Initially, when an item is created, the principal, expected

interest amount, interest standard deviation and correla-

tions with other debt items can be estimated subjectively

according to the maintainer’s experience [5]. Since it is

uncertain whether extra effort will be required, they used

expected interest amount and standard deviation to capture

the uncertainty. These rough estimation can be adjusted later

using historical data or other types of program analysis.

III. THE PROPOSED APPROACH

In this section is described the proposed approach which

has three activity groups: Identification, Cataloging and

Managing, as depicted in Figure 1

Figure 1: Proposed Approach

The identification group initiates the proposed approach

and copes technical debt identification activities for the

types design (or code), testing, documentation and defect.

The result or output of this activity is a list containing

candidates to TD. As exposed in the previous section, there

are techniques and tools for identification of each kind of

technical debt mentioned.
Technical debt cataloging is the second group in the pro-

posed approach and initiates after identification. This group

Table I: Technical Debt Template - Adapted from [5]

ID TD identification number
Date Date of TD identification
Responsible Person or role which should fix this TD item
Type design, documentation, defect, testing, or other

type of debt
Project Name of project or software application
Location List of files/classes/methods or

documents/pages involved
Description Describes the anomaly and possible impacts on

future maintenance
Estimated Princi-
pal

How much work is required to pay off this TD
item on a three point scale: High/Medium/Low

Estimated Inter-
est Amount

How much extra work will need to be per-
formed in the future if this TD item is
not paid off now on a three point scale:
High/Medium/Low

Estimated Inter-
est Probability

How likely is it that this item, if not paid off,
will cause extra work to be necessary in the fu-
ture on a three point scale: High/Medium/Low

Intentional Yes/No/Don’t Know
Fixed By Person or role who really fix this TD item
Fixed Date Date of TD conclusion
Realized Princi-
pal

How much work was required to pay off
this TD item on a three point scale:
High/Medium/Low

Realized Interest
Amount

How much extra work was needed to be per-
formed if this TD item was not paid off at
moment of detection, on a three point scale:
High/Medium/Low

has two activities: manual cataloging and semi automated

cataloging, explained in the following. Both activities must

be performed by a user, in the role of collector. The output

of cataloging is a set of register of technical debt.

Manual cataloging is the activity to catalog any technical

debt manually, independent of debt origin or way of identi-

fication it can be registered in this activity.

Semi automated cataloging uses the candidates of TD list

generated in the previous group as input and, after analysis,

catalog the item from the TD list. The collector analyzes

the list and, for each TD item contained, reject or register

as TD item, fulfilling the required information such as Date,

Responsible, Type, Description and the estimation attributes,

if not defined.

For both described activities of cataloging group is nec-

essary specify the integrated catalog which explains the

documentation structure for technical debt. The structure

for technical debt catalog is based onto the item structure

described in subsection II-B proposed by Seaman and Guo

[5]. This structure is extended in the proposed approach in

order to properly present technical debt at the management

level. Item structure are described in Table I.

The last group in the proposed approach is Managing.

It comprehends TD assignment (or reassignment), TD con-

trol and TD monitoring activities. These activities use the

explained TD catalog as input and, with this information,

supports manager decisions. TD assignment activity is used

to perform attribution of TD to a responsible. TD control

activity is used to manage TD, modifying properties, delete

134 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

or changing TD status. TD monitoring activity is used to

track TDs life-cycle, due dates and, when some changes

are needed, it can use previous activity to perform any

modification.

IV. TD-MANAGER TOOL

TD-Manager is a tool that implements the approach

(protocol) described in this paper. TD-Manager uses the

integrated catalog as metadata in order to register technical

debt properties. It is was developed using Java language

and public community maintained frameworks to improve

development productivity and reuse. The tool was developed

using MVC (Model View Controller) design pattern and the

frameworks used for persistence (or model) and interface (or

view) layers are Hibernate and Vaadin, respectively.

It is a web application with an internal Tomcat as web

container, allowing to execute the web application archive

(war) file as a Java archive (jar), and as a web-based software

the advantages as detailed in [23]. Since TD-Manager uses

Vaadin 7, the web browsers supported by this version of

the framework is also supported by the tool, but it was

intensively tested using Google Chrome browser.

In the model layer, TD-Manager uses the proposed inte-

grated catalog (or TD catalog) as an entity and its attributes

as columns. It also has an entity for users (a.k.a responsible),

one entity to register the connection information and one for

mapping the relationship between TD-Manager and external

applications. In the current version the tool only supports

Postgres as its database and MySQL, Oracle, Postgres and
SQL Server as external database.

The generic layout of the application contains a left side

steady menu used to navigate among the programs (or func-

tionalities). Each program represents one or more activity

described on previous section. The menu also contains the

logged user information and application logout.

Figure 2: TD-Manager Architecture

The architecture of the solution is depicted in Figure 2

and contains Integration, TD Cataloging, Authentication and

User components.

Integration correspond to external integration process,

allowing to configure, test and save the information needed

to connect. The first step to use this functionality is to set

the connection integration properties which comprehends

Alias, Server, Port, Database Name,Database Type, User
and Password. After inform all the required fields it is

possible to test the connection. This is the most difficult

configuration because demands knowledge on identification

tool database information and credentials, and TD-Manager,

in its actual version, only allows direct database connection.

After configuring the connection it is indispensable to map

a relationship between TD catalog fields and identification

tool properties. For this mapping the user needs to provide

external table name, external field and TD-Manager catalog

field, establishing the relationship. In the end of this process

the user can check results of the integration map and retrieve

foreign TD candidates.

Authentication and User component corresponds to appli-

cation authentication and permissions, associated to profiles,

to access the functionalities. The user is also used when

associating a TD to a responsible or fixed by person, which

creates a relationship between User component and TD
Cataloging component.

TD Cataloging corresponds to the register of technical

debt and can be inputed manually or retrieved after integra-

tion synchronization through a foreign database connection

from a TD identification tool, detailed in the following. This

component also contains manager functionalities such as TD

monitoring, control and assignment. It is possible trough

filters manipulation, attributes sorting and status controlling.

For manual TD cataloging is only mandatory to fulfill

the TD information as described in the extended catalog

proposed in previous section, and no integration or extra

application is used. The collector, with an external TD candi-

dates list, can add TD after being logged into application. For

this catalog it is mandatory complete the required attributes

and the tool validates it, not allowing to save if they are not

detailed.

For semi automatic interface it is necessary to create a

database integration and mapping the relationship between

TD-Manager and the external tool. The interaction between

TD Cataloging and Integration component is viable only af-

ter configure connection information and create the relation-

ship between the fields of the integrated catalog and external

database table, as explained in Integration component. With

this, it is possible to use TD-Manager interface to filter and

sort the external TD identified by the integrated tool and

import to TD-Manager. This external filter and sorting is a

mechanism used by the controller to help on TD candidates

list analysis and only the selected ones are cataloged. At this

moment, is possible to override some mapped (or not, which

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 135

means null information from external identification tool)

information such as responsible, TD type and the estimated

fields.

In the semi automatic interface was also created an at-

tribute to register external information ID, avoiding duplicate

the cataloged TD and alerting when the external key is

marked for integration twice. For the appropriate use of this

functionality it is vital to proper configure the external field

ID in the mapping properties. After mapping the relationship

between these both tools for each property of the catalog, it

is possible to check the results of configured properties (or

mapping). This functionality allows the user, responsible to

define the relationship, to verify external tool data in TD-

Manager and change it if the information is not accurate.

In both options, it is only possible to associate any TD

register with a responsible after include this person as a

application user. While TD is not finished or deleted, it

remains available to manager deal with TD relevance, change

estimated effort to fix, debt interest or probability to cause

extra work in the future. It also can control the date when

TD was fixed and the realized efforts to fix it.

The implementation of integrated catalog and an overview

of the tool is presented in case study.

V. CASE STUDY USING TD-MANAGER AND SONAR

In this case study is presented the use of TD-Manager

to catalog TD from open source project named OpenRefine

[24], which is a tool for working with messy data: cleaning

it; transforming it from one format into another; extending

it with web services; and linking it to databases. The

project is being developed using Java and contains 36.883

LOCs (Lines of Code) distributed in 496 classes, a wiki as

documentation [24] and some issues cataloged on Github
repository.

Due to space constraints only one TD identification tool to

perform the integration is presented. Sonar is a world wide

adopted (ASA) tool to analyze source code as mentioned in

background section. The tool is based on rules to identify

source code defects or refactoring points and when integrated

with FindBugs, in the version 3.7.4 and for Java projects,

it contains a total of 516 rules. These rules are classified

in severities and include bad practices, correctness and

performance issues, design flaws, code issues, security, etc.

The issues are identified by Sonar (TD candidates) and to

show the use of TD-Manager for integrate a TD catalog, it is

necessary to create a connection between TD-Manager and

Sonar. Since Sonar was locally installed and configured to

use Postgres database as it issues repository, the connection

in TD-Manager is created using Postgres database, localhost
server and Sonar credentials, as presented in Figure 3. In the

Figure 3 it also possible to see how TD-Manager creates the

relationship, explained in the following.

After successfully test the connection, it is necessary to

map the external table and fields to import TD candidates

Figure 3: Mapped Integration (TD-Manager and Sonar)

Table II: Mapped relationship between TD-Manager and

Sonar

TD-Manager Fields Sonar Fields
Date issue_creation_date
Responsible assignee
Project root_component_id
Location component_id
Description message

list. In this step is necessary to know the characteristic of

the Sonar, which table resides the main information and the

specific fields related to the proposed catalog. From Postgres
database investigation on Sonar schema it is possible to find

“Issues” table, which contains all identified information for

OpenRefine project. Using the table “Issues” it is possible

to create the relationship between the two application with

fields as shown in Table II.

After mapping the relationship between these both tools

for each property of the catalog, TD-Manager extracts the

information through Integration Sync interface and the man-

ager can filter or sort this information to register technical

debt into the integrated catalog. With the information in-

serted into the catalog, managers is allowed to take control

of it through the Technical Debt interface, which is the same

to manual register TD.

In Figure 4 is presented an example of an integrated tech-

nical debt of design type assigned to the responsible named

Administrator. The debt occurred on project OpenRefine in

line 83 of class com.google.refine.browsing.facets.ListFacet

136 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

and was registered with low estimated principal, which

means low difficult to fix, and medium interest amount,

which means medium difficult if decided to postpone imple-

mentation to fix it. It also possible to retrieve information

inserted after fix TD such as date when the implementation

finishes, author who fixed the TD and the real effort to fix

(realized principal), remaining low – same as in estimation.

VI. DISCUSSIONS

It is possible to find several works related to decision

making process in TD, such as [25], [26], [22]. TD-Manager

tool aims to help managers to control TD and support their

decision, establishing a closer relationship to those works.

But besides the fact that integrated catalog is an extension

of previous work [5] and includes additional information,

it is possible that in the future more information for the

integrated catalog is needed.

TD-Manager may cause accumulation of technical debt.

The integrated catalog are designed to be complete and

intuitive but it cannot be fast enough in order to capture

all information of technical debts and update them. Just the

needed to use another tool to manage the debt could make

the responsible of the debt to not update the information.

It is being developed another work to refine and expand

the approach proposed in this paper. The goal of this

future work is aimed to improve an automated process of

identifying technical debt and use a detailed catalog with

contextualized information of identified technical debt items.

VII. CONCLUSIONS

The tool is designed to facilitate the integration between

different types of TD. It is possible since unique repositories

of all kind of debts are the key to group all information

related to TD. Considering this design, TD-Manager focused

on easily creates database integration, supporting the four

most popular database engines [27], and simply assists the

relationship mapping between the tools.

The approach produces and maintains a TD list according

to the captured TD. TD List provides valuable information to

existing software components. It can be helpful for generate

agile backlog list, can provide a list of needed updates

on documentation, can help on prioritize defects and can

evidence faults on testing area.

It was presented a case study with one kind of technical

debt (source code/design) and the tool was not yet integrated

with testing, defect and documentation TD identification

tools. Although, the integration is based on database direct

connection, which means if any TD identification tool pro-

vides the connection credentials it is possible to integrate

using the same steps described in the case study.

TD-Manager also can capture human-detected technical

debt. In addition to the integration, it is possible to catalog

any kind of technical debt identified by stakeholders. Since

they are fully aware of all active requirements and develop-

ment conventions, they can find additional technical debts,

not identified by any tools. This ensures that information

regarding the any kind of integration is possible to be

cataloged.

By grouping technical debt identification from differ-

ent project development level (code, test, and document),

TD-Manager tool ensures that development is conducted

while aware of technical debt’s presence. That allows any

stakeholder to avoid unintentionally increasing the value of

technical debt through dependencies to affected areas and to

decrease efficiently its value by tackling technical debt in

areas where the project is currently conducted.

TD-Manager allows multiple TD indicators to be used

instead of only one of the mentioned tools and it is strongly

recommended, since different tools point to different prob-

lems in a software artifact. The use of a single tool or single

indicator (e.g. a single code smells) will only in rare cases

point to all important TD issues in a project. As a result,

project teams need to make intentional decisions about which

of the TD indicators are of most relevance to them, based

on the quality goals of their project, as suggested in [?].

After apply TD-Manager on a small software development

company for Java developers and tester teams, the project

manager reported positive results in adoption of the tool. He

stated that, besides the only three option to control estimated

and realized efforts, it was possible to handily TD inventory

with the necessary information to support decisions. It was

also possible to compare estimated versus realized when

fixing TD, and it helps on monitoring individual perfor-

mance and accurately estimation of TD. With continued

development, getting more people involved on technical debt

scenario and its management, it is expected to discover ways

to further support the projects’ TD management through

enhancements in the TD-Manager.

We planed TD-Manager tool to enhance productivity for

industrial settings. So, we expect to further improve and

validate TD-Manager in such environments. For that, we

have planned an extensive series of case studies with an ex-

perimental evaluation on open source software. These studies

will cope with TD management over finished and ongoing

open source software projects with characteristics desirable

like access to software documentation, issues repository and

existence of test plans. For finished products we intend to

use apply technical debt identification and assessment tools

in order to simulate the life-span of technical debt.

REFERENCES

[1] W. Cunningham, “Object-oriented programming systems, languages,
and applications,” in The WyCash Portfolio Management System,
1992.

[2] N. Brown, I. Ozkaya, R. Sangwan, C. Seaman, K. Sullivan, N. Za-
zworka, Y. Cai, Y. Guo, R. Kazman, M. Kim, P. Kruchten, E. Lim,
A. MacCormack, and R. Nord, “Managing technical debt in software-
reliant systems,” in Proceedings of the FSE/SDP workshop on Future
of software engineering research - FoSER, 2010.

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 137

Figure 4: Implemented Integrated Catalog

[3] P. Kruchten, R. L. Nord, I. Ozkaya, and D. Falessi, “Technical debt,”
ACM SIGSOFT Software Engineering Notes, vol. 38, pp. 51–54, 2013.

[4] A. Nugroho, J. Visser, and T. Kuipers, “An empirical model of
technical debt and interest,” in 2nd working on Managing technical
debt - MTD ’11, 2011.

[5] C. Seaman and Y. Guo, “Measuring and monitoring technical debt,”
Advances in Computers, vol. 82, pp. 25–46, 2011.

[6] J. L. Letouzey and M. Ilkiewicz, “Managing technical debt with the
SQALE method,” IEEE Software, vol. 29, no. 6, pp. 44–51, 2012.

[7] C. Izurieta, A. Vetro, N. Zazworka, Y. Cai, C. Seaman, and F. Shull,
“Organizing the technical debt landscape,” in Managing Technical
Debt (MTD), 2012 Third International Workshop on, 2012, pp. 23–26.

[8] Y. Guo and C. Seaman, “A portfolio approach to technical debt man-
agement,” in Proceeding of the 2nd working on Managing technical
debt - MTD ’11, 2011.

[9] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts, Refac-
toring: Improving the Design of Existing Code. Addison-Wesley,
1999.

[10] R. Marinescu, “Detection strategies: Metrics-based rules for detecting
design flaws,” IEEE International Conference on Software Mainte-
nance, vol. 0, pp. 350–359, 2004.

[11] N. Zazworka, M. Shaw, F. Shull, and C. Seaman, “Investigating the
impact of design debt on software quality,” in 22nd Workshop on
Managing Technical Debt (MTD ’11), 2011, aCM, New York, NY,
USA.

[12] D. Binkley, “Source code analysis: A road map,” in FOSE ’07 2007
Future of Software Engineering, 2007, pp. 104–119.

[13] A. Vetro’, M. Morisio, and M. Torchiano, “An empirical validation
of findbugs issues related to defects,” in Evaluation e Assessment in
Software Engineering (EASE 2011), 15th Annual Conference, 2011.

[14] N. Ayewah and W. Pugh, “The google findbugs fixit,” in Proceedings
of the 19th International Symposium on Software Testing and Analysis.
New York, NY, USA: ACM, 2010, pp. 241–252.

[15] S. Kim and M. Ernst, “Prioritizing warning categories by analyzing
software history,” in Mining Software Repositories, 2007. ICSE Work-
shops MSR ’07. Fourth International Workshop on, May 2007, pp.
27–27.

[16] S. Wong, Y. Cai, M. Kim, and M. Dalton, “Detecting software
modularity violations,” in Software Engineering (ICSE), 2011 33rd
International Conference on, May 2011, pp. 411–420.

[17] Y. G. Gueheneuc and H. Albin-Amiot, “Using design patterns and
constraints to automate the detection and correction of inter-class
design defects,” in Technology of Object-Oriented Languages and Sys-
tems, 2001. TOOLS 39. 39th International Conference and Exhibition
on, 2001, pp. 296–305.

[18] C. Izurieta and J. Bieman, “A multiple case study of design pattern
decay, grime, and rot in evolving software systems,” Software Quality
Journal, pp. 289–323, 2013.

[19] Q. Yang, J. J. Li, and D. M. Weiss, “A survey of coverage-based
testing tools,” in Computer Journal, vol. 52, no. 5, 2009, pp. 589–
597.

[20] S. M. A. Shah, M. Torchiano, A. Vetrò, and M. Morisio, “Exploratory
testing as a source of technical debt,” IT Professional, vol. 16, no. 3,
pp. 44–51, 2014.

[21] A. Forward and T. C. Lethbridge, “The relevance of software
documentation, tools and technologies,” in Proceedings of the 2002
ACM symposium on Document engineering - DocEng ’02. New
York, New York, USA: ACM Press, Nov. 2002, p. 26. [Online].
Available: http://dl.acm.org/citation.cfm?id=585058.585065

[22] W. Snipes, B. Robinson, Y. Guo, and C. Seaman, “Defining
the decision factors for managing defects: A technical
debt perspective,” in 2012 Third International Workshop on
Managing Technical Debt (MTD). IEEE, June 2012, pp. 54–60.
[Online]. Available: http://www.scopus.com/inward/record.url?eid=2-
s2.0-84864135572&partnerID=tZOtx3y1

[23] A. Charland and B. Leroux, “Mobile application development: Web
vs. native,” Commun. ACM, vol. 54, no. 5, pp. 49–53, May 2011.
[Online]. Available: http://doi.acm.org/10.1145/1941487.1941504

[24] OpenRefine. http://openrefine.org/. Accessed: 2015-03-27.
[25] C. Seaman, Y. Guo, N. Zazworka, F. Shull, C. Izurieta, Y. Cai, and

A. Vetro, “Using technical debt data in decision making: Potential
decision approaches,” in 2012 Third International Workshop on
Managing Technical Debt (MTD). IEEE, June 2012, pp. 45–48.
[Online]. Available: http://www.scopus.com/inward/record.url?eid=2-
s2.0-84864136407&partnerID=tZOtx3y1

[26] K. Schmid, “A formal approach to technical debt decision making,”
in Proceedings of the 9th International ACM Sigsoft Conference on
Quality of Software Architectures, ser. QoSA13, vol. 1. New York,
NY, USA: ACM, 2013, pp. 153–162.

[27] DB-Engines Ranking. http://db-engines.com/en/ranking. Accessed:
2015-03-27.

138 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 139

140 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 141

142 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 143

144 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

Validation of User Interface Model:
a Systematic Literature Review

Livia Cristina Gabos Martins and Rogério Eduardo Garcia
Department of Mathematics and Computer Science

Faculty of Science and Technology

São Paulo State University – UNESP

Roberto Simonsen Street, 305

CEP 19060-900 Presidente Prudente-SP, Brazil

E-mail: liviagabos@gmail.com, rogerio@fct.unesp.br

Abstract—Models have been used along software develop-
ment process. Their utilization to user interface (UI) develop-
ment aims to deal with dependency of technology, facilitating
the understanding of functionalities and behavior, for example.
Besides, models have been used to support test activities of UI.
However, as usual to any software artifact, we need to assure
the confidence of UI models, considering their particularities.
In this paper we focused on searching about Which techniques
and methods have been used to validate UI models? We are
aware of the risk at handling a broad research question. So, we
conducted two systematic literature review (SLR). The first one
focusing on models (Which models are used for modeling UI?),
and the second one focusing on validation (Which techniques
and methods are used to validate the models?). The results
obtained from first SLR were used as parameters to the second
SLR. Both the protocols and lessons learned are presented in
this paper. Also, we discuss open issues on validating UI models.

Keywords: Validation of user interface model, User interface

model, Model validation, Systematic Literature Review, Software

Engineering, Software development

I. INTRODUCTION

User Interface plays an important role in end-user systems,

since it allows users to interact with systems [1]. The process

of UI development has been beneficed by using models.

An example of benefit is to facilitate the communication

between people with different knowledge and skills, using a

common vocabulary [2]. Considering that an UI is highly

dependent of technology (platform or devices like smart

phone, personal computer, etc.), using one model it is pos-

sible to obtain UI variations [3]. For example, Model-driven

UI generation and Model-Based Design of User Interfaces

(MBUI) are two methodology that allow creating a concrete

UI by applying model transformations techniques [2], [4].

Also, models have an important role in validation. They

help to test complex UI structure and event sequences.

Hauptmann et al. [5] affirm that the UI test is easier if

performed by persons, because their experience related to

software and their intuition facilitate the interpretation of

models high level description. However, this conventional

method, who a person participate in validation process, do

not cover the whole UI [6]. Automatic approaches can

be used to validate the UI, but this validation process

have problems. Any modification in the UI affects the test

script. It is possible to separate test script of UI details by

using models in test. UI details can be modifications of

components between versions, different components position

or details of input data in an UI. It would be not possible to

reuse the script with details [5], [6].

In order to use models to validate UI, the first step is

validate the models. Consistency between models is essential

– it is necessary to assure consistency and quality of models.

According to Trollmann et al. [7], there are two types of

consistency. The first one is intra-model consistency – it

concerns whether the model is correct considering syntactic

and semantic rules of the language [8]. The second one is

inter-model consistency – it concerns whether the model

must have coherence with other models. According to Cruz

et al. [8], “model validation is more difficult to assess,

because one can never be sure if the model correctly captures

the users requirements."

Regarding UI model validation, a SLR was conducted to

point out which method has been used in its validate process.

This paper summarizes the SLR conducted about how the UI

models are validated in the development process. The main

question is made to find this information is Which techniques
and methods have been used to validate UI models? It is

a broad research question and, consequently, we conducted

two SLR. The first one focuses on model used to represent

UI. The results were used as parameters to the second SLR,

which focused on validation techniques. Both SLRs provided

information about validation process, in a complementary

way.

The remainder of this paper is organized as follows.

Section II describes related works selected from literature

about user interface validation. Section III presents the

systematic literature reviews, their protocols, criteria and

results. Section V shows lessons learned and gives insights

about UI validation. Section IV presents the threats related to

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 145

the conduct of this research. Section VI provides conclusions

and directions for future works.

II. RELATED WORKS

Kull [9] presents a SLR about generating graphical user

interfaces (GUI) model automatically by reverse engineer-

ing. There is no citation about the model validation papers

cited by [9] and no one demonstrated necessity of model

validation.

Casteleyn et al. [10] shown a SLR focusing on the

Rich Internet Applications (RIAs). They present interesting

information about RIAs and its history, but there if few

information about UI characteristic in selected papers. The

paradigm related a RIAs development process is regarding to

the use of models. However, the models are used to several

types of representation and the complex structure of the RIA

interface can be represented with more than one type of

model.

Banerjee et al. [11] present a SLR about GUI Testing.

The most papers (72 of 136 papers) used models to test

generation. The most commons types of models are event
flow graphs and finite state machines. The pointed out that

models or specifications are used to formal verification (13

of 136 papers) and manual verification (13 of 136 papers)

was used to verify the correctness of the output of a test

case. However, there is no citation about the model validation

process.

The models should be validated before their use [12].

Leopold et al. [13] explain five techniques to model valida-

tion. The prototyping approach uses the implementation of

the model to collect feedback from experts. The abstraction
and filtering approach is used to reduce the information pro-

vided to the user and to present the model with an adequate

level of abstraction to experts. Visualization of specification
is used for creating scenarios in graphical view for visu-

alization of requirements. Property checking approach aims

to compare models regarding their formal property, using

ontologies or user questions. Language generation approach

generates the models in natural language, to facilitate the

communication between persons with different knowledge

and background.

Leopold et al. use a natural language to conduct model

validation. They argue that some persons who participate

of software development do not have enough familiarity

regarding to model representation. However, this fact is

contrary to affirmation from Raneburger et al. [2], which

the models support compression of information using a high

level of abstraction through a symbology.

The techniques listed by Leopold et al. were used to

compare papers obtained with SLR.

III. SYSTEMATIC LITERATURE REVIEWS

Two SLR were conducted. The first one focused on vali-

dation process of UI models, presented in Section III-A. The

restricted goal has became impossible to obtain reasonable

results. However, the partial results (obtained to secondary

questions) were used as parameters to second SLR. The

second SLR was conducted using models from first SLR as

parameter aiming at model validation process. The second

SLR is presented in Section III-B.

A. First systematic literature review

The goal of first SLR is to identify validation process to

UI models. The search questions were divided in main and

secondary questions. The main question is: Which techniques
and methods have been used to validate UI model?.

The terms “GUI model" and “User interface model" were

used to create search string about types of UI models. The

“GUI" was used to capture desktop user interface. The term

“testing" was used to compose other terms because models

can be used in UI test (i.e. “GUI testing" and “user interface
testing"). Derivations of terms “model validation" and “user
interface validation" were used to expand the results. The

term “consistency" was used as synonymous to validation.

The secondary questions are: i) Which models are used for
modeling UI?, to know which graphic representations have

been used (statecharts, graphs, etc.). The term “behavior"

was included to represent the UI behavior. Posteriorly, the

papers were read for selection using inclusion and exclusion

criteria. ii) Which approach (static or dynamic) has been
used to model UI?, to know whether the information repre-

sented in the model are static (source code, for example) or

dynamic (the interaction with the UI). iii) How to validate
the UI models using a specification?, to verify whether the

technique used to validate the model takes into account the

system specification. iv) What methods or tools have been
used to extract the UI model?, to verify which tools have

been used to obtain the model from UI. v) How the models
are shown to the users?, to know how the models have been

presented to users in order to be validated (i.e. using tools or

using more than one model in a complementary way, etc.).

1) Search String: The main challenge to find relevant

results is restrict the search string. The search string was

structured into two main parts. The first part is related to the

UI and the second part is related to the validation process.

The research result by repositories is presented in Table I

and the final search string is:

(“GUI testing" OR “user interface testing" OR “GUI
model" OR “user interface model") AND (“GUI validation"
OR “user interface validation" OR “validation model" OR
“Model validation" OR “model validate" OR “validated
model" OR “model consistency" OR “behavior model" OR
“behavior models").

The range of years of research has established to last 4

years, from 2010 to 2014.

2) Methodology for selection: All papers were considered

for reading and selecting. The exclusion criteria are: i)

Use the behavior model to observe user interaction with

146 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

Table I: Results of first SLR by repositories

Repository Amount of Papers
ACM Digital Library 12

IEEE Xplore 22

Science Direct 12

Scopus 18

Total 64

UI, without analyzing UI model. ii) Do not present any

characteristic about the models.

To the selection process, initially the abstract and the in-

troduction of 64 papers obtained were read (Section III-A1)

to observe the exclusion criteria. The most relevant papers

were carefully read in order to identify how model was

used, also considering the exclusion criteria. An example

of selected paper is [14], in its introduction is written: “This
paper presents a new feedback-based technique to automated
testing of graphical user interfaces (GUIs)". In this case

a UI model was used for testing its implementation. On

introduction there is “The smoke suite is executed on the GUI
using an automatic test case replayer. During test execution,
the runtime state of GUI widgets is collected", showing that

which the UI model presents states from UI.

An example of exclusion criteria is [7]. Part of the goal in

the introduction is: “(...) it is shown how the description can
be used to define internal consistency as well as consistency
between models" – the goal not focus on UI model. They

just used the UI model as an example about description.

Of 64 papers, only 11 were selected according to selection

criteria and the results are presented in Table II. Finally,

the selected papers were read trying to answer the research

questions – presented in the beginning of this section.

Table II: Papers selected

Repository Author
ACM Digital Library [15], [16], [17]

IEEE Xplore [14], [18], [19], [20] , [21], [22]

Science Direct [23]

Scopus [24]

3) SLR Results: After analyzing 11 papers, it was ob-

served there is few information about validation process

of UI model. Answering the main question only 3 papers

mentioned the necessity of model validation with the require-

ments and/or users [15], [18], [24]. None of them presented

the validation process in their work and no correlation

among papers could be done. To validate UI model, Grilo

et al. [18] affirm that building the model with different

views, can help validation process. However, there is no

citation about validation of UI model in [18]. Gupta and

Surve [15] have quoted about types of validation, but there

is no citation about application of validation models. The

idea regarding the Hennig et al. [24] is create intra and

inter model validation using the CAP3 and Movisa. First,

the model is created by using the modeling language CAP3,

refined by a expert and transformed to the Movisa. The UI

is created based on model and validated by user and expert.

Answering the question (i) (Which models are used for
modeling UI?), the models used are statecharts [25], [19],

state machines [16], [20], [21], Concrete User Interface

(CUI) [22] and event flow graph [26], [23]. The most part

of models were used to analysis of UI states. In Gupta and

Surve [15] and from Aho et al. [20], additional information

of states of the UI events are also extracted from navigational

information [18], structural [14], [17] or interface behav-

ior [16], [17]. Lehmann et al. [17] does not explain which

representation is used.

Answering the question (ii) (Which approach (static or
dynamic) are used to model UI?), most of papers (7 of 11

analyzed) used a dynamic approach to create UI models [15],

[14], [18], [19], [20], [21], [22]. Only [23] used both static

and dynamic approaches to observe what had influenced the

test cases generation.

Answering the question (iv) (What methods or tools are
used to extract the UI model?), in selected papers were used

the tools GUITAR GUI [14], GuiDriver [20], [21], GUI-
Tester [23], Eclipse Modeling Framework [17]. In Hennig et

al. [24] was used a combination of CAP3 tool and Epsilon,

and in Grilo et al. [18] was used a combination of Spec#

tool and REGUI model. In Duan et al. [19] and Ramon et

al. [22] were used UsiResourcer to make the re-engineering

process. Gupta and Surve [15] used the tools Sahi, Selenium,

Framework Robot and Microsoft Excel.
The consequence of using a broad main question can be

observed in the answers (not) obtained about the purpose

of SLR. The questions (i) (What types of models are used
to model UI?) and (ii) (Which approach (static or dynamic)
are used to model UI?) were answered. But the question

(iv) (What methods or tools are used to extract the UI
model?) is partly answered, because the selected papers do

not have citation about the methods used. The questions

(iii) (How validate the models using a specification?) and

(v) (How the models are shown to the users?) were not

answered. Considering that only 3 of 11 selected papers [15],

[18], [24] have mentioned the validation process, we do not

consider the validation process pointed out in those papers

as significant.

One may note that secondary questions were useful to

obtain relevant informations about UI characteristics, but

not about validation. In order to focus on model validation

process, the types of models obtained in this SLR were used

as parameter in a second SLR, presented in the following.

B. Second Systematic Literature Review

The second SLR focuses on model validation process in

Software Engineering, using the statecharts, state machines

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 147

and event flow graph as parameter to the type of modeling.

The type of model Concrete User Interface (CUI) was

not selected, because it is related to only the UI and the

restriction about the UI models was not used.
The main question is similar to the first research, however

the secondary questions are more specific. The main question

is Which techniques and methods are used to validate the
models?. The secondary questions are: i) Which types of
model are used?, which type of model (statecharts, state

machines and event flow graph) is used ii) How the valida-
tion process uses the specification?, this question is to know

whether the specification is important for validation process

iii) Validation process regarding the user or other expert?,

this question is to know whether as expert person is relevant

to validation process.
1) Search String: The types of models (statecharts, state

machines and event flow graph) and derivations of technique
model validation were used to create search string. The

search string is:
(“technique model validation" OR “technique to model

validation" OR “model validation methods" OR “evaluation
of model validation" OR “model validation") AND (“state-
charts" OR “state machine" OR “event flow graph") AND
(“software engineering").

The same range of years was used, from 2010 to 2014.

The results are presented in Table III.

Table III: Results of second SLR by repositories

Repository Amount of Papers
ACM Digital Library 58

IEEE Xplore 45

Science Direct 35

Scopus 40

Total 178

2) Methodology for selection: The inclusion criteria was:

the paper must explain the steps to model validation, related

to the specification and user interaction. It was not used any

restriction about the description and the extracted of model.
The selection process was the same of first SLR. Ini-

tially, 178 papers obtained were read (the abstract and the

introduction) to identified the goal and the type of model

used. The relevant papers were carefully read searching for

any description about the validation process. An example of

paper not selected is [27]. They used finite state machine and

we found description about the validation process, however

the paper does not focus on using a person in validation

process (secondary question iii). A quote of paper [27] about

the model validation: “Validation usually includes checking
whether the model program can execute any traces that are
known to be allowed, and cannot execute others that are
known to be forbidden".

Of 178 papers, only 8 were selected to be read in detail.

They are listed in Table IV.

Table IV: Papers selected

Repository Author
ACM Digital Library [28], [29]

IEEE Xplore [30], [31], [32], [33]

Science Direct [34], [35]

3) SLR Results: Related to the question (i) (Which types
of model are used?), all the select papers are using or

state machines or using the finite state machines [35], or

extensions of them [28] to represent the model. Few papers

using statecharts were found, but they were not selected to

the detailed reading because the inclusion criteria.

The tools used were: radCHECK [28], SAL (Symbolic

Analysis Laboratory) [33], FTOS [31], SDA (Solution Deci-

sion Advisor) [35], CoreASM [34] and RSA (Rational Soft-

ware Architect) [29]. The frameworks used were: GEMDE

(Generic Executable Model-Driven Engineering) [32] and

CoDES [30].

Regarding the question (ii) (How is the validation process
using the specification?), the specification was used to create

an initial model ([28], [34]) and to compare to other models

([31], [35]). In other selected papers there is no citation about

the use of specification.

Regarding the question (iii) (How is the validation process
with the user or other expert?), 3 of 8 papers ([29], [28],

[33]) have a condition which the users should have a prior

knowledge about the system and the tool used for helping

the validation process. However, in those papers there is

no indication about the experimental process employed.

In the papers [29], [28] and [33] there is no indication

about the experience with computers and knowledge about

the system (profile) of the validator. In the papers [33]

and [28], the designers validated the model, not the final user,

neither any stakeholder. In the paper [29] was the railway

experts (related to project European Train Control System –

ETCS) who collaborated to validate the model. In that paper,

they used a CNL (Controlled Natural Language) and UML

diagrams to perform the validations. But, the railway experts

were trained to be able to understand and to interact with

the model and language using RSA tools.

In [29] were used approaches to consistency check, sce-

nario compatibility, property checking and specification vi-

sualization such approaches are related to Leopold et al. [13].

Di Guglielmo et al. [28] used the property checking and

specification visualization approaches. Dutertre et al. [33]

used specification visualization approaches. In [31], [32] and

[34] there are not indication about the profile of person

who validated the model and do not have information about

the interaction of validators. They used the specification

visualization approach to validate the models. In [35] sev-

eral people (different profiles) were involved to validate

the model in different phases of project. They used the

148 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

specification visualization approach. In [30] was used the

specification visualization and the property checking related

to an ontology. They used experts to validate the model.

IV. THREATS TO VALIDITY

There are three threats in the first SLR. Since the main

question is broad, it was not possible to answer both main

and secondary questions. It was difficulty to create the search

string using key terms. Kitchenham et al. [36] suggested

to do a previous research, mapping the information related

to main objective, in order to identify relevant terms to

research. We have taken in to account they suggestion, and

several researches are made to identify the better terms. An

example of search string related to this previous research is

“((Abstract:"GUI") or (Abstract:"graphical user interfaces")
or (Abstract:"user interface")) and ("GUI testing" or "Gui
validation" or "user interface validation" or "Automatic GUI
Testing" or "Automatic user interface testing" or "Automated
GUI Testing" or "Automated user interface testing" or "GUI
model" or "user interface model")". This search string re-

sulted in 1018 papers, but there were many false positives

(many papers not related to the use of UI models). The

search in abstract was very restrictive, covering papers about

UI, but no papers that use UI model. So, that restriction was

not used.

The second threat is related to the formal research proto-

col. Only qualitative evaluation was considered on selecting

papers (inclusion and exclusion criteria). Also, there were

only two reviewers to conduct the SLR: one to review the

protocol and other to analyze and to select papers.

The third threat was the use of terms related to types of

models “behavior". Most of papers which has this term are

not related to the interface behavior, but with respect to the

user behavior, what generated false positives. Other terms

relating to the types of models, such as navigation and tasks,

could also be added to the string to be equal a “behavior" or

this term should be removed to not generate false positives

as a result.

Related to the second SLR, unlikely the first SLR, were

found most relevant papers to answer the main question.

The terms used to model validation as “property checking"

could be added to the search string to generate fewer false

positives.

Even using relevant repositories to conduct the research,

the restriction to only four of them can be considered an

external threat, because other repositories was not used.

However, the search in other repositories, like CiteSeerX,

returned few results and with little relevance. So, the threat

was mitigated.

The restriction about number of terms in one repositories

has been identified as external threat. It was necessary to

reduce the search string up 15 terms. however, later it was

solved with the final search string defined.

V. LESSONS LEARNED

A broad research question was proposed to the first

SLR (about validation process in UI model). The question

was proposed considering the hypothesis: the papers show

methods or techniques to validate UI models. However,

most papers do not show UI models validation. Such fact

is evidenced in selected papers presented in Related Works

(Section II) [9], [10], [11] – they do not present model

validation either.

To find relevant results about methods and techniques

for validation, a second SLR was conducted focusing on

validation process, using models found in the first SLR.

However, there is no standard for validation with the type of

model used. The choice of technique for model validation

is related to the necessity and resources of project and the

profile of person who will validate the model.

As next steps to this research about UI model validation,

we can indicate two steps. The first one would be to research

all techniques about model validation that can be applied to

the UI models and perform a more specific search. After

that, conduct a new research to figure out which different

technique can be applied in UI models. The results about

these researches would be relevant and would minimize

the list of papers resulted for reading. The second way to

find validation process is create a search string with more

parameters related to all questions. However in repositories,

as IEEE, there is a limitation of parameters to be used.

Therefore, we are not able to do it.

VI. CONCLUSION

The goal of this paper is to identify the validation of

methods used to UI models, using a SLR. The others SLRs

found related to UI and models do not present aspects about

the reliability of models and how the validation process are

made in its papers selected.

Two researches were conducted to explore the subject pro-

posed. The first one is related to the UI models and how UI

model validation is presented. Only three papers mentioned

the need of users in validation process, however they do not

explain how the validation can be performed. Most of papers

do not have mentioned about model validation process.

The second SLR was performed using the types of models

found in the first SLR as parameters. The goal of second

SLR was find more relevant results about types of models

(statecharts, state machines and event flow graph) and how

these models are validated in the software development

process.

In the second SLR, few papers provide a description about

methods used in validation process, mainly participation of

users. It was possible to observe in the second SLR the

concern with interaction of persons with models and tools.

Few papers showed difficulties in the interaction of users

with tools. Few papers showed how the training was offered

to users in order to understand models and tools [29]. Most

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 149

of papers do not have any citation about validators profile,

and no citation about selection process of validators.

Also, it was possible to classify the type of techniques

applied, especially in Leopold et al. [13]. Few of those

papers used one or more approaches to validate the models.

Most of them use the specification visualization approach.

We observed that validators should have former knowl-

edge about the models and they should know about the tools

used to handle the models during validation process. Also,

the models should be validated by validators with different

profiles, according to complexity of system under evaluation.

Automatics techniques can be applied to validate models in

a complementary way.

Regarding the SLR research process, we used a qualitative

evaluation to select papers. We are aware that quantitative

evaluation criteria would facilitate the replication of SLR by

other researchers. We intend to establish a formal protocol

using quantitative evaluation in order to both mitigate the

threat of construction and facilitate the replication by other

researchers.

REFERENCES

[1] F. Gao, L. Zhao, and C. Liu, “Gui testing techniques based on event
interactive graph tree model,” in Information and Automation (ICIA),
2010 IEEE International Conference on, IEEE, Ed. IEEE, 2010, pp.
823–827.

[2] D. Raneburger, R. Popp, and J. Vanderdonckt, “An automated layout
approach for model-driven WIMP-UI generation,” in Proceedings
of the 4th ACM SIGCHI symposium on Engineering interactive
computing systems - EICS ’12, 2012, p. 91.

[3] A. Pleuss, S. Wollny, and G. Botterweck, “Model-driven development
and evolution of customized user interfaces,” in EICS 2013 - Pro-
ceedings of the ACM SIGCHI Symposium on Engineering Interactive
Computing Systems, 2013, pp. 13–22.

[4] V. Genaro Motti, D. Raggett, S. Van Cauwelaert, and J. Vanderdonckt,
“Simplifying the development of cross-platform web user interfaces
by collaborative model-based design,” in Proceedings of the 31st ACM
international conference on Design of communication, ACM, Ed.,
2013, pp. 55–64.

[5] B. Hauptmann, M. Junker, and J. M. Hauptmann B., “Utilizing user
interface models for automated instantiation and execution of system
tests,” in Proceedings of the First International Workshop on End-to-
End Test Script Engineering, ACM, Ed., 2011, pp. 8–15.

[6] O. El Ariss, D. Xu, S. Dandey, B. Vender, P. McClean, and B. Slator,
“A systematic capture and replay strategy for testing complex gui
based java applications,” in Information Technology: New Generations
(ITNG), 2010 Seventh International Conference on. IEEE, 2010, pp.
1038–1043.

[7] F. Trollmann, M. Blumendorf, V. Schwartze, and S. Albayrak, “For-
malizing model consistency based on the abstract syntax,” in Proceed-
ings of the 3rd ACM SIGCHI symposium on Engineering interactive
computing systems - EICS ’11, 2011, p. 79.

[8] A. M. R. da Cruz and J. P. Faria, “Automatic generation of interac-
tive prototypes for domain model validation.” in International Joint
conference on Software Technologies - ICSOFT (SE/MUSE/GSDCA),
2008, pp. 206–213.

[9] A. Kull, “Automatic gui model generation: State of the art,” in
Software Reliability Engineering Workshops (ISSREW), 2012 IEEE
23rd International Symposium on. IEEE, 2012, pp. 207–212.

[10] S. Casteleyn, I. Garrigós, and J.-N. Mazón, “Ten years of Rich
Internet Applications: a systematic mapping study, and beyond,” ACM
Transactions on the Web, vol. 8, no. 3, pp. 1–46, 2014.

[11] I. Banerjee, B. Nguyen, V. Garousi, and A. Memon, “Graphical
user interface (GUI) testing: Systematic mapping and repository,”
Information and Software Technology, vol. 55, no. 10, pp. 1679–1694,
2013.

[12] P. Arcaini, A. Gargantini, and P. Vavassori, “Validation of models and
tests for constrained combinatorial interaction testing,” in 2014 IEEE
Seventh International Conference on Software Testing, Verification
and Validation Workshops (ICSTW), IEEE. IEEE, 2014, pp. 98–107.

[13] H. Leopold, J. Mendling, and A. Polyvyanyy, “Supporting process
model validation through natural language generation,” vol. 40, no. 8,
pp. 818–840, Aug 2014.

[14] X. Yuan and A. M. Memon, “Generating Event Sequence-Based Test
Cases Using GUI Runtime State Feedback,” in Software Engineering,
IEEE Transactions on, vol. 36, no. 1, 2010, pp. 81–95.

[15] P. Gupta and P. Surve, “Model Based Approach to Assist Test
Case Creation, Execution, and Maintenance for Test Automation,” in
Proceedings of the First International Workshop on End-to-End Test
Script Engineering. ACM Press, 2011, pp. 1–7.

[16] K. Chuang, C. Shih, and S. Hung, “User behavior augmented software
testing for user-centered GUI,” in Proceedings of the 2011 ACM
Symposium on Research in Applied Computation, 2011, pp. 200–208.

[17] G. Lehmann, M. Blumendorf, and S. Albayrak, “Development of
Context-Adaptive Applications on the Basis of Runtime User Interface
Models,” in Proceedings of the 2nd ACM SIGCHI symposium on
Engineering interactive computing systems - EICS ’10, 2010, pp. 309–
314.

[18] A. M. Grilo, A. C. Paiva, and J. P. Faria, “Reverse engineering of GUI
models for testing,” in 2010 5th Iberian Conference on Information
Systems and Technologies (CISTI), IEEE, Ed., 2010, pp. 1–6.

[19] L. Duan, A. Hofer, and H. Hussmann, “Model-Based Testing of
Infotainment Systems on the Basis of a Graphical Human-Machine
Interface,” in Advances in System Testing and Validation Lifecycle
(VALID), 2010 Second International Conference on, IEE, Ed., 2010,
pp. 5–9.

[20] P. Aho, N. Menz, T. Räty, and I. Schieferdecker, “Automated Java
GUI Modeling for Model-Based Testing Purposes,” in 2011 Eighth
International Conference on Information Technology: New Genera-
tions (ITNG), IEEE, Ed. Ieee, Apr. 2011, pp. 268–273.

[21] P. Aho, N. Menz, and T. Raty, “Enhancing generated Java GUI models
with valid test data,” in Open Systems (ICOS), 2011 IEEE Conference
on, IEEE, Ed., 2011, pp. 310–315.

[22] O. S. Ramon, J. Vanderdonckt, and J. G. Molina, “Re-engineering
graphical user interfaces from their resource files with UsiResourcer,”
in Proceedings - International Conference on Research Challenges in
Information Science, 2013, pp. 1–12.

[23] G. Bae, G. Rothermel, and D.-H. Bae, “Comparing model-based and
dynamic event-extraction based GUI testing techniques: An empirical
study,” Journal of Systems and Software, vol. 97, pp. 15–46, Nov.
2014.

[24] S. Hennig, J. Van Den Bergh, K. Luyten, and A. Braune, “User
driven evolution of user interface models - The FLEPR approach,”
in Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
vol. 6948 LNCS, 2011, pp. 610–627.

[25] D. Harel, “Statecharts: a visual formalism for complex systems,”
Science of Computer Programming, vol. 8, no. 3, pp. 231 – 274,
1987.

[26] A. M. Memon, M. E. Pollack, and M. L. Soffa, “Hierarchical GUI
test case generation using automated planning,” vol. 27, no. 2, pp.
144–155, 2001.

[27] M. Veanes and J. Jacky, “Composing model programs for analysis,”
The Journal of Logic and Algebraic Programming, vol. 79, no. 7, pp.
467–482, 2010.

[28] G. Di Guglielmo, M. Fujita, L. Di Guglielmo, F. Fummi, G. Pravadelli,
C. Marconcini, and A. Foltinek, “Model-driven design and validation
of embedded software,” in Proceedings of the 6th International
Workshop on Automation of Software Test, ACM, Ed., 2011, pp. 98–
104.

[29] a. Chiappini, a. Cimatti, L. Macchi, O. Rebollo, M. Roveri, a. Susi,
S. Tonetta, and B. Vittorini, “Formalization and validation of a subset
of the European Train Control System,” in 2010 ACM/IEEE 32nd

150 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

International Conference on Software Engineering, IEEE, Ed., vol. 2,
2010, pp. 109–118.

[30] C. Szabo and Y. M. Teo, “On validation of semantic composability in
data-driven simulation,” in Workshop on Principles of Advanced and
Distributed Simulation (PADS), 2010, pp. 73–80.

[31] C. Buckl, D. Sojer, and A. Knoll, “FTOS: Model-driven development
of fault-tolerant automation systems,” in Proceedings of the 15th IEEE
International Conference on Emerging Technologies and Factory
Automation, ETFA 2010, 2010, pp. 1–8.

[32] A. Noguero and H. Espinoza, “A generic executable framework
for model-driven engineering,” in 2012 7th Iberian Conference on
Information Systems and Technologies (CISTI), IEEE, Ed. IEEE,
2012, pp. 1–6.

[33] B. Dutertre, A. Easwaran, B. Hall, and W. Steiner, “Model-based
analysis of timed-triggered ethernet,” in 2012 IEEE/AIAA 31st Digital
Avionics Systems Conference (DASC), 2012, pp. 1–11.

[34] R. Farahbod, V. Gervasi, and U. Glässer, “Executable formal speci-
fications of complex distributed systems with CoreASM,” Science of
Computer Programming, vol. 79, pp. 23–38, Jan. 2014.

[35] O. Zimmermann, C. Miksovic, and J. M. Küster, “Reference architec-
ture, metamodel, and modeling principles for architectural knowledge
management in information technology services,” Journal of Systems
and Software, vol. 85, no. 9, pp. 2014–2033, 2012.

[36] B. Kitchenham and S. Charters, “Guidelines for performing systematic
literature reviews in software engineering version 2.3,” Keele Univer-
sity and University of Durham, Tech. Rep. Technical report EBSE-
2007-01, July 2007.

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 151

Designing Context Sensitive Mobile User Interface

Mao Zheng1, Olga Ormandjieva2, and Hao Fan3
1Department of Computer Science, University of Wisconsin-La Crosse, La Crosse, WI, USA

2Department of Computer Science & Software Engineering, Concordia University, Montreal, QC, Canada
3School of Information Management, Wuhan University, Wuhan, Hubei, China

Abstract – With ubiquitous computing, users access their
applications in a wide variety of environments. To cope with
various and dynamic execution environments, the adaptive
mobile user interface is desired to enhance human-computer
interactions. This paper discusses the design of the context
sensitive mobile user interface that will enable automatic
adaptions to the environment. The challenges of this research
lie in the areas of context classification and collection, context
analysis and mobile user interface adaption due to
environmental changes. We propose a design to address these
issues and use an e-commerce application to illustrate the
ideas presented.

Keywords: Context, Mobile, User Interface, E-commerce

1 Introduction
 Context awareness is increasingly gaining applicability in
interactive ubiquitous mobile computing systems. According
to Dey’s definition [1], “a system is context-aware if it uses
context to provide relevant information and/or services to the
user, where relevancy depends on the user’s task”. One issue
for context-aware applications is to easily make use of these
various services at a low development cost and with easy
reconfiguration enablers. To address this issue, our research
work discusses the collection and classification of the context
information, and the automatic adaption based on the context
analysis in the mobile user interface behaviors.

 A dynamic user environment, which must respond to fast-
changing contexts, can benefit from the use of a context-
aware device. The e-commerce system is an example of such
an environment. Currently mobile computing provides a
convenient service for e-commerce systems. It ensures the
user’s universal access to the system.

 Some usability challenges appear in real world e-commerce
applications related to entering and retrieving item and user
information: 1) human-computer interfaces unsuited for
certain highly disruptive user environment; and 2) cognitive
excess resulting from the number of steps required to retrieve
correct information. We aim to address the idea of classifying
the e-commerce system context as a foundation for designing
and developing a context-sensitive mobile e-commerce
application. The designer must incorporate context-based
modifications into the appearance or the behavior of the
interface, either at the design time or at run time.

 It is important to point out we are separating how context is
acquired from how it is used, by adapting mobile user
interface features to the user’s context. For example: user’s
technical skills or experience with a mobile device is one of
the components in the user’s characteristic. The user, as a
composite entity, is part of the context. The mobile user
interface is automatically adapted to the context information.
We hope that this research work will improve human-
computer interaction with the aid of a mobile user interface
that responds appropriately to contextual changes.

 The paper is organized as follows: In section 2, we
introduce the application context, which is the e-commerce
domain. Note that we do not address the important issues of
security, privacy and reliability with regards to e-commerce
applications in this paper. In section 3, we present our design
approach. In section 4, we compare how our views are similar
to those of others and how they are difference. Section 5
concludes the paper and outlines the directions of our ongoing
research.

2 E-Commerce Example
 In this section we present an illustrative scenario with a
mobile context-aware e-commerce application.

 Zoe is a client of a famous e-commerce merchant whom
often makes many different purchases. Zoe’s client profile is
used to provide her a customized service. Zoe decides to go
by train to visit her friend whom lives near the Grand Canyon.
Once the train starts, she turns on her cell phone and uses its
Internet connection (e.g. 3G) to connect to the e-commerce
server. When connected, Zoe receives “recommendation” on:
1) hiking shoes because Zoe’s hobby is hiking. 2) DVDs
because today is Zoe’s best friend Maddie’s birthday, and
Maddie’s hobby is watching movies. 3) a jacket because the
outside temperature measured by the weather station near her
current mobile phone location is 25 degrees Fahrenheit.

 Just when Zoe decided to look in detail at the products
using the application product description, the train enters a
tunnel. Inside the train, it gets dark. The mobile device will
change to either display the result by sound or display the text
in larger font. In addition, Zoe has also configured her profile
to download videos only if the mobile phone is using Wi-Fi
signals. Thus the application only allows images displayed at
the current network environment.

152 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

 This example shows that the e-commerce ubiquitous
application needs to be context-aware in order to cope with
different user profiles and preferences, and different elements
of the environment in a distributed setting.

3 The Development of Context

Sensitive Mobile User Interface
 Our approach to adaption is to change the relevant
mobile user interface parameters base on context. The context
information comes from various sensors built in the mobile
device and from the user’s profile. The user’s characteristic is
part of the context in nature. The context information is
typically classified into logic and physical categories. User’s
characteristic belongs to the logic category, while the time
and location fall into the physical category.

3.1 Mobile User Interface Features
 Our approach allows users to easily handle information
on the mobile user interface which deals with the user’s
motion, and various environmental effects, such as different
combinations of ambient conditions (i.e., light and noise
levels). The user interface features, which can be changed on
a modern smartphone, are listed in Table 1 [2].

Table 1 Mobile User Interface Features

 Adapting mobile user interfaces to the various basic
contexts involved, such as location, time and ambient
conditions, will enhance the user’s experience of a context-
aware device.

3.2 Define User’s Characteristics
 We considered two general sources for charactering
user: domain experience and experience using mobile
devices. Our research goal is to adapt the mobile user
interface to individual users, while at the same time assigning
each user to one of a number of groups. The user’s
characteristics helped us achieve this goal successfully. For
this research, we needed to consider two aspects of modeling:

categorization, and differentiation. Through categorization,
the differences between people are simplified, and the
individuals are assigned to membership groups. Through
differentiation, the differences between groups are enlarged,
and the differences between individual members of the same
group are minimized [3].

 In an e-commerce application, the user’s domain
experience is defined in terms of VIP (has been active for
more than two years or paid the premium membership) and
client (has been active for less than two years and did not pay
the premium membership). Here active means the total value
that the user has purchased is over a certain threshold. The
mobile experience is defined in terms of Basic (less than 1
year), Intermediate (more than 1 year and less than 2 years),
and Advanced (more than 2 years). Example: if a user is in
the client group, and his/her mobile experience is basic, then
“tapping” is enabled as a default data entry feature in the
mobile user interface.

3.3 Rule-based Approach
 Our work depends on the internal sensors of a mobile
device, user profile and the adaption of mobile user interface
features for both entering and accessing data. The key point
of the approach is to capture and represent the knowledge
required for the mobile user interface to self-adapt at run time
or to implement the adaptions at design time. The rule-based
approach representation is what we proposed.

 A user interface is the link between the software system
and the human user, and the software is a tool that helps a
user perform his/her task. Rules at different stages can be
developed independent of each other. At each stage, different
contextual information is included. Example: Zoe is a VIP of
the e-commerce application. She wants to 1) check the latest
recommendations, and 2) order a DVD for her friend Maddie
in a dark and noisy environment. Then the mobile user
interface can display the result in large font text, increase the
brightness level of the screen; accept the order given by Zoe
by tapping, rather than typed on the keyboard, or by voice.

 In this scenario, the user interface features adapted or
modified (temporarily) are: change to large text output while
the environment is dark and noisy; change to tapping since
Zoe used all the information that is stored in her profile to
place the order. Due to her VIP status, a 10% discount and
free shipping are applied to her purchases automatically.

 All the condition attributes presented in this work are
based on basic context, which consists of the location, time,
ambient conditions and the noise level. Domain-based context
consists of the user and the tasks. The tasks that a VIP most
frequently perform can be summarized in two categories,
input tasks and output tasks, as follows:

• Output tasks: review recommendations, watch
product video and animations.

Mobile User Interface
Features

Values

Font size Small, medium, large
Font color RGB color, black & white
Font format Times New Roman, Tahoma,

etc.
Background color Auto adjust, changing manually
Data Entry Typing, tapping, voice
Display information Text, sound
Message delivery Text, voice, alert, silent, pre

answer
Brightness level Increase/decrease
Ring volume Low, medium, high, alert,

vibration
Sound level Mute, regular, loud

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 153

• Input tasks: select product, place order, and enter
purchase information.

Some sample conditions in the context-aware e-
commerce application are listed below:

C1. The mobile phone is in a Wi-Fi environment
C2. The level of light in the room is bright
C3. The level of noise in the room is low

The rules will be based on the match context value. For
example,

For a VIP, if [C1] is satisfied, then the mobile user interface
features will follow rule 1 as the action A1 and A2 described.
It is shown in Table 2.

Table 2 Sample Rule Table for Output Tasks (VIP)

Conditions Rules

1 2

C1 The mobile phone is in a Wi-Fi environment Y N

C2 The level of light in the room is bright Y N

C3 The level of noise in the room is low N N

Actions

A1 Adjust the font size for displaying information to “user
default”, playing product video and animations

X

A2 Adjust the display brightness to “user default” X

A3 Adjust the display brightness to “high” X

A4 Receive information by sound

A5 Receive information by tapping X X

Similarly Table 3 shows the sample rule table for input
task when the user is a VIP.

Due to the time limit with the current project, we are
still in the stage of developing the prototype of the context-
based e-commerce application. Table 2 and table 3 are only a
sample of the conditions and hence rules. The complete
conditions and rules need to be explored and verified through
analysis and development. Once we get all the conditions, the
complete set of rules is 2n combinations, where n is the
number of conditions. Rule analysis later on will be focused
on consistency and applicability of the proposed rules.

 For the same reason, we have not yet been able to
research on the impact of the user’s mobile experience in the
development of the adaption rules for the mobile user
interfaces. For example, an advanced VIP user may desire a
more complicated, but efficient mobile user interface.

Table 3 Sample Rule Table for Input Tasks (VIP)

Conditions Rules

 1 2

C1 The mobile phone is in a Wi-Fi environment Y N

C2 The level of light in the room is bright Y Y

C3 The level of noise in the room is low Y N

Actions

A1 Adjust the font size for displaying information to “user
default”, playing product video and animations

X

A2 Adjust the display brightness to “user default” X X

A3 Adjust the display brightness to “high”

A4 Receive information by voice X

A5 Receive information by tapping X

 In summary, our proposed rule-based approach is
described in the flow chart below.

Figure 1 Approach Flow Chart

154 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

4 Related Work
 Some researchers define context as the user’s physical,
social, emotional or informational state, or as the subset of
physical and conceptual states of interest to a particular entity
[4]. The authors in [4] have presented the definition or
interpretation of the term by various researchers, including
Schilit and Theimer [5], Brown et al. [6], Ryan et al. [7], Dey
[8], Franklin & Flaschbart [9], Ward et al. [10], Rodden et al.
[11], Hull et al. [12], and Pascoe [13]. In Dey and Abowd [4],
the authors are interested in context-aware systems, and so
they focused on characterizing the term itself. In Pascoe [13],
the author’s interest is wearable computers, so his view of
context is based on environmental parameters as perceived by
the senses. Our work depends on the internal sensors of a
mobile device, and the adaption of the mobile user interface
features for both entering and accessing data. Our model is
based on separating how context is acquired from how it is
used, by adapting the mobile user interface features to the
user’s context.

 Most of the research in this area has been based on
analyzing context-aware computing that uses sensing and
situational information to automate services, such as location,
time, identity and action. More detailed adaption has been
generally ignored. For example, input data based on context.
In our research, we attempted to build the user’s
characteristics from both domain experience and mobile
technology experience, and to collect all the context values
corresponding to the user’s task and then to automatically
adapt the mobile user interfaces to the context information.

The process of developing context-based user interface has
been explored in a number of other projects. Clercks et al.
[14], for example, discuss various tools to support the model-
based approach. Many studies have been conducted on
adaption using a decision table. In [15], an approach is
proposed for modeling adaptive 3D navigation in a virtual
environment. In order to adapt to different types of users, they
designed a system of four templates corresponding to four
different types of users. Our work differs in that our adaption
technique is based on composite context information that
extracts values from sensors in smartphones and relates with
the user’s domain and mobile technology experiences. Then
we develop a set of rules for the mobile user interface
adaption.

5 Conclusions
 Each context-aware application has its own set of
behaviors to react to context modifications. Hence, every
software engineer needs to clearly understand the goal of the
development and categorize the context in the application.
We have proposed a rule-based approach and illustrate the
idea in an e-commerce application.

 The contributions of this research work lie in 1)
considering both the user’s domain and mobile technology

experience in context, 2) detailed modeling inclusion on both
input and output data, 3) using the rule to present acquired
knowledge in the application. The adaption built into a
mobile user interface can enhance the accessibility in the e-
commerce domain. The additional benefits are a) increase
usability. For example, if the mobile user interface only
supports one interaction model, such as typing or voice
input/sound output, the usability of the service would be
drastically decreased. b) increased awareness of social ethics,
e.g. in a quiet room after midnight, the sound could be turned
off automatically. c) improved workflow productivity.

 The future work of this research will fall into three
directions: 1) researching on how the user’s mobile
technology experience will impact the adaption of the mobile
user interface. 2) discovering and verifying the completeness
of the conditions and rules. 3) conducting effective testing for
the context-aware applications. 4) building a context model
and reconfiguring the model for other applications.

6 References

[1] Dey A. “Providing Architectural Support for Building
Context-Aware Applications”, Ph.D. thesis, College of
Computing, Georgia Institute of Technology, Dec. 2000.

[2] Reem Alnanih, Olga Ormandjieva, T. Radhakrishnan,
“Context-based and Rule-based Adaption of Mobile User
Interfaces in mHealth”, The 3rd International Conference on
Current and Future Trends of Information and
Communication Technologies in Healthcare (ICTH),
Procedia Computer Science 21 (2013) 390 – 397.

[3] Oaks P J, Haslam S A, Turner J C, “Stereotyping and
Social Reality”, Cambridge, MA: Blackwell publishers, 1994.

[4] Dey AK, Abowd GD, “Towards a better understanding
of context and context awareness”, New York: ACM Press,
2000.

[5] Schilit B, Theimer M., “Disseminating active map
information to mobile hosts”, IEEE Network 1994, 8(5):22-
32.

[6] Brown PJ, Bovey JD, Chen X, “Context-aware
applications: from laboratory to the marketplace”, IEEE
Personal Communications 1997, 4(5):58-64.

[7] Ryan N, Pascoe J, Morse D, “Enhanced reality
fieldwork: the context-aware archaeological assistant”, In
Gaffney, Leusen, Exxon(Eds) Computer Applications in
Archaeology, 1997.

[8] Dey AK, “Context aware computing: the cyberdesk
project”, Technical Report SS-98-02, 1998, 51-54.

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 155

[9] Franklin D, Flaschbart J., “All gadget and no
representation makes jack a dull environment”, Technical
Report SS-98-02. 1998, 155-160.

[10] Ward A, Jones A, Hopper A, “A new location technique
for the active office”, IEEE Personal Commun. 1997, 4(5):42-
47.

[11] Rodden T, Cheverst K, Davies K, Dix A, “Exploiting
context in HCI design for mobile systems”, Workshop on
Human Computer Interaction with Mobile Devices 1998.

[12] Hull R, Neaves P, Bedford-Roberts J, “Towards situated
computing”, 1st International Symposium on Wearable
Computers, 1997, 146-153.

[13] Pascoe J, “Adding generic contextual capabilities to
wearable computers”, 2nd International Symposium on
Wearable Computers, 1998, 92-99.

[14] Clerckx, T., Winters, F., and Coninx, K., “Tool Support
for designing context-sensitive user interface using a model-
based approach”, Proceedings of the 4th International
Workshop on Task Models and Diagrams, 2005, Gdansk,
Poland.

[15] Shi-wei, C. and Shou-Qian, S, “Adaptive 3D navigation
user interface design based on rough sets”, IEEE 10th
International Conference on Computer-Aided Industrial
Design & Conceptual Design, 2009, 1935-1940.

156 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

cnetmon: Ncurses-based Network Interface Activity
Monitor

Steve Hutchinson1, John Wittkamper1, Jovina Allen1, Robert F. Erbacher2

1ICF International for US Army Research Laboratory, Adelphi, MD 20783
2US Army Research Laboratory, Adelphi, MD 20783

Abstract - This report illustrates the development and use of
a network interface activity monitoring tool named cnetmon.
This tool is intended to aid system administrators and
developers with network-oriented software projects. The main
objective for this project was to develop a capability to
monitor network activity for all or selected interfaces on a
system simultaneously and continuously. We use a display
generated by the Linux ncurses library that is updated using a
configurable interval. We show added capabilities including
interactive response to window-resizing using SIGWINCH. A
novel debug-line display capability is provided to show
dynamic debug messages on a dedicated line of the display.

Keywords: network traffic monitoring, network interface,
systems administration, ncurses

1 Introduction
 cnetmon1 is a very lightweight command-line tool to
display network traffic (packet activity) on any or all of the
network interfaces (NIs) on a Linux-based system It uses a
ncurses-library-based display that is compatible with any
character-based pseudo terminal, and as such, does not
require the use of the system graphical user interface (GUI)
or Xserver:DISPLAY.

cnetmon is intended for use in the field for remote
access into devices such as (network) sensors or other
network-attached Linux systems when an administrator with
user-level access needs to obtain a dynamic indication of all
network traffic entering and leaving that system. Because it
does not use the GUI, the complexity and access
requirements are very minimal. cnetmon can be invoked by
any logged-in user, it does not require sudo access, and it can
operate within a typical secure shell (ssh) or telnet session.

1Throughout this paper, Linux commands are set in an italic
font.

2 Motivation
Server farms, cloud computing, compute clusters, and

grid computing are all examples of a common technique to
combine multiple computer systems into a cooperative
network of systems. These systems often intercommunicate
using two or more NIs (on each system). Clustered-
computers are often rack-mounted for higher density and, as
a result, often lack a keyboard or monitor; therefore, they are
frequently managed and configured remotely via ssh or telnet
over a network connection. During system configuration,
installation, and testing, it is often difficult to determine
whether network traffic is being sent and received by each
interface.

 In general, such systems are built and configured in a
central location and then shipped to remote locations to be
added to other servers in a system rack or as a single
distributed sensor. cnetmon allows the installer to observe
network traffic from each or all NIs to verify that the system
seems properly configured for the installed environment. It
also does not require the use of the system GUI or
Xserver/client because cnetmon will create tabular displays
of all traffic using the LIBCURSES library for display on
any attached ASCII terminal emulator. cnetmon can be used
from a remote location, accessed and invoked typically from
a ssh command-line, and can be invoked by any logged-in
user; it does not require root-level access. Many techniques
to observe or sample traffic from any NI require super-user
privileges, but obtaining elevated privileges is often
forbidden, hence a benefit of cnetmon.

 In this paper, we describe a few use-cases for cnetmon.
First, cnetmon can be used on a laptop computer, which often
has two NIs: wired (eth1) and wireless (wlan), along with the
internal loopback interface. Laptop-users often must
transition between networks without rebooting. cnetmon is
easily invoked from a command window and will show all
NI activities to verify communications to the desired
network(s). Second, on a desktop or small server with
multiple wired or wireless interfaces, cnetmon can show all
network activity for each interface dynamically in this more
complex network topology. Third, compute-server
administration and configuration tasks are often performed
using a separate administrative system and command-line
tools. cnetmon facilitates server configuration and testing and
was developed for use in these more complex, multi-network

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 157

environments. We frequently use one cnetmon window per
server during configuration, development, and testing, to
obtain a real-time picture of network inter-communications
and to verify proper configuration and operation.

3 Related work: bmon
 In the search for a user-level, multi-NI monitor, we
noticed the “bmon” tool [1], which provides indications of
network bandwidth utilization from multiple interfaces using
the /proc/ file-system [2] and a curses-interface. We use this
strategy to implement a curses-based multi-interface activity
tool, cnetmon, providing various command-line and key-
press event-driven parameters to control the display and
monitoring update interval.

 Although bmon was intended to show network
bandwidth utilization, we liked its design paradigm using a
ncurses display using periodic updates obtained from
/proc/net/. Our goal was not to show estimated bandwidth
utilization, but to show concurrent network activity measured
in terms of packet counts and transfer rates per sampling
interval and accumulated for the session.

4 How it works
 A long-standing problem for understanding network
activity between (Linux or *nix) systems has been the
requirement to obtain root or super-user privileges to access
and configure devices, such as a NI. ifconfig is the Unix or
Linux command to display the status of NI devices on a
system. Upon executing the ifconfig command, the following
information is produced on the console, shown below in
Figure 1. The first 6 lines pertain to the hardware and
network address parameters for each interface as well as the
status of the interface. The remaining lines show counts of
transmitted and received packets, error counts, and finally the
interrupt number and buffers memory location.

user@asc2:~$ ifconfig
eth0 Link encap:Ethernet HWaddr 00:24:81:1c:fd:7d

inet addr:10.0.0.16 Bcast:10.0.0.255 Mask:255.255.255.0
inet6 addr: 2601:a:4680:3e6:5cf:ea3d:eed0:64e0/64

Scope:Global
inet6 addr: fe80::224:81ff:fe1c:fd7d/64 Scope:Link
inet6 addr: 2601:a:4680:3e6:224:81ff:fe1c:fd7d/64

Scope:Global
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:370 errors:0 dropped:0 overruns:0 frame:0
TX packets:120 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:46300 (46.3 KB) TX bytes:20936 (20.9 KB)
Interrupt:19 Memory:f0500000 f0520000

Figure 1. Typical ifconfig output.

 Although it is true that we could issue ifconfig
repeatedly to obtain the configuration and counts for network

devices, this function call is not intended for repeated
invocation to determine network traffic rates. Modern Linux
systems provide a /proc/ file system to allow user-level
processes to easily read a wide variety of counts for devices;
these values are maintained and updated by the kernel in a
virtual file system, /proc/. The /proc/ file system was
originally intended as a way to provide information about
processes in a system. As such, it also was a convenient
means of exposing kernel information to a structured file
system requiring only user-access rights to read this
information. A corresponding application programming
interface (API) is provided for read and write access — using
sysctl (system control) calls to configure parameters of the
running kernel [3]. This capability was gradually introduced
into Unix systems starting as early as 1984; the current
implementation in Linux is as an extended, virtual file system
contained only in memory and has directories for other
kernel information categories such as kernel-modules, file-
systems, interrupts, and devices including NIs, kernel
messages, drivers, and CPUs.

The cnetmon executable periodically examines the
/proc/net/dev file on the Linux system. These values are
sampled on each loop cycle (by default, one second), which
is configurable on invocation or by pressing a number-key
while running. Linux systems also maintain an uptime value,
the number of seconds since last rebooting. cnetmon saves
this date-time value at launch (fork) time and displays the
session length time in the screen header section

Contents of /proc/net/dev:

Interface
lo:
 bytes 570671
 packets 6267
 errs 0
 drop 0
 fifo 0
 frame 0
 compressed 0
 multicast 0
 bytes 570671
 packets 6267
 errs 0
 drop 0
 fifo 0
 colls 0
 carrier 0
 compressed 0

eth0:
 bytes 14797900909
 packets 17797994
 errs 0
 drop 0
 fifo 0
 frame 0

158 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

 compressed 0
 multicast 3120
 bytes 4116686178
 packets 14414011
 errs 0
 drop 0
 fifo 0
 colls 0
 carrier 0
 compressed 0

5 Implementation
The design goals and requirements for cnetmon are to

periodically examine the network device-file in the /proc
directory on a Linux system to:

Enumerate NIs

Collect traffic statistics

Convert traffic counts to display quantities and units

Allow a variety of command-line arguments

We also provide a release make/build capability for most
Linux systems (including embedded devices, such as
Raspberry Pi, etc.)

 After initialization during which command-line
arguments are parsed, cnetmon enters the main_loop. With
each pass through main_loop, it obtains new counts for
packets, bytes, errors, drops, collisions, etc., and calculates
display values as requested updating the ncurses display at
the end of each interval. Display values are calculated from
the following:

Li update loop interval, in seconds
Tu Linux uptime in seconds (since reboot)
Tnow current Linux system time, epoch time seconds
T0 cnetmon invocation start timestamp in epoch time

seconds
Ls session time length in seconds: (Tnow – T0)
P[i] packet count parameter from /proc/net/dev, at

time interval = i
B[i] byte count parameter from /proc/net/dev, at time

interval = i

For each interface and at each interval:

]0[][TPTnowPsSessionPKT (1)

][][inowPTnowPTsIntervalPK (2)

]*1000/])0[][(LiTBTnowBeSessionRat (3)

]0[][TPTnowPteIntervalRa (4)

 Command-line programs used for monitoring often
generate display data output in the form of one-line records
and then render them into a scrolling console window. Very
wide, or multi-line records, when scrolled like this, are
difficult to understand. Since network interface data is of this
nature, a scrolling display will be difficult to use. Instead, we
use a display technique that renders these parameters in strict
rows and columns such that the location of each on the
screen does not change. This tabular process makes the
changing parameters more obvious. Cell contents can change
with the fixed regularity of the chosen update loop interval.
Although this is a somewhat primitive display technique
compared with GUI implementations, such a capability is
easily provided by the Linux, Ncurses library. Ncurses
allows development of rather sophisticated tabular displays,
useful in situations in which a GUI display is unavailable (as
would be the case for many “headless” server or compute-
clustered environments).

6 Ncurses library
Ncurses [4] stands-for “new” curses—a

reimplementation of the “curses” library to use a text-based
terminal to emulate a more dynamic interface that has some
attributes of a modern GUI. Curses was originally developed
at the University of California at Berkeley for a Berkeley
Software Division (BSD) release around 1980. Ncurses
contains enhancements to curses and was made available
starting in the mid-1990s under a “Permissive free software
license” and not the General Public License (GPL) to afford
wide redistribution and linking to this library.

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 159

Figure 2. Resize of window to reveal additional interface
row-sets.

 cnetmon, like many other ncurses programs, obtains
terminal window geometry parameters from the terminal
emulator when the program is launched. The combination of
command-line switches will determine the number of rows
needed to describe each interface; by default, the display will
require one row per interface with the addition of three
header rows. Use of the “-a” switch will result in the display
of 7 or more rows per interface. cnetmon calculates how
much space (height) is needed, and then it only displays as
many interface row-sets as can fit in the current window
geometry.

 Use of up/down (U/D keys) allows the user to scroll up
or down an interface (row-set) at any time. To avoid
requiring the user to quit, resize the terminal, and re-launch
in order to see additional interfaces, we support dynamic
changes in window size using the SIGWINCH signal
(window change), which is supported by most terminal
emulators. When the user changes the window geometry, the
program receives the SIGWINCH signal and obtains new
window geometry. cnetmon recalculates the number of

interface row-sets that will fit in the new window and
updates the display generation parameters in ncurses without
resetting any of the current packet counts and rates.

 Figure 2 illustrates the various sub functions within
main_loop, showing the generation and response to window
size changes. Figure 3 below shows the help message with
option switches and their meaning.

Help message: cnetmon -H

cnetmon [aD:ehHi:Lm:n:rtTu:]
-a Show errors, data rate & totals (-ert)
-D # Debug level (0-15)
-e Show error data
-H Help message
-i name Ignore interface “name”
-L List interfaces (with some statistics)
-m name Show only interface “name”
-n # Show total bytes for system uptime
-r Show data rate
-t Show data totals
-T Show total bytes the “Quick” display
-u # Update frequency, seconds (default 1)

Interactive:
d/D Scroll down interface list
q/Q Quit
r/R Reset Session time
u/U Scroll up interface list
1-9 Load value into interval time

Figure 3. Usage help message.

7 Usage scenario
 An actual usage scenario is shown below. We have an
existing Linux server (Ubuntu 14.04 server) that will be used
to provide various services to three separate networks, shown
in Figure 4 as Internet, MeshNet_1, and MeshNet_2. This
server does not have an attached display. We use a 2nd

system with a terminal emulator and establish ssh session to
the server. We copy the cnetmon executable onto our
/home/user/ directory using scp (secure copy command).
This session is established through the Internet and gateway
attached to ‘eth0’. Invoking cnetmon, we easily observe
network activity on eth0 and no activity on eth1 or eth2.
cnetmon does enumerate other interfaces such as the local
loopback (lo) and a virtual bridge for use by associated
libraries to offer network address translation (NAT).

 It is normal for local loopback to accumulate and show
significant traffic during network traffic sessions as it is used
for process-process communications. We then connect a
second network (MeshNet_1) gateway to eth1. This interface
had been configured already to accept a DHCP-issued

160 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

address. cnetmon clearly showed packets corresponding to
DHCP requests and lease responses. After obtaining another
user shell (ssh) to the server, we were able to access the web
admin service on the gateway—to continue configuration of
this network.

 We then connected MeshNet_2 gateway to eth2.
cnetmon observed no activity on eth2. This required further
investigation. /etc/network/interfaces is the configuration file
used by Linux systems to initialize and configure all NIs.
eth2 had not yet been configured, and it was activated by
adding the following to /etc/network/interfaces (these must
be done as admin or root access):

auto eth2

iface eth2 inet dhcp

This change required restarting the networking services:

sudo /etc/init.d/networking restart

cnetmon showed no eth2 activity after restarting the network
services. Next, we tried a shutdown – reboot which did
reconfigure the interfaces and driver. After rebooting,
cnetmon showed activity on all three physical NIs as well as
the virtual loopback interface.

Figure 4. Server with connection to 3 networks.

 If the server had been pre-configured prior to
installation, it is likely that cnetmon would have allowed us
to observe and verify each of the network gateway
additions in real-time at power-on. In this case, additional
configuration requiring root-level access was required. We
were able to observe resulting network activity in real time
using cnetmon in a second session window.

8 Compute-server example
 To illustrate additional capabilities of cnetmon, we
show results from running it on a blade-server with 5 NIs.
This type of server is common today and is used to
populate the many rack spaces at internet and content
hosting facilities. Although this server has 5 NIs as shown
in the DEBUG: line, the display window geometry affords

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 161

space for only 2 complete record sets, (lo) and (em1)
shown in Figure 5. This server has been up (running) for
just over 105 days and cnetmon has been running for 85
seconds, updating at 1-second intervals.

Figure 5. cnetmon –D 1 –r showing counts and rates for the session and for the last main_loop interval. Notice this also
shows the –D flag, which adds an additional debug-message line to the display. Here, a cd_printf statement has been
included to show the first and total number_interfaces available.

162 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

9 Debug print
Coding and debugging an ncurses program can be very

challenging. To facilitate debugging, we incorporate a debug
display activated using a command-line switch. The code
snippet below from cnetmon.c :main() illustrates how to print
messages to the debug message line using the ‘-D 1’
command-line argument.

// Step through device list
for (j = 0, i = first_interface; i <= number_interfaces; i++)
{
 int display = 1;
 if (!prog_flags.first_time || prog_flags.match_inface)
 {
 display = 0;
 }
}
///
cd_printf("first_interface:%d number_interfaces:%d",
first_interface, number_interfaces);
///
refresh (); // Update display

10 Conclusions
 We have shown how cnetmon can provide easy access
to the network activity from multiple interfaces, on multiple
systems; however, the executable must first be available on
each system. Therefore, we intend to provide cnetmon to be
available as openSource code, providing the sources,
documentation, a makefile, and a pre-compiled, 32-bit binary.
Although most systems today are 64-bit architecture, the
precompiled 32-bit binary should run on almost any Linux
operating system. A sophisticated developer-user can re-
compile cnetmon from the sources, possibly adding new
features and debugging cd_printf statements to facilitate the
application and intended uses.

 We also will approach major Linux packagers and
distribution groups, notably Red Hat, Fedora and Ubuntu, to
encourage inclusion of cnetmon in future distribution
releases.

11 References
[1] Travis Graf. “bmon – bandwidth monitor and rate
estimator”, retrieved from https://github.com/tgraf/, June 15,
2014.

[2] Terry Dawson. “Exploring the /proc/net/ directory,”
O’Reilly, retrieved from
http://www.onlamp.com/pub/a/linux/2000/11/16/LinuxAdmi
n.html, March 26, 2015.

[3] M. Tim Jones. “Access the Linux kernel using the /proc
filesystem”, IBM developerWorks Technical Library, 2006,
retrieved from http://www.ibm.com/developerworks/library/l-
proc/index.html, April 15, 2015.

[4] Free Software Foundation. “Announcing ncurses release
5.9”. Free Software Foundation, 2011, retrieved from
https://www.gnu.org/software/ncurses/, March 26, 2015.

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 163

Political Risk Mitigation Model for Software
Development Budget

Esiefarienrhe Michael Bukohwo1, Wajiga Greg2

1Department of Computer Science, North-West University, Mafikeng, South Africa,
2Department of Computer Science, Modibbo Adama University of Technology, Yola, Nigeria.

Abstract - Political risk models attempts to evaluate country
risk and how they affect investment and repatriation of funds.
This paper applied the concept of political risk to software
development and discusses how such risk could affect
software development project by increasing software
development budget. It further developed a model to
demonstrate the practical application of political risk to
estimating political risk probabilities and their effects on
project budget. The crises scenario in the Niger-Delta of
Nigeria provided a platform for model simulation. First, a
vital input needed for the model was project development
cost. This was obtained from an on-going software
development project. Next, various political risk were
identified and the probabilities of affecting software cost
elements were estimated with regard to cost elements. The
model was used to computes the adjusted budget for the
software development project that mitigated the identified
political risks. The results obtained shows that political risk
can cause software project failure, introduce bugs and
invariably affects the project completion schedules. It was
shown that if the model can be applied to software
development, there will be less software failures and its
consequences on the economy.
.
Keywords: Software Risk, Political Risk, Model,
Software Development, Adjusted budget

1 Introduction

Software risk management is a broad area in
software engineering that requires researches in order to fully
harness the various advances in software development
methodologies, languages and tools. Developing safe and
efficient software requires that all risk components inherent
in the processes involved in software product development
must be fully analysed, resolved and mitigated. This
reinforces users confident in computer application to
problems solution and paves ways for institutionalizing and
globalizing information technology.

Software has become paramount to our everyday
activities. Why is software so important? Software flies our
airplanes [1], controls our automated teller machines (ATM)
[2], and even controls our car engines [3]. The implications
are that software drives any modern economy. The extent of

the application of software to the economy varies with
countries. The efficiency of these applications also varies. A
fact that is easily established is that organizations are more
eager to acquire information technology applications without
recourse to risk implication. This has become a fundamental
problem if not addressed scientifically will lead to serious
consequences and may even endanger lives and properties.

Large software projects will never be without some
risks but if risks can be brought down to acceptable levels,
that will be a good beginning [4].
Everyone has an intuitive understanding of risk but how can
understanding risk help software to be more successful? First,
we need to understand that a risk is not a problem. Rather, a
risk is something that might occur in the future: a possibility,
not a certainty. To be technically precise, there are two
factors that comprise a risk:
1. Probability or likelihood that it will occur.
2. Loss resulting from its occurrence.

The term “risk” has been erroneously used as a
synonym of “uncertainty” and “threat” [5, 6, 7]. Risk in
software is viewed as a measure of the likelihood of
unsatisfactory outcome and a loss affecting the software from
various perspectives: project, process and product [5,7].
However, this definition of risk is misleading because it
confounds the concepts of risk and uncertainty. According to
[8] most part of decision-making in software processes are
under uncertainty rather than risk. Uncertainty is a situation
in which the probability distribution for the possible outcome
is not known.

[8] therefore defined risk as the product of the value
of an outcome times its probability of occurrence. While risk
indicates a probabilistic outcome; threat is used to identify
the danger that can occur.
[9] see risk as a function of the likelihood of a given threat-
source’s exercising a particular potential vulnerability, and
the resulting impact of that adverse event on the
organization.

From the above definitions, risk can be looked at
from a number of different perspectives. First, risk concerns
future happenings. Second, risk involves change. The third
aspect of risk involves choice.
Authors in [10] defined software development risk as the
exposure to one or more of four types of risk:

164 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

i. Performance risk, or the failure to obtain all of
the anticipated benefits of the systems and
software under development

ii. Cost risk, or significantly exceeding budgeted
or estimated cost

iii. Schedule risk, or the failure to deliver
satisfactory software products by scheduled
milestones and user need dates

iv. Support risk, or the delivery of a product that
has excessive lifecycle maintenance costs due to
deficiencies in maintainability, flexibility,
compatibility or reliability

Software Risk Management is a set of practices that

enable software development projects to assess overall
project risk and identify, prioritize, and manage specific
risks. While [11] defined software risk management as the
practice of controlling risk that have the potential for causing
unwanted program effects. This control is an entire
development life cycle activity, starting with planning for
risk at the earliest stages of the project and continuing with
monitoring and alleviating risk through the support stages.
[12] sees software risk management as a process which seeks
to identify, address, and eliminate risk items before they
become either threat to successful software operation or
major sources of software rework.

2 Analysis of Researches Related to

Software Risk

There are presently three main groups of researches related to
software risk namely:
1. Assessing Software risk by measuring Reliability of
the Project.
 This group of researchers follows a probabilistic
approach to assess the reliability of the software product [13,
14, 15, 16]. This approach assesses the reliability of the
software product and not the risk inherent in failing to
complete the product within constraints. The papers cited
above concern themselves mainly with techniques to assess
risk related to failures of software projects. The problems
with these approaches from a realistic perspective is that the
resulting assessments arrive too late to economically correct
possible faults, because the software product is mostly
complete and development resources are mostly gone at the
time reliability of the product can be assessed through testing.
 2. Assessing Software Risk by using Heuristic
Approach
 Some researchers assess the software risk from the
beginning of the project, in parallel with the development
process. However, these approaches are less rigorous,
typically subjective and weakly structured. These approaches
uses list of practices and checklist [5, 7, 12, 17] or the use of
scoring or grading techniques [6].

3. Assessing software Risk using Macro Model
Approach

A third group of researchers uses well known
estimation models to assess the risk inherent in software
projects. The widely used methods are COCOMO [18], and
SLIM [19]. Both assume that software requirements will
remain unchanged, and require an estimation of the size of
the final product as input for the models [20]. The size of the
software product cannot be actually measured until late in the
project.

2.1 Political Risk Assessment

In his examination of political risk as used by North
Atlantic multinationals, [21] came to the conclusion that a
corporation’s strategic planning is an important determinant
of its profitability and that environment scanning, including
political risk assessment is a vital input to the process of
strategic planning.
The approach to political risk assessment can be classified
into two namely the subjective and the objective approach.
The objective approach attaches importance to
methodological and procedural solutions to the assessment of
political risk. Proponents of objective approaches therefore
view the method and procedure as bulwarks against the
fallibility and limitations of human judgement. The objective
approach could also be referred to as formal-oriented
approach. The subjective approach makes use of human
judgement, intuition and experience to predict and forecast
the evolution of the political environment. While method-
oriented approaches work on within the context of statistical
data and models, the subjective method make intensive use of
survey, advice and judgement from specialists and
consultants.

2.1.1 Subjective Approaches

The classical subjective approaches to the
assessment of political risk includes three methods; the Grand
Tour, the old Hands and the Delphi techniques.

Grand Tours
The technique uses impressions and information are gathered
through some preliminary market research or an inspection
tour. These impressions and information can be gained
through contact with local leaders, government officials and
businessmen or through survey of the political landscape. All
the information and impressions gathered through this short
survey of the political landscape are then analyzed and
evaluated [22].
Shortcomings of the Grand tour approaches reside in its
vague nature and overdose of selective information.

Old Hands
Through the old hands methods, multinationals seek to
acquire area or country expertise from diplomats, journalists,
businessman or firm experts on a consulting basis. The

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 165

expertise of diplomats, journalists or business usually
includes assessment of the objectives and personalities of a
country’s current leadership, the strengths and weaknesses of
competing political groups and the likelihood of new
legislation [23]. The drawback of this approach is its
unsystematic character and the fact that it is based on the
judgments of outsiders.

Delphi techniques
The Delphi techniques offer an example of a more elaborate
and systematic use of human judgment and experience. In the
first part of the Delphi technique, corporate decision makers
try to identify selective elements which could influence a
nation’s political destiny: size and composition of the armed
forces; delays experienced by the foreign investors; political
kidnappings etc. Next, a wide range of experts is asked to
rank or weigh the importance of these factors for the country
under consideration. Then responses are collected and a
checklist of the ranked variables is constructed. Finally, the
corporate decision makers aggregate the ranked variables of
the checklist into an overall measure or index of political risk
[24].
Shortcomings of such an approach involve the possible
deficiency of the relevant questions and the fact that a single
addition and classification of political variables without
taking into consideration other variables such as social,
cultural and economic variables is misleading and inaccurate.
Summarily, the main shortcomings of subjective approaches
are due, to a large extent to the fact that they rely largely on
intuition and human judgment.

2.1.2 Objective approaches

One way to overcome the above mentioned
shortcomings of the subjective approaches consists of making
intensive use of quantitative data on political factors and of
the econometric and probabilistic methods to improve the
accuracy, the precision and the predictability of political
events. One important objective econometric technique
employed for the objective measurement of political risk is
multivariate analysis (MVA), which make multidimensional
decisions possible. The MVA could provide a very precious
source of information for analyzing complex issues such as
political risks. The MVA can be classified on the basis of two
possible uses: (1) to predict future political trends on the
basis of current and historical information or (2) to describe
more fully underlying relationships affecting a nation.
The distinguishing feature of predictive techniques is that one
or several variables are said to be a function of some other
variables. Multiple regression is in fact one of the predictive
techniques used by decision-makers when the data are
quantitative or numerical.

One of the shortcomings of the quantitative
approaches is related to the inherently complex and
subjective nature of the political risk. Many important
political issues seem to defy quantification, and decision-
makers are often forced to rely on their judgment and

intuition to a greater degree than may be desirable. Now,
most corporate approaches to political risk assessment stress
methodological and procedural solutions to the problem of
political risk because of its precision and accuracy. Yet as
suggested by [25], all objective methods work on and within
the context of a well defined model. The model is treated as
the problem and the problem is identifiable to the model.
Results drawn from the model are interpreted as conclusions
on the problems itself, assuming that the problem structure
matches or comes very close to that of the model. Thus
political risk is seen as an objective attribute of the problem
to be uncovered, measured and quantified through its
counterpart in the model. Moreover, the method-oriented
approaches imply conceptually that the decision-maker
should play a passive role. He should uncover and bring out
what is already inherent in the problem, but is not thought of
as playing an active role (like in subjective approaches) in
bringing structure to the problem and perceiving and defining
the nature of political risk within this structure.

There are a number of researches related to political
risk from objective approach but they are in the field of
economics, investment and finance, [26, 27, 28, 29, 30, 31].

3. Material and Methods

The data used for this research were obtained from
both primary and secondary sources. The Primary sources of
data includes the use of questionnaires, interviews and
observations while the secondary sources include review of
existing literatures, system documentation manuals and the
review of existing system source listing.

Interviews and personal observations were carried
out for the purpose of finding facts about existing methods
and to investigate how organisations handle risk when
developing software. In most situations, existing
documentation about the organisation system were reviewed.
This helped in fact-finding about the existing system and
problems faced. The use of these fact-finding techniques
enables the researcher to understand the methods used to
derive solutions to problems.

The Structured System Analysis and Design
Methodology (SSADM) which is a Software Engineering
Methodology that involves system decomposition to sub-
system and the systematic analysis of each sub-system were
adopted. Flowcharts and Pseudo codes were drawn and
written for the proposed solution.
The Expert System methodology, which involved knowledge
engineering process of inference and knowledge-based, is
also adopted.

3.1 Political Risk Model
The development of efficient, reliable and maintainable
software is the wish of every programmer in an ideal
situation. An idea situation may refer to a rational design,

166 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

human capacity, technological or other external factors which
may be practically outside the control of the developer. One
of such external factor that is particularly interesting is the
presence of political activities within the software
development environment which constitutes various forms of
political risk. Political risk is viewed as an external activity
layered on the development process. Previously, these
external factors are not recognised as having any impact in
software development activities. This hitherto, was a wrong
assumption. There are evidences to show that software
projects have been abandoned or derailed due to war, riots,
new government fiscal and monetary policies, government
changeover etc. Software development budget have become
unstable, schedules slippages, unreliable software due to
various political activities impact on the organisation and
subsequently affecting the software project. The effects of
political risk in software development are varied. Of
importance in this research is the effect on the developmental
cost of the project. This includes the effect on the
mobilization and co-ordinating cost of the team and other
procurement cost as well as availability of personnel and
motivation. Given that cost is an important factor of
production, its inadequacy or non-availability due to
inflation, monopolies etc may constitute political risk that
may derailed the project.
In order to mitigate these environmental factors particularly
as it relates to political risk, the following model is proposed
to handle the mitigation of political risk.
Political risk is modeled as a multiplicative function of
vulnerability and cost:

, k = 1…M cost items

Where

PB = Budget cost of software project under political risk

This model is used to estimate the probabilities of the
identified risk occurring in relation to the effect on the budget
of a specific item of cost. The proposed solution uses both the
subjective and the objective approaches in the estimation of
political risk probabilities.
The estimated cost (budget) for the software development is
extracted from the project database in Table 1.0.

With the assistance of the organisation’s System Analyst, we
studied the prevailing political situation and its effect on the
project. This was done by estimating the probabilities of each
political risk according to the effect it will have on a given
element of estimated cost. Although, the probability estimate
was a subjective measure, it was however done in
conjunction with political analysts who are quite familiar
with the political terrain of the country.

3.1.1 System Input
The system requires two vital inputs namely:
i. The budget for the system development and
ii. The list of political events that could constitute risk
to the project
Table 1.0 and Table 1.1 show the input to the system while
Table 1.2 shows the output from the system in tabulated
form.

Table 1.0: Estimated Cost (Budget) for the
Development of e-Cataloguing and Artifact System

Team Mobilization

Team Syndicate Grouping
Data Collection/Transportation
to Site
Stationary

Digital Cameras Additional
Memories

Allowances
Case Tools

Input
Processes

Output
Databases

Hardware Cost
Software Cost (Language
Compiler)
SLOC (N100per line for 1000
lines)
Linkages

Testing/Debugging Tools

N
5000

3000

40,000
20000

7000
4000

70000
10000

25000
40000

10000
30000

50000

20000

100000
10000

10000

US $
43

26

342
171

60
31

598
85

214
342

85
256

427

171

855
85

85

* Conversion rate of N117 to 1 US$ was used

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 167

Table 1.1: Political Risk with Serial Number
assigned for identification
Political Risk
Criminality
Putsch
Civil War
Civil Disobedience
Riot
Corruption
Fragile Political Structure
Regulatory Monopolies
Blocks to Capital and Profit Repatriation
Local Content requirement rule
High taxes and weak incentive
Looting
Destruction of houses and properties
Rape
Food scarcity
Fear and tear
Restriction and movement

S/N
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

3.1.2 The System Output

Table 1.2 shows in Tabular form the output generated from
the input of Tables 1.0 and 1.1. Columns A and B represent
the system development budget. Column C shows the various
risk (represented by serial Numbers - see Table 1.1)
associated with each cost element (limited to 3 risk per cost
element). Column D shows the estimated probabilities of
political risk (Column C) occurring (converted to
percentages) as it affects cost elements (Columns A and B).
The values in Column D are derived by multiplying

(e.g. 5000 x 2%, 5000 x 3%, 5000 x 2%). Column F is
the summation of Column E using

It is noteworthy to say that Column F gives cost of

each cost element adjusted as a result of political risk. It is
the summation of these various values that gives the total cost
of developing the software under political uncertainty i.e.

The difference between the former budget (454,000) and the
new cost (477,060) shows an injection of additional slack
funds of 23,060 to ensure project sustainability.

Table 1.2: Output from the System in Tabular form

(A)
Project Cost Components

(B)
Budgeted
Cost (Ci)
(N)

(C)
Political risk
affecting
Project Cost
Components

(D)
Political
Probabilities
(Pr) (%)

(E)
Probabilities Values

(F)
Adjusted
Component
Cost (N)

Team Mobilization
Team Syndicate Group
Data Coll /Transp. to Site
Stationary
Digital Cameras
Additional Memories
Allowances
Case Tools
Input
Processes
Output
Databases
Hardware Cost
 (Language Compiler)
SLOC (N100per line for
1000 lines)

Linkages

Testing/Debugging Tools

5,000
3,000

40,000
20,000
7,000
4,000

70,000
10,000
25,000
40,000
10,000
30,000
50,000
20,000

100,000

10,000

10,000

16, 17, 5
3, 4, 16
3, 4, 5
3, 5, 17
13, 11, 17
11, 9, 8
11, 9, 8
15, 17, 16
9, 10, 8
11, 8, 12
6, 11, 17
17, 11, 6
11, 17, 6
11, 10, 6

11, 10, 6

17, 16, 15

17, 6, 1

2
1
3
1
4
3
1
4
1
1
2
2
2
3

1

2

1

3
2
4
0.5
3
2
2
1
2
2
1
1
1
1

1

1

2

2
2
3
2
2
2
1
2
2
1
2
1
2
3

2

3

1

100
30
1200
200
280
120
700
400
250
400
200
600
1000
600

1000

200

100

150
60
1600
100
210
80
1400
100
500
800
100
300
500
200

1000

100

200

100
60
1200
400
140
80
700
200
500
400
200
300
1000
600

2000

300

100

5,350
3,150

44,000
20,700
7,630
4,280

72,800
10,700
26,250
41,600
10,500
31,200
52,500
21,400

104,000

10,600

10,400

TOTALS 454,000 477,060

168 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

4 Conclusion

The concept of Political risks was introduced
and referred to it as external factors because it is not
within the control of the developer when building the
product. The developer should be aware of such factors
and incorporates from the beginning metrics to mitigate
such factors should they arise. The model developed
can handles political risk in software development by
building financial slacks based on systematic
methodology into the development budget so as to
ensure project sustainability in the wake of political
risk occurrence.
This is necessary as the most vivid effect of political
risk results in inflations, fear and panic buying. Project
development personnel may be unwilling to continue
with the project and there is need to urgently recruit
more staff, procure more facilities and pay extra cost
for almost everything. From experience of software
development projects in times of political tumor,
access to additional funds through proposals is almost
impossible. This from experience account for most of
the problems software developer faced and this is
responsible for project failure.
It is noteworthy to say that system analyst must be very
careful in the estimation of the various probabilities of
political events occurring. We strongly believe that this
step should be handled by political scientist in
conjunction with the analyst. Also the adjustment
coefficient to use depends on the output of the political
dependences. This model when used by analyst will
result in developing timely, efficient and robust
software product(s) irrespective of the political
situation.

5 References

[1] Tomayko, J. E. (1991). The Airplane as
Computer Peripheral. American Heritage of Inventions
& Technology, 7(3): 56-60.

[2] Kanter, J. Schiffman, S. and Horn, S. (1990).
Let the customer do it; from grocery robots to photo
kiosks, computerized selfservice. Computerworld, 24:
35

[3] Woolnough, R. (1990). TI drives at Euro
autos; makes 'PACT' to win microcontroller business.
Electronic Engineering Times, August-December.

[4] Jones, C. (1994). Assessment and Control of
software Risks, Yourdon Press, Prentice Hall,
Englewood Cliffs, N.J

[5] Higuera, R. and Haimes, Y. (1996). Software
Risk Management. CMU/SEI-96-TR-012.
IEEE, (Std 1074-1991IEEE); Standards for Developing
Software Life Cycle Processes

.[6] Karolak, D. (1996). Software Engineering
Management, IEEE Computer Society Press,
Washington DC.

[7] Hall, E. (1997). Managing Risk, Methods for
Software Systems Development, Addison Wesley,
Reading, Mass.

[8] Nogueira, J. (2000). A Formal Risk
Assessment Model for Software Projects. Ph.D
Dissertation. Naval Postgraduate School.

[9] Stoneburner, G. Goguen, A. and Feringa A
(2002). Risk Management Guide for Information
Technology Systems, NIST Special Publication 800-
30.

[10] Software Management Guide Volume II,
Software Technology Service Center, Hill AFB,
October 1993

[11] Edmund, H. (1997). Managing Risk in
Aerospace Programs. Aerospace America, 35(4): 36-
39.

[12] Boehm, B. (1991). “Software Risk
Management: Principle and Practices”, IEEE Software,
8(1): 32-41.

[13] Schneidewind, N. (1975). Analysis of Error
Processes in Computer Software, Proceedings of the
International Conference on Reliable Software, IEEE
Computer Society, 21-23: 337-346

[14] Fairley, R. (1994). Risk Management for
Software Projects. IEEE Software, 11(3): 57-67.

[15] Lyu, M. (1995).Software Reliability
Engineering IEEE Computer Society Press,
Washington DC.

[16] Musa, J. (1998). Software Reliability
engineering: More Reliable software, Faster
Development and Testing, McGraw-Hill.

[17] Charette, A. K and White, M. (1997).
Managing Risk in Software Maintenance, IEEE
Software, 13(4):110-117.

[18] Boehm, B. (1981). “Software Engineering
Economics”, Prentice-Hall, Englewood Cliffs, N.J.

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 169

[19] Putman, L. (1980). Software Cost and
Estimation and Life Cycle Controls: Getting the
Software Numbers. IEEE Computer Society
Press,Washington DC.

[20] Londeix, B. (1987). Cost Estimation for
Software Development, Addison-Wesley, Reading,
Mass.

[21] Stapenhurst, F. (1992). Political Risk Analysis
around the North Atlantic, New York, St Martin´s
Press, XIV.

[22] Rummel J. R. and Heenan D. A. (1978). How
Multinationals analyze Political Risk, Havard
Business Review, January-February.

[23] Fry H. E. (1983). The Politics of international
Investment, Mc Graw-Hill, New York.

[24] Graham M. E. and Krugman P. R. (1993). The
Surge in Foreign Direct Investment in the 1980s, in
Foreign Direct Investment ed. by Froot A. Kenneth,
University of Chicago Press, Chicago.

[25] Strauch, R. (1980). Risk assessment as a
subjective Process, The Rand Paper Series ed. by Rand
Corporation, March 1980, pp. 4.

[26] Shapiro, A. (1978). Financial Structure and
the Cost of Capital in the Multinational Corporation,
Journal of financial and quantitative Analysis 13: 211-
266

[27] Shapiro, A.(1992). Multinational financial
Management 4ed., St Martin’s Press, New York.

[28] Samuelson, L. and Bond, E. W. (1986). Tax
Holidays as Signals, American Economics Review 76:
820-826

[29] Mahajan, A.(1990). Pricing Expropriation
Risk, Financial Management, Winter 1990, p. 77-85

[30] Raff, H. (1991). A Model of expropriation
with asymetric Information, Working Paper Nr 9105,
Department of Economics, Université Laval.

[31] Clark, E. (1997). Valuing Political Risk,
Journal of International Money and Finance, 16(3):
477-490

170 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

A Step Ahead To Connect Your Bus-With GPS

A. Srikanth Reddy Nagadapally, B. BalaKumar Krishnaswamy, and C.Abhigna Reddy Shettap
D.Devireddy Prathika E.Roger Lee

Computer Science, Central Michigan University, Mount Pleasant, Michigan, USA

Abstract - Tracking of bus becomes an essential part in the
process of bus application as the buses maybe delayed due to
certain reasons like weather. Many techniques are used for
tracking the bus but few of these have tracked only where the
bus is located in the particular bus stop and none have
attempted to track the exact location of the bus. In this paper,
we present a technique to track the accurate location of the
particular bus in which the passengers has booked his ticket.
We report results of an experiment comparing this new
technique to the existing technique for tracking the bus,
assessing both the adequacy of the new technique and their
ability to detect the faults of an old technique for tracking a
bus. Our results show that tracking a bus through GPS can
give an accurate location more effectively than those produced
by messaging, making call techniques considered; however,
the faults detected by the two techniques differ, suggesting
that the techniques are complementary.

Keywords: GPS, Bus Tracking, Real Time Location, Bus
Tracking through GPS, Smart bus tracking app, Global
Positioning System.

1 Introduction
 Public transport has been one of the most important modes
of transport for people and much need to be done to improve
some quality aspects of this service, especially in buses. While
there are lot of inflight options in buses like Wi-Fi, air-
conditioning etc, in-contrast a passenger standing in bus stop
doesn’t have many facilities apart from the bus shelters. For
example, on a stormy day there may be more traffic than usual
and he might not know about the delay in the bus arrival. For
this purpose, it becomes essential to integrate additional
features in this mode of transport. Tracking of bus becomes an
essential part in the process of bus application as the buses
maybe delayed due to certain reasons like weather. So far
tracking is done on messaging level, personal calling and
other basic levels. On a messaging level, it is done using a
VMD (Variable Message Display) which tracks the
coordinates of the bus and sends this information to the
Server. By checking the passenger's needs, a notification
indicating the arrival time of the bus is broadcasted to GSM
module of all the passengers who have subscribed for similar
type of service. The effectiveness of foregoing methods and
techniques have been evaluated only in terms of ability to
achieve the location of the bus with low accuracy; in our

search of literature, we find no reports on studies assessing the
effectiveness of techniques in
terms of ability to achieve the current or accurate location of
the bus.
 In this paper, we wish to merge GPS tracking with the
mobile application so that we can get the exact location of the
bus with more accuracy by showing the current location of the
buson a map and reducing the dependability on other less
accurate techniques and save the passenger his time and other
resources. However, in extreme conditions where there’s lack
of data in mobile and a downloaded version of the maps is not
available, the tracker may not be able to share the exact
location of the bus and it works only on select platforms of
Android and iOS.

2 Background and Related Work
 Here the sequence diagram clearly shows the flow of work
for booking a ticket in online. The passenger searches for a
bus that goes to a particular destination then the booking
system retrieves the information of that bus and displays the
result to the passenger. Next the passenger checks the cost of
the ticket which varies depending on the luxuary provided by
the bus, this information is provided by the booking system
and after that in order to book the ticket thepassenger has to
login into his account by entering the credentials. Here the
booking system forwards the credentials to passenger database
where it will verify whether the credentials are matching with
the database and allows the passenger to enter into his
account. Then the passenger enters the details of the passenger
where the details will be stored in the database. After making
the payment booking system will show the summary of the
booking details and the reservation has been stored in the
reservation system and the passenger gets the confirmation
that the ticked is booked. [5]

 With the arrival of mobile platforms of Android and iOS,
technology has advanced in such a manner allowing the user
to book his tickets using his mobile application. The
interaction between user and mobile application starts with the
mobile data connection that the user has on his phone (WiFi
or GPRS). The background process that occurs is that the
request is sent to the webserver via the mobile gateway where
the system based on the passenger request will decide the use
of either the application server or the database systems. For

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 171

example, since ours is a project on bus app, all the interactions
will be handled by the application server and all the

Fig .1.Sequence diagram for bus ticket reservation system [1]

information that is to be stored will be done by database, like
storing information about passenger details. For an application
having the bus information system, the different modules for
instance might be Sign In, Booking of a trip, Station locator,
Details of our Trips, Travel information and Rewards are the
existing features used by the application. [3]
Other requests are more complicated and require additional
processing which leads to more complex classes interacting
with other applications. User provides data primarily through
forms consisting of input fields such as text boxes, check
boxes, selection list rendered in the mobile app. Information is
translated in to a set of name-value parameters and becomes
part of the request.

Client-Server

Fig.2. General Interaction between the user and the system
[2]

Related work on bus tracking
 Tracking of bus becomes an essential part in the process of
bus application as the buses maybe delayed due to certain
reasons like weather. So far tracking is done on messaging
level, personal calling and other basic levels. On a messaging
level, it is done using a VMD (Variable Message Display)
which tracks the coordinates of the bus and sends this
information to the Server. By checking the passenger's needs,
a notification about the bus with the time is broadcasted to
GSM module of all the passengers who have subscribed for
similar type of service. [3]The effectiveness of foregoing
methods and techniques has been evaluated only in terms of
ability to achieve the location of the bus with low accuracy; in
our search of literature, we find no reports on studies
assessing the effectiveness of techniques in terms of ability to
achieve the current or accurate location of the bus. [4]

In this paper, we wish to merge GPS tracking with the
mobile application so that we can get the exact location with
more accuracy by showing the map of the bus in its current
location and reducing the dependability on other less accurate
techniques and saves the passenger his time and other
resources. However, in extreme conditions where there’s lack
of data in mobile and a downloaded version of the maps is not
available, the tracker may not be able to share the exact
location of the bus and it works only on select platforms of
Android and iOS.

Spireon also offers four GPS tracking systems for
companies managing fleets of vehicles. Fleet Locate Trailer
and Asset Management is customized for companies looking
to track their trailers using our rich, real-time data and
analytics around trailer utilization and management; Fleet
Locate Enterprise Fleet Management solution is designed for
companies managing enterprise sized fleets of 500 vehicles or
more in their fleet; Fleet Locate Local Fleet Management
solution has been developed for the smaller to med-sized local
and regional businesses needing a simple and affordable
solution; and finally, Vehicle Path is Spireon’s GPS tracking
solution for small to medium size businesses looking for
personal, localized support in their neighborhood and is sold
exclusively through Spireon’s authorized reseller channel. [8]
The GeoZigBee wristwatch device was designed specifically
to provide anultra-low-power, miniaturized wireless GPS
tracking device. It includes a low-power 2 GPS sensor, a flash
memory and a ZigBee wireless data Link. This web-based
architecture allows the common infrastructure to be leveraged
by a variety of different users. In this paper, we describe an
open architecture development approach that allows the
Locator-Net server to deliver customized Location-based
services using a combination of custom and publicly available
data product. [5]

172 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

3 Methodlogy
3.1 Overview of Existing Technology
 Public transport has been one of the most important modes
of transport for people and much needs to be done to improve
some quality aspects of this service, especially in buses. While
there are lot of inflight options in buses like Wi-Fi, a
passenger standing in bus stop doesn’t have many facilities
apart from the bus shelters. For example, on a stormy day
there may be more traffic than usual and he might not know
the delay. For this purpose, it becomes essential to integrate
additional features in this mode of transport. [4]

3.1.1 Summary
 Tracking of bus becomes an essential part in the process of
bus application as the buses maybe delayed due to certain
reasons like weather. So far tracking is done on messaging
level, personal calling and other basic levels. On a messaging
level, it is done using a VMD (Variable Message Display)
which tracks the coordinates of the bus and sends this
information to the Server. By checking the passenger's needs,
a notification about the bus with the time is broadcasted to
GSM module of all the passengers who have subscribed for
similar type of service.The message contains the location
name where the bus is located, but there will be no correct
information regarding when the bus may arrive to the
destination. [4]
The effectiveness of foregoing methods and techniques has
been evaluated only in terms of ability to achieve the location
of the bus with low accuracy; in our search of literature, we
find no reports on studies assessing the effectiveness of
techniques in terms of ability to achieve the current or
accurate location of the bus.

Dataflow Diagram

Data flow diagram of existing system [6]

Output of existing methodology [11]

3.2 Approach of New Technology
 The foregoing techniques are strictly message based
wherein the information provided is not up to date and not
informative. On researching about these deficiencies, we
decided to come up with a solution to integrate a GPS tracking
system for buses. Our research deals with vendor specific
application for the bus.

Overview of Intended Research

 Generally, passengers nowadays have the option of
booking tickets through their mobile application. Payment is
done online and ticket is generated with a unique number
specific to the ticket. Now if we integrate the application with
an extra feature to track your bus, passenger can login to the
application, select his bus and click on the GPS tracking
option. This will launch the GPS tracking which will show
the exact location of the bus in the mobile application. Global
Positioning System helps us find the location of something
that we are searching for. It is used by vehicles like cars, cell
phones etc. The GPS device has a receiver which receives
information from the special satellite signals. GPS can also
track the speed/velocity and time of the moving object. The
units keep an eye on and send\receive data from multiple
satellite signals so as to give us better accuracy. So, if the
carrier of the GPS has inbuilt or downloaded maps, it just
needs the signals, else it uses the help of external factors like
WiFi or GPRS data to download the maps and use it for
signal. [2] Here the bus is set to be used as source to be
tracked and the target will be information transfer of bus’
location to the passenger’s application. GPS tracking system
greatly enhances the existing text based location tracking
system and it also complements the application

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 173

3.2.1 Architecture of Improved System

Architecture of improved system

3.2.2 Implementation
Modules Used

Login: This modules appears in the first page. When the user
initially opens the application he is prompted to enter his
User-name or e-mail id and Password and then click the login
button, so that he is successfully logged-in.
Register: Register appears on the first page and when clicked
we get redirected to a page asking for few credentials, here
both the passenger as well as the driver who are first time
users can register.
(i)Passenger: The passenger who is a first time user will have
to give details such as his First-name, last name, email-
id,password, confirm password and select the type as student,
which means he is registering as a new passenger.
(ii)Bus driver:Initially a new driver will have to register to use
this application, he will have to give his details such as his
first name, last name, email-id,password, confirm password
and in the type drop down he should select driver, which
means he is registering a new bus.
Search: This module is used to search for the buses ,where
the list of buses depending on the bus numbers are displayed
and user will select the bus number that he has booked the
ticket for and then he can view a map which shows the current
location of the bus as well as the passenger.

3.2.3 Testing
Functional Testing

In functional testing basically the testing of the functions of
component or system is done. It refers to activities that verify
a specific action or function of the code. Functional test tends
to answer the questions like “can the user do this” or “does
this particular feature work”. This is typically described in a
requirements specification or in a functional specification.
The techniques used for functional testing are often
specification-based. Testing functionality can be done from
two perspectives:
Requirement-based testing: In this type of testing the
requirements are prioritized depending on the risk criteria and
accordingly the tests are prioritized. This will ensure that the
most important and most critical tests are included in the
testing effort.
Business-process-based testing: In this type of testing the
scenarios involved in the day-to-day business use of the
system are described. It uses the knowledge of the business
processes. For example, a personal and payroll l system may
have the business process along the lines of: someone joins
the company, employee is paid on the regular basis and
employee finally leaves the company.
Performance Testing
Performance testing, a non-functional testing technique
performed to determine the system parameters in terms of
responsiveness and stability under various workload.
Performance testing measures the quality attributes of the
system, such as scalability, reliability and resource usage.
Performance Testing Techniques:
Load testing - It is the simplest form of testing conducted to
understand the behaviour of the system under a specific load.
Load testing will result in measuring important business
critical transactions and load on the database, application
server, etc., are also monitored.
Stress testing - It is performed to find the upper limit capacity
of the system and also to determine how the system performs
if the current load goes well above the expected maximum.
Soak testing - Soak Testing also known as endurance testing,
is performed to determine the system parameters under
continuous expected load. During soak tests the parameters
such as memory utilization is monitored to detect memory
leaks or other performance issues. The main aim is to discover
the system's performance under sustained use.
Spike testing - Spike testing is performed by increasing the
number of users suddenly by a very large amount and
measuring the performance of the system. The main aim is to
determine whether the system will be able to sustain the
workload.

3.2.4 Results
 In the existing approach, the location is ambiguous.
Whereas in our approach, the location will be specific and as
it pinpoints the exact location. Now the user can now get the
exact location of the bus if it is not on time or other delays. It
is a value addition, which will greatly enhance the passenger
experience for the people travelling in buses.

174 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

4 Analysis of Results
 The results of the proposed system bring us a new approach
to get away easily. By considering all the attributes into
consideration and by comparing with all the methods the
results in our approach are pretty much better than the
previous system. Previously we can track the bus by only
message protocol with low accuracy and in the present system
tracking became very easy with more accurate results, the
output of our results are shown below in the pictures

Representation of output in GPS tracking approach

5 Conclusion

 We have presented a new approach for tracking the bus and
several techniques for implementing that approach. This new
approach differs from the existing system. We have presented
the results of the controlled experiment suggest that this
approach effectiveness is more formal than the existing
system

The GPS tracking approach that we have presented have
several additional potential advantages over other approaches.
First, because this approach utilize passenger requests as a
basis for generating a route map of the travelling bus which is
major limitation of existing system. Second, the waiting time
of passengers to receive a inaccurate location of the message
is relatively small as they don’t need to wait for message to
receive. This is not the case with the new system where they
can view the location of the bus in the map.

Finally, we believe that our results suggest that GPS
Tracking could be used to address the problem with the
existing system allowing passengers to access the accuracy of
the proposed system.

6 References

[1] Urs, Chaitra N ; Chatterji, Sourindra ; SrivatsaSneha, M
“A Mobile Application for bus notification system” pp. 724 –
727, 29 Nov. 2014

[2] Fleischer, P.B.; Nelson, A.Y.; Sowah, R.A.; Bremang, A.,
"Design and development of GPS/GSM based vehicle
tracking and alert system for commercial inter-city
buses," Adaptive Science & Technology (ICAST), 2012 IEEE

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 175

4th International Conference on , vol., no., pp.1,6, 25-27 Oct.
2012

[3] Chadil, N.; Russameesawang, A.; Keeratiwintakorn, P.,
"Real-time tracking management system using GPS, GPRS
and Google earth," Electrical Engineering/Electronics,
Computer, Telecommunications and Information Technology,
2008. ECTI-CON 2008. 5th International Conference on ,
vol.1, no., pp.393,396, 14-17 May 2008

[4] Michael, K.; McNamee, A.; Michael, M., "The Emerging
Ethics of Humancentric GPS Tracking and
Monitoring," Mobile Business, 2006. ICMB '06. International
Conference on , vol., no., pp.34,34, 26-27 June 2006

[5] Mark J. Timm, Walter A. Dorfstatter “Vehicular
emergency message system” pp.419-424 Nov 1996

[6] http://creately.com/blog/examples/sequence-diagram-
templates/

[7] http://www.satter.org/2008/01/microsoft-mobil.html

[8] http://www.spireon.com/how-gps-tracking-works

[9] http://vast.uccs.edu/~tboult/PAPERS/ion-07-gps-tracking-
wristwatch.pdf

[10] http://www.slideshare.net/neerajkansal7/neerajatulankit

[11]http://www.transitchicago.com/riding_cta/how_to_guides/
bustrackertext.aspx

176 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

PRONTO System: integration between doctors and
pharmacists in the basic health care

Mauro Marcelo Mattos, Luciana Pereira de Araújo, Maria Eduarda Demmer, Shaiane Mafra Casa,

Eric Boeing, Jonathan Rodrigues Ev, João Magnani, Simone Erbs da Costa, Marcio Michelluzzi,
Caíque Reinhold, Rogério Mello Vanti, Jacques Robert Heckmann

Development and Technology Transference Lab, Computer System Department, University of Blumenau
Blumenau, SC, Brasil

mattos@furb.br, lpa@furb.br, medemmer@gmail.com, shaimafra@gmail.com, ericbenck@gmail.com,
jonathanrodriguesev@gmail.com, jogamabnu@gmail.com, si.gen@terra.com.br,

marciomichelluzzi@gmail.com, caiquereinhold@gmail.com, rmvanti@gmail.com, jrh@furb.br

Abstract - This paper present a PRONTO system that is a
management public health system deployment at Blumenau
city. This system integrate the functionalities need to provide
the assistant to the patients. In this paper we related the
experience during the deployment with relation to integration
between doctors and pharmacists. This integration is need
because the doctors prescribe drugs and the pharmacists
dispense them. Until this moment, it was made 25,191
prescriptions using PRONTO system in a total 28 units that
use this system..

Keywords: Health care; prescription; PRONTO system.

1 Introduction
 The PRONTO System is a health care system developed
in Blumenau city with goal to integrate the primary health
care and secondary health care of the city [1]. Blumenau
provides the public health care existing at Brazil. This system
called “Sistemas Único de Saúde” (SUS), in English Health
Unique System offers free health services to citizens, like
medical consults, pharmacy, dental appointment, dispensing
drugs, health proceedings and other [1,2]. This system was
created with Brazilian Constitution at 1988 and has the goal to
allow the free health care for all citizen [3,1].

 Even though the name, in begin, the SUS was not
computerized and the health care was not centralized [1,4].
Each Brazilian city has your system that can be computerized
or not, and the same patient can have many health records [5].
This is possible because when the patient goes to other unity
health care he/she does not bring his health record is created
another health record for him.

 This lack of centralization causes loss for health
proceedings and for the health patient himself [4]. An
example is when the patient go to doctor and the doctor make
a prescription. In the next medical consultation, the doctor

does not know if the patient took off the drugs at the
pharmacy because the pharmacy do not has this information.
And because the doctor did not communicate with the
pharmacists. This is dangerous because the doctor can
continue the treatment thinking that the patient took off the
drug, but in really he did not took.

 With the PRONTO System, the services provided by
SUS are centralized and unified. The medical consultation,
the pharmacy and other services are integrated and each one
can see what the patient do and where the patient go in the
PRONTO.

 This paper presents the relationship between doctors and
pharmacists through the PRONTO System from an experience
report that occurs in Blumenau city. This paper follows. The
related works section presents and discusses about other paper
related to this. The PRONTO System section presents the
system and its functionalities. The experience report section
describes the used system by the health professionals and real
patients in the unity health centers with focus between doctors
and pharmacists. Finally, the discussion section present the
results obtained with the experience and discusses about the
results in a widespread case.

2 Related Works
 In this section we present some paper related with our
research.

 Rigby et al. [6] relate about collaboration between
doctors and pharmacists. They say that the relation between
them during a prescription is important because the
pharmacist works with the drugs and they know the benefits
of each one, and in times, they know about the drugs more
than doctors. Then, for the authors, the pharmacists should
participate of medical consultations and help to make the
prescriptions. This collaboration could be made by a system
and the result for the patient will be most efficient.

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 177

 Teixeira [4] describes the decentralization of SUS
services and points the losses caused by this decentralization.
For author the professional’s health should communicate to
study the patient case and solve a collaborative way his
problems. Teixeira comment that the computerization each
health unit made your system and the information is not
centralized. For author, the decentralization services delayed
healing problem of patient.

 Lehmann et al. [7] discusses about the patient
information shared among the health professionals. Although
the patients knew that their information it were shared and
they knew that is provide relevant information to treatment,
some patient did not agree with this shared information. Other
side, related to shared information with the pharmacists, the
most patient agree with this shared. It is possible because the
patient has more contact with the pharmacists and they know
the pharmacists role because they dispense the drugs for them.

 Baysari et al. [8] realized a study about the need alerts
during drugs dispensation at pharmacies about intolerance and
allergy that patient have. The authors perceive that the
dispenser receive an excess of alerts that need analyzed to
know if it is important or no. Then, the dispensers started to
not read the alerts. In the study, the authors conclude that the
use of alerts on a system must be done carefully so they are
not fired irrelevant way leading to not reading the relevant
information.

 The papers present are related to this because they
discuss the relation among health professionals, with focus in
pharmacists and doctors. The differential of this paper is that
we applied the research in real environment and we obtained a
positive point with the information integration. We do not
promote the direct collaboration among the professionals but
in indirectly way they collaborate one with other.

3 PRONTO System
 The PRONTO system was developed through agreement
between Blumenau City Hall and University of Blumenau
(FURB) by Development and Technology Transference Lab
(LDTT). The PRONTO is a public health management system
that allow to take decisions supported by updated information
while that enables the service optimization processes to
citizen [5,9].

 The PRONTO integrate and computerize the public
health, initially at Blumenau city [5,10]. Although the
PRONTO architecture allow it deployment in other cities.

 The system is developed from weekly meetings that
involve system users, managers, system analysts and designers
with intent to available the functionalities need to public
health network at SUS in Blumenau [10].

 The system also aims to reduce the quantity of care in
units and hospitals with secondary and high complexity [1].
The system is divided in modules to facility the access by
professionals that use it. These modules are: administrative,
treatment, pharmacy, stock, management, health community
agent and center for testing and counseling [1]. Each module
is visible according profile user and it is possible configure
what buttons will be enabled or no inside each one.

 The doctor, for example, has allowed accessing the
treatment module to make his medical consultations. In his
screen, the doctor sees a list with patients that are in treatment
line. Then, the doctor call a patient, make the evolution in his
electronic health record, make the prescription, see the drugs
that the patient took off in the pharmacy and all functionalities
necessaries. Otherwise, the pharmacist has allowed to access
the pharmacy module. In this module he can dispense drugs
for the patient.

 The PRONTO prescriptions has a barcode, then if the
patient goes in a SUS pharmacy with a PRONTO
prescription, the pharmacists write the barcode in PRONTO
system and the dispense screen is filled. With this, the
pharmacist can see better what the drugs the patient need than
the manual prescription. Also, all dispersions were registered
in the system, i.e., a patient cannot get the same drugs before
duration these drugs write in the prescription.

Figure 1 – Part of normal prescription by PRONTO

 A sample of PRONTO prescription can be viewed in
Figure 1. All prescription has a list with drugs. For each drug
have a amount of pill and what time this amount will be last.
Normally, the time corresponds to 30 days. The PRONTO
generate four prescription kinds: normal, type A, type B,
controlled and antibiotic. These are the kinds that SUS offers
and are differentiated by time validation and drug types.

 The PRONTO implements a unique health record, i.e.,
each patient has just one electronic health record in network.
Thus, all professionals that use PRONTO can see what the
treatment patient and all things that the patient through
PRONTO. For reply the data patient to all health units we
implement a replication networks. Each unit has one server

178 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

that replies the data patient for other units. Thus, each unit has
the same data. In Figure 2 it is possible see this structure
related to the electronic health record.

Figure 2 – Electronic health record architecture

4 Experience Report
 The PRONTO development started in August 2011 and
in June 2012 was installed in a health unit to be tested. In this
health unit, the PRONTO already has been used to medical
consultations.

 The PRONTO was installed by deployment team of
university. This team follows the health professionals during
two weeks to help with the system use. Initially, the
professionals had difficulties that were clear with the use.
Related to the patients, some like the system and other do not.
The good side of the system is the integration among the
health services and the data integration. Other hand, some
patients see the control of actions patient like some bad. This
control implies that a patient just can take off drug at
pharmacy if he did not get yet. And if the patient lack of a
medical consultation, the system add a lack for this patient.
And with this information the health professional can have a
control of patient activities.

 In the first health unit the system was tested and
approved. Then, one year later, the PRONTO was installed in
public pharmacies, in total nine pharmacies. Initially we have
much confusion in the pharmacy because each patient has to
register on the system to then take off his drugs. And, if the
patient has already got the drug, he did not take off again.

 After we test in one health unit and pharmacies we began
deploy the PRONTO in other health unity. For each new unit
had training in a laboratory at university with the health
professionals to learn about PRONTO System. Next, the
deployment team follows the professionals at unit during the
treatments.

 After three deployment years we have 28 health units
integrated using the PRONTO. This represents two regions of
the city and about 38% of all health units at Blumenau. These

units are basic health care unit, general ambulatory,
polyclinic, advice testing center (in Portuguese CTA) and
university hospital (secondary treatment). All these units are
integrated, i.e., if the patient goes in one unit, the other units
can see what this patient did and where he went (this
visualization is controlled by user profile).

 With this integration, some doctors began to see the
drugs that the patient uses through the system. This is amazing
because some patient does not remember the drug name that
uses and was other doctor that prescribes it. Then, the doctor
can prescribe new drugs or just renew the last prescription by
the system.

 Initially, the doctor could view the drugs withdraw at the
pharmacy but do not see the last prescriptions. This occurs
because the system was deployed in parts, and some units do
not have the system to make the prescription. But, just with
the visualization of withdraw drugs; the doctors had a better
information about the patient. The screen that represent the
withdraw drugs can be viewed in Figure 3.

Figure 3 – Drugs get in the pharmacy

 This screen is divided in columns that provide
information about the drugs withdraw by the patient in a SUS
pharmacy. During the visits in the health units, we observe
that the most important information is how many days to
complete treatment. This information is important because the
doctor can know if the patient gets the drug in the pharmacy
and the data. Therefore, he can know if the drug is taking
effect as expected.

 With the use system, the doctors feel the need to
prescript drugs that are external to SUS. In other words, the
SUS offers for free some drugs that are more used by citizen.
And these drugs normally are generics. The doctors can
prescribe drugs who did not exist in SUS and who need buy in
a pharmacy. Initially, for this kind of drug, the doctor has
been prescribing in a manual form. For solve this impropriety
we developed a prescription without SUS drugs. Thus, if the
doctor wants prescribe drugs external SUS he can. This
prescription is made on white field and is printed like the
other prescriptions.

4.1 About Numbers
 Until November 2014, the PRONTO System generated
25,191 prescriptions, and of these prescriptions 12,262 were
for different patients.

 Related to kind prescription the Table 1 relates the kind
prescription and the amount prescript of this kind. This shows

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 179

that the most of prescriptions are normal. This is acceptable
because the normal prescription offers the common drugs like
aspirin and paracetamol. Drugs to treat headache, stomach
ache and other common diseases. Type A and type B
prescription are less frequent because this prescription offers
the drugs more dangerous and are most controlled than
normal. And this kind prescription need a number provided by
national health surveillance agency (ANVISA), i.e., the doctor
must have the prescription in a specific form and, if he want,
can prescript by PRONTO too for registered in the system.

Table 1. Prescriptions by kind

Kind Amount

Normal 16,853

Type A 3

Type B 602

Controlled 3,102

Antibiotic 4,631

Total 25,191

 Analyzing the PRONTO prescriptions we observed that
4,137 prescriptions do not have drugs SUS, i.e., this
prescriptions offers just drugs who need buy at a common
pharmacy. This information was taken looking at the
prescriptions that had only the field of external drugs SUS
filled.

5 Discussions
 With the computerizing of the health network Blumenau
was possible integrate the services provided by doctors with
the pharmacists’ services. The most important service
integrated was the prescriptions. With this integration the
pharmacists can read and controlled better the dispensing
drugs because the prescriptions are digitalized. The
pharmacists can see how much drugs the patient took off at
pharmacy and what drugs he use. Also, the pharmacists have
a access to history of dispensations made to patient and can
control if the patient already have the drug.
 In other side, with the computerizing, the doctors have
the integration of electronic health record patient,
prescriptions and can see what drugs the patients withdrew
from the SUS pharmacy. This information helps the doctors
to control the treatment used to care the patient.
 Although the experience, it is possible conclude that
with computerizing and the integration of health services, the
professionals health can control better the treatment patient
because they have information of all units that the patient

went. They can see the problems that occur with the patient
and see the drugs that he takes, even without the need to give
this information.
 With future works, we will continue deploy the
PRONTO System at Blumenau city, and next, we will pretend
deploy in other regions to integrate many cities with the same
system. Thus, the same electronic health record could be
viewed by professional health of many cities.

6 References

[1] Araujo et al., 2014. PRONTO: An integrated health care
system for Blumenau city. WWW/Internet, IADIS, 2014.

[2] Araujo, L. P.; Berkenbrock, C. D., Mattos, M. M., 2014.
Using participatory design in designs phase of collaborative
system. CSCWD, 2014.

[3] Saúde, M. da, 2006. Entendendo o SUS. In Portal da
Saúde, Governo Federal, pp 5-7.

[4] Teixeira, R. R., 2009. Humanização: transformar as
práticas de saúde, radicalizando os princípios do SUS. In
Interface-Comunicação, Saúde, Educação, Vol. 13, No. 1, pp
785-789.

[5] Mattos, M. M. et al, 2013. Sistema de Informação
Ubíquo na Gestão de Saúde Pública. In Saúde: a contribuição
da extensão universitária, Univille, Vol. 1, 1st Ed.

[6] D. Rigby, "Collaboration between doctors and
pharmacists in the community," Australian Prescriber, vol. 33,
no. 6, pp. 191-193, 2010.

[7] Lehnbom et al., 2013. A Qualitative Study of Swedes'
Opinions about Shared Electronic Health Records.
MEDINFO, 2013.

[8] Baysari et al., 2013. Identification of strategies to reduce
computerized alerts in an electronic prescribing system using
a Delphi approach. MEDINFO, 2013.

[9] P. M. de Blumenau. (2010) Terceira idade - fundao pro-
familia. Prefeitura Municipal de Blumenau. [Online].
Available: http://www.blumenau.sc.gov.br/gxpsites/hgxpp
001.aspx? 1,19,294,O,P,0,MNU;E;117;2;MNU;,

[10] LDTT. (2012) Pronto gestao de saude publica.
Laboratorio de Desenvolvimento e Transferencia de
Tecnologia (LDTT) - Universidade Regional de Blumenau
(FURB). [Online]. Available: http://www.furb.br/ldtt/
projetos/pronto-gestao-de-saude-publica.

180 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

SESSION

MODELING LANGUAGES, UML + PETRI NETS,
SOA AND APPLICATIONS + PORTABILITY +

REQUIREMENTS ENGINEERING and ASPECT
ORIENTED SOFTWARE ENGINEERING

Chair(s)

TBA

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 181

182 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

Modeling Elevator System With Coloured Petri Nets

Mohammed Assiri, Mohammed Alqarni and Ryszard Janicki
Department of Computing and Software

McMaster University

Hamilton, Ontario, Canada L8S 4L8

Abstract— A fairly general model of the elevator system
is presented. Coloured Petri Nets (CPN) and CPN tools are
adopted as modeling tools. The model, which is independent
of the number of floors and elevators, covers different stages
of the elevator system in substantial detail. The model assists
simulation-based analysis of different algorithms and rules
which govern real elevator systems. The results prove the
compatibility and applicability of this model in various situa-
tions and demonstrate the expressive power and convenience
of CPN.

Keywords: Formal Specification, Elevator System, Software

Specification Benchmarks, Coloured Petri Nets

1. Introduction
The elevator system is one of the software engineering

benchmarks which are frequently used to test the expressive

power, readability, and convenience of various formal speci-

fication techniques [1]. Petri Nets is one formal specification

technique.

In [2] and [3], dynamic scheduling of the elevator system

was modeled by Petri Nets, and hybrid Petri Nets. Timed

Petri Nets, Abstract Petri Nets and Elevator Control Petri

Nets were used in [4], [5], and [6] respectively. Furthermore,

the elevator system was modeled by Coloured Petri Nets in

[7], and Timed Coloured Petri Nets in [8] and [9].

Nevertheless, all of these previous models are either static

or dependent on a particular number of elevators and floors

(often one place was required for each elevator car), the

concept of colour as a data type was not fully utilized, or

other formalisms such as UML were substantially involved.

Our model is independent of the number of floors and

elevators and covers different stages of the elevator system

in substantial detail. We believe our model is flexible enough

to be adapted to different algorithms and rules, and may

eventually evolve into a ’standard’ formal model of the

elevator system.

2. The Elevator System
Elevator systems are an integral aspect of buildings from

the point at which they are first designed. With high-rise

buildings being the typical candidate for elevator systems,

such systems are usually very complex. Multiple elevators

must be controlled by a centralized control mechanism. The

complexity of these elevator systems arises from factors

such as scheduling needs, resource allocation, and stochastic

control, to name a few. Handling these jobs usually results

in systems behaving as discrete event systems [10].

The elevator system is usually defined as follows [1]: An

elevator system is to be installed in a building with m floors

and n cars. The elevator and the control mechanisms are

supplied by the manufacturer. The internal mechanism of an

elevator system is assumed (given). The problem concerns

the logistics of moving cars between floors according to the

following constrains:

a. Each elevator’s car has a set of buttons - one for each
floor. Pressing these buttons signals the elevator to move to
the corresponding floor.

b. On the wall outside the elevator each floor has two
buttons (with the exception of the ground and the top floors).
One button is pressed to request an upward moving elevator
and another button is pressed to request a downward moving
elevator. If both buttons are pressed, then each direction is
assigned to a different car.

c. When an elevator has not received any requests for
service, it should be held at its parking floor with its doors
closed until it receives further requests.

d. All requests for elevators from floors (i.e. hall calls)
must be serviced eventually. The applied algorithm controls
the priority of floors.

e. All requests for floors within elevators (i.e. car calls)
must be serviced eventually, with floors usually serviced
sequentially in the direction of travel.

f. Each elevator’s car has an emergency button which
when pressed causes an alarm. The elevator is then deemed
"out of service". Each elevator has a mechanism to cancel
its "out of service" status.

Our model is based on the above description.

3. Coloured Petri Nets
Coloured Petri Nets (CPN), first proposed in [11] and later

substantially modified and enhanced in [12], are an extension

of Petri Nets which are often used to model behaviours

of rather complex systems. CPN have preserved the useful

properties of Petri Nets while at the same time extending

the initial formalism to allow for distinction between to-

kens. Coloured Petri Nets (CP-nets or CPNs) is a graphical

language for constructing models of concurrent systems and

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 183

analysing their properties. CP-nets is a discrete-event mod-

elling language combining the capabilities of Petri Nets with

the capabilities of a high-level programming language. Petri

Nets provide the foundation of the graphical notation and the

basic primitives for modelling concurrency, communication,

and synchronisation. Coloured Petri Nets allow tokens to

have a data value attached to them. This attached data value

is called token colour. Although the colour can be of any

arbitrarily complex type, places in CPNs usually contain

tokens of one type. This type is referred to as the colour

set of the place.

A semi-formal definition can be given as follows:

A Coloured Petri Net is a tuple:

N = (P, T,A,Σ, C,N,E,G, I)

where:

• P is a set of places.

• T is a set of transitions.

• A is a set of arcs.

• In CPNs sets of places, transitions, and arcs are pairwise

disjoint P ∩ T = P ∩A = T ∩A = ∅
• Σ is a set of colour sets defined within CPN model.

This set contains all possible colour, operations, and

functions used within CPN.

• C is a colour function which maps places in P into

colour in Σ.

• N is a node function which maps A into (P × T) ∪
(T × P).

• E is an arc expression function which maps each arc

a ∈ A into the expression e. The input and output

types of arc expressions correspond to the type of nodes

which the arc is connected to.

• G is a guard function which maps each transition

t ∈ T into guard expression g. The output of the guard

expression should evaluate to Boolean value true or

false.

• I is an initialization function which maps each place

p into an initialization expression i. The initialization

expression must evaluate to a multiset of tokens with a

colour corresponding to the colour of the place C(p).

CPN support hierarchical modeling and are equipped with a

modeling language called CPN ML which is based on the

standard functional programming language ML. There are a

variety of tools that can be used. In this paper the tools from

[13] have been used.

For more details and theory of CPN, the reader is referred

to [14].

4. CPN-based Modelling of Elevator Sys-
tem

Due to the complexity of the elevator system and the

desired flexibility of the structure, the proposed model is

composed of five major interconnected but independent sub-

models. These sub-models include the car-structure sub-
model, the hall-call sub-model, the car-call sub-model,
the system-cycle sub-model, and the hierarchical parking-
optimizer sub-models. The functions and connections be-

tween sub-models are described as follows: The car-structure

sub-model represents the elevator’s cars. It is at the centre of

all other sub-models that concurrently control the elevator’s

cars. Typically, an elevator car is requested by two types of

controls: either a hall-call or a car-call. As the names suggest,

a hall-call is placed by pressing a button located in the

hallway of a given floor while a car-call is place by pressing

a button inside the car of the elevator. When a hall-call is

placed, by relying on algorithms the hall-call sub-model will

assign the hall-call to the appropriate car of the car-structure

sub-model. Similarly, the car-call sub-model coordinates the

placed car-calls with the cars of the car-structure sub-model.

The system-cycle sub-model operates the cars of the car-

structure sub-model to service the requested calls. Finally,

the parking-optimizer sub-models reduce the waiting time

between the placing hall-call and the arrival of the assigned

car by constantly electing the holding floors of the idle cars.

4.1 Car-Structure Sub-Model
This sub-model (Figure 1) consists of just two places Cars

and Database that also belong to other sub-models. The first

place has the colour set Cars, which is a record colour set

or the Cartesian product of the sets described in Table 1.

The second place has the set of colours Database (defined

in Table 2). In principle, this is a list of all the necessary

information about the states of cars. This list is used by

the algorithms of the hall-call sub-model. Both places are

initialized dynamically by the functions initialize cars and

initialize database respectively.

Fig. 1: The Car-Structure Sub-Model

Table 1: The definitions of colour set Cars

Colour Sets Definitions

Car ID {i | i ∈ Z
+ ∧ i ≤ total number of cars}

Range {r | r ∈ Z
+ ∧ lowest floor ≤ r ≤ highest floor}

Status {up, down, emergency, idle, out of service}
Desired Floors {[l] | l ∈ Range}
Call Issuer {request, system, non, reservation}
INT {n | n ∈ Z}
Cars { (car id, current floor, status, parking floor,

desired floors, call issuer) | car id ∈ Car ID,
current floor ∈ Range, status ∈ Status,
parking floor ∈ Range, desired floors ∈
Desired Floors, call issuer ∈ Call Issuer}

184 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

Table 2: The definition of colour set Database

Colour Sets Definitions

Car Info {(current floor, status, destinations, car id) |
current floor ∈ Range, status ∈ Status,
destinations ∈ Desired Floors, car id ∈ Car ID}

Database {[d] | d ∈ Car Info}

In the colour set Cars, the parking floor indicates which

floor the car is held when idle. The initial value of the

parking floors is calculated in general by the following

equations:

Floor No. = (highest floor no. − lowest floor no.) +1
Scope = | floors no. ÷ numbers of cars |

Scope’s Head = ((scope * car id) − (scope − 1) +
(lowest floor no. −1))

Scope’s Tail = (scope ∗ car id) + (lowest floor no. −1)

Thus, a parking floor of a car is assigned optionally by either

Scope’s Head or Scope’s Tail. Otherwise the parking floor

may be typed manually for each car, especially in cases when

the above equations are impractical.

The other elements of the colour set Cars are self-

explanatory.

4.2 The Hall-Call Sub-Model
This sub-model assigns a hall-call to the most appropriate

car based on the applied given algorithms (which are sub-

ject to changes and replacements). Furthermore, the model

generates hall-calls from arbitrary floors and a selected floor

in order to facilitate efficiently the examination of various

rules and algorithms during the simulation-based analysis.

The processing of hall-calls is initialized from place

requested call where each token represents a placed hall-

call of colour set Hall Call. Every token has an appropriate

direction and a floor number where the hall-call was placed.

Assigning a hall-call to a car requires the firing of transition

Assign Hall Call. Transition Assign Hall Call is enabled if

and only if its guards, which represent appropriate rules,

are holding. The specific rules that must be satisfied are

comprised of the following:

1) the selected car is either idle or traveling toward the

direction of the hall-call;

2) the selected car is not reserved; and

3) the selected car is elected by the applied algorithm.

After firing transition Assign Hall Call, the token of a placed

hall-call is removed from place requested call and assigned

to the desired-floors list of a selected car in place Cars with

a guided direction, i.e. up or down, if the selected car is idle.

Two algorithms - namely the nearest-car algorithm [15]

and the scope algorithm which process the assignment of

hall calls to cars - are implemented separately to examine

the model’s ability of adopting various algorithms and rules.

Place Database facilitates the adoption of multiple differ-

ent algorithms that require simultaneous access to all cars’

states; hence, other algorithms can easily be adopted.

Table 3: The definition of colour set Hall Call

Colour Set Definition

Hall Call {(hall call floor, status) |
hall call floor ∈ Range, status ∈ Status}

The nearest-car algorithm starts by analysing the token

of place Database from Table 2. First, the cars with proper

status (i.e. cars that are travelling toward the hall call request

or that are servicing no calls) are extracted from the token.

Each car is represented by a single tuple, so selection of

cars occurs by extracting appropriate tuples. Once the proper

cars are elected, the distances between the hall-call floor and

cars’ current floors are calculated by the absolute value of the

difference between current floors and the hall-call floor for

each car. Accordingly, the hall-call is assigned to the car with

the minimum distance to the hall-call floor. Additionally,

in this paper we have improved the nearest-car algorithm

by further calculation of time consumed by the car’s stops

between the hall-call floor and the car’s current floor. Thus,

travel times plus the number of served calls between car’s

current floor and the hall-call floor are calculated for each

car. Based on this, the car with the expected minimum

waiting-time is assigned to serve the hall-call.
The scope algorithm is usually employed in express

elevators and sky-lobby floors where each car is forced to

serve a specified range of floors with an allowance of transit

floors. We implement the scope algorithm as extra guards

on transition Assign Hall Call. For instance, a guard that

identifies the range of floors for each car is written as:

H ≤ A ≤ T.

where:

H = the head floor of the car’s scope
A = the answered hall-call floors
T = the tail floor of the car’s scope

The hall-call model also allows for a simulation-based

analysis of different algorithms by controllably producing

two classes of floors’ numbers: arbitrary, where numbers

range from lowest to highest floors; and an identified num-

ber of a specific floor that is requested repeatedly. Some

parameters (in Table 4) are defined for controlling the pro-

duction of hall calls. Moreover, a produced floor’s number

is associated with a direction based on the two rules. First,

a floor’s number equates the highest floor that is associated

restrictedly with the down direction. Conversely, a floor’s

number equates the lowest floor that is associated restrictedly

with up direction. The other floors’ numbers are associated

non-deterministically (modeled as a uniformly distributed

random choice) to upward or downward direction.

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 185

Fig. 2: The Hall-Call Sub-Model

Table 4: The Parameters of The Hall-Call Sub-Model

Parameters Legal values

Producing mode {finite, infinite}
Times of finite hall calls {y | y ∈ Z ∧ 0 ≤ y}
The most requested floor {r | r ∈ Range}
Duplication of requested floor {d | d ∈ Z ∧ 0 ≤ d}
The applied algorithm {minimum waiting, nearest, scope}
Production’s pause number {p | p ∈ Z

+}

4.3 The Car-Call Sub-Model
This sub-model provides a coordination between the cars

and the car-calls. Additionally and similarly to the hall-

call sub-model, this sub-model includes generators for both

arbitrary and identified floors’ numbers.

The coordination between cars and requested car-calls are

represented by tokens in place car call with the colour set

Range, which is a floor number in the range between the

lowest and the highest floor. Placing the car-call in a car

demands firing transition Coordinate which is enabled when

its guards are satisfied in respect to the producing mode’s

state and the applied algorithm on the hall-call sub-model.

For instance, in the scope algorithm the car serves only

within the floors of the car’s defined scope. After firing

transition Coordinate, the placed car-call is removed from

place car call and inserted into the car’s desired-floors list

with an appropriate direction if the car is idle. Similarly, the

list of the specified calls, in place specific floors’ num by

colour set Specific Floors (see Table 5), is also merged.

Table 5: The definition of colour set Specific Floors

Colour Set Definition

Specific Floors {(car id, specific calls, repeated times) |
car id ∈ Car ID, Specific calls ∈ Desired Floors,
repeated times ∈ Z}

The car-call model also features two mechanisms that pro-

duce arbitrary car-calls where each call is placed individually

into a car and a list of specified calls are placed entirely to

each available car by transition Coordinate. Table 6 outlines

some of the parameters of car control.

Table 6: The Parameters of The Car-Call Sub-Model

Parameters Legal values

Producing mode {finite, infinite}
Times of finite car calls {x | x ∈ Z ∧ 0 ≤ x}
Most desired floors {[f] | f ∈ Range}
Frequency of desired floors {d | d ∈ Z ∧ 0 ≤ d}
Production’s pause number {p | p ∈ Z ∧ 0 < p}

4.4 The System-Cycle Sub-Model
This sub-model deals with the system cycle of the eleva-

tor’s cars during the operation of the elevator system. Each

elevator’s car experiences three separate stages of mainte-

nance, arrival, and transition (see Figure 4). Furthermore, the

system-cycle sub-model has basic parameters which are very

186 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

Fig. 3: The Car-Call Sub-Model

convenient for simulation-based analysis (defined in Table

7).

Table 7: The Parameters of The System-Cycle Sub-Model

Parameter Legal value

Car’s number {i | i ∈ Z
+}

Lowest floor number {n | n ∈ Z
+ ∧ n < highest floor}

Highest floor’s number {m | m ∈ Z ∧ lowest floor < m}
Restart cars automatically {yes, no}

The maintenance stage models the suspension of a car

which is caused either by an emergency case when the car’s

emergency button is pressed, or by an operation failure case

when an error occurs during the execution of the elevator-

system model. The suspension is the result of firing transition

Maintain which has the highest priority in the entire model

(i.e. when it is enabled, all other transitions in the model are

blocked). Therefore, when the status of a car is "emergency"

or "out of service", then transition Maintain fires and the

car’s token is transferred temporarily from place Cars to

place out of service. At this point the token in place Database
is updated accordingly. Hence, the car is not accessible

by any other sub-models that have no access to place out
of service. Later, a pending car can be restarted either

automatically or manually based on the value of parameter

restart cars automatically. If it is assigned to "yes", then

transition Restart is enabled immediately. However, if the

parameter is set to "no", then restarting pending cars requires

manually altering the status of the car to a different value

other than "emergency" or "out of service". In both cases,

firing of transition Restart results in a car’s token being

returned to place Cars and place Database being updated;

therefore, the car is accessible by other sub-models.

The transition stage describes the process of moving

elevator cars between floors. This is modeled by the firing of

transition Transfer, which is enabled if transition Maintain
is not, the car’s desired-floors list is not empty, and the

car’s current floor matches no calls of the desired-floors list.

After firing transition Transfer, the car’s token is updated as

follows. If the car’s desired-floor list has calls beyond the

car’s current floor, it continues shifting in the same direction.

Otherwise its direction is reversed. In both cases, the token

in place Database is updated accordingly.

Once a car reached its desired destination, it is in the

arrival stage. At this stage, transition Arrive is enabled if

transition Maintain is disabled and the car’s current floor

matches a requested call of the desired-floors list. After firing

transition Arrive, car’s token is updated by dropping the

requested floor from the car’s desired-floor list. Additionally,

the car’s state is set to one of three cases. If the car’s

desired-floor list has more calls, then it continues serving

the requested calls. Otherwise, the car is set to idle if

the car’s current floor agrees with its parking floor or

alternatively the car is dispatched to its parking floor with an

appropriate direction. Finally, place Doors represents doors’

operations. Since such operations are almost trivial, they

have been included in one place that can be converted into

an hierarchical sub-model to show all of the doors’ activities.

4.5 The Parking Optimizer Sub-Models
Holding idle cars on or near floors where most hall-calls

are placed substantially improves passenger satisfaction and

the system’s energy usage and efficiency [15]. Therefore,

cars are initially distributed in fair distances between the

lowest and highest floors. Subsequently, the parking op-

timizer sub-models continuously analyse the placed hall-

calls and then assign the elected floors to the cars. The

parking optimizer models include the election sub-model

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 187

Fig. 4: The System-Cycle Sub-Model

and the position sub-model. In Table 9, the definitions of

the parameters which facilitate the control of the parking

optimizer model are presented.

Table 8: The Parameters of The Parking Optimizer Sub-

Models

Parameters Legal values

Parking system state {”enable”, ”disable”}
Analyzing hall calls { x | x ∈ Z }

All models of the parking optimizer sub-model are self-

explanatory. However, it is also important to first note that

the procedures of all models must be sequential. Therefore,

some transitions have priorities which are represented by

numbers that appear in the bottom-left corner of each

transition. The value of these numbers implies the order

of enabled transitions. Second, the fusion place Lock of
the system (Lock Sys) is functionally similar to an inhibitor

arc. If there is a token in a place, an inhibitor arc disables

a transition (see [16]). For example, if Lock Sys has the

value "0", then transition Count Call is disabled: this locks

the system from analysing more hall calls. This place is

critically important because when a car is in the maintenance

stage of the system-cycle sub-model and not accessible,

then the parking optimizer sub-models cannot successfully

assign all elected floors. Consequently, the parking optimizer

sub-models are suspended until the ongoing maintenance is

completed.

After election sub-model (in Figure 5(a)) counts the

repetition of all placed hall-calls and then nominates the

floors where most hall-calls have been repeatedly placed,

the position sub-model (in Figure 5(b)) alters the cars’

parking floors with respect to their scopes. This process

works to approximately guarantee fair distances between

cars to reduce the total wait times.

Table 9: The Colour Sets of The Parking Optimizer Sub-

Models

Colour Sets Definitions

Floors Statistics {(floor,times) | floor ∈ Range, reputation ∈ Z}
Scope {(scope id,prev,next,elected floors) | scope id ∈ Car ID,

prev ∈ Z, next ∈ Z, elected floors ∈ INT List}
Scope Statistics {(scope id,floors’ number) | scope id ∈ Car ID,

floors’ number ∈ Z}
Identified Floor {(floor id,floor’s number) | floor id ∈ Car ID,

floor’s number ∈ Range}

5. Analysis
Two analyses techniques were applied. The first technique

is the reachability analysis by means of the State Space tool

[17]. This tool verified and generated an automatic report.

The proposed model has dead markings that occur in cases

such as a placed hall-call with no available car. Transition

Maintain and transition Restart are dead transitions which

indicate no operation failure of the proposed model. The

second technique is the simulation-based analysis by means

of CPN Tools. Although this technique is flexible, it is

also time-consuming. However, the proposed model was

188 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

(a) The Election Sub-Model

(b) The Position Sub-Model

Fig. 5: The Parking Optimizer Sub-Models

simulated repeatedly with different settings, and the entire

definition of the system was achievable.

6. Conclusion
We have provided a fairly general CPN-based model of

the elevator system. The model covers various aspects of

the elevator system and is divided into five sub-models that

can be analyzed independently. Such division allows for

easier tracking of errors and faults in the elevator system.

The flexibility of the model allows for easy adaptation of

different algorithms and rules depending on the actual needs.

Acknowledgements
The first author was supported by Prince Sattam bin

Abdulaziz University, the second author was supported by

the Ministry of Education of Saudi Arabia, while the third

author acknowledges partial support by NSERC Discovery

Grant of Canada.

References
[1] C. Ghezzi, M. Jazayeri, and D. Mandrioli, Eds., Fundamentals of

Software Engineering, 2nd ed. Pearson Prentice Hall, 2003.
[2] C.-H. Lin and L.-C. Fu, “Petri net based dynamic scheduling of an

elevator system,” in IEEE International Conference on Robotics and
Automation, vol. 1, 1996, pp. 192–199.

[3] Y.-H. Huang and L.-C. Fu, “Dynamic scheduling of elevator systems
over hybrid Petri net/rule modeling,” in IEEE International Confer-
ence on Robotics and Automation, vol. 2, 1998, pp. 1805–1810.

[4] Y. C. Cho, Z. Gagov, and W.-H. Kwon, “Timed Petri net based
approach for elevator group controls,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems, vol. 2, 1999, pp. 1265–
1270.

[5] E. S. Etessami and G. S. Hura, “Abstract Petri net based approach
to problem solving in real time applications,” Fourth IEEE Region 10
International Conference, pp. 234–239, 1989.

[6] Y. Ahmad, Farooq and Fakhir, Ilyas and Khan, SherAfzal and Khan,
“Petri net-based modeling and control of the multi-elevator systems,”
in Neural Computing and Applications, vol. 24. Springer London,
2014, pp. 1601–1612.

[7] J. M. Fernandes, J. Baek Jorgensen, and S. Tjell, “Requirements
Engineering for Reactive Systems: Coloured Petri Nets for an Elevator
Controller,” in 14th Asia-Pacific Software Engineering Conference,
2007, pp. 294–301.

[8] D. Liqian, Z. Qun, and W. Lijian, “Modeling and analysis of elevator
system based on timed-coloured Petri net,” in Fifth World Congress
on Intelligent Control and Automation, vol. 1, 2004, pp. 226–230.

[9] J. Ye, J. Li, F. Deng, and C. Wang, “Simulation of the intelligent
control circuit based on Petri net,” in 6th International Conference on
Computer Science & Education, 2011, pp. 66–69.

[10] P. J. Ramadge and W. M. Wonham, “The control of discrete event
systems,” in Proceedings of the IEEE 77.1, 1989, pp. 81–98.

[11] K. Jensen, “Coloured Petri Nets and the Invariant Method,” Theoret-
ical Computer Science, vol. 14, no. 3, pp. 317–336, 1981.

[12] K. Jensen, Coloured Petri Nets. Springer, 1994.
[13] CPN Tools AIS Group, The University of Technology, Eindhoven,

The Netherlands, http://www.cpntools.org.
[14] K. Jensen and L. M. Kristensen, “Coloured Petri Nets Modelling and

Validation of Concurrent Systems.” Berlin: Springer, 2009.
[15] G. Barney, Elevator Traffic Handbook: Theory and Practice. Taylor

& Francis, 2003.
[16] R. Janicki and M. Koutny, “Semantics of inhibitor nets,” Information

and Computation, vol. 123, no. 1, pp. 1–16, 1995.
[17] K. Jensen, S. Christensen, and L. M. Kristensen, “CPN Tools State

Space Manual,” Department of Computer Science, Univerisity of
Aarhus, 2006.

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 189

Semantic Approach for Traceability Link Recovery
using Uniform Resource Identifier (STURI)

Mazen Alobaidi, Khalid Mahmood

Department of Computer Science and Engineering

Oakland University,Rochester, USA

Email: malobaid@oakland.edu,mahmood@oakland.edu

Abstract—The efficiency and effectiveness of traceability link
recovery in requirements management is becoming increasingly
important within Requirement Engineering due to the com-
plexity of project developments, such as continuous change in
requirements, geographically dispersed project teams, and the
complexity of managing the elements of a project - time, money,
scope and people. Therefore, the traceability links among the
requirements artifacts, which fulfill business objectives, is so
critical to reducing the risk and ensuring the success of products.
To that end, this paper proposes a semantic based traceability link
recovery (STURI) architecture that presents the meaning of texts
in Uniform Resource Identifier derived from Linked Data. To the
best of our knowledge, this is the first architectural approach
that uses Uniform Resource Identifier for finding similarities
among requirements and among the automation of the recovery
traceability.

Keywords-Semantic Web, NLP, Linked Open Data, Document
Similarity, Uniform Resource Identifier

I. INTRODUCTION

The success of the project relies on robust requirement

management tools. Requirement management is the most

effective phase of project development. As a requirements

management expert, Peter Zielczynski defines the major steps

in requirements management as follows: establishing a plan,

eliciting requirements, developing the vision document, cre-

ating use cases, supplementary specification, and finally a

system design. Indeed, the backbone of requirements manage-

ment is “Requirements Traceability” by which it is possible

to map individual artifacts of requirements with other artifacts

in the system. In addition, requirements traceability identifies

and outlines the lineage of each requirement, apart from

its backward traceability (derivation), its forward traceability

(allocation) and its association to other requirements. Trace-

ability, according to the IEEE Standard Computer Dictionary

[1], is defined as the degree to which a relationship can be

established between two or more artifacts (document) of the

development process. Traceability is employed to guarantee

solution conformance to requirements and to assist in scope

and change management, risk management, time management,

cost management, and communication management. Further-

more, it is used to distinguish missing functionality or to

identify if implemented functionality is not supported by a

specific requirement.

In current approaches, the relationship among requirement

engineering artifacts is represented by their Semantic Similar-

ity and Semantic Relatedness. Semantic Similarity is usually

defined by considering the lexical relations of synonymy,

or equivalent words and hyponymy, or the type-of relation.

Semantic Relatedness, on the other hand, extends the definition

of similarity by examining all types of semantic relations

that connect two concepts. Such relations include, in ad-

dition to the above-mentioned two similarity relations, the

antonym, metonymy, or the relations between wholes and

parts, functional relations of frequent association as well as

other non-classical relations. Although, enormous progress

has been made in traceability link recovery using the current

approaches, our proposed approach is more unique from the

perspective of sharing information, this has been achieved by

making use of a unique and uniform mechanism of identifica-

tion, the Uniform Resource Identifier (URI) [3]. Our approach

can be summed up in the twofold principle: considers all

terms/words in a document as a resource and each resource

uniquely identifies web resources.

The recovery/generation of the links of the traceability

matrix, which utilizes URI among the artifacts, will be highly

accurate as all nouns are compared with respect to URI rather

than a key-word, synonymy, hyponymy, wholes and parts

relation. One of the motivations of this project is to develop an

automated traceability matrix for project managers using a Se-

mantic based Traceability Link Recovery (STURI) framework

that will use Uniform Resource Identifier, the Linked Open

Data (LOD) [7], and Natural Language Processing [10] to

find association among various artifacts of projects.

The paper is structured as follows. The next section is the

related works. Section 3 contains the preliminary. In section 4,

the concept, architecture and design of STURI are presented.

The evaluation and results are shown and discussed in section

5, and the paper is concluded in section 6.

II. RELATED WORKS

There are two distinct disciplines of research that are asso-

ciated to our proposed approach, namely Information Retrieval

technique (IR) [11]–[13], and Semantic technique [25]–[27].

190 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

A. Information Retrieval Technique

Recovery traceability links has been extensively studied in

Information Retrieval (IR). IR is mainly defined as discovering

processes of nominee traceability links on the basis of the

similarity between software engineer artifacts that can be

transforming in some unstructured test format [14]. Antoniol,

Giuliano et al. [14] proposed a method based on Information

Retrieval (IR) to establish and maintain traceability links

between source code and free text document where documents

are ranked against queries constructed from the identifiers of

source code. Ali et al. [16] proposed an approach to establish

and maintain traceability links between source code, software

requirements, and software repository requirements as well

as improve the precision and recall of information retrieval

(IR) techniques by showing that mining software repositories

(MSR) and combining the mined outcomes with IR techniques

improves the precision and recall of requirement traceability

links. Marcus et al. [17] proposed approaches that advocates

for the use of latent semantic indexing (LSI) to recover

traceability links between documentation and source code. .

All the above proposed approaches based on IR, however,

lack accuracy (precision, recall) [16], perform poorly in short

context [18], and disregard word order, syntactic relations,

morphology, semantic relation, and word ambiguities [19].

B. Semantic Technique

Semantic Similarity and Semantic Relatedness have recently

received the attention of researchers who are studying trace-

ability link recovery. Semantic Similarity is usually defined by

considering the lexical relations of synonymy, or equivalent

words, and hyponymy, or the type-of relation [20]–[22], [26],

[27]. Semantic Relatedness, on the other hand, extends the

definition of similarity by examining all types of semantic

relations that connects two concepts [23]–[25]. Zhang, Witte

et al. [19] proposed an approach which creates traceability

links between source code and documentation software that

can be summarized as follows: building ontologies, modeling

the domains of source code and software documents, creating

a knowledge base by automatically population these ontologies

through code analysis and text mining, and finally establish-

ing traceability links between code and documents through

ontology alignment. Falbo et al. [28] contributed to this se-

mantic approach by proposing an extended semantic document

management platform for the requirement domain by using

semantic annotations in requirement documents. Furthermore,

there is an exploration of the conceptualization established

by the proposed software requirements, with reference to its

ontology and the generation of the traceability matrix, both

of which are based on a dependency relationship and related

axioms (reasons). Mahmoud et al. [29] also offered another

appoint, based on semantic relatedness, which brings human

judgment to an earlier stage of the tracing process by inte-

grating it into the underlying retrieval mechanism. This would

use a measure based on Wikipedia, namely Explicit Semantic

Analysis. Although all the mentioned approaches improve

accuracy, they have some limitations: only one database is

used, which recovers traceability between source codes and

software artifacts only, which in turn ignores word ambiguities.

III. PRELIMINARY

A. Linked Data

The Web enables us to link related documents. Similarly it

enables us to link related data. The term Linked Data refers to

a set of best practices for publishing and connecting structured

data on the Web. Key technologies that support Linked Data

are URIs (a generic means to identify entities or concepts

in the world), HTTP (a simple yet universal mechanism for

retrieving resources, or descriptions of resources), and RDF (a

generic graph-based data model with which to structure and

link data that describes things in the world) [8].

B. Linking Open Data

Linking Open Data (LOD) project is to extend the Web with

a data commons by publishing various open datasets as RDF

on the Web and by setting RDF links between data items from

different data sources.

Fig. 1. Semantic based Tractability Link Recovery Architecture (STURI)

IV. SEMANTIC BASED TRACTABILITY LINK RECOVERY

ARCHITECTURE (STURI)

Due to the complexity of the product development within

diverse industries, it is imperative that the recovery of trace-

ability links in requirements management be efficient and

effective. We propose a solution that derives document simi-

larities from the Uniform Resource Identifier contained in the

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 191

compared Documents. Figure 1 shows the system architec-

ture of components. Our architecture is comprised of three

components. Namely: “Natural Language Processing (NLP)”,

“URI extraction” , and “Inference Engine”. The following

sections present a detailed description of each of the above

components. Since semantic similarity between Documents is

used URI semantic similarity, we will first describe our method

for measuring URI semantic similarity.

A. URI semantic similarity

Approaches for measuring semantic similarity have been

developed in the previous decade. Different similarity methods

have proven to be useful in some specific applications: namely,

artificial intelligence, natural language processing, information

retrieval, and data mining. we proposed a document similarity

measure which provides the greatest correspondence to com-

mon sense. Given two documents, document a and document

b, we need to find the semantic similarity s(a,b). We can

do this by implementing and evaluating using LOD as the

underlying reference ontology, we get all URIs for each word

in documents ’a’ and ’b’ and we measure the similarity based

on our weighting scheme and overlapping URIs.

B. NLP module

The NLP module uses Apache Lucene framework [4] for

uploading the artifacts, tokenization, stop words, stemming,

and lemmatization [10]. Tokenization is the process that splits

the artifacts into tokens, stop words are words which are

filtered out, where stemming and lemmatization are the process

of converting or removing the inflexional, derivational form to

a common world form.

C. Uniform Resource Identifier Extraction module

The important tasks of this module are extracting RDF

statements from LOD, building RDF store, building SPARQL

query, executing query, URI disambiguation, and creating URI

result map collocation. The process of this module is as follow:

1) Extraction RDF triples and building RDF graph store:

to extract triples from LOD we download Dataset and

read all RDF triples of the dataset. Also, we created

RDF graph store using Jena tools.

2) Building SPARQL query: to find all the URIs of a

resource, we dynamically construct SPARQL query that

match all subjects of RDF triple with input resource

term.

3) URI Disambiguation: We use the Naive Bayes classi-

fication technique [31] to classify the document and

the dereferenced URI resource. In turn, we conducted a

string match between classified classes of that document

and resource; if there is a match, then we consider the

URI as a candidate

4) Creating URI result Map: to improve the performance

of Inference engine, we constructing map collection to

hold all the URIs of document.

Algorithm 1 shows the pseudo code of our implementation

Algorithm 1 URI Extraction module Pseudo code

1: procedure GET-TRIPLES (file)

2: dataset ← createDataSet(file)
3: model ← dataset.getDefualtModel()
4: return model
5: end procedure
6: procedure GET-URISET (Word, model)
7: Querystring ← sprqlFactory.creat(Word)
8: Query ← QueryFactory.creat(Querystring)
9: result ← Query.execute(Querystring,model)

10: return result
11: end procedure

D. Inference Module

The Inference module functionality maintains a count for

the Overlapping of URI between two artifacts and the cal-

culation of a “similarity score”. In addition, it generates

candidates for traceability links. Figure 2 shows the URI

semantic algorithm data structure. This module provides the

following:

1) Reading all URIs of each term in the text

2) Building two space dimension matrix that represents

terms in URIs

3) Creating graph models represent all terms that shares

same URI

4) Recording the length of the path between nodes in a

graph. The path represents the distance between two

terms

5) Calculating the average length path for each graph

6) Creating URImap collection based on the average length

path greater than or equal to URIThreshold

7) Using the URImap to measure the relatedness between

two texts by calculating the URI overlapping

Fig. 2. URI Semantic Algorithm Structure

192 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

After the URI sets of two documents are formulated, Se-

mantic similarity between documents can be calculated by

Sim(URIMAPa,URIMAPb) =
URIMAPa

⋃
URIMAPb

URIMAPa

⋂
URIMAPb

(1)

V. EVALUATION

In order to measure the efficiency and the accuracy of

the proposed framework, we implemented an experimental

framework using General Architecture and Engineering Text

Lucene and Jena which are Apache development environments

that provide a rich set of interactive tools for the creation,

measurement and maintenance of software components for

processing human language. Ultimately, in order to simulate a

real world scenario, We have selected three different datasets.

A. DataSets

The datasets used are illustrated below and see table I.

1) MODIS: The NASA Moderate Resolution Spectrometer

(MODIS) dataset [30] is a small dataset created from the full

specification (high- and low-level requirements documents) for

the MODIS space instrument software. This dataset contains

19 high-level requirements, 49 low-level requirements, and a

validated true positive 41 links that we refer to as the “True

traces”.

2) CM-1: The dataset consists of a complete requirement

and a complete design document for a NASA space instrument

[30]. The dataset contains 235 high level and 220 low-level

requirements. The trace for the dataset was manually verified.

The "theoretical true trace" (answerset) built for this dataset

consisted of 361 correct links. Each of the high and low-leve

files contain the text of one requirement element.

3) Standard Company: A dataset of requirements manage-

ment tools from Borland CaliberRM. The dataset contains 27

high level and 27 low-level requirements. The "theoretical true

trace" (answerset) built for this dataset consisted of 19 correct

links.

TABLE I
DATASETS

DataSet High Req Low Req Traces
ModisDataset 19 48 39
CM-1 235 220 361
Standard Company 27 27 19

B. Experimental Results

In the experiment, the accuracy of our approach framework

is compared against Vector Space Model [11] and Wu Palmer

algorithm [27]. The primary accuracy measures used for

comparison are Precision and Recall. Precision is the ratio

of the number of true positive links retrieved over the total

number of links retrieved where Recall is the ratio of the

number of true positive links retrieved over the total number

of true positive links.

We have implemented VSM, Wu Palmer and STURI algo-

rithms as part of a requirement tracing tools that we have built

called “Dynamic Trace Workbench”. We used the datasets

mentioned above. To evaluate STURI approach against VSM

and Wu Palmer, we have run two experiments.
1) First Experiment: We ran each algorithm mentioned

above using all datasets. The results of the running experi-

ments were collected and analyzed against existing answer sets

and the results information were used to calculate Precision

and Recall for evaluation. Figure 3,4, and 5 compare the Recall

measurement achieved by STURI and those for two bench-

mark techniques. The analysis of the result shows that STURI

provides better Recall measurement cross all datasets. On the

other hand, Figure 6, 7, and 8 shows that STURI preforms

better than Wu Palmer algorithm in Precision, however VSM

gives us better precision.

Fig. 3. Recall for Standard Company Dataset

Fig. 4. Recall for Modis Dataset

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 193

Fig. 5. Recall for CM1 Dataset

Fig. 6. Precision for Standard Company Dataset

2) Second Experiment: The second experiment began by

using the VSM algorithm against one of the datasets from

above. We ran the STURI against the same dataset, and then

we aggregated the two results and calculated the Recall and

Precision. Moreover, we repeated the same experiment against

the other two sets, as well as with Wu Palmer and STURI. The

analysis of the result shows, on average, a correspondence

of 30 percent on Recall. Recall improved on combining

VSM/WU and STURI over running VSM or Wu Palmer

alone. In addition, the results show on average a Precision

improvement of 3 percent when combining VSM/WU and

STURI over running VSM or Wu Palmer alone. In this

experiment we presented a subset of the results, see Figure

9 and 10.

Fig. 7. Precision for Modis Dataset

Fig. 8. Precision for CM1 Dataset

Fig. 9. Recall for Standard Company Dataset on combine approach

194 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

Fig. 10. Precision for Standard Company Dataset on combine approach

VI. CONCLUSION

These inter-industrial projects are constantly updated and

modified in light of new risks and developing products.

Traceability links are a vital part of requirements managements

for these industries. Since Automated Traceability Links are

an important element to ensure the success of Software engi-

neering projects, our proposed framework helps Software en-

gineer projects to meet business requirements, to improve the

precision and recall of traceability links between requirements

artifacts, and increases the efficiency of time management.

REFERENCES

[1] A. Geraci, F. Katki, L. McMonegal, B. Meyer, J. Lane, P. Wilson, J. Ra-
datz, M. Yee, H. Porteous, and F. Springsteel, IEEE standard computer
dictionary: Compilation of IEEE standard computer glossaries. IEEE
Press, 1991.

[2] wiki.dbpedia.org : About. [Online]. Available: http://dbpedia.org/About
[3] “RFC 3986 - Uniform Resource Identifier (URI): Generic Syntax.”

[Online]. Available: https://tools.ietf.org/html/rfc3986
[4] “Apache Lucene - Welcome to Apache Lucene.” [Online]. Available:

http://lucene.apache.org/
[5] “Freebase API - google developers.” [Online]. Available:

https://developers.google.com/freebase/
[6] “OpenCyc for the semantic web.” [Online]. Available:

http://sw.opencyc.org/
[7] “SweoIG/TaskForces/CommunityProjects/.” [Online]. Available:

http://www.w3.org/wiki/SweoIG/TaskForces/
[8] “Linked Data | Linked Data - Connect Distributed Data across the

Web.” [Online]. Available: http://linkeddata.org/home
[9] BabelNet 2.5 - a very large multilingual encyclopedic dictionary and

semantic network. [Online]. Available: http://babelnet.org/
[10] The stanford NLP (natural language processing) group. [Online].

Available: http://nlp.stanford.edu/
[11] G. Salton, A. Wong, and C.-S. Yang, “A vector space model for

automatic indexing,” Communications of the ACM, vol. 18, no. 11, pp.
613–620, 1975.

[12] V. V. Raghavan and S. M. Wong, “A critical analysis of vector space
model for information retrieval,” Journal of the American Society for
information Science, vol. 37, no. 5, pp. 279–287, 1986.

[13] D. L. Lee, H. Chuang, and K. Seamons, “Document ranking and the
vector-space model,” Software, IEEE, vol. 14, no. 2, pp. 67–75, 1997.

[14] A. Qusef, G. Bavota, R. Oliveto, A. D. Lucia, and D. Binkley, “Eval-
uating test-to-code traceability recovery methods through controlled
experiments,” Journal of Software: Evolution and Process, vol. 25,
no. 11, pp. 1167–1191, 2013.

[15] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, and E. Merlo, “Re-
covering traceability links between code and documentation,” Software
Engineering, IEEE Transactions on, vol. 28, no. 10, pp. 970–983, 2002.

[16] N. Ali, Y. Gueneuc, and G. Antoniol, “Trustrace: Mining software
repositories to improve the accuracy of requirement traceability links,”
Software Engineering, IEEE Transactions on, vol. 39, no. 5, pp. 725–
741, 2013.

[17] A. Marcus, J. I. Maletic, and A. Sergeyev, “Recovery of traceability
links between software documentation and source code,” International
Journal of Software Engineering and Knowledge Engineering, vol. 15,
no. 05, pp. 811–836, 2005.

[18] D. Metzler, S. Dumais, and C. Meek, Similarity measures for short
segments of text. Springer, 2007.

[19] Y. Zhang, R. Witte, J. Rilling, and V. Haarslev, “Ontological approach for
the semantic recovery of traceability links between software artefacts,”
IET software, vol. 2, no. 3, pp. 185–203, 2008.

[20] P. Resnik, “Using information content to evaluate semantic similarity in
a taxonomy,” arXiv preprint cmp-lg/9511007, 1995.

[21] J. J. Jiang and D. W. Conrath, “Semantic similarity based on corpus
statistics and lexical taxonomy,” arXiv preprint cmp-lg/9709008, 1997.

[22] P. Resnik, “Semantic similarity in a taxonomy: An information-based
measure and its application to problems of ambiguity in natural lan-
guage,” arXiv preprint arXiv:1105.5444, 2011.

[23] T. Pedersen, S. Patwardhan, and J. Michelizzi, “Wordnet:: Similarity:
measuring the relatedness of concepts,” in Demonstration Papers at
HLT-NAACL 2004. Association for Computational Linguistics, 2004,
pp. 38–41.

[24] E. Gabrilovich and S. Markovitch, “Computing semantic relatedness
using wikipedia-based explicit semantic analysis.” in IJCAI, vol. 7, 2007,
pp. 1606–1611.

[25] A. Budanitsky and G. Hirst, “Evaluating wordnet-based measures of
lexical semantic relatedness,” Computational Linguistics, vol. 32, no. 1,
pp. 13–47, 2006.

[26] R. Rada, H. Mili, E. Bicknell, and M. Blettner, “Development and
application of a metric on semantic nets,” Systems, Man and Cybernetics,
IEEE Transactions on, vol. 19, no. 1, pp. 17–30, 1989.

[27] Z. Wu and M. Palmer, “Verbs semantics and lexical selection,” in Pro-
ceedings of the 32nd annual meeting on Association for Computational
Linguistics. Association for Computational Linguistics, 1994, pp. 133–
138.

[28] R. de Almeida Falbo, C. E. C. Braga, and B. N. Machado, “Semantic
documentation in requirements engineering.”

[29] A. Mahmoud, N. Niu, and S. Xu, “A semantic relatedness approach for
traceability link recovery,” in Program Comprehension (ICPC), 2012
IEEE 20th International Conference on. IEEE, 2012, pp. 183–192.

[30] J. Sayyad Shirabad and T. Menzies, “The PROMISE Repository of
Software Engineering Databases.” School of Information Technology
and Engineering, University of Ottawa, Canada, 2005. [Online].
Available: http://promise.site.uottawa.ca/SERepository

[31] I. Rish, “An empirical study of the naive bayes classifier,” in IJCAI 2001
workshop on empirical methods in artificial intelligence, vol. 3, no. 22.
IBM New York, 2001, pp. 41–46.

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 195

A new Framework for Quality-Based SOA Migration
Ayman Massoud

Computer Science, Otto von Guericke University, Magdeburg, Germany

Abstract – Several software migration frameworks are
presented to support the planning and the implementation
activities needed to migrate the legacy software components
to a new software paradigm like SOA “Service-Oriented
Architecture”. However, the migration process has a quality
challenge that required more research attention. Legacy to
SOA migration process is required to deploy and consider
some sort of quality evaluation and measurements to make
sure that the migrated systems will be able to conduct reliable
and efficient business results in any given services
transaction. This paper is introduced to provide a new
proposal framework for quality-based SOA migration that
adopted measured qualified phases of service identification,
target architecture design, service implementation,
deployment, and evaluation.

Keywords: SOA Migration Framework, SOA Migration
Measurements, SOA Migration Quality Requirements

1 Introduction
 Many organizations are still relying on complex legacy
systems to automate their business practices and collect,
process, and analyze its business data. These systems are
heterogeneous, distributed, constantly evolving, dynamic,
long-lived, and mission critical that presented as a backbone
of the enterprise operations. To optimize business value,
there is a need to modernize these systems using a new
software paradigm like SOA. SOA migration process enables
the organization to benefits from the new service-orientation
capabilities, making the legacy functionalities more robust,
efficient and cost effective to align easily with the new
business opportunities.

Despite the fact that the SOA migration process is succeeded
to make the legacy systems running under modern paradigm
and derived benefits from its new features, there are some of
legacy limitations and problems are still exist, and some of the
migration outcomes are not efficient as expected. Therefore,
SOA migration process should execute under qualified
approach that consider the quality characteristics in all its
migration phases. This paper presented to discuss how to
design, implement, and evaluate new quality-based SOA-
migration framework that improve the quality level of the
migration products.

2 Legacy to SOA Evolution:
A Systematic Literature Review

We conducted a systematic literature review to collect
legacy to SOA evolution approaches (Selected paper from our
previous work [1]) reported from 2005 to 2014 (publications
with high citation count) such as:

Architecture-Driven Modernization - ADM [2]
IBM’s SOMA Method [3], [4]
Service Migration and Reuse Technique - SMART [5] , [6]
SOA Migration Framework SOA-MF [7], [8]
SOA Migration - SOAMIG [9]
Consolidation framework of structural legacy to SOA
Migration [10]
Advanced Software based-service provisioning and
migration of legacy Software [11]

And found that the most presented legacy migration
frameworks are considered deeply technical analysis of
understanding the legacy system and the transition steps to the
target system. However, considering the quality requirements
and measurements throughout the migration tasks still need
more research contributions to avoid repeating of legacy
issues and limitations in the new environment, and to produce
more reliable, integrity, and efficiently SOA solution.

We conduct a comparison between several selected
approaches on four subjects (Migration Phases, Legacy
Paradigm Change, Migration Goals, and the Quality
Considerations and Evaluation Measurements) [1], due to the
limitation of paper size, we describe a brief comparison
example Table 1:

Table 1: Examples of SOA Migration Methods

Method Quality Considerations and
Evaluation, Measurements

ADM
Method [2]

- Not defined.
- Refer to software assurance and
metrics that should to be adopted
during transformation processes.

SOMA
Method [3],
[4]

- Provides support of monitoring
and management the business
processes and performance in the
production environment.
- Provides linkages to runtime
management aspects.

196 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

SMART
Method [5],
[6]

Considered concrete analysis of the
migration feasibility, risk, and
involved cost.

SOAMIG
Method [9]

- Not defined.
- Used testing and migration cut-
over tools.

ARTIST
Project [11]

- The evaluation measurements are
not considered, but the ARTIST
consider quality check and V&V
certifications model to make sure
that the project deliverables are
match good level of migration
quality.

3 Proposal Model for Migration Quality
Requirements
Building qualified migration framework is the main goal

of this research, which required to consider specific quality
characteristics and controls. In this section we provide a new
proposal model (Figure 1: Quality Requirements Model in
SOA Migration) represents the major quality requirements
that needed to deal with the quality challenges during the
SOA migration processes. This model of quality
requirements is based on three migration directions (Target
System Design, Migration Implementation (Process Integrity),
and Evaluation and Measurements).

This model’ scope is determined based on the most migration
phases that affected in the solution outcomes efficiency.

Figure 1: Quality Requirements Model in SOA Migration

The mentioned selected publications and the state of the art
of transforming the legacy systems to SOA processes are
displayed that there are different frameworks varying from
high level abstraction of migration phases up to re-
engineering processes that targeting legacy architecture
modernization, including model-driven based approach,
reverse/forward engineering methods, SOMA, SMART,

SOA-MF, SOAMIG, and others migration architectures. We
concluded that the most critical quality directions that
formulate the quality level in SOA-Migration process could
classified into three topics:

- SOA Architecture Design
- SOA Process Integrity
- SOA Evaluation and Measurements

3.1 SOA Architecture Design- SAD
The quality requirements in target system planning and

design phase are intend to choose the architecture design and
its related SOA technologies, which eventually plays an
important role in the efficiency and adaptability of the future
SOA system. Basically, target system understanding can be
viewed from two perspectives: functional characteristics and
technical characteristics:

- The functional characteristics include the potential
functionalities to-be evolved from the legacy code.
This process is referred to service design and
application composition. It also defines to what
level of granularity the services are to be defined
and, accordingly, the orchestration of the services
has to be managed to support business processes.
Various functional and non-functional properties
should also be considered, such as maintainability,
interoperability, responsiveness, performance,
security, and availability.

- The technical characteristics of the target
environment include service technology (SOAP or
REST-based), messaging technologies,
communication protocols, service description
languages, and service discovery mechanisms.

The proposed model figure 1 (Quality Requirements Model in
SOA Migration) is considered six major characteristics that
shape the power of SOA architecture design, including
Flexibility, Manageability, Security, Maintainability,
Governance, and Virtualization.

3.2 SOA Process Integrity – SPI
SOA process integrity is the ability to conduct reliable

business activity in a consistent SOA environment with
seamless integration at every interacted and participated
service. In general, process integrity is the critical component
of SOA implementation, the ability to synchronize between
services, human tasks, information, applications, domains and
users in a secure, scalable SOA environment. Business must
be agile enough to deliver the same reliability, consistency
and predictability in an open service-oriented system as in a
tightly coupled closed system. In SOA, the role of
migration/integration is not only to bridge the islands legacy
systems, but also to deal with the process
integrity/consistency issues. Process integrity has three main
elements:

Alignment, Integrity, and Service Design
Quality

Process Integrity

Integrity in
Service
Information,
Transactions,
and
Interactions

Flexibility,
Manageability,

Security,
Maintainability,

Governance, and
Virtualization

SPI SAD

SEM

Architecture Design

Evaluation and Measurements

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 197

Transaction integrity: Ensures that individual updates of
business and IT resources are linked and processed as a single
unit of work, all completing successfully or being rolled back
in case of technical or business failure.
Interaction integrity: Ensures that elements of people
interactions with business and IT systems are interact and
remembered wherever and whenever those interactions occur
in secure, scalable, and reliable environment.
Information integrity: Helps deliver trusted, secured
information to business processes, regardless of delivery
channel, operational platform (IT or people), and information
lineage, in which the information to be meaningful, accurate,
correctness, and aligned.
So, the quality requirements model recommended to apply
some sort of integrity mechanisms to avoid the pitfalls that
could be encountered when extending SOA infrastructure
from limited-scope projects to a broader enterprise wide
implementation, and describes how the considering of the
integration quality can help to deliver on the promises of
service-orientation approach [12].

3.3 SOA Evaluation Measurements - SEM
After converting legacy systems to be services by

transformation the legacy code (migration approach) or by
exposing/interfacing the legacy functionalities (integration
approach), these services have to be deployed. Some
necessary activities are required to manage and control the
behavior of services during usage. Monitoring the service
behavior is very important to maintain the service
performance, validation, integrity, etc… Service controlling
has been a research challenge in the SOA domain due to the
dynamic uses of the services in the SOA context. Build
business logic using the legacy services is needed to be
controlled to validate the integration process workflow,
services input/output, and services data mapping. Another
important topic is service quality measurements, measuring
the services description, security, data consistency, and others
measurements that support the services quality. The
mentioned quality model is considered these kinds of research
issues by providing several considerations during the design
phase, and provides integration evaluation metrics to measure
and evaluate the evolved services.

4 SOA Migration Framework - SMF

SMF is presented as a new proposal of SOA migration
framework that considers the quality requirements as an
essential need throughout all the migration activities, and
adopted the E4 approach [13] of the process measurements to
evaluate the migration processes.

As shown in figure 2, SMF includes five major migration
phases that applied the E4 measurement approach (see point 5
SMF and E4 Evaluation measurements).

Figure 2: Conceptual SOA Migration Framework – SMF

The following sub-sections will describe the SMF phases in
brief; we discuss design roles, activities, tasks, artifacts, and
guidance concerning tasks. Collectively this constitutes the
SMF method. Figure 3 illustrates a typical process flow of an
engagement executing the SMF method in high abstraction
level, including 21 major activities that represented
sequentially the flow of SMF method. Each activity may
produce one or more artifact products, the relation between
the mentioned quality model and the migration activities
artifacts will be displayed in subsection 4.6.

Figure 3: SMF Life-cycle high-level flow

198 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

4.1 Quality-Based SOA System Identification

System identification phase is presented as a migration
planning phase, interested in four elements (Feasibility Study,
Legacy Code Analysis, Service Identification, and Service
Specification) that addresses the issues of making the
migration feasibility study, this phase is aim to decide if the
existing legacy systems are needed and ready to be migrated
to SOA solution from the technical and business perspectives,
discuss which technical methodology and approach is a
proper one used to understand the existing legacy code and its
component’s structures and functionalities, and also this phase
is concerning in how to identify the candidate part of the
legacy code to be re-presented as a reusable service in the
target SOA architecture.

4.2 Quality-Derived SOA Migration Design
Design phase is aim to understand the SOA key

principles, architecture, and environment. Define the main
SOA components to be designed, and which technology,
standards to be used. Also, in this phase some issues like
performance, security, governance, integrity, and others SOA
characteristics to be discussed. Design phase support to
facilitate the representation of the desired SOA architecture,
enables the design of the target architecture with major
components of the SOA environment, standards to be used,
quality of service (QoS) expectations, and interaction patterns
between services.
In SMF the design phase is considered that the architecture
design should align between the legacy systems
characteristics and the enterprise business models toward
efficient migration process. So, to achieve this objective, SMF
provides the required architecture tools for the design
components including SOA Reference Architecture,
Enterprise Semantic Context and Information models,
Enterprise Business Process Model, Integrity Enablement’s,
and Governance Controls.

4.3 Quality-Oriented SOA Implementation
Several techniques are presented to implement the

migration process. SMF adopted the wrapping technique
(fastest, less risky and cost effective technique) to migrate the
legacy systems by interfacing it to other software via web
services. It is a black-box modernization technique, since it
focuses on the interface of the legacy systems, hiding the
complexity of its logic. Also, the re-engineering technique is
target to add the SOA capabilities and functionalities to the
existing legacy systems via reverse engineering, and
redesigning the existing software.
SMF is adopted the integration strategy to migrate to SOA
architecture, and use the mix between the re-engineering and
wrapping strategies to implement the services needed to build
the migration solution. Integration enables disparate resources
to share business data. SMF provides its implementation
approach in the following steps:

Validate the migration business drivers

Determine which architectural layer to perform the
integration activities

Identify the implementation access type

Designing Service Implementation

Identify the integration application form

Implement the integration architecture

4.4 Quality-Guaranteed SOA Deployment
After implemented the necessary services which exposing

the candidate legacy functionalities, the exposed services are
then deployed in the service infrastructure and tested to
determine if the expected functionalities are formed and
integrated correctly. A successful deployment is require a
service provisioning that includes activities such as publishing
and discovering services in a repository, maintaining Quality
of Services (QoS), versioning, testing, and evolution of
services that lead to the proper functioning of the services and
ensure that the SOA environment operates reliably and
efficiently.

SMF considered in the guaranteed the deployment and
versioning phase by allowing service implementations to
evolve without breaking existing consumers, leading to more
services loosely coupled, minimize the impact of versioning,
and reduce the amount of deployed code. In SOA, service
versioning considered the coexistence of multiple versions of
the same service, which allows each consumer to use the
target version that it is designed and tested for. In this
multiple coexisting versions of the same service, the system
allows for the independent life cycles of services and their
consumers and minimizes the overall impact of changes to
new version.

4.5 Quality-Assurance SOA Measurements
Having deployed services is not enough to move the

existing legacy enterprise systems from the islands platforms
to SOA environment. SMF is considered that in order to
complete the migration project efficiently and successfully,
there is a need to a right kind of service, well designed and
properly built service, efficient service communication, and
reliable service that is able to satisfy the current and the future
business requirements. Proposal SMF migration framework is
focuses on how we can improve the quality factors on SOA-
Migration.
SMF describes the migration process:

System_1/N
reArchitectuLegacy ARC System_1/N

SOSE ARC (1)

Where ARC is refer to Software Architecture

and also describes the migration metrics and measurement as
follows:

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 199

provementsquality_im
usagescheduled MP SystemsLegacy

pproachresearch_a
criteriaquality_

provementsquality_im
usagescheduled MP SOSE

pproachresearch_a (2)

Where MP is refer to Measurement Process

Also, SMF considered the quality improvements can be
described as follows:

- Efficiency Measurements = {cost, performance, flexibility}
- Consistency Measurements = {Data Validation, Service
Interactions , Service Transactions}
- Level of Service-Interoperability = {Input Validation,
Output Validation}
- Level of Loose-Coupling = {Independent Services,
Dependent Services}
- Characteristics of Island Systems = {Overlapping Object,
Limited Function, Semantic dissonance, Inconsistent Data,
Insufficient Business Workflow, Lack of Enterprise Data and
Business Model}
Evaluating the quality of the provided SMF solution is
divided into two steps:
- Measure the goals and the objectives achieved from the
migration process, in other words, have the legacy issues been
recovered after migration or not?
- Evaluate the overall SMF solution from several business and
technical perspectives.

4.6 SMF Quality Relationships
SMF designed its quality level based on 3 bases:

1- The quality of the migration approach that built on
the business-driven concept, and to maximize the
ROI from the migration process.

2- The quality of each migration activity which
presented by the artifacts produced to support it,
these artifacts are aligned with the proposed quality
model, such as (Template, Model, Reference Design,
Assessment Guidance, Recommendation, Best
Practices, Techniques, and Metrics), for more details
see Table 2 that describes some of SMF Artifacts.

3- Evaluating the migration phases by using the E4
approach which adopted the concept of Establish,
Extract, Evaluate, and Execute. To control the risk
and to determine the areas of improvement (will
described in the next section).

 Table 2: Examples of SMF Artifact Products

SMF Artifact Description and Function

Legacy Issues
Template

List of the common legacy systems issues that
gathering from academy and industry
experiences, understand how the existing legacy
issues affected the current business operations
which support to determine the level of the
business criticality.

Migration Risk
Assessment

List of risk assessment questioners from
business and technical perspectives, this
assessment support to understand and
identifying the challenges and its mitigations
and rollback methods, determine the resources
and existing capabilities which support the
migration decision.

SMF Quality
Evaluation

Considering five items of quality evaluation
including validation, integrity, interoperability,
loose coupling, and island characteristics. This
evaluation is represents the most important
quality aspects that support the SMF efficiency.

LCA Model
Model of legacy code and system
understanding, including Reverse Engineering
and Visualization
Quality Check, Delta Analysis, and
Documentation Understanding.

SMF-RA
Reference
Architecture
[14]

SMF reference architecture is facilitates
services and design communications and
provides a representation of progress and
evolution of the legacy to SOA solution in
high-level abstraction diagram. SMF-RA
represents the logical design of the legacy to
SOA solution, provides architecture layers that
represent the separation of concern, and the
relations between the architecture blocks, and
used as a blueprint that supports the project
stakeholders using templates and guidelines
during the migration and the solution
development life-cycle.

Integration
Efficiency
Considerations
[15]

Provide efficiency considerations and
recommendations to design the integration
architecture, including Messaging
Infrastructure, Message Broker, Web Services,
Web Services Wrappers, Direct Database and
Adapters Access, and ESB.

SMF Services
Evaluating
(Metrics Table)

Metrics table to evaluate and measure the
service functionality, quality, and efficiency.
This assessment will guide to understand the
maturity level of the migration services
throughout the migration phases, and put spots
on the area of improvements and issues.

5 SMF-E4 Evaluation Measurements
As mentioned in the previous point, evaluating and

measuring each migration activity is one of the most essential
quality requirement that recommended by the SMF quality
model. For this purpose, we adopted the E4-Measurement
Process, The E4–measurement process (Figure 4) consists of
four essential steps: Establish concrete objectives and the
measurement and analysis scope and activities. Extract
measurements for the established need. Evaluate this
information in view of a specific background of actual status
and goals. Execute a decision to reduce the differences
between actual status and goal.

200 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

Figure 4: The E4 measurement process [13]

The following figure 5, represented that each SMF activity
applied the E4 measurement approach to serve and comply
with the required quality aspects enabled by the migration
quality model (figure 1). And then produced one or more
artifact products to support the migration tasks as follows:

 Figure 4: SMF - Major Artifact Products

The following Table 3, we provide an example illustrated in
general form how the E4 approach can be applied in SMF
first stage of qualified-based system identification:

 Table 3: SMF and E4 Application

SOA Migration Framework SMF and E4
Measurements Process

System Identification Phase (General Approach)
Establish: the measurements intentions are based
on the consideration of the legacy systems
limitations and challenges, and its expected goals
from the new SOA paradigm in aligning with the
enterprise business needs.
Strategy: draw the best possible software
migration process
Concept: choose a class of software systems as

business applications
Development: keep the requirements of the quality
improvement
Evolution: determine the appropriateness of the
migrated systems in the new paradigm

Extract: extract the right information that supports
the established measurements, and extracted using
a goal-driven method.
Strategy: analyze the current and the estimated
architecture
Concept: determine the risk analysis and the
expected ROI benefits
Development: understanding legacy functionalities
Evolution: determine the potential services

Evaluate: evaluate the legacy and the new
paradigm characteristics.
Strategy: evaluating the migration decision
Concept: determine the metrics values of the
legacy and the SOA systems
Development: align with the business requirements
Evolution: determine the migration approach

Execute: make the decision and implement the
start implement the change.
Strategy: choose the business unit for migration
Concept: select the appropriate tools and resources
Development: implement the desired services
Evolution: keep the development in standards and
high quality level

6 Conclusion
To improve the quality level of the SOA migrated

systems, we concluded that there is a need to apply a qualified
software migration framework that considered the quality
requirements in its migration activities. In this paper, we
present 5-phase and 21 major activities of qualified SOA
migration framework SMF which applied the E4
measurements process to measure and evaluate the migration
stages and its sub-processes.

We provide the following contributions:

- Design new SOA Migration Framework-SMF of
quality-based SOA migration, that consists of five
phases: quality-based system identification and
architecture design, quality-oriented SOA
implementation, quality-guaranteed SOA
deployment, and quality-assurance migration
measurements.

- Provide new model of SOA migration quality
requirements, and applied it in the SMF framework.

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 201

And adopted the process measurements E4 in the
new SMF approach, which support to measure and
improve the quality level of the migration activities.

- Design and implement several artifacts products that
support the process of quality improvement such as
(Template, Model, Reference Design, Assessment
Guidance, Recommendation, Best Practices,
Techniques, and Evaluation Metrics).

7 References
[1] Massoud, A.: “Quality-based Issues in SOA Migration”;
Software Measurements News”; Journal of the Software
Metrics Community. Vol. No. 20, Issue No. 1, Page 19-52,
Feb 2015.

[2] Khusidman, V.; Ulrich, W.: “Architecture-Driven
Modernization. Transforming the enterprise”; OMG. Draft
Vol. No. 5, 2007.

[3] Arsanjani, A.; Ghosh, S.; Allam, A.; Abdollah, T.;
Ganapathy, S.; Holley, K.: “SOMA: A method for developing
service-oriented solutions”; IBM Sys. J. Vol. 47, Issue No. 3,
Page 377–396, 2008.

[4] Fuhr, A.; Horn, T.; Riediger, V.; Winter, A.: “Model-
driven software migration into service-oriented architectures”;
CSRD. Vol. No. 28, Issue No. 1, Page 65–84, 2011.

[5] Lewis, G.; Morris, E.; O’Brien, L..; Smith, D.; Wrage, L.:
“SMART: The service-oriented migration and reuse
technique”; CMU/SEI, Tech. Rep. CMU/TN-029, Sep 2005.

[6] Lewis, G.; Smith, D.: “Service-oriented architecture and
its implications for software maintenance and evolution”;
FoSM’08 IEEE. Page 1–10, 2008.

[7] Razavian, M.; Lago, P.: “A frame of reference for SOA
migration. Towards a Service-Based Internet”; Springer. Page
150–162, 2010.

[8] Razavian, M.; Lago, P.: “A survey of SOA migration in
industry. Service-Oriented Computing”; Springer. Page 618–
626, 2011.

[9] Zillmann, C.; Winter, A.; Herget, A.; Teppe, W.; Theurer,
M.; Fuhr, A.; Horn, T.; Riediger, V.; Erdmenger, U.; Kaiser et
al.,U.: “The SOAMIG Process Model in Industrial
Applications”; CMSR’11, IEEE. Page 339–342, 2011.

[10] Khadka, R.; Saeidi, A.; Jansen, S.; Hage, J.: “A
Structured Legacy to SOA Migration Process and its
Evaluation in Practice”; Maintenance and Evolution of
Service-Oriented and Cloud-Based Systems (MESOCA).
IEEE 7th International Symposium, Page 2-11, Sep 2013.

[11] ARTIST Project: Advanced Software-based Service
Provisioning Migration of legacy Software, ARTIST
Newsletter, http://www.artist-project.eu, Apr 2015.

[12] Massoud, A.” Process Integrity in SOA Migration”; In:
Büren et al.: Praxis der Software-Messung. Shaker-Verlag,
Aachen, S. Page 205-222, 2014.

[13] Ebert, C.; Dumke, R. "Software Measurement –
Establish, Extract, Evaluate, Execute"; Springer. 2007.

[14] Massoud, A.; Dumke, R.: “Efficient Reference
Architecture for Integrated Legacy Applications based SOA”;
In: Abran et al.: IWSM/Mensura Proceedings 2012. Assisi,
Italy, CPS Publishing Service of IEEE, Session 1B, 2012.

[15] Massoud, A.; Dumke, R.: “Efficient SOA-based
Integration of Legacy Applications”; In:
Schmietendorf/Patzer: BSOA 2012 -7. Workshop
Bewertungsaspekte serviceorientierter Architekuren, Shaker-
Verlag, S. Page 95-104, 2012.

202 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

Abstract

In a model driven engineering (MDE) environment,

developers create and evolve applications by creating models
and transforming abstract models to more concrete models.
Model transformation languages are needed to realize the
benefits of MDE. In this paper we describe the Directive-
Based Transformation Approach (DBTA), an imperative
transformation approach for lightweight transformations on
class models. DBTA utilizes abstractions that are specific to
class diagram transformations and helps remove some of the
accidental complexities associated with more general
purpose transformation languages such as QVT. DBTA uses
schemas consisting of transformation directives that can be
processed by an interpreter. We present the overall design of
DBTA and illustrate the new approach using Fowler's
extract super class refactoring transformation.

Keywords: Class diagrams, model transformations,
transformation schemas, transformation directives,
middleware, CORBA.

1. Introduction

A model transformation is a process that takes as in-put one

or more source models and produces one or more target
models [1 - 9]. The MOF 2.0 Query View Transformation
(QVT) Language [16] is an Object Management Group
(OMG) standard for specifying model transformations. Our
experience specifying transformations [18 - 21] using QVT
suggests that transformation languages need to work at a high
level of abstraction in order to reduce the accidental
complexity associated with specifying non-trivial
transformations. QVT includes an operational mappings
language, a core language and a relations language. The
relations language defines a transformation as a set of relations
between source models and target models, where a relation
consists of a source domain pattern that describes valid source

models and a target domain pattern that describes valid target
models. Each pattern is an object diagram consisting of
instances of metamodel classes. Several problems arise when
models are described in terms of metamodel class instances.
First, these specifications can produce large descriptions.
Second, expressing transformations at this level of granularity
can be tedious for medium to large-sized models. For
example, a QVT source pattern that describes class models
consisting of two classes with one attribute each, and one
association between the classes, will contain instances for the
classes, the attributes, the attribute types, the association and
the association ends, that is, at least 9 model elements. Third,
it is not easy to differentiate between types of model elements
if they are all represented as instances of metamodel classes.

We propose the Directive-Based Transformation Approach
(DBTA) [19], a lightweight graphical domain specific
transformation approach for UML [22] class diagrams. DBTA
provides a transformations specification syntax based on the
concrete syntax of UML class diagrams rather than on the
abstract syntax (i.e., the class diagram metamodel). Class
diagrams are one of the most commonly used diagram types in
object-oriented modeling and thus, one can expect that class
diagram transformations will have wide applicability.

DBTA is designed to: (1) make transformation
specifications more understandable to individuals familiar
with UML class diagrams, (2) support the development of
mechanisms for representing model transformations at a more
abstract level than object diagrams, and (3) explore the use of
directives in expressing model transformations. As a
lightweight specification, DBTA is not intended to be a
replacement for QVT. Instead, the intent of the research is to
explore approaches and techniques that can enhance the
development of model transformation standards such as
QVT.

In this paper we describe the design of DBTA and illustrate
use of the new approach. We provide a description of the
transformation process and transformation directives in
Section 2 and illustrate the use of DBTA for specifying the
extract super class transformation [15] in section 3. Discussion
and conclusions are presented in section 4.

A Directive-Based Transformation Approach for UML Class Diagrams

Devon M. Simmonds
Department of Computer Science

University of North Carolina, Wilmington
Wilmington, North Carolina, 28403

simmondsd@uncw.edu

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 203

2. The Directive-Based Approach

Figure 1. Model Transformation Concepts.

Figure 1 shows a class diagram representation of MDE
transformation concepts in DBTA. The Source Model
represents the model that is being transformed while the
Target Model represents the transformed class model. The
source model conforms to the Source Metamodel while the
target model conforms to the Target Metamodel. The notion
of conformance used in this paper is that established by Kim
et al. [11]. In general, a model A conforms to a model B, if A
faithfully reflects the structural and behavioral constraints
and properties defined in B.

DBTA defines transformations graphically using a class
model transformation specification called a Transformation
Schema. Transformation schemas contain imperative
statements called transformation directives that stipulate how
target model elements are formed from source elements.
Transformation directives are processed by an Interpreter to
perform the specified transformations on class models.

Figure 2. Transformation Schema Elements

2.1. Overview of Transformation Schemas

To reflect the class diagram syntax, a transformation

schema is divided into three compartments. The first
compartment contains the name of the transformation, formal
arguments or parameters to the transformation, and any
preconditions on the transformation. Figure 2 (a) shows the
structure of a transformation schema. In the figure, the first
compartment has the name CopyClass(ModelName), where
CopyClass is the name of the transformation and ModelName

is the formal argument to the transformation. Formal
arguments to a transformation represent the UML class
models on which the transformation will be performed.

The second compartment of a transformation schema
contains constructs called element schemas. Element schemas
contain directives for creating target class model elements
from source models elements. There are different types of
element schemas corresponding to model elements of UML
class diagrams, for example, class schemas, interface schemas,
operation schemas and association schemas. Class schemas
may contain attribute schemas and operation schemas. To
accommodate this, class and interface schemas are also
divided into compartments. A class schema is divided into a
Name Directive compartment, an Attribute Directive
compartment, and an Operation Directive compartment.
Attribute schemas are specified in Attribute Directive
compartments and operation schemas are specified on
Operation Directive compartments.

For example, Figure 2 (b) shows an interface schema
with the name Resource, containing the NEW prepare():Vote
and the NEW commit() operation schemas in its Operation
Directive compartment and the NEW resourceID:Integer
attribute schema in its Attribute Directive compartment. In
these examples, the keyword NEW is an example of a
transformation directive. The NEW directive is used to create
new class model elements. We describe directives in section
2.3.

The third compartment of a transformation schema
contains a list of transformations to be performed after the
transformation defined in the first two compartments. In
Figure 2, the distributeClass transformation will be executed
after the CopyClass transformation has been executed. The use
of transformation schema compartments allow the
modularization of transformations and the specification of a
transformation `program' by listing modularized
transformations in the second and third compartments of a
transformation schema.

2.2. Transformation Process

 DBTA can be used to support the transformation process

shown in Figure 3 [18, 20.21]. The figure has two activity
partitions. The Development of Transformation partition
shows behavior associated with creating transformations and
the Application of Transformation partition shows behavior
associated with the use of transformations.

 A complete DBTA class model transformation
specification consists of a Source Pattern that describes valid
source models and a transformation schema. The Source
Pattern and transformation schema are created during the
Develop Model Transformations activity. We describe model
patterns using RBML templates, a variant of the Role Based

204 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

Meta-modeling Language (RBML) [11 - 13]. RBML is a
UML based language that supports rigorous specification of
pattern solutions, where a pattern solution characterizes a
family of solutions for a recurring design problem. RBML
class diagram templates have template model elements that are
explicitly marked using the “|” symbol (see Figure 4). Each
tem-plate model element represents a model element in the
source model. The template model elements in the class
diagram template must be replaced by the source model
elements they represent before a diagram template is used. In
essence, we use RBML model patterns to specify the
metamodel of source models.

Figure 3. Model Transformation Process [18,20,21].

The Acquire Source Model activity results in the

development or acquisition (e.g., from a model repository) of
the source model. A source model element that is to be
transformed is represented in a transformation directive by its
corresponding source pattern model element marked using the
“|” symbol. Therefore, the source model element that each
source pattern element represents must be identified, before
directives in a transformation schema can be executed. This
identification is done using a Binding Specification, which is a
listing of source pattern model elements and corresponding
source model elements. The binding specification is developed
during the Create Binding Specification activity.

During the Process Transformation Schemas activity, the
directives in the transformation schema are executed, resulting
in the target models. The inputs to this activity are the Source
model, the Binding Specification and the Transformation
Schemas.

2.3. Transformation Directives

Transformation directives are imperative statements that
stipulate how target model elements are formed. Five
directives are used in transformation schemas. These
directives are: source, rename, exclude, new and redefine.

Constraints on models may also be specified using a when
statement. In the examples presented in this paper,
transformation directives in the figures, are written using
uppercase letters and the first and last compartments of the
transformation schemas are not shown.

The source Directive: The source directive is used to
select source model elements for inclusion in the target model.
When the selected model element is to be modified, additional
transformation directives are required. When the source
directive is the only directive associated with a model element,
the model element is copied to the target model without
modification.

Figure 4. Example of the source directive.

The use of the source directive is illustrated in Figure 4. In

the figure, the transformation schema has the single source
directive: source.|TransactionManager, where
|TransactionManager is a source pattern model element that
represents a source model class that manages a transaction
(e.g., the 2-phase commit protocol). The meaning of this
directive is that the class in the source model that |Transaction
Manager represents should be copied to the target model. This
source model class is shown in Figure 4 (c). Before the
transformation can be effected, the source model class is
identified using the binding specification shown in Figure 4
(e). From this binding specification, |TransactionManager is
bound to the AccountManager (the actual transaction manager
class). This source directive results in the AccountManager
class and its operations being copied to the target model.
When a model element is copied, all its properties and any
constraints associated with the model element are also copied.
The source directive has the following forms.

1. source.Parent[RenameDirective].
2. source.Parent.SubElement [RenameDirective].
3. source.Parent.Property[.SubElement].MetaAttribute.

Parent is a reference to a composite source pattern model
element and SubElement is a reference to an operation,

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 205

operation template, attribute or attribute tem-plate, defined in
the model element bound to Parent. RenameDirective is an
optional rename directive, property is a keyword, and
MetaAttribute is a meta-attribute of Parent or SubElement.

The rename Directive: Consider the scenario in which the

AccountManager class from the previous example is being
copied to an environment in which the name ServiceManager
is used for transaction managers. The name of the copied class
must be changed to reflect this environmental requirement.
The rename directive is used to effect these kinds of
transformations. The rename directive is used to provide a
context-specific name for a model element. The rename
directive has the form:

ModelElement {name = modelElementName}

where ModelElement is a reference to a model element in the
source pattern and modelElementName is the context-specific
name to be given to the source model element bound to
ModelElement.

Figure 5. Modifying a class using the rename directive.

The rename directive is illustrated in Figure 5. The figure
shows a class schema with the rename directive:
{name=AccountManager}, attached to the source directive.
For the source model shown in Figure 4 (c), the
source.|TransactionManager directive results in the
AccountManager class being copied to the target model, and
the rename directive {name=AccountManager}, results in the
name of the copied AccountManager class being changed to
ServiceManager.

Figure 6. Examples of the exclude and new directives.

The exclude and new Directives: The exclude directive is
used to exclude source model elements from inclusion in the
target model. For example, if the AccountManager input class
must be copied to the target model but its canCommit
operation must be excluded, we can specify an exclude
directive as shown in Figure 6 (a). The effect of the directive
is to eliminate the canCommit operation from the target model
as shown in 6 (d). The exclude directive may be applied to any
model element. The exclude directive has two forms:

1. exclude ModelElement,
2. exclude

where the directive is associated with a transformation schema
association or other transformation schema relationship (e.g.,
dependency and generalization) that is to be excluded from the
target model.

The new directive is used to specify a new model element
or a value for a meta-attribute. For example in Figure 6(a), a
new operation is added to the target model using the directive,
new getState():Integer. The new directive has three forms:

1. [new] ModelElement,

where ModelElement is the specification of a new
class diagram element, for example a new class or a
new operation.

2. [new]

In this form, the directive is associated with a
transformation schema association or transformation
schema relationship that is to be created.

3. [new] Property.metaAttribute = newValue

The redefine Directive: Consider the scenario in which

the AccountManager input class in Figure 6 is being copied to
a Jini [10] middleware environment where the following
requirements typically hold:

1) The name abort is used for the rollback operation.
2) The abort operation has an integer parameter but does

not return a value.
3) The name prepare is used for canCommit.
4) The prepare operation has an integer parameter.

These requirements may be realized using the redefine

directive. Using the redefine directive, modifications are
specified using rename, new and exclude directives. In
this example, the redefine directive:

206 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

redefine |rollback{name=abort}(new id:Integer, exclude
<params>):exclude Boolean

transforms the rollback operation by:

a) Changing the name of the operation to abort

using the {name=abort} rename directive.
b) Adding a new integer parameter using the new

id:Integer directive.
c) Causing all other parameters of the source model

operation to be deleted using the exclude
<params> directive.

Similarly, the directive:

redefine |canCommit {name=prepare}(new id:Integer,
exclude <params>):Boolean

transforms the canCommit operation.

2.4. The when Statement
Preconditions are specified for transformations and

directives using a when statement. Preconditions on
transformations are described in the first compartment of a
transformation schema after the name of the transformation.
Preconditions on directives are specified immediately after a
directive. The when statement has the forms:

(1) transformation-name WHEN expression
(2) directive WHEN expression

In this statement, transformation-name is the name of a
transformation, directive is a transformation directive and
expression is a logical expression. The when statement is
illustrated in Figure 7.

3. Refactoring Example: Extract Superclass

 Model refactoring is an important class of transformations
in model driven engineering. In model refactoring, the
structure of a model is transformed without changing the
behavioral properties of the model [15]. Models are typically
refactored to improved one or more model properties. For
example, a model may be refactored to enhance reusability of
specific model components or to make a model amenable to
distribution.
 This section illustrates the representation of the extract
superclass model refactoring transformation de-scribed by
Fowler [15]. In the extract superclass transformation, class
operations with the same (or similar) operation signature are
extracted from source classes and used to form a super class.

A transformation schema that describes the extract
superclass model transformation is illustrated in Figure 7. The
precondition on the transformation is that an operation with
the same signature must exist in two different classes. In such
cases, a new super class is created and populated with
matching operations as well as matching class attributes.
Preconditions are specified for transformations and directives
using a when statement. Preconditions on transformations are
described in the first compartment of a transformation schema
after the name of the transformation. Preconditions on
directives are specified immediately after a directive.

Figure 7: Extract Superclass Transformation Schema

 A source model for the transformation is shown in Figure
8 (a). The source model has four classes, Employee, Manager,
Company, and Customer. The execution of the
transformation proceeds by binding one of the four classes to
|ClassA, and then binding the other three classes to |ClassB,
one at a time to determine if the precondition may be satisfied.

Figure 8: Source and Target Models for Extract Superclass

Transformation

If |ClassA is matched to the Employee class, then binding
the Company and Customer classes to |ClassB does not satisfy
the precondition because these two classes have no operation

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 207

in common with the Employee class. However, when the
Manager class is bound to |ClassB, then |ClassA.operation in
the precondition match the promote and updateSalary
operations in the Employee class and |ClassB.operation in the
precondition match the promote and updateSalary operations
in the Manager class. Since the precondition is satisfied, the
transformation is executed and a new super class is created
with copies of these two operations. In addition, the
name:String attribute is common to both Employee and
Manager, so this attribute is copied to the super class as well.
The resulting target model is shown in Figure 8 (b).

Figure 9: QVT Extract Superclass Transformation

 A QVT representation of the extract superclass model

transformation is shown in Figure 9. The QVT specification
consists of 5 class instances, 5 operation instances, 28 other
metamodel class instances, and many links. In contrast, the
DBTA specification consists of just a transformation schema
with three class schemas, three operation schemas, three
attribute schemas, two generalizations; and a source pattern
that has two class templates.
 The DBTA specification may be more intuitive than the
QVT specification for someone familiar with UML. For
example, by looking at Figure 7, someone familiar with UML
can more easily draw several inferences: (1) a transformation
is being performed on class models, (2) a new super class is
being created, (3) selected operations are being omitted from
classes, (4) the transformation is being performed when two
classes have an operation with the same signature. These
inferences are easier to draw because DBTA uses the UML
syntax and a small set of well-defined directives.

4. Discussion and Conclusions

In this paper we presented a new approach for
transforming UML class models. The new approach leverages
the UML class model notation and defines transformation

schemas that contain imperative statements called directives.
The use of the concrete syntax of model elements is an
important feature of domain-specific model specification and
transformation. The abstract syntax provides for the precise
characterization of minute details of a model at the expense of
readability and comprehension. The concrete syntax provides
for a more abstract representation and the primary expenses is
details. Since the concrete syntax of any UML model element
specified using the abstract syntax can be specified in DBTA,
we believe the use of the concrete syntax provides a viable
alternative to the use of abstract syntax in the specification of
model transformations. This is akin to developing programs in
assembly versus development in a high level language.

The current DBTA specification allows for the addition of
other directives should it become necessary. The primary
limitation of the new approach is that the approach is class-
model specific at this point, and does not support
transformations involving other diagram types. We plan on
extending DBTA to other UML diagrams (e.g., sequence
diagrams and activity diagrams). Part of the strength of the
QVT approach is that the level of detail at which
transformations are specified allows for the precise
specification of many small details. Further research is needed
to deter-mine the expressive limitations of using more abstract
notations.

As part of our future work, we intend to build a tool to
support the DBTA model transformation process. We would
also like to explore the use of target patterns, where each
target pattern describes the minimum set of properties
expected of valid target models. In particular, we are
interested in exploring the automated generation of target
patterns from a source pattern and a transformation schema.

Acknowledgements

 I would like to thank Dr. Sudipto Ghosh and the late Dr.
Robert France who guided me through my PhD dissertation
and with whom these ideas were first articulated.

References

[1] Jorge Aranda, Daniela Damian, and Arber Borici.
Transition to Model-Driven Engineering: What Is
Revolutionary, What Remains the Same? Model Driven
Engineering Languages and Systems, proceedings of 15th
International Conference, Models 2012, Innsbruck, Austria,
September/October 2012.

[2] Dimitrios S. Kolovos, Louis M. Rose, Nicholas Matragkas,
Richard F. Paige, Esther Guerra, Jesús Sánchez Cuadrado,
Juan De Lara, István Ráth, Dániel Varró, Massimo Tisi, and
Jordi Cabot. 2013. A research roadmap towards achieving

208 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

scalability in model driven engineering. In Proceedings of
the Workshop on Scalability in Model Driven Engineering
(BigMDE '13), Davide Di Ruscio, Dimitris S. Kolovos, and
Nicholas Matragkas (Eds.). ACM, New York, NY, USA, 10
pages. URL: http://0-
doi.acm.org.libcat.uncw.edu/10.1145/2487766.2487768

[3] K. Czarnecki and S. Helsen. Classification of Model

Transformation Approaches. In Proc. Workshop on
Generative Techniques in the Context of Model-Driven Ar-
chitecture,OOPSLA'03, Anaheim, California, USA, October
2003.

[4] R. France and B. Rumpe. Model-driven development of
complex software: A research roadmap. In FOSE '07: 2007
Future of Software Engineering, pages 37–54, Washington,
DC, USA, 2007. IEEE Computer Society.

[5] J. Greenfield and K. Short. Models, Frameworks and Tools.

Wiley Publishing, Inc., Chapter 7: Generating
Implementations, 2003.

[6] F. Jouault and I. Kurtev. Transforming Models with ATL.

In Proc. Model Transformations in Practice Work-shop at
Models 2005, Montego Bay, Jamaica, October 2005.

[7] B. Baudry, T. Dinh-Trong, J. M. Mottu, D. Simmonds, R.

France, S. Ghosh, F. Fleurey, and Y. L. Traon. Challenges
for model transformation testing. In Proceedings of the
IMDT Workshop in Conjunction with ECMDA'06, Bilboa,
Spain, July 2006.

[8] D. H. Akehurst, B.Bordbar, M.J.Evans, W.G.J.Howells, and

K. McDonald-Maier. SiTra: Simple Transformations in Java
. In Nierstrasz, O., Whittle, J., Harel, D., Reggio, G., eds.:
Model Driven Engineering Languages and Systems, 9th
Inter- national Conference, MODELS 2006., pages 351–
364, Lecture Notes in Computer Science volume 4199,
2006. Springer Berlin / Heidelberg.

[9] J. Zhang, Yuehua, and J. Gray. Model-Driven Software

Development. Springer Berlin Heidelberg, Book Chapter:
Generic and Domain-Specific Model Refactoring Using a
Model Transformation Engine, 2005.

[10] W. K. Edwards. Core Jini (2nd Ed.). Java Series. Prentice

Hall, USA, 2001.

[11] R. France, D.-K. Kim, S. Ghosh, and E. Song. A UML-

Based Pattern Specification Technique. IEEE Transactions
on Software Engineering, 30(3):193–206, March 2004.

[12] D.-K. Kim. A Meta-Modeling Approach to Specifying

Patterns, Ph.D. Dissertation, Department of Computer
Science, Colorado State University. 2004.

[13] D.-K. Kim, R. France, and S. Ghosh. A UML-based
language for specifying domain-specific patterns. Journal of
Visual Languages and Computing, 15:265–289, Jan. 2004.

[14] T. Mens and P. V. Gorp. A Taxonomy of Model Trans-

formation. Electronic Notes In Theoretical Computer
Science, 152:125 – 142, 2006.

[15] M. Fowler. Refactoring: Improving The design of Existing

Code. Addison-Wesley, USA, 1999.

[16] O. M. G. (OMG). MOF 2.0 Query/Views/Transformations

Final Adopted Specification (ptc/05-11-01).

[17] Y. R. Reddy, S. Ghosh, R. B. France, G. Straw, J. M.

Bieman, N. McEachen, E. Song, and G. Georg. Directives
for composing aspect-oriented design class models.
Transactions on Aspect-Oriented Software Development I,
LNCS(3880):75–105, 2006.

[18] D. Simmonds, A. Solberg, R. Reddy, R. France, and S.

Ghosh. An Aspect Oriented Model Driven Framework. In
Proc. Ninth IEEE ”The Enterprise Computing Conference”
(EDOC 2005), volume 0, pages 119–130, Los Alamitos,
CA, USA, 2005. IEEE Computer Society.

[19] D. M. Simmonds. Transforming UML Class Models, Ph.D.

Dissertation, Department of Computer Science,
Colorado State University. 2007.

[20] A. Solberg, R. Reddy, D. Simmonds, R. France, S. Ghosh,
and J. O. Aagedal. Developing distributed services using an
aspect oriented model driven framework. In Special Issue of
the International Journal of Cooperative Information
Systems (IJCIS), volume 15, pages 535–564, Great Britain,
2007. World Scientific.

[21] A. Solberg, D. Simmonds, R. Reddy, S. Ghosh, and R.

France. Using Aspect Oriented Technologies to Support
Separation of Concerns in Model Driven Development. In
Proc. 29th of the Annual International Computer Software
and Applications Conference (COMP- SAC 2005), volume
1, pages 121 – 126, Los Alamitos, CA, USA, 2005. IEEE
Computer Society Press.

[22] The Object Management Group (OMG). Unified Modeling
Language: Superstructure. Version 2.0, Final Adopted
Specification, OMG, http://www.omg.org, Au-gust 2003.

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 209

Adapting Native Applications to Cross Platform
Environments

A. Andrew Moubray, B. Tyler Danner, C. Jason Litchfield, D. Harry Sellars, and E. Roger Lee
Computer Science Department, Central Michigan University, Mount Pleasant, Michigan, USA

Abstract - Computer applications are becoming more and
more necessary in everyday life, and their ease of use and
portability is becoming increasingly tested with the modern
age’s wide selection of devices. Countless applications have
been created that are used daily, but precious few programs
or methodologies have been created that explore the avenue of
converting native applications into multi-device, cross
platform applications that can be used on a vast array of
different systems and architectures. In this paper, we
synthesize the work done in this field, and, following the work
of S. Amatya, explore avenues of applying our findings to a
test case of our own creation. Our work will attempt to
demonstrate methods of cross platform translation with the
application of current ideas to our single, example program.

Keywords: Mobile, Hybrid, Cross-Platform, HTML5

1 Introduction
The level of interconnectedness, courtesy of the

World Wide Web, the internet, and the recently renamed
“Internet of Things” has created an environment in which
people consume data at an unprecedented scale. This data,
formulated as aggregate information, is valuable to a diverse
array of stakeholders, from companies and businesses, to
governments and self-promoters. Knowing exactly how, and
where, these consumers of information are getting their data is
exceedingly important, and more so, how to optimize one’s
own work to tap into the valuable resource that consumers
represent. Unsurprisingly, today’s data and the internet is
primarily accessed through smartphones, mobile devices,
tablets, and other similar machines [1], instead of the
dedicated workstations that dominated the world’s active user
base only years ago. This shift in user behavior has left many
corporate, government, and private application developers
with a new, and terribly complicated agenda: try to reach as
many people - as many consumers - as possible [2]. This
paradigm is much easier said than done to adhere to, however,
as the level of fragmentation of environments has increased at
an impressive rate. No longer are there only a handful of
workstation platforms to consider; today, hundreds of
variations of mobile devices exist, be they handhelds, phones,
tablets, or something else entirely. Developing for each of
these devices is challenging for a number of reasons -
developers must not only take into consideration the physical
device and its dimensions, ergonomics, and general design,
but they must also be conscious of the programming
languages the devices support, what APIs are available, and
even what app store the application will appear in [3].

The ever more fragmented environments has made de-
fragmentation and optimization of application development
very difficult, although it is the goal of this paper to
investigate making this a reality. Making the design process
of mobile applications more efficient and standardized has
become a goal that is becoming more difficult to achieve, yes,
although it is also making the achievement of that goal ever
more attractive.

To achieve this goal, two areas of fragmentation must be
analyzed: the fragmentation of the device, and the
fragmentation of the operating system [4]. Looking at the
systems and architecture that already exist that support
multiple devices as a starting point, an avenue of converting
native applications into cross-platform applications becomes
clear. Three possibilities offer themselves to this program:
developing a bytecode translator between a native and target
environment, developing the program in a web-based
language, or a hybrid between the two [5].

The overarching goal of this project is to turn our native
application into a cross-platform application. By utilizing the
research before us, we have determined that with the aid of
modern tools and a bit of architectural rework that such a
conversion can be accomplished. The tools available include
the Unity 5 development engine, Drifty’s Ionic Framework
for Cordova, and Intel’s XDK development suite.

2 Background and Related Work
Cross-platform programming, or historically referred

to as heterogeneous coding, or more simply interoperability
[4], is a paradigm of program development that, as it should
be no surprise, is a relatively recent development. This way
of development, that follows the ideology that one should
“code once, run anywhere” [6] has evolved from the
fragmented nature of today’s consumer needs. In his 2013
thesis, S. Amatya analyzed the state of cross-platform
development, and his findings expressed a level of
improvement that could be applied to the field of Software
Engineering.

Cross-platforming has multiple loci of genesis, either from an
existing application created in a native environment, or much
more common today, a newly envisioned project, ready to be
coded with cross-platform deployment from the start. In
either case, a number of issues must be first taken into
account. The Hewlett-Packard Development Company, in
their 2013 whitepaper “Apps to go”, outlined key components
to take into consideration for developing cross-platform,

210 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

mobile applications. They are: ensuring support for multiple
operating platforms and form factors of the mobile device(s);
ensuring a simplified connection between the application and
other systems, including legacy enterprise databases; ensuring
‘one-stop-shop’ for management and control of the
application; and ensuring a consolidated suite for security
monitoring [7]. The first two key points are reiterated
numerous times by other sources including S. Amatya, each
stating that the fragmentation of device, operating system, and
data connections must be taken into account [1, 2, 4, 5].

In the first case, native systems, (systems built inside a single
language and environment, not originally designed to be ran
in multiple environments), can be converted to an application
that can run in multiple environments. In every case,
commercial products like Titanium by Appcelerator,
Rhomobile by Motorola, or PhoneGap can be used to aid in
the conversion [2]. Each of these products contain
frameworks, ideologies, and of course tools and code to assist
in bringing a native code into a cross-platforming
environment. Each of these products takes a different
approach, which falls into one of three categories: Native,
WebApp, or a Hybrid [6].

These three approaches are not unique to native, applications,
however, but can be extended to new projects as well, lending
themselves to all forms of app development.

2.1 Cross-Platform Approaches
In terms of developing an application for multiple

platforms, there are three approaches to consider, in which
two of them will provide some level of heterogeneous
material. The first is ‘native’, a term already discussed in this
paper. Native development, the standard for much of the
computing era, is being slowly abandoned in favor or reaching
a wider audience. The benefits of native applications cannot
be ignored, however, as they often provide superior speed,
graphics, and functionality in general to their Web-Based
cousins, making them vastly appealing to enterprises looking
for the added level of customization and connectivity to back
end, secure databases [1].

The second approach is Web-Based, which leverages the
power of the internet and World Wide Web. The Web is a
universal standard, accessible by every smartphone and
mobile device. The idea behind this approach is to develop an
application using HTML5, CSS3, and JavaScript to ensure
that every device will be able to run the application. This,
although initially appealing, leaves many features and
advantages of the native approach behind in a “quantity over
quality” way.

The last approach, and the approach most analyzed by both S.
Amatya and this research paper, is the Hybrid approach. As
the name implies, the Hybrid approach takes an approach of
creating a Web-Based app that contains a native app running
inside it. This brings the best of both worlds, allowing
significantly higher customization and access to backend data,
as well as the universal access provided by the Web [6].

2.2 Cross-Platform Toolkits
To make the conversion to cross-platform

applications, a number of toolkits and development
environments exist that allow for code-once-run-anywhere
style development. One such environment is Unity, which is
typically known for its game development applications [8].
The benefit of creating applications and systems inside Unity
is the ability to push one’s completed code to a number of
different platforms, including Android and iOS, with only the
click of a button. The source code is built, unsurprisingly, on
JavaScript or C#, which lends the ubiquity of web-based code
to be run on nearly any device.

Another environment that helps developers create
heterogeneous applications is Drifty’s Ionic Framework [8].
An HTML5 Framework oriented towards the development of
mobile apps, Ionic too joins in on the web-based application
bandwagon, allowing the developer to pursue multi-platform
deployment with only a single source code. As it is based in
HTML5, Ionic has the added bonus of being built on a
language most developers already know and understand.

The final platform investigated by this research paper is
Intel’s XDK, or extended development kit. Utilizing Intel’s
own conversion techniques on top of Cordova, the XDK
allows the developer to push their code to a web application
that is compatible with most modern browsers, as well as e-
readers, mobile devices, and tablets [8].

3 Methodology
3.1 Existing Methods
3.1.1 Summary of the Ionic Framework for Apache Cordova

Ionic is a free and open source library using HTML,
CSS, and JavaScript components to build interactive mobile
apps, deployable to any web browser and smartphone. Ionic
builds on top of the AngularJS framework in order to emulate
native application functionality with predefined libraries. The
HTML page built with Ionic is run through Apache Cordova
to construct an application package that is deployable as a
native application [9].

3.1.2 Summary of the Unity 5 Engine

Primarily used as a game engine, Unity provides a
robust interface builder, abstracting the layout into objects
with their own data attributes and functionality. Unity has
diverse deployment options, ranging from a standard web
browser, to all modern gaming consoles, e-readers, tablets,
and mobile devices. Unity also has native support for SQLite,
making the project database imports simple and clean [10].

3.1.3 Summary of Intel XDK

Intel XDK is a development environment created by
Intel that utilizes HTML5 for cross-platform development.
The IDE allows the development of template-driven, hybrid
apps that can be translated and deployed to multiple app stores
and form factors. Similar to the Ionic framework, Intel XDK

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 211

uses Apache Cordova to construct the native application
package to deploy to the specified mobile environment [11].

3.2 Our Approach Using Intel XDK
3.2.1 Overview of Our Cross-Platform Approach

Through the Intel® XDK HTML5 Cross-platform
Development Tool, the existing iPoop application can easily
be ported from the basic, Java-based Android application, to
an HTML5 program which can be run on all mobile devices
with most web applications. Through the combination of
HTML5, CSS, and JavaScript, editing a user-friendly
application will be simple and easy to work with. Intel®
XDK provides an easy-to-use drag and drop UI builder to
assist in this process, allowing the site architecture and paging
to be developed before the interface components are refined.
Intel® XDK also provides real time layout editing on a web
browser or mobile device on the local network. Changes
made to the source code are immediately reflected on the
synced device or browser, allowing for fast and easy interface
changes. The IDE has on the fly application testing, allowing
the developer to check for errors prior to the final build, and
start running the application as a native installation with an
active debugging console. Intel also provides the ability to
file share within a work group, and build to app stores directly
through the development interface. These features made
XDK an excellent choice for the conversion and continued
development of the iPoop application in a cross platform
environment.

3.2.2 Algorithm Design

Fortunately, the inherent nature of computer data
structures means that many of the features of the algorithms
will remain unchanged from programming platform to
programming platform. To this end, many of the basic
algorithms of the application will remain unchanged when
being moved from a native application to a cross platform
application. However, as will be seen below in the
implementation, when switching IDE’s many issues arise
from the use of a native environment versus a cross platform
environment, in regards to the manner in which these
algorithms are brought to life. A full listing of the necessary
algorithms for the basic implementation of the application can
be found in the remainder of this section.

Aside from the necessary object classes and their associated
set and get methods for the alteration and acquisition of class
attributes, the application requires the use of what is known as
CRUD methods for database manipulation and access.
CRUD stands for “create, read, update, and delete” in terms of
database usage. When creating the algorithms for these
methods, the developer must take into account the structure of
the database in use, in order to create the appropriate
algorithm for each method. However, once this process is
well known, it is essentially the same process for each
method, regardless of the database being used. In the
development of the iPoop application, a SQLite database is
used comprised of three separate tables - bathrooms, ratings,
and users. In order to manipulate the data in these tables, the

application requires a CRUD algorithm/implementation for
each table. This is due to the fact that no matter what
language/IDE is used to implement the application all
commands must be translated into a fashion that the database
will understand.

This database handler, as it is known, will take all data
necessities for the application in its native language, and
translate it into a language that the database understands. It
also will take all data returned from the database and convert
it into a form that the programming language for the
application will understand. In this way, the database handler
operates much like an interim translator, allowing the two
objects - the application and the database - to interact despite
the fact that they don’t speak the same language.

3.2.2.1 Object SET and GET Methods

For each attribute for each class, there exists a set
and get method which all follow the same algorithm
regardless of the object or the attribute:

3.2.2.2 Database CRUD Methods

For each table in the database, there exists a set of
methods in order to interact with the database in certain ways.
The CRUD algorithm, along with basic data structures such as
lists, and utilizing computer programming methods such as
loops, can be used to create more complex versions of these
operations.

Each viewable screen of the application will utilize the given
set and get methods from objects, and the given CRUD
methods for each table in order to acquire and manipulate the
data they need to perform the functions they are designed to
accommodate.

3.2.2.3 Login Screen

 The login screen will give the user access to the log
in, create account, and delete account functions of the
application.

3.2.2.4 Map Screen

 This screen uses the Google Maps API for operation
of the map located on the screen. In addition to this, the
screen also contains a method to locate the closest bathroom
location.

3.2.2.5 Add Location Screen

 This screen allows the user to add new bathroom
locations, should they locate one that does not already exist in
the application.

3.2.2.6 Rate Bathroom Screen

 This screen allows the user to rate their current
bathroom location, should they choose to do so.

This covers all of the basic algorithm descriptions for all of
the components of the application that require computation in
their implementation. In this way, the native application does
not differ much from the cross platform application.

212 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

However, the divergence will become more apparent once the
implementation of the application is examined, beyond the
simple algorithm design to run it.

3.2.3 Implementation

The original application was implemented in Android
Studio, which uses a combination of Java files for control of
the program, and XML files for control of the
interface/display of the application. For the cross-platform
implementation, we required the use of more wide reaching
and generally accepted formats than Android Studio could
supply. To this end, we chose to use Intel® XDK IDE as the
development environment for our cross platform application.
XDK uses JavaScript and CSS in combination with HTML5
to create interactive applications. This was advantageous as it
allowed us the ability to build to any currently used platforms.
HTML5 applications are quickly becoming the standard for
cross-platform development due to their universality across
platforms. What follows is a brief explanation as to the
implementation of the cross platform application, in regards to
how it was ported from the native environment for the
Android operating system.

The cross platform application is comprised mainly of
HTML5 pages, with corresponding CSS code and integrated
JavaScript code for handling of certain aspects of the
program. The CSS code is used for formatting of the various
aspects of the visible pages, the JavaScript controls the
creation, manipulation, and passing of information between
components of the application, and the HTML5 pages allow
the user to interact with, as well as receive information from
the application. We were able to use the same SQLite
database that we had used in the Android application, as
HTML5 now allows for the use of this type of file. We also
utilized a component of HTML5 known as “Local Storage”
within the application.

In creating the application in this way, implementation
functions in much the same way as creating a web page does.
Each page is comprised of an HTML file that controls the
interface for that specific page, while a CSS file controls the
formatting of the components of the page, and JavaScript
controls the programmatic aspects for each function within the
page itself. This type of generic usage allowed the application
to port more easily between different platforms.

The main menu is comprised of a navigation bar, replacing
the navigation drawer of the native Android application.
Inside the navigation bar is a list of items, each of which is a
link to something else within the application. Clicking the
links within the navigation bar redirects to the location
specified, in this case to one of the pages that represents a
fragment from the old Android application. This page is
displayed in a panel located within the main page. By using
HTML we are able to construct the pages for each fragment of
the application separately, and have a link to them that will
display them within the main window.

Each function of the application is contained within its own
separate HTML division, which controls the behavior of that

function. These pages are called by the main page by clicking
on the appropriate link within the navigation bar in the main
page. Once that has been done, the page for the associated
function is called into a panel on the main screen via its
tagged name attribute, where the function can be accessed.

The first page that is loaded upon calling the application is the
profile page. This page contains basic information about the
logged in user, and is essentially a simple display page for
static user data. This page just displays textual and graphical
information about the application, and it controls the logout
functionality.

The login page grants access to the log in, create account, and
delete account functions of the application. This is
accomplished through the use of HTML text input boxes and
buttons which activate scripts written in JavaScript. HTML
utilizes a component known as “Local Storage” which allows
applications to store information locally within the
application, without the use of external databases. This
component was used in this application, as a replacement for
the static class that was used to store information in the
Android native application. This way, we were able to keep
track of what account has been currently logged in to, created,
or deleted by the user. Logging in, creating a new account, or
deleting an account redirects the user to the appropriate page
detailing if their attempts were successful or not, depending
on whether they satisfied the necessary criteria for that
particular function.

The map screen gives the user access to an instance of a
Google Map window with all of the custom locations from the
previous Android native application. This is possible due to
the fact that HTML5 allows the use of SQLite database in a
local instance of the application, in the same way that the
native Android application did. The database is accessible
within the application through a set of database scripts that
control the application’s interaction with the database
information. This allowed us to populate a map within an
HTML5 page in much the same way as we populated the
window in the Android application.

The add location screen gives the user access to the add
location function of the application. This was created so that
users could add new locations to the application should they
encounter a location that does not already exist within the
application. Again, we utilize text input boxes and buttons in
order to give the user the ability to create new locations,
which are then added to the existing database, and updated in
the map window. This, as always, is only possible if the user
meets the criteria to be able to do this, namely, they must be
logged in. This is done in an effort to prevent spam, and limit
overloading of the database by insert requests from the
application.

The rate location screen gives the user access to the rate
location function, and also displays the current information
for the bathroom location selected most recently from the map
screen. The user is able to select a number of stars using the
embedded star widget, and then submit their rating by clicking
the button associated with it. This sets into motion several

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 213

subroutines, including checking to ensure the user is logged
in, that a bathroom location has been selected, that the user
has not already submitted a rating for that location, and if
these are all satisfied, then creating a new rating and adding it
to the database. This also requires the new rating to be added
to the bathroom’s data, and then a recalculation of the
bathroom’s current rating. Should the user have already
created a rating for this location, then the rating would be
overwritten in the database, and in the selected bathroom’s
rating list, which then would be recalculated to determine the
current average rating for the bathroom.

The last screen that was created was an empty screen for later
use in implementing any custom user options that we want to
add to the application. As with the native Android
application, we did not implement this portion of the
application, as we did not call for it within the requirements
for the application, but wanted to leave it available for later
development. This window contains no information, but just
fills the space until such time as we are ready to implement it.

Use of the Local Storage allows for information to be passed
between each of the pages, when windows are changed. In
this way we can keep track of what user is logged in, what
was the last location selected on the map screen, when new
locations are added to the map, and when new ratings have
been added by a user, and allow for the system to make
corrections to account for these changes.

Thus comprises the general framework of the application,
built in much the same fashion as the native Android
application was constructed. While the cross platform
application was developed using a similar infrastructure of
files and connections, the ways in which these connections
and files are made varies greatly from the native Android
application to the HTML 5 development.

3.2.4 Testing

Testing of the application was performed in a Google
Chrome window on a laptop, as well as over mobile devices
using the Intel App Preview application on Android and iOS.
This was done to show that the application was functional
within an environment other than the original native Android
environment during development. Given the short amount of
time allowed for the process of re-development, not all of the
functions of the original application were able to be
completed within the deadlines. However, much of the
original look and function of the application was able to be
implemented and tested.

 In keeping with convention on testing a mobile
application, we followed the prescribed set of tests for such an
implementation. User experience, device compatibility,
performance, connectivity, and security testing were
performed as expected for such an application.

 User experience testing requires that we run the
application through its paces, checking for usability and
accessibility expectations. We found that the application met
all of the usability and accessibility expectations that the
original native Android application met.

 The device was marginally tested across multiple
devices using the App Preview application, however, an
actual deployment of the application was not tested as there
was not enough time to set up such tests. Porting this
application to mobile devices requires extensive knowledge of
the device in question, and we did not possess the expertise to
do so on such a short time frame. The application was tested
on Google Chrome, as well as within the boundaries of the
App Preview app on a Galaxy Note 4 and iPhone 6 and
performed as expected within the respective platforms.

 As for connectivity tests, the application connected
and implemented the Google Maps view as expected. There
were no issues in connecting to the internet as needed, and
connecting to the database as required.

 Security testing required that we ensure that all
necessary checks and balances within the functions were
taken care of, to avoid unnecessary problems with the
application. By using a system of checks for logging in,
creating and deleting accounts, creating new bathroom
locations, and rating bathroom locations, we are able to avoid
spamming and attacks of this type by requiring authentication
of information to be able to perform these functions. The
application passed these tests without issue.

 Unfortunately, given the time frame to complete the
re-implementation of an entire application, we were not able
to finish all of the functionality of the original application.
However, the parts that we were able to complete, worked as
expected, complied with necessary testing, and fulfilled the
same functionality as their native Android counterparts.

4 Results
This section outlines the outcome of the research

project and what information can be derived from the work
that was implemented.

4.1 Conversion
Converting the application from Android to cross-

platform is a very feasible and highly powerful option for
developers who wish to create cross-platform applications, or
port their native applications over to a cross-platform
environment. However, this process still takes about the same
amount of time in planning, implementation, and
development, so don’t expect that converting from one
environment to another is going to be a simple, fast, and easy
process. Learning the pitfalls of a new set of languages and
an IDE can cause the process to take just as long, if not
longer, than the original development process for the native
application.

We found that, as it often the case, there is no one best way to
do something, and that every IDE has its good and bad points,
which must be taken into account when deciding what to use
to develop a new application. While Android Studio showed
many difficulties during the implementation process, after
using other IDE’s we discovered that there were many built in
functionalities within the environment that made

214 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

implementation of certain functions far easier within this
environment than it was within the cross-platform
environment using Intel XDK.

However, the simplistic beauty of interface construction using
HTML5 far outweighs the downsides of the complexity of
data manipulation that were encountered. Android requires a
very complex set of classes and functions in order to create a
very simple and easy to use user interface. Most of the time
spent implementing the original application was spent in
refining the interface and making it work appropriately as
expected when the proper information was input and the
proper buttons were pressed. When creating the application in
the cross-platform environment, very little time was spent in
creating the graphical interface portion of the application, as
every section was build using pre-existing classes within the
XDK JavaScript Framework.

This is not to say that implementation in this environment
didn’t present its own challenges. Due to the use of
JavaScript instead of Java, a lot of the robust and deep seeded
libraries available to Java are lost as JavaScript doesn’t
possess the same amount of raw power as a Java application
does. There are workarounds, but this meant we were
required to come up with more creative ways to implement
functions that were very simply implemented within the
Android environment.

Overall, we found that converting to cross platform from
native development can be relatively simple, and yet
complicated. In retrospect, developing cross platform in the
first place would have been preferable to the conversion
process.

4.2 Device Implementation
By building the application within the XDK

Framework and utilizing Cordova, the iPoop application is
deployed as native installations within the Android, iOS,
Windows Phone, or any other mobile/tablet operating system.

The application utilizes the phones native package installer
and Cordova allows for utilization of many aspects of a
mobile device that are otherwise off-limits to cross-platform
development; such as Geolocation features, the accelerometer,
and so on. Subsequent builds are capable of being pushed to
the app store on each platform and updated to the installed
devices.

4.3 Unexpected Challenges
Due to the constraints of the programming language

used for the native environment development, when it came
time to convert over to the cross platform, many of the
modules had to be rebuilt from scratch. This was not
something we had expected to be necessary. We had assumed
that some minor tweaks would be necessary, but thought that
it would not require much in the way of complete overhaul.

Specifically, the module in charge of regulating the
conversation between the database and the application
required a complete overhaul. In the native Android

environment, there was a built in component in the API for
the IDE that facilitated many of the necessary methods to
construct the database handler. The cross platform IDE, while
containing a similar component, did not have as robust a
library of methods within said component, so many of the
methods had to be built from the ground up, or had to be
written in a completely different manner than they were
originally constructed.

It was also necessary to rebuild the user interface components
from the beginning as well. The way in which the Android
environment constructs an interface is far different that the
way an interface is constructed in an HTML5/JavaScript
environment. To this end, it was necessary that each
component of the Android interface, components known as
“fragments”, which contain the content for each “page” of the
interface, be converted to its own HTML5 code subset, which
uses a completely different set of construction for its
components.

Also unforeseen, was the fact that SQLite databases are not
cooperatively functional within an HTML5 environment when
dealing with Internet Explorer or Mozilla Firefox as a
browsing environment. So, while we had hoped for the
application to be completely accessible when developed in a
cross platform environment, we were still limited to what
browser we could deploy to due to the limitation of using a
SQLite database.

5 Conclusion
By converting the application from a native

implementation to a cross-platform implementation, we have
improved the reach of the application in terms of the number of
devices that it is able to function on. We also simplify the software
by using common programming languages that do not require
specially implemented APIs, making the software easier to code than
it was as a native application. In this way, we have found that,
despite the complications that can arise from converting the code
from one set of languages to another, it is far superior to implement
applications using a cross-platform environment, versus a
comparable native environment, and worth the effort to convert a
native application into a cross-platform application.

6 Suggestions for the Future
For future developments, it would be wise to access

more options to ensure the ease of implementing cross
platforming. Other options are including but not limited to
alternative development environments or databases. Bearing
this in mind, considering these alternatives at a far earlier date
in development would help efficiency on a large scale,
enabling further exploration of deployment opportunities. For
example, early development for the iPoop application began
in Android Studio without cross-platform development in
consideration. Choosing a cross-platform development-
friendly environment would avoid the issue of converting
code from one language (if necessary) to another. This limits
inevitable bug-fixing.

For the future, we would also like to develop a set of user
defined settings, to give the user a more customized

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 215

experience. We were not able to do this within the time frame
given for the project, but would very much like to add this in
the future.

A more complex system for logging in would be preferable,
as it would not take much to break the system as it currently
stands. A very simple set of authentication functions was
used, which most likely could be easily broken.

Other considerations that were discussed during development,
but not implemented, were adding sound, and animation to the
interface to give it a more dynamic and interactive feel.

References
[1] Charkaoui, S.; Adraoui, Z.; Benlahmar, E.H.,
"Cross-platform mobile development approaches,"
Information Science and Technology (CIST), 2014 Third
IEEE International Colloquium in , vol., no., pp.188,191, 20-
22 Oct. 2014

[2] Feifei Tao; Yijie Bian; Mingwei Tang, "Research of
cross-platform intersystem integration technology based on
SOA," Future Information Technology and Management
Engineering (FITME), 2010 International Conference on,
vol.3, no., pp.386, 389, 9-10 Oct. 2010

[3] Bin Zhang; Tian-gang Xu; Wei Wang; Xia Jia,
"Research and implementation of cross-platform development
of mobile widget," Communication Software and Networks
(ICCSN), 2011 IEEE 3rd International Conference on, vol.,
no., pp.146, 150, 27-29 May 2011

[4] Amatya, S. and Kurti, A. 2014. Cross-Platform
Mobile Development: Challenges and Opportunities.
Springer International Publishing.

[5] Yanyan Zhuang; Baldwin, J.; Antunna, L.; Yazir,
Y.O.; Ganti, S.; Coady, Y., "Tradeoffs in cross platform
solutions for mobile assistive technology," Communications,
Computers and Signal Processing (PACRIM), 2013 IEEE
Pacific Rim Conference on , vol., no., pp.330,335, 27-29 Aug.
2013

[6] Amatya, S. 2013. Cross-Platform Mobile
Development. Linnaeus University - Sweden.

[7] HP, 2013. Apps to go: Six keys to delivering user-
driven mobile applications. Hewlett-Packard Development
Company.

[8] Karadimce, A.; Bogatinoska, D.C., "Using hybrid
mobile applications for adaptive multimedia content
delivery," Information and Communication Technology,
Electronics and Microelectronics (MIPRO), 2014 37th
International Convention on, vol., no., pp.686, 691, 26-30
May 2014

[9] Intel® XDK | Intel® Developer Zone: 2014.
https://software.intel.com/en-us/html5/tools. Accessed: 2015-
04- 13.

[10] Ionic: Advanced HTML5 Hybrid Mobile App
Framework: 2015. http://ionicframework.com/. Accessed:
2015- 04- 13.

[11] Unity - Game Engine: 2015. http://unity3d.com/.
Accessed: 2015- 04- 13.

216 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

Metrics for Migrating Distributed Applications

Devon M. Simmonds
Department of Computer Science

University of North Carolina, Wilmington
Wilmington, North Carolina, 28403

simmondsd@uncw.edu

Abstract

Managing ever changing technology is a significant
challenge that has given rise to the model driven
architecture and other efforts aimed at decoupling
middleware technology from core business logic in
enterprise applications. This paper presents a set of
metrics for quantifying the effort required to migrate a
distributed application from one middleware to
another. The metrics may be used to quantify the
benefits of a model driven development approach such
as the AOMDE where crosscutting functionality is
isolated. A case study that illustrates use of the metrics
to migrate a Jini application to CORBA is presented.
The results of the case study suggests that migrating an
application to a new technology may involve
significant human effort and that investing in aspect-
oriented development could result in significant
benefits.

Keywords: aspect-oriented software development,
distributed applications, application migration,
middleware.

1. Introduction

Software engineering [1] is a central sub-discipline
of computer science centered on finding appropriate
methods and tools for the systematic development and
evolution of complex software systems. Software
evolution [2] is itself a challenging undertaking
especially when the software being managed has
embedded crosscutting technologies [12]. The
challenge stems in part, from the pervasiveness of such
technology throughout enterprise applications and the
resulting difficulty that this tangling and scattering of

middleware technology presents when transition to a
new middleware is desired. This difficulty in making
the transition to new technologies has led to such
efforts as the model driven architecture [4] and more
recently, to Platform as a Service (PaaS) [8, 9].

The MDA is premised on the availability of
principles, techniques and tools for decoupling
middleware technology from core business logic in
enterprise applications. In MDA, model driven
engineering involves separating between platform
independent models and platform-specific models and
defining functional mappings that capture how PIMs
are transformed into PSMs and vice versa. Several
successful MDA stories have been reported [10].

Cloud-based platform as a service is a more modern
solution to the problem of managing embedded
technologies. In PaaS developers need not worry about
changing technologies since the services that the
technologies provide are now available from a vendor
– as a service. This is quite an attractive option,
assuming that organizations are free to change their
PaaS providers. Against this backdrop, it is easy to
forget that there are those organizations still bemused
with the changing technology problem resulting from
the presence old technology in their legacy
applications. For these organizations, the transition to
new technologies through an MDA-style approach or
through PaaS remains a challenge and therefore,
having some mechanism for systematically quantifying
such transitions is beneficial.

This paper presents a set of metrics for quantifying
the effort required to migrate a distributed application
from one middleware to another. A case study that
illustrates use of the metrics to migrate a Jini [3]
application to CORBA [5] is presented. The rest of the
paper is organized as follows. Section 2 introduces the
migration metrics and a model for computing
migration effort. Section 3 presents a case study of
migrating an application from a Jini to a CORBA

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 217

platform. Finally, section 4 presents a discussion of the
results and their implications.

2. Metrics for Application Migration

When a non-aspect-oriented distributed application
is migrated [14, 16] to a new middleware, four
activities must be undertaken:

1. The semantics of the new middleware must be
learnt. This includes determining when, where
and how each middleware feature is used as
well as the inter-dependencies between
middleware features and the distributed
application (server or client). This is an
important requirement even in cases where
middleware features are pre-packaged as
design or code aspects since it may be
necessary to correct defects in the
development and testing efforts.

2. The old middleware must be removed from
the application code. This involves:
a. Deleting statements from the application

in cases where middleware statements do
not have embedded business logic code.

b. Modifying statements in the code in cases
where business logic code statements
have embedded middleware expressions.

While this requirement is absent when an
aspect oriented approach is used its
computation is useful to determine the effort
saved by aspect oriented and PaaS
approaches.

3. The application code must be refactored [15]

to facilitate the integration of the new
middleware.

4. Code for the new middleware must be added
to the application. This involves:
a. Adding new statements to the application

in cases where middleware statements do
not require embedded business logic
expressions.

b. Modifying application statements in cases
where business logic statements require
embedded middleware expressions.

Figure 1: GQM Model for Application Migration

Using the four steps presented in the previous

section, a model for quantifying the effort to migrate an
application to a new middleware was developed using
the Goal-Question Metric paradigm [13] and the
concepts and metrics central to the application
migration effort were identified. The GQM model is
shown in Figure 1 classifies migration effort into two
components: learning and development.

The learning element identifies the effort required
to learn a new middleware technology. This element is
represented by the first question in the GQM model.
The development element identifies, (1) the effort
required to modify the existing application and (2) the
effort required to create new middleware artifacts.
Each of these items is represented as a question in the
GQM model.

2.1. Quantification of Learning Effort

The learning element of the model quantifies the

effort expended to learn a new middleware technology
in order to be able to write and deploy applications
using the target middleware. We assume that
developers are not familiar with the target middleware.
Learning effort (LE) is quantified using the formula:

LE = ISD + IFD + NOF

where ISD represents inter-service dependencies, IFD
represents inter-feature dependencies and NOF
represents number of features that collaborate to

218 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

provide the middleware services used. Learning effort
could apply to both source middleware and target
middleware. That is, for legacy systems, the developer
may need to learn both the old middleware as well as
the new. Middleware features typically involve such
things as such as security, transactions, persistence, and
distribution. The intuition behind this formula is that
while a developer may be familiar with a programming
language syntax, the semantics of a new middleware
will have to be learnt. In addition, language semantics
is a function of structural semantics (interdependencies
and when and where a feature is used) as well as
algorithmic semantics (how a feature is used).

It should also be recognized that learning the
semantics of and writing code for services that have
more dependency relationships with other services are
expected to be more difficult than services with fewer
inter-service relationships. Similarly, a service with
more intra-service collaborating features is expected to
require more effort to learn and write code. Using this
information, and the GQM model in Figure 1, the
effort quantification model shown in Figure 2 was
developed.

2.2. Middleware Development Effort

Middleware development involves middleware

coding and middleware modification. The middleware
coding element is used to quantify the effort required to
write code for the new middleware. Middleware coding
effort (MCE) is quantified as the number of new lines
of code (NLOC) that must be written for the new
middleware. The formula used is:

MCE = sum (NLOC added for each method).

The middleware modification element quantifies the

effort required to:
1) Delete old middleware code where the

middleware code does not have any embedded
business logic expressions. For example the
Jini statement ActivationGroup.createGroup
(gid, group, 0) does not quires any embedded
business logic expression. The statement is
used to create a Jini activation group.

2) Delete old middleware code where the
middleware code does not have any embedded
business logic expressions. For example the
Jini statement ActivationGroup.createGroup
(gid, group, 0) does not quires any embedded
business logic expression. The statement is

used to create a Jini activation group.

Figure 2. Migration Effort Quantification Model.

3) Modify business logic statements in cases
where business logic statements require
embedded expressions of the new
middleware. For example, the explicit
propagation of distributed transaction contexts
in CORBA make it necessary for methods to
have CORBA specific parameters.

The middleware modification effort (MME) is
quantified as the number of middleware lines of code
that must be changed (i.e., modified or deleted) in each
method. The formula used is:

MME = sum(MLOC changed for each method).

The middleware development effort (MDE) is given
by:

MDE = MCE + MME

In summary the application migration effort
(AME) for a specific application is computed as a
combination of learning effort (LE) and development
effort (MDE) using the formula:

 AME = LE + MDE ……….. (1)

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 219

where LE = ISD + IFD + NOF …….. (2)

and MDE = MCE + MME ………. (3)

3. Case Study: Jini to CORBA Migration

Using formulas 1, 2 and 3, the effort quantification
model requires the computation of the learning and
development components.

3.1 Learning Effort Computation

In order to compute learning effort, the number of
services used, their inter-relationships and the number
of features and their inter-relationships must be
computed. Only one service, (`distribution') was used
in this case study.

Figure 3. Jini to CORBA Migration Quantification
Example.

As a result, inter-service dependency (ISD) is 0. In

order to determine learning effort for CORBA
distribution, the following metrics must be computed:

1) The number of middleware services used for
CORBA distribution. For this case study only
one service (`distribution') was used.

2) The number of dependencies among the
CORBA features used to effect distribution.

3) The number of dependencies between
CORBA distribution features and the business
functionality.

4) The number of lines of CORBA code that
would normally be written for the migration
effort.

5) The number of lines of application code edited
or deleted to eliminate Jini code.

The inter-dependencies of the features that collaborate
to provide CORBA distribution is illustrated in Figure
3a. The figure shows that a CORBA server requires use
of seven different CORBA features. Learning requires
an understanding of:

1) The role of the portable object adapter (POA),
naming service and object request broker
(ORB).

2) The relationship between the POA and the
ORB.

3) The relationship between the ORB and the
naming service.

4) The relationship between naming service
components.

Overall a total of six inter-feature dependencies (IFD)
must be understood. In this example the CORBA
naming service is used.

The program-feature dependencies (PFD) of the
CORBA features and the business functionality is
illustrated in Figure 3b. In this case the semantics of
seven distinct relationships need to be understood. The
learning effort is therefore computed as:

LE = ISD + NOF + IFD + PFD = 0 + 6 + 7 + 7 =
20 units of learning.

This number indicates that before migrating to
CORBA, a developer must understand 13 relationships
and seven features. This includes comprehending the
structural feature semantics (when and where a feature
is used) as well as algorithmic semantics (how a feature
is used).

3.2 Computing Middleware Development
Effort

Middleware development effort involves writing

code for CORBA, and modifying or deleting
application code with embedded Jini statements. The
middleware coding effort (MCE) is quantified as the
total number of CORBA lines of code (MLOC) that
must be added to an application. An estimate for MCE
was computed as the LOC written for the CORBA
aspects. This is a reasonable assumption since the
functionality provided by the aspects must also be
provided by the developed code. The total lines of code
written for CORBA server aspects amount to: 26 LOC

220 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

for the server and 19 LOC for the client. In summary:

MCE = 26 + 19 = 45 LOC

The total number of lines of Jini code to be

eliminated amount to 199. This is the number of LOC
written for the Jini aspects. We assume that no
middleware modification effort (MME) will be
required for CORBA distribution. The total
middleware development effort is therefore:

MDE = MCE + MME = 45 + 199 = 244 LOC

In summary the application migration effort (AME) for
the application is computed as:

AME = LE + MDE ……….. (1)
 = 20 units of learning and

244 units of development.

4 Discussion and Conclusion: Making
Sense of Metrics

This result suggests that migrating application

across middleware may involve significant human
effort. This inference is based on the following
observations:

1. The learning and development efforts for a

typical distributed application will be much
more than for this example because a
distributed application may use any number of
middleware services, for example, transaction,
security, events, fault tolerance and
concurrency.

2. In this case study we used pre-tested aspects
that were pretested and would therefore
eliminate some errors that would normally be
uncovered during a development project where
middleware code is written from scratch.

3. Our model ignores the cost of inter-service
connectivity and inter-feature connectivity and
their varying degrees of complexity. That is,
some inter-connectivity is more complex and
requires more time to grasp. For example,
understanding distribution is less complex that
understanding transaction management.

This simple case study provides some indication of

why platform as a service is such a growing
phenomenon. However, there are many legacy systems

where one or more middleware are endemic and for
these organizations making the transition to a new
middleware or to PAAS will not occur without some
pain.

References

[1] Pressman, Roger. Software Engineering: A

Practitioner’s Approach. New York: McGraw
Hill., 2010. Print.

[2] Tom Mens. 2009. The ERCIM working group on

software evolution: the past and the future. In
Proceedings of the joint international and annual
ERCIM workshops on Principles of software
evolution (IWPSE) and software evolution (Evol)
workshops (IWPSE-Evol '09). ACM, New York,
NY, USA, 1-4. DOI=10.1145/1595808.1595809
http://0-
doi.acm.org.libcat.uncw.edu/10.1145/1595808.15
95809

[3] W. K. Edwards. Core Jini (2nd Ed.). Java Series.
Prentice Hall, USA, 2001.

[4] The Object Management Group. The Model
Driven Architecture. URL http://omg.org/mda/,
2015.

[5] The Object Management Group. The Common
Object Request Broker Architecture
CORBA/IIOP URL: http://www.uml.org/.

[6] The Object Management Group. The Unified
Modeling Language (UML) URL:
http://www.corba.org/.

[7] David E. Bakken. Middleware. URL
http://www.eecs.wsu.edu/
bakken/middleware.htm, 2002.

[8] Mitesh Soni. 2014. Cloud computing basics—
platform as a service (PaaS). Linux J. 2014, 238,
pages.

[9] Jin Shao and Qianxiang Wang. 2012. A model-
driven monitoring approach for Internetware on
platform-as-a-service (PaaS). In Proceedings of
the Fourth Asia-Pacific Symposium on
Internetware (Internetware '12). ACM, New
York, NY, USA, , Article 14 , 8 pages.
DOI=10.1145/2430475.2430489 http://0-
doi.acm.org.libcat.uncw.edu/10.1145/2430475.24
30489

[10] The Object Management Group. The Model
Driven Architecture Success Stories. URL:
http://www.omg.org/mda/products_success.htm,

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 221

2015.

[11] Aspect Oriented Software Development.
AOSD Webpage. URL http://aosd.net/, 2002

[12] Gregory Kiczales, John Lamping, Anurag
Mendhekar, Chris Maeda, Christina Videria
Lopes, Jean-Marc Loingier, and John Irwin.
Aspect Oriented Programming. In Proceedings of
the European Conference on Object-Oriented
Programming (ECOOP), Springer Verlag LNCS
1241, Finland, June 1997.

[13] V.R. Basili. Software modeling and
measurement: The goal question metric
paradigm. Technical Report Computer Science
Technical Report Series, CS-TR-2956 (UMIACS-
TR-92-96), Computer Science Department,
University of Maryland, College Park, MD, 1992.

[14] Micro Focus. Application Migration Benefits.
URL
http://www.microfocus.com/Solutions/Migrate/all
bene_ts.asp, 2004.

[15] Charles Zhang and Hans-Arno Jacobsen.
Refactoring Midleware with Aspects. In IEEE
Transactions on Parallel and Distributed
Systems, volume 14, pages 1058.1073, November
2003. 2.3.

[16] Devon Simmonds. “In Support of An Aspect-
oriented Approach to Migrating Distributed
Applications”, in proceedings of the 1st
Caribbean Conference on Information and
Communications Technology (CCICT2009),
Kingston, Jamaica, March 16-18, 2009.

222 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

SESSION

SOFTWARE ARCHITECTURE AND
FRAMEWORKS + ENTERPRISE ARCHITECTURE

+ COMMERCIAL ISSUES

Chair(s)

TBA

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 223

224 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

Development of Enterprise Architecture of PPDR
Organisations

W. Müller, F. Reinert

Fraunhofer Institute of Optronics, System Technologies and Image Exploitation IOSB

76131 Karlsruhe, Fraunhoferstraße 1

GERMANY

Abstract - The growing number of events affecting public
safety and security (PS&S) on a regional scale with potential
to grow up to large scale cross border disasters puts an
increased pressure on agencies and organization responsible
for PS&S. In order to respond timely and in an adequate
manner to such events Public Protection and Disaster Relief
(PPDR) organizations need to cooperate, align their
procedures and activities, share the needed information and
be interoperable.

The paper at hands provides an approach to tackle the above
mentioned aspects by defining an Enterprise Architecture (EA)
of the PPDR organization and based on this EA define the
respective System Architectures. Based on a methodology
which refines architectural artefacts of the OSSAF by using
NAF views, a tooling for a lightweight architecture
development model is presented.

Keywords: Enterprise Architecture, Architecture framework,
Public Protection & Disaster Relief, NAF, OSSAF

1 Introduction
 Public Protection and Disaster Relief (PPDR)
organisations are confronted with a growing number of events
affecting public safety and security. Since these events either
expand from a local to a regional and to an international scale
or are from beginning affecting multiple countries the
pressure on PPDR organisations to be able to cooperate in
order to respond timely and adequately to such events
increases as well. The need of cooperation demands for
aligned procedures and interoperable systems which allows
timely information sharing and synchronization of activities.
This in turn requires that PPDR organizations come with an
Enterprise Architecture on which the respective System
Architectures are building. The Open Safety & Security
Architecture Framework (OSSAF) provides a framework and
approach to coordinate the perspectives of different types of
stakeholders within a PS&S organisation. It aims at bridging
the silos in the chain of commands and on leveraging
interoperability between PPDR organisations. In [1] a
methodology was presented, which based on the Open Safety
& Security Architecture Framework (OSSAF) framework [2]

and provided the modeling vocabulary for describing a PPDR
Enterprise Architecture.

2 Related work
The goal of Enterprise Architecture design is to describe

the decomposition of an enterprise into manageable parts, the
definition of those parts, and the orchestration of the
interactions between those parts. Although standards like
TOGAF and Zachman have developed, however, there is no
common agreement which architecture layers, which artifact
types and which dependencies constitute the essence of
enterprise architecture.

 [7] defines seven architectural layers and a model for
interfacing enterprise architectures with other corporate
architectures and models. They provide use cases of mappings
of corporate architectures to their enterprise architecture
layers for companies from the financial and mining sector.

 A layered model is also proposed by [10]. The authors
propose four layers to model the Enterprise Architecture: A
Strategy Layer, an Organizational Layer, an Application
Layer, and a Software Component Layer. For each of the
layers a meta-model is provided. The modeling concepts were
developed for sales and distribution processes in retail
banking.

 MEMO [11] is a model for enterprise modeling that is
based on an extendable set of special purpose modeling
languages, e.g. for describing corporate strategies, business
processes, resources or information. The languages are
defined in meta-models which in turn are specified through a
common meta-metamodel. The focus of MEMO is on the
definition of these languages and the needed meta-models for
their definition.

 The Four-Domain-Architecture [8] divides the enterprise
into four domains and tailors an architecture model for each.
The four domains are Process domain, Information /
Knowledge domain, Infrastructure domain, Organization
domain. Typical elements for each domain are also provided.
The authors also provide proposals how to populate the cells
of the Zachman framework with architectural elements.

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 225

 The Handbook on Enterprise Architecture [9] provides
methods, tools and examples of how to architect an enterprise
through considering all life cycle aspects of Enterprise
Entities in the light of the Generalized Enterprise Reference
Architecture and Methodology (GERAM) framework.

 None of the papers addressing Enterprise Architectures
covers the special needs of PPDR organizations with their
need on timely cooperation, alignment of procedures, and
interoperability needs across different organizations.

3 EA development approach
3.1 Open Safety & Security Architecture

Framework (OSSAF)
 For PPDR organizations, [2] proposes the Open Safety
& Security Architecture Framework (OSSAF). The
framework incorporates concepts of several mature enterprise
architecture frameworks such as the Zachman Architecture
Framework (ZAF) [3], the TOGAF framework and the NATO
Architecture Framework (NAF) [5] (see Figure 1).

1. The methodology of collecting information and artifacts
contributing to the architecture from TOGAF.

2. The two dimensional matrix representation of the
framework for structuring the different perspectives from
Zachman.

 The OSSAF whitepaper [2] also mentions that the NAF
meta-model and views may be used where suitable for
describing the content of the different perspectives, but does
not provide details on the application of the NAF views.

Figure 1: Inputs to OSSAF

 OSSAF proposes a total of four perspectives and a total
of twenty views. In general it depends on the intention of the
architecture under development which views are actually
instantiated. In other words the views can be tailored to the
specific needs of the architecture under consideration.

3.2 EA development methodology for PPDR
organizations

 The methodology proposed in [1] for the development of
enterprise architecture of PPDR organizations follows a
pragmatic approach, looking at an “enterprise” as the joint
undertaking of one or more organizations with PS&S
responsibilities that operate across a distributed and often
complex environment. In this context an enterprise is seen as
a nonprofit-oriented organization or complex structures of
organizations (inter-organizational aspect of enterprise
definition) such as national PPDR organizations, for example
national police or fire-fighter organizations.

 To handle the task of developing an Enterprise
Architecture for PPDR organizations, [1] used the approach
of capability based planning. One can understand a Capability
according to [1] as:

 ”An ability that an organization, person, or system
possesses. Capabilities are typically expressed in general and
high-level terms and typically require a combination of
organization, people, processes, and technology to achieve.”

 Following the capability based planning approach as the
overarching guideline; our methodology for the development
of an EA proposes scenarios as main input. The first step in
the development approach, even preceding the definition and
development of scenarios, is the definition of Visions and
Goals in order to depict an overall strategy including the
winning of supporters for the overall architecting approach.

 Since the OSSAF framework already proposes to use
NAF views where suitable as templates for describing the
OSSAF views and the NAF views defines a vocabulary, [1]
used NAF as the modeling vocabulary for describing the
OSSAF perspectives and views where suitable.

 Table 1 summarizes the general mapping of NAF views
to OSSAF perspectives as defined in [1]. Each column
represents a perspective defined by the OSSAF framework.
The rows represent the views per perspective, each with a
specific semantics defined by OSSAF. To the right of each
OSSAF perspective the corresponding NAF-views are
mentioned which are seen suitable for representing the
semantics required by OSSAF. For example to describe the
“Capability Planning” view of the “Strategic” perspective it is
suggested to use the NAF Capability View-2 (“NCV-2”) and
Capability View-4 (“NCV-4”) view accordingly. In order to
describe the OSSAF “Operational Concepts” view of the
“Operational” perspective several NAF views form the NAF
Capability and Operational descriptions may be used. These
are the Capability dependencies View (“NCV-4”), the
Capability to organizational deployment mapping View
(“NCV-5”), the Operational activity to capability mapping
View (“NCV-6”) and finally form the NAF Operational

226 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

description the High level operational concept description
View (“NOV-1”).

 Another example for the suggested re-use of NAF views
in order to describe the required semantics of the OSSAF is
given for the “Systems Interface Model” view of the OSSAF
Functional perspective. For describing this OSSAF view the
NAF Systems descriptions are proposed, especially the
System Interface description (“NSV-1”), the Systems
communications description (“NSV-2”) and the System to
System matrix (“NSV-3”) view.

 The NAF views are modeled with the different elements
of the Unified Modeling Language (UML).

 The proposed EA methodology is used in the SALUS
project [12] to define the Enterprise Architecture of PPDR
organizations and the System Architecture of the
communication network for those organizations. However, in
order to provide an effective usability of the methodology, it
was necessary to provide a profile for assigning UML
stereotypes and diagrams to the NAF views.

Table 1: Mapping of NAF templates to OSSAF views

O
S
S
A
F

V
i
e
w
s

OSSAF Perspectivec

Strategic Operational Functional Technical

Vision &
Goals

NAV-1
NCV-1

Use Case
Scenarios

No proper
NAF view

Systems &
Services

NSOV-1
NSOV-2
NSOV-3
NSOV-4
NSOV-5
NSV-12

Solution
Context

No proper
NAF view

Capability
Planning

NCV-2
NCV-4

Operational
Concepts

NCV-4
NCV-5
NCV-6
NOV-1

Functional
Requirements

NSV-2d
NSV-4
NSV-5
NSV-6
NSV-7
NSV-10a

Standards &
Protocols

NTV-1

Funding
Model

No proper
NAF view

Operational
Nodes
Model

NOV-2 Systems
Connectivity
Model

NSV-1
NSV-2a
NSV-2b

Device
Connectivity
Model

NSV-2a
NSV-2b
NSV-2d

Laws &
Regulations

No proper
NAF view

Organization
Chart

NOV-4 Systems
Interface
Model

NSV-1
NSV-2
NSV-3

Product
Specification

(NTV-1)

Local
Market
Landscape

No proper
NAF view

Process
Model

NOV-5
NOV-6a
NOV-6b
NOV-6c

Product
Configuration

NTV-3

Information
Exchange
Model

NOV-3
NOV-7

3.3 Tailoring NAF views for PPDR Enterprise
Architecture development

 The section at hand provides a simplified overview on
the core concepts and their relationships as defined in the
meta-model of the NATO Architecture Framework (NAF) in
order to be used for PPDR EA development.

 Figure 2 provides an extract from the overall model used
for the development of the PPDR EA. Especially the strategic
and operational perspectives of the OSSAF model are
depicted. However, for reasons of readability, not all
relations, attributes, constraints, and cardinalities are shown.

The model shows that an Enterprise Vision specifies an
Enterprise Goal and a Capability contributes to the Enterprise

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 227

Vision. A Capability is dependent on another Capability,
decomposes into one or more other Capabilities and has one
or more Assigned Properties. An operational Node has a
Capability and conducts an Operational Activity. An
operational Node has a need to exchange information with
another operational Node, which is modeled via a Needline
which bundles one or more Information Exchanges.

An operational Node is realized by a Resource, either by an
Organizational Resource or by a Functional Resource. An
Organizational Resource is responsible for an Operational
Activity.

The Functional Resource Capability Configuration provides a
specific Capability and is delivered via a Configuration
Delivery action by a Project Milestone.

A similar extract from the overall model could be produced
also for the Functional and Technical perspectives of OSSAF.

A detailed meta-model description as well as the description
of the semantics of each concept and relationship can be
found in [5]. It is not replicated here.

 The complete profile was produced with the tool
Enterprise Architect by SPARX Systems and is based on the
MODAF Metamodel 1.2.004 [13].

 The MODAF Metamodel was adapted to the needs of
EA development for PPDR organizations and extended where
needed. An example of such an extension is the multiple
inheritance of the model element Node (UML Stereotype
Node) from the UML elements “UML class” and “UML
part”. This was done in order to re-use the same model
element instance across different UML diagrams (e. g. class
diagrams and composition diagrams).

Figure 2: NAF Model elements according to the strategic and operational scope

228 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

Views - Contents and Representation

 According to the approach of describing OSSAF views
via suitable NAF-views, the contents of the dedicated NAF-
views used in designing the PPDR EA are described. The
description contains the model elements captured in the
corresponding view (that is actually a section of the overall
model), proposes a suitable representation (i.e. graphical,
textual etc.) and may give hints in order to support the
development of the view under consideration. This is done in
a way agnostic to any tool, but refers to UML modeling
concepts where suitable.

 An example of such a description is provided below. It
shows how the connectivity between operational nodes and
their linkage to capabilities has to be described using the NAF
view NOV-2, NATO Operational View, Operational Node
Connectivity Description.

NOV-2, Operational Node Connectivity Description

 Type of Representation: graphical; diagram which is
based on the UML Composite Structure diagram enriched
with textual annotations. Needlines describe information
flows between nodes (see Hints)

 Model elements to be considered: see Figure 3

Figure 3: NAF View NOV-2, Operational Node Connectivity Description

Hint: Node and Needline are recommended, the other
elements are optional.

Hint: Depending on the complexity, there may exist several
instances of a NOV-2 diagram/table, for example in
order to represent nodes with different levels of
abstraction (specialisations).

Hint: Exchanges can be annotated (textual) in order to show
flows of materiel, energy, or people between nodes as
these exchanges are not needlines and therefore do not
appear in an NOV-3 view.

Hint: A single Needline represents one-to-many information
exchanges (information elements and their attributes).

4 Conclusions and further work
 An approach for developing Enterprise Architectures for
PPDR organizations was presented. The approach is based on
the OSSAF and NAF frameworks. The OSSAF perspectives
are described using NAF views. The NAF views are modeled
with the different elements of the Unified Modeling Language
(UML). In order to provide an effective usability of the
methodology, a tool support with a profile for assigning UML
stereotypes and diagrams to the NAF views was created.

 Based on the Enterprise Architecture, specific System
Architectures may be derived.

 The proposed EA methodology is used in the SALUS
project [12] to define the Enterprise Architecture of PPDR
organizations and the System Architecture of the
communication network for those organizations.

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 229

Acknowledgement: The work described in this paper was
partly funded by the European Commission within the
European Seventh Framework Programme under Grant
Agreement 313296, SALUS - Security And InteroperabiLity
in Next Generation PPDR CommUnication InfrastructureS

5 References
[1] W. Müller, F. Reinert “A Methodology for Development
of Enterprise Architecture of PPDR Organisations”,
Proceedings of the 2014 International Conference on Software
Engineering Research & Practice (SERP 2014), pp. 259 – 263.

[2] Open Safety & Security Architecture Framework
(OSSAF), http://www.openssaf.org/download

[3] Website Zachman Framework, http://zachman.com/

[4] Website TOGAF, http://www.opengroup.org/togaf/

[5] NATO Architecture Framework Version 3, ANNEX 3
TO AC/322(SC/1-WG/1)N(2007)0004

[6] Website Wikipedia,
http://en.wikipedia.org/wiki/Requirement

[7] R. Winter, R. Fischer “Essential Layers, Artifacts, and
Dependencies of Enterprise Architecture”, Proceedings of the
10th IEEE International Enterprise Distributed Object
Computing Conference Workshops (EDOCW'06), IEEE
Computer Society, 2006

[8] B. IYER, R. Gottlieb “The Four-Domain-Architecture:
An approach to support enterprise architecture design”, IBM
Systems Journal, Vol 43, No 3, 2004, pp. 587- 597.

[9] P. Bernus, L. Nemes, G. Schmidt (Editors) „Handbook
on Enterprise Architecture“, Springer, 2003.

[10] Ch. Braun, R. Winter “A Comprehensive Enterprise
Architecture Metamodel and Its Implementation Using a
Metamodeling Platform”, In: Desel, J., Frank, U. (Eds.):
Enterprise Modelling and Information Systems Architectures,
Proc. of the Workshop in Klagenfurt, GI-Edition Lecture Notes
(LNI), Klagenfurt, 24.10.2005, Gesellschaft für Informatik,
Bonn, P-75, 2005, pp. 64-79.

[11] U. Frank, “Multi-Perspective Enterprise Modeling
(MEMO) - Conceptual Framework and Modeling Languages”,
Proceedings of the Hawaii International Conference on System
Sciences (HICSS-35), 2002, p. 3021ff.

[12] SALUS: Security and interoperability in next generation
PPDR communication infrastructures. http://www.sec-salus.eu/

[13] MODAF Metamodel,
https://www.gov.uk/government/uploads/system/uploads/attach
ment_data/file/63979/20130117_MODAF_M3_version1_2_00
4.pdf

230 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

Enterprise Architecture and Information Technology: Coping with
Organizational Transformation Applying the Theory of Structuration

 Dominic M. Mezzanotte, Sr. and Josh Dehlinger
Department of Computer and Information Science

Towson University
{dmezzanotte, jdehlinger}@towson.edu

Abstract

Developing large-scale information systems (IS) is never
easy or implemented without controversy and impact on
an enterprise’s stakeholders. Organizational
transformation, typically the by-product of new
technology and its accompaniment of new processes,
frequently manifest itself in ways unforeseen by
enterprise management. In many cases, this results in
project failure. Historically, enterprises approached IS
on a one-domain-one-system at a time solution. This
approach has now been supplanted with an enterprise-
wide approach to technology with Enterprise
Architecture (EA) as the framework used for both
requirements and software engineering systems design
and implementation. EA embodies a business and
technology alignment process aimed at producing an EA
plan (EAP) that guides and drives IS development. EA
frameworks provide the structured methodologies to
support the EAP, yet many EAs fail due to the poor
quality in the design requirements used. This paper
progresses earlier work analyzing stakeholder behavior
and resistance to change proffering a sociologically-
driven approach to manage and govern EA design.

Keywords: Enterprise Architecture, Stakeholder
Behavior, Resistance to Change, Organizational
Transformation

Introduction

In Information Technology (IT), many large organization
lean towards a wide range of computer science and
computer oriented (techno-centric) frameworks to solve
the design and implementation of large-scale information
(application) systems (IS) [25][27]. These decades old
ontological and epistemological techniques continue to
embrace the typical approach to IT from a single domain,
one system at-a-time, and on an as needed basis [18].
However, the emergence of a new concept, Enterprise
Architecture (EA) and its frameworks (EAF), is slowly
replacing the historical IT procedures with a new set of
frameworks geared more towards the strategic view and
use of information and technology by an organization
[18].

As an alternative program to the traditional single IT
solution, EA views IT from an enterprise-wide point-of-
view moving away from defining and managing a single
application domain to a more encompassing and
comprehensive strategy that focuses on aligning key
corporate IT initiatives with strategic organizational
business goals and objective [18][19].

Under the guidance of an Enterprise Information
Architect (EIA) that may or may not include participating
organization stakeholders, an EA plan (EAP) is produced
that contains a detailed description/blueprint of which
enterprise functions will be guided through to IT
implementation. One of the key components of the EAP
is a high-level macro-oriented abstraction of the design
artifacts (requirements) defining the various
architectures, resources, and infrastructure needed to
guide and implement new IT strategies and technology
[9][18]. Thus, the EAP contains a synopsis of the
organization’s “as is“ operating model and knowledge
(explicit and tacit) base and the guidelines needed for
developing and providing strategic information for
organizational use to support and implement a “to be“
future business environment [9][12] For many
organizations however, EA can be a difficult process that
frequently ends in failure.

The organizational context surrounding the transition
from an organization’s “as is“ to a “to be“ state means
organizational change brought about by new processes
and procedures to be learned by, and the assignment of
new roles, duties, and responsibilities to stakeholders.
This brings up the typical questions of user (stakeholder)
acceptance of EA change and their possible resistance to
change. However, a question frequently omitted from this
process is the collective impact of EA on the
organization.

Simply stated, EA also means change to the
organization’s character, culture, and structure. Usually
hierarchical, each organization arranges its lines of
authority, communication, rights, duties, and
relationships with internal and external environments
which determine the “norms” of how the enterprise does
business. Given this context, organizations allocate
resources defining which roles, duties, responsibilities,
and power are delegated to stakeholders. Thus this
activity determines the status of the stakeholder within
the enterprise. This, in effect, establishes their power

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 231

base, political hierarchy, and societal position within the
organization [2][3][20]. As can be seen, these factors
affect organizational structure and thus the status quo,
equilibrium, and stability organizations strive for and as a
result can adversely affect EA design and implementation
if not planned for during EA.

In our analysis of literature related to both EA and IT
failure, many projects failed for non-technical reasons
[5][7][11][24][28]. In fact, the statistics are astronomical
in both the number of failed projects and the resources
expended in terms of both dollars and time. For example,
in the private sector [5][23][28], the failure rate ranges
between 66 and 84 percent with the public sector faring
even worse [7][11][28] with the failure rate up to 86
percent. Lost dollars are estimated into the hundreds of
billions of dollars annually [11][28]. No estimates for
time were available.

In this analysis, failure means any project that: is
partially implemented, requires extensive rework,
exceeded budget and time estimates, and/or is completely
abandoned. The factors associated with failure include
[5][7][11][23][28]:

 Inadequate executive sponsorship for strategies
and associated IT initiatives

 Failure to communicate strategies in a way
stakeholders understand

 Lack of stakeholder understanding of what EA
represents

 Incomplete/inaccurate stakeholder input of EA
design requirements and specifications

 Stakeholder technological incompetence
 Unrealistic time frames and project schedules
 Unclear expectations and objectives for EA.

Clearly, these factors are related to human behavior of
one sort or another with blame typically assigned to
“poor architecture.” In the literature, poor architecture
means nebulous, incorrect, and/or ill-defined design
requirements [6] [15]. Of interest, the literature cited
technology as only accounting for between 4 and 10
percent of the failures [5][28]. In analyzing stakeholder
behavior in relation to EA failure, the factors are about
evenly distributed between organizational management
and the average rank-in-file employee (collectively
stakeholder).

Given this premise, our approach to the failure
problem considers the possibility that the intersection of
organizational transformation, user acceptance of new
technology, and resistance to change are inextricably
interrelated and intertwined. Our approach to the subject
includes accounting for the interaction of the:
organization and IT, and how stakeholders will react to
EA design and implementation accompanied by
organizational transformation.

This paper progresses earlier work by delving deeper
into the impact technology has on stakeholder: behavior,

acceptance of new technology, and resistance to change.
We believe successful EA depends on a stakeholder
behavior driven approach that draws attention to
stakeholder participation, commitment, and involvement
in the EA project. Such an approach encourages and
fosters a feeling of stakeholder ownership of EA. In
essence, the aim for such an approach is to anticipate,
plan for, and identify negative stakeholder behavior and,
in effect, implement an avoidance program that allows
for corrective action to be initiated early in the process.

In Section 2, we discuss EA, technology,
organizational transformation, and their relationship to
stakeholder behavior. Section 3 discusses and ties
stakeholder behavior and resistance to change using
Giddens’ Theory of Structuration as a lens to guide EA
design and implementation. In Section 4, a multi-
disciplined stakeholder-driven EAF paradigm is
proffered for EA that includes principles and practices
from the fields of sociology, psychology, organization
theory, and management behavior. In this section, the
rules and guidelines are outlined needed to govern, align,
and manage IT design through the EA life cycle. Section
5 concludes this paper by discussing the future direction
of our work towards a more behavioral-driven solution to
EA design and IT implementation.

2. Enterprise Architecture, Organizational

Transformation, and Resistance to Change.

Over the past twenty-five plus years, Enterprise
Architecture (EA) has emerged as one of the prime
frameworks to design and implement complex, multi-
dimensional, and large-scale information (application)
systems (IS) [9][18]. Given this context, EA represents
the genesis for IS and Information Technology (IT)
design and implementation. Given this context, EA
defines what IT is to do and IT is doing EA [15].

In earlier work, deficiencies in existing EAFs are
identified from a stakeholder behavioral perspective
[15][17]. Though comprehensive and well disciplined
from a techno-centric point of view, the current EAF
processes pay little or no attention to the impact EA has
on organizational and thus stakeholder behavior during
any aspect of EA. However, the behavior of both the
organization and its stakeholders are inextricably
intertwined such that the behavior of each is iterative and
recursively reflected in the behavior of the other [8][20].

Given this context, EA can be viewed from both the
subjective and objective aspects of human behavior and
action and as such affects both the organizational
transformation (change) process and the final end-
product of EA, the EA plan (EAP) [2] [13]. In the case of
EA, it can be argued that the requirements contained in
the EAP are best understood as contested and negotiated
as iterative interactions between project stakeholders and
thus the by-product of their behavior and their feelings

232 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

about the new technology. Therefore, the veracity of IT
design requirements depends on how stakeholder
participate, commit, and get involved during EA to
adequately capture, verify, and validate the design
artifacts provided EA [24][27]. As can be seen, if these
requirements are compromised either intentionally and/or
unintentionally, overtly and/or covertly by negative
stakeholder behavior, EA and all subsequent IT activity
will inevitably fail.

In considering the organization, organizations reflect
the culture and character of its stakeholders, from top
management through to the lowest stakeholder level
(collectively stakeholder). As such, it is more than just
the traditional definition of individuals and/or groups of
individuals working together to achieve a commonly
agreed upon set of business goals and objectives [2][3].
Organizations represent an open system with open
boundaries (subsidiaries, divisions, sub-divisions,
entities, etc.) and thus a homogenous social-technological
(socio-techno) community made up of stakeholders that
typically react to internal and external stimuli [2][10].In
essence, it is a unique living system/organism that
continually strives to evolve, redefining, and maintaining
its own recursive identity, character, culture, society,
attitudes, beliefs, and hierarchical political and power
structure [13][20].

As a stimulus, EA and the technology it introduces
into an organization often effect changes to either or both
the organization and/or stakeholder. For example, if EA
is unexpectedly introduced by management into the
organization, the behavioral effect can negatively
influence the behavior of all involved stakeholders
[3][15][17][20]. However, if adequately planned for and
with stakeholder participation and involvement,
stakeholder behavior can be positive with stakeholders
committed to the process.

While few would argue that stakeholder behavior
can be interpreted either subjectively or objectively, the
social implications of organizational transformation can
result in negative behavioral patterns that often upset the
status quo and thus the equilibrium of the enterprise. The
predominant logic behind results from forcing
stakeholders to accept, adapt to, and take on new roles,
duties, and responsibilities without proper preparation
can be devastating [4] [20].

As part of an EA planning and organizational
transformation process, the following questions should be
asked and addressed: What happens when stakeholders
are confronted with new and/or enhanced technology
(new processes and procedures)? How will stakeholders
react to the assignment of a new job, duties, role; and a
new set of responsibilities; and to a new societal, power,
and political status within the organization?

The first impression one gets from an initial perusal
of these questions is the lack of any detailed treatment in
providing an answer to any of these questions in existing

EAFs. First, organizational transformation is best viewed
as both a contradiction and a paradox. For example, let’s
consider for a moment that EA is a complex phenomenon
that requires a pluralistic approach that takes into account
not only technology but more importantly the human
behavioral components needed for EA design. EA and its
EAP then represent the end-product of human action
[1][3] [20]. Yet, social theorists posit that the technology
introduced by EA can stifle and limit human creativity
and innovation [2][3][20]. Thus, the change brought
about by EA can be contradictory.

Second, EA can be influenced by human behavior
with behavioral patterns that affect:

 The effectiveness of the EAP and the
Information System (IS) that depends on the
interaction between organizational goals and
objectives and the methodologies, principles, and
practices (frameworks) used to design the
technology

 The implicit and explicit practices, attitudes,
beliefs, and values organizations and people
typically take for granted, all of which may be
overlooked in standard systems (software and
requirements) engineering processes.

These actions can be dynamic and lead to four
fundamental, interrelated, and intertwined human
activities:

 How people create technology
 How people use that technology to accomplish

some predefined purpose and/or task
 How technology is introduced into the enterprise
 How people perceive the effect technology will

have on their daily lives.
These factors are behavioral and their interpretation by
stakeholders form a paradox that has the potential to
either positively and/or negatively affect how
stakeholders react to the changes brought about by and
how they participate and get involved in the design of EA
and its EAP.

As can be seen, the usefulness of EA depends on the
derived EAP document and the reliability of stakeholder
input to that document [14][15]. Given this point of view,
the EAP represents a deterministic strategic IT plan based
on the sociological and psychological actions and
behavior of stakeholders. Therefore, recognizing any
activity that can possibly affect the quality of the end-
product becomes of paramount concern. Finally,
recognizing negative behavioral patterns such as those
described above must be considered of prime concern
during the EA design life cycle and thus the following
questions to be asked:

 How can user acceptance and resistance to
change be recognized?

 How can it best be dealt with and handled?
 Can the occurrence be turned to an advantage?

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 233

First, resistance to change (resistance and user
acceptance) is natural and a part of human nature
[6][13][22][30]. It exists in every organization and
happens at all levels of the enterprise. Second, if
resistance is pervasive or demonstrated by key
stakeholders, the result of this behavior will have a
detrimental impact on EA. Third and most important, it
cannot be ignored or dismissed. Fourth, resistance can
come from both the organization and its stakeholders.

From an organizational perspective, resistance can be
recognized when management acts by [2][10]:

 Installing structural mechanisms to maintain the
status quo and existing equilibrium of the
organization

 Implementing procedures and rules that direct
people to perform in historical ways

 Maintaining the previous habits, rules, norms,
character, culture, and structure of the
enterprise.

From the stakeholder point of view, stakeholder
resistance includes [6][12][30]:

 Stakeholders acting as creatures of habit
continuing to perform and do tasks from existing
cognitive behavior without thinking about their
actions.

 Coping with change and the complexity
associated with new processes and procedures
by responding in known ways that lead to
resistance.

 Fear that job stability, security, and income will
be jeopardized by the new way of performing
work.

 Loss of power, influence, and status within the
organization.

 Acting in ways that serve their own parochial
self interests.

With EA dependent on production of a verifiable EAP,
recognizing resistance early in the EA process becomes a
critical element in EA design and implementation.
However, there is a positive side to resistance to change.

3. Stakeholder and Organizational Behavior:

Applying the Theory of Structuration

Enterprise Architecture (EA) and Information
Technology (IT) leads to organizational transformation
[30]. Given this context, individual stakeholder behavior,
including their beliefs, culture, and cognitive life
experiences, directly link to that of the central and
distinctive characteristics of the organization. These ideas
can be expanded and allow resistance to change
(resistance) to be treated as a natural and normal human
behavioral trait, then organizational transformation can
be posited as either a positive and/or negative major shift
in the enterprise’s operating paradigm, character, culture,

and structure. In effect, a change in the way it does
business [18] .

The result of this phenomenon can be emotionally
devastating to stakeholders as it can alter behavioral
patterns that could upset the social, economic, and
political hierarchy and structure within the organization.
Thus it can be the genesis for failed EA [1] [20].
However, if resistance is treated as human nature and a
normal behavioral phenomenon that must be taken into
account during EA design, it can be anticipated, planned
for, and made a part of any framework(s) desired for EA
design that includes aspects of social theory.

Building on the insights of this interpretative
approach can lead to increased stakeholder participation,
involvement, and thus commitment during the EA life
cycle. However, this requires that resistance be planned
for and recognized early in and addressed as reality in the
EA process. Given this premise, resistance and
organizational change can be handled as a means for
successful information discourse and exchange.

Given this perspective, Giddens’ Theory of
Structuration allows us to explore stakeholder resistance
using several key components of social theory,
organization theory, information technology, and
communication to analyze resistance from an
organization (i.e., structure) and human agency
perspective and thus construct a conceptual EA
framework. First, knowing what is causing a particular
behavior and what is maintaining it must be recognized.
Stakeholders are responsible for providing the input and
thus the production of output from EA, the EAP [18][19].
Therefore, more attention must be paid to the people
involved in EA and perhaps less to the processes
associated with the technology. Second, only
stakeholders can change stakeholder behavior (manager
to worker). Stakeholder attitudes, beliefs, and/or cultures
cannot be changed as these are integral traits resulting
from the cognitive life experiences of the stakeholder [8]
[12].

Organizations and humans represent living systems
and are each the products of their respective historic life
experiences and the environment in which they function.
Thus, the way stakeholders interact with the EA process
will determines how their commitment to and what they
will contribute during EA [3]. Third, what is perceived as
resistance is an integral part of the living system that
might not be understood [21][22][30]. Thus, helping
stakeholders understand the rationale for change and to
accept, adapt to, or at least not oppose it, makes
stakeholder resistance a critical component that must be
reckoned with for successful implementation of IT
strategies. Finally, stakeholder beliefs, culture, and
values, some of which might be implacable, must be
recognized early and dealt with [4][6]. In some cases,
stakeholders may be unreasonable. Therefore,
mechanisms that either control and/or contain may be

234 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

required. From an EA and requirements engineering
perspective, our solution addresses resistance with an EA
framework tied to and that’s formulated, planned for, and
designed around stakeholder behavior.

Giddens’ Theory of Structuration differs from earlier
sociological works and dualisms positing a highly
complex and abstract property of social systems [8]. We
submit at this point that social systems are not structures
though they exhibit structural properties that are
instantiated as social practices. In this same context,
resistance is not a structure but, yet, exhibits structural
properties that are implicit, deterministic, and instantiated
in daily stakeholder behavior. From this, we can
conceptualize resistance as a duality from two
dynamically interrelated perspectives: an explicit
perspective where resistance is observable and a deeper
implicit perspective, recursively linked through the
modality of interpretive human actors’ actions.

In EA design, the theory can be associated in context
with the subjective human experience in the
interpretation, creation, and modification of the social
world, his structure (i.e., organization) [8]. In this case,
structure is not something concrete but maintains a
virtual existence situated in time and space. In addition,
though it lacks material characteristics, it cannot exist
without human actors who interact in a recursive manner
while interpreting its dimensions [8]. In essence,
structuration theory represents a social framework where
human actors live, work, and interact creating and
recreating social culture.

At the same time, and though Giddens doesn’t
address technology, the theory can be applied to
technology depending on how it is perceived and used
claiming that social structure can constrain and limit
stakeholders’ ability to be innovative and creative. Both
culture and structure form Giddens’ duality of structure
[8]. In this context, stakeholders allow the shared
abstractions of social structures to constrain their action
and induce behavior influenced by authority relationships
and other organizational change. Hence, the absence of
material constraints attests to the power of those socially
constructed abstractions to elicit behavioral patterns of
compliance and conformity. Therefore, Giddens’ theory
can be applied to EA by recognizing that both structure
and agency represent a duality and, at the same time, that
each is iteratively dependent on each other.

Orlikowski applied IT to the theory formalizing her
Structurational Model of Technology (SMT) [20] as “in
its constituted nature – information technology is the
social product of subjective human action within specific
structural and cultural contexts – and in its constituted
role – information technology is simultaneously an
objective set of rules and resources involved in mediating
(facilitating and constraining) human action, and thus
hence contributing to the creation, re-creation and
transformation of these contexts” [20].

4. Mitigating Resistance to Change: Coping with
Stakeholder Behavior

Enterprise Architecture (EA) and Information
Technology (IT) have come to be synonymous with
organizational transformation [2][3][20]. Sometimes this
transformation can be easy and in other circumstances, it
can be extremely traumatic. However, organizational
transformation has become the new norm and certainly a
way of life in today’s technologically-driven world.

This paper progresses our process of designing and
developing a behavior-driven framework for EA that
emphasizes a hermeneutic, iterative analysis of social,
organizational, and management influences that affect
EA design. In this case, exploring and analyzing the
effect resistance to change (resistance) has on
organizational and stakeholder (collectively stakeholder)
behavior during EA and in this ,the hermeneutic analysis.
From this point of view, the focus can be directed to the
constructive aspects of resistance to alter stakeholder
behavior. In this case, altering negative stakeholder
behavior means first and foremost recognizing that
human stakeholders are emotional beings and creatures of
habit [8]. Therefore, recognizing behavioral patterns that
exhibit resistance provides a way to change behavior
such that accepting change can be healthy.

Given that resistance is constituted behavioral acts
that take place from both human and social interaction,
these behavioral tendencies and acts can be mitigated by:

 Bringing change to the forefront of the process
by explaining the need for change.

 Providing a vision that stakeholders can relate to
that helps them to understand why change is
necessary for the organization.

 Utilizing those stakeholders as role models who
want to “own” and drive the change process.
These kinds of stakeholder can help in getting
other stakeholders to embrace and accept, or at
least not oppose, change.

 Helping stakeholders deal with the emotional
aspects of change. Perhaps answering the
question “What’s in it for me?”.

 Creating an environment that appeals to
stakeholder self-interest. In effect, waking the
talk, not just talking the walk.

 Providing skills training. EA means new
processes and procedures that stakeholders must
adapt to, accept, and learn. Providing
stakeholders with the skills/training they need to
work with the new processes and procedures and
be successful can negate negative behavior and
thus mitigate resistance.

While it might not be possible to control all of the factors
affecting EA, we can control the design and
implementation processes by instantiating how we will

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 235

arrive at a viable IT solution. For example, frameworks
can be controlled and allow features to be incorporated
that include conducting open-ended interviews, an on-
going examination of stakeholder interpretations and
expectations, continual analysis of social and work
practices to identify risk, and thus avoid approaches that
pay little attention to social issues and context.

First and from a structurational viewpoint, identify
and involve stakeholders that want to get involved and
make them part of the planning and decision-making
process. This means asking them for their thoughts about
the new technology plans, soliciting their suggestions
and then incorporating their ideas in the solution. In
effect, listen and act to what’s going on.

Second, clearly define the strategic and business-
oriented need for change, communicating this
information through the organizational levels and
soliciting stakeholder thoughts about the plan. Expect
there to be defiance – some people will not openly speak
about the change but rather ignore it and speak to others
about how detrimental the change could be.

Third, plan to deal with the emotional needs of
stakeholders by being open and honest about the impact
change will have on their place in the process. In effect,
handle the soft people needs of the stakeholders by
involving them and changing only that which needs to be
changed. In essence, identify the source(s) and reasons
for negative reactions and perhaps modify your
assumptions, clarify what is being done, and thus
reinforce the rationale for change.

Fourth, resistance should not be confronted from a
defensive position. Design flexibility into change by
allowing stakeholders to participate in the design process
and assimilate new behaviors and redefine their roles
during implementation of the EA change process. What
we perceive as resistance is really a part of the system we
don’t understand.

Fifth, do not allow for stakeholders to modify, abuse,
or misuse the new technology and thus revert to the
previous way of doing work. Focus on the specific
positive aspects of change without committing to the
process until the organization is ready for
implementation.

From this, we can build a sociologically behavioral-
driven framework for EA design using Giddens’ Theory
of Structuration that leads to stakeholder participation,
involvement, and commitment. For EA to be successful,
we need to: 1. know what is causing a negative behavior
and what is maintaining it; 2. change behavior
recognizing you cannot change attitudes, beliefs, and/or
cultures; and, 3. only change behavior that is understood
and only if you understand human behavior.

One of the most important outcomes expected from
EA organizational transformation [3][18]. The
importance of this aspect of EA manifests itself in the
translation of EA design requirements into a manifesto

containing the planning, alignment, guidelines, and rules
for governance leading to a Software Requirements
Specification (SRS), document that will be used
throughout the IT design and implementation life cycle
[24]. [31] Yet, the EA process highlights one of the most
difficult and arduous tasks confronting the Enterprise
Information Architect (EIA), ensuring organizational
transformation takes place in an orderly and controlled
environment focused on organizational expectations
[7][11][22].

5. Discussion, Future Direction and Closing

Remarks

 The initial stages of Enterprise Architecture (EA) design
today are more concerned with the how the technical
aspects of Information Technology (IT) design activity is
conducted rather than with preparing the organization for
EA. This approach differs from traditional approaches in
that EA is examined from an organizational and
stakeholder behavioral perspective with an EA
framework that includes and takes into account these
behaviors.

In earlier work [16], we proposed a framework that
includes several principles and practices from the fields
of sociology, psychology, organization theory, and
management behavior. This framework is incomplete.
Future work planned continues more research into the
behavioral aspects of EA design and to enhance our
framework with features that include:

 Establishing and understanding organizational
boundaries, domains.

 Choosing a preliminary IT design concept.
 Organization and delegation of EA design

activities based on stakeholder skills.
 Coordination of the IT design activities into a

single strategic EA plan (EAP).
 Integration and consolidation of IS design

efforts into a single comprehensive overall.

6. References

[1] D. Leonard-Barton and I. Deschamps,Managerial
Influence in the Implementation of New
Twechnology, Management Science, Oct, 1988, 34,
10: ABI/INFORM Global.

[2] M. Beer. Organizational Behavior and Development,
Harvard Business Review, Harvard University, No
Date.

[3] M-C Boudreau and D. Robet, Enacting Integrated
Information Technology:A Human Agency
Perspective, Organization Science, Vol.16, No. 1, pp
3-18, January-February, 2005

[4] C. Brooke (various), Critical Management
Perspectives on Information Systems, Butterworth-
Heinermann, Elsevier, Lincoln House, Jordan Hill,
Oxford OX2 8DP, UK, 2009.

236 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

[5] A.M. Croteau, F. Bergeron, An Information Trilogy:
Business Strategy, Technological Deployment, and
Organizational Performance, Journal of Strategic
Information Systems 10 (1001) pp 77-99, April,
2001.

[6] F. D. Davis, User Acceptance of Information
Technology: System Characteristics, User
Perceptions, and Behavioral Impacts, Int. J. Man-
Machine Studies, Acdemic Press Limited, 1993.

[7] R. Gauld. “Public Sector Information System
Failures: Lessons from a New Zealand Hospital
Organization,” Government Information Quarterly,
24(1):102-114, 2007.

[8] A. Giddens. The Constitution of Society: Outline of
the Theory of Structuration, University of California
Press, 1984.

[9] J. C. Henderson and N. Vankatraman, Strategic
Alignment: Leveraging Information Technology for
Transforming Organizations, IBM Systems Journal,
Vol. 32, No. 1, 1993/1999.

[10] T. Herrnes, Studying Composite Boundaries: A
Framework of Analysis, Human Relations, Vol.
57(I):9-29, The Tacistock Institute, Sage
Publications, London, Thousand Oaks, CA, 2004.

[11] B. Lawhorn. More Software Project Failures. CAI,
March 31, 2010.

[12] R. Lewin and B. Regine. “Enterprise Architecture,
People, Process, Business, Technology.” Institute for
Enterprise Architecture Developments [Online],
Available:http://www.enterprise-architecture.info/
Images/ExtendedEnterprise/ExtendedEnterprise
Architecture3.html.

[13] M. L. Markus, Power, Politics, and MIS
Implementation, Communications of the ACM, Vol.
26, No. 6, June, 1983.

[14] D. M. Mezzanotte, Sr., J. Dehlinger, and S.
Chakraborty, Applying the Theory of Structuration to
Enterprise Design, IEEE/WorldComp 2011, SERP
2011, July, 2011.

[15] D. M. Mezzanotte, Sr. and J. Dehlinger, “Building
Information Technology Based on a Human
Behavior Oriented Approach to Enterprise
Architecture,” 2013 World Conference in Computer
Science, Computer Engineering and Applied
Computing, IEEE/WorldComp 2013, SERP 2013.
July, 2013.

[16] D. M. Mezzanotte, Sr., and J. Dehlinger, “Enterprise
Architecture: A Framework Based on Human
Behavior Using the Theory of Structuration.”
International Association of Computer and
Information Science, 2012 IEEE/ACIS 10th
International Conference on Software Engineering
Research, Management, and Applications, 2012.

[17] D. M. Mezzanotte, Sr., J. Dehlinger, and S.
Chakraborty, On Applying the Theory of
Structuration to Enterprise Architecture Design,
IEEE/ACIS, August, 2011.

[18] D. Minoli. Enterprise Architecture A to Z, CRC
Press, New York, 2008.

[19] The Open Group, TOGAF Version 9, The Open
Group, 2009.

[20] W. Orlikowski. “The Duality of Technology:
Rethinking the Concept of Technology in
Organization,” Organization Science, 3(3):398-427,
1992

[21] G. Riva, The Sociocognitive Psychology of
Computer-Mediated Communication: The Present
and Future of Technology-Based Interactions, Cyber
Psychology and Behavior, Vol. 5, No. 6, Mary Ann
Liebert, Inc., 2002..

[22] S. Rivard, B. A. Aubert, et al, Information
Technology and Organizational Transformation:
Solving the Management Puzzle, Elsevier
Butterworth-Heinemann, Linacre House, Jordan Hill,
Oxford, OX2 8DP, 800 Wheeler Road, Burlington,
MA, 01803, 2004.

[23] S. Roeleven, Sven and J. Broer. “Why Two Thirds of
Enterprise Architecture Projects Fail,” ARIS Expert
Paper [Online], Available: http://www.ids-
scheer.com/set/ 6473/EA_-_Roeleven_Broer_-
_Enterprise_Architecture _Projects_Fail_-
_AEP_en.pdf.

[24] N. Rozanski and E. Woods, Software Systems
Architecture, Addison-Wesley Professional, 2006.

[25] W. Scacchi, Process Models in Software
Engineering, Final Version in Encylopedia of
Softwre Engineering, 2nd Ed., John Wiley & Sons,
Inc., New York, NY, December, 2001.

[26] S. Spewak, Enterprise Architecture Planning:
Developing a Blueprint for Data, Applications, and
Technology, J. Wiley & Sons, Inc., New York, NY,
1992.

[27] I. Sommerville and P. Sawyer, Requirements
Engineering: A Good Practice Guide, John Wiley &
Sons, Ltd., Baffins Lane, Chichester, West Sussex,
PO19 1UD, England, June, 2000.

[28] The Standish Group, The Standish Group 2014
CHAOS Report, 2014 Project Smart, 2014.

[29] B. van der Raadt, S. Schouten, and H. van Vliet,
Stakeholder Perception of Enterprise Architecture,
ECSA, 2008, LNCS 4292, Sprinter-Verlag, Berlin,
Heidelberg, 2008.

[30] J. G. Wojtecki, Jr. and R. G. Peters, Organizational
Change: Information Technology Meets the Carbon-
Based Employee Unit, The 2000 Annual: Volume 2,
Consulting, Jossey-Bass Pfeiffer, San Francisco, CA,
2000.

[31] J. A. Zachman, Enterprise Architecture Artifacts vs.
Application Artifacts, Z|FA, Zachman Institute for
Framework Advancement, www.zifa.com, No date.

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 237

Abstract— Most of practiced agile methodologies focus on
delivering the functional requirements with higher priority
and delivery push, lead up to a lot of instability and
architectural severe non-compliances and variations. This
will be very costly to change in the future phases or sprints
and it will be too late to consider addressing main NFR’s
required.
This research paper aims to provide architectural
refactoring framework and techniques for achieving
required levels of NFR’s through formalizing Spikes and
DoD’s within Scrum practices. In addition, it aims to
develop a framework for handling different types of
technical debts within Scrum managed software products
and projects development. Scope covers addressing NFR’s
within software development through DoD’s and techniques
for identifying them. Furthermore, finding the best tactics for
implementing the NFR’s within the Scrum methodology
through spikes and refactoring with usage of constraints and
rules mainly within DoD’s [1, p. 1]. It has been concluded
that incorporation of non-functional requirements should be
explicitly defined by including them in the Definition of
Done. In addition, adopting the engineering practices such
as TDD, CI, refactoring for maximizing the gained value
from Scrum.
A data exported from Jira agile management tool covering
nine software products with more than 7000 defined user
stories developed using Scrum methodology has been
analyzed using data mining techniques.

Keywords: Non-Functional Requirements (NFRs),
Definition of Done (DoD), Software Architecture, Quality
Attributes (QAs), Scrum Methodology, Data Mining (DM),
Spikes, Refactoring, Continues Integration (CI), Test Driven
Development (TDD)

1 INTRODUCTION

True agility can be achieved through the ability to apply
changes into the product in an easy, fast, and flexible way.
Within that sense, the organizational agility is constrained by
technical agility [2]. That is best reached by knowing more
about systems unknowns. As known “unknowns” are better
than unknown “unknowns”, the architecture play main role

over revealing those unknowns, unplanned, and usually
implicitly assumed non-functional requirements. Practiced
agile methodologies and specially Scrum mandate quite push
towards delivering the functional requirements without real
considerations for the NFR’s. Consequently, architectural
constraints and design rules could not be well addressed at
least in early stages. The higher priority given to functional
specifications leads up to a lot of instability and architectural
severe loss of alignment, non-conformances and variations.
This is usually very costly to change and it will be too late to
be considered in later phases [3]. Because of the importance
of NFR’s, it is critical that they be considered during early
architecture design. It has been addressed that architects
commonly consider them simultaneously [4, p. 1737] with
focus in later stages. However, architects risk making
architectural decisions concerning which tactics to implement
and it could be difficult to implement correctly and control.

1.1 Problem Definition and Objectives
Complexity to address the NFR’s implementation within the
Scrum practices engineered software. This increase the cost
of refactoring for achieving those requirements later. It aims
at the following:

 Architectural Refactoring for achieving levels of NFR’s
through formalizing Spikes and DoD’s

 To develop a framework for handling technical debts within
agile concepts

 Scope will cover addressing NFR’s within software
development through DoD.

 Identify the best NFR’s implementation techniques within
the agile concepts (spike and/or refactoring) through (DoD,
Constraints, Rules)

1.2 Originality and Value
This research studies how to provide better architectural
refactoring techniques for achieving required levels of NFR’s.
In addition, proving and improving results through applied
case-study data.
1.3 Structure of the paper
It starts by reviewing similar researches that researches
addressing non-functional requirements in the definition of
done within scrum and generally agile practices. Then it

Proposed Framework for Handling Architectural
NFR’s within Scrum Methodology

Ahmed E. Sabry1, Sherif S. El-Rabbat2

1Computer and Information Systems Department,
Sadat Academy, Cairo, Egypt

2Research and Development Department,

BG, Kuwait

238 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

discusses the framework with case analyses models, data
collection along with the results. In the following sections,
results discussed, relevant conclusions drawn as well as future
work.

2 BACKGROUND

While non-functional requirements or quality attributes, as
they are also called, may not be sexy, they are still important:
They impact the user experience, and they influence
architecture and design decisions [5, p. 1]
As important as they are, non-functional properties are
sometimes overlooked, particularly in an agile context where
we spend less time with upfront research and analysis. This
can be particularly painful for those attributes that apply to the
entire product [5, p. 1]
Scrum does not help with non-functional requirements, but
that does not mean that we are supposed to ignore them [6].
Within Scrum projects, the focus mostly given to
implementation for the next set of features from the
prioritized backlog items. While features are not everything,
work on fixing bugs, usability, performance, and scalability
issues shall be planned within sprint backlog including other
NFR’s [6].

3 NFR AND SOFTWARE ARCHITECTURE

As Non-Functional Requirements (NFR) specifies "how
well" the "what must behave" [1], the development team is a
great partner for finding relevant nonfunctional requirements,
particularly if the team members have worked on a similar
product before or deal with support and production issues.
Otherwise, inviting members of the operations and customer
services group should be considered to listen to their views on
qualities such as robustness and availability [5, p. 1].

3.1 TYPES OF TECHNICAL STORIES
Sometimes it is useful to identify different types of technical
stories. Mostly because it gets your team thinking at different
levels about all of the needs, they might have to be properly
implement within the application [5].

Table 1: Types of technical stories

Product
Infrastructure

Stories that directly support requested
functional stories. This could include new
and/or modified infrastructure. It might also
identify refactoring opportunities, but driven
from the functional need.

Team
Infrastructure

Stories that support the team and their ability
to deliver software. This may include using of
tools, testing, metrics, design, and planning.

Refactoring Stories that identify areas that are refactoring
candidates. Not only code needs refactoring,
but also it can often include designs,

automation, tooling, and any process
documentation.

Bug Fixing Either clusters or packages of bugs that
increase repair time or reduce aggregate of
testing time. So this is more of an efficiency
play.

Spikes Research stories that will result in learning,
architecture & design, prototypes, and
ultimately a set of stories and execution
strategy that will meet the functional goal of
the spike. Spikes need to err on the side of
prototype code over documentation as well,
although I do not think you have to “demo”
every spike.

3.2 NFR Constraints
As constraint is a condition to make the requirements in line
with quality expectations, NFR can be addressed within
defined constraints. This helps determine whether the
shippable product have satisfied the non functional
requirements or not. Any backlog item may be constrained by
NFR. Usually a constraint implemented either during the
implementation by the developers (internal quality) or at run-
time by the software (external quality) [1]. Therefore, NFR’s
constraints could be classified into two main categories:
The first category is internal qualities that mainly cover the
design-time qualities. This category is addressed through
rules. The rule can be defined as "constraint" that sets a limit
to comply during software construction. Internal quality
attributes may include maintainability and testability, that are
barely visible by the stakeholders but simplify how to build
the software. The user story could not be considered done
until each rule is confirmed by doing peer reviews or
inspection. This category may also include Simplicity,
Maintainability, Testability, Portability, and Extensibility [1]
[5].
The second category is external qualities that mainly cover
runtime quality attributes. This category addressed through
restrictions. Restriction it can be defined as is a "constraint"
that sets a limit to comply during software execution.
External qualities may include performance, correctness,
security and usability. These may perform the software
functions at run time; hence, they are desired while invisible
to most of stakeholders. It can be measured for compliance
by conducting suitable testing mechanism and automated
testing techniques. Restriction is specific for a scenario, and
it should have measurable quality objective. This category
may include Correctness, Performance, Reliability,
Robustness, Scalability, Security, and Usability [1, p. 2].

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 239

Figure 1: NFR Constraints Illustration

Figure 1 illustrates the relationships among stories,
acceptance criteria, rules, restrictions, test cases, and bugs [1,
p. 4]. NFR requirements identification and analysis should
start with identifying the stakeholders of the product by
arranging a meeting, in which the goals of the system should
be identified and discussed. The stakeholders shall be a
product owner, system administrator, user, architect of the
system, and quality manager. With stakeholders, the team will
identify the goals, sub goals of the system with the
nonfunctional requirements. These sub goals Nonfunctional
Requirements will be identified during the meeting [1, p. 6].
It is better in to create a separate user stories for the NFRs in
the product backlog, instead of using the user story itself with
NFR parameters.
That helps in the prioritization according to the FR user
stories and the NFRs user stories sizing because most NFRs
can be split throughout different sprints. The background of
this type of estimation is along with the functional story
development, NFR parameters should also be considered [1,
p. 11]. It is critical to address the required NFR’s for entire
product or important features in the early stages of
engineering, this supports creating a greater user experience
and make more rational architecture and technology
decisions. Capture the requirements precisely to ensure
testability [1, p. 15]. Most of modern service systems’
development approaches focus mainly on the system facing
quality requirements (late NFRs), while more focus should
be given to the customer facing quality requirements (early
NFRs). NFRs handling remains a challenge, despite of the
latest advances in the state of the art and practice of software
development [7, p. 7].
There are different views for the NFR’s importance, on
addresses the types of requirements that affect overall fitness
for use given acronym FURPS, which is a requirements
categorization for Functionality, Usability, Reliability,
Performance, and Supportability. The following activities
must explicitly consider NFRs [8]:

 The business relevant feature or epic
 Developing and analyzing prospective architectural

features and architectural epics
 Reflect the increased solution domain knowledge

using model and architectural refactoring.

Properly defining NFRs requires consideration of the
following criteria listed in Table 2 [8, p. 3].

Table 2: NFR's main criteria considerations

Bounded Some NFRs are irrelevant (or even impairing)
when they lack bounded context.

Independent NFRs should be independent of each other, so that
they can be evaluated and tested without
consideration or impact of other system qualities.

Negotiable Understanding the NFRS business drivers and
bounded context mandates negotiability.

Testable NFRs must be stated with objective, measurable
and testable criteria, because, if you cannot test it,
you cannot ship it.

Sometimes the NFR must be implemented all at once, other
times the teams can take a more incremental approach (story-
by-story path) [8, p. 3].
Collaboration of the System Team and Agile Teams to create
a more practical NFR testing strategy (Diagram) [8, p. 3].
A research [9] drawn a practical decision model for software
architectural implementation tactics based on a given specific
set of quality attributes requirements. It lists an evaluated set
of NFR’s as listed in Table 3. It validated the results through
triangulation of methods including conducted survey.

Table 3: Description for Main Evaluated NFR's

NFR Description
Reliability Capability of the software product to

maintain a specified level of performance
used under specified conditions.

Usability How easy it is for the user to accomplish a
desired task and the kind of user support the
system provides.

Maintainability Capability of the software product being
modified

Testability Capability of the software product to enable
validation over changes

Portability Capability of the software product to be
executed over one environment to another.

Reusability Ability of easily reused, it depends on degree
of dependency among components and it is
better to be less

Modifiability How ease with which it can be modified to
changes in the environment, NFR
requirements or functional specifications

Performance Degree to which a system or component
accomplishes its designated functions within
given constraints, such as time, accuracy, or
memory usage.

Security System’s ability to resist unauthorized usage
while still providing its services to legitimate
users

Availability The limit of the probability that the system is
functioning correctly at time (t)

240 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

As part of its results [9] a concept of “safe-tactics
recommended to be used for implementation of required set
of NFR’s with specified fuzzy levels Table 4.

Table 4: concept of “safe-tactics recommended to be used for
implementation of required set of NFR’s

Tactic Name Rank
Component Replacement 1
Anticipated Changes 2
Generalize Module 3
Reconfiguration 4
Time Strap (stamp) 5
Record /Playback 6
Restoration 7
Fix the Error 8
Timeout 9
Limit Exposure 10
Removal from service 11
Authorize Users 12
Passive Redundancy 13
Heartbeat 14
Authenticate Users 15
Redundancy 16
Shadow 17
Voting 18
Specialized Access Routines/Interfaces 19
Ping/ Echo 20

Efficiently testing nonfunctional requirements requires some
thought and creativity, as otherwise high-cost heavyweight
tests may increase the risk of substantive technical debt, or
worse, system failure [5].

4 SCRUM METHODOLOGY AND NFR’S

The increasing systems and software complexity with
addition to increasing competition in the software industry
mandates the need to consider NFRs as an integral part of
software development process [10, p. 13].
Within Scrum process, there is a serious risk that non-
functional requirements will be neglected, resulting in poor-
quality software. It is natural for the Product Owner to think
about progress in terms of user stories and features, and to
hold the development team responsible for the ‘quality’ of the
resulting software [6, p. 1].
It is recommended to inject non-functional requirements into
a Scrum sprints by emphasizing them in the Definition of
Done (DoD) plus any associated reviews. Consequently, non-
functional requirements for things like reliability and usability
can be addressed into user stories [6, p. 1]
Once the sprint starts the development of functional stories
with the NFR parameters begin developing and completed
with the functionally tested, including the NFR at the end of
the sprint [1, p. 13].
During the sprint or in the beginning of the sprint, if any
constraints have been identified (in other words if any NFR
implementation affects one or more user stories) then it
should be added into the product backlog. With addition of a

constraint, the system stories in the product backlog need to
comply with this constraint may also need resizing if there is
an effort required to comply with the constraint [1, p. 13].
In other words, all estimates for future stories will need to take
into account the fact that the constraint must be complied with
in order to call the story "done".
For Scrum teams, it’s important to adopt Agile engineering or
development practices that will enable the team to have stable
velocity while meeting the quality standards. Engineering
practices need to use common tools and frameworks for
greater efficiency and tracking. Typically, the engineering
practices are captured in DoDs [11, p. 7].
4.1 Unit Testing and Code Reviews
A unit test is a piece of code written and maintained by the
developers that exercises other areas of the code and checks
the behavior. The result of a unit test is primarily binary,
either pass or fail. Developers write a large number of unit
tests based on the functions and methods in the code. Unit
tests are usually automated and can be run frequently as the
code changes. Unit testing frameworks are used to write,
maintain and execute the unit tests in an application. Unit tests
are written as part of development or coding and this activity
is typically part of Story DoD. NUnit and JUnit are two
popular tools for unit testing. Some Agile teams refer to unit
testing as developer testing. Code reviews and pair
programming are popular in agile development teams; many
agile experts believe that effective use of code reviews and
pair programming can improve the overall quality of the
application by identifying and eliminating defects during the
coding or development phase itself. The book “How Google
Tests Software” emphasizes the importance of code reviews
in the development process. It states that Google centers its
development process on code reviews. There is far more
fanfare around reviewing code than there is about writing it
[11, p. 7].
4.2 Test Automation
Building a robust test automation framework is critical for
agile teams to deal with regression issues. Test automation
tools are used to automate functional, integration and system
tests. Automated regression tests can find issues faster and
help the team move faster by saving time spent in manual
testing. Automated tests can be created as soon as the Story is
ready for testing. The team can keep this activity as part of the
Story DoD [11, p. 7].
4.3 Continuous Integration (CI)
Test Automation in and of itself does not offer much value to
agile teams if the tests are not run frequently to find defects.
A Continuous Integration model allows teams to check in
code and relevant automated tests frequently, sometimes
multiple times a day. Once the new code is checked in and a
working build is created, the automated regression tests can
run on the build and find the defects faster. As soon as the
Story and a relevant test automation scripts are developed,
they can be checked into the CI model. Again, this activity
can be tracked in the Story DoD. The Story is not done until
the automated tests are created and added to the CI and

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 241

regression tests are run without any failures. Automated
Deployments, Integration Testing, etc. [11, p. 8]
4.4 Test-Driven Development (TDD)
Test-driven development (TDD) is a software development
process in which the developer writes an automated test case
that states the desired behavior; the test should be initially
failing. Then the developer writes the minimum amount of
code to pass that test. The new code should be refactored to
acceptable coding standards. TDD, which is intended to build
the code right, as an engineering practice is encouraged in
some Agile circles for better design and improved quality [11,
p. 8].
4.5 Acceptance Test Driven Development (ATDD)
ATDD (build the right code) is a complete paradigm shift
from other agile software development practices. In ATDD,
developers build the application code based on User Stories
and acceptance tests and automated tests are run on them to
capture feedback from Users and product owners as the
development is still in process. The automated tests are
defined by product owners and Users using a WiKi

mechanism, and then an ATDD framework like FitNesse or
Cucumber is used to integrate the tests to working code using
fixture code. ATDD integrates developers, testers and product
owners and Users into the development effort in a kind of
forced collaboration. ATDD encourages team’s acceptance of
quality as everyone’s responsibility [11, p. 8].
4.6 Performance and Load Testing
Performance and load testing are important aspects of testing
that ensure the application meets the performance
expectations of the Users under typical production load. It’s
not always efficient to run performance tests for every Story,
but they should be run for key features to ensure that response
times are below the expected thresholds as defined in the
Acceptance Criteria. Performance tests can be run at the end
of each Sprint when a set of stories are completed by the
development team. Performance testing activity can be part of
Sprint Definition of Done [11, p. 9].

Figure 2: Decision tree for tactics selected based on specific NFR requirements levels

242 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

5 Discussion and Results

A poorly defined or incomplete Definition of Done can lead
to gaps and defects in potentially shippable software as
development practices vary from Story to Story. The team
needs to decide whether an activity or condition belongs in
the DoD for a Story, a Sprint or a Release. As we move the
conditions from a story to release level, the team is
temporarily creating technical debt and adding to the risk. The
team should try to keep as many conditions or activities as
possible at the story level and move them up to sprint or
release level only if it’s inefficient to do it at story level. There
are many factors that will influence these decisions.
A data exported from Jira tool covering nine systems
developed using Scrum methodology has been analyzed using
data mining techniques (clustering and decision tree). The
data size was more than 7,000 stories. Each story has 15 main
attributes (dimensions). Table 5 lists and describes the
attributes being preprocessed and analyzed.

Table 5: The analyzed stories data attributes (covering 7,000
stories)

Attribute
(Dimension)

Description

Story ID Identification number for each story

Story Type Identifies the story types, whether it is
Product Infrastructure, Team
Infrastructure, Refactoring, Bug
Fixing, or Spikes

Story The story definition

Systems The system identifier

Priority The backlog priority sit by the product
owner

Assignee(Scrum
Team)

The Scrum team working on this story
identifier

Acceptance Criteria The main and alternative scenarios
defining the acceptance criteria

Constraints The corresponding rules and/or
restrictions

Size The story estimated size measured in
story points

Sprint Sprint identifier

Reporter The team member delivers this story
on the Jira tool

Created Creation date

Updated Last update date

Status Status showing the actual progress

Versions The associated version

Performance or load testing added to Story DoD, but if it’s
inefficient or expensive for the team to run performance or
load testing for each Story individually, the performance or
load testing can be moved from Story DoD to Sprint DoD.
This allows the team to run a single performance or load

testing cycle towards the end of each Sprint on multiple
Stories developed in that Sprint [11, p. 4].
The injection of NFR’s within the DoD’s make it possible to
discuss the cost of implementing non-functional requirements
with business stakeholders.
Nonfunctional Requirements are persistent qualities and
constraints, and, unlike functional requirements, are typically
revisited as part of the “Definition of Done” for each iteration
or Release (PI). NFRs exist at all three levels: Team, Program
and Portfolio [8].
It is better to capture nonfunctional requirements as constraint
stories. The constraint has two parts: a narrative and a list of
acceptance criteria. The narrative describes the nonfunctional
requirement from the perspective of the persona of the user.
The criteria clarify the interaction and describe the
environment. Both are required for constraint validation [5, p.
2].

6 CONCLUSIONS

The nonfunctional requirements have been explored and
applying relevant qualities tactics in the early stages
conducted and recommended to cover the whole product or
important features in the backlog. This helps relevant
stakeholders to have better user experience, and make
rationale architecture and technology decisions. Whatever the
chosen format to capture the non-functional requirements, it
is important to capture the requirements precisely to ensure its
testability.
Adding constraints to the Definition of Done increases the
time required to implement each user story, as well as the time
required to review or test that DoD, but it was consumed in
all cases without being noticed or explicitly identified or
planned.
As part of Scrum practices, it has been recommended
throughout this research that incorporation of non-functional
requirements should be explicitly defined by including them
in the Definition of Done.
For maximizing the gained value from Scrum, adopting the
engineering practices discussed is essential. This may include
but not limited to TDD, CI, refactoring, etc. that can be
leveraged through the injection of the discussed NFR's
constraints including rules and restrictions in the DoD either
at the story, or sprint, or release level.

REFERENCES

[1] R. Kartik, "Non-Functional Requirements (NFR) in
Agile Practices," 2013.

[2] LeSS Company B.V., "Large Scale Scrum," 2014.
[3] V. Christophe, U. Falk and W. Brenner, "Jumpstarting

Scrum with Design Thinking," 2013.

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 243

[4] N. B. Harrison and P. Avgeriou, "How do architecture
patterns and tactics interact? A model and annotation,"
Journal of Systems and Software, vol. 83, p. 1735–
1758, 2010.

[5] R. Pichler, "Discovering and Describing
Nonfunctional Requirements," 2013.

[6] P. Hilton, "Scrum and non-functional requirements,"
Lunatech Blog, 2012.

[7] P. Loucopoulos and J. Sun, "A Systematic
Classification and Analysis of NFRs," in Proceedings
of the Nineteenth Americas Conference on Information
Systems, Chicago, Illinois, 2013.

[8] Leffingwell, "Nonfunctional Requirements Abstract,"
Scaled Agile Inc., 2014.

[9] A. Sabry, "Decision Model for Software Architectural
Tactics Selection based on Quality Attributes
Requirements," in ICCMIT, Prague, 2015.

[10] A. Matoussi and R. Laleau, "A Survey of Non-
Functional Requirements in Software Development
Process," Laboratory of Algorithmics, Complexity and
Logic (LACL), University Paris, Paris East, France,
2008.

[11] S. Purushotham and A. Pulla, "Bridging the Gap
Between Acceptance Criteria and Definition of Done,"
in PNSQC, 2013.

APPENDIX

User Stories DoD Recommendations

A. Recommended DoD For User Stories

 Stories are created on JIRA and linked to
Requirements’ sheets’ IDs

 A story has a clear, well-defined description
 A story lists its acceptance criteria clearly
 A story has a well-defined prototype or an existing

example from a similar behavior in the system
 Integration stories are created on JIRA with a clear

description
 Stories are linked to integration stories on JIRA (if

applicable)
 A story’s dependencies are identified and listed

clearly (inter-module dependencies / intra-module
dependencies)

 Code Completed and Reviewed
 Code is refactored (to support new functionality)
 Code Checked-In and Built without Error
 Unit Tests Written and Passing
 Acceptance Tests written and passed
 Pass all Non-Functional Requirements if Applicable

(Cross browser compatibility tier)

 Product Owner Sign Off /Acceptance
 User Acceptance
 Manual regression scripts updated
 Test Automation Scripts Created and integrated
 Localization (truncation, wrapping, line height

issues, string array issues, etc.)
 Analytics (Non-Functional Requirements) integrated

and tested
 Story level device support (big browser, tablet,

mobile device) tested.

B. Recommended DoD For a Sprint

 Stories meet their acceptance criteria
 Stories are implemented with compliance to their

prototypes
 Stories follow the general system behavior standards
 The correct comment template is used during

commits
 Integration Testing is done and bugs listed (if any)
 Test Cases and Test Scenarios are done
 The maximum number of acceptable bugs is not

exceeded: Zero ‘Blocker’, Zero ‘High’, Zero
‘Medium’, and ‘Low’ : ‘Enhancement or product
owner decision’.

 All tracking sheets are updated (outputs of sprint)
 Unit Test Code Coverage >80%
 Passed Regression Testing
 Passed Performance Tests (Where Applicable)
 End user training team hand-off
 UAT (User Acceptance Testing)
 Production Support Knowledge Transfer done

C. Recommended DoD For a Release

 Regression tests completed in an integrated
environment [11, p. 5]

 Performance or Load Tests completed
 Open defects reviewed by stakeholders and

production support team
 Workarounds documented
 UAT and end user training completed

244 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

HONIC: Customer Satisfaction Index Based Framework
to Transform Customer Experience

Rose Neena Tom (roseneena.tom@hcl.com)
1Customer Voice Measurement (CVM) Group

2HCL Technologies Ltd, Bangalore, Karnataka, India

SERP’15: POSITION PAPER

Abstract - HONIC framework applies growth parameters in
the transformation journey of a business relationship. A well
developed and institutionalized customer satisfaction (CSAT)
measurement process helps to gather business parameters or
metrics. These are in-turn applied on this framework to help
business to predict and proactively grow the relationship.
Customer expectation and experience management
procedural steps are brought in to help in the operational
flow.

Keywords: Customer Experience, Expectations, CSAT

1 Introduction
 Customer experience is the product of an interaction
between an organization and a customer over the duration of
their relationship. This interaction includes a customer's
attraction, awareness, discovery, cultivation, advocacy and
purchase and use of a service [1].

 Gartner defines customer experience management as
“the practice of designing and reacting to customer
interactions to meet or exceed customer expectations and,
thus, increase customer satisfaction, loyalty and advocacy.”
[2]

1.1 Technology led growth
 Organizations in today’s world are moving away from
focus on basic process improvements towards understanding
capabilities of digitalization. Business led technology value
chain transforms user experience effectiveness into agility,
growth and profitability.

1.2 Business Transformation: Market
observations

 Competitive challenges posed by the advent of digital
provide clear business imperatives for most organizations:

 Most companies are vulnerable to new, low-cost
born-digital startups or existing competitors with
strong digital strategies.

 Margins will be placed under great pressure as
digital business drives down unit costs.

 End customers already expect high-end digital
capabilities, and those without them will struggle to
keep up[2]

1.3 Service Delivery: Transformation Program
 Customer engagement is a strategic collaboration to
manage, fulfill & value-add. The engagement matures along
the life cycle starting from commencement, optimization,
and maturity to re-invention and it is imperative to track the
health of the relationship at all stages.

 Transformation journey for a typical service oriented
organization can be depicted as below:

Fig. 1 Service Delivery

Digital technologies offer new opportunities to attract,
engage, win, serve and retain customers. But they also add
hugely to the complexity of customer strategies:

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 245

 Manage customer relationships across multiple
channels and touch points

 Deliver better customer experiences across
marketing, sales, service and e-commerce

 Remove the political and cultural barriers that cause
customer initiatives to fail

 Unlock the real business value in your customer
data

The remainder of this paper is organized as follows:

Section 2 describes the newly instituted framework with its
components, objectives and methodologies. Section 3 the
case-study of application of this framework.
2 HONIC Framework: Transformational

Journey

Fig. 2 H.O.N.I.C Framework

 Transformational journey in a Business relationship can
be found analogous with Maslow's Hierarchy Of Needs – a
theory in psychology proposed by Abraham Maslow in his
1943 paper "A Theory of Human Motivation"
in Psychological Review [3] [4]. The hierarchy remains a
very popular framework in sociology research, management
training [6] and higher psychology instruction.

 HONIC Framework is derived based on applying data
from Business grown indicators as given in the grid below.
As relationship matures over the years expectations increase
and hence steps to ensure customer experience differ at each
hierarchical level in the Transformational Journey.

 A continuous CSAT measurement process has been
deployed to gather data against each of these business
parameters. Some of these measurements are carried out in
monthly, quarterly or even annual cycles. Each parameter is
rated on a scale 1-7; 1 being lowest and 7 being the highest.
Business parameters against each of Transformational Level

are developed and applied in the grid as below. In addition to
these often deployed attributes additional aspects may also be
applied as and when needed.

Transformational
Integral Partner Business

Transformation
Increased revenues
for clients

Client/ Corporate
Governance

HCL's
contribution to
improving client
time to market

Thought
Leadership

Innovative
Multi service
approach

Industrialized
Global Delivery

Showcasing value
adds

Decision Making Ability to
Innovate

Alternate
solutions/suppor
t

Innovative
Approach

Integrated Excellence in
Delivery

Account
Management

Predictable
Delivery

Understanding
clients business

Program Governance Processes &
Methodologies Tool Deployment Collaborating

with all teams

Managed
On-Time
Delivery

Project
Management

Deliver right 1st
time

Domain Knowledge Project Status Update
(Reports/Timelines/Acc
uracy)

Resource
Management Proactivness

Requirement
Eliciation skil ls

Transactional Responsiven
ess

Resourcing /
Staffing

Quality of
Deliverable

Technical Expertise
Communication Soft Skil ls

Lowered cost of
operations Meeting SLAs

 Maturity Level / Parameters

 Fig. 3 HONIC: Business Parameter Grid

2.1 Framework objectives
The primary objectives of this framework are:

 Focus on customer disposition – (experience with
the firm, attitudes)

 Progress on the route of being a trusted business
partner

 Expectations from existing customers

 Increased wallet share

 Desire loyalty but not at the expense of lower price
realization

 Advocacy through referrals

This can be achieved as depicted below:

Fig. 4 Business Relationship Trajectory

2.2 Framework Institutionalization
 HONIC framework was applied over the years over
multiple business relationships. This has been sampled over
various engagements and is believed to provide a repetitive
performance and a predictable outcome.

246 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

Some of the categories of business engagements where this
applied are:

 Young relationship (2-3 years)

 Growing relationships (5-6 years)

 Matured relationships (> 10 years)

3 Case-Studies
3.1 A young/budding business engagement –

start of relationship
 When satisfaction measurement (CSAT) parameters
collated and applied for a business case study where
relationship was around 2-3 years a pattern as below
emerged:

3.1.1 Young business: Start of relationship

 Fig 5: Young Relationship – at the start

Fig 6: Young Relationship Level

3.1.2 Yong business: Subsequent Year

Fig 7: Young Relationship – Year 2

Fig 8: Young Relationship Level – Year 2

3.2 A Growing business engagement
 When satisfaction measurement (CSAT) parameters
collated and HONIC framework applied for a business case
study where relationship was around 5-6 years the pattern
that resulted is given below:

3.2.1 Growing Relationship: Year 4

Fig 9: Growing Relationship – Year 4

Fig 10: Growing Relationship Level– Year 4

3.2.2 Growing Relationship – Year 6

Fig 11: Growing Relationship – Year 6

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 247

Fig 12: Growing Relationship Level– Year 6

3.3 A Mature business engagement
 When satisfaction measurement (CSAT) parameters
collated and HONIC framework applied for a business
engagement where relationship was 10+ years the pattern
that came forth was as depicted below:

3.3.1 Mature relationship: Year 12

Fig 13: Mature Relationship

Fig 14: Mature Relationship Level

4 Case-study Inferences
 Some of the salient inferences that were drawn from these
outcomes are:

1. As business matures over years the relationship
grows over a predicted path

2. Expectations over the years grow as per a value
chain hierarchy – longer the relationship higher the
expectations on the ladder

3. Businesses need to proactively find solutions and
alternative approaches to cater to ever changing needs of
the industry and in turn their customers

5 References
[1] http://en.wikipedia.org/wiki/Customer_experience -
Retrieved 10th June 2015

[2] http://www.gartner.com/it-glossary/customer-
experience-management-cem: Retrieved 13th June 2015

[3] Maslow, A.H. (1943). A theory of human
motivation. Psychological Review 50 (4) 370–96. Retrieved
from http://psychclassics.yorku.ca/Maslow/motivation.htm:
Retrieved 13th June 2015

[4] https://en.wikipedia.org/wiki/Maslow's_hierarchy_of
_needs : Retrieved 13th June 2015

[5] Maslow, A. (1954). Motivation and
personality. New York, NY: Harper.

[6] Kremer, William Kremer; Hammond, Claudia (31
August 2013). "Abraham Maslow and the pyramid that
beguiled business". BBC news magazine. Retrieved 1
September 2013

[7] Joseph P Elm, Dennis R Goldenson, ‘The Effects of
CMMI® on Program Performance’, Carnegie Mellon®

Software Engineering Institute (SEI) , 5th CMMI Technology
Conference and User Group, Denver 2005

[8] CMMI® for Development, Version 1.2,
CMMI_DEV V1.2, CMU/SEI-2006-TR-008 / ESC-TR-2006-
008, August 2006, Carnegie Mellon® Software Engineering
Institute (SEI)

[9] Robert S Kaplan & David P Norton, ‘Strategy Maps’
& ‘The Strategy-focused Organization’ & “The Balanced
Scorecard – Measures That Drive Performance”, Harvard
Business Review, January- February 1992

248 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

SESSION

POSTER PAPERS

Chair(s)

TBA

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 249

250 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 251

252 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

SESSION

LATE BREAKING PAPERS: SOFTWARE
ENGINEERING PROCESSES + SECURITY ISSUES

Chair(s)

TBA

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 253

254 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

Semi-supervised learning applied to performance
indicators in software engineering processes

Leandro Bodo1,3,
Hilda Carvalho de Oliveira1,3, Fabricio Aparecido Breve1,3, Danilo Medeiros Eler2,4

1Dep. of Statistics, Applied Mathematics and Computer Science
2Dep. of Mathematics and Computer Science

Universidade Estadual Paulista, UNESP
3Rio Claro, 4Presidente Prudente - Brazil

lbodo@rc.unesp.br, hildaz@rc.unesp.br, fabricio@rc.unesp.br, daniloeler@fct.unesp.br

Abstract—Performance indicators are critical resources for
quality control in the software development process. Over time,
the data volume of the historical basis these indicators increase
significantly. Moreover, the diversity of treatment (individual or
group) and the frequency of data collection hamper the analysis.
The time and reliability of these analyzes are important to
support a faster and more effective decision. Thus, this paper
proposes the use of artificial neural networks with semi-
supervised learning to analyze the historical basis of performance
indicators. In order to support the sample labeling process it is
recommended to use information visualization techniques. An
indicator reference model was defined based on the software
process reference model MPS for Software (MPS-SW) to be used
before the labeling process.

Keywords—Software Processes, performance indicators,
machine learning, artificial neural network, MPS-SW.

I. INTRODUCTION
During a software development, procedures for quality

control aim to identify ways to mitigate causes of
unsatisfactory results. Furthermore, these procedures also allow
to evaluate the performance of the processes and to indicate the
need for changes and corrections on the process [1], [2].
Specific project results must be monitored to determine if they
are in compliance with the quality criteria previously defined
and which are relevant to the development of the software.
Statistical techniques have helped the evaluation of the results
of quality control.

The performance indicators are important tools to the
quality control in general. These indicators aid to quantify the
performance of activities, processes and products, making it
possible to analyze the results and compare them to the planned
goals [3]. The indicators provide numerical relations that
reflect the current state of the processes. These relations
provide information for decision-making related to the
processes, and consequently, to their own business. The
performance indicators can present variations that require the
management’s attention when making a decision. It is possible

to evaluate the variations that occurred and generate prognostic
(projections) through historical comparisons of an indicator.

The performance indicators might be analyzed either
individually or in groups, depending on the defined
specifications to support the decision-making. These groupings
can also consider distinct indicators from different projects or
products, or consider the same indicator that comes from
different projects or products. The analyses are performed
continuously during the software development process, in
order to create a historical basis and judge the quality of the
software during the whole process [2].

However, the historical basis of the performance indicators
tends to become large and complex That happens because of
the large amount of data that is stored at the same time and the
intrinsic diversity of the indicators (different types, granularity
and frequency of data collection). Furthermore, the data
volume that is produced by these indicators tends to increase
dramatically over the monitoring time. All these factors require
a solution that enables the analysis of performance indicators,
improving the use of these indicators in the software
development process.

Within this context, this paper proposes the use of semi-
supervised machine learning techniques for analysis of
performance indicators in software development processes.
This type of learning reduces the cost with labeling process of
supervised learning and does not despise the labels of samples,
it could happen in the unsupervised learning.

The goal is to "teach" (to train) an Artificial Neural
Network (ANN) to recognize the existing patterns in the large
volume of the historical data generated by the indicators. Thus,
the ANN will be able to analyze the indicators in different
development processes and provide results that indicate the
status of a particular situation, similar to a traffic light. Overall,
an ANN can analyze indicator groups simultaneously, with
different complexities. This allows the indicator groups to be
controlled in dashboards. The same goes for individual
indicators. The same goes for individual indicators. This
technique is able to provide a decision-making more effective

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 255

and faster.
Therefore, the section II presents an overview of machine

learning and ANN. The section II outlines the semi-supervised
learning algorithm for analysis of performance indicators:
Particle Competition and Cooperation (PCC).

ANNs have been used for treatment of performance
indicators in different applications of Software Engineering.
The section IV presents a few comments about it and discusses
some criteria for the use of ANNs in software development
processes.

On the other hand, the section V outlines an indicator model
based on processes levels G and F of reference model MPS for
software (MPS-SW). This model will help to guide the
grouping of indicators in software development organizations.

The section VI shows the application of the PCC algorithm
on a real set of performance indicator samples. These
indicators belong to the historical basis of a company that
develops software, that is a project partnership and certified in
the level G on the model MPS-SW. The results of PCC
application are compared with the results that have been
obtained in two supervised ANN techniques. There was no
comparison with unsupervised methods, because this type of
learning ignores the information of the sample labels - and this
information is fundamental for the type of problems presented.
The final considerations of this article are presented in section
VII.

II. MACHINE LEARNING AND ARTIFICIAL NEURAL NETWORK
Within the context of artificial intelligence, machine

learning is an area that involves the construction of systems
capable of acquiring knowledge automatically. This area
considers the development of algorithms that use the acquired
"experience" to produce results without human intervention. A
machine learning algorithm can make decisions based on
examples of input data [4].

Overall, machine learning algorithms require the analysis
of a large amount of samples for learning. The idea is to teach
the algorithms to solve different problems in a given context.
This context may have characteristics that cause changes over
time and/or the type of application and use [5].

ANN is a type of machine learning techniques, which is
discussed in subsection A. There are different machine learning
categories, each one recommended for a particular type of
problem. The subsection B presents three categories:
supervised, unsupervised and semi-supervised.

A. Artificial Neural Network (ANN)
ANNs are computational techniques based on mathematical

models inspired by the neural structure of intelligent
organisms. The acquisition of knowledge in ANNs is
performed through experience [6]. They have the ability to
learn by examples, making inferences from that learning and
improving their performance gradually.

ANN has a behavior based on groups of neurons in the
human brain, which receive and transmit information through
the dendrites and axons, respectively [7]. When a specific set
of data inputs and their outputs are presented with an ANN, it

is able to auto adjust its synaptic weights. The adjustment of
the connections is obtained by learning adopting as training
criterion (and subsequent analysis) a specific activation
function. The training phase of ANNs consists in a functional
relationship mapping that exists between the inputs and
outputs. Following training, the network should be able to
generalize the behavior of the process at the time when other
inputs are presented to it (different inputs from those used
during training) [8].

ANNs can be used for performance evaluation indicator
groups of software engineering processes, as proposed in this
paper. Indicators are considered the network attributes and
have different measurement value and goals, without a pattern
in data types defined (may contain integer, boolean or real
values). Therefore, a software factory can "teach" how certain
indicator groups can express control targets, adjusting its
parameters on demand.

B. Machine Learning categories
A supervised learning algorithm requires that an expert

(external entity) introduce some sets of patterns for the inputs
and the corresponding standards for the outputs (results). An
output can be a numeric value or can predict a class label for
the input object. In the training phase of an ANN, for example,
the expert indicates explicitly for each input if the output
response is good or bad (data labeling process). Thus, the result
provided by the network is compared to the expected answer. If
the result is different than expected, an error is reported to the
network and adjustments need to be made in order to improve
future responses.

Unsupervised learning algorithms do not require an
external entity to perform the training process. They aim to
determine how the data is organized only based on the input
patterns, without labels or output values. These algorithms
process the inputs available and try to establish internal
representations to encode features and classify them
automatically, by detecting the singularity in the input samples.

Semi-supervised learning algorithms use both labeled and
unlabeled data for training. In many cases, the use of few
labeled data with many unlabeled data considerably improves
accuracy of the learning [9].

Due to the large amount of existing databases, label data for
supervised learning algorithms have become an increasingly
unworkable process. Usually, the labeling process is expensive
and time consuming, requiring intense involvement of human
experts. On the other side, the unsupervised algorithms ignore
valuable information label of the data items. Semi-supervised
algorithms can mitigate these problems: a few labeled data
items are combined with a large amount of unlabeled data,
producing better classifiers [10].

III. ALGORITHM ANN SEMI-SUPERVISED ADOPTED
The selected algorithm to propose a treatment for

performance indicators in this paper is called Particle
Competition and Cooperation (PCC) [9].This semi-supervised
ANN algorithm was chosen because it requires little human
effort and consequently little financial cost.

256 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

The PCC algorithm consists of a graph of related networks,

which has various particles moving through the network. These
particles are organized in the form of teams, where particles of
the same team go over the network in a cooperative way in
order to propagate their labels. Meanwhile, particles of
different teams compete with each other to determine the
borders of the class, and reject intrusive particles.

Traditionally, labels are spread over the network in a global
way in other semi-supervised learning algorithms based on
graphs. This means that the information is propagated from all
nodes to all other nodes for each iteration of the algorithm,
accordingly to the respective edge weights. On the other hand,
the spread of the label occurs locally at the PCC algorithm.
Therefore, each step of the algorithm, every particle propagates
its label to a selected neighbor by the rule "random1-greedy2".
Thus, each particle visits only a portion of the nodes that
potentially belongs to its team (subnet), preventing from
redundant operations are carried out [9].

Breve [10] presents a metaphor of particles based on ant
behavior (Fig. 1) to explain the PCC algorithm.

Fig 1. Metaphor based on behavior ant [10].

Every node on the network has an array of elements,
responsible for representing a level of particles each team.
Initially, the input data set is transformed into a non weights
and undirected network, where each node corresponding to a
non-labeled sample will have its field level configured with the
same value , where c = number of classes / teams. The Fig. 2
(a) explains the initial situation with four classes, ie, nodes not
labeled with domain levels 0.25: [0.25 0.25 0.25 0.25]. Next, a
set of ants are placed on the network. Each of them is a labeled
data item that is set to the highest value. The Fig. 2 (b)
illustrates this situation to the four classes labeled as Class A:
[1 0 0 0]. The subset of particles with the same label is called
"team" [9].

1Random walk: each particle chooses any neighbor to visit at random, without
worrying about the domination levels or distance from it home node. It is a
movement for acquisition of new node and exploration [9].
2Greedy walk: each particle visits the nodes that are closest to their home
nodes, especially those who are already dominated by its own team. It is a
movement to defend the territory of his team [9].

 (a) (b)

Fig. 2. Initial domination level: (a) unlabeled sample; (b) labeled sample.

Every ant chooses a neighboring node to visit each iteration

of the algorithm, using the "random-greedy" rule. The domain
level of their team is increased when an ant selects a
neighboring node. Meanwhile, domain levels of other teams
are decreased. If the node to be visited is in control of its own
team, the ant gets stronger, increasing their domain levels.
However, the ant weakens if the visited node is domain of the
other team. Each ant works prioritizing the domain of their
respective neighborhoods (neighboring nodes). For this, they
have a particular node as home and each ant keeps information
of the distance between their respective homes and other
network nodes. This method includes cooperation between the
ants. Thus they prioritize helping their teammates with their
neighborhoods, and eventually try to invade opponents’
territories. Each team tries to dominate the largest possible
number of nodes, and simultaneously try to avoid the invasion
of ants from other teams. At the end of the iterative process,
each unlabeled data item will be labeled according to the
team's label which contains the highest domain level.

IV. ARTIFICIAL NEURAL NETWORK APPLIED TO
PERFORMANCE INDICATORS

Machine learning techniques have been used with
performance indicators in different areas of knowledge. Melo
et al. [11] used an ANN Multilayer Perceptron (MLP) to
predict the variation in the flow of vehicles on roads, helping
drivers to selecting the best routes. Neto, Nagano and Moraes
[12] used an unsupervised ANN to classify agricultural
cooperatives based on their socioeconomic indicators.
Cattinelli et al. [13] used an ANN to analyze groups of
performance indicators in 109 hemodialysis clinics in Italy,
Portugal and Turkey. Within the context of Software
Engineering, Kutlubay et al. [14] used ANN techniques for
detecting defects in software products.

In this way, this paper proposes the use of PPC algorithm
(see section III) for an ANN with semi-supervised learning for
quality control during software development. This proposal has
a cost of labeling data up to 20% - which is considered low
cost. However, it will allow the development of tools that will
automate the monitoring processes effectively and efficiently.
The reliability of the labeling process can be aided with
information visualization techniques. It is recommended the
LSP techniques (Least Squares Projection) and parallel
coordinates.

Overall, the software processes and the performance
indicators are defined for any different software developer
organization. Thus, an indicator model was created to guide the
grouping of performance indicators before using an ANN. This

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 257

model will serve as a reference to the initial work of selection
and categorization of the indicators in the organization before
the labeling process, as shown in section V.

V. SOFTWARE PROCESS REFERENCE MODEL FOR
PERFORMANCE INDICATORS

As software organizations have specific indicators and
processes, the processes included in the MPS-SW quality
model were considered as reference for this work. Initially,
seven processes are being considered as levels G and F models.
The largest numbers of certified software organizations are in
these two maturity levels (almost 90% of the certifications). An
overview of this model is presented in the subsection A.

The subsection B presents an indicator model based on the
processes of the maturity levels G and F of the MPS-SW
model, to support the selection and clustering of indicators
before the application of the ANN. The company’s real
indicators may be converted to the MPS-SW model indicator.
However, not all model indicators can be converted into real
indicators.

A. MPS-SW model
The software MPS-SW model is part of Brazilian Software

Process Improvement Program (MPS.BR) created in 2003.
This model is based on ISO / IEC 12207 (software lifecycle)
and ISO / IEC 15504 (software evaluation). Currently there is
an agreement between the Software Engineering Institute (SEI)
and the Association for Promoting the Brazilian Software
Excellence (SOFTEX) for joint assessment and certification of
MPS-SW models and CMMI-DEV [17]. The MPS-SW model
is designed to benefit mainly micro, small and medium
software enterprises (MSME).

The MPS-SW model has seven maturity levels aiming a
gradual implementation and certification from the first level:
G. This maturity level includes two critical software processes
for MSME: Requirements Management and Project
Management. On each level are added new processes, as
shown in TABLE I. This means that a higher level involves its
processes more the processes from the lower levels. The
highest level, A, involves all processes from the lower levels
and emphasizes the continuity of the improvement in processes
[18].

TABLE I. PROCESSES ADDED TO EACH MATURITY LEVEL (ML) OF
THE MPS-SW [18].

ML PROCESSES
A (no new processes are added)
B Project Management (new outcomes)
C Decision Management; Risk Management; Development for Reuse
D Requirements Development; Product Design and Construction;

Product Integration; Verification and Validation
E Human Resources Management; Process Establishment; Process

Assessment and Improvement; Project Management (new
outcomes); Reuse Management

F Measurement; Configuration Management; Acquisition; Quality
Assurance; Project Portfolio Management

G Requirements Management; Project Management

The utilization of performance indicators is required for the
process from level F - that is kept up to level A. However, a
good practice is to adopt performance indicators from level G.

B. Reference model for indicators
A business ontology was developed by Pizzoleto [16]

organizing the levels G and F of the MPS-SW model. This
ontology proposed performance indicators for almost all the
expected results in the processes. Fig. 3 shows the Protégé
system screen with part of the measurements process of the F
level, as described in the ontology.

Using this ontology, interviews in MPS-SW certified
software companies were held. Based on literatures on
performance indicators in Software Engineering, such as [19],
[20], [21] and [22], an indicator model has been developed for
the processes of the levels G and F. Fig. 4 shows the indicator
model with the following attributes: description, purpose,
calculation method, measure unit, collection frequency, results
presentation frequency and scope application (project, product
and business).

Fig.3. Measurement process from the MPS-SW ontology in the Protégé

system [19].

Fig. 4. Representation of the reference model of performance indicators.

A group indicator model was defined based on four
perspectives of the Balanced Scorecard strategy (BSC):
Financial, Customer, Internal business processes, and Learning

258 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

and growth. These perspectives reflect the vision and
organizational strategy of a company [23]. The proposal was to
associate the indicators used in the model presented in Fig. 4
with the categories of BSC perspectives. Fig. 5 illustrates some
of these indicators associated with each view. This model
supports the software organization to form sets of indicators to
the process of labeling and training of ANN. The output result
for each perspective will be the "status" of the analyzed set of
indicators.

Fig. 5. Indicators groups based on the BSC perspectives with three possible

outputs.

VI. RESULTS
In order to evaluate the use of ANNs on analysis of

performance indicators in software processes, experiments
were performed with two different types of learning:
supervised and unsupervised. Two algorithms of ANN
supervised that are well-known in the literature were selected:
Multilayer Perceptron (MLP) and K-Nearest Neighbor (KNN).
The intention was to compare the results with the PCC
algorithm, presented in section III.

A real indicators database used in software processes was
applied as an input to the ANN. These indicators were chosen
from the reference model of the proposed indicators in section
V. The data were obtained from a company certified in level G
of MPS-SW model. This company, a partner of the project,
develops software for public management. The subsection A
provides more information about the database used.

The output classification was made using very simple
criteria, similar to a traffic light, as shown in Fig. 6. In this
metaphor, the green light indicates that it is to continue the
process execution because the results of the analysis in the
indicators group report that the situation is satisfactory. The
yellow warning signs to pay attention, because the level of
satisfaction at the previously set target is regular. Already the
red light indicates that the process should be stopped, to be
unsatisfactory - too far from the established pattern.

Thus for ANNs, the "Green" label obtained "satisfactory",

the "Yellow" label "Regular" and the "Red" label
"Unsatisfactory". Therefore, if the output provided by the ANN
obtained labeled "satisfactory" (Green), then the group of the
indicators is analyzed in accordance with the desired - the
processes are controlled. If the result of the output is "Regular"
(Yellow), then the process has breaks, so greater attention is
needed in case management. Finally, if the output is
"unsatisfactory", the processes are not effective, requiring
corrective actions.

Although the applications of the results of ANNs
algorithms are presented in subsection C, some relevant
information about the experimental procedure is presented in
subsection B.

Fig.6. Traffic light metaphor to classification of ANN.

A. Indicators database used
The company that provided the performance indicator data

has been working in software production for over 30 years and
has hundreds of municipal governments as clients. The
historical basis includes indicators of four years ago. This
paper does not include the process of the data collection, but it
is worth remembering that the MPS-SW certification (level G)
provides some guarantees of the use of the best practices and
data reliability.

The Fig. 7 presents the statistical data related with the
database used, considering three projects, identified as "A",
"B" and "C". It is worth mentioning that the company's project
managers collaborated with the labeling process of the
samples:

• Number of instances: 300;
• Number of attributes: 3;
• Missing values: none;
• Distribution of grades: 33% for each one of the classes;
• Information about the attributes (indicators):

a) Open requirements per daily in Project A;
b) Open requirements per daily in Project B;
c) Open requirements per daily in Project C;
d) Cluster:

 Cluster 1: Satisfactory;
 Cluster 2: Regular;
 Cluster 3: Unsatisfactory.

Fig. 7. Statistical data related on the database of the indicators used.

- STOP THE PROCESS!

- PAY ATTENTION!

- OK, GO AHEAD!

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 259

B. Information about the experimental process
Before presenting the results of the ANN techniques, it is

important to present some relevant information and certain
criteria adopted.

First of all, the software tool used for the application of
supervised learning algorithms is called Weka, from the
University of Waikato.

The Matlab system was used to implement the PCC
algorithm proposed for analysis of the performance indicators
(section III).

The time spent by the humans in labeling process of the
sample was calculated from the sum of each measurement
performed. This time will be important in the experiments
presented in subsection C. Already the time spent in the review
process made by the algorithms was measured by specific
functions in each tool.

It is worth noting that each attribute had its normalized
value before being used in the algorithms.

The training was made using ten different configurations,
according to the percentage of trained sample: 2%, 4%, 6%,
8%, ..., 20%. Thus, each algorithm was executed ten times for
each trained percentage, and the result presented is the average
of the ten runs. This was necessary because the algorithms used
are stochastic pattern and the data labeled in training were
random.

C. Application of Artificial Neural Network algorithms
The grouping of indicators was based on the reference

model presented in section V. The data from the same indicator
were grouped but relating to three different projects (A, B and
C). This kind of grouping allows a comprehensive analysis of
the progress of different projects and/or the company's
products, in relation to the selected requirement.

As presented in subsection A, 300 instances (100 of each
cluster) and three attributes were used. As shown in subsection
B, training of ANNs was carried out gradually from 2% to 2%
by selecting that percentage of samples for training and the rest
for validation.

The Fig. 8 shows the result of the accuracy rate for each
algorithm, according the increase in the percentage of trained
samples. It can be noticed that the KNN algorithm presented
good results with 2% trained samples, but the result got close
to 81% accuracy when 20% of the samples were trained. The
MLP algorithm achieved strong growth at the beginning and
gradual growth until the end, almost reaching 85% accuracy.
The PCC algorithm achieved about 76% accuracy with 2% of
the trained samples. It had an increase of 6% with 4% of the
trained samples and gradually increased from 82% to 84%,
with 12% of the trained samples. Considering the range
between 12% and 20% of trained samples, the PCC algorithm
showed a significant increase of 84% to 92%. So, the best
accuracy rate was achieved with the PCC algorithm for all
variations of training, even with few data for training.

In relation to the accuracy by class, the Fig. 9 shows the
result of better time PCC algorithm. The algorithm correctly
classified 96 samples as satisfactory and missed four,
classifying them as Regular. In Cluster 2 (Regular) the PCC

algorithm correctly classified 86 samples and 14 wrong, and 2
as satisfactory and 12 as cluster 3 (Unsatisfactory). The cluster
3 obtained 86 correct samples and missed 14, classifying it as
Regular.

Another important point is the performance of PCC
algorithm for analysis of performance indicators compared to a
human (HUM). The Fig. 10 shows that as the amount of data
increases the difficulty of the human being also increases
significantly. The measurement obtained by the analysis of a
human being had an expert in the field during the data labeling
step. This specialist visually analyzed the indicator results on
each project and compared with its expected result.

Fig. 8.Accuracy rate by technique.

Fig. 9. Accuracy rate with cluster: actual vs prediction.

Fig10. Runtime: algorithm PC vs human (HUM).

VII. CONCLUSIONS
This paper proposes the use of semi-supervised ANN

technique called Cooperation and Competition between
particles (PCC) to support the performance indicator analysis

260 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

in processes of software engineering. Results with real data
bases showed that the PCC algorithm achieved excellent
accuracy rate, higher than the two supervised learning
algorithms used.

The use of an ANN allows composed groupings indicators
of different processes, products and designs and enables
analysis of individual indicators. Tools that implement ANNs
provide a differentiated overview of what is being measured,
regardless of the complexity of the data. This contributes to
the use of performance indicators in software development
companies with different sizes, including micro, small and
medium enterprises. Reference models proposed for selection
and grouping of indicators contribute to assist organizations in
selecting the appropriate settings to quality control processes.

REFERENCES
[1] PMI - Project Management Institute INC (Pennsylvania). Um

guia do conhecimento em gerenciamento de projetos: Guia
PMBOK. 4. ed. Newtown Square: PMI, 2008. 459 p.

[2] I. Sommerville, Engenharia de Software. 9. ed. São Paulo:
Pearson, 2011. 529 p. Tradução de: Kalinka Oliveira; Ivan
Bosnic.

[3] L. H. Boyd, J. F. A. Cox, “Cause-and-effect approach to
analyzing performance measures”. Production and Inventory
Management Journal, v. 38, n. 3, p. 25-32, 1997.

[4] T. Mitchell, “Machine Learning”. [s.i]: McGraw Hill, 1997.
[5] E. Alpaydin, “Introduction to machine learning”. Cambridge,

Ma: The MIT Press, 2004.
[6] S. Haykin. Neural Networks: a comprehensive foundation.

Upper Saddle River, Nj: Prentice Hall, 1994. 768 p.
[7] Z. Kovacs, Redes Neurais Artificiais: Fundamentos e

Aplicações. São Paulo: Edição Acadêmica, 1996.
[8] A. P. Braga, A. C. P. L. F. Carvalho, T. B. Ludemir, Redes

Neurais Artificiais: teoria e aplicações. Rio de Janeiro: LTC,
2000.

[9] F. A Brave, L. Zhao, M. G. Quiles, W. Pedrycz, J. Liu,
“Particle competition and cooperation in networks for semi-
supervised learning”. IEEE transactions on knowledge and data
engineering, [s.i], 2009.

[10] F. A. Breve, Aprendizado de máquina utilizando dinâmica
espaço-temporal em redes complexas. 2010. 165 f. Tese
(Doutorado) - Curso de Ciências de Computação e Matemática
Computacional, Departamento de ICMC-USP, Universidade de
São Paulo, São Carlos, 2010.

[11] R. G. Mello, D. A. P. Junior, J. F. G., Oliveira, C. F. Bremer,
Avaliação de desempenho para o gerenciamento estratégico do
chão de fábrica. ANPAD. 14p, 2000.

[12] S.B. Neto, M. S. Nagano, M. B. C. Moraes, Utilização de redes
neurais artificiais para avaliação socioeconômica: uma aplicação
em cooperativas. R. Adm, São Paulo, v.41, n.1, p.59-68, 2006.

[13] I. Cattinelli, E. Bolzoni, M. Chermisi, F. Bellocchio, C. Barbieri,
F. Mari, C. Amato, M. Menzer, A. Stopper, E. Gatti.
Computational intelligence for the Balanced Scorecard:
Studying performance trends of hemodialysis clinics. Artificial
Intelligence in Medicine archive, v 58, I3, p. 165-173, 2013.

[14] O. Kutlubay, M. Balman, D. Gül, A. B. Bener, A Machine
Learning Based Model for Software Defect Prediction, working
paper, Bogazici University, Computer Engineering Department,
2005.

[15] SOFTEX - Associação para Promoção da Excelência do
Software Brasileiro. MPS. BR Melhoria de processo do software
brasileiro: Guia de Implementação – Parte 9: Implementação do
MR-MPS em organizações do tipo Fábrica de Software, 2012a.
Available at: <http://www.softex.br/wp-content/uploads/2013/
07/MPS.BR_Guia_de_Implementacao_Parte_9_20111.pdf>.
Acesso em: 01 jun. 2015.

[16] A. V. Pizzoleto, Ontologia Empresarial no modelo MPS.BR
visando modelagem de processos de negócios, com foco nos
níveis G e F. Dissertação (Mestrado) – Universidade Estadual
Júlio de Mesquita Filho, 2013.

[17] M. Kalinowski, G. Santos, S. Reinehr, M. Montoni, A.R. Rocha,
K.C. Weber, G.H. Travassos, “MPS.BR: promovendo a adoção
de boas práticas de engenharia de software pela indústria
brasileira”. XIII Congreso Ibero americano en "Software
Engineering" (CIBSE), Cuenca, Ecuador, 2010.

[18] M. Kalinowski, K. Weber, N. Franco, E. Barroso, V. Duarte, D.
Zanetti, G. Santos, “Results of 10 Years of Software Process
Improvement in Brazil Based on the MPS-SW Model”. 9th
International Conference on the Quality of Information and
Communications Technology, IEEE, 2014.

[19] A. V. Pizzoleto, H. C. Oliveira, Methodology for ontology
development in support to the MPS model for software. In:
International Conference on Software Engineering Research
And Practice (Serp), 11. 2013, Las Vegas-Nevada, 7p, 2013.

[20] T. R. Ojha, Analysis of hey performance indicators in software
development. Master on Science Thesis. Tampere University of
Technology, 2014.

[21] G. Santos, M. Montoni, R. C. S. Filho, A. E. Katsurayama, D.
Zanetti, A. O. S. Barreto, A. R. Rocha, Indicadores da
Implementação do Nível E do MR-MPS em uma Instituição de
Pesquisa. VIII Simpósio Brasileiro de Qualidade de Software.

[22] R. T. Moreira, G. N. Lima, B. B. Machado, W. T. Marinho, A.
Vasconcelos, A. C. Rouiller, Uma abordagem para melhoria do
processo de software baseada em medição. VIII Simpósio
Brasileiro de Qualidade de Software.

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 261

Big Data: Security Engineering Framework

A. Daya Gupta1, B. Shruti Jaiswal2, and C. Prudence Kadebu3
1,2 Computer Science and Engineering, Delhi Technological University, Delhi, India

3Software Engineering, Harare Institute of Technology, P O Box BE277 Belvedere, Harare, Zimbabwe

Abstract - The area of Security Requirements Engineering is
becoming one of the most widely researched areas in Software
Engineering, having captured the interest of the Software
Engineering community for its profound importance in the
development of robust and secure software. However, the
maturity of Security Requirements Engineering as applied to
Big Data is still in its infancy stage as shown by scarcity of
related material in literature. Big Data refer to the recent
growth in data generated by technologies such as social
networks at a very high rate with qualities of high volume,
high velocity and variety. Big Data has brought many security
concerns, as far as protecting data in these highly distributed
environments is concerned. These emerging technologies have
not only made data management more flexible, but have also
increased the attack surface by introducing many
vulnerabilities making data very much at risk from various
threats. Recent studies have shown that the design of the Big
Data stores was meant to improve scalability, performance
and flexibility while security was given less priority. Hence, it
is imperative to ensure that Security Requirements
Engineering for Big Data environment is given a profound
consideration so as to protect sensitive information stored
therein. In this paper a framework for Security Requirements
Engineering for Big Data is proposed. Security Requirements
are elicited from vulnerabilities inherent in the Big Data
stores based on generic operations (Create, Read, Update,
and Delete) performed on the database. If the database is
secure then fewer resources needs to be invested in securing
the application, making application development more cost
effective.

Keywords: Big Data, Security Engineering, Security
Requirements, Elicitation, Prioritization

1 Introduction
 Security is a characteristic of software systems which
ensures prevention of circumstances leading to the loss of
confidentiality, integrity, and availability (CIA) of data. These
three abbreviated CIA are the goals at the core of software
systems security as identified by several authors [1,2,3]. The
essence of security is to protect assets or resources of an
organization. A database contains a company’s most valuable
asset, data [4,5] that requires resources to be invested in its
protection. In the last few years the world has experienced a
global increase in data generated from a variety of sources for
instance transactions, sensor devices, websites, social
networks and so forth. In a few years data has grown from

hundreds of gigabytes (GB), crossing into hundreds of
terabytes (TB) and into petabytes (PB) [6]. This has given
birth to the term Big Data to describe these massive volumes
of data and their associated management technologies. Big
Data storage techniques have presented a breakthrough in
achieving scalability, cost reduction, performance and
flexibility in the management of Big Data. However, security
has remained a daunting challenge in this technology as it was
never prioritized in software development. It is imperative
that profound attention be directed to exploring the Security
Requirements of Big Data environments.

According to [7] databases have the highest rate of breaches
among all business assets. Security challenges in databases
have been discovered to be even more profound in Big Data
environments. Big Data assimilate a variety of data, making
them a target for attack by intruders, malicious crackers and
other threats due to the criticality of data stored therein. This
has led to serious security breaches leading to loss of data
confidentiality, integrity and availability, a situation with
adverse impact on business operations. Several researches
have been carried out on Security Engineering [8,9,10].
However, none of these researches presented work in the Big
Data domain.

Few researchers have considered security requirements for
database related domains. Soler et. al [11] introduces a model
for security requirement for data warehousing that presents a
three-step process for security requirements modeling. They
focus on information and quality-of-service requirements
(including security) and then combine it with an approach
based on Model Driven Architecture. Bertino and Sandhu
[12] discuss database security, focusing mainly on various
access control models. They carry out their research on
relational databases, object oriented databases and XML.
Similarly [13] discuss database security in terms of access
control models. However, none of these papers explore Big
Data security requirements. This scenario presents clear
evidence that in as far as Security Engineering study is
concerned, Big Data still remains unexplored yet it is one of
the most vulnerable areas to security breaches in present day.

The contribution of this paper is the development of a security
engineering framework for Big Data which is an adaption of
the generic Security Engineering method presented [14]. The
framework has various activities that start with the
identification of security requirements, its analysis and
prioritization with design decisions and testing. Here our

262 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

focus is on elicitation and prioritization of security
requirements for Big Data. Once requirements are prioritized
design decisions are taken which result in choosing optimized
security mechanism. The paper is organized as in Section 2
overview of the security engineering framework is provided.
Section 3 focuses on the proposal for Security Requirements
Engineering in the Big Data environments and explains it with
a case study of MongoDB a popular Big Data store. Finally
section 4 will give the conclusions and future work.

2 Security Engineering Framework
A generic framework for Security Engineering presented in

our earlier work [14] is modified for Big Data as depicted in
Figure 1. It consists of phases that are (i) Security
Requirements Engineering where security requirements as
defined by Firesmith [15] are elicited along with functional
requirements based on vulnerabilities inherent in functionality.
Then they are prioritized and specified. (ii) Security Design
Engineering here a Cryptographic Algorithm is identified, to
mitigate the vulnerabilities which are root cause of security
threats. This phase starts with the mapping of security
requirements with security services, then, threats identified in
previous steps are mapped to attacks. Then various
environmental and communicational constraints are
considered. Finally, based on attack analysis and design
constraints, best suitable crypto graphical technique is selected
by generating a template (iii) Security Requirements Testing
is done to test deployed security protocol is mitigating all
vulnerabilities and are protecting assets of the organization.
Here in this paper, we are concentrating only on the security

requirements engineering phase, which is elaborated in the
next section. Security engineering framework for big data
which is shown in Figure 1 is now discussed in detail with
respect to Security Requirements Engineering phase and its
sub activities using the case study of MongoDB:

3.1 Security Requirements Elicitation: Using the
viewpoint approach of Sommerville [16] Security
Requirements are identified along with the operations. The
root cause of security concerns are the vulnerabilities
associated with the operations (functionalities). First various
actors are identified, and then operations performed are
encapsulated. Then, based on the operations, vulnerabilities
inherent in the system are identified and next the security
requirements are elicited. This step consists of the following
activities:
(i) Generic Actor Identification: Actors are those who
interact with the system such as user, administrator, and
management. Actors can be of type human, cooperative (such
as a DBMS) or autonomous actor (such as standalone
computational software) [17]. Here, only two generic actors
User (human) and Database are considered for illustration.
(ii) Operation Identification: Operations performed by
actors are identified. There are four basic functions
of persistent storage, which are referred by the acronym
CRUD that stands for Create, Read, Update and Delete in Big
Data. These are also known as database operations. Table 1
below gives an overview of the MongoDB CRUD Operations
[18].

SECURITY REQUIREMENTS ENGINEERING
Security Requirements Elicitation

Generic Actors
Identification

Operation Identification Vulnerability Identification Vulnerabilities/ Security Requirements
Mapping

Security Requirements Prioritization

Vulnerability/ Threats
Mapping

Risk Calculation Security Requirements
Specification Likelihood Estimation Impact Estimation Risk Determination

Figure 1: Framework for Security Engineering for Big Data

Table 1: MongoDB CRUD Operations
Operations Method
Create insert – this is the method to insert a document or documents in MongoDB

updates with the upsert option- this operation accepts an “upsert” flag that modifies the behaviour of update() from
updating existing documents, to inserting data.

Read

find- this is the primary method to select the documents. It also returns a cursor that contains a number of documents.
findOne- this method selects a single document from a collection and returns that document, it does not return a cursor

Update

update - this method is used to modify documents in a MongoDB. By default, the update() method updates a single
document, but all documents can be updated using the multi option. The update() method can either replace the existing
document with the new document or update specific fields in the existing document.
save- this method performs a special type of update(), depending on the _id field of the document.

Delete the remove() method is used to delete documents from a collection.

SECURITY DESIGN ENGINEERING
Security Design Analysis Security Design Constraints Security Design Decisions

SECURITY TESTING

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 263

(iii) Vulnerability identification: Vulnerability is a weakness
in the system environment that a malicious attacker could
exploit to cause damage to the system. It is the vulnerability
that enables a threat to be exercised within the system. In a
Big Data environment vulnerabilities arise due to the
complexity brought on by the type and distributed nature of
data involved. All vulnerabilities are depicted with a prefix V.
For Big Data stores, vulnerabilities are identified by drawing
and analysing the sequence diagram for each operation. With
the help of sequence diagram, we get to know the exact points
where the data is entered and when data is transferred or
passed to another site. Sequence diagram for Create operation
in MongoDB are shown in Figure 2. It is covering two
methods for create operation as mentioned in [18]. But only
insert part would be further considered due to space
constraint. The output of this step is shown in Table 2.

Figure 2: Sequence Diagram for Create operation in
MongoDB

(iv) Vulnerabilities/ Security Requirements Mapping:
After vulnerabilities are identified using a sequence diagram,
security requirements are elicited to mitigate the
vulnerabilities, according to a set of mapping criteria specified
with a correlation matrix, shown in Table 3.

Elicited Security Requirements for CREATE operations
by applying the correlation matrix are shown in Table 2. Once
the security requirements elicitation process is done, we
proceed to the prioritization and specification phases of the
framework.

3.2 Security Requirements Prioritization and
Specification: As all requirements cannot be implemented
in hand, prioritization is required. Elicited security
requirements are prioritized so that depending on resources
available, high priority requirements get implemented first.
Risk-based method is adopted for security requirements
prioritization. The steps followed in prioritization of security
requirements are specified below:

(i) Vulnerabilities/Threats Mapping: Vulnerability leads to
threats. Vulnerable points are breached by various potential
threats. Hence mapping of vulnerability to threats is needed to
be done for risk calculation and that will in turn be used to
prioritize the security requirements.
 Different types of threats as described in Common
Criteria [19] and some additional threats are identified. Prefix
T is used with threat name to make it distinguishable. A threat
and vulnerability database is maintained from where the
mapping of various threats to vulnerabilities is done as shown
in Figure 3.

Table 2: Vulnerabilities and Security Requirements for Create Operation for User

Operations Method Vulnerable interaction
Sequences

Vulnerabilities Security Requirements

Create

insert() User->Database: Insert
Request

1. V.Weak_Access_Control
2. V.Unencrypted_Data
3. V.Unsecured_Network
4. V.Monitoring_Absence
5. V.Network_Partition
6. V.Breached_Firewall
7. V.Inadequate_Logging
8. Untrained_Users
9. V.Unsecured_API

10. V.Unvalidated_Input

1. Identification
2. Authentication
3. Authorization
4. Integrity
5. Privacy
6. Immunity
7. Intrusion Detection
8. Security Auditing
9. System Maintenance

10. Non-repudiation
Database: ->Database:
Insert

1. V.Unencrypted_Data
2. V.Breached_Firewall
3. V.Monitoring_Absence
4. V.Physical_Security
5. V.Misconfigurations
6. V.Unsecured_API
7. V.Physical_Security

1. Security Auditing
2. Intrusion Detection
3. Integrity
4. Privacy
5. Immunity
6. System Maintenance
7. Physical Protection

Database ->:User: Return
Confirmation

1. V.Network_Partition 1. Survivability

264 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

Table 3: Vulnerabilities and Security Requirements Correlation Matrix

 Security
 Requirement

Vulnerabilities

 Identification
 A

uthentication
 A

uthorization

 Im
m

unity

 Integrity

 Intrusion D
etection

 N
on-repudiation

 Privacy

 Security A
uditing

 Survivability

 Physical Protection

 System
 M

aintenance

V.Misconfigurations X X
V.Weak_Access_Control X
V.Unencrypted_Data X X
V.Breached_Firewall X X X X X X
V.Unsecured_API X X X X X
V.Unsecured_Network X X X X
V.Network_Partition X
V.Unvalidated_Input X X
V.Untrained_Users X X X
V.Monitoring_Absence X
V.Inadequate_Logging X X
V.Physical_Security X
V.Obsolete_System X

Figure 3: Vulnerabilities and Threats for Big Data Environment

(ii) Risk Calculation: The Risk can be defined in many ways.
One definition says; it is the probability that a particular threat
will exploit a particular vulnerability. The formula given in the
OWASP [20] model for risk calculation:

Risk = Likelihood * Impact.
Steps involved in the risk calculation are:
(a) Likelihood Estimation: Likelihood is a measure that
shows how probable a particular vulnerability is to be
exploited by an attacker (threat). Likelihood ratings are
estimated for vulnerabilities and threats based on the degree of
satisfaction of vulnerability and threat factors. Threat factors
are evaluated according to skill level, motive, opportunity and
size while the likelihood is evaluated for ease of discovery,
ease of exploitation, awareness and intrusion detection, each
having an estimated score represented by levels Low (L),

Medium (M) and High (H). Then these scores are evaluated to
get one value for likelihood. A Matrix of our
vulnerability/threat mapping for calculation of likelihood
score is shown in Table 4.
(b) Impact Estimation: Impact refers to the consequences of
a successful exploit. Impact ratings for threats and
vulnerabilities are estimated. The factors considered are
technical impact and business impact. Technical factors
include loss of confidentiality, integrity, availability and
accountability. Business impact includes financial damage,
reputation damage, non-compliance and privacy violation.
Next, the average impact is calculated. Same notations are
used to represent the level as used by likelihood estimation
and the scores as shown in Table 5.

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 265

Table 4: Likelihood Estimation

 Vulnerability

Threats

V
.M

isconfigurations

V
.W

eak_A
ccess_C

ontrol

V
.U

nencrypted_D
ata

V
.B

reached_Firew
all

V
.U

nsecured_A
PI

V
.U

nsecured_N
etw

ork

V
.N

etw
ork_Partition

V
.U

nvalidated_Input

V
.U

ntrained_U
sers

V
.M

onitoring_A
bsence

V
.Inadequate_L

ogging

V
.Physical_Security

V
.O

bsolete_System

T.Change_Data H H M M H L
T.Data_Theft H H M
T.Deny_Service M
T.Disclose_Data H L
T.Impersonate H
T.Injection_Attack L L
T.Fraud M H
T.Privacy_Violated H H L
T.Eavesdropping H M
T.Credential_Theft H M
T.Social_Engineer L
T.Phishing L L L
T.Spoofing L L L
T.Repudiate_Receive L
T.Repudiate_Send L
T.Insider L H M M L M H M
T.Outsider M H M H M M L L
T.Technical_failure L L L
T.Hardware_Failure M L L
T.Vandalism L
T.Malware M M M M H
T.Unavailability H

Table 5: Impact Estimation

 Vulnerability

Threats

V
.M

isconfigurations

V
.W

eak_A
ccess_C

ontrol

V
.U

nencrypted_D
ata

V
.B

reached_Firew
all

V
.U

nsecured_A
PI

V
.U

nsecured_N
etw

ork

V
.N

etw
ork_Partition

V
.U

nvalidated_Input

V
.U

ntrained_U
sers

V
.M

onitoring_A
bsence

V
.Inadequate_L

ogging

V
.Physical_Security

V
.O

bsolete_System

T.Change_Data H H H H H H
T.Data_sTheft H H H
T.Deny_Service H
T.Disclose_Data H H
T.Impersonate H
T.Injection_Attack H H
T.Fraud H H
T.Privacy_Violated H H H
T.Eavesdropping H H
T.Credential_Theft H H
T.Social_Engineer H
T.Phishing H H H
T.Spoofing H H H
T.Repudiate_Receive M
T.Repudiate_Send L
T.Insider H H H H H H H H
T.Outsider H H H H H H H H
T.Technical_failure H H M
T.Hardware_Failure M M L
T.Vandalism M
T.Malware M M M M M
T.Unavailability H

266 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

(6) Risk Determination: After calculation of scores for both
likelihood and impact. The Severity given in Table 6 is used
to determine risk value.

Now security requirements are prioritized based on the risk
rating, results are shown in Table 7 below.

Table 6: Overall Risk Severity
Overall Risk Severity

Impact

HIGH Medium High High
MEDIUM Low Medium High
LOW Low Low Medium
 LOW MEDIUM HIGH

 Likelihood

Table 7: MongoDB security requirements prioritization

Operations Method Vulnerable interaction
Sequences

Security Requirements Vulnerabilities Priority

Create

insert()

User->Database: Insert
Request

Identification
Authentication
Authorization

V.Weak_Access_Control
V.Untrained_Users

High

Integrity V.Weak_Access_Control
V.Unencrypted_Data
V.Breached_Firewall
V.Unsecured_Network
V.Untrained_Users
V.Inadequate_Logging

High

Privacy

V.Unencrypted_Data
V.Breached_Firewall
V.Untrained_Users
V.Unsecured_Network
V.Unsecured_API

High

Immunity

V.Unsecured_API
V.Unvalidated_Input
V.Unsecured_Network
V.Breached_Firewall

High

Intrusion Detection

V.Breached_Firewall
V.Monitoring_Absence
V.Unsecured_Network
V.Unsecured_API

High

Security Auditing

V.Monitoring_Absence
V.Inadequate_Logging
V.Misconfigurations
V.Breached_Firewall
V.Unsecured_API
V.Unvalidated_Input

High

System Maintenance V.Obsolete_System
V.Misconfigurations
V.Breached_Firewall

Medium

Non-repudiation V.Inadequate_Logging Medium

Database: ->Database:
Insert

Security Auditing

V.Breached_Firewall
V.Monitoring_Absence
V.Inadequate_Logging
V.Misconfigurations
V.Unsecured_API

High

Intrusion Detection

V.Breached_Firewall
V.Monitoring_Absence
V.Unsecured_API

High

Integrity V.Unencrypted_Data
V.Breached_Firewall

High

Privacy

V.Unencrypted_Data
V.Breached_Firewall
V.Unsecured_API

High

Immunity

V.Unsecured_API
V.Unvalidated_Input
V.Unsecured_Network
V.Breached_Firewall

High

System Maintenance

V.Obsolete_System
V.Misconfigurations
V.Breached_Firewall

Medium

Physical Protection V.Physical_Security Medium
Database ->:User:
Return Confirmation

Survivability V.Network_Partition High

Int'l Conf. Software Eng. Research and Practice | SERP'15 | 267

3.3 Security Requirements Specification: The
Security Requirements Specification is the final phase of our
framework. The security requirements specification document
would have all information related to security requirements
engineering activity such as list of actors identified, operation
and its description, list of prioritized security requirements and
so on.

3 Conclusions and Future Work
Security Requirements Engineering is of paramount
importance in software engineering and in building Big Data
systems that are robust and able to withstand various forms of
threats and attacks. Securing Big Data environments is not an
easy task due to the complexity of these environments.
However, careful consideration of Security Requirements in
the development of Big Data store can ensures that data is
protected at the source. It will be worthwhile to have adequate
security built into the databases as they are developed which
ultimately lowers costs.
We have illustrated with the help of a case study how security
requirements of Big Data can be elicited, analyzed and
prioritized. This is a generic approach which can be used for
design of Big Data. We have analyzed MongoDB and
identified various security issues, which could be eliminated
by our approach. Various vulnerabilities identified, such as
V.Weak_Access_Control, V.Unencrypted_Data are eliminated
by implementation of Identification, Authentication and
Authorization security requirements. The approach can be
used for the design of new Big Data. A tool has been prepared
for the approach.
Based on the security requirements and constraints
(environmental, design) a cryptographic algorithm will be
identified and then testing is performed to validate the system
security concerns. As a part of future work, more case studies
of the Big Data stores will be explored to verify whether our
framework can be applied to any Big Data. Furthermore, work
on other phases of Security Engineering is under processing.

4 References
[1] Amoroso, E. G., Fundamentals of Computer Security Technology,

Prentice-Hall, ISBN: 0-13-305541-8, 1994
[2] T M Kiran Kumar, “A Road Map to the Software Engineering

Security”, IEEE 2009.
[3] Toktam Ramezani Farkhani, Mohammad Reza Razzazi Examination

and Classification of Security Requirements of Software Systems”,
2006 IEEE

[4] Diya Soubra, “The 3Vs that define Big Data”, Posted on July 5,
2012 on Data Science Central,

 http://www.datasciencecentral.com/forum/topics/the-3vs-that-define-
big-data, Accessed on 05/04/2014

[5] 3Vs (volume, variety and velocity), Posted by Margaret Rouse,
http://whatis.techtarget.com/definition/3Vs, Accessed on 05/04/2014

[6] Joseph McKendrick, Research Analyst, “The Petabyte Challenge: 2011
IOUG Database Growth Survey”, Produced by Unisphere Research, A
Division of Information Today, Inc. August 2011

[7] Avita Katal, Mohammad Wazid, R H Goudar, “Big Data: Issues,
Challenges, Tools and Good Practices”, IEEE 2013

[8] Charles B. Haley, Robin Laney, Jonathan D. Moffett, “Security
Requirements Engineering: A Framework for Representation and

Analysis”, IEEE Transactions On Software Engineering, Vol. 34, No. 1,
), pp.133-153. January/February 2008

[9] N. R. Mead, T. Stehney, "Security Quality Requirements Engineering
(SQUARE) Methodology," Proc. of the 2005 workshop on software
engineering for secure systems-building trustworthy applications,
Missouri, USA, 2005, pp.1-7.

[10] Daniel Mellado, Eduardo Fernández-Medina, Mario Piattini, “Security
Requirements EngineeringProcess for Software Product Lines: A Case
Study”, The Third International Conference on Software Engineering
Advances IEEE 2008

[11] Emilio Soler, Veronika Stefanov, Jose-Norberto Maz´on, Juan Trujillo,
Eduardo Fern´andez-Medina, Mario Piattini, “Towards Comprehensive
Requirement Analysis for Data Warehouses: Considering Security
Requirements”, The Third International Conference on Availability,
Reliability and Security, IEEE 2008

[12] Elisa Bertino, and Ravi Sandhu,, “Database Security—Concepts,
Approaches, and Challenges”, Transactions On Dependable And Secure
Computing, Vol. 2, No. 1, IEEE 2005

[13] Leon Pan, “A Unified Network Security and Fine-Grained Database
Access Control Model”, Second International Symposium on Electronic
Commerce and Security, IEEE 2009

[14] Gupta, D., Chatterjee, K., De, A.: A Framework for Development of
Secure Software. CSI Transaction on ICT (2013)

[15] Donald Firesmith: Engineering Security Requirements, in Journal of
Object Technology, vol. 2, no. 1, January-February 2003, pages 53-68.

[16] Sommerville, I.: Software Engineering. Pearson Education, London
(2003) ISBN-8129708671.

[17] Michael S. Ware John B. Bowles Caroline M. Eastman, “Using the
Common Criteria to Elicit Security Requirements with Use Cases”

[18] MongoDB CRUD Operations Introduction Release 2.2.7, April 15,
2014.

[19] “Common Criteria for Information Technology Security Evaluation”,
version 3.1, reversion 1, Sep. 2006.

[20] OWASP Risk Rating Methodology, http://www.owasp.org/index.php/
OWASP_risk_rating_methodology , Accessed on 30 May 2014.

268 Int'l Conf. Software Eng. Research and Practice | SERP'15 |

