
SESSION

RESOURCE MANAGEMENT, RESOURCE
ALLOCATION, SCHEDULING, AND DATA

MANAGEMENT

Chair(s)

TBA

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 1



2 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



Comparison of Energy-Constrained Resource
Allocation Heuristics under Different Task

Management Environments
Bhavesh Khemka∗, Ryan Friese∗, Sudeep Pasricha∗†, Anthony A. Maciejewski∗, Howard Jay Siegel∗†,

Gregory A. Koenig‡, Sarah Powers‡, Marcia Hilton§, Rajendra Rambharos§, Mike Wright§, and Steve Poole§
∗Department of Electrical and Computer Engineering, ‡Oak Ridge National Laboratory,

†Department of Computer Science, Oak Ridge, TN 37831, USA
Colorado State University, §Department of Defense,

Fort Collins, CO 80523, USA Washington, DC 20001, USA

Email: {Bhavesh.Khemka, Ryan.Friese, Sudeep, AAM, HJ}@colostate.edu, {Koenig, PowersSS}@ornl.gov,
mmskizig@verizon.net, Jendra.Rambharos@gmail.com, Michael.Wright4@comcast.net, SWPoole@gmail.com

Abstract—There is a growing need for energy-efficiency in high
performance computing, especially with systems approaching
exascale levels. The Extreme Scale Systems Center at Oak Ridge
National Laboratory faces a need for resource management
techniques that maximize the performance of the system while
satisfying an energy budget. The performance of the system is
measured as the total “utility” earned from completing tasks.
Utility is represented as a time-varying importance of a task.
We perform an in-depth examination into the energy-constrained
utility maximization problem by comparing the performance of
resource management techniques in two different task manage-
ment environments: queued and polled. In one environment,
tasks are queued for execution on the different machines and
certain tasks are not allowed to be re-scheduled. In the other
environment, machines are polled at regular intervals and each
idle machine is only assigned one task. Multiple First Come
First Served heuristics are designed and compared against other
heuristics. We design a new adaptive energy filter that can be used
with any of the heuristics to bring energy awareness to them. This
filtering technique can be readily deployed in any environment
without the need of any off-line parameter tuning experiments.
The filtering operation allows the heuristics to better regulate
their energy expenditure in the energy constrained environment.
The polled task management environment and our novel filtering
technique give significant performance improvements for the
heuristics while meeting the energy budget requirement.

Index Terms—resource allocation; adaptive energy filtering;
heterogeneous computing; energy-aware resource management
heuristics; system utility

This manuscript has been authored by UT-Battelle, LLC under Contract No.
DE-AC05-00OR22725 with the U.S. Department of Energy. The United States
Government retains and the publisher, by accepting the article for publication,
acknowledges that the United States Government retains a non-exclusive, paid-
up, irrevocable, world-wide license to publish or reproduce the published form
of this manuscript, or allow others to do so, for United States Government
purposes. The Department of Energy will provide public access to these results
of federally sponsored research in accordance with the DOE Public Access
Plan (http://energy.gov/downloads/doe-public-access-plan).

Corresponding author: Bhavesh Khemka

I. INTRODUCTION

The need to solve applications of higher complexity with
greater accuracy combined with the need for faster execution
from high-performance computing (HPC) systems is resulting
in higher energy consumption and costs to operate these
systems. A recent National Resources Defense Council report
showed that data centers in the U.S. consumed an estimated 91
billion kWh in 2013 (that is double the amount of electricity
consumed by all of the households in New York City) and
are on track to reach 140 billion kWh by 2020 [1]. Some
data centers are now unable to increase their computing
performance due to physical limitations on the availability
of energy. For example, in 2010, Morgan Stanley, a global
financial services firm based in New York, was physically
unable to draw the energy needed to run a data center in
Manhattan [2]. Many HPC systems are now being forced
to execute with constraints on the amount of energy they
can consume. The issue of increased energy consumption is
estimated to significantly worsen as we approach exascale
systems. As a result, there is a growing concern regarding
energy needed to operate these systems (e.g., [3], [4]) and it
is becoming increasingly important for system administrators
to adopt energy-efficient workload execution policies.

This research builds on prior work that developed energy-
aware resource management techniques with the goal of
maximizing the performance of a workload executing on an
energy-constrained heterogeneous HPC system [5]. In this new
work, we analyze the performance of the resource management
techniques in task management environments that differ in
their policies of which tasks and machines can be considered
by the scheduling techniques. We study and contrast a queued
and a polled environment. Also, we enhance an energy filter
technique (introduced in [5]) by removing the need to de-
termine its parameters empirically and making it adaptive by

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 3



using current system information. Such a filtering technique
can be deployed directly into any environment without the
need to be tuned off-line. The goal of the filtering technique
is to ignore allocation choices that use more energy than
an estimated fair-share. This improves the distribution of the
budgeted energy across the constrained time period.

We model a compute facility and workload of interest to the
Extreme Scale Systems Center (ESSC) at Oak Ridge National
Laboratory (ORNL). The ESSC is a joint venture between the
United States Department of Defense (DoD) and Department
of Energy (DOE) to perform research and deliver tools,
software, and technologies that can be integrated, deployed,
and used in both DoD and DOE environments. This system
incorporates heterogeneous compute resources that utilize a
mix of different machines to execute workloads with diverse
computational requirements. In such an environment, each task
typically has different execution time and energy consump-
tion characteristics when executed on different machines. We
model our machines to have different ACPI performance states
(P-states) in which tasks can execute [6].

Each task in the system has a monotonically-decreasing
utility function associated with it that represents the task’s
utility (or value) as a function of the task’s completion time.
The system performance is measured in terms of total utility
earned, which is the sum of utility earned by all completed
tasks [7]. The goal for resource management techniques in this
environment is to maximize the amount of utility earned during
a period of time that has a constraint on the amount of energy
that can be consumed. To keep our simulations tractable, we
consider the time period of a day, but one could use any length
of time (e.g., six hours, one month, one year). We compare
and analyze the performance of our heuristics with different
First Come First Served (FCFS) heuristics in different task
management environments.

In summary, we make the following contributions: (a) the
design of a novel adaptive energy filtering mechanism that can
be readily deployed into any environment, (b) a comparative
analysis of the advantages and disadvantages of a polled task
management environment that can be used in HPC environ-
ments, and (c) a comparison of multiple FCFS heuristics that
are typically used in real schedulers with smarter heuristics
that can improve system performance.

The remainder of this paper is organized as follows. The
next section discusses our system model and the problem
we address. Section III describes the task management en-
vironments and our resource management techniques. Our
simulation setup is detailed in Section IV. Section V discusses
and analyzes our experimental results. We provide an overview
of related work in Section VI. We finish with our conclusions
and plans for future work in Section VII.

II. PROBLEM DESCRIPTION

A. System Model

In this study, the system model is similar to the model de-
scribed in [5]. We model a dynamic system where tasks arrive
throughout the day and a resource manager maps the tasks

0 

1 

2 

3 

4 

5 

6 

7 

8 

0 10 20 30 40 50 60 

ut
ili

ty
 

time to complete after arrival  

task completion  
time = 10 
utility = 5.3 task completion 

time = 47 
utility = 2.8 

Fig. 1. A sample utility function showing the utility earned at two different
completion times.

to machines for execution. We consider an oversubscribed
environment, i.e., the incoming workload exceeds the capacity
of the computing system. The workload and computing system
we model are based on the interests of the ESSC. Each task
in the system has an associated utility function (introduced
in [7]). The utility function of a task is a monotonically-
decreasing function that represents the “value” of completing
that task at different times. Figure 1 shows an example utility
function for a task and highlights the utility that will be
earned when the task is completed at two different times. The
utility function of a task is assumed to be set by the user in
collaboration with the system owner. The utility functions are
described by three parameters: priority, urgency, and utility
class [7]. Priority controls the overall importance of the task
by setting the task’s maximum (i.e., starting) utility value.
Urgency sets the overall rate of decay for the utility function.
The utility class allows the shape of the utility function to be
modified by partitioning it into intervals and specifying shape
modifiers for each of the intervals.

Our computing system environment consists of heteroge-
neous machines, where each machine belongs to a specific
machine type (rather than a single large monolithic system,
such as Titan [8]). Machines belonging to different machine
types may differ in their microarchitectures, memory modules,
and other system components. We model the machines to
contain CPUs with dynamic voltage and frequency scaling
(DVFS) enabled to utilize different ACPI performance states
(P-states) that offer a trade-off between execution time and
power consumption. We group tasks with similar execution
time and power characteristics into task types. Tasks belonging
to different task types may differ in characteristics such
as computational intensity, memory intensity, I/O intensity,
and memory access pattern. The application (task) developer
specifies which task type the application falls into. The type of
a task is not related to the utility function of the task. Because
the system is heterogeneous, machine type A may be faster
(or more energy-efficient) than machine type B for certain task
types but slower (or less energy-efficient) for others. We model



general-purpose machine types and special-purpose machine
types in our heterogeneous system [9]. The special-purpose
machine types execute certain special-purpose task types much
faster than the general-purpose machine types, although they
may be incapable of executing the other task types.

We assume that for a task of type i on a machine of type
j running in P-state k, we are given the Estimated Time to
Compute (ETC(i, j, k)) and the Average Power Consumption
(APC(i, j, k)). It is common in the resource management
literature to assume the availability of this information based
on historical data or experiments [10]–[16]. The APC incor-
porates both the static power (not affected by the P-state of
the task) and the dynamic power (different for different P-
states). We can compute the Estimated Energy Consumption
(EEC(i, j, k)) by taking the product of execution time and av-
erage power consumption, i.e., EEC(i, j, k) = ETC(i, j, k)×
APC(i, j, k). ETC and APC values for the ESSC environment
are not available to researchers. Therefore, for the simulation
study conducted in this paper, we synthetically create ETC and
APC matrices based on recommendations provided by ESSC
and based on general trends of the workloads.

Tasks are assumed to be independent (they do not require
inter-task communication) and can execute concurrently (each
on a single machine, possibly with parallel threads). This is
typical of many environments, such as [17]. We do not allow
the preemption of tasks, i.e., once a task starts execution, it
must execute until completion.

B. Problem Statement

With tasks dynamically arriving, the scheduler does not
know the arrival time, type, or utility function of the next
task. The goal of the scheduler is to maximize the total utility
that can be earned from completing tasks during a given
period of time while satisfying an energy constraint (E) for
that time period. We use the duration of a day to keep the
simulation time tractable. Instead of one day we could base our
constraint on any interval of time (e.g., two hours, six months,
a year). For ESSC, constraints on power (energy per time) are
not a concern. As the system modeled is oversubscribed, the
machines are never turned off, and therefore, the fraction of
static versus dynamic power is not relevant.

III. RESOURCE MANAGEMENT

A. Overview

Heuristics are commonly used to solve task to machine
scheduling problems that have been shown to be NP-hard
[18]. A mapping event occurs any time a scheduling decision
has to be made. We use batch-mode heuristics that trigger
mapping events after fixed time durations (one minute in our
environment) after the previous mapping event completes [7],
[19].

During a mapping event, three decision processes are exe-
cuted. The first operation drops tasks that have low potential
utility at the current time to allow the system to better tolerate
high oversubcription scenarios. The second operation is an
energy filtering technique. We adapt the technique from our

work in [5] to control the energy expenditure by preventing
tasks from using more than their “fair-share” of energy. We
enhance the energy filtering technique to use more system
information and enable it to automatically adjust its level of
energy filtering without the need for any parameter tuning.
The final operation during a mapping event does the actual
mapping of tasks to machines in certain P-states using some
heuristic approach.

We study two different task management environments:
queued and polled. In the queued environment, each of the
machines has a queue of tasks that it will execute in the queue
order. The task that is next-in-line for execution on a machine
is referred to as the pending task. All other tasks that are
queued for the machines are said to be in the virtual queues
of the scheduler. Figure 2a shows the state of a small example
system prior to a mapping event with four machines and
executing tasks, tasks in the pending slots, the virtual queues
of the scheduler, and the tasks that have arrived since the last
mapping event. At a mapping event in the queued environment,
the batch-mode heuristics make scheduling decisions for a
set of tasks comprising those that have arrived since the last
mapping event and the ones that are currently in the virtual
queues. This set of tasks is called the mappable tasks set. The
batch-mode heuristics are not allowed to remap the pending
tasks so that the machines do not idle if the currently executing
tasks complete while the heuristic is executing. As we do
not allow preemption, the currently executing tasks cannot be
interrupted and therefore are not available for mapping. We
refer to the pending and the currently executing tasks as the
unmovable tasks. As there are queues for the machines, the
heuristics consider all machines as available choices when
performing mapping decisions. Figure 2b shows an example
state of the machines immediately after the mapping event is
performed.

In the polled environment, individual machines do not have
queues. Rather, at each mapping event, the machines are polled
to check if they are currently idle or if they are executing
a task. Only the machines that are idle are considered to
be “available” for scheduling during the mapping event. The
“mappable tasks set” in this environment comprises tasks
that were either unmapped in the previous mapping event
or newly arrived tasks since the last mapping event. In the
polled environment, the only “unmovable tasks” are the tasks
that are currently executing. Figure 3a shows an example state
of a four-machine system in a polled environment prior to a
mapping event, and Figure 3b shows a possible state of the
system immediately after the mapping event.

B. Dropping Low Utility Earning Tasks

We use a technique to drop tasks with low potential utility
at the current time (introduced in our previous work [7]).
Dropping a task means that it will never be mapped to a
machine. Due to the oversubscribed environment, if a resource
allocation heuristic tried to have all tasks execute, most of the
task completion times would be so long that the utility of
most tasks would decay significantly and be very small. This

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 5



m1!

executing!
tasks!

pending  
tasks!

virtual queue!
in the scheduler!

t1!t3!t2!

t8!

t5!

t9!

t7!

tasks that arrived since  
last mapping event 

t10 

t11 
t13 

t14 

t12 

mappable tasks set!

m2!t4!

m3!

m4!t6!

queues of all 
machines are 
available for 

mapping!

(a)

m1!

executing!
tasks!

pending  
tasks!

virtual queue!
in the scheduler!

t1!t3!

t8!

t10!

t2!

t13!

unmapped tasks 

m2!t4!

m3!

m4!t6!t11!

t14!

t9!

t5!t12!

t7!

(b)

Fig. 2. Example state of a four-machine system in the “queued” environment (a) before and (b) immediately after a mapping event.

m1!

executing!
tasks!

t1!

previously unmapped tasks 
and tasks that arrived since  

last mapping event 

m2!

m3!

m4!

t5!

t11 

t13 

t14 

t12 

mappable tasks set!

machines available 
for mapping!

(a)

m1!

executing!
tasks!

t1!

unmapped tasks 

m2!

m3!

m4!

t5!

t14 

t12 t11 

t13 

(b)

Fig. 3. Example state of a four-machine system in the “polled” environment (a) before and (b) immediately after a mapping event.

would negatively impact users as well as the overall system
performance. Given that the performance measure is the total
utility achieved by summing the utilities of the completed
tasks, dropping tasks leads to higher system performance, as
well as more users that are satisfied.

The dropping operation determines the maximum possible
utility that each mappable task could earn on any available
machine assuming it can start as soon as possible, i.e., imme-
diately after the unmovable tasks. If this utility is less than
a dropping threshold (determined empirically), we drop this
task from the set of mappable tasks. If the utility earned is not
less than the threshold, the task remains in the mappable tasks
set and is considered in the subsequent allocation decisions of
the mapping event.

As our environment is oversubscribed, the number of tasks
in the mappable tasks set increases quickly. With more tasks
in the mappable set, the heuristics may take longer to perform
their mapping decisions. This can delay the trigger of subse-
quent mapping events and result in poor performance because
any newly arrived high utility tasks may not get serviced
in a timely manner. Therefore, by dropping tasks with low
potential utility, we reduce the size of the mappable tasks set
and enable the heuristics to complete their execution quicker
and as a result trigger subsequent mapping events sooner. This
allows the heuristics to promptly service any newly arriving
high utility-earning tasks.

C. Energy Filtering

The goal of our energy filter technique is to remove potential
allocation choices (task/machine/P-state combinations) from
a heuristic’s consideration if the allocation choice consumes
more energy than an estimated fair-share energy budget (ebud).
The value of the ebud needs to adapt based on the energy
remaining in the day and the time remaining in the day.
Therefore, the value of the ebud is recomputed at the start
of every mapping event.

We denote econs as the total energy that has been consumed
by the system in the current day, and eunmov as the energy
that is guaranteed to be consumed, i.e., by unmovable tasks.
The total energy that can be scheduled by heuristics (without
violating the day’s energy constraint) is denoted by erem. It
is computed as erem = E − (econs + eunmov).

To estimate ebud, the filter also needs to compute the time
remaining in the day within which the above energy can be
consumed. The availability time of a machine is set to either
the completion time of the last unmovable task on the machine
or the current time, whichever is later. We compute the total
time remaining for computations (τrem) by summing across
machines the difference between the end time of the day and
the availability time of the machine.

The average of the execution time values and energy values
of all task types, machine types, and P-states is represented
as τ̄ and ē, respectively. The energy filtering technique needs



to estimate the total number of tasks that it can execute until
the end of the day on average. Based on the time remaining,
the estimated number of tasks that can complete on average
was calculated as τrem/τ̄ [5]. Similarly, based on the energy
remaining, we now estimate the number of tasks that can
complete on average as erem/ē, and use the minimum of these
two ratios as the number of tasks that the system can complete
on average (n):

n = min
(τrem

τ̄
,
erem
ē

)
. (1)

To control the strictness of the filtering technique, we use
a multiplier (λ). ebud is computed using:

ebud = λ× erem
n

. (2)

When n is determined by the energy remaining in the system
in Equation 1 (erem/ē), the second term of the product in
Equation 2 appropriately reduces to using the average energy
consumption of a task (ē) to determine ebud.

Instead of using a fixed value for λ that needs to be
empirically determined by running multiple parameter tuning
experiments [5], we enable it to adapt based on the current rate
of energy consumption and the target energy consumption rate.
We denote the total compute time available in the system at
the start of the day as T and its value is calculated by simply
multiplying the number of machines by the total time in a day.
The adaptive value for λ (which is recomputed at the start of
every mapping event) is calculated as:

λ =
E/T(

econs + eunmov

T − τrem

) .
(3)

The goal of this adaptive parameter is to distribute the
energy usage throughout the day. The numerator in Equation
3 is the target energy consumption rate and the denominator is
the current average rate of energy consumption. If the current
average rate is lower than the target rate, then that leads to a
larger value for λ, which allows more energy to be consumed
by allocation choices. If the current average rate is higher
than the target, the resulting smaller value of λ will only
let low energy-consuming allocation choices pass through the
filter. In this way, this adaptive technique automatically adjusts
the level of filtering and can be deployed readily into any
environment without the need for extensive off-line parameter
tuning experiments.

D. Heuristics

We use the dropping operation with all the heuristics. We
analyze the performance of the heuristics with and without
the energy filtering technique. The heuristics are given the
tasks and the task/machine/P-state choices that passed the
dropping operation and the energy filtering technique (if used)
to finally make assignments of the mappable tasks to the
available machines. The ready time of a machine is the time by
which it completes execution of the last task that is queued on
it. In the polled environment, the ready time of the available

machines is simply the current time. All of the heuristics
progress iteratively, and in each iteration they make assignment
for a mappable task to an available machine. The heuristics
stop executing if either the set of mappable tasks is empty,
or if there are no more available machines. In this work, we
compare and analyze the performance of twelve heuristics.
These heuristics assign tasks during mapping events while
there still remains energy in the day. All heuristics ensure that
the allocation they plan to make is a valid assignment, i.e., not
assigning a task that cannot run on a particular special-purpose
machine.

As most real-world schedulers assign tasks in an order based
on their arrival time, we design and study the performance
of a First Come First Served (FCFS) heuristic. The FCFS
heuristic maintains a list of mappable tasks in an ascending
order of arrival time. It then iteratively works through the list,
each time making an assignment for the first task in the list.
For the task being considered in each iteration, the heuristic
assigns it to the available machine that has the earliest ready
time that is both a valid assignment, and that has passed the
energy filter in the fastest P-state (i.e., P-state 0). In the polled
environment, the heuristic picks a machine that is immediately
available. The assigned task is removed from the sorted list
and the next task is considered. We call this the FCFS P-state
0 heuristic. We implemented another version of this heuristic
that examines if the slower P-states pass through the energy
filter in case the fastest P-state does not. We call this the FCFS
All P-states heuristic.

The system examined in this study is oversubscribed, and
the utility of tasks may start to decay once they arrive. There-
fore, we consider an alternative to the FCFS heuristic that
gives higher preference to the latest arrived task. This is the
Last Come First Served (LCFS) heuristic. The LCFS heuristic
is similar to the FCFS heuristic except that it maintains a list
of mappable tasks in a descending order of their arrival times.
We call the version that only permits the fastest P-state as
the LCFS P-state 0 heuristic and the version that allows any
P-state to be chosen as the LCFS All P-states heuristic.

To account for the different importance levels of the tasks,
we design prioritized versions of the FCFS and the LCFS
heuristics. We envision that a version of these heuristics are
implemented in real-world schedulers where the submitted
jobs have different priority levels. The Prioritized-FCFS P-
state 0 heuristic first groups the mappable tasks based on their
priority level (i.e., value of their initial maximum utility). It
maintains a list of the tasks within each group in an ascending
order of arrival time. The heuristic then considers the highest
priority level group that contains any tasks. Considering those
tasks in order, it makes assignment for each task to the earliest
available machine that is a valid assignment and that has
passed through the energy filter in P-state 0. After considering
all the tasks in this group, it then considers the next highest
priority level group that contains any tasks and continually
repeats this process. We designed another version of this
heuristic that allows the other P-states to be considered as
well. We call this the Prioritized-FCFS All P-states heuristic.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 7



The prioritized versions of the LCFS heuristics are called
the Prioritized-LCFS P-state 0 and Prioritized-LCFS All P-
states heuristics. These heuristics are similar to the Prioritized-
FCFS heuristics with the difference that they maintain a list of
tasks within each group in a descending order of their arrival
times.

The Max Utility heuristic (designed based on the Min-Min
technique [19]–[21]) gives preferences to mapping choices
that earn the highest utility. The heuristic computes the utility
that will be earned by each of the mappable tasks on each
of the available machines in the different P-states. Each
mappable task independently finds the machine/P-state choice
that is valid, passes the energy filter, and that maximizes
the utility earned. Among the different task/machine/P-state
choices found, an assignment is made for the choice that earns
the highest utility. The assigned task is removed from the set
of mappable tasks and the process is repeated. This heuristic
examines the utility function to find the utility that will be
earned at the task completion time as opposed to the Prioritized
heuristics that only look at the starting utility value of the task.

Unlike the Max Utility heuristic that solely maximizes for
utility, the Max Utility-per-time (Max UPT) heuristic picks the
task/machine/P-state choice that maximizes the ratio: “utility
earned / execution time.” In an oversubscribed environment,
it is important to consider how much utility is earned per
execution time used.

The Max Utility-per-Energy (Max UPE) heuristic focuses
on reducing energy along with maximizing utility earned. It
picks the allocation choice that maximizes the ratio: “utility
earned / energy consumed by allocation.” In an energy-
constrained environment, this heuristic helps to rank allocation
choices by considering both the worth of a task and its energy
consumption.

For comparison purposes, we implement a Random heuris-
tic that randomly assigns a mappable task to an available
machine in a random P-state (among the allocation choices
that passed through the energy filter and are valid).

IV. SIMULATION SETUP

A. Overview

We use simulations to study our problem because we want
to test and analyze the performance of the heuristics in a va-
riety of environmental conditions. We simulate the arrival and
mapping of tasks over a duration of 26 hours, with the first two
hours used to bring the system up to steady-state operation. We
collect our results (e.g., total utility earned, energy consumed)
only from the start of the third hour to the end of the 26th hour
(total of 24 hours) to avoid the scenario where the machines
start with empty queues. All the simulation experiments were
run on the ISTeC Cray System at Colorado State University
[17]. Each of the trials represents a new workload of tasks
(with different utility functions, task types, and arrival times),
and a different computing environment by using new values
for the entries in the ETC and APC matrices (but without
changing the number of machines). All of the parameters used

in our simulations are set to closely match the expectations for
future environments of interest to the ESSC.

B. Workload Generation

A utility function for each task in a workload is given,
and each task has a maximum utility value (depending on its
priority level) that starts at one of 8, 4, 2, or 1. These values are
based on the plans of the ESSC, but for other environments,
different number of values and different values of maximum
utility may be used. A method for generating utility functions
can be found in [7]. Each task belongs to one among four
urgency levels and 20 utility classes.

In our simulation environment, approximately 32,000 tasks
arrive during the duration of a day, and each belongs to
one of 100 task types. Out of the 100 task types, 83 are
general-purpose and 17 are special-purpose. Each task type has
approximately the same number of tasks in it. We generate the
arrival patterns to closely match patterns of interest to ESSC
[7]. The general-purpose tasks arrive in a sinusoidal pattern
and special-purpose tasks follow a bursty arrival pattern.

C. Execution Time and Power Modeling

The compute system that we model has 13 machine types
(four special-purpose) consisting of a total of 100 machines.
The four special-purpose machine types have 2, 2, 3, and 3
machines in them. The remaining 90 machines are general-
purpose and are split into the remaining nine machine types
as follows: 5, 5, 5, 10, 10, 10, 10, 15, and 20. The machines
of a special-purpose machine type run a subset of special-
purpose task types approximately ten times faster on average
than the general-purpose machines can run them (as discussed
below). The special-purpose machines do not have the ability
to run tasks of other task types. In our environment, three to
five special-purpose task types are special for each special-
purpose machine type.

We assume that heuristics can make use of three P-states
in all machines: the highest power P-state (P-state 0), lowest
power P-state, and an intermediate P-state. We use techniques
from the Coefficient of Variation (COV) method [22] to
generate the entries of the ETC and APC matrices in the
highest power P-state. The mean value of execution time on
the general-purpose and the special-purpose machine types is
set to ten minutes and one minute, respectively. The mean
dynamic power was set to 133 watts. To generate the dynamic
power values for the intermediate P-state and the lowest
power P-state, we scale the dynamic power to 75% and
50%, respectively, of the highest power P-state. The execution
times for these P-states are also generated by scaling the
execution time at the highest power P-state by sampling a
gamma distribution with a mean value that is approximately
1/
√

(% scaled in power). For example, the lowest power P-
state’s execution time will be scaled by a value sampled from
a gamma distribution that has a mean approximately equal
to 1/

√
0.5. The execution time of any task is guaranteed to

be the shortest in the highest power P-state, but the most
energy-efficient P-state can vary across tasks. Such a model

8 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



Random! FCFS-based! utility-based!LCFS-based!

Fig. 4. Total utility earned by the heuristics in the queued and the polled task management environments. For each of those cases, the hatched bars show the
performance when the adaptive energy filter technique was used. For almost all the heuristics, the polled environment and the energy filtering technique help
to significantly improve performance. The results are averaged over 48 simulation trials and 95% confidence intervals are computed.

approximates reality where the impact on execution time and
energy consumption by switching P-states depends on, among
other factors, the CPU-intensity/memory-intensity of the task
and static power of the system.

D. Obtaining an Energy Constraint

To obtain an energy constraint for use in our simulation
studies, we applied a heuristic from our previous work that did
not have an energy constraint. In particular, we used Max UPT
because it maximized utility in [7], where energy was not a
constraint. We used the same workload and environment setup
as mentioned in Sections IV-B and IV-C and recorded how
much energy was consumed in the day when using Max UPT
to make scheduling decisions without any constraint on energy.
We determined this energy value for the 48 simulation trials
and computed its average. To make our problem challenging,
we set the energy constraint for our environment to be 70% of
this average value. As a result, for our simulations, we used
an energy constraint value of 1.11 GJ per day.

V. RESULTS

All results shown in this section display the average over
48 simulation trials with 95% confidence interval bars. The
execution time of the heuristics and other mapping operations
is on the order of 10−4 seconds per mapping event with the
maximum time being ≈ 3 milliseconds. Therefore, in all of our
cases, the mapping events were triggered approximately every
60 seconds. All of the heuristics used a dropping threshold
of 0.5 units of utility to tolerate the oversubscription, as it
gave the best performance without removing tasks of any
one priority level completely. The dropping operation helped

reduce the execution time of heuristics in the oversubscribed
environment. When selecting a dropping threshold, one must
consider the level of oversubscription of the environment in
addition to the utility values of tasks.

Figure 4 shows the utility earned by the various heuristics
in both queued and polled environments as well as with and
without the energy filtering technique. The dashed vertical
lines separate heuristic types into the following: Random,
FCFS-based heuristics, LCFS-based heuristics, and the heuris-
tics that use utility function information. We observe that,
in general, the performance of the heuristics on the right is
better than those on the left. The Prioritized FCFS heuristic
performs better than the FCFS heuristic because it focuses
on executing the high priority tasks first, and as a result,
earns more utility per task. This is useful in an oversubscribed
system as the heuristic is required to pick the better tasks to
run. We see a similar trend when comparing Prioritized LCFS
with LCFS. The LCFS-based heuristics usually outperform
their FCFS counterparts because the LCFS-based heuristics
focus on serving more recently arrived tasks. These recently
arrived tasks tend to have utility values that have decayed
less than tasks that arrived in the system earlier. The best
performance is obtained by the heuristics that use utility
function information to determine how much utility a task
will earn. This is important because even though a task may
have the highest priority it may also decay very fast. By
the time such a task completes it may earn less utility than
a task that may have a lower priority but does not decay
much or does so slowly. The Max UPE heuristic significantly
outperforms the other heuristics because it proactively reduces
energy consumption and uses the saved energy to execute more



R
a
n
d
o
m

FC
FS

P
-s

ta
te

 0

FC
FS

A
ll 

P
-s

ta
te

s

P
ri

o
ri

ti
ze

d
 F

C
FS

P
-s

ta
te

 0

P
ri

o
ri

ti
ze

d
 F

C
FS

A
ll 

P
-s

ta
te

s

LC
FS

P
-s

ta
te

 0

LC
FS

A
ll 

P
-s

ta
te

s

P
ri

o
ri

ti
ze

d
 L

C
FS

P
-s

ta
te

 0

P
ri

o
ri

ti
ze

d
 L

C
FS

A
ll 

P
-s

ta
te

s

M
a
x
 U

ti
lit

y

M
a
x
 U

P
T

M
a
x
 U

P
E0.0

0.2

0.4

0.6

0.8

1.0

a
v
e
ra

g
e
 p

o
rt

io
n
 o

f 
m

a
x
im

u
m

 u
ti

lit
y

priority level: 1

queued with filtering

polled with filtering

(a)

R
a
n
d
o
m

FC
FS

P
-s

ta
te

 0

FC
FS

A
ll 

P
-s

ta
te

s

P
ri

o
ri

ti
ze

d
 F

C
FS

P
-s

ta
te

 0

P
ri

o
ri

ti
ze

d
 F

C
FS

A
ll 

P
-s

ta
te

s

LC
FS

P
-s

ta
te

 0

LC
FS

A
ll 

P
-s

ta
te

s

P
ri

o
ri

ti
ze

d
 L

C
FS

P
-s

ta
te

 0

P
ri

o
ri

ti
ze

d
 L

C
FS

A
ll 

P
-s

ta
te

s

M
a
x
 U

ti
lit

y

M
a
x
 U

P
T

M
a
x
 U

P
E0.0

0.2

0.4

0.6

0.8

1.0

a
v
e
ra

g
e
 p

o
rt

io
n
 o

f 
m

a
x
im

u
m

 u
ti

lit
y

priority level: 8

queued with filtering

polled with filtering

(b)

Fig. 5. Portion of maximum utility earned by the different heuristics when using the filtering technique for tasks that belong to (a) priority level 1, and (b)
priority level 8.

Fig. 6. Cumulative utility earned by the Max Utility heuristic as time
progresses highlighting the benefit of the filtering technique to save energy
and use it to earn utility in the later parts of the day. The results are averaged
over 48 simulation trials and 95% confidence intervals are computed.

tasks and earn more utility.
We observe that the polled environment significantly im-

proves the performance for most of the heuristics, compared
to the queued environment. This happens because the polled
environment does not lock down a task into the pending
slot, as happens in the queued environment, and therefore,
is better able to more quickly serve any high utility earning
tasks that arrive compared to the queued environment. It is
worth noting that the polled environment has more idle time
than the queued environment. This is because, in the polled
environment, whenever a machine finishes execution of a task,
it has to wait (idle) until the trigger of the next mapping event
for another task to be assigned to it. Therefore, traditional
metrics for performance such as utilization would incorrectly
identify the polled environment to be performing worse, but

it is those small amounts of idling distributed throughout the
day that improves the ability of the system to quickly service
any high utility tasks that may arrive. Figures 5a and 5b show
on average the portion of maximum utility that was earned
from tasks that belonged to priority level 1 and priority level
8, respectively. We see that for tasks that belong to the higher
priority level, the polled environment does a better job of
earning higher utility as compared to the queued environment.
The figures also highlight the effectiveness of the priority-
based and utility function-aware heuristics in attempting to
earn a larger portion of the maximum utility from tasks that
have a higher priority level versus those that have a priority
level of 1. The trend with a priority level of 4 is very similar
to 8 and the trend with a priority level of 2 is in-between the
trends in the priority level 8 and 1 charts. The results shown
in these figures are for the cases using the filtering technique
but the no filtering cases also show similar overall trends.

It is worth noting that the time between subsequent mapping
events versus the average task execution time is an important
factor in determining which type of task management environ-
ment would be the best. For example, if the heuristic execution
times were to be very long, leading to longer times between
mapping events, then it is likely that the queued environment
will perform better than the polled environment because the
polled environment will starve the machines whereas in the
queued environment the machines can at least allocate tasks
based on the queues.

Figure 4 also shows the significant benefit provided by our
novel adaptive energy filtering technique for almost all of the
heuristics in either of the task management environments. The
filtering technique allows the heuristics to save energy for the
later part of the day that can then be used to execute and
earn utility from any high utility tasks that arrive at those

10 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



times. A trace chart showing the utility earned by the Max
Utility heuristic as time progresses (Figure 6) highlights the
benefit of using the filtering technique. In our ESSC inspired
environment, high-utility tasks arrive throughout the day and
therefore it is typically beneficial to have some energy left
to spend towards the end of the day. Similar trends are
observed for the other heuristics as well and our filtering
technique helps all of the heuristics in a similar manner by
adapting to their energy consumption rate. When not using the
filtering technique, all of the heuristics except Max UPE hit
the energy constraint before the end of the day, and therefore,
the heuristics (except Max UPE) benefit from using the energy
filter. As Max UPE already considers energy consumption, it
does not benefit from the energy filter. Figure 6 shows how the
polled environment always has a slightly higher slope than the
queued environment. This is because the polled environment
is consistently better able to serve the high priority tasks that
arrive than the queued environment is able to serve.

For the FCFS-based and the LCFS-based heuristics, whether
only P-state 0 (fastest P-state) is permitted or if all the other
P-states are allowed only matters in the filtering cases, because
in the no filtering case, the heuristic always makes assignments
in P-state 0. When using filtering with the FCFS and LCFS
heuristics, Figure 4 shows that considering only P-state 0
has a larger improvement in performance compared to the
performance improvement when considering all P-states. This
happens because of two reasons. The first reason is that by
considering other P-states in all of the machines, even though
more energy is saved, the execution time also increases leading
to only a limited increase in total utility. It is worth noting that
the first choice that satisfies the filter is chosen as opposed to
the best energy choice. The second reason is that by only
considering P-state 0, the FCFS and LCFS heuristics get the
benefit of searching for another machine that satisfies the
energy filter (but still only uses the fastest P-state). This
search for a low energy machine also leads to minimizing
the execution time in our environment (as energy = power
× time). This results in more utility being earned from task
completions. These benefits are not substantial when using
the Prioritized FCFS and Prioritized LCFS heuristics, as they
first consider the highest priority tasks that are not necessarily
the earliest arriving or latest arriving, and the benefit from
considering only P-state 0 is less than the benefit of the energy
savings provided by considering other P-states, allowing them
to earn more utility during the later part of the day.

VI. RELATED WORK

In [7], the concept of utility functions to describe a task’s
time-varying importance is introduced. Energy is not consid-
ered at all in that paper. In this work, we are concerned with
maximizing utility while obeying an energy constraint.

Energy-aware scheduling has been extensively studied. In
[23], the authors design techniques to schedule a bag-of-
tasks to a heterogeneous computing system with the goal of
minimizing energy consumption under a throughput constraint.
In [24], the authors formulate a bi-objective resource allocation

problem to analyze the trade-offs between makespan and
energy consumption. Our work differs from these as we
maximize utility earned under an energy constraint.

In [25], a set of dynamically arriving tasks with individual
deadlines are allocated to machines within a cluster environ-
ment with the goal of conserving energy. Specifically, the
authors try to optimize the energy consumption while meeting
the constraint of completing all tasks by their deadlines. Our
environment tries to maximize the total utility earned while
operating under an energy constraint. As a result, we design an
adaptive energy filtering technique. Additionally, [25] models
an undersubscribed system, while our work focuses on highly
oversubscribed environments.

The research in [26] attempts to maximize a mathematical
model of Quality of Service under an energy constraint by us-
ing DVFS to take up slack time in an undersubscribed system,
which is very different from our oversubscribed environment.

A dynamic resource allocation problem in a heterogeneous
energy-constrained environment is studied in [27]. Tasks in
this system contain individual deadlines, and the goal is to
complete as many tasks by their individual deadlines as pos-
sible within an energy constraint. This is a different problem
from our work as we are trying to maximize the utility earned
(based on each task’s completion time) and not the number of
tasks that meet their hard deadlines. The concept of an energy
filter is used in [27], and we build on that for a more complex
filter that automatically adjusts its level of filtering.

VII. CONCLUSION

In this paper, we study the problem of maximizing utility
in an oversubscribed heterogeneous computing environment
while satisfying an energy constraint. We examine and com-
pare the performance of multiple heuristics in different task
management environments. Our results indicate that the polled
environment provides significant benefit over the queued en-
vironment in a system like ours because it has the ability
to quickly service newly-arrived tasks with high utility. The
queued environment with its pending slot and virtual queues
may be more useful in an environment where the time between
mapping events is longer than the average task execution time.
We design, implement, and analyze multiple versions of the
First Come First Served heuristic that are commonly used
in many real-world schedulers. We compare the performance
of these heuristics with Last Come First Served heuristics
and other smart heuristics and demonstrate the strength of
these smart heuristics. We also design a novel energy filtering
technique that can be used with any of the heuristics and
can be readily deployed in any environment without the
need for any off-line parameter tuning. The adaptive energy
filtering technique improves the performance of almost all
the heuristics by allowing the heuristics to distribute their
consumption of the budgeted energy and earn more utility.

Possible directions for future research include: (1) making
the resource allocation techniques robust to uncertainties such
as stochastic task execution times, machine failures, etc., (2)

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 11



experimenting with other types of task management envi-
ronments, and (3) considering parallel and dependent tasks
scheduling.

ACKNOWLEDGMENTS

This research used resources of the National Center for
Computational Sciences at Oak Ridge National Laboratory,
supported by the Extreme Scale Systems Center at ORNL,
which is supported by the Department of Defense. Additional
support was provided by a National Science Foundation Grad-
uate Research Fellowship, and by NSF Grants CCF-1302693
and CCF-1252500. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of the
National Science Foundation. This research also used the CSU
ISTeC Cray System supported by NSF Grant CNS-0923386.
The authors thank Mark Oxley and Daniel Dauwe for their
valuable comments.

REFERENCES

[1] America’s data centers consuming and wasting growing
amounts of energy. [Online]. Available: http://www.nrdc.org/energy/
data-center-efficiency-assessment.asp

[2] D. J. Brown and C. Reams, “Toward energy-efficient computing,”
Communications of the ACM, vol. 53, no. 3, pp. 50–58, Mar. 2010.

[3] P. Bohrer, E. N. Elnozahy, T. Keller, M. Kistler, C. Lefurgy, C. Mc-
Dowell, and R. Rajamony, “The case for power management in web
servers,” in Power Aware Computing, ser. Series in Computer Science,
R. Graybill and R. Melhem, Eds. Springer US, 2002.

[4] I. Rodero, J. Jaramillo, A. Quiroz, M. Parashar, F. Guim, and S. Poole,
“Energy-efficient application-aware online provisioning for virtualized
clouds and data centers,” in International Green Computing Conference,
Aug 2010, pp. 31–45.

[5] B. Khemka, R. Friese, S. Pasricha, A. A. Maciejewski, H. J. Siegel, G. A.
Koenig, S. Powers, M. Hilton, R. Rambharos, and S. Poole, “Utility
maximizing dynamic resource management in an oversubscribed energy-
constrained heterogeneous computing system,” Sustainable Computing:
Informatics and Systems, vol. 5, pp. 14–30, Mar. 2015.

[6] Advanced configuration and power interface specification. [Online].
Available: http://www.acpi.info/spec.htm

[7] B. Khemka, R. Friese, L. D. Briceño, H. J. Siegel, A. A. Maciejewski,
G. A. Koenig, C. Groer, G. Okonski, M. M. Hilton, R. Rambharos, and
S. Poole, “Utility functions and resource management in an oversub-
scribed heterogeneous computing environment,” IEEE Transactions on
Computers, accepted 2014, to appear.

[8] “Introducing Titan,” Jun 2014. [Online]. Available: https://www.olcf.
ornl.gov/titan/

[9] R. Friese, B. Khemka, A. A. Maciejewski, H. J. Siegel, G. A. Koenig,
S. Powers, M. Hilton, J. Rambharos, G. Okonski, and S. W. Poole,
“An analysis framework for investigating the trade-offs between system
performance and energy consumption in a heterogeneous computing
environments,” in 22nd Heterogeneity in Computing Workshop (HCW
2013), in the proceedings of the IPDPS 2013 Workshops & PhD Forum
(IPDPSW), May 2013, pp. 19–30.

[10] H. Barada, S. M. Sait, and N. Baig, “Task matching and scheduling
in heterogeneous systems using simulated evolution,” in 10th Heteroge-
neous Computing Workshop (HCW 2001), in the proceedings of the 15th
International Parallel and Distributed Processing Symposium (IPDPS
2001), Apr. 2001, pp. 875–882.

[11] M. K. Dhodhi, I. Ahmad, and A. Yatama, “An integrated technique for
task matching and scheduling onto distributed heterogeneous computing
systems,” Journal of Parallel and Distributed Computing, vol. 62, no. 9,
pp. 1338–1361, Sep. 2002.

[12] A. Ghafoor and J. Yang, “A distributed heterogeneous supercomputing
management system,” IEEE Computer, vol. 26, no. 6, pp. 78–86, June
1993.

[13] M. Kafil and I. Ahmad, “Optimal task assignment in heterogeneous
distributed computing systems,” IEEE Concurrency, vol. 6, no. 3, pp.
42–51, July 1998.

[14] A. Khokhar, V. K. Prasanna, M. E. Shaaban, and C. Wang, “Hetero-
geneous computing: Challenges and opportunities,” IEEE Computer,
vol. 26, no. 6, pp. 18–27, June 1993.

[15] H. Singh and A. Youssef, “Mapping and scheduling heterogeneous
task graphs using genetic algorithms,” in 5th Heterogeneous Computing
Workshop (HCW ’96), Apr. 1996, pp. 86–97.

[16] D. Xu, K. Nahrstedt, and D. Wichadakul, “QoS and contention-aware
multi-resource reservation,” Cluster Computing, vol. 4, no. 2, pp. 95–
107, Apr. 2001.

[17] Colorado State University ISTeC Cray High Performance Computing
Systems. [Online]. Available: http://istec.colostate.edu/activities/cray

[18] M. R. Gary and D. S. Johnson, Computers and Intractability: A guide
to the theory of NP-Completeness. W. H. Freeman and Co., 1979.

[19] M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen, and R. F. Freund,
“Dynamic mapping of a class of independent tasks onto heterogeneous
computing systems,” Journal of Parallel and Distributed Computing,
vol. 59, no. 2, pp. 107–121, Nov. 1999.

[20] T. D. Braun, H. J. Siegel, N. Beck, L. Boloni, R. F. Freund, D. Hensgen,
M. Maheswaran, A. I. Reuther, J. P. Robertson, M. D. Theys, and
B. Yao, “A comparison of eleven static heuristics for mapping a class of
independent tasks onto heterogeneous distributed computing systems,”
Journal of Parallel and Distributed Computing, vol. 61, no. 6, pp. 810–
837, June 2001.

[21] O. H. Ibarra and C. E. Kim, “Heuristic algorithms for scheduling
independent tasks on non-identical processors,” Journal of the ACM,
vol. 24, no. 2, pp. 280–289, Apr. 1977.

[22] S. Ali, H. J. Siegel, M. Maheswaran, D. Hensgen, and Sa. Ali, “Repre-
senting task and machine heterogeneities for heterogeneous computing
systems,” Tamkang Journal of Science and Engineering, Special Issue,
Invited, vol. 3, no. 3, pp. 195–207, Nov. 2000.

[23] J.-F. Pineau, Y. Robert, and F. Vivien, “Energy-aware scheduling of
bag-of-tasks applications on masterworker platforms,” Concurrency and
Computation: Practice and Experience, vol. 23, no. 2, pp. 145–157, Feb.
2011.

[24] R. Friese, T. Brinks, C. Oliver, A. A. Maciejewski, H. J. Siegel, and
S. Pasricha, “A machine-by-machine analysis of a bi-objective resource
allocation problems,” in The 2013 International Conference on Parallel
and Distributed Processing Techniques and Applications (PDPTA 2013),
July 2013, pp. 3–9.

[25] K. H. Kim, R. Buyya, and J. Kim, “Power aware scheduling of bag-of-
tasks applications with deadline constraints on DVS-enabled clusters,”
in IEEE/ACM International Symposium of Cluster Computing and the
Grid (CCGrid 2007), 2007, pp. 541–548.

[26] H. Yu, B. Veeravalli, and Y. Ha, “Dynamic scheduling of imprecise-
computation tasks in maximizing QoS under energy constraints for
embedded systems,” in Asia and South Pacific Design Automation
Conference (ASPDAC 2008), Mar. 2008, pp. 452–455.

[27] B. D. Young, J. Apodaca, L. D. Briceño, J. Smith, S. Pasricha, A. A.
Maciejewski, H. J. Siegel, B. Khemka, S. Bahirat, A. Ramirez, and
Y. Zou, “Deadline and energy constrained dynamic resource allocation
in a heterogeneous computing environments,” The Journal of Supercom-
puting, vol. 63, no. 2, pp. 326–347, Feb. 2013.

12 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



GetLB++: Improving Transaction Load Balancing on the Electronic
Funds Transfer Landscape

Felipe Rabuske1, Cristiano André da Costa1, Rodrigo da Rosa Righi1, Gustavo Rostirolla1,
Antonio Alberti2, Anselm Busse3 and Hans-Ulrich Heiss3

1Applied Computing Graduate Program - Univ. Vale do Rio dos Sinos - São Leopoldo, RS, Brazil
2Instituto Nacional de Telecomunicações - INATEL - Santa Rita do Sapucaí, MG, Brazil

3Technical University Berlin - TU Berlin - Sekretariat EN 6 - Einsteinufer 17, D-10587 Berlin

Abstract— The continuous growth of electronic payment
methods in business transactions is a reality that boosts
e-commerce, being present more and more in our daily
lives. Considering this situation, we proposed in a previous
work a model denoted GetLB, which contains a scheduler
that provides good results when compared to the traditional
dispatching approach – the Round-Robin. Although offering
a good distribution of transactions to processing (PMs),
GetLB’s scheduling routine is time consuming since each
input is always analyzed against each target PM. Thus,
in this paper we are proposing GetLB++ – a GetLB im-
provement that covers scheduling computation efficiency by
bursting a transaction to a specific PM in accordance with a
updated in-memory decreasing-sorted list of PM capacities.
The results using an Amazon EC2 cluster instance showed
a higher scheduling speed on GetLB++ in comparison
with the standard GetLB, presenting gains about 20% on
the makespan time. Besides scalability on EFT systems,
GetLB++’s contributions are not limited to the context of
transactional systems, but can also be extended for load
balancing in e-commerce systems, cloud computing, and
parallel programming.

Keywords: Eletronic Funds Transfer, Scheduling, Algorithm

1. Introduction
Electronic payment methods, such as debit and credit

cards, are being adopted by the society as the mainstream
payment method for business transactions [1]. The benefits
offered by EFT (Electronic Funds Transfer) range from
a higher commodity for the buyers to a greater security
for commercial institutions [2]. Usually, the dispatcher that
receives transactions in the EFT company uses the Round-
Robin (RR) algorithm to distribute them to processing
machines, or PMs [3], [4]. RR algorithm consists of dis-
patching the new tasks in a circular fashion amongst the
PMs, guaranteeing that the tasks are distributed uniformly
between the processing units [5]. RR can be seen as a
very fast strategy, with complexity O(1), presenting an
optimal load balancing for homogeneous systems [6]: when
both consumers (in our case, electronic transactions) and
resources (in our case, PMs) have the same configuration,

performance is kept unchanged over time. Nevertheless, this
scenario is not common in EFT systems, because of each
kind of transaction has different computational needs [2].

Regarding the aforementioned scope, we developed a
model named GetLB, which proposes a framework for
scheduling transactions on an EFT company [7]. Period-
ically, GetLB’s scheduling algorithm takes into account
several characteristics of the transactions, such as the number
of CPU instructions and memory consumption, as well
as PMs data, to distribute the tasks. According to [7]
GetLB obtained good results when distributing the work-
load amongst a dozen of nodes on homogeneous and het-
erogeneous clusters. The processing time of the GetLB’s
scheduling algorithm was about seven times greater than
the RR routine. Additionally, this time tends to be bigger
as the number of PM nodes of a cluster increases as well,
facing a scalability problem. This happens for two reasons:
(i) PMs periodically update their data to the dispatcher; (ii) at
each transaction input, GetLB recalculates the workload that
would be added on each PM of the cluster before choosing
the one that will receive a new transaction.

Clearly, there is a gap on GetLB that can be explored
in terms of expanding the model’s scalability. In this way,
we have developed GetLB++ — an enhanced and more
flexible version of the standard GetLB, now focusing on
improving scheduling routine (i.e., the calculus involved in
the scheduling procedure) but maintaining or yet improving
the quality of the transactions-PMs assignment. GetLB++
can be used for processing different types of tasks, not
being restricted to EFT scenarios. We developed a prototype
that covers both GetLB and GetLB++ algorithms, besides
an implementation of the RR. The prototype was evaluated
with different rates for transactions arrival, distinct Amazon
EC2 cluster instances and various input workloads. The
results were encouraging, where GetLB++ obtained a better
scheduling time and quality, besides presenting a larger
scalability when compared to GetLB and RR.

The remainder of this article will first introduce the
fundamental concepts in Section 2, presenting the main ideas
of GetLB. Section 3 discusses about the related studies,
giving the open issues in the EFT area. Section 4 describes
the GetLB++ model in details, while Section 5 covers its

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 13



prototype. Section 6 brings the evaluation methodology to
analyze GetLB, GetLB++, and RR. Section 7, in turn,
discusses the results obtained from the experiments. Finally,
the conclusion is written in Section 8, addressing scientific
contributions and future work.

2. Background
This section presents the functioning of GetLB [7], of-

fering the basis to understand the advances in the newer
version. Electronic funds transfer transactions have different
processing needs: CPU time, database access, network, and
access to external systems. Thinking about these peculiari-
ties, GetLB was developed to deliver a better load balance
for transactions to PMs, so enabling benefits both to the
users and provider company administrators. Figure 1 depicts
the GetLB’s architecture. GetLB was structured with the fol-
lowing design decisions in mind: (i) the scheduling heuristic
algorithm runs in the dispatcher module and must work with
up to date information regarding the PMs; (ii) the heuristic
scheduling must combine relevant data in order to compose
the notion of load; (iii) PMs must be capable to notify the
switch; (iv) the framework must deal with heterogeneous
resources at both communication and computing levels.

Processing
Machine 1POS

ATM

X.25➝IP 

Incomming 
Transactions

Switch

CardsCellphone 
Prepaid

Fraud 
Prevention

Internal Subsystems
DB

EFT

Processing
Machine 2

Processing
Machine n

Notifications and 
Scheduling 
Data

Local
Area
Network 1

Local
Area
Network 2

LL Scheduler

Fig. 1: GetLB architecture, emphasizing network decoupling
and “PMs!switch” cooperative interaction besides the tra-
ditional one for transaction dispatching in opposite direction.

Regarding the scheduling activities, the dispatcher has
an array that contains information about all PMs. Process-
ing machines periodically report updates to the dispatcher,
impacting on updating its array afterwards. The dispatcher
performs all scheduling calculus with in-memory data, where
the updating period informs how recent is PMs data regard-
ing CPU, memory, and network. Thus, we previously devel-
oped a scheduling heuristic called LL (Load Level), which
considers transactions and PMs are heterogeneous and, PMs
as a part of a dynamic environment. LL can be viewed
as a decision function LL(i, j) where i means a specific
type of transaction, while j denotes a candidate target PM
for receiving transaction i. For each new transaction i, the
switch will calculate n equations LL(i, j), where n means

the number of processing machines. Therefore, the lowest
result will inform the target that will receive a transaction.
LL(i, j) can be obtained by computing Equation 1.

LL(i, j) = Recv(i, j) + Proc(i, j) , (1)
Recv(i, j) = bytes(i)⇥ transfer(j) , (2)

Proc(i, j) = transaction(i, j) +
m�1X

z=0

transaction(z, j) , (3)

transaction(i, j) =
instructions(i)

clock(j)⇥ [1� load(j)]

+
RAM(i)⇥ serviceRAM(j)

freeRAM(j)

+
HD(i)⇥ serviceHD(j)

freeHD(j)

+ sub(i, j) , (4)

sub(i, j) =
x�1X

y=0

[2 sub
a

(y, j) + sub
c

(y)]⇥ sub
r

(i, y) . (5)

Equation 1 is given by adding the estimated reception time
(Recv(i, j)) and the estimated processing time (Proc(i, j))
of transaction i by machine j. In Equation 2, bytes(i) means
the size of the transaction i and transfer(j) refers to the
time necessary to transfer a single byte to the PM j. The
Equation 3 calculates the total time that machine j needs
to process transaction i, being divided in two sub-elements:
(i) a prediction of computation time for transaction i on PM
j; (ii) a prediction of all m transactions that have already
been mapped to PM j previously and remain on its input
queue. Static data (theoretical values for CPU, memory and
access time to sub-systems) and the machine’s dynamic
data (considering CPU load, communication time and I/O
requirements) are taken into consideration to calculate the
estimated processing time, represented here in Equation 4.

Equation 5 captures the time spent by the sub-systems
accessed by the machine j in order to process the transaction
i. Each type of transaction i must access x subsystems. Thus,
suba(y, j) considers the time spent by PM j for accessing
the particular subsystem y through network interaction. This
time is multiplied for 2 in order to consider a round-trip
evaluation. The field subc(y) refers to the service time of the
subsystem y and subr(i, y) represent the number of times
that subsystem y is called for the complete computation of i.
The main drawback of the GetLB’s algorithm is explained as
follows: considering empty PMs, a single task i is mapped
to PM0 so we have a LL(i, 0) equal to x. For the next
transactions that test j as destination, the previous mapped
transaction i can impact much larger than x since the load(j)
in Equation 4 was updated. This feature has a strong impact
on limited machines, since they will be set as overloaded
faster.

3. Related Work
The most studied topic in electronic transactions systems

considers the security of information [8], [9], [10], [11].

14 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



However, security is not the only important topic in the
context of EFT systems, but we can contemplate the load
balancing (and also scheduling and resource management)
problem too. This addresses how fast a provider computes a
set of transactions, impacting directly in the user experience.
In this way, Sousa et al. [12], [3] present a stochastic model
for performance evaluation and resource planning. The tests
compared measures of disk and processor utilization on a
real system against the values obtained through the utiliza-
tion of the proposed evaluation model. Desnoyers et al. [13]
developed a system called Modellus, which allows modeling
the usage of data centers around the Internet, automatically.
The service rates are typically variable, limiting queuing
theory application to this problem.

Mcheick et al. [14] explain that distributed systems can
suffer from degradation problems in terms of performance
and scalability. The authors point out that static algorithms
work fine when there are no variations in the workload;
therefore, they are not indicated for EFT scenarios where
workload is not know in advance. Righi et al. [7] proposed
the GetLB model aiming at filling the aforementioned gap,
presenting both a framework and a scheduler capable to
handle heterogeneous workload in dynamic environments.
Although the heuristic used by GetLB (named Load Level -
LL) took around six times more processing time than Round-
Robin. In this perspective, we envision an opportunity to
address EFT scalability by improving our previous work
with the GetLB++ proposal, which is described in the next
section.

4. GetLB++: An Improved Model for
EFT Transactions Processing

This section presents GetLB++, which provides an evo-
lution of GetLB to improve quantity and speed of the EFT
transactions scheduler. GetLB++ consists of two parts: (i)
a task processing framework for distributed systems; (ii)
a transaction scheduling algorithm. Our idea is to offer
a scalable system when combining both aforementioned
parts. In terms of architectural elements, as GetLB does,
GetLB++ works with input transactions from EFT terminals,
a dispatcher or switch that schedules them to end processing
units, named as processing machines or PMs. GetLB++ was
developed with the following design decisions in mind: (a)
the communication from the dispatcher to PMs must be
asynchronous to void network latency; (b) PMs must be
able to notify the dispatcher of any event that has impact
on scheduling decisions; (c) the framework must allow the
usage of different load balancing algorithms for scheduling
purposes; (d) the framework must be able to process other
types of tasks, so not restricting it to electronic funds transfer
scenarios.

The dispatcher uses only in-memory data to schedule a
transaction to a PM. Therefore, the processing machines are

in charge of both monitoring their hardware and updating
this information to the dispatcher in accordance to two
modes: periodical and critical. In the periodical mode, PMs
have a parameter named verification period that is used
to both check their own hardware status and to send this
information to the dispatcher afterwards. In this way, the
dispatcher operates locally with data that are update in
accordance with the aforesaid parameter. In the critical
mode, a verification period is also used, but here only
to check the hardware status in the PM. The switch is
only updated with the hardware information of a certain
processing machine when there is a critical change in the PM
context. Thus, considering two consecutive measurements,
there is another parameter named critical change indicating
the percentage to consider as critical a sudden modification
in the hardware status, which may represent impact on
scheduling procedures.

4.1 Framework Modeling
GetLB++ follows the same idea of architectural elements

from the GetLB model, with transactions, EFT terminals, a
dispatcher and PMs (see details in Figure 1). In this work
we are generalizing the use of transactions by employing
the term Task, since GetLB++ was modeled for being not
restrictive to the EFT scenarios. The task interface spec-
ifies methods that return information about the workload,
estimated size, and a list of external systems that are
accessed during the task processing. In addition, an object
of this type must also implements a method process() which
actually performs the processing of the task. Through this
encapsulation, the terminals can send different types of tasks
to be processed by the GetLB++, since the components of
the framework do not need to know the implementation of
the task. Therefore, this allows the framework to be extended
beyond the EFT scenarios.

The GetLB++ model defines that the switch should have
the capacity to operate using different scheduling algo-
rithms, where an implementation of the Scheduler interface
accomplishes this objective. This interface specifies the
getNextPU() method, which returns the machine that will
receive a task. The scheduling algorithms that implement this
interface have access to information related to the processing
machines through the list of ProcessingUnits inside the
dispatcher, including their task queues. Therefore, when
dispatching a task, the switch calls the getNextPU method,
passing as parameter the list of Processing Units and the task
that will be processed, and the scheduler returns the most
suitable Processing Unit to accommodate the task.

4.2 Scheduling Algorithm
Although GetLB++ accepts various scheduling algo-

rithms, the framework presents a default scheduler that was
completely redesigned in order to meet the following goals
when compared to the original GetLB: (i) have a higher

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 15



scheduling velocity; (ii) be more scalable; (iii) maintain or
improve the load balancing quality by using the same system
metrics as GetLB. As depicted in Figure 2, GetLB always
computes n times the LL(i, j) function, where n refers to the
number of PMs, so verifying the impact and the conclusion
time of task i on PM j. Considering that the mean number
of already mapped transactions on each PM is equal to m,
GetLB schedules a transaction with O(n.m) complexity.
See Equations 1 up to 6 for details. On the other hand,
as mentioned in Section 1, Round-Robin is not suitable for
heterogeneous systems but offers a O(1) complexity.

PM1

version of the standard GetLB, now focusing on improving
scheduling routine (i.e., the calculus involved in the scheduling
procedure) but maintaining or yet improving the quality of
the transactions-PMs assignment. GetLB++ can be used for
processing different types of tasks, not being restricted to
EFT scenarios. We developed a prototype that covers both
GetLB and GetLB++ algorithms, besides an implementation
of the RR. The prototype was evaluated with different rates
for transactions arrival, distinct Amazon EC2 cluster instances
and various input workloads. The results were encouraging,
where GetLB++ obtained a better scheduling time and quality,
besides presenting a larger scalability.

The remainder of this article will first introduce the fun-
damental concepts in Section II, presenting the main ideas
of GetLB. Section III discusses about the related studies,
giving the open issues in the EFT area. Section IV describes
the GetLB++ model in details, while Section V covers its
prototype. Section VI brings the evaluation methodology to
analyze GetLB, GetLB++, and RR. Section VII, in turn,
discusses the results obtained from the experiments. Finally,
the conclusion is written in Section VIII, addressing scientific
contributions and future work.

II. BACKGROUND

This section presents the functioning of
GetLB [Righi et al., 2014], offering the basis to understand
the advances in the newer version. Electronic funds transfer
transactions have different processing needs: CPU time,
database access, network, and access to external systems.
Thinking about these peculiarities, GetLB was developed
to deliver a better load balance for transactions to PMs,
so enabling benefits both to the users (who perceive the
fast conclusion of their demands) and provider company
administrators (who obtained a better throughput of
transactions per second, or TPS). Figure 1 depicts the GetLB’s
architecture. GetLB was structured with the following design
decisions in mind: (i) the scheduling heuristic algorithm runs
in the dispatcher module and must work with up to date
information regarding the PMs; (ii) the heuristic scheduling
must combine relevant data in order to compose the notion of
load; (iii) PMs must be capable to notify the switch; (iv) the
framework must deal with heterogeneous resources at both
communication and computing levels.

Regarding the scheduling activities, the dispatcher has
an array that contains information about all PMs. Process-
ing machines periodically report updates to the dispatcher,
impacting on updating its array afterwards. The dispatcher
performs all scheduling calculus with in-memory data, where
the updating period informs how recent is PMs data regarding
CPU, memory, and network. Thus, we previously developed a
scheduling heuristic called LL (Load Level), which considers
transactions and PMs are heterogeneous and, PMs as a part of a
dynamic environment. LL can be viewed as a decision function
LL(i, j) where i means a specific type of transaction, while j
denotes a candidate target PM for receiving transaction i. For
each new transaction i, the switch will calculate n equations
LL(i, j), where n means the number of processing machines.
Therefore, the lowest result will inform the target that will
receive a transaction. LL(i, j) can be obtained by computing
Equation 1.

Processing
Machine 1POS

ATM

X.25➝IP 

Incomming 
Transactions

Switch

Cards

Cellphone 
Prepaid

Transport 
cards

Terminal 
Configuration

Information 
Security

Fraud 
Prevention

Internal Subsystems

DB DB DB DB
Auxiliary 
Systems

EFT

Processing
Machine 2

Processing
Machine n

Notifications and 
Scheduling 
Data

Local
Area
Network 1

Local
Area
Network 2

LL Scheduler

Fig. 1. GetLB architecture, emphasizing network decoupling and
“PMs�switch” cooperative interaction besides the traditional one for trans-
action dispatching in opposite direction.

LL(i, j) = Recv(i, j) + Proc(i, j) , (1)

where
Recv(i, j) = bytes(i) � transfer(j) , (2)

and

Proc(i, j) = transaction(i, j) +
m�1�

z=0

transaction(z, j) ,

(3)

such that

transaction(i, j) =
instructions(i)

clock(j) � [1 � load(j)]
+

+
RAM(i) � serviceRAM(j)

freeRAM(j)
+

+
HD(i) � serviceHD(j)

freeHD(j)
+

+ sub(i, j) , (4)

and

sub(i, j) =
x�1�

y=0

[2 suba(y, j) + subc(y)] � subr(i, y) . (5)

Equation 1 is given by adding the estimated reception time
(Recv(i, j)) and the estimated processing time (Proc(i, j)) of
transaction i by machine j. In Equation 2, bytes(i) means the
size of the transaction i in bytes and transfer(j) refers to
the time necessary to transfer a single byte to the processing

Computation:
LL(i, 1) = 9,
LL(i, 2) = 8,
LL(i, 3) = 16,

...
LL(i, n) = 7

Switch
Load

Balancer

TiTi+1Ti+2

Input Transactions

(a) (b)

PMn PM2 PM1 PM3

PM2

PMn

PM1

version of the standard GetLB, now focusing on improving
scheduling routine (i.e., the calculus involved in the scheduling
procedure) but maintaining or yet improving the quality of
the transactions-PMs assignment. GetLB++ can be used for
processing different types of tasks, not being restricted to
EFT scenarios. We developed a prototype that covers both
GetLB and GetLB++ algorithms, besides an implementation
of the RR. The prototype was evaluated with different rates
for transactions arrival, distinct Amazon EC2 cluster instances
and various input workloads. The results were encouraging,
where GetLB++ obtained a better scheduling time and quality,
besides presenting a larger scalability.

The remainder of this article will first introduce the fun-
damental concepts in Section II, presenting the main ideas
of GetLB. Section III discusses about the related studies,
giving the open issues in the EFT area. Section IV describes
the GetLB++ model in details, while Section V covers its
prototype. Section VI brings the evaluation methodology to
analyze GetLB, GetLB++, and RR. Section VII, in turn,
discusses the results obtained from the experiments. Finally,
the conclusion is written in Section VIII, addressing scientific
contributions and future work.

II. BACKGROUND

This section presents the functioning of
GetLB [Righi et al., 2014], offering the basis to understand
the advances in the newer version. Electronic funds transfer
transactions have different processing needs: CPU time,
database access, network, and access to external systems.
Thinking about these peculiarities, GetLB was developed
to deliver a better load balance for transactions to PMs,
so enabling benefits both to the users (who perceive the
fast conclusion of their demands) and provider company
administrators (who obtained a better throughput of
transactions per second, or TPS). Figure 1 depicts the GetLB’s
architecture. GetLB was structured with the following design
decisions in mind: (i) the scheduling heuristic algorithm runs
in the dispatcher module and must work with up to date
information regarding the PMs; (ii) the heuristic scheduling
must combine relevant data in order to compose the notion of
load; (iii) PMs must be capable to notify the switch; (iv) the
framework must deal with heterogeneous resources at both
communication and computing levels.

Regarding the scheduling activities, the dispatcher has
an array that contains information about all PMs. Process-
ing machines periodically report updates to the dispatcher,
impacting on updating its array afterwards. The dispatcher
performs all scheduling calculus with in-memory data, where
the updating period informs how recent is PMs data regarding
CPU, memory, and network. Thus, we previously developed a
scheduling heuristic called LL (Load Level), which considers
transactions and PMs are heterogeneous and, PMs as a part of a
dynamic environment. LL can be viewed as a decision function
LL(i, j) where i means a specific type of transaction, while j
denotes a candidate target PM for receiving transaction i. For
each new transaction i, the switch will calculate n equations
LL(i, j), where n means the number of processing machines.
Therefore, the lowest result will inform the target that will
receive a transaction. LL(i, j) can be obtained by computing
Equation 1.

Processing
Machine 1POS

ATM

X.25➝IP 

Incomming 
Transactions

Switch

Cards

Cellphone 
Prepaid

Transport 
cards

Terminal 
Configuration

Information 
Security

Fraud 
Prevention

Internal Subsystems

DB DB DB DB
Auxiliary 
Systems

EFT

Processing
Machine 2

Processing
Machine n

Notifications and 
Scheduling 
Data

Local
Area
Network 1

Local
Area
Network 2

LL Scheduler

Fig. 1. GetLB architecture, emphasizing network decoupling and
“PMs�switch” cooperative interaction besides the traditional one for trans-
action dispatching in opposite direction.

LL(i, j) = Recv(i, j) + Proc(i, j) , (1)

where
Recv(i, j) = bytes(i) � transfer(j) , (2)

and

Proc(i, j) = transaction(i, j) +
m�1�

z=0

transaction(z, j) ,

(3)

such that

transaction(i, j) =
instructions(i)

clock(j) � [1 � load(j)]
+

+
RAM(i) � serviceRAM(j)

freeRAM(j)
+

+
HD(i) � serviceHD(j)

freeHD(j)
+

+ sub(i, j) , (4)

and

sub(i, j) =
x�1�

y=0

[2 suba(y, j) + subc(y)] � subr(i, y) . (5)

Equation 1 is given by adding the estimated reception time
(Recv(i, j)) and the estimated processing time (Proc(i, j)) of
transaction i by machine j. In Equation 2, bytes(i) means the
size of the transaction i in bytes and transfer(j) refers to
the time necessary to transfer a single byte to the processing

Switch
Load

Balancer

TiTi+1Ti+2

Input Transactions

PM2

PMn

Fig. 2: (a) GetLB scheduling approach, in which each trans-
action is computed against each PM (Processing Machine);
(b) GetLB++ list-scheduling approach.

The GetLB++’s scheduling algorithm goal is to explore
scalability on scheduling calculus. Instead of on-the-fly
computing the LL indexes and taking again the values
for each PM at each incoming task, GetLB++ maintains
a descending-ordered resource list which informs the PM
with the higher processing capacity at a given moment (See
Figure 2 (b)). This allows the system to determine the
machine that should process the new task with almost no
additional calculations, since the PM on the top of the list
will always receive it. The aforesaid list is created when
initializing the environment by using the InitializingPUList
method of the scheduler.

The workload of a task is calculated by Equation 6, where
i means the input task and j refers to the top machine in the
aforementioned list. The terms Recv(i,j) and transaction(i,j)
were further explained in Section II. The main difference
from Equations 1 and 6 is that the last does not take into
consideration the already mapped transactions to PM j but
only the impact of task i on it. This modeling happens
because GetLB++ does not try to test several PMs, but only
the impact of a single transaction in a particular PM j. After
calculating the workload of this task using LL’(i,j), this value
is added to the total load of machine j, that is repositioned
in the Processing Unit list afterwards.

LL0(i, j) = Recv(i, j) + transaction(i, j) (6)

To ensure that the total workload value on a machine reflects
its most current state, the workload added by a new task
using Equation 6 is stored in the task structure. When this

task is completed, the processing machine sends an ending
confirmation to the dispatcher. This last subtracts the load
value related to the task from the Preprocessing using the
RemoveTask() method and relocate again the PU in the list
of machines.

Finally, we highlight that the GetLB++ scheduler denoted
LL’ calculates the Load Level of a task against a single
PM, no matter the number of PMs and tasks residing in the
cluster, which makes the algorithm highly scalable. Unlike
this, the standard GetLB algorithm recalculates the Load
Level for all machines in the cluster, always considering the
target task and all previous mapped tasks on each machine.

5. GetLB++ Prototype
We developed a GetLB++ prototype using Java program-

ming language and RMI middleware for communication
substrate. SIGAR API1 was used for real-time hardware
monitoring on PMs. The prototype is divided into three
components: (i) Task Launcher; (ii) Scheduler Machine; (iii)
Processing Machine. Each component can be mapped to a
different machine. The Task Launcher is in charge of reading
an input file containing the tasks to be processed by the
system, sending them to the Scheduler Machine after that.
Each line of the input file corresponds to a task, which
presents a type and a time, in milliseconds, informing how
long the system should wait before process the next line.

The Scheduler Machine is an implementation of the
dispatcher, being responsible for scheduling the beforehand
received tasks. This component reads an XML file informing
the scheduler type (today we are supporting GetLB++,
GetLB and RR), the verification period, the critical change
percentage and the updating mode.

6. Evaluation Methodology
This section describes the environment used for the tests,

starting by presenting the considered tasks in Table 1. There
are three possible types of tasks, A, B and C, referring
to balance, prepaid telephony, and purchasing transactions,
respectively. Transactions data were collected from a real
EFT company provider called GetNet. We are evaluating the
tasks against three scheduling algorithms: GetLB++, GetLB,
and RR. In addition, four different input files were used
by the Task Launcher element, each one containing five
thousand tasks to be processed. These files were generated
with the intention of testing the framework and scheduling
behaviors under the combination of different situations: (i)
homogeneous and heterogeneous tasks; (ii) pure sequential
without delay between tasks (when sending a task to the
dispatcher) and waiting times between them. The hetero-
geneous tasks were generated randomly, while the waiting
time is a quadratic random function ranging from 0 to 100
milliseconds. This quadratic function is pertinent to emulate

1https://support.hyperic.com/display/SIGAR/

16 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



the real functioning of an EFT company, that receives more
transactions not in the start/end of the day, but close to noon
or 18:00 hs.

Table 1: Characteristics of the tasks used in the tests

Type Properties External Systems
Class Size

(n)
Card
Sys.

Cryptography Fraud
Prev.

Rech.
Sys.

A Balance 500 Yes Yes Yes No
B Prepaid

Telephony
1000 Yes Yes No Yes

C Purchasing 2000 Yes Yes Yes No

In addition we are also varying the verification period,
percentage of critical change and update mode. These param-
eters are only valid in the context of GetLB and GetLB++.
Here, a percentage of 100% indicates that the last measure
must be at least two times greater when compared to the
previous one to trigger a PM-switch communication. The
configurations used to test the hardware where: (1) Critical
with 15% of change and verification period of 500 ms; (2)
Periodical with 15% of change and period of 10 ms; (3)
Critical with 100% of change and period of 100 ms and (4)
Periodical with 1% of change and period of 1 ms

6.1 Infrastructure Testbed
All tests were executed in the infrastructure of the Amazon

Elastic Computer Cloud2, where clusters consist of machines
running Windows Server 2012 R2. We are working with
two clusters, composing homogeneous and heterogeneous
infrastructures. Both were formed by ten machines, where
the homogeneous setting includes only machines named
t2.micro (as labeled by Amazon) and a communication
latency of 40 milliseconds. t2.micro is composed of a single-
core CPU with 2.5 GHz, 1 GiB of memory and 20 GiB of
storage (SDD). The dispatcher is also a t2.micro machine,
being used to run the Task Launcher too. The heterogeneous
cluster, in turn, has different hardware settings varying from
t2.micro to c3.large machines.

7. Results
This section presents the obtained results, starting with

performance and scalability tests, observing the time on
scheduling procedures. After that, we developed two sections
to accommodate performance and quality of mapping results
over homogeneous and heterogeneous clusters.

7.1 Scheduling Performance and Preliminary
Scalability Tests

We have prepared basic scalability test involving the
creation of a homogeneous cluster. We are varying the
number of PMs from 2 to 12 to test the overhead on the
RR, GetLB, and GetLB++ scheduling algorithms. Figure 3

2http://aws.amazon.com/ec2

2 4 6 8 10 12

0

20000

40000

60000

80000

100000

120000 Round-Robin
GetLB++
GetLB

Ti
m

e 
(m

s)

Number of Processing Machines (PM)

Fig. 3: Scheduling time when varying the number of PMs

depicts then this context in different curves. As expected,
Round Robin does not suffer major impacts as the number of
machine increases. GetLB got the worst scheduling besides
presenting a low scalability when enlarging the resource
infrastructure. Clearly, GetLB++ outperforms GetLB in the
scheduling performance, but we must take care with the
current observations in the following way: the performance
ratio between GetLB and GetLB++ is slightly lower when
working with 12 machines. Technically, 6.02 and 5.59 are the
performance rations for these two algorithms when analyzing
2 and 12 PMs, respectively.

7.2 Evaluation in Homogeneous Topology
This section presents the results when using a homoge-

neous cluster, but varying the type of the input workload. The
graphics in this section show the load distribution among the
PMs in the cluster. The values for these graphs were obtained
by calculating the load level for each different type of tasks
multiplied by the number of tasks of a particular type that
were transferred to each machine.

7.2.1 Homogeneous Tasks
Figure 4 illustrates the load distribution of tasks among the

PMs belonging to the homogeneous cluster. For this graph,
it was used the test data of the first configuration of the
update parameters, since there are no noticeable differences
between this and the other settings. We observed a similar
behavior on the three algorithms. Particularly, RR presents
a completely uniform distribution of tasks to PMs because
of considering, in this context, the duet resource and task as
a homogeneous system.

7.2.2 Heterogeneous Tasks
Figure 5 shows a graph containing the load distribution

of tasks in the homogeneous cluster for the three analyzed
algorithms. Once again, the data used for the graph corre-
sponds to the first configuration of the update parameters. It
is noticeable that, while the Round Robin makes a homo-
geneous distribution, without considering that each type of
task has special processing needs; the other two algorithms
perform a fairer load distribution between the processing
machines. Figure 5 shows that both GetLB and GetLB++

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 17



Fig. 4: Observing time and load distribution at each PM when running a homogeneous workload on the homogeneous cluster

Table 2: Processing times of a heterogeneous cluster with
homogeneous workload. The column configuration follows
the description in the Section 6.

Average Processing Time(ms)
Config. RR GetLB GetLB++

01 1640,73 1224.63 989.49
02 1640,73 1211.47 1005.40
03 1640,73 1229.62 971.20
04 1640,73 1356.21 1203.81

present a good load balancing since the homogeneous nodes
(named in the graph as PMs) practically advance together in
a horizontal line.

7.3 Evaluation in Heterogeneous Topology
This section presents the results obtained in the tests

executed in the cluster composed by heterogeneous nodes.
Here the results are presented in tables in order to show
all four configurations values. Gains of 26% and 38% were
obtained by GetLB and GetLB++ against the RR execution
time over the configuration number two.

7.3.1 Homogeneous Tasks
Table 2 presents the results when handling homogeneous

tasks. The standard deviations of these results were 32 ms
for the average processing time. This expressive gain in
performance was originated by the quality of the mapping
provided by GetLB and GetLB++. We can observe that the
higher the nodes capacity, the higher the load assigned to
it. In addition, the use of heterogeneous resource turn more
evident the differences between GetLB and GetLB++. Since
GetLB++ does not try to evaluate a task against all PMs for
scheduling purposes, but considers a decreasing sorted-list
of previous mapped load to each PM, GetLB++ can provide
both a better scheduling time and quality.

7.3.2 Heterogeneous Tasks
The scenario that puts together heterogeneous tasks and

resources is responsible for the best results in favor of
GetLB++. The obtained values are presented in Table 3,
where the standard deviation of the average processing time
is 41 ms. Gains up to 42% were obtained when comparing

Table 3: Processing times of a heterogeneous cluster with
heterogeneous workload. The column configuration follows
the description in the Section 6.

Average Processing Time(ms)
Config. RR GetLB GetLB++

01 3125.15 1870.12 1715.90
02 3125.15 1999.90 1790.62
03 3125.15 1989.59 1752.46
04 3125.15 1968.58 1706.07

GetLB++ and RR, and 11% in favor of GetLB++ when
comparing its execution against the standard GetLB. The
effectiveness of the RR scheduling calculus is totally ignored
by the mapping provided by this algorithm. Analyzing the
mapping of the load among the PMs we observed that
the sequential method of RR leaves underloaded the more
powerful resources.

7.4 Analysis and Discussion
As expected, RR was unbeatable when the term homoge-

neous is applicable for both resources and tasks. However,
whenever a system component has a heterogeneous behav-
ior (resources or task), Round Robin presented the worst
processing time between the three analyzed algorithms. Ho-
mogeneous resources are responsible for a similar behavior
between GetLB and GetLB++, presenting slightly better
indexes for the last one. However, GetLB++ outperforms
GetLB with heterogeneous resources both when considering
uniform and non-uniform input workloads. The use of het-
erogeneous resources presented better results for GetLB++,
which offers not only a faster scheduling calculus when
compared to GetLB, but also a better mapping transactions-
PMs for the following reasons:

8. Conclusion
According to the World Payments Report 20143, 70% of

customers worldwide are expected to use mobile commerce
in 2015 and more than 90% will likely be using online
banking. So, this reality implies on performance challenges
to EFT company providers, where the speed of an EFT

3https://www.worldpaymentsreport.com/

18 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



Fig. 5: Observing time and load distribution at each PM when running a heterogeneous workload on the homogeneous
cluster

transaction can help on the client loyalty, while brings
benefits to administrators who can handle more transactions
per second, as well. In this context, this article addressed
EFT performance through the GetLB++ proposal — an
extension of GetLB especially focused on the scheduling
procedure. GetLB++’s scientific contribution resides in the
scheduling approach: contrary to GetLB, the number of PMs
and the number of tasks mapped to each PM beforehand do
not affect the scheduling performance. GetLB++ maintains
a load-ranked decreasing-sorted list of resources and only
takes the top position when arriving a new task. At each
either hardware update at PMs perspective, conclusion of a
task or dispatch of a task, this list is updated to reveal the
most suitable quality scheduling.

According to the conducted tests, GetLB++ is in average
6.5 times faster than GetLB when performing the scheduling
of a transaction, providing also in average a reduction in
the total processing time by 11.78%. Furthermore, GetLB++
offers a more flexible framework, which allows the use of
multiple scheduling algorithms, different PM-switch inter-
action approaches, and the processing of different kinds of
tasks, not particularly EFT transactions. In this way, the
contributions of GetLB++ are not limited to the context of
transactional systems, but can also be extended for load
balancing in e-commerce systems, cloud computing, and
parallel programming. Heterogeneity at both resource and
transaction levels were explored in the current paper to
evaluate performance and scheduling quality. So, future
work includes tests with resource dynamics and the use
of notifications. In addition, we also intend to create a
multi-cluster transactional environment considering different
network latencies and bandwidths.

References
[1] D. R. Millen, C. Pinhanez, J. Kaye, S. C. S. Bianchi, and J. Vines,

“Collaboration and social Computing in emerging financial services,”
in Proceedings of the 18th ACM Conf. Companion on Computer
Supported Cooperative Work &#38; Social Comp., ser. CSCW’15
Companion. New York, NY, USA: ACM, 2015, pp. 309–312.
[Online]. Available: http://doi.acm.org/10.1145/2685553.2685562

[2] B. Singh, R. Singh, and P. Singh Tanwar, “Electronic payment systems
for online smart cards transaction system,” Int. Journal of Technology
Research and Management, vol. 1, no. 1, March 2014.

[3] C. Araujo, E. Sousa, P. Maciel, F. Chicout, and E. Andrade, “Per-
formance modeling for evaluation and planning of electronic funds
transfer systems with bursty arrival traffic,” in Intensive Applications
and Services, 2009. INTENSIVE ’09. First Int. Conf. on. Valencia,
Spain: IEEE, April 2009, pp. 65–70.

[4] I. Sbeity and M. Dbouk, “Software performance engineering using
uml2san: Deadlock prediction of funds transfer,” in Computer En-
gineering Systems (ICCES), 2014 9th Int. Conf. on, Dec 2014, pp.
318–323.

[5] B. Jennings and R. Stadler, “Resource management in clouds:
Survey and research challenges,” Journal of Network and
Systems Management, pp. 1–53, 2014. [Online]. Available:
http://dx.doi.org/10.1007/s10922-014-9307-7

[6] J. Lewis, “The docline electronic funds transfer system (efts),” Jour-
nal of Interlibrary Loan, Document Delivery & Electronic Reserve,
vol. 17, no. 3, pp. 75–83, 2007.

[7] R. Righi, C. A. da Costa, L. Gonzaga, Jr., K. Farias, A. L.
Andrade, and L. Graebin, “Redesigning transaction load balancing
on electronic funds transfer scenarios,” in Proceedings of the 29th
Annual ACM Symposium on Applied Comp., ser. SAC ’14. New
York, NY, USA: ACM, 2014, pp. 775–777. [Online]. Available:
http://doi.acm.org/10.1145/2554850.2555121

[8] R. Sastre, S. Bascon, and F. Herrero, “New electronic funds transfer
services over ip,” in IEEE Electrotechnical Conf., 2006, pp. 733 –736.

[9] C. Vishik, A. Rajan, C. Ramming, D. Grawrock, and J. Walker,
“Defining trust evidence: research directions,” in Proceedings of
the Seventh Annual Workshop on Cyber Security and Information
Intelligence Research, ser. CSIIRW ’11. New York, NY, USA: ACM,
2011, pp. 66:1–66:1.

[10] E. Derman, Y. Gecici, and A. Salah, “Short term face recognition for
automatic teller machine (atm) users,” in Electronics, Computer and
Comp. (ICECCO), 2013 Int. Conf. on, Nov 2013, pp. 111–114.

[11] R. Priya, V. Tamilselvi, and G. Rameshkumar, “A novel algorithm for
secure internet banking with finger print recognition,” in Embedded
Systems (ICES), 2014 Int. Conf. on, July 2014, pp. 104–109.

[12] E. Sousa, P. Maciel, and C. Araujo, “Performability evaluation of eft
systems using expolinomial stochastic models,” in Systems, Man and
Cybernetics, 2009. SMC 2009. IEEE Int. Conf. on. IEEE, Oct 2009,
pp. 3328–3333.

[13] P. Desnoyers, T. Wood, P. Shenoy, R. Singh, S. Patil, and H. Vin,
“Modellus: Automated modeling of complex internet data center
applications,” ACM Trans. Web, vol. 6, no. 2, pp. 8:1–8:29, 2012.

[14] H. Mcheick, Z. Mohammed, and A. Lakiss, “Evaluation of load
balance algorithms,” in Software Engineering Research, Management
and Applications (SERA), 2011 9th Int. Conf. on. Baltimore, MD,
USA: IEEE, Aug 2011, pp. 104–109.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 19



Scheduling Methods for OpenVX Programs
on Heterogeneous Multi-core Systems

Tzu-Hsiang Lin, Cheng-Yen Lin, and Jenq-Kuen Lee
Department of Computer Science, National Tsing-Hua University, Taiwan

Email: thlin@pllab.cs.nthu.edu.tw, kennylin@pllab.cs.nthu.edu.tw, jklee@cs.nthu.edu.tw

Abstract— Heterogeneous multi-core architectures are
playing an important role in improving the overall per-
formance of computer systems. To program such systems,
OpenVX[1] promises to provide a standard programming
framework for computer vision processing. OpenVX is with
a graph-based execution model to describe the computation
behavior and data flow relationship. Each computation node
in the graph can be dispatched to a different target, such
as multicore CPUs with C, OpenMP runtime, OpenCL on
GPUs, or a dedicated hardware. Therefore, how to efficiently
schedule all the computation nodes to those different targets
opens up the optimization opportunities.

In this paper, we propose a method to schedule OpenVX
task graph by considering both memory locality and system
throughput. The proposed two phase scheduling method first
perform coarsen schemes to cluster nodes together, and
then in the second phase a scheduling method is employed
to schedule nodes into different targets. Preliminary ex-
periments show that our scheme works well in scheduling
OpenVX programs on heterogeneous environments.

Keywords: OpenVX, scheduling, coarsen, heterogeneous sys-
tems, computer vision

1. Introduction
In recent years, heterogeneous multi-core architectures

are playing an important role in improving the overall
performance of computer systems. Many chips are designed
with different types of cores(such as GPU, DSP, hardware
accelerator, etc.) integration. It challenges the programmer
on programming, tasks scheduling and resource manage-
ment. To ease the challenge of programming such systems,
OpenVX[1] promises to provide a standard programming
framework for computer vision processing. OpenVX is an
open, royalty-free standard proposed by Khronos Group.
It is an emerging programming framework for computer
vision processing. As the OpenVX specification only defines
the functional requirements, implementers can accelerate
their implementation by applying a variety of optimiza-
tion techniques for different optimization objectives. For
example, different scheduling policies can be devised to
meet the performance requirements or power constraints for
mobile devices. Also, one can try to reduce the data transfer
overhead by considering memory layout and utilizing the

local memory. OpenVX is also with a graph-based execution
model to describe the computation behavior and data flow
relationship. Each computation node in the graph can be
dispatched to a different target, such as multicore CPUs
with C, OpenMP[2] runtime, OpenCL[3] on GPUs, or a
dedicated hardware. Therefore, how to efficiently schedule
all the computation nodes to those different targets opens up
the optimization opportunities.

In this work, we address the scheduling issues of OpenVX
task graph by considering both memory locality and system
throughput. Our proposed two phase scheduling method first
perform coarsen schemes to cluster nodes together, and then
in the second phase, a scheduling method is employed to
schedule nodes into different targets. In our work, we ref-
erence the work in [4] for static task-scheduling algorithms
classification and the notion of graph attribute definitions
such as upward and downward ranking, comparison metrics
and the concept of HEFT, and CPOP algorithm. In addition,
the task clustering problem is an NP-hard problem and is
shown in [5]. Task time estimation model and load blancing
machanism are introduced in [6]. The program features with
profiling can be seen in [7]. Moreover, many different opti-
mization strategies can be found in the work [8]. Preliminary
experiments show that our scheme works well in scheduling
OpenVX programs on heterogeneous environments.

The remainder of this paper is organized as follows.
Section 2 overviews the OpenVX programming. Section 3
presents our scheduling methods. Next, Section 4 presents
the preliminary experimental results and Section 5 concludes
this paper.

2. Background with OpenVX Program-
ming

For the sake of completeness, we introduce OpenVX
programming in this section. OpenVX is an open standard
programming framework for accelerating portable computer
vision applications on different computation targets. The
optimized implementations of OpenVX framework are pro-
vided by hardware vendors, while software developers will
find a unified abstraction interface to utilize accelerated
implementation either in software or hardware. With the
APIs, one hopes both functional and performance portabili-
ties across diverse devices and platforms can be enable for

20 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



Source

Image

Color 

Convert

Channel

Extract

YUV

Image

Gray

Image

Integral

Column

Integral

Column

Tmp1

Tmp2

Integral

Row

IntRow

Square

Integral

Image

Square

Image

Viola

Jones
Rectangles

d[1]

λ[2]

d[2] λ[3]

d[3] λ[4]

d[0]

λ[1]
src

d[4] λ[5]

d[5] λ[6]

resultsn[0] n[1]

n[2]

n[3]

n[4]

n[5]

n[6]

λ[0] λ[7]

Fig. 1: An OpenVX graph of Haar face detection application

OpenVX applications.
In OpenVX framework, it uses the graph execution model

to describe the computation behavior and data flow re-
lationship by composing the computation nodes and data
objects. A computation node is an instance of a computer
vision kernel that combines with reference parameters, target
affinity for execution, and associated graph. In other words,
a computer vision function can be implemented as a kernel
with parameter signatures, parent graph reference, and target
options if the node has corresponding implementation on
that targets. A target means an executor that can execute
the OpenVX kernels, such as a multicore CPU with C or
OpenMP runtime, general purpose computing GPUs with
OpenCL or a dedicated hardware. It decouples the client
code from a specific vendor’s configurations or technolo-
gies and leaves the flexibility for vendor’s implementa-
tions. Currently, the official sample implementation supports
only C model, OpenMP, and OpenCL targets. All data
objects in OpenVX framework are opaqueness. To avoid
facing hardware-specific memory structures, the knowledge
of memory location and data layout is controlled by the
OpenVX framework implementation. The edges between
computation nodes and data objects indicate the data de-
pendency and data objects between nodes in a graph can
be defined as virtual data objects to reveal optimization
opportunities. In summary, the graph execution model is a
directed acyclic graph (DAG) that determines the computa-
tion process of an OpenVX application.

The programming flow for an OpenVX application is
summarized in Figure 2. There are six major phases in the
programming flow. First, we need to create a context for the
OpenVX framework to manage the reference counts on all
objects. This is a necessary parameter for any manipulation
with this framework. Using the context, we can construct the
graph in the second phase. In this phase, we define needed
data objects and connect them as a graph by distributing
the computation nodes and the input and output reference of

Step2

Graph Construction

Step1

Create Context

Step4

Graph Execution

Step3

Graph Verification

Step5

Graph Destruction

Step6

Release Context

Fig. 2: OpenVX code flow

data objects for nodes. Third, the graph needs to be verified
once as the structure of graph has not been verified or has
been modified. Fourth, it starts the computation process by
issuing the graph to OpenVX framework. We can execute
this graph multiple times if needed. Fifth, it destructs the
graph by calling the API to release nodes, data objects, and
graph resources. Finally, it releases the OpenVX context and
exits the program.

Figure 1 illustrates an OpenVX task graph of a Haar face
detection application. The corresponding code segment is
shown in Figure 3. We use oval shape with broad stroke
to represent computation nodes while the rectangle shapes
represents data objects. To focus on the processing flow of
the OpenVX graph, we use function call to represent the rou-
tines about image reading (ReadInputImage), result drawing
(DrawResult), and resource releasing(ReleaseResource).

Moreover, we also use the function call (PublishCus-
tomNodes) to omit the codes manipulate user-defined nodes
API and for the process about publishing our custom
nodes (vxIntegralColumn, vxIntegralRow, vxIntRowSquare
and vxViolaJones) to OpenVX framework. The input im-
age(src) will be first converted into gray image(d[1]) by

v x _ c o n t e x t c = v x C r e a t e C o n t e x t ( ) ;
vx_graph g = vxCrea teGraph ( c ) ;
v x _ u i n t 3 2 w=640 , h =480 , r e s S i z e =100;
Publ i shCus tomNodes (&c ) ;
vx_image s r c =

vxCrea te Image ( c , w, h , VX_DF_IMAGE_RGB ) ;
v x _ a r r a y r e s u l t s =

v x C r e a t e A r r a y ( c , VX_TYPE_COORDINATES2D, r e s S i z e ) ;
vx_image d = {

v x C r e a t e V i r t u a l I m a g e ( g , w, h , VX_DF_IMAGE_IYUV ) ;
v x C r e a t e V i r t u a l I m a g e ( g , w, h , VX_DF_IMAGE_U8 ) ;
v x C r e a t e V i r t u a l I m a g e ( g , w, h , VX_DF_IMAGE_U8 ) ;
v x C r e a t e V i r t u a l I m a g e ( g , w, h , VX_DF_IMAGE_U8 ) ;
v x C r e a t e V i r t u a l I m a g e ( g , w, h , VX_DF_IMAGE_U8 ) ;
v x C r e a t e V i r t u a l I m a g e ( g , w, h , VX_DF_IMAGE_U8 ) ;

} ;
vx_node n [ ] = {

vxColorConver tNode ( g , s r c , d [ 0 ] ) ;
vxChan ne lEx t r ac tNode ( g , d [ 0 ] ,VX_CHANNEL_Y, d [ 1 ] ) ;
v x I n t e g r a l C o l u m n ( g , d [ 1 ] , d [ 2 ] ) ;
v x I n t e g r a l C o l u m n ( g , d [ 2 ] , d [ 3 ] ) ;
v x I n t e g r a l R o w ( g , d [ 2 ] , d [ 4 ] ) ;
vxIntRowSquare ( g , d [ 3 ] , d [ 5 ] ) ;
v x V i o l a J o n e s ( g , d [ 4 ] , d [ 5 ] , r e s u l t s ) ;

} ;
i f ( vxVer i fyGraph ( g )==VX_SUCCESS) {

ReadInput Image (w, h ,& s r c ) ;
vxProces sGraph ( g ) ;
DrawResul t ( s r c , r e s u l t s ) ;

}
R e l e a s e R e s o u r c e (&c ,&g , d , n ,& s r c ,& r e s u l t s ) ;

Fig. 3: Code snippet of OpenVX Haar face detection

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 21



color-convert(n[0]) and channel-extract nodes(n[1]). Then
this gray image is fed into two independent nodes to do the
integral computation (node n[2] to node n[5]). After that,
two integral images (d[4], d[5]) are merged in nodes(n[6])
doing cascade features computation using Viola Jones algo-
rithm. Finally, the output rectangles can be obtained in an
array (results). We can observe from the above process that
some nodes on the paths (n[2],n[4] and path n[3],n[5]) can
be parallel processing. In addition, virtual data objects(d[0]
to [5]) will not be accessed by host, it can be optimized into
a local memory residing on compute devices. For example,
in OpenCL, we can make these memory objects as buffers
on GPU devices, and read/write operations only occur when
it is with host access or one needs to transfer data to different
targets.

3. Coarsen-Scheduling algorithm
The Coarsen-Scheduling algorithm aims to improve the

targets utilization and the memory locality in OpenVX
framework. Computation nodes in the graph are dispatched
to a specific target after processing by our two phase
algorithm. The input of this algorithm are an OpenVX
graph and a sequence of OpenVX target denoted as P =
{p0, p1, . . . , pn}. An OpenVX graph is not only a weighted
DAG as we mentioned above, but also a bipartite graph that
can be denoted as G = (N,D,E). By using this bipartite
representation, we divide the graph into two node sets and
one edge set. One of the node sets is the computation nodes
set n0 . . . ni, and the other is the data objects set d0 . . . dj .
Each edge in the edges set E represents the read or write
relationship between a computation node in the computation
nodes set N and a data object in the data objects set D. In
this algorithm, we process an OpenVX graph in two phases:
the node coarsen phase and the node scheduling phase. We
now detail the process of each of the two phases.

3.1 Node coarsen algorithm
The node coarsen algorithm groups nodes on the OpenVX

graph into clusters. With the input graph and target infor-
mation, the output of this algorithm is a cluster set, C.
Nodes in the same cluster will be forced to dispatch to
the same target in the scheduling phase, so we only select
the nodes which can reduce data transfer time or largely
shorten the computation time into the same cluster. The
remaining nodes not clustered will be scheduled for the
target in the scheduling phase. Because the structure of an
OpenVX graph is fixed after the verification stage, we just
need to coarse once for a new graph structure. This algorithm
will execute in verification phase(vxVerifyGraph(graph)).
Before introducing the details of this algorithm, we first
give the auxiliary definitions for the clustering steps. The
computation time µ(n,pi) is the time a node n ∈ N
spent on the OpenVX target pi doing computation. The data
transfer time λ(d,u, v) is the time to transfer data d ∈ D

between computation nodes u ∈ N and v ∈ N , it will be
non-zero if u and v are on different targets. To get the µ
and λ value, we need to profile each computation node on
each target that OpenVX framework provides at the first
time with a fixed data size. Moreover, we assume a linear
relationship for data size and computation time, data size
and data transfer time. So we will use a quadratic function
to evaluate µ and λ value. The transfer(d) is the maximum
time to transfer data d ∈ D from one writer node w ∈ N to
multiple readers R ⊂ N defined by

transfer(d) = max
r∈R

(λ(d,w, r)) (1)

According to the graph formalism rules defined in the
OpenVX specification, every data object d ∈ D has only
a single writer node n ∈ N . So the maximum time to
transfer data d must include the output edge from a writer
node w connecting to d and one of the edges as input edge
connect from d to a reader node. Finally, the improved factor
improve(n) is the maximum difference for computation
node n ∈ N running on target pi and pj defined as

improve(n) =

max
pi∈P

µ(n, pi)

min
pj∈P

µ(n, pj)
(2)

where pj is the target that require longest computation time
to execute computation node n.

Algorithm 1: NodeCoarsen(G,P )
Input: an OpenVX graph: G = (N,D,E). an OpenVX

target sequence: P
Output: nodes for targets C

1 Each computation node n ∈ N assign to a target p ∈ P
that minimize µ(n, p);

2 Compute the critical path CP ;
3 clusterCP (CP,C);
4 clusterG(G,C);

We now present our node coarsen algorithm in algo-
rithm 1. Initially, we assign each computation node n ∈ N
to a target p ∈ P that cost minimal computation time in line
1. Then, we compute the critical path in line 2 which will
be used in the following cluster procedures. A critical path
CP can be computed by traversing the task graph upward
while every computation node n ∈ N choose the lowest
computation time target. Starting from the exit node nexit,
the upward rank of a node n is recursively defined by

rank(n) = µ(n, p)+

max
d∈write(n)

(transfer(d) + rank(MTR)) (3)

where write(n) is the set of immediate successors of n, that
is the set of data objects that are written by computation node
n. In addition, MTR is the reader node that cause maximum

22 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



transfer(d) time. Due to the data input of source nodes and
data output of exit nodes should back to host target, the rank
value of exit node rank(nexit) is µ(nexit, p) plus the data
transfer time of each output data:

rank(nexit) = µ(nexit, p)+∑
out∈output(nexit)

λ(out, nexit, host_target) (4)

Since rank values are recursively calculated by traversing
upward, the largest rank value on the head node plus the
data transfer time of each input data is the makespan of the
graph. We then divide the following steps of this algorithm
into two procedures: clusterCP in line 3 to cluster nodes
on critical path first and clusterG in line 4 to cluster the
other nodes not on the critical path into clusters.

Procedure clusterCP(CP,C)
Input: Critical path: CP , nodes for targets C
Output: nodes for targets C

1 while there are unvisited data object on CP do
2 Choose an unvisited data object d ∈ CP with

maximum λ(d,w, r), where computation nodes
w ∈ CP and r ∈ CP ;

3 if w.target=r.target then
4 if isValidWindowSize(w.target, w) and

isValidWindowSize(w.target, r) then
5 C(w.target)← C(w.target) ∪ w ∪ r;
6 end
7 else
8 gain← λ(d,w, r);
9 changeW ← µ(w, r.target)− µ(w,w.target);

10 changeR← µ(r, w.target)− µ(r, r.target);
11 if w.visited=false then changeW ←∞ ;
12 if r.visited=false then changeR←∞ ;
13 cost← min(changeW, changeR);
14 if gain>cost then
15 if cost=changeW then

w.target← r.target ;
16 else r.target← w.target ;
17 if isValidWindowSize(w.target, w) and

isValidWindowSize(r.target, r) then
18 C(w.target)← C(w.target) ∪ w ∪ r;
19 Re-Compute the critical path CP ;
20 end
21 end
22 end
23 Mark d,w, r as visited;
24 end

In the clusterCP procedure, we aim to shorten the time
spent on the critical path, so the makespan of the graph can
be shorten. This is a loop process until all data objects on
the critical path are visited, excluding input data objects of

source nodes and output data objects of exit nodes. We first
choose a data object d on the critical path causing longest
transfer time at line 2. Then we know the writer node w and
reader node r connect to this data object d because there is
only a writer and a reader can match the connection with
data object d and on the critical path conditions. At line 3
to line 6, we try to cluster reader r and writer w into same
cluster because the µ value is minimal and transfer time on
same target is minimal too. At line 8 to line 20, reader r and
writer w are on different targets. We try to change reader
or writer target to be the same target if gain earn more than
cost. Critical path needs to be recomputed if target changes.
At line 21, we mark the d, r and w as visited so the problem
size will decrease. The isV alidWindowsSize procedure is
a mechanism to limit the size of a cluster. We will discuss
the impact of the evaluation method used in this procedure
in the experiment section.

Procedure clusterG(G,C)
Input: OpenVX graph: G, nodes for targets C
Output: nodes for targets C

1 while there are unvisited computation nodes in G do
2 Choose an unvisited computation node n with

maximum improve(n);
3 diff_count← 0;
4 foreach data object d adjacency to n do
5 foreach computation node adjn adjacency to d

with different read/write direction as n do
6 if adjn.visited=true and

adjn.target 6= n.target then
diff_count← diff_count+ 1 ;

7 end
8 end
9 if diff_count=0 then

10 if isValidWindowSize(n.target, n) then
C(n.target)← C(n.target) ∪ n ;

11 else
12 Choose a data object d connect with visited

computation node m which will cause
maximum λ(d, n,m);

13 gain← λ(d, n,m);
14 cost← µ(n,m.target)− µ(n, n.target);
15 if gain>cost and isValidWindowSize(m.target,

n) then
16 n.target← m.target

C(n.target)← C(n.target) ∪ n;
17 end
18 end
19 Mark n as visited;
20 end

After nodes on critical path are visited, the clusterG
procedure process the nodes not on the critical path. The aim

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 23



of this procedure is to reserve most-earn computation nodes
first. We loop until every nodes on the graph are visited. In
each round at line 2, we choose the node causing maximum
improve value. In other words, the nodes take precedence
in this clustering process that has largest time difference on
the fastest target and slowest target. At line 3 to line 8,
we check computation nodes connect with the same data
nodes that adjacency to n. If there are visited nodes, it is
because they are on critical path and are marked as visited
in the previous clusterCP procedure. The diff_count will
be non-zero if there exist visited nodes with different target.
Therefore, at line 9 to line 11 is a simple case. We just try
to make the node n into n.target cluster. While a complex
case at line 12 to line 18, we find the most expansive data
transfer cost edge and try to evaluate the data transfer gain
and computation cost of node n. If this trade-off is worth
enough, then try to make the node n select target m.target
and add into cluster. Finally, computation node n is mark as
visited so the loop will stop.

We use the OpenVX graph shown earlier in Figure 1 as an
example to explain how our node coarsen algorithm works.
To simplify the analysis process, we assume each computa-
tion node has only two targets target_a and target_b. In
addition, we assume target_a is the OpenVX host target.
The data transfer time between target_a and target_b
is symmetry(e.g. λ(d, target_a node, target_b node) =
λ(d, target_b node, target_a node)) and would be zero if
on the same target. The computation time µ for each node on
target_a and target_b is expressed as a tuple(e.g. (6, 2) for
node n means µ(n, target_a) = 6 and µ(n, target_b) = 2)
and λ is a non-zero value for each data object if data
transfer of different targets is needed. Let λ value for
λ[0] ∼ λ[7] = {3, 3, 1, 2, 2, 3, 2, 5} and µ value for n[0] ∼
n[6] = {(6, 2), (4, 1), (6, 5), (6, 5), (4, 6), (6, 8), (15, 10)}.
At first each computation node n[0] ∼ n[6]is initially
assigned to a target that minimizes µ(n, p), so we get the
target selection of each node as {B,B,B,B,A,A,B}. We
then compute the critical path, the exit node of this graph
is n[6]. The rank of n[6] is rank(n[6]) = µ(n[6], B) +
λ(results, n[6], A) = 10+5 = 15. Then we can recursively
traverse upward and get the rank of each node is {3+2+3+
32 = 40, 1+1+max(29, 30) = 32, 5+2+22 = 29, 5+2+
23 = 30, 4+3+15 = 22, 6+2+15 = 23, 10+5 = 15}. The
critical path is {n[0], n[1], n[3], n[5], n[6]} and the makespan
of this graph is 40.

In clusterCP procedure, we pass the critical path into it.
The first unvisited data object on the critical path causing
maximum λ value is d[0], because λ(d[0], n[0], n[1]) = 3
is maximum. Writer and reader node of d[0] are n[0] and
n[1] with same target choice B, so at line 4 to line 6 of
clusterCP procedure would try to cluster them into cluster.
We assume the window size rule here is adjacency nodes
in the same cluster can not more than two nodes. So this
windows is valid and we can get C(B) = {n[0], n[1]}.

Second loop time, we get d[3] and d[5] with same λ value.
We choice d[3] according to the rank non-increasing order.
Writer n[3] and reader n[5] prefer different target, so at line
8 to line 22 will try to change them to be on same target. The
gain is λ(d[3], n[3], n[5]) = 2 and cost is min(6−5, 8−6) =
1, gain is greater than cost and windows size for writer
and reader in cluster A is valid. We get a new cluster
C(A) = {n[3], n[5]}. For the last remaining nodes d[5] and
d[1], because visited nodes appear in writer or reader nodes
would bring∞ cost and for d[5] change reader cost is 5, gain
is smaller than cost. Two clusters are obtained on critical
path.

In clusterG procedure, we cluster remaining nodes n[2]
and n[4] on the graph. The improve(n[2]) is 1.2 and
improve(n[4]) is 1.5, so we choose n[4] as a unvisited
computation node first. At line 3 to line 8, the diff_count
will count 1 because n[6] is visited and it is on a dif-
ferent target B versus n[4] on target A. So at line 12
to line 18, we try to change the target running n[4]. The
gain is λ(d[4], n[4], n[6]) = λ[5] = 3 and the cost is
µ(n[4], B) − µ(n[4], A) = 6 − 4 = 2. Gain greater than
cost so we will change n[4] to select target B and get a
cluster C(B) = {n[4], n[6]}. For node n[2], the diff_count
count is zero because n[1] and n[4] are on the same
target(B) as n[2] and n[3] are read edge to d[1], too. The
algorithm finally gets C(A) = {n[3], n[5]} and C(B) =
{(n[0], n[1]), (n[4], n[6])} in node coarsen algorithm.

3.2 Node scheduling algorithm
The node scheduling algorithm dispatches nodes

according to non-increasing order of rank values.
This algorithm will execute in graph processing
phase(vxProcessGraph(graph)). After the node coarsen
algorithm clusters some of the computation nodes into
clusters, this runtime scheduling algorithm directly dispatch
nodes with clusters and makes targets decision for non-
clustered nodes by considering the runtime environment. We
now present our node scheduling algorithm in Algorithm 2.

Initially, we compute the rank value as algorithm 1 at line
1 to line 3. Then we sort the rank value in non-increasing
order and take the first one in each loop cycle. If the node
in assign to cluster, we dispatch the node directly at line
6. On the contrary, we try to evaluate the gain and cost on
prefer target and most free target. Node can be dispatched
to preference target if prefer target is free at line 12. At line
14 to line 23, we try to change node n to run on most free
target. A new rank get at line 16 always higher because of the
µ cost. But if this cost is worth versus wait time of prefer
target, we should change the target of n. Two decision at
line 17 to line 18 and at line 20 to line 22 are either change
the target of n and recompute rank or keep original target
selection.

We use the result of previous node coarsen algorithm
as sample input. Because the cluster relationship. Node

24 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



Algorithm 2: Scheduling(G,P,C)
Input: OpenVX graph: G, an OpenVX target

sequence: P, nodes for targets C
Output: computation node n being dispatched to

OpenVX target
1 Compute rank value for all nodes by traversing graph

upward, starting from sink nodes;
2 Sort the nodes in the graph by non-increasing order of
rank values;

3 while there are unscheduled nodes in the graph do
4 Select the first node n;
5 if node n ∈ C(p) then
6 Dispatch all nodes in cluster to target p;
7 else
8 preferP ← n.target;
9 rank_on_P ← n.rank;

10 mostFreeP ←the least loading target in P ;
11 if preferP=mostFreeP then
12 Dispatch the node n to target preferP ;
13 else
14 Assign n.target to mostFreeP ;
15 Re-Compute rank value for all nodes;
16 if rank_on_P −n.rank < wait_time then
17 Dispatch the node n to target

mostFreeP ;
18 Re-Sort the nodes in the graph by

non-increasing order of rank values;
19 else
20 Assign n.target back to preferP ;
21 Dispatch the node n to target preferP ;
22 Re-Compute rank value for all nodes;
23 end
24 end
25 end
26 end

n[0], n[1], n[4] and n[6] directly dispatch to target B. Node
n[3] and n[5] directly dispatch to target A. Node n[2] is
not in cluster, the original rank of n[2] is µ(n[2], B) +
µ(n[4], B)+µ(n[6], B)+λ(results, B,A) = 5+6+10+5 =
26. If most free target is not B, we try to change node
n[2] to use target A. A new rank is 29 because the cost of
λ(d[2], n[2], n[4]) and µ(n[2], A) − µ(n[2], B). So if wait
time for target B is more than 29− 26 = 3 units, this node
n would be dispatched to target A.

4. Experimental Results
We implement our coarsen-scheduling algorithm within

the OpenVX sample implementation released by Khronos
Group. Our experiment environment is on AMD A10-7850k
APU with 4 core CPUs and a Spectre GPU inside. This
experimental OpenVX framework is built on Ubuntu 14.04.2
LTS with OpenCL runtime support and compile by gcc 4.8.2
compiler with -O3 optimization option. In addition, a profile

procedure profiles each node at the first time execution of
this framework. The profile information includes the average
time a node spent on computation and the average data
transfer time for each parameter over 100 execution on
fixed size data objects(here is 640*480). Every time the
framework initialize its context, these profile informations
will be loaded. We exclude the nodes do not support both C
and OpenCL target in this experiment and list the profiling
results in Table 1.

kernel name target compute(ms) transfer(ms) total(ms)

table_lookup c-model 2.179 2.179
pc.opencl 0.085 0.034 0.119

and c-model 2.957 2.957
pc.opencl 0.223 0.049 0.272

or c-model 2.903 2.903
pc.opencl 0.230 0.049 0.280

xor c-model 2.980 2.980
pc.opencl 0.227 0.052 0.279

not c-model 1.952 1.952
pc.opencl 0.157 0.032 0.188

histogram c-model 1.871 1.871
pc.opencl 0.155 0.033 0.189

box3x3 c-model 11.846 11.846
pc.opencl 0.198 0.034 0.232

gaussian3x3 c-model 11.855 11.855
pc.opencl 0.195 0.031 0.226

Table 1: Profiling results of OpenVX kernels

As the profiling results shown in the above table, we
can observe that all the nodes on OpenCL target(pc.opencl)
consume lower processing time than the nodes compute on
CPU target(c-model) (even take account of both computation
time and data transfer time). Even the slowest kernel on
GPU(the ’or’ kernel with 0.280 ms) is 6.68 times faster than
the fastest kernel on CPU(the ’histogram’ kernel with 1.871
ms). However, there will be more and more accelerating
targets and complex applications adopting the OpenVX
framework. So the nodes with smaller time difference on
different targets will appear in the near future. In the case
that different accelerators with similar computation ability,
nodes may have less different processing time on different
targets for individual execution. For example, a complex
computation algorithm may consume similar processing time
on GPU and DSP. In this case, our proposed algorithm can
schedule these nodes for a good arrangement.

In this experimental framework, the node characteristics
make our coarsen-scheduling algorithm have similar results
as the target priority design in the original sample implemen-
tation. The target priority design dispatch nodes to OpenCL
target first, then OpenMP and C model. Nodes have OpenCL
target support will choose it and get good performance result
because most of the nodes have good result on OpenCL
target. But there still exist some cases that will benefit from

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 25



Source

Image

n[0]
virtual 

image

n[1]
virtual 
image

n[2]
virtual 

image

n[3]
virtual 
image

n[4]
virtual 
image

n[5]
virtual 

image

n[6]
virtual 
image

n[7]

virtual 
image

n[8]

Destination

Image

large data 

object

virtual 
image

n[1]

virtual 
image

n[2]

Destination

Image

n[0]

(a) Load unbalance

Source

Image

n[0]
virtual 

image

n[1]
virtual 
image

n[2]
virtual 

image

n[3]
virtual 
image

n[4]
virtual 
image

n[5]
virtual 

image

n[6]
virtual 
image

n[7]

virtual 
image

n[8]

Destination

Image

large data 

object

virtual 
image

n[1]

virtual 
image

n[2]

Destination

Image

n[0]

(b) Data size

Source

Image

n[0]
virtual 

image

n[1]
virtual 
image

n[2]
virtual 

image

n[3]
virtual 
image

n[4]
virtual 
image

n[5]
virtual 

image

n[6]
virtual 
image

n[7]

virtual 
image

n[8]

Destination

Image

large data 

object

virtual 
image

n[1]

virtual 
image

n[2]

Destination

Image

n[0]

virtual 
image

or

virtual 
image

and

Destination

Image

xor

Source

1

Source

2

and

virtual 
image

(c) Data transfer

Fig. 4: Case analysis for our algorithm

our algorithm. In Figure 4a, a graph with two paths that one
is with 7 GPU nodes(node n[0] to n[6]) on it and the other is
just a CPU node(node n[7]) on it. A sink node(n[8]) merges
the two paths to generate output image. In this case, the load
dispatch mechanism in node scheduling algorithm will make
the right decision since the wait time for node n[7] to run on
GPU is longer than directly compute this node on CPU. The
number 7 is because there is about 7 times ratio of execution
time between CPU nodes and GPU nodes. Another case in
Figure 4b is to exploit the weakness of GPU computing, the
data transfer overhead between host and OpenCL computing
device. When a node with large data object input will lead
a long time to transfer data from host memory to GPU. In
this situation, the consideration of communication time in
our algorithm will choose CPU for the computation.

Also, we evaluate our method with running programs
show in Figure 4c. The size of the clusters are control
by the isV alidWindowsSize() function in node coarsen
algorithm. If we let the windows size to be 4 or more,
all the nodes on the graph can be cluster into just one
cluster. Since all nodes are in the same cluster, we can
benefit from this by memory locality property. The virtual
images can directly reside on the OpenCL device because
our algorithm consider the graph characteristic. The time
results compare for OpenVX framework with our algorithm
and sample implementation without our algorithm are show
in the Table 2. The transfer column has three sub-column for
each parameter of a node row. It represent the parameters
connected to that node. So in row 0, the p[0] parameter of
node ’and’ is source 1 image, the p[1] parameter is source
2 image and the p[2] parameter is virtual image connected
with ’and’, ’xor’ and ’or’ node. We can observe that the
transfer time for p[2] in row 0, p[1] and p[2] in row 1, p[0]
and p[3] in row 2 and p[0] and p[1] in row 3 have been

node memory locality compute(ms) transfer(ms)
p[0] p[1] p[2]

and YES 1.169 0.538 0.060 0.007
NO 1.156 0.557 0.061 0.041

xor YES 0.445 0.038 0.008 0.007
NO 0.578 0.025 0.017 0.015

or YES 0.403 0.007 0.026 0.008
NO 0.428 0.015 0.020 0.012

and YES 0.173 0.008 0.008 0.017
NO 0.191 0.023 0.016 0.016

Table 2: Time results with and without memory locality

reduced.

5. Conclusions
In this paper, we proposed a two phase scheduling method

to address the scheduling issues of OpenVX task graph.
The proposed two phase scheduling method considered both
memory locality and system throughput to schedule OpenVX
Programs on heterogeneous multi-core systems. The first
phase of our algorithm performs coarsen schemes to cluster
nodes together and the second phase schedule nodes into
different targets. The result of our experiment shows that our
algorithm works well in scheduling OpenVX programs on
heterogeneous environments and analyzed some cases this
algorithm will be benefit.

Acknowledgment
This work is conducted under the "The core technologies

of smart handheld devices project" of the Institute for
Information Industry which is subsidized by the Ministry
of Economy Affairs of the Republic of China and is also
in part by the MOST (Ministry of Science and Technology)
project.

References
[1] The Khronos Group, “Openvx - portable, power-efficient vision pro-

cessing,” 2015. [Online]. Available: https://www.khronos.org/openvx/
[2] OpenMP, “The openmp api specification for parallel programming,”

2015. [Online]. Available: http://openmp.org/wp/
[3] The Khronos Group, “Opencl, the open standard for parallel

programming of heterogeneous systems,” 2015. [Online]. Available:
https://www.khronos.org/opencl/

[4] H. Topcuoglu, S. Hariri, and M.-Y. Wu, “Performance-effective and
low-complexity task scheduling for heterogeneous computing,” Parallel
and Distributed Systems, IEEE Transactions on, vol. 13, no. 3, pp. 260–
274, Mar 2002.

[5] J. chiou Liou and M. A. Palis, “An efficient task clustering heuristic
for scheduling dags on multiprocessors,” in Multiprocessors Workshop
on Resource Management, Symposium of Parallel and Distributed
Processing, 1996, pp. 152–156.

[6] C. Chen, Y. Chang, Y. Chen, C. Yang, and J. K. Lee, “Switching
supports for stateful object remoting on network processors,” The
Journal of Supercomputing, vol. 40, no. 3, pp. 281–298, 2007.
[Online]. Available: http://dx.doi.org/10.1007/s11227-006-0023-2

[7] Y. Wen, Z. Wang, and M. O' Boyle, “Smart multi-task scheduling for
opencl programs on cpu/gpu heterogeneous platforms,” in Proceedings
of the 21st Annual IEEE International Conference on High Perfor-
mance Computing (HiPC'14), 2014.

[8] E. Rainey, J. Villarreal, G. Dedeoglu, K. Pulli, T. Lepley, and F. Brill,
“Addressing system-level optimization with openvx graphs,” in Com-
puter Vision and Pattern Recognition Workshops (CVPRW), 2014 IEEE
Conference on, June 2014, pp. 658–663.

26 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



Intelligent Usage Management of Shared Resources in
Simultaneous Multi-Threading Processors

Yilin Zhang1 and Wei-Ming Lin2

1Advanced Micro Devices, Inc. Austin, TX 78735, USA
2Department of Electrical and Computer Engineering

The University of Texas at San Antonio, San Antonio, TX 78249, USA

Abstract— Simultaneous Multi-Threading (SMT) is a tech-
nique that allows multiple independent threads to concur-
rently execute multiple instructions in each cycle. How to
efficiently manage the distribution of the shared resources
to simultaneously executing threads is critical to the per-
formance of SMT processors. In this paper, we propose a
comprehensive allocation algorithm on the shared resources
in an SMT system. We show that, physical register file, Issue
Queue (IQ) and write buffer are the most important shared
resources in a typical SMT system. By limiting the portion
of these shared resources that a thread is allowed to occupy
at any given time, the overall system throughput is enhanced
by a very significant margin. An improvement in IPC of
up to 98.39% and 105.35% is observed when the proposed
technique is applied to a 4-threaded and an 8-threaded SMT
system, respectively. Furthermore, execution fairness among
the threads is not sacrificed as demonstrated by an improved
Harmonic IPC of up to 60.8% and 40.96% respectively.

Keywords: Simultaneous Multi-Threading; Superscalar; Shared
Resources Management

1. Introduction
Simultaneous Multi-Threading processors improve the ex-

ecution efficiency of traditional superscalar processors by
allowing the issue of instructions from different threads
in the same cycle ([1], [2]). In modern out-of-order SMT
processors, this execution model implies the sharing of
several resources among threads with a goal to achieve a
comparable performance to that from using multiple copies
of superscalar processors while saving a significant amount
of resources. In order to achieve this, the most significant
potential drawback in the SMT execution model is inter-
thread blocking due to resource sharing has to be carefully
addressed.

In an SMT system, the resources shared among threads
normally include physical register file, various machine
bandwidths (e.g., inter-stage bandwidth, read/write ports for
register file and memory, etc.), inter-stage buffers (e.g., Issue
Queue (IQ)), functional units, write buffer, etc. In some
processors, Instruction Fetch Queue (IFQ) and Re-Order
Buffer (ROB) are also shared among threads. SMT systems
in general aim at exploiting Thread-Level Parallelism (TLP)

to overcome the limitation of Instruction-Level Parallelism
(ILP) and thus improve the overall performance. However,
an inefficient resource utilization among threads can easily
lead to an undesirable performance outcome.

There have been many research results aiming at im-
proving the shared resources allocation in SMT systems.
Some of them manage the resource usage among threads
by modifying the fetch policy. For example, ICOUNT [3]
assigns a higher fetching priority to a thread with fewer in-
structions in pre-issue stages; STALL and FLUSH [4] adopts
a fetch policy to address issues from L2 cache misses; a
dynamical fetch policy DCRA presented in [5] is a technique
based on memory performance of each thread to exploit
parallelism beyond stalled memory operations; Some other
research efforts have also examined the allocation of the
shared buffers in the pipeline for a more efficient resource
utilization. For example, APRA dynamically assigns re-
sources (IFQ, IQ and ROB) to threads according to changes
of threads’ behavior [6]. Hill-Climbing [7] is a learning-
based algorithm that uses performance feedback to partition
the shared hardware resources in the pipeline. In [8], a
write buffer occupancy capping technique is proposed for an
efficient utilization on the shared write buffer. Some other
research results have enhanced the overall performance by
improving the utilization of IQ ([9], [10], [11], [12]).

Each of the aforementioned techniques in the literature
attempts to optimize a local stage of the pipeline. Such
an approach may relieve a certain degree of problem in
the target stage but its performance-improving potential
may be significantly curtailed without considering similar
constraints posed by other stages. In this paper, we instead
propose a “global” resource utilization optimizing technique
considering the three most important shared resources in
SMT, including physical register file, IQ and write buffer.
This technique aligns all these shared resources according to
their respective sizes and proportionally caps the portion of
each resource that a thread is allowed to occupy at any time.
Compared with existing techniques, the proposed method
involves adding very little extra control logic and hardware
overhead for scheduling. As our simulation results show, the
proposed technique improves IPC (Instruction Per Cycle)
by as high as 98.39% and 105.35% in a 4-threaded and
an 8-threaded SMT system, respectively. Furthermore, the

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 27



execution fairness (measured with the Harmonic IPC) is
enhanced by up to 60.8% and 40.96%, respectively. From
the resource utilization’s perspective, with the proposed
technique, the system is able to deliver a better throughput
even with a smaller amount of resources.

The rest of this paper continues with descriptions on the
mechanism of the shared resources (physical register file, IQ
and write buffer) in an SMT system. Section 3 is devoted to
the introduction of the simulation environment adopted by
this research including the performance metrics used. The
proposed technique is described in Section 4, followed by the
complete simulation results in Section 5. It is then wrapped
up by several concluding remarks in the last section.

2. Resource Sharing in SMT Systems
The three target shared resources that we propose to sys-

tematically allocate among threads are (1) physical register
file, (2) IQ and (3) write buffer. These shared resources
are considerd “blocking” resources since such a resource
unit/buffer once occupied cannot be preempted by another
instruction (from the same or a different thread) and the
duration of such an occupation is not “pre-determined”
due to unexpected delays. This section is devoted to the
introduction on how these shared “blocking” resources are
utilized in SMT systems and the impacts on the overall
performance.

2.1 Physical Register File
A physical register file contains more register slots than

those defined in the ISA, the so-called “architectural” reg-
isters, for register renaming. In order to ensure proper
execution, a physical register is assigned to an architectural
register of an instruction at rename stage and will not
be released (deallocated) until the very next “co-renamed”
instruction, the one that writes to the same architectural
register, is committed. A rename table is used to record
the mapping between an architectural register and its latest
assigned physical register. Performance of a system adopting
this approach is heavily influenced by the availability of
these physical registers in that the lack of physical registers
will delay the register renaming process and subsequently
prevent new instructions from entering the system.

Due to its deallocation mechanism, physical register file
is partially shared among threads in an SMT system in
that a portion of physical register file is always devoted to
the architectural registers. Figure 1 depicts the organization
of the physical register file, where Rt, Ra, and Rr are
used to denote the number of all physical registers, per-
thread architectural registers, and all physical registers for
renaming, respectively. Thus, {Rr = Rt − n × Ra} where
n is the number of threads in the system. Note that Rr will
be effective amount of rename registers for our proposed
allocation technique.

������������
������������
������������
������������

������
������
������
������

������
������
������
������

������
������
������

������
������
������

a r

t

�
�
�
�

�������
�������
�������
�������
�������
�������
�������
�������

thread 0

thread 1

thread 2

thread 3

reserved for architectural registers registers for
renaming

Physical Registers

R

�������������
�������������
�������������
�������������

R

�
�
�

�
�
�

R

�������
�������
�������

�������
�������
�������

Fig. 1: The Organization of Physical Register File in a 4-
threaded SMT System

Compared to a single-threaded system, multiple threads
sharing several key resource components would most likely
lead to a longer expected latency per instruction, which in
turn prolong occupancy duration of a rename register by an
instruction. Another reason for requiring a large register file
comes from the real-time changing behavior of competing
threads and the potentially long occupancy duration of a
register from the time it is allocated to when it is released.
Without employing a physical register file unreasonably
large, one has to manage the allocation effecetively in order
to achieve the desirable throughput improvement from an
SMT system.

2.2 Issue Queue
Issue Queue (IQ) is also known as a reservation sta-

tion (either centralized or functional unit-specific) where
instructions wait for being issued into the corresponding
functional units whenever the issue conditions are met,
i.e. operands are ready and the requested functional unit
becomes available. In an SMT system, IQ is normally shared
among threads and the instructions from these thread-specific
ROBs have to “compete” for IQ entries through a dispatching
scheduling algorithm. Having its output sent into a tightly
shared resource, as well as encountering the unexpected long
latencies caused by deep-level cache miss, miss-speculation,
etc., the instruction dispatch stage is considered one of the
most critical stages that dearly affect the overall system
performance. Figure 2 depicts a basic functional block
diagram of a 4-threaded SMT system.

2.3 Write Buffer
A write buffer (or referred to as “store buffer” in some

articles) is designed to hide long write latency when CPU
encounters cache misses ([13], [14]). Although there are
many different designs and interpretations, the write buffer is
usually referred to the buffer that resides between CPU and
cache with the purpose of absorbing long write latencies
from cache-miss writes without further slowing down the

28 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������

���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������

�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������

���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

��
��
��
��
��
��
��

��
��
��
��
��
��
��

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

IQ

FUsROBs

Rename
Dispatch

Issue

Writeback

Fig. 2: A Simple 4-threaded SMT Instruction Processing
Flow

CPU [14]. All writes initiated by the CPU will be first sent
to this buffer in order for the cache/memory controller to
handle writes of different latencies due to cache misses along
with bus contention at different levels. A typical two-level
cache organization with write-back policy at both levels is
shown in Figure 3 [8].

������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������

CPU

Write-back Buffer

L2 Cache

Main Memory

Write-back Buffer

Write Buffer
L1 Data Cache

Fig. 3: A Typical Two-Level Cache Organization with a
Write Buffer

The data to be written will stay in the write buffer until the
write operation finishes. This means some data may occupy
their write buffer slots potentially for a long period of time
if they encounter deep-level cache misses. Write-merging
(also known as write-coalescing) is a technique aggregating
writes to the same cache block (line) to reduce miss penalty
as well as the buffer size requirement, which is prevalent in
most modern processors [14]. In a write-coalescing buffer, a
new write will be merged into an existing write in the buffer
if they belong to the same block, i.e. they will share the same
entry in the buffer until they are eventually written. When
no merging exists, a write will not be allowed to commit if
the buffer is full.

Note that instruction-committing in a superscalar system
is always processed “in-order” to ensure precise exception
and correct speculative processing. The availability of the
write buffer significantly influences the throughput of the
system since if a write instruction cannot commit due to a

full write buffer, all subsequent instructions will be blocked
as well.

2.4 Summary
An SMT system suffers even more from the potentially

long occupancy time on its shared resources compared to
a single-threaded system in that long occupancy from one
slower thread could easily hog most of the shared resources
and subsequently stall all other threads’ processing. Due to
the cost-efficiency concern, we normally can not afford a
very large size of the shared resources, especially when
the shared resources are on-chip components. Employing
large shared resources may not only be cost inhibitive but
also lead to longer access latency and excessive area/power
consumption. In addition, such a choice is exactly contra-
dictory to the underlying design philosophy of an SMT in
sharing resources that are supposed to be less than that from
multiple copies of single-threaded systems. Thus, effectively
managing reasonable-sized shared resources in an SMT
system is a must to achieve a desirable balance between
throughput and cost.

3. Simulation Environment
The simulation environment adopted by our research,

including the simulator and the workloads used are described
in this section.

3.1 Simulator
We use the M-Sim [15], a multi-threaded micro-

architectural simulation environment model, to estimate per-
formance of the proposed scheme. The M-Sim includes
accurate models of the pipeline structures such as explicit
register renaming, concurrent execution of multiple threads,
separate ROB, Load-Store Queue (LSQ) which are necessary
for an SMT model. The physical register file, IQ, functional
units and write buffer are shared among threads, while
branch predictor is exclusive to each thread. The detailed
configuration is shown in Table 1.

3.2 Workloads
Simulation runs for multi-threaded workloads in this paper

all use the mixed SPEC CPU2006 benchmark suite [16] with
mixtures of various levels of ILP for diversified representa-
tion of workloads. ILP classification of each benchmark is
obtained by initializing it in accordance with the procedure
mentioned in Simpoints tool and simulated individually in
a simplescalar environment. Three types of ILPs, low ILP
(memory bound), medium ILP and high ILP (execution
bound), are so identified. As shown in Table 2 for 4-threaded
workloads and Table 3 for 8-thread workloads, a number of
multi-threaded workloads are used with threads of various
mixtures of ILP types.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 29



Parameter Configuration
Machine Width 8 wide fetch/dispatch/issue/commit
L/S Queue size 48-entry Load/Store queue
ROB & IQ size 128-entry ROB, 32-entry IQ

Function Units & 4 Int Add (1/1)
Latency (total/issue) 1 Int Mult (3/1) / Div (20/19)

2 Load/Store (1/1), 4 FP Add (2/1)
1 FP Mult (4/1) / Div (12/12) /

Sqrt (24/24)
Physical registers integer and floating point

as specified in the paper
L1 I-cache 64KB, 2-way set-associative

64-byte line
L1 D-cache 64KB, 4-way set-associative

64-byte line
write-back, 1 cycle access latency

L2 Cache unified 512KB, 16-way set-associative
64-byte line

write-back, 10 cycles access latency
BTB 512 entry, 4-way set-associative

Branch Predictor bimod: 2K entry
Pipeline Structure 5-stage front-end (fetch-dispatch)

scheduling (for register file access:
2 stages, execution, write back, commit)

Memory 32-bit wide, 300 cycles
access latency

Table 1: Configuration of the Simulated Processor

Mix Benchmarks Classification (ILP)
Low Med High

Mix 1 libquantum, dealII, gromacs, namd 0 0 4
Mix 2 soplex, leslie3d, povray, milc 0 4 0
Mix 3 hmmer, sjeng, gobmk, gcc 0 4 0
Mix 4 lbm, cactusADM, xalancbmk, bzip2 4 0 0
Mix 5 libquantum, dealII, gobmk, gcc 0 2 2
Mix 6 gromacs, namd, soplex, leslie3d 0 2 2
Mix 7 dealII, gromacs, lbm, cactusADM 2 0 2
Mix 8 libquantum, namd, xalancbmk, bzip2 2 0 2
Mix 9 povray, milc, cactusADM, xalancbmk 2 2 0
Mix 10 hmmer, sjeng, lbm, bzip2 2 2 0

Table 2: 4-threaded Workload for Simulation

3.3 Metrics
For a multi-threaded workload, total combined IPC is a

typical indicator used to measure the overall performance,
which is defined as the sum of each thread’s IPC:

Overall_IPC =
n∑
i

IPCi (1)

where n denotes the number of threads per mix in the
system. However, in order to preclude starvation effect
among threads, the so-called Harmonic IPC is also adopted,
which reflects the degree of execution fairness among the
threads, namely,

Harmonic_IPC = n/
n∑
i

1

IPCi
(2)

In this paper, these two indicators are used to compare
the proposed algorithm to the baseline (default) system.
The following metric indicates the improvement percentage

Mix Benchmarks Classification (ILP)
Low Med High

Mix 1 libquantum, dealII, gromacs, namd, 0 4 4
soplex, leslie3d, povray, milc

Mix 2 libquantum, dealII, gromacs, namd, 4 0 4
lbm, cactusADM, xalancbmk, bzip2

Mix 3 hmmer, sjeng, gobmk, gcc, 4 4 0
lbm, cactusADM, xalancbmk, bzip2

Mix 4 libquantum, dealII, gromacs, soplex, 2 3 3
leslie3d, povray, lbm, cactusADM

Mix 5 dealII, gromacs, namd, xalancbmk, 3 2 3
hmmer, cactusADM, milc, bzip2

Mix 6 gromacs, namd, sjeng, gobmk, 3 3 2
gcc, lbm, cactusADM, xalancbmk

Table 3: 8-threaded Workload for Simulation

averaged over the selected mixes, which is applied to both
Overall_IPC and Harmonic_IPC, namely,

Imp_% = (

m∑
j

IPCnew
j − IPCbaseline

j

IPCbaseline
j

× 100%)/m (3)

where m denotes the number of mixes of the workload in
our simulation.

4. Proposed Method
The proposed allocation technique is considered modifica-

tions on the schedule algorithms at the stages in the pipeline,
including register renaming, dispatch and commit. Instead of
trying to optimize allocation of one single resource or three
individual resources indendepently, we propose to align the
allocation of all three resources in a congruent manner so
as to maximize the effect of resource allocation benefits. A
very simple control mechanism is imposed on assigning the
shared resources entries; that is, each thread is not allowed
to occupy more than the preset fraction of resources at any
time. Once a thread reaches the maximal number of entries
of the shared resource, the resource allocation process for
that thread is stopped at the corresponding stage.

In order to have a systematic controlling parameter for
all of the three shared resources of different sizes, we
adopt the notion of “cap fraction (F )” to represent the ratio
between the maximal number of entries of the resource
that a thread is allowed to occupy and the size of the
corresponding resource. Thus, the absolute maximal number
of entries allowed to occupy, known as “cap value (C)”
can be represented by C = F × S, where S is the size
of the corresponding shared resource. All of the simulations
are performed with F ranging from 1/16 to 16/16 with
the unit of increment being 1/16. The remaining portion of
this section discusses the details of the modified scheduling
algorithms on each stages.

• Register Renaming
As aforementioned, physical register file is a partially

shared resource in an SMT system, a portion of which
is dedicated to the architectural registers for each thread.
The rest of the physical register file are used for register

30 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



renaming, and, if left uncontrolled, it can be overwhelmingly
occupied by a single thread. The proposed method aims at
making proper allocation of the renaming part of physical
register file among threads. Since the occupation rate on
floating point register file is very low during the execution
of all workloads; therefore our allocation algorithm manages
only the usage of integer physical register file by capping
the allowance for each thread.

One should also notice that since register renaming is an
in-order process, an integer instruction that is stopped at
this stage due to the proposed capping process will stop
any subsequent instructions (integer or floating point) from
proceeding and therefore it essentially manages the usage
of floating point physical register file as well in an indirect
way.

• Dispatch
In a typical SMT system, a shared IQ is required to

hold all the necessary information for instructions, thus
further increasing the number of entries in the shared IQ
usually is hampered by the cost factor, and therefore the
utilization of these limited resources becomes very critical to
the overall system performance. Once an IQ slot is allocated
to an instruction, it will be occupied until the instruction
eventually becomes ready for execution, even for hundreds
of clock cycles. The proposed technique limits the maximal
number of entries that a thread is allowed to occupy at any
time, so as to prevent all IQ slots being exhausted by the
long-latency instructions. The proposed technique is a simple
yet efficient solution in that it ensures the more active threads
have opportunity to use more resources than the equally
allocation amount while avoiding resource shortage for those
inactive threads.

• Commit
The default commit algorithm is modified by the proposed

technique on the commit conditions for a store instruction
when it is going to retire from the system. Normally, a
store instruction from a thread when reaching the head of
its ROB may come across a delay from waiting for one of
the following shared resources: (1) commit bandwidth, (2)
write port and (3) write buffer. In a typical SMT system
with a sufficient commit bandwidth and write ports, the
only potential performance-degrading hazard among these
is the long delay from waiting for an available write buffer
entry, due to its “blocking” nature as apposed to the former
two being “non-blocking”. To reduce the the effect of
this potential hazard, the proposed technique adds another
condition on the commit algorithm that unless the number
of write buffer entries a thread is currently occupying is
less than the preset cap value, the store instruction will
not be allowed to commit. This newly imposed condition
is added to avoid overwhelming write buffer occupation by
those long-latency instructions, thus to reduce the delay in
waiting for a write buffer entry.

Any control technique aimed at eliminating the intended
overwhelming occupancy problem, no matter how compli-
cated the technique is, will suffer a drawback in compro-
mising the flexibility that the original untampered shared
resource offers. The benefit brought along by the technique
will then in turn be offset to a degree by the compromise.
In our approach, the degree of compromise depends on the
cap fraction (F ) imposed. First of all, with n denoting the
number of threads in the system, obviously performance
delivered by a cap value (C) smaller than S/n (i.e. F < 1/n)
will very unlikely be optimal since there will be at least
S−n×C entries constantly left unused. With a specified cap
fraction, the overall performance may still vary depending on
behavior of the threads (e.g. instruction’s operation latency,
cache performance, number of writes to the same architec-
tural register, etc.) and even the sizes of the resources in
the system as well. The proposed technique would certainly
manifest its benefits more when the behaviors of each thread
greatly vary, or when the competition of resources is severe.

The main compromise between the benefits and draw-
backs from the techniques lies at the setting of the cap
fraction. If the cap fraction is set too high, the intended
function of this technique in suppressing single thread’s
dominating occupancy will not be effective. On the other
hand, if the cap fraction is set too low, overall performance
may suffer if concurrent usage on the shared resources in
multiple threads do not happen often enough. Our simulation
to be presented in the next section will be used to study the
effect of this compromise and to lend us a good indication
of where a good range of cap fraction should be.

5. Simulation Results
Based on the simulation environment and the workloads

described in Section 3, the proposed technique is tested
compared to the default system. For each simulation run the
cap fraction (F ) is set to d/16 where d is an integer varying
from 1 to 16. The resulted cap value, if not an integer,
is always rounded down to the next integer; that is, the
overall cap arrangement will be a combination of the three
respective cap values (CR, CQ, CW ), where CR = ⌊F×Rr⌋,
CQ = ⌊F ×Q⌋ and CW = ⌊F ×W ⌋.

Figure 4 demonstrates the proposed technique’s influence
on the performance with different sizes of shared resources
on 4-threaded workloads. Each point represents an average
performance over the 10 mixes adopted for 4-threaded
workloads. Average improvement from this technique can
reach up to 98.39%. As the sizes of the shared resources
increase, the optimal cap fraction (F ) shifts from 4/16 to
6/16. This further ascertains our conjecture that optimal
setting of F does not fall below 1/n. It also indicates that a
different emphasis should be made on fairness and flexibility
when the amount of shared resources varies. Namely, with a
smaller amount of resources, it is more critical to stress on
fairness to ensure each thread an fair amount of opportunity

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 31



 

-40

-20

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

%
 o

f 
IP

C
 I

m
p

ro
v

e
d

d

% of IPC Improvement in Different System Settings (4-threaded)

(160, 16, 12)

(192, 32, 16)

(224, 48, 32)

(256, 64, 48)

Fig. 4: Average Percentage of IPC Improvement with Dif-
ferent Resource Settings for 4-threaded Workloads

to proceed; on the other hand, when more resources are
available, the capping should be relaxed more so as to allow
more active threads to proceed faster. Another interesting
observation from the results is that there is still a significant
performance gain even the cap fraction is set to below 1/n,
in which situation a portion of the resources constantly
stay unused. For example, in a 4-threaded system, when
d = 3 there are 25% (1 − 4 × 3

16 ) of resources constantly
unused, and yet a 71.74% of improvement is still delivered.
Such a phenomenon clearly implies that, when the resource
usage is left uncapped as in the default setting, bursting
demands from one or very few threads may easily clog up the
resources if they run into any kind of long pipeline latency,
which explains why even leaving such a huge amount of
resources unused and allowing each thread only a bare
minimum to utilize still leads to a significant improvement.

This result in general solidifies all our aforementioned
claims. First of all, the effectiveness of our technique is
more prominent for smaller sizes of resources due to higher
competition. Secondly, optimal setting of the cap fraction
is not less than the point of 1/n. Thirdly, there exists
an obvious compromise between the ensuing benefit and
drawback from setting a different cap fraction value. When
the cap fraction is set higher than the optimal point, the
higher the cap is the less benefit this technique can produce.
On the other hand, once the cap fraction is set lower than the
optimal value, the tighter (lower) the cap is, the less flexible
the resource allocation becomes and the benefit of sharing
becomes less.

Another analysis on this result comparing the proposed
capping technique to the default one can be made from
the resource-saving point of view. Figure 5 indicates that
the proposed capping method when applied to a 4-threaded
system equipped with a relatively small amount of resources
is capable of delivering a similar, or even better, throughput
to that produced by the default system with even larger-
sized buffers. For example, the system with (R,Q,W ) =
(160, 16, 12) with the proposed capping technique can ac-
tually deliver a performance of 19.5% better than that of a
default system with (R,Q,W ) = (192, 32, 16), reflecting a
significant amount of resource saving.

 

1

1.5

2

2.5

3

3.5

4

(160, 16, 12) (192, 32, 16) (224, 48, 32) (256, 64, 48)

IP
C

System Setting

IPC in 4-threaded System (Default vs. Capping)

default

capping

Fig. 5: Comparison of IPC for Resource Saving

An improvement on the overall IPC from a technique will
be less valuable if it comes with a sacrifice on the execution
fairness among threads. Such a sacrifice is a commonly
observed scenario in typical shared-resource systems when
the overall performance is improved by devoting more
resources to the faster task(s) while significantly trading off
the processing fairness among the tasks. Figure 6 shows
the percentage of improvement in Harmonic IPC (defined
as in Eq. 2) for 4-threaded workloads. From this result,

 

-80

-60

-40

-20

0

20

40

60

80

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

%
 o

f 
H

-I
P

C
 I

m
p

ro
v

e
d

d

% of Harmonic IPC Improved in Different System Settings (4-threaded)

(160, 16, 12)

(192, 32, 16)

(224, 48, 32)

(256, 64, 48)

Fig. 6: Harmonic IPC Comparison with Varying System
Settings for 4-threaded Workloads

one can see that the improvement on the overall IPC from
the proposed method not only leads to no unfair execution
among threads but incurs a positive effect with up to 60.8%
improvement.

Figure 7 shows that the proposed technique delivers a
considerable improvement in a system with more threads
as well. As the results show, in an 8-threaded system, a
105.35% and a 40.96% improvement is achieved for IPC
and Harmonic IPC, respectively.

We further look into the “aggregate effect” from this
proposed global capping when compared to the individual ef-
fect from each independent buffer-capping technique applied
to its respective pipeline stage. Due to the “uniform” cap
fraction applied to all three buffers in our combined capping
technique, one would expect the performance improvement
from this may not be as effective knowing that the optimal
cap fraction for each individual buffer is different when
applied separately. Figure 8 displays such a comparison
result. When capping is applied only to the register file, a
peak improvement of 42.9% happens at d = 5, while the
optimal d value for individual IQ and write buffer application

32 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



 

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

%
 o

f 
IP

C
 I

m
p

ro
v

e
d

d

% of IPC Improved in an 8-threaded System (320, 32, 16)

 

-60

-40

-20

0

20

40

60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

%
 o

f 
H

-I
P

C
 I

m
p

ro
v

e
d

d

% of Harmonic IPC Improved in an 8-threaded System (320, 32, 16)

Fig. 7: Performance Improvement in 8-threaded SMT system

 

-80

-60

-40

-20

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16%
 o

f 
IP

C
 I

m
p

ro
v

e
d

d

IPC Improvement Comparison

comb-capping

rf-capping

IQ-capping

wb-capping

Fig. 8: Performance Comparison: Combined Capping vs.
Individual Capping

happens at d = 4 and d = 8 for an improvement of
13.6% and 3.3%, respectively. When applying the uniform
capping to all three buffer, the optimal improvement of
97.2% happens at d = 5, an improvement much superior to
the add-up of the improvement margins from three individual
applications. This clearly indicates that a comprehensive
arrangement on the three stages of shared resources is more
likely to exploit the full performance potential in an SMT
system, rather than applying optimizing techniques to an
individual resource.

6. Conclusions
This paper presents an allocation algorithm for optimizing

the distribution of shared resources in an SMT system. We
clearly show that by setting a cap fraction on the most
critical shared resources in an SMT system (that is, physical
register file, IQ and write buffer) limiting the maximal
resources that a thread is allowed to occupy, the overall
performance is enhanced significantly. The simulation results
demonstrate that a comprehensive management on multiple
shared resources can exploit extra performance potential
compared to independently applying to individual ones.

The proposed technique is simple yet efficient in allocating
shared resources and it requires very marginal hardware
overhead and imposes little extra constraints on the clock
rate.

References
[1] H. Hirate, K. Kimura, S. Nagamine, Y. Mochizuki, A. Nishimura,

Y. Nakase and T. Nishizawa, “An Elementary Processor Architecture
with Simultaneous Instruction Issuing from Multiple Threads”, In the
Proceedings of the 19th Annual International Symposium on Computer
Architecture, pp. 136-145, May 1992.

[2] D. Tullsen, S. J. Eggers and H. M. Levy, “Simultaneous Multithreading:
Maximizing On-Chip Parallelism”, In the Proceedings of the 22nd
Annual International Symposium on Computer Architecture, pp. 392-
403, May 1995.

[3] D. M. Tullsen, S. J. Eggers, J. S. Emer, H. M .Levy, J. L. Lo and
R. L. Stamm, “Exploiting Choice: Instruction Fetch and Issue on
an Implementable Simultaneous MultiThreading Processor”, In the
Proceedings of the 23rd Annual International Symposium on Computer
Architecture, pp. 191-202, May 1996.

[4] D. M. Tullsen and J. A. Brown, “Handling Long-latency Loads in a
Simultaneous Multithreading Processor”, In the Proceedings of the 34th
International Symposium on Microarchitecture, pp. 318-327, December
2001.

[5] F. J. Cazorla, A. Ramirez, M. Valero and E. Fernandez, “Dynamically
Controlled Resource Allocation in SMT Processors”, In the Proceed-
ings of the 37th International Symposium on Microarchitecture, pp.
171-182, December 2004.

[6] H. Wang, I. Koren and C. M. Krishna, “An Adaptive Resource
Partitioning Algorithm for SMT Processors”, In the Proceedings of the
17th international conference on Parallel architectures and compilation
techniques, pp. 230-239, October 2008.

[7] S. Choi and D. Yeung, “Learning-Based SMT Processor Resource
Distribution via Hill-Climbing”, In the Proceedings of the 33rd Annual
International Symposium on Computer Architecture, pp. 239-251, June
2006.

[8] Y. Zhang and W.-M. Lin, “Write Buffer Sharing Control in SMT
Processors”, 2013 International Conference on Parallel and Distributed
Processing Techniques and Applications (PDPTA’13), July 2013.

[9] T. Nagaraju, C. Douglas, W.-M. Lin and E. John, “Effective Dispatch-
ing for Simultaneous Multi-Threading (SMT) Processors by Capping
Per-Thread Resource Utilization”, The Computing Science and Tech-
nology International Journal, Vol. 1, No. 2, pp. 5-14, December 2011.

[10] Y. Zhang, C. Douglas and W.-M. Lin, “On Maximizing Resource
Utilization for Simultaneous Multi-Threading (SMT) Processors by
Instruction Recalling”, 2012 International Conference on Parallel and
Distributed Processing Techniques and Applications (PDPTA’12), July
2012.

[11] Y. Zhang and W.-M. Lin, “Capping Speculative Traces to Improve
Performance in Simultaneous Multi-Threading CPUs”, The 18th Inter-
national Conference on Parallel and Distributed Processing Techniques
and Applications (IPDPS’13) Workshop on Multithreaded Architectures
and Applications, May 2013.

[12] Y. Zhang, M. Hays, W.-M. Lin and E. John, “Autonomous Control of
Issue Queue Utilization for Simultaneous Multi-Threading Processors”,
The 22nd High Performance Computing Symposium (HPC 2014), April
2014.

[13] P. P. Chu and R. Gottipati, “Write Buffer Design for On-Chip Cache”,
In the Proceedings of IEEE International Conference on Computer
Design: VLSI in Computers and Processors, pp. 311-316, October
1994.

[14] J. L. Hennessy and D. A. Patterson, “Computer Architecture:A
Quantitative Approach”, Morgan Kaufmann Publishers, 2007.

[15] J. Sharkey, “M-Sim: A Flexible, Multi-threaded Simulation Environ-
ment”, Tech. Report CS-TR-05-DP1, Department of Computer Science,
SUNY Binghamton, 2005.

[16] Standard Performance Evaluation Corporation (SPEC) website,
http://www.spec.org/.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 33



Container-based Cluster Management Platform
for Distributed Computing

Ju-Won Park and Jaegyoon Hahm
Div. of Supercomputing, KISTI,

245 Daehak-ro, Yuseong-gu, Daejeon 305-806, Korea

Abstract— Several fields of science have traditionally de-
manded large-scale workflows support, which requires thou-
sands of CPU cores or more. Since users’ demands for
software packages and configuration is the difference, an
approach to making available in real time a service en-
vironment desired by users without significant challenges
for administrators is necessary. In this paper, we present a
container based cluster management platform and introduce
an implementation case to minimize performance decline
and to provide a dynamic distributed computing environment
desired by users. This paper makes the following contri-
butions. First, a container based virtualization technology
is assimilated with resource and job management system
to expand its applicability to support large-scale scientific
workflows. Second, an implementation case in which docker
and HTCondor are interlocked with each other is introduced.
Lastly, docker and native performance comparison using two
widely known benchmark tools and Monte-Carlo simulation
results implemented using various programming languages
are presented.

Keywords: Container-based virtualization, Docker, HTCondor,
Distributed computing

1. Introduction
Traditionally, high energy physics, oceanography, mete-

orology, astronomy, and space science require large-scale
workflows demanding CPUs consisting of more than several
thousand cores [1], [2]. These scientific workflows come in
a variety of forms, ranging from high throughput computing
(HTC) combining millions of loosely-coupled tasks to high
performance computing (HPC) referring to a tightly-coupled
from such as message passing interface (MPI) tasks being
processed simultaneously by several thousand cores. In
order to handle such large-scale scientific workflows, large-
capacity cluster systems such as supercomputers are widely
used. Such a large-capacity cluster system usually supports
RJM (Resource and job Management) functions, enabling
multitude of uses to share resources fairly. However, as the
resources are shared by multiple users and organizations,
there still exist many challenges, the biggest of which is
the difference in users’ demands for software packages and
configurations. Because of these challenges, in practice an
operating system (OS) and software stacks are often once

installed and kept unchanged for a very long time [3]. These
rigid utilization practices pose many constraints to new
technology development initiatives, dampening expectation
of performance increase following software version upgrade.

To overcome such issues of rigid utilization practices and
deliver more dynamic service environments to users, many
studies - aimed at configuring and providing users with
clusters using virtualization resources built on Xen or KVM-
based virtualization technologies - have been conducted [4],
[5], [6]. In fact, many scientists are working on researches,
using the VM available from Amazon EC2. Although sig-
nificant performance improvement has been achieved thanks
to the improvement of hypervisor technology and develop-
ment of various techniques such as passthrough approach,
overhead incurred by hypervisor inevitably compromises
performance [7]. Because of such constraints, container-
based virtualization technologies such as Linux-VServer,
OpenVZ, and LXC are frequently utilized recently [7], [8],
[9].

This paper presents a container-based cluster management
platform and introduces an implementation case to minimize
performance decline and to provide a dynamic distributed
computing environment desired by users. As container-
based virtualization technology compromises performance
less than hypervisor-based one, the former can reach near-
native performance. This paper is designed to contribute in
three regards. First, container-based virtualization technol-
ogy is assimilated with RJM to expand its applicability to
cluster environment in a bid to support large-scale scientific
workflows with near-native performance. As conventional
container resource utilization approaches were focused on
providing user-customized service environment in a single
computer, they were not suitable for supporting scientific
workflows utilizing resources on a large scale. Second,
an implementation case in which docker [10], which is a
container-based virtualization technology using LXC, and
HTCondor [11] frequently used in HTC applications are
interlocked with each other is introduced to present a
method of implementing with ease the approach presented
herein. Third, docker and native performance comparison
using widely known benchmarking tools is presented and
Monte-Carlo simulation results implemented using various
programming languages in an environment where HTCondor
and docker are interlocked with each other are presented.

34 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



This paper is organized as follows. The motivation and
related work are described in Section 2. Then, detailed
descriptions of the proposed approach and implementation
are proposed in Section 3. Next, Section 4 shows the
performance of cluster system implemented on HTCondor
and docker. Finally, we conclude this paper in Section 5.

2. Background
2.1 Motivation

Most large-capacity cluster systems are shared by a mul-
titude of individual and organizational users. As these users
require way different service environments (OS, software
package, configuration, etc.) in this setting, it is significantly
challenging to meet their varying requirements in entirety.
In particular, in-house codes developed by scientists on their
own require specific OS and library versions.

To overcome these constraints, PLSI1 provides users with
compilers supported by different clusters, mathematical li-
braries, and installation paths on its website. Then, users
need to find and access clusters where they can compile
their own codes for execution [12].

This environment poses challenges to both administrators
and users:

• Challenges for administrators: First of all, a lot of
packages required by users should be installed on all
computing nodes upon request. Given that most clusters
have 500 or more computing nodes and numerous
libraries and versions, this administration approach in-
volves very daunting challenge. In addition, if a user-
requested kernel version is different from OS already
installed, it is difficult to fulfill such request. Because
of this issue, service approach is commonly available
without significant modification except for some bug fix
and security enhancement in most clusters. This rigid
service approach cannot support new technology de-
velopment and compromises performance improvement
following compiler version upgrade.

• Challenges for users: A user always has to confirm
in advance if essential packages are available and,
if not available, sends a request to administrator. In
particular, if each cluster has different administrator in
an environment where multiple clusters are interlocked
with each other like in PLSI, a user has to request
multiple administrators to install necessary software
packages. Therefore, it is difficult for users to be
provided with execution environments in real time as
they desire. Because of these issues, scientists run
their application programs using public cloud services
despite performance degradation.

1To ensure that supercomputing resources are provided to researchers as
efficiently as possible, a project named Partnership & Leadership for the
Nationwide Supercomputing Infrastructure (PLSI) is carried out in Korea,
aiming to establish a unified system of resources utilization by integrating
supercomputing resources across the nation.

An approach to making available in real time a service
environment desired by users without significant challenges
for administrators is necessary.

2.2 Related Work
There has been good research activities in addressing

the performance of virtualized resource in cloud computing
environments [13], [14], [15], [16]. Walker [13] conducted
the study on HPC in cloud by benchmarking Amazon EC2.
Then, He et al. [14] extend to evaluating the technical
capability of current public cloud computing platforms, and
their suitability for running scientific applications, especially
High Performance Computing (HPC) applications. Jackson
et al. [15] represents the evaluation comparing conventional
HPC platforms to Amazon EC2, using real applications
representative of the workload at a typical supercomputing
center. To evaluate the performance of real scientific work-
loads, it uses the NERSC benchmarking framework [17].
Iosup et al. [16] analyze the performance of cloud computing
services for scientific computing workloads. Specifically,
it focused on the real scientific computing workloads of
Many-Task Computing (MTC) users. Despite these many
activities, the use of virtualization has been traditionally
laid off in most HPC facilities due to inherent performance
overhead [3].

Recently, container-based virtualization systems (e.g.,
Linux VServer, OpenVZ, and Linux Containers) are in-
vestigated since it offer a lightweight virtualization layer,
which promises a near-native performance [7], [8], [9].
In [7], the performance of three well known open source
hypervisors, KVM, OpenVZ, and Xen was evaluated in
the context of HPC. Their results showed that OpenVZ
had the best performance for I/O throughput among them.
Soltesz et al. [8] described a virtualization approach which
is a synthesis of resource containers and security containers
applied to general-purpose, time-shared operating systems.
They conducted a network bandwidth benchmark using iperf
and macro benchmarks for CPU and disk I/O intensive.
From their results, I/O related benchmarks perform worse
on Xen when compared to Linux VServer. Xavier et al. [9]
conducted a number of experiments of container-based vir-
tualized for HPC. Their results showed that the container-
based virtualization system had better performance than
traditional hypervisor-based virtualization. Furthermore, they
described that LXC demonstrated to be the most suitable of
the container-based system for HPC since the performance
degradation can be offset by the easy of management.

Docker is a lightweight and powerful open source con-
tainer virtualization technology combined with a work flow
for building and containerizing applications [10]. It provides
a toolset and unified API for managing kernel-level tech-
nologies, such as containers, cgroups, namespace and union
file systems. Therefore, docker lets us quickly assemble
applications from components and eliminates the friction

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 35



Fig. 1: Container-based cluster management platform architecture.

between development and production environments.

3. Container-based cluster management
platform
3.1 Approach

Fig. 1 shows the proposed approach. In general, cluster
systems supporting scientific workflows consist of a front-
end node allocating computing resources in response to user
requests and multiple execute nodes running actual tasks. In
our approach, a user can submit tasks to the front-end node
and multiple execute nodes regularly measure node resource
status and report measured data to the front-end node.
If resources are available, the front-end node dispatches
tasks from a queue in accordance with FIFO, round-robin,
priority-based preemptive or other scheduling algorithm and
match-makes them with available resources for resource
allocation. Upon completion of resource allocation, files
needed for actual task execution are transferred to execute
nodes. Execute nodes receive tasks to be executed from
the front-end node and run application programs based on
container-based virtualization layer. Execution results are
transferred back to the front-node that submitted the tasks
initially and forwarded to a user.

3.2 Implementation
In our implementation case, HTCondor was used as a

job and resource scheduler and docker for container-based
virtualization.

3.2.1 HTCondor daemons

In HTConodr pool, each machine can serve a variety of
roles. Then, different daemons are running on the machine
based on the role [11]. For the sake of simplicity, we focus
on the six essential daemons in this paper.

• SCHEDD: This daemon takes responsibility for re-
source requests to the HTCondor pool. For this, it
advertises the status of job queue and claims available
resources to serve those requests.

• STARTD: This daemon takes responsibility for resource
management of execute node. It advertises certain at-
tributes about the execute node and is responsible for
enforcing the policy that the resource owner configures.

• COLLECTOR: It collects all the information about
the status of an HTCondor pool. All other demons
periodically send ClassAd2 updates to COLLECTOR.

2ClassAd is a scheme-free resource allocation language to represent
arbitrary services and constraints on their allocation [18]

36 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



Fig. 2: Container-based cluster management platform implementation.

These ClassAds contain the state of the daemons, the
resources, and the queue in the HTCondor pool.

• NEGOTIATOR: It is responsible for the match making
in the HTCondor pool. Specifically, it contacts each
SCHEDD that has waiting resource request and allocate
available resources to those requests.

• SHADOW: It acts as the resource manager for the
request. For example, Jobs that are linked for standard
universe perform remote system call using this daemon.
It runs on the machine where a job was submitted.

• STARTER: It sets up the execution environment and
monitors the running job.

3.2.2 Implementation using HTCondor and Docker

Table 1: Hardware and software specifications.
Hardware spec.

CPU Intel(R) Xeon(R) CPU
E5640@2.67GHz * 2ea

Memory 32GB
HDD Western Digital WD 500GB 7200 RPM

Software spec.
OS CentOS release 6.5 Final

Job & resource
scheduler HTCondor 8.0.7

Container-based
virtualization Docker 1.1.2

Image management Docker-registry server (dev) 0.8.0

Table 1 shows the hardware and software specifications
of the system used herein. First of all, as shown in Fig. 2, a
scientist creates a dockerized application image in advance
for running his scientific workflow, pushes it to the docker
registry, and creates a shell script file (launch_docker.sh)
to launch dockerized application in execute nodes. Caution
needs to be taken when a file to be used as argument must
be forwarded into the container. To this end, the working
directory of the host where execution file reside has to be
mounted into the container, using –v option of the docker as
follow:

Table 2: launch_docker.sh.

#!/bin/bash
sudo docker run -v $(pwd):/data docker_image
/data/execute_file

To submit the shell script prepared in this manner to
the HTCondor scheduler, a HTCondor job description file
(Table. 3 is an example of job script) is created and submitted
to the HTCondor SCHEDD. In the case of HTCondor,
STARTD daemon reports the resource status of executable
machines and SCHEDD daemon reports the job queue status
to COLLECTOR daemon in ClassAd format at regular
interval [11]. NEGOTIATOR match-makes job ClassAd and
resource ClassAd based on data collected by COLLECTOR

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 37



to determine execute machine where tasks are to be executed.
Once execute host to run tasks is determined via the match-
making by NEGOTIATOR, SCHEDD and STARTD launch
SHADOW and STARTER respectively, then a session is
established between the two launched daemons. Through this
session, launch_docker.sh file and argument files required for
execution are transferred to the execute host and STARTER
executes script file. At this time, STARTER daemon checks
if dockerized application image is available in the local
host where STARTER daemon is run and, if not available,
pulls the dockerized image by the user in advance from the
docker registry to execute dockerized application. Upon task
completion, result files are transferred to submit node via
SHADOW daemon and the user can confirm the results at
submit node to which task was submitted.

Table 3: An example of HTCondor job script.

universe = vanilla
executable = launch_docker.sh
output = output file
transfer_input_files = execute_file
queue 100

Utilizing HTCondor and docker in this fashion brings
about two advantages as follows. First, it is possible to
implement with ease a container-based cluster management
platform proposed. Secondly, such approach is applicable to
a multi-cluster system like PLSI since HTCondor ensures
that multiple cluster resources are utilized for a single
scientific workflow.

4. Evaluation
This section analyzes the performance of docker, a

container-based virtualization approach, and evaluates the
performance of cluster system implemented on HTCondor
and docker.

4.1 Micro-Benchmarks
Two widely known benchmark tools, unixbench and sys-

bench, were used to measure the performance of docker with
the following measurement results:

• unixbench: The unixbench is a benchmark tool designed
to measure overall system performance and provide
a variety of benchmark results such as Whetstone,
Drystone, file copy, pipe throughput, etc. Fig. 3 shows
the index values of each item measured by unixbench
tool. The index values of docker for all items except for
the pipe-based context switching are found to be 90% or
more when compared to the native performance. Pipe-
based context switching test measures system perfor-
mance by increasing integer through a pipe. The pipe-
based context switching test is more like a real-world

Fig. 3: unixbench benchmark results.

Fig. 4: The system benchmark index score.

application [19]. In this value, docker shows 75% of the
native performance. Fig. 4 shows the system benchmark
index scores measured at 5699.5 and 5492.7 for native
performance and docker shows its performance at 96%
when compared to the native performance.

• sysbench: The sysbench is a tool using a variety of
scenarios to measure CPU, memory, and File I/O per-
formance results. Table 4 shows the benchmark results.
First item shows CPU time taken to process 10,000
events of arithmetic operations using decimal fractions.
It is confirmed that docker and native performances
are identical. Second item shows sequential or random
memory I/O performance in an assigned memory buffer
and docker is measured to be better than native per-
formance by 3% ∼ 5%3. Last item shows sequential
or random file I/O performance results using 128 GB
test files created in local disk. Form Table. 4, it can be

3This benchmark results conflict with our intuitive understanding. The
analysis of this problem should be explored in the near future.

38 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



confirmed that docker is found to show performance
almost identical to native performance.

When the unixbench and sysbench measurements are
compared in this section, docker is found to show no
significant performance decline in comparison with native
performance. Many studies conducted recently also show
that container-based virtualization technology has a near-
native performance [9].

Table 4: Sysbench benchmark results.

Test item Option Docker Native
CPU Total time 24.5 sec 24.5 sec

Memory

Sequence write 2.21 GB/sec 2.14 GB/sec
Random write 3.41 GB/sec 3.25 GB/sec
Sequence read 3.82 GB/sec 3.63 GB/sec
Random read 3.67 GB/sec 3.50 GB/sec

File I/O
Sequence write 104.8 MB/sec 105.2 MB/sec
Sequence read 91.7 MB/sec 91.7 MB/sec

Combined R/W 1.5 MB/sec 1.5 MB/sec

4.2 Macro-Benchmarks

Fig. 5: The container-based cluster management system
using docker and HTCondor.

This section presents the performance measurements of a
cluster system implemented on docker and HTCondor for
supporting scientific workflows. First of all, as illustrated
in Fig. 5, HTCondor pool consisting of 1 central manager
node and 3 execute nodes in accordance with the hard ware
specification in Table 1 was configured. In addition, a docker
registry was installed in the central manager node and docker
clients in the execute nodes.

To measure the performance of the system implemented
in this manner, a program to calculate Pi with a Monte-Carlo
technique was implemented using C, JAVA, Python, and R.
It picks points at random inside the square 10,000,000 times
and checks to see if the point is inside the circle. Then,
a simulation workflow to run the implemented program

100 times to reduce errors was created and submitted to
HTCondor scheduler to compare execution time.

Fig. 6: Monte-Carlo simulation results (100 times).

Fig. 6 shows the Monte-Carlo simulation results with
and without docker. As the figure confirms, difference in
docker and native execution times is shown, depending
on implemented languages. Namely, when executed with
docker, execution time significantly increased 3.2 and 3.6
folds when compared to native performance in the cases
of C and JAVA respectively while it increased only by
18% and 9% respectively in the cases of Python and R.
The biggest factor underlying such difference is that in a
simulation using docker, image loading time is different
among implementation languages.

Fig. 7: Monte-Carlo simulation results (1 time).

Fig. 7 shows one simulation execution time of docker and
native status. To exclude the possibility of image transfer

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 39



time, the dockerized image had been pulled in advance
on each execute host. As the figure shows, execution time
increased by 8% and 2% respectively in the cases of python
and R while it rose very significantly 3.9 and 6.9 folds
respectively in the cases of C and JAVA.

5. Conclusion
In this paper, we presented a container-based cluster man-

agement platform to provide a service environment desired
by users. To provide a dynamic service environment, the
virtualization technology is widely used. However, due to
the inevitable overhead of hypervisor-based virtualization,
container-based virtualization technologies such as Linux
VServer, OpenVZ, and LXC are utilized recently. In this pa-
per, we introduced an implementation case in which docker
and HTCondor are interlocked. In addition, we conducted
micro-benchmarks using unixbench and sysbench for CPU,
memory, and file I/O performance and macro-benchmarks
using Monte-Carlo simulation workflow for the performance
of cluster system. Our results showed that docker had a
near-native performance and image loading time is different
among implementation languages.

References
[1] E. Deelman, D. Gannon, M. Shields, and I. Taylor, “Workflows and e-

science: An overview of workflow system features and capabilities,”
Future Generation Computer Systems, vol. 25, no. 5, pp. 528–540,
2009.

[2] Y. Gil, E. Deelman, M. Ellisman, T. Fahringer, G. Fox, D. Gannon,
C. Goble, M. Livny, L. Moreau, and J. Myers, “Examining the
challenges of scientific workflows,” IEEE Computer, vol. 40, no. 12,
pp. 24–32, Dec 2007.

[3] K. Chen, J. Xin, and W. Zheng, “Virtualcluster: Customizing the
cluster environment through virtual machines,” in Proc. of IEEE/IFIP
International Conference on Embedded and Ubiquitous Computing,
2008, vol. 2, Dec 2008, pp. 411–416.

[4] P. Ruth, P. McGachey, and D. Xu, “Viocluster: Virtualization for
dynamic computational domains,” in Proc. of IEEE International
Cluster Computing, 2005, Sept 2005, pp. 1–10.

[5] M. A. Murphy, B. Kagey, M. Fenn, and S. Goasguen, “Dynamic
provisioning of virtual organization clusters,” in Proc. of the 9th
IEEE/ACM International Symposium on Cluster Computing and the
Grid, Washington, DC, USA, 2009, pp. 364–371.

[6] P. Marshall, K. Keahey, and T. Freeman, “Elastic site: Using clouds
to elastically extend site resources,” in Proc. of the 10th IEEE/ACM
International Conference on Cluster, Cloud and Grid Computing,
Washington, DC, USA, 2010, pp. 43–52.

[7] N. Regola and J.-C. Ducom, “Recommendations for virtualization
technologies in high performance computing,” in Proc. of IEEE
Second International Conference on Cloud Computing Technology
and Science (CloudCom), Nov 2010, pp. 409–416.

[8] S. Soltesz, H. Pötzl, M. E. Fiuczynski, A. Bavier, and L. Peterson,
“Container-based operating system virtualization: A scalable, high-
performance alternative to hypervisors,” SIGOPS Oper. Syst. Rev.,
vol. 41, no. 3, pp. 275–287, Mar. 2007.

[9] M. Xavier, M. Neves, F. Rossi, T. Ferreto, T. Lange, and C. De Rose,
“Performance evaluation of container-based virtualization for high
performance computing environments,” in Proc. of 21st Euromicro
International Conference on Parallel, Distributed and Network-Based
Processing (PDP), 2013, Feb 2013, pp. 233–240.

[10] “Docker.” [Online]. Available: www.docker.com

[11] D. Thain, T. Tannenbaum, and M. Livny, “Distributed computing
in practice: the condor experience.” Concurrency - Practice and
Experience, vol. 17, no. 2-4, pp. 323–356, 2005.

[12] “PLSI: Partnership & leadership for the nationwide supercomputing
infrastructure.” [Online]. Available: http://www.plsi.or.kr

[13] E. Walker, “Benchmarking amazon EC2 for high-performance scien-
tific computing,” LOGIN, vol. 33, pp. 18–23, 2008.

[14] Q. He, S. Zhou, B. Kobler, D. Duffy, and T. McGlynn, “Case study
for running HPC applications in public clouds,” in Proc. of the
19th ACM International Symposium on High Performance Distributed
Computing. New York, NY, USA: ACM, 2010, pp. 395–401.

[15] K. Jackson, L. Ramakrishnan, K. Muriki, S. Canon, S. Cholia, J. Shalf,
H. J. Wasserman, and N. Wright, “Performance analysis of high
performance computing applications on the amazon web services
cloud,” in Proc. of IEEE Second International Conference on Cloud
Computing Technology and Science (CloudCom), Nov 2010, pp. 159–
168.

[16] A. Iosup, S. Ostermann, M. N. Yigitbasi, R. Prodan, T. Fahringer, and
D. H. Epema, “Performance analysis of cloud computing services for
many-tasks scientific computing,” IEEE Transactions on Parallel and
Distributed Systems, vol. 22, no. 6, pp. 931–945, 2011.

[17] “NERSC: National energy research scientific computing center.”
[Online]. Available: https://www.nersc.gov

[18] R. Raman, M. Livny, and M. Solomon, “Matchmaking: distributed
resource management for high throughput computing,” in Proc. of The
Seventh International Symposium on High Performance Distributed
Computing, 1998., Jul 1998, pp. 140–146.

[19] “Unixbench.” [Online]. Available: https://code.google.com/p/byte-
unixbench/

40 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



Shareable, Persistent, In-Memory, Read-Only Data 
 

Ralph Butler and Chrisila Pettey 
Department of Computer Science 

Box 48 
Middle Tennessee State University 

Murfreesboro, Tennessee, USA 

ralph.butler and chrisila.pettey(@mtsu.edu)  
 
 
 

Abstract – Ensuring that multiple processes can access 
required data in a timely fashion is a critical aspect of 
successful parallel processing.  The larger the data set, the 
more profoundly the overall run time is affected by reading 
the data and integrating it into the appropriate data 
structures and/or communicating the data between 
processes.  Either each process must read and configure the 
data, or they must waste time in requesting and receiving 
data from another process.  What is described in this paper 
is a Python-specific technique for having persistent, in-
memory data that multiple processes can access without the 
overhead of loading or communicating the data.  

Keywords:. Client-Server, Shareable Data, In-Memory 
Data, Python. 

 

1   Introduction 
 There are times that researchers are faced with a 
workflow that involves running multiple tests on the same 
data.  This could be anything from performing comparative 
sequence analysis among many genes to data mining 
customer data.   The general method for handling this type 
of experimentation is to generate a process for each test.  
The problem with this paradigm is that if the data set is 
large, then each process must spend the time necessary to 
read in the data and configure the internal data structures.  If 
it takes an hour to read in the data and integrate it into the 
appropriate data structures needed for the algorithm, then 
each process will spend an hour reading prior to doing 
computation.   

One possibility for alleviating this overhead would 
be to use SQLite [5].  SQLite allows processes to read and 
write directly to the database on disk without the overhead 
of communicating with a server. This model removes the 
intermediate server communication costs, nonetheless, disk 
I/O can frequently be too costly.   

Another possibility would be to use Python remote 
objects [3].  Pyro allows the programmer to easily program 

processes that communicate over a network.  Using Pyro we 
could have a server hold the configured data, and the client 
processes could access the data by using a remote object 
call.  However, the Pyro model has the drawback of 
client/server communication costs.   

Another possible solution we examined would be 
to use the shared data space capabilities of the Python multi-
processing module [2].  As with Pyro, communication costs, 
specifically those with the proxy-wrapped objects, can 
frequently be prohibitive.   

What we propose is a method for reading in the 
data and integrating it into the data structures once, then 
allowing multiple processes to access all of the data without 
the overhead of message passing or shared memory 
programming.  Specifically, we propose a persistent, in-
memory, read-only database.  In this paper there will be 
several references to the “database”.  By this we merely 
mean our in-memory collection of data.  It is critical to note 
that we do not use a DBMS.   
 
2   How it’s Done:  Unix/Python Sleight of 
Hand 
 At the highest conceptual level, what we want is a 
database server that would remain running in memory so 
that clients could access the data without having to read in 
their own copy or request a copy from the server.  At first 
glance, this might seem impossible.  However, if you 
combine the power of the Unix fork command with the 
Python exec statement along with the Python feature of 
allowing you to dynamically add attributes to a module, the 
seemingly impossible becomes feasible.   This procedure is 
explained more fully in section 2A while section 2B 
contains sample code segments. 
 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 41



 
 

Figure 1.  Setting up the persistent, in-memory, read-only 
database. 

 
 
2A   The Magic Explained 
 Figure 1 illustrates the four steps required to 
achieve a persistent, in-memory, read-only database.  In part 
A of the figure, the database server is started.  The server 
software must read in the data and integrate it into the 
appropriate data structures for use by the clients.  In our 
experience, reading even large volumes of data is quite fast.  
However, the integration can be extremely time consuming.  
Once the in-memory database is created, the server starts up 
and listens for client messages on a socket.  In part B of 
Figure 1, a client has connected to the socket and sent a 
message requesting that the server fork a new process in 

which the existing interpreter executes the client program.   
In part C, the server has forked a child process, set it's 
output to go to the socket the client is connected to, and 
used the Python exec command to execute a copy of the 
client code.  Part D shows the forked child process 
executing and sending all output to the client. 
 As mentioned before, the key to making this 
process work is the combination of the Unix fork command, 
the Python exec command, and the Python feature of 
dynamically adding attributes to a module.  When we use 
the first of these, the Unix fork command, we exploit our 
knowledge about what a fork actually does as opposed to 
what people often think it does.  It is convenient to think of 
fork as copying the entire address space, and in earlier 
versions of Unix, that is exactly what happened.  However, 
in more modern versions of Unix, e.g., Linux, a copy-on-
write (COW) semantics is used – i.e., if a forked process 
does a write then that portion of the address space will be 
copied and changed, but if the forked process only reads, 
then there is no copy.  This implies that if a large database is 
loaded into memory before the fork, none of it has to be 
copied unless one of the processes makes a change.  In that 
case, only the portion that changes would be copied.  Since 
the clients in our experiments usually perform computations 
using the data without making changes to it, the overhead of 
copying is eliminated.  To illustrate this, consider Figure 2, 
which shows the relevant portions of a typical memory 
layout of each of the server, child, and client processes.  
What is of interest to us here is that the database would be in 
the Dynamic Data Items section of the memory layout.  
When the server forks a child process, the things that are 
available to the child include whatever is in the Dynamic 
Data Items section.  This means the child gets access to the 
database without having to copy it or read it in.   

 
 

42 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



 
Figure 2.  Shown left to right, portions of the memory layout of the server, child, and client processes. 

 
 

 The second key component of the process is the 
Python exec statement.  Often when fork is used, it is 
accompanied by a Unix exec.  However, the Unix exec 
command overlays the contents of the current process’ 
address space with the new program and heap and stack 
space.  If we were to use the Unix exec, then the database 
would be lost.  Given that the fork command keeps the 
current instance of the interpreter running, we do not need to 
do a Unix exec.  Instead we take advantage of the Python 
exec.   The Python exec statement dynamically executes 
new Python code using the current instance of the Python 
interpreter.  In this case, the exec statement is given the 
client code to execute.     
 At this point we have a child process that has 
access to the original copy of the database, can execute the 
client code, and can send the resulting printed output back to 
the client.  However, the fact that the child has access to the 
database does not mean that it knows where the database is 
located in the address space.  So this raises the question, 
“how can the child process obtain a reference/pointer that it 
can use to access the database?”  The answer lies in taking 
advantage of the unusual Python functionality that treats an 
imported module as an object and allows attributes to be 
added to objects dynamically.  Therefore, if the server 
dynamically adds a reference to the data as a named 
attribute of a module before the fork is performed, then the 

child process will have the reference to the named attribute 
of the module because it has access to everything the parent 
has.   
 A final observation that should be made is in 
regards to the client code that is executed by the child 
process.  The client is only supposed to request that the 
server fork a child that will execute a copy of the client 
code, and then listen for output from the child.   The child, 
on the other hand is supposed to execute some computation 
that the client wants executed.  This is accomplished by 
having the server set an environment variable prior to 
calling the Python exec.  Thus, the client code acts as a 
client if the environment variable is not set.  Otherwise it 
performs the computation.  If the copy of the client code in 
the child happens to execute an import for a module that the 
server has already imported, then the child process will 
simply gain a reference to the module that has already been 
loaded by the server. 
 
2B   Sample Code 
 Figures 3 – 6 contain example code that 
demonstrates the techniques described above.  They contain 
extensive comments to make it clear how each step is 
accomplished. 

 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 43



 
 
# Import module that contains any code that needs to be shared between server and client 
import sharedModule 
 
# Read the data and integrate it into the data structures 
bigdata = {} 
bigdataFile = open('bigdata') 
for line in bigdataFile: 
    (key,val) = line.strip().split('\t') 
    bigdata[key] = val 
bigdataFile.close() 
 
# Attach to the shared module a reference to the in-memory data structures 
sharedModule.bigdata = bigdata 
 
# Fork a new process to handle client connections 
server = socketserver.ForkingTCPServer(("",1234),MSGHandler) 
server.serve_forever() 
 

Figure 3.  Excerpt from the server code. 
 
 
 
 
class MSGHandler(socketserver.BaseRequestHandler): 
    def handle(self): 
        while 1: 
 
            # Receive a message from a connected client 
            msg = self.request.recv(1000) 
            # If client disconnected close socket 
            if not msg: 
                self.request.close() 
                break 
             
            # If valid request from client 
            if msg.startswith('/'): 
 
                # Create a child process 
                rc = os.fork() 
 
                # If I am the child process 
                if rc == 0: 
 
                    # Alter file descriptors so that stdout/stderr are routed to client 
                    os.dup2(self.request.fileno(),sys.stdout.fileno()) 
                    os.dup2(self.request.fileno(),sys.stderr.fileno()) 
 
                    # Retrieve full path name of client code, and command line arguments 
                    msg = msg.split() 
                    fullpathname = msg[0] 
                    sys.argv = msg 
 
                    # Inform the child that it should execute the client code as an app 
                    # rather than as an I/O client 
                    os.environ['ENVFLAG'] = '1' 
 
                    # Run the client code 
                    exec(open(fullpathname).read()) 
                    break 
 

Figure 4.  Excerpt from server/child code. 
 

44 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



 
 
 
 
# Import module that contains any code that needs to be shared between server and client 
import sharedModule 
 
# This is the line of code that helps this program to figure out if it is running as a  
# client or a child process.  It must be executed before anything else.  The client will 
# never return from this call.  (See Figure 6) 
sharedModule.setup_client(__file__) 
 
# From this point forward, only the child is executing the code. 
 
# Obtain a reference to the data without having to read and integrate it. 
bigdata = sharedModule.bigdata 
 
# A trivial demo that the data is accessible 
for key in bigdata: 
    print(key,bigdata[key]) 
 

 
Figure 5.  Excerpt from client code that is executed by both client and child. 

 
 
 
 
 
 
# This code is in sharedModule 
 
def setup_client(pgmName): 
     
    # If I am a client process 
    if 'ENVFLAG' not in os.environ: 
 
        # Set up and connect to server 
        from socket import socket, AF_INET, SOCK_STREAM, MSG_WAITALL 
        sock = socket(AF_INET,SOCK_STREAM) 
        sock.connect(('localhost',1234))  # note double parens 
 
        # Send a message to the server telling it to execute this program with  
        # its arguments 
        msgToSend = ........ ## path_to_pgm and cmdline_arg_vals 
        sock.sendall( msgToSend ) 
 
        # Loop receiving stdout/stderr and print them 
        while True: 
            msg = sock.recv(1000) 
             
            #If no more stdout/stderr then break 
            if not msg: 
                break 
            print msg 
 
        # Close connection and terminate 
        sock.close() 
        sys.exit() 
 

Figure 6.  Excerpt from shared code. 
 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 45



3   Addressing Some Security Questions 
 This paper is not a treatise on security practices.  
However, we do admit that the concept of allowing clients 
to connect to a server does pose a potential security risk 
worth discussing.   

It should be noted that, from the server point of 
view, the method proposed in this paper assumes that if the 
client can successfully authenticate, the server will trust 
messages sent by the client.  This means the server  will 
trust code that the client gives it to execute.  Depending on 
the security technique used, this may place part of the 
security burden on the author of the client code.  For some 
situations trusting client code might be unacceptable, but for 
our purposes we are willing to trust the client code as long 
as there is a valid authentication.  We have two primary 
reasons for trusting the client code.  First, the server is not 

running with root permissions.  Second, as long as the client 
can authenticate, we assume that the code will not be 
malicious.  We do admit that the code could contain bugs.  
Figure 7 shows an example of three clients and the forked 
children associated with them along with the server.  Given 
this example and the possibility of a bug in client code, one 
question to answer is:  if the code to be executed by the 
forked child for client 1 contains a bug, will that affect the 
other two forked children, the server, or the clients?  It 
should be noted that the forked children have no more 
permissions than their associated clients.  Therefore the 
other clients and children and server are insulated from the 
buggy behavior of a forked child to the same degree that 
totally separate processes would be protected from the 
behavior of each other. 

 

 
Figure 7.  Example server with clients and children. 

 
 

 
In our working environment we do not ordinarily require 
extraordinary security measures.  For our purposes, we 
either work as individuals or we work in small teams that 
have shared file space.   In this kind of situation, you are 
more assured of a secure environment if you use Unix 
domain sockets and make sure they are in a protected 

portion of the file system.  This gives you the same level of 
protection as the file system.   
 If it is necessary to use INET domain sockets, then 
we have two models.  Whenever possible, our first model is 
to execute only on machines that are behind a firewall. 
However, in the more risky case where we must connect 

46 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



from outside the firewall, we provide additional security 
measures.  One example measure is to have the client and 
server share a secret password/phrase.  Then when the client 
connects to the server, the server issues a challenge to the 
client in the form of a large random number.  The client then 
replies with a hash value derived by applying a digest 
algorithm (e.g. MD5 or SHA) to the concatenation of the 
challenge number and the password.  Alternatives might 
include the use of SSL, secure socket layer, protocols. 

 
 

4   Experiments 
 As an example of the power of the paradigm 
presented in this paper, this section contains the results of 
two experiments – one with a relatively small data set, and 
one with a moderately large data set.  Both experiments 
were run on the Maple machine at Argonne National 
Laboratory (64 cores, 504 GB memory).  The data sets are 
large files of genomic sequence information, and while this 
paper is not about bioinformatics, it is somewhat necessary 
to mention some terminology prior to describing the results 
of the experiments.   
 A PEG is a protein-encoding gene that could exist 
as either DNA (atg...tag) or as a protein sequence (M...V).  
While not particularly relevant, we do note that we typically 
work with the protein sequence.  There are various things 
that can be done with PEGs [1].  One that we do is to try to 
determine their functions by performing some type of 
comparative analysis.  For example, the function of the PEG 
fig|100226.1.peg.3032 is Imidazolonepropionase (EC 
3.5.2.7) which is part of the Histidine Degradation process.  
This analysis would frequently involve multiple genomes.  
A single genome is made up of multiple PEGs.  For 
instance, the Streptomyces coelicolor A3 (2) genome 
contains 8154 PEGs with 3.5 MB of protein sequence in 
those PEGs.  Streptomyces coelicolor A3 (2) is just one of 
the 25,442 prokaryotic genomes – totaling 137GB of data – 
that we retrieved from the SEED database [4]. 
 In our first experiment the data set was 
approximately 1 GB, and consisted of a small, interesting, 
subset of the original 137 GB dataset.  It took the server 
approximately 2.5 minutes to read in the raw data and 
configure the internal data structures.  We then ran two 
clients.  One client was run to determine the function of a 
single PEG (fig|100226.1.peg.3032) in the genome 
Streptomyces coelicolor A3 (2).  The other client was run to 
determine the functions of all 1600 PEGs that participate in 
known subsystems in the same genome.  The first client ran 
in 0.6 seconds.  The second client ran in 4.3 seconds.  Both 
clients were able to run 2.5 minutes faster because they did 
not have to read and configure the data. 

 The first experiment was typical of the kind of 
work we do, and large enough for a nice proof of concept, 
but small enough for debugging purposes.  The second 
experiment was to prove that the concept scales by using a 
much larger dataset.  To accomplish this goal, the server 
read in all PEGs for all 25,442 genomes, then the clients 
visited every single PEG and examined the first few bytes of 
its protein sequence.  For this experiment, it took the server 
54 minutes to load the data set and integrate it into useful 
data structures, after which a client was able to execute in 2 
minutes 14 seconds.  The in-memory database model saved 
the clients 54 minutes each as well as conserving memory 
by alleviating the need for multiple copies of the database 
(137 GB raw data, and 44 GB memory size of the running 
process).  
  
5   Conclusions 
 In this paper we offer a Python-specific technique 
for having shareable, in-memory, persistent data.  The work 
presented in this paper arose primarily out of necessity.  
Testing, debugging, and actual experimental runs were time 
consuming due to the need to load and configure data for 
every run.  By having the data be shareable and in-memory 
at all times, we can more quickly debug and test new client 
code, and we can more quickly run actual experiments.  
Admittedly, this solution is dependent on using Python, but 
since a significant portion of what we do uses Python, this is 
not a problem for us, and the savings in time is worth it.   
We would comment that the read-only part of the discussion 
is not strictly necessary.  However, because of the copy-on-
write rule, if changes are made to the data, then the page 
containing that data will be copied, and thus the 
performance will be slower.  For our purposes, it is not 
necessary to change the data, so we are able to get the 
optimal benefits from the technique. 
  
 
6   References 
[1] Overbeek, R. et al, “The subsystems approach to 

genome annotation and its use in the project to annotate 
1000 genomes,” Nucleic Acids Res, 2005 Act 7; 
33(17): 5691-702. 

[2] Python multi-processing module 
https://docs.python.org/2/library/multiprocessing.html 
(last accessed 3/18/2015). 

[3] Python Remote Objects.  
https://pypi.python.org/pypi/Pyro4  (last accessed 
3/21/2015). 

[4] The SEED.  
http://www.theseed.org/wiki/Home_of_the_SEED  (last 
accessed 3/18/2015) 

[5] SQLite.  http://sqlite.org/  (last accessed 3/21/2015) 
 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 47



Locality Aware Work-Stealing based Scheduling in Hybrid
CPU-GPU Clusters

A. Tarun Beri1, B. Sorav Bansal1, and C. Subodh Kumar1
1Indian Institute of Technology Delhi, New Delhi, India

{tarun,sbansal,subodh}@cse.iitd.ac.in

Abstract— We study work-stealing based scheduling on a
cluster of nodes with CPUs and GPUs. In particular, we
evaluate locality aware scheduling in the context of dis-
tributed shared memory style programming, where the user
is oblivious to data placement. Our runtime maintains a
distributed map of data resident on various nodes and uses
it to estimate the affinity of work to different nodes to guide
scheduling. We propose heuristics for incorporating locality
in the stealing decision and compare its performance with
a locality oblivious scheduler. In particular, we explore two
heuristics that focus on minimizing the cost of fetching data
that is non-local. These heuristics respectively minimize the
number of remote data transfer events, and the number of
remote virtual memory pages fetched. Finally, we also study
the impact of different placements of the initial input, like
block cyclic, random and centralized, on the scheduler.

We implement and evaluate these schedulers within Uni-
corn, a heterogenous framework that decomposes bulk syn-
chronous computations over a cluster of nodes. Compared to
a locality oblivious scheduler, the average observed overhead
of our techniques is less than 8%. We show that even with this
overhead, average performance gain is between 10.35% and
10.6% in LU decomposition of a one billion element matrix
and between 12.74% and 14.55% in multiplication of two
square matrices of one billion elements each on a 10-node
cluster with 120 CPUs and 20 GPUs.
Keywords: Locality aware, Work stealing, Hybrid CPU-GPU
clusters, Distributed computing

1. Introduction
Distributed shared memory based frameworks like Unicorn

[1], Global Arrays [2] and X10 [3] allow programming
styles simpler than message passing. User only accesses
“memory” and the underlying data packing and communi-
cation is managed transparently by the runtime. Further, the
computational tasks are also scheduled and load-balanced
by the runtime. In this paper, we specifically aim to reduce
the time for which computation is blocked behind network
latency induced by remote memory access. We do this by
scheduling data transfer early, overlapping it with other
computation. Further, a number of heuristics are proposed to
schedule computation close to data. In particular, an affinity
is computed in a distributed fashion from partial information

available at each node and input to a greedy scheduler. We
develop these optimizations within Unicorn [1], a parallel
programming framework for clusters populated with both
CPUs and accelerators like GPUs.

Traditionally, locality-aware scheduling has centered on
cache-affinity and focus has been on improving cache reuse.
However, we argue that node-affinity is equally important for
hybrid clusters, especially because significant time can be
lost in fetching remote data and different devices are able to
consume data at different rates. GPUs, being computationally
more aggressive, cause more performance loss than CPUs if
they need to wait for remote data transfer. For maintaining
optimal data throughput (for achieving peak performance),
avoiding GPU stalls on data is important and having à priori
knowledge of data locality is useful, which Unicorn provides.
In distributed environments, node affinity is often left to the
user to specify [3]. In this paper, we instead explore inferring
affinity based on the data accessed by the computation. We
then inform the scheduling algorithm with this affinity value.

Unicorn [1] decomposes user’s tasks into many indepen-
dent subtasks. Subtasks are concurrent, and dependencies are
only between tasks. Unicorn transparently schedules each
spawned subtask to execute on an available computing device
in the cluster. Information about data that a subtask seeks to
use is specified early. Establishing subtask to node affinity
based on this anticipated usage then can guide preferential
scheduling of subtasks on nodes where most of its required
data is resident. This, however, may not be optimal. Schedul-
ing computation close to the largest resident data does not
consider the time required to transfer the remaining data,
which may offset the transfer time that is saved. For instance,
the remote data may be highly dispersed among other nodes.
Hence, we present other approaches, which instead of merely
maximizing data locality focus on minimizing the transfer
time of non-local data.

Note that all computations of affinity require an analysis
of the set of addresses accessed by each subtask. This
information, even if statically provided, is too large to store
and process and reductions are necessary. This is the subject
of this paper.

Many parallel and distributed programming frameworks,
including Unicorn, employ randomized work-stealing for
load balancing. Data locality of random work-stealing has
been extensively studied for shared memory programming

48 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



and it has been largely found to be cache-unfriendly [4].
In this paper, we study the data locality of random work-
stealing for computations distributed on hybrid CPU-GPU
clusters and find that random work-stealing remains node-
memory unfriendly as well. We have incorporated locality-
aware strategies in work stealing as well to improve this.

As a base case, we start with trying to schedule a subtask
on a node where where most of its input resides, maximizing
local data. As shown in section 4, this technique reports an
average performance gain of 12.7% over a non locality-aware
work-stealer, while multiplying two square matrices of size
32768 ∗ 32768.

Next, we experiment with two strategies that instead of
maximizing local data, target the time to fetch remote data.
Our first strategy minimizes the number of remote data
transfer events or requests. It is based on the observation
that the incurred data fetch latency grows with data fragmen-
tation and the number of data transfer requests. Accessing
closely placed remote data is less expensive than accessing
discontiguous remote data, which may cost additional latency.
We observe an average performance gain of 14.55% with
this heuristic over locality oblivious scheduling for matrix
multiplication.

Our second strategy directly optimizes for the amount
of remote data. It minimizes the total number of virtual
memory pages to be fetched from remote nodes. Compared to
Unicorn’s locality oblivious scheduling, this strategy reports
a performance gain of 12.74% for matrix multiplication.

These strategies behave differently for different experi-
ments. For instance, our block LU factorization experiment
respectively reports an average performance improvement
(over Unicorn’s locality oblivious scheduler) of 10.35% for
local data heuristic, 10.35% for transfer events heuristic and
10.61% for remote data heuristic. We present more details
on these techniques, including their overheads, in section 4.

Finally, we experiment with a few common placements of
the initial input. A good scheduling strategy should adapt
to the change in input data availability at various nodes
in the cluster. We experiment with four different initial
data placements - centralized, row cyclic, column cyclic and
random. In the centralized scheme, all input data is placed
on one node and all others contain no data initially. In the
row cyclic scheme, blocks of rows of a pre-defined size are
cycled through the cluster nodes in order. The same is done
with the columns in the column cyclic scheme. In the random
scheme, 2D blocks of a pre-defined size are kept on randomly
selected nodes in the cluster. Results indicate that affinity
based heuristics outperform the locality-oblivious scheduler.

The primary contributions of this paper are:
1) We dynamically estimate affinity of computation to

nodes based on partial residency information. We show
that efficient affinity based scheduling is possible even
without full residency information.

2) We evaluate multiple heuristics to compute subtask-

node affinity scores, considering data locality and frag-
mentation.

3) We study the benefit of incorporating affinity in work-
stealing in heterogeneous environments. We also eval-
uate its robustness to different initial data placements.

2. Related Work
Data transfer overheads dominate many parallel applica-

tions. Locality aware scheduling is an effective way of reduc-
ing data transfers and the vital time spent in communication.
Locality awareness has been extensively studied for both
CPUs and GPUs. On CPUs, locality aware thread schedulers
focus on improving data cache reuse. On GPUs, the focus is
on enhancing accelerator kernels by scheduling GPU threads
on streaming multiprocessors with better locality.

The locality issue in multi-threaded computations has
received a lot of attention in the past. Acar et al. [4] minimize
cache invalidations in random work stealing to develop a
cache aware work-stealer for a single-core SMP. Similarly,
Philbin et al. [5] describe an algorithm that determines a
thread execution order that minimizes L2 cache misses. Tam
et al. [6] and McGregor et al. [7] group threads based on
cache locality for multi-threaded computations on multi-core
processors. Vaswani et al. [8] present an analytical model to
evaluate the effect of cache affinity on shared memory multi-
processing. Intel TBB [9] enhances cache hits by creating an
affinity between an iteration and a worker thread, which tends
to execute the same iteration over and over. SLAW [10] is an
adaptive locality aware scheduler for multi-core SMPs that
uses programmer provided locality hints. Huang et al. [11]
extends OpenMP [12] for specifying programmer controlled
locality that minimizes the cost of data accesses.

Among the GPU locality aware schedulers, Nugteren et
al. [13] reorder GPU threads automatically for improving
memory coalescing and bank locality. Sugimoto et al. [14]
improve cache locality for memory intensive texture-based
volume rendering by dynamically varying the width and
height of thread blocks so that memory access strides for
warps are minimized. Unkule et al. [15] improve memory
performance by automatically restructuring GPU kernels to
better exploit data locality at the register and shared-memory
levels. Lee et al. [16] analyze nested parallel computational
patterns (like Map Reduce) for data locality and map them
to the target GPU’s multi-dimensional thread hierarchy.

FLAME [17] and MAGMA [18] are linear algebra systems
that support dynamic scheduling on multiple GPUs. StarPU
[19] is another framework with scheduling capabilities on
multi-CPU plus multi-GPU architectures but most of its
schedulers are locality oblivious. XKaapi [20], however, is
a comprehensive runtime system with a locality-aware work-
stealing scheduler for a single node application using both
multi-core CPUs and many-core GPUs.

Some middleware have also been proposed for improving
locality awareness of data intensive applications. SLAM [21]

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 49



is one such system that employs a distributed file system
and a data-centric scheduler to reduce data transfers while
reading from the file system. Similarly, VisDSI [22] proposes
a locality aware I/O solution for data visualization.

In this paper, we extend ideas in these systems to build an
efficient locality-aware work-stealing scheduler for a cluster
of nodes with CPUs and GPUs. We study various scheduling
heuristics with the aim of minimizing the time spent in data
transfer. Our techniques are implemented in Unicorn parallel
programming framework [1], which is briefly described in the
next section. We start with a simple node-affinity based work-
stealing scheduler that maximizes the use of local data and
gradually build other heuristics, which focus on minimizing
the remote access latency of non-local data.

3. Scheduling
We explore affinity based scheduling within the context of

Unicorn [1], a unified parallel programming framework for
CPUs and accelerators like GPUs. We first describe Unicorn’s
scheduling algorithm.

3.1 Unicorn
Unicorn models CPUs and accelerators as bulk syn-

chronous computing devices that operate in logically distinct
phases of local computation and synchronization. An applica-
tion programmer in this framework provides coarse-grained
interdependent tasks, and decomposes each into independent
and concurrent computation modules called subtasks. These
subtasks are autonomously scheduled by Unicorn runtime on
the available computing devices. All network communica-
tions are layered over MPI [23].

For input and output, Unicorn tasks use an abstract entity
called address space. A task may read/write any number
of disjoint address spaces; each is logically shared by the
subtasks but generally physically distributed across nodes
in the cluster. Subtasks operate on an address space using
transactional memory semantics, i.e., they check-out memory
in a local view before working on it and check-in memory
back to the global shared view once their computation is over.
The local view visible to a subtask is user controlled and is
called subtask’s memory subscription.

For efficiency, an address space has a designated owner
node that manages a distributed directory that maps addresses
to locations in the cluster. As subtasks execute and write
to an address, the corresponding directory entry is updated
locally by the node executing the subtask. Local views are not
invalidated until the end of the tasks following transactional
semantics. At the end of the task, all directory changes are
combined in batch mode by the address space owner. If the
location of an address changes from one node to another,
the former node is sent an update message. Thus, the owner
node always knows the true locations of all addresses. Other
nodes know true locations of addresses they have written to
in a previous task. For other addresses they may not know

the location and route their data transfer requests through the
owner.

Unicorn uses subtask stealing to balance load. At the
start of a task, Unicorn’s scheduler equally divides the
available subtasks among all devices in the cluster. Each
device executes its assigned set and after it executes the last
subtask in the set, it becomes ready to steal. It randomly
selects a victim device which parts with a contiguous chunk
of its outstanding subtasks and assigns them to the stealer.
In case the victim has nothing to be stolen, a fail message
is returned. The stealer then chooses another random victim.
This continues till the task is completed.

3.2 Affinity based scheduling
In this paper, we extend Unicorn’s scheduling to minimize

wait for remote data by preferentially scheduling subtasks
at nodes where their required data are likely to be already
in the local view. To effect this we compute affinities of
subtasks to nodes. Note that in Unicorn, a node’s address
space directory is guaranteed to contain true locations only
for addresses in its local view. Hence, a node cannot compute
the affinity of a subtask to other nodes. An alternative would
be to force update the entire address space directory on every
node (after every task) but a broadcast of this magnitude
is impractical for performance reasons. Another possibility
is to compute affinities of all subtasks centrally on the
address space owner, whose directory entries are complete.
However, a task typically uses many address spaces, each
with a potentially different owner. Thus, even this alternative
requires an expensive synchronization because a subtask’s
affinity must be based on the location of all of its data.

Hence, in this paper we explore heuristics using partial
affinity information. We let each node examine the address
ranges subscribed by all subtasks, only computing each
subtask’s affinity to itself. This is a much smaller list with
size equal to the number of subtasks in one task. This can
now be centrally gathered and processed. Unicorn’s scheduler
initially computes only the number of subtasks to assign to
devices on each node, under the premise that all subtasks are
created equal. We allow this step to proceed normally. Then
we resort to a greedy approach to tie specific subtask IDs to
devices on specific nodes. Nodes pick subtasks in a round-
robin fashion. Each node picks the remaining subtask with
the highest affinity score for it. If a node reaches its assigned
count, it is skipped. Within the nodes, blocks of subtasks
are assigned to its devices in the proportion the original
scheduler determines. For our small experimental cluster
of 10 nodes, the measured overhead of centrally collecting
and remapping scheduler assignments is less than one milli-
second. Significantly more time is spent in examining subtask
subscriptions. This overhead is discussed in section 4.

Among the contributions of this paper is the computation
of subtask-node affinity. A natural affinity score may be the
size of data resident in the local view of the node. However,

50 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



this does not always afford the best speed-up. We also study
other heuristics that consider the size of remote data instead.
We study two variants of remote data affinity – one counts the
number of data requests sent to remote nodes and the other
that counts the number of address space pages fetched from
remote nodes. Both these scores are found by first querying
non-local regions from the address space directory and then
combining these regions into as large contiguous chunks
as possible. Unicorn’s network layer allows generalized 1D
and 2D data packing and we consider that in estimating the
number of requests (i.e., the number of chunks) and the size
of request (the total size of chunks divided by the page size).

In Unicorn, the victim assigns a number – call it s – of
subtasks to the stealer on the basis of their relative rates of
subtask execution (i.e., the number of subtasks executed per
second before the steal operation). We retain that principle,
but the actual subtasks assigned are the ones which have high
affinity scores for the stealer but low scores for the victim.
The victim chooses the s subtasks with the highest difference
between their affinity to the stealer versus to the victim.
As an aside, the stealer’s affinity scores are not computed
by the victim. We also do no include it with every steal
request. Rather, we piggyback nodes’ affinity scores on other
data transfer. Since stealing happens near the end of the
task, a stealer’s affinity array is highly likely to reach all
potential victims with negligible overhead. Nevertheless, if
the affinity scores have not reached earlier, it comes with the
request. In section 4, we report performance improvements
with this scheme as compared to Unicorn’s locality oblivious
work stealer, which may allow a subtask with entire data
on the victim’s node to be stolen by a device on some
other node with potentially no data, resulting in sub-optimal
performance.

Note that evaluating all subtasks (on all nodes) for determi-
nation of affinity scores is a limitation of Unicorn’s address
spaces. As reported in section 4, this has non-negligible
overhead. We explore evaluating fewer subtasks on all nodes.
This compromises the accuracy of affinity scheduling but
saves the time spent in computing affinity scores. In the next
section, we analyse the impact of reducing the number of
subtask subscriptions analyzed by each node.

4. Experiments and Analysis
In this section, we evaluate several node-affinity based

work-stealing schedulers employing different Unicorn bench-
marks. Our experiments were performed on a cluster of ten
nodes, each equipped with two 6-core Intel Xeon X5650 2.67
GHz processors with 48 GB of memory. All the machines
are powered with two Fermi generation Tesla M2070 GPU
cards, each having 448 cores running at 1.15 GHz and 5
GB of GDDR5 memory. The machines run CentOS 6.2 with
CUDA 5.5. For communication, we use Open MPI [24] 1.4.5
(over SSH) over a QDR InfiniBand [25] network.

We report our experiments on three benchmarks – image
convolution, square matrix multiplication and block LU fac-
torization. We have chosen these benchmarks as they have
been well studied in the parallel domain and they make good
candidates to stand for a wider range of applications. Image
convolution is computationally moderate while being low
on data transfer (part of which is overlapped with compute
by Unicorn’s pipeline). In contrast, matrix multiplication
involves massive data transfers and is computationally expen-
sive as well. LU factorization is an iterative interdependent
series of tasks. Image convolution is also iterative: a sequence
of filters is applied. The purpose of studying different kinds
of applications is to understand their response to different
locality-aware scheduling heuristics. All experimental results
are based on three trials.

We first briefly discuss the implementation of these bench-
marks over Unicorn and then study their responses to differ-
ent scheduling heuristics. The results highlight that locality
oblivious scheduling does not give optimal results for hybrid
CPU-GPU clusters mainly because it does not account for
the time spent in fetching of remote data. Our heuristics, on
the other hand, attempt to minimize the time spent in data
transfer.

In our image convolution experiment all color channels of
a 24-bit RGB image of size 43008 ∗ 32768 are convolved
with a 31 ∗ 31 filter. The input image is stored in a read-
only address space (initially distributed randomly across the
cluster nodes), logically divided into 336 blocks of size
2048 ∗ 2048. Each block is convolved using a separate
subtask. However, because convolution at boundaries requires
data from adjoining blocks, the input memory subscription
of a subtask overlaps with other subtasks’, potentially at all
four boundaries. The output image is generated in a write-
only address space. We convolve the filter 10 times with the
image and each iteration is carried out in a different task.
The experiment has a time complexity of O(nm), n being
the size of the image and m that of the filter.

In the matrix multiplication experiment two dense square
matrices of size 215 ∗ 215 each are multiplied to produce
the result matrix. Each input matrix is stored in a read-
only address space and the result matrix is stored in a
write-only address space of the task. Both input matrices
are initially distributed randomly across the cluster nodes.
The output matrix is logically divided into 2048 ∗ 2048
sized blocks and computation of each block is assigned to
a different subtask (which subscribes to all blocks in the
corresponding row of the first input matrix and all blocks
in the corresponding column of the second input matrix).
The CPU subtask callback is implemented using a single-
precision BLAS [26] function and the GPU callback uses
the corresponding CUBLAS [27] function. The experiment
has 256 subtasks and each runs a computation with time
complexity O(n3).

In the in-place block LU decomposition [28] experiment,

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 51



Image Convolution

2 4 6 8 10
0

50

100

150 Data transferred (GB) Data transfer events x 1000 Avg. subtask latency (secs)
Nodes 2 4 6 8 10 2 4 6 8 10 2 4 6 8 10

18.2 30.5 33 36.2 35.7 6.5 14.9 18.0 20.3 21.8 6.6 3.6 2.9 2.5 2.4
0.6 0.9 1.1 1.3 1.3 5.9 13.4 15.9 16.9 18.6 7.4 3.8 2.7 2.3 2.2
9.1 21.2 33.6 37.9 38.4 2.5 7.7 12.7 16.4 19.3 7.4 3.9 2.9 2.5 2.3
0.6 1.0 1.2 1.2 1.3 6.5 13.1 15.0 18.0 18.9 7.5 3.8 2.7 2.3 2.2

Matrix Multiplication

2 4 6 8 10
0

20

40

60

80
Data transferred (GB) Data Transfer Events x 1000 Avg. subtask latency (secs)

Nodes 2 4 6 8 10 2 4 6 8 10 2 4 6 8 10

8.0 23.9 36.8 49.1 55.9 0.3 1.0 1.5 2.1 2.6 7.3 7.2 7.4 7.3 6.8
7.7 19.6 26.0 34.3 37.6 0.3 0.8 1.1 1.6 1.9 8.1 7.7 7.4 7.0 6.0
7.2 21.2 28.2 34.7 38.4 0.2 0.8 1.3 1.7 2.0 8.2 8.2 7.8 6.7 6.1
7.3 19.9 26.5 33.8 38.9 0.3 0.8 1.3 1.6 1.9 8.2 7.8 7.7 7.0 6.5

LU Decomposition

2 4 6 8 10
0

20

40

60

80
Data transferred (GB) Data transfer events x 1000 Avg. subtask latency (secs)

Nodes 2 4 6 8 10 2 4 6 8 10 2 4 6 8 10

15.2 28.6 35.6 41.1 44.7 1.0 1.8 2.3 2.6 2.8 4.3 3.9 3.7 3.5 3.6
6.3 16.4 22.2 25.6 28.2 0.4 1.1 1.4 1.6 1.8 4.6 4.4 4.1 3.9 3.7
5.9 16.1 22.0 25.8 28.8 0.4 1.0 1.4 1.7 1.9 4.6 4.3 3.9 3.8 3.8
6.3 16.1 21.1 25.9 27.8 0.4 1.0 1.4 1.6 1.8 4.5 4.3 4.0 3.9 3.8

Unicorn Local Data Transfer Events Remote Data

Fig. 1: Locality aware scheduling - Graphs plot Execution Time (secs) versus Nodes

the input matrix (215 ∗ 215) is kept in a read-write address
space (initially distributed randomly across the cluster nodes)
and is logically divided into 2048 ∗ 2048 sized blocks. The
matrix is solved top-down for each of the 16 diagonal blocks.
For a matrix divided into n ∗ n blocks, solving for each
diagonal block (i, j) involves three tasks – LU decomposition
of the diagonal block (i, j), propagation of its results to other
blocks in its row (i, j + 1...n) and column (i + 1...n, j)
and propagation of these results to other blocks underneath
(i+1...n, j+1...n). The first of these three tasks is executed
sequentially while the other two are executed in parallel.
Time complexities of these tasks are O(n), O(n2) and O(n3),
respectively. One task is spawned per diagonal block which,
in turn, executes 3 tasks within, making a total of 3n−2 tasks
(where n is the number of diagonal blocks). The parallelism
within tasks (i.e., the number of subtasks) reduces as we
move down the matrix because the number of blocks to
be solved in parallel decreases. The CPU subtask imple-
mentation uses single-precision BLAS functions while the
GPU implementation employs the corresponding CUBLAS
routines.

All our experiments are written with no particular spatial
ordering of subtasks. Thus, the adjacent subtasks of these
experiments do not necessarily execute on adjacent address
space regions. This makes a better case for studying the
effectiveness of affinity heuristics. The Image convolution
experiment has the smallest memory footprint with a total
input size of 3.94 GB, followed by LU decomposition with 4
GB input. Matrix Multiplication has two input address spaces
of 4 GB each making the total input size 8 GB.

For the three benchmarks, Figure 1 plots the performance
of Unicorn’s locality-oblivious scheduler as well as the per-
formance of the local data based affinity and compares these
to remote data based affinity (transfer events and remote
data). The figure also records the cluster-wide data transfers
and subtask latency incurred in these experiments.

Results show that all our heuristics perform better than
Unicorn’s locality oblivious scheduler at nearly all data
points. For image convolution experiment, a maximum gain
of 22.3% (over Unicorn’s scheduler) is observed with remote
data heuristic for the eight node case. This is attributed to a
massive data transfer reduction from 36.2 GB (for Unicorn)
to 1.18 GB. A gain of similar magnitude is not reflected
in execution time because much of the transfer latency is
hidden behind other computation for the experiment. We find
that Unicorn’s work stealing results in most of the subtasks
actually being executed by GPUs (being more powerful
than CPUs for a SIMD computation like image convolution)
where computation of a subtask is overlapped with the data
transfer of the next. Even reducing the overall data transfer by
more than 96% does not make this compute bound pipeline
of GPU subtasks any faster.

For the matrix multiplication experiment, we observe the
maximum gain of 19.56% for the eight node case with
the transfer events heuristic. This result is attributed to a
29.25% reduction in data transfer, a 22% reduction in data
transfer events and a 0.6 sec gain in average subtask latency.
Note that this is a communication bound experiment and the
percentage reduction in data transfer has resulted in a similar
gain in performance after accounting for the 9.6% overhead

52 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



Image Convolution

2 4 6 8 10

50

100

Nodes

E
xe

cu
tio

n
Ti

m
e

(s
ec

s)

2 4 6 8 10
0

10

20

Nodes
D

at
a

Tr
an

sf
er

re
d

(G
B

)
2 4 6 8 10
0

2

4

6

8

10

Nodes

A
ffi

ni
ty

ov
er

he
ad

(%
)

Matrix Multiplication

2 4 6 8 10

40

60

80

Nodes

E
xe

cu
tio

n
Ti

m
e

(s
ec

s)

2 4 6 8 10
0

20

40

Nodes

D
at

a
Tr

an
sf

er
re

d
(G

B
)

2 4 6 8 10
0

5

10

Nodes
A

ffi
ni

ty
ov

er
he

ad
(%

)

LU Decomposition

2 4 6 8 10

60

80

Nodes

E
xe

cu
tio

n
Ti

m
e

(s
ec

s)

2 4 6 8 10
0

10

20

30

Nodes

D
at

a
Tr

an
sf

er
re

d
(G

B
)

2 4 6 8 10
0

5

10

Nodes

A
ffi

ni
ty

ov
er

he
ad

(%
)

100% 90% 75% 50%

Fig. 2: Incremental affinity subtask reduction

in affinity computation.
For the LU decomposition experiment, the maximum gain

of 12.67% is achieved by the local data heuristic for the
eight node case. This heuristic resulted in a 37.6% reduction
in total data transfer and has a reported overhead of 8%.
The experiment has moderate performance gains as compared
to data transfer savings as it is an iterative experiment,
with a mix of compute and communication bound tasks per
iteration.

All our heuristics perform fairly closely to each other.
Local data heuristic reports the lowest execution time for
experiments with small memory footprint (image convolution
and LU decomposition) when the number of nodes involved
is not more than six. When the number of nodes increases to
eight or ten, the remote data heuristic outperforms others. As
far as reduction in data transfer is concerned (in comparison
to Unicorn), we expect iterative experiments like image
convolution and LU decomposition to do better than the non-
iterative matrix multiplication like experiments as the benefits
of reducing data transfers are realized every iteration. We find
that transfer events heuristic is not able to bring down data
transfers in image convolution by the same margin as other
heuristics, resulting in its poor performance as compared
to the other two. This shows that an indirect heuristic that
optimizes data transfer events in an attempt to reduce actual
data transfers may not be as suitable as compared to other
heuristics that directly target maximizing local or minimizing
remote data.

Despite the performance improvements with our heuristics,
we observe significant overhead in affinity determination

Random Row
cyclic

Column
cyclic

Centralized
0

10

20

30

40

50

E
x e

cu
tio

n
Ti

m
e

(s
ec

s)

Matrix Multiplication

Random Row
cyclic

Column
cyclic

Centralized
0

20

40

60

E
x e

cu
tio

n
Ti

m
e

(s
ec

s)

LU Decomposition

Unicorn Local Data

Fig. 3: Impact of initial data distribution pattern

(Figure 2). This is because our affinity determination algo-
rithm evaluates input memory subscriptions of all subtasks
of the application task on all nodes. In order to reduce this
overhead, we reduce the number of subtasks evaluated per
node (for affinity determination) and study the response of
local data heuristic to this change (Figure 2). The figure plots
execution time, data transferred and affinity determination
overhead when the number of subtasks evaluated (for affinity
computation) per node are gradually reduced from 100% to
50%. Results show that for all experiments, reduction in the
number of evaluated subtasks also reduces the effectiveness
of the heuristics. On an average, image convolution becomes
11.85% slower when the number of analyzed subtasks at
each node reduces from 100% to 50%. Similarly, the impact
on matrix multiplication is 8.33% and on LU decomposition
is 9.31%. In general, the magnitude of loss in performance
despite gains in the affinity task’s overhead makes this overall
less profitable.

As stated earlier, all our tasks have a random block
distribution of the initial data in their address spaces. A
good affinity scheduler should be agnostic to the changes in
initial data availability pattern. We study local data heuris-
tic with different initial placements of data and compare
its performance to that of Unicorn’s scheduler. Figure 3
evaluates matrix multiplication and LU decomposition (for
eight node case) for various schemes like centralized (entire
address space on one cluster node), row cyclic (rows of
2048 ∗ 2048 blocks placed in sequence on all cluster nodes),
column cyclic (columns of 2048 ∗ 2048 blocks placed in
sequence on all cluster nodes) and the default block random
(2048 ∗ 2048 blocks placed randomly on any cluster node).
Results show that our runtime maintains performance despite
the changes in data availability pattern. At all data points,
our heuristic results in better performance than Unicorn’s
scheduler. Further, for the matrix multiplication experiment
more favorable distributions like row cyclic and column cyclic
achieve proportionately higher gains with our heuristic in
comparison to other less favorable distributions.

Lastly, we study the effectiveness of our steal policy post
the initial distribution of subtasks. In the absence of external
factors, a good initial subtask distribution is effective in
balancing load for a large fraction of the task. However,

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 53



towards the end of a task a few devices finish early and
try to steal work from others. In this case, we let the victim
assign those subtasks to the stealer that are high on affinity
scores for the stealer but low on affinity scores for the
victim. As compared to Unicorn’s affinity oblivious steal,
this scheme reduces data transfers by around 2.5% on an
average for all three experiments when affinity scores are
computed with remote data heuristic. This translates into
performance improvements up to 3.0%. When affinity scores
are computed with local data heuristic, however, we observe
mostly flat response with our scheme. For image convolution
experiment, it reports around 2.5% performance gain as
compared to Unicorn’s stealing while a 4.3% degradation
is observed with matrix multiplication.

5. Conclusions and Future Work
We present a study of locality aware work stealing in

the context of distributed shared memory programming on
hybrid CPU-GPU clusters. In particular, we augment Uni-
corn’s work-stealing scheduler with data locality and study
its characteristics. We evaluate two other heuristics that
attempt to reduce the time spent in transfer of non-local data
across the cluster. These heuristics, respectively minimize the
number of data transfer events and the size of remote memory
fetched. These heuristics are based on each node computing
affinity based only on the data it has. The results demonstrate
reasonable performance improvements with these heuristics
despite non-trivial overhead in address subscription analysis.
Given that Unicorn hides some network latency behind other
computation, sometime the gain in overall application speed
does not reflect the significant data transfer reduction, but in
a loaded network this gain can be useful. We believe that
with better analysis of subscription, it is possible to improve
affinity scores further.

All the benchmarks presented in this paper are regular.
However, we have experimented with a few irregular appli-
cations like page rank and initial results are promising, even
if incomplete at this time. We believe that experimenting
with more irregular applications and using larger clusters may
promote better understanding of these heuristics.

References
[1] Beri, Bansal, and Kumar, “A scheduling and runtime framework for

a cluster of heterogeneous machines with multiple accelerators,” in
Proceedings of the 2015 IEEE 29th International Symposium on
Parallel and Distributed Processing, ser. IPDPS ’15, 2015.

[2] Nieplocha et al., “Advances, applications and perf. of the global arrays
shared memory programming toolkit,” Int. J. High Perform. Comput.
Appl., vol. 20, no. 2, May 2006.

[3] Charles et al., “X10: An object-oriented approach to non-uniform
cluster computing,” in Proceedings of the 20th Annual ACM SIGPLAN
Conference on Object-oriented Programming, Systems, Languages,
and Applications.

[4] Acar, Blelloch, and Blumofe, “The data locality of work stealing,”
in Proceedings of the Twelfth Annual ACM Symposium on Parallel
Algorithms and Architectures, ser. SPAA ’00.

[5] Philbin et al., “Thread scheduling for cache locality,” in Proceedings
of the Seventh International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS VII,
1996, pp. 60–71.

[6] Tam, Azimi, and Stumm, “Thread clustering: Sharing-aware schedul-
ing on smp-cmp-smt multiprocessors,” in Proceedings of the 2Nd ACM
SIGOPS/EuroSys European Conference on Computer Systems 2007,
ser. EuroSys ’07, 2007, pp. 47–58.

[7] McGregor, Antonopoulos, and Nikolopoulos, “Scheduling algorithms
for effective thread pairing on hybrid multiprocessors,” in Proceedings
of the 19th IEEE International Parallel and Distributed Processing
Symposium, ser. IPDPS ’05.

[8] Vaswani and Zahorjan, “The implications of cache affinity on processor
scheduling for multiprogrammed, shared memory multiprocessors,” in
Proceedings of the Thirteenth ACM Symposium on Operating Systems
Principles, ser. SOSP ’91.

[9] “Intel Threading Building Blocks,” http://www.
threadingbuildingblocks.org/.

[10] Guo et al., “Slaw: A scalable localityaware adaptive work-stealing
scheduler,” in In 24th IEEE International Symposium on Parallel and
Distributed Processing, ser. IPDPS ’10.

[11] Huang et al., “Enabling locality-aware computations in openmp,” Sci.
Program., vol. 18, no. 3-4, Aug. 2010.

[12] Dagum and Menon, “OpenMP: An industry-standard API for shared-
memory programming,” IEEE Comput. Sci. Eng., vol. 5, no. 1, pp.
46–55, Jan. 1998.

[13] Nugteren, Braak, and Corporaal, “A study of the potential of locality-
aware thread scheduling for gpus,” in Euro-Par 2014: Parallel Pro-
cessing Workshops, ser. Lecture Notes in Computer Science, 2014,
vol. 8806.

[14] SUGIMOTO, INOb, and HAGIHARA, “Improving cache locality for
gpu-based volume rendering.”

[15] Unkule, Shaltz, and Qasem, “Automatic restructuring of gpu kernels
for exploiting inter-thread data locality,” in Proceedings of the 21st
International Conference on Compiler Construction, ser. CC’12, 2012.

[16] Lee et al., “Locality-aware mapping of nested parallel patterns on
gpus,” in Microarchitecture (MICRO), 2014 47th Annual IEEE/ACM
International Symposium on, Dec 2014.

[17] Quintana-Ortı́ et al., “Solving dense linear systems on platforms with
multiple hardware accelerators,” SIGPLAN Not., vol. 44.

[18] “Magma 1.4.1,” http://icl.cs.utk.edu/magma/, 2013.
[19] Augonnet et al., “StarPU: A unified platform for task scheduling

on heterogeneous multicore architectures,” Concurr. Comput. : Pract.
Exper., vol. 23, no. 2, pp. 187–198, Feb. 2011.

[20] Gautier et al., “Xkaapi: A runtime system for data-flow task program-
ming on heterogeneous architectures,” in IPDPS ’13, ser. IPDPS ’13,
2013, pp. 1299–1308.

[21] Yin et al., “Slam: Scalable locality-aware middleware for i/o in
scientific analysis and visualization,” in Proceedings of the 23rd In-
ternational Symposium on High-performance Parallel and Distributed
Computing, ser. HPDC ’14, 2014.

[22] Ng et al., “Visdsi: Locality aware i/o solution for large scale data vi-
sualization,” in Utility and Cloud Computing (UCC), 2013 IEEE/ACM
6th International Conference on, Dec 2013.

[23] Gropp et al., “A high-performance, portable implementation of the
MPI message passing interface standard,” Parallel Comput., vol. 22,
no. 6, pp. 789–828, Sep. 1996.

[24] Gabriel et al., “Open MPI: Goals, concept, and design of a next
generation MPI implementation,” in Euro. PVM/MPI Users Group
Meeting, 2004, pp. 97–104.

[25] InfiniBand Trade Association, InfiniBand Architecture Specification,
Release 1.1, 2002.

[26] Dongarra et al., “An extended set of FORTRAN basic linear algebra
subprograms,” ACM Trans. Math. Softw., vol. 14, no. 1, Mar. 1988.

[27] “The NVIDIA CUDA basic linear algebra subroutines,” https://
developer.nvidia.com/cuBLAS.

[28] Demmel, Higham, and Schreiber, “Block LU factorization,” http:
//www.netlib.org/utk/papers/factor/node7.html, 1995.

54 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



Abstract— We investigate in this paper the distributed
scheduling in Wimax mesh networks. Unlike scheduling
based on conventional omni-directional antenna that
generates interference, we propose an algorithm for
coordinated distributed scheduling that improves the system
performance by taking into account the efficiency of smart
antennas to maximize network throughput by maximizing
the number of concurrent transmissions without increasing
interference. The implementation is achieved using the
three-way handshake mechanism with few modifications.
The simulations results in terms of simultaneously active
links, i.e. network throughput, show great benefits of the
proposed scheme in comparison with the conventional one.

Index Terms— Wireless mesh network, Wimax mesh
mode, coordinated distributed scheduling, smart- antennas.

I. INTRODUCTION
Wireless Mesh Networks (WMNs) have emerged as a
key technology for next-generation wireless networking
to provide high-bandwidth network coverage. WMNs
are built by a set of spatially distributed nodes
interconnected by wireless links. Nodes can send data to
other nodes by using a direct link or through other nodes
until it reaches its destination in a multi-hop way. WMN
is Mesh networking that can be implemented over
wireless networks such as WiFi (Wireless Fidelity),
WiMAX (Worldwide interoperability for Microwave
Access), etc. Therefore WMNs are undergoing rapid
progress and inspiring numerous applications.
Based on the IEEE 802.16 standard [1], the WiMAX
MAC (Medium Access Control) protocol is designed in
two modes PMP (Point-to-Multi-Point) mode and Mesh
mode. The traffic in PMP mode occurs only between the
Base Station (BS) and the Subscriber Stations (SS). But
in mesh mode, the traffic can occur between SSs or

between BSs. There is no need to have direct link from
SS to the BS of the mesh network. A node can choose
the link with the best quality to transmit data, and with
an intelligent routing protocol, the traffic can be routed
to reach destination.
The IEEE 802.16 Mesh mode employs the Orthogonal
Frequency Division Multiplexing (OFDM) scheme in
the physical layer. For channel access among the BS and
the SS nodes, Time Division Multiple Access (TDMA)
is used. Each SS requests its transmission resources and
there is no real distinction between UL and DL. Each SS
communicates with its neighbors (transmitting,
receiving or idle status). This can be seen as a kind of
Time Division Duplex (TDD). Two kinds of scheduling
algorithms exist in the 802.16 mesh mode: centralized
and distributed. In centralized scheduling, the scheduled
transmissions for the SSs are defined by a central unit
(the BS) but in the distributed algorithm, all nodes
contribute to the scheduling. The distributed scheduling
could be coordinated or uncoordinated. In coordinated
distributed scheduling each SS has a list of its
neighbours and competes for transmission opportunities
with them in a coordinated manner to avoid collisions.
Uncoordinated scheduling is a try and see mode where
collisions can happen.
The IEEE 802.16 standard provides signalling messages
for both centralised and distributed scheduling, but
leaves the scheduling algorithms open for the vendor’s
implementation. Centralized scheduling algorithms have
been widely studied [2][3][4][5] and few papers
investigated distributed scheduling. In [6] an analytical
model for the distributed scheduler of the mesh mode is
proposed to evaluate the scheduler performance under
various condidtions. Based on the model of [6] the
authors in [7] analyse the transmission timing of
signalling messages and improve the performance of the
distributed scheduler by dynamic adaptation of the hold
off exponent. [8] investigates the performance of

Distributed Scheduling in Wireless Mesh Networks
using Smart Antenna Techniques

Alissar Sabbah, Abed Ellatif Samhat,

Lebanese University - Faculty of Engineering, Rafic Hariri Campus, Hadath, Lebanon
Email: alice.sabbah@hotmail.com;samhat@ul.edu.lb,

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 55



coordinated distributed under realistic non-quasi-
interference model. The paper shows that substantial
amount of collisions may exist even with scheduling in
3-hop extended neighbourhood and suggest that, by
keeping a balance between the holdoff interval and the
reception collision ratio; the optimal overall scheduling
latency may be achieved. In [9], the authors present a
fair bandwidth allocation algorithm (FEBA) for service
differentiation in IEEE 802.16 mesh networks operated
in a distributed coordinated scheduling mode. FEBA
negotiates bandwidth among neighbours to assign a fair
share proportional to a specified weight to each end-to-
end traffic flow.
The existing work investigated the scheduling using
conventional omni-directional antenna and the
interference remains a major issue in this context. In this
paper, we propose an algorithm for distributed
scheduling that optimizes the system performance by
taking into account the   efficiency of smart antenna to
maximize network throughput by maximizing the
number of concurrent transmissions without increasing
interference. A smart (directional) antenna offers a
longer transmission range and lower power consumption
by forming one or multiple beams towards intended
receivers only, thus reducing interference.
The rest of this paper is organized as follows. Section II
presents the frame structure and the mechanisms related
to the distributed scheduling. In section III, the smart
antenna technique is explained and the proposed
algorithm based on this technique is given. The
performance evaluation of the proposed algorithm is
done through simulations in section IV. Finally, section
V concludes the paper.

II. DISTRIBUTED SCHEDULING IN WIMAX

MESH MODE

A. Mesh frame structure
In the distributed scheduling mode, all the stations (BS
and SSs) should coordinate their transmissions in their
extended two-hop neighborhood. The coordinated
distributed scheduling mode uses some or the entire
control portion of each frame to regularly transmit its
own schedule and proposed schedule changes to all its
neighbors. Within a given channel all neighbor stations
receive the same schedule transmissions. All the stations
in a network have to use the same channel to transmit

schedule information in a format of specific resource
requests and grants.
A frame in mesh mode operation consists of two parts,
the control subframe and the data subframe (Figure 1).
The control subframe is dedicated to the transmission of
control and management messages. The data subframe is
divided into a number of minislots to enable multiple
nodes to share access to the medium during the data
subframe.
Control subframe serves two functions: network control
and schedule control. In a network control subframe,
mesh network configuration (MSH-NCFG) and mesh
network entry (MSH-NENT) packets provide some
basic level of communication for nodes to exchange
network configuration information. In a schedule control
subframe, the mesh centralized scheduling  messages
(MSH-CSCH) are used for transmission bursts
corresponding to centralized messages, and the rest is
allocated to the transmission of the bursts containing
mesh distributed scheduling messages (MSH-DSCH) for
distributed scheduling. These messages and data
structures contains a set of information elements (also
denoted in short as IEs) to allow nodes to propagate
information about scheduled transmissions (requests and
grants), slots available for scheduling and transmission
(available resources), to other nodes in the
neighborhood. These information elements play a
crucial role in distributed scheduling.

Figure 1:802.16 Mesh Frame structure

B. Mesh distributed scheduling information
element

The MSH-DSCH Request IE is used by the node to
specify its bandwidth demand for a particular link.
Requests shall include parameters including the link
indentifier (ID) for which bandwidth is required, the
Demand Level and Demand Persistence to quantify the
bandwidth required. The value for the field of Demand
Level specifies the number of minislots required in a
frame to satisfy the bandwidth demand (assuming the
current burst profile). The value of the field of Demand

56 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



Persistence helps to specify the number of consecutive
frames for which the demanded minislots are required.
The MSH-DSCH Availability IEs are used to indicate
free minislot ranges that neighbors could issue grant in.
It specifies the status of a two-dimensional (frames,
minislots) block of minislots.
The MSH DSCH Grant IEs are used for sending grants
in response to a bandwidth request as well as for
sending a confirmation (grant confirmation) for a
received bandwidth grant. A direction field in the grant
information element helps to distinguish between a
bandwidth grant and a grant confirmation (0 = to
granter, 1= from granter).

C. Three-way handshake mechanism
Before data transmission, coordinated scheduling
employs a three-way handshake to setup the connections
with neighbors. This mechanism (Figure 2) is used to
achieve bandwidth reservation for data transmission. It
relies on a three-way handshake (bandwidth request,
bandwidth grant, bandwidth grant confirmation).
Bandwidth request: based on the availibilty IE, the
transmitting node sends a request based on the link ID to
identify the link for which the node needs bandwidth,
and the number of minislots per frame and their
Persistence.
Bandwidth grant: The MSH-DSCH message containing
the request IE is received by all the neighbors of the
node which transmitted the request. The nodes then
process the message to identify if the request is for
bandwidth on a link directed to itself. The node to which
the request is directed is the granter. The granter looks
up its own set of availability information elements to
select a subset of availabilities (range of slots and
frames) where it is allowed to schedule reception of data
transmissions from its neighbors. The number of
minislots per frame and their Persistence for the grant is
chosen so as to satisfy the request without disturbing
other already scheduled data transmissions. The grant is
received by all the neighbors of the granter. These then
update their availability status to reflect the scheduled
reception of data indicated by the grant.
Grant Confirmation: The requester transmits a MSH-
DSCH message containing a grant confirmation (with
the direction bit set to 0). The grant confirmation
informs all the neighbors of the requester of the
scheduled transmission. The neighbors then update their
availabilities to reflect the newly scheduled
transmission. Transmission of data in the reserved slots

is allowed only after the transmission of the grant
confirmation.

Figure 2: Three-Way Handshake
Note that the status of the slots needs to be changed
when minislots reserved for a scheduled transmission
are freed (via. cancel request, grant cancel, grant cancel
confirmation). The nodes involved in the handshake as
well as the passive nodes need to update their
availabilities in order to maintain a consistent picture of
the resources available at the nodes.

III. SMART ANTENNA BASED SCHEDULING

A. Smart antenna techniques
Omni-directional antennas are inexpensive and simple to
build and use, but causing low throughput in mesh
networks due to poor spatial reuse. Smart antennas
provide better spatial reuse and reduce the interference
between simultaneous transmissions to improve the link
budget [11][12]. A smart antenna can provide multiple
degrees of freedom, which can be used for intended
communications. By incorporating a smart antenna with
multiple predefined beam patterns in a Wimax node and
applying one at a time towards the direction of interest,
network throughput can be significantly improved by
more efficient spatial reuse. In this context where a node
can not receive and transmit at the same time and a node
can receive information from different sender on
different links, we propose an algorithm that allow
several links to be activated simultaneously ( in the same
minislot at the same time).

A. Proposed algorithm
The mesh network can be modeled by a graph G (N, L)
where N represents a set of nodes each being equipped
with smart antennas and L represents the direct

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 57



communication links. Each activated link is identified
by its source destination couple; Lij is the link from the
node i to the node j. The system works in a periodical
synchronous time-slotted mode. Each node should
support a table to take into account the activated link
(set of sender nodes, set of receiver nodes) at each
minislot. This table is updated based on the exchanged
signalling information including availibility and grant
IEs. When a node decides to request or to grant sending
data it must check this table to find the active link that
operate in this time slot. (Figure3)

Figure 3: Time Slot Allocation.
Let M be the data minislots in a frame. So based on the
three way handshaking method, we propose three
algorithms that executed for a frame at each node
depending on its status if it:

 Request information(Namely the Requester),
 Receive request (Namely the Granter) when it

send a Grant.
 Confirm Grant (namely the Requester) when it

send Grant Confirmation.
A.1 At The Sending Of A Request:

The node here will be named as requester; it will start to
check in each frame for the available mini-slot to

transmit data. Depending on the algorithm, when a node
i (requester) select a TS(time slot) K, and the receiver j.
it will check in this TS, if it is belong to the list of
receiver nodes(so that it cannot send information), if
yes; it will search for another time slot, if no; check
again does the granter j belong to list of sender nodes(
so that it cannot receive information), if yes search for
another TS, if no, select K, request [Lij,K] and update
the table. When it updates its table, the table will record
then that node I is a sending node and node j is a
receiving node and this new state of table will be known
by each 2 hop neighborhood in the network.
A.2 At The Reception Of A Request:

The node here will be named as granter it will receive
the grant message from the requester and then
depending on the algorithm, it will check in its table for
the mini-slot specified in the sending message. Does
node j (The Granter) in this TS belong to sender nodes
(so that it cannot receive information), if no Grant
[Lij,K] and update the table. If yes, search for another
free time slot where on it the granter does not belong to
sender nodes list, Grant [Lij,K] and update the table .
Else, keep searching for available TS within the Frame.

A.3 At The Reception Of A Grant:

58 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



The requester here when it receive the grant from the
granter, will check if T=K (same TS specified in the
request message), if yes confirm Grant [Lij,K]. If no,
check does node I belong to receiving nodes in the new
time slot (so it cannot send information), yes then break
the message. No, confirm this new time slot and update
the table for all 2 hop neighborhood nodes.

IV. PERFORMANCE EVALUATION

The proposed algorithm is evaluated by simulations
using NS2 and the Wimax mesh module
(Ns2mesh80216) developed in [5] with required
modifications. We compare the implemented algorithm
(smart case) with the conventional three-way handshake
mechanism used by the FEBA scheduling [5] based on
omnidirectionnal antenna (standard case). The
performance indicator for comparaison is average
simultaneous active links in each scenario. We use two
kinds of topologies: BINTREE Topology and Grid
Topology (see Figure 4). In each topology, we tried
many scenarios by varying the number of nodes and we
run different source nodes sending traffic to different
destination nodes in each scenario.

Figure 4: BINTREE Topology VS. GRID Topology.

These figures below are a rough sketch for the network
in both scenarios: BINTREE (Figure 5) and GRID
(Figure 6), that shows the improvement in the network-
number of simultaneous active link using smart antenna
compared to standard algorithm. Using Omni-
Directional antenna, almost all nodes are blocked so that
they cannot receive or send data based on the idea that
when two nodes are exchanging information their 2 hop
neighborhood must be blocked, However, using smart
antenna technique, many nodes can exchange data at the

same time since nodes in this technique can send or
receive to and from different nodes.

Figure 5: Omni-Directional Antenna vs. Smart Antenna-
BINTREE Topology.

Figure 6: Omni-Directional Antenna vs. Smart Antenna -
GRID Topology.

We use two performance indicators to show the
improvement in the network:

 Average Active Link Per Time Slot
 Average Throughput

A. Average Active Link Per Time Slot:

Using Smart antenna technique one can see that the
Average simultaneous active links increase much better
(more than two times) the standard case and the network
throughput will then increase. (Figure 7, 8)

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 59



Figure 7: Average Simultaneous Active Links vs.
Number of Nodes in BINTREE Topology.

Figure 8: Simulation Result in BINTREE Topology.

The same comment goes for the cases for GRID
Topology (figure 9, 10) but the improvement here
between smart and Omni-directional antenna is about
three times. This can be explained by the fact that in
GRID Topology each node may communicate with a
number of neighboring nodes more than in the case of
BINTREE Topology.

Figure 9: Average Simultaneous Active Links vs.
Number of Node in GRID Topology

Figure 10: Simulation Result in GRID Topology.

B. Average Throughput
Figure 11 shows the average throughput in MB/S as a
function of the number of node in the mesh networks in
BINTREE.

Figure 11: Average Throughput Vs Number of Node in
BINTREE Topology.

The results shows when the number of nodes increases,
the average throughput increase. Moreover, using smart
antenna, it is clear that the average throughput increase
much better (more than two times) than the standard
case. (Figure 12)

Figure12: Average Throughput Vs Number of Nodes in
GRID Topology

60 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



V. CONCLUSION

In this paper, we investigated the distributed scheduling
in mesh mode and we proposed an algorithm for
coordinated distributed scheduling that increases the
system capacity using smart antennas. The latter achieve
a spatial reuse without increasing interference. The
network throughput is maximized by maximizing the
number of concurrent transmissions. The simulations
results in terms of simultaneously active links show
great benefits of the proposed scheme in comparison
with the conventional one.

.

REFERENCES

[1] IEEE Standard 802.16e: Air Interface for Fixed Broadband Wireless
Access Systems, Amendment 2: Physical and Medium Access Control
Layers for Combined Fixed and Mobile Operation in Licensed Bands,
February 2006.

[2] H. Wei, S. Ganguly, A. Izmailov, and Z. Haas, “Interference-Aware
IEEE 802.16 WiMax Mesh Networks”, IEEE VTC 2005-Spring. 2005.

[3] H. Shetiya and V. Sharma, “Algorithms for Routing and Centralized
Scheduling to Provide QoS in IEEE 802.16 Mesh Networks”, in
WMuNeP ’05: NewYork, USA, 2005.

[4] J. Tao, F. Liu, Z. Zeng, and Z. Lin, “Throughput Enhancement in
WiMax Mesh Networks Using Concurrent Transmission,” in
International Conference on Wireless Communications, Networking and
Mobile Computing, Sep 2005, pp. 871-874.

[5] B. Han et al., Performance evaluation of scheduling in IEEE 802.16
based wireless mesh networks, Elsevier Computer Communications, 30
(2007) 782–792.

[6] M. Cao et al., Modelling and performance analysis of Distributed
Scheduler in IEEE 802.16 Mesh mode, Proc. of the 6th ACM Int.
Symposium on Mobile ad hoc Networking and Computing, 2005.

[7] N. Bayer et al., Improving the Performance of the Distributed Scheduler
in IEEE 802.16 Mesh Networks", VTC Spring 2007.

[8] Hua Zhu and Kejie Lu, On The Interference Modeling Issues for
Coordinated Distributed Scheduling inIEEE 802.16 Mesh Networks, in
Proc. Of the International conference on Broadband Communications,

Networks and Systems, 2006. BROADNETS 2006.
[9] C. Cicconetti, I. F. Akyildiz, L. Lenzini, "Bandwidth Balancing in

Multi-Channel IEEE 802.16 Wireless Mesh networks," Proc. of the 26th
Annual IEEE Conference on Computer Communications (INFOCOM
2007), Anchorage (USA), May 6-12, 2007.

[10] Xiao Xingquan, Sun Xuekang, Xu Baocheng, Guo Zhigang,
Proportional-based Distributed wireless-network Cross-layer Scheduling
Algorithm, International Conference on Information Technology and
Computer Science 2009.

[11] P. H. Lehne and M. Pettersen, “An Overview of Smart Antenna
Technology for Mobile Communication Systems," IEEE
Communications Surveys, pp. 2-13, Vol. 2, No. 4, Fourth Quarter 1999.

[12] A. Alexiou, M. Haardt, “Smart Antenna Technologies for Future
Wireless Systems: Trends and Challenges," IEEE Communications
Magazine, pp. 90-97, Sept. 2004.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 61



62 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



SESSION

HPC, COMPUTATIONAL SCIENCE,
COMPUTATIONAL ENGINES + DISTRIBUTED

PROCESSING, AND APPLICATIONS

Chair(s)

TBA

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 63



64 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



Acceleration of Single- and Multiple-Segment Viterbi Algorithms
for Biological Sequence-Profile Comparison on GPU

Alcides C. de Araújo Neto Nahri Moreano
Federal University of Mato Grosso do Sul, Brazil

Email: alcides.araujo@hotmail.com, nahri@facom.ufms.br

Abstract— Over the past few decades the amount of
biological data in genomic databases grew up in an
exponential rate. Tools such as HMMER use the Viterbi
algorithm to find biological sequences that are homologue
to a family of sequences represented by a statistical model
called profile HMM. Due to the quadratic time complexity of
the Viterbi algorithm, this search procedure can demand long
execution times depending on database size, sequence size,
profile HMM length, and platform used. This paper presents
the development and optimization of a high performance
solution for the problem of sequence-profile comparison
on GPU. We performed a detailed evaluation of several
optimizations such as memory optimizations and padding,
loop unrolling, multiple streams to enable computation and
transfers overlapping, vectorized access to data structures,
and tiling. The proposed solution achieved speedups up to
8.8 and 471.7, with respect to HMMER 3.1 execution on
a quad-core computer, with and without the use of vector
instructions respectively.

Keywords: Sequence-profile alignment, Viterbi algorithm,
HMMER, GPU.

1. Introduction
In the past years, new DNA sequencing technologies

have been causing genomic databases to grow in
an almost exponential rate. The protein database
UniProtKB/TrEMBL [1], for instance, nearly doubled
its size every two years since 2000. As a consequence, a
huge amount of new genomic data needs to be analyzed, in
order to determine their functional content.

The sequence-profile comparison problem, i.e., determining
if a newly identified biological sequence is homologous to a
known family of sequences is a task of great importance in
Bioinformatics. The classification of the new sequence as part
of the family allows inferring the function and/or structure
of the sequence. HMMER [2], [3], a software solution for
conventional computers, is one of the main tools used for this
purpose and is based on an important algorithm called Viterbi
algorithm [4].

Given the quadratic time complexity of the Viterbi
algorithm, comparisons of large sequence databases, long
sequences, and long families may result in lengthy execution
times. With the rapid growth of biological databases, these
execution times become even more critical. Therefore, there
is a need for high-performance solutions capable of comparing

large amounts of sequences and families in a short time, by
the adoption of heuristics and/or exploitation of parallelism.

This paper presents the development of a solution
to the sequence-profile comparison problem, using a
GPU as execution platform. We apply and evaluate
several optimizations such as memory optimizations,
memory padding, loop unrolling, multiple streams to enable
computation and transfers overlapping, vectorized access
to data structures, and tiling. The goal is to achieve a
high-performance solution that allows the analysis of large
biological databases in an efficient way.

To the authors’ knowledge, this is the first GPU-based
system proposed for the acceleration of the sequence-profile
comparison, which implements the new SSV (Single Segment
Viterbi) algorithm, introduced in HMMER 3.1 version, besides
the MSV (Multiple Segment Viterbi) algorithm.

This paper is organized as follows. Section 2 introduces
the basic concepts needed to understand the sequence-profile
comparison problem. In Section 3 we describe related works
in parallel sequence-profile comparison. Section 4 presents
our GPU solution to this problem and the optimizations we
applied to the solution. Section 5 presents the GPU solution
experimental performance evaluation and discusses the results
obtained. Finally, in Section 6 we draw some conclusions.

2. Sequence-Profile Comparison
A profile HMM (Hidden Markov Model) is a statistical

model that represents a family of sequences describing the
similarity between members in the form of discrete states. It is
based on a multiple alignment of the sequences in the family
and represents how conserved each column of the multiple
alignment is and which symbols are more likely [5].

A profile HMM representing a family can be used to
search for new members of that family in a database of
biological sequences [6]. The probability that a sequence S
is homologous to a family modeled by a profile HMM λ is
determined by finding the sequence of states of λ that produces
S with highest probability P (S|λ). This score measures the
similarity between S and the family modeled, and if it is
significant, S is classified as member of the family.

2.1 HMMER
HMMER [3] is a set of tools widely adopted for the

analysis of biological sequences. One of its most important
tools is hmmsearch, which finds biological sequences that are

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 65



homologous to a family of sequences, represented by a profile
HMM, using the Viterbi algorithm.

The tool uses the following strategy: the sequences pass
through a chain of filters, where each filter computes a score
for the sequence using a different algorithm and depending
on the score, the sequence is discarded or forwarded to the
next filter. The initial filters, which receive more sequences,
use less precise and faster algorithms, while the final filters,
which receive less sequences, use more precise and slower
algorithms. Therefore, the initial filters are able to discard a
large amount of the sequences being compared, forwarding to
the next filter only a small fraction of them.

In HMMER 3.1 version [7], the main filters use the SSV,
MSV, and Viterbi algorithms. SSV is the first filter in the chain
of filters, while MSV is the second one. Figure 1 shows the
profile HMM architecture used by the Viterbi algorithm in
HMMER.

S B E T

D2 D3 D4

M1 M2 M3 M4

N C

I1 I2 I3

J

tNN

tNB tEC

tCC

tCT

tEJ
tJJ

tJB

tBMj

Fig. 1
PROFILE HMM ARCHITECTURE USED BY THE VITERBI ALGORITHM IN

HMMER

2.2 Viterbi, MSV, and SSV Algorithms
The Viterbi algorithm for the comparison of a sequence

of length L to a profile HMM of length Q is shown in
Algorithm 1 and uses the dynamic programming technique to
compute the score of the best alignment of the sequence to the
profile HMM, using score vectors and matrices corresponding
to the states of the profile HMM. The algorithm has time
complexity O(L×Q).

Analyzing the Viterbi algorithm we can identify the data
dependences for computing the scores. From lines 3, 4 and
5 of Algorithm 1, we conclude that cells M [i − 1, j − 1],
I[i − 1, j] and D[i, j − 1] are needed for computing cells
M [i, j], I[i, j] and D[i, j], respectively. These dependences
prevent the parallel computation of cells in a same row,
column, or diagonal of the matrices.

The data dependences in lines 9 and 10 of Algorithm 1
are related to the J state of the profile HMM, which links the
end of the profile HMM core to its beginning (feedback loop).
This link creates the dependency chain M [i − 1, 1 . . . Q] →
E[i − 1] → J [i − 1] → B[i − 1] → M [i, j], which prevents
the parallel computation of cells in a same anti-diagonal of
the matrices.

The MSV algorithm is a simplification of the Viterbi
algorithm, obtained by removing states I and D and
considering transition probabilities for Mj−1→Mj as 1.0 [2].

Algorithm 1 Viterbi algorithm
Input: Profile HMM with length Q,

emission probabilities Pem, transition probabilities Ptr,
sequence S with length L

Output: Score of the best alignment of S with the
profile HMM

1: for i← 1 to L do
2: for j ← 1 to Q do
3: M [i, j]← Pem(Mj , Si) +

max


M [i− 1, j − 1] + Ptr(Mj−1,Mj)
I[i− 1, j − 1] + Ptr(Ij−1,Mj)
D[i− 1, j − 1] + Ptr(Dj−1,Mj)
B[i− 1] + Ptr(B,Mj)

4: I[i, j]← Pem(Ij , Si) +

max

{
M [i− 1, j] + Ptr(Mj , Ij)
I[i− 1, j] + Ptr(Ij , Ij)

5: D[i, j]← max

{
M [i, j − 1] + Ptr(Mj−1, Dj)
D[i, j − 1] + Ptr(Dj−1, Dj)

6: end for
7: N [i]← N [i− 1] + Ptr(N,N)
8: E[i]← max1≤j≤Q(M [i, j] + Ptr(Mj , E))

9: J [i]← max

{
J [i− 1] + Ptr(J, J)
E[i] + Ptr(E, J)

10: B[i]← max

{
N [i] + Ptr(N,B)
J [i] + Ptr(J,B)

11: C[i]← max

{
C[i− 1] + Ptr(C,C)
E[i] + Ptr(E,C)

12: end for
13: return C[L] + Ptr(C, T )

Algorithm 2 shows the MSV algorithm, which has time
complexity O(L×Q).

Algorithm 2 MSV algorithm
Input: Profile HMM with length Q,

emission probabilities Pem, transition probabilities Ptr,
sequence S with length L

Output: Score of the best alignment of S with the
profile HMM
for i← 1 to L do

for j ← 1 to Q do
M [i, j]← Pem(Mj , Si) +

max

{
M [i− 1, j − 1]
B[i− 1] + Ptr(B,Mj)

end for
N [i]← N [i− 1] + Ptr(N,N)
E[i]← max1≤j≤Q(M [i, j])

J [i]← max

{
J [i− 1] + Ptr(J, J)
E[i] + Ptr(E, J)

B[i]← max

{
N [i] + Ptr(N,B)
J [i] + Ptr(J,B)

C[i]← max

{
C[i− 1] + Ptr(C,C)
E[i] + Ptr(E,C)

end for
return C[L] + Ptr(C, T )

66 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



Algorithm 3 SSV algorithm
Input: Profile HMM with length Q,

emission probabilities Pem, transition probabilities Ptr,
sequence S with length L

Output: Score of the best alignment of S with the
profile HMM
for i← 1 to L do

for j ← 1 to Q do
M [i, j]← Pem(Mj , Si) +M [i− 1, j − 1]

end for
E[i]← max

{
E[i− 1]
max1≤j≤Q(M [i, j])

end for
return E[L]

Figure 2(a) shows the score matrix and vectors used in
the MSV algorithm and represents the data dependences for
computing the scores by arrows. Although it has the same
time complexity as the Viterbi algorithm, the MSV algorithm
performs fewer computations and has less data dependences,
due to states I and D removal. As a consequence, all cells in
a same row of matrix M can be computed in parallel, while
successive rows must still be computed sequentially.

Matrix M
N B E J C0 · · · j − 1 j · · · Q

}

0

...

i− 1

i

...

L

(a)

Matrix M
E0 · · · j − 1 j · · · Q

}

0

...

i− 1

i

...

L

(b)

Fig. 2
DATA DEPENDENCES IN THE (A) MSV AND (B) SSV ALGORITHMS

The SSV algorithm is a further simplification of the MSV
algorithm obtained by removing the J state, and, as a
consequence, the feedback loop. This approach has the goal
of improving performance at the expense of accuracy loss,
because multi-hit alignments between the sequence and the

profile HMM are no longer possible. Algorithm 3 shows the
SSV algorithm, which has time complexity O(L×Q). Despite
having the same time complexity as the previous algorithms,
the SSV algorithm performs fewer computations and has
significantly reduced data dependences, which are shown in
Figure 2(b). Again, it is possible to compute in parallel all
cells in a same row of matrix M .

3. Related Work
Cluster-based solutions are used to improve HMMER2

performance, exploiting sequence parallelism only in Viterbi
algorithm [8], [9]. The idea is that, when comparing a set
of sequences to a profile HMM, there are no dependences
between the score matrices corresponding to two distinct
sequences, therefore the matrices can be computed in parallel.

Most FPGA (Field-Programmable Gate Array)
solutions [10], [11], [12], [13] use a systolic array and
implement only the HMMER2 Viterbi algorithm, eliminating
state J and exploiting anti-diagonal data parallelism, but
decreasing similarity score accuracy. Some accelerators
exploit limited sequence parallelism [11], [14], while others
apply strategies to reduce the accuracy loss [12], [13].
Abbas and Derrien [15] implement a FPGA accelerator for
the HMMER3 MSV and Viterbi algorithms, rewriting the
recurrence equations to expose more parallelism.

ClawHMMER [16] is an implementation of only the Viterbi
algorithm on GPU using the Brook language. It uses profile
HMMs with only M , I , and D states and exploits sequence
parallelism. The sequences are sorted by length and divided
into batches, in order to fit in GPU memory and provide load
balance. Executing on a ATI R520, it reached a speedup of 36
compared to HMMER2 executing on Intel Pentium 4 2.8GHz.

Walters et al. [17] implements only the Viterbi algorithm
on GPU, using the CUDA programming model and exploiting
sequence parallelism. The sequences are sorted by length to
provide load balance and the inner loop of Viterbi algorithm
is unrolled. Score matrices are stored in GPU global memory
and accessed with coalescency, while transition and emission
probabilities are kept in constant and texture memory. Using a
GeForce GTX 8800 Ultra, they reached speedups between 12
and 38.6 compared to HMMER2 executing on AMD Athlon
2.2GHz.

CuHMMER [18] also implements only the Viterbi algorithm
on GPU with CUDA, exploiting sequence parallelism. The
sequences are grouped based on their length to provide load
balance, and transition and emission probabilities are stored in
GPU shared or texture memory. Using a GeForce GTX 8800, it
reached speedups between 13 and 45 compared to HMMER2
executing on AMD Athlon64 X2 Dual Core processor.

Du et al. [19] implements only the Viterbi algorithm on
GPU using CUDA and profile HMMs with only M , I , and
D states. Since the J state does not exist, the feedback
loop is broken and it is possible to compute M , I , and D
anti-diagonal cells in parallel, one anti-diagonal at a time. They
implement three different approaches concerning the score
matrices storage. Using a GeForce GTX 9800, they reached

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 67



speedups between 1.97 and 72.21 compared to HMMER2
executing on Intel Dual Core 2.83GHz.

Ganesan et al. [20] implements only the Viterbi algorithm
on GPU using CUDA. They iterate the Viterbi algorithm
recurrences, allowing cells of the same row of M and D score
matrices to be computed in parallel, while successive rows are
computed sequentially. Using a cluster of four NVIDIA Tesla
C1060, they reached a speedup of 100 compared to a serial
implementation of the Viterbi algorithm executing on AMD
Opteron 2.33GHz.

Quirem et al. [21] implements only the MSV algorithm on
GPU using CUDA. Each sequence to be analyzed is assigned
to a different block, and the threads of a block compute
the cells in a same row of the score matrix in parallel.
Optimizations such as asynchronous data transfer and kernel
execution, and the use of pinned memory are applied. They
achieved speedups between 10 and 15, executing on a NVIDIA
Tesla C1060, compared to HMMER3 executed on the host.

Li et al. [22] also implements only the MSV algorithm
on GPU using CUDA. They perform coalesced memory
access, fetch multiple data chunks from memory at once, keep
frequently used data in registers, convert sequences symbols to
numbers to simplify operations, sort the sequences by length
to provide load balance, perform asynchronous transfers, and
store the probabilities in the texture memory. A speculative
approach for the MSV algorithm is adopted, where the outer
loop is unrolled by a factor of 2 and the score B[i] is computed
without considering the transition J→B. When the speculation
fails, the sequence score is recalculated on the host. Executing
on Intel Xeon E5506 with a NVIDIA Tesla C2050, they
achieved speedups up to 6.5 compared to HMMER3 with SSE
executed on a single core.

In general, FPGA accelerators achieve good performance
results, at the expense of accuracy loss, while cluster solutions
produce accurate similarity results, however with smaller
performance gains. CUPS performance results are not reported
for the described GPU solutions.

To the best of our knowledge, there are not in the literature
solutions implementing the SSV algorithm in GPU or other
parallel computing platform, apart from the HMMER 3.1 tool
suite. As a consequence, all works described in this section
compared their results to previous and slower versions of
HMMER, in which the fast SSV algorithm was not used.

4. GPU Solution to Sequence-Profile
Comparison

We developed a host-GPU solution for the sequence-profile
comparison, using C++ and CUDA. The solution receives as
inputs a set of sequences to be compared and a profile HMM
representing a family, and computes the similarity score of the
best alignment between each sequence and the profile HMM.

4.1 Chain of Filters
Our solution implements the chain of filters shown in

Figure 3. Each box represents a filter which executes an

algorithm and the arrows represent the paths that a sequence
being compared can take. Each sequence is compared by one
or more algorithms until it is discarded or accepted, when the
final score of the sequence is obtained. The acceptance criteria
used after each filter are based on those of the HMMER 3.1
hmmsearch tool.

Sequences SSV

Discard

MSV

Discard

Viterbi

Discard

Accept

Fig. 3
CHAIN OF FILTERS OF THE PROPOSED HOST-GPU SOLUTION

The initial SSV and MSV filters receive many more
sequences than the final Viterbi filter. Therefore, our efforts
to improve performance are focused on the initial filters. The
SSV and MSV filters are implemented as kernels running
on GPU, while the Viterbi algorithm executes on the host
processor. The host also controls the path that a sequence
shall take: after a sequence is compared by a filter, the host
decides, based on the sequence partial score, if the sequence
is discarded or forwarded to the next filter.

4.2 Parallelism Approach
Both MSV and SSV kernels were modeled in a way

to exploit simultaneously task and data parallelism. We
exploit task parallelism assigning distinct sequences to each
CUDA block. Since the comparison of distinct sequences
are independent from each other, several sequences can
be compared simultaneously by executing several blocks
concurrently on the GPU. On the other hand, data parallelism
is exploited through the many threads of each block, which
compute the cells in the same row of score matrix M in
parallel.

Figure 4 illustrates this approach, where an execution space
is shown with a grid of n blocks, each block with several
threads. The distinct sequences S0, ..., Sn−1 are assigned to the
blocks, so each block performs the comparison of a sequence
to the profile HMM (task parallelism). The threads of a block
compute in parallel the cells in the same row of matrix M
corresponding to the sequence assigned to that block (data
parallelism).

4.3 MSV Kernel with Optimized Reduction
The MSV kernel executes a sequential loop with L iterations

to compute matrix M and other score vectors, where at
iteration i, Q threads compute row i of M in parallel, in a
way that thread j computes cell M [i, j]. After computing row
i, a reduction operation is performed to obtain E[i] as the
maximum among the cells in this row. The reduction operation
is performed once for each iteration of the sequential loop with
L iterations. By the end of all iterations, the score of the best
alignment is obtained.

68 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



... ...

Grid

Block 0 Block n− 1

...

Block n− 1

Thread 0 Thread 1
...

GPU execution space

S
eq
u
en
ce
S
0

S
eq
u
en
ce
S
n
−
1

Matrix M Matrix M

...

th
re
ad

0
th
re
ad

1
th
re
ad

2

...

th
re
ad

0
th
re
ad

1
th
re
ad

2

...

Block 0 Block n− 1

Fig. 4
PARALLELISM IN THE GPU SOLUTION: TASK PARALLELISM

(COMPARISON OF DISTINCT SEQUENCES BY DIFFERENT BLOCKS) AND

DATA PARALLELISM (COMPUTATION OF CELLS OF SCORE MATRIX M BY

THREADS OF A BLOCK)

The reduction operation reduces a collection of data (a
vector) into a single value, using an associative binary
operation, which in our case is the maximum operation.
Finding the maximum of Q numbers in parallel is performed
in log2Q sequential steps. At each step, the first half of the
vector is compared to the second one, discarding half of the
values and writing the maximum values in the first half. This
half is used as the input to the next step. By the end of log2Q
steps, the maximum value of the vector is obtained at the first
position of the vector. The comparisons performed in a same
step are executed in parallel by different threads. At the end
of each step, a barrier synchronization is needed to avoid race
conditions.

In our GPU solution, this reduction operation is optimized
as follows. The loop unrolling technique is applied, unrolling
the last six iterations of the log2Q steps. These iterations find
the maximum among the 64 values (log2 64 = 6) in the first
positions of the vector, which is performed by 32 threads, that
is, a warp. Since the threads in a warp execute synchronously,
the barriers between these six steps can be removed. Barrier
synchronizations degrade performance, therefore minimizing
them improves the performance of the GPU solution. The
other iterations are also unrolled, in order to simplify index
computations and reduce loop overhead, however their barriers
must be kept.

4.4 SSV Kernel with Optimized Reduction
Both MSV and SSV algorithms (Algorithms 2 and 3)

compute E[i] as the maximum value of row i of matrix M .
However, in MSV algorithm E[i] is used to compute C[i],
while there is not vector C in SSV algorithm. This latter

algorithm finds the maximum value in vector E, in order to
obtain the score of the best alignment.

The SSV kernel of the GPU solution executes a sequential
loop with L iterations to compute matrix M , where at iteration
i, Q threads compute row i of M in parallel, in a way
that thread j computes cell M [i, j]. After computing row
i, each thread j compares M [i, j] to the maximum value it
accumulated in the previous loop iterations. Then, each thread
j obtains the maximum value of column j of matrix M , in
parallel to the other threads.

By the end of all iterations, one reduction operation is
performed to obtain the score of the best alignment among
the Q maximum values accumulated. Thus, the SSV kernel
produces the same result as Algorithm 3, however performing
the operations in a different order than that indicated in the
algorithm, so that we are able to better map the operations
to the GPU hardware and, consequently, to exploit more data
parallelism.

Another advantage of this modification is that the number
of reduction operations performed in the SSV kernel is
decreased by a factor of L, in comparison to the MSV kernel.
Besides, the number of barrier synchronizations needed for the
reduction operations is also decreased by a factor of L.

4.5 Optimizations
Initially we developed a basic GPU implementation for the

sequence-profile comparison, with no optimizations applied.
Then, we applied several optimizations to our basic GPU
implementation. We evaluated the optimizations separately,
in order to identify which ones provide performance gains,
and then, we evaluated how they behave in combination with
the others. Finally, an optimized GPU implementation was
developed, containing the selected optimizations.

Our GPU solution is able to handle input cases with profile
HMM model and/or sequence length longer than the maximum
number of threads of the GPU used. In order to do that,
we implemented both MSV and SSV kernels using the tiling
technique [23], with each thread being associated to several
cells, instead of only one.

Table 1 lists the main optimizations evaluated and which
ones resulted in performance gains and were applied in the
final optimized version of the SSV and MSV kernels of the
GPU solution. Besides these optimizations, other established
optimizations were also applied to both kernels, such as
coalesced access to global memory, storing score structure in
shared memory, keeping frequently used data in registers and
reducing thread divergences.

5. Results and Discussion
The execution platform used in this work consists of a GPU

NVIDIA GeForce GTX 570 connected to a host with Intel
Core i7-3770S processor and 8GB RAM. We evaluated our
solution using the entire UniProtKB/Swiss-Prot [1] database,
composed of 540,732 sequences, with average and maximum
length of 355.24 and 35,213, respectively. Ten sequence
families were selected from the Pfam database [24] for our

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 69



Table 1
OPTIMIZATIONS APPLIED TO THE SSV AND MSV KERNELS OF THE GPU

SOLUTION

Optimization Kernels SSV MSV
Pinned memory use in host-GPU transfers • •
Max operation reduction optimized at compile time • •
Representing scores with natural numbers • •
Emission probabilities stored in texture memory •
Padding in emission probabilities to achieve coalescency •
Padding in sequences to achieve coalescency •
Sequences sorted by length to provide load balance • •
Loop unrolling (factor 8) of outer loop • •
Multiples streams to overlap GPU computation and • •

host-GPU transfers
Vectorized access to sequences •
Vectorized access to emission probabilities • •
Tiling to improve occupancy and handle long HMMs • •

experiments. Table 2 lists the selected families and the length
of their corresponding profile HMMs.

Table 2
SELECTED FAMILIES FROM PFAM DATABASE USED IN THE EXPERIMENTS

Family Profile HMM length
Avian_gp85 256
CABIT 256
DUF530 512
PaRep2b 512
Flu_PB2 759
Totivirus_coat 759
ACR_tran 1,021
RdRP_5 1,271
Bac_GDH 1,528
AvrE 1,774
Average 864.80

In our experiments, we measured the execution
time necessary to compare all sequences in the
UniProtKB/Swiss-Prot database to each selected family,
using our GPU solution and HMMER 3.1 hmmsearch tool.
HMMER 3.1 was executed on the host, with six different
configurations, namely using 1, 2, or 4 cores of the processor,
with the SSE2 vector instructions enabled or not.

Table 3 shows, for the main optimizations listed in
Table 1, the speedup they produced compared to the basic
non-optimized GPU solution, for the kernels SSV and MSV.
The empty fields correspond to profile HMMs with length
longer than 1024. The tiling technique has not been applied
to the basic non-optimized GPU solution yet, therefore this
solution is not able to handle these families.

Since basically all optimizations resulted in performance
gains for the SSV kernel, most of them were adopted on the
final optimized GPU solution. On the other hand, for the MSV
kernel, some optimizations did not result in performance gains.
In most cases, the problem was related to the use of additional
registers and consequently lower occupancy rates of the GPU.

Figure 5 shows the average execution time of the optimized
GPU solution and HMMER 3.1 with the six different
configurations, using logarithmic scale. These results represent

Table 3
SPEEDUP PRODUCED BY MAIN OPTIMIZATIONS, FOR KERNELS SSV AND

MSV, WRT. TO THE BASIC NON-OPTIMIZED GPU SOLUTION

O
pt

im
iz

at
io

n

R
ed

uc
tio

n
op

tim
iz

ed
in

co
m

pi
le

tim
e

Sc
or

es
as

na
tu

ra
l

nu
m

be
rs

E
m

is
si

on
pr

ob
ab

ili
tie

s
in

te
xt

ur
e

m
em

or
y

Pa
dd

in
g

in
em

is
si

on
pr

ob
ab

ili
tie

s

L
oo

p
un

ro
lli

ng

V
ec

to
ri

ze
d

ac
ce

ss
to

se
qu

en
ce

s

V
ec

to
ri

ze
d

ac
ce

ss
to

em
is

si
on

pr
ob

ab
ili

tie
s

T i
lli

ng

Family/Kernel MSV SSV SSV SSV SSV SSV SSV MSV SSV MSV
Avian_gp85 1.2 1.1 1.0 1.0 1.5 1.5 1.0 2.1 1.6 2.1
CABIT 1.2 1.1 1.0 1.0 1.5 1.5 1.0 2.1 1.6 2.1
DUF530 1.2 1.1 1.1 1.0 1.5 1.4 1.9 3.6 2.1 3.2
PaRep2b 1.2 1.1 1.1 1.0 1.5 1.4 1.9 3.6 2.1 3.2
Flu_PB2 1.1 1.0 1.2 1.1 1.4 1.4 2.1 4.7 2.0 3.5
Totivirus_coat 1.1 1.0 1.2 1.1 1.4 1.4 2.1 4.7 2.0 3.5
ACR_tran 1.2 1.0 1.0 1.1 1.5 1.5 2.8 6.5 2.4 4.9
RdRP_5 - - - - - - 1.7 2.9 1.4 2.0
Bac_GDH - - - - - - 1.6 2.6 1.4 1.8
AvrE - - - - - - 1.9 4.0 1.5 2.8

the average running time for comparing all sequences in the
UniProtKB/Swiss-Prot database to each selected family from
Pfam database. The GPU solution average execution time
shows an approximately one order of magnitude improvement
with respect to HMMER 3.1 average execution time, when
SSE2 instructions are enabled. If these vector instructions are
not used, the improvement is approximately three orders of
magnitude.

500

103

104

105

4.5× 105

1 2 4

HMMER 3.1 without SSE instructions

HMMER 3.1 with SSE instructions

• GPU solution

Number of cores used in the host

A
ve
ra
ge

ex
ec
u
ti
on

ti
m
e
(m

s)

×
× ×

◦
◦

◦

(l
og

sc
al
e)

Fig. 5
AVERAGE EXECUTION TIME OF GPU SOLUTION AND HMMER 3.1 (FOR

THE SIX CONFIGURATIONS)

Table 4 shows the speedups achieved by the optimized
GPU solution with respect to HMMER 3.1 with the
six different configurations. The GPU solution achieved
impressive speedups up to 1072.0 and 471.7 compared
to the sequential single-core and quad-core configurations,
respectively. Besides, the GPU solution also overcomes
HMMER 3.1 with SSE2 instructions enabled, reaching
speedups up to 28.8 and 8.8, for the single-core and quad-core
configurations, respectively.

70 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



Table 4
SPEEDUPS OF GPU SOLUTION WRT. HMMER 3.1, FOR COMPARING THE

ENTIRE UNIPROTKB/SWISS-PROT SEQUENCE DATABASE TO EACH FAMILY

(HMMER 3.1 EXECUTED WITH SIX DIFFERENT CONFIGURATIONS)

Family Without SSE instructions With SSE instructions
1 core 2 cores 4 cores 1 core 2 cores 4 cores

Avian_gp85 401.2 205.8 114.7 6.4 3.4 3.7
CABIT 405.7 208.1 114.9 6.9 3.7 3.4
DUF530 794.0 409.5 255.7 12.2 6.4 4.4
PaRep2b 799.6 413.0 267.5 12.7 6.7 4.5
Flu_PB2 683.0 355.5 289.7 11.6 6.1 3.7
Totivirus_coat 992.1 514.6 327.0 28.8 15.0 8.8
ACR_tran 1072.0 559.5 456.4 26.3 13.8 8.1
RdRP_5 750.5 397.3 364.5 12.4 6.5 3.6
Bac_GDH 934.9 495.0 471.7 18.7 9.7 5.6
AvrE 860.8 455.1 419.4 24.4 12.7 7.6

Another observation is the higher speedups obtained by the
families ACR_tran and Bac_GDH. The explanation lies in the
lengths of their profile HMMs, 1.021 and 1.528, respectively.
The profile HMM length is directly associated with the amount
of threads used in the GPU solution and the lengths of these
families, combined with the tiling technique applied, provide
better GPU occupancy rates.

We also report the performance using the throughput
measure CUPS (Cell Updates per Second), which indicates
how many cells of the dynamic programming matrices are
computed in one second. Table 5 shows the average and
maximum GCUPS (109 CUPS) achieved by the GPU solution
and HMMER3.1 (for the six configurations), for comparing the
entire UniProtKB/Swiss-Prot database to all selected families.

Table 5
GCUPS OF HMMER 3.1 (FOR SIX CONFIGURATIONS) AND GPU

SOLUTION

GCUPS HMMER 3.1 w/o SSE HMMER 3.1 w/ SSE GPU1 core 2 cores 4 cores 1 core 2 cores 4 cores
Average 0.38 0.73 1.02 20.35 38.75 57.47 286.12
Maximum 0.40 0.79 1.41 26.27 49.98 82.30 372.06

6. Conclusion
We developed of a high-performance GPU solution to

the sequence-profile comparison problem, and applied several
optimizations such as memory optimizations, padding, loop
unrolling, multiple streams and computation and transfers
overlapping, vectorized access, and tiling.

We performed a comprehensive performance evaluation
using a modest GPU and a large and representative biological
data set. The GPU solution achieved impressive speedups up to
1072.0 and 471.7 compared to the HMMER 3.1 tool running
on single-core and quad-core computers, respectively. Besides,
the GPU solution also overcomes HMMER 3.1 with SSE2
instructions enabled, reaching speedups up to 28.8 and 8.8,
for the single-core and quad-core configurations, respectively.

The GPU solution produced the maximum of 372.06
GCUPS, while HMMER 3.1 executing on a quad-core
computer with SSE2 instructions enabled produced the

maximum of 82.30 GCUPS. Using a more powerful GPU,
our solution would achieve an even better performance, since
less tiling would be necessary. We can also conclude that,
by modeling a problem properly and applying optimizations
targeting the platform, GPUs can reach high performances.

To the best of our knowledge, this is the first GPU-based
system proposed for the acceleration of the sequence-profile
comparison, which implements the SSV algorithm (introduced
in HMMER 3.1), besides the MSV algorithm. There are not
in the literature solutions implementing the SSV algorithm in
any parallel computing platform, apart from the HMMER 3.1
tool suite.

References
[1] T. UniProt Consortium, “Activities at the Universal Protein Resource

(UniProt),” NAR, vol. 42, no. D1, pp. 191–198, 2014.
[2] S. Eddy, “Accelerated Profile HMM Searches,” PLoS Computational

Biology, vol. 7, no. 10, pp. 1–16, 2011.
[3] Howard Hughes Medical Institute, “HMMER,”

http://hmmer.janelia.org/, last viewed July 2014.
[4] G. Forney Jr., “The Viterbi Algorithm,” Proc. of the IEEE, vol. 61, no. 3,

pp. 268–278, 1973.
[5] A. Melo and N. Moreano, Reconfigurable Embedded Control Systems:

Applications for Flexibility and Agility. IGI Global, 2010,
ch. FPGA-Based Accelerators for Bioinformatics Applications, pp.
311–341.

[6] A. Krogh, Computational Methods in Molecular Biology. Elsevier,
1999, vol. 32, ch. An Introduction to Hidden Markov Models for
Biological Sequences, pp. 45–63.

[7] S. Eddy and T. Wheeler, HMMER User’s Guide, 3rd ed., 2013.
[8] J. P. Walters, R. Darole, and V. Chaudhary, “Improving MPI-HMMER’s

Scalability With Paralell I/O,” in IPDPS, 2009, pp. 1–11.
[9] K. Jiang et al., “An Efficient Parallel Implementation of the Hidden

Markov Methods for Genomic Sequence-Search on a Massively Parallel
System,” TPDS, vol. 19, no. 1, pp. 15–23, 2008.

[10] K. Benkrid, P. Velentzas, and S. Kasap, “A High Performance
Reconfigurable Core for Motif Searching Using Profile HMM,” in AHS,
2008, pp. 285–292.

[11] A. C. Jacob et al., “Preliminary Results in Accelerating Profile HMM
Search on FPGAs,” in IPDPS, 2007, pp. 1–8.

[12] R. P. Maddimsetty et al., “Accelerator Design for Protein Sequence
HMM Search,” in SC, 2006, pp. 288–296.

[13] Y. Sun et al., “Accelerating HMMER on FPGAs Using Systolic Array
Based Architecture,” in IPDPS, 2009, pp. 1–8.

[14] S. Derrien and P. Quinton, “Parallelizing HMMER for Hardware
Acceleration on FPGAs,” in ASAP, 2007, pp. 10–17.

[15] N. Abbas and S. Derrien, “Accelerating HMMER on FPGA using
Parallel Prefixes and Reductions,” INRIA, France, Tech. Rep. 7370,
2010.

[16] D. Horn, M. Houston, and P. Hanrahan, “ClawHMMER: A Streaming
HMMer-Search Implementation,” in SC, 2005, p. 11.

[17] J. P. Walters et al., “Evaluating the use of GPUs in Liver Image
Segmentation and HMMER Database Searches,” in IPDPS, 2009, pp.
1–12.

[18] P. Yao et al., “CuHMMER: A Load-balanced CPU-GPU Cooperative
Bioinformatics Application,” in HPCS, 2010, pp. 24–30.

[19] Z. Du, Z. Yin, and D. Bader, “A Tile-based Parallel Viterbi Algorithm
for Biological Sequence Alignment on GPU with CUDA,” in IPDPS,
2010, pp. 1–8.

[20] N. Ganesan et al., “Accelerating HMMER on GPUs by Implementing
Hybrid Data and Task Parallelism,” in BCB, 2010, pp. 418–421.

[21] S. Quirem, F. Ahmed, and B. Lee, “CUDA Acceleration of P7Viterbi
Algorithm in HMMER 3.0,” in IPCCC, 2011, pp. 1–2.

[22] X. Li et al., “A Speculative HMMER Search Implementation on GPU,”
in IPDPS, 2012, pp. 735–741.

[23] D. Kirk and W. Hwu, Programming Massively Parallel Processors: A
Hands-on Approach. Morgan Kaufmann, 2010.

[24] R. Finn et al., “Pfam: the protein families database,” NAR, vol. 42,
no. D1, pp. 222–230, 2014.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 71



FPGA-Oriented Design of an FDTD Accelerator Based on
Overlapped Tiling

Yasuhiro Takei, Hasitha Muthumala Waidyasooriya, Masanori Hariyama and Michitaka Kameyama
Graduate School of Information Sciences, Tohoku University

Aoba 6-6-05, Aramaki, Aoba, Sendai, Miyagi, 980-8579, Japan
Email: {takei, hasitha, hariyama, kameyama}@ecei.tohoku.ac.jp

Abstract— In this paper, we introduce the overlapped
tiling to designing an FPGA-based FDTD accelerator
by using an OpenCL compiler. The OpenCL compiler
for FPGA enables us to reduce the design time of
the FPGA-based accelerators. However, the FPGA-
based accelerator generated from common OpenCL
codes cannot accelerate the processing efficiently in
some applications such as an FDTD computation.
To accelerate the FDTD computation, global memory
access can be reduced by storing the small partition of
the electronic and magnetic fields with enclosed areas
into the local memory. According to the result of the
implementation of the FDTD accelerator on the FPGA,
the processing speed with overlapped tiling is far
faster than that without overlapped tiling. Moreover,
the processing speed is faster than a GPU when the
number of grids is small.

Keywords: FPGA, OpenCL, FDTD method, Hardware
accelerator, Ovrerlapped tiling

1. Introduction
Recently, very large scale computing systems are

required for processing three-dimensional image pro-
cessing, electromagnetic simulation, fluid dynamics
and DNA sequence and so on. However, the power con-
sumption of high performance computer systems in-
creases year by year. Low power and high performance
systems for big data processing are strongly required.
FPGA-based accelerators are attracting attention for
such high-performance computing systems. The power
consumption of FPGAs is about one tenth of that of
GPUs. Moreover, very large scale architectures for
high performance computing can be implemented on a
FPGA because of the advancement of the process tech-
nology. One of the major problems of the FPGA-based

accelerator is a difficulty of designing the architecture.
The software-based design on CPUs and GPUs requires
only a software code by using C language or CUDA
[1]. On the other hand, the hardware-based design
on FPGAs requires the design of circuit modules for
calculations, controls and connecting to the host PC
by using a hardware design language(HDL). To get
the good performance on the FPGA-based accelerator,
the knowledge of the circuit design and a very long
time for designing the hardware are required.

To solve this problem, Altera Corporation released
Altera SDK for OpenCL [2] which is the OpenCL
compiler for FPGAs. OpenCL is the programming
language for multicore architectures, which is stan-
dardized by the Khronos group [3]. The source code
of the OpenCL is constituted by a host code and
kernels. The initialization, the data-transfer from the
host PC to the accelerator and running the kernels
are described in the host code. The parallelized com-
putation on the accelerator is described in the kernel
code. As a feature of the OpenCL, a common source
code can be run on different architectures, such as
multicore CPUs, GPUs, Intel Phi processors, CELL
processors and so on, by using suitable compilers for
each architecture. In order to implement an OpenCL
code on the FPGA board, Altera SDK for OpenCL
can be used as shown in Fig.1. This compiler generates
FPGA-based hardwares for calculation and connecting
to the host PC by PCI express automatically from the
OpenCL code. Hence, we can implement the FPGA-
based accelerators without the HDL design. Figure 2
shows the architecture model generated by Altera SDK
for OpenCL. This architecture has kernel pipelines, a
memory controller, a PCI express controller and inter-
connections. Compared with conventional accelerators
such as GPUs, this architecture has a high degree of

72 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



������ ��	
���
��������������������������������������	
�����

��������	 ���
�����
�������

������
�����������

��� �	���

����

�	�����
Fig. 1: OpenCL implementation on the FPGA

freedom for changing and optimizing the architecture
of the kernel pipelines and interconnections. Altera
SDK for OpenCL is used in recent studies such as
fractal image processing [4], AES encryption encoding
[5] and information filtering [6]. These studies achieved
low power and high performance computing compared
with CPUs and GPUs. In our previous work [7], we
implemented the FDTD method accelerator by using
Altera SDK for OpenCL. However the processing
speed of the FPGA-based accelerator was slower than
that of the GPU. In this paper, we improve the OpenCL
code for the FDTD method in order to achieve the
better performance on the FPGA. We introduce the
overlapped tiling in the electromagnetic field to reduce
the global memory access.

2. Implementation of the FDTD method
by using OpenCL

The FDTD method [8] has been widely used in elec-
tromagnetic simulation, analysis of sound wave and so
on. Since the computation of the FDTD method has a
high degree of parallelism, there are many works which
use computer clusters, GPUs [9], [10] and FPGAs
[11]，[12] to accelerate the FDTD method. Equation
(1) shows the electric field computation and Eqs.(2)
and (3) show the magnetic field computation. Electric
and magnetic fields inx, y, z directions are denoted by

�����������	
����	���������

���� ����	
����	����	������ �������
����	


��	���
��������

���

��	���
��������

��	���
��������

���

����

����������	
����	���������

���

Fig. 2: The architecture model generated by Altera
SDK for OpenCL

E andH respectively. The time step is denoted byn
and the coordinates of the 2D fields are denoted by
i and j. Note that the boundaries of the electric and
magnetic fields are calculated differently. Parameters
Px, Py,Qx, Qy are determined by the permittivity, the
permeability, the size of grids, and the length of the
time step. A detailed description of the FDTD method
is given in [8].

En+1
z (i, j) = En

z (i, j)

−Py(i, j)
{

H
n+ 1

2
x (i, j + 1/2)−H

n+ 1
2

x (i, j − 1/2)
}

+Px(i, j)
{

H
n+ 1

2
y (i + 1/2, j)−H

n+ 1
2

y (i− 1/2, j)
}

(1)

H
n+ 1

2
x (i, j + 1/2) = H

n− 1
2

x (i, j + 1/2)

−Qy(i, j) {En
z (i, j + 1)− En

z (i, j)}
(2)

H
n+ 1

2
y (i + 1/2, j) = H

n− 1
2

y (i + 1/2, j)

−Qx(i, j) {En
z (i + 1, j)− En

z (i, j)}
(3)

In our previous OpenCL code in [7], the electric and
magnetic field data in the global memory are accessed
in parallel. Hence the performance of the execution of
this kernel strongly depends on the bandwidth of the
global memory.

However, the bandwidth of the global memory on
the FPGA is narrower than that of the GPU as shown
in Table 1. Hence the FPGA accelerator cannot achieve
better performance than the GPU. To achieve high
performance computing on the FPGA board, it is
important to improve the OpenCL code by reducing
the global memory access.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 73



Table 1: Bandwidth of the global memory
FPGA (StratixV 5SGXA7) GPU(GeforceGTX 580)

25.6GB/s 192.4GB/s

To reduce the global memory access, we introduce
the overlapped tiling as described in section 3.

3. Overlapped tiling

Ovelapped tiling is one of the advanced techniques
of the loop tiling. Loop tiling divides a big loop
into smaller loops to optimize the cache hit rating
[13]. This technique is widely used in the stencil
computation includes the FDTD computation [14],[15].
In the stencil computation, the value of neighbor grids
are used for the computing the value at the next time
step as shown in Fig 3. In order to reduce the global
memory access by using the loop tilling, the grid data
in enclosed area of a tile must be also stored into the
local memory.

Hence the overlapped tiling is proposed in order
to reduce the communication overhead [16]. Figure 4
shows an example of the overlapped tiling model of
the FDTD computation. Letn×m be the area of the
tile and t be the iteration of time steps with the local
memory access,(n+2t)×(m+2t) grids in the electric
and magnetic fields are stored into the local memory.
This enclosed area of the tile is often called "ghost
zone" [17], and the ghost zone is overlapped neighbor
tiles. The area of a ghost zone expands as the iteration
of the time steps with the local memory access. The
FDTD computations in this area are done without the
global memory access. After the FDTD computations
finish, the values in the tile area is stored into the
global memory. The overlapped tiling is often used in
the stencil computation on GPUs since the overhead of
the synchronization between processing elements can
be reduced [17], [18].

Figure 5 shows the flowchart of the FDTD computa-
tion with overtapped tiling. The electric and magnetic
field data in the tile with the ghost zone is transferred
from the global memory to the local memory. Then the
FDTD computations in the tile are done prescribe time
steps. These FDTD computations are fully pipelined
with the pragma of loop unrolling [2], [19]. After the
FDTD computations finish, the electric and magnetic
field data in the tile are transferred from the local
memory to the global memory.

Fig. 3: Stencil computing with neighbor grids

���

���

�

����

����	
���

���

������	�
��
�����	� �	���

����	
���
Fig. 4: Overlapped tiling

4. Evaluation
We implement the FDTD accelerator by using

OpenCL on "Nallatech P395-D8 FPGA board" [20].
This FPGA board has the Altera StratixV GX C8，four
DDR3-SDRAMs(8GB×4) and a PCI-Express. We use
Altera SDK for OpenCL 13.1 for the compilation on
the FPGA.

Figure 6(a) shows the simulation model. This model
has N× N grids (N=128,256,512). The area of tiles
as shown in Fig. 4 is 32× 8 grids. The electric
field at (N/2,N/2) is excited as shown in Fig.6(b). The
boundary area is considered as the perfect conductor
(Ez = 0). The single-precision floating-point is used
for the calculation.

To optimize the architecture of the FDTD accel-
erator, it is important to consider with the tradeoff
between the amount of the computation and the times
of the global memory access. This tradeoff depends
on the iterations of time steps with local memory
access. Hence we evaluate a relationship between the
performance on the FPGA and the iterations of time
steps with local memory access.

Table 2 shows the resource usage of the FDTD
accelerators with one karnel pipeline as shown in Fig.

74 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



����������	
��

�������
�����

����������	
��

���	����
�����

Start: n=0

Initial data transfer

����
���	����
���� ����

T>Max
No

Yes
Finish

loop>TSTEP

����
���	����
���� ����

YesNo

Fig. 5: The flowchart of the FDTD method with
overlapped tiling

2. As the time step iterations with local memory access
increase, the resource usage becomes larger since the
number of the pipeline stages on the kernel pipeline
increases by using the loop unrolling.

Figures 7(a) and 7(b) show the relationship of the
processing time and iterations of the time steps with
local memory access (TSTEP_LOOP) on the FPGA
and the GPU (nvidia Geforce GTX 580). As shown in
these figures, the processing time on the FPGA is the
smallest when TSTEP_LOOP is five. Moreover, most
of the processing time of the GPU is larger than that
of the FPGA. One of the reasons is that the tile size
is not suitable for the warp size on the GPU. These
results show that the OpenCL code which is suitable
for FPGAs is not always suitable for GPUs.

Table3 shows the comparison of the processing time
on the FPGA. The processing speed of the FPGA with
overlapped tiling is about 5-20 times as fast as that
of the FPGA without overlapped tiling. This result
shows that it is effective for accelerate of the FDTD
computation to reduce the global memory access by

Table 3: Processing time of the FPGA with overlapped
tiling(s) (Time steps=1000)

Grids FPGA without tiling FPGA with tiling
128×128 2.030 0.070
256×256 2.780 0.250
512×512 5.400 1.050

Table 4: Processing time of the CPU, the GPU and the
FPGA(s) (Time steps=1000)

CPU GPU FPGA
Grids (Corei7920) (GTX 580) (P395-D8)

128×128 0.249 0.156 0.070
256×256 1.294 0.203 0.250
512×512 11.232 0.249 1.050

using the overlapped tiling.
To compare the processing speed of the FPGA-

based accelerator with that of CPUs and GPUs, we
implement the FDTD method by C language on "Intel
Corei7 920", and by OpenCL without tiling on "nvidia
Geforce GTX 580". Table 4 shows the comparison
of the processing time on the FPGA and the CPU
and GPU. When the number of grids is small, the
processing speed of the FPGA is the fastest in all
devices. On the other hand, the processing speed of the
FPGA is slower than that of the GPU when the number
of grids is large. In order to get better performance
on the FPGA, the degree of parallelism should be
increased by implementing more kernel pipelines.

5. Conclusion

In this article, we implement the FDTD computing
with overlapped tiling on the FPGA board by using the
OpenCL compiler. The processing speed of the FPGA
with overlapped tiling is about 5-20 times as fast as
that of the FPGA without overlapped tiling. Moreover,
the processing speed of the FPGA is faster than that of
GPU when the number of grids is small. To optimize
the performance on the FPGA-based architecture, it is
important to estimate the performance from the design
parameters such as the iterations of time steps with
local memory access and the area of the tiles. In future
works, we formulate the estimation of the processing
time from input design parameters and the optimal
design parameters are chosen for implementing the best
architecture on the FPGA.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 75



Table 2: Resource usage
Time steps LEs FFs DSPs RAMs

3 105906(20%) 156517(15%) 12(1%) 1225(48%)
5 144072(26%) 187679(18%) 20(1%) 1403(55%)
6 148848(28%) 201450(19%) 24(1%) 1563(61%)

����������	
�����������

��� ���
�

���������

����������	
�����������
(a) Simulation model

�

��

��

����

(b) Excitation of the electric field

Fig. 6: Set up of the simulation

Acknowledgment

This sutdy is supportted by MEXT KAKENHI grant
number 24300013 and Grant-in-Aid for JSPS Fellows
grant number 15J04973. Also, this study is supported
by OTB Transnational Inc.

References

[1] NVIDIA Corporation, “NVIDIA CUDA Programming
Guide” Ver2.2.1, 2009.

[2] Altera corpolation, “Altera SDK for OpenCL Programming
Guide”, http://www.altera.co.jp/literature/hb/opencl-
sdk/aocl_programming_guide.pdf

[3] Khronos group, http://www.khronos.org/opencl/

[4] D. Chen and D. Singh, “Fractal Video Compression in
OpenCL:An Evaluation of CPUs, GPUs, and FPGAs as Ac-
celeration Platforms”, Design Automation Conference (ASP-
DAC) 18th Asia and South Pacific, pp.297-304, 2013.

[5] Nallatec, “40Gbit AES Encryption Using OpenCL and FP-
GAs”, http://www.nallatech.com/images/stories/technical
_library/white-papers/40_gbit_aes_encryption_using_opencl
_and_fpgas_final.pdf

[6] D. Chen and D. Singh, “Using OpenCL to Evaluate the Effi-
ciency of CPUs, GPUs, and FPGAs for Information Filtering
”, Field Programmable Logic and Applications (FPL), 2012
22nd International Conference on. IEEE, pp.5-12, 2012.

[7] Yasuhiro Takei, Hasitha Muthumala Waidyasooriya, Masanori
Hariyama and Michitaka Kameyama, “Design of an FPGA-
Based FDTD Accelerator Using OpenCL ", International
Conference on Parallel and Distributed Processing Techniques
and Applications (PDPTA), pp.371-375, 2014

[8] H. S. Yee, “Numerical Solution of Initial Boundary Value
Problems Involving Maxwell’s Equations in Isotropic Media”,
IEEE Transactions on Antennas and Propagation, Vol.14,
No.3, pp.302-307, 1966.

[9] Z. Bo, X. Zheng-hui, R. Wu, L. Wei-ming and S. Xin-
qing, “Accelerating FDTD algorithm using GPU computing”,
International Conference on Microwave Technology & Com-
putational Electromagnetics (ICMTCE), pp.410-413, 2011.

[10] T. Nagaoka and S. Watanabe, “A GPU-based calculation us-
ing the three-dimensional FDTD method for electromagnetic
field analysis”, International Conference on Engineering in
Medicine and Biology Society (EMBC), pp.327-330, 2010.

[11] W. Chen, P. Kosmas, M. Lesser and C. Rappaport, “An
FPGA Implementation of the Two Dimensional Finite Dif-
ference Time Domain (FDTD) Algorithm”, ACM/SIGDA
International Symposium on Field-Programmable Gate Ar-
rays(FPGA), pp.213-222, 2004.

[12] K. Sano, Y. Hatsuda, W. Luzhou and S. Yamamoto, “Perfor-
mance Evaluation of Finite-Difference Time-Domain (FDTD)
Computation Accelerated by FPGA-based Custom Comput-
ing Machine”, Interdisciplinary Information Sciences, Vol.15,
No.1, pp.67-78, 2009.

[13] M.E. Wolf and M.S. Lam, 1991 “A Data Locality Optimizing
Algorithm", ACM Sigplan Notices, pp.30-44, 1991.

[14] G. Rivera and C. Tseng “Tiling Optimizations for 3D Scien-
tific Computations", ACM/IEEE SC2000 Conference, 2000.

[15] Z. Li , Y. Song, “Automatic Tiling of Iterative Stencil Loops",
ACM Transactions on Programming Languages and Systems
, pp.975-1028, 2004.

[16] S. Krishnamoorthy, M. Baskaran, U. Bondhugula, J. Ra-
manujam, A. Rountev, P. Sadayappan, “Effective automatic
Parallelization of Stencil Computations", ACM SIGPLAN
conference on Programming language design and implemen-
tation, pp.235-244, 2007.

[17] J.Meng, and K. Skadron, “A Performance Study for Iterative

76 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



����

����

����

����

����
���������	
����
���

��	

�

���

���

���

���

� 
 � � �
����������

��	
���

(a) (N=256)

����

����

����

����
���������	
����
���

���

�

	���


���

����


 � � � �
����������

���
���

(b) (N=512)

Fig. 7: Processing time vs time step iterations on local
memory

Stencil Loops on GPUs with Ghost Zone Optimizations",
International Journal of Parallel Programming 39.1,pp115-
142,2011.

[18] J. Holewinski, L.-N. Pouchet, and P. Sadayappan, “High-
Performance Code Generation for Stencil Computations on
GPU Architectures", In Proceedings of the 26th ACM interna-
tional conference on Supercomputing (ICS ’12), pp.311-320,
2012

[19] Altera corpolation, “Altera SDK for OpenCL Opti-
mization Guide”, http://www.altera.co.jp/literature/hb/opencl-
sdk/aocl_optimization_guide.pdf

[20] Nallatec, “OpenCL FPGA Accelerator Cards”,
http://www.nallatech.com/opencl-fpga-accelerator-cards.html

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 77



Very Large Scale ReliefF Algorithm on GPU for Genome-Wide
Association Study

Kwan-Yeung Lee1,∗, Pengfei Liu2,∗, Kwong-Sak Leung3 and Man-Hon Wong4
Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong, China

Abstract— The advancement in DNA sequencing technology
has led to an information bloom on sequencing data and
the rise of new data-driven researches like genome-wide
association study (GWAS). One major challenge in GWAS is
to identify a small set of disease associated single nucleotide
polymorphisms (SNPs) out of millions of them in the human
genome. Feature selection is a popular technique to reduce
the number of features which can boost the efficiency of
follow-up analyses. In this paper, we optimized a feature
selection algorithm specifically designed for GWAS called
Very Large Scale ReliefF (VLSRF) through General-Purpose
Computing on Graphics Processing Unit (GPGPU). Exper-
imental results showed that our GPU-based VLSRF and
ReliefF achieved up to 100 times speed up relative to a
CPU based ReliefF on synthetic datasets. On the other hand,
our GPU-based VLSRF was tested on a real dataset from
a GWAS Parkinson’s disease study in the National Human
Genome Research Institute [1]. The SNPs identified by our
GPU-based VLSRF are consistent with existing literature.

Keywords: GPU, feature selection, VLS Relief, Parallization

1. Introduction
Nowadays, next-generation sequencing technologies allow

scientists to sequence a large number of samples in a
reasonable time and cost [2], [3] which encourages biologist
to perform research in data-driven manner e.g. genome-
wide association studies (GWASs). In GWAS, statistical or
computational analyses are applied to compare the DNA
sequences of healthy samples (controls) and patients of a
specific genetic disease (cases) in order to identify single
nucleotide polymorphisms (SNPs) [4] that are associated to
complex genetic diseases like cancer [5] and hepatitide [6].

A single nucleotide polymorphism (SNP) is a genetic
variation of a single nucleotide at a specific location of
the DNA sequences across the samples in a population. As
human is a diploid and each chromosome has two different
copies, the genotype of a SNP is composed by two alleles
(nucleotides). A SNP can be associated to a genetic disease
as a single SNP or as a SNP-SNP interaction. SNPs which
are associated to a genetic disease independently could be
found through statistical test like p-value testing. Although

∗These two authors contribute equally to the work.

most of the independent disease associated SNPs were found
in various research, those SNPs alone were insufficient in
explaining the heritability of those genetic diseases they
were associated to. One possible reason is that some dis-
ease associated SNP-SNP interactions remain undiscovered.
However, it is difficult to detect these interactions. It is
well-known that independent marginal effect of each SNP
in most SNP-SNP interactions is small [7], [8]. Therefore
non-linear SNP-SNP interactions can model the cause of a
genetic disease better than linear models. However, detecting
non-linear disease-associated SNP-SNP interactions suffers
from the curse of dimensionality. One possible approach to
improve the efficiency is to reduce the search space through
carefully selecting a subset of SNPs that have high potential
to be disease associated.

Relief-F is one of the most popular feature selection
algorithms in analyzing GWAS datasets. Relief-F is proved
to be better in selecting the interacting SNPs than traditional
feature selection algorithms like chi-square or information
gain which are based on the statistic of each individual
feature [9]. Since the accuracy of ReliefF does not scale up
well under the large number of SNPs in real GWAS datasets,
an enhanced version of Relief-F called Very Large Scale
Relief-F (VLSRF) is developed to improve its accuracy.
However, VLSRF had a significant higher time complexity
than its predecessor [10].

Since ReliefF and VLSRF has a high potential to be
parallelized, we propose a GPU implementation on them
using CUDA to significantly reduce the time for biologists
in prioritizing a list of potential disease associated SNPs for
their researches. We believe this can directly accelerate the
process of finding SNPs and/or genes that relating to diseases
and designing new drugs and diagnosis.

GPU is a high-performance multi-core processor with high
computation and data throughput [11]. A modern GPU can
perform significantly faster than a CPU in many complex
operations like vector and matrix operations or floating
point arithmetics. Hence, it has become a popular computing
solution for analyses on experimental data in various areas,
such as weather forecasting [12], molecular dynamics [13]
and fluid-flow [14]. Moreover, it can be programmed easily
to perform general purpose computation through high-level
programming language like CUDA or OpenCL. CUDA is
shown to perform better than OpenCL [15], and CUDA is
capable of handling large biological experimental data [16].

78 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



Table 1: Encoding Table for SNP Genotype
Orginal Genotype Encoded Value(A = major allele, a = minor allele)

Missing 0
AA 1
Aa 2
aa 3

In most cases, an allele of a SNP could only has two
nucleotide types. A major allele has a nucleotide type
that appears more frequently in its corresponding SNP
across the population while a minor allele has a nucleotide
type that appears less frequently in its corresponding SNP
across the population.

In this paper, we are developing a GPU-based VLSRF im-
plementation optimized for GWAS dataset. By exploiting the
parallelization power of CUDA, reducing number of feature
subsets through a novel feature subset enumeration process
and reducing the time cost and space used in storing and
loading the dataset through simple compression, our GPU-
based VLSRF out-performed CPU-based Relief and CPU-
based VLSRF in terms of both performance and accuracy.
Furthermore, our experiments demonstrated that our GPU-
based VLSRF could detect disease associated SNPs in a real
Parkinson’s disease dataset.

Here is the layout of this paper. First, related work will
be given in section 3. Then, details of our implementation
will be discussed in section 4. Finally, experimental results
will be shown and analyzed in section 5.

2. Problem definition
Input: A dataset that stores the genotypes of a common list
of features (SNPs) of a number of case and control samples.
The genotype of each SNP is encoded through the schema
shown in table 1.
Output: An association score for each SNP against the target
genetic disease of the inputted dataset.

3. Related Work
With the increasing popularity of data mining, the ap-

plication of feature selection has been widen in various
research area [17]–[21]. Generally speaking, there are two
different kinds of feature selection algorithms. The first kind
utilized one or more statistical properties of each feature
such as information entropy and t-test value, to search for
potential useful features [22]. The second kind exploits the
topology or the structure in the data space [23]–[25] to
search for potentially important features by measuring the
inner relationships between samples and features.

As SNP-SNP interactions are most likely to be non-linear,
pure statistical algorithms which measured the statistical

Fig. 1: Pseudocode of Relief Algorithm

property of each SNP perform poorly in GWAS. Meanwhile
structural based algorithms like Relief algorithm has been
proven to be efficient and effective in prioritizing SNPs in
synthetic GWAS datasets [9].

Relief is a probabilistic algorithm which evaluates every
feature in a dataset in the following steps [24]. First, a sam-
ple χ is randomly selected and its pairwise distances with
other samples are calculated. Second, the nearest neighbor
with the same phenotype (hit) or nearest neighbor with a
different phenotype (miss) are found. Third for each feature,
its value in the selected sample χ is compared against its
value in the corresponding nearest hit and miss. Features that
are more consistent within samples from the same class and
inconsistent across samples from different classes will obtain
a higher score. Otherwise, it will have a lower score. Finally,
the score of each feature is updated through repeating the
three steps above multiple times. Its pseudocode is shown
in figure 1.

On the other hand, ReliefF is a Relief based algorithm
which can handle datasets with multiple classes and con-
tinuous value features while maintaining a similar time
complexity as its predecessor [25]. The major improve-
ment of ReliefF over its predecessor is that it compares
each randomly selected sample against a small group of
nearest hit and miss during the feature scoring process
instead of only one nearest hit and miss. This eliminates the
aversive effects of outliners and has improved the overall
accuracy. Moreover, ReliefF was further enhanced and a
new algorithm called Tuned ReliefF was developed [9].
Tuned ReliefF achieved a higher detection power than its
predecessor through repeatedly executing ReliefF algorithm
and gradually removing a small number of low ReliefF score
features after each ReliefF execution. As ReliefF is executed
iteratively, Tuned ReliefF is significant slower than ReliefF
algorithm.

Iterative ReliefF is another Relief based algorithm [26].
Similar to ReliefF algorithm, it compares each randomly
selected sample to more than one nearest hit and one nearest
miss. First, it calculates the probability of each randomly
selected sample χ being a outliner and the probability of
other sample being the nearest hit or the nearest miss of

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 79



Fig. 2: Pseudocode of VLS ReliefF Algorithm.

χ. After that, it compares each randomly selected sample
χ against all other samples and updates the score of each
feature according to the nearest hit/miss probability of other
samples and outlining probability of the selected sample
previously calculated. The above two steps will be repeated
until the scores of all features converge.

Very Large Scale ReliefF (VLSRF) selects important
features from a dataset with enormous number of features
through divide and conquer [10]. First, it splits the orig-
inal feature set into a full collection of feature subsets
with a user specific size. The size of feature subset is
significantly smaller than the original feature set to ensure
that ReliefF can maintain a high detection power on those
subsets. Second, the local score of every feature under each
feature subset is calculated independently through ReliefF
algorithm. Finally, all local feature scores calculated by
each independent ReliefF execution are merged and the final
global score of each feature is its maximum local score.
Although VLSRF maintains a high detection accuracy under
extremely large number of features, it has a much higher
time complexity than ReliefF as a trade off. To ensure at
least one feature subset contains all important features and
such that their association can be measured, an exponential
number of feature subsets are needed to be evaluated. Its
pseudocode is shown in figure 2.

4. Implementation Detail
In this section, we will describe the details of our GPU-

based VLSRF implementation. The overall flow chart of this
implementation is shown in figure 3.

4.1 Data Compression
As a SNP has at most 3 different genotypes, every

feature in a GWAS dataset has a very small domain and
2 bits are sufficient for representing any genotype of a
SNP. Therefore, any dataset inputted will be compressed
through converting every feature into a 2 bit integer and
tightly packing every 4 features into a byte before storing
into the host main memory and GPU device memory. This
reduces the amount of memory required for storing the

dataset significantly and allowed GPU with a limited device
memory can store a larger dataset. It also reduced the run-
time overhead in copying the dataset from main memory
to GPU device memory. Finally, only a constant number
of binary operations are needed for accessing the value of
a feature from a compressed dataset, so it maintains the
performance of ReliefF while improving the efficiency of
loading data into GPU device memory.

4.2 Feature Subset Enumeration
To reduce the number of feature subsets to be evaluated,

we proposes a new feature subset formation process. In this
new process, all features in the inputted dataset are divided
into different groups. A feature subset is then generated
by combining several feature groups in stead of randomly
selecting a number of features from the original set of
features. The details of this approach is shown in figure 3.

We apply a binary operation based subset enumeration
algorithm called GosperâĂŹs hack [27] to select feature
groups for forming feature subsets. In this algorithm, a
binary string is representing the membership of each feature
group of a subset and it has a length of the number of feature
groups. If the ith bit in the binary string is one, then the
ith feature group is a member of the current feature subset.
Otherwise, it is not a member of the subset. Furthermore,
in this algorithm, a binary operation based enumerator is
used to enumerate the membership of feature groups of the
next new subset in O(No. of features) binary operations
based on a given subset. Therefore, every subset can be
generated through iterative use of the enumerator. Therefore,
this algorithm minimized the time needed in enumerating
each feature subset.

4.3 GPU-Based ReliefF Algorithm
The ReliefF algorithm is implemented to be executed

entirely under GPU to minimize the data transfer between
the host PC memory and the GPU device memory. Some
operations in the ReliefF are optimized through exploiting
the parallelization processing power of GPU. First, the
distance of a pair of sample does not have dependency
with the distance of other pairs of samples and can be
calculated independently. Second, a list of randomly selected
samples are compared against their corresponding group of
nearest hits and group of nearest misses in a feature by
feature wise manner. These feature value comparisons are
independent from each other and can be performed simul-
taneously. Therefore, two separated CUDA kernel programs
are developed for performing these two operations. These
two CUDA kernel programs are executed under multiple
GPU threads in parallel automatically.

5. Result and Discussion
In order to evaluate the performance of our GPU based

VLSRF implementation, numerous experiments were per-

80 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



Fig. 3: (A) shows the execution flow of our GPU-based VLS ReliefF. In (A), the block with double line border is performed
under GPU and other blocks are executed under CPU. (B) shows an example on the original process of enumerating feature
subsets in VLSRF. Under 10 features and process (B), there are totally

(
10
4

)
= 210 ways to form feature subsets with 4

features. (C) shows an example on our novel process for enumerating feature subsets in VLSRF under 10 features. First, the
original feature set is split into 5 feature groups where each of these group carries 2 features. Second, each feature subset
is composed by 2 randomly selected feature groups. As a result, there are

(
5
4

)
= 5 total possible feature subsets with size

= 4 which is significant fewer than process (B). On the other hand, the new process will still able to select all important
features into the same feature subset and ensure at least 1 pass of Relief algorithm can detect these features as long as all
possible subsets are tested. As seen in (C), feature ’3’ and ’5’ (i.e. the block with double line border) are both important
features and they are both the member of subset 1.

formed on various synthetic and real datasets. In this section,
we will discuss the results of those experiments in detail.

5.1 Machine Configuration
All experiments on CPU implementations were performed

on a workstation with one Intel I5-4670 3.4GHZ CPU
and 8GB DDR3 main memory. On the other hand, all
experiments on the GPU implementations were performed
on a high performance Linux server with two Intel Xeon
E5-2670 2.6GHZ CPU, 128GB ECC DDR3 main memory
and a NVIDIA GK110GL Kepler GPU.

5.2 Experiment on Synthetic Datasets
We performed experiments to compare the speed and

accuracy of our GPU-based VLSRF against CPU-based
ReliefF and CPU-based VLSRF. The performance metrics
were the ranking of predictive feature and execution time.

5.2.1 Details of Synthetic Dataset Generator

All synthetic datasets were generated by GAMETES
which is a dataset generator specifically designed for gen-
erating highly accurate GWAS synthetic dataset [28]. We
generated four groups of datasets under different heritabili-
ties using GAMETES and each dataset group contained 50

datasets. The configurations on generating those datasets are
shown in table 2.

5.3 Runtime Parameters
The parameters used to run the experiments are shown in

table 3.

5.4 Predictive feature Ranking Comparison
Numerous experiments were conducted to compare the

accuracy between ReliefF and VLSRF. Features in each
dataset in the four dataset groups were ranked and the
ranking of the two predictive features were compared as the
measurement for accuracy. Furthermore, we performed our
experiments on VLSRF under two different feature grouping
sizes to understand the behaviour of our novel feature subset
enumeration procedure. All the results were plotted as charts
and shown in figure 4.

In our experiment, for ReliefF all the predictive features
were ranked top half in all the experiments. It is clear
that ReliefF can differentiate predictive features from other
features effectively. The numbers of datasets that the first
and second predictive features were ranked top 20% under
heritability 0.1, 0.2, 0.3 and 0.4 were 17, 9, 19, and 16 and 9,
18, 25 and 22 out of 50 datasets respectively. Therefore gen-
erally speaking, the performance of ReliefF increased with

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 81



Fig. 4: Ranking of two predictive features of groups of synthetic datasets with different heritabilities under ReliefF and
VLS ReliefF algorithm. For each chart, the horizontal axis stands for a dataset and the vertical axis stands for the ranking
of predictive features. Moreover, the dotted line and solid line in each chart represent the rankings of the first(p0) and
second(p1) predictive feature across the datasets.

the increasing heritability. To conclude, ReliefF performed as
expected and it can be used as a benchmark for comparison.

By observing the graph, for VLSReliefF we can see that
as the number feature subset increases, the ranks of the two
predictive features increases. This shows that under the same
number of feature subset enumerated and tested, the scores
of the features converge faster with a larger feature group
size. This shows that our novel feature subset enumeration
procedure is effective in reducing feature subsets needed to
be enumerated.

When VLSRF was executed under four feature subsets,
only the second predictive feature was ranked top 20% once.
Moreover the numbers of datasets that the first and second
predictive features were ranked top 20% under heritability

0.1, 0.2, 0.3 and 0.4 were 18, 11, 16, and 16 and 13, 16,
25 and 22 out of 50 datasets respectively if VLSRF is
executed under 40 feature subsets. It is obvious that VLSRF
do not outperform ReliefF subset in these circumstances.
On the other hand, it had a significantly higher accuracy
than ReliefF under 60 feature subsets as the numbers of
datasets that the first and second predictive features were
ranked top 20% under heritability 0.1, 0.2, 0.3 and 0.4 were
15, 13, 26, and 29 and 15, 18, 19 and 26 out of 50 datasets
respectively. It is clear that VLSRF can perform better than
ReliefF as long as the number of feature subset evaluated is
large enough.

82 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



Table 2: Parameters for Generating Synthetic Dataset

Parameter Value Description
Total No. of
features

10000 The number of SNPs
in the dataset

Predictive
feature No

2 (p0, p1) The number of disease
SNPs in the dataset

Heritability 0.1, 0.2, 0.3, 0.4 Proportion of cases
that are associated
by disease associated
SNP

Population
Prevalence

Random The probability for a
random sample having
disease

Minor
Allele
Frequency

0.2 The frequency of allele
that occur less in the
population

No. of Cases
and Controls

1000(500:500) The number of cases
and controls in the
dataset

No. of EDM 1 The number of model
used in generating the
dataset

Table 3: Runtime Parameters for ReliefF and VLSReliefF
Parameter ReliefF VLSRF
Number of NNs 1 1
Size of Subset - 5000
Number of Subset - 4, 40, 60

Fig. 5: Run time comparison between CPU and GPU imple-
mentations of ReliefF and VLS ReliefF. The horizontal axis
stands for heritability of the dataset group and the vertical
axis stands for the execution time in seconds.

5.5 Execution Time Comparison
Numerous experiments were conducted to compare the

execution time between CPU-based ReliefF and our GPU-
based VLSRF. We measured and compared the time needed
for both algorithms to finish the execution of the datasets in
a dataset group. The experimental time cutoff was 5 hours.
All the results were plotted as charts and shown in figure 5.

Our experiments have showed that ReliefF costed around
11,000 seconds and 110 seconds to finish processing all the
dataset in a dataset subgroup on CPU and GPU respectively.
The GPU version outperformed the CPU version by around
100 times. It is obvious that GPU alone significantly improve
the efficiency of ReliefF algorithm.

The run time of VLSRF was not reported as it failed to
finish its execution on CPU within the time limit under any
number of feature subset we tested. This result is consistent
with our understanding of VLSRF. According to section 3,
the run time of VLSRF was approximately proportional to
the run time of ReliefF by a factor of the feature subset
number. Therefore, we could roughly estimate the run time
of VLSRF under 4 feature subsets to be 4x11000 = 44000
seconds = 12 hours. Therefore, no CPU based VLSRF could
finish its execution before reaching the time limit. On the
other hand, GPU-based VLSRF could finish its execution
with at most 4300s. This clearly shows that it is far more
practical to perform VLSRF on GPU rather than GPU.

The run time of VLSRF under 4, 40 and 60 feature subsets
were around 250s, 2700s and 4500s respectively. It is clear
that our novel feature selection process is efficient and does
not hinder the performance of VLSRF.

5.6 Details of Real Dataset
5.6.1 Dataset Source and Pre-processing

Our GPU-based VLSRF was applied on a Parkinson’s
disease study called Mayo-Perlegen LEAPS (Linked Efforts
to Accelerate Parkinson’s Solutions) Collaboration which is
originated from National Human Genome Research Institute
[1] to evaluate its performance on a real dataset. This study
had two tiers and we picked the tier 2 for performing
our experiment. Tier 2 had 660 samples (332 case and
332 control) and each sample had 3000 SNPs. Before we
performed experiments on this dataset, we had performed
data cleansing and converted it into ARFF file format with
the encoding scheme described in section 3 such that it could
be processed by our programs easily.

5.6.2 Result Analysis
After we computed the score of all SNPs using our GPU-

based VLSRF, we ranked those SNPs according to their
score and extracted the top 10% SNPs for further analysis.
Among those top 10% SNPs, there are 3 SNPs which
are associated to Parkinson’s disease related gene. These
3 SNPs are rs2287403, rs1979687 and rs2303703 which

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 83



are associated to YLPM1, USP47 and MYO10 respectively
and these 3 genes were all reported to be associated to
Parkinson’s disease by a Parkinson’s disease database [29].
Furthermore, gene USP47 and MYO10 were separately
reported to be associated to Parkinson’s disease under 2 more
literatures [30], [31]. All these showed that our GPU-based
VLSRF algorithm are able to select disease associated SNPs
effectively.

6. Conclusion
In this paper, we have demonstrated a new GPU-based

VLSRF implementation and tested it thoroughly using mul-
tiple sets of synthetic datasets and a real GWAS dataset on
Parkinson’s disease. Under various experiments, our GPU-
based VLSRF was shown to be an effective and efficient
algorithm in identifying important SNPs. It outperformed
existing CPU based VLSRF and ReliefF in term of speed
while maintaining a comparable accuracy with them. Under
the experiment of Parkinson’s disease dataset, it has iden-
tified SNPs consistent to existing literature. All these show
GPU-based VLSRF is effective and efficient under both real
and synthetic datasets.

References
[1] D. M. Maraganore, M. de Andrade, T. G. Lesnick, K. J. Strain,

M. J. Farrer, W. A. Rocca, P. K. Pant, K. A. Frazer, D. R. Cox, and
D. G. Ballinger, “High-resolution whole-genome association study of
parkinson disease,” The American Journal of Human Genetics, vol. 77,
no. 5, pp. 685–693, 2005.

[2] J. N. Hirschhorn and M. J. Daly, “Genome-wide association studies
for common diseases and complex traits,” Nature Reviews Genetics,
vol. 6, no. 2, pp. 95–108, 2005.

[3] W. Y. Wang, B. J. Barratt, D. G. Clayton, and J. A. Todd, “Genome-
wide association studies: theoretical and practical concerns,” Nature
Reviews Genetics, vol. 6, no. 2, pp. 109–118, 2005.

[4] D. E. Reich and E. S. Lander, “On the allelic spectrum of human
disease,” TRENDS in Genetics, vol. 17, no. 9, pp. 502–510, 2001.

[5] D. F. Easton and R. A. Eeles, “Genome-wide association studies in
cancer,” Human Molecular Genetics, vol. 17, no. R2, pp. R109–R115,
2008.

[6] N. P. Paynter, D. I. Chasman, G. Paré, J. E. Buring, N. R. Cook, J. P.
Miletich, and P. M. Ridker, “Association between a literature-based
genetic risk score and cardiovascular events in women,” Jama, vol.
303, no. 7, pp. 631–637, 2010.

[7] J. H. Moore, F. W. Asselbergs, and S. M. Williams, “Bioinformat-
ics challenges for genome-wide association studies,” Bioinformatics,
vol. 26, no. 4, pp. 445–455, 2010.

[8] J. H. Moore, “The ubiquitous nature of epistasis in determining
susceptibility to common human diseases,” Human heredity, vol. 56,
no. 1-3, pp. 73–82, 2003.

[9] J. H. Moore and B. C. White, “Tuning relieff for genome-wide genetic
analysis,” in Evolutionary computation, machine learning and data
mining in bioinformatics. Springer, 2007, pp. 166–175.

[10] M. J. Eppstein and P. Haake, “Very large scale relieff for genome-wide
association analysis,” in Computational Intelligence in Bioinformatics
and Computational Biology, 2008. CIBCB’08. IEEE Symposium on.
IEEE, 2008, pp. 112–119.

[11] M. Harris and D. Luebke, “Gpgpu: General-purpose computation on
graphics hardware,” in International Conference on Computer Graph-
ics and Interactive Techniques: ACM SIGGRAPH 2005 Courses: Los
Angeles, California, vol. 2005, 2005.

[12] J. Michalakes and M. Vachharajani, “Gpu acceleration of numerical
weather prediction,” Parallel Processing Letters, vol. 18, no. 04, pp.
531–548, 2008.

[13] J. A. Anderson, C. D. Lorenz, and A. Travesset, “General purpose
molecular dynamics simulations fully implemented on graphics pro-
cessing units,” Journal of Computational Physics, vol. 227, no. 10,
pp. 5342–5359, 2008.

[14] P. Bailey, J. Myre, S. D. Walsh, D. J. Lilja, and M. O. Saar,
“Accelerating lattice boltzmann fluid flow simulations using graphics
processors,” in Parallel Processing, 2009. ICPP’09. International
Conference on. IEEE, 2009, pp. 550–557.

[15] K. Karimi, N. G. Dickson, and F. Hamze, “A performance comparison
of cuda and opencl,” arXiv preprint arXiv:1005.2581, 2010.

[16] R. Jiang, F. Zeng, W. Zhang, X. Wu, and Z. Yu, “Accelerating genome-
wide association studies using cuda compatible graphics processing
units,” in Bioinformatics, Systems Biology and Intelligent Computing,
2009. IJCBS’09. International Joint Conference on. IEEE, 2009, pp.
70–76.

[17] S. Beniwal and J. Arora, “Classification and feature selection tech-
niques in data mining,” in International Journal of Engineering
Research and Technology, vol. 1, no. 6 (August-2012). ESRSA
Publications, 2012.

[18] F. Min, Q. Hu, and W. Zhu, “Feature selection with test cost
constraint,” International Journal of Approximate Reasoning, vol. 55,
no. 1, pp. 167–179, 2014.

[19] J. Tang and H. Liu, “Unsupervised feature selection for linked social
media data,” in Proceedings of the 18th ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM, 2012,
pp. 904–912.

[20] ——, “Feature selection with linked data in social media.” in SDM.
SIAM, 2012, pp. 118–128.

[21] C.-P. Lee and Y. Leu, “A novel hybrid feature selection method for
microarray data analysis,” Applied Soft Computing, vol. 11, no. 1, pp.
208–213, 2011.

[22] G. Brown, A. Pocock, M.-J. Zhao, and M. Luján, “Conditional like-
lihood maximisation: a unifying framework for information theoretic
feature selection,” The Journal of Machine Learning Research, vol. 13,
no. 1, pp. 27–66, 2012.

[23] K. Kira and L. A. Rendell, “A practical approach to feature selection,”
in Proceedings of the ninth international workshop on Machine
learning, 1992, pp. 249–256.

[24] ——, “The feature selection problem: Traditional methods and a new
algorithm,” in AAAI, vol. 2, 1992, pp. 129–134.

[25] I. Kononenko, E. Šimec, and M. Robnik-Šikonja, “Overcoming the
myopia of inductive learning algorithms with relieff,” Applied Intel-
ligence, vol. 7, no. 1, pp. 39–55, 1997.

[26] Y. Sun, “Iterative relief for feature weighting: algorithms, theories,
and applications,” Pattern Analysis and Machine Intelligence, IEEE
Transactions on, vol. 29, no. 6, pp. 1035–1051, 2007.

[27] R. W. Gosper, “Item 175 in beeler, m., gosper, rw, and schroeppel, r.,
hakmem,” 1972.

[28] R. J. Urbanowicz, J. Kiralis, N. A. Sinnott-Armstrong, T. Heberling,
J. M. Fisher, and J. H. Moore, “Gametes: a fast, direct algorithm for
generating pure, strict, epistatic models with random architectures,”
BioData mining, vol. 5, no. 1, pp. 1–14, 2012.

[29] J. O. Yang, W.-Y. Kim, S.-Y. Jeong, J.-H. Oh, S. Jho, J. Bhak, and N.-
S. Kim, “Pdbase: a database of parkinson’s disease-related genes and
genetic variation using substantia nigra ests,” BMC genomics, vol. 10,
no. Suppl 3, p. S32, 2009.

[30] F. Simunovic, M. Yi, Y. Wang, L. Macey, L. T. Brown, A. M.
Krichevsky, S. L. Andersen, R. M. Stephens, F. M. Benes, and K. C.
Sonntag, “Gene expression profiling of substantia nigra dopamine
neurons: further insights into parkinson’s disease pathology,” Brain,
vol. 132, no. 7, pp. 1795–1809, 2009.

[31] K. Gousset, L. Marzo, P.-H. Commere, and C. Zurzolo, “Myo10 is
a key regulator of tnt formation in neuronal cells,” Journal of cell
science, vol. 126, no. 19, pp. 4424–4435, 2013.

84 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



Cloud-dew architecture: realizing the potential of 

distributed database systems in unreliable networks 

 

Yingwei Wang
1
 and Yi Pan

2
 

1
Department of Computer Science, University of Prince Edward Island,  

Charlottetown, Prince Edward Island, Canada 
2
Department of Computer Science, Georgia State University,  

Atlanta, Georgia, United States 

 

 

Abstract - Distributed database systems, which continue to 

inspire new architectures and new applications, have great 

potential in the modern computing world. In this paper, we 

show that the newly-proposed cloud-dew architecture realizes 

the potential of distributed database systems in the unreliable 

network environment, and provides the possibility of web-

surfing without an Internet connection. Distributed database 

systems are generic and versatile; the proper applications of 

distributed database systems and their features will be 

beneficial to users and service providers. 

Keywords: distributed database system; cloud-dew 

architecture; peer-to-peer; super-peer; transparency 

 

1 Introduction 

 A distributed database system is defined as a collection 

of multiple, logically interrelated databases distributed over a 

computer network [1]. Combined with other components, 

distributed database systems [1-3] play central roles in various 

applications. It is believed that the potential of distributed 

database systems has not been realized fully as yet [1]. The 

following paragraph describes one of the promising 

possibilities of distributed database systems:  

 “The failure of a single site, or the failure of a 

communication link which makes one or more sites 

unreachable, is not sufficient to bring down the entire system. 

In the case of a distributed database, this means that some of 

the data may be unreachable, but with proper care, users may 

be permitted to access other parts of the distributed database” 

[1]. 

 This description suggests that an application may still 

work when a communication link fails. If the application is a 

web application and the communication link is an Internet 

connection, the possibility exists that the web application may 

still work when an Internet connection is not available. Today, 

web applications are daily essentials but an Internet 

connection is not always available. This potential is very 

attractive. 

 As indicated in the above paragraph, the great potential 

cannot be realized automatically, and “proper care” is 

necessary. 

 Is the great potential realizable? What is the proper care 

to realize this great potential? A newly-proposed architecture 

[4] shows that it is possible to do web-surfing without an 

Internet connection. In this case, the proper care is the 

architecture: cloud-dew architecture. 

 Figure 1: Cloud-dew architecture 

 Cloud-dew architecture is an extension of the client-

server architecture [4]. This architecture is illustrated in 

Figure 1, and the client-server architecture is depicted in 

Figure 2 for comparison. A new kind of server, dew server, is 

introduced in this architecture. A dew server is a web server 

that resides on a user’s local computer. The dew server and its 

related databases have two functions: first, it provides the 

client with the same services as the cloud server provides; 

second, it synchronizes dew server databases with cloud 

server databases. A dew server has the following features: 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 85



 (1) A dew server is a lightweight web server. Usually, it 

serves only one user, the client. 

 (2) A dew server usually stores only the user’s data. The 

‘size’ (i.e., data amount in related databases) of a dew server 

is much smaller than the ‘size’ of a cloud server. 

Metaphorically, a cloud server is as big as a cloud, and a dew 

server is as small as a drop of dew. 

 (3) A dew server disappears easily. The dew server’s 

data could disappear for different reasons, for instance: 

hardware damage and failure or virus infections. 

Metaphorically, a dew server is as weak as a drop of dew. 

 (4) A vanished dew server can be recreated because all 

dew server data has a copy in the cloud servers. 

Metaphorically, dew will come out again after it disappears as 

long as a cloud can provide all the necessities. 

 (5) A dew server is accessible with or without an 

Internet connection because it is running on the local 

computer. Metaphorically, a cloud could be far away, but the 

dew is close to you. 

 
Figure 2: Client-server architecture 

 
 Suppose a user stores personal data such as pictures and 

messages on a website, say http://www.facebook.com. While 

the data is available publicly, the user cannot access his/her 

own data if an Internet connection is not available. The user 

may decide to save a local copy of personal data in his/her 

own computer. However, saving pictures and messages in 

files may be awkward and difficult to manage.  

 Suppose a website, in this case 

http://www.facebook.com, adopts the cloud-dew architecture. 

The website will be duplicated onto a dew server running on a 

user’s local computer. The duplication is not exactly copying. 

Generally speaking, the duplicated website in a dew server 

(called a dewsite) and the original website could be different 

in the following aspects: 

 (1) The dewsite does not need to deal with a global 

heavy load so that it could be much simpler than the website; 

 (2) The dewsite will not include the proprietorial script 

that the website does not want to release. Instead, publicly-

known technology will be used to implement similar 

functionalities; 

 (3) The content of a dewsite database could be limited; 

 (4) A new functionality, which will synchronize with the 

website, will be added to the dewsite. 

 Once a dewsite duplicating http://www.facebook.com is 

installed inside a dew server, the user may access the dewsite. 

A local domain name system (LDNS) could be introduced so 

that the above-mentioned dewsite can be accessed using the 

URL http://mmm.facebook.com  instead of http://localhost  

[4]. This URL makes web-surfing without an Internet 

connection more attractive. 

 At the beginning, the dewsite does not have the user’s 

personal data. To let the dewsite synchronize with the 

website, the user needs to grant his/her 

http://www.facebook.com credentials to the dewsite. These 

credentials will be recorded by the dewsite and used in the 

future. The dewsite will be able to synchronize with the 

website http://www.facebook.com and the user’s personal data 

and his/her friends’ related data will be transferred to the 

dewsite database. The dewsite will always be available even 

when an Internet connection is not available. If the user makes 

changes on the dewsite when there is no Internet connection, 

the synchronization will not occur immediately, but it will be 

performed automatically when an Internet connection is 

available later. 

 If many websites adopt cloud-dew architecture and many 

dewsites are available for a local computer to host, the 

potential experience of web-surfing without an Internet 

connection will become a reality. 

 In this paper, we analyze the cloud-dew architecture 

from the distributed database system viewpoint, and further 

explore the potential of the distributed database systems. 

2 Single-super-peer hybrid P2P network 

 Cloud-dew architecture extends client-server 

architecture with dew servers. Such extension gives clients the 

power of servers. The new architecture is very similar to peer-

to-peer networks [5-10], with the cloud server (web server) as 

the central node. Such a new structure can be classified as a 

hybrid P2P network, or a super-peer system. In this system, 

some nodes are given special tasks to perform. Apparently, 

the web server node is a super-peer. In a standard hybrid P2P 

network, there are two or more super-peers; if there is only 

one super-peer in the system, this reduces to the client-server 

architecture [1]. 

 In the cloud-dew architecture, a single-super-peer P2P 

network may not reduce to client-server architecture because 

each peer (dew server) is not just a client, but also a server. 

The database is replicated between the super-peer and the 

other peers. If the communication link between the super-peer 

and one peer fails, the peer is partitioned from the whole 

86 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



system. The dew server on this peer node will provide some 

basic web services and database services so that the goal of 

web-surfing without an Internet connection can be achieved. 

 A peer node not only deals with the super-peer node, but 

also can perform other actions with other peers. The real P2P 

features are reflected by these actions and new applications 

are made possible by these features. 

 Single-super-peer P2P is worth exploring not only as the 

underlying structure of cloud-dew architecture, but also as a 

promising extension of client-server architecture. Single-

super-peer P2P is much simpler than multiple-super-peer P2P; 

therefore, it is easier to implement. However, it is more 

complicated than client-server architecture so that it can 

support various distributed database applications. 

 

3 Transparencies 

 Transparency refers to separation of the higher-level 

semantics of a system from lower-level implementation issues 

[1, 11]. In other words, a transparent system "hides" the 

implementation details from users. There are different forms 

of transparency. In the context of this paper, the following 

forms of transparency are of our concern: replication 

transparency and distribution transparency [1].  

 Replication transparency refers to whether the users 

should be aware of the existence of copies or whether the 

system should handle the management of copies and the users 

should act as if there is a single copy of the data.  

 Distribution transparency, or network transparency, 

refers to that there would be no difference between database 

applications that would run on a centralized database and 

those that would run on a distributed database. 

 Although it is desirable that replication transparency and 

distribution transparency be provided as a standard feature of 

DBMSs, this is not always the case. The essences of 

transparency are: (1) to hide some details; (2) to create an 

illusion.  

 Suppose we are accessing a website, say 

http://www.facebook.com. If an Internet connection is not 

available, this website will not be accessible. We may 

replicate the website and the database in the local node so that 

this website will still be available even though there is no 

internet connection. If replication transparency and 

distribution transparency are both kept, we may need to 

modify the behavior of the browser so that when we want to 

access http://www.facebook.com, the browser will first try to 

connect to the website server; if the website server is 

available, everything is normal; if the website server is not 

available, the browser will try to connect to the local server 

and access the replicated website and database.  

 The transparency hides all the detailed behavior of the 

browser, hides the communication link failure, hides the 

existence and the operation of a local website and related 

database, and creates an illusion that there are no 

communication link failures and the website 

http://www.facebook.com is still available. 

 However, does this transparency arrangement give the 

user what he/she wants? The ability to still use a website when 

there is no Internet connection is convenient. Nevertheless, 

the offline website cannot provide exactly the same services 

as the online website. For example, the online web application 

changes the online database status as the user makes changes, 

but the offline web application will change the online 

database only once the user is online again. Additionally, the 

offline web application can only access a portion of the online 

database. For these reasons, the illusion created by the 

transparencies is, perhaps, too lofty and is not realistic. A 

more practical solution is not to keep the transparencies, and 

to tell the user exactly what is being provided.  

 In the cloud-dew architecture, a local domain name 

system is provided. Such a local domain name system is based 

on the fact that transparencies are not supported. Users know 

the cloud and the dew. Using the example mentioned above, a 

user knows the difference between http://www.facebook.com 

and http://mmm.facebook.com,, and has different expectations 

for these two related websites. 

 To summarize the above discussions, although 

transparency is generally considered a great feature, a 

concrete application may not want to support transparency for 

either of the following reasons:  

 (1) The illusion created by the transparency is not 

realistic in this application. 

 (2) The user needs to be involved in some details that 

otherwise would be covered by transparency. 

 

4 Replication update strategies 

 Distributed database systems can increase system 

availability and remove single points of failure by replicating 

data [1]. In the case of cloud-dew architecture, database 

replication is the foundation of web-surfing without an 

Internet connection. Although data replication has clear 

benefits, it poses the considerable challenge of keeping 

different copies synchronized. In a cloud-dew architecture 

application, if there is no Internet connection between the 

cloud and the dew and the user has changed data at the dew 

level, the dew changes must be synchronized with the cloud 

server (the central node) when it is possible. In other words, 

mutual consistency, which refers to the replicas converging to 

the same value, is necessary [3]. 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 87



 In terms of replication update methods, two orthogonal 

dimensions can be used to classify [1]. One dimension is 

eager update and lazy update; eager update performs all of the 

updates within the context of the global transaction; lazy 

update propagates the updates sometime after the initiating 

transaction is committed. The other dimension is centralized 

update propagation and distributed update propagation; the 

centralized update requires that the updates are first applied at 

a master copy; the distributed update applies the update on the 

local copy at the site where the update transaction originates. 

Therefore, four combinations are possible: eager centralized, 

eager distributed, lazy centralized, and lazy distributed.  

 In the application context where the cloud-dew 

architecture is proposed, Internet connections may get lost 

constantly for an extended period of time. In such a situation, 

eager replication update is not possible and not necessary. 

Thus, lazy update is the choice. Between lazy centralized and 

lazy distributed, the central super-peer node is often not 

available when the Internet connection is lost. This leaves 

only one applicable replication update method: lazy 

distributed update. In this method, the propagation to other 

copies is done asynchronously from the original transaction, 

by means of refresh transactions that are sent to the replica 

sites some time after the update transaction commits. Lazy 

distributed replication protocols are the most complex ones 

owing to the fact that updates can occur on any replica and 

that they are propagated to the other replicas lazily [1, 12-14]. 

 Normally, the dew database is a partial replica of the 

central database. The central database contains data of all 

users, but the dew database can only contain data of the 

current user. Therefore, the dew database is a subset of the 

central database. In special cases, should the application 

require, it is possible for the dew database to contain data 

beyond the central database. There are two situations in which 

part of the dew database is not replicated to the central 

database. The first situation is that this portion of data is 

trivial and only related to detailed execution of the dew 

operations. The second situation is that this portion of data is 

too important and the user does not want to take any risk in 

sending this portion of data to the Internet. In either case, the 

extra dew data will make more varieties of web application 

possible. 

 

5 Conclusions 

 From a distributed database systems viewpoint, cloud-

dew architecture’s ability to provide a web-surfing experience 

without an Internet connection is the realization of the 

distributed database systems’ potential. The organization of 

cloud-dew architecture can be considered as a single-super-

peer P2P network. Although multiple-super-peer P2P 

networks are popular, the single-super-peer P2P network may 

be a promising extension of the client-server architecture. 

Transparencies are generally desirable features in the design 

of distributed database systems, but they may not be always 

desirable. In cloud-dew architecture, non-transparent solutions 

are more suitable because users need to be aware of the 

communications link failure and to expect a realistic 

replacement. The local replica of a database not only is a 

subset of the database, but also could have extra local data. 

The local data is not replicated to the super-peer central 

database because either the data is too trivial to be replicated 

or is too important to be replicated. The extra local data could 

lead to new applications. A distributed database system is a 

generic, versatile structure; the proper use of its features may 

bring great inspiration to the computing world. 

Acknowledgement 

 YW would like to gratefully and sincerely thank Prof. 

Tamer Ozsu at the University of Waterloo. He has discussed 

with YW about the direction of the cloud-dew architecture in 

the early stage. His vision and guidance played an important 

role in YW’s research. 

References 

[1] Ozsu and Valduriez. “Principles of Distributed Database 

Systems”. Spinger Science, 2011. 

[2] Marius Cristian MAZILU. “Database Replication”; 

Database Systems Journal, Vol. I, No. 2, 33—38, 2010.   

[3] Davidson, S. B., Garcia-Nilina, H., and Skeen, D. 

“Consistency in partitioned networks”; ACM Comput. Surv., 

17(3):341-370, 1985. 

[4] Yingwei Wang. “Cloud-Dew Architecture”; 

International Journal of Cloud Computing, OPEN ACCESS, 

http://www.inderscience.com/info/ingeneral/forthcoming.php?

jcode=ijcc, 2014 

[5] Beverly Yang, Hector Garcia-Molina. "Designing a 

Super-peer Network"; in Proceedings of the 19th International 

Conference on Data Engineering (ICDE), Bangalore, India, 

2003. 

[6] Beverly Yang, Hector Garcia-Molina. "Comparing 

Hybrid Peer-to-Peer Systems"; in Proceedings of the 27th 

International Conference on Very Large Databases (VLDB), 

Roma, Italy, 2001.  

[7] Ulusoy, O. “Research Issues in peer-to-peer data 

management”; in Proc. 22nd Int. Symp. On Computer and 

Information Science, 1--8, 2007,  

[8] Bernstein, P. A., Giunchiglia, F., Kementsietsidis, A., 

Mylopoulos, J., Serafini, L., and Zaihrayeu, I. “Data 

management for peer-to-peer computing: A vision”; in Proc. 

5th Int. Workshop on the World Wide Web and Databases, 

89--94, 2002. 

88 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



[9] Daswani, N., Garcia-Molina, H., and Yang, B. “Open 

problems in data-sharing peer-to-peer systems”; in Proc. 9th 

Int. Conf. on Database Theory, 1--15, 2003. 

[10] Valduriez, P. and Pacitti, E. “Data management in large-
scale p2p systems”; in Proc. 6th Int. Conf. High Performance 

Comp. for Computational Sci., 104--118, 2004. 

[11] Umar Farooq Minhas, Shriram Rajagopalan, Brendan 
Cully, Ashraf Aboulnaga, Kenneth Salem, Andrew Warfield. 

“RemusDB: Transparent High-Availability for Database 

Systems”; in Proc. of the VLDB Endowment, 4(11), 2011. 

[12] Khuzaima Daudjee, Kenneth Salem. “Lazy Database 
Replication with Snapshot Isolation”; in Proc. International 

Conference on Very Large Data Bases (VLDB'06), 715--726, 

2006. 

[13] Khuzaima Daudjee, Kenneth Salem. “A Pure Lazy 
Technique for Scalable Transaction Processing in Replicated 

Databases”; in International Conference on Parallel and 

Distributed Systems (ICPADS'05), 802--808, 2005. 

[14] Khuzaima Daudjee, Kenneth Salem. “Lazy Database 
Replication with Ordering Guarantees”; in Proc. International 

Conference on Data Engineering (ICDE'04), 424--435, 2004. 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 89



OpenCL-BasedDesign of an FPGA Accelerator
for Phase-Based Correspondence Matching

Shunsuke Tatsumi, Masanori Hariyama, Mamoru Miura, Koichi Ito, Takafumi Aoki
Graduate School of Information Sciences, Tohoku University

Aoba 6-6-05, Aramaki Aza, Aoba, Sendai, Miyagi, 980-8579, Japan
Email: {s_tatsumi@, hariyama@, miura@aoki., ito@aoki., aoki@}ecei.tohoku.ac.jp

Abstract— This paper proposes a Field Programmable Gate
Array (FPGA) implementation of the stereo correspondence
matching using Phase-Only Correlation (POC). The use
of high-accuracy stereo correspondence matching based on
POC makes it possible to measure accurate 3D shape of an
object using stereo vision. The drawback of the POC-based
approach is its high computational cost. To address this
problem, we propose an FPGA implementation of the POC-
based correspondence matching. To design the accelerator
efficiently, the OpenCL-based design tool is used which
allows us to reuse the existing code for Graphics Processing
Units (GPUs). Although reusing the OpenCL code for GPUs,
optimizing the code for FPGAs is a tough problem because
the architectures of GPUs and FPGAs are completely dif-
ferent. The major contribution of this paper is to address
the optimization technologies of an OpenCL-based FPGA
accelerator. The implementation results demonstrate that the
FPGA implementation has the almost same speed as well as
much higher energy efficiency.

Keywords: stereo vision, phase-only correlation, real-time 3D
measurement, OpenCL, FPGA.

1. Introduction
Image correspondence is an important fundamental task

in a variety of image processing [1] such applications as
stereo vision, motion analysis, biometrics, etc. Especially
for stereo-vision 3D measurement, high-accuracy and dense
image correspondence is essential. For the purpose of ac-
curate and dense 3D measurement, we have proposed a
stereo correspondence algorithm using Phase-Only Corre-
lation (POC) [2]. POC is an image matching technique
using the phase components in Discrete Fourier Transforms
(DFTs) of given images. We have also developed a pas-
sive 3D measurement system using stereo vision whose
accuracy is comparable with the active 3D measurement
system. However, the POC-based correspondence matching
is limited due to the high computational cost, since POC
is based on Fourier transform. Also, the computational cost
of the POC-based correspondence matching is significantly
increased when measuring the dense 3D shape of an ob-
ject. This results in the large computing time on CPU
implementation even though the multi-thread technique is

used. Another problem of the CPU implementation is its
large power consumption. To solve this problem, Graphics
Processing Unit (GPU) implementation of POC has been
proposed [3] where the OpenCL language is used for design.
The GPU implementation is up-to 5 times faster than a CPU
implementation. However, its large-power problem is still
remaining.

This paper presents a Field Programmable Gate Array
(FPGA) implementation of the POC-based correspondence
matching, which can achieve high-speed and low-power con-
sumption. To design the FPGA-based accelerator efficiently,
the OpenCL-based design tool is used which allows us to
reuse the existing code for GPUs. OpenCL is a framework
supporting parallel programming in heterogeneous computa-
tional environments such as multi-core CPUs and GPUs. It
provides efficient parallel computing using both task-based
and data-based parallelism [4]. Recently, Altera corp. starts
to provide the OpenCL design environment for FPGAs [5].
Although reusing the OpenCL code for GPUs, optimizing
the code for FPGAs are a tough problem because the
architectures of GPUs and FPGAs are completely different.
We describe some optimization techniques such as pipelining
and data reusing suitable for OpenCL-based design for FP-
GAs. The implementation result demonstrate that the FPGA
implementation has the almost same speed as well as much
higher energy efficiency. The use of FPGAs allows the image
processing with high computational cost to be embedded into
a small system due to its high energy efficiency.

2. Phase-Based Correspondence Match-
ing

We briefly introduce a Phase-Only Correlation (POC)
function (which is sometimes called the “phase-correlation
function”) [6], [7]. Let f(n) and g(n) be the 1D image
signals, where−M ≤ n ≤ M and the signal length is
N = 2M + 1. Then, the normalized cross-power spectrum
R(k) is defined as

R(k) =
F (k)G(k)

|F (k)G(k)|
= ej(θF (k)−θG(k)), (1)

whereF (k) andG(k) are the 1D DFTs off(n) andg(n),
G(k) denotesthe complex conjugate ofG(k), and−M ≤

90 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



POC matching

POC matching

Layer 0
(original image)

Layer 1

Layer 2

Layer lmax = 3
(coarsest image) Search window

Image I Image J

Reference point p Corresponding point q

POC matching

p
2

q
2

q
lmax

p
lmax

p
1

q
1

Fig. 1: Overview of the High-accuracy correspondence matching.

k ≤ M . The 1D POC functionr(n) betweenf(n) and
g(n) is given as the 1D Inverse DFT (1D IDFT) ofR(k).
When two images are similar, their POC function gives a
distinct sharp peak. When two images are not similar, the
peak drops significantly. The height of the peak gives a good
similarity measure for image matching, and the location
of the peak shows the translational displacement between
the images. We also employ the important techniques for
improving the accuracy of 1D image matching for sub-
pixel correspondence matching: (i) function fitting for high-
accuracy estimation of peak position, (ii) windowing to
reduce boundary effects, (iii) spectral weighting for reduc-
ing aliasing and noise effects and (iv) averaging 1D POC
functions to improve peak-to-noise ratio [2].

In the case of a rectified stereo image pair, the disparity
can be limited to horizontal direction [1]. The use of 1D
POC makes it possible to achieve high-accuracy correspon-
dence matching with low computational cost. In order to
find the accurate correspondence from a stereo image pair,
we employ the sub-pixel correspondence matching using
POC. Figure 1 shows an overview of the high-accuracy
correspondence matching which employs a coarse-to-fine
strategy using image pyramids for robust correspondence
search. Letp be a coordinate vector of a reference pixel
in the reference imageI(n1, n2). The problem of sub-pixel
correspondence search is to find a real-number coordinate
vector q in the input imageJ(n1, n2) that corresponds to
the reference pixelp in I(n1, n2). We briefly explain the
procedure as follows.
Step 1: For l = 1, 2, · · · , lmax − 1, create thel-th layer

imagesIl(n1, n2) and Jl(n1, n2), i.e., coarser versions of
I0(n1, n2) andJ0(n1, n2), recursively as follows:

Il(n1, n2) =
1

4

1∑
i1=0

1∑
i2=0

Il−1(2n1 + i1, 2n2 + i2),

Jl(n1, n2) =
1

4

1∑
i1=0

1∑
i2=0

Jl−1(2n1 + i1, 2n2 + i2).

Step 2: For every layerl = 1, 2, · · · , lmax, calculate the
coordinatepl = (pl1, pl2) corresponding to the original
reference pointp0 recursively as follows:

pl = ⌊ 1
2pl−1⌋ = (⌊ 1

2pl−1 1⌋, ⌊ 1
2pl−1 2⌋), (2)

where⌊z⌋ denotes the operation to round the element ofz
to the nearest integer towards minus infinity.

Step 3: We assume thatqlmax = plmax in the coarsest layer.
Let l = lmax − 1.

Step 4: From thel-th layer imagesIl(n1, n2) andJl(n1, n2),
extract two sub-images (or search windows)fl(n1, n2) and
gl(n1, n2) with their centers onpl and2ql+1, respectively.
The image blocks consist ofL lines ofN -point 1D signal.

Step 5: Estimate the displacement betweenfl(n1, n2) and
gl(n1, n2) with pixel accuracy using POC-based image
matching. Let the estimated displacement vector beδl. The
l-th layer correspondenceql is determined as follows:

ql = 2ql+1 + δl. (3)

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 91



Step 6: Decrement the counter by 1 asl = l− 1 and repeat
from Step 4 to Step 6 whilel ≥ 0.

Step 7: From the original imagesI0(n1, n2) andJ0(n1, n2),
extract two image blocks with their centers onp0 and q0,
respectively. Estimate the displacement between the two
search windows with sub-pixel accuracy using POC-based
image matching. Let the estimated displacement vector with
sub-pixel accuracy be denoted byδ = (δ1, δ2). Update the
corresponding point as follows:

q = q0 + δ. (4)

3. FPGA Implementation
3.1 FPGA Programming Model in OpenCL

Figure 2 shows the thread space in OpenCL that has
hierarchical structure where the overall computation consists
of workgroups. The each workgroup is a set of workitems; a
workitem is equivalent to a thread. When designing a kernel,
we implement processing for the workitem. Figure 3 shows
the memory model in OpenCL. The global and constant
memories can be accessed by any workitem; the difference
between global and constant memories is that the global
memory is a read/write memory while the constant memory
is a read-only memory. The local memory belongs to the
workgroup, and the private memory to the workitem.

In OpenCL for FPGAs, we can change the size of local
and private memories flexibly unlike OpenCL for GPUs.
Moreover, a recent high-end FPGA like Stratix V has a large
local memory of 50M bits. This good nature of OpenCL
for FPGAs can allow us to fully reuse data that are once
retrieved from the global and constant memories. As a result,
we can exploit the memory bandwidth efficiently. To fully
reuse data based on this flexibility of memory structure, we
use the following techniques:

• store all coefficients for filters and FFT in the constant
memory.

• store the pre-calculated results for resource-consuming
calculations such as division and square root.

• cache-oriented design. In OpenCL for FPGAs, a private
cache is created for each read-only data array in the
global memory.

Another big difference between OpenCL designs for FP-
GAs and GPUs is that pipelining can be efficiently exploited
in FPGAs. Figure 4 shows the relation between a kernel and
pipelining. Each instruction in a kernel is implemented as
a pipeline stage in a pipeline as shown in Fig. 4 (a). The
threads are fed into the kernel pipeline sequentially. This pro-
gramming style is also effective to save memory bandwidth
while keeping the performance (throughput). On the other
hand, in OpenCL GPUs, the threads are processed in a data
parallel manner which requires a large memory bandwidth.
In order to fully exploit the advantages of pipeline design,

OpenCL for FPGAs supports “Channel” which can connect
the different kernels using FIFO buffers. Figure 5 shows the
overall structure of the POC-based correspondence matching
using channels. The functions of the kernels are as follows:

make high layer: generating the coarse images
clip image: clipping the search windows from images
fft1d: Fourier transformation for 1-D data
eval cps:computing cross-power spectrum
reorder: reorder data for the following ifft1d
ifft1d: inverse Fourier transformation for 1-D data
find peak: find correspondence by searching a peak

Channels can be used for passing data to kernels and
synchronizing kernels. The intermediate data are stored and
fed to the next kernel through channels without the global
memory. Therefore, the efficient data reuse can be achieved
easily. In fact, 10 000 correspondence results are generated
in the find peak kernel, and they are fed to the clip image
kernel through the channel without other memories in the
POC matching shown in Fig. 5 (b).

3.2 Evaluation
For evaluation, we implement the POC-based stereo cor-

respondence matching on a CPU, GPUs, and an FPGA as
shown in Table 1. The parameters for the POC-based stereo
matching are as follows: The size of the search window
is 32 pixels× 15 lines, the number of layers is 4 and the
number of reference points is 10 000. As a CPU, we use Core
i7-3960X that has 6 cores (12 threads) running at a clock
frequency of 3.3GHz−3.9GHz. As GPUs, we use Geforce
GTX 580 and Geforce GTX 680 from NVIDIA corp. As
an FPGA board, we use PCIe-395 D8 from Nallatech corp.
that has a Stratix V FPGA from Altera corp. and 4 DDR3
memories. The maximum frequency of the FPGA design
is 167MHz. Table 2 summarizes the resource utilization of
the FPGA design, where the upper and lower rows are the
specifications of the FPGA (Stratix V D8) and the used
resources, respectively.

For evaluation metrics, we use the processing time, power
consumption, and power-delay product of each implementa-
tion. We measure the power consumption of a whole com-
puter during execution with a power meter (HIOKI AC/DC
POWER HiTESTER 3334). Note that, in Table 1, the power
consumption is the difference between those of idle and
operation state. A power-delay product is defined as the
product of the processing time and the power consumption
and represents the energy for computation, that is, efficiency.
The GPU implementations are 25-27 times faster than the
CPU implementation with a single thread and also 4.0-4.3
times faster than the CPU implementation with 12 threads (6
cores). The FPGA implementation is 17 times faster than the
single-thread CPU implementation, and 2.7 times faster than
the 12-thread CPU implementation. In terms of the process-
ing time, the FPGA implementation has almost same per-
formance as the GPU implementations although the FPGA’s

92 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



Fig. 2: Thread space in OpenCL.

Fig. 3: Memory Model in OpenCL.

Fig. 4: Pipelining in OpneCL for FPGAs.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 93



Fig. 5: Overall structure using channels.

Table 1: Performance and power comparisons among CPU-, GPU-, and FPGA-implementations.

*1 Power consumption is the difference between those of the idle time and operating state.
*2 Nallatech PCIe-395 D8 have a Stratix V FPGA (Altera Corp.).

Table 2: Resource utilization of the FPGA design.

memorybandwidth is much smaller than the GPU’s one. The
power-delay products of the GPU implementations are about
8.0-8.4% of the single-thread CPU implementation, and 19-
20% of the 12-thread CPU implementation. The power-delay
product of the FPGA implementation is 1.5% of the single-
thread CPU implementation, 3.7% of the 12-thread CPU
implementation, 20% of the GPU implementation (GTX
580), and 19% of the GPU implementation (GTX 680). The
above results demonstrate that the FPGA implementation
is much faster and much energy-efficient than the CPU
implementations, and that the FPGA implementation has the
almost same speed as the GPU implementations and is much
energy-efficient.

4. Application example: Real-time 3-D
measurement system

Figure 6 shows that we develop a real-time and accurate
3D measurement system using a moving consumer digital
camera. In this system, a set of images taken different view-
points are used for the 3D measurement system. One of the
well-known 3D measurement methods is Structure from Mo-
tion (SfM) using feature-based correspondence matching [1].
However, only a limited number of 3D points are measured
by this method and are not sufficient to measure the fine 3D
shape of the object. Addressing this problem, our system
employs the algorithm combining SfM using feature-based
matching to estimate camera parameters and the POC-based
correspondence matching to obtain dense correspondence.
As shown in Fig. 7, the procedure of the proposed system
consists of 3 steps: (i) correspondence matching based on

94 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



Fig. 6: Experimental 3D measure-
ment system using consumer digital
camera.

Fig. 7: Processing flow of the proposed system: (a) input stereo image
pair, (b) result of SIFT-based correspondence matching, (c) rectified stereo
image pair, (d) result of POC-based correspondence matching and (e) 3D
measurement result.

Fig. 8: Results of 3D measurement: (a) input stereo image pair, (b) 3D points measured by SIFT-based SfM (2790 points)
and (c) 3D points measured by the proposed procedure (25 243 points).

Scale-Invariant Feature Transform (SIFT) [8], (ii) camera
parameter estimation [1] and (iii) 3D shape measurement [9].
In the step (iii), we employ the POC-based stereo correspon-
dence matching implemented on the FPGA board. Figures 8
(b) and (c) show 3D measurement result of the stereo image
pair using SIFT-based SfM and the proposed procedure,
respectively. The size of images is 1280×960 pixels. The
measurement result using the proposed procedure has 25 243
points from two snapshots, while the result using SIFT-based
SfM has only 2790 points.

The FPGA implementation of the POC-based stereo cor-
respondence matching makes it possible to obtain dense 3D
points of an object in a few seconds. Moreover, its high-
energy efficiency would allow the total computing system
to be embedded into the camera system.

5. Conclusion

This paper has proposed the FPGA implementation of the
POC-based stereo correspondence matching using OpenCL
for high-speed and low-power consumption. The key to
success is to exploit the pipelining and to fully reuse data
based on the flexibility of memory design. As future work,
we are planning to generalize the design methodology for
this dedicated processor aiming at automatic generation of
FPGA-oriented OpenCL codes from other codes such as
GPU-oriented OpenCL codes and C/C++ codes.

References
[1] R. Szeliski,Computer Vision: Algorithms and Applications], London;

New York, Springer-Verlag, 2011.
[2] T. Shibahara, T. Aoki, H. Nakajima, and K. Kobayashi, “A sub-pixel

stereo correspondence technique based on 1D phase-only correlation,”
in Proc. ICIP 2007, pp. V–221–V–224, 2007.

[3] M. Miura, K. Fudano, K. Ito, T. Aoki, H. Takizawa, and H. Kobayashi,
“Performance evaluation of phase-based correspondence matching on
GPUs,” in Proc. SPIE 8856, Applications of Digital Image Processing
XXXVI, pp. 1–9, 2013.

[4] Khronos Group. (2010) The OpenCL Specification. [Online]. Available:
https://www.khronos.org/registry/cl/specs/opencl-1.0.48.pdf

[5] Altera SDK for OpenCL. [Online]. Available: https://www.altera.
com/products/design-software/embedded-software-developers/opencl/
overview.html

[6] C. D. Kuglin, and D. C. Hines, “The phase correlation image alignment
method,” in Proc. Int’l Conf. Cybernetics and Society, pp. 163–165,
1975.

[7] K. Takita, T. Aoki, Y. Sasaki, T. Higuchi, and K. Kobayashi, “High-
accuracy subpixel image registration based on phase-only correlation,”
IEICE Trans. Fundamentals, Vol. E86-A, No. 8, pp. 1925–1934, Aug.
2003.

[8] D. G. Lowe, “Distinctive image features from scale-invariant key-
points,” Int’l J. of Computer Vision, Vol. 60-2, pp. 91–110, Nov. 2004.

[9] M. Miura, S. Sakai, J. Ishii, K. Ito, and T. Aoki, “An easy-to-use and
accurate 3D shape measurement system using two snapshots,” inProc.
IWAIT 2013, pp. 1103–1106, 2013.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 95



 

 

 

 

 

 

Abstract - Smart TV applications are typically disconnected 

from the content of the tuned programming on the TV set. 

Some TV broadcasters offer specific applications for 

programs, however these applications are generally just 

loosely coupled or synchronized to the program. Furthermore, 

applications are fully under domain of TV broadcasters that 

have the information about the transmitted content. Based on 

the fact that synchronized information may arise from third-

parties obtained by local content processing or offered 

directly by the viewers, new opportunities will be opened up 

for developing a bunch of new interesting applications aiming 

to promote the user interaction level in TV.  Moreover, it will 

have new user interaction possibilities while using mobile 

devices and computers, furthermore a new business model will 

be emerged. In this paper, the SyncSmartv framework is 

presented and evaluated. The aforementioned framework 

offers several APIs that facilitate the development of Smart TV 

applications synchronized with TV program contents. The aim 

is to provide some facilities for developers to implement 

applications in this area in a clear approach without being 

concerned about low-level implementation details. 

Keywords: Connected television, interactivity, smart TV, 

application integration, television programs, TV channels 

monitoring. 

1 Introduction 

The emerge of Digital TV and smart TV has been 

innovating the way people watch television and changing the 

passive paradigm where the user could only consume 

contents. In the Interactive digital TV environment, the user 

can interact with the TV contents because the TV broadcasters 

send common contents (i.e: novel, TV show, etcetera) along 

with their interactive application that can be executed on the 

TV processor. 

However unlike the interactive scenario in iDTV, most of 

the time the audiovisual content of programs in the Connected 

TV does not communicate with the native TV applications and 

other TV platform features. The only basic interaction is the 

possibility to switch between the things are displaying on the 

TV screen either program or TV applications. This approach 

of connecting TV to the internet, where the audiovisual 

content is offered (without pre-defined mechanisms of 

communicating with additional TV-platform features) 
characterizes the difference between Smart TV and iDTV. 

A study on the Smart TV markets, conducted by Strategy 

Analytics and BI Intelligence [3], assessed the sale of Smart 

TVs related to the other types of TVs / TV devices (Google's 

ChromeCast, Apple TV, etc.) predicted sale rate of the next 

three years. According to the survey whose results are shown 

in Fig. 1, the sale of Smart TVs is growing to dominate the 

overall TV market with 33% of global sales of TVs in 2013 

and finished in 2014 with the rate of 44%. According to the 

survey, in 2017, Smart TVs will represent 73% of total sales 

of TVs throughout the world, 54% in 2015 and 63% 2016. 

Accordingly, it would suggest that the paradigm of Smart 

TVs should be popularized. Namely, however some studies 

have been done to explain why the Smart TV concept is not 

yet as popular as the Smartphone’s concept. In the following 

paragraphs we will discuss the result of some of these studies. 

Bachelet [1] conducted a research in five European and 

North American countries in May 2013 and found out that 

only less than the half of 6115 Smart TV owners who were 

interviewed, connected their TVs to the Internet. 

According to Bachelet [1], two elements are the reasons 

that why the Smart TV has not yet become popular and been 

widely accepted by consumers as much as Smartphones: 

o The lack of content and interesting applications: 

although the majority of Smart TVs offer a wide 

range of content and applications, most of them are 

irrelevant and are not interesting to users. 

o The Poor User Interface: a lack of rich user interface 

that can integrate TV applications with its 

audiovisual contents. 

Schofield [7] mentioned that “if TVs are going to be truly 

smart they must do more than offer a wide variety of online 

video services. Instead they must add advanced functionality 

including voice control, motion control, advanced advertising, 

attractive user interfaces and two-way communications with 

other smart devices – so-called ‘second screens’– allowing 

these devices both to send video to the TV and know what is 

being watched. Manufacturers should focus less on adding 

more content and more on improving how users can interact 

with that content”. 

 

 

 

 

Cédrick Bamba N. and Cesar A.C. Teixeira 

Department of Computer Science, Federal University of São Carlos, São Carlos, São Paulo, Brazil 

SyncSmartv: A Framework for Synchronizing 

Smart TV Applications with TV Programs 

 
 

96 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



 

Fig. 1.  TVs sales rates [Source: Strategy, 2014]. 

This suggests that the potential for interactivity of 

Connected TVs has not yet been properly utilized. Hence new 

synchronization mechanisms and interaction with TV 

environment can help to improve the user experience. 
Based on the finding that says innovative interactivity has 

not been promoted and used adequately in Connected TV 

platforms is a major reason for its limited use. Another reason 

for low adherence to the interactive resources of Smart TV is 

because of the lack of facilities that allow the integration of 

Smart TV applications with their own audiovisual content. 

The observation of these aspects motivated the current 

proposed paper. 

 

2 Related Work 

Several authors reported some results of building 

frameworks designed to support TV applications 

development. However just few of them focus on reuse in 

Smart TV applications, specifically those ones synchronized 

with television programming.       
Group Share-TV [5] proposes a framework called share-tv 

used for the development of converged applications centered 

on TV for GoogleTV and Ginga-J platforms. The share-tv 

allows the development of TV applications that include a 

generic mobile application. Ever since this generic application 

get downloaded from a given available TV IP, installed and 

run on mobile device, the communication with the TV 

convergent application will be initiated automatically in order 

to register and receive shared objects. While the objects are 

being received, the device show them on the screen allowing 

interaction on them. Compared to the work reported in this 

paper, share-tv also provides communication services and 

reuse, however, this framework is limited to applications 

based on GoogleTV and Ginga-J platforms. The main 

difference is that share-tv is used to develop TV convergent 

applications while the work reported in this paper focuses on 

building Smart TV applications synchronized with the content 

of TV programs. 

Samsung Smart TV [6] presents a framework called 

AppsFramework. This framework encapsulates reusable 

modules for scene management, video playback / music, and 

so on. This makes it easier for the developer of Smart TV 

applications to avoid performing complicated sequences of 

calls to the operating system in order to manage scenes 

(focusing, showing and hiding events) of an application, for 

instance. Some of these modules reused in the framework 

proposed in this paper. 

Freitas and Teixeira [4] proposed an architecture for 

supporting the development of ubiquitous applications in 

home networks focusing on Digital TV. The proposed 

architecture consists of communication interface with home 

devices, a protocol layer for automatic service discovery, and 

so on. Although the architecture is designed to be 

implemented in iDTV middleware, some of its reusable 

artifacts such as the aforementioned ones were used and 

implemented in the framework proposed in this paper. 

The framework for building synchronized smart tv 

applications with tv programs presented in this paper is 

different with all the aforementioned works from this scene 

that it is a reference framework that allows more efficiency 

and less cost in building multi-platform applications in this 

field. 

 

3 Synchronization and Notification 

To achieve the goal of providing integrated applications to 

television programming, it is essential to know what is being 

presented to the audience every moment. Then this 

information can be published to stakeholders and used to 

promote synchronization between program and application. 

The following subsections are devoted to two issues, 

synchronization and notification. We discuss some aspects of 

synchronization that smart TV applications should be 

concerned to promote integration with television programming 

and how the demands of notification services are generated. 

3.1 Synchronization Aspects 

Teixeira et al. [8] studied the synchronization in the 

context of multimedia applications and considered that 

synchronization is a mechanism to guarantee that actions can 

happen according to the defined time reference set by a clock 

or established by the occurrence of events. It considers the 

tolerances that vary according to the type of application. In 

case of television programming the characteristic of event is to 

be considered as a reference that is one of the important 

aspects of synchronization in the context of this work. 

     Three other relevant aspects for the integration of 

applications with television programming are: Source - refers 

to anyone who provides information about the occurrence of 

the event; Coupling - is related to the tolerance allowed by the 

application in deviations from the reference time; Exposition - 

categorizes two possible situations: explicit and implicit 

synchronization information. 

3.2 Notification 

To promote the used synchronization in the context of this 

work, we need to establish a communication protocol between 

the part that needs to receive synchronization signals (TV 

application) and the one who provides these signals 

(synchronization services). To do so it is necessary to create a 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 97



notification API that is an interface that allows applications to 

access the various offered notification features for registering 

such notifications in synchronization service and the last one 

in turn, will notify the applications about events (related to 

those notifications that previously were registered) occur in 

TV programming. 

 Notifications addressed in this work have various types 

such as start and end of trading blocs, start, pause and end of 

the TV programs, sex scenes, violence, crime and some 

notifications generated by the events triggered by the user. For 

example, a user can send notification related to the 

information about his current tuned channel to another user in 

TV social system. 

 

4 SyncSmartv 

SyncSmartv is a reference framework designed to facilitate 

the development of integrated Smart TV applications. The 

goal is to create mechanisms that allow developers to build 

applications in this field in a transparent manner, in a clear 

approach without being concerned about low-level 

implementation details. Additionally the framework aims to 

allow developers to think more about the business logic of 

their applications; hence, they can build integrated 

applications with lower cost and effort. In this work, when we 

talk about integrated applications, we mean those ones 

synchronized with the television programming. 

4.1 Design Considerations 

Bosch et al. [2] report that framework development is 

different from a common application development. This is 

because of that framework's design needs to cover all relevant 

features of a particular domain and not just those ones of 

specific application. This is why it is important to consider the 

following when developing framework for Smart TV 

integrated applications. Generally, there are six issues to 

consider. First, How to synchronize the TV content with 

Smart TV applications, Second, how mobile devices 

(smartphones, tablets, and others), which are in the same space 

with TV can interact with it. Third, how connected mobile 

devices in the TV environment can detect the presence of 

available TV service for use. Forth, how Smart TV 

applications can act over the TV controls such as changing 

channels, controlling volume and so on. Fifth, how ticker 

applications must share the remote control with the TV. 

Finally how a Smart TV application can identify the channel, 

which is being watched by the user. 

In order to build the reference framework to support the 

issues that was discussed above we considered the set of 

artifacts in Fig. 2 for extracting the common and reusable 

modules existing between them. The extracted modules are a 

part of the SyncSmartv components.  

In the right side there are some built applications (shown 

in gray rectangles) that have some typical characteristics of 

one or more applications or components located in the left 

(represented in the form of ellipse). These applications are 

simple that are not directly interesting for end users. These 

applications built in order to explore features of Smart TV. An 

application of the right side presents similar characteristics to 

a component of application on the left hand while there is a 

line that joins each rectangles in right hand to the 

corresponding application in the right and passes over the 

ellipses. 

 

Fig. 2.  Artifacts considered supporting the development of SyncSmartv. 

The set of artifacts considered in Fig. 2 is composed of nine 

main applications: the TickerApp used to manage the use of 

remote control between applications and TV; the VideoList is 

in charge of receiving synchronized notifications generated by 

the viewer and then starts to playback the pre-defined video 

list; the MobileSync uses HTTP protocol to allow two-ways 

communication and sharing media content among the TV and 

all the existing devices in the same environment; the 

SharedApp allows the viewer to use the Smart TV as second 

screen in a synchronized way with the TV programming; the 

KaeptorInt implements some protocols of the third-services 

providers aiming to facilitate TV applications to receive 

synchronized notifications; the BackApp is responsible for 

switching channels automatically after that a synchronization 

event (starting scene crime, for example) is triggered; the 

DescriptionApp allows user to access more details of the 

product which is in focus in the current scene; the TVNewsApp 

allows user (on a given tuned channel) to be provided with 

informations related to the status of the broadcasting TV news 

and the TVMonitor, which contains most of the functionalities 

of the aforementioned applications that is one of the 

completed and integrated applications developed by the author 

of this paper as a proof of concept of the framework. 

4.2 Development 

Below, we illustrate only the domain analysis of the first 

problem (how to synchronize the TV content with Smart TV 

applications), that is, how some appropriate artifacts were 

extracted and used to resolve this problem. 

First, the common features are identified while the 

applications of Fig. 2 were comparing and after a simplified 

design (can be a textual description) of artifacts needed to 

implement each feature, was made. Then a feasibility 

evaluation was done on the artifacts found by analyzing, for 

example the estimated effort in construction and reuse level, 

that means how many applications would take advantage of 

this artifact. Finally, we decided whether it is beneficial to 

implement them or not. 

After identifying the first functional requirement (1. Means 

to receive synchronization information) for the first problem 

that already mentioned, two artifacts were drafted: 1. a login 

98 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



service and connection establishment with the TV channel 

monitoring service 2. A registration and communication 

service with the registered channel. In Fig. 3, the use cases in 

yellow are functionalities of the artifact 1 (login service and 

connection establishment with the TV channel monitoring 

service) and in blue are part of the artifact 2 (registration 

service and communication with the registered channel). 

4.2.1 SyncSmartv Architecture 

The following figure depicts the architecture of the 

SyncSmartv. In a quick view this architecture is based on the 

AppFramework architecture [6] where the Framework layer in 

gray and Adaption Layer in blue were added. The SyncSmartv 

integrates a set of tools and components that enable a software 

engineer to quickly design, develop and deploy new Smart TV 

integrated application. The main SyncSmartv functionality is 

offered by using its API. Using the API specification a 

developer may build various applications such as monitoring 

applications that detect crime or sex scene and start a playback 

of some music from the viewer mobile device. 

The figure consists of four layers, the first called 

Application Manager is where applications are managed and 

built using languages such as JavaScript, HTML, CSS and so 

on. Usually once the application is built, it is executed on the 

AppEngine 

 

 

Fig. 3.  Part of the Use Case Diagram of TVMonitor. 

Smart TV Platform layer. If the developer wants to build an 

integrated application, it can take advantage of the available 

features in the framework layer. Then this application uses the 

Adaption Layer to implement generic artifacts specified in the 

framework according to the need of each Smart TV platform 

used for application execution. Finally, the application is run 

in the Smart TV Platform layer. The next paragrahs provide an 

overview of SyncSmartv modules that meet the functional 

requirements listed in Subsection 4.1. 

4.2.2 Modules Overview 

The SyncSmartv set of modules we present in this section 
is a set of JavaScript classes and interfaces, bind with 

synchronization services, which aim to add a level of 
integration between the Smart TV, the application and for 
enhancing TV social experience. The Sync Event Manager 
module provides an interface for Smart TV applications for 
receiving the notifications of the occurring events in television 
programming. The Communication Manager provides the 
features needed to establish a two-way connection between 
Smart TV applications and mobile devices (smartphones, 
tablets, etc.) found in the same environment. The User Device 
Discovery module provides necessary mechanisms for the 
connected devices such as smartphones, tablets, printers, etc 
can discover the existence of some available TV services for 
use. The TV Control Manager module provides functionalities 
for Smart TV applications that act on TV controls. The Input 
Manager provides mechanisms to manage the use of remote 
control buttons between applications and the TV. The TV 
Channel ID provides mechanisms to detect the channel being 
watched by the user, through a clear approach. 
 

 
 

 
 

 

4.2.3 Framework Instantiation 

As a proof of concept of the framework, we developed a 

set of tools to implement test with developers. This set of tools 

were mainly developed using JavaScript. The Fig. 5 depicts an 

overview of the set. 

The set is composed of two main parts: the Back-end used 

to store the information of users and devices and to allow 

communication and sharing of media content among different 

components of the set; and the Front-end, which contains 

applications executed on mobile devices and Smart TV 

platforms. 

 

Fig. 4.  SyncSmartv Development Framework. 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 99



 

Fig. 5.  Implementation Overview. 

 

 

Back-end 

The Back-end of this work provides web services for 
Smart TV discovery services and for managing the users of 
social TV systems. The aforementioned services were 
developed using the Grails framework (Fig. 5(a)). Moreover, 
the Back-end allows communication and sharing the media 
content among the different applications respectively using 
Apache ActiveMQ message broker (Fig. 5(b)) and PHP server 
(Fig. 5(c)). 

Front-end 

The Front-end is based on client-side (PC, Smart TV, 

Tablet, Smart Phone, etc.) that was developed using Apache 

Cordova + HTML5 + JQuery (Fig. 5(d)) and JavaScript-based 

SyncSmartv API’s. 

 

5 Framework Validation 

5.1 Developing Experimentation 

To validate the framework proposed here we used the 

experimental method proposed by Wohlin et al. [9].  

The experiment consisted of a comparative study of the 

development processes of two versions of TVMonitor 

application, one built with the reuse approach using the 

proposed framework and other built without this approach. 

The experimental phases performed in the study will be 

expatiated in the following subsections. 

 

 

 

 

 

 

5.1.1 Definition of the Experiment 

The objective of this study was: 

o To analyse the use of the proposed framework in the 

construction of Smart TV applications synchronized 

with television programing; 

o With the purpose of evaluation 

o Regarding the efficiency in terms  of time spent            

and productivity; 

o From a point of view of software developers; 

o In the context of undergraduate and graduated in 

computer science and computer engineering. It is 

important to point out that in this experiment twelve 

(12) developers and one object were considered 

(TVMonitor). 

5.1.2 Design of the Experiment 

Efficiency was selected as dependent variable for this 

experiment. Independent variables were the development 

method, the developed application, the development 

environment and development technologies. 

     Among the four independent variables, three were kept 

constant during the study: 

 Application = TVMonitor ; 

 Development environment = Eclipse IDE ; 

 Development Technologies = HTML, CSS, JavaScript 

and JQuery. 

 

Formulation of Hypotheses 

100 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



For the formulation of the three hypotheses, the following 

metrics were considered: 

 - Total time spent by the team for developing Smart TV 

application synchronized with the TV program; 

     Þ - Team Productivity in terms of produced lines of code 

(LOC) per unit time (Þ = LOC / ); 

     µ  - Average of the spent time by the teams for developing 

Smart TV application synchronized with the TV program; 

     µÞ - Average productiveness of the teams in the 

development of Smart TV application synchronized with the 

TV program. 

     We have a null hypothesis and its two corresponding 

alternatives: 

 Null Hypothesis (H0): There is no difference between teams 

who used the proposed framework and teams that did not 

use while developing TVMonitor application regarding the 

efficiency (ε) of the team. 

H0: εframework = εwithoutframework => µ framework =      

µ withoutframework e µÞframework = µÞwithoutframework 

 Alternative Hypothesis (H1): Teams who use the proposed 

framework for building TVMonitor application are generally 

more efficient than those ones who developed without the 

use of framework. 

H1: εframework > εwithoutframework => µ framework < µ withoutframework e 

µÞframework > µÞwithoutframework 

 Alternative Hypothesis (H2): Teams using the approach 

“without framework” for building TVMonitor application 

are generally more efficient than those developing with the 

use of framework. 

H2: εframework < εwithoutframework => µ framework > µ withoutframework e 

µÞframework < µÞwithoutframework. 

 

5.1.3 Implementing the Experiment 

In this step we prepared effectively the material needed to 

support the experiment, that means, the set of objects 

manipulated during the experimentation and which are defined 

in 4.2.3. In addition, were prepared documents that allowed 

the experimenter to exchange information with the 

participants. 

The organization of the data in Fig. 6 is done according to 

the two development approaches used in this experiment: 

development with and without the use of the framework 

reported in this paper. 

 

5.1.4 Analysis and Interpretation of Results 

An initial analysis was done on the data collected in Fig. 6. 

It is important to note that the distribution efforts of the groups 

in the design and test phases of TVMonitor development was 

constant. However, there is a great discrepancy of 

development efforts for the groups that used the proposed 

framework during the implementation of TVMonitor. While 

groups which have not used the proposed framework, in 

average they spent 4 hours and 59 minutes but  those who 

used the framework  spent 2 hours and 08 minutes (a decrease 

of 57, 2%). 

 

 

Fig. 6:  Data Collected.

Testing Hypotheses 

The purpose of the t-test (Montgomery, 2000) is to 

verify that a variable differs between two independent 

samples, based on the arithmetic average and considering 

variability of its data items. Then with some degree of 

significance ( ), reject the null hypothesis (H0) and choose 

one of the alternative hypothesis (H1 or H2). The t-test 

formula is given by equation (1), where  are 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 101



the variances of each sample; Sp is the dispersion; and n and 

m are the numbers of data items that each sample contains. 

In equation (2), n+m-2, typically noted by gl is called the 

degree of test’s freedom. 

 

t0 =  (1) 

a)  

 (2) 

 

Once you have calculated to,  and gl, you can check the 

value of the standard t in t-test distribution to see if t0 is so 

significant.  

If | t0 |> standard t = t / 2 gl → REJECT H0, 

Otherwise, → H0 NOT REJECTED and no 

conclusion is drawn from the experiment. 

 

As the dependent variable of the experiment (efficiency of 

teams) has two treatments (total time ( ) and productivity 

(Þ)), the application of t-test was performed in two steps 

too. During this process, we calculated the variance using 

the following equation: 

 

   (3), with n = 3 

Step 1: t-test (Total Time) 

After calculating the variance of each group, we have: 

 (withoutframework)= 2,97723  (withframework)= 1,5325 

= 0,2 Sp = 1,501620791012165 

t /2, gl = t0,1000, 4 = 2,1318 t0 = -2,498498775014366 

 

Then we have |t0| > t0,1000, 4  REJECT the null hypothesis 

H0 with 20% of significance. 

 

Step 2: t-test (Total Productivity) 

After calculating the variance of each group, we have: 

 

 (withoutframework)= 15951  (withframework)= 179347 

= 0,02 Sp = 130,1691207621838 

t /2, gl = t0,01, 4 = 4,6041 t0 = 5,475964737075994 

 

Then we have |t0| > t0,01, 4  REJECT the null hypothesis H0 

with 2% of significance. 

 

6 Final Remarks 

SynscSmartv can be offered to developers in form of a 

semi-complete source code skeleton that integrates 

synchronization, notification and TV controls functions. A 

set of tools that were developed in 4.2.3 with the purpose of 

a proof of concept of the framework can provide to a 

developer more facilities in the process of building Smart 

TV integrated applications. In addition, all functional 

requirements that were established while planning the 

development of this framework were implemented and used 

during the instantiation of the SyncSmartv. In addition, the 

experiment conducted in this paper could prove statistically 

that the SyncSmartv can be considered as an important tool 

to support the developers of applications in this field. 

Regarding future work, we plan to: (a) add mechanisms 

of synchronization through local audio/video processing of 

TV content to framework; (b) explore and add adjustment 

mechanisms of synchronization with the purpose of 

minimizing the delay difference that exists among various 

forms of television content transmission (radio 

broadcasting, cable, satellite, etc); and (c) offer more 

notification API’s for supporting the development of social 

TV systems with the purpose of improving the user 

experience quality in Smart TV environment. 

 

7 References 

[1] Bachelet, C. Most smart-TV owners do not connect their TVs 

to the Internet: manufacturers must respond. Analysys Mason 

2013. Disponível em: 

<http://www.analysysmason.com/About-

Us/News/Insight/smart-TV-May2013/>. Acessado em: mar. 

2014. 

[2] Bosch, J; Molin, P; Mattsson, M; Bengtsson, P; Fayad, M. 

Framework Problems and Experiences. In: Fayad, M.; 

Johnson, R.; Schmidt D. Building Application Frameworks: 

Object-Oriented Foundations of FrameworkDesign.Nova 

Iorque : John Willey and Sons, p. 55-82, 1999. 
[3] David, W. 2013 Smart TV Shipments Grew 55 Percent. 

Strategy Analytics 2013. Disponível em: 

<https://www.strategyanalytics.com/default.aspx?mod=pressr

eleaseviewer&a0=5472>. Acessado em: mar. 2014. 

[4] Freitas, G; Teixeira, C. Uma arquitetura de serviços para 

aplicações ubíquas em redes domésticas centrada em TV 

digital. In: XVI Simpósio Brasileiro de Sistemas Multimídia e 

Web (Webmedia 2010), 2010, Belo Horizonte - MG. Anais do 

XVI Simpósio Brasileiro de Sistemas Multimídia e Web 

(Webmedia 2010). Porto Alegre: SBC, 2010. 

[5] Group Share-Tv. Share-TV: Um framework para 

desenvolvimento de aplicativos convergentes centrados na TV 

para as plataformas GoogleTV e Ginga-J. Webmedia '12. São 

Paulo, 2012. 

[6] Samsung Smart Tv. AppsFramework.  Disponível em: 

<http://www.samsungdforum.com/Guide/art00017/index.html

>. Acessado em: mai. 2014. 

[7] Schofield, J. Smart TVs may be taking off, but they're still not 

smart enough. ZDNet, 2012. Disponível em: 

<http://www.zdnet.com/smart-tvs-may-be-taking-off-but-

theyre-still-not-smart-enough-7000008042/ >. Acessado em:  

mar. 2014. 

[8] Teixeira, C.A.C.; Cédrick, B.N; Santos, C.A.S, Melo, E.L. 

Mechanisms of synchronization for multimedia applications. 

2015. 

[9] Wohlin, C; Runeson, P; Host, M; Ohlsson, M.C; Regnell, B; 

Wesslén, A. Experimentation in Software Engineering: an 

introduction. Kluwer Publishers, 2000. 

102 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |

http://lattes.cnpq.br/1123376648713853
http://www.zdnet.com/smart-tvs-may-be-taking-off-but-theyre-still-not-smart-enough-7000008042/
http://www.zdnet.com/smart-tvs-may-be-taking-off-but-theyre-still-not-smart-enough-7000008042/


Unpacking a Cluster of Modular Robots

S. Wong, S. Zhu, and J. Walter

Computer Science Department, Vassar College, Poughkeepsie, NY, USA

Abstract— The problem addressed is the reconfiguration of
a system of hexagonal metamorphic robots from an initial
arbitrary shape configuration I, to an overlapping straight
chain goal configuration, G. We first present algorithm ONE-

DIR that accomplishes shape change using local contact
information and global knowledge of the coordinate of the
cell in I that overlaps G and direction of tilt of the chain G.
No preprocessing or algorithm-generated message passing is
used in the ONE-DIR algorithm. We compare algorithm ONE-

DIR to the simpler, but more widely applicable, algorithm we
presented in [1] (we call this the BUTTERFLY algorithm).
We test and compare the performance of algorithms ONE-

DIR and BUTTERFLY using a discrete-event simulator. Our
experimental results show that algorithm ONE-DIR is more
efficient, in terms of time for reconfiguration and number of
module moves, than the BUTTERFLY algorithm.

Keywords: Hexagonal metamorphic robots, self-reconfiguration

1. Introduction
Modular robotic systems are composed of one or more

robots that connect or release bindings to accomplish a task.

The completion of given tasks is made possible by the

resultant shape and connectivity of the system. Flexibility in

the number of possible target configurations attainable allows

such systems to be useful in applications that require modules

to occupy different coordinates or spatial arrangements with

respect to other modules over time.

When individual robots are homogenous, these systems

are known as self-reconfigurable (SR), self-repairing, or self-

healing. In SR systems, a module senses the position of

adjacent modules and follows a set of rules based on contacts

with neighboring modules in order to move to a different

position in relation to its current environment. It is important

that module collisions do not occur during the reconfiguration

process; even contact between moving modules must be

avoided.

When SR robotic systems are composed of homogenous

robots with a regular polygonal shape such as squares or

hexagons, the systems are called metamorphic. A metamor-

phic SR robotic system (MSR) is generally composed of

a sufficiently large number of modules so that the system

can assume many shapes in two- or three-dimensional space,

*This material is based upon work supported by the National Science
Foundation under Grant No. 0712911.

with any module capable of filling any position in any

configuration. The ability to effect system-wide shape change

in order to facilitate a variety of tasks is one of the main

reasons MSR systems are being studied.

Intuitively speaking, reconfiguration algorithms for MSR

systems are concerned with transferring a clump of modules

(the initial configuration, I) to a different location in the

plane (the goal configuration, G), using concurrent movement

of individual modules over the periphery of the clump of

stationary modules. In our work, all modules are assumed to

have identical shape, size, and computational abilities so that

any module in I can be used in any position in G.

This paper presents a new deterministic algorithm that

can reconfigure a system of hexagonal metamorphic robots

(HMSRs). Our algorithm causes modules to change from

a system with an arbitrary (but well-defined) shape to a

straight chain. The algorithm requires that modules in I know

the coordinates of the cell in which I and G overlap and

the direction of the target goal chain, making the algorithm

scalable even if very large numbers of modules participate

in the reconfiguration. Each module also has the sensory

capability to determine the state (occupied or unoccupied)

of its 6 adjacent grid cells in the initial formation and at the

start of each round.

In the system we model, each hexagonal-shaped module

requires an unmoving substrate lattice of identical modules

to move across. Modules accomplish movement by changing

joint angles as well as releasing and reforming inter-module

connections [2]. We speculate that such deformable modules

could be fashioned using new smart materials, such as

flexible CPUs, to accommodate the range of deformation

needed. More recent work by [3] presents the idea of rigid

hexagonal modules with sliding motion, but with motion

constraints similar to the ones in [2]. Our algorithms will

work for this type of module motion as well.

Our algorithms ensure the system will have a dynamically

changing shape, while at the same time guaranteeing that a

surface of stationary modules exists between each individual

module in I and a cell in G as the modules fill G. The

path between a particular module in I and its final position

in G is formed just in time for the module to reach that

position. The ONE-DIR algorithm we present in this paper has

extremely simple local rules for module motion and requires

no pre-processing phase. Furthermore, the reconfiguration

can be done without message passing and it requires minimal

module sensory capabilities.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 103



Metamorphic systems promise to be useful, for example,

in situations that require movement of modules over a surface

where minimal human intervention is possible. Floating mod-

ules used for human shelters or life rafts could be linked on

the surface of the ocean, changing shape for different weather

conditions or reconfigured as occupants changed dwellings.

Smart solar panels composed of individually mobile modules

could move across a roof [4] or the surface of the ocean (e.g.,

“Hexifloats" [5]) in order to spend the optimal amount of time

in direct sunlight or to remain connected while riding out a

storm. If used in conjunction with new techniques in human

tissue generation, nano-sized modules could be injected into

the human body to deliver tissue to a ruptured organ or blood

vessel, acquiring the different shapes necessary to navigate

complex routes. Such technology might also have applica-

tions in the arts, where, for example, installations composed

of HMRS’s could form different pictures by moving across

a wall or floor.

As an example application, consider a system of self-

reconfigurable solar panels on the roof of a building. Depend-

ing on the distribution of sunlight and shadows, the modules

forming the platform could move so that they spend the most

time in direct sunlight. Having a limited number of self-

reconfigurable panels could be potentially more cost-effective

than having under-utilized stationary panels, many of which

may not used at different times of the day. Metamorphic sys-

tems would also be useful in environments that do not support

human life processes such as outer space, toxic waste sites, on

or under water, and in nano-scale environments. Karagozler et

al. present a system of modules that change shape to provide

support for emergency maintenance operations in space [6].

Nano-scale modules have been proposed that, when massed

together, become tools for anything from medical procedures

to household tasks [7].

2. Related work
Many centralized and decentralized algorithms have been

proposed to change the shape of modular systems. Our previ-

ous work has addressed the reconfiguration of metamorphic

robots from a straight chain configuration to an arbitrary goal

configuration ([8], [9]), a process that may require traversal

of very irregular surfaces [10] and envelopment of obstacles

[11].

Butler et al. worked with a similar rule-based algorithm

for square modules [12]. Their paper discusses using their

algorithm for hexagonal modules also, but the probabilistic

algorithm is limited in terms of its physical constraints on

modules.

Miao et al. [3] presented a probabilistic distributed algo-

rithm for target envelopment that uses a curve-shortening

technique. Their algorithm also applies to HMSR systems,

but with different motion constraints and communication

assumptions than are assumed in this paper.

Recent work by Larkworthy et al. [13] demonstrated a time

complexity of O(n) for probabilistic reconfiguration of large

HMSR systems for algorithms in which at most one module

can move in a time step. Larkworthy, et al. used results

presented by Ghrist [14] to propose an efficient probabilistic

algorithm for multi-move reconfigurations.

Nguyen et al. developed a greedy algorithm that allows for

any admissible chain configuration to be transformed into any

other admissible chain configuration with the same number

of modules [15]. Nguyen’s algorithm is centralized while the

algorithm presented in this paper is decentralized.

Recent work by Lakhlef, et al. [16], discusses probabilistic

reconfiguration of MEMS microrobots. The algorithm they

present requires no knowledge of the target configuration and

uses message passing to coordinate module movements. In

this paper, we present scalable deterministic algorithms that

use only the knowledge of a single goal cell and the direction

of the goal chain in relation to the initial configuration.

A navigation approach for reconfiguring HMRSs is pre-

sented by Zada, et al. [17]. The algorithms assume that

modules are independently mobile (needing no substrate) and

that modules communicate during reconfiguration. Both of

these assumptions make the algorithms in [17] significantly

different than the ones described in this or in any of our

earlier papers [18], [9], [10], [11], and [19], and therefore

comparisons are not meaningful.

3. System Model
3.1 Reconfiguration space

The plane is a lattice partitioned into equal-sized hexagonal

cells and labeled using the coordinate system described by

Chirikijian [2].

We assume modules in I are oriented such that each has a

flat surface facing south (S) and north (N). This way we can

unambiguously describe the east (E) most, west (W) most,

inner, and perimeter columns of I.

3.2 Module Assumptions
Each hexagonal module is identical, including sensors,

computing capability and motion constraints, and each runs

the same algorithm. Each module is the same size as a cell

in the lattice and modules always fit within a cell when

they are not moving and at the end of each round (i.e.,

a module cannot be in-between cells of the lattice at the

beginning or end of a round of module movement). In terms

of specifications, the robot must have the ability to detect

robots that are in contact with any of its sides.

The number of modules in I is assumed to be equal to the

number of cells in G.

Physical module constraints for this algorithm include:

1) A module must have a minimum of two adjacent free

(unoccupied) sides in order to move.

104 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



2) A module must have an adjacent non-moving substrate

module to rotate around or slide over.

3) Modules cannot carry, push, or pull other modules, i.e.,

a module is only capable of moving itself.

4) Each module knows, at all times

• its location (the coordinates of the cell that it

currently occupies),

• its orientation (which edge is facing in which

direction),

• its neighboring cells that are occupied by other

modules using touch sensors, and

• if a module has not yet moved, it knows which of

its neighboring modules have and have not moved

during an execution of the algorithm.

5) Modules can either rotate clockwise (CW) or counter-

clockwise (CCW) or slide across two faces of a

substrate to achieve the same effect. Rigid modules

move by sliding over two faces of a substrate [3]

while retaining the original orientation of each module

(cf. Fig. 1(a)–(e)). Deformable modules move by a

combination of rotation and changing joint angles[2]

(cf. Fig. 1(f)–(j)).

(a) (b) (c) (d) (e)

S S S S S
M M

S S S S S
M M

(f) (g) (h) (i) (j)

Fig. 1: Movement of rigid module M over substrate S, (a)–(e); movement
of deformable module M over substrate S, (f)–(j). For each type of module,
the motion constraints are the same.

3.3 Reconfiguration Environment
We assume there exists initially a straight chain goal

configuration G that intersects the initial configuration I
in a single cell. The straight chain G must intersect with

the E-most column of the admissible initial configuration

I in exactly one cell and G must be oriented from this

intersection to either the NE or SE of the cell that intersects

I. All modules participating in the reconfiguration know the

coordinates of the initial overlapping cell and the direction of

the straight chain G in relation to I. Our algorithms are shown

to be correct if all the modules initially in an admissible

configuration I stop moving such that each one is in a cell

of G.

I is admissible if

1) every column of I is contiguous from north (N) to

south (S) (i.e., there are no holes in I),

2) every module in a column of I that is not the W-most

column initially has either a module adjacent to its NW,

SW, or both NW and SW, and

3) every module in a column of I that is not the E-most

column initially has either a module adjacent to its NE,

SE, or both NE and SE sides.

This definition of admissibility is more restrictive than it

was in the BUTTERFLY algorithm [1], which does not require

all modules in I to have adjacent modules to either the

NE or SE. Fig. 2 (a) gives an example of a configuration

that is inadmissible for both the BUTTERFLY and ONE-DIR

algorithms, (b) an example of a configuration admissible in

the BUTTERFLY algorithm but not in the new algorithm, and

(c) an example of a configuration that is admissible both for

the BUTTERFLY and for the algorithm presented in this paper.

(a)

(c)

(b)

Fig. 2: Initial configurations. The configuration in (a) violates all admissi-
bility requirements, the configuration in (b) is admissible in the BUTTERFLY

algorithm, and the configuration in (c) is admissible in both the BUTTERFLY

and our new algorithm.

4. Algorithm ONE-DIR Overview
Minimal preprocessing is necessary and no algorithm-

generated message passing occurs between the modules in an

execution of the ONE-DIR algorithm. An execution starting

from an admissible I is deterministic and finite, lasting from

the first time step in which a module moves until the time

step in which each module is in a cell in G.

Modules move in synchronous rounds, with as many

modules moving in a round as possible. Specific conditions,

such as the direction of the module’s last move, its current

neighboring modules and the direction of the goal chain cells

are used in the algorithm to ensure that a module will never

collide with another module nor will any module movement

divide the system into disjoint connected components.

The algorithm has a module at the N or S of the W-most

column (the column furthest from the column that intersects

G) begin to move either clock-wise (CW) or counter-clock-

wise (CCW), with the rest of the modules in that column

moving in the same direction when their formerly occupied

neighboring cell is empty.

In [8] and [9], we showed that configuration time is expe-

dited when modules move in both CW and CCW directions,

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 105



i.e., bidirectionally. However, correctness requires that our

algorithms ensure collisions are not possible when modules

enter goal cells. In [1], modules were assumed to have a

one-cell look-ahead ability perpendicular to each flat side, to

ensure that either the module entering the goal from the N

or S delayed one time step, thereby avoiding collision.

Initially, we attempted to write an algorithm in which mod-

ules moved both CW and CCW around the perimeter of I,

but this strategy required some modules to delay one or more

time steps after starting to move (as does the BUTTERFLY

algorithm), to avoid collision in goal cells. Any module delay

slows down the overall reconfiguration and therefore, in the

more time efficient new algorithm presented in this paper, all

modules move in the same direction (either CW or CCW),

maintaining one empty cell between moving modules and

requiring no module delays once movement starts. Modules

initially choose which direction to move based on the angle of

intersection between I and G, since moving toward an obtuse

angle intersection requires no wait time for any modules

with single-cell spacing, as we showed in [8] and [10]. Once

moving, modules move in every timestep until they occupy

a goal cell, when they stop.

4.1 Algorithm ONE-DIR Details
Each module checks in each time step before it initially

begins moving whether or not it is free to begin movement.

Free modules have two or three consecutive sides with

neighbor contacts and three or four consecutive sides that

are not adjacent to occupied cells, as shown in Fig. 3.

Occupied Free module (M)Empty

M M

Fig. 3: Local configurations in which a module M is free to begin moving
CW. Flip each part vertically for configurations in which a module is free
to begin moving CCW.

Algorithm ONE-DIR

1. if (not moved):
2. STARTMOVINGIFPOSSIBLE()
3. else: // module has moved
4. if (not INGOAL()):
5. MOVE(dir)

Fig. 4: Algorithm run at each module on each time step of reconfiguration.

Here are definitions of variables maintained by the algo-

rithm at each processor:

• moved - a boolean variable that is true if the module is

moving in the round and false if it has not yet moved

Procedure STARTMOVINGIFPOSSIBLE()
1. if (goalDir == NE):
2. if ((ALLINITCONTACTS() and EMPTYWESTAND(S)) or

(INFIRSTGOALCOLUMN() and EMPTYWESTAND(N))):
3. moved = true
4. dir = CCW
5. else if (goalDir == SE):
6. if ((ALLINITCONTACTS() and EMPTYWESTAND(N)) or

(INFIRSTGOALCOLUMN() and EMPTYWESTAND(S))):
7. moved = true
8. dir = CW

Fig. 5: Procedure STARTMOVINGIFPOSSIBLE().

or if it is in a goal cell. Initially, this variable is false at

every module.

• goalDir - the direction in which the goal chain config-

uration is pointed in relation to I, NE or SE.

• dir - the direction in which a module moves, either CW

or CCW, over an adjacent substrate module. Choosing

the direction of movement depends on goalDir because

all modules will move toward the obtuse-angle intersec-

tion between I and G. If goalDir is NE, dir will be

CCW, and if goalDir is SE, dir will be CW.

• firstGoal - the cell that is initially both ∈ I and ∈ G.

Other functions used in reconfiguration algorithm ONE-

DIR:

• ALLINITCONTACTS(): Predicate called by module i that

has not started moving. Returns true only if all modules

currently in contact with i have not yet moved.

• INFIRSTGOALCOL(): Predicate called by module i that

has not started moving. Returns true only if module i is

in same column as firstGoal and false otherwise.

• EMPTYWESTAND(X): Predicate called by each module

i that has not started moving. Returns true if cells to the

NW, SW, and X direction are empty, for X either N or

S.

• MOVE(dir): Function causing module to move in either

a CW or CCW direction over a substrate module. This

predicate is called by each module for which moved is

true in every timestep in which the module is not in a

goal cell.

• INGOAL(): Predicate that returns true if the coordinates

of the cell a module currently occupies are on a straight

line starting at firstGoal in direction goalDir. Algorithm

execution is terminated at any module for which this

predicate is true.

Each module runs the same algorithm in every time step

and every module rotates the same direction. The module at

the N or S end of the W-most column of modules in I begins

moving over its adjacent neighbor to the E. At the start of

reconfiguration, the only module that is allowed to move is

the one that has a free local configuration (see Fig. 3), no

adjacent modules to the NW or SW, and a free space to either

106 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



the N, NE, N and NE, or S, S and SE, or SE, depending upon

the goalDir. After moving for the first time, each module

moves in the same direction in every time step in which it is

not in G. All modules move toward the obtuse angle side of

the intersection of I and G, with all modules moving either

CW or all moving CCW.

5. Simulation and Analysis
Fig. 6 demonstrates executions during execution of the

BUTTERFLY and ONE-DIR algorithms, where the modules are

moving from left to right. The BUTTERFLY algorithm forms

columns of modules on either side of G, requiring one-cell

look-ahead capabilities and associated delay so modules do

not collide in G. The ONE-DIR algorithm does not need to

use these formations or any delay, since all modules move

in the same direction.

Fig. 6: examples of modules moving in BUTTERFLY algorithm
(left) and ONE-DIR algorithm (right).

We simulated the execution of each algorithm on a set of

different shapes, examples of which are shown in Fig. 7, with

an increasing number of modules in each experimental run.

Fig. 7: Examples of bowtie, diamond and wedge configurations.

We simulated both the BUTTERFLY and ONE-DIR algo-

rithms and the results are shown in Figs. 8, 9, and 10.

There were slight differences in the time and number of

moves for a particular size and shape of I, depending on the

intersection point and the direction of tilt of the goal chain.

The results shown in the graphs represent an average for

number of timesteps and moves with alternate intersections

and directions of G.

Algorithm ONE-DIR outperforms the BUTTERFLY algo-

rithm both in number of timesteps and the combined num-

ber of module moves. The advantage of the BUTTERFLY

algorithm is that it works for a larger number of initial

configurations. Both algorithms require modules to know

only a single goal cell coordinate and the direction of the

goal chain, so both are scalable.

Correctness of the ONE-DIR algorithm requires that there is

no module collision or deadlock and that all modules initially

0

164

328

492

656

820

5 11 19 29 41

Bowtie Configuration

Modules

Ti
m

es
te

ps

one-dir

butterfly

0

1,040

2,080

3,120

4,160

5,200

5 11 19 29 41

Bowtie Configuration

Modules

M
ov

es

one-dir

butterfly

Fig. 8: Comparison of ONE-DIR and BUTTERFLY on bowtie shape.

0

240

480

720

960

1,200

4 9 16 25 36 49

Diamond Configuration

Modules
Ti

m
es

te
ps

one-dir

butterfly

0

1,780

3,560

5,340

7,120

8,900

4 9 16 25 36 49

Diamond Configuration

Modules

M
ov

es

one-dir

butterfly

Fig. 9: Comparison of ONE-DIR and BUTTERFLY on diamond
shape.

in I stop in a cell in G. Collision occurs when two modules

attempt to move into the same cell from different directions.

Deadlock occurs when the rules for movement never apply

to a module’s local configuration, such as is the case when

one module is adjacent to a moving module.

Module collision is not possible at the start of reconfigura-

tion with ONE-DIR because modules choose direction based

on the direction of the goal chain. Because of the required

smoothness of admissible initial configuration surfaces and

the direction of the chain G, at most one module will move

at the start of execution and other modules will follow with

one-cell spacing between moving modules. Modules can

distinguish adjacent moving modules from initial neighbors,

so no module will start moving when it is adjacent to a

moving module. Module collision in unoccupied goal cells

is not possible due to the orderly fashion in which modules

start to move, combined with the common direction chosen

by all modules based on the angle at which the goal chain

meets the initial configuration. Since modules move toward

the obtuse angle intersection of I and G, moving modules

will not come into contact in the angle formed by the I and

G intersection.

Moving modules will not be trapped against modules in

I that have not yet begun to move because of the required

smoothness of I and the second admissibility requirement,

requiring every module in I except those in the west-most

column to have neighboring modules to the NW, SW, or both

NW and SW. Therefore, modules will not come into contact

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 107



0

80

160

240

320

400

3 6 10 15 21 28

Wedge Configuration

Modules

Ti
m

es
te

ps

one-dir

butterfly

0

340

680

1,020

1,360

1,700

3 6 10 15 21 28

Wedge Configuration

Modules

M
ov

es

one-dir

butterfly

Fig. 10: Comparison of ONE-DIR and BUTTERFLY on wedge shape.

when moving over the surface of I nor when moving over

the surface of modules already in G.

6. Conclusions and future work
We have presented an algorithm that uses no preprocessing

and only local contact and sensor information at each module

to move modules from a set of admissible arbitrary initial

configurations into straight chain goal configurations. Our

algorithm is collision- and deadlock-free when run on an ad-

missible initial configuration. This algorithm is another step

toward the realization of a complete, deterministic planner for

the reconfiguration of hexagonal metamorphic robots, using

no message passing between modules, and the algorithm is

scalable.

We are currently developing deterministic algorithms that

use either preprocessing, sensory information, or both, to

reconfigure an arbitrary initial configuration into a straight

chain goal configuration. We aim for these algorithms to

work on a larger subset of initial configurations by relaxing

the assumptions on the admissibility of I.

Acknowlegements
We thank Vassar College students Jonathan Gorman for

early work on the algorithms and George Whiteside for his

help running experiments on our discrete event simulator.

References
[1] S. Wong and J. Walter, “Deterministic distributed algorithm for self-

reconfiguration of modular robots from arbitrary to straight chain
configurations,” in Proc. IEEE Intl. Conf. Robotics & Automation,
2013, pp. 537–543.

[2] G. Chirikjian, “Kinematics of a metamorphic robotic system,” in
Proc. IEEE Intl. Conf. Robotics & Automation, 1994, pp. 449–455.

[3] Y. Miao, G. Yan, and Z. Lin, “A distributed reconfiguration strat-
egy for target enveloping with hexagonal metamorphic modules,” in
Proc. IEEE Intl. Conf. Robotics & Automation, 2011, pp. 4804–4809.

[4] M. Kanellos, “An ikea for solar?” greentech solar, 2009.
[5] H. Ali, “The power flower,” Photovoltaic Markets and Technology:

Special Issue on Applications and Installations, vol. 5, pp. 136–140,
2011.

[6] M. Karagozler, B. Kirby, W. Lee, E. Marinelli, T. C. Ng, M. Weller,
and S. Goldstein, “Ultralight modular robotic building blocks for the
rapid deployment of planetary outposts,” in Revolutionary Aerospace
Systems Concepts Academic Linkage Forum, 2006, pp. 1–15.

[7] B. Kirby, B. Aksak, J. Campbell, J. Hoburg, T. Mowry, P. Pillai,
and S. Goldstein, “A modular robotic system using magnetic force
effectors,” in Proc. IEEE Intl. Conf. Int. Rob. & Syst., 2007, pp. 1–7.

[8] J. Walter, J. Welch, and N. Amato, “Distributed reconfiguration of
metamorphic robot chains,” Springer-Verlag Journal on Distributed
Computing, vol. 17, pp. 171–189, 2004.

[9] J. Walter, B. Tsai, and N. Amato, “Algorithms for fast concurrent
reconfiguration of hexagonal metamorphic robots,” IEEE Transactions
on Robotics, vol. 21, no. 4, pp. 621–631, 2005.

[10] P. Ivanov and J. Walter, “Layering algorithm for collision-free
traversal using hexagonal self-reconfigurable metamorphic robots,” in
Proc. IEEE Intl. Conf. Intell. Rob. & Systs., 2010, pp. 521–528.

[11] S. Matysik and J. Walter, “Using a pocket-filling strategy for distributed
reconfiguration of a system of hexagonal metamorphic robots in an
obstacle-cluttered environment,” in Proc. IEEE Intl. Conf. Robotics &
Automation, 2009, pp. 4265–4272.

[12] Z. Butler, K. Kotay, D. Rus, and K. Tomita, “Generic decentralized
control for a class of self-reconfigurable robots,” in Proc. IEEE
Intl. Conf. on Robotics & Automation, 2002, pp. 809–816.

[13] T. Larkworthy and S. Ramamoorthy, “An efficient algorithm for
self-reconfiguration planning in a modular robot,” in Proc. IEEE
Intl. Conf. Robotics & Automation, 2010, pp. 5139–5146.

[14] R. Ghrist, “Shape complexes for metamorphic robot systems,” in
Workshop in Algorithmic Foundations of Robotics, 2002.

[15] A. Nguyen, L. J. Guibas, and M. Yim, “Controlled module density
helps reconfiguration planning,” in Proc. of 4th International Workshop
on Algorithmic Foundations of Robotics, 2000, pp. 23–36.

[16] M. Lakhlef, H. Mabed, and J. Bourgeois, “An energy and memory-
efficient distributed self-reconfiguration for mems microrobots,” in
22nd Euromicro Intl. Conf. on Parallel, Distributed and network-based
Processing, 2014, pp. 154–161.

[17] F. Zada, H. El-Deen, and Y. Dahab, “A navigation approach for
configuring distributed hexagonal metamorphic autonomous mobile
robots,” CiiT International Journal of Artificial Intelligent Systems and
Machine Learning, vol. 6, no. 07, pp. 256–262, 2014.

[18] J. Walter, J. Welch, and N. Amato, “Concurrent metamorphosis of
hexagonal robot chains into simple connected configurations,” IEEE
Transactions on Robotics and Automation, vol. 18, no. 6, pp. 945–
956, 2002.

[19] D. Little and J. Walter, “Using hexagonal metamorphic robots to form
temporary bridges,” in Proc. IEEE Intl. Conf. Intell. Rob. & Systs.,
2005, pp. 2652–2657.

108 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



 
 

Applications of Petri Nets in Distributed Processing: a 

Scoping Study 
 

S. J. Bachega1, and D. M. Tavares2 
1Production Engineering Department, Federal University of Goiás, UFG, Catalão, Goiás, Brazil 

2Computer Science Department, Federal University of Goiás, UFG, Catalão, Goiás, Brazil 
 

 

Abstract - Petri Nets has been applied in several contexts 

since its creation. Among the classical applications are 

communication protocols, manufacturing systems, control 

system, software development, parallel algorithms, and 

robotic systems. The aim of this paper is to initiate a scoping 

study to collect and compare existing practical applications 

of Petri nets in distributed processing. We found the use of a 

great variety of Petri Nets applied to distributed processing, 

such as airport simulation, language definition, 

manufacturing simulation, and some derivative works which 

use some of the established theories presented. This review 

does establish a baseline, which we wish will be used by other 

researchers. 

Keywords: Petri nets; distributed processing; application; 
scoping review 

 

1 Introduction 
Petri nets give a uniform environment for the design of 

discrete event systems, modeling and formal analysis, 
considering its uses as a mathematical and graphical tool [1]. 
They have weight, label, directed graphs, and tokens that can 
have dynamic properties [2]. A formal definition of Petri net 
was shown in [3], and is replicated in TABLE I. 

TABLE I.  FORMAL DEFINITION OF PETRI NET [X3] 

A Petri net is a 5-tuple, PN = (P, T, F, W, M0) where: 

    P = {p1, p2, …, pm} is a finite set of places, 
    T = {t1, t2, …, tn} is a finite set of transitions, 
    F ⊆ (P X T) ⋃ (T X P) is a set of arcs (flow relation), 
    W: F → {1,2,3,…} is a weight function, 
    M0: P  → {0, 1, 2, 3, …} is the initial marking, 
    P ∩ T = ∅ and P ⋃ T ≠ ∅. 

A Petri net structure N = (P, T, F, W) without any specific initial marking is 
denoted by N. 

A Petri net with the given initial marking is denoted by (N, M0). 

There are several advantages to Petri nets, and a major 
one is that the same model can be used for performance 
evaluation, analysis of behavioral properties, systematic 
creation of discrete event simulators and controllers [1]. From 
the original Petri net definition, other studies were proposed 
and changed some of its features. These modifications were 
done to make the use of Petri nets more suitable to a wide 
range of problems with other challenges. Emerging modified 

Petri nets include Time Petri Nets, Stochastic Petri Nets, 
Colored Petri Nets and Fuzzy Petri Nets.  

Since its publication by Carl Adam Petri in 1962, Petri 
nets are applied in many contexts such as communication 
protocols [4], manufacturing systems [5], control system [6], 
software development [7], parallel algorithms [8], robotic 
systems [9], etc. In this paper, we focus in distributed 
processing applications.  

To define a distributed process, we first must 
understand the context of process creation in an operating 
system. The creation of a process in an operating system is 
usually an indivisible task involving a system call and the 
resources of a single computer. When we consider the 
features involved in distributed processes, the design of the 
process’ creation mechanism needs to take into account the 
use of several computers; and hence, the process’ support 
infrastructure is separated in several system tasks. These 
tasks can be separated in two independent aspects: the choice 
of the destination host (e.g. chosen amongst the nodes in a 
cluster, which act as computer servers); and in the creation of 
the execution environment for a distributed process (and an 
initial thread inside it) [10].  

In order to map the current knowledge in the field, the 
purpose of this paper is to initiate a scoping study to collect 
and compare existing practical applications of Petri nets in 
distributed processing. 

A scoping study, also known as scoping review, is a 
widely used approach to reviewing health research evidences 
[11]. Although the initial use was intended to health research, 
other areas started to use this approach to observe their 
importance and promising results. Examples of uses in 
related fields of computer science can be found in [12-16].  

Even though there is no universal definition of scoping 
study [17], according to [18], the scoping study comprises 
another type of literature review and generally aims to map 
relevant literature in a given field of interest. The common 
reasons to do scoping researches include to investigate the 
nature, to extend the range of a research activity; to resume 
and propagate research findings; to verify the potential of 
undertaking a complete systematic review; and to find 
research gaps in the existing literature [18]. This approach 
inclines to address wider topics where several different study 
designs might be applicable, and does not care about very 
specific research questions or to assess the quality of the 
included studies. These issues differs scoping study from 
systematic literature review [18].  

This paper is organized as follows: Section 2 describes 
the method, section 3 presents the results (answers to the 
research questions) and section 4 shows the conclusions.  

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 109



 
 

2 Method 

This paper has been undertaken as a scoping study 
based on the guidelines proposed by [17, 18]. The main steps 
followed are described below [18]. 

2.1 Identifying Research Question (Stage 1) 

In this stage, it is necessary to start the process with the 
definition of the research question. Research questions guide 
the subsequent phases of the research and should be clearly 
defined. They have a broad nature [17, 18].  

The research question of the present study is: What is 
known from the research results communications between 
2000 and 2015 about practical applications of Petri nets in 
distributed processing?    

2.2 Identifying Relevant Studies (Stage 2) 

The identification of primary studies (published or 
unpublished) and reviews should be as comprehensive as 
possible. The searching strategy for the research evidence 
should cover different sources [18].  

In order to gain a broad perspective, we searched in 
electronic sources, as suggested by [19]. The benefits of 
searching databases is highlighted by [20]. The following 
databases were covered: IEEE Xplore, Compendex, 
ScienceDirect, ACM Digital Library, Springer LNCS and 
digital proceedings sites. As confirmed by [21, 22], these 
databases cover the most important journals, conferences 
proceedings and workshops in computer science. 

It is necessary to justify the decisions to limit the scope 
and recognize the boundaries of the study [17]. The scope of 
this research is to identify the formal communications of 
research results that contribute to check the research 
directions in Petri nets applied in distributed processing in the 
last fifteen years. The reason of this scoping study is to 
summarize and disseminate research findings in the proposed 
theme.   

The search covered the period from 2000 to 2015 to 
ensure that the most relevant research within the field would 
be included. The keywords used were: Petri nets, distributed 
processing, parallel processing, application, scoping study. 
These key words were used with possible combination and 
alone. 

2.3 Study Selection (Stage 3) 

Stage 3 involves defining post hoc inclusion and 
exclusion criteria to select the papers used in this study. The 
post hoc feature ensures greater familiarity with the literature 
improving the selection based on relevance [18]. 

The following inclusion criteria was applied: 

• Primary studies published in proceedings of 
conferences, workshops and journals, representing 
applications of Petri nets in distributed processing.  

• The discussion results and analysis must be focused 
only on practical applications of Petri nets in 
distributed processing. 

The defined exclusion criteria were: 

• Secondary Literature Reviews. 

• Abstracts. 

• Overlapped papers issued by searches in the selected 
sources. 

• Duplicate publications of the same study. 

• Works in progress, technical reports, and some 
workshop reports (‘grey’ literature).  

We excluded ‘grey’ literature from analysis because the 
quality of these literatures is more difficult to assess and the 
volume of the studies included in the first searches would 
have grown unreasonably [21].  

In addition to this, we include only the most complete 
version of a study when several reports of the study exist in 
different journals (duplicate publications of the same study). 
Only studies written in English are included [21]. These 
decisions had to be made due to time span and budget 
constraints. Two reviewers applied the exclusion and 
inclusion criteria to identified citations.  

2.4 Charting the Data (Stage 4) 

Charting the data involves the extraction of data from 
each study as a narrative review [18, 23].   

The data collected from each citation were [18]:  

• Author(s), year of publication, study location. 

• Aims of the study. 

• Application context.  

• Method. 

• Main results.    

The data-charting was conducted by one researcher and 
verified by another. We discussed the subjects when there 
were a point of disagreement. Distribution was based on the 
time availability of each researcher.  This method is 
supported by [24, 25]. The data was tabulated to show the 
items presented in section 3.     

2.5 Collating, summarising and reporting 

the results (Stage 5) 

This stage, in scoping study, pursues to show an 
overview of all citations reviewed. Decisions about the best 
way to introduce this material were critical. There are two 
ways to present these findings: basic numerical analysis of 
the nature, extent and distribution of the material included in 
the study; and organizing the literature thematically [18].  

110 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



 
 

3 Results 

This section summarizes the results of this research.  

3.1 Categorization of Selected Articles 

We selected 13 papers that apply Petri Nets (original or 
modified) in distributed processing according to the 
definition of [10]. TABLE II shows the Publication ID, 
authors, date and source of the publications.    

TABLE II.  LIST OF SELECTED STUDIES 

ID Author Date Source 

P1 
Bertrand, Carle and 

Choppy [26] 
2009 

International ICST Conference on 
Simulation Tools and Techniques 

P2 
Boufaied, Subias and 

Combacau [27] 
2002 

International Conference on 
Systems 

P3 Fang, Xu and Yin [28] 2007 
International Conference on Natural 

Computation 

P4 
Iwaniak and 

Khadzhynov [29] 
2014 

Communications in Computer and 
Information Science 

P5 Martiník [30] 2013 
International Conference on 
Informatics and Applications 

P6 
Mazouzi, Mbarek, 

Kallel and Abid.  [31] 
2012 

International Conference on Parallel 
and Distributed Processing 

Techniques and Applications 

P7 Spiegel et al.  [32] 2009 
Procedia Earth and Planetary 

Science 

P8 
Wolfmann and Giusti 

[33]   
2013 

International Conference on Parallel 
and Distributed Processing 

Techniques and Applications 

P9 
Wolfmann and Giusti 

[34]   
2014 

International Conference on Parallel 
and Distributed Processing 

Techniques and Applications 

P10 Yasuda [35]   2008 
International Conference on 
Automation and Logistics 

P11 Yasuda [36]   2009 
ICCAS-SICE 2009 - ICROS-SICE 

International Joint Conference 

P12 Yasuda [37] 2010 Lecture Notes in Computer Science 

P13 Yasuda [38] 2011 SICE Annual Conference 

 

The earliest study actually included was published in 
2002. Fig. 1 presents the frequency of papers per year. As we 
can see, most of the papers in this issue were published in 
2009 (three studies). Note that as of 2007, there was at least 
one article published in the issue at hand. It is noteworthy that 
in 2015, until the completion period of this article, no 
research had been published with the application of Petri nets 
in distributed processing. 

The frequency of papers per source of publication is 
exposed in Fig. 2. Note that the highest frequency of 
publications in the theme of this research was at the 
International Conference on Parallel and Distributed 
Processing Techniques and Applications (PDPTA). In 
addition to this, most of the publications identified were 
published in conference proceedings. 

 

 

Fig. 1. Frequency of Papers per Year 

  

 
Fig. 2. Frequency of Papers per Source 

 

It was found that approximately 31% (4 papers) of the 
analyzed papers, was elaborated by a researcher of the 
Nagasaki Institute of Applied Science in Japan (TABLE III). 
Two Argentinian researchers, one from Universidad 
Nacional de Córdoba and the other from Universidad 
Nacional de La Plata, jointly developed two papers with 
applications of Petri nets in distributed processing.        

TABLE III.  INSTITUTIONAL AFFILIATION OF RESEARCH 

ID Study Location Researcher’s Institution 

P1 France Université Paris XIII 

P2 France 
Université Paul Sabatier / Institut National 

des Sciences Appliquées de Toulouse 

P3 China 
Anhui University of Science and Technology 

/ Chuzhou University 

P4 Poland Technical University of Koszalin 

P5 Czech Republic VŠB-Technical University of Ostrava 

P6 Tunisia 
Ecole Nationale d´Ingénieurs de Sfax / 

National School of Engineering of Tunis 

P7 Germany Universität Duisburg-Essen 

P8 Argentina 
Universidad Nacional de Córdoba / 
Universidad Nacional de La Plata 

P9 Argentina 
Universidad Nacional de Córdoba / 
Universidad Nacional de La Plata 

P10 Japan Nagasaki Institute of Applied Science 

P11 Japan Nagasaki Institute of Applied Science 

P12 Japan Nagasaki Institute of Applied Science 

P13 Japan Nagasaki Institute of Applied Science 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 111



 
 

3.2 Identified Applications of Petri Nets in 

Distributed Processing 

The most used modification of the Petri net original 
concept was Coloured Petri nets (approximately 38% of the 
papers – 5 papers). The Petri Net Based Multitask Processing 
was the second most cited (Fig.3). The type of Petri nets used 
in each paper and its aims are in TABLE IV. 

 

 
Fig. 3. Frequency and Percentage of Citation Type of Petri Nets  

TABLE IV.  AIMS OF THE STUDIES AND TYPES OF PETRI NETS 

ID Aim of the study  Type of Petri Nets 

P1 

To design a modeling and 
simulation infrastructure for the 

acquisition and analysis of airport 
operational concepts and 

equipment. 

Coloured Petri nets 

P2 
To deal with the problem of 
detecting failure situations in 

several monitoring sites.  
P-t-time Petri nets 

P3 

To present an improved mapping 
method based on existing Petri nets 

in order to achieve a better 
representation of the parallel or 

distribution simulation mechanism 
applied to the design and analysis 

of concurrent discrete event 
systems. 

Extended Timed Petri Nets 

P4 

To develop a modeling framework, 
which could allow the system 
designer to create a conceptual 

model of the problem being solved 
and then transform it into a Petri 
Net model for a more detailed 

analysis. 

Coloured Petri Nets 

P5 

To generalize the Property-
preserving Petri net process 

algebras (PPPA) for the special 
class of the P/T Petri nets 

processes, and to define additional 
PPPA composition operator SYNC-

CALL and prove its chosen 
properties. 

P/T Petri nets processes 

P6 

To propose and model a switched 
fabric CAN network Architecture 

based on CAN Controllers and 
switched fabric by the use of timed 

colored Petri nets (CPNTools). 

Coloured Petri Nets 

P7 

To introduce a realization concept 
for a CR which forms the basis of a 

hardware/firmware demonstrator 
developed by the authors. 

Petri net  

P8 

To introduce Petri Nets as a tool for 
simplifying the modeling and 

execution of parallel asynchronous 
versions of this kind of algorithms, 
while using an efficient dynamic 
task scheduling implementation. 

Coloured Petri Nets and 
Token Petri Net 

P9 

To introduce an asynchronous 
Parallel Execution Model based on 

Petri Nets and the process to go 
from a high level model to an 
executable parallel program.  

Coloured Petri Nets and 
Token Petri Net 

P10 
To present a methodology using 

Petri nets for hierarchical and 
distributed control. 

Petri Net Based Multitask 
Processing 

P11 

To present the methods for 
modeling discrete event robotic 

manufacturing systems using Petri 
nets. 

Petri Net Based Multitask 
Processing 

P12 
To present a methodology of 

decomposition and coordination for 
hierarchical and distributed control.  

Petri Net Based Multitask 
Processing 

P13 

To present a methodology of the 
net model decomposition and 

coordination for a hierarchical and 
distributed control. 

Petri Net Based Multitask 
Processing 

 

 

The main results presented in TABLE V are all related 
in some level to the presented definition of distributed 
process or, in essence to the parallelization of execution. It 
demonstrates the use of a great variety of Petri Nets in the 
most diverse areas (ex. airport simulation (P1), language 
definition (P2), manufacturing simulation (P10) etc.) and 
some derivative works which use some of the established 
theories presented (P2, P11- P13).   

TABLE V.  MAIN RESULTS OF RESEARCHES 

ID Main result 

P1 

This work thus provides elements to model complex 
chronicles recognition, and to define a semantics of the 

chronicle language in terms of the used subset of coloured 
nets. 

P2 

Chronicles are represented by p-t-time Petri nets 
combining t-time Petri nets representing window 

admissibly constraints and p-time Petri nets representing 
interval constraints. 

P3 
An improved partitioning algorithm regarding the process-
processor mapping, which reduces error rate and promote 
the performance of the parallel simulation was discussed. 

P4 

Transformation of CPN slices into abstract software 
components which will be used in further work on 

proposing a new modeling framework for distributed 
systems. 

P5 

The successful application of P/T Petri net process (PTP) 
and Property-preserving Petri net process algebras (PPPA) 

in the area of the bi-relational P/T Petri nets and the 
sequential object Petri nets that represent an interesting 
modification of conventional Petri nets and that can be 

applied at design, modeling, analysis and verification of 
generally distributed multithreading object-oriented 

programming systems. 

P6 
Demonstration that CAN based Networks using crossbar 

Switched fabric are still very robust when compared to the 
new sophisticated buses. 

112 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



 
 

P7 

A methodology was designed for Cognitive Radios which 
is entirely based on Petri Nets and which is a very efficient 

way to describe concurrent processes. Furthermore, an 
iterative frequency sensing method was described, which is 
a basic prerequisite for cognitive operation. The algorithm 

could be implemented in an all parallel version or 
sequential version. 

P8 

Important improvements in performance can be obtained 
with respect to static scheduler algorithms, using a 

dynamic scheduler based on Petri Nets, which is easy to 
implement. The model is adaptable to different numbers of 

processors and data block partitions. 

P9 

The parallel execution environment developed was able to 
reach a real utilization of the processors very close to its 

theoretical limit. Also, modeling an algorithm with Colored 
Petri Nets (CPN) allows analyzing its parallel capabilities 

and brings information about its possibilities and 
limitations in the search for a better parallel performance. 
Any parallel algorithm designed following a well formed 
CPN can be executed with a high level of performance by 
only changing the incidence matrix and tuning its virtual 

processors. 

P10 
The demonstrations show that the proposed system can be 

used as an effective tool for consistent modeling and 
control of large and complex manufacturing systems. 

P11 

The cooperation of each controller was implemented so 
that the behavior of the overall system was the same as the 
centralized control system and the task specification was 

completely satisfied. 

P12 
Modeling, simulation and control of large and complex 
manufacturing systems can be performed consistently 

using Petri nets. 

P13 
The overall control structure of a two-level robotic system 

was implemented using a high-speed communication 
network of PLCs with shared global information. 

 

 

4 Conclusions 

In this paper, a scoping study was initiated to collect and 
compare existing practical applications of Petri nets in 
distributed processing. 

We analyzed several applications of Petri nets in 
distributed processing (this will be indexed according to 
TABLE II). Among the examples presented, there is a failure 
detection language (P2), which is further used to create a 
distributed simulation for the analysis of several airport 
configurations (P1). In (P3), it is possible to see the creation 
of a parallel or distributed simulation mechanism inspired in 
existing Petri Nets (TTPN, ETTPN) and their correlation by 
the use of Lookahead computation.  

In (P4) it was presented the development results for the 
proposal of a new modeling framework for distributed 
systems. In (P5) a modification of PPPA Petri Nets is 
proposed in order to allow its execution on distributed or 
parallel environments. In P(6), we have an application in the 
CAN industrial bus, where timed colored Petri nets are used 
to model a switched fabric CAN network Architecture and a 
switched-fabric bus. A switched-fabric bus is unique in that 
it allows all CAN Controllers on a bus to logically 
interconnect with each other. Therefore, we can envision the 
parallel distribution of the messages in the bus and its impacts 
during the simulation.  

In (P7) we can see an application of Petri nets in the 
dynamic modification of device drivers for cognitive radios 

and the possibility of parallelization of the algorithm, which 
may imply in distributed processing. The development of a 
parallel programming model starting with Colored Petri Nets 
(CPN), unfolding to a Token Petri Net (TPN) and executed 
by a set of distributed processors is presented in (P8).  

In (P9) we have a derivative work that continues the 
research presented in (P8), by applying the same algorithm 
model to verify the real utilization of the processors in a 
parallel execution environment. In (P10), the authors create 
an extended definition of Petri net and use it as an effective 
tool for consistent modeling and control of large and complex 
manufacturing systems. This research resulted in several 
derivative works (P11- P13) that uses the extended Petri net 
defined at (P10) in a variety of manufacturing scenarios 
(modeling discrete event robotic manufacturing systems, 
constructing hierarchical and distributed control systems, 
applying it to the control structure of a two-level robotic 
system using a high-speed communication network of PLCs). 

This review does establish a baseline, which we wish 
will be used by other researchers. It contributes to the initial 
steps involved in the execution of a larger research aimed at 
conducting a systematic literature review on practical 
applications of Petri nets in distributed processing. 
Distributed processing was chosen as a candidate technique 
for a future application in the simulation of distributed 
systems applied to the processing of medical databases. We 
expect that Petri nets will perform an invaluable role as the 
simulation method for the proposed architecture.  

Acknowledgment  

The authors would like to thank the government bodies 
DECIT/SCTIE/MS/CNPq for the invaluable funding 
supporting the development of the current work, in the form 
of resources obtained in response to the public call number 
12/2013, process number 201410267000311. 

5  References 

[1] R. Zurawski and M. Zhou, Petri Nets and Industrial 
Applications: A Tutorial, IEEE Transactions on 
Industrial Electronics, 41 (6) (1994) 567-583. 

[2] B. Yilmaz, Applications of Petri Nets, A Thesis 
Submitted to the Graduate School of Engineering and 
Sciences of Izmir Institute of Technology in Partial 
Fulfillment of the Requirements for the Degree of 
Master of Science in Mathematics, 2008. 61 p. 

[3] T. Murata, Petri Nets: Properties, Analysis and 
Applications, in Proceedings of the IEEE, 77 (4), pp. 
541 – 580, 1989.  

[4] S. Singh,  G. Singh,  V. L. Narasimhan, and H. S. Pabla, 
Petri net modelling and analysis of Mobile 
Communication Protocols UMTS, LTE, GPRS and 
MANET, in 2014 International Conference on 
Computer Communication and Informatics (ICCCI -
2014), p. 1-9, 2014.  

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 113



 
 

[5] Y. Liu, J-J. Hao and Z-G. Fang, Petri net model for 
performance evaluation of manufacturing system under 
uncertain information, Jisuanji Jicheng Zhizao 
Xitong/Computer Integrated Manufacturing Systems, 
CIMS,  20 (5), (2014), p. 1237-1245.  

[6] R. A. Siqueira and J. A. Jardini, “Using Petri nets to 
model and analysis the start and stop sequence control 
of an electric power generating unit”, in 2013 IEEE PES 
Conference on Innovative Smart Grid Technologies, p. 
1-8, 2013. 

[7] D. Karunakaran and G. S. V. Rao, “A petri net 
simulation of software development lifecycle towards 
green IT”, in: 2013 IEEE Conference on Open Systems 
(ICOS 2013), p 58-62, 2013. 

[8] M. Westergaard, “Verifying Parallel Algorithms and 
Programs Using Coloured Petri Nets”, in: Transactions 
on Petri Nets and Other Models of Concurrency VI 
Lecture Notes in Computer Science Vol. 7400, 2012, pp 
146-168. 

[9] G. Yasuda, Implementation of real-time distributed 
control for discrete event robotic systems using Petri 
nets, Artificial Life and Robotics, 16 (4), (2012), pp. 
537-541. 

[10] G. Coulouris, J. Dollimore and T. Kindberg (2007). 
Distributed Systems: Concepts and Design. Ed. 
Bookman, 4ed. ISBN 9788560031498. pp. 207. 

[11] K. Davis, N. Drey and D. Gould, What are scoping 
studies? A review of the nursing literature, Int J Nurs 
Stud, 46 (2009), p. 1386-1400. 

[12] S. M. A. Shah, M. Morisio and M. Torchiano, “An 
overview of software defect density: a scoping study”, 
in 19th Asia-Pacific Software Engineering Conference, 
pp. 406-415, 2012. 

[13] H. Abukwaik, D. Taibi and D. Rombach, 
Interoperability-related architectural problems and 
solutions in Information Systems: a scoping study, 
Software Architecture, Lecture Notes in Computer 
Science, vol. 8627, 2014, pp. 308-323. 

[14] V. H. S. Durelli et al., A scoping study on the 25 year of 
research into software testing in Brazil and an outlook 
on the future of the area, The Journal of Systems and 
Software, vol. 86, 2013, 934-950.  

[15] S. S. Askool, K. Nakata, Scoping study to identify 
factors influencing the acceptance of social CRM, in 
Proceedings of the 2010 IEEE ICMIT, pp. 1055 – 1060, 
2010.  

[16] A. Meredith and Z. Hussain, Online gaming: a scoping 
study of massively multi-player online role playing 
games, Electronic Commerce Research, 9 (1-2) (2009) 
pp. 3-26. 

[17] D. Levac, H. Colquhoun and K. K. O’Brien, Scoping 
studies: advancing the methodology, Implementation 
Science, 5 (69) (2010) 1-9. 

[18] H. Arksey and L. O’Malley, Scoping studies: towards a 
methodological framework, International Journal of 
Social Research Methodology, 8 (1) (2005) 19-32. 

[19] B. Kitchenham, Procedures for Performing Systematic 
Reviews, Joint Technical Report, Department of 
Computer Science, Keele University (TR/SE-0401) and 
National ICT Australia Ltd. (0400011T.1), 2004. 

[20] O. Dieste and A. G. Padua, “Developing Search 
Strategies for Detecting Relevant Experiments for 
Systematic Reviews”, in 1st International Symposium on 
Empirical Software Engineering and Measurement, pp. 
215-224, 2007. 

[21] E. Engström, P. Runeson and M. Skoglund, A 
Systematic Review on Regression Test Selection 
Techniques, Information and Software Technology, 52 
(1) (2010) 14-30,  doi: 10.1016/j.infsof.2009.07.001 

[22] T. Dybå, T. Dingsøyr and G. K. Hanssen, “Applying 
Systematic Reviews to Diverse Study Types: An 
Experience Report”, in 1st International Symposium on 
Empirical Software Engineering and Measurement, pp. 
225-234, 2007. 

[23] R. Pawson, Evidence-based policy: in search of a 
method. Evaluation, 8 (2) (2002) 157-181. 

[24] O. P. Brereton, B. A. Kitchenham, D. Budgen, M. 
Turner and M. Khalil, Lessons from applying the 
systematic literature review process within the software 
engineering domain, Journal of Systems and Software, 
80 (4) (2007) 571-583. 

[25] B. A. Kitchenham et al., Systematic literature reviews in 
software engineering – A systematic literature review, 
Information and Software Technology, 51 (2009) 7-15.  

[26] O. Bertrand, P. Carle and C. Choppy, “Modelling 
chronicle recognition for distributed simulation 
processing with coloured petri nets”, in: 2nd 
International ICST Conference on Simulation Tools and 
Techniques (SIMUTools 2009), p. 1-2, 2009.  

[27] A. Boufaied, A. Subias and M. Combacau, “Chronicle 
modeling by Petri nets for distributed detection of 
process failures”, in: Proceedings of the IEEE 

114 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



 
 

International Conference on Systems, Man and 
Cybernetics, v. 4, p 245-250, 2002.  

[28] X. Fang, Z. Xu and Z. Yin, “Distributed processing 
based on Timed Petri Nets”, in: Proceedings - Third 
International Conference on Natural Computation 
(ICNC 2007), v. 5, p. 287-291, 2007. 

[29] M. Iwaniak and W. Khadzhynov, Colored Petri Net 
Model of X/Open Distributed Transaction Processing 
Environment with Single Application Program, 
Communications in Computer and Information Science, 
v. 424, p. 20-29, 2014.  

[30] I. Martinik, “Modelling of Distributed Programming 
Systems with Using of Property-Preserving Petri Net 
Process Algebras and P/T Petri Net Processes”, in: 2nd 
International Conference on Informatics and 
Applications (ICIA 2013), p. 258-263, 2013. 

[31] M. Mazouzi, I. B. Mbarek, O. Kallel and M. Abid, 
“Using SCPN for Modelling a Crossbar Switched 
Fabric CAN Network”, in: International Conference on 
Parallel and Distributed Processing Techniques and 
Applications (PDPTA’12), p. 981-987, 2012.   

[32] Spiegel et al., A petri nets based design of cognitive 
radios using distributed signal processing, Procedia 
Earth and Planetary Science,  1 (1), p. 1474-1479, 2009.   

[33] G.Wolfmann and A. Giusti, Parallel Asynchronous 
Modelization and Execution of Cholesky Algorithm 
using Petri Nets, International Conference on Parallel 
and Distributed Processing Techniques and 
Applications (PDPTA’13), p. 52-58, 2013. 

[34] G.Wolfmann and A. Giusti, Petri Net Based Algorithm 
Modelization and Parallel Execution on Symmetric 

Multiprocessors, International Conference on Parallel 
and Distributed Processing Techniques and 
Applications (PDPTA’14), p. 347 – 354, 2014. 

[35] G.Yasuda, Hierarchical and Distributed Control of 
Robotic Manufacturing Processes Based on Petri Nets, 
in: Proceedings of the IEEE International Conference on 
Automation and Logistics (ICAL 2008), p 221-226, 
2008. 

[36] G.Yasuda, Distributed Control of Industrial Robot 
Systems using Petri Net Based Multitask Processing, in: 
Proceedingsof ICCAS-SICE 2009 - ICROS-SICE 
International Joint Conference 2009, p. 5633-5638, 
2009. 

[37] G.Yasuda, Distributed Cooperative Control of 
Industrial Robotic Systems Using Petri Net Based 
Multitask Processing, Lecture Notes in Computer 
Science (including subseries Lecture Notes in Artificial 
Intelligence and Lecture Notes in Bioinformatics), v 
6425 LNAI, n PART 2, p 32-43, 2010. 

[38] G.Yasuda, Modeling, Simulation and Distributed 
Control of Robotic Systems Using Petri Net Based 
Multitask Processing, in:  Proceedings of the SICE 
Annual Conference (SICE 2011), p 1944-1949, 2011. 

[39] G. S. Walia and J. C. Carver, A systematic literature reviem to identify 
ans classify software requirement errors, Information and Software 
Technology, 51 (2009) 1087-1109, doi: 10.1016/j.infsof.2009.01.004  

[40] E. Engström, P. R 

[41] B. A. Kitchenham et al., Systematic literature reviews in software 
engineering – A systematic literature review, Information and 
Software Technology, 51 (2009) 7-15.  

[42] U. Ashraf, S. Abdellatif and G. Juanole, Ro

 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 115



Real-Time Image Processing Applications on Multicore 

CPUs and GPGPU 
 

R. Samet
1
, O.F. Bay

2
, S. Aydın

2
, S. Tural

1
, A. Bayram

1
 

1
Computer Engineering, Ankara University, Ankara, Turkey 

2
Education of Computer and Electronics, Gazi University, Ankara, Turkey  

 
 

Abstract - This paper presents real-time image processing 

applications using multicore and multiprocessing 

technologies. To this end, parallel image segmentation was 

performed on many images covering the entire surface of the 

same metallic and cylindrical moving objects. Experiments 

with multicore CPUs showed that by increasing the chunk 

size, the execution time decreases approximately four times in 
comparison with serial computing. The same experiments 

were implemented on GPGPU using four methods: 1) Single-

Image Transmission with Single-Pixel Processing; 2) Single-

Image Transmission with Multiple-Pixel Processing; 3) 

Multiple-Image Transmission with Single-Pixel Processing; 4) 

Multiple-Image Transmission with Multiple-Pixel Processing. 

All methods were implemented on GeForce and Tesla. Tesla 

gave the best results of 23 (for the first method), 20 (for the 

second method), 42 (for the third method), and 58 (for the 

fourth method) times improvements in comparison with serial 

computing. 

Keywords: Parallel computing, real-time image processing, 

image segmentation, thresholding, multicore programming, 

GPU programming 
 

1 Introduction 

 On the one hand image processing requires long time. 

On the other hand time is usually limited in the real-time 

applications. So, serial image processing does not satisfy real 

time conditions. In order to solve this problem, parallel 

computing techniques, especially multicore and 

multiprocessing technologies, should be used. 

 Segmentation is one of the steps in image processing. 
Thresholding is widely used for this aim. In real-time 

applications, multicore CPUs and GPGPU should be used to 

execute thresholding on many images covering the whole 

surface of the same metallic and cylindrical moving object to 

satisfy real-time conditions.  

 A multicore CPU is a single computing component with 

two or more independent actual central processing units 

(called "cores"). Pthreads, OpenMP (Open Multi-Processing), 

TBB (Threading Building Blocks), and Cilk are application 

programming interfaces (API) to efficiently use the capacity 

of a multicore CPU. In this study, a general purpose and 

platform-independent OpenMP that supports shared-memory 
for multi-processing programming in C, C++, and FORTRAN 

will be used. 

 A graphic processing unit (GPU) is a single instruction 

and multiple data stream (SIMD) architecture where the same 

instruction is performed on all data elements in parallel. At 

the same time, the pixels of an image can be considered as 

separate data elements. So, GPU is a suitable architecture to 

process data elements of an image in parallel [1]. General-

purpose computing on graphics processing units (GPGPU) is 
a tool to increase the utilization of GPU. There are many 

platforms to efficiently use the capacity of GPGPU, such as 

CUDA, DirectCompute, and OpenCL. The CUDA platform, 

which is the most common one, will be used in this study [2]. 

 Multicore CPU and GPGPU technologies are widely 

used for non-real-time and real-time image processing 

applications. A short literature review related to these 

technologies is given below.  

 There are many studies reported in the literature related 

to non-real-time image segmentation using the threshold 

method [3, 4]. The performance was and still remains an 
urgent issue to be solved in real-time image processing 

applications. To this end, different algorithms and methods 

have been developed for serial computing [5, 6, 7]. Despite 

some performance improvements in these works, it is very 

difficult to satisfy real-time conditions by serial computing. 

Researchers have looked into alternative solutions and found 

the multicore CPU and GPGPU technologies to solve this 

issue. At the same time, in order to efficiently use these 

technologies, different platforms, such as OpenMP, and 

CUDA, have been developed and widely used. For example, 

OpenMP programming has been used in multithread image 

processing and image segmentation applications with 
multicore computing [8, 9]. CUDA programming has been 

used for parallel image segmentation by region growing, 

watershed, and Otsu binarization algorithms on GPU [10, 11, 

12, 13]. The reduction sweep algorithm was used for image 

segmentation on both CPU and GPU [14]. In [15], several 

methods for image segmentation were implemented using 

CUDA and GPU and processing time was accelerated about 

20 times. The authors of [16] present the results of image 

segmentation on a video with a frame rate of 30 Hz using 

CUDA and GPU. 

 This review shows that more efficient algorithms and 
methods still need to be developed to improve the 

performance of real-time image processing applications. One 

of the aims of this study was to make a contribution to this 

area using OpenMP and CUDA. To this end, bi-level 

116 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



thresholding was implemented on the images covering the 

entire surface of the same metallic and cylindrical moving 
object in parallel with the following methods. One method is 

related to CPU programming with the OpenMP platform. In 

this context, shared memory multicore programming with 

OpenMP, scheduling threads on cores with different 

parameters, and performance related to the execution time 

were analyzed. The other four methods are related to GPU 

programming with the CUDA platform: 1) Single-Image 

Transmission with Single-Pixel Processing (SISP) (Namely, 

images are transmitted from CPU to GPU one by one and the 

pixels of the images are processed one pixel per core of 

GPU); 2) Single-Image Transmission with Multiple-Pixel 

Processing (SIMP) (Namely, images are transmitted from 
CPU to GPU one by one and the pixels of the images are 

processed multi pixels per core of GPU); 3) Multiple-Image 

Transmission with Single-Pixel Processing (MISP) (Namely, 

multiple images are transmitted from CPU to GPU together 

and the pixels of the images are processed one pixel per core 

of GPU); 4) Multiple-Image Transmission with Multiple-Pixel 

Processing (MIMP) (Namely, multiple images are transmitted 

from CPU to GPU together  and the pixels of the images are 

processed multi pixels per core of GPU).  Performance 

analysis related to execution time was performed by 

comparison of the results obtained by these methods with 
serial computing. The method with multicore CPU showed 

that, by increasing the chunk size, the execution time 

decreases approximately four times. All methods with GPU 

were implemented on GeForce and Tesla. Tesla gave best 

results of 23 (for SISP method), 20 (for SIMP method), 42 

(for MISP method), and 58 (for MIMP method) times 

improvements in comparison with serial computing.  

2 Proposed real-time image processing 

methods 

 Real-time applications of this study are related to the 

inspection of certain defects on the entire surface of metallic 

and cylindrical objects moving at a rate of 5 units per second 

or 1 unit per 200 milliseconds. Data sets or images used in 

this study are the images taken from the entire surface of the 

same metallic and cylindrical moving object. Images were 

used to inspect the defects in real-time. Defects are detected 
by image processing techniques. In order to detect certain 

defects of a single object, the image processing steps should 

be processed on   images covering its entire surface during 

200 milliseconds. So, time is limited in given applications. In 

this study, only the first step of image processing related to 

image segmentation will be handled. Thresholding is the 

simplest and a fast way for image segmentation. Parallel 

programming techniques, such as multicore and 

multiprocessing technologies, were used to speed up the 

thresholding of the metallic and cylindrical object from 
images covering its entire surface. 

 Firstly, serial thresholding is described. Then, parallel 

thresholding on a multicore CPU with OpenMP is presented. 

Finally, parallel thresholding on GPU with CUDA is 

discussed. Four different algorithms and methods related to 

CUDA are proposed.  

2.1 Serial thresholding 

 Image segmentation is the process of dividing the 

individual elements of an image into a set of groups so that all 

elements in a group have a common property. Segmentation 

allows visualization of the structures of interest, removing 

unnecessary information [17]. Thresholding is the simplest, 

most commonly used and the most popular technique for 

segmentation. Thresholding techniques can be classified into 

two categories: bi-level and multilevel. In this study, bi-level 

segmentation is used for the segmentation of objects and the 

background [4]. Thresholding is often used as a preprocessing 

step, followed by other post-processing methods [18]. Let us 

denote by        the segmented image obtained from 

      . If we consider   as the threshold value, the resulting 

image will be given by 

         
               

                   
  (1) 

 According to serial thresholding, equation (1) should be 

calculated on each pixel of       of an original image of 

      , where           and          . The 

performance or processing time of serial thresholding is 

defined as following: 

            (2) 

where     is the processing time of serial thresholding and    
is the processing time for thresholding on one pixel. 

2.2 Parallel thresholding on a multicore CPU 

with OpenMP 

 In order to accelerate the thresholding process to satisfy 

the real-time conditions, the shared-memory multicore 

programming with OpenMP is proposed. An OpenMP 

platform always begins with a single thread of control, called 

the master thread, which exists during the run-time of the 

program. The master thread may encounter parallel regions, in 

which the master thread will fork the new threads, each with 

its own stack and execution context. At the end of the parallel 
region, the forked threads will be terminated and the master 

thread continues the program execution as shown in Fig.1. 
 

 
Fig.1. Thread organization with OpenMP 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 117



 To achieve the optimal performance in multithread 

applications, different scheduling types and chunk sizes 
should be tested. With OpenMP, static, dynamic, and guided 

scheduling mechanisms can be specified. Static scheduling 

divides the loop into equal-sized chunks or as equal as 

possible in the case where the number of loop iterations is not 

evenly divisible by the number of threads multiplied by the 

chunk size. Dynamic scheduling uses the internal work queue 

to give a chunk sized block of loop iterations to each thread. 

When a thread is finished, it retrieves the next block of loop 

iterations from the top of the work queue. By default, the 

chunk size for dynamic scheduling is 1. Guided is similar to 

dynamic scheduling, but the chunk size starts off large and 

decreases to better handle the load imbalance between 
iterations. The optional chunk parameter specifies the 

minimum chunk size to use. By default, the chunk size for 

guided scheduling is approximately calculated by: 

           
  

  
 (3) 

where     is a number of loop count and    is a number of 

threads. The performance or processing time of parallel 

thresholding with OpenMP is defined as follows: 

     
   

  
    

      

  
    (4) 

where    is a processing time of parallel thresholding with 

OpenMP and    is a processing time for fork and join of 

threads. 

2.3 Parallel thresholding on a GPU with 

CUDA 

 In order to accelerate the thresholding process to satisfy 

the real-time conditions, GPU programming with CUDA is 

proposed. The CUDA programming model consists of 

functions, called kernels, which can be executed 

simultaneously by a large number of threads on the GPU. 

Threads are grouped into warps. A warp consists of 32 threads 

which are executed in SIMD fashion independently. Threads 

within a warp execute the same instruction on different data 

elements in parallel [19].  

 In order to parallelize the thresholding process, the 

kernel should be used. To organize kernels to work in parallel, 
streams are used (Fig.2).  

1 cudaStream_t stream1, stream2, streamK; 

2 cudaStreamCreate (&stream1);   

… 

3 cudaStreamCreate (&streamK);  

4 cudaMemcpyAsync (dst, src, size, dir, stream1);  

5 kernel<<<grid, block, 0, stream1>>>(…); 

… 

6 cudaMemcpyAsync (dst, src, size, dir, streamS);  

7 kernel<<<grid, block, 0, streamK>>>(…);  

8 cudaMemcpyAsync (dst, src, size, dir, stream1);  

… 

9 cudaMemcpyAsync (dst, src, size, dir, streamK). 

Fig.2. Multi kernels organization by streams 

 Firstly, the   streams are defined (Line 1) and created 

(Lines 2, 3).   is a number of images. Then data (images) for 
created streams are transferred asynchronously from the CPU 

to the GPU (Lines 4, 6). After that, kernels execute the same 

instructions on   images asynchronously (Lines 5, 7). Finally, 

the results are transferred from the GPU to the CPU (Lines 8, 

9). 

 Images can be sent from the CPU to the GPU one by one 

or in a combined data array. Images can be processed in the 

cores of the GPU as one pixel by one pixel or in multi pixels. 

Results can be returned from the GPU to the CPU one by one, 

or in a combined data array. 

 The algorithm for sending   images from the CPU to the 

GPU one by one, processing them in GPU and returning the 

results from the GPU to the CPU one by one is given in Fig.3.  

Step  : Send the  st image from CPU to GPU; 

Step  : Execute the thresholding kernel on the  st image; 

Step  : Send the  nd image from CPU to GPU; 

Step  : Execute the thresholding kernel on the nd image; 

… 

Step    : Send the  th image from CPU to GPU; 

Step  : Execute the thresholding kernel on the  th image; 

Step    : Return the 1st result from GPU to CPU; 

... 

Step    : Return the  th result from GPU to CPU. 

Fig.3. Algorithm for single-image transmission 

 The algorithm for sending  images from the CPU to the 

GPU in a combined data array, processing them in the GPU 

and returning the results from the GPU to the CPU in a 
combined data array is given in Fig.4.   

Step 1: Combine   images in a data array; 

Step 2: Send the combined data array from CPU to GPU; 

Step 3: Execute the thresholding kernel on   images; 

Step 4: Return the combined results from GPU to CPU; 

Step 5: Separate the images from combined results. 

Fig.4. The algorithm for multiple-image transmission 

 The algorithm for distributing and processing the images 

as one pixel per core of the GPU is given in Fig.5.   

Step 1: Distribute pixels as one pixel per core of GPU; 

Step 2: If pixel value >=   then the result is 255; 

Step 3: If pixel value <  then the result is 0; 
Step 4: Repeat Step 2 and Step 3 for all pixels. 

Fig.5. The algorithm for single-pixel processing in the GPU 

 The algorithm for distributing and processing the images 

as   pixels per core of the GPU is given in Fig.6.   

Step1: Distribute pixels as   pixels per core of GPU; 

Step2: Take the  th pixel value;  

Step 3: If pixel value >=  then the result is 255; 

Step 4: If pixel value < then the result is 0; 

Step 5: Repeat Step 2, 3, 4 while i<=  ;  
Step 6: Repeat all steps for all pixels. 

Fig.6. The algorithm for multi-pixel processing in the GPU 

118 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



 Four methods are proposed to execute thresholding on 

the GPU with CUDA: 1) SISP; 2) SIMP; 3) MISP, and 4) 
MIMP (Table 1). 

Table 1. Proposed methods 

Methods Images and Results 

Transferring 

Algorithms 

Image Distributing 

and Processing 

Algorithms 

SISP Fig.3 Fig.5 

SIMP Fig.3 Fig.6 

MISP Fig.4 Fig.5 

MIMP Fig.4 Fig.6 

2.3.1 SISP method 

 In this method, the images are transmitted from the CPU 

to the GPU one by one and results are returned from the GPU 
to the CPU one by one using the proposed algorithm in Fig.3. 

Also, the pixels of the images are distributed and processed 

one pixel per core of the GPU using the proposed algorithm in 

Fig.5. 

2.3.2 SIMP method  

 In this method, the images are transmitted from the CPU 
to the GPU one by one and the results are returned from the 

GPU to the CPU one by one using the proposed algorithm in 

Fig.3. Also, the pixels of the images are distributed and 

processed as multi pixels per GPU core using the proposed 

algorithm in Fig.6.  

2.3.3 MISP method 

 In this method, the images are transmitted from the CPU 

to the GPU in a combined data array and the results are 

returned from the GPU to the CPU in a combined data array 

using the proposed algorithm in Fig.4. Also, the pixels of the 

images are distributed and processed one pixel per core of the 

GPU using the proposed algorithm in Fig.5. 

2.3.4 MIMP method 

 In this method, the images are transmitted from the CPU 

to the GPU in a combined data array and the results are 

returned from the GPU to the CPU in a combined data array 

using the proposed algorithm in Fig.4. Also, the pixels of the 

images are distributed and processed as multi pixels per GPU 

core using the proposed algorithm in Fig.6. 

3 Experiment results 

 Experiments were related to the real-time detection of 

standard defects on the surface of the military cases, such as 

scratches, dents, wrinkles, and crimps (Fig.7). 

 Eight images covering the entire 360-degree (8x45 
degrees) surface of the same moving military cases were used 

to detect the defects (Fig.8). 

 A multicore CPU with OpenMP and GPGPU with 

CUDA were used to implement the parallel segmentation 

through the thresholding of the military cases and 

background. 

 Speed up value was used to evaluate segmentation 

techniques: 

                   (5) 

where     is the processing time of parallel thresholding. 

 

Fig.7. 7.62 mm Military cases 

 

 
Fig.8. Images covering the entire 360-degree (8x45 degrees) 

surface of the same military case 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 119



 The following platform was used: Intel Core i7-3630QM 

CPU with 4 cores and hyper threading technologies; 8 GB 
RAM; Windows 7. The codes were written in C++ using the 

Visual Studio 2012. Images with different resolutions 

(320x240, 640x480, and 1280x960) were used. 

3.1 Parallel thresholding on a multicore CPU 

with OpenMP 

 Static, dynamic, and guided scheduling types with 

different chunk sizes were implemented to speed up the 

segmentation process (Table 2). 

Table 2. Experiment results on a multicore CPU with OpenMP 

Chunk Size 

Speed up with 

Static 

Scheduling 

Dynamic 

Scheduling 

Guided 

Scheduling 

1 3,42 4,03 4,08 

2 3,30 4,00 4,1 

4 3,39 4,12 4,02 

6 3,44 3,95 4,01 

10 3,47 3,86 4,06 

15 3,56 3,93 3,64 

30 3,41 3,81 3,66 

60 3,42 3,50 3,58 

120 3,44 3,30 3,39 

240 2,86 2,79 3,04 

480 1,77 1,80 1,75 

 Table 2 presents the experiment results of the speed up 

of different scheduling types with different chunk sizes. As 

seen, the dynamic and guided scheduling types gave the best 

results. By increasing the chunk size, the speed up is 
decreased for all scheduling types. In summary, in order to 

obtain the best results by OpenMP, chunk sizes should be as 

small as possible and dynamic or guided scheduling types 

should be used.  

3.2 Parallel thresholding on a GPU with 

CUDA 

 NVIDIA GeForce GT 635M with 96 cores and Tesla 

K20 with 2496 cores were used. The number of thread size 

was set to 1024. Four methods were implemented: 1) SISP; 2) 

SIMP; 3) MISP, and 4) MIMP.  

3.2.1 SISP 

 In this method, eight images were sent and executed one 

by one. The pixels of the images were distributed as one pixel 

(or 8 bits) per GPU core (Table 3). 

 As seen, Tesla gave the best result of 23 times 

improvement in comparison with serial computing. Another 

point with Tesla was that by increasing the image resolution, 

speed up rate decreased. GeForce gave 10 times improvement, 

which is less than Tesla. This is due to the fewer number 
cores (96) in comparison with Tesla, which has 2496 cores. 

Also the speed up rate in GeForce was approximately the 

same for the different image resolutions. In summary, in order 

to obtain the best results by the SISP method, Tesla should be 
used and image resolution should be as small as possible. 

Table 3. SISP results 

GPU Type 
Image 

Resolution 

Speed up Rate on 

Kernel 

G
eF

o
rc

e 

G
T

 

6
3
5
M

 320x240 8,03 

640x480 10,19 

1280x960 8,92 

T
es

la
 

K
2
0

 320x240 23,02 

640x480 18,27 

1280x960 8,65 

3.2.2 SIMP  

 In this method, eight images were sent and executed one 

by one. The pixels of the images were distributed as four 

pixels (or 32 bits) per GPU core (Table 4). 

Table 4.SIMP results 

GPU type 
Image 

Resolution 

Speed up 

Rate on 

Kernel 

G
eF

o
rc

e 

G
T

 

6
3

5
M

 320x240 8,25 

640x480 9,25 

1280x960 9 

T
es

la
 

K
2

0
 320x240 20.14 

640x480 20,41 

1280x960 10 

 As seen, Tesla gave the best result of 20 times 

improvement in comparison with serial computing. Another 

point with Tesla was that, for high image resolution, the speed 
up rate was decreased. GeForce gave 9 times improvement, 

which was less than Tesla. This was due to the fewer number 

cores (96) in comparison with Tesla, which has 2496 cores. 

Also, the speed up rate for GeForce was approximately the 

same for different image resolutions. In summary, in order to 

obtain the best results by the SIMP method, Tesla should be 

used and image resolution should be as small as possible. 

3.2.3 MISP 

 In this method eight images were combined in a data 

array. This data array was sent and executed in a kernel. The 

pixels of the images were distributed as one pixel (or 8 bits) 

per GPU core (Table 5). 

Table 5. MISP results 

GPU 

type 

Image 

Resolution 

Serial 

Computing 

Time (ms) 

Kernel 

Time (ms) 

Speed up 

Rate on 

Kernel 

G
eF

o
rc

e

G
T

 

6
3

5
M

 320x240 5,01 0,88 5,98 

640x480 9,34 2,68 3,36 

1280x960 26,92 10.18 2,54 

T
es

la
 

K
2

0
 320x240 8,45 0,44 18,92 

640x480 15,23 0,54 27,78 

1280x960 43,99 1,04 42,02 

120 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



 As seen, Tesla gave the best result of 42 times 

improvement in comparison with serial computing. Another 
point with Tesla was that, as the image resolution increased, 

speed up rate increased. GeForce gave 6 times improvement, 

which was less than Tesla. This is due to the fewer number 

cores (96) in comparison with Tesla, which has 2496 cores. 

Also, the speed up rate of GeForce was decreased by 

increasing the image resolutions. In summary, in order to 

obtain the best results by the MISP method, Tesla should be 

used and image resolution should be as large as possible.  

3.2.4 MIMP 

In this method, eight images were combined in a data array. 

This data were sent and executed in a kernel. The pixels of the 

images were distributed as four pixels (or 32 bits) per GPU 

core (Table 6). 

Table 6. MIMP results 

GPU 

type 

Image 

Resolution 

Serial 

Computing 

Time (ms) 

Kernel 

Time 

(ms) 

Speed up 

Rate on 

Kernel 

G
eF

o
rc

e 

G
T

 

6
3

5
M

 320x240 5,01 0,69 7,26 

640x480 9,34 1,85 5,04 

1280x960 26,92 6,91 3,8 

T
es

la
 

K
2

0
 320x240 8,38 0,43 19,09 

640x480 15,28 0,45 33,71 

1280x960 44,32 0,75 58,96 

 As seen, Tesla gave the best result of 58 times 

improvement in comparison with serial computing. Another 
point with Tesla was that, as the image resolution increased, 

the speed up rate increased. GeForce gave 7 times 

improvement, which is less than Tesla. This is due to the 

fewer number cores (96) in comparison with Tesla, which has 

2496 cores. Another point with GeForce was that the speed up 

rate decreased by increasing image resolutions. In summary, 

in order to obtain the best results by the MIMP method, Tesla 

should be used and the image resolution should be as large as 

possible.  

 The comparison results of the proposed methods with 

CUDA in terms of speed up are given in Table 7 and Fig.9. 

Table 7. Comparison results of the proposed methods 

GPU 

type 

Image 

Resolution 

Speed up on Kernel by 

SISP SIMP MISP MIMP 

G
eF

o
rc

e

G
T

 

6
3
5
M

 320x240 8,03 8,25 5,98 7,26 

640x480 10,19 9,25 3,36 5,04 

1280x960 8,92 9 2,54 3,8 

T
es

la
 

K
2
0

 320x240 23,02 20.14 18,92 19,09 

640x480 18,27 20,41 27,78 33,71 

1280x960 8,65 10 42,02 58,96 

 As seen, Tesla gave the best results for all methods. 

With Tesla, the speed up rates for MISP and MIMP methods 

were higher than those of the SISP and SIMP ones. Another 

point with Tesla was that, by increasing the image resolution, 

the speed up rate increased. In summary, in order to obtain the 

best results with CUDA, MISP and MIMP methods should be 

used. 

 An example for segmentation results with parallel 

thresholding is given in Fig.10. 
 

 
(a) 

 
(b) 

Fig.9. Comparison results of the proposed methods: (a) with 

GeForce GT 635M; (b) with Tesla K20 
  

 
(a) 

 

(b) 

Fig.10. Segmentation result: (a) the original image; (b) 

segmentation result by parallel thresholding. 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 121



4 Conclusions 

 This paper presented the image processing applications 

using multicore and multiprocessing technologies to satisfy 

real time conditions. To this end, algorithms and methods for 

the parallel image segmentation through thresholding on   

images covering the entire surface of the same metallic and 

cylindrical moving objects were proposed. A multicore CPU 

with OpenMP and GPGPU with CUDA were used to 

implement the thresholding of military cases using eight real 

images covering their entire surface. Obtained implementation 

results were compared with the results of serial computing in 

terms of speed up values. Experiments showed that a GPU 

with CUDA has a huge capacity to increase the performance 

of real-time applications. For example, CUDA speeded up the 

real-time thresholding process 58 times in comparison with 
serial computing. 

 As future work, the time to transfer images from the 

CPU to the GPU and results from the GPU to the CPU will be 

analyzed and optimized. Another future work is that the 

proposed algorithms and methods will be implemented on a 

different multicore CPU and GPU.  

Acknowledgement 

 This work was funded by the Ministry of Science, 

Industry and Technology of Turkey under San-Tez grant 

#0018.STZ.2013-1. 

5 References  

[1] E. Smistad, A.C. Elster, and F. Lindseth, "GPU 

accelerated segmentation and centerline extraction of tubular 

structures from medical images", Int J CARS,  9, 561–575, 

2014. 

[2] A. Brodtkorb, T.R. Hagen, and M.L. Saetra, "Graphics 

processing unit (GPU) programming strategies and trends in 

GPU computing", J. Parallel Distrib.Comput., 73, 4–13, 2013. 

[3] S.S. Al-amri, N.V. Kalyankar, and S.D. Kamitkar, 

"Image Segmentation by Using Threshold Techniques", 
Journal of Computing,  2, 5, 83-86, 2010. 

[4] V. Osuna-Enciso, E. Cuevas, and H. Sossa,"A 

comparison of nature inspired algorithms for multi-threshold 

image segmentation", Expert Systems with Applications, 

40,1213–1219, 2013. 

[5] S. Wei., Q. Hong, and M. Hou, "Automatic image 

segmentation based on PCNN with adaptive threshold time 

constant", Neurocomputing, 74, 1485–1491, 2011. 

[6] S. Han, W. Tao, X. Wu, X. Tai, and T. Wang, "Fast 

image segmentation based on multilevel banded closed-form 

method", Pattern Recognition Letters,  31,  216–225, 2010. 

[7] H.V.H. Ayala, F.M. Santos, and V.C. Mariani, "Image 

thresholding segmentation based on a novel beta differential 

evolution approach", Expert Systems with Applications, 42, 

2136–2142, 2015. 

[8] R. Wang, C. Li, J. Wang, X. Wei, Y. Li, Y. Zhu, and S. 

Zhang, "Threshold segmentation algorithm for automatic 

extraction of cerebral vessels from brain magnetic resonance 

angiography images, Journal of Neuroscience Methods, 241, 
30–36, 2015. 

[9] S. Patil, and A. Junnarkar, "Color Image Segmentation 

using Median Cut and Contourlet Transform:A Parallel 

Segmentation Approach", International Journal of Computer 

Science and Information Technologies (IJCSIT), 5, 6, 7353-

7358, 2014. 

[10] P.N. Happ, R.Q. Feitosa, C. Bentes, and R. Farias, "A 

parallel image segmentation algorithm on GPUs", 

Proceedings of the 4th GEOBIA,  580,  2012 

[11] E. Smistad, A.C. Elster, and F. Lindseth, "GPU 

accelerated segmentation and centerline extraction of tubular 

structures from medical images", International journal of 

computer assisted radiology and surgery, 9, 561-575, 2014. 

[12] A. Körbes, G.B. Vitor, R.A. Lotufo, and J.V. Ferreira, 

"Analysis of a step-based watershed algorithm using CUDA", 

International Journal of Current Research and Review, 1, 6-

28, 2010. 

[13] B.M. Singh, R. Sharma, A., Mittal, and D. Ghosh, 
"Parallel implementation of Otsu’s binarization approach on 

GPU, International Journal of Computer Ap., 32, 16-21, 2011. 

[14] R. Farias, R. Farias, R. Marroquim, and E. Clua, 

"Parallel Image Segmentation Using Reduction-Sweeps On 

Multicore Processors and GPUs", XXVI Conference on 
Graphics, Patterns and Images, 139-146, 2013. 

[15] N. Prosser, "Medical image segmentation using GPU 

accelerated variational level set methods", Rochester Institute 

of Technology, Rochester, New York, 2010. 

[16] A. Abramov, T. Kulvicius, F. Wörgötter, and B. Dellen, 

"Real-time image segmentation on a GPU", Facing the 

Multicore-Challenge Lecture Notes in Computer Science, 

6310, 131-142, 2010. 

[17] E. Smistad, T.L. Falch, M. Bozorgi, A.C. Elster, and F. 

Lindseth, "Medical image segmentation on GPUs– A 

comprehensive review", Medical Image Analysis, 20, 1–18, 

2015. 

[18] Y. Li, L. Jiao, R. Shang, and R. Stolkin, "Dynamic-

context cooperative quantum-behaved particles warm 

optimization based on multi-level thresholding applied to 

medical image segmentation", Information Sciences, 294, 

408–422, 2015. 

[19] Z. Chen, X. Meng, L. Guo, and G. Liu, "GICUDA: A 

parallel program for 3D correlation imaging of large scale 

gravity and gravity gradiometry data on graphics processing 

units with CUDA", Computers&Geosciences, 46, 119–128, 

2012. 

 

122 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



The Path To Exascale Computing

R. Alshahrani
Department of Computer Science, Kent State University, Kent, OH, USA

Ministry of Higher Education, Riyadh, Saudi Arabia

Abstract— Exascale supercomputers are the future of Clus-
ter computing. In this paper we discuss the challenges of
developing exascale supercomputers and provide suggestions
on how to deliver the required performance from these new
machines. The major point is that the current programming
systems over valued the flops and ignore the data locality
and data movement which becomes increasingly important.
A cheaper innovative technologies are needed to improve
the memory bandwidth and density for a better data man-
agement.

Keywords: HPC, Exascale

1. Introduction
Advances in science led the scientists to face mountains

of data that needs to be computed and stored. On the other
hand, the notion of supercomputing and High Performance
Computers (HPC) allows for more scientific breakthroughs.
For example, Petascale supercomputers are able to reach
performance of one petaflops which is used for advanced
computation in diverse fields such as quantum chemistry,
brain and weather simulations [1]. According to Moor’s law,
the data is doubling from year to year which urge the need
for more advanced supercomputers with higher speed and
advanced capabilities. Delivering a system with exaFLOP
capability is significant for more scientific discoveries in
different areas. Exascale computing is the next generation
of supercomputing. It will be capable of performing at least
one exaFLOPS which means 1018 operations per second, a
thousandfold increase over its counterpart petascale super-
computer [2].

The advancement from petascale to exascale computing
is not easy. Many companies are competing to present the
first supercomputer with exaFLOPs capability. However, the
development of such a powerful system is constrained by
many factors such as power, memory and cost. Based on
the improvement chart for 20 years, the Top500 expected
the first exascale supercomputer to see the light not before
2020 and maybe zetascale supercomputer by 2029 [3].

Developing such a powerful system is possible but with
some difficult challenges. Apparently, the current technolo-
gies are limiting the developers of exascale supercomputers,
hence, new innovative technologies are needed to come up
with the first exascale supercomputer. The leading design
constraint is the power efficiency as discussed in section
3. Improving the performance while lowering down the

energy consumption is a challenging task. The processor can
consume upto 30% .Add to that the data movement which
became a significant source of power consumption.

The challenges involve frequency improvement in future
machines [4]. In the old days, clock frequency used to be
the main constraints of performance improvement. However,
with parallelism that has became not a big issue. the only
way to increase performance is to increase parallelism.
Parallelism is growing by an exponential rate within a chip.
The next generation with supercomputing will keep on the
same track of parallelism which is discussed in more details
in section 2. In addition to the previous challenges, the
memory constrains the performance of the future machines.
The performance of the CPU is limited by the memory
speed. therefore, adding more cores without improving the
memory will not improve the performance. The memory
technology improvements are slowing down [3], [4]. For
example, DRAM technology have not changed for the last
two decades [4].

More innovative solutions are needed to produce the next
generation of supercomputing. The cost of data movement
within the supercomputers became dominant since the cost
of data movement is exceeding the cost of performing a float-
ing point operation [5], [2]. The overall system should be
optimized to decrease the data movement costs. Additionally,
the energy cost for moving data is not improving in terms
of the cost of the flop. Therefore, getting the applications
more aware of the data locality will lower the cost of the
data movement [5].

Since the HPC are extensively used in scientific commu-
nities, the characteristics of the scientific computations must
drive the fundamentals of the exascale computing design [6].
The benefit of building such a powerful system is not lim-
ited to the scientific computing. Building effective exascale
systems allowed for further advances such as in cellphone
performance and voice recognition. The new technologies
that are needed to develop exascale supercomputers will
open the doors for new innovations. In order to do what we
want do, the fundamental architecture should be different
because it will be influenced by the workload and the power
requirements of HPC. The power consumption should not
exceed 20MW and the cost should be limited by 200M$ [7]
to make it available for the users.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 123



2. Architecture of Exascale Computing
The development of high-end systems such as super-

computing or High Performance Computing (HPC) that
involves from millions to several million processors is highly
challenging. It could have upto million processor cores, bil-
lions of threads, memory on the order of multiple petabyte.
Increasing the clock rate by adding more transistors was the
first approach to improve the performance of a computer.
In high-end systems, the parallelism is the dominant factor
to improve the performance. The parallelism within a chip
has been increasing exponentially in two dimensional design.
To fulfill the needs for the future computers, the parallelism
is going to take another direction with three dimensional
design[4]. Exascale supercomputers will still run x86 code
like the current processors to ensure the compatibility with
the current applications [3], [5].

Paying attention to a specific component of the system
such as improving the performance in terms of FLOPs is
not enough. Looking at the big picture of the system from
different angles and how those components are interacting
with each others is a key point. The overall performance
in terms of FLOPS, memory speed, power consumption,
data movement are all dependent. In other word, the pro-
cessing speed is limited by the memory speed. To deliver
this supercomputer to the market, a complete revolution is
needed. In the following section, we provide an overview
of the challenges to build the main architectural elements of
the exascale supercomputers and what have been done so
far.

2.1 CPU
Back in 80s, supercomputers used to be designed with

specialized, custom-built processors which are very expen-
sive. In early 90s, the research community has shifted into
evolving more commodity components in the supercomput-
ers with a better cost-to-performance ratio. In 2008, IBM
revealed the Roadrunner machine which was the first super-
computer with hybrid processing scheme [8]. That brings the
trend back to the specialized components as co-processors.
The idea of hybrid processing was first invented for Sony
PlayStation gaming console in 2008. The design of hybrid
processors involved processing elements and specialized co-
processing elements. Involving the specialized co-processing
elements has improved the performance significantly. Other
hybrid processing systems were built with (GPUs) as co-
processors. Recently, the design of supercomputers with
hybrid processing system became dominant.

2.2 Memory
To meet the performance requirement of exascale comput-

ing, the memory bandwidth have to increase, which in turns
increases the power consumption. The more capabilities
we put in the system the more the stress on the memory
bandwidth. In order to meet the bandwidth needs stacking

up more chips is not efficient due to data movement and
power consumption. Additionally, increasing pins count for
the sake of increasing the memory bandwidth will increase
the cost without any performance improvement. That is
because of the gap between CPU performance and the
memory performance. Adding more cores to the system does
not improve the memory bandwidth because adding pins is
expensive. Nowadays, it is a matter of what we do about the
power and the cost.

For the last 30 years, the memory technologies have not
been changed. It is getting faster but basically it has the same
architecture. We have to rethink the memory technology to
make it more efficient. There are many thoughts on how the
memory subsystem would look like in exascale computing.
More innovative packaging and IO solutions are needed such
as 3D stacking. For example, stacking the memory on top
on the CPU which can be done by using new materials that
can absorb the heat generated by the processor [9]. That
will reduce the IO power consumption significantly while
increasing the bandwidth.

A new technology is non-volatile memory technology
that are beyond nano technology [9], [10]. However, the
problem with this new technology is the limited lifetime
which contradicts the reliability of this kind of computing
system [10], [6]. The non-volatile memory does not consume
energy while reading. However, it takes more energy than
DRAM to write a bit. Memory technology have not changed
for a long period of time. The design of the memory is
probably will change permanently [4].

3. Power Consumption and Cost
Minimizing the power consumption while maximizing the

performance is a key issue. The power consumption for
the current high-end systems does not exceed 10MW. The
future high-end supercomputers are expected to consume
upto 20MW which is double the current consumption rate
[4]. That would raise the cost of these super machines which
contradict the design goals and requirements. A first step
to find a solution for this problem is to figure out the
sources of power consumption. In the current systems, the
processor can consume upto 30% and the data movement
became increasingly a source of high power consumption.
Specifically, we should identify which part in the processor
is consuming more power. Series of measurements and
simulations have been done by Brooks and his colleagues
to test the performance of the current processors and exam-
ine alternative designs [8]. Finding a balance between the
performance and the clock frequency rate is complicated.

The memory is another resource of power consumption.
Moving the data either horizontally or vertically has its own
cost that could be higher than the cost of a FLOP [11]. All
these factors combined urges the need for designing a new
generation of chips and rethink the algorithms to compute
efficiently. High power consumption will generate more heat,

124 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



hence, cooling will be needed. Finding the roots of the
problem is a key point to develop a supercomputer with
more efficient power management and control. A significant
amount of research is needed to overcome this problematic
issue.

4. Data Movement in Exascale Comput-
ing

While the FLOP used to be the most expensive component
in the performance of HPC [7], the cost of data movement
in a copper wire is not trivial and as important. The data
movement could be vertical or horizontal. Vertical Data
movement cost is the cost of moving the data from the
memory into the processor and moving it back to the mem-
ory. Horizontal data movement includes moving the data
between the interconnected [4]. For the exascale computing,
the cost of the data movement could be more than the cost of
a FLOP. Data movement management became increasingly
important due to the cost in terms of power consumption and
latency. That means, in average, every time we move a bit
from the internal caches into the core we consume 10P of
energy which is considerably high. For the future exascale
computing, the cost could be even higher and it would cost
upto 20P of energy. The consequence is that the cost for
data movement costs more than the cost of a FLOP [11].

The increased cost of data movement is ignored in
the current data programming systems. The current
programming systems such as OpenMP values the flops
and ignores the cost of data movement assuming it is free
which is not the case [?], [9]. Developing applications
that are more data locality aware could decrease the data
movement significantly. For example, the old model of
OpenMP describes how to parallelize loop iterations evenly
among processors while ignoring where is the data located.
A new programming system and algorithmic models should
be more data-centric. These systems should describe how
data is laid out in memory and the loop statements should
operate locally on data similar to MapReduce [11].

From hardware point of view, the cost to move a bit is
proportional to distance. The emerging hardware constraints
are increasingly mismatched with the current programming
paradigm [11]. Hardware/software co-design must consider
better decisions about the future programming environment
together with performance. Intel has already established co-
design centers world wide to understand what the system
developers need so they can develop a hardware that can be
efficiently utilized by the system developers [11].

It is not only about the flops we count, it is about seeking
a balance in terms of data movement and FLOPs. A better
data movement management system and innovative solutions
to minimize data movement across the system is extremely
vital. We need to come up with HW/SW co-design for a

better data movement management.

5. Algorithms
The advances in the architecture of super computers raise

the need for changing the programming systems approach.
The applications in supercomputing systems need to run
more efficiently in terms of scalability, reliability and data
movement. Dealing with parallelism and data locality for the
exascale supercomputing is challenging. It is impossible for
the programmer to manage a high-end system with several
million processors in terms of load balancing, failures, and
data locality. These machines should have the capability to
manage the applications at the runtime [7], [4], [5].

Improving the algorithms could result in more efficient
power management system. Self-aware systems is one ap-
proach toward solving this problem [5], [2]. In other words,
the code should be able to exploit the efficiency of the
machine. For example, shutting down the network while the
machine is doing calculations to save the energy consumed
by the network and turn the network on when data transfer is
needed. That is essential for energy management. Tradition-
ally, in computing environment that has always been handled
by the operating system. Nowadays, having hardware that is
able to implement event-based power management system
is a necessity.

The programming models are increasingly mismatched
with the reality of the underlying hardware architecture.
Rewriting the current algorithms and applications can con-
tribute to define the architecture of the future exascale
computers through the co-design with hardware architects.
Data structures and algorithms should be optimized to
minimize data movement in the system [7], [4], [11]. The
programmer can specify what the machines need to do to
run the applications efficiently and the architect will build
the hardware based on that [4], [11].

The software developers understand the requirements for
exascale applications so they can provide feedback to the
hardware architects and provide guidelines to build exascale
HW and SW prototypes [4]. Because the programming
model should be a reflection of the underlying machine
architecture, the co-design is essential to seek balance be-
tween cost-to-performance ratio. Even if there is a new
technology in the hardware, we have to change the software
to use this technology efficiently. That can be achieved
by understanding the performance consequences for the
software running on that machine.

6. Reliability
Reliability and fault tolerance are essential for high-end

computing. The reliability in a system with several million
processors is a difficult challenge because of their scale
and complexity [10]. When operating the transistors at a
high level, the chances of failure increases which make the

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 125



reliability an essential factor in developing such a high-
end system [3]. Failure in HPC is very costly and might
result in the loss of a very large amount of computed work.
Additionally, these systems involved long-running jobs that
should finish in a timely manner. The applications and the
system in general should be more resilient and able to
recover from errors.

Traditionally, defining a checkpoint-restart was a solution.
However, at this scale, checkpoints are problematic due to
the overhead involved in terms of cost and energy [7], [9],
[10]. It is used to be the hardware job, for the future HPC
it became a hardware and software challenge [3]. Beside,
Memory should have more significant and sufficient error
correction codes should be implemented.

To develop a resilient system for future HPC with
exaFLOP, the more transistors we have the more reliable
the system should be. Many approaches have been proposed
such as using state machine replication [7] which was
adopted from the high-availability systems. Other studies
[9] suggested improving the data locality in order to
improve system reliability. However, adopting well-known
fault tolerant techniques are not the solution. Data integrity
and consistency in the event of failure is an important point
[6]. Therefore, the entire software stack running on the
system should be fault tolerant and aware. That’s to ensure
the integrity of the whole system and avoiding building a
reliable system over unreliable one [10].

7. Conclusion
The current emphasis is on preserving the FLOPs. The real

cost now are not FLOPs, it is data movement. That requires
shifting to data locality centric programming paradigm and
developing hardware features to support it. The programmers
should focus on developing applications with significant par-
allelism capabilities. With the new technologies involved we
can get the capacity and density we need. Better simulation
tools are important to predict the performance of theses
machines without the cost of building real machines.

References
[1] B. Hayes, “Built for speed: Designing exascale computers,” 2014.
[2] J. Shalf, S. Dosanjh, and J. Morrison, “Exascale computing technol-

ogy challenges,” in High Performance Computing for Computational
Science–VECPAR 2010. Springer, 2011, pp. 1–25.

[3] K. Ferreira, J. Stearley, J. H. Laros III, R. Oldfield, K. Pedretti,
R. Brightwell, R. Riesen, P. G. Bridges, and D. Arnold, “Evaluating
the viability of process replication reliability for exascale systems,” in
Proceedings of 2011 International Conference for High Performance
Computing, Networking, Storage and Analysis. ACM, 2011, p. 44.

[4] J. Follows, “Seventh framework programme,” 2012.
[5] M. Hall, R. Lethin, K. Pingali, D. Quinlan, V. Sarkar, J. Shalf, R. Lu-

cas, K. Yelick, P. C. Diniz, A. Koniges, et al., “Ascr programming
challenges for exascale computing,” 2011.

[6] T. Trader, “Doe exascale roadmap highlights big data.”

[7] K. Bergman, S. Borkar, D. Campbell, W. Carlson, W. Dally, M. Den-
neau, P. Franzon, W. Harrod, K. Hill, J. Hiller, et al., “Exascale com-
puting study: Technology challenges in achieving exascale systems,”
Defense Advanced Research Projects Agency Information Processing
Techniques Office (DARPA IPTO), Tech. Rep, vol. 15, 2008.

[8] J. Shalf, “Computer architecture for the next decade,” International
Journal of High Performance Computing Applications, 2013.

[9] D. Zhao, D. Zhang, K. Wang, and I. Raicu, “Exploring reliability
of exascale systems through simulations,” in Proceedings of the
High Performance Computing Symposium. Society for Computer
Simulation International, 2013, p. 1.

[10] F. Cappello, A. Geist, B. Gropp, L. Kale, B. Kramer, and M. Snir,
“Toward exascale resilience,” International Journal of High Perfor-
mance Computing Applications, 2009.

[11] S. Amarasinghe, D. Campbell, W. Carlson, A. Chien, W. Dally,
E. Elnohazy, M. Hall, R. Harrison, W. Harrod, K. Hill, et al., “Exas-
cale software study: Software challenges in extreme scale systems,”
DARPA IPTO, Air Force Research Labs, Tech. Rep, 2009.

126 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



SESSION

COMMUNICATION TOPOLOGIES,
INTERCONNECTION NETWORKS, AND

RELATED ALGORITHMS

Chair(s)

TBA

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 127



128 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



Parallel Packet Processing on Multi-core and Many-

core Processors 

Andy Harvath, Hiroaki Nishi 

Graduate School of Science and Technology, Keio University, Japan 

harvath@west.sd.keio.ac.jp, west@sd.keio.ac.jp 

 

 
Abstract—The Service-oriented Router (SoR), a highly 

functional router based on a novel router architecture, enables 

unprecedented web services traditional routers were unable to 

provide. The SoR performs Deep Packet Inspection (DPI) to 

analyze Layer 7 information, which is becoming increasingly 

difficult due to the substantial increase in Internet traffic. 

Meanwhile, multi-core processors and general-purpose many-

core processors are increasing in popularity. These highly 

programmable many-core processors are suited for parallel 

packet processing and propose a parallelization method for 

packet inspection. The method is applied to NEGI, a software 

SoR simulator. The parallelized software is then implemented on 

a multi-core Xeon CPU to test for effectiveness and scalability. 

While the results confirm its scalability, we find that the 

throughput of the output process must be improved for SoRs to 

benefit from the proposed method. 

Keywords—Service-oriented router; multi-core; many-core; 

packet processing 

I. INTRODUCTION 

With the growing ubiquity of smartphones and other 
communication devices in the past decade, the Internet has 
become increasingly accessible. As a result, contents 
transferred over the Internet are expanding in both amount and 
diversity. For the Internet to provide high-quality services 
under these circumstances, it must not only transfer data from 
one end host to another at high speed, but also provide the user 
with valuable information efficiently.  

Examples of an approach to improve delivery efficiency 
include Content-Centric Networking (CCN) [1]. CCN was 
introduced as an alternative networking paradigm based on 
named data rather than named hosts and is believed to enable 
efficient content distribution. The Service-oriented Router 
(SoR) [2] is a router architecture that takes a similar 
information-centric approach. The SoR is capable of 
observing traffic data stream, inspecting packet payloads, and 
storing data in databases. Content-based routing can be 
performed by an SoR router using the extracted data, sending 
information to where it is demanded. SoR also enables other 
unprecedented web services that traditional routers were 
unable to provide, such as a router-based Network Intrusion 
Detection System (NIDS). 

One of the existing challenges to the SoR is to achieve 
wire-rate throughput. The rapidly growing Internet traffic 
demands high transfer speed for backbone routers, which 

means that SoRs must extract data from packets at an equally 
high processing speed.  

 Meanwhile, parallelization has become the most common 
approach for speedup, both at the hardware level and at the 
software level. We have entered the “era of higher processor 
parallelism” [3], in which superior microprocessor 
performance is gained from high parallelism and not from 
high clock speed. A majority of processing units that are 
currently in use implement multi-core architectures. In 
addition to these multi-core processors, many-core processors 
have been introduced for applications that make use of even 
higher parallelism. Many-core generally refers to computing 
devices that have exceptionally large numbers of processors 
on a single chip. Examples of many-core processors include 
Graphic Processing Units (GPU) and Intel‟s Many Integrated 
Core (MIC) processors.  

Given these backgrounds, parallelizing the SoR‟s packet 
inspecting process is a natural approach to solving the 
throughput problem. Because a large number of streams flow 
through a router simultaneously, there should be sufficient 
concurrency to utilize the highly parallel hardware. Moreover, 
each TCP stream is entirely independent, which means that all 
can be processed concurrently without the need to lock 
resources.  

Because one of the main ideas behind the SoR is to make it 
flexible and programmable, a hardware-based approach is not 
preferable. One of the most popular forms of many-core 
processors are GPUs, and a section of a software can be run on 
a GPU to increase its throughput. However, GPUs are 
optimized for floating-point Single Instruction Multiple Data 
(SIMD) instructions. The threads in a GPU are grouped into 
fixed sized batches called warps, and all threads in a warp has 
to execute the same instruction. This makes conditional 
branches in parallel codes very slow. While GPUs lack the the 
flexibility for complicated packet processing functions, the 
MIC architecture consists of 50 to 60 simple in-order x86 
cores connected to a bidirectional ring bus and is known to be 
highly programmable. In addition, because MIC processors 
support the x86 instruction set, codes that are optimized for 
any x86 CPU will also run on and MIC chip. Although the 
theoretical speed for current implementations of MIC is 
known to be extremely difficult to achieve [4], we believe that 
the high parallelism and programmability of MICs are suited 
for parallel packet processing. 

This study focuses on the parallelization of NEGI [5], a 
software implementation of SoR written in C/C++. We 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 129



 

Fig. 1. The NEGI architecture 

 

Fig. 2. TCP reconstruction in NEGI 

propose a parallel method to reconstruct TCP streams, extract 
content information, and output results to a database from 
Internet packets. The proposed method was implemented on a 
12-core, 48 thread Intel Xeon Processor to test scalability and 
prepare for its future implementation on Intel MIC processors. 

The rest of this paper is structured as follows. In section II, 
several works related to parallel packet processing and many-
core parallelization are introduced. Section III describes the 
NEGI application in detail. The parallelization method is 
proposed in Section IV, and its test results are presented in 
Section V. Finally, we conclude the paper in Section VI. 

II. RELATED WORKS 

Parallel packet processing has drawn a lot of interests 
recently. As more and more network processors implement 
multi-core architectures, the demand for parallel applications 
that exploit these architectures is growing. Vert Paxon et al. 
introduced an event-based framework for parallelizing 
Network Intrusion Prevention Systems (NIPS) on multi-core 
processors [6]. Yunchun Li et al. proposed a packet processing 
model and calculated the theoretical speedup of parallelization 
of DPI systems [7]. Most of the research in parallel packet 
processing target network processors, and there are no studies 
on the use of MIC processors for packet processing.  

III. SoR SIMULATOR: NEGI 

NEGI is a Layer 7 information extractor developed for 
simulating and evaluating SoR. NEGI is written in the C/C++ 
programming language, and uses the libpcap library to 
processes packets from either a Linux Ethernet device or a 
pcap file. The current version of NEGI loads a user-defined 
filter and applies it to the incoming packets before saving the 
resulting data in a SQLite database file, along with basic 
information such as source/destination IP addresses, 
source/destination port numbers, and the protocol number. 
Below is a more detailed description of how NEGI operates. 

Figure 1 shows the architecture of the NEGI application, 
which can be divided into several function blocks that interact 
with each other. These modules include:  

・ Packet capture engine 

・ TCP reconstructor 

・ Layer 7 decoder 

・ String matching engine 

・ Database insertion engine 

・ TCP timeout manager 

A. Packet capture engine 

As noted, NEGI makes use of the libpcap library to 
monitor a Linux Ethernet device. The packets are written in 
NEGI‟s shared memory, and its pointers are added to a 
message queue. Since certain packets can be instantly 
discarded, the processing time for the packet capture engine is 
not uniform. The packet engine, therefore, works 
independently from the succeeding modules. The interface 
between the packet capture engine and the TCP reconstructor 
engine is provided by a message queue. By splitting the 
capture engine and the processing engines, NEGI conceals the 
unevenness in processing each packet. 

B. TCP reconstructor 

Figure 2 is a diagram that shows how the TCP 
reconstructor processes each packet using a context switch. A, 
B and C in the figure refers to different TCP packet streams. 
In addition, the units labeled A1, B1, etc. each represents a 
single packet. For example, B2 is a packet with sequence 
number 2 that belongs to TCP stream B. Finally, the packets 
stored in Stream Reconstruct Information are prefixed with 
asterisks to emphasize the fact that they are merely pointers 
that point to where the packets are stored. 

In figure 2, packets A1, B1, A2, and C1 have already 
passed, and packet C2 is being processed. When a packet is 
sent to open a TCP connection, the TCP reconstructor 
acknowledges it, creates a new TCP stream information frame, 
and passes the information to the subsequent modules. After 
all the main modules process the packet, the processing states 
of each module is saved as Stream Reconstruct Information. 
This information is recalled when another packet from the 
same stream is loaded. In figure 2, C1 has created Relevant 
Information C and Intermediate State C, which are loaded by 
the TCP reconstructor to process C2. When the TCP 
reconstructor detects an end of a stream, the stream results are 
finalized and saved to the database. The stream information is 
then freed from memory. 

130 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



 
Fig. 3. The pNEGI architecture 

The TCP reconstructor assigns packets to different streams 
by analyzing the TCP header. Namely, the source and 
destination IP addresses, source and destination Port Numbers, 
and the Protocol numbers are used to distinguish TCP 
connections. Stream information is created when the TCP 
reconstructor detects a new SYN packet, and destroyed when 
a FIN or a RST packet is captured.  

C. Layer 7 decoder 

The Layer 7 decoder uses the stream context information 
to decode various application protocols to enable string 
matching and other processes. The targets include HTTP/1.1‟s 
chunk encode and gzip encode. When the decoder reaches the 
end of a packet, intermediate states are saved in a format 
specific to the protocol type.  

D. String matching engine 

The string matching engine loads user-defined matching 
rules from a database and applies them to incoming packets. 
When matching strings or patterns are detected in the packet 
content, they are passed to the database insertion engine. 
When there is a matching pattern between multiple packets, 
the string matching engine will reach the end of a packet while 
it is matching a string. In such cases, the state is saved as 
stream context and recalled when a succeeding packet arrives. 
The version of NEGI used in this study does not support 
advanced regular expression matching.  

E. Database insertion engine 

If any defined strings or patterns are found in a TCP 
stream, the database insertion engine stores the following 
information in an database: an ID to identify the stream, 
timestamp of its arrival, destination IP address, source IP 
address, destination port number, header information, and an 
ID to label which rule was applied. If any strings were 
extracted, the database insertion engine also saves the strings 
to the database with corresponding TCP stream IDs. As 
previously noted, the version of NEGI that was used in the 
study uses a SQLite3 database, which comes in the form of a 
single file, to store the results. 

F. TCP timeout manager 

When dealing with real internet traffic, it is not guaranteed 
that all TCP connections close normally. If for some reason 
the closing packets are not detected, the context information of 
the stream could be stored in memory as long as the NEGI 
process is up and running. To avoid memory leaks in this 
situation, the TCP timeout manager monitors each stream. The 
TCP manager ahs two main functions. First, if no packets are 
received from a stream for duration, the TCP manager deems 
it as closed and frees all relevant information. Another 
function for the TCP timeout manager is to destroy stream 
data depending on available memory. If a situation of memory 
overuse is detected, the TCP timeout manager deletes the least 
active streams to fit the memory requirements. The timeout 
duration and the maximum available memory are user-defined 
and written in a configuration file. 

IV. PARALLELIZATION METHOD 

To keep pace with the substantial increase in internet 
traffic, we proposed a method to parallelize the process of 

NEGI and increase its throughput. The parallel version of 
NEGI (pNEGI) is written in the C language and is designed to 
be run on an x86-based multicore system and ultimately on an 
MIC processor. pNEGI uses the POSIX threads library to 
create threads and utilize the multiple cores provided by the 
hardware.  

A. Limitations 

The software architecture of NEGI is as previously shown 
in Figure 1. Out of the modules illustrated in this diagram, The 
packet capture engine cannot be parallelized at the software 
level. This is due to the libpcap library‟s single thread nature; 
the packets are inputted serially. Since NEGI operates on the 
SQLite3 library, the output is a single file, and hence, also 
serial. A parallel write to one file generally does not give 
performance because the file must be locked frequently. 
Therefore, NEGI can be assumed a single input, single output 
model. 

On the other hand, multiple instances of other modules that 
operate in the main thread, namely the TCP reconstructor, the 
L7 decoder, and the string match engine can be created and 

run simultaneously. This allows multiple threads to handle 
different streams at the same time. However, it must be noted 
that packets have sequence numbers, and ones that belong to 
the same stream must be processed in order. In addition, for 
there to be no dependency between processing threads, the 
same stream has to be processed in the same thread. 

B. Architecture 

Figure 3 shows the architectural structure of pNEGI. 
Parallelizing a single-input, single-output software model like 
one of NEGI requires some kind of a fork-join structure. As 
shown in figure 3, pNEGI implements this by placing ring 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 131



TABLE 1. INTEL XEON E5-2697 PROCESSOR SPECIFICATIONS [8] 

# of Cores 12 

# of Threads 24(48) 

Instruction Set 64bit 

Processor Base Frequency 2.7GHz 

Max Memory Size 768GB 

Max Memory Bandwidth 59.7GB/s 

 

Fig. 4. Speedup from extraction of insertion process 

buffer queues at the diverging and converging points. These 
queues not only allows for single-to-multiple and/or multiple-
to-single message passing between threads, but also lets the 
threads work asynchronously. This is especially important for 
this architecture, because neither the number of packets 
assigned to each core nor the processing time for each packet 
is known.  

C. Behavior 

When pNEGI is started, the main thread performs the 
initializing tasks, which include creating new processing 
threads and various module instances. The number of threads 
is user-defined; it will be read from the configuration file. The 
main thread then opens either an Ethernet device or a pcap file 
and begins reading.  

When the main thread captures a packet, the header and 
content data is distributed to the processing threads. 
Specifically, each thread owns a packet queue, and the main 
thread pushes the packets to them. As previously mentioned, 
the main thread cannot simply distribute the data evenly in a 
round robin fashion. Packets belonging to a certain stream 
depend on each other and have to be processed in a single 
thread. Both to assign each stream to the same thread and to 
balance the load, pNEGI uses a hashing technique to 
determine the receiving thread.  

Cyclic Redundancy Check (CRC) is a method to detect 
accidental changes to data. CRC is mainly used in networking 
to check for unintended bit errors, but can also be used as a 
hash function in a non-security context. pNEGI inputs a 
concatenation of source IP address, destination IP address, 
source port number, and destination port number to a CRC 
function that outputs an 8-bit hash value. This hash value is 
divided by the number of threads and the remainder is used to 
determine the thread to assign packet data. CRC was 
implemented because of its simplicity and efficiency, and the 
output was set to 8bits (0-255) to fit the maximum number of 
threads on an MIC processer, which is currently 244. 

Each processing thread receives a signal when a new 
packet is added to its queue. The TCP reconstructor responds 
to the signal by dequeuing the packet and processing it. The 
packet data is then transferred to the L7 decoder and the String 
match engine in the same manner as the single-thread NEGI. 
When a packet is done processing, its intermediate status is 
saved to the thread‟s unique stream information pool. Each 
processing thread has its own memory area to store 
information for stream reconstruction for increased 
independency among threads. For the same reason, each 
processing thread also has its own TCP timeout manager that 
monitors each stream.  

If a processing thread has valuable data or information that 
has to be stored in the database, it generates a SQL command 
string to insert the data. The SQL string is enqueued to the 
SQL queue and eventually passed to the database insertion 
engine, which executes the given command to the SQLite3 
database. The database insertion engine itself runs in an 
independent thread, which we call the SQL thread, to prevent 
multiple threads trying to open the database file, and to take 
away computation from the processing threads. 

V. EXPERIMENTAL RESULTS 

Both the NEGI and its parallelized version, pNEGI, were 
implemented on a 12-core Intel Xeon CPU to evaluate the 
proposed method. A pcap file was inputted to each software 
and the processing times were measured to calculate 
throughput. pNEGI, was also tested for different numbers of 
threads. 

A. Expermental environment 

All experiments were performed on an Intel Xeon E5-2697 
CPU. Table 1 lists the basic specifications for the processor. 
As shown in table 1, the Xeon processor used in the study has 
12 cores with 2 implemented hardware threads on each core. 
With Intel‟s Hyper-Threading Technology (HTT) [9], these 
cores can execute up to 4 threads concurrently with 
comparatively lower performance.  

A 1.5MB pcap file was used as a controlled input. This file 
was dumped from our laboratory‟s gateway server in a five-
minute interval, and included totals of 1,391,020 packets and 
47971 TCP streams.  

B. Results: Database insertion engine enabled 

The results are shown in Figure 5 and Table 2. As it can be 
seen from both figures, pNEGI recorded a throughput 
approximately 3Mbps higher than that of NEGI. However, it 
can easily be deducted that the speedup is not a result of the 
parallelization of packet processes. pNEGI exhibited the best 
performance with only 1 processing thread; distributing 
packets among multiple processing threads did not increase 
the performance, but rather reduced it.  

132 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



TABLE 3. RESULTS WITH DB INSERTION DISABLED 

 Max Throughput 

(Mbps) 

# of Threads 

NEGI 420.96 / 

pNEGI 1025.97 40 

 

 

Fig. 6. Throughput of the NEGI applications with DB insertion 

disabled 

 

TABLE 2. RESULTS WITH DB INSERTION ENABLED 

 Max Throughput 

(Mbps) 

# of Threads 

NEGI 41.44 / 

pNEGI 44.63 1 

 

 

Fig. 5. Throughput of the NEGI applications with DB insertion 

enabled 

It is easy to conclude that the 3Mbps speedup was due to 
the implementation of the SQL thread. Extracting the insertion 
process from the packet inspection process allows for a faster 
processing of packets, as shown in figure 4. The decrease in 
throughput at larger numbers of threads can be attributed to 
the resource costs of thread creation, and possibly to the more 
frequent locking and unlocking of the semaphore of the SQL 
queue to serialize its accesses. Finally, it can be presumed 
from the flat graph that the database insertion process was a 
bottleneck; parallelizing the packet inspection process had 
nearly no effect to the overall throughput because the database 
insertion engine could not process the SQL messages as 
quickly as the processing threads processed the packets. 

C. Results: Database insertion engine disabled 

Another experiment was performed to test the hypothesis 
that the output was a bottleneck. In this experiment, the 
database insertion engine received the SQL command strings, 
but did not execute the commands. 

An overall increase in throughput can be observed from 
the results in figure 6 and table 3. As opposed to the previous 
results, increase in the number of threads generally resulted in 
high throughput. pNEGI scaled in what can be seen as a linear 
rate up to about 20 processing threads. This is because the 
Xeon processor has 24 hardware threads. For a bigger number 
of threads, the processer made use of Intel‟s HTT technology 
to execute them using limited resource. Finally, at about 46 
processing threads (48 total running threads), the processor 
had simply reached the maximum number of threads that it 
could run, and the performance plummeted. The results clearly 
supported the hypothesis that database insertion was NEGI‟s 
bottleneck.  

VI. Conclusion 

In this study, we have proposed a parallelization model for 
SoR‟s packet inspection process and applied it to the software 
SoR simulator, NEGI. The parallelized software was 
implemented on an Intel Xeon CPU, where its scalability was 
confirmed. We also found that for the SoR to benefit from this 
method, a critical bottleneck has to be removed: it will have to 
speed up the database insertion process if any data has to be 
saved. Possible methods of this include the parallelization of 
the database insertion process, the use of on-memory 
databases, the use of no DBMSs at all, or a combination of 
these methods. 

The results suggest that pNEGI will also scale on an MIC 
processor. The fact that parallelization was effective for 
processing a dump file from a low-scale private network 
indicates that it will be equally, if not more effective in real-
world situations, where greater concurrency is expected. The 
application will definitely not exhibit the same rate of increase 
in performance because although MIC processors have a much 
larger number of cores, each core is substantially slower than 
today‟s CPU cores, especially for integer operations. Despite 
these limitations, we believe that the MIC architecture is 
suited for parallel packet processing. 

Our ultimate goal is to implement pNEGI on an MIC 
processor and evaluate the effect of highly parallel hardware 
on parallel packet processing. The results of this study are 
essential because it ensures good scalability on the Xeon CPU 
and hence suggests scalability on MIC processors as well.  

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 133



VII. Acknowledgement 

This work was partially supported by the funds of SECOM 
Science and Technology Foundation, and by MEXT/JSPS 
KAKENHI Grant (B) Number 24360230 and 25280033. 

VIII. References 

[1] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs, 
and R. L. Braynard. “Networking named content.” Proc. Of the 5th 
international conference on emerging networking experiments and 
technologies, ser. CoNEXT „09 

[2] K. Inoue, D. Akashi, M. Koibuchi, and H. Nishi. “Semantic router using 
data stream to enrich services.” In 3rd International Conference on Future 
Internet (CFI), pp.20-23, June 2008. 

[3] Jeffers, James, and James Reinders. Intel Xeon Phi coprocessor high-
performance programming. Newnes, 2013. Juniper Networks. 
http://www.juniper.net. 

[4] Ramachandran, Arunmoezhi, et al. "Performance evaluation of NAS 
parallel benchmarks on Intel Xeon Phi." Parallel Processing (ICPP), 
2013 42nd International Conference on. IEEE, 2013 

[5] Masuda, Kazuki, Shinichi Ishida, and Hiroaki Nishi. "Cross-site 
recommendation application based on the viewing time and contents of 
webpages captured by a Network Router." ICOMP, Las Vegas (2013). 

[6] Paxson, Vern, Robin Sommer, and Nicholas Weaver. "An architecture 
for exploiting multi-core processors to parallelize network intrusion 
prevention." Sarnoff Symposium, 2007 IEEE. IEEE, 2007. 

[7] Li, Yunchun, and Xinxin Qiao. "A parallel packet processing method on 
multi-core systems." Distributed Computing and Applications to 
Business, Engineering and Science (DCABES), 2011 Tenth 
International Symposium on. IEEE, 2011. 

[8] Intel Xeon Processor E5-2697 v2. 

http://ark.intel.com/products/75283/Intel-Xeon-Processor-E5-2697-v2-
30M-Cache-2_70-GHz 

[9] Tian, Yuan, Chuang Lin, and Kangqiao Hu. "The Performance Model of 
Hyper-Threading Technology in Intel Nehalem Microarchitecture." 3rd 
International Conference on Advanced Computer Theory and 
Engineering (ICACTE). Vol. 3. 2010 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

134 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



A Data Communication Reliabilty and Trustability Study 

for Cluster Computing 
 

Eduardo A. Colmenares1, Per Andersen2 
1Department of Computer Science, Texas Tech University, Lubbock, Texas, USA 

2High Performance Computing Center (HPCC), Texas tech University, Lubbock, Texas, USA 

 

 

 
Abstract - In HPC most of the problems under study will be 

either embarrassingly parallel, or data dependent. Beyond the 

nature of the problem, scientists will be interested in either 

one or two additional characteristics. The first, performance, 

focuses in achieving an accurate solution in a fraction of the 

time of a sequential approach. The second is consecutive, 

accurate and steady time readings. In their quest for 

performance, some scientists forget that the chosen tool, in 

many cases a distributed-memory system, is not only a multi-

user system, but also that its components are interconnected 

through a high-speed communications network to facilitate 

the interaction among processors. In this paper, we show why 

a cluster characterization is relevant, particularly for 

scientific kernels where multiple accurate and consecutive 

time readings are necessary to statistically validate a 

behavior. We provide the characterization of two clusters by 

using two variants of the ping pong test. One of the clusters is 

a multi-user research oriented cluster, while the second is a 

one-user cluster with older technology. 

Keywords: high performance computing, cluster, ping-pong, 

queue, normalization, average. 
 

1 Introduction 

  High performance computing and parallel processing are 

now relevant to a variety of sciences, not only computer 

science. Nowadays, more researchers in different fields of 

science are considering new and cutting edge technologies 

capable of considerable computational power. A widely used 

technology comes in the form of distributed-memory systems 

also known as clusters, which combine the capabilities of 

multiple computational nodes via a high speed 

communication network. In most of the cases these 

distributed-memory systems will have a considerable number 

of users, which creates the need for scheduling policies 

capable of handling multiple job submissions from the same 

or different users, who may be competing for resources.  

In this research, we acknowledge two potential characteristics 

for researchers interested in parallel processing. Performance 

and consistent time accuracy. For some researchers, achieving 

an accurate solution in a fraction of the time needed by a 

sequential approach is the ultimate goal; however, for some 

others the goal is not only the former, but also to build the 

foundations to statistically validate the behavior of a 

phenomena which requires steady, accurate, and consistent 

time readings over multiple executions of the kernel that 

represents it.  

In order to identify if the scientists have a testing environment 

that will allow consistent and accurate time readings over 

consecutive executions of the kernel, we propose a reliability 

study through the characterization of two clusters of different 

nature, by executing on each one of them two different 

variants of the ping pong test.  

2 Ping Pong Test 

       First, we introduce some terminology used throughout 

the remainder of the paper. As suggested by [8], the purpose 

of the ping pong test is to provide a measure of the end-to-end 

delay time associated with sending a message back and forth 

between processes in a cluster of workstations or any other 

parallel hardware system. Two different variants of ping-pong 

tests which we will refer to as Ping-Pong-A and Ping-Pong-B, 

were used in order to evaluate if the communication network 

was capable of providing a clean and steady communication 

time between all participant processes [2]. 

 

The purpose of Ping Pong-A test is to see if repeatedly 

sending a message between two workstations and their 

associated MPI processes results in reliable timings, while the 

purpose of Ping-Pong-B test is to see if alternating messages 

between workstations and their associated MPI processes 

results in any change in the latency timings. We expect both 

tests to generate the same results. 

 

2.1 Ping-Pong-A 

   This first ping pong test will execute the ping pong 

core procedure 100 times between two workstations, where 

one workstation executes process P0 and the other 

workstation executes process P1. The test is then repeated 

100 times between two different workstations, in this case the 

pair (P0, P2). The same procedure is repeated until all pairs of 

workstations (P0, Pi) have executed the Ping-Pong-A test. 

Each workstation is executing the SPMD ping pong 

application where P0 is defined as the master process, while a 

Pi process where i ranges from “1” to the “total number of 

participant process -1” will be considered a slave process 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 135



[2,8]. Typically each workstation executes only one MPI 

application as a process at any given time; therefore, P0 can 

be viewed as the process executing on workstation 0 and P1 

as a process executing on workstation 1 and so on.  

For each one of the executions of this version of the ping 

pong test, the communication time is recorded and saved into 

a spreadsheet, which will be used for posterior statistical 

analysis and validation. Figure 1 shows the test and its 

corresponding pseudo-code. 

 
Figure 1: Diagram and Pseudo-Code for Ping-Pong-A. 

 

2.2 Ping-Pong-B 

The Ping-Pong-B test consists of two phases. In the 

first phase P0 will execute the ping pong core procedure with 

all participant processes: (P0, P1) � (P0, P2), .. � .., (P0, 

Pnprocs-1). The time required to complete the communication to 

each process on each workstation is registered into a 

spreadsheet for posterior analysis, as done in section 2.1.   

The second phase of this ping pong test is to repeat the first 

phase until 100 sets of timings have been collected.  Figure 2 

shows the test and its corresponding pseudo-code. 

 
Figure 2: Diagram and Pseudo-Code for Ping-Pong-B. 

3 Testing Environment 

We used two different testing environments. The first 

testing environment corresponds to a community cluster, 

which provides access to high performance computing 

hardware and software for the local research community. For 

the remainder of this paper we will refer to it as the 

Community-Cluster. The second testing environment is a 

personal cluster with only one user and a maximum of 9 

nodes, we will refer to this cluster as My-Cluster. 

 

3.1 Community-Cluster 

This cluster has 12TB of public shared Lustre storage 

and three groups of public and private nodes, all connected by 

SDR Infiniband and Gigabit Ethernet. The quad-core nodes 

have Infinihost III Lx (PCI-e) cards, and the older nodes have 

Infinihost (PCI-X) cards.  

3.1.1 Public quad-core (512 cpu, 4.77 TF).  

64 nodes with dual quad-core Intel 5345 processors 

(2.33 GHz) and 12GB of memory each. Designated compute-

1-x, 2-x.  

3.1.2 Public single-core (128 cpu, 0.82 TF).  

64 nodes with dual single-core Intel "Irwindale" 

processors (3.2 GHz) and 4 GB of memory each. Designated 

compute-3-x, 4-x, 5-x.  

3.1.3 Public AMD dual-core (8 cpu, .04 TF).  

1 node with quad dual-core AMD 8218 processors (2.60 

GHz) and 64GB of memory. Designated compute-8-1.  

 

3.2 My-Cluster 

Each one of the nodes in this cluster has the following 

characteristics: one Intel(R) Pentium(R) 4 CPU at 1.70GHz, 

one 3Com PCI 3c905C Tornado network card. All the nodes 

in this cluster are interconnected via a 3Com® Super Stack® 

3 Switch 3300 12-Port. Table 1 summarizes the major 

hardware differences between nodes. 

Table 1: Major hardware differences among nodes for My-Cluster 
NODE MEMORY 

(MB) 

HARD DISK 

1 511.46 40020 MB-T340016A, ATA  

2 1023.4 40020 MB-T340016A, ATA 

3 1023.4 20547 MB-MAXTOR 6L020J1, ATA  

4 511.46 40020 MB-T340016A, ATA  

5 1023.4 20547 MB-MAXTOR 6L020J1, ATA  

6 1023.4 20547 MB-MAXTOR 6L020J1, ATA  

7 1023.4 
40020 MB-WDC WD400BB-75DEA0, 
ATA  

8 1023.4 40027 MB-MAXTOR 6L040J2, ATA  

9 1023.4 40027 MB-MAXTOR 6L040J2, ATA  

 

4 Experimental Results 

         The purpose of both Ping-Pong tests (A,B) is to measure 

the end-to-end delay sending a message back and forth 

between processes. The size of the message was 8 bytes for all 

testing environments, and both versions of the Ping Pong test. 

 

4.1 Ping-Pong-A in the Community-Cluster 

The Community-Cluster is a multi-user cluster, which 

has several queues where jobs can be submitted. Following a 

recommendation from the personnel in charge of managing 

136 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



this cluster, three public queues (2Wkpar, 48Hquadpar and 

48Hpar) were used for our testing purposes. In addition, a 

script and configuration files were used to force a single 

process per node or workstation. Otherwise, according to [2, 

5] given the multi-processor nature of each workstation, more 

than one process would execute in each node, which would 

skew the communication timings collected. 

4.1.1 2WKpar Queue 

 

Table 2 summarizes the results for the Ping-Pong-A 

test for the 2WKpar queue at the Community-Cluster. Each 

one of the rows in this table presents the statics derived from 

the 100 executions of this test.  

 

After obtaining the results of this test, it was possible to 

observe two important events. The first is that when 

communication is established for the very first time between a 

pair of processors, the corresponding initialization cost is 

high. The second event is that for consecutive interactions 

between the same pair of processors, the cost of such 

interaction was considerably smaller than the first interaction.  

Table 2: Ping-Pong-A- Community-Cluster -2WKpar-All Samples 

Community-Cluster - 2WKpar - 9P – 1st Sample Included 

Proc-Pair 
Average 

(usecs) 

Stdv 

(usecs) 

Min 

(usecs) 

Max 

(usecs) 

P0 - P1 1218.29 12091.28 8 120922 

P0 - P2 751.8 7424.667 8 74256 

P0 - P3 598.89 5895.264 8 58962 

P0 - P4 496.8 4885.778 7 48866 

P0 - P5 599.54 5911.764 7 59126 

P0 - P6 600.08 5905.447 8 59064 

P0 - P7 597.5 5893.182 7 58940 

P0 - P8 599.12 5908.675 7 59095 

 

The high price to pay for the very first interaction between a 

pair processors is a one-time event; this can be observed by 

simple comparison of Tables 2 and 3. The only difference 

between these two tables, is that table 3 does not include the 

first sample or time reading. The notorious and drastic 

difference between the tables clearly identifies the first time 

reading as an outlier and justifies its removal from all 

subsequent analysis.  

 

For simplicity, but without lack of generality, none of the 

remaining tables associated with any of the clusters, queues, 

and ping pong tests will include the first sample or time 

reading. 

 

Figures 3, 4, and 5 show the behavior for all 100 samples in 

all three queues of the Community-Cluster. Each one of these 

curves has been normalized by computing the timings as a 

ratio of the average. The idea behind this normalization is to 

allow an easy but effective comparison of the curves. In the 

figures the curves show all pairs of processes P0-Pi, where i 

ranges from 1 to 8 for a total of 9 participating parallel 

processes [2]. 

 

Table 3: Ping-Pong-A Community-Cluster -2WKpar-1st Sample             

Removed 

 

0

0.5

1

1.5

2

2.5

3

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99

Sample #

N
o

n
e

 (
u

s
e

c
 /

 u
s

e
c

)

P0 VS P1 P0 VS P2 P0 VS P3 P0 VS P4 P0 VS P5 P0 VS P6 P0 VS P7 P0 VS P8  
Figure 3: Normalized Curves for Ping-Pong-A Community-Cluster-

2WKpar-9P. 

4.1.2 48Hpar Queue 

 

Table 4: Ping-Pong-A- Community-Cluster -48Hpar-1st Sample 

Removed 

Community-Cluster – 48Hpar - 9P – 1st Sample Removed 

Proc-Pair 
Average 

(usecs) 

Stdv 

(usecs) 

Min 

(usecs) 

Max 

(usecs) 

P0 - P1 12.80808 2.961235 10 27 

P0 - P2 13.86869 2.448017 12 22 

P0 - P3 13.49495 2.800779 11 26 

P0 - P4 12.31313 2.648243 10 24 

P0 - P5 13.88889 2.754917 11 27 

P0 - P6 13.48485 2.708127 11 26 

P0 - P7 13.52525 2.749187 11 25 

P0 - P8 13.50505 2.588726 11 24 

 

Community-Cluster - 2WKpar - 9P – 1st Sample Removed 

Proc-Pair 
Average 

(usecs) 

Stdv 

(usecs) 

Min 

(usecs) 

Max 

(usecs) 

P0 - P1 9.161616 1.861024 8 25 

P0 - P2 9.333333 1.8681 8 25 

P0 - P3 9.363636 1.548235 8 21 

P0 - P4 8.222222 1.644754 7 18 

P0 - P5 8.363636 1.36617 7 16 

P0 - P6 9.535354 2.149101 8 25 

P0 - P7 8.181818 1.312138 7 17 

P0 - P8 8.252525 1.592991 7 20 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 137



0

0.5

1

1.5

2

2.5

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99

Sample #

N
o

n
e

 (
u

s
e

c
 /

 u
s

e
c

)

P0 VS P1 P0 VS P2 P0 VS P3 P0 VS P4 P0 VS P5 P0 VS P6 P0 VS P7 P0 VS P8  

Figure 4: Normalized Curves for Ping-Pong A- Community-Cluster 

(48Hpar)-9P. 

4.1.3 48Hquadpar Queue 

Table 5: Ping-Pong-A- Community-Cluster -48Hquadpar-1st Sample 

Removed 

Community-Cluster - 48Hquadpar-9P-1st  Sample Removed 

Proc-Pair 
Average 

(usecs) 

Stdv 

(usecs) 

Min 

(usecs) 

Max 

(usecs) 

P0 - P1 10.38384 2.141462 8 19 

P0 - P2 10.25253 1.745802 8 21 

P0 - P3 10.54545 1.540426 9 16 

P0 - P4 9.373737 1.7237 7 18 

P0 - P5 16.66667 53.26733 8 526 

P0 - P6 10.14141 1.51866 8 18 

P0 - P7 9.282828 1.450126 8 15 

P0 - P8 9.363636 1.548235 8 16 

 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99

Sample #

N
o

n
e

 (
u

s
e

c
 /

u
s

e
c

)

P0 VS P1 P0 VS P2 P0 VS P3 P0 VS P4 P0 VS P5 P0 VS P6 P0 VS P7 P0 VS P8  

Figure 5: Normalized Curves for Ping-Pong-A- Community-Cluster 

(48Hquadpar)-9P. 

 Comparing Figures 3, 4, and 5, it is possible to notice 

that all three queues at the Community-Cluster exhibit a data 

pulsing behavior. It is relevant to mention that this cluster is 

accessible to a considerable number of users in a research 

community, and it is more than likely that more than one user 

will submit jobs for processing at the same time; this requires 

the use of additional processing layers such as scheduling, 

which may contribute to the pulsing nature of this shared 

cluster [2]. Because of the pulsing behavior of this cluster, 

any time reading will be more susceptible to a higher margin 

of error than a time reading in cluster with a non-pulsing 

behavior [1, 4]. It is important to be aware that using a cluster 

where this type of error may be present only affects the 

accuracy of time readings -not the accuracy of the 

computations being carried out. 

4.2 Ping-Pong-A in My-Cluster 

This cluster has a different architecture, operating 

system, network switch and communication capabilities than 

the Community-Cluster as indicated in section 3.2. The data 

collected in this cluster during the execution of this test are 

shown in table 6. Once again, the very first sample takes a 

considerable amount of time when compared to consecutive 

samples; as a consequence, it is possible to treat the first time 

reading as an outlier.  

Table 6 presents the corresponding statistics after the removal 

of first time reading, the reasons that justify this approach are 

explained in section 4.1.1. 

Table 6: Ping-Pong-A-My-Cluster-1st Sample Removed 

My-Cluster - 9P -  1st Sample Removed 

Proc-Pair 
Average 

(usecs) 

Stdv 

(usecs) 

Min 

(usecs) 

Max 

(usecs) 

P0 - P1 134.1111 19.91507 127 273 

P0 - P2 144.202 49.94302 126 477 

P0 - P3 140.9091 170.2679 114 1676 

P0 - P4 138.0202 100.3862 115 821 

P0 - P5 162.7172 185.8668 118 1495 

P0 - P6 145.1515 163.1716 117 1575 

P0 - P7 154.8485 152.9347 117 1086 

P0 - P8 138.0101 123.824 116 1277 

  

Comparing Figure 6 against Figures 3, 4, and 5, it is possible 

to conclude that My-Cluster does not have the same pulsing 

nature observed in all three queues of the Community-

Cluster, (2WKpar, 48Hpar, 48Hquadpar). 

 

Figure 6 also shows some other outliers, but it is easily 

observable that the communication provided by My-Cluster is 

less susceptible to pulses. It is also possible to observe 

regions where each one of the curves is almost flat for 

multiple consecutive samples. The previous observation 

clearly indicates a reduced number of disturbances and 

interferences during the test.  

 

The previous conclusions and findings are supported by 

Figure 7, where a comparison of 100 consecutive executions 

of the Ping-Pong-A test for the pair of processors (P0, P1) in 

My-Cluster and the 48Hpar queue of the Community-Cluster 

are shown. 

138 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99

Sample #

N
o

n
e

 (
u

s
e

c
 /

 u
s

e
c

)

P0 VS P1 P0 VS P2 P0 VS P3 P0 VS P4 P0 VS P5 P0 VS P6 P0 VS P7 P0 VS P8  

Figure 6: Normalized Curves for Ping-Pong-A- My-Cluster-9P. 

 

 It is relevant to mention that My-Cluster, was running in 

X-windows mode, which requires refreshing cycles; in 

addition, the system was also subject to mouse movements 

during the execution of the test, which may have affected the 

time readings at a lesser degree; however, these interruptions 

will certainly impact the results; therefore, must be avoided 

during data collection. 

0

0.5

1

1.5

2

2.5

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99

Sample #

N
o

n
e

 (
u

s
e

c
/u

s
e

c
)

P0-P1 on Hrothgar P0-P1 on My-Cluster  

Figure 7: Normalized Curves Only for (P0, P1)-Overlapping Ping-Pong-A in 

Community-Cluster (48Hpar) and My-Cluster. 

 

4.3 Ping-Pong-B in the Community Cluster 

For this variant of the ping pong test, we considered 

the same three queues used during the study of the Ping-

Pong-A test, which are 2Wkpar, 48Hquadpar and 48Hpar.  

4.3.1 2WKpar Queue 

Table 11 summarizes the results for the Ping-Pong-B 

test for the “2WKpar” queue at the Community-Cluster. Each 

one of the rows in this table presents the statics derived from 

the 100 executions of this test. 

 

Table 7: Ping-Pong-B-Community-Cluster-2WKpar-1st Sample 

Removed 

Community-Cluster - 2WKpar - 9P – 1st Sample Removed 

Proc-Pair 
Average 

(usecs) 

Stdv 

(usecs) 

Min 

(usecs) 

Max 

(usecs) 

P0 - P1 9.585859 1.628885314 8 18 

P0 - P2 9.292929 1.56656732 8 20 

P0 - P3 11.54545 1.960178705 10 28 

P0 - P4 10.25253 1.547502493 9 22 

P0 - P5 13.0404 5.396369134 9 40 

P0 - P6 9.282828 1.229239055 8 18 

P0 - P7 25.40404 89.00159586 9 888 

P0 - P8 10.26263 0.932254877 9 13 

  

Three different figures illustrates the behavior of the ping-

pong-B test for all 100 samples for each one of the queues. 

These figures are figures 8, 9, and 10.  Each one of the curves 

on these figures has been normalized by computing the 

timings as a ratio of the average. This normalization was done 

to allow a better comparison of the curves. In the figures, the 

curves show all pairs of processes P0-Pi, where i goes from 0 

to 8 for a total of 9 participating parallel processes 

 

0

0.5

1

1.5

2

2.5

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99

Sample #

N
o

n
e

 (
 u

s
e

c
s

 /
 u

s
e

c
s

)

P0-P1 P0-P2 P0-P3 P0-P4 P0-P5 P0-P6 P0-P7 P0-P8  

Figure 8: Normalized Curves-Ping-Pong-B-Community-Cluster-2WKpar-9P. 

4.3.2 48Hpar Queue 

Table 8: Ping-Pong-B-Community Cluster-48Hpar-1st Sample 

Removed 

Community-Cluster – 48Hpar - 9P – 1st Sample Removed 

Proc-

Pair 

Average 

(usecs) 

Stdv 

(usecs) 

Min 

(usecs) 

Max 

(usecs) 

P0 – P1 12.19192 2.414567894 10 21 

P0 – P2 12.9697 2.50083474 11 22 

P0 - P3 11.89899 2.384023993 10 20 

P0 - P4 12.93939 2.376836269 11 22 

P0 - P5 12.94949 2.480017023 11 22 

P0 - P6 14.77778 2.593380725 13 24 

P0 - P7 12.89899 2.296825447 11 21 

P0 - P8 13.27273 3.24766221 11 35 

 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 139



0

0.5

1

1.5

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 100

Sample #

N
o

n
e

 (
u

s
e

c
s

 /
 u

s
e

c
s

)

P0-P1 P0-P2 P0-P3 P0-P4 P0-P5 P0-P6 P0-P7 P0-P8

Figure 9: Normalized Curves-Ping-Pong-B-Community-Cluster-(48Hpar)-9P. 

4.3.3 48Hquadpar Queue 

Table 9: Ping-Pong B-Community CLuster-48Hquadpar -1st Sample 

Removed 

Community-Cluster – 48Hquadpar - 9P – 1st Sample Removed 

Proc-Pair 
Average 

(usecs) 

Stdv 

(usecs) 

Min 

(usecs) 

Max 

(usecs) 

P0 - P1 9.343434 1.691283875 8 19 

P0 - P2 9.464646 1.547302665 8 21 

P0 - P3 10.90909 2.321553443 9 27 

P0 - P4 10.36364 1.438923531 9 22 

P0 - P5 10.61616 1.838960835 9 22 

P0 - P6 10.47475 1.053114277 9 15 

P0 - P7 9.353535 0.872635362 8 13 

P0 - P8 9.676768 2.668135032 8 28 

 

 The results and behaviors observed through the 

execution and corresponding analysis of the Ping-Pong-B test 

reinforce the conclusion that all three queues of the 

Community-Cluster exhibit a data pulsing behavior. Again, it 

is relevant to mention that due to its pulsing nature the 

Community-Cluster will provide time reading with a higher 

margin of error than a cluster with a non-pulsing behavior. 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99

Sample #

N
o

n
e

 (
u

s
e

c
s

 /
 u

s
e

c
s

)

P0-P1 P0-P2 P0-P3 P0-P4 P0-P5 P0-P6 P0-P7 P0-P8  

Figure 10: Normalized Curves-Ping-Pong-B-Community-Cluster-

48Hquadpar-9P. 

4.4 Ping-Pong-B in My-Cluster 

This second variant of the ping-pong test was executed 

in a one-user cluster, referred to as My-Cluster, and the 

statistics can be observed on table 10. 

Table 10: Ping-Pong-B-My-Cluster-1st Sample Removed 

My-Cluster - 9P – 1st Sample Removed 

Proc-Pair 
Average 

(usecs) 

Stdv 

(usecs) 

Min 

(usecs) 

Max 

(usecs) 

P0 - P1 155.5657 54.73240312 133 583 

P0 - P2 199.4545 410.5913921 138 4221 

P0 - P3 214.9293 788.5313299 122 7978 

P0 - P4 261.9697 1216.547821 122 12236 

P0 - P5 174.8283 272.2759345 124 2767 

P0 - P6 161.3636 233.9981011 122 2449 

P0 - P7 202.4646 64.69146762 121 358 

P0 - P8 129.4747 19.3086337 119 274 

 

0

0.5

1

1.5

2

2.5

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99

Sample #

N
o

n
e

 (
u

s
e

c
 /

 u
s

e
c

)

P0-P1 P0-P2 P0-P3 P0-P4 P0-P5 P0-P6 P0-P7 P0-P8  

Figure 11: Normalized Curves for Ping-Pong-B- My-Cluster Using 

9P. 

 

0

0.5

1

1.5

2

2.5

3

3.5

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99

Sample #

N
o

n
e

 (
u

s
e

c
 /

 u
s

e
c

)

2WKPAR 48Hpar 48hquadpar MY CLUSTER  

Figure 12: Normalized Ping-Pong B Curves for the pair (P0, P8)-

Community-Cluster (all queues) vs My-Cluster 

Comparing Figure 12 against Figures 9, 10 and 11, it is 

possible to conclude that My-Cluster does not exhibit the 

pulsing behavior observed in all three queues of the 

140 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



Community-Cluster. After the comparison of these four 

figures, it is not only possible to conclude that My-Cluster 

presents a more steady behavior in terms of communication, 

but also that this type of characteristic will reduce the source 

of error due to the pulsing nature present on the Community-

Cluster.  

Since the pulsing behavior of the Community-Cluster has 

been observed in both ping pong tests, it can be speculated 

that some sort of background monitoring process for the 

cluster is being executed at regularly scheduled intervals, 

which may be causing the graphed timings to appear to pulse. 

Figure 12 still shows some outliers; however, it is possible to 

conclude that the communication pattern experienced by My-

Cluster, is less susceptible to pulses. It is possible to observe 

regions where each one of the curves is almost flat for a 

considerable number of consecutive samples; this constitutes 

a clear indicator of fewer disturbances and interferences 

during the test. These conclusions and findings are supported 

and reinforced by Figure 12, where a comparison of the ping-

Pong-B test between the pair of processes P0-P8 for My-

Cluster and all queues of the Community-Cluster is 

illustrated. 

5 Conclusions 

All three queues of the Community-Cluster are prone 

to pulses of some nature that can negatively impact high 

performance applications where consecutive steady and 

accurate time readings are needed to statistically validate a 

phenomena under study.  

The one-user cluster, referred to as My-Cluster, presents a 

much better behavior in terms of disturbances during 

communication between processes; the communication 

between processes is clearly more stable and steady for a 

considerable number of consecutive samples; as a 

consequence, it constitutes a  more appropriate choice for 

time sensitive analysis. 

The third and most important conclusion is derived from both 

ping pong tests, and it is associated with the fact that only the 

first time that a pair of processes establish a communication, a 

one-time high fee to pay in terms of time will exist. 

Consequently, it is possible to think that some sort of 

communication initialization takes place during this first 

message, and that such situation does not occur for all 

subsequent communications. This finding is supported by 

both ping pong tests, ping-pong-A and ping-pong-B, and 

occurs in both clusters even though they have different 

operating systems, hardware architecture and communication 

capabilities. 

6 References 

 

[1]  C. Bell, D. Bonachea, R. Nishtala, and K. Yelick. 

“Optimizing Bandwith Limited Problems Using One-sided 

Communication and Overlap”. Parallel and Distributed 

Processing Symposium, Apr. 29, 2006. 

 

[2]  E. Colmenares, P. Andersen, Y. Zhuang, “Overlapping 

Communication and Computation with MPI-2 for Floyd's 

Algorithm”, MSCS Thesis, Texas Tech University, 2008. 

 

[3]  G. Glass, K. Ables, Unix for Programmers and Users, 

Pearson Prentice Hall, 2003. 

 

[4]  W. Groop and E. Lusk, Reproducible Measurements of 

MPI Performance Characteristics, Argonne National 

Laboratory, 1999. 

 

[5]  J. Hein, S. Booth and M. Bull, Exchanging Multiple 

Messages via MPI, HPCx Consortium, EPCC University of 

Edinburgh, 2003. 

 

[6]  F. Junior, Configurando um Cluster No Fedora Core 4 

com MPICH2,  Ministério Da Ciéncia e Tecnologia, Instituto 

Nacional De Pesquisas Espaciais. Sao Jośe dos Campos, 

Brasil, 2008.  

[7]  M. Machado, and M. Hofman, Sistemas Distribuídos, 

Pontifica Universidade Católica do Rio de Janeiro, Brasil, 

2005. 

 

[8]  N. Nupairoj and Lionel M. Ni. (1994). Performance 

Evaluation of some MPI Implementations on workstation 

clusters. Available: http://citeseer.ist.psu.edu/7635.html 

 

[9]  Rice University - Information Technology. “Advanced 

Unix Scripts”, Sep. 2003. Available:  
http://www-teaching.physics.ox.ac.uk/Unix+Prog/rice/pdf/unix18.pdf 

 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 141



Application-Aware Routing Policy
based on application pattern traffic

Joe Carrión, Daniel Franco and Emilio Luque
Computer Architecture and

Operative Systems Department
Universitat Autónoma de Barcelona,

08193, Bellaterra, Spain
Email: joe.carrion@caos.uab.es, daniel.franco@uab.es, emilio.luque@uab.es

Abstract—Search engines are deployed over large datacenters
and they support queries of thousands of users about a set
of heterogeneous content, a typical configuration of a search
engine includes three main components, a Front Service (FS)
for user requests, Cache Service which is a subset of the most
frequently used data and the full data set called Index Service
(IS). Queries generate thousands of messages between nodes.
The message delivery process should be performed efficiently.
This paper is focused on improving the efficiency for allocating
network resources. It is proposed the analysis of communication
patterns of the system and the work balance of the network.
The traffic pattern defines the behavior of each service and
the workload on each router. The proposed mechanism makes
decisions based on the historic behavior of the IS, FS, CS and the
application pattern. The experimental results are evaluated using
simulations techniques. Workloads from a real search engine are
injected to the simulator and finally the results are compared
with conventional routing mechanisms.

Keywords—Routing algorithm, interconnection networks,
application-aware network.

I. INTRODUCTION

Search engines can be oriented for users all over the
world and the content provided can be heterogeneous (general
purpose search engine) we call them as Horizontal Search
Engine (HSE). HSE are supported for a set of Vertical Search
Engine (VSE). The VSE is a component of a HSE and they can
be focused on specific content (commercial, scientific, cultural,
etc.) for users from a delimited geographic area. Each VSE
processes the requests of limited subset of users. Using VSE
is an approach to balance the workload of the HSE.

On environments of VSE, the datacenter and network
design have the capacity to scale from low to high periods of
workload. The frequency of queries submitted is unpredictable
and it changes from hundreds to thousands very quickly. This
behavior throws an unexpected traffic to the network resources,
hosts and routers. Therefore an efficient network resources
allocation policy is desired.

Network protocols, devices and services have been de-
signed with a huge set of configurable features, this approach
allows extend the range of supported applications on expenses
of performance and cost. However for datacenters focused on
a reduced set of applications a specially designed datacenter
and network is required.

Regarding to datacenter in [1], some best practices related
to power efficiency are proposed. In [2] some guidelines to
datacenter designs from the industry are proposed. Secondly,
when the datacenter hosts a delimited set of applications, the
network design should include an exhaustive traffic analysis to
support the specific application hosted. The output should be
an application-aware network (AAN). AAN is a mechanism
”for boosting utilization of network resources based on cus-
tomer demand” [3]. Since this point of view network design
should be based on the hosted applications. The goal is a
network based on the profile application. There are different
parameters to draw the profile of an application. From literature
we can mention [11], which includes number of terminals, la-
tency, message size, traffic pattern and others. This information
can be captured on runtime using monitoring standard proto-
cols like sFlow and Netflow. They use a sampling mechanism
[3] applied to the traffic network. The application monitoring
process returns the delay of the messages of clients, servers and
network devices, response time, number of new connections,
bytes and packets submitted, packet lost and latency. Then the
monitoring application generates very useful information for
allocating network resources on demand.

In this paper we introduce a routing policy based on the
application pattern analysis for a specific application using
trace files from a real VSE. This policy computes the workload
of the applications. A runtime monitoring process allows us
balance the traffic and allocate network resources fairly. We
evaluate the results with two standard network metrics: latency
and throughput.

II. RELATED WORK

Application pattern analysis involves collecting traffic and
data analysis. [4] analyzes the Intra-Rack and Extra-Rack
traffic, link utilization and hot-spot behavior to create a profile
of an application. [7] proposes a static mechanism based on
a traffic analysis to identify the best routes between couples
of nodes, after, they combine the best routes to create a
set of new optimal routes. Furthermore network resources
management techniques have been proposed, for instance
[5] describes Generic-Adaptive-Resource-Control (GARC) as
a control mechanism of connectivity to reduce the overall
performance, GARC is a mediator between applications and
network. Most specific techniques like routing policies allow
load balance, [6] introduces Application-Specific Routing Al-
gorithm (APSRA) to model the application using graphs, and

142 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



the output is a static routing table. The application pattern
has impact on the network status [11], so adaptative routing
algorithms aim to make decisions based on network status.
[8] introduces Distributed Routing Balancing (DRB) which
uses an algorithm based on maximize the use of resources
by creating new paths between nodes and minimizing the
path-length, the output is a fairly message distribution. In
[9] PR-DRB (Predictive DRB) extends to real applications by
monitoring the best paths and storing them to make routing
decisions based on alternative paths.

III. APPLICATION PATTERN ANALYSIS

A. Background

We conduct our research over a VSE. The main software
components of a VSE are: Front Service (FS), Cache Service
(CS) and Index Service (IS) deployed on a Fat-tree topology
[13].

The services of the VSE are deployed on a large cluster of
computers. The nodes are arranged on arrays of P x D, where
P define level of data partitioning and D the level of replication
of the data, a full description of the architecture is published
in [13], we show a basic overview on figure 1 and we remark
the following terminology useful for this paper: FS as Front
Service, IS as Index Service, ISR as Index Service Replica,
CS as Cache Service and CSR as Cache Service Replica.

Fig. 1. Overview of traffic flow between the main components of the VSE.

B. Communication pattern

VSE communication pattern is defined for the messages
between nodes. The load of the system depends on two
elements, the volume of user requests and the size of the
content stored in the system. The volume of users submitting
queries in a period of time is unpredictable. This rate of input
triggers an unstable communication pattern if we compare
it with traditional synthetic traffic patterns used to evaluate
network performance.

Let N a Fattree topology network with 64 nodes. Axis Y
represents the range of sources and destinations and axis X is
used for time. We can see the trend of source and destination
and the distribution of each couple. The traffic pattern is
defined by a couple of Sender and Receiver (S-R).

On figures 2 and 3, we depict a set of samples of synthetic
traffic from literature [11]. Synthetic traffic patterns used are
Uniform (UTP) and Shuffle (STP). For synthetic traffic we are
using 64 nodes to represent plainly instead of 128 nodes of
the real VSE network.

Using UTP the Sender in predictable through the time, in
contrast Receiver is randomly selected. Figure 2 shows that
traffic is distributed in a large set of nodes as source (from
node 0 to 64) and the destination goes in the same interval.
The result is a distributed traffic over all network. Although the
pairs S-R are unpredictable, the traffic goes through a big range
of network resources. Then we conclude traffic is distributed
between a big set of resources.

Fig. 2. Uniform Traffic Pattern.

Fig. 3. Shuffle Traffic Pattern.

With STP the S-R pairs are predictable because R is
computed from S. The traffic pattern goes from lower nodes to
the highest. The result is a traffic distributed on specific part of
the network. The used region of the network moves uniformly.

We represent the traffic of a VSE using a trace file from
a VSE on figure 4. We call this traffic VSETP (VSE traffic
pattern). Although the couples S-R are unpredictable through
the time, they move over a specific set of nodes. VSETP is
distributed around a reduced set of nodes through the time. For
instance on figure 5, axis X shows the time, interval is 25 to
35, senders are less than 10 and receivers are from 30 to 50.
The same pattern appears on range 55 to 65 and 115 to 125.
The range of nodes define locality and time define frequency
(or repetition). Figure 6 shows the repetition and locality for
receiver. Periods of time are defined from 92 to 102, 112 to
122 and 145 to 165. Figure 7 shows the trend for using a
configuration of 256 nodes. The locality is defined for senders
from 0 to 50 and receivers from 150 to 200 when time goes
from 20 to 40. This trend is repeated on period 90 to 110.

The traffic of those periods of time can be managed by
a specific policy taking into account the repeatability and
locality.

C. Traffic Flow

User queries are accepted by the FS, it submits the queries
to CS. If the query has been performed previously the query
has been cached by the CS (based on a cache policy), thereby
CS checks these conditions and returns the output of the query
(cache hit) otherwise when the output is not cached, the output
is a cache failure. FS redirects the unsuccessfully queries to

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 143



Fig. 4. VSE traffic pattern. Trend of each S-R pair with 128 nodes.

Fig. 5. Trend of repetition and locality for Sender with 128 nodes.

Fig. 6. Trend of repetition and locality for Receiver pair with 128 nodes.

IS, which will create a top-k results to send back to FS. The
detailed business rules about a VSE are out of the scope of
this paper, a full description is published in [13].

Fig. 7. VSE traffic pattern. Trend of each S-R pair with 256 nodes.

D. Workload analysis

The workload analysis needs a real trace file. We take
two networks with 128 and 256 nodes. Firstly we evaluate
the workload for the whole system. To depict the load of
the network we take the traffic generated by the FS as
source (sender) and the destination (receiver) the remaining
components (IS, ISR, CS and CSR). The trace file is generated
after processing 100000 queries.

On figure 8 axis Y shows the number of messages. We
show the workload of each service thought the time in axis
X. We can see the load is predominated by ISR, a closer view
shows that IS traffic is proportional to traffic ISR; also CS
and CSR keep almost constant. Figure 9 shows the workload
for a network with 256 node and we can see that ISR traffic
behavior prevails.

Fig. 8. Workload with 128 hosts.

There are periods of time with more messages in the
network and there are periods with a low number of messages;
for example in figure 10, we show the 128-nodes network to
the period of time from 50 to 60. The number of messages by
unit time is more than 6000 messages. So the injection rate is
very high compared to the period of time from 65 to 70.

The variance of the number of messages causes a variance
of the injection rate; the application traffic pattern requires
proportional allocation resources accordingly to the traffic of
each service. There are more messages from ISR compared to
other services.

We use this behavior to allocate network resources using a
routing policy to balance the workload. The first approach is
focused on allocate routers buffers according to the service.

144 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



Fig. 9. Workload with 256 hosts

Fig. 10. Changes of the workload by kind of service of the VSE traffic.

E. Buffer Occupancy Analysis

We analyze the workload over the network; this paper
is focused on the buffer of input channels (B). Taking into
account each message is divided in packets to go from a source
to a destination. When a packet (m) arrives to a router (R), it
is allocated into an input buffer to wait for an output channel.

Router buffers have a size (BS) and the size should be
computed accordingly to workload application (WL). Buffers
contain a set of packets, the number of packets define the
buffer occupancy (BO). BO goes from 0 to BS. We define 3
thresholds for BO. If BO goes from 0 to 25% of BS we call
BO low (BOL), Medium BO (BOM) when BO goes greater
than 25% to 50% and High BO (BOH) for BO higher than
50%. The higher BO the more congested is the channel.

An overview of BO for a typical network configuration
using UTP is showed in Figure 11. The network configuration
used is a Fat-tree topology, with k=10 and n=3, then we have
routers arranged in 3 levels (Level 0, 1 and 2, Level 0 is the
root of the tree). There are 300 routers, and we have more than
1000 B. Axis X shows the buffer routers. There are 3 groups
of bars, one for each level of routers.

Figure 12 zooms only from the 900 to 1100 BO. The size
of the bars represents the number of events that BO was higher
than LBO. Therefore for UTP the workload is distributed over
all routers. The most congested B belongs to routers of Level
2, and the less congested B belongs to Level 0. This distributed
traffic is desired for real traffic patterns. However this tendency
does not appear on the pattern generated for a VSE.

We apply the same analysis for VSETP and we can see
an unbalanced behavior. Figure 13 draws BO for the same
threshold LBO. BO is higher than 25% in most of the routers,
but there are some buffers without occupancy. Also there are
events when BO is higher than 50%. Figure 14 show the
behavior for HBO.

Figure 13, shows that workload distribution is not balanced,
on Level 2, the occupancy in concentrated in a reduced set of

Fig. 11. Full buffer occupancy using Uniform synthetic traffic.

Fig. 12. Buffer occupancy using Uniform synthetic traffic.

Fig. 13. Buffer occupancy using traffic in the VS with Threshold 25%.

Fig. 14. Buffer occupancy using traffic in the VS with Threshold 75%.

routers. Some routers do not get the threshold for LBO. Level 1
also has the same unbalanced behavior although, it is less than
Level 1 and finally on Level 0 the unfair workload prevails.

A routing policy should allocate buffers accordingly to the
load of an application. We know the workload application
for each service, then we can allocate routers based on each
service. In order to detect the kind of service it is necessary
identify the sender and receiver; the routing policy should
redirect the messages based on workload and BO.

F. Host-Destination Analysis

This analysis is based on then traffic flow described on
Section III-C. Each node only keeps contact with a delimited
set of services, for instance a CS node submits messages to a

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 145



Fig. 15. Pairs SR using Uniform Synthetic traffic.

Fig. 16. SR using Flow-traffic conditions of the VSE.

FS node, and a IS node submits messages only to a FS node.
With algorithms to generate synthetic traffic the behavior can
be predictable, for random generation the set of couples is
unpredictable, see figure 15. Each pair S-R appears randomly
distributed on space. However using the Flow-traffic conditions
of the VSE the set of couples is deterministic, figure 16 shows
that each pair S-R is created with a specific set of nodes.
For instance there is not traffic from node source 20 to node
destination 20 and 40 (source) to 40 (destination). We have a
well-defined empty area.

The tendency reduces the set of couples and it creates an
unbalanced traffic. Areas with traffic are much defined and
areas without traffic can result in network resources unused.
On one hand if there is resources unused the network could
be reduced, on the other hand there is buffers overloaded.

IV. APPLICATION-AWARE ROUTING POLICY

Based on analysis presented in previous section, we present
a routing policy called Application-Aware Routing (AAR)
which allocates network resources based on application profile.

AAR can be outlined as follows. Three main components
are introduced into router architecture. First one is the Buffer
occupancy monitor (BOM), the second one is the Deep Packet
Inspection (DPI) mechanism and finally a Decision Maker
(DM). Figure 17 shows an overview of the components.

Fig. 17. Overview of the AAR.

BOM keeps historical information about buffer occupancy. DPI
identifies if a packet belongs to a specific service. The DM
based on information of BOM and DPI redirects the traffic by
allocating output channels. Packets belonging to IS or ISR are
redirected to output ports with less BO. This approach allow
us allocate resources proportionally to service demand. The
workload is distributed toward less used network area.

A. Buffer occupancy monitor

BO tracks the buffer occupancy on runtime. This tracking
process is based on three thresholds. High, medium and
low occupancy (BOH, BOM and BOL respectively). When
a packet arrives it is allocated a buffer. There is a BO counter
for each buffer, which is updated when it reaches a threshold.
These three levels allow us tune the policy accordingly to the
profile application. For instance in Section III-D we conclude
that VSETP is predominated by the ISR. We configure the
routing policy with BOH to apply the policy to redistribute
the traffic of the service with higher workload. The next step
involves a detection service action.

B. Deep Packet Inspection and Decision Maker

This component takes as input two parameters, a mapping
of hosts-services and application profile based on the workload.
When a packet arrives to the router the policy merges the
mapping table and the workload. The output is a candidate
packet to be redirected. This packet is passed to the DM. The
remaining packets are redirected applying the default routing
policy of the system.

Taking as input the BOM and the candidate packet, the
packet is redirected based on the BOM. BOM sends the packet
to the output port with lower occupancy.

V. EXPERIMENTATION

We evaluate AAR using a modified version of Booksim
simulator published in [10]. We present the results comparing
AAR with conventional Nearest Common Ancestor (NCA)
introduced in [11]. The network is configured with the same
characteristics of the real VSE. So we use 128 and 256 nodes
arranged in a Fat-tree topology of tree levels. The result are
analysed using two standard metrics for networks: Average
Network latency (ANL) and Accepted Packet Rate (APR).

Firstly we focus on the overall AAR and NCA comparison
with VSE traffic pattern. It takes the whole period of time of
simulation.

146 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



On figure 18 we depict the ANL. Axis X is the time, (in
K-cycles of simulation). Axis Y is the number cycles need to
deliver a packet. The first overview shows the curve of AAR
under the curve of NCA almost in the full period of time. This
tendency exemplifies a decrease of the network latency using
AAR.

Fig. 18. AAR and NCA using 128 nodes and traffic pattern of VSE

In table I we show that network latency (NL) is 3339 K-
cycles using NCA, we take this value as baseline and we
compare the result of AAR. AAR gets 3119 Kcycles. Then
AAR reduces the network latency in 7.26%.

TABLE I. COMPARISON BETWEEN AAR AND NCA. NODES:128.
TRAFFIC PATTERN: VSE

Metric AAR NCA

Average network latency 3119 3339

Percentage of decrease 92.73% 100%

Regarding to the analysis of APR, on figure 19 we can see
the curves of APR using two routing algorithms. Axis X is
the time and axis Y is the number of messages delivered on
each unit time. The AAR curve is over the NCA. It shows that
AAR delivers more packets on each unit time against NCA.

Fig. 19. AAR and NCA with 128 nodes for traffic pattern of VSE

Table II shows APR, using NCA is 4.91 packets accepted

by each K-cycle. Using AAR the APR grows up to 5.12. This
increase represents the 4.4%.

TABLE II. SUMMARY OF COMPARISON BETWEEN AAR AND NCA.
NODES: 128. TRAFFIC PATTERN: VSE

Metric AAR NCA

Average accepted packet rate 5.12 4.91

Percentage of increase 104.4% 100%

Now we analyze the behavior through the time. If we divide
vertically the curves of ANL and APR in two areas, the part of
the right shows that AAR and NCA are overlapped when the
time is lower than 25. Also, the ANL is less than 3000K cycles.
However, this tendency change later if we see the left part,
when the time is higher than 25. The difference between two
curves increases and then we compare the routing algorithms
after a period of time.

At the beginning there is not information about the buffer
occupancy. Then AAR performance is the same as NCA. When
AAR has enough information about buffer occupancy, its
performance improves against NCA. NCA allocates network
resources in a deterministic way. On the other hand AAR takes
advantage of the historic information.

On table III we show the results when AAR have informa-
tion about BO. We compare the performance when the latency
is higher than 3000 Kcycles. After this period of time AAR has
collected information about buffer occupancy then the policy is
applied for more packets compared to the beginning of network
operation.

The final results show that AAR improves latency on 7.93%
and the accepted packet rate increases in 4.78%.

TABLE III. SUMMARY OF COMPARISON BETWEEN AAR AND NCA.
NODES: 128. TRAFFIC PATTERN: VSE. AFTER WARM UP PHASE

Metric AAR NCA

Average network latency 3662 3978

Percentage of decrease 92.06% 100%

TABLE IV. SUMMARY OF COMPARISON BETWEEN AAR AND NCA.
NODES: 128. TRAFFIC PATTERN: VSE. AFTER WARM UP PHASE

Metric AAR NCA

Average accepted packet rate 6.21 5.92

Percentage of increase 104.78% 100%

Next set of experiments were carry out using a configu-
ration for 256 nodes. The workload is a VSETP. Figure 20
shows the latency. The AAR curves goes over the NCA curve.

As we can see in table V network latency (NL) is 5213
Kcycles using NCA and we compare the result of AAR. AAR
gets 4996 Kcycles. Then AAR reduces the network latency in
4.16%.

TABLE V. SUMMARY OF COMPARISON BETWEEN AAR AND NCA.
NODES: 256. TRAFFIC PATTERN: VSE.

Metric AAR NCA

Average network latency 4996 5213

Percentage of decrease 95.83% 100%

The APR is showed on figure 21. The period of time less
than 10 show the warm-up period when there is not traffic.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 147



Fig. 20. AAR and NCA with 128 nodes for traffic pattern of VSE

From period 10 to 50, NCA have AAR have almost the same
performance. AAR needs information about buffer occupancy
to distribute the packets, after collecting information the per-
formance provided by AAR increases.

Fig. 21. AAR and NCA with 256 nodes for traffic pattern of VSE

Table V shows that APR is 14.96 packets using NCA, and
the result using AAR is 15.54 packets. Then AAR improves
the throughput in 3.92%.

TABLE VI. SUMMARY OF AAR AND NCA COMPARISON. NODES:
256. TRAFFIC PATTERN: VSE

Metric AAR NCA

Average accepted packet rate 15.54 14.96

Percentage of increase 103.92% 100%

The set of experiments demonstrates that AAR delivers
more packets while it reduces the network latency. The per-
formance prevails for networks with 128 and 256 nodes.

VI. CONCLUSION

We have proposed the Application-Aware Routing policy,
AAR. This policy is based on the analysis of an application

pattern of a vertical search engine. The algorithm keeps his-
torical information about buffer occupancy and the application
profile. The network resources are allocated on application
demand. The performance of AAR is analyzed with two
standard network metrics: latency and throughput. Experiments
show AAR improves the network performance by reducing the
latency and delivering more packets in the same period of time.
Future work is oriented to extend the analysis to other network
components and test our AAR with different topologies.

ACKNOWLEDGMENT

This research has been supported by : MINECO (MICINN)
Spain under contract TIN2011-24384, SENESCYT1 Ecuador
government under contract 2013-AR7L335.

Authors would like to thank to Veronica Gil-Costa, Mauri-
cio Marin and Yahoo! Research Latin America.

REFERENCES

[1] Greenberg, et al,Best Practices for Data Centers: Lessons Learned from
Benchmarking 22 Data Centers, Summer Study on Energy Efficiency in
Buildings, ACEEE 2006, pp. 7687.

[2] Cisco Systems, Inc. 2007, Cisco Data Center Infrastructure 2.5 Design
Guide. http://www.cisco.com

[3] MRV,Application-Aware Networking at A Glance, White Paper 2013,
http://www.mrv.com.

[4] Theophilus Benson, Aditya Akella, and David A. Maltz. 2010. Network
traffic characteristics of data centers in the wild. In Proceedings of the
10th ACM SIGCOMM conference on Internet measurement (IMC ’10).
ACM, New York, NY, USA, 267-280. DOI=10.1145/1879141.1879175
http://doi.acm.org/10.1145/1879141.1879175

[5] J. Mueller, T. Magedanz. Towards a Generic Application Aware Network
Resource Control Function for Next-Generation-Networks and Beyond.
In IEEE Proceedings of the International Symposium on Communica-
tions and Information Technologies (ISCIT 2012), pp. 777882.

[6] Palesi, M., Holsmark, R., Kumar, S. Catania, V. Application Specific
Routing Algorithms for Networks on Chip. Parallel and Distributed
Systems, IEEE Transactions on 20, 316-330 (2009).

[7] N. Michael, M. Nikolov, A. Tang, G. E. Suh, C. Batten, Proceedings of
the Fifth ACM/IEEE International Symposium , 9-16 (2011).

[8] D. Franco, I. Garcés, and E. Luque. 1999. A new method
to make communication latency uniform: distributed routing
balancing, ICS ’99, ACM, New York, NY, USA, 210-219,
http://doi.acm.org/10.1145/305138.305195

[9] Carlos Nunez Castillo, Diego Lugones, Daniel Franco, Emilio Luque,
Martin Collier: 2013. Predictive and Distributed Routing Balancing, an
Application-Aware Approach, ICCS 2013, 179-188.

[10] Nan Jiang Becker, D.U. ; Michelogiannakis, G. ; Balfour, J. ; Towles,
B. ; Shaw, D.E. ; Kim, J. ; Dally, W.J.. 2013. A detailed and flexible
cycle-accurate Network-on-Chip simulator. ISPASS 2013: 86-96.

[11] William Dally, Bryan Twles. 2003. Principles and Practices of Inter-
connection Networks. Morgan Kaufmann, ELSEVIER, San Francisco,
p.550.

[12] George Michelogiannakis, Daniel Becker, Brian Towles and
William J. Dally. N Jiang. 2013. BookSim 2.0 User’s Guide.
https://nocs.stanford.edu/cgi-bin/trac.cgi/wiki/Resources/BookSim.

[13] Jair Lobos, Veronica Gil-Costa, and Mauricio Marin, Alonso Inostrosa-
Psijas. 2012. Capacity Planning for Vertical Search Engines: An Ap-
proach Based on Coloured Petri Nets. Yahoo! Research Latin America.

[14] Alexander Loukissas, Amin Vahdat Mohammad Al-Fares. 2008. A
Scalable, Commodity Data Center Network Architecture. SIGCOMM’08,
August 17-22, p. 12

1SENESCYT: Secretarı́a Nacional de Educación Superior, Ciencia, Tec-
nologı́a e Innovación, http://www.senescyt.gob.ec/

148 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



An Algorithm for Node-to-Node Disjoint Paths Problem in a
Möbius Cube

David Kocík†, Yuki Hirai ‡, and Keiichi Kaneko‡

† Faculty of Information Technology, Czech Technical University in Prague, Thákurova, Prague, Czech Republic
‡ Institute of Engineering, Tokyo University of Agriculture and Technology, Koganei-shi, Tokyo, Japan

Abstract— In this paper, we propose an algorithm that
solves the node-to-node disjoint paths problem inn-möbius
cubes in polynomial-order time ofn. We also give a proof
of its correctness as well as the estimates of time complexity
O(n3) and the maximum path lengthO(n2). We conducted
a computer experiment forn = 4 to 31 to measure the
average performance of our algorithm. The results show that
the average time complexity isO(n1.5) and the maximum
path lengths on average are linear ton.

Keywords: container problem, hypercube, multicomputer, inter-
connection network, parallel processing

1. Introduction
Recently, researches on parallel processing, especially

massively parallel systems are enthusiastically performed.
A lot of nodes are connected in a massively parallel sys-
tem. To interconnect them efficiently, many topologies for
interconnection networks have been proposed [1], [9] and
studied [2], [3], [4], [5], [13], [14], [15], [24] to replace
simple interconnection networks such as a ring, a mesh, a
torus, and a hypercube [25]. A möbius cube [10] is one such
new topology. It has attracted much attention because it can
connect the same number of nodes as a hypercube while
keeping its diameter about half of that of the hypercube [12],
[20], [27], [28], [29].

The unsolved problems in möbius cubes include the node-
to-node disjoint paths problem: given a source nodes and
a destination noded in a k-connected graphG = (V,E),
find k paths betweens andd that are node-disjoint except
for s and d. The node-to-node disjoint paths problem is
an important issue in parallel and distributed computation
[11], [19], [23], [26] as well as the node-to-set disjoint paths
problem [7], [17], [22], [21] and the set-to-set disjoint paths
problem [6], [8], [16], [18].

For a graphG(V,E), by using the maximum flow al-
gorithm, the node-to-node disjoint paths can be obtained
in polynomial-order time of|V | in general. However, the
complexity of the algorithm is too large for ann-dimensional
möbius cube or anMn in short because the number of nodes
in it is equal to2n. In this paper, we propose an algorithm
called N2N (node-to-node) which has a polynomial-order
time of n instead of2n. Algorithm N2N consists of four

cases according to the relative positions of the source node
and the destination node. The algorithm obtainsn disjoint
paths from the source nodes to the destination noded where
n is equal to the connectivity of anMn. We also present the
results of an average performance evaluation by a computer
experiment.

The rest of this paper is organized as follows. Section 2
introduces the definition of möbius cubes as well as other
requisite definitions. Section 3 explains our algorithm N2N
in detail. Section 4 describes a proof of correctness and the
theoretical complexities of N2N. Average performance of
N2N is reported in Section 5. We conclude and give future
works in Section 6.

2. Preliminaries
In this section, we first introduce a definition of a möbius

cube followed by several lemmas.
Definition 1: An n-dimensional möbius cubeMn has2n

nodes. Each node has a uniquen-bit address. For two nodes
x = (x1, x2, . . . , xn) andy, they are connected if and only
if one of the following conditions are satisfied:

y =

{
(x1, x2, . . . , xi−1, x̄i, xi+1, . . . , xn) if xi−1 = 0,
(x1, x2, . . . , xi−1, x̄i, x̄i+1, . . . , x̄n) if xi−1 = 1.

where we can assume thatx0 = 0 or x0 = 1. For the former
case, we call it a 0-Mn while for the latter a 1-Mn.

If two nodes x and y are connected by one of the
conditions in Definition 1, we say thatx andy are connected
by an edge ofi-th dimension, andy is denoted byx(i) or
x is denoted byy(i).

Figure 1 shows examples of a 0-M4 and a 1-M4. An Mn

consists of two disjoint subgraphsM0 andM1 whereM i

is derived from the set of nodes{x = (x1, x2, . . . , xn) |
x1 = i}. Note that anM0 and anM1 are isomorphic to a
0-Mn−1 and 1-Mn−1, respectively.

Table 1 shows a comparison of characteristics of ann-
dimensional 0-möbius cube, 0-Mn, and ann-dimensional 1-
möbius cube, 1-Mn, with ann-dimensional hypercube,Hn

and ann-dimensional twisted hypercube,Tn. With respect to
the diameter, aTn is a slightly better than 0-Mn. However,
a Tn is much inferior to a 0-Mn and a 1-Mn with respect
to the average distance.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 149



(a) 0-M4

• • • •

• • • •

• • • •

• • • •

0000 0001 1000 1001

0010 0011 1010 1011

0100 0101 1100 1101

0110 0111 1110 1111

(b) 1-M4

• • • •

• • • •

• • • •

• • • •

0000 0001 1111 1110

0010 0011 1101 1100

0100 0101 1011 1010

0110 0111 1001 1000

Fig. 1: Examples of a 0-M4 and a 1-M4.

Table 1: Comparison of a 0-Mn and a 1-Mn with other
topologies.

#nodes degree diameter average distance
0-Mn 2n n ⌈(n+ 2)/2⌉ †
1-Mn 2n n ⌈(n+ 1)/2⌉ †
Hn 2n n n n/2
Tn 2n n ⌊(n+ 1)/2⌋ → 3n/8 (n → ∞)

†: ≤ n/3 + [1− (−1/2)n] /9 + 1 [10]

There is a shortest-path routing algorithm for anMn and
it takesO(n) time [10]. In the rest of this paper, we refer
the algorithmspr .

We assume that each node is stored in a machine word,
and construction of an edge by obtaininga(i) for any node
a requiresO(1) time. On the other hand,spr takesO(n)
execution time to construct a shortest path whose length is
at most⌈(n+ 2)/2⌉ [10].

Lemma 1: For an arbitrary nodea in a 0-Mn, we can
construct (n − 1) pathsQi: a

(i) ⇝ a(1) (2 ≤ i ≤ n)
that are disjoint except fora(1). The time complexity for
construction of these paths isO(n). The lengths of the paths
are at most⌈n/2⌉+ 2.
(Proof) Let us consider the following four cases.
Case 1 (3 ≤ i ≤ n, ai−1 = 0) Construct a pathQi:
a(i) = (a1, a2, . . . , ai−1, āi, ai+1, . . . , an) → a(i,1) =

(ā1, a2, . . . , ai−1, āi, ai+1, . . . , an) = a(1,i) → a(1).
Case 2 (3 ≤ i ≤ n, ai−1 = 1) Construct a pathQi:
a(i) = (a1, a2, . . . , ai−1, āi, āi+1, . . . , ān) → a(i,1) =
(ā1, a2, . . . , ai−1, āi, āi+1, . . . , ān) = a(1,i) → a(1).
Case 3 (i = 2, a1 = 0) Select an edgea(2) =
(a1, ā2, a3, . . . , an) → a(2,1) = (ā1, ā2, a3, . . . , an). In the
ā2-Mn−2, construct a shortest patha(2,1) ⇝ a(1,2) =
(ā1, ā2, ā3, . . . , ān) by spr. Select an edgea(1,2) → a(1).
Case 4 (i = 2, a1 = 1) Select an edgea(2) =
(a1, ā2, ā3, . . . , ān) → a(2,1) = (ā1, ā2, ā3, . . . , ān). In the
ā2-Mn−2, construct a shortest patha(2,1) ⇝ a(1,2) =
(ā1, ā2, a3, . . . , an) by spr. Select an edgea(1,2) → a(1).

Then, the(n− 2) paths constructed in Case 1 or Case 2
areQi: a(i) → a(1,i) → a(1) (3 ≤ i ≤ n). Hence, they are
disjoint except fora(1). The path constructed in Case 3 or
Case 4 isQ2: a(2) → a(2,1) ⇝ a(1,2) → a(1). Since its sub
path a(2,1) ⇝ a(1,2) is included in theā2-Mn−2 and the
internal nodes ofQ2 are all in the form of(ā1, ā2, . . .), Q2

is disjoint with other pathsQi (3 ≤ i ≤ n).
It takesO(n) time to construct the(n−2) paths of length

2 in Case 1 or Case 2. Also, it takesO(n) to construct the
path in Case 3 or Case 4 sincespr takesO(n) time to
construct a path. In total, the(n− 1) paths are constructed
in O(n) time.

The lengths of the paths constructed in Case 1 or Case
2 are all 2. The path length is at most1 + ⌈n/2⌉ + 1 =
⌈n/2⌉+ 2. See Figure 2.

•

•

•

•

a

a(n)

a(2)

a(3)

Q2

Qn

Q3

•

•

•

•

a(1)

a(2,1)

•

a(n,1)

a(3,1)

a(1,2)

·· · ·· ·

Fig. 2: Disjoint paths froma(i) to a(1) (2 ≤ i ≤ n) in a
0-Mn

Lemma 2: For an arbitrary nodea in a 1-Mn, we can
construct (n − 1) pathsQi: a

(i) ⇝ a(1) (2 ≤ i ≤ n)
that are disjoint except fora(1). The time complexity for
construction of these paths isO(n2). The lengths of the
paths are at most⌈n/2⌉+ 2.
(Proof) Let us consider the following two cases.
Case 1 (2 ≤ i ≤ n, ai−1 = 0) Select an edge
a(i) = (a1, a2, . . . , ai−1, āi, ai+1, . . . , an) → a(i,1) =
(ā1, ā2, . . . , āi−1, ai, āi+1, . . . , ān). In the ai-Mn−i, con-
struct a shortest patha(i,1) ⇝ a(1,i) = (ā1, ā2,
. . . , āi−1, ai, . . . , an) by spr . Select an edgea(1,i) → a(1).
Case 2 (2 ≤ i ≤ n, ai−1 = 1) Select an edge
a(i) = (a1, a2, . . . , ai−1, āi, āi+1, . . . , ān) → a(i,1) =
(ā1, ā2, . . . , āi−1, ai, ai+1, . . . , an). In the ai-Mn−i, con-
struct a shortest patha(i,1) ⇝ a(1,i) = (ā1, ā2,

150 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



. . . , āi−1, ai, āi+1 . . . , ān) by spr . Select an edgea(1,i) →
a(1).

Then, the(n − 1) paths constructed in Case 1 or Case
2 areQi: a(i) → a(i,1) ⇝ a(1,i) → a(1) (2 ≤ i ≤ n).
Since each sub patha(i,1) ⇝ a(1,i) is included in theai-
Mn−i and the internal nodes ofQi are all in the form of
(ā1, ā2, . . . , āi−1, ai, . . .), Qi’s (2 ≤ i ≤ n) are disjoint
except fora(1) with each other.

It takesO(n) to construct one of the paths in Case 1 or
Case 2 sincespr takesO(n) time to construct a path. In
total, the(n− 1) paths are constructed inO(n2) time.

The lengths of the paths are at most1 + ⌈n/2⌉ + 1 =
⌈n/2⌉+ 2. See Figure 3.

•

•

•

•

a

a(n)

a(2)

a(3)

Q2

Qn

Q3

•

•

•

•

a(1)

a(2,1)

•

•
a(n,1)

a(3,1)

a(1,3)

a(1,2)

·· · ·· ·

Fig. 3: Disjoint paths froma(i) to a(1) (2 ≤ i ≤ n) in a
1-Mn

Lemma 3: For an arbitrary nodea in an Mn, we can
construct (n − 1) pathsQi: a

(i) ⇝ a(1) (2 ≤ i ≤ n)
that are disjoint except fora(1). The time complexity for
construction of these paths isO(n2). The lengths of the
paths are at most⌈n/2⌉+ 2.
(Proof) It is trivial from Lemmas 1 and 2.

3. Algorithm N2N
In this section, for a source nodes and a destination node

d in anMn, we show an algorithm N2N that findsn paths
from s to d that are disjoint except fors andd.

3.1 Procedure 1
In case that the source node and the destination node are

included in the sameM j (j ∈ {0, 1}), that is,s,d ∈ M j ,
we constructn paths froms to d that are disjoint except for
s andd by the following Procedure 1.
Step 1 In the M j , apply the algorithm recursively to
construct(n− 1) paths froms to d that are disjoint except
for s andd.
Step 2Select edgess → s(1) andd → d(1).
Step 3 In the M j̄ , construct a paths(1) ⇝ d(1) by using
the algorithmspr . See Figure 4.

3.2 Procedure 2
In case that the source node is included inM j (s ∈ M j)

and the destination node is included inM j̄ (d ∈ M j̄), and
s = d(1), we constructn paths froms to d that are disjoint

•

•

•

•

s

d

s(1)

d(1)

Mj Mj̄

· · · · · ·

Fig. 4: After Step 3 in Procedure 1

except fors andd by the following Procedure 2.
Step 1Selectn edgess → s(i) (1 ≤ i ≤ n).
Step 2 Construct(n − 1) pathsQi: s(i) ⇝ d (2 ≤ i ≤ n)
from Lemma 3. Finally,n pathsRi (1 ≤ i ≤ n) are obtained:

Ri :

{
s → d if i = 1,
s → s(i) ⇝ d(i) → d if 2 ≤ i ≤ n.

See Figure 5.

•
•

• •
•s(2)

s(3)

s(n)

s(i)

s

d

Mj Mj̄

··· ···

•s(i,1)

d(n)
•d(2)

•
s(3,1)

•

s(2,1)
•

•
• •

d(i)
d(3)

Fig. 5: After Step 2 in Procedure 2

3.3 Procedure 3

In case that the source node is included inM j (s ∈ M j)
and the destination node is included inM j̄ (d ∈ M j̄), ands
andd(1) are adjacent, we constructn paths froms to d that
are disjoint except fors andd by the following Procedure
3.
Step 1 In the M j , apply the algorithm recursively to
construct(n− 1) pathsPi: s⇝ d(1,i) → d(1) (2 ≤ i ≤ n)
that are disjoint except fors andd(1).
Step 2Construct(n−1) pathsQi: d(1,i) ⇝ d from Lemma
3.
Step 3Assume thats = d(1,h). Discard edgesd(1,i) → d(i)

(2 ≤ i ̸= h ≤ n). Select an edged(1) → d. Finally, n paths
Ri (1 ≤ i ≤ n) are obtained:

Ri :


s → s(1) ⇝ d(h) → d if i = 1,
s⇝ d(1,i) → d(1,i,1) ⇝ d(i) → d

if 2 ≤ i ̸= h ≤ n,
s → d(1) → d if i = h.

See Figure 6.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 151



•

•

s

d(1) d

s(1)Mj Mj̄

· · · · · ·

•
•

•

•

•
•

• •
•

• •

d(1,2)
d(1,3)

d(1,n)

d(1,3,1)
d(1,2,1)

d(h)d(3)

d(2) d(n)

Fig. 6: After Step 3 in Procedure 3

3.4 Procedure 4
In case that the source node is included inM j (s ∈ M j)

and the destination node is included inM j̄ (d ∈ M j̄), and
the distance betweens andd(1) is more than 1, we construct
n paths froms to d that are disjoint except fors andd by
the following Procedure 4.
Step 1 In the M j , apply the algorithm recursively to
construct(n− 1) pathsPi: s⇝ d(1,i) → d(1) (2 ≤ i ≤ n)
that are disjoint except fors andd(1). See Figure 7.

•

•

s

d(1) d

Mj Mj̄

· · · · · ·

•
• •

•
•

d(1,2)
d(1,3) d(1,i)

d(1,n)

Fig. 7: After Step 1 in Procedure 4

Step 2Construct(n−1) pathsQi: d(1,i) ⇝ d from Lemma
3. See Figure 8.

•

•

s

d(1) d

Mj Mj̄

· · · · · ·

•
• •

•
•

•
• •

•

• • •

d(1,2)
d(1,3) d(1,i)

d(1,n)

d(1,3,1)
d(1,2,1) d(1,i,1)

d(i)d(3)

d(2) d(n)

Fig. 8: After Step 2 in Procedure 4

Step 3Select edgess → s(1) andd(1) → d.
Step 4 In the M j̄ , construct a paths(1) ⇝ d by using the
algorithmspr.
Step 5The path constructed in Step 4 includes at least one
node on the paths constructed in Step 2, letu be the node
on the path, sayQh, that is closest tos(1) along the path
constructed in Step 4. See Figure 9.
Step 6Discard the sub pathd(1,h) → d(1,h,1) ⇝ u and the
(n−2) edgesd(1,i) → d(1) included inPi (2 ≤ i ̸= h ≤ n).

•

•

s

d(1) d

s(1)Mj Mj̄

· · · · · ·

•
• •

•

•

•
•

• •
•

• •
•
•

d(1,2)
d(1,3) d(1,h)

d(1,n)

d(1,3,1)
d(1,2,1) d(1,h,1)

u

d(h)d(3)

d(2) d(n)

Fig. 9: After Step 5 in Procedure 4

Finally, n pathsRi (1 ≤ i ≤ n) are obtained:

Ri :


s → s(1) ⇝ u⇝ d(h) → d if i = 1,
s⇝ d(1,i) → d(1,i,1) ⇝ d(i) → d

if 2 ≤ i ̸= h ≤ n,
s⇝ d(1,h) → d(1) → d if i = h.

See Figure 10.

•

•

s

d(1) d

s(1)Mj Mj̄

· · · · · ·

•
• •

•

•

•
•

• •
•

• •
•

d(1,2)
d(1,3) d(1,h)

d(1,n)

d(1,3,1)
d(1,2,1)

u

d(h)d(3)

d(2) d(n)

Fig. 10: After Step 6 in Procedure 4

4. Proof of Correctness and Estimation
of Complexities

In this section, we prove the correctness of our algorithm
and we give the estimates of time complexityT (n) and
maximum path lengthL(n) for an n-dimensional möbius
cube. Proof is based on induction onn.

Lemma 4: In anMn, the paths constructed by Procedure
1 are disjoint except fors andd. The time complexity of
Procedure 1 isT (n − 1) + O(n) and the maximum length
of the paths constructed ismax{L(n− 1), ⌊n/2⌋+ 3}.
(Proof) The paths constructed in Step 1 are disjoint except
for s andd by hypothesis of induction. The path constructed
in Steps 2 and 3 is outside ofM j except for s and d.
Hence, the path cannot share any common node with the
paths constructed in Step 1 except fors andd, that is, it is
disjoint with other paths constructed in Step 1 except fors
andd.

Step 1 takesT (n−1) time to construct(n−1) paths and
the maximum length of them isL(n− 1) by hypothesis of
induction. The path constructed in Steps 2 and 3 consists of
two edges and a sub path byspr. Therefore, Steps 2 and 3
takeO(n) time to construct a path whose length is at most
2 + ⌈(n + 1)/2⌉ = ⌊n/2⌋ + 3. Hence, the time complexity

152 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



of Procedure 1 isT (n− 1) +O(n) and the maximum path
length ismax{L(n− 1), ⌊n/2⌋+ 3}.

Lemma 5: In anMn, the paths constructed by Procedure
2 are disjoint except fors andd. The time complexity of
Procedure 2 isO(n2) and the maximum length of the paths
constructed is⌈n/2⌉+ 3.
(Proof)Then edgess → s(i) (1 ≤ i ≤ n) selected in Step
1 are disjoint except fors. The pathsQi (2 ≤ i ≤ n)
constructed in Step 2 are disjoint each other except ford.
Therefore, then pathsRi (1 ≤ i ≤ n) are disjoint each
other except fors andd.

The time complexity for selecting then edges in Step
1 is O(n). From Lemma 3, it takesO(n2) in Step 2 to
construct the (n− 1) pathsQi (2 ≤ i ≤ n) of lengths at
most⌈n/2⌉+2. Hence, in total, it takesO(n2) to construct
the n pathsRi (1 ≤ i ≤ n) whose lengths are at most
1 + ⌈n/2⌉+ 2 = ⌈n/2⌉+ 3.

Lemma 6: In anMn, the paths constructed by Procedure
3 are disjoint except fors andd. The time complexity of
Procedure 3 isT (n− 1) +O(n2) and the maximum length
of the paths constructed isL(n− 1) + ⌈n/2⌉+ 1.
(Proof) The (n−1) pathsPi (2 ≤ i ≤ n) constructed in Step
1 are disjoint except fors andd by hypothesis of induction.
The (n− 1) pathsQi (2 ≤ i ≤ n) constructed in Step 2 are
disjoint with each other except ford from Lemma 3. Since
Qi is outside ofM j except ford(1,i), it is disjoint from the
pathsPi (2 ≤ i ≤ n) except ford(1,i). Then the pathsRi

(1 ≤ i ̸= h ≤ n) obtained by connectingPi and Qi are
disjoint except fors andd. The pathRh: s → d(1) → d
is also disjoint with other pathsRi (1 ≤ i ̸= h ≤ n) except
for s andd.

Step 1 takesT (n − 1) time to construct (n− 1) paths
and the maximum length of them isL(n− 1) by hypothesis
of induction. From Lemma 3, it takesO(n2) in Step 2 to
construct the (n − 1) pathsQi (2 ≤ i ≤ n) of lengths at
most⌈n/2⌉+ 2. Thus, the length of the pathR1 is at most
⌈n/2⌉+2, and the lengths of the pathsRi (2 ≤ i ̸= h ≤ n)
are at mostL(n−1)−1+⌈n/2⌉+2 = L(n−1)+⌈n/2⌉+1.
Also, the length of the pathRh is 2. Hence, it takesT (n−
1) + O(n2) time to construct then pathsRi (1 ≤ i ≤ n)
whose lengths are at mostL(n− 1) + ⌈n/2⌉+ 1.

Lemma 7: In anMn, the paths constructed by Procedure
4 are disjoint except fors andd. The time complexity of
Procedure 4 isT (n−1)+O(n2) and the maximum length of
the paths constructed ismax{n+2, L(n− 1)+ ⌈n/2⌉+1}.
(Proof) The (n − 1) pathsPi (2 ≤ i ≤ n) constructed in
Step 1 are disjoint except fors and d by hypothesis of
induction. The (n− 1) pathsQi (2 ≤ i ≤ n) constructed
in Step 2 are disjoint with each other except ford from
Lemma 3. SinceQi is outside ofM j except ford(1,i), it
is disjoint from the pathsPi (2 ≤ i ≤ n) except ford(1,i).
The paths → s(1) ⇝ u ⇝ d is also disjoint with other
pathsPi andQi (2 ≤ i ≤ n) except fors andd. The path
s⇝ d(1,h) → d(1) → d is disjoint with other pathsPi and

Qi (2 ≤ i ̸= h ≤ n) except fors andd.
Step 1 takesT (n − 1) time to construct (n− 1) paths

and the maximum length of them isL(n− 1) by hypothesis
of induction. From Lemma 3, it takesO(n2) in Step 2 to
construct the (n−1) pathsQi (2 ≤ i ≤ n) of lengths at most
⌈n/2⌉+ 2. It takesO(1) time to select two edgess → s(1)

andd → d(1) in Step 3. Step 4 takesO(n) to construct the
path s(1) ⇝ d of length at⌈(n + 1)/2⌉ = ⌊n/2⌋ + 1. In
Step 5, we can find the nodeu as follows. We check each
of the nodesv on the path constructed in Step 4 froms(1)

to d one by one. Since sub pathsd(1,i,1) ⇝ d(i) of Qi are
included in disjoint sub graphsMn−i’s, we can check ifv
is included in one of them just by checking its preceding
i bits. Hence, ifv is included in theMn−h that includes
the sub pathd(1,h,1) ⇝ d(h) of Qh, it is enough to check
whetherv is on the sub path or not to determinev is the
nodeu or not. For eachv, it takesO(n) time. Hence, it
takesO(n2) time in Step 5 to find the nodeu. In Step 6,
discarding the sub path and the (n − 2) edges takesO(n)
time. In total, the time complexity isT (n − 1) + O(n2) +
O(1)+O(n)+O(n2)+O(n) = T (n−1)+O(n2). The length
of the pathR1 is at most1+ ⌊n/2⌋+(⌈n/2⌉+1) = n+2.
The maximum length of the pathsRi (2 ≤ i ̸= h ≤ n) is
(L(n− 1)− 1)+ (⌈n/2⌉+2) = L(n− 1)+ ⌈n/2⌉+1. The
length of the pathRh is at mostL(n−1)+1. Therefore, the
maximum path length ismax{n+2, L(n−1)+⌈n/2⌉+1}.

Theorem 1: For a nodes and a noded in an Mn,
Algorithm N2N findsn paths froms to d that are disjoint
except fors and d. The time complexityT (n) of N2N is
O(n3), and the maximum path lengthL(n) is

L(n) =

{
(n2 + 6n− 4)/4 if n ≥ 2, n: even,
(n2 + 6n− 3)/4 if n ≥ 3, n: odd.

(Proof) From Lemmas 4 to 7, the constructed paths are
disjoint except fors and d. Also, T (n) = O(n3) from
T (n) = T (n − 1) + O(n2) and T (2) = O(1). From
L(n) = max{n+ 2, L(n− 1) + ⌈n/2⌉+ 1} andL(2) = 3,
the equation is derived.

5. Performance Evaluation
To evaluate average performance of Algorithm N2N, we

conducted a computer experiment by repeating following
steps at least10, 000 times for random pairs of the source
nodes and the destination noded in a 0-Mn and a 1-Mn

for eachn between 4 and 31.
1) Select a source nodes randomly.
2) Select a destination noded randomly other thans.
3) For s andd, apply Algorithm N2N and measure the

execution time and the maximum path length.
The algorithm was implemented using the programming

languageC++. The program was compiled with the GNU
G++ compilerg++ with a -O option. The target machine
is equipped with an Intel Core i5-3230M CPU 2.60 GHz

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 153



and 4GB RAM. The program was running at Oracle VM
VirtualBox with 1GB RAM.

The average execution time to construct a node-to-node
disjoint paths and their maximum lengths are shown in
Figures 11 and 12, respectively. Figure 11 shows that the
average execution time isO(n1.5). From Figure 12, we can
see that the maximum path lengths on average is linear to
n and the theoretical maximum path lengths are not easily
attained.

0-Mn

1-Mn

2.3× 10−6n1.5

 0.0001
 10

A
v
er

ag
e 

E
x
ec

u
ti

o
n
 T

im
e 

(s
)  

 

 

n

Fig. 11: Average execution time of Algorithm N2N.

0-Mn

1-Mn

 0

 10

 20

 30

 40

 50

 5  10  15  20  25  30

M
ax

im
u
m

 P
at

h
 L

en
g
th

s

 

 

n

Fig. 12: Maximum lengths of paths constructed by Algo-
rithm N2N.

6. Conclusions
In this paper, we proposed a polynomial-order time al-

gorithm for the node-to-node disjoint paths problem inn-
möbius cubes. Its time complexity isO(n3) and the maxi-
mum path length isO(n2). We also conducted a computer
experiment and showed that the average execution time is

O(n1.5) and the maximum path lengths on average are linear
to n.

Future works include theoretical analysis of the maximum
path length of the algorithm as well as its average per-
formance. Also, improvement of the algorithm to construct
shorter paths in smaller execution time is also interesting for
us.

Acknowledgments
This study is partly supported by a Grant-in-Aid for Sci-

entific Research (C) of the Japan Society for the Promotion
of Science (JSPS) under Grant No. 25330079.

References
[1] S.B. Akers and B. Krishnamurthy, “A group-theoretic model for sym-

metric interconnection networks,” IEEE Transactions on Computers,
vol.38, no.4, pp.555–566, April 1989.

[2] S.G. Akl and K. Qiu, “Parallel minimum spanning forest algorithms
on the star and pancake interconnection networks,” Proceedings of
Joint Conference on Vector and Parallel Processing, pp.565–570,
1992.

[3] S.G. Akl and K. Qiu, “A novel routing scheme on the star and pancake
interconnection networks and its applications,” Parallel Computing,
vol.19, no.1, pp.95–101, Jan. 1993.

[4] S.G. Akl, K. Qiu, and I. Stojmenović, “Fundamental algorithms for
the star and pancake interconnection networks with applications to
computational geometry,” Networks, vol.23, no.4, pp.215–226, July
1993.

[5] P. Berthomé, A. Ferreira, and S. Perennes, “Optimal information
dissemination in star and pancake networks,” IEEE Transactions on
Parallel and Distributed Systems, vol.7, no.12, pp.1292–1300, Dec.
1996.

[6] A. Bossard, “A set-to-set disjoint paths routing algorithm in hyper-
star graphs,” ISCA International Journal of Computers and Their
Applications, vol.21, no.1, pp.76–82, March 2014.

[7] A. Bossard and K. Kaneko, “Time optimal node-to-set disjoint paths
routing in hypercubes,” Journal of Information Science and Engineer-
ing.

[8] A. Bossard and K. Kaneko, “The set-to-set disjoint-path problem in
perfect hierarchical hypercubes,” The Computer Journal, vol.55, no.6,
pp.769–775, June 2012.

[9] P.F. Corbett, “Rotator graphs: An efficient topology for point-to-
point multiprocessor networks,” IEEE Transactions on Parallel and
Distributed Systems, vol.3, no.5, pp.622–626, May 1992.

[10] P. Cull and S.M. Larson, “The m̈bius cubes,” IEEE Transactions on
Computers, vol.44, no.5, pp.647–659, May 1995.

[11] M. Dietzfelbinger, S. Madhavapeddy, and I.H. Sudborough, “Three
disjoint path paradigms in star networks,” Proceedings of the IEEE
Symposium on Parallel and Distributed Processing, pp.400–406, Dec.
1991.

[12] J. Fan, “Hamilton-connectivity and cycle-embedding of the möbius
cubes,” Information Processing Letters, vol.82, no.2, pp.113–117,
2002.

[13] L. Gardner, Z. Millter, D. Pritikin, and I.H. Sudborough, “Embed-
ding hypercubes into pancake, cycle prefix and substring reversal
networks,” Proceedings of the 28th Annual Hawaii International
Conference on System Sciences, pp.537–545, Jan. 1995.

[14] L. Gargano, U. Vaccaro, and A. Vozella:, “Fault tolerant routing in the
star and pancake interconnection networks,” Information Processing
Letters, vol.45, no.6, pp.315–320, 1993.

[15] W.H. Gates and C.H. Papadimitriou, “Bounds for sorting by prefix
reversal,” Discrete Mathematics, vol.27, pp.47–57, 1979.

[16] Q.P. Gu and S. Peng, “Set-to-set fault tolerant routing in star graphs,”
IEICE Transactions on Information and Systems, vol.E79-D, no.4,
pp.282–289, April 1996.

154 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



[17] Q.P. Gu and S. Peng, “Node-to-set disjoint paths problem in star
graphs,” Information Processing Letters, vol.62, no.4, pp.201–207,
April 1997.

[18] Q.P. Gu and S. Peng, “Node-to-set and set-to-set cluster fault tolerant
routing in hypercubes,” Parallel Computing, vol.24, no.8, pp.1245–
1261, 1998.

[19] Y. Hamada, F. Bao, A. Mei, and Y. Igarashi, “Nonadaptive fault-
tolerant file transmission in rotator graphs,” IEICE Transactions on
Fundamentals, vol.E79-A, no.4, pp.477–482, April 1996.

[20] S.Y. Hsieh and C.H. Chen, “Pancyclicity on möbius cubes with
maximal edge faults,” Parallel Computing, vol.30, no.3, pp.407–421,
2004.

[21] K. Kaneko, “An algorithm for node-to-set disjoint paths problem
in burnt pancake graphs,” IEICE Transactions on Information and
Systems, vol.E86-D, no.12, pp.2588–2594, Dec. 2003.

[22] K. Kaneko and Y. Suzuki, “An algorithm for node-to-set disjoint paths
problem in rotator graphs,” IEICE Transactions on Information and
Systems, vol.E84-D, no.9, pp.1155–1163, Sept. 2001.

[23] S. Madhavapeddy and I.H. Sudborough, “A topological property of
hypercubes — node disjoint paths,” Proceedings of the Second IEEE
Symposium on Parallel and Distributed Processing, pp.532–539, Dec.
1990.

[24] K. Qiu, H. Meijer, and S.G. Akl, “Parallel routing and sorting on
the pancake network,” Proceedings of International Conference on
Computing and Information, Lecture Notes in Computer Science,
vol.497, pp.360–371, Springer Verlag, 1991.

[25] C.L. Seitz, “The cosmic cube,” Communications of the ACM, vol.28,
no.1, pp.22–33, Jan. 1985.

[26] Y. Suzuki and K. Kaneko, “An algorithm for node-disjoint paths
in pancake graphs,” IEICE Transactions on Information & Systems,
vol.E86-D, no.3, pp.610–615, March 2003.

[27] C.H. Tsai, “Embedding of meshes in möbius cubes,” Theoretical
Computer Science, vol.401, no.1-3, pp.181–190, 2008.

[28] J.M. Xu, M. Ma, and M. Lü, “Paths in möbius cubes and crossed
cubes,” Information Processing Letters, vol.97, no.3, pp.94–97, Feb.
2006.

[29] X. Yang, G.M. Megson, and D.J. Evans, “Pancyclicity of möbius
cubes with faulty nodes,” Microprocessors and Microsystems, vol.30,
no.3, pp.165–172, May 2006.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 155



Decomposing BPC Permutations into Semi-
Permutations for Crosstalk Avoidance in Multistage 

Optical Interconnection Networks 
 

Gennady Veselovsky, Ritu Jain 
Department of Computer and Network Engineering 

Assumption University 
Soi 24, Ramkhamhaeng Road, Huamark 

 Bangkok 10240, Thailand 1 
 
 

                                                             
The research has been funded by Assumption University of  
Thailand 

Abstract - This paper introduces a simple  O(N) 
algorithm that decomposes BPC (bit-permute-
complement) permutations into   semi-permutations for 
avoiding crosstalk when realizing them in N × N optical 
multistage interconnection networks (OMINs). Crosstalk 
means that two optical signals, sharing an optical switch, 
undergo a kind of undesired coupling. A semi-
permutation is a partial permutation which meets   the 
requirement for  each switch in an input and output 
stages of the network to be used   with only one optical 
signal at a time. It provides avoiding crosstalk in the first 
and the last stages of a network and creates the potential 
for crosstalk-free realization of a semi-permutation, and 
finally the whole permutation in question. The algorithm 
is based on employment   the periodicity of appearing 1’s 
and 0’s  in columns of transition  matrices for BPC 
permutations.  
 
Keywords: Multistage optical interconnection networks, 
BPC permutations, semi-permutations, crosstalk 
avoidance. 
 

1 Introduction 
 The vast number of processing elements in massively 
computers dictates heavy demands for performance of an 
interconnection network in use. Optical interconnection 
networks constitute a promising choice in the field 
because they offer gigabit transmission capacity, very big 
bandwidth, and low error probability. In what follows we 
consider hybrid optical multistage interconnection 
networks (OMINs) using guided wave technology and 
composed of electronically controlled directional 
couplers because other types of optical networks are still 
difficult to implement. In spite of the topological 
similarity of electronic and optical multistage 

interconnection networks, the latter cause some  specific 
problems, and the major of them is optical crosstalk. It 
means that two optical  signals, sharing an optical switch, 
undergo a kind of undesired coupling. The crosstalk 
reduces essentially signal to noise ratio and so limits the 
size of a network, whereas the number of processing 
nodes in modern supercomputers is increasing rapidly. To 
avoid crosstalk two optical signals should be sent at 
different time, if they use the same switch. It is called 
time domain approach in distinction from space domain 
approach when crosstalk avoidance is achieved with 
significant increase of hardware. Crosstalk avoiding 
problem is discussed in a large number of works, e.g. in 
[1], [2], [3], [4], [5], [6], to mention only a few. In what 
follows we have to refer often to the term switch conflict. 
It means using an optical switch (directional coupler) by 
two input signals at the same time resulting in above 
mentioned crosstalk. It is noteworthy also that for optical 
hybrid OMINs under consideration circuit switching 
rather than packet switching is usually preferred, since 
with packet switching the address information in each 
packet must be decoded in each stage that means 
conversion from optical signal to electronic and so can be 
very costly.   
  
A permutation is one of the most common communication 
patterns in parallel computing systems. In the context of a 
parallel computing system, a permutation means 
simultaneous transferring of data items between the nodes, 
with all the destination nodes being different. The term 
permutation can be defined as a request for parallel 
connection of N sources to N destinations, where nN 2= , 
with a distinct destination for each of the sources: 

1111,00 ,..., −− →→→ NN DSDSDS . Its components 

will be considered as n -dimensional vectors whose 

156 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



elements are either 0 or 1: the vector 1210 ... −− nn ssss  is 

identified with the integer 0, sSi being the most significant 

bit. The following sequence 12101210 ...... −−−− nnnn ddddssss  is 

called a transition sequence for an input-output pair. The 
set of all transition sequences for a given permutation is 
called its transition matrix [7].  If a permutation does not 
possess any regularity, it is called an arbitrary 
permutation. On the contrary, if there is some general 
rule for producing a destination address from a source 
address, a permutation is called a regular one. There are 
known different classes of regular permutations. A 
permutation is called a bit-permute-complement (BPC) 
permutation if the destination address can be produced 
by permuting bits in the source address and/or 
complementing some or all of its bits positions. BPC 
permutations are widely used in parallel programming 
when solving various scientific problems (digital signal 
processing, large matrices processing etc). A transition 
matrix for a BPC permutation in a symbolic form can be 
represented as follows: 

)1()2()1()0(1210 ...... −−−− nnnn SSSSSSSS ππππ
[7]. 

A semi-permutation is a partial permutation which meets   
the requirement for  each switch in an input and output 
stages of the network to be used   with only one optical 
signal at a time. It provides avoiding crosstalk in the first 
and the last stages and creates the potential for crosstalk-
free realization of  semi-permutations, and finally the 
whole permutation in question [1]. It is evident that for 
crosstalk-free realization of a semi-permutation crosstalk 
in intermediate switches also should be eliminated, and it 
is the next step in crosstalk avoiding. However, 
decomposing a permutation into semi-permutations can 
be considered as a specific  problem. The  problem is 
being solved  for arbitrary permutations in [1], however, 
to our best knowledge  decomposing BPC permutations 
to semi-permutations  was considered before only in the 
work with participation of the first author of this paper 
but for some specific representatives  of  that class [8].   
In this paper a fast algorithm for decomposing BPC 
permutations in general into semi-permutations is 
presented. Its time complexity is O(N), where NN ×  is 
the size of a network. The algorithm presented in the 
paper is based on the regularity of BPC permutations, 
namely, on periodicity of appearing 1s and 0s in columns 
of their transition matrices. The algorithm is implemented 
in C language for two basic types of optical multistage 
interconnection networks (OMINs), namely with perfect 
shuffle interconnection pattern before the first stage and 
without it. In our work some computational experiments 

were carried out, including those in concern with BPC 
permutations known as  worst cases from the viewpoint 
of routing.  The total number of BPC permutations is 

!2 nn . There are some frequently used BPC permutations 
as given in [9] and in   [10]. Such permutations are usually 
referred to by names, with each equation showing 
mapping a source 1210 ... −− nn ssss  to the destination.  

The permutations which are referred to in our paper were 
taken from the list below: 

1.  Perfect shuffle   

     0121 ... ssss nPSH −=π  

2.  Unshuffle 

2301 ... −−−= nnnUSH ssssπ  
 

3. Vector reversal 

1210 ... −−= nnVR ssssπ  
 

4. Butterfly 

0211 ... ssss nnBF −−=π  
 

5. Exchange 

211110 ...... −−+−= nniiiEXCH sssssssπ  
 

6. Bit reversal 

0121 ... ssss nnBR −−=π  
 

7. Matrix transpose 

       110121 ...... −−+= llllMT ssssssπ   if n=2l 

        11021 ...... −+= llllMT ssssssπ  if n=2l+1 

8. Bit shuffle 

       131220 ...... −−= nnBSH ssssssπ  if  n=2l 

      231120 ...... −−= nnBSH ssssssπ  if  n=2l+1 

9. Shuffle row major 

              12110 ... −+= llllSHRM ssssssπ  if  n=2l 

           lllllSHRM sssssss 1212110 ... −−++=π  if  n=2l+1 

 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 157



2 An  algorithm for decomposing 
BPC permutations into semi-
permutations 

The essential part of the algorithm consists in 
determining so called antagonists, i.e. the pairs of inputs 
to an interconnection network which cause switch 
conflicts either in the first (input) stage or in the  last 
(output) stage of the network. The regularity of BPC 
permutations provides possibility for finding crosstalk-
free set of outputs for any crosstalk-free set of inputs. In 
its turn finding crosstalk-free set of inputs to a network is 
trivial. Here we consider two network topologies: (2n-1)-
stage shuffle exchange network (SEN) and Benes 
network [11].  It is proved in [1] that any semi-
permutation can be realized in a single pass in Benes 
network under the constraint of avoiding crosstalk. Benes 
network is known as a classic rearrangeable network, 
since (2n-1)-stage SEN is also always  rearrangeable 
[12], we can here conjecture the same about it. SEN 
topology is considered here because it offers an identical 
interconnection pattern across all stages thus simplifying 
implementation especially in a photonic integration 
environment [13].  
 
As it follows from the definition of a semi-permutation 
given in the Introduction, the basic requirements when 
decomposing a given BPC permutation into semi-
permutations are the next: 
 
- None of the source-destination pairs should share the 
same switch in the first stage of a network with another 
pair. 
- None of the source-destination pairs should share the 
same switch in the output stage of a network with another 
pair. 
 
For producing semi-permutations, two lists of antagonists 
are needed. The first one is of the inputs to a network 
sharing the inputs of the same switches in the first stage.  
In a SEN all connections between inputs to a network and 
inputs to the switches of the first stage are permanent and 
are implemented in accordance with perfect shuffle 
connection pattern : 

 
  

10120121 ...)...( −−−− = nnnn aaaaaaaaShuffle  [14]. 

 
In other words the connection is based on cyclic shift to 
the left by one bit position. So the antagonists at inputs  
can be found using the following formula for any 
possible case:  

 
As an example, for 16x16 SEN antagonistic pairs of 
inputs shown below:  
 

0/8, 1/9, 2/10, 3/11, 4/12, 5/13, 6/14, 7/15. 
 

The inputs shown together cannot be presented in the 
same semi-permutation. On the contrary for a Benes 
network there is no rearranging at inputs of the network, 
and antagonists at the inputs of 16x16 Benes network 
look as follows: 
 

0/1, 2/3, 4/5, 6/7, 8/9, 10/11, 12/13, 14/15. 
 

However, producing the list of input pairs – antagonists - 
causing switch conflicts in the output stage of the 
network is not so trivial, and  it is based on periodicity of 
0’s and 1’s in the rightmost column of the transition 
matrix of a given BPC permutation. That periodicity 
defines the periodicity of appearing identical 1−n  
combinations in the remainder part (without the rightmost 
bit) of the destinations half of the matrix. In other words 
it defines antagonistic rows in the binary version of a 
transition matrix.  If resort to the transition matrix in its 
symbolic form, then with the  rightmost component in the 
destination address being 0S , the period of changing 0’s 

and 1’s in the sequence of output numbers on the right 
side of a network diagram or in the rightmost column of a 
transition matrix  is 2N , with 1S  that period is 4N , 
etc. with increasing degrees of 2 in denominators up to 

N ; so for 1−nS  that period is 1. It is noteworthy that for 

all BPC permutations with the same rightmost component 
in their symbolic transition matrices the list of antagonists 
for outputs will be the same because permuting bits in the 
rest part of a destination address will not affect identity of 
the appropriate rows. Finally the formula for determining 

the afore said period iR  looks as follows: Ri = 2
(n−1)−I ,  

0 ≤ i ≤ n−1 , with i being the index of the rightmost 
component of the destination part in a symbolic transition 
matrix.  
 
To summarize, decomposing a BPC permutation to semi-
permutations includes the following steps: 
1. Initialize N  and n . 
2. Initialize a transition matrix for a given BPC 

permutation in the symbolic form. 

158 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



3. Produce the list of input pairs which are  antagonistic 
at the network’s first stage inputs basing on afore 
said reasoning. 

4. Produce the list of input pairs causing switch 
conflicts in the output stage of a network 
(antagonists for the network’s outputs) basing on the 
specific for a given permutation periodicity of 0’s 
and 1’s in the rightmost column of a binary version 
of a transition matrix in accordance with the formula 
for iR  above in the text. 

5. Combine both lists of antagonists to one list as 
shown in the following examples, scan the lists of 
the inputs  to a network with deleting antagonists to a 
current input. Each antagonist is encountered twice: 
either as an input or an output. Total number of pairs 
is 2N  in both cases, so exactly 2N  antagonists 
will be deleted (in other words, assigned to the 
second semi-permutation). Each antagonist is deleted 
once despite of encountering twice, so 2N  

numbers of inputs are always left. 
The above algorithm has time complexity O (N).  
 

3 Examples of Decomposing 
An example of applying our approach for decomposing 
Unshuffle permutation for realizing it in 8×8 shuffle-
exchange and Benes networks is given below. Crosstalk-
free routing in intermediate stages has been done by trial 
and error. In our case its transition matrix is 

1022210 SSSSSSS and so the period R=2. 

 
For N=8 the original Unshuffle permutation looks as 

follows: 
0→0, 1→4, 2→1, 3→5, 4→2, 5→6, 6→3, 7→7. 

 
In accordance with afore said it can be easily 
decomposed into a pair of semi-permutations for 8×8 
SEN: 

0 →0, 1→4, 6→3, 7→7 : 1st S-P;  
 4→2, 5→6, 2→1, 3→5 : 2nd S-P. 

 
Decomposing the same permutation for Benes network: 
 

0 →0, 1→4, 6→3, 7→7: 1st S-P; 
 4→2, 5→6, 2→1, 3→5 : 2nd S-P. 

 

 
 

 
 
 

 

 

 

 

 

 

Figure 1. Routing the first semi-permutation of  
Unshuffle permutation on 8 8 5-stage 

shuffle-exchange network. 
 
 

 

Figure 2. Routing the second semi-permutation of  
Unshuffle permutation on 8 8 5-stage 

shuffle-exchange network. 
 

 

 Figure 3. Routing the first semi-permutation of  
Unshuffle permutation on 8 8 5-stage 

 Benes network. 
  

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 159



 

 

 
 
The second example is of larger size and concerns 
decomposing Butterfly permutation for 16×16 shuffle-
exchange and Benes networks. In this case the transition 
matrix is S0S1S2S3S3S1S2S0, and the period R=8.   The 
original permutation is: 
 

0→0, 1→8, 2→2, 3→10, 4→4, 5→12, 6→6, 7→14, 
8→1, 9→9, 10→3, 11→11, 12→5, 13→13, 14→7, 
15→15. 

 
More descriptive is its representing in the Table below. 

 
Table 1 

Butterfly permutation 16×16 
 

Source Input 
3210 SSSS  

Outputs 
0213 SSSS  

0000 (0) 0000 (0) 
0001 (1) 1000 (8) 
0010 (2) 0010 (2) 
0011 (3) 1010 (10) 
0100 (4) 0100 (4) 
0101 (5) 1100 (12) 
0110 (6) 0110 (6) 
0111 (7) 1110 (14) 
1000 (8) 0001 (1) 
1001 (9) 1001 (9) 

1010 (10) 0011 (3) 
1011 (11) 1011 (11) 
1100 (12) 0101 (5) 
1101 (13) 1101 (13) 
1110 (14) 0111 (7) 
1111 (15) 1111 (15) 

 

It is easy to see from the Table 1 that periodicity of outputs 
which belongs to the same switch in the output stage, i.e. 
differ only in the rightmost bit, is really equals 8. 

 
 

When decomposing afore said permutation for 16×16 
SEN the steps are following. 
Composing the list of antagonists at the input stage of the 
network (it is the same for any BPC permutation of a 
given size): 
 

0/8, 1/9, 2/10, 3/11, 4/12, 5/13, 6/14, 7/15. 
 

Composing the list of antagonists at the output stage is 
the next step. To be exact we find pair of inputs which 
evoke switch conflicts in the output stage for a given 
BPC permutation, e.g. simultaneous optical signals at 
inputs 0 and 8 would result in a switch conflict because 
corresponding outputs (0 and 1) belong to the same 
switch in the output stage of the network. All this can be 
easily seen from the Table 1. The rightmost component in 

the destination address is 0S , what means that we need to 

add 8 to the number of an input to find its antagonist from 
the viewpoint condition at the output stage: 
 

0/8, 2/10, 4/12, 6/14, 1/9, 3/11, 5/13, 7/15. 
 
The inputs shown together cannot be presented in the 
same semi-permutation; we delete the pair from the 
original permutation that uses the same switch either in 
an input or output stage.  
 

We take a look at the first pair 0→0 from the original 
permutation. 
From the lists of antagonist at inputs and outputs, 0 and 8 
belong to the same switch. 
Therefore, we delete 8→1 from the original permutation. 
 

Next, we take a look at the pair 2→2. 
From the lists of antagonist at inputs and outputs, 2 and 
10   belong to the same switch.  
Therefore, we delete 10→3 from the original 
permutation. 
 
This is continued until we find the following semi-
permutations: 
 
0→0, 1→8, 2→2, 3→10, 4→4, 5→12, 6→6, 7→14              : 1st S-P 
8→1, 9→9, 10→3, 11→11, 12→5, 13→13, 14→7, 15→15 : 2nd S-P 
 
When decomposing the same permutation for a 16×16 
Benes network, the list of antagonists for the first stage 
differs from that in the previous case and looks as 
follows: 
 

0/1, 2/3, 4/5, 6/7, 8/9, 10/11, 12/13, 14/15. 
 

However the list of antagonists concerning the output 
stage of the network is the same and produced in the 
same way by adding 8 to the number of an input: 

Figure 4. Routing the second permutation of  
Unshuffle permutation on 8 8 5-stage 

Benes network. 
 

 

160 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



 
0/8, 2/10, 4/12, 6/14, 1/9, 3/11, 5/13, 7/15. 

 
The inputs shown together cannot be presented in the 
same semi-permutation; we delete the pair from the 
original permutation that belongs to the same switch in 
the same manner as in the previous case and as a result 
produce two following semi-permutations (the deleted 
pairs form another semi-permutation):  
 

0→0, 2→2, 4→4, 6→6, 9→9, 11→11, 13→13, 15→15   : 1st S-P 
1→8, 3→10, 5→12, 7→14, 8→1, 10→3, 12→5, 14→7   : 2nd S-P 

 
4 Conclusion 
In this paper an O(N) algorithm for decomposing BPC 
(bit-permute-complement) permutations into semi-
permutations is introduced. The work contributes to   
solving the problem of crosstalk-free routing in hybrid 
optical multistage interconnection networks (OMINs). 
The algorithm is based on employment the property of 
periodicity 0’s and 1’s within columns of transition 
matrices for permutations belonging to the aforesaid 
class, it provides crosstalk-free conditions in the first and 
last stages of an OMIN. The algorithm is much simpler 
than known ones but for arbitrary permutations. The 
availability of semi-permutations creates the potential for 
crosstalk-free routing   permutations for two passes 
through a network in an ideal case. Examples of 
decomposing some BPC permutations for (2n-1)-stage 
shuffle-exchange and Benes networks are given. The 
approach is applicable also to any type of banyan 
networks. The algorithm is implemented in C. A possible 
extension of the approach for providing crosstalk-free 
condition in intermediate stages of an OMIN is being 
studied. 
 

5 References 
[1] Y. Yang, J. Wang, Y. Pan, Permutation capability of 
optical multistage interconnection networks, Journal of  
Parallel and Distributed Computing, 60, 2000, 72-91. 
[2] Y. Pan, C. Qiao, Y. Yang, Optical multistage 
interconnection networks: new challenges and 
approaches, IEEE Communication , 2, 1999, 50-56. 
[3] S.Kaur, R. Vohra, S. Kaur, Analysis of various 
crosstalk avoidance techniques in optical multistage 
interconnection network, International Journal of P2P 
Network Trends and Technology, 1(2), 2011, 26-30. 
[4] X. Lin, Y. Zhao, and Y. Wu, An efficient crosstalk-
free routing algorithm based on permutation 
decomposition for optical multi-log2N switching 
networks, Proc. 10th IFIP International Conference, 
Guiyana, China, LNCS 8147, 2013, 207-219. 

[5] R. Bashirov and T. Karanfiller, On path dependent 
loss and switch crosstalk reduction in optical networks, 
Information Sciences, (180), 2005, 1040-1050. 
 [6] S. Mishra, N. Chaudhary, K. Singh, Overview of 
optical interconnect technology, International Journal of 
Scientific & Engineering Research, 3(4), 2012, 1-7. 
[7] X. Shen, Optimal realization of any BPC permutation 
on k-extra-stage Omega networks, IEEE Trans. 
Computers, 44(5), 1995, 714-719. 
[8] G. Veselovsky and A. Agrawal, On crosstalk-free 
BPC permutations routing in an optical variable-stage 
shuffle-exchange networks, Proc. IASTED Intl. Conf. 
PDCN 2014, Innsbruck, Austria, 2014, 232-238.    
[9] J. Lenfant, A versatile mechanism to move data in an 
array processor, IEEE Trans. Computers, C-34 (6), 1985, 
506-522. 
[10] M. D. Grammatikakis, D. Frank Hsu, M. Kraetzl, 
Parrallel System Interconnections and Communication, 
CRC Press, 2000. 
[11] H. J. Siegel, Interconnection networks for large-
scale parallel processing. Theory and case studies, 2nd 
ed. McGraw-Hill International Editions, 1990. 
[12] A. Abdennadher and T. Y. Feng, On rearrangeability 
of Omega-Omega networks, Proc. IEEE Int. Conf. 
Parallel Proc., I, 1992, 159-165. 
[13] A. Shacham, Architectures of optical interconnection 
networks for high performance computing, VDM Verlag 
Dr. Muller, 2007.                 
[14] H. Stone, Parallel processing with the perfect 
shuffle, IEEE Trans. Computers, 20(2), 1971, 153-161. 

 
 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 161



A New Efficient Distributed Load Balancing Algorithm 

for OTIS-Star Networks 
 

A. Awwad
1
, J. Al-Sadi

2
 

1
Department of CS, University of Petra, Amman, Jordan 

2 
Department of ITC, Arab Open University, Amman, Jordan 

 

 

 

Abstract - The OTIS-Star interconnection network is one of 

the promising interconnection networks for future high speed 

distributed computing, The OTIS-Star topology consists of  

both edge and vertex symmetry, it has many attractive 

topological proprieties based on it is own hierarchical 

structure nature. Many research efforts have been devoted on 

this attractive network in literature, but these efforts did not 

address the problem of load balancing which is an important 

issue that must be addressed in any new topology. In this 

paper, we are investigating and proposing a new efficient 

algorithm for load balancing problem for the OTIS-Star 

network. The investigated algorithm is called OTIS-Star 

Electronic-Optical-Electronic Exchange Method; OSEOEM 

for short; to be implemented on the OTIS-Star network.  The 

proposed algorithm is based on the FOFEM method presented 

for OTIS-Cube networks. The OSEOEM algorithm has shown 

to be an efficient in redistributing the load balancing for 

OTIS-Star networks, the outcome resulted an equal 

distribution of loads among all nodes within the network. 

Keywords: Electronic Interconnection networks, Optical 

networks, Load balancing, Parallel Algorithms, OTIS-Star 

network.  

 

1 Introduction 

 The Star graph was proposed by Akers and et al as one of 

the attractive topologies, it was proposed as an alternative to 

the cube network [1]. The Star graph has excellent topological 

properties when we compare it with network similar sizes [2]. 

The star graph showed to have many attractive properties over 

many networks including the well-known cube network 

including: smaller diameter, smaller degree, and smaller 

average diameter. The star graph proved to have a hierarchical 

structure which will enable it building large network size of 

smaller ones, the star graph has both edge and vertex 

symmetry [1,2].  

With the new advances of technology, new era of Optical 

networks has been appeared. Many previous researches 

addressed the emerge of the Optical technology with the 

traditional electronic interconnection topology. OTIS-Star was 

one of the proposed networks in this era due to its attractive 

properties and features[3].  

Although some algorithms proposed for the OTIS-Star graph 

such as routing algorithms and distributed fault-tolerant 

routing algorithm [3, 4], still there is a shortage of efforts to 

solve the problem of Load Balancing using OTIS-Star 

networks.  

To our knowledge there is no enough results proposed in 

literature about implementing and proposing efficient 

algorithms for load balancing on OTIS-Star network. In this 

paper we are filling this gap by proposing and embedding the 

OSEOEM algorithm on the OTIS-Star graph which is based 

on the FOFEM algorithm which was shown to be efficient on 

OTIS-Cube networks [5].  The main mechanism of this 

algorithm is to redistribute the load equally among the 

processors of the network [6]. Efficient implementation of the 

OSEOEM algorithm on the OTIS-Star network will make 

this network more suitable network for real life application in 

connection to load balancing problem. The rest of the paper is 

organized as follows: In section 2 we present the necessary 

basic notations and definitions, in section 3 we introduce 

some of the related work on load balancing, in section 4 we 

present and discuss the implementation of the OSEOEM 

algorithm on the OTIS-Star graph, also we present an example 

of OSEOEM on OTIS-3-star network, finally section 5 

concludes this paper. 

2 Definitions and Basic Properties 

During the last decade a numerous number of 

interconnection networks for Parallel Computers have been 

proposed in literature [7, 9]. Some of these networks are the 

star and the hypercube interconnection network. The OTIS-

star graph [1,3] is another example, which has been proposed 

as an attractive alternative to its factor network [1]. Since its 

appearance the OTIS-star network has attracted a lot of 

research efforts, many topological properties of the OTIS-star 

network have been investigated in the literature including its 

basic topological properties [1], parallel path [8], load 

balancing algorithm [6] and embedding [10]. Sadi and Awwad 

[3] have employed the good properties star graph and its lead 

over the properties of similar network to present an efficient 

fault-tolerant routing algorithm and also a load balancing 

algorithm. These properties are including a lower degree, a 

smaller diameter, smaller average diameter, and Symantec 

architecture. 

162 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



The structure of the OTIS-star network plays an effective 

step for proposing any algorithms for it. The authors in [8] 

have shown that the OTIS-n-Star graph may be seen as n!  

n!, where the symbol (!) means the factorial of an number, and 

each node labeled with a unique permutation on 〈n〉 = 

{1,…,n} of the factor star network. 

 

However, there has been relatively a limited research efforts 

have been dedicated to design efficient algorithms for the 

OTIS-star graph including routing and Broadcasting 

algorithms [11, 12], broadcasting [13] and load balancing 

[14], [5]. In an attempt to overcome this problem we present 

an efficient algorithm for redistribute the load balancing 

problem on the OTIS-Star network to redistribute the load 

balancing among all processors of the network equally as 

possible.  

The topological properties of the OTIS-Star network along 

with those of the star network are discussed and derived 

below. These topological properties have been derived using 

the theoretical framework for analyzing topological properties 

of the OTIS-Networks in general which was proposed by Al-

Ayyoub and Day [2], beside other related research work [11]. 

In this paper we will refer to g as the group address and p as 

the processor address. An intergroup edge of the form (〈g, p〉, 
〈p, g〉) represents an optical link and will be referred to as 

OTIS or optical move. 

An OTIS based network contains N
2

 nodes partitioned into N 

groups with N nodes each. A node is indexed by a pair 〈x, y〉, 
0≤ x, y<N where x is the group index and y is the processor 

index. Nodes within the same group are connected by a certain 

interconnecting topology; while inter-group links are achieved 

by transposing group and node indexes. 

The OTIS-network is constructed by "multiplying" a known 

topology by itself. The vertex set is equal to the Cartesian 

product on the vertex set in the factor network. The edge set 

consists of edges from the factor network and new edges 

called the transpose edges. The formal definition of the OTIS-

n-Star graph is given below. 

Definition 1: The OTIS-n-Star Graph, which is denoted by 

OTIS-n-Star has nxn nodes each labeled with a sole 

permutation n = {1…n, 1…n}. The first part of the label 

refers to the group address and the second part refers to the 

factor address of the node within the group. Any two nodes of 

OTIS-n-Star are connected if, and only if, their corresponding 

permutations differ exactly in the first position and any other 

position.  

Definition 2: Let n-Star = (V0, E0) be an undirected star graph 

representing a factor network. The OTIS-n-Star = (V, E) 

network is represented by an undirected graph obtained from 

n-Star as follows V = {〈x, y〉 | x, y ∈ V0 such that x≠y} and 

E = {(〈x, y〉, 〈x, z〉) | if (y, z)∈E0} ∪ {(〈x, y〉, 〈y, x〉) | x, y ∈ 

V0 such that x≠y }. 

From the above definitions the set of edges E consists of 

two subsets, one is from n-star, called n-star type edges, and 

the other subset contains the transpose OTIS edges. The OTIS 

approach suggests implementing n-star edges by electronic 

links since they involve intra-chip short links and 

implementing transpose edges by free space optics. 

Throughout this paper, the terms “electronic move” and the 

“OTIS move” (or “optical move”) will be used to refer to data 

transmission based on electronic and optical technologies, 

respectively. 

Fig. 1 shows the OTIS-3-Star graph with 6 groups; 3!=6; 

each containing 6 vertices (i.e. six copies of 3-star graphs).  

312

123

132

321

231

213
a

213

231

312

321

213

123

132

c

321

123

231

213

132

312

321

123

213

321

312

231

132

123

d

g
312

123

231

213

132

312

321
a

h
132

321

132

123

312

213

231

h
231

b

b

c

d

e

e

f f

g

i

i

k

k

 Fig. 1: The OTIS-3-Star Graph 

 

3 Background and Related Work 

The attractive properties of  OTIS-n-Star proved by 

researchers in literature of the graph make it a one of the 

strongest competitor’s topology for High Speed Parallel 

Computers (HSPC) and a strong candidate network for real 

life applications [1, 2]. This fact has motivated us to 

investigate the load balancing problem on the OTIS-n-Star 

network since the OTIS-n-Star graph suffers from limited 

number of efficient algorithms proposed for it in general and 

for the Load Balancing problem in specific. The load 

balancing problem has been investigated on various types of 

infrastructure ranging from electronic networks [5] and OTIS 

networks [6]. 

Load balancing problem is one of the well-known and 

important types of problems which were studied from different 

point views and different approaches. This problem was 

studied and investigated by Ranka, Won, and Sahni [15], they 

proposed and introduced the Dimension Exchange Method 

(DEM) on the hypercube topology. The DEM algorithm was 

based on the idea of finding the average load of neighbours’ 

nodes, such that the dimension of the network is n, the 

neighbours which are connected on the n
th

 dimension they will 

exchange their loads to redistribute the load and achieve 

evenly load balancing as possible, the processor which have 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 163



more load will broadcast the extra amount of the load to its 

direct neighbour node. The main advantage of the Dimension 

Exchange Method is that every node will be able to 

redistribute tasks to its direct neighbours to reach even load 

balancing among all nodes. Ranka and et al have achieved that 

in the worst case in the DEM method to redistribute load 

balancing was log2n on the cube network [15]. 

The researchers Zaho, Xiao, and Qin have presented hybrid 

scheme of diffusion and dimension exchange called DED-X 

for load balancing on Optical Transpose Interconnection 

System (OTIS) [16] , [17]. The proposed algorithm works by 

dividing the load balancing task to three different phases. The 

results achieved on OTIS networks showed that the load 

balance efficiently redistributed almost evenly. On the other 

hand the achieved results of the simulation from Zaho et al of 

the proposed algorithms on load balancing has shown a 

considerably major advancement in enhancement of efficiency 

and stability [16], [17]. In another research done by Zaho and 

Xiao they have presented different DED-X schemes for load 

balancing on homogeneous OTIS networks and they proposed 

new algorithm structure called Generalized Diffusion-

Exchange- Diffusion Method, the proposed scheme enabled 

load balancing on Heterogeneous OTIS networks [18]. 

Another algorithm presented in [6 ] called SCDEM is based 

on the Clustered Dimension Exchange Method CDEM for 

load balancing for Optical Transpose Interconnection system 

on Hypercube factor network [6]. The worst time case 

complexity of CDEM for load balancing on OTIS-Hypercube 

was O(Sqrt(p)*M log2 p). Also the number of communication 

steps which is required by CDEM proved to be 3log2 p [6]. 

Furthermore authors of [5] presented a new load balancing 

algorithm for OTIS-Cube networks, they have shown that the 

usability of the new proposed load balancing methods to be 

better than the DED-X traditional load balancing algorithm 

[18]. 

4 The Proposed Algorithm 

The main objective of this paper is to propose and present a 

new load balancing algorithm for the OTIS-n-Star networks 

named OSEOEM based on the algorithm of FOFEM presented 

in [5]. 

 

The main achievement of the new presented OSEOEM is to 

obtain even load balancing for the OTIS- n-Star network by 

redistributing number of tasks between different nodes on 

different groups. The number of exchanges needed between 

different nodes in the OSEOEM is 2(n!)+1, where n is the 

diameter of factor network; n-Star. Fig. 2 presents the 

OSEOEM algorithm for load balancing problem on OTIS- 3-

Star network 

The OSEOEM load balancing algorithm is based on the 

following 3 phases: 

٠Phase 1: The main aim of this phase is to balance the load of 

all nodes within each factor group of the network. The 1st 

stage of this phase is achieved by redistributing the load 

balancing of all direct neighbour nodes that their 

corresponding permutations differ exactly in the 1
st
 and 2

nd
 

position. 

The 2
nd

 stage is to redistribute the load balancing of any two 

neighbour nodes that their corresponding permutations differ 

exactly in the first and 3rd position. 

In general we continue redistributing the load balancing of any 

two neighbour nodes that their corresponding permutations 

differ exactly in the first and i
th

 position, where 2≤ i ≤ n. This 

process of phase 1 should be repeated 2 times to achieve an 

optimal equal redistribution of load among all nodes within 

each group of the factor network. 

٠Phase 2: This phase will exchange the load of every two 

nodes connected via an optical link. This will yield to 

redistribute the load equally among all groups but it also will 

have different node load within the group itself which leads to 

the necessity of performing the third phase. 

٠Phase 3: repeat phase 1 to achieve an equal distribution of 

load among all nodes of the OTIS-n-Star 

 

Note that n-1 is the number of neighbors’ of any processor in 

the factor network Sn: 

Figure 3 illustrates the three phases of OSEOEM in details: 

 

1. for m = 2; m ≤ n; m++     // start of phase 1 

2. for all n-1neighbour nodes; pi and pj which 

they differ  in 1
st
 and m position of Sn do in parallel 

3. Give-and-take pi and pj total load sizes of the 

two nodes 

4.      TheAverageLoad pi,j = Floor ((Load pi + 

Load pi)/2 ) 

5.       if ( Totalload pi >= excess AverageLoad 

pi,j ) 

6.          Send  excess load pi to the neighbour 

node pi 

7.          Load pi  = Load pi – extra load 

8.          Load pj  = Load pj + extra load 

9.       else 

10.          Receive extra load from neighbour pj  

11.          Load pi  = Load pi + extra load  

12.          Load pj  = Load pj – extra load 

13. Repeat steps 3 to 12 one more time  // end of 

phase 1 

14. for all adjacent  nodes via an optical link, 

exchange the loads of the nodes   // phase 2  

15. Redistribute the weight within each group by 

repeating steps 1 – 13  // phase 3 

Fig. 2: The OSEOEM load balancing Algorithm 

OSEOEM algorithm works on redistributing the load 

balancing among all nodes of the network, phases: one, two 

and three are described as follows: 

٠Phase 1: The load balancing between the nodes of Sn based 

on OSEOEM algorithm is exchanged as in steps 2 to 12 in 

parallel, in first step the load exchange will be between all the 

164 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



nodes in which they differ in 1
st
 position and 2

nd
 position for 

all the factor networks of Sn. Then the same process will be 

repeated continually until it reaches the neighbours pj that are 

n-1 positions far away from pi. To enhance the load balancing 

efficiency between different processors of n factor networks, 

the algorithm suggests repeating the steps 2 to 12 as 

mentioned above 

٠Phase 2: To redistribute the loads among all the groups of 

the network, every two nodes that are connected via an optical 

link will exchange their loads. This step is conducted on 

parallel.
 

٠Phase 3: As a final phase all adjacent nodes which they 

differ in first position and any other position i.e. pi and pj. The 

algorithm will redistribute the weights among the nodes  pi and 

pj. Basically, this phase is a repetition of phase 1 to rebalance 

the weights of all nodes within each group one more time.
 

312

123

132

321

231

213

40

18

2
3

25

12

a

213

231

312

321

213

123

132

17

60

35
22

21

11

c

321

123

231

213

132

312

321

1

2

42
44

43

3

123

213

321

312

231

132

123
8

15

24
37

17

19

d

g
312

123

231

213

132

312

321

27

17

20
41

2

21

a

h
132

321

132

123

312

213

231

19

12

23
49

29

8

h
231

b

b

c

d

e

e

f f

g

i

i

k

k

 Fig. 3: OTIS-3-Star network – load balancing - initial state 

 

Example: - To explain the OSEOEM algorithm which 

presented in Fig. 2, the following example implements the 

load balancing algorithm on the OTIS-3-Star where the factor 

network is S3. 

Fig. 3 shows the OTIS-3-Star network, each factor network 

S3 has 6 nodes with a specific load assigned to each one. Each 

node connected to two electronic direct nodes within the 

group, in addition to a third optical connection to another 

group. Note that the number in bold and italic which is 

assigned next to each node represents the starting load. 

312

123

132

321

231

213

29

29

2
3

18

19

a

213

231

312

321

213

123

132

39

38

28
29

16

16

c

321

123

231

213

132

312

321

1

2

43
43

23

23

123

213

321

312

231

132

123
14

20

19
27

27

13

d

g
312

123

231

213

132

312

321

22

22

31
30

12

11

a

h
132

321

132

123

312

213

231

13

18

17
39

39

14

h
231

b

b

c

d

e

e

f f

g

i

i

k

k

 Fig. 4: OTIS-3-Star network – load balancing phase 1 step 1 

312

123

132

321

231

213

24

15

16
11

10

24

a

213

231

312

321

213

123

132

27

33

33
22

23

28

c

321

123

231

213

132

312

321

12

23

22
33

33

12

123

213

321

312

231

132

123
17

17

23
23

20

20

d

g
312

123

231

213

132

312

321

16

27

26
21

21

17

a

h
132

321

132

123

312

213

231

16

15

28
28

26

27

h
231

b

b

c

d

e

e

f f

g

i

i

k

k

 Fig. 5: OTIS-3-Star network – load balancing phase 1 step 2 

First we start by implanting phase 1 of the OSEOEM 

algorithm by following the steps 2-12. The figures 4, 5 and 6 

reflect phase1: of the OSEOEM algorithm, each pair of the 

nodes which they differ in 1
st
 position, 2

nd
, 3

rd
 and 4

th
 position. 

At the end of this phase Fig. 6 shows the new load balancing 

distribution of the phase 1 of the algorithm. Finally in phase 3 

outcome is shown in figure 11 where all nodes will 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 165



redistribute their load balancing by repeating phase 1 stages, 

this figure shows that all nodes will have almost the same load 

approximately.  

The new achieved distribution of the load balance shown to 

be efficient and optimal. The final distribution is achieved in 

2(n!)+1 communication steps where n is the degree of the 

OTIS-n-star network. 

 

312

123

132

321

231

213

19

20

13
14

17

17

a

213

231

312

321

213

123

132

30

30

27
28

26

25

c

321

123

231

213

132

312

321

18

17

28
27

22

23

123

213

321

312

231

132

123
19

20

20
21

22

18

d

g
312

123

231

213

132

312

321

22

21

24
23

19

19

a

h
132

321

132

123

312

213

231

22

21

22
27

27

21

h
231

b

b

c

d

e

e

f f

g

i

i

k

k

 Fig. 6: OTIS-3-Star network – load balancing phase 1 step 3 

 

312

123

132

321

231

213

18

16

17
16

15

18

a

213

231

312

321

213

123

132

27

28

29
27

27

28

c

321

123

231

213

132

312

321

21

23

22
24

25

20

123

213

321

312

231

132

123
19

20

20
21

20

20

d

g
312

123

231

213

132

312

321

20

23

22
21

21

21

a

h
132

321

132

123

312

213

231

22

21

24
25

24

24

h
231

b

b

c

d

e

e

f f

g

i

i

k

k

 
Fig. 7:OTIS-3-Star– load balancing phase1 step  4 

312

123

132

321

231

213

17

17

17
16

17

16

a

213

231

312

321

213

123

132

27

28

28
28

27

28

c

321

123

231

213

132

312

321

22

22

23
23

22

23

123

213

321

312

231

132

123
19

20

20
21

20

20

d

g
312

123

231

213

132

312

321

22

21

22
21

21

21

a

h
132

321

132

123

312

213

231

23

23

22
25

24

23

h
231

b

b

c

d

e

e

f f

g

i

i

k

k

 Fig. 8: OTIS-3-Star network – load balancing phase 1 step 5 

 

312

123

132

321

231

213

17

17

17
16

17

16

a

213

231

312

321

213

123

132

27

28

28
28

27

28

c

321

123

231

213

132

312

321

22

22

23
23

22

23

123

213

321

312

231

132

123
19

20

20
21

20

20

d

g
312

123

231

213

132

312

321

22

21

22
21

21

21

a

h
132

321

132

123

312

213

231

23

23

23
24

24

23

h
231

b

b

c

d

e

e

f f

g

i

i

k

k

 
Fig. 9: OTIS-3-Star network – load balancing phase 1 step 6 

In phase 2 we repeat the same steps one more time to 

redistribute the load balancing among the neighbours’ nodes 

as suggested in OSEOEM algorithm presented in Fig. 2 by 

Phase 1 has n! stages (steps 2-12 in the algoritms), Figures 4-9 

illustrate these stages that have been disrobed in the algorithm 

above. 

Figure 10 illustrates phase 2 where nodes exchange their 

weights via optical links. 

166 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



312

123

132

321

231

213

19

21

23
28

22

16

a

213

231

312

321

213

123

132

23

28

23
16

20

21

c

321

123

231

213

132

312

321

22

17

20
22

23

28

123

213

321

312

231

132

123
17

20

22
24

27

23

d

g
312

123

231

213

132

312

321

23

17

20
22

24

28

a

h
132

321

132

123

312

213

231

27

22

17
21

21

23

h
231

b

b

c

d

e

e

f f

g

i

i

k

k

 
Fig. 10: OTIS-3-Star network – load balancing phase 2

 

312

123

132

321

231

213

22

21

22
21

21

22

a

213

231

312

321

213

123

132

22

22

22
21

22

22

c

321

123

231

213

132

312

321

22

22

22
22

22

22

123

213

321

312

231

132

123
22

22

22
22

22

22

d

g
312

123

231

213

132

312

321

23

22

22
23

22

22

a

h
132

321

132

123

312

213

231

22

22

21
22

22

22

h
231

b

b

c

d

e

e

f f

g

i

i

k

k

 
Fig. 11: OTIS-3-Star network – load balancing- end of phase 3

 

5 Conclusions 

This paper presented an efficient algorithm for distributing the 

load balancing of nodes in OTIS-n-star network. The 

proposed algorithm is called OSEOEM which is based on the 

well-known algorithm FOFEM method presented for OTIS-

Cube networks. The proposed algorithm OSEOEM resulted in 

almost an even redistributions load balancing among the all 

nodes of OTIS-n-star network. The algorithm is able to 

redistribute load balancing among all nodes in 2(n!)+1 

communication steps which is considered to be efficient. 

As future extension of this research work we will do some 

analytical estimation and analysis including: execution time, 

load balancing accuracy, communication steps and speed to 

prove the OSEOEM is efficient mathematically. 

References 

[1] S. B. Akers, D. Harel and B. Krishnamurthy, “The Star Graph: An 

Attractive Alternative to the n-Cube” Proc. Intl. Conf. Parallel Processing, 

1987, pp. 393-400. 

[2] K. Day and A. Tripathi, “A Comparative Study of Topological 

Properties of Hypercubes and Star Graphs”, IEEE Trans. Parallel & 

Distributed Systems, vol. 5. 

[3] J. AL-Sadi, A. M. Awwad, B. F. AlBdaiwi, Efficient Routing 

Algorithm on OTIS-Star Network, Proceedings of the IASTED International 

Conference on Advances in Computer Science and Technology, Virgin 

Islands USA, November 22-24, 2004,  ACTA Press, pp. 157 – 162. 

[4] Khaled Day and Abdel-Elah Al-Ayyoub, “Node-ranking schemes for 

the star networks”, Journal of parallel and Distributed Computing, Vol. 63 

issue 3, March 2003, pp 239-250. 

[5] Jehad Al-Sadi, "Implementing FEFOM load balancing algorithm on the 

enhanced OTIS-n-Cube topology", The Second International Conference on 

Advances in Electronic Devices and Circuits - EDC2013, Kuala Lumpur, 

Malaysia, May, 2013. 

[6] B.A. Mahafzah and B.A. Jaradat, “The Load Balancing problem in 

OTIS-Hypercube Interconnection Network”, J. of Supercomputing (2008) 46, 

276-297. 

[7] S. B. Akers, and B. Krishnamurthy, “A Group Theoretic Model for 

Symmetric Interconnection Networks,” Proc. Intl. Conf. Parallel Proc., 

1986, pp. 216-223. 

[8] K. Day and A. Al-Ayyoub, “The Cross Product of Interconnection 

Networks”, IEEE Trans. Parallel and Distributed Systems, vol. 8, no. 2, Feb. 

1997, pp. 109-118. 

[9] A. Al-Ayyoub and K. Day, “A Comparative Study of Cartesian Product 

Networks”, Proc. of the Intl. Conf. on Parallel and Distributed Processing: 

Techniques and Applications, vol. I, August 9-11, 1996, Sunnyvale, CA, 

USA, pp. 387-390. 

[10] I. Jung and J. Chang, “Embedding Complete Binary Trees in Star 

Graphs,” Journal of the Korea Information Science Society, vol. 21, no. 2, 

1994, pp. 407-415. 

[11] Berthome, P., A. Ferreira, and S. Perennes, “Optimal Information 

Dissemination in Star and Panckae Networks,” IEEE Trans. Parallel and 

Distributed Systems, vol. 7, no. 12, Aug. 1996, pp. 1292-1300. 

[12] P. Fragopoulou and S. Akl, “A Parallel Algorithm for Computing 

Fourier Transforms on the Star Graph,” IEEE Trans. Parallel & Distributed 

Systems, vol. 5, no. 5, 1994, pp. 525-31. 

[13] Mendia V. and D. Sarkar, “Optimal Broadcasting on the Star Graph,” 

IEEE Trans. Parallel and Distributed Systems, Vo;. 3, No. 4, 1992, pp. 389-

396. 

[14] N. Imani et al, “Perfect load balancing on star interconnection 

network”, J. of supercomputers, Volume 41 Issue 3, September 2007. pp. 269 

– 286. 

[15] Ranka, Y. Won, S. Sahni, “Programming a Hypercube Multicomputer”, 

IEEE Software, 5 (5): 69 – 77, 1998.  

[16] Zhao C, Xiao W, Qin Y (2007), “Hybrid diffusion schemes for load 

balancing on OTIS networks”, In: ICA3PP, pp 421–432 

[17] G. Marsden, P. Marchand, P. Harvey, and S. Esener, “Optical 

Transpose Interconnection System Architecture,” Optics Letters, 18(13), 

1993, pp. 1083-1085. 

[18] Qin Y, Xiao W, Zhao C (2007), “GDED-X schemes for load balancing 

on heterogeneous OTIS networks”, In: ICA3PP, pp 482–492. 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 167



168 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



SESSION

SOFTWARE TOOLS AND SYSTEMS,
PARALLELIZING COMPILERS, PROGRAMMING

LANGUAGES, OS, AND MIDDLEWARE

Chair(s)

TBA

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 169



170 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



Hotspot: a Framework to Support Performance Optimization on
Multiprocessors

Fernando G. Tinetti1, Andres More2
1III-LIDI, Fac. De Informática, UNLP

Comisión de Inv. Científicas Prov. de Bs. As.
1900, La Plata, Argentina

2Intel Corp., Argentina Software Design Center
5000, Córdoba, Argentina

Abstract— High Performance Computing (HPC) programs
are usually developed by domain specialists, and they are
not always experts on performance optimization. Application
domain specialists rely on a systematic and unattended
(and/or partially guided) method to support performance
analysis and optimization. This paper presents a framework
that simplifies the job, including several case studies as a
validation step and as a proof of concept. The main goal is
to make the data recollection task straight-forward, allowing
to focus on experimentation and optimization. The frame-
work gathers context information about the program and
the underlying system, detailing scaling behavior, execution
profile, resource utilization, and bottlenecks. In a nutshell,
this work contributes with a performance report generator
for OpenMP programs.

Keywords: Computer Aided Analysis, Performance Analysis,
High Performance Computing, Parallel Processing

1. Introduction
High Performance Computing (HPC) optimized code runs

much faster than a naïve implementation [1]. This implies
that investing on program parallelization and optimization
leads to large gains in productivity for processing intensive
programs, which usually require multiple runs to simulate
or solve a problem.

Parallel programming is used to fully take advantage
of available computing power. However, parallelization in-
creases complexity, debugging, and performance evaluation
[2] [8]. The optimization and parallelization tasks are usually
performed ad-hoc, without knowledge of available tools and
their capabilities. Also, lacking the use of quantitative infor-
mation to direct optimizations is another (not minor) prob-
lem underlying such parallelization and optimization work.
Many times, well-known algorithms are (re)implemented
instead of using already heavily optimized libraries, with
proven correctness and a supporting community.

This paper is focused on simplifying the tedious and
error-prone task of performance analysis. The methodology
implies repetitive execution of multiple executions under
different input conditions, taking advantage of the expertise

on different tools to instrument behavior and understand re-
source utilization internals. The framework runs benchmarks
on the system, apply profiling tools, and graphically show
results into a final detailed report with statistical data on
scaling and bottlenecks.

The rest of this paper is structured as follows: in Section 2
we introduce performance analysis background and related
work. Section 3 the problem we aim to solve is reviewed,
and in Section 4 we cover our proposed solution and the
implemented framework. Finally, in Section 5, we apply the
framework to several well-known computing kernels before
concluding remarks are discussed.

1.1 Related Work
Performance optimization is relevant to almost any disci-

pline involving computing processing. An introduction can
be found in [11], a general revision in [12], just to mention
a few. A proposal of the direction of the state-of-the-art in
[13]. Useful reusable design patterns in [14]. Several ideas
for gathering relevant performance information can be found
in [15], and an effort on automatic optimization in [16].
Further details on the state-of-the-art can be found in [17].

2. Performance Analysis
Performance is characterized by a metric which must be

quantifiable units of achieved work in contrast with utilized
time and resources. Metrics allows the relative comparison of
systems, and also understand a reconfigured system behavior.

There are several laws that provide some guidance for
estimating performance gains when incrementing comput-
ing resources. The so called Amdahl Law [6] provides
some insight in potential speedup according to the serial
and parallel parts of an program. Gustafson [7] establishes
something similar, but taking into account how many times
we can compute the same problem and, also, the fact that
increasing processing facilities implies increasing problem
size (thus, also increasing processing requirements). A raw
representation on how parallelism ratios impact speedup
when doubling processing units is shown in Fig. 1.

The procedure to perform optimizations involves cycles
of measurement, bottleneck identification, optimization, and

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 171



Fig. 1: Speedup Limits According to Amdahl (left) and
Gustafson (right)

gain comparison and analysis. Every decision should be
made using strongly meaningful data in order to focus the
work on maximizing impact. In the case the measurement
of a metric has deviations, it is required to take several
samples and use an average to avoid transient noise. Usually,
a longer execution time of a problem will help to stabilize
results. If the system has dynamic configuration, then results
reproduction is non-trivial. On this case, it is advisable to
run together old and new versions of the program for a direct
comparison.

2.1 Performance Tools
There are many available tools for performance analysis

[8]. Tools work at different levels of abstraction: from
hardware-based event counters, to resource monitoring in-
side operating system kernels, code and binary instrumenta-
tion, up to the simple utilization of runtime as a reference
metric.

Benchmarks are specially-built synthetic programs, or
even a predefined set of real-world programs that provide
a reference figure to compare performance. The required
features for a benchmark are portability, simplicity, stability
and results reproduction. It is also required that execution
time is reasonable, and problem size can be adjusted to keep
applicability over time and the evolution of technologies.
High Performance Computing Challenge (HPCC) [21] is a
package that includes several HPC benchmarks and provides
multiple metrics at once.

An incremental approach is proposed in this paper, ap-
plying tools in the sequence shown in Table 1, every step
adding more information and detail to the analysis. The over-
all system capacity extracted using the HPCC benchmarks
allows to set a practical limit on performance of the system
being used. The timing of workload executions allows to
understand their runtime deviation. The execution profile
will show call flows and bottlenecks at function, source
code line and assembly levels. The program scaling behavior
shows speedup trends when incrementing either problem
size or processing units. A system profile show impact on

Table 1: Performance Tools Incremental Application.
Information Tools
Overall System Capacity HPCC Benchmark
Workload Execution time, gettimeofday()
Execution Profile gprof, perf
Program Scaling gprof, perf
System Profile Perf
Vectorization Compilers
Hardware Counters Perf

available system resources. At last, low-level reports on
vectorization details and hardware counter status can lead
to fine-tuning needs at CPU instruction level.

3. Optimization Problems
The approach in this paper identifies three different di-

mensions in which the problems have to be addressed:
performance analysis, optimization methods implementation,
and supporting infrastructure.

3.1 Performance Analysis
The performance analysis has multiple challenges:
• Human interaction is always a source of involuntary

mistakes. Miss investing valuable time in tasks that
can be automated. Usually, one person should run
tests, gather results, and draw charts in a performance
report to rely on during subsequent analysis. Absolute
discipline is mandatory as the main time-consuming
task is to execute the same program under different
configurations to record its behavior.

• Required expertise in tools. Learning about the proper
use of the multiple tools takes considerable time.
However, those tools povide high quality information
necessry to take data-driven decisions at the time of
optimization efforts. The analysis requires the correct
use of statistics to average results, discard noise and
outliers, and understand limits on potential improve-
ments.

• Data gathering and representation of results. The analy-
sis requires the gathering of supporting data about both
the program and the system being analyzed. Idetifying
metrics, how to get them and even how to represent
them is non-trivial and requires time and expertise.

• Early optimization. An optimization made in the wrong
place implies wasted effort and potentially little impact
on the overall execution runtime of the program.

• Naïve implementation of algorithms. Direct implemen-
tation of an algorithm may guarantee correctness but
not efficiency without first understanding underlying
low-level details of the computer architecture. Reuse of
portable math libraries guarantee both correctness and
performance with only a minimum effort on learning
how to apply them.

And many of them (maybe all) are interraleted, so they
cannot be treated indepently of each other.

172 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



3.2 Optimization Methods Implementation
The usual optimization methods target different aspects of

a given program:
• Code. The source code is analyzed to improve jump

prediction by pre-fetching units, in-lining frequently
used routines to avoid unnecessary returns, align code
and unroll loop to make program steps easy to map into
vectorised instructions, among many other aspects.

• Execution. The generated assembly level code is in-
spected to verify the usage of lightweight and vectorised
instructions, trying also to reduce the number of used
registers.

• Memory. Program structures are analyzed to minimize
cache failures, align inner components and improve
the locality of data to enhance the memory hierarchy
performance.

• Prefetching. Use of pre-fetching instructions are ana-
lyzed to help prediction unit to be more effective.

• Floating point arithmetic. Given a problem it can be
considered to relax representation assumptions follow-
ing standards, in order to exchange accumulated error
and final precision by processing speed.

And, again (as in the case of the performance analysis
explained above), many of them (maybe all) are interraleted,
so they cannot be treated indepently of each other.

3.3 Supporting Infrastructure
Clearly, performance analysis needs (semi)automated sup-

port, the following are some requirements that any frame-
work should include:

• Reusability. The framework should be applicable to a
wide range of programs, without requiring its modifi-
cation. Its deployment should only depend on the same
tools that any user may need to gather performance-
related information manually.

• Configuration. The framework should be configurable
and parameters should include how to compile and
execute the program, the input range to consider, and
the number of repetitions to check for stability, among
other details.

• Portability. The framework should be implemented in
a portable (and maybe interpreted) language, to allow
easy review and the expansion with new tools, new
data gathering experiments or the modification on how
things are being done.

• Extensibility. The framework should be designed for
extension from scratch, incorporating new tools, charts
o sections on a final report should be an almost trivial
task given the user already knows how to gather the
metric manually.

• Simplicity. The framework should reuse the same tools
available at system level to a regular user. It should
generate log files of all the issued commands and their

output so any user can check them if required. It should
be possible to use the framework to run overnight and
allow incremental optimization.

4. Proposed Solution
We propose an approach that combines a generic proce-

dure on top of an automated framework that takes care of
running the program multiple times, applying performance
analysis tools, identifying bottlenecks, gathering metrics and
representing results graphically into a performance report.
This allow the user to solely focus on optimization of the
identified bottlenecks, freeing him of performance-related
data recollection work.

4.1 Method
The performance analysis procedure needs to be done

incrementally to guarantee progress no matter the allowed
time for the task. We propose then a process which starts
analyzing system computing power. The computing power is
taken into account to follow a sequence of improvement cy-
cles of execution of the program for gathering performance
metrics and revealing bottlenecks. Thus, optimization efforts
can be focused on those identified bottlenecks, in order to
maximize overall impact. The following steps reflects how
the process should be done:

1) Run the HPCC benchmark to get insights on overall
system performance.

2) Run the program multiple times using the same work-
load to check deviations.

3) Establish a baseline using geometric mean to avoid
measurement noise.

4) Run the program scaling problem size to dimension
its behavior.

5) Run the program scaling computing resources to di-
mension its behavior.

6) Extract execution profile of the program
7) Extract system profile while running the program.

4.2 Framework
A framework named hotspot (https://github.com/more-

andres/hotspot) was built, implementing the previous pro-
cedure. The automation behaves exactly like a regular user
running commands and checking their output. It executes
tools like gcc, make, prof, gprof, pidstat (among others)
to gather relevant information and finally using the Latex
typesetting environment to compile a human-friendly report
including the data and associated charts.

Currently, only GNU/Linux systems with kernels above
2.6.32 and OpenMP threaded programs are supported out-
of-the-box. Old kernel versions do not properly support
the tools used to identify bottlenecks at assembly level.
OpenMP threaded programs easily let to change the number
of processing units in order to understand scaling behavior.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 173



At a lower abstraction level, the framework is designed
with two simple object class hierarchies as shown in Fig.
2. The first one keeps the main engine which runs the
second one as independent sections that gather information
and report back metrics. The latter one can be extended to
add more sections to the final report. The implementation

Fig. 2: Speedup Limits According to Amdahl (left) and
Gustafson (right)

defines multiple objects as part of these class hierarchies.
The components of the framework engine are:

• Singleton: extended by other object to guarantee unique
instance.

• Tags: storage of keywords to be replaced at the report
template.

• Log: manager used to structure output messages.
• Config: manager used to read and share configuration

attributes.
And the components that hold the responsibility and knowl-
edge of running experiments and gathering relevant metrics
are the following:

• Section: extended by sections to be included in the
report.

• HardwareSection: hardware-related information such as
used CPU and Memory.

• ProgramSection: program-related information such as
used problem input range.

• SoftwareSection: program-related information such as
used compiler and libraries.

• SanitySection: basic check on that the workload can run
without issues.

• BenchmarkSection: runs HPCC and gather relevant
metrics.

• WorkloadSection: reports on program footprint and its
stability.

• ScalingSection: reports on problem size scalability.
• ThreadsSection: reports on computing scalability.
• OptimizationSection: reports on program behavior un-

der compiler optimizations.
• ProfileSection: reports on program execution profile,

call flow and bottlenecks.

• ResourcesSection: reports on the use of system re-
sources while the program runs.

• AnnotatedSection: reports annotated bottlenecks map-
ping code to assembly.

• VectorizationSection: reports loops being vectorised or
not and the impediments

• CountersSection: reports hardware counter status.
• ConfigSection: reports used configuration for the over-

all framework execution.
The framework uses a per-program hidden directory to keep
record on executions, classified per timestamp and caching
the different results to avoid long waiting times.

A configuration file is used to define the framework
parameters to handle any program. It is important to note
that the framework needs to know how to run, compile and
instrument each program as part of the configuration. The
framwork will rely on variables that hold problem input size,
numbers of OpenMP threads to use and even compiler flags
to instrument binaries.

4.3 Operation and Report
At high level the design mimics how a user manually

interacts with the system. The framework depends on tools
available on the system, the program, and its matching
configuration plus the LaTeX typesetting system.

After reading the configuration, the workload is executed
multiple times and its wall time is checked for stability
by charting a histogram using as a baseline a normally
distributed curve. The geometric mean is extract to be used
as a reference in future executions. As second step, the
program is executed over the full range of input size and
available computing resources, with this scaling charts are
generated, plotting ideal scaling as a comparison approach as
well. Using this scaling information the potential speedups
are computed according to Amdahl and Gustafson laws.
Then using expanded debugging information bottlenecks are
identified on logical, source and assembly program levels.
One last execution is done while at the same time resource
usage is recorded to understand system bottlenecks. After
all these executions the gathered information is used to
generate a detailed PDF report to support the performance
optimization task.

The general considerations followed when building the
report include:

• Format similar to a scientific paper.
• Hyperlinks to full logs of tools output.
• Brief explanation of each section and chart objective.
• Inclusion of ideal trends and behavior in charts.
• References to base bibliography.

Several pieces of information are given, such as: a) Abstract:
a brief summary introducing the framework and the location
of the supporting output for detailed review, b) Content:
reduced table of content with direct links to the information,
c) Program: details of the program under analysis, timestamp

174 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



of the analysis and input parameters used during tests, d)
System computing poer: beyond specifics about hardware
and software on the system, the framework includes the
metric reported by an HPCC execution, e) Workload: work-
ing set and in-memory structures, histogram of execution
to understand its deviation and the geometric mean used
as a baseline. Also a chart checking how the compiler
optimization levels improve time.

5. Case Study - Examples
This section will showcase the hints that the framework

can lead to, but will not include solutions to those as they
are out-of-scope. The framework was used to analyze three
well-known compute kernels: a) Mtrix Multiplication: a
naïve implementation of dense matrix multiplication., b) 2D
Heat Distribution: a naïve implementation of iterative heat
distribution, and c) Mandelbrot Set: a naïve implementation
of a recursive fractal algorithm.

The HPCC benchmarks executed and its multiple refer-
ence metrics are included to be used as top reference of
system capabilities, shown in Table 2.

Table 2: Performance Metrics Reported by HPCC

5.1 Examples
Fig. 3 shows the initial performance and metrics report

provided by our tool. As a first step towards optimization,

Fig. 3: Initial Matrix Multiplication Report

the different compiler optimization options are also reported,
shown in Fig. 4. We have seen almost the same pattern
for the different compiler optimization levels on several
programs, e.g. a huge improvement for -O1 and -O2, and
relatively small improvement for -O3. Fig. 5 shows the
information about serial and parallel fractions as well as the

Fig. 4: Compiler Optimizations on Matrix Multiplication

limits of parallelization according to de the so called Amdhal
and Gustafson laws.

Fig. 5: Matrix Multiplication Parallelization Reports

The tool on the naïve implementation of heat distribution
in 2 dimensions identifies:

• Workload is stable, although deviation is greater than
in the previous case.

• Compiler optimizations have little impact.
• Execution time does not grow monotonically when

scaling input size; it neither decreases when adding
more computing units.

• Parallelism only reaches 65%, therefore speedup has a
limit on 2.9x.

• There are two main bottlenecks with 30% and 15% of
overall execution time.

• CPU utilization is not constant, and loops are not
vectorised.

On the third example, the naïve implementation of Man-
delbrot sets [23], the tool reports:

• Structures used to represent complex numbers are
aligned, without holes that may consume cache mem-
ory.

• Workload is stable.
• 50% of the time is spent on the same line of code.
• There are already optimized cycles using the movss and

adds vectorised instructions.

6. Conclusions and Further Work
The performance optimization process is not trivial and

requires disciplined analysis of used resources and gathering
of metrics characterizing program behavior. This works
reviews the development of a supporting framework that
streamlines the process by running in unattended mode and

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 175



generating a report to direct optimization efforts. The gen-
erated report combines multiple tools to identify bottlenecks
at function, source, and assembly level (e.g. vectorization).
It also records system configuration and resource usage. All
of this is offered as an unattended automated task before
undergoing the program optimization analysis. We hence
propose a systematic procedure supported with an automated
framework that is suitable for both newcomers and experts.
It also allows the exchange of standardized performance
reports between research and development groups.

Extension possibilities on this framework are straight-
forward considering new sections can be added to the report
including the application of new tools, charts or contextual
information. The application of this framework to a well-
known open source program will size its usefulness and
provide feedback on both the procedure and the generated
report. At last, it may be interesting to move from a static
report format to a dynamic one offering pivot tables and
charts that can be reconfigured easily. This may be better
achieved using HTML5 technologies over a browser for
instance.

References
[1] A. More. A Case Study on High Performance Matrix Multiplication.

Technical Report, Universidad Nacional de La Plata, 2008. Available
at http://mm-matrixmultiplicationtool.googlecode.com/files/mm.pdf

[2] P. E. McKenney. Is Parallel Programming Hard, And, If So, What Can
You Do About It? kernel.org, 2010.

[3] Intel Corporation. Intel Math Kernel Library. Reference Manual. Intel
Corporation, 2009.

[4] R. Garabato, V. Rosales, A. More. Optimizing Latency in Beowulf
Clusters. CLEI Electron. J., 15(3), 2012.

[5] J. Jeffers, J. Reinders. Intel Xeon Phi Coprocessor High Performance
Programming. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 1st edition, 2013.

[6] G. M. Amdahl. Validity of the single processor approach to achieving
large scale computing capabilities. In Proceedings of the April 18-20,
1967, spring joint computer conference, AFIPS ’67 (Spring), pages
483-485, New York, NY, USA, 1967. ACM.

[7] J. L. Gustafson. Reevaluating Amdahl’s Law. Communications of the
ACM, 31:532-533, 1988.

[8] A. H. Karp, H. P. Flatt. Measuring parallel processor performance.
Commun. ACM, 33(5):539-543, May 1990.

[9] P. J. Fleming, J. J. Wallace. How not to lie with statistics: the correct
way to summarize benchmark results. Commun. ACM, 29(3):218-221,
March 1986.

[10] K. Atkinson. An Introduction to Numerical Analysis. Wiley, 2 edition,
1989.

[11] C. U. Smith. Introduction to software performance engineering: ori-
gins and outstanding problems. In Proceedings of the 7th international
conference on Formal methods for performance evaluation, SFM’07,
pages 395-428, Berlin, Heidelberg, 2007. Springer-Verlag.

[12] J. C. Browne. A critical overview of computer performance evalua-
tion. In Proceedings of the 2nd international conference on Software
engineering, ICSE ’76, pages 138-145, Los Alamitos, CA, USA, 1976.
IEEE Computer Society Press.

[13] M. Woodside, G. Franks, D. C. Petriu. The future of software perfor-
mance engineering. In 2007 Future of Software Engineering, FOSE ’07,
pages 171-187, Washington, DC, USA, 2007. IEEE Computer Society.

[14] T. Mattson, B. Sanders, B. Massingill. Patterns for parallel program-
ming. Addison-Wesley Professional, First edition, 2004.

[15] K. A. Huck, O. Hernandez, V. Bui, S. Chandrasekaran, B. Chapman,
A. D. Malony, L. Curfman McInnes, B. Norris. Capturing perfor-
mance knowledge for automated analysis. In Proceedings of the 2008
ACM/IEEE conference on Supercomputing, SC ’08, pages 49:1-49:10,
Piscataway, NJ, USA, 2008. IEEE Press.

[16] T. Margalef, J. Jorba, O. Morajko, A. Morajko, E. Luque. Performance
analysis and grid computing. In V. Getov, M. Gerndt, A. Hoisie, A.
Malony, B. Miller, editors, Performance analysis and grid computing,
chapter Different approaches to automatic performance analysis of
distributed applications, pages 3-19. Kluwer Academic Publishers,
Norwell, MA, USA, 2004.

[17] F. Wolf B. Mohr. Automatic performance analysis of hybrid
mpi/openmp applications. J. Syst. Archit., 49(10-11):421-439, Novem-
ber 2003.

[18] B. Gregg. Linux Performance Analysis and Tools. Technical report,
Joyent, February 2013.

[19] J. D. McCalpin. Memory bandwidth and machine balance in current
high perfor-mance computers. IEEE Technical Committee on Computer
Architecture (TCCA) Newsletter, Dec 1995.

[20] U. Drepper. What Every Programmer Should Know About Memory.
Tech-nical report, Red Hat, November 2007.

[21] P. Luszczek, J. J. Dongarra, D. Koester, R. Rabenseifner, B. Lucas, J.
Kepner, J. Mccalpin, D. Bailey, D. Takahashi. Introduction to the HPC
Challenge Benchmark Suite. Technical report, 2005.

[22] B. B. Mandelbrot, D. E. Passoja, editors. Fractal aspects of mate-
rials: metal and catalyst surfaces, powders and aggregates: extended
abstracts, volume E-4 of Materials Research Society extended abstracts,
Pittsburgh, PA, USA, 1984. Materials Research Society.

176 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



Empirical Study of Time Efficiency and
Accuracy of Support Vector Machines Using an

Improved Version of PSVM
S. Tavara12, H. Sundell1, and A. Dahlbom2

1Department of Information Technology, University of Borås, Borås, Sweden
2School of Informatics, University of Skövde, Skövde, Sweden

Abstract—We present a significantly improved implementa-
tion of a parallel SVM algorithm (PSVM) together with a com-
prehensive experimental study. Support Vector Machines (SVM)
is one of the most well-known machine learning classification
techniques. PSVM employs the Interior Point Method, which
is a solver used for SVM problems that has a high potential
of parallelism. We improve PSVM regarding its structure and
memory management for contemporary processor architectures.
We perform a number of experiments and study the impact of
the reduced column size p and other important parameters as
C and γ on the class-prediction accuracy and training time. The
experimental results show that there exists a threshold between
the number of computational cores and the training time, and
that choosing an appropriate value of p effects the choice of
the C and γ parameters as well as the accuracy.

Keywords: Parallel SVM; Processor Technology; Training Time

I. INTRODUCTION

High Performance Computing (HPC) tools are promising
for improving performance in respect of time efficiency. As
more computational power can be spent on less time, this
enables the accuracy of results to be improved as well. The
importance of utilizing HPC tools has been growing and
parallel computing as the underlying method of HPC plays
an important role for improving the time efficiency. Message
Passing Interface (MPI) is one of the well-known parallel
library standards that was originally designed for distributed
memory systems, although it can handle shared and hybrid
(combination of shared and distributed) memory architectures
as well. The advantages of using the MPI library standard is
well-known, albeit the efficiency of the parallel processing
can be degraded due to data dependency, memory bandwidth,
synchronization and communication bottlenecks.

Digital data is growing exponentially and hence analysis
and calculation processes regarding big data are becoming
computationally expensive. Within this context, machine
learning is one of the fields that can take advantage of using
HPC tools for improving the performance. Support Vector
Machine (SVM) [17] is one of the classification machine
learning techniques that has a wide area of applications and
has got considerable attention during the last decade. The
SVM problem is set up as a minimization problem and can
thereafter be solved using classical optimization algorithms.
Interior Point Method (IPM) [18] is a popular choice thanks

to the high degree of parallelism inherent in it. However,
IPM requires computing the inverse of a matrix which is
computationally expensive. Besides, in most of cases the
coefficient matrix derived from the system is ill-conditioned,
meaning that the matrix is either singular or close to singu-
larity which makes the problem computationally unstable.
Therefore approximation and preconditioning methods are
applied to prevent the ill-conditioning and to reduce the
computational costs.

Cholesky Factorization (CF) [20] is one of the techniques
that is used for achieving stable numerical solutions. CF
factorizes matrix A ∈ Rn×n into a lower triangular matrix,
i.e., A = LLT , where L ∈ Rn×n. Incomplete Cholesky
Factorization (ICF) [20] is a truncated form of CF, i.e.,
A = L̂L̂T , where L̂ is a n×p sparse lower triangular matrix
close to L, where p is the rank of L̂. In ICF approximation,
only p column vectors are calculated which makes this ap-
proximation quick and economical to compute since p� n.
However, calculating the appropriate column rank value, p,
is non-trivial. A lower value of p degrades the accuracy and
a higher value of p increases the computational time. In this
paper, we study the trade-off between the class-prediction
accuracy and time efficiency for different p settings and dif-
ferent kernel functions. Furthermore, we study the correlation
between the choice of p and the hyperparameters C and the γ
value, in respect to the effect of the Gaussian and Laplacian
kernels on the class-prediction accuracy and the training time.

The advantage of using distributed parallelism as MPI on
SVM problems is well-known, although how to choose the
appropriate numbers of computational cores is still unclear
and non-trivial. In theory, increasing the number of ma-
chines from 1 to 10 will enhance the time efficiency 10
times, although this is way too idealistic. The reason for
that is due to data communication, memory bandwidth and
synchronization between different machines. In this paper,
we investigate when the data communication part overtakes
the parallel computation part in SVM, i.e., when increasing
the number of cores no longer is beneficial. As Chang
et al. [20] mention in their paper, due to communication
and synchronization overheads, the speed-up is not linearly
increased by increasing the number of cores, and after a
specific number of cores the time efficiency even degrades.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 177



In this respect, it is interesting to study the existence of a
threshold that can give an idea of the appropriate number of
cores. We theoretically show that there exists a threshold that
suggests a minimum number of computational cores, while
the maximum number of cores depends on the machines
used.

In the following sections, we briefly describe SVM using
PSVM software. We mention important processor technolo-
gies and then describe the preparation for experiments includ-
ing the complexity analysis of SVM algorithm using PSVM.
We continue with the experiments and the results and finally
we discuss the obtained results.

II. SUPPORT VECTOR MACHINES

The basic idea in SVM is to search for a bipartite hy-
perplane that has a furthest possible distance to the closest
training data points from both sides of the hyperplane. In
order to find the optimal bipartite hyperplane, a simple
SVM problem can be formulated as an primal quadratic
optimization problem as following,

min P (w, b, ξ) =
1

2
wTw + C

n∑
i=1

ξ

s.t. yi(w
T Φ(xi) + b) ≥ 1− ξi , i = 1, 2, ..., n

ξi > 0 , i = 1, 2, ..., n

(1)

Where w is the weight vector for the hyperplane, x is the vec-
tor of observations, yi is the class label and yi ∈ {+1,−1}, b
is the bias parameter, Φ(x) is the map function that maps the
input vector x to the feature space, ξi is a classification error
for sample i, and C is the parameter that makes a balance
between the classification error and maximum margin.

With the help of Lagrangian multipliers, the primal op-
timization problem (1) can be reformulated into another
optimization problem called dual optimization problem. La-
grangian multipliers relax the constraints of the primal opti-
mization problem and reformulates the problem into a new
quadratic optimization problem with simpler constraints as
follows:

min D(α) =
1

2
αTQα + 1Tα

s.t.
n∑

i=1

yiαi = 0 , i = 1, 2, ..., n

0 ≤ αi ≤ C , i = 1, 2, ..., n

(2)

Where α is Lagrangian multipliers and αi ∈ α, 1T is
a vector of ones and Q is a matrix of size n × n where
Qij = yiyjΦ

T (xi)Φ(xj). Equation (2) is known as dual
equation. We reformulate Qij as Qij = yiyjK(xi,xj),
where K(xi,xj) = ΦT (xi)Φ(xj) is called a kernel function.
The advantage of using kernel function is that we can
compute Q with out knowing the map function Φ(.) explicitly
and instead we can choose an appropriate kernel function to
calculate Q. Four well-known kernel functions are as follows:

• Linear kernel that is an inner product or dot product
of input vector and is used for linear classification, i.e.,
K(xi,xj) = xT

i xj ,

• Gaussian kernel that is used for non-linear classification,
i.e., K(xi,xj) = exp(−γ‖xi − xj‖2),

• Laplacian kernel that is used for non-linear classifica-
tion, i.e., K(xi,xj) = exp(−γ|xi − xj |),

• Polynomial kernel that is used for non-linear classi-
fication, i.e., K(xi,xj) = (xi.xj + const)d, where
const = 0 for homogeneous polynomial kernels and
const = 1 for inhomogeneous kernels.

Different mathematical solvers are utilized to solve the
primal, the dual, or the primal-dual optimization problem.
Interior Point Method (IPM) starts from an initial point
located in the interior feasible region and moves towards the
optimal point(s) in an iterative manner. One of the advantages
of IPM is its high degree of inherent parallelism compared to
other solvers. IPM can use approximation methods such as
Incomplete Cholesky Factorization (ICF) to approximate the
original matrix Qn×n to a smaller matrix as Hn×p, where
p � n. This approach can improve the time efficiency of
the computations. In this paper, we have chosen the PSVM
software that solves the SVM problem by utilizing IPM
solver.

A. Parallel Support Vector Machines

We have conducted our experiments using the Parallelizing
Support Vector Machines (PSVM) software that is originally
written by Chang et al. [20]. PSVM uses ICF to reduce the
problem size and IPM to solve the primal-dual optimization
problem (1) and (2). ICF approximates the original n × n
linear system Q to the smaller n × p linear system H ,
i.e., Q ≈ HTH where n is the number of samples or
instances, p is the reduced column size and p � n. The
parallel ICF (PICF) is computed by a row-based round-robin
algorithm and distributed evenly to the machines. The primal-
dual problem is then solved by a parallel implementation of
IPM and makes use of PICF. All the parallelization is done
by utilizing the MPI library standard. Chang et al. claim that
based on their empirical results when the reduced column
size p is chosen as

√
n, then the error ε is negligible, where

trace(Q−HTH) < ε. On the one hand they show the class-
prediction accuracy obtained with some different values of p
smaller than

√
n in table 1 in their paper [20], albeit on the

other hand they do not discuss further the impact of varying
the p value for different kernel functions in a SVM problem.
Therefore we further study the impact of different value of
p on the class-prediction accuracy.

III. RELATED WORKS

SVM problems has got considerable attention in the last
decade and the optimization problem derived from SVM
problems are well studied. Challenges in SVM problems can
be mentioned as the need for a large amount of memory
for training samples [8][19] and the intense training time [1]
when the problem size is large. This gives a motivation to
use optimization methods along with HPC tools and parallel
programming to involve more computational power to spilt
the original problem into smaller sub-problems in order to

178 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



fit into memory [19]. Decomposition methods [12][6][16]
are one of the highly invested methods in SVM. In the
decomposition methods only a subset of variables is updated
[16]. Based on this idea software as LIBSVM [4], SVM light

[10] have been implemented. Although software as LIBSVM
and SVM light using decomposition methods are efficient to
solve SVM problems however when the problem size is large
their performance is degraded since their computations are
done in serial manner.

IV. TECHNOLOGIES FOR HIGH PERFORMANCE
COMPUTING

In this section, we briefly describe the technologies needed
for the study of the PSVM communication and the improve-
ment of the code.

A. Single Instruction Multiple Data

Single Instruction Multiple Data (SIMD) is an architecture
of parallel machines that use multiple processing elements
to operate a single instruction on multiple data elements
simultaneously. Today most compilers can automatically op-
timize simple code structures using vectors to take benefit
from SIMD instructions. A common mistake is to make
data dependent whereby the compiler can’t optimize it [14].
In such cases the code needs to be restructured to make
use of SIMD. The gain from SIMD is dependent on CPU
architecture where the old SSE instructions gives a two fold
improvement while the newest AVX with FMA can give up
to 8 times improvement.

V. PREPARATION FOR EXPERIMENTS

Before we describe the conducted experiments, we do a
study of the SVM algorithm using the PSVM software and
point out areas of interest that we have our main focus on.
These parts are chosen based on their computational time
relative to the total calculation time. The areas we focus
on can benefit from HPC improvements which affect the
total calculation time. Minor HPC improvements on heavy
computational parts can have a large effect on the total
computation time when the size of the problem is very large,
and if the calculation time is not the issue of interest, we can
improve accuracy for the same calculation time.

A. Used Factorizations

CF function calculates the Cholesky factorization of the
original matrix A, i.e., CF calculates a lower triangular
matrix G such that A ≈ GGT . CF solves a linear system
by forward and backward substitutions. ICF approximates
the original n × n matrix Q to a smaller n × p matrix H ,
i.e., (Q−HTH) ≤ ε, where p� n and ε is the error.

B. Algorithm

The solving process regarding (1) is done in two steps,
first create,

Q ≈ HTH + ε (3)

then solve by IPM which is similar to solve by Newton steps
[18]. The detailed information about Newton method used in
IPM is mentioned by Boyd [3] and Mehrotra [15].

4λ = −λ + vec(
1

t(C − αi)
) + diag(

λi
(C − αi)

)4x (4)

4ξ = −ξ + vec(
1

tαi
)− diag(

ξi
αi

)4x (5)

4ν =
yTΣ−1z + yTα

yTΣ−1y
(6)

D = diag(
ξi
αi

+
λi

C − αi
) (7)

4x = Σ−1(z− y4ν) (8)

Minimize P (w, b, ξ) and D(α) along 4ξ and 4α respec-
tively (9)

Σ = Q + diag(
ξi
αi

+
λi

C − αi
) (10)

z = −Qα + 1n − νy +
1

t
vec(

1

αi
− 1

C − αi
) (11)

To compute Σ−1z the Sherman-Morrison Woodbury formula
is used:

Σ−1z = (D +Q)−1z ≈ (D +HHT )−1z

= D−1z −D−1H(I +HTD−1H)−1HTD−1z

= D−1z −D−1H(GGT )−1HTD−1z
(12)

The equation above containing Σ−1 is the most interesting
parts of the algorithm with respect to amount of computations
and therefore it is divided up into sub steps as following,

E = I +HTDH (13)

GGT = E (14)

C. Complexity

By going through the SVM algorithm using the PSVM
software, we calculate the complexity of both the computa-
tion and the communication. We denote the amount of rows
on each CPU by η where η is calculated by the amount of
training samples divided by the amount of cores, i.e., η = n

k .
Notice that all equations are solved once per iteration except
equation (3) which is only solved once. Equation (3) needs
O(p3 + ηp2) computations and O(log(k)(p+ f)) communi-
cation where f is the number of features, p is the amount
of columns on each CPU, η is the amount of rows on each
CPU, and k is the amount of cores. Equation (4), (5) and (7)
are just vector operations and therefore has a complexity of
O(η) computations. Equation (6) is solved by using the result
from (13) and (14). Since the system is solved by backward
and forward substitution with GGT for both Σ−1z and Σ−1y
therefore we get a complexity of O(pη + p2) computation
and O(log(k)p) communication. In a similar manner we

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 179



calculate the corresponding complexities for equation (8),
i.e., O(pη + p2) for computation and O(log(k)p) for com-
munication. The line search (9) has a complexity of O(p2)
computations. The equation (13) is a matrix multiplication
and therefore has the complexity O(ηp2) for computations
and O(log(k)p2) for communication. The last equation (14)
which is the CF is done serially on the master and has
complexity O(p3).

Among the above mentioned equations, i.e., equations
(3) to (14), we focus mainly on equations (13) and (14),
since they are the most computationally expensive functions
relative to the total computation time and thus they are more
interesting for further study and investigation for potential
improvements.

VI. EXPERIMENTAL DESIGN

Our goal is to explore, and study the behaviour of the
SVM algorithm regarding high performance computing point
of view. In this respect, we choose an exploratory approach
to discover new insights regarding SVM algorithm that can
affect the class-prediction accuracy and the training time
using PSVM. PSVM is implemented by Chang et al.[20].
We improve the PSVM code regarding structure, memory
allocation, de-allocation and parallelism point of view as
mentioned in section IV-A. We conducted experiments 1)
to study the impact of changing hyperparameter C and γ
on total training time by considering target class-prediction
accuracy, 2) to study the impact of changing the number of
columns p on the training time and the class-prediction accu-
racy using Gaussian and Laplacian kernels and to study the
trade-off between the class-prediction accuracy and the time
efficiency by changing p settings, 3) to evaluate the existence
of a threshold for the appropriate number of computational
nodes in order to get the advantage of parallelism as much
as possible.

We measure the class-prediction accuracy of the models
based on the number of correct predictions among all the
correct and incorrect predictions.

Accuracy = T−+T+

T−+T++F−+F+

Where T+, T−, F+ and F− are true positive, true negative,
false positive and false negative respectively.

The reduced number of columns in ICF is denoted by
p = nr where n is the number of samples and r is the
reducing ratio between 0 and 1. For all the experiments
unless stated otherwise, we use the improved PSVM and
the publically available cod-rna, covertype, webspam and
url datasets provided by UCI data repository for machine
learning [11] and by Fan et al. [5].

A. Experiment 1: Sensitivity of PSVM Regarding C and γ

One of the challenges of SVM problems using Gaussian
and Laplacian kernels is to choose appropriate values for
hyperarameter C and γ [8][7], since the class-prediction
accuracy and time efficiency [13] are influenced by these
parameters. Intuitively, γ means how far the influence of a

single training sample is. A large value of γ shows the low
influence of a single training sample while a low value of
γ shows the high influence. The γ parameter has an inverse
relationship with the radius of influence of support vectors
[2]. The hyperparameter C makes a balance between the
misclassification and the maximum margin. A low value of
C makes the decision surface smooth while a large value
of C gives freedom to the model to choose more support
vectors among samples that results in more precise and
accurate classification of the training samples [2]. One of
the common way to find a suitable hyperparameter C and
γ is cross-validation [9], however finding the best value of
these parameters are still unclear.

In the first experiment, we study the impact of C and γ
parameters on the sensitivity of training time meaning how
much the training time varies by changing the C and γ
parameters. In this experiment, we chose C between 0.1, 1, ...
, 100000 and chose γ between 0.1, 1, ... , 1000. We conduct
this experiment on two datasets, cod-rna and covertype and
we study the total calculation time for training the samples.

B. Experiment 2: Reduced Column p

The reduced number of columns p in ICF has impact on the
class-prediction accuracy and the training time and finding an
appropriate value for p in ICF is non-trivial and controversial.
Larger value of p results in higher class-prediction accuracy
but slower total training time while smaller value of p results
in fast training of samples but poor class-prediction accuracy.
Although Chang et al. [20] suggest p =

√
n based on their

experimental results, however the trade-off between the class
prediction accuracy and the time efficiency by changing p has
been unclear. It is also unclear how the value of p influences
different kernels.

In experiment 2, we study the impact of different p settings
on the class-prediction accuracy and the training time. To
study the performance of PSVM for different p settings, we
divide the second experiment into sub-experiments. In the
first sub-experiment, we have chosen a range of different
p from n0.3 to n0.6 for the fixed values of C and γ and
we measure the class-prediction accuracy. In the second sub-
experiment, we have improved the first sub-experiment by
choosing the best C and γ parameters for each p settings
and we measure the class-prediction accuracy. In the third
sub-experiment, we study the impact of p settings on total
training time and training time on heavy computational parts
of SVM algorithm as calculation of E, CF, ICF, Updating
variables and other parts. In addition, we compare the training
time regarding the original PSVM with the improved PSVM
and do a short study of how the changes that we did affect the
proportions. We conduct experiment 2 for webspam dataset
with 300000 samples and 254 features and covertype datasets
with 500000 samples and 54 features. We use both Gaussian
and Laplacian kernel functions in this experiment.

C. Experiment 3

Although using HPC tools is promising for higher perfor-
mance, however due to communication overheads choosing

180 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



appropriate number of computational powers such as num-
ber of computational nodes are still non-trivial. Based on
the Amdahl’s law , the maximum speed up of a program
using parallel computing with multiple processor is limited
regardless of the number of processors.

In experiment 3, we study the relation between the com-
plexities we found in earlier chapter and the actual values
when running the datasets. We run the experiment on im-
proved PSVM with 8, 16, 32, 64, 128, and 256 compu-
tational nodes and we measure the total training time and
the training time regarding E, CF, updating variable. For
clarity, we measure the proportional training time on heavy
computational parts of SVM algorithm as calculation of E,
CF, ICF, Updating variables and other parts and we also
measure the time for communication as the communication
in E and the communication for Updating variables.

VII. RESULTS

In this section we present the results of all three experi-
ments and the corresponding sub-experiments.

A. Experiment 1

The results of first experiment are presented in Tables I and
II. Table I represents the total time for training 59535 samples
with 8 features for cod-rna dataset. In the first experiment, we
choose a target class-prediction accuracy inside 10 percentage
point of the best accuracy obtained. The red cells in table I
shows that for the given C and γ the target accuracy is not
achieved. Table I shows no trends between different settings
of C and γ and the total training time. As the table shows the
lowest total training time is 8 times slower than the highest
total training time. The results of the first experiment on
covertype dataset is shown in table II and it represents the
total training time for 500000 samples with 54 features. In
table II the target accuracy for γ = 0.1, γ = 1 and γ = 10
is not achieved. As the table shows the lowest total training
time is 5.5 times slower than the highest total training time
and same as table I, we do not detect any trends between
C and γ and total training time. The kernel function that is
used during this experiment is Gaussian kernel.

TABLE I
NUMERICAL RESULTS OF TOTAL TRAINING TIME WITH RESPECT TO
DIFFERENT C AND γ SETTINGS FOR COD-RNA DATASET WITH 59535

SAMPLES AND 8 FEATURES USING GAUSSIAN KERNEL

Parameter γ=0.1 γ=1 γ=10 γ=100 γ=1000
C=0.1 3.33 1.83 1.28 1.25 0.73
C=1 1.87 1.23 1.06 0.79 0.68

C=10 9.2 1.09 1.07 0.77 0.7
C=100 9.24 1.35 1.59 1.13 1.04

C=1000 8.91 9.11 8.69 0.99 9.02
C=10000 8.99 8.95 9.18 1.27 8.98

C=100000 9.17 8.96 9.24 1.96 10.41

B. Experiment 2

Figure 1 is related to the first sub-experiment in experiment
2 and it shows the class-prediction accuracy with respect to

TABLE II
NUMERICAL RESULTS OF TOTAL TRAINING TIME WITH RESPECT TO

DIFFERENT C AND γ SETTINGS FOR COVERTYPE SCALED DATASET WITH
500000 SAMPLES AND 54 FEATURES USING GAUSSIAN KERNEL

Parameter γ=0.1 γ=1 γ=10 γ=100 γ=1000
C=0.1 332.45 300.26 225.48 241.24 133.39
C=1 85.25 96.55 90.96 137.25 95.99

C=10 42.81 55.24 77.88 104.35 106.94
C=100 52.27 63.12 77.5 71.31 135.23

C=1000 68.58 80.54 92.37 42.99 178.69
C=10000 88.54 137.79 171.65 141.97 415.62

C=100000 284.75 178.96 367.56 417.05 414.29

different column sizes. We have selected C and γ parameters
as C = 64 and γ = 2 mentioned by Hsieh, Si and Dhillon
[8] for webspam dataset. As figure 1 shows by increasing the
number of columns, p from n0.3 to n0.5, the class-prediction
accuracy degrades drastically, where for p =

√
n the accuracy

reaches it’s lowest value, by increasing the value of p more
than n0.5, the class-prediction accuracy increases. We observe
that the class-prediction accuracy is unstable by increasing
the number of columns and for the fixed values of C and γ
for all p columns.

r
0.3 0.35 0.4 0.45 0.5 0.55 0.6

A
cc

ur
ac

y

0.5

0.6

0.7

0.8

0.9

1
Accuracy with respect to p for C=64 and gamma=2

Fig. 1. The class-prediction accuracy with respect to different column
numbers (p) for webspam dataset with 300000 samples and 254 features
using C = 64, γ = 2 and Gaussian kernel function.

Figure 2 shows the second sub-experiment results for both
Gaussian and Laplacian kernel functions. This figure gives
a better insight that we can observe that replacing C and γ
parameters with the best C and γ for each r results in stable
class-prediction accuracy where r = log(p)/log(n).

 r
0.3 0.4 0.5 0.6

A
cc

ur
ac

y

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1
Accuracy with respect to r

Gaussian for web
Laplacian for web
Gaussian for cod
Laplacian for cod

Fig. 2. The class-prediction accuracy with respect to different r (r =
log(p)/log(n) ) for webspam and cod-rna datasets using best C and γ
for each r.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 181



Figure 3 shows that the best C and γ stays close when p
is changed. Figure 4 is related to the third sub-experiment
of experiment 2 and shows the elapsed training time for
E, CF, updating variables and other part of SVM algorithm
regarding different p settings in webspam dataset. The upper
sub-plot shows the elapsed time in seconds and the lower sub-
plot shows the proportion time of each parts. The increased
proportion of CF and E follows the results of the complexity
analysis earlier. The difference between original and the
improved PSVM can be seen in figure 5. As figure 5 shows
the elapsed time regarding parts E and CF decreases in
improved PSVM compared to the original PSVM when r
increases.

r
0.3 0.35 0.4 0.45 0.5 0.55 0.6

T
im

e 
(s

ec
on

ds
)

0

2

4

6
Eelapsed time for different parts of SVM algorithm

 Time for Miscellaneous
Time for E
Time for CF
Time for Updating

r
0.3 0.4 0.5 0.6

P
er

ce
nt

ag
e 

T
im

e

0

50

100
Percentage of elapsed time for different parts of SVM algorithm

E
CF
Update
Misc

Fig. 4. The elapsed time for different parts of SVM algorithm with respect
to different column numbers (p) for webspam dataset with 300000 samples
and 254 features using Laplacian kernel function and best C and γ for each
p.

r=0.3
Old    New

T
im

e 
in

 s
ec

on
ds

0

0.05

0.1

0.15

0.2

0.25

0.3

r=0.4
Old    New

0

0.5

1

1.5

2

2.5

3

r=0.5
Old    New

0

10

20

30

40

50

60

70

r=0.6
Old    New

0

500

1000

1500

2000

2500
 Time for Miscellaneous
Time for E
Time for CF

Fig. 5. The comparison between the original PSVM (Old) and the improved
PSVM (New) software with respect to r.

C. Experiment 3

Figure 6 shows the training time and the time for calcu-
lating E, CF, updating variables of the SVM algorithm with
respect to the number of computational nodes for covertype
dataset. The upper sub-plot shows how the corresponding
training time decreases by increasing the number of nodes
from 8 to 64 while increasing the number of nodes more
than 64 nodes does not show further improvement in training
time. The lower sub-plot gives a better insight about the
proportion of training time in E, CF, updating variables, ICF,

and other parts of PSVM algorithm for covertype dataset
along with communication time for E and communication
time for updating variables. With this dataset, 128 nodes were
enough to reach the threshold predicted in the complexity
analysis.

Number of Nodes
8 16 32 64 128 256

T
im

e 
(s

ec
on

ds
)

0

100

200

300
Elapsed time for different parts of SVM algorithm for covtype dataset

 Time for Miscellaneous
Time for E
Time for CF
Time for Updating

Number of Nodes
8  16 32 64 128 256

P
er

ce
nt

ag
e 

of
 T

im
e

0

20

40

60

80

100

E
E comunication
CF
Update
Update comunication
ICF
Misc

Fig. 6. The elapsed time for different parts of SVM algorithm with respect
to the number of nodes, N for covtype dataset with 500000 samples and 54
features. Note the large proportion of communication at 128 nodes.

Figure 7 shows the same experiment as above for URL
dataset. The upper sub-plot in figure 7 shows how the corre-
sponding training time decreases by increasing the number of
nodes from 8 to 128 while increasing the number of nodes
more than 128 shows not remarkable improvement in the
training time. The lower sub-plot gives a better insight about
the proportion of training time in E, communication in E,
CF, update variables, communications for updating variables,
ICF, and other parts of the PSVM algorithm for URL dataset.

Number of Nodes
8 16 32 64 128 256

T
im

e 
(s

ec
on

ds
)

0

200

400

600

800

1000
Elapsed time for different parts of SVM algorithm for URL dataset

 Time for Miscellaneous
Time for E
Time for CF
Time for Updating

Number of Nodes
8  16 32 64 128 256

P
er

ce
nt

ag
e 

of
 T

im
e

0

20

40

60

80

100

E
E comunication
CF
Update
Update comunication
ICF
Misc

Fig. 7. The elapsed time for different parts of SVM algorithm with respect to
the number of nodes N for URL dataset with 2150000 samples and 3231961
features.

VIII. CONCLUSION

In experiment 1, we study the impact of C and γ param-
eters on the training time considering the target accuracy.
We did not find any interesting trend in the training time by
changing these parameters. However this experiment helped
us to get better insight about experiment 2 where we ob-
served an improvement in the class-prediction accuracy while

182 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



0.1 

gamma

1   

Time for r=0.3

10  
100 

10001000

100 

10  

1   

0

5

0.1 

T
im

e

C
0.1 

gamma

1   

Time for r=0.4

10  
100 

10001000

100 

10  

1   

10

15

0.1 

T
im

e

C
0.1 

gamma

1   

Time for r=0.5

10  
100 

10001000

100 

10  

1   

200

0

400

0.1 

T
im

e

C
0.1 

gamma

1   

Time for r=0.6

10  
100 

10001000

100 

10  

1   

0

2000

4000

0.1 

T
im

e

C

0.1 

gamma

1   

Accuracy for r=0.3

10  
100 

10001000

100 

10  

1   

0.6

0.8

1

0.1 

A
cc

ur
ac

y

C
0.1 

gamma

1   

Accuracy for r=0.4

10  
100 

10001000

100 

10  

1   

0.5

1

0
0.1 

A
cc

ur
ac

y

C 0.1 

gamma

1   

Accuracy for r=0.5

10  
100 

10001000

100 

10  

1   

0.5

1

0
0.1 

A
cc

ur
ac

y

C 0.1 

gamma

1   

Accuracy for r=0.6

10  
100 

10001000

100 

10  

1   

0.5

1

0
0.1 

A
cc

ur
ac

y

C

Fig. 3. The training time and accuracy with respect to different column numbers (p) for cod-rna considering different C and γ settings for Laplacian
kernel.

increasing the number of columns. The result of experiment
2 showed that choosing appropriate value of p affects the
choice of C and γ, this is clearly shown by figure 1. The
common way to choose C and γ is done by cross-validation.
The result of experiment 2 showed that choosing the best
values for C and γ for special column size p is not necessarily
the best value for another p. The complexity analysis for CF
did predict a fast growth of calculation time for CF when p
is increased which could clearly be seen by experiment 2. In
figure 5, the original software was tested against the improved
software for different p and showed 4 times improvement of
performance by our modification on PSVM at large p because
of the CF calculation. Already at smaller p we got an 20%
improvement on the calculation of E. In experiment 3, we
showed the existence of a threshold between the training
time and the number of cores as predicted in a complexity
analysis.

IX. ACKNOWLEDGEMENTS

Our experiments were using the Triolith system from Na-
tional Supercomputer Center (NSC) at Linkoping University.

REFERENCES

[1] A fast parallel optimization for training support vector machine. In
Petra Perner and Azriel Rosenfeld, editors, Machine Learning and
Data Mining in Pattern Recognition, volume 2734 of Lecture Notes in
Computer Science. 2003.

[2] scikit-learn developers (BSD License) 2010 2014. RBF SVM
parameters. http://scikit-learn.org/stable/auto examples/svm/plot rbf
parameters.html, 2015.

[3] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cam-
bridge university press, 2004.

[4] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support
vector machines. ACM Transactions on Intelligent Systems and
Technology, 2:27:1–27:27, 2011.

[5] Chih-Chung Chang, Chih-Jen Lin, and Rong-En Fan. LIBSVM data:
Classification, regression, and multi-label. http://www.csie.ntu.edu.tw/
∼cjlin/libsvmtools/datasets/, 2015.

[6] Fu Chang, Chien-Yang Guo, Xiao-Rong Lin, and Chi-Jen Lu. Tree
decomposition for large-scale SVM problems. The Journal of Machine
Learning Research, 11:2935–2972, 2010.

[7] Asdrúbal López Chau, Xiaoou Li, and Wen Yu. Support vector
machine classification for large datasets using decision tree and fisher
linear discriminant. Future Generation Computer Systems, 36:57–65,
2014.

[8] Cho-Jui Hsieh, Si Si, and Inderjit S Dhillon. A divide-and-
conquer solver for kernel support vector machines. arXiv preprint
arXiv:1311.0914, 2013.

[9] Chih-Wei Hsu, Chih-Chung Chang, and Chih-Jen Lin. A practical
guide to support vector classification, 2003.

[10] T. Joachims. Making large-scale SVM learning practical. LS8-
Report 24, Universität Dortmund, LS VIII-Report, 1998.

[11] M. Lichman. UCI machine learning repository. http://archive.ics.uci.
edu/ml, 2013.

[12] Chih-Jen Lin. On the convergence of the decomposition method for
support vector machines. Neural Networks, IEEE Transactions on,
12(6):1288–1298, 2001.

[13] Gaëlle Loosli and Stéphane Canu. Comments on the ”core vector
machines: Fast SVM training on very large data sets”. J. Mach. Learn.
Res., 8:291–301, May 2007.

[14] S. Maleki, Yaoqing Gao, M.J. Garzaran, T. Wong, and D.A. Padua.
An evaluation of vectorizing compilers. In Parallel Architectures and
Compilation Techniques (PACT), 2011 International Conference on,
pages 372–382, Oct 2011.

[15] Sanjay Mehrotra. On the implementation of a primal-dual interior
point method. SIAM Journal on optimization, 2(4):575–601, 1992.

[16] John Platt. Fast training of support vector machines using sequential
minimal optimization. Advances in kernel methodssupport vector
learning, 3, 1999.

[17] P.N. Tan, M. Steinbach, and V. Kumar. Introduction to Data Mining.
Pearson International Edition. Pearson Addison Wesley, 2006.

[18] Tamás Terlaky. Interior point methods of mathematical programming,
volume 5. Springer Science & Business Media, 1996.

[19] Luca Zanni, Thomas Serafini, and Gaetano Zanghirati. Parallel soft-
ware for training large scale support vector machines on multiprocessor
systems. The Journal of Machine Learning Research, 7:1467–1492,
2006.

[20] Kaihua Zhu, Hao Wang, Hongjie Bai, Jian Li, Zhihuan Qiu, Hang
Cui, and Edward Y. Chang. Parallelizing support vector machines on
distributed computers. In J.C. Platt, D. Koller, Y. Singer, and S.T.
Roweis, editors, Advances in Neural Information Processing Systems
20, pages 257–264. Curran Associates, Inc., 2008.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 183



The Support of an Experimental OpenCL Compiler on HSA
Environments

Chun-Chieh Yang, Shao-Chung Wang, Chou-Chuan Chen and Jenq-Kuen Lee
Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan

{jet, scwang, ccchen}@pllab.cs.nthu.edu.tw
jklee@cs.nthu.edu.tw

Abstract— In recent years, with the increasing computing
power and programmability on GPU, GPU has become
an important role on hardware accelerator. Heterogeneous
System Architecture (HSA) announced by HSA Foundation
is an approach to benefit both CPUs and GPUs advantages.
Open Computing Language (OpenCL) is one of the well-
known programming frameworks for parallel computing
on heterogeneous architecture. In this paper, an OpenCL
framework is designed and implemented on HSA platform.
An OpenCL compiler for HSA uses low-level virtual ma-
chine (LLVM) and an OpenCL runtime extends Portable
Computing Language (PoCL) framework are built. PoCL
is a portable OpenCL implementation for different parallel
hardwares. Furthermore, HSA-related tools released by HSA
Foundation are also integrated in our framework. Experi-
mental results indicate that our framework provides enough
features to support for advanced research.

Keywords: HSA, OpenCL, Compiler, Runtime, LLVM

1. Introduction
To satisfy the performance and energy consumption con-

straints, heterogeneous multi-core architecture has become
the popular design on many devices. Especially, GPUs
has become a popular hardware accelerator with increasing
programmability and computing power. Many applications
are benefited from parallel execution, such as medical image
[1], bioinformatics [2], and fluid dynamics [3].

Recently, Heterogeneous System Architecture (HSA) has
been widely discussed [4], [5]. HSA is announced by HSA
Foundation which is an approach to benefit advantages of
both CPUs and GPUs [6]. HSA can integrate properties of
CPUs, GPUs, and other various processing units. In HSA,
CPUs and GPUs share the same Shared Virtual Memory
(SVM). They could directly access data on other devices
by using pointers and user applications could dispatch the
kernels to GPU without data movement overhead. HSA uti-
lizes the computing ability of GPUs to dramatically increase
performance. Furthermore, it also provides low level runtime
API [7] to manage tasks, resources, and Heterogeneous
System Architecture Intermediary Language (HSAIL) that is
a LLVM intermediary representation (IR) to represent par-
allel kernel from high level language like Open Computing

Language (OpenCL), Open Multi-Processing (OpenMP) and
even Java.

However, it is not easy to program on heterogeneous
architecture. Many programming frameworks are proposed
to solve this issue such as Halide [8], C++ AMP [9],
OpenACC [10], and APARAPI [11]. OpenCL is one of the
famous framework for heterogeneous and parallel computing
[12], [13], [14]. It is an open standard maintained by
Khronos Group [15], and designed to run on different kinds
of parallel hardware resources like CPU, GPU, DSP, and
FPGA. OpenCL involves host program and kernel code.
Programmers write the host program by using some runtime
APIs to get the information of computing devices, allocate
memory buffer, create parallel kernel, and dispatch tasks.
Kernel code executed in parallel is written by OpenCL
C Language with some C99 extension such as memory
qualifier and vector type.

In this paper, an OpenCL framework is designed and
implemented on HSA platform. OpenCL C compiler and
runtime that support OpenCL 1.2 on a HSA platform are
built. Our compiler supports some OpenCL feature exten-
sions, such as memory qualifiers and vector operations. The
compiler translates the OpenCL kernel into HSAIL and the
HSAIL is encoded into BRIG binary code format by using
the tool released from HSA Foundation [16]. Furthermore,
Portable Computing Language (PoCL) is used to build our
OpenCL runtime [17]. PoCL is an open source OpenCL
framework that targets various parallel hardware resources.
In our framework, a HSA GPU device is added in the PoCL
device list, and a bridge is written between HSA runtime
APIs and OpenCL Runtime APIs that handle some special
HSA features for OpenCL running on HSA GPUs. For
example, the runtime arranges kernel arguments to execute
kernels and dispatches kernels by filling the packet of Archi-
tected Queuing Language (AQL). Furthermore, dynamic and
local memory usages from the OpenCL program are handled
to work on HSA platform

In our experiments, OpenCL programs from AMD SDK
2.8 benchmarks are executed on AMD HSA-enabled proces-
sor [18]. From experimental results, the execution time of
our framework of the OpenCL program is better than that of
HSA-HLC-Stable compiler released by HSA Foundation, but
is worse than the OpenCL compiler. The execution time of

184 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



Application

OpenCL

App

JAVA

App

OpenMP

App

Opencl

Runtime

JAVA

Runtime

OpenMP

Runtime

Runtime

HSA Runtime
• Low Level Runtime APIs

• HSAIL Finalizer

• AQL – Architecture Queuing Language

HSA Platform hUMA

CPU GPU
hQ

ACC
hQ

Fig. 1: HSA Software Architecture

our framework of the OpenCL kernel is better than the other
two compilers in some applications, but is worse than in
some other applications. Our framework successfully passes
some benchmarks and is enough for advanced research such
as vector operations and memory layout optimizations on
OpenCL kernels and HSA task scheduling between CPUs
and GPUs.

The remainder of this paper is organized as follows.
Section 2 presents details on HSA and OpenCL. Section
3 describes the design and implementation details, and
some experimental results are shown in section 4. Finally,
conclusions and future work are described in section 5.

2. Overview of HSA and OpenCL
In this section, some introductions of HSA and OpenCL

are introduced. Our compiler and OpenCL runtime is de-
veloped by using technologies of HSA and OpenCL. Some
related properties of them will be introduced.

2.1 HSA Overview
The design goal of HSA can be shown in Fig. 1. The

two hardware technologies Heterogeneous Uniform Mem-
ory Access (hUMA) and Heterogeneous Queuing (hQ) are
introduced in HSA. hUMA can make both CPUs and GPUs
share a single memory space that GPUs can directly access
CPU memory addresses include reading and writing data and
CPUs also read and write at the same time. Traditionally,
users should view the CPUs and GPUs memory as com-
pletely separate memory even through CPUs and GPUs are
integrated into the same chip. hQ lets CPUs place tasks
of GPUs directly into GPU task queue without OS help
and GPUs can also place its tasks into the GPU or CPU
queue to be dispatched. hQ also uses Architecture Queuing
Language (AQL) to define a standard Queuing Format. All

__kernel void vec_add (
__global float *a,
__global float *b,
__global float *c,
const unsigned int n)

{
int id = get_global_id(0);

c[id] = a[id] + b[id];
}

Fig. 2: OpenCL Sample

HSA agents should be described as AQLs so that the agent
can directly dispatch tasks into different HSA component
hardware queues without software translation.

To obtain the benefit from the HSA features, HSA also
provides a middle layer with low level runtime APIs and
HSAIL to make high level heterogeneous language to lower
into this layer. Therefore, high level heterogeneous language
should have its compiler to translate the program into HSAIL
and its runtime should be able to interact with HSA runtime.
At execution time, the HSA runtime uses these APIs to
dispatch tasks and manage resources. HSA runtime also
invokes HSA Finalizer to translate the HSAIL into target
machine code.

2.2 OpenCL Overview
OpenCL provides a programming framework to accelerate

applications with tasks and data parallelism. OpenCL has
C99-extended programming language, named as OpenCL
C, for writing the kernel to run in parallel. OpenCL C
involves some qualifier and vector operations to extend and
built-in functions. Figure 2 is the simple OpenCL Kernel
code. The __kennel qualifier identifies this kernel code that
runs on OpenCL computing devices and is identified as
an entry point. The memory qualifier __global means to
place variables on global memory. The built-in function
get_global_id() returns the thread id and the array uses this
id as an index to access the data in the sample program.

In addition to the kernel code, programmers also must
write the host program with OpenCL runtime APIs to control
the task how to run on computing devices. For example, the
kernel code is executed by many parallel threads on GPU
or working-items in OpenCL specifications. Programmers
must decide how these threads are divided into groups
in host program. The threads in different groups can run
independently and the threads in the same group can be syn-
chronized during execution. Programmers also should decide
the kernel code execution order, synchronization between
kernels, memory allocations, and kernel code compilations.
All of the above actions should be interacted with HSA

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 185



PoCL-Based
OpenCL Runtime

HSA-Runtime

HSA-Driver

OpenCL
Host program

OpenCL Kernel

LLVM-Based 
HSAIL Compiler

.HSAIL(Brig) File

HSA Device

Fig. 3: OpenCL Flow on HSA

Kernel.cl Clang Kernel.ll llc

Kernel.hasilhsailasmKernel.brig

Fig. 4: OpenCL Compilation Flow

runtime and some information should be passed to HSA
runtime for packeting in AQL format.

3. The Proposed Framework with Com-
piler and Runtime

In this section, the proposed framework with compiler and
runtime will be explained. Figure 3 shows our OpenCL flow
on HSA. First, OpenCL host program runs on our PoCL-
based OpenCL runtime. Runtime will invoke our LLVM-
Based HSAIL compiler to compile OpenCL kernel into
HSAIL and also invoke HSAIL assembler to translate the
HSAIL into BRIG binary file. Our OpenCL runtime is built
on the HSA runtime and driver released by HSA Foundation.
The detailed compiler and runtime flow is described in the
following.

3.1 The Prototype Compiler for OpenCL to
HSAIL

Currently, most of OpenCL compilers are implemented by
LLVM[19]. Khoronos also define OpenCL portable IR, Stan-
dard Portable Intermediate Representation (SPIR), which
is based on LLVM IR with some specific annotations for
OpenCL C extension. Therefore, our compiler uses Clang as
front end and LLVM llc as backend. Figure 4 is the proposed
OpenCL to HSAIL compilation flow. The OpenCL kernel
code is converted to SPIR by Clang and then uses LLVM
llc to compile bitcode to HSAIL. Finally, the hsailasm tool
which is released by HSA Foundation is utilized to convert
HSAIL code into BRIG format.

version 1:0:$full:$small;

kernel &__OpenCL_vec_add_kernel(
kernarg_u32 %arg_val0,
kernarg_u32 %arg_val1,
kernarg_u32 %arg_val2)

{
@__OpenCL_vec_add_kernel_entry:

workitemabsid_u32       $s0, 0;
shl_s32         $s0, $s0, 2;
ld_kernarg_u32  $s1, [%arg_val0];
add_s32         $s1, $s1, $s0;
ld_global_u32   $s1, [$s1];
ld_kernarg_u32  $s2, [%arg_val1];
add_s32         $s2, $s2, $s0;
ld_global_u32   $s2, [$s2];
add_s32         $s1, $s2, $s1;
ld_kernarg_u32  $s2, [%arg_val2];
add_s32         $s0, $s2, $s0;
st_global_u32   $s1, [$s0];
ret;

};

Fig. 5: A Sample Code of HSAIL

Our compiler has already supported some OpenCL fea-
tures, such as kernel/memory qualifiers and some vector
operations. Figure 5 is the simple HSAIL code converted
from OpenCL codes shown in Fig. 2 by using our compiler.
The __kernel qualifier for function vec_add is annotated
in LLVM IR which is used to annotate kernel for function
vec_add in HSAIL and kernarg for vec_add parameters. For
the same reason, ld_global_xx and st_global_xx instructions
are generated because the loaded and stored data is anno-
tation with __global memory qualifier in OpenCL kernel.
The built-in functions in OpenCL are mostly supported by
intrinsic functions.

For example, the built-in function get_global_id(0) in
Fig. 2 is directly translated to workitemabsid_u32 in Fig. 5.
Vector accesses and some basic vector arithmetic instruc-
tions are also supported that makes the generated code
more efficiently. Furthermore, if vector load instructions are
supported, the vector data can be loaded directly instead
of generating four scalar load instructions. As shown in
Fig. 6, in the dark and light gray parts, four ld_global_u32
instructions can be merged into one ld_v4_global_u32. In
this situation, the hardware does not load 32-bit data four
times but directly load 128-bit data once.

3.2 PoCL-Based OpenCL Runtime for HSA
PoCL is used to build our OpenCL runtime for HSA.

PoCL is one of the open sources implemented for OpenCL
standard that has already supported different hardware such
as homogeneous muti-core X86/ARM and VLIW-style TTA
processors. PoCL has already passed some OpenCL bench-
marks and been designed easily to adapt to new targets and

186 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



ld_kernarg_u64  $d0, [%b];
ld_global_u32   $s0, [$d0];
ld_global_u32   $s1, [$d0+4];
ld_global_u32   $s2, [$d0+8];
ld_global_u32   $s3, [$d0+12];
ld_kernarg_u64  $d1, [%a];
ld_global_u32   $s4, [$d1];
ld_global_u32   $s5, [$d1+4];
ld_global_u32   $s6, [$d1+8];
ld_global_u32   $s7, [$d1+12];

ld_kernarg_u64  $d0, [%b];
ld_kernarg_u64  $d1, [%a];
ld_v4_global_u32 ($s0, $s1, $s2, $s3), [$d0];
ld_v4_global_u32 ($s4, $s5, $s6, $s7), [$d1];

Fig. 6: A Simple HSAIL of Vector Load

Fig. 7: The Runtime Flow between OpenCL and HSA

devices. PoCL also uses the LLVM as a kernel compiler.
Therefore, it is a good choice for building our OpenCL
runtime for HSA by using PoCL.

Runtime flows of both OpenCL and HSA are similar. They
need to request equipment, set work queues, load in memory
addresses, compile kernel codes, forward parameters, and
execute kernel codes. After executing the kernel codes,
host programs release resources used. Figure 7 shows the
relationship of runtime behaviors between the OpenCL and
HSA.

When running an OpenCL host program, it should initial-
ize an environment. The environment includes a platform
that provides devices, which are supplied by hardware ven-
dors or some open source projects, for kernels and OpenCL
contexts to run. In a HSA host program, users also need
to initialize HSA runtime first and get a HSA device by
using HSA agent iteration functions. According to the user

Table 1: AQL Packet Correspondence

AQL Packet Member Source

header HSA_PACKET_TYPE_DISPATCH

dimensions work_dim

workgroup_size_x local_work_size[0]

workgroup_size_y local_work_size[1]

workgroup_size_z local_work_size[2]

grid_size_x global_work_size[0]

grid_size_y global_work_size[1]

grid_size_z global_work_size[2]

private_segment_size HSA code descriptor

group_segment_size HSA code descriptor + dynamic local size

kernel_object_address HSA code descriptor

kernarg_address HSA kernel argument allocated address

completion_signal HSA signal creation API

assignment in the host program, runtime can determine
which devices are used. In our implementation, if the device
type is CPU, a PoCL runtime API initializes device pthread
that is the original device of PoCL and the kernel will be
translated to pthread model in the build steps. If the device
type is GPU or default, a Pocl runtime API initializes the
HSA device. If the device type is ALL, both GPU and CPU
devices are initialized. Besides, HSA runtime APIs also are
invoked to obtain the device feature and setup some OpenCL
device information.

Then, corresponding to OpenCL standards, users need
to create a queue and program object for communication
between hosts and devices. If the command queue is for
HSA GPU, it also needs to invoke HSA runtime APIs to
create HSA queue.

The OpenCL kernel code object is created by using opencl
creating APIs, and different OpenCL APIs are used to
store the OpenCL kernel source file or BRIG files. If the
input file is OpenCL kernel code, kernel files are compiled
to BRIG files as introduced in the compiler flow. After
compiling, the BRIG file is loaded as a BRIG module and the
module becomes the member of both HSA program object
and OpenCL program object. Finally, the BRIG module is
finalized at OpenCL kernel creating APIs. In this step, the
kernel name can be obtained from the parameters with API
and is used to find the correspondent symbol offset which
must be filled in a finalization list. The finalizer finalizes the
kernel object in the finalization list one by one.

At OpenCL kernel argument setting and kernel execution
stage, the kernel argument for HSA should be initialized
and the HSA agent packet should be filled in AQL prepared
for dispatching kernel to execute. Table 1 illustrates the
HSA dispatch packet members and the source. Header
identifies the packet type. There are three types of the packet
type, DISPATCH, AGENT_DISPATCH, and BARRIER. DIS-
PATCH is used to dispatch the kernel from a host to a device,

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 187



and AGENT_DISPATCH is used to dispatch kernel from
a device to a device. This feature can be used to support
the OpenCL 2.0 device feature. BARRIER is used to delay
packets for describing packet dependencies.

Dimensions, grid_size and workgroup_size correspond to
work_dim, global_work_size and local_work_size which can
be obtained from OpenCL APIs used by defining the number
of thread creation. Private and Group segment size can be
queried from HSA code descriptor acquired from finalizing
the BRIG module. The group segment size only indicates
static group size which is the total variable declaration size
with __local qualifier in the OpenCL kernel code. The dy-
namic group size will be acquired from the OpenCL kernel
argument setting API. Kernel_object_address is used to point
to the address where the kernel function resides, and it can be
queried from the HSA code descriptor. In the HSA runtime
specification, a user should find a block of memory called
as region that can be used in kernel arguments, and allocate
the region as the place to store kernel arguments by using
the HSA memory allocation API. The API would output the
start address of the block of memory, and the address should
be passed to Kernelarg_address. Complete_signal is used to
identify whether the kernel dispatched finishes executing or
not. A HSA signal object is created by using the HSA signal
API and is passed to complete_signal.

In our kernel argument initialization mechanism, the ar-
gument buffer is allocated and initialized based on different
types. The type of kernel arguments is accessed by using
the kernel argument descriptor which is built when a user
invokes the kernel creating API, and an argument structure
array is generated that includes size and value obtained
from the kernel argument setting API. Then, a buffer size is
created which is queried from kernelarg_segment_size, and
the required kernel argument data is copied to the buffer
one by one. A pointer is used to point to the start of the
current argument data that should be copied. If the type of
an argument that gets from the kernel argument descriptor
is a local type, the group_segment_size should be copied as
a pointer to the buffer instead of a null pointer created by
users.

Dynamic group size also is added into
group_segment_size, because group memory is divided
into two parts according to HSA runtime specifications,
static group memory and dynamic group memory. Static
group memory is allocated from address 0x0 to the size
group_segment_size, and dynamic group memory starts
from group_segment_size. The amount of group memory
size is obtained when a local qualifier argument is accessed.
In terms of structure types, OpenCL and HSA access
structure arguments in different ways. In OpenCL, the
structure argument is regarded as a block of continuous
memory. However, in HSA, the structure argument is
regarded as a pointer. Therefore, the pointer of structure
argument is copied instead of the total structure argument

such as scalar type. After finishing initializing the kernel
argument, all of the buffer data is copied to the address
kernarg_address in the AQL packet for dispatching.

4. Evaluation
In this section, some experimental results are performed

to show the performance of our proposed compiler, HSAIL-
HLC-Stable compiler, and OpenCL runtime on HSA plat-
form.

4.1 Environment
AMD Kaveri A10-7850K APU was used as our experi-

mental platform which includes one 4-core CPU and GPU
and is the first HSA-enabled processor. The platform ran
Ubuntu 14.04.2 LTS and AMD HSA runtime and driver
1.0 version released by HSA Foundation were installed.
Our OpenCL to HSAIL compiler is built on LLVM 3.3
and OpenCL runtime is built on PoCL 0.8. Moreover, our
benchmarks are selected from AMD APP SDK 2.8.

4.2 Experimental Results
In our experiments, three different OpenCL frameworks

were compared. One is current AMD official OpenCL
framework from AMD GPU driver Catalyst Omega 14.12.
Another one uses our PoCL-based OpenCL runtime but uses
HSAIL-HLC-Stable compiler released by HSA Foundation.
The other framework uses our OpenCL runtime and com-
piler. Figure 8 illustrates the comparison of execution time
between three frameworks. As shown in Fig. 8, the execution
time of Pocl-based Runtime with the proposed compiler is
faster than that of AMD official OpenCL framework in some
benchmarks, such as BitonicSort and FloydWarshall.

However, most of the execution time of the proposed
compiler is longer than AMD official OpenCL framework. It
means that our framework still can be improved in the exe-
cution time. Although the execution time of our framework
in most applications are more than OpenCL runtime, the
execution time of our framework decreased more than 70%
when comparing with HSAIL-HLC-Stable. This is because
the compilation time of HSAIL-HLC-Stable is too long for
performing compiler optimizations. Therefore, the execution
time of the kernel compiled by HSAIL-HLC-Stable is faster
in most of applications as shown in Fig. 9 and Table 2.

Figure 9 shows the comparison of kernel execution time
between three frameworks and Table 2 lists the kernel exe-
cution time. The execution time of the kernel generated by
our proposed compiler is better than AMD official OpenCL
framework but worse than HSAIL-HLC-Stable. From the
above two experiments, our proposed compiler has ability
to do advanced research about HSA compiler and runtime
optimizations.

188 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



Fig. 8: Comparison of OpenCL Program Execution Time

Table 2: The List of each Kernel Execution Time(ms)

OpenCL HSA-HLC-Stable Our Framework
BinarySearch 0.154 0.075 0.085
BitonicSort 1.272 1.128 1.117
DwtHaar1D 0.319 0.146 0.192

FastWalshTransform 0.42 0.294 0.275
FloydWarshall 54.105 23.049 19.388

MatrixMultiplication 0.185928 2.719 0.265
MatrixTranspose 0.283 0.214 0.255

NBody 5.868 1.509 3.872
RecursiveGaussian 52.321 106.35 23.298

Reduction 0.162 0.089 0.116

5. Conclusions and Future Work
In this paper, an OpenCL framework is built on the HSA

Platform. Our OpenCL to HSAIL compiler is built based
on LLVM and runtime is based on PoCL. Our proposed
compiler supports some OpenCL feature extensions, such
as memory qualifier and vector operation. Our proposed
compiler translates the OpenCL kernel code into HSAIL and
the HSAIL is encoded into BRIG binary format by using
the tool released from HSA Foundation. Therefore, a HSA
GPU device is added in the PoCL device list, and some
special HSA features are handled for OpenCL running on
HSA GPUs, such as filling agent packet with AQL for kernel
dispatching.

From experimental results, our proposed framework can
pass some benchmarks from AMD APP SDK. Our proposed
framework supports enough OpenCL features for advanced
research, and is planned to support for more OpenCL
features for performing some optimizations on compiler

Fig. 9: Comparison of OpenCL Kernel Execution Time

and runtime, such as performing vector and memory layout
compiler optimizations on OpenCL kernels, and HSA task
scheduling between CPUs and GPUs.

Acknowledgment
This research is supported in part by the Ministry of Sci-

ence and Technology of Taiwan, the Ministry of Economic
Affairs of Taiwan, and MediaTek Inc.

References
[1] R. Shams, P. Sadeghi, R. A. Kennedy, and R. I. Hartley, “A survey

of medical image registration on multicore and the gpu,” Signal
Processing Magazine, IEEE, vol. 27, no. 2, pp. 50–60, 2010.

[2] J.-S. Varré, B. Schmidt, S. Janot, and M. Giraud, Manycore high-
performance computing in bioinformatics. chapter, 2010, vol. 8.

[3] Y. Wang, A. Malkawi, Y. Yi, and T. C. Center, “Implementing cfd
(computational fluid dynamics) in opencl for building simulation,”
Proceedings of The 12th International Building Performance Simula-
tion (Building Simulation 2011), 2011.

[4] “HSA Foundation,” http://www.hsafoundation.com/.
[5] P. Rogers and A. FELLOW, “Heterogeneous system architecture

overview,” in Hot Chips, 2013.
[6] L. T. Su, “Architecting the future through heterogeneous comput-

ing,” in Solid-State Circuits Conference Digest of Technical Papers
(ISSCC), 2013 IEEE International. IEEE, 2013, pp. 8–11.

[7] “HSA Runtime Specification 1.0,” http://www.hsafoundation.com/
standards/.

[8] J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand, and
S. Amarasinghe, “Halide: a language and compiler for optimizing par-
allelism, locality, and recomputation in image processing pipelines,”
ACM SIGPLAN Notices, vol. 48, no. 6, pp. 519–530, 2013.

[9] “Shevlin Park: Implementing C++ AMP with Clang/LLVM and
OpenCL,” http://llvm.org/devmtg/2012-11/Sharlet-ShevlinPark.pdf.

[10] “OpenACC,” http://www.openacc.org/.
[11] “aparapi,” https://code.google.com/p/aparapi/wiki/UsersGuide.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 189

http://www.hsafoundation.com/
http://www.hsafoundation.com/standards/
http://www.hsafoundation.com/standards/
http://llvm.org/devmtg/2012-11/Sharlet-ShevlinPark.pdf
http://www.openacc.org/
https://code.google.com/p/aparapi/wiki/UsersGuide


[12] M. J. Dinneen, M. Khosravani, and A. Probert, “Using opencl for
implementing simple parallel graph algorithms,” in Proceedings of
the 17th annual conference on Parallel and Distributed Processing
Techniques and Applications (PDPTA’11), part of WORLDCOMP,
vol. 11, 2011, pp. 1–6.

[13] A. Munshi, “Opencl-beyond programmable shading course.” SIG-
GRAPH, 2008.

[14] M. Xin, H. Li, and J. Lu, “A research of mapreduce with gpu
acceleration,” in PDPTA, vol. 12, 2012, pp. 625–631.

[15] “Khronos,” https://www.khronos.org/.
[16] “HSA Programmer Reference Manual Specification 1.0,” http://www.

hsafoundation.com/standards/.
[17] P. Jääskeläinen, C. S. de La Lama, E. Schnetter, K. Raiskila, J. Takala,

and H. Berg, “pocl: A performance-portable opencl implementation,”
International Journal of Parallel Programming, pp. 1–34, 2014.

[18] “Accelerated parallel processing (app) sdk. Ad-
vanced Micro Devices Inc. ,” http://developer.
amd.com/tools-and-sdk/heterogeneous-computing/
amd-accelerated-parallel-processing-app-sdk.

[19] C. Lattner and V. Adve, “Llvm: A compilation framework for life-
long program analysis & transformation,” in Code Generation and
Optimization, 2004. CGO 2004. International Symposium on. IEEE,
2004, pp. 75–86.

190 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |

https://www.khronos.org/
http://www.hsafoundation.com/standards/
http://www.hsafoundation.com/standards/
http://developer.amd.com/tools-and-sdk/heterogeneous-computing/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdk/heterogeneous-computing/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdk/heterogeneous-computing/amd-accelerated-parallel-processing-app-sdk


Modeling Parallel Applications for Scalability Analysis: An
approach to predict the communication pattern

Javier Panadero1, Alvaro Wong1, Dolores Rexachs1 and Emilio Luque1
1Department of Computer Architecture and Operating System (CAOS),

University Autonoma of Barcelona, Spain

javier.panadero@caos.uab.es, alvaro.wong@caos.uab.es, dolores.rexachs@uab.es, emilio.luque@uab.es

Abstract— The performance of message-passing applica-
tions varies depending on the parallel system, causing poten-
tial inefficiencies when its number of processes increases. By
this reason, it is critical to predict the application behavior
before executing it, in order to use the system efficiently. We
propose a methodology that allows us to predict the appli-
cation scalability behavior in a specific system, providing
information to select the most appropriate resources to run
the application. The methodology strives to use a bounded
analysis time, and a reduced set of resources. This paper
presents the general methodology, focusing on validating
the step of the methodology concerning to the generation
of scalability communication model. We can predict the
evolution of the communication pattern using a reduced set
of resources. Analyzing from 16 to 256 processes, we can
predict the communication pattern for 4,096 processes.

Keywords: Modeling MPI applications, Application Scalability,

Communication pattern

1. Introduction
With the advent of multicore and the constant hardware

evolution, High Performance Computing (HPC) clusters

have increased the number of cores significantly [1]. The

users of these systems want to get the maximum benefit

from this large number of cores, scaling their applications.

To achieve an efficient use of these HPC systems using a

large number of cores, a point to consider before executing

an application is to know its performance in the system. It

is known that using more resources does not always imply

a higher performance. The lack of this information may

produce an inefficient use, resulting in not achieving the

expected speedup.

Parallel applications are composed of a set of phases,

which are segments of code delimited by communications

events, that are repeated throughout the application [2].

These phases were written in the application code using

specific communicational and computational patterns, which

follow behavior rules. When the application increases the

number of processes, the number of phases remains con-

stant, but its patterns change their behavior following their

behavior rules, being functionally constant. To obtain these

phases, we use the PAS2P tool [3], which identifies the

application phases and allows us to create the application

signature. As is shown in fig. 1, the signature only contains

the relevant application phases and their repetition rates

(weights). Therefore, it allows us to cover approximately

97% of the total application code, in about 1% of the

application execution time.
We propose a methodology to analyze and predict the

strong scalability [4] behavior for message-passing applica-

tions on a given system, by running a set of small-scale

signatures. It strives to use a bounded analysis time, and a

reduced set of resources. Moreover, the methodology could

also be useful for scheduling and code optimization.
The methodology focuses on characterizing and ana-

lyzing the communication and computational patterns of

each phase, in a transparent way (without analyzing and

modifying the source code), from a set of executions for

a small-scale signatures, in order to model general behavior

rules, to build the Scalable Logical Trace (STL), which is

machine independent, depending on the way in which the

application was developed. The STL will be generated for a

N number of processes, and it will be used in the future, to

predict the communication and computational time, in order

to obtain the application execution time.
We present an overview of the methodology, focusing on

explain in detail the scalability communication model, to

predict the evolution of the communication pattern (spatial

and volume parameters) of each phase as the application

scales. In a previous paper [5], the key ideas of the method

were presented. In this study, the whole procedure and

its algorithms are explained in detail. In order to validate

the method, we executed from 16 to 256 processes and

we predict the communication pattern (Spatial and volume

parameters) for 4,096 processes, which is validated with the

real communication pattern obtained with PAS2P.
This paper is organized as follows: Section II presents the

related work, Section III presents the proposed methodology,

Section IV presents the scalability communication model,

Section V presents experimental validation and finally Sec-

tion VI, the conclusions and future work.

2. Related Work
Similar works to our approach have been presented in the

literature. Wu et al. [6] generate the application communi-

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 191



Fig. 1: Relevant phases that represent the signature.

cation trace for a large number of nodes, by extrapolating

from a set of smaller traces. Their methodology is focused

on SPMD (Single Program, Multiple Data) applications

with stencil/mesh topology. Our proposal differs from this

work, because it covers a wide range of MPI application,

not only SMPD applications. Zhai et al [7] present the

tool FACT, which collect MPI communication traces and

extract application communication patterns through program

slicing. This tool uses a set of code analysis techniques to

generate a program slice that only contains the variables and

code sections related to MPI events, and then executes the

program slice to acquire communication traces. This tool

allows to predict the communication pattern for a specific

number of processes, our methodology differs because we

execute a set of small-scale signatures to predict evolution

of the communication pattern as the application scales.

There are other works based on analytical regression

and machine learning methods, from executions for small-

cores. Barnes et al [8] propose studying the scalability using

regression models, isolating computation and communica-

tion to predict the application performance. Ipek et al [9]

present a different approach based on multilayer neural

networks. From a training set of the application executions,

the application model is created automatically. This approach

is interesting for its ease of use and its obliviousness to

details of application internals. These works are based on the

input parameter space to obtain the regression models and

extrapolate its behavior. Our methodology focuses on obtain-

ing the general behavior rules for each relevant application

phase, to extrapolate its behavior to predict the application

performance.

3. Proposed methodology
The main goal of the methodology is to analyze and pre-

dict the strong scalability behavior for parallel applications

on a given system, using as input a limited set of small-scale

signatures, as is shown in fig. 2.

The methodology is made up of three steps: Application

characterization, Generation of the logical application model

and Performance prediction.

As we mentioned before, the parallel applications are

typically composed of patterns of computation and com-

munication that are repeated throughout the application.

These patterns are grouped in phases, which compose the

application signature. The number of phases remains con-

stant when the number of processes increases, but their

patterns change their behavior following behavior rules. The

objective of the characterization step is to obtain information

about the communication and the computation patterns of

each phase, to model the general behavior rules, which

will be used to predict their behavior, as the number of

the application processes increases. The methodology is

restricted to applications where the communication pattern

follows deterministic behavior rules.

To obtain the predicted application execution time, we

carry out a set of signature executions for small-scale, which

will be analyzed to obtain information from each phase.

When the signature is executed in the system, it generates

a trace file per process, which contains information of each

phase. The trace provides information about the phase id,

the type of MPI primitive, the source and destination of

the communication, the communication volume in bytes, the

computational time in nanoseconds and finally, the number

of instructions for the computational time.

Once the phases have been characterized, their commu-

nication pattern, the computational pattern and the weight

of each phase are analyzed and modeled to generate the

general behavior rules, in order to construct the Scalable

Logical Trace (STL) for a N number of processes. The

input parameters of the general behavior rules will project

the STL for a specific number of processes. The STL is

composed of the intrinsic parameters for each phase needed

to model the scalability of the parallel application, which are:

the phase ID, communication pattern (spatial and volume

parameters), number of instructions of the computational

time and phase weight. The STL is generated per process

instead of a global trace, with the objective being to model

each process independently.

The STL has to be complemented with the computational

time, in order to generate the physical trace, which is

dependent of the machine, because contains the information

Application Characterization 

Computation Communication 

Computational 
Time 

Prediction 

S16 S8 SX . . . 

Parallel Application 

  

Communication 
Model 

Computational 
Model 

Generate the Logical 
Trace 

W 

PAS2P Tool 

Relevant Phases 

Scalable 
Logical  
Trace 
(STL) 

 Ts8 Ts16  Tsx 

Mapping 

Logical Model 

Weight Model 
S32 

 T32 

Weight 

Computational 
Pattern 

Communication 
Pattern 

Weight Pattern 

Computational 
Time Phasei 

  Physical 
Trace 

Scalability Prediction 

Communication 
Time Prediction 

Performance Prediction 

Fig. 2: Proposed Methodology

192 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



of the STL more the computational times for each phase for a

N number of processes. To predict the computational time,

we use a regression-based model by phase. The physical

trace will be used to predict the communication time and

obtaining the application performance.

To predict the communication time, the physical trace will

be executed by segments of processes in a reduced number

of resources, in an iterative way, until all the processes

have been executed. Once the communication time has been

predicted, the predicted execution time of each phase will be

obtained. Then, we apply eq. 1 to obtain the application per-

formance, where PET is the Predicted application Execution

Time, m is the number of phases, PhaseETi is the Phase i

Execution Time and Wi is the predicted weight of the phase

i. As the objetive of this paper is to focus on explaining the

computation method, we do not explain this step in detail.

PET =
m∑

i=1

(PhaseETi)(Wi) (1)

In the next section, we explain in detail the scalability

communication model, which predicts the evolution of the

communication pattern for a large number of processes.

4. Scalability Communication Model
The scalability communication model comprises the gen-

eral behavior equations and the data volume equations for

each communication of each phase. The general behavior

equations calculate the message destination from the source,

while the data volume equations calculate the size of the

message.

When we analyze the behavior of the phases, we know

that as the application scales, the communications ( number

of messages and destinations), the communication volume,

the computational time and the number of instructions of

computation of a phase can change, but the work to be

carried out will still be the same, distributed among more

processes.

To model the communication behavior of each phase, it

is necessary to recognize and relate the phases of the small-

scale signatures. In order to relate the phases for a different

number of processes, we use functional similarity. Two

phases will have functional similarity, when the computation

work to be carried out for both phases is the same, because

is the same code segment, distributed between different

number of processes, changing only the structure of the

communication pattern.

To relate the phases, we use a method which is based

on how the sequence of phases occurs, since it does not

depend on the number of processes, only the way in which

the application was developed. Fig 3 shown an example. As

we can see in the fig. 3.a, the number of phases remains

constant as the application increases from 4 processes to 8

processes. If we focus on the fig. 3.b, where the phases 1

(a) Logical sequence of the application phases during
the execution time for 4 and 8 processes

(b) Behavior of the phases for 4 and 8 processes

Fig. 3: The functional similarity relates the phases for

different number of processes

and 2 are showed in detail, we can see that the behavior

is different from 4 processes to 8 processes, because the

phases have different communication pattern and different

computational time between them, but the work carried out

by the phases is the same, distributed between different

number of processes, because they are in the same logical

position in the application.

Once the phases have been related, the predicted data

volume of each communication will be obtained by math-

ematical regression models, while for obtaining the general

communication rules (Source-Destination), an algorithm has

been proposed. This algorithm is based on obtaining the

communication equations (eq.processes.phase.comm) for each

phase (Local Equations) of the set of small-scale signatures

executed, which identifies the communication pattern for

each phase. From these Local Equations, the General Equa-

tions are modeled, which are used to predict the communi-

cation pattern for a N number of processes. Fig. 4 shows an

example, where it has been considered that each phase has

only one communication, and therefore one local equation.

Once the local equations have been obtained for each phase

of each signature, they are analyzed to model the General

Equations ( GEPhi
), as is shown in the figure for phase

1. The algorithm converts the source and destination of the

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 193



Ph2 

Ph1 

Ph3 

Ph4 

F1 eq16.1.1 eq32.1.1 
eq64.1.1 eq128.1.1 

eq16.2.1 

eq16.3.1 

eq16.4.1 

eq32.2.1 

eq32.3.1 

eq32.4.1 

eq64.2.1 

eq64.3.1 

eq64.4.1 

eq128.2.1 

eq128.3.1 

eq128.4.1 

Ph2 

Ph1 

Ph2 

Ph1 

Ph3 

Ph4 

Ph1 

Ph2 

Ph3 

Ph4 

Ph3 

Ph4 

Fig. 4: Obtaining the General Equations from the Local

Equations

communications from decimal to binary to work at bit level.

4.1 Generating the Local Equations
This stage is composed of two steps: a first step of

analysis, in which the information obtained in the charac-

terization stage is analyzed to obtain information about the

communication pattern of each phase, and a second step

of modeling, where the Local Equations for each phase are

generated. The Local Equations are a representation of the

communication pattern of a phase for a specific number

of processes. During the analysis step, the dependencies

between processes, the pattern type: Static (Mesh, Ring, etc.)

or Dynamic (Exchange, Permutation, etc.), and the distance

matrix between processes are obtained for each phase. All

this information is provided to the second step to generate

the Local Equations. In this second step, the Local Equation

of each communication of the phase is obtained using an

algorithm of identification. This algorithm is based on the

fact that the application is well developed, and it executes

a deterministic communication pattern for all the processes,

without non-predictive conditional sentences as the number

of processes increases. The algorithm compares the source-

destination of each send primitive for all the processes of the

phase, to identify the specific rule to obtain the destination

from the source for that number of processes. Moreover, the

repeatability of a set of communications is sought to generate

easier equations and simplify the analysis and modeling for

the General Equations. Finally, the Local Equations for each

communication are generated.

The algorithm uses two different structures to generate the

Local Equations, because the way to predict the communi-

cation pattern is different, depending on the pattern type.

If the pattern is dynamic, the way to obtain the destination

processes is based on the exchange of certain numbers of

source bits, which are called bits involved. For this type of

pattern, the EC1 structure is used. In case of static patterns,

to obtain the destination processes, the distance between

the processes and the repeteability of the communications

are identified. For this type of pattern the EC2 structure

is used. The EC1 structure has as parameters the phase

number (#Phase), the number of communication in the phase

(#Comm), the algorithm type (Exchange, Permutation) and

the list of bits involved, ( EC1(p) = {#Phase, #Comm,
Type , List of bits involved } ). The EC2 structure has

the number of phase, the number of communication in

the phase and the list of communication distances and its

number of repetitions ( EC2(p) = {#Phase, #Comm, list[
communication distances{#repetition} ] } ).

Fig. 5 shows a brief example of the procedure. We have

a phase with 8 processes (p=8) and three communications.

These three communications compose the communication

pattern of the phase, which is static because it is a 4x2 mesh,

identified in the analysis phase. Then, the EC2 structure

will be used. If we focus on the first communication of the

pattern (Step 1), we generate the matrix distance between

the source and the destination (Step 2). Then, we search

for repetitions, in this case, the sequence {+1,+1,+1,-3} is

repeated two times (Step 3), once for processes from 0 to

3 and another for processes from 4 to 7. Once we have the

sequences and repeteability, we create the Local Equation

with the structure of communication EC2 (Step 4).

Depending of the communication pattern, it can be pos-

sible that the processes of the phase do not have the same

number of communications. With the aim of obtaining the

correct Local Equations, all the processes of the phase

must have the same number of communications for all

the processes, because the algorithm could not relate the

communications properly.

To solve this problem, the algorithm selects the pro-

cess with the maximum number of communications, and

it completes the phase structure for the other processes

with null communications, until all the processes have the

same number. To complete the phase structure with null

communications, the algorithm is based on the fact that

the application is written in a deterministic way and the

communication events follow a logical order with a specific

behavior.

S 
S 
S 
S 

S 
S 
S 

S 
S 
S 
S 
S 

S 
S 
S 

S 
S 
S 
S 
S 

S 
S 
S 

S 

P0 

P2 
P3 

P1 

P4 
P5 
P6 

P7 

Phase1 

P0 

P2 
P3 

P1 

P4 
P5 
P6 

P7 

 

S 

Fig. 5: Example of generating the Local Equations

194 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



4.2 Modeling the Global Equations
From the Local Equations, the General Equations of

each phase are modeled, which will be used to predict the

communication pattern for a N number of processes. To

generate the General Equations of each phase, the Local

Equations are analyzed in order to model the evolution of the

communication pattern. The method consists of comparing

the Local Equations to model by a function, as the parame-

ters change their values as the number of processes increases,

as is shown in fig. 6. The General Equations have the number

of processes to predict as input. The structure of these

equations is the same as the one for the Local Equations,

the difference is that the parameters have been modeled as a

function. Finally, this structure will be simplified to manage

easier equations to use.

In some applications, when the number of processes in-

creases, the communication pattern expands communicating

with new processes, and new communications appear. To

predict these communications, the algorithm models the

behavior of how these new communications will appear

(number of communications and their destination) for N

processes. Fig. 7 shows this procedure. The signature traces

of processes 2, 4, 8 and 16 were obtained by the signature ex-

ecutions, and we want to predict the communication pattern

for 64 processes. As we can observe, when the number of

processes is increased per two, a new communication appear.

To predict the communication pattern for 64 processes, first

of all, the algorithm models a function to predict the number

of communications of the phase as the application scales.

The function has as input parameter the number of processes

to predict the number of communications. When we the

number of communications of the phase has been obtained,

we apply the General Equations to predict the destination.

Once we have modeled the General Equations and the

communication volume equations, which are obtained by

regression models, we have evolution of the communication

pattern (spatial and volume) for each phase of the applica-

tion. These equations will be used to generate the STL.

5. Experimental validation
In this section, the scalability communication model has

been validated. Of all the experiments that we have made, we

present the BT and CG from the NPB NAS [10] suite, using

as input class D, and the applications: Sweep3D [11] and N-

Body. We have selected this set of applications because of

their distinctive behavior. As an experimental environment,

Fig. 6: Modeling the General Equation from Local Equations

Executed 
Predicted 

Processes 

Communication 
Events 

Number of  
Communications 

Fig. 7: Generating new communications

a cluster of 8 nodes with 64 processors AMD Opteron 6262

(512 cores) was used.

To carry out the experimental validation, we follow this

workflow:

a) We executed five signatures for a small-scale and we

obtain their physical traces. Four signatures are used

to generate the model and the last one to validate our

model before predicting. We executed the signatures

with a 1:1 mapping (one process per core).

b) We generate the Local Equations for each phase of the

four signatures executed.

c) We model for each phase the General Equations from

the Local Equations, and the regression equations of

the communication volume.

d) To validate our model, we use the fifth signature to

compare whether the models that we predicted are

correct. If the predicted values are correct, we use these

models to predict for a greater number of processes.

Otherwise, we use the fifth signature to improve our

model and we create another signature with a greater

number of processes to validate the model. We consider

that the generated model is correct if we are able to

predict the communication pattern without error, and

the communication volume with an error less than 10%.

e) Finally, we use these models to generate the Scalability

Logical Trace (STL) for a N number of processes.

To validate the generated STL, we compared them with

the traces obtained through PAS2P tool. We are only in-

terested in their logical information, so for executing the

signatures, we allocate with an x:1 mapping (more than one

process by core). By lack of space, we focus on showing

the experimentation of process 0.

For BT, we executed the small-scale signatures for 16, 36,

64, 81 and 100 processes. We obtained 6 phases. We used the

signatures from 16 to 81 processes to generate the model and

the fifth signature to validate the results. Using the generated

model, we predicted the communication pattern (spatial and

volume) for 1024 processes.

Once we executed the signatures, we generated the com-

munication model for each phase of the application. The

predicted values of the communication pattern (Dest.) were

obtained by the General Equations, which are shown at

the left of Table 1. Due to the type of pattern (static), we

used the EC2 type structure to model the General Equations

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 195



Table 1: Generated Communication Model and predicted communication pattern from these equations

Communication Model Real Phases Predicted Phases
Prediction

Error

Phase Global Comm. Equations Comm. Volume Equations MPI Src- Comm MPI Src- Comm. Comm.

ID (Dest.) (Bytes) Prim. Dest. Volume Prim. Dest. Volume Volume

BT for process 0 with n = 1024 processes

1)f(n) = 1 y(n) = 4E + 07n(−0.997) 1)Isend 0-1 40,560 Isend 0-1 39,883 1.69%

2)f(n) =
√

(n)− 1 y(n) = 4E + 07n(−0.997) 2)Irecv 0 -31 40,560 Irecv 0-31 39,883 1.69%1

3)f(n) =
√

(n)− 1 y(n) = 4E + 07n(−0.997) 3)Wait 0-31 40,560 Wait 0-31 39,883 1.69%

1)f(n) = n−√
(n) + 1 y(n) = 7E + 06n(−0.997) 1)Isend 0-993 6,760 Isend 0-993 6,979 3.13%

2)f(n) = 17 + 2(
√
(n)− 9) y(n) = 7E + 06n(−0.997) 2)Irecv 0-63 6,760 Irecv 0-63 6,979 3.13%2

3)f(n) = 17 + 2(
√
(n)− 9) y(n) = 7E + 06n(−0.997) 3)Wait 0-63 6,760 Wait 0-63 6,979 3.13%

Sweep3D for process 0 with n = 4096 processes

y(n) = 6E + 07n(−1) 1)Send 0-64 15120 Send 0-64 14648 3.2%
1 1) if log2(n)mod2 = 0 →, f(n) =

√
(n)

if log2(n)mod2! = 0 →, f(n) =
√

(2 ∗ n)
2)f(n) = 1 y(n) = 6E + 07n(−1) 2)Recv 0-1 15120 Recv 0-1 14648 3.2%

2 1)f(n) = 1 y(n) = 6E + 07n(−1) 1)Send 0-1 15120 Send 0-1 14648 3.2%

2) if log2(n)mod2 = 0 →, f(n) =
√

(n) y(n) = 6E + 07n(−1) 2)Recv 0-64 15120 Recv 0 -64 14648 3.2%

if log2(n)mod2! = 0 →, f(n) =
√

(2 ∗ n)
CG for process 0 with n = 4096 processes

y(n) = 8E + 08n(−1) 1)Isend 0-1 187504 Isend 0-1 195312 4%
1..18)[#Comm., c(n) = log2(n)/2, y(n) = 8E + 08n(−1) 2)Irecv 0-1 187504 Irecv 0-1 195312 4%

f(y)y=1..#Comm.,c(n) = 2(y−1)], y(n) = 8E + 08n(−1) 3)Wait 0-1 187504 Wait 0-1 195312 4%

... ... ... ... ... ... ... ...

y(n) = 8E + 08n(−1) 16)Isend 0-32 187504 Isend 0-32 195312 4%

y(n) = 8E + 08n(−1) 17)Irecv 0-32 187504 Irecv 0-32 195312 4%

1

y(n) = 8E + 08n(−1) 18)Wait 0-32 187504 Wait 0-32 195312 4%

N-Body for process 0 with n = 4096 processes

1)f(n) = 1 y(n) = 1E + 07n(−1) 1)ISend 0-1 2342 ISend 0-1 2441 4.0%

2)f(n) = n− 1 y(n) = 1E + 07n(−1) 2)IRecv 0-4095 2342 IRecv 0-4095 2441 4.0%

2)f(n) = n− 1 y(n) = 1E + 07n(−1) 3)WaitAll 0-4095 2342 WaitAll 0-4095 2441 4.0%
1

4)f(n) = 0 y(n) = 1E + 07n(−1) 4)WaitAll 0-0 2342 WaitAll 0-0 2441 4.0%

to predict the communication pattern. This structure has

been simplified and specified for process 0 for readability.

Moreover, in this table, we show the communication volume

regression equations. All these equations have the number

of processes to predict as their input parameter.

At the right of Table 1, we show the real and predicted

communication patterns of phase 1 and 2 for the process

0. The predicted communication pattern was predicted by

means of providing the parameter 1024 (number of pro-

cesses) to the General Equations.

The predicted communication pattern corresponds with

the real one for both phases. The communication volume

was predicted with an error of about 2% for the first phase

and 3% for the second phase. For the other four phases

of the application, the communication pattern was predicted

without error for all of them. In the top of Table 2, we

present a summary of these phases with the predicted error

of communication volume. We show the maximum error of

all the communications of the phase. As we can see, the

communication volume was predicted with a maximum error

of about 4% (phase 5).

For CG, we executed the small-scale signatures for 16,

32, 64, 128 and 256 processes. This application has 3

phases. We used the signatures from 16 to 128 processes

to generate the model and the fifth signature to validate

the results. We predicted the communication pattern for

4096 processes. At the right of Table 1, we show the real

and predicted trace of process 0 for phase 1. Due to the

similarity between the phases, we only show phase 1. At

the left of Table 1, we show the generated equations of

communication for this phase. Due to the type of pattern

(dynamic), we used the EC1 structure to model the General

Equations. For this application, the communication pattern

expands, communicating with more processes as the ap-

plication scales. For this reason, we also have to model

an equation to predict the number of communications of

the phase. The general equation calculates the number of

communications of the phase and their destinations. First

of all, the number of communications is predicted using

the equation #Comm.c(n) = log2(n)/2, this equation

calculates the number of times that the sequence Isend, Irecv

and Wait repeats in the phase. Applying this equation for

4096 processes, the sequence is repeated 6 times. Then,

we apply the equation f(y)y=1..#Comm.c(n) = 2(y−1) to

calculate the destination of the sequence, obtaining a desti-

nation sequence of 1, 2, 4, 8, 16 and 32. The communication

volume was predicted with an error of about 4% for all the

communications of the phase.

For the other two phases of the application, the com-

munication pattern was predicted without error for all of

196 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



them. In Table 2, we present a summary of these phases.

The communication volume was predicted with a maximum

error of about 6% (phase 2).

For Sweep3D, we executed the signatures for 16, 32, 64,

128 and 256 processes. This application has 4 phases. The

fifth signature was used to validate the model. We predicted

the communication pattern for 4096 processes. At the right

of Table 1, we show the real and predicted trace of process

0 for phases 1 and 2. The generated equations are shown in

the left of Table 1. Due to the type of pattern (static), we

used EC2 type structure. The pattern obtained by the General

Equations corresponds to a pipeline wavefront. As we can

see, the predicted pattern corresponds with the real one for

both phases. The communication volume was predicted with

an error of about 3.2% for both phases.

For the other two phases of the application, the communi-

cation pattern was predicted without error for all of them. At

the bottom of table 2, we present a summary of these two

phases. As in phases 1 and 2, the communication volume

was predicted with an error of about 3.2%. This is because

the application sends in its messages the same volume of

bytes in all its phases.

For N-Body, we executed the signatures for 16, 32, 64,

128 and 256 processes. This application has 1 phase. We

used the signatures from 16 to 128 processes to generate

our model and the fifth signature to validate the results. We

predicted the logical trace for 4096 processes. At the left of

Table 1 we show the generated equations for this phase for

process 0. Due to the type of pattern (static), we used the

EC2 structure to model the general equations.

The communication pattern corresponds to a pipeline. The

process ’x’ communicates with the process ’x+1’ until the

last process, which communicates with the first process. At

the right of Table 1, we show the real and predicted trace

of process 0 for the phase 1. The phase has two WaitAll

primitives. The first WaitAll primitive waits until the Irecv

releases its request, while the second WaitAll waits until the

Isend releases its request. This second WaitAll is written in

the application in order to synchronize the application. The

communication volume was predicted with an error of about

4%.

Table 2: Summary of prediction error for the rest of phases

Phase Comm. volume equation Comm. volume
Number (Bytes) (Error %)

Summary of phases of BT (from 3 to 6)

Phase 3 y(n) = 4E + 07n(−0.996) 2.7%

Phase 4 y(n) = 4E + 07n(−0.997) 3.1%

Phase 5 y(n) = 5E + 07n(−0.997) 3.6%

Phase 6 y(n) = 4E + 07n(−0.996) 2.7%
Summary of phases of CG (from 2 to 3)

Phase 2 y(n) = 8E + 08n(−0.995) 5.8%
Phase 3 y(n) = 8 0%

Summary of phases of Sweep3D (from 3 to 4)

Phase 3 y(n) = 6E + 07n(−1) 3.2%

Phase 4 y(n) = 6E + 07n(−1) 3.2%

6. Conclusions and future work
We propose a methodology to analyze and predict strong

scalability behavior for MPI applications on a given system.

It strives to use a bounded analysis time, and a reduced set of

resources. The methodology has been explained focusing on

presenting the scalability communication model, to predict

the evolution of the communication pattern of each phase as

the application scales.

As future work, we are analyzing the internal behavior of

the collective MPI primitives. Internally, the collective MPI

primitives make point-to-point communications to exchange

information between all the processes. We are analyzing

this kind of primitives, to expand the model to consider the

evolution of the internal communications of the Collective

MPI primitives.

Acknowledgment
This research has been supported by the MINECO

(MICINN) Spain under contract TIN2011-24384

References
[1] N. Attig, P. Gibbon, and T. Lippert, “Trends in supercomputing: The

european path to exascale,” Computer Physics Communications, vol.
182, no. 9, pp. 2041 – 2046, 2011.

[2] A. Wong, D. Rexachs, and E. Luque, “Parallel application signature
for performance analysis and prediction,” in IEEE Transactions on
Parallel and Distributed Systems (TPDS), 2014 (Accepted).

[3] J. Panadero, A. Wong, D. Rexachs, and E. Luque, “A tool for selecting
the right target machine for parallel scientific applications,” in ICCS,
2013, pp. 1824–1833.

[4] R. Nishtala, P. Hargrove, D. Bonachea, and K. Yelick, “Scaling
communication-intensive applications on bluegene/p using one-sided
communication and overlap,” in IPDPS 2009, 2009, pp. 1–12.

[5] J. Panadero, A. Wong, D. Rexachs, and E. Luque, “Analysis of
scalability: A parallel model approachâĂİ,” in CLUSTER, 2014, pp.
294–295.

[6] X. Wu and F. Mueller, “Scalaextrap: Trace-based communication
extrapolation for spmd programs,” ACM Trans. Program. Lang. Syst.
Article 5, vol. 34, no. 1, 2012.

[7] J. Zhai, T. Sheng, J. He, W. Chen, and W. Zheng, “Fact: fast com-
munication trace collection for parallel applications through program
slicing,” in SC, 2009.

[8] B. J. Barnes, J. Garren, D. K. Lowenthal, J. Reeves, B. R. de Supinski,
M. Schulz, and B. Rountree, “Using focused regression for accurate
time-constrained scaling of scientific applications,” in IPDPS, 2010,
pp. 1–12.

[9] E. Ipek, B. R. de Supinski, M. Schulz, and S. A. McKee, “An
approach to performance prediction for parallel applications,” in Euro-
Par, 2005, pp. 196–205.

[10] D. Bailey, E. Barszcz, J. Barton, and D. Browning, “The NAS Parallel
Benchmarks,” International Journal of Supercomputer Applications,
vol. 5, no. 3, pp. 66–73, Jan 1991.

[11] A. Hoisie, O. Lubeck, and H. Wasserman, “Performance and scal-
ability analysis of teraflop-scale parallel architectures using multidi-
mensional,” Journal of High Performance Computing Applications,
vol. 14, pp. 330–346, Jan 2000.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 197



Reusability of DDS Information-Model for 

Distributed VRE 

 
   Hassan Haidar*               Ali Kalakech              Ali Hamie            Ronan Querrec 

Lab-STICC-CERV ENIB         Lebanese University                    Lab-CRITC AUL  Lab-STICC-CERV ENIB 

         Brest, France         Beirut, Lebanon   Beirut, Lebanon      Brest, France 

        haidar@enib.fr                akalakech@ul.edu.lb                  hamie@aul.edu.lb                 querrec@enib.fr 
 

 
Abstract— Virtual Reality Environments (VRE) which 

simulate reality and thus present a safer learning environment, 

are increasingly being adopted to simulate complex systems. Such 

systems make the process of engineering virtual environments a 

complex task, especially due to the abundance of dynamic data 

types like behaviors. In parallel, distribution services have 

become essential following advances in telecommunications and 

the subsequent demand on mobile technologies. Hence, 

middleware enables technologies to provide such services to 

existing and newly-developed applications. Data Distribution 

Service (DDS) is a middleware standard for real-time 

applications based on a peer-to-peer architecture. DDS requires 

awareness about the type of distributed data which is achieved by 

defining an information-model. Consequently, distributing VRE 

using DDS complicates the development process of its 

information-model in order to meet the requirements of complex 

data types. In this paper, we propose a generic information-

model in order to facilitate the structuring of domain models and 

ensure their reusability. 

Keywords— Middleware; DDS; IDL; Distrributed Virtual 

Reality Environment; Meta-Model; UML; 

I.  INTRODUCTION  

Recent advances in telecommunication and mobile 
technologies are ever more leading to the continued connection 
of different elements of society (people, applications, data, and 
objects) in one big network [1]. This technology is evolving 
every day, even connecting objects to public networks over the 
internet making those objects programmable, intelligent and 
capable of interacting with users in the community as part of 
the concept of the “Internet of Everything (IoE)”. These 
innovations are creating new opportunities in different fields 
such as industry, biomedicine, education and e-Learning. 
Mobility of both users and applications has also brought about 
such advances, and geographical distances have been 
drastically reduced due to distribution capabilities.  

On the other hand the demand for virtual reality 
environments, such as artificial computer-generated 
environments, has increased over the past couple of years. This 
is due to their ability to depict a wide variety of domains and to 
offer new possibilities for experimentation. They present an 
alternative to real-life testing and training by introducing new 
types of investigation for complex systems in fields like 
industry, avionics, medicine and the military [2]  [3]. 

Applying the advances in networking and 
telecommunication to virtual reality increases the need for 
“Distributed Virtual Environments (DVE)”.  DVE offers the 
possibility of running the simulated environment on multiple 
computers connected over a network. Using multiple nodes to 
share the same environment can facilitate user interaction as 
well as enabling simultaneous actions from different users, 
allowing them to cooperate and collaborate interactively to 
complete an action [4]. As stated in [5], “each user uses his 
own computer to have individual interaction capabilities or to 
meet others if they are not located at the same geographical 
place”. 

In this regard, middleware enables those technologies 
which are catching the attention of computer scientist for their 
ability to provide distribution services to both newly-developed 
and existing applications without the need for re-engineering. 
This fact is an important metaphor for VRE as its 
implementation is intricate as it simulates such complex 
systems. Moreover, the increasing number of users for such 
environments has led to a change in infrastructure: from a 
client/server (C/S) centralized-basis to decentralized peer-to-
peer (P2P) [6]  [7]. Such change is mainly due to the growing 
demand on scalable architectures.  

In order to satisfy this growing demand whilst also 
considering scalability, the Object Management Group (OMG) 
released DDS middleware as a standard for distributing large-
scale and real-time applications [8]. It is based on a pure P2P 
design without the need for central servers or special node 
roles, nor for any broker to distribute data from the source to its 
destination. DDS is also categorized as data-centric 
middleware [9] that requires awareness about distributed data. 
This awareness is gained through engineering an information-
model that contains a representation of data types to be 
distributed. It can be represented by an Interface Definition 
Language (IDL) file. The same IDL file can be compiled to 
different languages (C, C++, and Java). Besides its advantages, 
the information model in the IDL file represents a domain-
specific model where data is structured according to the needs 
of each application. Thus distributing VRE, which describe 
complex systems, using DDS requires a re-engineering of the 
IDL file as per each environment. Knowing that each virtual 
reality (VR) application has been specified by a domain-expert, 
each application therefore requires intervention from an expert 
to engineer its corresponding IDL file, which is a major 

198 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



limitation. This limitation hinder the reusability of the IDL 
structure and thus limits the reusability of DDS middleware. 
However, the author in [10] considers reusability to be one of 
the main common aspects that must be considered when 
designing an architecture for distributed VRE.  

In this paper, our aim is to propose a generic algorithm for 
DDS information-model in order to automatically distribute 
virtual environments without the need for expert intervention. 
These algorithms use a generic data structure in the IDL file 
based on the Unified Modeling Language (UML) meta-model, 
which facilitates the engineering process and makes the model 
reusable.  

As DDS middleware is data centric, the distributed data has 
to be explicit. For this reason, throughout our work, we use the 
MASCARET framework [11] (Multi-Agent Systems to 
simulate Collaborative, Adaptive and Realistic Environments 
for Training). The principle of MASCARET is to use a meta-
model based on UML to develop the different VRE. This 
means that each VRE is defined by a UML model and then 
automatically executed. The corresponding model is therefore 
explicit during the simulation. This principle will enable us to 
link the explicit definition of the VRE with the DDS 
information-model. Moreover, we suggest using the explicit 
knowledge about the data to be distributed, which can be 
provided by such environments, to define both generic 
algorithms and certain distribution strategies. 

The rest of this paper is organized as follows: Section II 
gives overview of the DDS standard and its workflow in order 
to design a DVE. Section III highlights the role of the abstract 
layer and proposes similar abstraction for the DDS 
information-model. Section IV details the generic information-
model and its concept of reusability. Section V offers a 
practical example, using our suggested model to distribute a 
simplified VRE. Section VI concludes this paper, showing the 
result we reach through our proposed solution and discusses 
new strategies for controlling the distribution of VRE using 
semantics.  

II. DATA DISTRIBUTION SERVICE AND VRE 

A. DDS Overview 

DDS is an OMG standard released in 2004 for distributing 
real-time applications [8]. It is categorized as an indirect-
communication paradigm that uses a publish-subscribe 
architecture [12]. It standardizes both an API and a wire-
protocol. It specifies two levels of interfaces: DCPS (Data-
Centric Publish-Subscribe) as a communication model 
interface, and DLRL (Data-Local Reconstruction Layer) as an 
optional higher level interface to simplify integration into the 
application layer. 

DDS publishers (pub) and subscribers (sub) use data-
writers and data-readers to write and read updates. Writing and 
reading occurs through a logical global data space (GDS) 
representing the data bus that is accessed through applications 
from heterogeneous platforms. Its indirect-communication 
paradigm allows for decoupling in both space and time. This 
means pub and sub identities do not need to be known to each 

other as there is no server registration. They also do not need to 
exist at the same time, as data can be retained for late joiners.  

A distinguishing characteristic of DDS is the information-
model that specifies the type of information exchanged over 
GDS. This model is defined through an IDL file to represent 
domain-specific types where a specific data structure is defined 
for each application. This structure is based on Topics and 
Keys. The Topic represents the unit of information type while 
the Key represents the unique instance identifier of this Topic. 
Such models also offer a type-specific safety feature which 
identifies errors in the development cycle of the API. Data 
structured in the IDL file is independent of the programming 
language. Thanks to the compilation process undergone by this 
file, it is possible to generate DDS API files in different 
languages such as C, C++, CS and Java.   

Furthermore, DDS presents a rich set of QoS in order to 
ensure simulations are distributed in real-time. Several aspects 
can be configured, e.g. durability, history, latency budget, 
ownership, reliability. They can also be configured at different 
DDS entity levels, e.g. topics, publisher, subscriber, data-
writer.  

This paper focuses on the engineering process of the 
information-model within the IDL file which is required to 
operate the DCPS interface of DDS, a topic that will be fully 
covered in Section III. 

B. DDS Workflow used for VRE 

Although using middleware helps to provide existing 
applications with distribution services without the need for re-
engineering, the fact that it is a data-centric technology creates 
another complication. This complication can be illustrated in 
the complexity of modeling an information-model for complex 
systems. Upon distributing behavior-rich VRE environments 
with DDS, a specific IDL file needs to be engineered for each 
environment. When we look more closely at the engineering 
workflow for a VRE with DDS on the modelling level, we note 
the following: 

- VRE Level: VR experts write the code required in order to 

define the VR application model 

- Middleware Level: Define the Information Model 

required for this environment in order to grant DDS with 

awareness about data types exchanged. This can be done 

through the IDL file 

The result of this workflow is two models for each 
environment. In the next section, it will be shown that the 
complexity of the first model is solved through an abstraction 
layer, while the second complexity remains valid. Thus, in our 
work, we also provide a solution to ease the engineering 
process of the second model while ensuring its reusability. 

III. ABSTRACTION PROPOSAL 

In this section, we first highlight the conceptual UML meta-
model that is used as an abstract layer to VRE models. Then 
we propose a similar abstraction layer for releasing a generic 
information-model for DDS, which is the major contribution of 
our work. 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 199



A. Abstract layer for VRE  

The model-driven approach facilitates the development of 
VRE by representing them in human-oriented, intelligent, and 
semantically rich environments rather than simple computer-
generated ones. This knowledge approach, along with artificial 
intelligence, introduced what are called Intelligent Virtual 
Environments (IVEs) [13].  

In the scope of virtual reality and intelligent virtual 
environments, objects are characterized by having not only 
geometrical properties, or what is called 3D element 
parameters, but also behavioral properties [14]. The 
development workflow of such behavior-rich environments 
leads to certain complications and it is time consuming to 
develop domain models for each application. For that, a higher 
level of abstraction was proposed to produce a model-driven 
approach based on UML meta-models for VRE [11]. 

In this regard, conceptual models are being adopted in 
virtual reality platform architecture to facilitate the creation of 
complex models.  The UML meta-model is a model-based 
approach proposed by previous work in virtual reality to define 
semantics. It provides a knowledge-driven perspective to the 
contents of the virtual environment including the ontology of 
the domain, behavior of the entities, structure of the 
environment, and users’ and agents’ interactions and activities. 
Environments using this methodology are described as 
environments rich in “Knowledge” about the instantiated 
applications models. In the field of multi-agent systems, which 
overlaps with Intelligent Virtual Environments (IVEs), 
different authors have chosen to ground their meta-models in 
UML, like in  [15]  [16]  [17], and their work can be partially 
reused or extended. In our work, we use the MASCARET 
framework whose meta-model is also based on UML.  

The common line of interest we find with this approach is 
that instead of rewriting an IDL file, we propose to use such 
conceptual models to structure a generic information-model. 
The meta-model contains all types of data that might be 
required to distribute a virtual reality environment, including a 
representation of both the static and dynamic parts of the 
model. In the next sub-section, we propose mapping the 
knowledge represented by the framework meta-model along 
with the awareness required by DDS represented by the 
information-model (IDL). The main contribution we have 
achieved is to intelligently distribute VRE while facilitating the 
engineering process of the IDL file and ensuring its reusability. 

B. Abstract layer for IDL 

In terms of the methodology for VRE modeling, it can be 
interesting to adopt a similar approach to designing IDL files.  

Some attempts have been made to automatically generate 
the IDL from UML profiles or XML [18], but such attempts 
require special tools like OpenCCM or TUPI and sometimes 
the UML model needs to be refined. In addition, several 
problems arise in recognizing all UML associations, 
enumerations, organization of data within the IDL, etc. 
Moreover, the data inside the IDL is not completely identical to 
the UML model. For this reason, it can be difficult to 
automatically generate the IDL file from the UML model. 
Thus, designing a “generic” information-model in the IDL file 

for distributing VRE requires a generic data structure 
compliant with the different concepts of virtual reality 
environments so as to contribute to the different data types.  

Although the DDS information-model is a domain-specific 
structure, the solution we propose is to engineer the IDL file 
according to the abstract layer of VRE. In other words, we 
structure data in the IDL file as per the meta-model level rather 
than structuring it as per each environment model. As long as 
application models are instantiated from the meta-model, then 
the proposed generic IDL structure contributes to data types 
found in the application model. 

The MASCARET meta-model, which is based on UML, 
contains high level information corresponding to environment 
semantics. In order to do so, the proposed IDL structure 
provides DDS with generic knowledge about data types found 
in virtual reality and as a result provides with DDS the ability 
to distribute it. This knowledge includes both the static and 
dynamic parts of the environments. This step makes the IDL 
easier to engineer while simultaneously enabling re-usability of 
the IDL with multiple VREs.   

The next section examines the link between this meta-
model and the DDS information-model in order to devise our 
proposed model. 

IV. GENERTIC IDL FILE 

We generally classify four main concepts presented by the 
MASCARET meta-model in engineering of VRE: “3D 
elements”, “Properties”, “Behaviors” (Operation, state 
machine, etc.), and “Events”. For each concept, we provide the 
corresponding sub-part of the meta-model and we associate it 
with the right DDS information-model. The resulting IDL file 
is then engineered in a generic manner according to the meta-
model. As VRE models are instantiated from the meta-model, 
the same IDL file can be reused by multiple VRE as it 
contributes to data types required for each domain-specific 
application model. This signifies the awareness required for 
DDS to distribute VRE.  

A. 3D-Element 

For virtual reality environments, 3D representation is of 
course used with objects that can be graphically represented. In 
MASCARET, these 3D objects are called “Entities”. Fig.1 
provides an extract of the Entity concept of the MASCARET 
meta-model. 

All Entities have a Position, an Orientation (with referential 
point) and a shape (types of topological specification). As its 
name indicates, Position (pos) provides the position of the 
entity in terms of the x-axis, the y-axis and the z-axis. 
Orientation (orient) provides the orientation of the entity 
according to quaternions [19]. Both are of the type vector3. 
Shape geometrically presents entities by allocating color, scale, 
etc. [20].  The corresponding information-model mapped with 
the model in Fig.1 is  as follows: 

Generic IDL Structure for 3D-Element 

struct vector3    { 

double x,y,z; }; 

200 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |

http://www.google.com.lb/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&cad=rja&uact=8&ved=0CCgQFjAC&url=http%3A%2F%2Fopenccm.ow2.org%2Fdoc%2F0.9%2Fuml_user_guide.html&ei=WNESVeXXKYnUavijguAJ&usg=AFQjCNFcE72nDmHXrz2ICmAJbEkhssJ7Eg&sig2=-_ncj3TB9S_KYGdn6Wlxrw


Entity

Point

ShapeSpecification
+Position
+Orientation

TopologicalSpecification
Shape

: Vector3
: Vector3

ReferentialPoint

1

*

 

+Name : string

Element

Class Property

Classifier
Feature

 

CLassifier

Class Property

Entity

InstanceSpecification

ValueSpecification

Slot
Slots

*

* Values

1

OwningInstance

1

CLassifier

 

Entity BehaviorExecution Behavior

TimeExpression
ValueSpecification

SpecificationExecution

1*

Host

*1

Start

Finish

1

1

Result

 

struct Entity3D   { 

string entityName; 

vector3 pos; 

vector3 orient; 

string shape;  }; 

#pragma keylist Entity3D entityName  

Fig. 1. Extract of the entity class of UML meta-model 

B. Property 

The next MASCARET concept we address after “3D-
element”, is “Property”. “Property” has a name and a “Slot” 
which contains the value of a structural feature of a class 
instance. This concept is commonly used in VR applications to 
complement the physical appearance in 3D as previously 
mentioned.  

Below are two simplified figures provided as an extract of 
the “Property” concept of the UML meta-model. Fig. 2 shows 
the inheritance of Property and Class from the Element class 
and thus can be identified by a name. A Property represents all 
the attributes of a given class, from primitive types to complex 
types (Class). Fig. 3 shows the instance level of a Property. 
"Class" is used to describe some classes of the domain-specific 
model. The "InstanceSpecification" class is an instance of class 
model where the type of instance is based on its classifier and 
the attributes are called slots. The “ValueSpecification” 
represents the different values (int., string, etc.). The 
corresponding information-model, mapped with the models in 
Fig.2 and Fig 3 is as follows: 

Fig. 2. Extract of the Property Concept of MASCARET meta-model at the 

class level 

Generic IDL structure for Property 

struct Property        { 

string entityName; 

string propertyName; 

string propertyValue;}; 

#pragma keylist Property entityName 

propertyName 

Fig. 3. Extract of the Property Concept of MASCARET meta-model at the 
instance level 

C. Behaviors 

The third MASCARET concept we address is “Behavior”. 
This concept describes the dynamic part of the virtual reality 
environment. In this section, we define the generic 
information-model of DDS that is capable of distributing the 
dynamic part of the virtual environment. 

The description of a behavior is static and does not change 
during run time while the execution of a behavior, represented 
by “Behavior Execution”, can be executed several times during 
the simulation. Behavior Execution is a kind of execution 
specification based on a sequence of conditions and actions 
which is used to explore the dynamic nature of behaviors. It 
therefore describes a specific behavior and makes it possible to 
introspect the features of entities. It is also considered to be 
explicit knowledge with a start and a stop featuring a 
timestamp, result, etc. Without this execution, it is not possible 
to formalize the effect of behaviors and the modification of the 
structural properties of entities. Due to this fact, we find it 
interesting to distribute data about both “Behavior execution” 
and its context as it makes it possible to share the same 
execution of behaviors in distributed environments.  

The execution of a behavior can be formalized by four 
kinds of behavior type: Operation, OpaqueBehavior, Activity 
and StateMachine, (Fig.4). Thus creating an information model 
for distributing behavior concept of MACARET meta-model is 
actually destined to distribute the execution of the different 
behavior types formalized.   

Fig. 4. Extract of the Behavior Concept of UML meta-model 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 201



+type : string

Event

CallEvent ChangeEvent SignalEvent TimeEvent

+Name : string

Element

 

The information-model mapped with the model in Fig.4 is 
as follows: 

Generic IDL structure for Behavior Execution 

struct Parameter   { 

string name; 

string value; }; 

struct BehaviorEx   { 

    string entityName;   

    string behavior; 

   Double start; 

    Double stop; 

    Parameter parameter; }; 

#pragma keylist BehaviorEx entityName 

behavior parameter.name 

1) In order to distribute an Operation, we exchange 

messages about the “behavior execution” and mention: the 

entity realizing this operation (entityName), the name of the 

operation (Behavior), the start, and the stop of it. Actions, 

which are also behaviors carried out as a consequence of this 

operation, are distributed using the same “behavior execution” 

message. 

2) Opaque behaviors are an exception because the 

behavior is ‘opaque’. This means it can be invoked online but 

it cannot be introspected. We can know if this behavior started 

or stopped and in which context, but we cannot know the 

sequence of actions executed as a result of this behavior. This 

also includes messages about the behavior. 

3) The execution of an Activity triggers the execution of a 

sequence of actions belonging to that activity. But actions are 

also behaviors. Therefore, to distribute information about both 

the activity and the actions, we can exchange information 

about the “behavior execution”. 

4) StateMachines describe interactions as asynchronous 

reactive models used for modelling the reaction of an entity to 

events. To distribute information about this type of behavior, 

we use the same “behavior execution” message to indicate the 

start of a state machine. However, a state machine can have 

multiple transitions from one state to another during run-time, 

therefore simply sending the start of a state machine behavior 

is not sufficient. Hence, when a state machine changes state, 

we need to send this change. Consequently, we add a 

“parameter” structure to the informational-model to represent 

the transitions between States of the State Machine.  In this 

case, the Stop attribute, used with other behavior executions, 

is not significant as an entity cannot be in multiple states 

simultaneously. The effect of a new state might be to carry out 

a new behavior or make a new transition or a “Do” function. 

In all that, the same “behavior execution” message can be 

exchanged. 

D. Events 

Events are another concept of UML which are used in 
MASCARET to represent the lowest information level that 

produces a consequence at a particular point in time. As found 
in [21], events are atomic occurrences without duration.  

Events are a subclass of the Element class and thus can be 
identified by their names. Upon issuing an event, it enters a 
pool of events until it is processed. A consumed event is no 
longer available for processing. The effect of an event differs 
according to its type or subclass. As shown in Fig.5, there are 
four fixed types of Events [22]. 

- Call Event: Invokes Operation (Behavior Execution) 

- Signal Event: A signal generated by Actions that are part 

of an Activity (Behavior Execution) 

- Change Event: An implicit event that occurs when an 

explicit Boolean expression becomes true. Usually this 

type of events uses the keyword “When” followed by a 

Boolean expression 

- Time Event: An event that occurs after that an amount of 

time has elapsed. Example: “After 2 seconds call function 

drop()” 

Fig. 5. Extract of Event Concept of MASCARET meta-model 

The corresponding information-model mapped with the 

model in Fig.5 is as follows: 

Generic IDL structure for Events 

struct CallEvent    { 

    string caEventName; 

    string type; 

    string opName;    }; 

#pragma keylist CallEvent caEventName 

struct SignalEvent  { 

  string sEventName;   

  string type; 

string parameterName;  

string parameterValue; }; 

#pragma keylist SignalEvent sEventName 

struct ChangeEvent  { 

    string chEventName; 

    string type; 

    string changeExpression;}; 

#pragma keylist ChangeEvent chEventName 

struct TimeEvent   { 

    string tEventName; 

    string type; 

    string timeExpression; }; 

#pragma keylist TimeEvent tEventName 

202 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



E. Other Data Types 

In Addition to the different concepts we have covered in 
this section, there are some other types of data, such as Agent 
communication and Multimedia, which exist in VRE and 
which also need to be distributed.  

For Agent Communication, in [23] a layered model was 
introduced which separates low-level data transport issues from 
high-level semantic interoperability aspects. Such modeling 
aims to independently optimize agent communication at 
different levels. Thus, our proposed method here is based on 
using DDS as the underlying protocol to transport data types 
according to FIPA1 structure.  

Regarding the multimedia types (e.g audio, video), it was 
found in [24] that DDS is able to transport these types of media 
data. Three topics have been created for multimedia types: one 
for audio signal, the second for audio stream (RTP), and the 
third for video stream.   

In this paper, we merely point out the feasibility of using 
DDS for such data types but we will not explicitly define their 
corresponding information-model. For both Agent 
communication and Multimedia, the defined IDL structure will 
be generic as the type of data used is fixed, standardized, and 
general. 

V. APPLICATION: CLOCK EXAMPLE 

In order to evaluate this generic information-model, we 
used a simplified VRE based on the MASCARET meta-model 
to represent a simple example about a programmable plug. The 
purpose of creating this application is to provide its users with 
the technical knowledge they require in order to use the plug in 
reality. Fig.6 features a snapshot of this application along with 
a sample state machine diagram. 

 We grouped the different parts of the generic information-
model above in one IDL file and compiled it using an IDL 
compiler to generate DDS API files in the required 
programming language. In our case, we used SimD as a 
compiler [25] and C++ as a language. We integrate this API as 
a plugin in MASCARET so we are able to publish and 
subscribe to the different DDS topics we declared in the 
generic IDL file above. 

In this paper, we present two scenarios for distributing data 
about two different DDS topics and show the typical 
distribution of the “3D representation” and “properties” of this 
application without the need to develop a specific IDL file. 
Both scenarios are based on having two different users with 
their own machines (two different nodes) connected over a 
WiFi network to operate the Clock application running on their 
local side. 

A. Scenario 3D-Element 

For this scenario we have chosen the topic of the 3D-
element so we can demonstrate how each user’s operations in 
the distributed environment are synchronized on both nodes.  

                                                           
1 Foundation for Intelligent Physical Agents. 
http://www.fipa.org/specs/fipa00061/SC00061G.pdf 

- User1 on node1 presses the Hour button and, in his local 
environment (node2), user2 is able to visualize the effect of 
user1’s action on his own environment (on node1)  

- User2 on node2 presses the Minute button while user1 on 
node1 should be able to visualize that the position of this 
button has changed 

In terms of DDS, when user1 presses the hour button, a 
message is published from node1 about this update. This is 
represented by the entityName “ButtonHour” and the new 
position values. The GDS will transmit this message to the 
subscriber in node2 that will read this update and make the 
necessary changes, according to the new values received. Then, 
node2 can visualize the position change of the button as a result 
of the action of user1. The same scenario is applied for user2’s 
action made on “Button Minute”. As a result, the 3D-element 
topic is generically used for distributing this type of data in 
VRE regardless of the application-specific model and without 
the intervention of a computer expert. 

B. Scenario Property 

 For simplification purposes, this scenario continues that of 
the previous 3D-Element showing the distribution of the 
Properties of buttons pressed. User1’s operation with “Button 
Hour” increased its value by one. So in addition to the 
distribution of the position change, using DDS it is also 
possible to publish the new value for the property “hour”. The 
exchanged message is defined by the property name “hour” 
and the slot value, which is the new value. User2’s node2 
detected the position change update and the new value for the 
hour property, thus applying the same values locally in order to 
ensure both environments remain synchronized. The same 
procedure is repeated when user2 operates the “Button 
Minute”. 

Fig. 6. A scene from MASCARET simplified example  

VI. CONCLUSION AND DISCUSSION 

In this paper, we proposed a novel abstract layer for the 
DDS information-model. Our generic information-model 
(covered in section IV) provides DDS with the awareness, and 
consequently the capability, to distribute static and dynamic 
data types of VRE that are modeled based on MASCARET 
meta-model. Considering that MASCARET application models 
are instantiated from the meta-model, the information-model 
we proposed is generic and can be reused by multiple 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 203



applications without requiring an intervention from a computer 
expert when distributing a new VRE. Reusability, which is one 
of the main key factors for distributing VRE, emphasizes the 
advantage of using DDS for distributing VRE describing 
complex systems. Moreover, the safety perspective of the 
information-model simplifies the development process, 
especially in terms of behavior data types, and helps avoid 
development errors.   

From a high level perspective, DDS remains a low-level 
communication API that lacks the intelligence required to 
control what type of data to distribute and when. It is true that 
through our generic model, DDS has the capability to distribute 
data about the different concepts of the MASCARET meta-
model. However, sometimes different types can be used to 
reach the same result. As an example to what we are trying to 
clarify here, we take the second scenario above where we 
showed the distribution of new properties using the generic 
DDS topic “Property”. Here we see that we can also use the 
“behavior execution” of the operation “press” so we can make 
both environments perform the same function. The 
consequence of this operation execution is the simultaneous 
increase of the property value in both environments.  

Thus, the question remains as to which topic to select and 
when. From here, we can conclude the need for generic rules 
and strategies capable of controlling the distribution process at 
a high level. To deliver such practice with pure peer-to-peer 
architecture like DDS, we suggest using explicit knowledge to 
identify data according to the user’s interest and need. This 
requires both a dynamic filtering mechanism and a dynamic 
criterion to filter the data.  

In this regard, DDS makes it possible to filter data in 
different ways. Some are static while others, like query-
condition, are dynamic and can be modified during the 
simulation.  In parallel, and in order to set an intelligent 
criterion based on the high-level knowledge of VRE, we 
propose to use the behavioral knowledge presented by the 
MASCARET meta-model. The coupling between Query-
Condition (DDS) and the awareness about behavior 
(MASCARET), makes it possible to select data types as per the 
context of behaviors and during run time. This requires sharing 
environment knowledge between distributed environments. 
Our future work will focus on the semantic criteria that offer 
clues as to how to design global and generic strategies for 
intelligent distribution of VRE. 

REFERENCES 

[1]  H. Kopetz, "[Real-Time Systems : Design Principles for Distributed 

Embedded Applications," second edition Springer, 2011.  

[2]  N. Marion, C. Septseault, A. Boudinot and R. Querrec, "GASPAR: 

Aviation management on aircraft carrier using virtual reality," in In 

Proceedings of Cyberworlds, Hanovre (Allemagne), 2007.  

[3]  F. Le Corre, C. Fauvel, C. Hoareau, R. Querrec and C. Buche, 

"CHRYSAOR: an Agent-Based Intelligent Tutoring System in Virtual 

Environment," in International Conference on Virtual Learning, Brasov: 
Romania, 2012.  

[4]  S. Guleyupoglu, "“Distributed Collaborative Virtual Reality Framework 

for System Prototyping and Training”.," in Paper presented at the RTO 
IST Symposium on “New Information Processing Techniques for 

Military Systems", Istanbul, Turkey, 2000.  

[5]  C. Fleury, T. Duval, V. Gouranton and B. Arnaldi, "A New Adaptive 
Data Distribution Model for Consistency Maintenance in Collaborative 

Virtual Environments," in Virtual Reality Conference of EuroVR - EGVE 
- VEC, 2010.  

[6]  S.-Y. Hu, J.-F. Chen and T.-H. Chen, "VON: A Scalable Peer-to-Peer 

Network for Virtual Environments," Network, IEEE, 20(4):22–31, 2006., 
vol. 20, no. 4, pp. 22-31, 2006.  

[7]  N. MATSUMOTO, Y. KAWAHARA, H. MORIKAWA and T. 

AOYAMA, "A scalable and low delay communication scheme for 
networked virtual environments," in Global Telecommunications 

Conference Workshop (GlobeCom), 2004.  

[8]  "DDS, OMG Standard," 2007. http://www.omg.org/spec/DDS.  

[9]  S. Schneider, "What's the Difference between Message Centric and Data 

Centric Middleware?," 2012. 

[10]  S. Torki, "Entités autonomes en environnements virtuels distribué," 
Toulouse, France, 2008. 

[11]  P. Chevaillier, T.-H. Trinh, M. Barange, P. DeLoor, F. Devillers, J. Soler 

and R. Querrec, "Semantic Modelling of Virtual Environments Using 
MASCARET," in Proceedings of SEARIS, Singapore, 2011. 

[12]  G. Coulouris, J. Dollimore, T. Kindberg and G. Blair, Distributed 

Systems: Concepts and Design (5th Edition), Addison-Wesley, 2011. 

[13]  R. Aylett and M. Cavazza., "Intelligent virtual environments - A stateof- 

the-art report," in STAR Proceeding of Eurographics, Manchester, UK, 

2001. 

[14]  J. Odell, M. Nodine and R. Levy, "A metamodel for agents, roles, and 

groups," in Agent-Oriented Software Engineering V, New York, NY, 

USA, Springer, 2005, pp. 78-92. 

[15]  J. L. Lugrin and M. Cavazza, "Making sense of virtual environments: 

Action representation, grounding and common sense," in ACM 

Intelligent User Interfaces, Honolulu, Hawaii,, 2007. 

[16]  G. Beydoun, G. Low, B. Henderson-Sellers and H. Moura, "Faml: A 

generic metamodel for mas development," IEEE Transactions on 

Software Engineering, vol. 35, no. 6, p. 841–863, 2009. 

[17]  H. Van Dyke Parunak and J. J. Odell, "Representing Social Structures in 

UML," in Agent-Oriented Software Engineering II, vol. 2222, Springer 

Berlin Heidelberg, 2002, pp. 1-16. 

[18]  T. Nascimento, T. Batista and N. Cacho, "TUPI: Transformation from 

PIM to IDL," in On The Move to Meaningful Internet Systems 2003: 

CoopIS, DOA, and ODBASE, vol. 2888, Catania, Sicily, Italy, Springer 

Berlin Heidelberg, 2003, pp. 1439-1453. 

[19]  L. Perumal, "Quaternion and Its Application in Rotation Using Sets of 

Regions," International Journal of Engineering and Technology 
Innovation, vol. 1, pp. 35-52, September 2011.  

[20]  T. Tutenel, R. Bidarra, R. M. Smelik and K. J. D. Kraker, "The role of 

semantics in games and simulations," Computers in Entertainment (CIE), 
December 2008.  

[21]  M. A. Jackson, System Development, Upper Saddle River, NJ, USA: 

Prentice-Hall, Inc., 1983.  

[22]  J. Offutt and A. Abdurazik, "Generating tests from UML specifications," 

in Proceedings of the 2nd international conference on The unified 

modeling language: beyond the standard, Fort Collins, CO, USA, 1999.  

[23]  H. Helin, "Supporting Nomadic Agent-based Applications in the FIPA 

Agent Architecture," Finland, 2003. 

[24]  E. DENIZ, "VideoOverDDS", MilSoft, Turkey, Brussels, Belgium, 2007. 

[25]  SimD, simd-cxx, https://code.google.com/p/simd-cxx/, 2011. 

 

204 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |

http://www.omg.org/spec/DDS


Multi-dimensional Interval Test 
 

Qing Zhang 
Dalian Shipping College, Dalian, China 

 
 

Abstract - In this paper, we propose a sophisticated 
technique of data dependence analysis for distributed 
memory parallel environments that is used for converting 
sequential code into a parallel form targeted for a 
particular architecture. Two-dimensional arrays with 
subscripts formed by induction variable in real programs 
appear quite frequently [10].  We test if there are integer-
valued solutions for two-dimensional arrays with 
subscripts formed by induction variable. It is demonstrated 
that without direction vectors there are integer-valued 
solutions for two-dimensional arrays with subscripts 
formed by induction variable. Furthermore, it is also shown 

that under a specific direction vector ) , ,( 1 d=== 

θ  

there are integer-valued solutions for two-dimensional 
arrays with subscripts formed by induction variable. 
Finally, we point out that for other direction vectors there 
are no integer-valued solutions for two-dimensional arrays 
with subscripts formed by induction variable. 

Keywords: Parallelizing compilers, Data dependence 
analysis, Loop parallelization, I Test, Parallel code 
debugging. 

 

1 Introduction 

     In automatic parallelization and parallelizing compilers, 
achieving a good data dependence analysis is a critical 
issue in order to reduce the communication overhead and 
to exploit parallelism of applications as much as possible.  
It is essential to develop a new analysis technique for data 
dependence. This motivates us that we are not only to 
develop traditional dependence tests for parallelizing 
transformation but also to develop new techniques for 
multi-dimensional induction variables that frequently occur 
in nested loops.  

       In this paper, we propose a sophisticated technique of 
data dependence analysis for distributed memory parallel 
environments that is used for converting sequential code 
into a parallel form. Our approach is to test dependence if 
there are integer-valued solutions for two-dimensional 
arrays with subscripts formed by induction variable. 
Without direction vectors, there are integer-valued 
solutions for two-dimensional arrays with subscripts 
formed by induction variable. Furthermore, it is also shown 

that under a specific direction vector ) , ,( 1 d=== 

θ  

there are integer-valued solutions for two-dimensional 
arrays with subscripts formed by induction variable. 

There are several well-known data dependence 
analysis algorithms applicable for one-dimensional arrays 
under constant bounds or variable bounds: the GCD test [6, 
9, 12, 13], Banerjee’s method [6, 12, 13], the I test and the 
direction vector I test [2, 16, 24, 25, 26], the extension of 
the I test [14], the extension of the direction vector I test 
[20] and the interval reduction test [15]. There are also 
several well-known data dependence analysis algorithms 
applicable for multi-dimensional coupled arrays under 
constant bounds or variable bounds: the generalized GCD 
test [6, 12, 13], the Lambda test [3], the multi-dimensional 
I test [28], the multi-dimensional direction vector I test, the 
Power test [7] and the Omega test [4]. Also, there are 
several well-known data dependence analysis algorithms 
applicable for arrays with linear subscripts with symbolic 
coefficients or with non-linear subscripts under symbolic 
bounds: the infinity Banerjee test [11, 12], the Range test 
[17], the infinity Lambda test [23] and the access range test 
[18, 19]. 
       Shen et al. pointed out that two-dimensional arrays 
with subscripts formed by induction variable occur quite 
frequently in real programs [10]. A d-nested loop accessing 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 205



a two-dimensional array with subscripts formed by 
induction variable is shown in Figure 1. 

An induction variable is a scalar integer variable, 
which is used in a loop to simulate do-variables: it is 
incremented or decremented by a constant in each iteration. 
Every induction variable can be replaced by a linear 
function of the loop’s index-variables. This transformation 
is called induction variable substitution. Since the variable 
K in Figure 1 is an induction variable, it can be replaced by 

),)()1()()1( (
3

2
2

1
2

2

1

1 d

d

P
P

d

P
P IUIUIz ++×−+×−× ∏∏

==

  

where d is the number of common loops and z is one 
integer variable in Figure 1. Therefore, the code in Figure 1 
is transformed into the code in Figure 2 after finishing the 
processing of induction variable substitution for the 
variable K. 

We treat the loop iteration variables referenced in 1S  

as being different variables from those referenced in ,2S  

subject to common loop bound, because dependence 

between 1S  and 2S  in Figure 2 may arise in different 

iterations of the common loops. Therefore, when we 
analyze dependence arising from a statement pair nested in 
d common loops, the problem will involve n unique 

variables (where n = 2d). Furthermore, variables 12 −kX  

and kX 2  )1( dk ≤≤  are different instances of the same 

loop iteration variable, and kk LL 212 =− , ,212 kk UU =−  

where kkkk UULL 212212  and  , , −−  are lower bounds and 

upper bounds for 12 −kX  and kX 2 , respectively. 

ENDFOR

ENDFOR

CKCKAS
CKCKAS

zKK
UIFOR

UIFOR
K

dd











                        
   

                         
) ,(                  :

) ,(                  :
                  

  TO  1           
               

  TO  1       
0

2

1

11

++=
=++

+=
=

=
=

 

Figure 1: Example of a nested loop with induction variable. 

 
The problem of determining if there is dependence 

for the array A between 1S  and 2S  in Figure 2 can be 

reduced to the problem of checking whether a system of 
two linear equations with n unknown variables has an 
integer solution simultaneously, which satisfies the 
constraints for each variable in the system. Assume that 
two linear equations in a system are written as 

,0  ))()()(

)()()()()(( 

0  ))()()(

)()()()()(( 

21222321

212343221

21222321

212343221

=−+×−++×××

−++×××−+×××−×

=−+×−++×××

−++×××−+×××−×

−−−+

−

−−−+

−

ddddddj

jjdd

ddddddj

jjdd

XXUXXUU
XXUUXXUUXXz

XXUXXUU
XXUUXXUUXXz







     (1−0) 

where each kU  ( dk ≤≤1 ) is an integer variable and is 

one upper bound for the kth loop nest. Because z is the 
greatest common divisor for all of the coefficients in the 
left-hand side of (1−0), all of the coefficients in (1−0) are 
divided by z and (1−0) is rewritten as 
 

.0  )()()(

)()()()()(

0  )()()(

)()()()()( 

21222321

212343221

21222321

212343221

=−+×−++×××

−++×××−+×××−

=−+×−++×××

−++×××−+×××−

−−−+

−

−−−+

−

ddddddj

jjdd

ddddddj

jjdd

XXUXXUU
XXUUXXUUXX

XXUXXUU
XXUUXXUUXX







      (1−1) 

It is postulated that the constraints to each variable in (1−1) 
are represented as   
 

206 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



, and 1 212 kkk UXX ≤≤ −                                                                               

(1−2) 
where .1 dk ≤≤  
 

 

Figure 2: The result of example nested loop after finishing                                
the processing of induction variable substitution. 

2 Determining Integer-valued Solutions for 

Two-dimensional Arrays with Symbolic 

Coefficients Under Symbolic Bounds 

 Given a data dependence problem of two-dimensional 
arrays with symbolic coefficients under symbolic bounds, 
we want to find that (1) under what conditions there are 
integer-valued solutions and (2) under what conditions 
there is no integer-valued solution. In this section, we first 
discuss the case without direction vectors. 
 

2.1 Determine Integer-valued Solutions for 
Two-dimensional Arrays with Symbolic 
Coefficients Under Symbolic Bounds 
Without Direction Vector 

 A system of linear equations (1−1) with symbolic 
coefficients is deduced from determining whether there 

exists dependence for the array A between S1  and S2  in 

Figure 2. A system of linear inequalities (1−2) is derived 
from lower and upper bounds of loop index variables in 
Figure 2. If there is no integer-valued solution for linear 
equations in (1−1) with symbolic coefficients under the 
limits of (1−2), then there is no dependence. Otherwise, 
there is dependence for linear equations in (1−1) with 
symbolic coefficients under the limits of (1−2). Lemma 
2−1 is presented to demonstrate that there are integer-
valued solutions for linear equations in (1−1) with symbolic 
coefficients under the limits of (1−2). 
Lemma 2−1: There are integer-valued solutions for linear 
equations in (1−1) with symbolic coefficients under the 
limits of (1−2). 
Proof:   Omitted due to the limitation of space. 
       We now use the following example to explain how 
Lemma 2−1 is applied. Consider the do-loop in Figure 3. 
The front-end of a parallelizing compiler can recognize that 
the variable K is one induction variable and the subscript of 
the array A is formed by the induction variable K. The 
equations of the data dependence for the subscript of the 
array A are described below. 

.0)( )( 
0)( )( 

4321

4321

=−+×−
=−+×−

XXNXX
XXNXX

                                                              

(Ex1-1) 
       The I test in [2] is first used to separately test each 
linear equation in (Ex1−1). If one of the equations is 
indicated to be no integer-valued solution, then there is no 
integer-valued solution for all of the equations. Otherwise, 
the multi-dimensional I test in [28] is next applied to 
simultaneously check linear equations in (Ex1−1). From 
the I test, the first linear equation in (Ex1−1) with symbolic 
coefficients can be rewritten as the following interval 
equation: 

].0  ,0[ )( )( 4321 =−+×− XXNXX                                                                

(Ex1−2) 

       According to the I test, the term 4X−  in the interval 

equation (Ex1−2) is moved to the right-hand side to gain 
the new interval equation: 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 207



].  ,[1  )( 321 NXNXX =+×−                                                                          

(Ex1-3) 

       From the I test, the term 3X  in the interval equation 

(Ex1−3) is moved to the right-hand side to gain the new 
interval equation: 

].1  ,[1  )( 21 −−=×− NNNXX                                                                             

(Ex1-4) 
       Because N is the greatest common divisor for all of the 
coefficients in the left-hand side of the interval equation 
(Ex1−4), all of the coefficients in the interval equation 
(Ex1−4) are divided by N and the new interval equation is 
obtained: 

].0 ,0[]1  ,1[ )( 21 =



 −





 −

=−
N

N
N

NXX                                                            

(Ex1−5) 
        Repeat the processing of the steps above until the 
term in left-hand side of the interval equation is reduced to 
zero item. Therefore, we will obtain the new interval 

equation ].1 ,[10 −−= MM  Because 1≥M , thus

1 01 −≤≤− MM . Therefore, there are integer-valued 
solutions for the first linear equation in (1−1) with 
symbolic coefficients. Similar processing is used to test the 
second linear equation in (Ex1−1). Conclusively, there are 
integer-valued solutions for the second linear equation. 

Assume that j ,1Ω  is denoted as the coefficient of the jth 

variable in the first linear equation and j ,2Ω  the 

coefficient of the jth variable in the second linear equation. 
A set of canonical solutions produced by the multi-

dimensional I test is denoted as: )}. ,{(  ,1 ,2 jj Ω−Ω  

According to the multi-dimensional I test, every canonical 
solution yields one new interval equation. Because the sum 
of the coefficient of every variable for each new interval 
equation is 0, each interval equation is reduced to 0 = [0, 
0]. Because 000 ≤≤  is always true, we can derive that 
there are integer-valued solutions for linear equations in 
(Ex1−1) with symbolic coefficients. 

2.2 Determine Integer-valued Solutions for 
Two-dimensional Arrays with Symbolic 
Coefficients Under Symbolic Bounds with 
Direction Vector 

      From Lemma 2−1, it is very clear that there are 
integer-valued solutions for linear equations in (1−1) with 
symbolic coefficients under the limits of (1−2). Next, under 
a specific given direction vector and the limits of (1−2), 
whether there are integer-valued solutions for linear 
equations in (1−1) with symbolic coefficients will be 
discussed. The following lemmas are proposed to show 
that (1) under what kind of a specific direction vector there 
are no integer-valued solutions and (2) under what kind of 
a specific direction vector there are integer-valued 
solutions. 
Lemma 2−2: There are no integer-valued solutions for 
linear equations in (1−1) with symbolic coefficients under 
the limits of (1−2) and a specific direction vector 

,) , *, ,( d∗<   where d is the number of common loops 

and "*" is any one of }. , ,{ >=<   

Proof:  Omitted due to the limitation of space. 
Lemma 2−3: There are no integer-valued solutions for 
linear equations in (1−1) with symbolic coefficients under 
the limits of (1−2) and a specific direction vector 

,) , *, ,( d∗>   where d is the number of common loops 

and "*" is any one of }. , ,{ >=<  

Proof: Similar to Lemma 2−2.  
Lemma 2−4: There are no integer-valued solutions for 
linear equations in (1−1) with symbolic coefficients under 
the limits of (1−2) and a specific direction vector 

,) , , , ,( 12 ddd θθθ −=   where d is the number of common 

loops and kθ  is any element of {<, =, >} 

12for  −≤≤ dk  and dθ  is any element of {<, >}. 

Proof: Similar to Lemma 2−2.  
Lemma 2−5: There are integer-valued solutions for linear 
equations in (1−1) with symbolic coefficients under the 

208 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



limits of (1−2) and a specific direction vector 

,) , , ,( d===   where d is the number of common loops. 

Proof: Similar to Lemma 2−2.  

                      K=0 
                      DO J = 1, M 
                            DO I =1, N 
                                   K = K + 1 
                            S:   A(K+1, K+1) = B(K, K) 
                            ENDDO 
                       ENDDO 
 
                   Figure 3: A Fortran do-loop. 

      We now explain how Lemma 2−2 to Lemma 2−5 is 
applied to the do-loop in Figure 3. Consider the do-loop in 
Figure 3. The front-end of a parallelizing compiler can 
recognize that the variable K is one induction variable and 
the subscript of the array A is formed by the induction 
variable K. The equations of the data dependence for the 
subscript of the array A under any given direction vector (<, 
*) are described below. 

.0)( )( 
0)( )( 

4321

4321

=−+×−
=−+×−

XXNXX
XXNXX

                                                   

(Ex2-1) 

        From Lemma 2−2, suppose that j ,1Ω  is denoted as 

the sum of the coefficients for the first and second 

variables in the first linear equation and j ,2Ω  the sum of 

the coefficients to the first and second variables in the 

second linear equation. Because j ,1Ω  and j ,2Ω  are both 0, 

a set of canonical solutions produced by the multi-
dimensional direction vector I test in [31] is denoted as: 

)}.1 ,1{(  According to the multi-dimensional direction 

vector I test, the canonical solution, (1, 1) yields one new 
interval equation as follows:  

].0 ,0[ ))()( (2 4321 =−+×−× XXNXX                                                     

(Ex2−2) 

        Because 2 is the greatest common divisor for all of the 
coefficients in the left-hand side of the interval equation 
(Ex2−2), all of the coefficients in the interval equation 
(Ex2−2) are divided by 2 and the new interval equation is 
obtained: 

].0 ,0[ )()( 4321 =−+×− XXNXX                                                                

(Ex2−3) 
 

       According to the I test, the term 4X−  in the interval 

equation (Ex2−3) is moved to the right-hand side to gain 
the new interval equation: 

]. ,[1 )( 321 NXNXX =+×−                                                                             

(Ex2−4) 

        From the I test, the term 3X  in the interval equation 

(Ex2−4) is moved to the right-hand side to gain the new 
interval equation: 

].1 ,[1 )( 21 −−=×− NNNXX                                                                       

(Ex2−5) 
        Because N is the greatest common divisor for all of 
the coefficients in the left-hand side of the interval 
equation (Ex2−5), all of the coefficients in the interval 
equation (Ex2−5) are divided by N and the new interval 
equation is obtained: 

].0 ,0[]1  ,1[  )( 21 =



 −





 −

=−
N

N
N

NXX                                                        

(Ex2−6) 

        Because the direction vector is "<" for the terms   1X

and , 2X  according to the direction vector I test [8], the 

two terms 21  and  XX  are moved to the right-hand side. 

Therefore, we obtain the new interval equation 

].1 ,[10 −= M  Because 1 01 −≤≤ M  is false, thus 

there are no integer-valued solutions for linear equations in 
(Ex2−1) with symbolic coefficients under a specific 
direction vector (<, *). Similarly, for dealing with other 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 209



specific direction vector, Lemmas 2−3 to 2−5 can be 
applied for dealing with other specific direction vector. 
Hence, from Lemma 3−5, it is obtained that there are 
integer-valued solutions for the array A under a specific 

direction vector ). ,( ==  From Lemma 2−2 to Lemma 2−4, 

consequently, there is no integer-valued solution for the 
array A under other specific direction vectors. The front 
end of a parallelizing compiler derives that there only 
exists loop-independence output dependence for the do-
loop and the do-loop can be executed in parallel mode. 

2.3 Extending Symbolic Subscript Formed by 
Induction Variable 

We can easily extend the expression "K+C" for the 
array A in Figure 1 to "a*K+C", where a is an integer 
variable and is not equal to zero. Since the variable K in 
Figure 1 is one induction variable, it can be replaced by 

).)()1()()1( (
3

2
2

1
2

2

1

1 d

d

P
P

d

P
P IUIUIz ++×−+×−× ∏∏

==

   

Therefore, the code for the extended expression of the 
array A in Figure 1 is transformed into the code in Figure 4 
after finishing the processing of induction variable 
substitution for the variable K. The problem of determining 
whether there exists one dependence for the array A 

between 1S  and 2S  in Figure 4 is actually equal to that of 

checking whether there are integer-valued solutions for a 
system of new linear equations in (2−11) under the 
constraints of (1−2). It is assumed that the system of new 
linear equations in (2−11) is written as 

and 0  ))()(

)()(
)()()()( (

2122232

1212

343221

=−+×−+

+×××−+
+×××−+×××−××

−−−

+−

ddddd

djjj

dd

XXUXX
UUXX

UUXXUUXXza


                     

(2−11) 

,0  ))()(

)()(
)()()()( (

2122232

1212

343221

=−+×−+

+×××−+
+×××−+×××−××

−−−

+−

ddddd

djjj

dd

XXUXX
UUXX

UUXXUUXXza


  

where each kU  is an integer variable and is one upper 

bound for the kth loop for .1 dk ≤≤  Because za×  is not 

equal to zero, all of the coefficients in (3−11) are divided 
by za×  and (3−11) is exactly equal to (1−1). Therefore, 
the following theorems can be applied to deal with whether 
there is dependence for the array A in Figure 4. 
 
Theorem 2−1: There are integer-valued solutions for 
linear equations in (2−11) with symbolic coefficients under 
the limits of (1−2) and a specific direction vector 

,) , , ,( d===   where d is the number of common loops. 

Proof: Similar to Lemma 2−2.  
 
Theorem 3−2: There are no integer-valued solutions for 
linear equations in (2−11) with symbolic coefficients under 
the limits of (1−2) and other given direction vectors. 
Proof: Similar to Lemma 2−2.  

3 Experimental Results 

   We have tested our method and have performed 
experiments by hand on the codes abstracted from three 
numerical packages: Parallel loop, Vector loop and Perfect 
Benchmark [5, 8, 25]. 10 pairs of two-dimensional array 
references with different direction vectors are observed to 
have subscripts formed induction variable. The proposed 
method is only applied to test those two-dimensional arrays 
with subscripts formed induction variable. It is found in 
the experiment that there is no case to satisfy the condition 
of the proposed method for Vector loop, TRFD and OCSI. 
It is very clear from the result shown in Table 1 that the 
proposed method could properly solve whether there are 
integer-valued solutions for two-dimensional arrays with 
subscripts formed induction variable. 

We also implemented the Omega test and the Power 
test based on [4, 7] to compare their effects with that of the 
proposed method. The Omega test and Power test are 
applied to solve the same 10 pairs of two-dimensional 
arrays with symbolic coefficients. Clearly, from the result 
shown in Table 2, the Omega test and the Power test could 
not be applied for determining whether there are integer-
valued solutions for two-dimensional arrays with symbolic 
coefficients. Therefore, the results shown in Table 1 and 
Table 2 indicate that the precision of the proposed method 

210 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



is slightly superior to that of the Omega test and the Power 
test. 
 
Table 1. The result of solving whether there are integer-
valued solutions for two-dimensional arrays with subscripts 
formed induction variable. 
 

Benchmark The number 
of  

arrays tested  

The number 
of  

integer-
valued 

solution 

The number 
of 

no integer-
valued 

solutions 

Parallel loop 10 2 8 

Vector loop 0 0 0 

TRFD  0 0 0 

OCSI 0 0 0 

 

















ENDFOR

ENDFOR

CIUIUIza

CIUIUIzaAS

CIUIUIza

CIUIUIzaAS

UIFOR

UIFOR
K

d

d

P
P

d

P
P

d

d

P
P

d

P
P

d

d

P
P

d

P
P

d

d

P
P

d

P
P

dd

                        
   

                         

)))()1()()1( (                                  

,))()1()()1( ((                  :

)))()1()()1( (            

,))()1()()1( ((  :

  TO  1           
               

  TO  1       
0

3
2

2
1

3
2

2
12

3
2

2
1

3
2

2
11

11

2

2

1

1

2

2

1

1

2

2

1

1

2

2

1

1

+++×−+×−××

+++×−+×−××=

=+++×−+×−××

+++×−+×−××

=

=
=

∏∏

∏∏

∏∏

∏∏

==

==

==

==

 

Figure 4: The result for the extended expression of the 
array A in Figure 1 after induction variable substitution. 

Table 2. The result of the Omega and Power tests for 
solving whether there are integer-valued solutions for 10 
pairs of two-dimensional arrays with symbolic coefficients. 

Dependence 

Method 

The number 
of  

arrays tested  

The number 
of  

integer-
valued 

solution 

The number 
of 

no integer-
valued 

solutions 

The Omega Test 10 − − 

The Power Test 10 − − 

("−" represents that the Omega and Power tests cannot deal 
with them.) 
 
   The study in [4] stated that (1) the cost of scanning array 
subscripts and loop bounds to build a dependence problem 
is typically 2 to 4 times of the copying cost (the cost of 
building a system of dependence equations) for the 
problem, and (2) the dependence analysis cost for more 
than half of simple arrays tested is typically 2 to 4 times of 
the copying cost, but the dependence analysis cost for 
other simple arrays and all of the regular, convex and 
complex arrays tested is more than 4 times of the copying 
cost. Based on such results we can figure out that, for 
simple arrays, the analysis cost of data dependence for a 
parallelizing/vectorizing compiler occupies generally 
about 29% to 57% of total compiling time. But, for 
complex arrays, the analysis cost of dependence testing 
takes more than 57% of total compiling time. Therefore, 
enhancing on dependence testing performance may result 
in significant improvement on compiling performance of a 
parallelizing/vectorizing compiler. 

4 Conclusions 

 The front-end of a parallelizing compiler can easily 
recognize induction variable that forms subscripts of two-
dimensional arrays. Induction variable can be replaced by 
a linear function in the loop’s index-variable after the 
front-end of a parallelizing compiler finishes the 
processing of induction variable substitution. The 
proposed method can offer data dependence analysis for 
arrays with references formed by induction variable. 
Depending on the application domains, we suggest to 
applying the proposed method together with the front-end 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 211



of a parallelizing compiler to provide data dependence 
analysis for arrays with references formed by induction 
variable. 
 

5 References 

 
[1] B. J. Smith et al., Matrix Eigensystem Routines-Eispack 
Guide, Heidelberg: Springer, 1976. 
[2] Xiangyun Kong, David Klappholz and Kleanthis 
Psarris, "The I test," IEEE Transaction on Parallel and 
Distributed Systems," Vol. 2, No. 3 (July 1991), pp. 
342−359. 
[3] Z. Li, P.-C. Yew and C.-Q. Zhu. "An efficient data 
dependence analysis for parallelizing compilers," IEEE 
Transaction on Parallel and Distributed Systems, Vol. 1, 
No. 1 (January 1990), pp. 26−34. 
[4] W. Pugh, "A practical algorithm for exact array 
dependence analysis," Communication of the ACM, 35(8) 
(August 1992), pp. 102−114. 
[5] Dongarra J., M. Furtney, S. Reinhardt and J. Russell, 
"Parallel Loops − A test suite for parallelizing compilers: 
Description and example results," Parallel Computing 
17(1991) 1247−1255. 
[6] Uptal Banerjee. Dependence Analysis for 
Supercomputing, Kluwer Academic Publishers, Norwell, 
Massachusetts, 1988. 
[7] M. Wolfe and C.W. Tseng, "The power test for data 
dependence," IEEE Transaction on Parallel and Distributed 
Systems, Vol. 3, No. 5 (September 1992), pp. 591−601. 
[8] David Levine, David Callahan and Jack Dongarra, "A 
comparative study of automatic vectorizing compilers," 
Parallel Computing 17(1991) pp.1223-1244. 
[9] Vaughan and William Jeffrey, A residuals management 
model of the iron and steel industry: a linear programming 
approach, Mich.: Univ. Microfilms International, Ann 
Arbor, 1986. 
[10] Z. Shen, Z. Li and P.-C. Yew, "An empirical study of 
Fortran programs for  parallelizing compilers," IEEE 
Transaction on Parallel and Distributed Systems, Vol. 1, 
No. 3 (July 1992), pp. 356−364. 
[11] Paul M. Petersen, "Evaluation of programs and 
parallelizing compilers using dynamic analysis 

techniques," PhD thesis, University of Illinois at Urbana-
Champaign, January 1993. 
[12] Uptal Banerjee, Dependence Analysis, Kluwer 
Academic Publishers, Norwell, Massachusetts, 1997. 
[13] Uptal Banerjee, Loop Transformations for 
Restructuring Compilers: The Foundations, Kluwer 
Academic Publishers, 1993. 
[14] R. Triolet, F. Irigoin and P. Feautrier, "Direct 
parallelization of call statements," in Proc. SIGPLAN 
Symp. Compiler Construction, Palo Alto, CA, 1986, 
176−185. 
[15] T.C. Huang and C.M. Yang, "Data Dependence 
Analysis for Array References," The Journal of System and 
Software, 52(2000) 55-65. 
[16] Kleanthis Psarris, Xiangyun Kong, David Klappholz, 
"The direction vector i test," IEEE Transaction on Parallel 
and Distributed Systems, Vol. 4, No. 11 (1993) 1280−1290. 
[17] W. Blume and R. Eigenmann, "Nonlinear and 
symbolic data dependence testing," IEEE Transaction on 
Parallel and Distributed Systems, Vol. 9, No. 12 (1998) 
1180−1194. 
[18] Yunheung Paek, "Compiling for Distributed Memory 
Multiprocessors Based on Access Region Analysis," PhD 
thesis, University of Illinois at Urbana-Champaign, 1997. 
[19] Jay Philip Hoeflinger, "Interprocedural Parallelization 
Using Memory Classification Analysis," PhD thesis, 
University of Illinois at Urbana-Champaign, 1998. 
[20] Chih-Ping Chu and Weng-Long Chang, "The 
Extension of Direction Vector I Test," Proceedings of the 
10th IASTED International Conference Parallel and 
Distributed Computing and Systems, Oct. 1998, Nevada, 
USA, pp. 484-489.  
[21] Weng-Long Chang and Chih-Ping Chu, "The Infinity 
Lambda Test: A Multi-dimensional Version of Banerjee's 
Infinity Test," Parallel Computing, Vol. 26, Number 10, 
Aug. 2000, pp. 1275-1295. 
[22] D.E. Knuth, The Art of Computer Programming, Vol. 
2, Seminumerical Algorithms, second edtion Reading, MA: 
Addison-Wesley, 1981. 
[23] R. Eigenmann, J. Hoeflinger, and D. Padua, "On the 
Automatic Parallelization of the Perfect Benchmarks," 
IEEE Transactions on Parallel and Distributed Systems. 
Vol. 9, No. 1, pp. 5-23. Jan. 1998. 

212 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



[24] Kleanthis Psarris, David Klappholz, and Xiangyun 
Kong, "On the Accuracy of the Banerjee Test," Journal of 
Parallel and Distributed Computing, 12(2): 152-158, June 
1991. 
[25] Kleanthis Psarris and Konstantions Kyriakopoulos, 
"Data Dependence Testing in Practice," Proceedings of the 
1999 International Conference on Parallel Architectures 
and Compilation Techniques. 
[26] David Niedzielski and Kleanthis Psarris, "An 
Analytical Comparison of the I-Test and Omega Test," 
LCPC'99: Twelfth International Workshop on Languages 
and Compilers for Parallel Computing. 
[27] R. Eigenmann, J. Hoeflinger, and D. Padua, "On the 
automatic parallelization of the perfect benchmarks," IEEE 
Transactions on Parallel and Distributed Systems. Vol. 9, 
No. 1, pp. 5-23. Jan. 1998. 
[28] W.-L. Chang, C.-P. Chu and J.-H. Wu, "A multi-
dimensional direction vector I test," The Journal of System 
and Software, Feb. 2001. 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 213



Developing NAND-memory SSD based Hybrid Filesystem

Jaechun No1
1College of Electronics and Information Engineering, Sejong University, Seoul, Korea

Abstract— As the technology of NAND flash memory
rapidly grows, SSD is becoming an excellent alternative for
storage solutions, because of its high random I/O throughput
and low power consumption. These SSD potentials have
drawn great attention from IT enterprises that seek for
better I/O performance. However, high SSD cost per capacity
makes it less desirable to construct a large-scale storage
subsystem solely composed of SSD devices. An alternative
is to build a hybrid storage subsystem where both HDD
and SSD devices are incorporated in an economic manner,
while employing the strengths of both devices. This paper
presents a hybrid file system, called HybridFS, that attempts
to utilize the advantages of HDD and SSD devices, to provide
a single, virtual address space by integrating both devices.
HybridFS not only proposes an efficient implementation for
the file management in the hybrid storage subsystem but
also suggests an experimental framework for making use of
the excellent features of existing file systems. Several perfor-
mance evaluations were conducted to verify the effectiveness
and suitability of HybridFS.

Keywords: flash memory, hybrid system, SSD, data layout, extent

1. Introduction
The rapid growth of flash memory technology has led

to the advent of SSD (Solid-State Device) in the storage
platform. Due to the fact that SSD does not need the
mechanical overhead, such as seek time, to locate the desire
data, it has drawn great attention from IT markets that
seek for improved I/O performance. These days SSD is
becoming an excellent storage solution, to provide optimal
I/O performance. For instance, database produces a large
number of writes to store data for the purpose of update,
rollback, and log. In this case, SSD offers a good opportunity
to achieve desirable I/O performance.

Despite its performance potentials, the common usage of
SSD is currently restricted to small-size memory devices,
such as mobile equipments. The key obstacle to the widening
SSD adoption to large-scale storage subsystems is its high
cost per capacity ($3/GB for SSD, whereas $0.3/GB for
HDD) [1]. Even though the cost of flash memory becomes
decrease, the price of SSD is still much higher, compared
to that of HDD. Such a high cost/capacity ratio makes it
less desirable to build large-scale storage subsystems solely
composed of SSD devices. An alternative storage solution
is to build a hybrid storage subsystem where both SSD and

HDD devices are combined in a cost-effective way, while
making use of the strengths of both devices.

In this paper, we present a hybrid file system, called Hy-
bridFS, developed for exploiting the hybrid storage structure.
HybridFS is capable of generating comparable performance
to the file system installed on SSD devices, while offering
much larger storage capacity at less cost. This is achieved
by integrating vast, low-cost HDD storage space with a
small portion of SSD space through several optimization
schemes, to address the strengths and the shortcomings of
both devices.

This paper is organized as follows: In Section 2, we
discuss the design motivations and related studies. In Sec-
tion 3, we analyze and compare the performance evaluation
for HDD and SSD. In Section 4, we present the design of
HybridFS and in Section 5, we conclude with a summary.

2. Related Studies
As pointed out by [2], [3], the major drawbacks of flash

memory are write latency due to erasure per block and
cleaning problems. Many flash file systems [4], [5], [6] take
the out-of-place approach proposed by log-structured file
system [7], to reduce the semiconductor overhead of flash
memory.

The well-known characteristic of log-structured file sys-
tem is its sequential, out-of-place update using logs. The logs
are divided into segments, to maintain large disk free area
and to avoid space fragmentation. The garbage collection
is performed per segment, by copying live data out of a
segment. This update approach has been adopted to most
flash file systems, to minimize the block erasure overhead.
JFFS and JFFS2 [6] maintain file metadata logs for the
sequential writing. To mount file system, they require to scan
all the logs in flash memory, which may take considerably
long time to build. Also, both flash file systems were
designed for embedded equipments with small-size NAND
flash memory.

TFFS [5] is an optimized file system which suits for the
small embedded systems with less than 4KB of RAM. TFFS
is targeted for NOR devices and provides several useful
functions, such as tailored API for the embedded device and
concurrent transaction recoveries. ELF [4] is built for sensor
nodes and keeps a log entry for each flash page. ELF tries
to optimize the logging overhead by reducing the number of
log entries. However, most of flash file systems have been
developed for small-size flash memory and therefore is not
appropriate for a large-scale data storage.

214 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



As HybridFS does with SSD devices, there are several
interesting attempts to make use of storage class memories.
LiFS [8] intends to store file system metadata to smaller,
faster storage class memory, such as MRAM. Conquest [9]
uses persistent RAM for storing small files and file system
metadata. Only the remaining data of large files are stored
in disk. MRAMFS [10] goes further by adding compression,
to overcome the limited size of NVRAM. HeRMES [11]
proposed to keep all file metadata in MRAM and to apply
compression to minimize the required space for metadata.
hFS [12] attempts to combine the strengths of both FFS and
log-structured file system, by separating file data and file
metadata into two partitions.

Besides, Agrawal et. al. [13] describes interesting SSD
design issues using Samsung’s NAND-flash. They also sug-
gest several ways of obtaining improved I/O performance on
SSD, by analyzing a variety of I/O traces extracted from real
systems. However, there is little file system works for hybrid
storage subsystems where HDD and SSD are incorporated
to provide a large-scale, virtualized address space.

3. Performance Evaluation for HDD and
SSD

To design a new filesystem, we were interested in which
storage produces a good I/O performance on distributed-
small files or sequential-big files. The first condition is the
analysis of metadata access patterns and the second is the
one of data access patterns.

To experiment these interesting storage issues, we tested
HDD and SSD with three kinds of filesystems, using Post-
mark and IOzone [16]. The filesystems selected for this test
are XFS, NILFS, and Ext2 [14], [15]. These three filesystems
manage blocks using a quite different procedure from each
other.

XFS is a journaling filesystem designed to support the
fast crash recovery. To allow large I/O requests to a file, it
allocates the file as contiguously as possible. This is because
the size of a request to the underlying drives is limited by the
range of contiguous blocks in the file being read or written.
We choose XFS to test the performance of storages with
sequential access patterns.

NILFS is a new log-structured filesystem for Linux. In-
stead of overwriting existing blocks, it continuously appends
the consistent sets of modified or newly created blocks
into segmented disk regions. It is noted that many random
accesses are needed to read a file consisted of distributed
blocks. We use NILFS to test the performance of storages
with random access patterns.

Ext2 does not support any of schemes to sequentially
allocate blocks. In this experiment, Ext2 filesystem is just
standard for

comparing with other file systems.
The machine used for these performance measurements

has a Intel Xeon 3GHz CPU, 3Gbyte of memory, 7200rpm

IDE hard drives with 32-Mbytes disk cache and SATA-
connected Mtron SSD. The Linux kernel version used for
the measurement was 2.6.23. Both the disk block and page
sizes are 4Kbytes.

3.1 Postmark Benchmark

Fig. 1: I/O bandwidth for the file create operations.

Fig. 2: I/O bandwidth for the file read operations.

Fig. 3: I/O bandwidth for the file delete operations.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 215



We used Postmark to evaluate the I/O performance of
small-files. Postmark is a benchmark to measure the perfor-
mance of the ephemeral small-files, such as electronic mail,
net news and web-based commerce. It first creates a specified
number of files. Then it performs a mixture of creation,
deletion, read, and append operations on them. Finally, all
files are deleted. We used the default setting of Post Mark
v1.5 in which the block size to read and write is 512 bytes,
the read/append and create/delete ratios are 5 and the file size
range is 500 bytes ∼ 9.77 kilobytes. In this test, the number
of files is set to 10000 and the number of transactions is set
to 50000.

Figure 1 shows the performance for creating files. As can
be seen in the Figure, Ext2 and NILFS produce better write
performance with SSD than with HDD.

An Ext2 file consists of metadata and contents of it.
The metadata of Ext2 filesystem consists of block bitmap,
inode bitmap, super block, inode, and so on. Modifications
to these metadata require to relocate a disk arm because
Ext2 filesystem stores it in a fixed area for each metadata.
It manages data blocks of a file by inode structures which
have 12-direct block list and 3-indirect block list. Because
of this design, the job access to data leads to the random
access for the file size over 48Kbytes, in case of 4Kbytes
of block size. These random characteristics in accessing an
Ext2 file cause significant overheads in relocating the disk
head to search metadata or data many times. However, with
SSD, the operations being performed randomly to access a
file no longer need mechanical actions. This results in much
better performance in Ex2 filesystem installed on SSD than
on HDD.

NILFS produces better performance than Ext2 filesystem
on the whole. It is a log-structured filesystem which allocates
blocks as appendix and stores inode and data as a group,
thereby causing better performance than Ext2 filesystem.

XFS shows the worst I/O performance in the Figure 1,
even with SSD. Presently, we do not have a clear idea
why XFS shows such a worst performance with Postmark.
Possibly, SSD may not be suitable for the sequential block
allocation, as in XFS.

Figure 2 shows the read performance. As can be seen
in the results of file create operations, SSD produces better
performance than HDD in Ext2 and NILFS. As mentioned
above, Ext2 needs to read data from disk using the inode
structure, resulting in the disk seek time with HDD. This
does not happen with SSD. In order to minimize the disk
seek overhead, NILFS groups an inode and data for a file,
thus resulting in much better read performance than in Ext2.
This is also true with SSD.

Figure 3 shows the performance of file delete operations.
To delete a file, Ext2 sets the associated data block and inode
bitmaps of the file to “0”. Because of this procedure, the
experiment causes many random accesses. The performance
degradation with HDD reflects these random accesses both

in Ext2 and NILFS. However, it is noted that SSD does not
suffer from these random accesses.

3.2 IOzone Benchmark
IOzone shows different performance patterns from Post-

mark because it generates files of sharply different sizes.
Postmark generates tiny files, between 500 bytes and 1kbyte,
but IOZone produces large files, between 4K and 2Gbytes.
We tested SSDs using Write/Re-write, Read/Re-read and
Random-write/Random-read of IOzone.

Write test measures the performance of writing a new
file. When a new file is written, both the data and metadata
must be stored in the disk. Re-write test measures the
performance of writing a file that already exists. When a
file is re-written, the I/O overhead to be required is clearly
less than in the file write operation because the associated
metadata already exists. Read test measures the perfor-
mance of reading an existing file. Re-read test measures
the performance of reading a file that was recently read.
In general, the performance for re-read operations is higher
than that for read operations because of caching data recently
read. Random-read test and Random-write test measure
the performance of reading a file or writing to a file with
random access patterns. The performance of the random I/O
operations can be affected by several factors, such as the
size of file cache, number of disks and seek latencies.

Fig. 4: Write performance on HDD

As can be seen in Figures 4 and 5, three file systems
illustrate similar performance with HDD and SSD. Espe-
cially, NILFS shows almost same behavior for all the file
sizes. Ext2 and XFS generate similar write performance on
SSD and HDD until 64Mbytes of file size. When the file size
increases above 128Mbytes, the write performance on SSD
is sharply decreased. In these results, we can guess that SSD
does not appropriate to write big files either with distributed
blocks as in Ext2, or with sequential blocks as in XFS.

In a filesystem, many blocks are overwritten several times,
for instance, an inode structure is always updated when a file

216 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



Fig. 5: Write performance on SSD

Fig. 6: Re-write performance on HDD

Fig. 7: Re-write performance on SSD

Fig. 8: Random-write performance on HDD

Fig. 9: Random-write performance on SSD

Fig. 10: Read performance on HDD

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 217



is accessed. Therefore, the re-write performance is important
to design a filesystem. The Figures 6 and 7 show the re-
write performance in HDD and SSD. The I/O behavior of
the measurement is much similar with the write performance,
but the re-write test generates better performance than the
write test because the re-write operation does not need to
write metadata. A similar performance decline with SSD
happens in XFS and Ext2, too. SSD does not support the
data modifications which are frequently requested in re-write
operations. To modify data, SSD deletes the desired blocks at
first and writes the modified data to them. This complicated
operation is supposed to be the reason of decreasing I/O
performance.

Figures 8 and 9 show the random-write performance.
In these Figures, NILFS produces better performance with
HDD than with SSD because, as mentioned above, SSD does
not support data modification. Also, SSD uses a different
block unit for the write and delete operations. These two fea-
tures cause the less performance with SSD than with HDD.
Furthermore, the random-write test includes the overhead to
repeatedly delete and write to random locations within the
file, resulting in the performance degradation in SSD.

Figures 10 and 11 show the read performance on HDD
and SSD. In these Figures, the performance of NILFS shows
the similar I/O behavior with Ext2, unlike in the write
performance. NILFS is a log-structured filesystem in which
the metadata and data are sequentially stored as a group
in the same location. By this feature of NILFS, the read
operation with HDD shows the similar result with SSD. The
result for the sequential read access on HDD is also much
similar with on SSD.

The re-read and random-read graphs show similar shape
with the read operation. The re-read performance is better
than the read performance, as in Figures 10 and 11. When
compared the read performances with the re-read, SSD gen-
erates higher I/O bandwidth than HDD with the file size of
less than 256Kbytes. The random-read performance on SSD

Fig. 11: Read performance on SSD

shows better performance than HDD in general, especially
with 4Kbytes and over the 8Mbytes. In this test, HDD needs
seek operations to access random locations within a file,
but SSD does not. This storage feature contributes to the
difference of the random-read performance.

3.3 Performance Review
The test for small files - from 500 bytes to 9.77kbytes -

performed in section 3.1 shows that SSD is appropriate to
read, write and delete many small files with random accesses.

The other test for general files performed in section 3.2
shows that the performance with HDD is almost same with
SSD for less than 64bytes of file size. With files of larger
than 64bytes, SSD shows the sharp performance decline
in Ext2 and XFS, except for random-read operations. It
suggests that HDD generates good I/O performance with
general files and is not related to the access pattern of
filesystems. If a filesystem manages the data sequentially,
HDD could handle a file over 4bytes more efficiently than
SSD.

4. Design of a Hybrid Filesystem

Fig. 12: A prototype of HybridFS

The key idea of HybridFS is the separation of data and
metadata by storing them in a different type of storage,
according to their characteristics.

As mentioned before, SSD is good for storing distributed,
small files, thus HybridFS retains metadata in SSD. On
the other hand, HDD is good for sequential, big files, so
HybridFS is designed to store data contiguously in HDD.
Figure 12 shows the disk layout of HybridFS

The HybridFS creation is started by duplicating the meta-
data stored in HDD into SSD, such as superblock, group
descriptor table, block and inode bitmap and inode table. We
added the new location field in HDD super block since both
SSD and HDD partitions should know the block locations
of each other. After that, using the information stored in the
new location filed, HybridFS is mounted on SSD partition.

The task for using HybridFS is consisted of two steps.
The first step is to format two devices for storing system
metadata and real data. In the second step, we configure
several metadata including superblock and also add the extra

218 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



field in the superblock to make both HDD and SSD partitions
recognize the data locations of each other.

To duplicate the file system metadata to SSD partition,
we first allocate SSD data block where those metadata are
stored and then create the location table where each position
denotes the SSD metadata location.

The HybridFS mount is performed on SSD partition by
calling sys_mount(). In the function, HybridFS accesses
file system metadata from SSD partition by referring to
the location table, while recording the necessary system
metadata to HDD partition. Figure 13 shows the location
table for storing file system metadata to SSD partition. The
rest steps for HybridFS are now being implemented.

5. Conclusions
As the technology of flash memory rapidly grows, SSD

has drawn a great attention from IT enterprises as an attrac-
tive storage solution for fast I/O processing needs. SSD not
only generates high I/O performance because of the absence
of mechanical moving overhead but also provides significant
power savings. However, despite its promising potentials,
most SSD usages in real products have been limited to small-
size memory devices, such as mobile equipments, because
of its high cost per capacity. In this paper, we proposed a
way of integrating SSD devices with HDD devices in a cost-
effective manner, to build a large-scale, virtual address space.
We tested HDD and SSD to take a good sight for developing
a hybrid filesystem. The performance results obtained by
using IOzone and Postmark show different shapes in Ext2,
XFS and NILFS. In the evaluation, we showed that SSD

Fig. 13: HybridFS location table structure

is good for storing distributed, small files. On the other
hand, HDD is good for keeping sequential, big files. The
prototype of HybridFS is designed to take this feature by
storing metadata in SSD and real data in HDD. We will
further upgrade HybridFS, while combining the advantages
of both HDD and SSD to generate high I/O performance.

6. Acknowledgment
This work was supported by the National Research Foun-

dation of Korea (NRF) grant funded by the Korea govern-
ment (MSIP) (NRF- 2014R1A2A2A01002614).

References
[1] M. Saxena and M. Swift, "FlashVM: Virtual Memory Management

on Flash," 2010 USENIX Annual Technical Conference, Boston, MA,
2010.

[2] W. K. Josephson, L. A. Bongo, and D. Flynn, "DFS: A File System
for Virtualized Flash Storage," In Proceedings of the 8th USENIX
Conference on File and Storage Technologies, San Jose, USA, 2010.

[3] G. Soundararajan, V. Prabhakaran, M. Balakrishnan, and T. Wob-
ber, "Extending SSD Lifetimes with Disk-Based Write Caches," In
Proceedings of the 8th USENIX Conference on File and Storage
Technologies, San Jose, USA, 2010.

[4] H. Dai, M. Neufeld, and R. Han, "ELF: An Efficient Log-Structured
Flash File System for Micro Sensor Nodes," SenSys’04, Baltimore,
USA, 2004.

[5] E. Gal and S. Toledo, "A Transactional Flash File System for
Microcontrollers," In Proceedings of 2005 USENIX Annual Technical
Conference, Anaheim, CA, 2005.

[6] D. Woodhouse, "JFFS: The Journaling Flash File System," In Ottawa
Linux Symposium, 2001.

[7] M. Rosenblum and J. Ousterhout, "The Design and Implementation
of a Log Structured File System," In Proceedings of the 13th ACM
Symposium on Operating Systems Principles, 1991, pp.1-15.

[8] S. Ames, N. Bobb, K. Greenan, O. Hofmann, M. W. Storer, C.
Maltzahn, E. L. Miller, and S. A. Brandt, "LiFS: An Attribute-Rich
File System for Storage Class Memories," In Proceedings of the 23rd
IEEE/14th NASA Goddard Conference on Mass Storage Systems and
Technologies, College Park, USA, 2006.

[9] A. Wang, G. Kuenning, P. Reiher, and G. Popek, "Conquest: Better
Performance Through a Disk/Persistent-RAM Hybrid File System,"
In Proceedings of the 2002 USENIX Annual Technical Conference,
Monterey, CA, 2002.

[10] N. K. Edel, D. Tuteja, E. L. Miller, and S. A. Brandt, "MRAMFS: A
compressing file system for non-volatile RAM," In Proceedings of the
12th International Symposium on Modeling, Analysis, and Simulation
of Computer and Telecommunication Systems, Volendam, Netherlands,
2004.

[11] E. L. Miller, S. A. Brandt, and D. D. E. Long, "HeRMES: High-
performance reliable MRAM-enabled storage," In Proceedings of the
8th IEEE Workshop on Hot Topics in Operating Systems, Schloss,
Germany, 2001, pp.83-87.

[12] Z. Zhang and K. Ghose, "hFS: A Hybrid File System Prototype
for Improving Small File and Metadata Performance," EuroSys’07,
Lisbon, Portugal, 2007.

[13] N. Agrawal, V. Prabhakaran, T. Wobber, J. D. Davis, M. Manasse,
and R. Panigrahy, "Design Tradeoffs for SSD Performance," 2008
USENIX Annual Technical Conference, 2008.

[14] R. Card, T. Ts’o, and S. Tweedie, "Design and Implementation of
the Second Extended Filesystem," In Proceedings of the First Dutch
International Symposium on Linux, 1995.

[15] A. Sweeney, D. Doucette, W. Hu, C. Anderson, M. Nishimoto, and
G. Tech, "Scalability in the XFS File System," In Proceedings of the
USENIX 1996 Technical Conference, San Diego, USA, 1996.

[16] IOzone, Available at: http://www.iozone.org

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 219



220 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



SESSION

MPS, MATHEMATICAL MODELING AND
PROBLEM SOLVING WORKSHOP

Chair(s)

Prof. Hayaru Shouno

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 221



222 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



Codebook Graph Coding of Descriptors

Tetsuya Yoshida1 and Yuu Yamada2
1Graduate School of Humanities and Science, Nara Women’s University, Nara, Japan
2Grad. School of Info. Science and Technology, Hokkaido University, Sapporo, Japan

Abstract— This paper proposes a method called Codebook
Graph Coding to improve the standard orderless Bag of
Features (BoF) representation of images for whole-image
categorization tasks. Inspired by the “bag of words” rep-
resentation in document analysis, BoF has been widely
used in image analysis. However, as in document analysis,
the locations of “visual words” (features) in images are
discarded in the standard BoF representation. Since the
locations of visual words in images seems more impor-
tant compared with document analysis, use of locational
relationship may contribute to improving the performance
of whole-image categorization. Instead of the proximity of
descriptors and features in the feature space, the proposed
method utilizes the proximity of descriptors in each image
when coding images as bag of features. For each image, the
proposed method first constructs a graph to represent the
locational relationship of descriptors in the image. Then,
the connectivity relations encoded as a set of graphs are
aggregated into another graph of features. Finally, this
graph is used to encode the descriptors in each image as
a pooled feature. Preliminary experiments are conducted
to investigate the effectiveness of the proposed method and
compared with other BoF methods. Results are encouraging,
and indicate that it is worth pursuing this path.

Keywords: image categorization, descriptors, coodbook, graph

1. Introduction
Thanks to inexpensive and high resolution digital cameras,

it is possible to take a lot of photos in daily life these days.
However, the increasing volume of digital images makes it
difficult to manage them manually. Thus, various efforts have
been conducted to automatically classify or cluster them
solely based on the contents. Due to the success of machine
learning techniques in document analysis, use of these
techniques is expected to contribute to automatic recognition
of digital images. However, since many statistical machine
learning techniques are based on the vector representation
of data, for applying such techniques, it is necessary to
represent digital images in vector representation.

The “bag of word” representation in document analysis is
recently extended to “bag of features” (BoF) representation
for better whole-image categorization tasks [1], [2], [3].
After extracting local keypoints from images and represent-
ing them as descriptors (e.g., SIFT descriptors [4], [5]),
the descriptors are clustered into so-called “visual words”

(features) so that techniques developed in document pro-
cessing can be used for whole-image categorization tasks.
However, as in the bag of words representation in document
analysis, the location of visual words in an image and the
locational relationship between visual words are discarded
in BoF representation. Since the locations of visual words
in images seems more important compared with document
analysis, use of locational relationship may contribute to
improving the performance of whole-image categorization.

Toward better whole-image categorization under the
framework of BoF, this paper proposes a method called
Codebook Graph Coding based on the proximity of descrip-
tors. Instead of the proximity of descriptors and features in
the feature space, the proposed method utilizes the proximity
of descriptors in each image when encoding images as
bag of features. For each image, the proposed method first
constructs a graph to represent the locational relationship of
descriptors in the image. Then, the connectivity relations in
a set of graphs are aggregated into another graph of features.
Finally, this graph is used to encode the descriptors in each
image as a pooled feature. Experiments over scene15 and
Caltech-101 datasets are conducted, and the performance of
our approach is investigated through the comparison with
other BoF methods. Results are encouraging, and indicate
that utilization of the proximity of descriptors in each image
can lead to better performance.

The rest of this paper is organized as follows. Section 2
explains related work to clarify the context of this research.
Section 3 explains the details of our approach. Section 4
reports the evaluation of our approach and a comparison
with other methods. Section 5 summarizes our contributions
and suggests future directions.

2. Related Work
2.1 Preliminaries

A bold normal uppercase letter is used for a matrix, and
a bold italic lowercase letter for a vector. For a matrix
A, Aij stands for an element inA, and AT stands for its
transposition. When a matrixA is not singular, its inverse
matrix is denoted asA−1. A vector withp ones(1, · · · , 1)T
is denoted as1p.

2.2 Bag of Features (BoF) Representation
Bag of Features representation is often used in image

analysis to represent a 2-dimensional image as a vector based

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 223



on the frequencies of visual features [1], [2], [3]. SIFT [4],
[5] and SURF [6] are often used for extracting local key-
points from images and representing them as vectors (called
descriptors). Usually, extracted descriptors from images are
clustered, and the centroids in the clusters are treated as
“visual words” (features) in the images. The set of visual
words is called a codebook. Then, codes of the descriptors
are constructed based on the codebook, and each image is
represented as a vector based on the frequencies of features
in the image.

Suppose each descriptor is represented as ap-dimensional
vector, andn descriptors are extracted from an image. Let the
descriptors be represented as a matrixX = [x1, · · · ,xn] ∈
Rp×n. Also, suppose the codebook for a set of images is
represented as a matrixB = [b1, · · · , bm] ∈ Rp×m, where
eachbj ∈ Rp corresponds to a feature.

The standard BoF representation is based on hard vector
quantization (VQ) [7] coding with respect to the codebook
B. Codes for the descriptors under VQ coding is determined
based on the following constrained least square optimization:

C∗ = argmin
C

n∑
i=1

∥xi − Bci∥2 (1)

s.t. ∥ci∥ℓ0 = 1, ∥ci∥ℓ1 = 1, ci ≥ 0, ∀i

where ci ∈ Rm is the code for descriptorxi, and ∥·∥
denotes the standard Euclidean norm. The matrixC∗ =
[c1, · · · , cn] ∈ Rm×n denotes the corresponding codes for
the descriptorsX. The constraint∥ci∥ℓ0 = 1 means that
there will be only one non-zero element in each codeci,
which corresponds to the quantization id ofxi. The non-
negative,ℓ1 constraint∥ci∥ℓ1 = 1, ci ≥ 0 means that the
coding weight for each descriptor is one.

In practice, the single non-zero element (quantization id)
for each descriptor is usually found by the nearest neighbor
search in thep-dimensional Euclidean space (which is called
the feature space). After constructing the matrixC∗, taking
the row sum ofC∗ (i.e., C∗1n) results in anm-dimensional
vector, which is the sum-pooled representation of the image
under the standard BoF representation.

2.3 Extensions of BoF
As in the bag of words in document analysis, the locations

of visual words in an image and their locational relationship
are discarded in the standard orderless BoF representation.
Spatial Pyramid Matching (SPM) [8] tries to tackle this
problem by defining a similarity of a pair of images based on
an approximate global geometric correspondence of features
in images. SPM partitions an image into increasingly fine
sub-regions, and histograms of features are computed in each
sub-region. Finally, the histograms are concatenated into a
(high-dimensional) vector.

Since sub-regions correspond to a global locations in an
image, the concatenated vector represents an approximate

global locations of features to some extent. It is reported
that the defined similarity in SPM can improve the perfor-
mance of Support Vector Machine (SVM) [9]. However, the
dimension of concatenated vector increases as the number
of levels (sub-divisions) increases.

With VQ coding in eq.(1), only one feature is assigned to a
descriptor in the standard BoF. On the other hand, Locality-
constrained Linear Coding (LLC) assigns several features
to a descriptor based on the proximity of descriptors and
features in the feature space [10]. LLC uses the locality
constraint to project each descriptor into its local coordinate
system. Theoretically, LLC finds the codes of descriptors
which minimizes the following objective function:

h(C) =
n∑

i=1

∥xi − Bci∥2 + λ ∥di ⊙ ci∥ (2)

s.t.1T
mci = 1, ∀i

where ⊙ denotes Hadamard product (i.e., element-wise
multiplication) of vectors. The vectordi ∈ Rm is defined as
follows:

di = exp

(
−dist(xi,B)

σ

)
(3)

wheredist(xi,B) = [dist(xi, b1), · · · ,dist(xi, bm)]
T, and

dist(xi, bj) is the Euclidean distance in the feature space
between descriptorxi and featurebj . A parameterσ adjusts
the weight decay with respect to locality in eq.(3).

In practice, instead of solving the optimization problem
to minimize the function in eq.(2), for faster computation
of codes, approximation of LLC is actually conducted in
[10]. For each descriptorxi, k-nearest neighbor features of
xi in the feature space are treated as its local codebook
Bi, and the codec∗i for the descriptor is defined asc∗i =
argmin

ci

∥xi − Bic∥2 s.t. 1T
k ci = 1. Finally, the codeci is

defined by padding zeros to other non-selected features in
c∗i .

3. Codebook Graph Coding

Fig. 1 shows the overview of our approach. As in the
standard BoF, descriptors are extracted from each image,
and extracted descriptors are clustered to define features.
In addition, a descriptor graph is constructed based on the
proximity of descriptors in each image. Then, another graph
called codebook graph is constructed by aggregating the
connectivity relations in the set of descriptor graphs. Finally,
codes for descriptors are defined based on the transition
probability in the codebook graph as well as the nearest
neighbor of each descriptor. The details are explained in the
following subsections.

224 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



Training data

Visual Words
via clustering

extract descriptors

+ descriptor graphs ∈Rd

Codebook Graph

aggregate 

edges

descriptors 

of test data

+
coding

q images

m

q

data matrix

3 2

2

2

1 1

2

Fig. 1: Overview of our approach

3.1 Descriptor Graph
In our approach, the locational relationship of descriptors

in an image is represented as a graph (which is called
descriptor graph). Nodes in a descriptor graph corresponds
to descriptors in the image, and edges are defined based on
the proximity of descriptors within the image. Various prox-
imity graphs are defined based on the proximity of nodes
in the literature. Among them, Nearest Neighbor Graph
(NNG) [11], Relative Neighborhood Graph (RNG) [12], and
Gabriel Graph (GG) [13] are used in our approach.

Locational relationship of descriptors is also used in
SPM [8] to some extent. However, since absolute locations
of descriptors in the given images are used, the constructed
BoF representation is not robust with respect to translation,
rotation and scaling. On the other hand, since relative
relations of descriptors in an image is represented as a
descriptor graph, it would be robust to these transformations.
Furthermore, SPM represents an approximate global geomet-
ric correspondence of descriptors, but local relationship of
descriptors is represented based on their proximities in our
approach.

3.2 Codebook Graph
By aggregating the connectivity relations in the set of

descriptor graphs, another graph calledcodebook graph is
defined to represent the relation of features based on the
locational relationship of descriptors for a set of images.
Suppose descriptors are extracted from the images and
clustered intom features. Hard clustering of descriptors
(e.g., k-means) corresponds to defining a functionf(·) from
the given descriptors to the defined features. Also, suppose
a set of descriptor graphsG, where eachGl(Vl, El) ∈ G
corresponds to the descriptor graph for the -th image, is
already constructed. Here,Vl denotes the nodes, andEl

denotes the edges inGl.
Construction of codebook graph is illustrated in Fig. 2.

In the codebook graph, each feature (visual word) is repre-

vw1

vw2

vw3

vw4

feature space

aggregate

edges

vw4

vw1

vw3

3

2

2

2

1

1
2

vw2

Codebook Graph

Fig. 2: Code Book Graph

Codebook Graph

vw1

vw2

vw3

vw4

3

2

2

1

1
2

2

vw1 vw2 vw3 vw4

d1 transition from vw1

pooling 

d2
transition from vw2

d1

d2

vw1 vw2 vw3 vw4

vw1 vw2 vw3 vw4

Fig. 3: Coding using a Code Book Graph

sented as a node. The edge weight between a pair of nodes
vwi and vwj (with feature IDsi and j) in the codebook
graph is defined as:

wij =
∑

Gl∈G,vs∈Vl,vt∈Vl

|{(vs, vt) ∈ El|f(vs) = i ∧ f(vt) = j}|

(4)
where vs and vt are vertices inGl, and |{·}| denotes
the cardinality of the set. Intuitively, weightwij in eq.(4)
corresponds to the number of edges between the sub-region
dominated byi-th featurevwi and the sub-region dominated
by j-th featurevwj in the feature space.

3.3 Codebook Graph Coding
Codes of descriptors under the proposed Codebook Graph

Coding (CGC) are defined based on the transition probability
in the codebook graph as well as the nearest neighbor of
each descriptor. As in the standard BoF, the nearest feature
for each descriptor is first determined. Then, the transition
probability from the feature to all features in the codebook
is used when defining the code for the descriptor. Finally,
the codes of the descriptors in an image are pooled together
to define the pooled feature of the image. These processes
are summarized in Fig. 3.

For a given image, letC0 denotes the codes of descriptors
based on VQ coding in eq.(1). The edge weights defined in
eq.(4) can be represented as a square matrixW ∈ Rm×m.
Also, by defining the degree vectord = W1m, the degree

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 225



matrix of the codebook graph is defined as a diagonal matrix
D = diag(d) 1. Then, based on the transition provability
matrix, which is defined asP = D−1W, the codes for the
descriptors by CGC are define as:

C = PC0

= diag(W1m)
−1WC0 (5)

Finally, the defined codes are pooled together to get the
corresponding pooled feature of the image. The standard
pooled feature in BoF is based on sum pooling [8], which
is defined asc = C1n. However, since max pooling [14],
which takes the maximum value for each row inC, is
reported to contributes to improving the linear separability
of the pooled features, max pooling is used in CGC.

4. Evaluation
4.1 Experimental Setting

Experiments for whole-image categorization tasks were
conducted over scene15 dataset2 and Caltech-101 dataset3.
The former dataset contains scenery images, and the lat-
ter contains general object images. In the experiments, a
specified number of images for each class (category) were
selected as training data, and the remaining images were
treated as test data. Since the number of images contained
in each class drastically differs in these datasets, 100 images
for each image were selected as test data in scene15, and 30
images were selected as test data in Caltech-101. As the
quality measure of image classification, Classification Rate
(CR) was used in the experiments. CR is defined as:

CR =
number of correct images

Numberof test images
(6)

SIFT descriptors [4], [5] were extracted from each image,
and the extracted descriptors were clustered using k-means to
define the codebook. After encoding the descriptors in each
image, the codes were normalized underℓ2 norm. Finally,
a pooled feature of each image was constructed from the
codes using max pooling [14].

When classifying images with respect to the constructed
pooled features, we used SVM [9], which is known with its
high classification performance. Since the standard SVM is
originally designed for two-class problem, we used One-vs-
One Linear SVM to classify multiple classes in the datasets.
One-vs-One SVM realizes multiple-class classification by
conducting all the pairwise classification. However, when the
number of classes is large (e.g., 101 classes in Caltech-101),
its takes too much time since the number of combination of
classifications increases. Thus, for reducing the running time
in classification, we used a simple linear kernel in SVM.

1Each element ind is placed on the diagonal element inD, and non-
diagonal elements inD are set to zeros.

2http://www-cvr.ai.uiuc.edu/ponce_grp/data/
3http://www.vision.caltech.edu/Image_Datasets/Caltech101/

Table 1: Results of preliminary experiments
1-NNG 3-NNG 5-NNG RNG GG grid

CR 0.873 0.871 0.874 0.870 0.866 0.818

Table 2: characteristics of code book graphs
1-NNG grid

meandegree 150.46 737.19
average path length 1.85 1.27

As for comparison, experiments were conducted for 1) the
standard BoF (as baseline), 2) SPM [8], 3) LLC [10], and
4) CGC in Section 3.

4.2 Preliminary Experiments
The performance of our method depends on i) sampling

of descriptors from images, and ii) type of proximity graph
for the descriptor graphs in Section 3.1. We first report their
influences in our method.

As for the sampling of descriptors, two kinds of sampling,
namely, a) sparse sampling, and b) dense sampling, have
been widely used in the literature. Sparse sampling locates
keypoints only for distinctive invariant locations in an image
(as in the original SIFT algorithm [4], [5]). On the other
hand, dense sampling uniformly samples keypoints from
an image, irrelevant to the properties of keypoints. Usually
keypoints are located over some grid in the image, and
arranged in a matrix-like grid in the image.

For a) sparse sampling, keypoints were located by SIFT
algorithm in each image, and their SIFT descriptors were
connected as a descriptor graph. Five types of proximity
graphs were evaluated: Nearest Neighbor Graph (NNG) [11]
(the number of neighbors were set to 1, 3, 5), Relative Neigh-
borhood Graph (RNG) [12], and Gabriel Graph (GG) [13].

As for b) dense sampling, the width of grid was set to
5 pixels, the scale in SIFT algorithm was set to 16, and
the sampled SIFT descriptors were arranged as a gid graph.
The codebook size (the number of features)m was set to
1024, and 10 classes from Caltech-101 were used in the
experiment. The results are summarized in Table 1.

For the standard BoF representation, it is known that dense
sampling or random sampling of keypoints contributes to
improving the performance of classifiers, albeit the number
of descriptors drastically increases [15]. On the other hand,
the results in Table 1 indicate that dense sampling degrade
the performance of CGC.

Our current conjecture for this observation is that, when
the number of edges in the codebook graph increases, the
graph gets densely connected. Since the transition probabil-
ities from nodes (features) becomes similar to each other as
the connectivity of nodes increases, the codes of descriptors
become almost the same with respect to a densely connected
codebook graph. To verify this, the average degree and the

226 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



Table 3: Scene15 w.r.t. CR
m 1024 2048 4096

base 0.559 0.566 0.561
SPM 0.560 0.593 0.613
LLC 0.600 0.620 0.626
CGC 0.535 0.573 0.597

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

base

SPM

LLC

CBG

Fig. 4: Results of scene15 for each class (m = 4096)

average path length of 1-NNG (with the least number of
edges) and of grid graph (with the largest number of edges)
are shown in Table 2. The results in Table 2 indicate that
almost all nodes are connected in grid graph. Thus, this
might be the reason for the observation in Table 1.

Based on the above observations, in the following exper-
iments, we used sparse sampling for extracting descriptors,
and 1-NNG for descriptor graph.

4.3 Results and Discussions
The results of scene15 are summarized in Table 3. The

codebook sizem was set to 1024, 2048, and 4096 in the
experiments. In general, class separability improves as the
number of features increases. The results in Table 3 match
this phenomenon. In addition, since the codebook graph gets
sparsely connected asm increases, the codebook size will
affect more to CGC, compared with other methods.

Unfortunately, although CGC showed comparable perfor-
mance, and outperformed the standard BoF, it could not
outperform other methods. The classification rate of each
class in scene15 (m = 4096) is summarized in Fig. 4.
Compared with the standard BoF, SPM did not outperform
BoF in class “coast” and “kitchen”. On the other hand,
the performance degradation in CGC is less compared with
SPM.

Table 4: Caltech-101 (w.r.t. CR)
m 1024

BoF 0.369
SPM 0.435
LLC 0.413
CGC 0.310

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

base

SPM

LLC

cbg

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

base

SPM

LLC

cbg

Fig. 5: Comparison with LLC in Caltech-101 (left: top 10
classes, right:worst 10 classes)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

base

SPM

LLC

cbg

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

la
p
to

p

m
e
tr

o
n
o
m

e

sc
h
o
o
n
e
r

d
ra

g
o
n
fl
y

h
e
li
co

p
te

r

g
a
rf

ie
ld

lo
tu

s

w
re

n
ch

k
a
n
g
a
ro

o

b
e
a
v
e
r

base

SPM

LLC

cbg

Fig. 6: Comparison with SPM in Caltech-101 (left: top 10
classes, right:worst 10 classes)

Since the number of classes is large in Caltech-101,
in order to reduce the running time for classification, the
codebook sizem was set to 1024 for Caltech-101. The
results are summarized in Table 4. Unfortunately, CGC
could not outperform even BoF in terms of the overall
classification rate. However, for some classes, the proposed
method outperform LLC and SPM. More detailed analysis
are shown in Fig. 5 and Fig. 6. Fig. 5 shows 10 classes
for which CGC outperformed LLC (left hand side), and 10
classes in vise versa (right hand side). Similarly, comparison
with SPM is summarized in Fig. 6. As shown in these
figures, utilization of the proximity of descriptors in each
image can lead to better performance in some classes, but
not all classes in our current approach.

Our current conjecture for these results is as follows.
Since Caltech-101 contains a lot of classes than scene15,
much more descriptors were used when constructing the
codebook graph. When the number of descriptors increases,
the number of edges in the codebook graph increases (unless
a huge number of features are used). As explained in
Section 4.2, since the separability of pooled features by CGC
will degrade when the codebook graph is densely connected,
this may lead to performance degradation in our approach.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 227



5. Conclusions
This paper proposed a method called Codebook Graph

Coding to improve the standard orderless Bag of Features
(BoF) representation of images for whole-image catego-
rization tasks. Instead of the proximity of descriptors and
features in the feature space, the proximity of descriptors in
each image is used when coding images as bag of features.
For each image, the proposed method first constructs a
graph to represent the locational relationship of descriptors
in the image. Then, the relations encoded as the graphs are
aggregated into another graph of features. Finally, this graph
is used to encode the descriptors in each image in BoF
representation.

Preliminary experiments are conducted to investigate the
effectiveness of the proposed method. By using sparse sam-
pling for extracting descriptors from images and 1-NNG for
defining descriptor graphs, our method is compared with the
standard BoF, SPM and LLC. Although our method could
not outperform them in terms of the overall classification
rate, results indicate that reflecting the proximity of descrip-
tors in each image can lead to performance improvement
in image categorization tasks. We plan to conduct more in-
depth analysis of our approach, especially the structure of
codebook graph, and extend it based on the analysis in near
future.

Acknowledgment
This work is partially supported by the grant-in-aid for

scientific research (No. 24300049) funded by MEXT in
Japan.

References
[1] G. Csurka, C. R. Dance, L. Fan, J. Willamowski, and C. Bray, “Visual

categorization with bags of keypoints,” inWorkshop on Statistical
Learning in Computer Vision, ser. ECCV’04, 2004, pp. 1–22.

[2] F. Jurie and B. Triggs, “Creating efficient codebooks for visual
recognition,” inProc. of the 10th IEEE International Conference on
Computer Vision, 2005, pp. 604–610.

[3] A. Bosch, X. Mùnoz, and R. Martí, “Which is the best way to
organize/classify images by content?”Image and Vision Computing,
vol. 25, no. 6, pp. 778–791, 2007.

[4] D. G. Lowe, “Object recognition from local scale-invariant features,”
in Proceedings of the International Conference on Computer
Vision, ser. ICCV ’99, vol. 2. Washington, DC, USA: IEEE
Computer Society, 1999, pp. 1150–1157. [Online]. Available:
http://dl.acm.org/citation.cfm?id=850924.851523

[5] ——, “Distinctive image features from scale-invariant keypoints,”
International Journal of Computer Vision, vol. 60, no. 2, pp. 91–110,
2004.

[6] H. Bay, T. Tuytelaars, and L. Van Gool, “Surf: Speeded up robust fea-
tures,” in Proceedings of the 9th European Conference on Computer
Vision, ser. ECCV’06. Berlin, Heidelberg: Springer-Verlag, 2006, pp.
404–417.

[7] A. Gersho and R. M. Gray,Vector Quantization and Signal Compres-
sion. Springer, 1991.

[8] S. Lazebnik, C. Schmid, and J. Ponce, “Beyond Bags of Features:
Spatial Pyramid Matching for Recognizing Natural Scene Categories,”
IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, vol. 2, pp. 2169–2178, 2006. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1641019

[9] N. Cristianini and J. Shawe-Taylor, Eds.,An Introduction to Suport
Vector Machines and Other Kernel-based Learning Methods. Cam-
bridge University Press, 2000.

[10] J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, and
Y. Gong, “Locality-constrained Linear Coding for image
classification,” in IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, ser. CVPR’10.
IEEE, June 2010, pp. 3360–3367. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5540018

[11] D. Eppstein, M. Paterson, and F. Yao, “On nearest-neighbor graphs,”
Discrete and Computational Geometry, vol. 17, no. 3, pp. 263–282,
1997.

[12] J. Jaromczyk and G. Toussaint, “Relative neighborhood
graphs and their relatives,” inProceedings of the IEEE,
vol. 80, no. 9, 1992, pp. 1502–1517. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=163414

[13] G. K. Ruben. and S. R. R, “A new statistical approach to geographic
variation analysis,”Systematic Zoology, vol. 18, pp. 259–278, 1969.

[14] Y.-L. Boureau, J. Ponce, and Y. Lecun, “A theoretical analysis of fea-
ture pooling in visual recognition,” in27TH International Conference
on Machine Learning, HAIFA, ISRAEL, ser. ICML’10, 2010.

[15] E. Nowak, F. Jurie, and B. Triggs, “Sampling strategies for bag-
of-features image classification,” in9th European Conference on
Computer Vision, ser. ECCV’06. Springer, 2006, pp. 490–503.

228 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



A Personal Classification Method  

Using Spatial Information of Multi-channel EEG 
 

Yu Ishikawa, Chinami Yoshida, Masami Takata, Hiroyasu Kamo, Kazuki Joe 

Nara Women’s University, Nara, 630-8506, JAPAN  

 

 

Abstract –Biometric authentication using various biological 

information is studied by many researchers. We study a 

feature extraction method available for personal 

authentication by focusing on EEG in the biological 

information. In addition, since electroencephalograph 

technology has advanced significantly in recent years, multi-

channel EEG is possible to be relatively easily measured. 

Therefore, in this paper, as EEG features, we propose a 

method using a cross-correlation between electrodes obtained 

from the multi-channel electroencephalograph. In validations, 

a feature combination, which is obtained from the proposed 

method and time-frequency analysis, is used. A personal 

classification is performed by applying SVM to obtained 

features. Moreover, by detailed validations about the 

proposed method, we evaluate the possibility of the cross-

correlation between electrodes as features for the personal 

authentication. 

Keywords: biometric authentication, brain wave, feature 

extraction  

 

1 Introduction 

As the spread of Internet infrastructure in recent years, 

various social networking services such as on-line shopping 

are provided for the information society. According to the 

increase of usability, crimes using the Internet are increasing 

rapidly, and the importance of authentication technologies to 

prevent such unauthorized access is required more than ever. 

While personal authentication by ID and password has been 

used mainly in the social networking services available at the 

time, it would have been forged easily against prying eyes or 

brute-force authentication attempts. As just described, 

conventional authentication technologies cannot be said to be 

reliable means necessarily in terms of safety, and biometric 

authentication is getting a lot more attention recently. 

The biometric authentication refers to the personal 

authentication using biometric information. The biological 

information for the authentication includes fingerprint, iris, 

face, voiceprint, and handwriting, where plagiarism is 

difficult as compared with the traditional password-based 

authentication. In particular, iris or fingerprint based 

authentication does not provide high recognition rates but 

also be used in practical applications, but there are also 

reports that some authentication systems are forged [1]. Since 

the biological information is exposed to the outside at all 

times, it can be acquired for forgery on the basis of the 

biometric information. A vein based authentication system 

that uses in-vivo (not exposed to the outside) information is 

introduced while there is a report that spoofing is possible 

even for the vein authentication system. 

In this paper, a biometric authentication using brain waves 

as the biometric information is proposed. 

Electroencephalogram (EEG) is in-vivo information and 

superior to confidentiality because it is measured neuronal 

activity of a number of cerebral cortices and not measurable 

without wearing electroencephalograph. 

Studies utilizing brain waves for authentication are 

already underway by various researchers. For example, EEGs 

of forty examinees during open-eye-closed-eye are measured 

for personal identification to get an accuracy of 80% is 

reported in [2], and EEG rhythms of four examinees during 

closed-eye are analyzed to get an accuracy of 90% or more 

[3]. Other studies include personal authentication by visual 

evoked potential [4] and verbal recall problems and/or 

potential recall movement [5]. In such previous studies, auto-

regressive (AR) models [2] [3] [6] or neural networks [4] [5]  

for feature extraction have been proposed, but their 

computational costs are too expensive while the 

authentication performances are improved more than 90%. 

Therefore, it is required to extract features of less 

computational costs. 

In addition, the electroencephalograph technology has 

advanced significantly in recent years. Multi-channel 

electroencephalographs have been applied by a professional 

engineer and have been used in the medical field until now. 

Today, they have advanced to the available level on a 

personal and daily basis. Since electroencephalographs 

(Geodesic Sensor Net) or the like of which 256 channels are 

applied in just 15 minutes have also been developed, we are 

possible to easily measure a multi-channel EEG. The use of a 

multi-channel electroencephalograph gives spatial 

information which cannot be obtained by using a single-

channel one. The study using correlation between electrodes 

which is one of spatial information has been applied 

extensively in the field of emotion recognition [7] [8]. By 

using those features, we aim to extract features with less 

computational costs. 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 229



Thus, in this paper, we validate whether the spatial 

information obtained from a multi-channel EEG is available 

as features for personal authentication. The study to perform 

personal authentication has two problems: an effective feature 

extraction for authentication, and threshold settings to be used 

in the determination. In this paper, we use the words of 

“personal classification” rather than “personal authentication” 

in order to focus on the effective feature extraction which is 

the first problem in brain waves authentication. It does not 

mention threshold settings.  

The rest of the paper is organized as follows. In section 2, 

we introduce related works to be compared. In section 3, we 

propose personal classification methods. The proposed 

methods are validated with some experiments in section 4. 

2 Related works 

We introduce a study for EEG personal authentication 

with light computational cost using average power spectrum 

as feature values [9]. In this study, a method of personal 

authentication by EEG brain waves during virtual driving 

operation, which means a simple driving simulator with 

tracing route, is proposed. Spectral analysis by Fourier 

transform for the extraction of individual feature is adopted 

based on the fact that there are individual differences in brain 

wave spectrum in the α-β wave band. Exactly saying, the α 

and the β wave bands are divided into α1-α4 and β1-β4 

regions, respectively. In each region, the average of power 

spectrums as individual feature is evaluated for authentication. 

Evaluating the authentication performance, the Equal Error 

Rate (EER) of the tracing route and driving simulator are 0.35 

and 0.36, respectively.  

Next, as a study using spectrum analysis, we introduce our 

study [10] that expanded the time axis and the frequency 

bands on the basis of the existing research [9]. We performed 

personal authentication from EEG with five tasks including 

breathing, finger, pass, song, and sport. This method uses the 

results of short-time Fourier transform (STFT) which is one 

of the time-frequency analyses as the features. We use 4-

40Hz brain waves ( to  waves). The - wave bands are 

partitioned into two, three, five, and three regions of 1-2, 

1-3, 1-5, and 1-3, respectively. The average power 

spectrum for each region by time is calculated to be used as 

feature values. Using all of five tasks, the EER achieves the 

best 0.03.  In this paper, we use these two types of features to 

compare the proposed method described in section 3. 

3 An individual classification method 

3.1 Overview 

This study aims at an accurate personal authentication 

using EEG. Therefore, we select valid features to identify the 

individual person. In this section, we describe personal 

classification method proposed in this paper. Steps are as 

follows: Step 1. EEG measurement, Step 2. Feature extraction, 

and Step 3. Personal classification. 

In Step 1, the individual EEG is measured multiple times 

to create data. In Step 2, the multiple features being necessary 

for personal classification are extracted from the data in Step 

1. Finally, Step 3 performs personal classification based on 

the features extracted by Step 2 to validate whether each 

feature is applicable to EEG-based personal authentication. 

3.2 Feature extraction method 

As features to be used for personal classification based on 

EEG, we propose the following five types (Feature 1-5) using 

a cross-correlation coefficient between electrodes. 

Feature 1. Cross-correlation coefficient between electrodes of 

measured data 

Feature 2. Cross-correlation coefficient between electrodes of 

measured data after preprocessing 

Feature 3. Cross-correlation coefficient between electrodes of 

measured data after preprocessing by time 

Feature 4. Cross-correlation coefficient between electrodes of 

power spectrum after frequency analysis 

Feature 5. Cross-correlation coefficient between electrodes of 

power spectrum after time-frequency analysis 

Feature 1 is calculated using the cross-correlation 

coefficient between electrodes of measured original data as 

the features. The cross-correlation coefficient 𝑋  between 

electrode 𝑙 and 𝑚 is represented by the following formula. 

𝑋𝑙𝑚 =
∑ (𝑙𝑖 − 𝑙)̅(𝑚𝑖 − �̅�)𝑛
𝑖=1

√∑ (𝑙𝑖 − 𝑙)̅
2𝑛

𝑖=1 √∑ (𝑚𝑖 − �̅�)2𝑛
𝑖=1

 

where 𝑛 is the measured data length.  

In Feature 2 and 3, a preprocessing is performed on the 

measured original data. A band-pass filter is applied as the 

preprocessing. The measured EEG includes artifacts produced 

by biological phenomenon such as myopotential, eye 

movement and heartbeat or by environment such as AC 

Interference. For that reason, the original waveform is 

reconstructed to remove low-frequency and high-frequency 

band which is not included in the EEG. Feature 2 is 

calculated using the cross-correlation coefficient between 

electrodes from reconstructed data as with Feature 1. Since 

artifacts are removed from the features, it is able to use the 

cross-correlation just consisting of EEG frequency bands. 

Feature 3 is calculated using the cross-correlation coefficient 

between electrodes for each short data which is cut out from 

the reconstructed data using a window function. By this 

230 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



approach, the feature in consideration of the time change is 

obtained. 

Feature 4 and 5 are obtained from the cross-correlation 

coefficient between electrodes of power spectrum after 

frequency analysis. Fast Fourier Transform (FFT) is applied 

as a frequency analysis. Only EEG frequency bands are cut 

out from the data after FFT to be used. This process is to 

remove artifacts as with the above-mentioned preprocessing. 

Feature 4 is calculated using the cross-correlation coefficient 

between electrodes of power spectrum after FFT. Feature 5 is 

calculated using the cross-correlation coefficient between 

electrodes for each short data after FFT which is cut out from 

the original data using a window function. By this approach, 

it is able to consider the time change as with Feature 3. 

3.3 Classification method 

We apply support vector machine (SVM) for the personal 

classification. Using margin maximization, SVM is able to 

construct a classifier with high identification performance for 

unlearned data. In this paper, we use a multi-class SVM to 

classify EEG of over three persons. The multi-class SVM has 

two methods: One-vs-ALL SVM and One-vs-One SVM. 

Although One-vs-ALL SVM is implemented easily and has 

less computational cost, class separation becomes difficult 

when the number of classes is large. In addition, as used for 

the personal authentication, this method causes a bias of the 

user and other data. Therefore, in this paper, we perform the 

classification by using the One-vs-One SVM. A linear kernel 

which is commonly used is applied as the SVM kernel. Cross-

validation is used to validate the method.  

4 Validation 

4.1 Measurement of data 

We use the BioSemi as the multi-channel 

electroencephalograph, of which the maximum sampling rate 

is 2,048Hz and the maximum electrode number is 256. A 

bipolar lead method is used for deriving the reference 

electrode. In this paper, we use a BioSemi with the maximum 

sampling rate of 2,048Hz and 16 electrodes. The electrodes 

are placed as shown in Figure.1 based on International 10–20 

system. 

Examinees are 26 healthy women in their 20s. The 

measurement of ten seconds is performed 50 times per 

examinee. They take a break of five seconds during each 

measurement and remove the electrodes once in five times. 

The number of all data is 1,300 (multiplying 50 times with 26 

examinees) in total. It is performed with sitting and resting.  

In the k-fold cross-validation, k is defined as 5, 3 and 2. In 

the case of k=5, 3 and 2, the combination of (Training set size, 

Test set size) is (1040, 260), (867, 433), and (650, 650), 

respectively. The training set and the test set are chosen 

randomly. The results of classification rate are obtained from 

average of k times. All the results are shown by percentage. 

4.2 Validation 1: optimal feature values 

4.2.1 Validation methods 

In Validation 1, we compare classification rates between 

the two features described in section 2 and the five features 

described in section 3.3. Therefore, the comparison features 

are the following seven types. Note that Feature 1-5 is the 

same in section 3.3. 

Feature 6. Power spectrum after frequency analysis 

Feature 7. Power spectrum after time-frequency analysis 

In the proposed method, the frequency range of 4-40Hz is 

used for the frequency analysis and the preprocessing by 

band-pass filter. This is a general EEG frequency band to be 

used in EEG analysis. When a window function is applied, 

the number and the size of windows are 16 and 0.5 seconds, 

respectively. The classification data length is eight seconds 

which are a power of two for the use of FFT. The number of 

used electrodes is all of 16 channels. 

4.2.2 Validation results 

Table 1 shows the results of Validation 1. The 

classification success rates with cross-validation of k=5, 3 and 

2 are displayed by percentage. 

First, as this result, the classification rate of Feature 1 is a 

30% level, which is a significantly low classification rate in 

comparison with the other features. Since the using frequency 

bands are 0-1024Hz, the frequency other than EEG are 

included in Feature 1. However, as the features applying the 

preprocessing to Feature 1, Feature 2 using band-pass filter 

and Feature 3 using Fourier transform are over 70%. Other 

features give relatively good classification rate, too. This is 

due to noise rejection by using frequency bands of only 4-

40Hz. From the above, the noise rejection using the frequency 

analysis or a band-pass filter is needed. 

Figure 1 BioSemi electrode position 

 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 231



We focus on Feature 1-5 of the proposed method. Feature 

1 is excluded from the consideration because it includes a 

great deal of noise as previously described. The classification 

rate of Feature 3 is the best and only over 90% among other 

four Features. Next, the classification rate is high in the order 

of Feature 4, 2, and 5. In comparison between Feature 2 and 3, 

applying the cross-correlation coefficient between electrodes 

to original data, Feature 2 with a window function is better 

classification rate considering the time change. In comparison 

between Feature 4 and 5, applying the cross-correlation 

coefficient between electrodes to data after frequency analysis, 

however, the classification rate is better without any window 

function. In the case of using cross-correlation coefficient 

between electrodes as the features, the time-series data has a 

personal difference than the power spectrum. Note that we 

should consider the time change by using the window 

function.  

We focus on the Feature 6 and 7 in the existing method. 

Both classification success rates have over 90% although 

Feature 7 considering the change by time as features obtains 

higher classification rate. 

The methods which obtain over 90% classification rate 

among all methods are good in the order of Feature 3, 6, and 

7. Feature 3 is a little inferior classification rate rather than 

Feature 7, but the classification rate itself is very high. 

Therefore, the feature using the cross-correlation coefficient 

between electrodes is effective as a feature for the personal 

authentication. 

4.3 Validation 2: validate a new feature values 

The result of Validation 1 shows that Feature 3 and 7 have 

good classification rates. Thus, we propose Feature 8 using 

two types of Feature 3 and 7. First, Feature 8 performs a noise 

rejection by applying a band-pass filter to measured data. 

Next, it cuts out the short data by using a window function to 

the reconstruction data with calculating the cross-correlation 

coefficient between electrodes. The results obtained by these 

processes are defined as the features. At the same time, it 

performs a time-frequency analysis using the STFT to 

measured data with calculating the average power spectrum 

of each window by time. The results are also defined as the 

features. Feature 8 is validated by giving the two types of 

features to SVM. 

As with Validation 1, frequency bands are 4-40Hz, and 

the number and the size of windows are 16 and 0.5 seconds, 

respectively. The classification data length is eight seconds, 

and the number of electrodes is 16. The validation results are 

shown in Table 1. Feature 8 obtains the best classification rate 

among the methods of Feature 1-7. In particular, it exceeds 

98% in the case of k=5, and the number of errors is less than 

five in 260 data. 

4.4 Validation 3: optimal parameters  

4.4.1 Validation methods 

 In Validation 3, we perform the validation of parameters 

in Feature 8, which is proposed in section 4.3 and obtains the 

best classification rate. The following values are validated as 

parameters. 

 Validate the optimal frequency bands (Validation 3a) 

 Validate the optimal number and size of window 

(Validation 3b) 

 Validate in the case of using the optimum values 

(Validation 3c) 

 Validate the data length and the number of window 

(Validation 3d) 

 In Validation 3a, the frequency bands are changed to use 

band-pass filter and STFT. In Validation 1 and 2, 4-40Hz is 

used, but five types of frequency bands are compared as 

follows in Validation 3a:  (4-8Hz),  (8-14Hz),  (14-26Hz), 

 (26-40Hz), ) and all (4-40Hz). In this 

validation, the number and size of windows is unified in 16 

and 0.5 seconds. 

 In Validation 3b, the number and size of windows is 

changed. Changing the number and size of windows into (1, 

8), (2, 4), (4, 2), (8, 1), (16, 0.5), we calculate the 

classification rate. The feature, of which the number and size 

of the windows is one and eight seconds, is consistent with 

one of not using the window. Moreover, when window size is 

within 0.5 seconds, frequency resolution is 4Hz. Therefore, 

the average power spectrum of the proposed method cannot 

be calculated, the minimum value of the window size is 

defined as 0.5 seconds. The frequency bands of band-pass 

filter are 4-40Hz. 

 In Validation 3c, the personal classification rate is 

calculated in the case of using the optimum parameter which 

is obtained from the results of Validation 3a and 3b. 

 In Validation 3d, the change of classification rate by 

changing classification data length is compared to Feature 7. 

Since measured data is 8 seconds, the cases of 1, 2 and 4 

Table 1 Results of Validation 1 and 2 

Validation Feature k=5 k=3 k=2 

 

 

Validation 1 

 

 

 

 

1 35.5 32.9 31 

2 80.1 78.2 74.3 

3 94.3 93.3 88.9 

4 82.2 78.8 75.1 

5 77.9 76.1 71.8 

6 92.3 91.4 89.8 

7 96.4 95.7 93.5 

Validation 2 8 98.3 97.9 96.9 

 

232 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



seconds are compared; which is equal to or less than 8 

seconds and data length having a power of two. In addition, 

the cases of changing the number of windows are compared, 

respectively. As the used frequency bands, the optimum 

results obtained from Validation 3a are adopted. 

4.4.2 Validation results 

 Figure 2 shows the results of Validation 3a. Compared 

to the average values of k=5, 3, 2 of each frequency band, the 

classification rate is high in the order of ,  and In the 

case of using only  wave bands, classification rate decreases 

remarkably. That is because the noise is easily mixed into the 

low-frequency. The result of using the andof 

frequency bands except for  bands with the low 

classification rate is () of Figure 2. The better results is 

provided in k=5, 2 in comparison with (all) using all 

frequency bands. From the results, as the optimum frequency, 

we use  wave bands except for  bands with the low 

classification rate. 

 Next, Figure 3 shows the results of Validation 3b. When 

the number and size of windows are (4, 2), (8, 1) and (16, 0.5), 

the classification rate is good at the same level. In the case of 

(8, 1), especially, the average classification rate is the best 

98.3%. In the case of (1, 8), the features quantity is less 

because the number of windows is one. Therefore, the 

classification rate becomes low. Namely, as the optimum 

number and size of windows, we adopt (8, 1). 

 In Validation 3c, the following values, the optimum 

parameters obtained from Validation 3a and 3b, are used. 

Those indicate that the optimum frequency bands are 8-40Hz 

using  and  and the optimum number and size of 

windows are (8, 1). Table 2 shows the results of classification 

using those parameters. As the results, we obtained the best 

classification rate 98.6%. 

 The results of Validation 3d are as Table 3. Table 3 

shows only the results of 5-fold cross-validation. In all cases, 

Feature 8 is higher classification rate than Feature 7. In 

addition, the longer the data length is, the better the 

classification results are. The case of the window size of a 

second is the best classification rate except the results of 

Feature 8 using data length of two seconds and window of (4, 

0.5). From the results, the size of windows is more important 

than the number of windows. Next, comparing the difference 

between Feature 8 and 7, the difference tends to increase as 

the data length is longer. In other words, Feature 8 obtains 

high classification rate from even short data length. 

60

70

80

90

100

θ α β γ α+β+γ all

k=5 k=3 k=2 average

Figure 2 Results of Validation 3a 

 

90

92

94

96

98

100

(1,8) (2,4) (4,2) (8,1) (16,0.5)

k=5 k=3 k=2 average

Figure 3 Results of Validation 3b 

 

Table 2 Results of Validation 3c 

Feature k=5 k=3 k=2 

8 

（After parameter adjustment） 
98.6 98.3 98.2 

 

Table 3 Results of Validation 3d 

data 

length(s) 
Windows Feature 8 Feature 7 Difference 

8 

(1,8) 95.2 93.6 1.6 

(2,4) 95.8 95.3 0.5 

(4,2) 98.2 96.5 1.7 

(8,1) 98.4 96.9 1.5 

(16,0.5) 98.3 96.4 1.9 

4 

(1,4) 92.4 92.1 0.3 

(2,2) 93.8 93.6 0.2 

(4,1) 97.1 93.9 3.2 

(8,0.5) 96.8 93.4 3.4 

2 

(1,2) 92.2 88.5 3.7 

(2,1) 91 89.2 1.8 

(4,0.5) 93 87.8 5.2 

1 
(1,1) 86 81.5 4.5 

(2,0.5) 84.5 80.6 3.9 

 

 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 233



4.5 Validation 4: Validate the combination of 

electrode positions 

4.5.1 Validation methods 

While the classification rate is validated with fixing the 

number of electrodes to 16 in Validation 1-3, the following 

validations are performed to investigate the number and the 

position of electrodes for the personal classification in 

Validation 4. 

 Validate the combination of electrodes (Validation 4a) 

 Validate the number and the position pattern of 

electrodes (Validation 4b) 

We use the same parameters as Validation 3c obtaining 

the best classification rate in past Validations. The data length 

is 8 seconds, the frequency bands are 8-40Hz, and the number 

and the size of windows is (8, 1). 5-fold cross-validation is 

performed in this condition. 

In Validation 4a, the classification rate is calculated in the 

case of using two channels, and the combination of active 

electrodes is validated for personal authentication. When all 

16 channels are used, the combination of two channels is 120 

kinds. We validate the combination of electrodes of the top 

10%, 20% and 30% classification rate in them. 

In Validation 4b, we validate the classification rate in the 

case of changing the number and the position pattern of 

electrodes. The number of using electrodes is changed to 4, 8, 

12 and 14. Moreover, the electrode position patterns are 

validated in the case of collected electrodes on the front, rear, 

left, right, and center side. Figure 4 shows the placement of 

the electrode position patterns. The validation patterns 

include 15 patterns in total. Black filled electrodes in the 

layout diagram are the used electrodes. The first, second and 

third line in Figure 4 show the case of using 4, 8, 12 and 14 

electrodes, respectively.  

4.5.2 Validation results 

In Validation 4a, we validate the combination of 

electrodes. The results are shown in Table.4. The 

classification rate is rounded off to the nearest integer. Since 

the average classification rate of the combination of 120 kinds 

is 78.1%, the personal classification can work up to some 

extent by using 2 electrodes. However, the selection of the 

used electrodes is important. The combinations of obtaining 

the minimum and the maximum classification rates are (Fp1, 

Fp2) at 57% and (Fz, O1) at 89.1%, respectively. It is clear 

that there are large differences in the classification rate by 

using electrodes. Fp1 and Fp2 are the most susceptible to 

noise caused by eye movement because they are the closest 

electrodes to eyes. Therefore, they are not suitable for the 

personal classification. Since the classification rate is 

obtained close to 90% by using just 2 channels in the 

combination of Fz and O1, they are the combination of highly 

effective electrodes for authentication. Next, we focus on the 

electrodes of the top 30% classification rates. They almost 

include the combination of O1, Oz and O2 in the occipital 

region. Note that the combination with Fp2 is excluded. 

Focusing on the top 20%, the combination comprising Fp1, 

T8, and Pz are excluded in addition to Fp2. In the top 10%, 

T7 and Cz are excluded. Namely, the electrodes which are not 

included in the top 10% are the frontal region (Fp1, Fp2), the 

temporal region (T7, T8) and the central region (Pz, Cz). In 

particular, as the combination with O1, Oz, and O2, Fz and 

F3 are higher classification rates with all belonging to the top 

10%. From this result, we consider that it is better for a longer 

distance between 2 electrodes. The classification rate is 

94.3% in the case of using those 5 electrodes (O1, Oz, O2, Fz, 

F3). 

Table 5 shows the results of Validation 4b. First, we 

validate the number of electrodes. When the number of 

electrodes is 4, 8, 12, and 14, the average classification rate of 

each pattern is 89.8%, 96.2%, 98.2%, and 98.4%, respectively. 

The classification rate is higher every time the number of 

used electrodes increases. Next, we focus on the electrodes 

Table 4 Results of Validation 4a 

ch Fp2 F4 Fz F3 T7 C3 Cz C4 T8 P4 Pz P3 O1 Oz O2

Fp1 58 68 71 66 68 67 69 72 70 78 69 79 84 83 84

Fp2 68 70 67 67 65 68 69 68 78 70 82 84 82 83

F4 69 68 74 70 70 74 73 82 71 82 87 86 86

Fz 70 78 74 71 78 77 82 71 85 89 87 88

F3 74 71 71 74 73 82 74 83 87 88 88

T7 70 72 77 72 83 75 82 85 85 86

C3 69 75 70 84 77 84 88 87 87

Cz 73 71 82 71 83 86 86 86

C4 74 82 74 84 88 87 86

T8 Top 10% 81 72 82 83 84 85

P4 Top 20% 76 86 88 88 86

Pz Top 30% 77 85 82 83

P3 87 86 86

O1 83 86

Oz 83

Figure 4 Electrode position pattern for Validation 4b 

 

234 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



position pattern. In comparison with the front side of the 

position pattern, the classification rate of the rear side is 

higher. The difference between the front and the rear side of 

the classification rate reduces as the number of used 

electrodes increases. In fact, since the many artifacts by eye 

movement appear to the front region around the electrodes, 

their electrodes give an influence on the personal 

classification even after noise rejection by a band-pass filter. 

Therefore, the classification in the occipital region with less 

noise shows good results. When the number of electrodes is 

small, the classification rate is greatly influenced by the 

electrode position. There is no much difference when the 

number of used electrodes is 12, 14, and 16. From these 

results, we conclude that 12 channels are enough for the 

number of electrodes to perform the personal classification. 

5 Conclusions 

In this paper, we validated the possibility of a personal 

classification using a cross-correlation coefficient between 

electrodes as a feature. As the results, it is possible to more 

accurately perform the personal classification by combining 

the cross-correlation between electrodes than the 

classification method using just time-frequency analysis. In 

addition, since the noise in the electrode position is low in the 

occipital region, a high classification rate is obtained. If you 

want to authenticate with a smaller number of electrodes, it is 

preferable to use electrodes in the occipital region than the 

frontal region. The data used for this validation was relatively 

short measurement interval. We think that some changes 

appear to the classification rate by changing the interval of 

data measurement. In future, the influence to appear to EEG 

should be inspected by changing the interval of data 

measurement such as one hour, six hour, 12 hour, one day 

and one week. Based on this, we aim to extract the available 

features to the personal authentication which is not affected 

by the measurement interval. 

6 References 

[1] T.Matsumoto, H.Matsumoto, K.Yamada and S.Hoshino, 

Impact of artificial "Gummy" fingers on fingerprint systems, 

vol. 4677, Proc. SPIE, 2002, pp. 275-289. 

[2] R. B. Paranjape, J. Mahovsky, L. Benedicent and Z. 

Koles, The Electroencephalogram as a Biometrics, vol. 2, 

Proc. of 2001 Canadian Conference on Electrical and, 2001, 

pp. 1363-1366. 

[3] M. Poulos, M. Rangoussi, V. Chrissikopoulos and A. 

Evangelou, Parametric person identification from the EEG 

using computational geometry, vol. 2, Proc. of the 6th IEEE 

Int. Conf. on Electronics, Circuits and Systems, 1999, pp. 

1005-1008. 

[4] R.Palaniappan and D.P.Mandic, Biometrics from brain 

electrical activity: A machine learning approach, vol. 29 no.4, 

IEEE Trans. Pattrn Anal. Mach Intell, 2007, pp. 738-742. 

[5] S. Marcel and J. R. Millan, Pearson Authentication 

Using Brainwaves (EEG) and Maximum A Posteriori Model 

Adaption, vol. 2, IEEE Trans. on Pattern Analysis and 

Machine Intelligence, 2007, pp. 743-748. 

[6] A.Riera, A.Soria-Frish, M.Caparrini, C.Grau and 

G.Ruffini, Unobtrusive biometrics based on 

electroencephalogram analysis, vol. 2008, EURASHIP 

J.Advances in Signal Processing, 2008, pp. 1-8. 

[7] R. Horlings, D. Datcu , L. J. M. Rothkrantz, Emotion 

recognition using brain activity, In Proceedings of the 9th 

international conference on computer systems and 

technologies and workshop for PhD students in computing 

ACM, 2008, p. 6. 

[8] K. Schaaff and T. Schultz, Towards emotion recognition 

from electroencephalographic signals, Affective Computing 

and Intelligent Interaction and Workshops, 2009. ACII 2009. 

3rd International Conference on, 2009, pp. 1-6. 

[9] I. Nakanishi, H. Fukuda and S. Li, Biometric 

Verification Using Brain Waves toward On-Demand User 

Management Systems Performance differences between 

divided regions in α − β wave band, Proc. of the 6th 

International Conference on Security of Information and 

Networks, 2013, pp. 131-135. 

[10] Y. Ishikawa, C. Yoshida, M. Takata and K. Joe, 

Validation of EEG Personal Authentication with Multi-

channels and Multi-tasks, vol. 2, In Proceedings of 2014 

International Conference on Parallel and Distributed 

Processing Techniques and Applications, 2014, pp. 182-188. 

Table 5 Results of Validation 4b 

pattern 
channel 

number 
position k=5 

1 

4 

front 81.3 

2 rear 91.8 

3 left 92.3 

4 right 90.9 

5 center 92.5 

6 

8 

front 94.5 

7 rear 97.6 

8 left 96.4 

9 right 96.4 

10 center 96.2 

11 

12 

front 98.3 

12 rear 98.4 

13 right 97.9 

14 
14 

front 98.3 

15 rear 98.5 

 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 235



A Method to Maintain the Field Coverage by Static
and Mobile Sensor Nodes Using Wireless Charging

Yuki Tsuchiya
Graduate School of Science
Osaka Prefecture University

Sakai, Osaka, Japan

Ryo Katsuma
Graduate School of Science
Osaka Prefecture University

Sakai, Osaka, Japan

Abstract—: In wireless sensor networks (WSNs), sensor nodes
periodically sense, record, and transmit environmental informa-
tion. WSNs require long lifetime and adequate field coverage,
which can be problematic under certain conditions. Several
studies have addressed these problems using energy harvesting,
wireless charging, or mobile sensor nodes. In particular, mobile
nodes are effective for adequate field coverage: however, appro-
priate node movement is critical. In addition, mobile nodes with
wireless charging devices can charge the batteries of other nodes.
We formulate the problem to extend lifetime and maintain field
coverage by determining the positions of mobile nodes that can
cover the field effectively and charge the batteries of other nodes
simultaneously. We propose a coverage algorithm that can cover a
field with a minimal number of nodes and a movement algorithm
that determines an efficient mobile node movement schedule to
charge static nodes. Simulation results, confirm that the energy
charging system used by the proposed method can extend WSN
lifetime up to 66%.

I. I NTRODUCTION

Wireless Sensor Networks (WSNs) are networks con-
structed with many sensor nodes equipped with wireless
communication devices. In WSNs, sensor nodes monitor en-
vironmental data, such as temperature and humidity, and
capture images. The data is sent to a sink node via multi-hop
communication. No communication infrastructure is required
for WSNs because each sensor node can perform both sensing
and communication. The use of WSNs is expected for a variety
of applications, such as environmental monitoring, ecological
surveys, and marine guard [1] [2].

A major problem with WSNs is the coverage problem. A
sensor node can only sense environmental information within
a limited circular sensing range. As a result, node deployment
must cover the entire field of interest . Node deployment cost
can be reduced by placing nodes at appropriate positions.
Several studies have attempted to address this issue by adjust-
ing the position of mobile sensor nodes [13][14]. However,
efficient movement scheduling of mobile nodes is required
because mobile nodes consume significant amounts of energy
when moving.

An other major problem of WSNs is the lifetime extension
problem. A WSN is constructed by many sensor nodes that
operate with limited battery power. These nodes must be
recharged when the power is depleted. Conventionally, wired
power supplies are employed to recharge batteries. However,
wired power systems cannot be used in general WSNs; thus,
operating such WSNs for extended periods is challenging. For

example, it is difficult to recharge WSN node batteries when
measuring temperature in a large agricultural field; significant
time and costs are required to retrieve, recharge, and redeploy
such sensor nodes. Energy harvesting (EH), which converts
natural energy (e.g., light and heat) into electricity, has been
considered to address this problem. Solar-power and wind-
power generation are familiar examples of EH. The strongest
point of EH is the ability to charge batteries in several
locations, which is otherwise commercially unviable when
conventional power charging techniques are employed. In EH,
retrieving, recharging, and redeploying sensor nodes are not
necessary: thus, it is expected that EH will allow WSNs to
operate semi-permanently.

However, energy generation by EH is unstable and some-
times insufficient. Thus, wireless charging technology used for
cellular phones and a variety of small devices is our focus. In
a wireless charging system, two independent devices are used
to send and receive electric power. A node with a sending
device consumes energy to charge the battery of a node with
a receiving device. It has been reported that electromagnetic
induction type wireless charging systems are size and have
greater than 80% power efficiency[3].

When mobile nodes have sending devices and static nodes
have receiving devices, determining the loci of the mobile
nodes when repairing the field coverage and charging batteries
of static nodes becomes problematic. We have attempted to
solve this problem. We propose a method to allow some mobile
nodes with sending devices and solar panels to cover the field,
and the other mobile nodes charge the exhausted batteries of
the static nodes.

The proposed algorithm is comprised of a coverage algo-
rithm and a movement algorithm. When a field is covered by
static as well as mobile sensor nodes, the coverage algorithm
determines the positions of a minimal number of mobile nodes
that can cover the field by determining enclosed regions that
are not covered by sensor nodes. The movement algorithm
determines the destination points of free mobile nodes. The
movement algorithm reduces energy consumption when mov-
ing by performing cascade movement [17] in order to avoid
moving over long distances.

Our simulation results show that the proposed method
extends WSN lifetime up to 66% for a 100× 100 [m2] field
with 20 - 115 nodes. We have confirmed that the coverage
algorithm can repair field coverage with a sufficiently small
number of nodes. We have also confirmed that employing the

236 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



proposedmethod in a honeycomb structure is more effective
than random deployment.

The remainder of this paper is organized as follows. We
describe related work in Section II. Assumptions and the
problem formulation are discussed in Section III. The proposed
method is presented in Section IV. A performance evaluation
is discussed in Section V, and conclusions are presented in
Section VI.

II. RELATED WORK

One of the major problems with WSNs is lifetime extension
because sensor nodes operate with limited battery power.
Recently, many studies have examined using EH technology
have to address this problem [4] [8]. In addition, several studies
have explored charging node batteries using robots [15] [5].

Brunelli et al. proposed EH technology that uses an effi-
cient and small solar battery module [4]. Their study showed
that maximum power point tracking, which can maximize
energy generation, allows sensor node batteries to be charged
under a variety of solar intensity conditions. The efficiency of
power conversion despite the small solar battery was reported
to be up to 80%, which is sufficient power generation to charge
a sensor node battery. Peng et al. proposed a system that
determines charging sequences to be executed by the mobile
charger to extend the lifetime of a WSN [5]. However, these
studies did not consider field coverage because mobile robots
only move for charging.

Another significant problem with WSNs is coverage. For
environmental monitoring, it is necessary to cover the target
field completely with the minimal number of sensor nodes to
enable sensing at any point within the field.

Bai et al. proposed two different deployment patterns,
i.e., the diamond pattern and the double-strip pattern. They
compared the number of nodes required to achieve field
coverage with four-connectivity using these patterns to that
of an existing deployment pattern [6]. Other studies have
used mobile nodes to cover the field automatically. Wang
et al. proposed a field coverage method using mobile nodes
that initially move only once to save energy by considering
energy balance [7]. However, it is difficult to adapt such
methods to changing environments. Eto et al. proposed a
method to cover an agricultural field by moving mobile nodes
dynamically [8]. Their method avoids battery depletion by
predicting the amount of solar energy generation. However,
that study targeted WSNs with low sensing frequency where
field coverage is achieved by a set of mobile nodes visiting
all points in the field at least once during duty cycle. Thus the
field is not always covered.

Existing studies have attempted to solve the lifetime exten-
sion problem using EH or wireless charging, or the coverage
problem by mobile sensor nodes. Therefore, to address gaps in
field coverage and charge static node batteries simultaneously,
a new method to determine the efficient loci of mobile sensor
nodes is required.

We propose a method that determines the position of
each mobile node in order to extend the lifetime of a WSN
constructed with static nodes using wireless charging receivers

and mobile nodes with wireless charging senders and solar
panels.

III. A SSUMPTIONS ANDPROBLEM AND FORMULATION

In this section, we describe our assumptions and the
problem formulation.

A. Target WSNs

We target WSNs constructed with a single sink node and
static and mobile sensor nodes. Here, a sink node is denotedB.
Static and mobile sensor nodes have batteries and devices for
sensing and radio communication. The capacity of the battery
is denotedE. The residual battery power of nodes at timet is
denoteds.energy(t). The sensing range and communication
range are denotedRs and Rc, respectively. Both types of
sensor nodes sense environmental data every duty cycleI (a
sink collects the environmental information from all sensor
nodes everyI minutes). We assume that a mobile sensor node
can move to specified destination, charge its battery using an
equipped solar panel and send electric energy to a static sensor
node using the equipped wireless charging system’s sending
device. The speed of a mobile node is constant valuev. Note
that a static sensor node can charge using only its wireless
charging receiving device. If the distance between the sending
and receiving devices is less thandc, a static node can charge
its battery from a mobile node.

Here, a field with heightFheight and width Fwidth
is given, in whichNstatic static sensor nodes are initially
deployed. Then,Nmobile mobile sensor nodes are deployed
to cover the field completely and charge the batteries of the
static nodes. The position of sensor nodes at timet is denoted
s.pos(t). The destination point of mobile nodep at time t is
denoteds.dest(t). A sensor node can know its own position
and the positions of other nodes using GPS and wireless
communication.

B. Definitions

A sensor node has finite battery power, and it is not feasible
to replace batteries physically when they are exhausted. Battery
power is consumed by sensing, moving, wireless communica-
tion, and supplying electric power. On the other hand, battery
power can be charged by solar power generation and the
electric power supplied by a mobile node.

The power for consumed sensingx[bit] data Sens(x) is
expressed by Formula(1).

Sens(x) = Eelecx+ Esens (1)

Here,Esens and Eelec are constant values that represent
the power required for sensing and information processing,
respectively.

Consumed powersTrans(x, d) andRecep(x) required to
transmitx[bit] for d[m] and receivex[bit] are expressed by
Formulas (2) and (3), respectively [11].

Trans(x, d) = Eelec × x+ εamp × x× d2 (2)

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 237



Recep(x) = Eelec × x (3)

Here, ϵamp is a constant value that represents the power
required for signal amplification.

Consumed powerMove(d) required to moved [m] is
expressed by Formula (4) [16].

Move(d) = Emoved (4)

Here,Emove is a constant value that represents the power
required to move a node 1 [m].

Using the wireless charging system, mobile sensor node
p consumes its energy to charge the battery of static nodeq.
Consumed powerCsend(y) required to send the electric power
for y [sec] is expressed by Formula (5).

Csend(y) = ϵwcy (5)

Here, ϵwc is a constant value that represents the energy
consumption of the wireless charging system.

The energy of charged by the wireless charging system
Crecep(y)for y [sec] is expressed by Formula (6).

Crecep(y) = θϵwcy (6)

Here,θ represents the charging efficiency (0 ≤ θ ≤ 1). If
θ = 1, the energy consumption of a mobile node equals the
charged energy of a static node.

A mobile node can charge its battery by solar power
generation. The amount of generated solar power depends
on the intensity of solar radiation, which varies according to
changing environmental conditions. We denote the intensity
of solar radiation at night, during a cloudy day, and during
a sunny day ascnight, ccloudy, and csunny, respectively. The
amount of solar power generated at an average solar radiation
intensity c([t, t + u]) from time t to t + u is expressed by
Formula 7 [8].

Csolar(c([t, t+ u])) = ϵsolaruc([t, t+ u]) (7)

Here, ϵsolar is the charged energy amount per unit time
coefficient. c([t, t+u]) is expressed by Formula (8).

c([t, t+ u]) =
icnight + jccloudy + kcsunny

i+ j + k
(8)

Here,i, j, andk are the rates of night, cloudy, and sunny
periods during[t, t+ u], respectively.

C. Problem formulation

The inputs to the target problem are target field (Fwidth ×
Fheight), the positions of the sink node and static nodes, the
initial battery power of each sensor node, sensing range, and
constantsEsens, Eelec, ϵamp, ϵwc, andϵsolar. The outputs are
the position of each mobile node for each timet and the node
pairs for battery power supply at each timet. We refer to these
node positions as the node schedule.

Note that the field must always be covered by sensor nodes.
This condition is expressed by Formula (9).

∀pos ∈ Field, ∀t ∈ Time, cover(pos, t) ≥ 1 (9)

Here,Cover(pos, t) is the number of nodes covering the
point pos at timet. Time andField represent set of the WSN
termination time and set of the field, respectively.

If node s with position s.pos(t) at time t moves tos’s
destination points.dest(t), the residual battery power ofs
should be greater than the energy consumed by moving. This
constraint is expressed by Formula (10).

∀t ∈ Time, s.energy(t)−Move(|s.dest(t)− s.pos(t)|) +

Csolar(c([t, t+
|s.dest(t)− s.pos(t)|

v
])) > 0 (10)

Here,|s.dest(t)− s.pos(t)| representthe moving distance.

If mobile nodep charges the battery power of static nodeq
at timet for ut seconds, the residual battery power ofp should
be greater than the energy consumed for charging.

∀t ∈ Time, s.energy(t)−Csend(ut)+Csolar(c([t, t+ut]) > 0
(11)

Our purpose is to determine a node schedule that maxi-
mizes WSN operation timeT . The objective function is shown
in Formula (12).

maximize(T ) (12)

IV. PROPOSED METHOD

In this section, we describe the proposed method to solve
the target problem explained in Section III. The proposed
method is comprised of two algorithms, i.e., the coverage and
movement algorithms.

The coverage algorithm finds uncovered areas and deter-
mines the positions of nodes such that the uncovered areas
covered filled by a small number of mobile nodes. The
movement algorithm periodically determines the movement
schedule of the mobile nodes.

238 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



A. Coverage algorithm

First, the polygon-finding algorithm included in the cov-
erage algorithm finds all areas that are not covered by static
nodes. Next, the coverage algorithm determines efficient posi-
tions for the mobile nodes that will cover the uncovered areas.
Finally, the mobile nodes are deployed to each position.

To find eachuncovered polygonthat inscribes an uncov-
ered area, the polygon-finding algorithm finds alluncovered
intersectionsas shown in Fig. 1. An uncovered intersection is
an intersection that is not covered by sensor nodes and is made
up of two elements, i.e., edges of the target field and sensing
range circles of the sensor nodes. Note that an uncovered
polygon, whose vertices are uncovered intersections, exists if
and only if an uncovered area exists.

Circlesare the sensing region of static nodes.
Black dots are uncovered intersections.

Uncovered polygons whose vertices are only
uncovered intersections are drawn by bold lines.

Fig. 1. Ucovered polygons and intersections

The coverage algorithm minimizes uncovered polygons
by placing nodes at appropriate positions in the polygons
sequentially until the polygons no longer exist. Here, we
denote a set of uncovered polygon vertices found by the
polygon-finding algorithm asQ = {q0, q1, q2, · · ·} , which qi
andqi+1 are adjoined vertices. Two sensor nodesa andb that
construct vertexqi is denoted byqi.s1 andqi.s2, respectively.
Note thatqi.s2 andqi+1.s1 represent the same sensor nodeb.
Similarly, qi−1.s2 and qi.s1 represent the same sensor node
a. If the distance betweenqi and qi+2 is within diameter
2Rs of the sensing range circle, the candidate position of a
node that coversqi, qi+1, andqi+2 exists. This position is the
circumcenter of the triangle whose vertices areqi, qi+1, and
qi+2. If no such node position includes these three vertices,
the candidate position is the center of the circle that inscribes
qi and qi+1. The coverage algorithm places the mobile node
at one of these candidate positions such that the area that
is newly covered by the mobile node is maximized. Here, if
the mobile node placed at the candidate position divides the
uncovered polygon into two or more polygons, such a position
is eliminated as a candidate. Although one of destination
position of optimal deployment divides the uncovered polygon
into two or more polygons, our algorithm puts the node at
the position when the destination position no longer divides
the uncovered polygon. In order to simplify the problem, our

q1 q2
q3

q4

q5q6

(a)beforedeploying
mobile nodes

q1

q2
q3

q4

q5q6

（b）nodedeployment by 2
points

q1
q2

q3

q4q5

（c）nodedeployment by 3
points

（d）forbiddendeployment

Fig. 2. A method to cover polygonQ

algorithm makes the outer side destination have priority.

For example, uncovered polygonQ is constructed by
uncovered intersectionsq1, q2, q3, q4, q5, and q6 as shown
in Fig. 2 (a). The mobile node is placed at the center of the
circle that inscribesq1 and q2, because the area whose size
is newly covered by the mobile node is maximized as shown
in Fig. 2 (b). Then, the distance betweenq2 and q4 in Fig.
2 (b) is less than2Rs, and the mobile node is placed at the
circumcenter of the triangle whose vertices areq2, q3, andq4
(Fig. 2 (c)). On the other hand, the mobile node is not placed
at a position such that the uncovered polygon becomes divided
as shown in Fig. 2 (d).

1) Coverage algorithm:The output of the coverage algo-
rithm is a set of node positionsP . Here,Q is an uncovered
polygon.Q.m is the number of vertices ofQ. qi is the i-th
element ofQ, anddist(qi, qj) is the distance betweenqi and
qj .

1) Find uncovered polygonQ by the polygon-finding
algorithm. If no polygon is found, the algorithm
terminates.

2) If m is 0, return to Step 1.
3) Find i such thatdist(qi, qi+2) < 2Rs; otherwise

proceed to Step 4. A mobile node is placed at the
circumcenter of the triangle whose vertices areqi,
qi+1, andqi+2 such that the area that is newly covered
is maximized. The coordinate of this mobile node is
added toP . Proceed to Step 6.

4) Find i such thatdist(qi, qi+1) < 2Rs, otherwise
proceed to Step 5. A mobile node is placed at the
center of the circle that inscribesqi and qi+1 such
that the area that is newly covered is maximized. The
coordinate of this mobile node is added toP . Proceed

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 239



to Step 6.
5) A mobile node is placed such that the sensing region

of the node includes an element ofQ and the area
that is newly covered is maximized. The coordinate
of this mobile node is added toP . Proceed to Step
6.

6) The vertices newly covered by a mobile node are
eliminated fromQ. The uncovered vertices newly
created by a mobile node are added toQ. Return
to Step 2.

2) Polygon-finding algorithm:The polygon-finding algo-
rithm finds the polygons that are created by the uncovered
intersections. The polygon-finding algorithm outputs the un-
covered polygonQ. Here,P is a set of uncovered intersections.

1) i = 0. If P = ∅, the algorithm terminates as no
polygon is found.

2) If qi.s2 is an edge of the field, proceed to Step 4,
else go to Step 3.

3) Investigate the element ofP to way that is not
covered byqi.s1 in the sensing range circle. The point
that is found first isqi+1. Proceed to Step 5.

4) Investigate the element ofP to way that is not
covered byqi.s1 on the edge of the field. The point
that is detected first isqi+1.

5) If qi+1.s1 is not qi.s2, exchange qi+1.s1 with
qi+1.s2.

6) If qi+1 is p0, proceed to Step 7, elsei = i + 1 and
return to Step 2.

7) All followed points exceptqi+1 are added toQ. The
algorithm terminates withP = P −Q.

B. Movement algorithm

The movement algorithm allows field coverage to be main-
tained for long periods. We set two modes for each mobile
node, i.e., a coverage mode and a free mode. A coverage mode
mobile node moves to the candidate position calculated by the
coverage algorithm. Note the number of coverage mode nodes
is fixed. The other nodes operate in free mode. If the residual
battery power of a coverage mode node becomes low, the free
mode node moves to the position of the coverage mode node
and becomes a coverage mode node. Note that free mode nodes
do not perform sensing.

In the movement algorithm, nodes communicate residual
battery power and power-generation efficiency information to
each other, and the sink node forecasts nodes whose residual
battery power will be depleted rapidly. Ifs is a free mode node,
s charges its battery by solar power at its current position. If
s is a static node or a coverage mode node, it seeks another
mobile noden1 with sufficient battery power. If mobile node
n1 is a free mode node, then it moves to the position of node
s and performs wireless charging or changesn1’s mode to
coverage ands’s mode to free: otherwise,s seeks the nearest
free mode noden2. Ec

n1 andEc
n2 are the estimated residual

battery power ofnn1 andnn2 whenn2 move to the position of
n1 andnn1 moves to the position ofs (this type of movement
is referred to ascascade movement[17]. Ed

n1 andEd
n2 are

the estimated residual battery power ofnn1 andnn2 whenn2

moves directly to the position ofs. The movement algorithm
compares the minimum values of the estimated residual battery

powerEc
n1 andEc

n2 to Ed
1 andEd

2 by these two movement
types and selects the movement type with greater estimated
residual battery power.

The movement algorithm runs when a node whose residual
battery power is less thanLl exists. Here, the average residual
battery power among all nodes is denotedL.

1) Movement algorithm:

1) If nodes whose residual battery power is a less than
L
l is free mode node, thens’s battery is charged by
solar energy generation and the algorithm terminates,
else seek the nearest mobile noden1 whose battery
power is greater thanL.

2) If n1 is a free mode node, then moven1 to the
position ofs and proceed to Step 5, else seek mobile
noden2 that has more thanL battery power and is
the nearest node froms.

3) Estimate the residual battery powerEd
n1 andEd

n2 by
movingn2 to the position ofs directly, and estimate
Ec

1 andEc
2 by movingn2 to n1’s position andn1 to

the position ofs (cascade movement).
4) Select the movement of the greater minimum value

of Ec
1 andEc

2, or Ed
1 andEd

2 . Mobile nodes are then
moved.

5) If node s is a static node, the moved mobile node
performs wireless charging, elses and the moved
mobile node exchange modes.

V. PERFORMANCE EVALUATION

Here, we describe simulation results of an evaluation of
the proposed method.

We performed computer simulations to measure the field
coverage time that can be maintained by varying the number of
sensor nodes for two patterns of static sensor node deployment.
In the first scenario, static sensor nodes are scattered by a
helicopter, i.e., they are deployed randomly. The mobile sensor
nodes primarily move to fill gaps in field coverage. In the
second scenario, static sensor nodes whose batteries have less
than one-half charge are deployed in a honeycomb structure.
In this scenario, the deployment is calculated and efficient,
and the WSN is used for a long period. Mobile sensor nodes
primarily move to charge static sensor node batteries and repair
coverage holes.

To evaluate the effects of the proposed features, we com-
pared the proposed method with a method whose battery
charging mechanism has not been validated (hereafter, simple
method ). The common parameter settings in our simulations
are shown in Table. I. The network topology is a mesh rooted
at the sink node. Each sensor node sends data to the upper
node that has maximum residual battery power.

A. Settings

B. Coverage algorithm evaluation

In this simulation,n static nodes were deployed initially,
and the number of mobile sensor nodes required for complete
field coverage was measured.

The average results of 10 trials are shown in Figure. 3.
We confirmed that the number of mobile nodes decreases as

240 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



TABLE I. COMMON PARAMETER SETTINGS IN THE SIMULATIONS

Sizeof target field 100× 100 [m2]
SensingradiusRs 20 [m]
Duty cycle I 15 [min]
Datasize 256 [bit]
BatterycapacityE 8640[J]
Power consumption coefficient for
data processingEelec

50 [nJ/bit]

Power consumption coefficient for
signal amplificationϵamp

100 [pJ/bit/m2]

Power consumption coefficient for
sensingEsens

0.018[J/bit]

Power consumption for moving 1680[mW]
Efficiency of wireless chargingθ 0.8

Fig. 3. The number of nodes needed by the coverage algorithm

the number of static sensor nodes increases. The coverage
algorithm required 18 sensor nodes (five randomly deployed
static nodes and 13 mobile nodes) to cover the 100× 100
[m2] field. Note that a honeycomb structure required 14 nodes
to cover the same field. The coverage algorithm can cover the
field with a small number of nodes.

C. Evaluation of the proposed method

In this simulation, we measured the lifetime of the WSN
lby changing the number of static or mobile sensor nodes.
WSN operation was terminated when battery power of at least
one node was depleted.

Fig. 4. WSN lifetime by fixing 50 mobile nodes

1) Changing the number of static nodes:Figure. 4 shows
the WSN lifetime with 50 mobile nodes and various numbers
of static nodes. We compared the proposed method with
the simple method. We confirmed that the proposed method
achieves longer WSN lifetime than the simple method. The
energy charging system’s moving schedule is effective to
extend WSN lifetime. We also confirmed that WSN lifetime

is reduced when the number of static nodes that periodically
sense data is increased because the amount of energy required
for data communication increases. According to Formulas
(2) and (3), energy consumption increases as the amount of
transmitted data increases.

Fig. 5. WSN lifetime with 15 static nodes

2) Changing the number of mobile nodes:Figure. 4 shows
the WSN lifetime with 15 static nodes and various numbers
of mobile nodes. We confirmed that WSN lifetime is extended
by increasing the number of mobile nodes. We confirmed
that the proposed method achieves 66% longer WSN lifetime
than the simple method with 100 mobile nodes. However,
the difference between the proposed method and the simple
method with 20 mobile nodes was not significant because the
total energy generation of 100 mobile nodes is grater than 20
mobile nodes. WSN lifetime is extended with increased total
energy generation.

Fig. 6. Honeycomb structure

3) Honeycomb structure deployment:WSNs are sometimes
required to operate according to planned node deployment. In
this simulation, each static sensor node was deployed as the
center point of a hexagon inscribed in a circle whose radius
is Rs, as shown in Fig. 6. The honeycomb structure shown in
Fig. 6 is the most efficient deployment [12]. The honeycomb
structure requires 14 static nodes to cover a 100× 100 [m2]
field, as described in Subsection V-B.

We added mobile sensor nodes to WSNs constructed with
only static sensor nodes that have already consumed one-
half and one-quarter if their battery power on average. The
durations from initial deployment of the static nodes until one-
half and one-quarter battery power was consumed was 189.4

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 241



Fig. 7. Honeycomb structure (1/2 case)

Fig. 8. Honeycomb structure (1/4 case)

[h] and 298.7 [h], respectively. Here, we describe these two
cases (i.e., one-half and one-quarter battery consumption). For
each case, we measured the lifetime extension achieved by
adding mobile nodes.

Figures 7 and 8 show the one-half and one-quarter cases,
respectively. As can be seen in both figures, the proposed
method extends WSN lifetime linearly relative to the number
of mobile nodes. However, the degree of lifetime extension is
gradual around 550–600 [h]. With 30 mobile nodes, Figs. 5
and 7 show 793.2 [h] and 591.5 [h] lifetime extensions. In the
one-half case, the WSN lifetime is591.5 + 189.4 = 780.9.
Although no mobile node was used for 189.4 [h], the lifetime
of the one-half case was similar to the randomly deployed
case. In Fig. 8, the lifetime of 30 mobile nodes is less than
25 mobile nodes. The reason is the deviation of initial energy
amount. Our simulations conducted 10 times were not able
to eliminate the affect of unfortunate initial parameters. Thus,
we confirmed that the proposed method with a honeycomb
structure can extend WSN lifetime.

VI. CONCLUSION

We have proposed a method to extend WSN lifetime using
two energy charging systems. The proposed algorithm includes
a coverage algorithm and movement algorithm. The coverage
algorithm determines the positions of mobile nodes that cover
areas not covered by static nodes. The movement algorithm
determines the destination of nodes whose batteries need to be
charged by mobile nodes. Our simulation results, confirm that
the proposed method with a honeycomb structure deployment
can extend WSN lifetime. In future, we plan to decentralize
the proposed algorithm for scalability.

REFERENCES

[1] Th.Aramapatzis, J.Lygeros, and S. Manesis, : “A Survey of Applications
of Wireless Sensors and Wireless Sensor Networks,”Proceedings of
International Symposium on, Mediterrean Conference on Control and
Automation (ISIC/MED 2005), pp. 719- 724 (June 2005).

[2] A. Mainwaring, D. Culler, J.Polastre, R. Szewczyk, and J.Anderson;
“Wireless sensor networks for habitat monitoring ,”Proceedings of
the 1st ACM International Workshop pn Wireless Sensor Networks and
Applications, pp.88-97 (2002).

[3] HIDEKI AYANO, HIROSHI NAGASE, HIROMI INABA, : “A Highly
Efficient Contactless Electrical Energy Transmission System,”Electri-
cal Engineering in Japan, Vol 148, No.1, 2004.

[4] Davide Brunelli, Luca Benini, Clemens Moster, and Lothar Thiele,
: “An Efficient Solar Energy Harvester for Wireless Sensor Nodes,”
Proceedings of the conference on Design, automation and test in Europe
pp 104-109 (2008)

[5] Yang Peng, Zi Li, Wensheng Zhang, and Daiji Qiao, : “Prolonging
Sensor Network Lifetime Through Wireless Charging,”IEEE Real-Time
Systems Symposium (RTSS), San Diego, CA, November 30 - December
3, 2010.

[6] Xiaole Bai, Ziqiu Yun, Dong Xuan, Ten H. Lai, and Weijia Jia, :
“Optimal Patterns for Four-Connectivity and Full Coverage in Wireless
Sensor Networks,”Mobile Computing, IEEE Transactions on (Volume:9
, Issue: 3 ) pp. 435-448, March 2010

[7] You-Chuin Wang, Wen-Chium Peng, and Yu-Chee Tseng, : “Energy-
Balanced Dispatch of Mobile Sensor in a Hybrid Wireless Sensor
Network,” IEEE Transactions on Parallel and Distributed Systems, vol.
21, no. 12, pp. 1836-1850, Dec. 2010

[8] Masaru Eto, Ryo Katsuma, Morihiko Tamai, and Keiichi Yasumoto:
“Efficient Coverage of Agricultural Field with Mobile Sensors by
Predicting Solar Power Generation,”Proc. of IEEE Int’l. Conf. on
The 29th IEEE International Conference on Advanced Information
Networking and Applications (AINA), pp. 62–69, 2015.

[9] M. Cardei, J. Wu, M. Liu, and M. Pervaiz: “Maximum network lifetime
in wireless sensor networks with adjustable sensing ranges,”Proc. of
IEEE Int’l. Conf. on Wireless and Mobile Computing, Networking and
Communications (WiMob), 2005.

[10] Jiong Wang, Medidi, S., Medidi, M.: “Energy-Efficient k-Coverage for
Wireless Sensor Networks with Variable Sensing Radii ,”Proc. of IEEE
Int’l. Conf. on Global Telecommunications Conference (GLOBECOM),
pp. 1–6, 2009.

[11] Heinzelman, W.R., Chandrakasan, A., Balakrishnan, H. “Energy-
efficient communication protocol for wireless microsensor networks,”
Proc. of the 33rd Hawaii Int’l. Conf. on System Sciences (HICSS 2000)
, pp.1–10, 2000.

[12] Xiaole Bai, Ziqiu Yun, Dong Xuan, Biao Chen and Wei Zhao: “Optimal
Multiple-Coverage of Sensor Networks,”Proc. of IEEE Int’l. Conf. on
INFOCOM, pp. 2498–2506, 2011.

[13] Luo, R.C., and Chen, O.: “Mobile Sensor Node Deployment and
Asynchronous Power Management for Wireless Sensor Networks,”
IEEE Trans. on Industrial Electronics, No. 59, Vol. 5, pp. 2377–2385,
2011.

[14] Wang, Y. C. and Tseng, Y. C.: “Distributed Deployment Schemes for
Mobile Wireless Sensor Networks to Ensure Multi-level Coverage,”
IEEE Trans. on Parallel and Distributed Systems, No. 19, Vol. 9, pp.
1280–1294, 2007.

[15] Ouadou, Mourad, Zytoune, Ouadoudi, and Aboutajdine, Driss: “Wire-
less charging using mobile robot for lifetime prolongation in sensor
networks,” Proc. of IEEE Complex Systems (WCCS), pp. 225–230,
2014.

[16] Rahimi, M., Shah, H., Sukhatme, G.S., Heideman, J., Estrin, D. “Study-
ing the Feasibility of Energy Harvesting in a Mobile Sensor Network,”
Proc. of the IEEE Int’l. Conf. on Robotics and Automation (ICRA),
pp.19–24, 2003.

[17] You-Chiun Wang, Fang-Jing Wu and Yu-Chee Tseng: “Mobility man-
agement algorithms and applications for mobile sensor networks,”J.
of Wireless Communications and Mobile Computing, Vol. 12, Issue 1,
pp.7–21, 2012.

242 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



Performance Evaluation of Golub-Kahan-Lanczos Algorithm with
Reorthogonalization by Classical Gram-Schmidt Algorithm and

OpenMP

Masami Takata1, Hiroyuki Ishigami2, Kinji Kimura2,
Yuki Fujii2, Hiroki Tanaka2, and Yoshimasa Nakamura2

1Research Group of Information and Communication Technology for Life,
Nara Women’s University, Nara, Nara, JAPAN

2Graduate School of Informatics, Kyoto University, Kyoto, Kyoto, JAPAN

Abstract— The Golub-Kahan-Lanczos algorithm with re-
orthogonalization (GKLR algorithm) is an algorithm for
computing a subset of singular triplets for large-scale sparse
matrices. The reorthogonalization tends to become a bot-
tleneck of elapsed time, as the iteration number of the
GKLR algorithm increases. In this paper, OpenMP-based
parallel implementation of the classical Gram-Schmidt al-
gorithm with reorthogonalization (OMP-CGS2 algorithm)
is introduced. The OMP-CGS2 algorithm has the advan-
tage of data reusability and is expected to achieve higher
performance of the reorthogonalization computations on
shared-memory multi-core processors with large caches than
the conventional reorthogonalization algorithms. Numerical
experiments on shared-memory multi-core processors show
that the OMP-CGS2 algorithm accelerates the GKLR algo-
rithm more effectively for computing a subset of singular
triplets for a sparse matrix than the conventional reorthog-
onalization algorithms.

Keywords: Subset computation of singular triplets, Golub-Kahan-
Lanczos algorithm with reorthogonalization, Classical Gram-
Schmidt algorithm with reorthogonalization, OpenMP, Shared-
memory multi-core processing

1. Introduction
Let A be a real m × n matrix and rank(A) = r

(r ≤ min(m, n)). Then A has the r singular values
σ1, . . . , σr ∈ R, which satisfies σ1 ≥ · · · ≥ σr > 0, and
their corresponding left and right singular vectors ui ∈ Rm,
vi ∈ Rn (1 ≤ i ≤ r). A subset of singular triplets,
i.e. the l largest singular values σ1, . . . , σl and their
corresponding singular vectors, is often required in low-rank
matrix approximation [17] and statistical processings such as
principal component analysis and the least-squares method.
In such applications, the target matrix is often large and
sparse, and l is often much smaller than both m and n. It
is difficult to perform the computation of singular triplets
directly from a large-scale sparse matrix because of the
computational cost and need for large amounts of memory.

The Krylov subspace methods are better for such compu-
tations. They transform the target matrix into a significantly
smaller matrix than the target matrix and the singular values
of the generated matrix sufficiently approximate a subset
of singular values of the target matrix. The Golub-Kahan-
Lanczos (GKL) algorithm [5], [6] is one of the Krylov sub-
space methods and generates approximate bidiagonal matri-
ces from the target matrix. However, the GKL algorithm usu-
ally loses the orthogonality of the Krylov subspace because
of the computational error. To improve the orthogonality, let
us incorporate a reorthogonalization process into the GKL
algorithm. Such an algorithm is referred to as the GKL
algorithm with reorthogonalization (GKLR algorithm) [1].
Note that these algorithms are generally parallelized in terms
of the Basic Linear Algebra Subprograms (BLAS) [12],
such as the matrix multiplications and the matrix-vector
multiplications, because they are iterative algorithms. In
addition, we implement the bisection algorithm and the
inverse iteration algorithm [10], [8] for computing a subset
singular triplets of the approximate matrices generated by
the GKLR algorithm.

Although the GKLR algorithm is stable because of the
reorthogonalization, the reorthogonalization tends to become
a bottleneck in terms of the computational cost and the
elapsed time as the iteration number increases. However,
since the reorthogonalization of the GKLR algorithm is
mainly implemented using the matrix-vector multiplications,
even in parallel computing, the reorthogonalization is not
effectively accelerated and then the overall elapsed time of
the GKLR algorithm is not effectively reduced.

In this paper, to accelerate the reorthogonalization of the
GKLR algorithm more effectively in parallel computing,
we introduce a parallel implementation of the classical
Gram-Schmidt algorithm with reorthogonalization (CGS2
algorithm) [3], which is parallelized using the OpenMP [13].
Hereafter, this implementation of the CGS2 algorithm is
referred to as the OMP-CGS2 algorithm. This parallelization
technique enables to use the cache of CPUs effectively
and then the computation is expected to be accelerated
more effectively than the conventional reorthogonalization

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 243



algorithms, which are parallelized in terms of the BLAS
operations.

The rest of this paper is organized as follows. In Sec-
tion 2, the GKLR algorithm and its implementation in this
paper are described. In Section 3, a BLAS-based parallel
implementation of reorthogonalization algorithms and the
OMP-CGS2 algorithm are presented. Section 4 provides
performance evaluations of the OMP-CGS2 algorithm on
multi-core processors. We end with conclusions and future
works in Section 5.

2. GKLR algorithm
This section considers the GKLR algorithm and describes

the implementation of the GKLR algorithm in this paper.

2.1 GKLR algorithm
The GKL [5], [6] algorithm generates new bases pk ∈ Rn

and qk ∈ Rm at the k-th iteration. The pk is an orthonormal
basis of the Krylov subspace K(A>A, p1, k), and the qk
is an orthonormal basis of the alternative Krylov subspace
K(AA>, Ap1, k). In the GKLR algorithm [1], each time
a new basis is added with the expansion of the Krylov
subspace, the existing orthonormal basis, and the new basis
are reorthogonalized.

Algorithm 1 shows the pseudocode of the GKLR algo-
rithm. Lines 6 and 10 show the reorthogonalization process,
respectively. At the beginning of the k-th iteration for k =
1, 2, . . . in Algorithm 1, the k × k approximate matrices

Bk =


α1 β1

α2 β2
. . . . . .

αk−1 βk−1
αk

 (1)

are obtained and the following equations hold

APk = QkBk, (2)

A>Qk = PkB
>
k + βkpk+1e

>
k , (3)

where ek is the k-th column of the k × k identity matrix.
Note that if the l largest singular values of Bk sufficiently
approximate those of A, we can stop the iterations of the
GKLR algorithm. On line 8 in Algorithm 1 , we check
whether the l largest singular values of Bk sufficiently
approximate those of A or not. Criteria for this check are
discussed in Sec. 2.2.1.

Let σ(k)
j , s(k)j ∈ Rk, and t

(k)
j ∈ Rk (j = 1, . . . , k) be a

singular value of Bk, the left singular vector, and the right
singular vector corresponding to σ

(k)
j , respectively. If σ(k)

j

approximates σj well, then uj and vj corresponds to u
(k)
j

and v
(k)
j defined as the following equations, respectively:

u
(k)
j = Qks

(k)
j , v

(k)
j = Pkt

(k)
j . (4)

Algorithm 1 GKLR algorithm
1: Set an n-dimensional unit vector p1

2: q = Ap1, α1 = ‖q‖2, q1 = q/α1

3: P1 = [p1], Q1 = [q1]
4: do k = 1, 2, . . .
5: p = A>qk
6: p̃ = Reorthogonalization(Pk, p)
7: βk = ±‖p̃‖2, pk+1 = p̃/βk
8: Check the singular values of Bk

9: q = Apk+1

10: q̃ = Reorthogonalization(Qk, q)
11: αk+1 = ±‖q̃‖2, qk+1 = q̃/αk+1

12: Pk+1 =
[
Pk pk+1

]
, Qk+1 =

[
Qk qk+1

]
13: end do

In order to improve the accuracy of singular vectors, this
computation is implemented to the combination with the QR
factorization [11].

As seen in Algorithm 1, the GKLR algorithm must be
parallelized in terms of the computations on each line. Since
the computation on each line can be implemented using the
BLAS operations, we parallelize the GKLR algorithm in
terms of each the BLAS operations.

2.2 Implementation of GKLR algorithm
In this section, we discuss the methods to check whether

the singular values of Bk approximate sufficiently those of A
or not. We then introduce a stopping strategy of the GKLR
algorithm and the implementation for the subset computation
of singular triplets for approximate matrices in this paper.

2.2.1 Stopping strategy of GKLR algorithm

Recalling (σ
(k)
j , s

(k)
j t

(k)
j ), the j-th singular triplets for

Bk (j = 1, . . . , l), we then have the following equations:

Bkt
(k)
j = σ

(k)
j s

(k)
j , B>k s

(k)
j = σ

(k)
j t

(k)
j . (5)

Using Eqs. (2), (3), (4), and (5), we obtain

A>u
(k)
j − σ(k)

j v
(k)
j = A>Qks

(k)
j − σ(k)

j Pkt
(k)
j

=
(
A>Qk − PkB

>
k

)
s
(k)
j

= βkpk+1e
>
k s

(k)
j

= βks
(k)
j (k)pk+1, (6)

where s(k)j (k) is the k-th element of s(k)j . Thus, the follow-
ing inequality holds:∥∥∥A>u(k)

j − σ(k)
j v

(k)
j

∥∥∥
2
≤
∣∣∣βks(k)j (k)

∣∣∣ . (7)

As the results, if the right-hand side of inequality (7) is
sufficiently small, then the singular value σ(k)

j of Bk can be
regarded to sufficiently approximate that of A. Hence, the

244 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



Algorithm 2 Stopping strategy of GKLR algorithm

1: Compute (σ(k)
l , s(k)l , t(k)l )

2: if
∣∣∣βks(k)l (k)

∣∣∣ ≤ δ, then

3: Compute (σ(k)
j , s(k)j , t(k)j ) for j = 1, . . . , l

4: if
∣∣∣βks(k)j (k)

∣∣∣ ≤ δ for j = 1, . . . , l, then
5: Stop the iteration of GKLR algorithm
6: end if
7: end if

following inequality can be considered as one of the stopping
criteria of the GKLR algorithm:∣∣∣βks(k)j (k)

∣∣∣ ≤ δ, j = 1, . . . , l, (8)

where δ is a threshold value for stopping the iteration of the
GKLR algorithm and determined arbitrarily by users. If we
use this criterion based on inequality (8), we have to compute
the l singular triplets for Bk, i.e. (σ(k)

j , s
(k)
j , t

(k)
j ), j =

1, . . . , l, before checking if inequality (8) is satisfied. The
computational cost of computing singular triplets for Bk

is more expensive than that of checking if inequality (8).
In order to reduce the total elapsed time for the GKLR
algorithm, the computational cost of computing singular
triplets for Bk has to be reduced. Hereafter, let kt be the
number of iterations where inequality (8) is satisfied for the
first time.

Now let us consider the following inequality, which is one
of the necessary conditions for inequality (8):∣∣∣βks(k)l (k)

∣∣∣ ≤ δ. (9)

We have only to compute the l-th largest singular triplet for
Bk in order to check if inequality (9) is satisfied. Hence,
from the viewpoint of the computational cost, inequality (9)
is more suitable for the stopping criterion of the GKLR
algorithm than inequality (8). In addition, if let kn be the
number of iterations where satisfy inequality (9) for the first
time, it is observed that kt = kn in many cases of numerical
experiments. From these facts, inequality (9) can be also
considered as one of the stopping criteria of the GKLR
algorithm. However, since the theorems in [14] imply that
the value of kt depends on the distribution of singular values
for the target matrix, kt = kn is not always guaranteed.
Thus, even if inequality (9) is satisfied, we must check if
inequality (8) is also satisfied for all j.

Summarizing the above discussions, the stopping strategy
for the GKLR algorithm is shown by Algorithm 2. In the
experiments mentioned in Sec. 4, we set δ = 1.0 × 10−14

as the stopping criterion. Note that Algorithm 2 is used on
line 8 in Algorithm 1. After stopping the iteration of the
GKLR algorithm, we compute the l largest singular triplets
of A, i.e. (σj , uj , vj) for j = 1, . . . , l, using Eqs. (4).

2.2.2 Subset computation algorithms for singular triplets
of approximate matrices

As mentioned in Section 2.2.1, a subset of singular triplets
for the approximate matrices is required for stopping the
GKLR algorithm. In this subsection, we discuss the subset
computations of singular triplets of the approximate matrices
on lines 1 and 3 in Algorithm 2.

The approximate matrix Bk, generated by the GKLR
algorithm, is a lower bidiagonal matrix. As mentioned in [5],
the singular value problem of the bidiagonal matrix can be
transformed into the eigenvalue problem of the symmetric
tridiagonal matrix without any computational cost. From
the above fact, the singular triplets of the lower bidiagonal
matrix can be obtained using the bisection algorithm and
the inverse iteration algorithm (BI algorithm) for symmetric
tridiagonal matrices [10], [8]. The BI algorithm enables us
to compute only the required eigenpairs and is suitable for
the subset computation of singular triplets in Algorithm 2.
While computing l singular triplets (line 3 in Algorithm 2),
we parallelize the subset computation of singular triplets as
follows: The bisection algorithm is parallelized in terms of
each singular value, and the inverse iteration algorithm is
parallelized in terms of the BLAS operations.

3. Reorthogonalization algorithms

To improve the orthogonality of the Krylov subspace
and the accuracy of the resulting singular vectors, the
reorthogonalization is inevitable for the GKLR. However,
the computational cost of the reorthogonalization is larger
than the other processes of the GKLR, as the iteration
number increases. Thus, it is important to accelerate the
reorthogonalization in the GKLR.

In this section, at first, we consider three conventional
reorthogonalization algorithms for the GKLR algorithm. The
classical Gram-Schmidt with reorthogonalization (CGS2)
algorithm [3], the modified Gram-Schmidt (MGS) algo-
rithm [6], and the reorthogonalization algorithm using the
Householder transformations in terms of the compact WY
representation (cWY algorithm) [19], [9]. These algorithms
are parallelized in terms of the BLAS operations in re-
cent days. Secondly, we present the OpenMP-based parallel
implementation of the CGS2 algorithm for shared-memory
multi-core processors and describe the advantage of this
implementation with respect to the data usability.

In the followings, we discuss the computation of xi ∈
Rm, the reorthogonalized vector of ai ∈ Rm (2 ≤ i ≤ n),
where satisfies 〈xi, xk〉 = 0 for j 6= k. In addition, let
Xi−1 be Xi−1 =

[
x1 · · · xi−1

]
(2 ≤ i ≤ n). Note that

Xi−1, xi, and ai correspond to Pk, p̃, and p on line 6 in
Algorithm 1, and also correspond to Qk, q̃, and q on line 10
in Algorithm 1.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 245



Algorithm 3 CGS2 algorithm
1: function CGS2(Xi−1(= [x1, . . . , xi−1]), ai)
2: do j = 1, 2
3: w = X>i−1ai

4: ai = ai −Xi−1w
5: end do
6: return xi = ai

7: end function

3.1 BLAS-based parallel implementation algo-
rithms
3.1.1 CGS2 algorithm

The classical Gram-Schmidt (CGS) algorithm [6] is a
well-known reorthogonalization algorithm. The reorthogo-
nalization of ai using the CGS algorithm is formulated as
follows:

xi = ai −
i−1∑
k=1

〈xk, ai〉xk. (10)

Eq. (10) is composed of Level 1 BLAS operations, such as
inner-dot products and AXPY operations. The computational
cost of the CGS algorithm is about 2mk2 if the reorthogo-
nalization of ai for i = 1, . . . , k is performed. Using the
matrix-vector multiplications, Eq. (10) is also replaced as

xi = ai −Xi−1X
>
i−1ai. (11)

In general, to achieve better performance, we reduce the
number of data synchronizations on shared-memory multi-
core processors as much as possible. The level 2 BLAS
operations, such as the matrix-vector multiplications, have
less data synchronization than the level 1 BLAS opera-
tions. Thus, the level 2 BLAS operations achieves better
performance than the level 1 BLAS operations in parallel
computing. Given this property, the CGS is conventionally
implemented using matrix-vector multiplications.

However, the orthogonality of the vectors computed by
the CGS algorithm deteriorates if the condition number of
the original vectors is large. To improve the orthogonality,
the variants of the CGS algorithm have been proposed.

The CGS algorithm with reorthogonalization (CGS2 algo-
rithm) [3] is one of the variants. A pseudocode of the CGS2
is shown in Algorithm 3. Repeating the CGS algorithm
twice, we are able to improve the orthogonality. However,
the computational cost of the CGS2 is twice that of the CGS.

3.1.2 MGS algorithm
Another variant of the CGS algorithm is the modified

Gram-Schmidt (MGS) algorithm. The MGS algorithm is
composed of inner-dot product and AXPY operations. Then
level 1 BLAS operations are mainly used. However, com-
pared with the CGS, the MGS improves the orthogonality.

Algorithm 4 OpenMP-based parallel implementation of
CGS2 algorithm

1: function OMP-CGS2(Xi−1(= [x1, . . . , xi−1]), ai)
2: #omp parallel private(j, s)
3: do j = 1, 2
4: #omp single
5: w = ai . Perform serially
6: #omp end single
7: #omp do reduction(+:ai)
8: do k = 1 to i− 1
9: s = −〈xk, w〉

10: ai = ai + sxk . Array reduction
11: end do
12: #omp end do
13: end do
14: #omp end parallel
15: return xi = ai

16: end function

Furthermore, the computational cost of the MGS is 2mk2

since the MGS is algebraically equivalent to the CGS.

3.1.3 Compact WY algorithm
The Householder transformations [6] are also used for

the reorthogonalization. However, the reorthogonalization
using the Householder transformations is composed of the
level 1 BLAS operations. Hence, we cannot achieve higher
performance using parallel computation.

To overcome this difficulty, a reorthogonalization algo-
rithm using the Householder transformations in terms of
the compact WY representation [16] is proposed in [19].
Hereafter, this algorithm is referred to as the cWY algo-
rithm. In this algorithm, we can rewrite the product of
the Householder matrices in a simple block matrix form.
Hence, the cWY can be performed mainly using the level
2 BLAS operations. This algorithm can achieve the high
orthogonality theoretically and high scalability in parallel
computing. In addition, the computational cost of the cWY
algorithm can be reduced from 4mk2+k3 to 4mk2−k3 [9].

3.2 OpenMP-based parallel implementation of
CGS2 algorithm

Recalling Eq. (10), the CGS and CGS2 algorithms can be
parallelized in terms of the summation. Such parallel imple-
mentation is easily realized by adding OpenMP directives
for shared-memory multi-core processors. From these facts,
an OpenMP-based parallel implementation of the CGS2
algorithm can be represented as shown in Algorithm 4. Note
that where w is a vector where preserves the original vector
of ai. Hereafter, this implementation of the CGS2 algorithm
is referred to as the OMP-CGS2 algorithm.

The parallel computation in terms of the summation is
represented as the parallelism of do-loop as shown in line 7.

246 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



Table 1: Comparison of reorthogonalization algorithms [4]
CGS2 MGS cWY OMP-CGS2

Computation 4mk2 2mk2 4mk2 − k3 4mk2

Orthogonality O(ε)† O(εκ(A)) O(ε) O(ε)†

BLAS Level 2 Level 1 Level 2 Level 1
†: Realized if the condition O(εκ(A)) < 1 is satisfied.

As the result, the inner-dot product (line 9) and the AXPY
operations (line 10) in terms of the different index k are
performed on each thread. In addition, the array reduction
must be implemented for the summation of ai on line 10.
The array reduction in Fortran code is supported by using
the reduction clause of OpenMP.

The advantage of this implementation is the high reusabil-
ity of data. Since we compute ai = ai + sxk (line 10) as
soon as s = −〈xk, w〉 (line 9) is computed, the reusability
of w, xk, and ai becomes higher on each thread computa-
tion. Thus, the OMP-CGS2 algorithm is expected to accel-
erate more effectively the reorthogonalization computation
on shared-memory multi-core processors with large caches
than other reorthogonalization algorithms if the vectors w,
xk, and ai are stored in the L3 cache of each CPU.

3.3 Comparison of reorthogonalization algo-
rithms

As the summary of this section, Table 1 shows that the the-
oretical performance of the reorthogonalization algorithms.
Computation denotes the flops of the computational cost,
Orthogonality indicates the bound of the norm ‖X>X−I‖,
and BLAS denotes the level of BLAS operations of which
each algorithm is mainly composed. ε is the machine epsilon,
and κ(A) denotes the condition number of the original
matrix A =

[
a1 · · · ak

]
.

4. Numerical experiments
In this section, we report results of numerical experiments

in order to evaluate the performance of the OpenMP-based
parallel implementation of the CGS2 algorithm.

4.1 Configurations of numerical experiments
In the numerical experiments, we compare the elapsed

time for computing the l largest singular triplets of the same
target matrix using a code of the GKLR algorithm with
different l. Here, l is the number of required singular triplets;
l = 100, 200, 400, 800.

We compare the elapsed time for computing subsets of
singular triplets using four different codes of the GKLR
algorithms. Each GKLR code is implemented with the
following reorthogonalization algorithms mentioned in Sec-
tion 3. GKLR with MGS is implemented with the MGS
algorithm. GKLR with CGS2 is implemented with the
CGS2 algorithm. GKLR with cWY is implemented with
the cWY algorithm. The reorthogonalization algorithms of

Table 2: Specifications of the experimental environment
1 node of Appro 2548X at ACCMS, Kyoto University

CPU Intel Xeon E5-4650L@2.6 GHz, 32 cores (8 cores × 4)
L3 cache: 20MB × 4

RAM DDR3-1066 1.5 TB, 136.4GB/sec
Compiler Intel C++/Fortran Compiler 14.0.2
Options -O3 -xHOST -ipo -no-prec-div

-openmp -mcmodel=medium -shared-intel
Software Intel Math Kernel Library 11.1.2

the above three code are parallelized in terms of the BLAS
routines. GKLR with OMP-CGS2 is implemented with
the OpenMP-based parallel implementation of the CGS2
algorithm.

In the experiments, we use three m×n real sparse matrices
T1, T2, and T3. All of T1, T2, and T3 are set to be 256 non-
zero elements, which are set to be random numbers in the
range (0, 1) and are randomly allocated, in each row. T1,
T2, and T3 are only different in the size of m and n from
each other as follows: m = 16, 000 and n = 8, 000 for T1.
m = 32, 000 and n = 16, 000 for T2. m = 64, 000 and
n = 32, 000 for T3. In addition, the condition number is
4.803× 101 for T1, 4.754× 101 for T2, and 4.757× 101 for
T3, respectively.

Finally, all the experiments are run with 32 threads on a
machine shown in Table 2. We use the Intel Math Kernel
Library (MKL) [7] for parallelizing the level 2 and level
3 BLAS routines. The Intel MKL also provides the level
1 BLAS routines, but the implementation depends on the
dimension of the target vectors and the performance of them
is unstable. Thus, we use the hand-made level 1 BLAS
routines, which is parallelized by using OpenMP, in the
experiments.

4.2 Results of performance evaluation
Figs. 1, 2, and 3 graph the experimental results and shows

the number of required singular triplets and the elapsed time
for computing singular triplets of each target matrix T1, T2,
or T3 using the four code of the GKLR algorithm, respec-
tively. From the figures, GKLR with OMP-CGS2 is faster
than the other code in all the cases. Thus, the OMP-CGS2
accelerates the computation of the GKLR algorithm more
effectively than the other reorthogonalization algorithms.

In addition, Tables 3, 4, and 5 show the number of
required singular triplets and the elapsed time spending for
the reorthogonalization process in computing the singular
triplets of each target matrix T1, T2, and T3 using the four
code of the GKLR algorithm, respectively. The tables show
that the OMP-CGS2, the reorthogonalization in GKLR with
OMP-CGS2, is at least twice faster than the CGS2 and cWY
algorithms.

Note that the number of iterations at the point (kend),
where the GKLR algorithm stops, is the same regardless
to the reorthogonalization algorithms in each of the ex-

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 247



Table 3: The number of required singular triplets (l) and
the elapsed time (sec.) spending for the reorthogonalization
process in computing the singular triplets of T1 using each
code of the GKLR algorithms.

# of required singular triplets 100 200 400 800
GKLR with MGS 79 176 337 1,121
GKLR with CGS2 21 57 118 315
GKLR with cWY 24 58 132 302
GKLR with OMP-CGS2 7 20 44 102

Table 4: The number of required singular triplets (l) and
the elapsed time (sec.) spending for the reorthogonalization
process in computing the singular triplets of T2 using each
code of the GKLR algorithms.

# of required singular triplets 100 200 400 800
GKLR with MGS 100 293 750 1,664
GKLR with CGS2 70 154 351 774
GKLR with cWY 71 166 360 796
GKLR with OMP-CGS2 25 59 151 310

Table 5: The number of required singular triplets (l) and
the elapsed time (sec.) spending for the reorthogonalization
process in computing the singular triplets of T3 using each
code of the GKLR algorithms.

# of required singular triplets 100 200 400 800
GKLR with MGS 261 533 1,432 2,815
GKLR with CGS2 169 372 861 1,921
GKLR with cWY 182 393 861 2,095
GKLR with OMP-CGS2 83 183 344 844

Table 6: The number of iterations at the point (kend), where
the GKLR algorithm stops, needed in each of the experi-
ments. l denotes the number of required singular triplets.

l 100 200 400 800
Matrix T1 1,000 1,600 2,400 4,000
Matrix T2 1,300 2,000 3,200 4,800
Matrix T3 1,600 2,400 3,600 5,600

periments. Table 6 summarizes kend needed in each of the
experiments.

4.3 Discussion about cache use in OMP-CGS2
As mentioned in Sec. 3.2, the high performance of OMP-

CGS2 arises from the higher reusability of cache in CPU.
Here, we discuss the limit size of the vectors when we
perform the reorthogonalization by using OMP-CGS2. Let
the number of threads in a CPU be T and the capacity of L3
cache in the CPU be C MB. The one data of the elements
needs 8 bytes when we use a double-precision floating-point
number.

Recalling Algorithm 4, the vectors w, ai, and xk appear
at each of do-loop in terms of k. If all these vectors are
stored in the L3 cache of CPU, we can achieve the higher
performance of the reorthogonalization by using OMP-
CGS2. However, xk is not shared by different threads while

0

300

600

900

1,200

100 200 400 800

E
la

p
se

d
 t

im
e 

[s
ec

.]

The number of required singular pairs (l)

GKLR with MGS

GKLR with CGS2

GKLR with cWY

GKLR with OMP-CGS2

Fig. 1: The number of required singular triplets and the
elapsed time for computing the l largest singular triplets of
T1 using the GKLR algorithm with different reorthogonal-
ization implementation.

0

400

800

1,200

1,600

2,000

100 200 400 800

E
la

p
se

d
 t

im
e 

[s
ec

.]

The number of required singular pairs (l)

GKLR with MGS

GKLR with CGS2

GKLR with cWY

GKLR with OMP-CGS2

Fig. 2: The number of required singular triplets and the
elapsed time for computing the l largest singular triplets of
T2 using the GKLR algorithm with different reorthogonal-
ization implementation.

0

600

1,200

1,800

2,400

3,000

100 200 400 800

E
la

p
se

d
 t

im
e 

[s
ec

.]

The number of required singular pairs (l)

GKLR with MGS

GKLR with CGS2

GKLR with cWY

GKLR with OMP-CGS2

Fig. 3: The number of required singular triplets and the
elapsed time for computing the l largest singular triplets of
T3 using the GKLR algorithm with different reorthogonal-
ization implementation.

w is accessed by all computing threads. In addition, each
thread should access the copy of ai before reducing arrays.

248 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



As the results, the number of the vectors which should be
stored in the cache is (T × 2 + 1).

From the above discussion, the dimension of the matrix
which achieves better performance in this environment is
determined by following inequality:

m× (T × 2 + 1)× 8 ≤ C × 1024× 1024, (12)

where m is the size of the vectors w, ai, and xk. Then, since
T = 8 and C = 20 from the specification of the CPUs used
for the performance evaluation in this paper, the following
inequality holds:

m ≤ 154202. (13)

Thus, under the condition (13) of the performance evaluation
in the experimental environment in Table 2, the OMP-CGS2
algorithm is guaranteed to achieve the higher performance
than the other reorthogonalization algorithms.

5. Conclusions and future work
In this paper, we first introduce the GKLR algorithm for

computing a subset of singular triplets for target matrices. To
accelerate the reorthogonalization of the GKLR algorithm on
shared-memory multi-core processors more effectively, we
then present the OpenMP-based parallel implementation of
the CGS2 algorithm. The OpenMP-based implementation of
the CGS2 algorithm has the advantage of the data reusability.

We performed numerical experiments on shared-memory
multi-core processors to evaluate the performance of the
GKLR algorithm with the different parallel implementations
of the reorthogonalization algorithm including the OpenMP-
based implementation of the CGS2 algorithm. Experimental
results show that the OpenMP-based implementation of
the CGS2 algorithm accelerates the GKLR algorithm more
effectively for computing a subset of singular triplets for a
sparse matrix than other reorthogonalization algorithms.

One of future work, is to evaluate the performance of
the GKLR algorithms for larger target matrices than those
we used in the performance evaluation and to extend and
confirm the validity of the modeling inequality (12) de-
pending on CPUs. The other is to apply the OpenMP-based
parallel implementation of the CGS2 algorithm presented in
this paper to other algorithms, such as the inverse iteration
method, GMRES algorithm [15], and implicitly restarted
Arnoldi and Lanczos methods [18], [2] to accelerate their
reorthogonalization processes.

Acknowledgment
The authors would like to express their gratitude to

reviewers of this paper for their helpful comments. In
this work, we used the supercomputer of ACCMS, Kyoto
University. This work was supported by JSPS KAKENHI
Grant Numbers 13J02820 and 24360038.

References
[1] J. L. Barlow, “Reorthogonalization for the Golub-Kahan-Lanczos

bidiagonal reduction,” Numer. Math., pp. 1–42, 2013.
[2] D. Calvetti, L. Reichel, and D. C. Sorensen, “An implicitly restarted

lanczos method for large symmetric eigenvalue problems,” ETNA,
vol. 2, pp. 1–21, 1994.

[3] J. W. Daniel, W. B. Gragg, L. Kaufman, and G. W. Stewart,
“Reorthogonalization and stable algorithms for updating the Gram-
Schmidt QR factorization,” Math. Comput., vol. 30, no. 136, pp. 772–
795, 1976.

[4] L. Giraud, J. Langou, M. Rozloẑnìk, and J. van den Eshof, “Round-
ing error analysis of the classical Gram-Schmidt orthogonalization
process,” Numer. Math., vol. 101, no. 1, pp. 87–100, 2005.

[5] G. Golub and W. Kahan, “Calculating the singular values and pseudo-
inverse of a matrix,” SIAM J. Numer. Anal., vol. 2, no. 2, pp. 205–224,
1965.

[6] G. H. Golub and C. F. van Loan, Matrix Computations. Baltimore,
MD, USA: Johns Hopkins University Press, 1996.

[7] Intel Math Kernel Library, “Available electronically at
https://software.intel.com/en-us/intel-mkl/,” 2003.

[8] I. C. F. Ipsen, “Computing an eigenvector with inverse iteration,”
SIAM Review, vol. 39, no. 2, pp. 254–291, 1997.

[9] H. Ishigami, K. Kimura, and Y. Nakamura, “On implementation
and evaluation of inverse iteration algorithm with compact WY
orthogonalization,” IPSJ Transactions on Mathematical Modeling and
Its Applications, vol. 6, no. 2, pp. 25–35, 2013.

[10] W. Kahan, “Accurate eigenvalues of a symmetric tridiagonal matrix,”
Technical Report, Computer Science Dept. Stanford University, no.
CS41, 1966.

[11] R. B. Lehoucq, D. C. Sorensen, and C. Yang, ARPACK Users’s Guide.
Philadelphia, PA, USA: SIAM, 1998.

[12] Netlib, “BLAS,” accssesed 2015-01-16. [Online]. Available:
http://www.netlib.org/blas/

[13] OpenMP, “Available electronically at http://openmp.org/wp/,” 1997.
[14] Y. Saad, “On the rates of convergence of the Lanczos and the block-

Lanczos methods,” SIAM J. Numer. Anal., vol. 17, no. 5, pp. 687–706,
1980.

[15] Y. Saad and M. Schultz, “GMRES: A generalized minimal residual
algorithm for solving nonsymmetric linear systems,” SIAM J. Sci. Stat.
Comput., vol. 7, no. 3, pp. 856–869, 1986.

[16] R. Schreiber and C. van Loan, “A storage-efficient WY representation
for products of Householder transformations,” SIAM J. Sci. Stat.
Comput., vol. 10, no. 1, pp. 53–57, 1989.

[17] H. D. Simon and H. Zha, “Low-rank matrix approximation using
the Lanczos bidiagonalization process with applications,” SIAM J Sci.
Comput., vol. 21, no. 6, pp. 2257–2274, 2000.

[18] D. C. Sorensen, “Implicit application of polynomial filters in a k-
step Arnoldi method,” SIAM J. Matrix Anal. Appl., vol. 13, no. 1, pp.
357–385, Jan. 1992.

[19] Y. Yamamoto and Y. Hirota, “A parallel algorithm for incremental
orthogonalization based on the compact WY representation,” JSIAM
Letters, vol. 3, pp. 89–92, 2011.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 249



Dimension Reduction Using Nonnegative Matrix Tri-Factorization
in Multi-label Classification

Keigo Kimura, Mineichi Kudo and Lu Sun
Graduate School of Information Science and Technology

Hokkaido University, Sapporo, 060-0814, Japan
Email: {kkimura, mine, sunlu}@main.ist.hokudai.ac.jp

Abstract— Multi-label classification problem has become
more important in image processing and text analysis where
an object often is associated with many labels at the
same time. Recently, even in this problem setting dimension
reduction aiming at avoiding the curse of dimensionality
has gathered an attention, but it is still a challenging
problem. Nonnegative Matrix Factorization (NMF) is one
of promising ways for dimension reduction in unsupervised
learning, and is extended from two-matrix factorization to
triple-matrix factorization. In this paper, we reformulate
the NMF with three factor matrices in such a way that it
is solvable the problem of the combinatorial explosion of
labels and incorporates the label correlation naturally in
supervised learning. Experiments on web page classification
datasets show the advantages of the proposed algorithm in
the classification accuracy and computational time.

Keywords: Nonnegative Matrix Factorization, Multi-label Clas-
sification, Dimension Reduction.

1. Introduction
Multi-label classification has attracted much attention in

a variety of fields such as text analysis, image analysis
and recommendations [1]. This is because an object often
has several labels simultaneously, for example, a document
may belong to politics and economics. A multi-label multi-
class problem can be transformed into a set of independent
single-label binary-class problems. However in that case, the
relation between classes is lost.

Dimensional reduction is an essential technique in the
field of machine learning and it aims to avoid the curse
of dimensionality. The methods for dimension reduction are
classified into either unsupervised or supervised method. The
unsupervised methods such as Principal Component Analy-
sis (PCA) [2] and Nonnegative Matrix Factorization (NMF)
[3] reduce the dimension of the feature space ignoring the
class information, while the supervised methods such as
Linear Discriminant Analysis (LDA) aim to keep the class
separability even in the reduced feature space. Recently,
some supervised dimension reduction methods have been
proposed even for multi-label classification [4]–[6]. The key
idea in common is to keep the label dependency as possible
in the reduced space.

Nonnegative Matrix Factorization (NMF) is one of the
unsupervised dimension reduction methods and decomposes
a given nonnegative matrix into a product of two lower-
ranked nonnegative matrices [3]. It is reported that NMF
outperforms PCA in the interpretability and even in the
classification accuracy [7]. Its supervised version, NMF-
LDA [8], is more advantageous in the classification accuracy.
However, such supervised NMF algorithms are all only
applicable to single-label classification and hard to be simply
extended to multi-label classification for the difficulty to
solve a set of binary-class problems in single dimension
reduction scheme.

In this paper, we cope with this difficulty by proposing
a multi-label NMF with the idea of tri-factorization. As
seen in Fig. 1. this study is the first nonnegative supervised
multi-label dimension reduction method. Our goal in this
study is to find an effective representation of nonnegative
data matrix with corresponding label matrix, while taking
into consideration the multi-label information and the label
dependency at the same time. Nonnegativity is imposed
from an emprical knowledge that the nonnegativity, and the
sparsity induced by the nonnegative constraint, has been to
the improvement of classification in the past of study of
NMF [9]–[11]. We borrow the idea of Nonnegative Matrix
Tri-Factorization (NMTF) proposed by Ding et al. [12], one
of unsupervised algorithms, which decompose a nonnegative
matrix into a product of nonnegative three matrices. In this
study, we decompose a data matrix into three factor matrices
that have their own roles in data approximation.

1.1 Notations
We use X for a matrix and x for a vector. In multi-label

classification, a sample x is associated with a subset y of
class labels. We consider N training samples and L labels.
Each sample xi belongs to an M -dimension space and the
associated label subset is represented as a binary vector yi ∈
{0, 1}L. We denote X = [x1,x2, . . . ,xN ] ∈ RM×N as a
data matrix and Y = [y1,y2, . . . ,yN ] ∈ {0, 1}L×N as a
label matrix.

1.2 Paper Organization
The rest of this paper is organized as follows. We intro-

duce the related works in Section 2. In Section 3, we describe

250 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



Fig. 1
THE POSITION OF THIS STUDY: A SUPERVISED MULTI-LABEL DIMENSION REDUCTION METHOD WITH NONNEGATIVE CONSTRAINT FOR THE

ELEMENTS.

the proposed algorithm. Section 4 is devoted to experiments.
The discussion and conclusion are stated in Section 5.

2. Related Work
According to Fig. 1, we review the methodology proposed

so far.

Unsupervised Dimensionality Reduction Methods
Latent Semantic Indexing (LSI), equivalently PCA, is one
of popular unsupervised dimension reduction methods
and has been used in Information Retrieval [13]. LSI
decomposes a matrix X into a product of two low-rank
matrices AB such that A and B are low column-rank
and low row-rank matrices. LSI finds the best subspace
minimizing the approximation error in Frobenius norm by
solving an eigen problem. Nonnegative Matrix Factorization
(NMF) is another unsupervised method firstly proposed by
Lee et al. [3]. The authors showed the advantages of NMF
in comparison with LSI in text analysis and image analysis.
In NMF the two factor matrices are required to be of
nonnegative elements. Compared with LSI, NMF produces
sparse factor matrices due to the nonnegative constraint.
There are some reports saying that NMF outperforms PCA
in the accuracy of classification by the virtue of the sparse
representation [7], [9]–[11].

Supervised Dimensionality Reduction Methods for
Single-label Classification
Linear Discriminant Analysis (LDA) is a supervised
dimension reduction method for single-label multi-class

classification [14]. It finds a subspace so as to maximize
the ratio of between-class distance to the within-class
distance. Zafeiriou et al. coupled NMF and LDA to produce
NMF-LDA [8]. They aimed to realize both the sparsity,
inheritance of NMF, and the class separability, inheritance
of LDA. They constructed an objective function to achieve
both in NMF-LDA.

Supervised Dimensionality Reduction Methods for
Multi-label Classification
Yu et al. firstly conducted dimension reduction for multi-
label classification problem and proposed a method called
Multi-Label Informed Latent Semantic Indexing (MLSI) [4].
This method is based on LSI and decomposes data matrix
X and label matrix Y into AB and CB, respectively. The
common matrix B bridges the approximation information
and the label information. Zhang et al. proposed another
method called Multi-label Dimensionality reduction via
Dependence Maximization (MDDM) [5]. MDDM finds a
subspace so as to maximize the dependency between the
features and the associated labels in a Hilbert-Schimidt
independence criterion. Wang et al. proposed Multi-label
LDA (MLDA) as a generalization of Linear Discriminant
Analysis (LDA) [6]. They redesigned the scatter matrices
so as to handle multi-label setting. Other than redesigned
scatter matrices, MLDA is the same as LDA. Therefore,
it is straightforward to couple NMF with MLDA, such as
NMF was coupled with LDA to produce NMF-MLDA, but
we leave such a trial for the future work.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 251



3. Multi-label Informed Nonnegative
Matrix Tri-Factorization

We first explain the key idea of the proposed approach.
In unsupervised dimension reduction, we usually consider to
approximate a data point x ∈ RM by a linear combination
of a small number of bases uj ∈ RM , j = 1, 2, . . . , J (J �
M ), as

x ∼= x̂ = a1u1 + a2u2 + · · ·+ aJuJ ,

where aj ∈ R, j = 1, 2, . . . , J are the coefficients depending
on x. If samples belonging to the same class concentrate on
around a representative point of the class, the number J
could be identical to the number L of classes as long as
single labeled samples are only considered. In multi-label
problems, since such a sample x is associated with a subset
of labels, the number of possible (extended) classes becomes
2L in the same scenario. It is, therefore, infeasible to find
a low-dimensional subspace, a small value of J . To cope
with this problem, we take the following approach. We first
assume a multi-labeled mean vector my ∈ RM is expressed
by a linear combination of single-labeled mean vectors as

my = y1m1+y2m2+ · · ·+yLmL, y = (y1, y2, . . . , yL)
T

(1)
In addition, we consider to express the single-labeled mean
vectors by J bases as

ml = s1lu1 + s2lu2 + · · ·+ sJlul, l = 1, 2, . . . , L. (2)

From (1) and (2), we can write my by

my = (m1,m2, . . . ,mL)


y1
y2
...
yL



= (u1,u2, . . . ,uJ)

 s11 · · · s1L
... · · ·

...
sJ1 · · · sJL




y1
y2
...
yL


= USy.

For each pair (x,y) given as a training sample, we try to
approache x̂ = my = USy to x by choosing U and S
appropriately. Once bases U is determined, we project x on
the subspace spanned by U for dimension reduction.

3.1 Problem Formulation
In the following objective function to minimize, we expect

that all training data x associated with y are distributed
near the mean vector my . In addition, we expect the mean
vectors of frequently co-occurred classes are closely located.
As a result, we find U and S minimizing

J(U,S) = ‖X−USY‖2F + λtr(SLST ), (3)

where ‖ · ‖F denotes Frobenius norm, tr(·) denotes the trace
and λ is a positive coefficient. Here, L is the graph Laplacian
matrix defined as

L = K−D,

where K = YTY, and D is the diagonal matrix whose lth
elements is Dll =

∑L
j=1 Kjl. The larger value of Kij is,

the more frequently class i and class j appear at the same
sample.

In the first term of (3), we require that data x is close
to the mean vector associated to the label y in the subspace
spanned by U. In the second term, we require that similarity
between two labels is kept in U. This is shown by

tr(SLST ) = tr(SDST )− tr(SKST )

=
L∑
l=1

sTl slDll −
L∑

j,l=1

sTj slKjl

=
1

2

L∑
j,l=1

‖sj − sl‖2Kjl.

That is, to minimize the second term, the mean vectors mj

and ml should be close for frequently co-occurred jth and
lth classes.

3.2 Optimization
Since NMF problems are NP-hard [15], we optimize the

component matrices alternatively as EM algorithm does. We
use multiplicative update rules algorithm [3]. According to
[3], [7], the multiplicative update rule of A for minimizing
‖X−AB‖2F are expressed in general as

A = A ∗
∇−
A

∇+
A

,

where ∗ and / is the element-wise multiplication and divi-
sion, respectively. Here, ∇+

A and ∇−
A are the positive term

and the negative term of the gradient of ‖X−AB‖2F in A,
respectively. The gradient of (3) in U and S are calculated
as follows:

∇U = −2XYTST + 2USYYTST ,

∇S = −2UTXYT + 2UTUSYYT − 2λSK+ 2λSD.

Hence, we update U and S, respectively:

U = U ∗ XYTST

USYYTST
,

S = S ∗ UTXYT + λSK

UTUSYYT + λSD
.

Starting from randomly initialized U and S, we update
U and S alternatively until convergence. The pseudo-
code of the proposed Multi-label Nonnegative Matrix Tri-
Factorization (MNMTF) algorithm is shown in Algorithm
1. The non-increasing property of above these update rules
can be easily found with the auxiliary function used in [16].

252 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



Algorithm 1 Multi-label Nonnegative Matrix Tri-
Factorization (MNMTF)

1: Input: Nonnegative matrix X and binary label matrix
Y; Weighting parameter for label correlation λ; The
number of bases J ;

2: Output: Nonnegative matrices U and S minimizing
‖X−USY‖2F + λtr(SLST );

3: Initialize U and S by random positive values;
4: repeat
5: U = U ∗ XYTST

USYYTST .

6: S = S ∗ UTXYT
+λSK

UTUSYYT
+λSD

.

7: until Convergence criterion is met

After obtaining the subspace U, we project all training
and testing samples into the subspace spanned by U. In
the testing phase, since the bases U is not orthogonal and
nonnegativity is required, we cannot have an analytical way
to map a class-unknown sample x to x̂ = Uv. Instead we
solve the following minimization problem with nonnegative
constraint:

‖x−Uv‖2.

We use this v ∈ RJ as the new representation of original
sample x ∈ RM in both training and test phases. In the
training phase, v is given by v = Sy for a pair (x,y).

3.3 Computational Complexity
All traditional algorithms such as MLSI, MDDM and

MDDM solve a generalized eigen problem to obtain the
subspace U. Therefore, these algorithms need O(M2N)
to form the eigen problem and need O(M3) to solve that
problem with N samples of dimensionality M . On the other
hand, the proposed algorithm needs O(MNL) where L is
the number of labels. In most cases, the number L of labels
is smaller than both the dimension M of data and the number
N of training samples L. Thus, the proposed algorithm is
faster than these traditional algorithms in such cases.

In the projection step, all traditional algorithms need
O(M(N +K)J) to project N training samples and K test
samples. This projection is made by a simple matrix mul-
tiplication since the projection matrix is orthogonal. While,
the proposed algorithm needs to solve a nonnegative least
squares problem ‖x −Uv‖2F . The complexity is the same
O(M(N+K)J), but in practice it needs several repeatations
of matrix multiplications. Thus, the actual computation time
is a little more than those of the traditional algorithms.

4. Experiments
We evaluated the performance of the proposed algorithm

through experiments on web-page classification.

Table 1
A SUMMARY OF DATASET

Top-category #Labels (L) #Words (M )
Arts&Humanities 26 2315
Business&Economy 30 2192
Computers&Internet 33 3410
Education 33 2753
Entertainment 21 3200

5.
7

5.
8

5.
9

6.
0

6.
1

Arts&Humanities

Dimension Percent (%)

H
am

m
in

g 
lo

ss
 (

x1
00

)

5.
7

5.
8

5.
9

6.
0

6.
1

Arts&Humanities

Dimension Percent (%)

H
am

m
in

g 
lo

ss
 (

x1
00

)

5.
7

5.
8

5.
9

6.
0

6.
1

Arts&Humanities

Dimension Percent (%)

H
am

m
in

g 
lo

ss
 (

x1
00

)

5.
7

5.
8

5.
9

6.
0

6.
1

Arts&Humanities

Dimension Percent (%)

H
am

m
in

g 
lo

ss
 (

x1
00

)

10 20 30 40 50 60 70 80

ORI

MLSI

MDDM

NMF

MNMTF

(a) Arts&Humanities

2.
70

2.
75

2.
80

2.
85

Business&Economy

Dimension Percent (%)

H
am

m
in

g 
lo

ss
 (

x1
00

)

2.
70

2.
75

2.
80

2.
85

Business&Economy

Dimension Percent (%)

H
am

m
in

g 
lo

ss
 (

x1
00

)

2.
70

2.
75

2.
80

2.
85

Business&Economy

Dimension Percent (%)

H
am

m
in

g 
lo

ss
 (

x1
00

)

2.
70

2.
75

2.
80

2.
85

Business&Economy

Dimension Percent (%)

H
am

m
in

g 
lo

ss
 (

x1
00

)

10 20 30 40 50 60 70 80

ORI

MLSI

MDDM

NMF

MNMTF

(b) Business&Economy

Fig. 2
CLASSIFICATION PERFORMANCE IN DIMENSION REDUCTION

(HAMMING LOSS COMPARISON). WE OMITTED THE RESULT OF MLDA
DUE TO THE WORSE PERFORMANCE.

4.1 Dataset
We used a yahoo web page classification dataset [17]. This

dataset consists of fourteen top-categories and each of them
corresponds to an independent dataset consisting of sub-
categories. We consider those sub-categories as classes. Each
document naturally belongs to one or more sub-categories.
In this experiment, we chose five of fourteen top-categories
on this experiments as shown in Table 1. We followed
the setting used in [18]. For each top-category/dataset, we
randomly picked up 2,000 samples for training and 3,000
for testing. Top 10% most frequently occurred words were
chosen as features in such a way that we count the number
of appearances of those words. Data matrix X represents
the word appearance frequency in the documents. For more
detail, see [18].

4.2 Results
We compared the proposed algorithm (MNMTF) with

the other three multi-label dimension reduction methods,
MLSI [4], MDDM [5], and MLDM [6]. In addition, we
also compared with the original feature space (ORI) without
dimension reduction and an unsupervised standard NMF
without multi-label information (NMF) [3]. The weighting
parameter β of MLSI β was set to the recommended value
β = 0.5 [4]. In the proposed algorithm (MNMTF), we set
λ = 0.1. We used a Multi-label k-Nearest Neighbor (ML-

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 253



Table 2
RESULTS ON YAHOO WEB PAGE CLASSIFICATION DATASETS. THE BOLD FIGURES SHOW THE BEST SCORE. THE SYMBOL +/− LARGER/SMALLER IS

BETTER IN THE CRITERION.

Dataset Evaluation Compared methods
criterion ORI MLDA [6] MLSI [4] MDDM [5] NMF [3] MNMTF(Proposal)

Arts&Humanities Hamming loss (−) 0.060 0.111 0.061 0.059 0.061 0.058
One-error (−) 0.608 0.847 0.618 0.565 0.609 0.608
Coverage (−) 6.269 16.815 6.468 6.395 6.364 5.978
Average precision (+) 0.360 0.154 0.353 0.369 0.358 0.383

Business&Economy Hamming loss 0.028 0.065 0.028 0.028 0.028 0.027
One-error 0.119 0.596 0.123 0.126 0.122 0.116
Coverage 4.023 18.598 4.053 4.125 4.030 3.930
Average precision 0.394 0.193 0.393 0.391 0.394 0.396

Computers&Internet Hamming loss 0.038 0.070 0.042 0.041 0.040 0.036
One-error 0.421 0.702 0.429 0.404 0.413 0.402
Coverage 5.343 18.193 5.606 5.607 5.491 5.285
Average precision 0.389 0.193 0.382 0.388 0.388 0.396

Education Hamming loss 0.040 0.067 0.042 0.041 0.040 0.039
One-error 0.091 0.506 0.097 0.098 0.094 0.090
Coverage 5.141 18.505 5.335 5.376 5.217 5.084
Average precision 0.397 0.168 0.382 0.390 0.395 0.406

Entertainment Hamming loss 0.059 0.107 0.057 0.054 0.055 0.052
One-error 0.560 0.730 0.529 0.470 0.512 0.444
Coverage 3.780 10.582 3.893 3.756 3.791 3.520
Average precision 0.445 0.265 0.448 0.471 0.457 0.489

0
5
0

1
0
0

1
5
0

Arts&Humanities

Dimension Percent (%)

C
P

U
ti
m

e
 (

s
e
c
o
n
d
)

0
5
0

1
0
0

1
5
0

Arts&Humanities

Dimension Percent (%)

C
P

U
ti
m

e
 (

s
e
c
o
n
d
)

0
5
0

1
0
0

1
5
0

Arts&Humanities

Dimension Percent (%)

C
P

U
ti
m

e
 (

s
e
c
o
n
d
)

0
5
0

1
0
0

1
5
0

Arts&Humanities

Dimension Percent (%)

C
P

U
ti
m

e
 (

s
e
c
o
n
d
)

0
5
0

1
0
0

1
5
0

Arts&Humanities

Dimension Percent (%)

C
P

U
ti
m

e
 (

s
e
c
o
n
d
)

10 20 30 40 50 60 70 80

MLDA

MLSI

MDDM

NMF

MNMTF

(a) Training phase

0
5

1
0

1
5

2
0

Arts&Humanities

Dimension Percent (%)

C
P

U
ti
m

e
 (

s
e
c
o
n
d
)

0
5

1
0

1
5

2
0

Arts&Humanities

Dimension Percent (%)

C
P

U
ti
m

e
 (

s
e
c
o
n
d
)

10 20 30 40 50 60 70 80

Traditionals

MNMTF

(b) Testing phase

Fig. 3
CPU TIME (SECOND) CONSUMED IN TRAINING PHASE AND TESTING

PHASE.

kNN) for the classifier after dimension reduction [18]. We
set the number of nearest neighbors to k = 10 in ML-kNN
(the default value in the algorithm).

In multi-label classification, several measures of per-
formance are used at the same time instead of a single
measure,e.g. the error rate used in single-label classification.
We used four popular criteria of hamming loss, one-error,
coverage and average precision [18]. We averaged the results
of five-subsets in each dataset.

We varied the number of dimensionality J =
0.1M, 0.2M, . . . , 0.8M . The results on "Arts&Humanities"
dataset and "Business&Economy" are shown in Fig. 2. We
note that NMF, MLSI and MLDA failed to improve the
classification performance by reducing the dimensionality.
The proposed MNMTF succeeded in total, although it is
a little sensitive the value of J . We show the result with
30% dimension on Table 2. This was the best setting on
"Arts&Humanities" dataset. We can see that the proposed
algorithm MNMTF is almost the best in all the criteria,
although the degree of improvement is only slightly more.

The time complexity shown in Fig.3 by CPU time con-
sumed with value of J by reducing the dimensionality. The
proposed algorithm is faster than the others in the training
phases and slower in testing phase as the analysis predicted.

5. Conclusion
In this paper, we have proposed a supervised Nonnegative

Matrix Factorization algorithm for multi-label classification
problems. The key idea is to formulate a supervised multi-
label problem as a factorization problem of a given data
matrix into three nonnegative factor matrices one of which is
a give label matrix. The results on text classification showed
the advantages in classification accuracy and computational
time compared with the state-of-the-art methods.

254 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



References
[1] G. Tsoumakas and I. Katakis, “Multi-label classification: An

overview,” Dept. of Informatics, Aristotle University of Thessaloniki,
Greece, 2006.

[2] I. Jolliffe, Principal component analysis. Wiley Online Library, 2002.
[3] D. D. Lee and H. S. Seung, “Learning the parts of objects by non-

negative matrix factorization,” Nature, vol. 401, no. 6755, pp. 788–
791, 1999.

[4] K. Yu, S. Yu, and V. Tresp, “Multi-label informed latent semantic
indexing,” in Proceedings of the 28th annual international ACM SI-
GIR conference on Research and development in information retrieval.
ACM, 2005, pp. 258–265.

[5] Y. Zhang and Z.-H. Zhou, “Multilabel dimensionality reduction via
dependence maximization,” ACM Transactions on Knowledge Discov-
ery from Data (TKDD), vol. 4, no. 3, p. 14, 2010.

[6] H. Wang, C. Ding, and H. Huang, “Multi-label linear discriminant
analysis,” in Computer Vision–ECCV 2010. Springer, 2010, pp. 126–
139.

[7] A. Cichocki, R. Zdunek, A. H. Phan, and S.-i. Amari, Nonnegative
matrix and tensor factorizations: applications to exploratory multi-
way data analysis and blind source separation. Wiley. com, 2009.

[8] S. Zafeiriou, A. Tefas, I. Buciu, and I. Pitas, “Exploiting discriminant
information in nonnegative matrix factorization with application to
frontal face verification,” IEEE Transactions on Neural Networks,
vol. 17, no. 3, pp. 683–695, 2006.

[9] W. Xu, X. Liu, and Y. Gong, “Document clustering based on non-
negative matrix factorization,” in Proceedings of the 26th annual
international ACM SIGIR conference on Research and development
in informaion retrieval. ACM, 2003, pp. 267–273.

[10] D. Cai, X. He, and J. Han, “Document clustering using locality
preserving indexing,” IEEE Transactions on Knowledge and Data
Engineering, vol. 17, no. 12, pp. 1624–1637, 2005.

[11] D. Guillamet, B. Schiele, and J. Vitria, “Analyzing non-negative
matrix factorization for image classification,” in Pattern Recognition,
2002. Proceedings. 16th International Conference on, vol. 2. IEEE,
2002, pp. 116–119.

[12] C. Ding, T. Li, W. Peng, and H. Park, “Orthogonal nonnegative
matrix t-factorizations for clustering,” in Proceedings of the 12th ACM
SIGKDD international conference on Knowledge discovery and data
mining. ACM, 2006, pp. 126–135.

[13] S. C. Deerwester, S. T. Dumais, T. K. Landauer, G. W. Furnas,
and R. A. Harshman, “Indexing by latent semantic analysis,” JAsIs,
vol. 41, no. 6, pp. 391–407, 1990.

[14] B. Scholkopft and K.-R. Mullert, “Fisher discriminant analysis with
kernels,” in Proceedings of the 1999 IEEE Signal Processing Society
Workshop Neural Networks for Signal Processing IX, Madison, WI,
USA, 1999, pp. 23–25.

[15] S. A. Vavasis, “On the complexity of nonnegative matrix factoriza-
tion,” SIAM Journal on Optimization, vol. 20, no. 3, pp. 1364–1377,
2009.

[16] D. Cai, X. He, J. Han, and T. S. Huang, “Graph regularized nonneg-
ative matrix factorization for data representation,” Pattern Analysis
and Machine Intelligence, IEEE Transactions on, vol. 33, no. 8, pp.
1548–1560, 2011.

[17] N. Ueda and K. Saito, “Parametric mixture models for multi-labeled
text,” in Advances in neural information processing systems, 2002,
pp. 721–728.

[18] M.-L. Zhang and Z.-H. Zhou, “Ml-knn: A lazy learning approach to
multi-label learning,” Pattern recognition, vol. 40, no. 7, pp. 2038–
2048, 2007.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 255



A Music Composition Model with Genetic Programming 

–A Case Study of Chord Progression and Bassline-

Kanae Kunimatsu, Yu Ishikawa, Masami Takata, and Kazuki Joe 

Graduate School of Humanities and Science, Nara Women’s University, Nara-City, Nara, Japan 

Abstract - In this paper, we present the improvement of our 

automatic music composition model using genetic 

programming, which is constructed with two independent but 

cooperative models for chord progression and melody. The 

improvements are the chord progression generation model 

and the bassline generation model. The chord progression 

generation model, considering tension notes, generates chord 

progression suitable for jazz blues. In the music theory, 

tension notes that are granted for the corresponding chords 

are determined for some cases but it is not easy to 

automatically determine what to apply from such theoretical 

codes. In this model, by focusing on the relation between the 

chord’s top notes with tension notes and melody tones, we 

attempt to automatically generate chords. Further, by adding 

the bassline generating part, this system is applied to Jazz 

improvisation. 

Keywords: Genetic Programming, chord progression, 

bassline 

1 Introduction 

 In recent years, as the spread of ICTs, a large number of 

users want to transmit their music contents by utilizing the 

CGM (Consumer Generated Media). There are composer 

support systems with a variety of DTM (Desk Top Music) 

software. The composer support systems generate music with 

just giving initial parameters such as keys, tempo and moods 

while others generate music with giving interactive selections 

of user’s favorites during the music generation processes.  

Since good music compositions require professional 

knowledge and experience, it is difficult for ordinal persons 

to compose music. To make them easily compose music, 

automatic music composition systems have been proposed. 

As methods of automatic music composition, a probabilistic 

method and an evolutionary computation method have been 

proposed. In this paper, we develop an automatic music 

generation system with the evolutionary computation that 

does not require professional knowledge or experience. 

Evolutionary computation is an engineering model with the 

mechanism of biological evolution to be applied to 

combinatorial optimization problem, machine learning and 

system analysis. Considering the automatic composition is 

basically an optimization problem of searching an optimal 

combination from the combinations of large number of 

musical notes, the evolutionary computation is suitable for the 

automatic composition. 

As an automatic composition system using evolutionary 

computation, we have proposed the automatic music 

composition system with genetic programming (GP) [1]. It 

utilizes the genetic structure of GP, namely a tree structure, to 

associate the tree depth level with the length of a music note. 

In this framework, any length of music notes can be 

expressed for melody line and chord progression. In [1], we 

narrow down the music genre to blues and adopt a seventh 

chord in a chord progression part. However, the generated 

chords do not contain tension notes, which are absolutely 

imperative for expressing various sounds such as Jazz. Actual 

Jazz improvisation is performed with voicing, namely 

omitting chord tones or adding tension notes, to generate 

more various sounds. In this paper, we improve the chord 

progression generation model by adding chords that include 

tension notes and voicing the chords. Thereby, we improve 

the chord progression model so that the generated chords 

include tension chords and look like a real Jazz performance. 

Furthermore, in order to apply this system to Jazz 

improvisation, we propose the third model to generate 

bassline. 

This rest of the paper is constructed as follows. In section 

2, we explain tension notes and voicing. In section 3, we 

introduce the music composition model with genetic 

programming. In section 4, we improve the chord progression 

model and propose the bassline model. In section 5, we 

present some experiments to validate the model. 

2 Characteristics of Blues Music 

In this section, first we explain chord classification and 

blues chord progression. Next, we describe tension chord and 

voicing. 

2.1 Chord classification 

A chord is categorized into three functions. 

 Tonic (T) : the basic note: beginning and ending

 Dominant (D) : notes for returning to Tonic

 Subdominant (SD) : notes for procession and connection:

easy to transfer to Dominant 

As above described, there is the basic chord progression of T-

SD-D-T. T-D-T and T-SD-T are also natural progressions. In  

256 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



Table 1: A musical scale plotted with I to VII. 

T D SD 

Primary triad I V(7) IV 

Secondary triad VI VII II 

Fig. 1:  Blues chord progression 

Tab.1, a musical scale is plotted with I to VII. III is not 

presented because the property of III is not included. 

2.2 Blues chord progression 

Blues is a music format that consists of 12-bars, and is 

played with adding blue notes to the major scale to fit to the 

fixed chord progression, using only three of the four types of 

Seventh chord (dominant seventh, major seventh, minor 

seventh, minor major seventh).  Figure.1 represents a blues 

chord progression. In harmonics of traditional western music, 

the chord progression of D-SD is not used because it is 

considered as unstable sound. But it is included between the 

9
th

 and 10
th

 bars in the blues chord progression. When the 11
th
 

and 12
th

 bars are T, it means that the song is finished.  

2.3 Adding tension notes 

A tension note is a note of non-harmonic tones to give a 

sense of tension in the chord sound without interfering the 

chord progression. A chord with tension notes is called a 

tension chord. In order to provide effective tension notes, 

voicing should be considered at the same time as the melody. 

The applicable tension notes to a chord are decided by music 

theory but it is difficult to make a decision which tension 

notes are actually used. Dissonant halftone collision against 

melody sound is an improper harmony to be avoided. In our 

model, the code generation is performed so that the relation 

between the top note of the tension embedded chord and the 

melody sound is considered. 

2.4 Voicing 

When a chord is given, the operation of arranging the 

composition tones of the chord in each voice part is called 

voicing that presents very colorful musical expressions. 

Especially in popular music such as jazz, the use of tension 

notes gives a tension to the chord sound to perform the effect 

of voicing. Adding a tension note to chord tones, while 

keeping the harmonic function of the chord, it is possible to 

express a colorful sound. There are two methods for voicing: 

1) close voicing, which takes a dense placement of the chord

tones within an octave and 2) open voicing, which take a 

wide placement beyond an octave. Any number of voicing 

patterns for a single chord is possible and the number of 

voicing patterns with tension notes increases explosively. In 

this paper, we just focus on a voicing technique called spread 

voicing, which is a kind of open voicing, for chord generation.

2.5 Spread Voicing 

The spread voicing takes placement of the chord tones 

beyond an octave to keep the root of the chord as the bottom 

note. Generally used in jazz piano, since the harmonic tones 

are arranged in a wide range, it presents more effective and 

richer harmony tones to the melody. As the chord progression 

generation part, we adopt the chord generation using a 4-way 

spread voicing method. 

3 A Music Composition Model  

with Genetic Programming 

In this section, we explain the music composition model 

with genetic programming [1]. The composition model 

consists of two parts: chord progression and melody. In 

general there are two methods for composing music. One 

method is melody first to apply chords in accord with the 

melody while the other method is chord first to create melody 

using the chord. The composition model adopts the latter 

method provided that tempo and accent are not changeable.  

To generate good music that is not confined by existing 

ones, both parts make use of genetic operators. To represent 

any length of notes such as a triplet and dotted one within 

each individual, we adopt GP to express complicated data 

such as tree structures rather than GA that is based on array 

structures. Figure 2 shows an example of genetic individuals. 

The depth level of the tree structure represents the length of 

the notes. The deeper the depth level is, the finer note it 

represents. Figure 3 gives examples of a binary tree and a 

triplet tree. In the case of the binary tree, the note length in 

the upper level is as twice as in the lower level. In the case of 

the triplet tree, the note length in the upper level is as 3 times 

as in the lower level. Until it meets certain criteria, genetic 

operators such as crossover or mutation are repeated to 

develop next populations. Each individual gene represents a 

chord progression and a melody line with the length of a fixed 

bar. Each node has the number of branches in the case of non-

terminal nodes or in the case of terminal nodes the type of 

chord (chord progression) or the sound information (melody) 

such as sound, keyboard continuation symbol and rest. Using 

depth-first search, just the terminal nodes that contains the 

sound information are detected from left to right and it is 

possible to replace old gene individuals of chord progression 

and melody with new ones. Thus, it generates a melody line 

based on the chord progression by bar unit.  

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 257



Although the use of GP eliminates the limit of the note 

length such a triplet or dotted note, it is difficult to maintain 

the similarity and the continuity of the new melody bar with 

the previous bar. When music is generated, we use some 

restrictions to retain the music similarity and the continuity 

from the past by utilizing the characteristics of the chord 

progression. In this model, we squeeze the music genre blues, 

and evaluate the generated music in terms of the blues 

characteristics. The number of bars of a song is set to 12 for 

one individual suitable for the blues. Based on the first 12 

bars of a blues song, a partial chord progression is generated 

by selecting a good individual in the chord progression 

generation model. Then, a partial melody line is generated by 

selecting a good individual in the melody generation model.  

The partial chord progression   is evaluated with the 

fitness using the following items. 

I. Percentage that satisfies the chord progression pattern of 

blues 

II. Integrity with the melody notes in each bar of the partial 

melody i-1  

Item I is used for adapting to the blues chord progression 

pattern shown in Fig.1. Item II is used for imitating the i
th

 12 

bars with the i-1
th

 12 bars. The first note of the melody in 

each bar among partial melody i-1 and the chord of each leaf 

node among partial chord progression i are examined to 

calculate the rate if the first note is included in the chord. 

The partial melody i is evaluated with the fitness using the 

following items.  

1. Integrity with the partial chord progression i 

2. Comparison of the music entropy function with the 

partial melody i-1 

3. Comparison of the rhythm patterns with the partial 

melody i-1 

Item 1 is used for generating the partial melody i suitable 

for a given partial chord progression i. The notes of each bar 

in partial melody i are examined to calculate the rate if they 

are included in the chords of each bar in the partial chord 

progression i. Item 2 and 3 are used so that the impression 

between the partial melody i and the partial melody i-1 does 

not change abruptly. Each comparison is performed by bar 

unit. In item 2, we propose the concept of impression as 

music entropy to compare the difference of impression as 

numeric values. Using the transition probability of the partial 

melody i-1, the music entropy is calculated by bar unit to 

quantify the occurrence degree for each note. We assumed 

that the impression is similar when the music entropy values 

are close. In item 3, the average of note values in a bar is 

calculated to compare the rhythm intervals. 

 

Fig. 2: An example of genetic individuals. 

 

 

Fig. 3: Difference of expression by the number of branches. 

Through the above fitness evaluations, the partial chord 

progression i and the partial melody i get involved in the 

partial melody i-1 and the partial chord progression i-1, 

respectively. Since we focus on blues in this paper, each 

partial chord progression and melody i consist of 12 bars as 

explained in 2.2. Note that this kind of interaction is found in 

real Jazz blues improvisation. 

4 Improvement of the music composition 

model 

In this section, we explain the improvement of the chord 

progression generation part and the newly developed bassline 

generation part. Figure 4 shows the overview of the whole 

model. GP is applied in each part to generate melody, chord 

progression and bassline in this order. 

258 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



 

Fig. 4: Overview of the model. 

 

Table 2: An example of 4-way spread voicing 

 pattern1 pattern2 

Top note A tension note A chord tone 

Middle notes 7th 3rd 

3rd 7th 

Bottom note Root 

 

4.1 Chord progression part 

In the chord progression generation model, a voicing is 

applied to the three chords used in the blues form to produce 

various types of chords. In order to generate the top note of 

the chord so that it is suitable for the melody, this model 

generates the melody first. 

4.1.1 Information of individuals 

In this model we perform a 4-way spread voicing: the root 

as the bottom note, the combination of 3
th

 and 7
th

 as the 

middle two notes and a tension note or a chord tone as the top 

note. Table 2 shows an example of a 4-way spread voicing. A 

candidate for the tension note includes minor 9
th

, 9
th

, major 9
th

, 

11
th

, major 11
th

, minor 13
th

 and 13
th

. The notes that constitute 

the minor 9
th

 upwardly from each note of chord tones are 

called avoid note and often avoided from the use of tension 

notes. However it is sometimes intended to be used 

depending on the type of the target chord. For example, in the 

case of dominant seventh chords, although the note of 11
th
 

should be avoided as an avoid note, other notes (minor 9
th

, 9
th

, 

major 9
th

, major 11
th

, minor 13
th

, 13
th

) can be used as a 

tension note because they do not interfere in the function of 

chords. In this chord progression generation model, voicing is 

applied to the three chords used in existing music to get 

candidates for terminal nodes, and 22 (11 (tension notes or 

chord tones) × 2 (Voicing patterns)) types available for a 

single chord are prepared to perform a 4-way spread voicing 

as shown in Table 2. In general, typical chord progression 

changes in a half note or longer when the theme is presented. 

However, in the case of improvisation, the chord progression 

becomes often-complicated and finer. In this paper, we limit 

the chord progression change by a half note. 

4.1.2 Fitness evaluation 

To improve the chord progression generation part 

explained in the previous section, we add the following two 

items to calculate the fitness for the partial chord progression 

i. 

III. Comparison of the top notes of the chords and the 

melody in each bar of the partial melody i 

IV. Comparison of the entropy function with the partial 

chord progression i-1 

Item III is used for the comparison of the top notes, 

including the tension notes of chords for each bar, with the 

melody line. The aim of the evaluation is to avoid the 

dissonant semitone collision with tension notes and the 

melody as much as possible. When the first note of the partial 

melody i and the top note of the chord are in contact with 

major 2
nd

 and minor 2
nd

 at a chord change time, the fitness 

value is decreased. When an avoid note is selected for the top 

note, the fitness value is decreased, too. 

Item IV is used for preventing abrupt changes in the 

impression between the partial chord progression i and the 

partial chord progression i-1. In chord voicing, the top note 

should be selected so that the continuous musical progression 

is observed. In the chord progression generation of this model, 

we compare the music entropy values for the top notes of the 

chords to avoid abrupt change of the music impression, and 

make the successive bars enough similar. 

Let a set S be               that represent 12 kinds of 

top notes of a chord, continued and rests, namely {C, Cs, D, 

Ds, E, F, Fs, G, Gs, A, As, B, *, ~}. In addition, let the 

probability of the occurrence of an event    under the 

condition in event    occurrence be    . The music entropy is 

defined as follows.  

                ∑    

  

    

        (1)  

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 259



As the characteristic of the blues form, the tonic chord in 

the first four bars out of the 12 bar (1 chorus) is highlighted, 

then the next four bars are transited from the subdominant 

chord to the dominant chord, and finally the last four bars are 

transited from dominant chord to the tonic chord. Therefore, 

it has a structure with three parts, each of which contains 4 

bars. From the blues structure, the value of the music entropy 

in the chord progression generation part is calculated every 4 

bars to compare the value with the corresponding 4 bars 

section in the previous partial chord progression. Note that 

the partial chord progression with music entropy 0 means that 

the chord progression does not change from the previous 

chord progression at all. On the other hand, the partial chord 

progression with music entropy 1 means that the chord 

progression consists of completely random notes; it is more 

free than “free jazz”. 

From a given original blues song, the partial chord 

progression 0 is generated without any tension notes and each 

bar contains a single chord. In the partial chord progression 1, 

the subdivision of each chord is performed to select the 

individual such that the total of the transition probabilities     

between the chords included in the 4 bars becomes larger and 

the top notes of the chords walk smoothly. At the same time 

the music entropy of each 4 bars is calculated to compare the 

music entropy of the next partial chord progression.  

4.2 Bassline part 

In the bassline generate model, the 4-beat bassline often 

used in jazz is generated. To generate a bassline suitable for 

the chord progression, the bassline is generated right after the 

chord progression generation. 

4.2.1 Information of individuals 

Since we require the 4-beat bassline for jazz improvisation, 

generated bassline individuals are fixed to crotchet. Therefore 

the number of branches of a non-terminal node in the depth 

level below 0 is just 2 as in the same case of the chord 

progression generation part. The individual of terminal nodes 

includes the notes of the key range, hold (~) and rests (*). 

4.2.2 Fitness evaluation 

The partial bassline i is evaluated with the fitness using 

the following items.  

A. Integrity with the partial chord progression i 

B. Comparison of the music entropy function with the 

partial melody i-1 

Item A is used for generating the partial bassline i suitable 

for a given partial chord progression i. The notes of each bar 

in partial bassline i are examined to calculate the rate if they 

are included in the chords of each bar in the partial chord 

progression i. In each bar, when the first beat and the third 

beat match the chord tones, the fitness value is highly 

increased. The fitness value is decreased when a note of the  

 

Fig. 5: Original melody 

bassline is in contact with a corresponding chord tone by a 

semitone. Item B is used so that the impression between the 

partial bassline i and the partial bassline i-1 does not change 

abruptly. This evaluation is performed every 4 bars unit. 

In the partial bassline i, individuals are selected so that the 

total of the transition probabilities between the bassline notes 

included in the 4 bars becomes larger and the notes walk 

smoothly. At the same time the music entropy of each 4 bars 

is calculated to compare the music entropy of the next partial 

bassline. 

5 Experiments 

In this section, we report the experimental results about 

chord progression generation and baseline generation.  

5.1 Experimental environments 

In our model, we perform a generation of music derived 

from the previous 12 bars every 12 bars, to be close to the 

method of blues improvisation. Therefore, we use an existing 

music as partial melody 0 and partial chord progression 0. In 

this experiment, we use a famous standard jazz number with 

the blues format, Billie's Bounce by Charlie Parker. Figure 5 

shows the first 12 bars of Billie's Bounce. Each part of 

melody, chord progression and bassline is represented as a 

gene individual with 12 bars; the number of non-terminal 

nodes in the depth level (level) 0 is fixed to 3 to generate 

three blocks of 4 bars in level 1. Thus, it is easier to compare 

the partial melody, the partial chord progression and the 

partial bassline during fitness evaluation. Terminal nodes are 

set to be generated in level 4 or deeper to generate the 12 bars. 

For terminal nodes of chord progression, we prepare 

voicing chords by adding tension notes or chord tones to 

existing three chords (C7, F7 and G7). Since typical chord 

progressions vary from two beats to one bar, the early genes 

individual depth level is set to 4; the early genes individual 

consist of half notes in this experiment. The parameters we 

used for the experiments are the number of individuals (nI), 

crossover probability (c), mutation rate (m), and the 

maximum generation number (Generation). These parameters 

are not theoretically decided but empirically found. In [1], the 

preliminary experiments for determining the numbers of 

average individuals and average generations are reported that 

good gene individuals among 100 individuals are mainly 

selected by the 50th generation. The crossover probability and 

260 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



the mutation rate are set to the same values in [1]. Thus, we 

adopt the following parameter choices for the chord 

progression generation part.  

 nI=100 

 c=0.8 

 m=0.1 

 Generation=50 

For terminal nodes of the bassline generation part, we 

prepare 17 kinds of nodes that consist of 15 notes for the 

target (2E - 3G) range, a hold and a rest. The initial gene 

individuals are adjusted to the depth level of 5. In addition 

good gene individuals are selected by the 200th generation 

from our preliminary experiments for bassline. Thus, we 

adopt the following parameter choices for the bassline 

generation part. 

 nI=100 

 c=0.8 

 m=0.1 

 Generation=200 

5.2 Experiment results 

Figure 6 shows an example of the partial score 1 (the 

partial melody 1, the partial chord progression 1 and the 

partial bassline 1). Figure.7 presents an example of the partial 

score 2. The first stage shows the melody score, the second 

and third stages show the chord progression score, and the 

fourth stage shows the bassline score.  

In the chord progression generation part, all of generated 

chords consist of half notes that are the same to the initial 

individual because the chord progression generation part does 

not perform note length comparison like the melody part. As 

for top notes, the chord progression includes chords with 

tension notes.  Comparing the top notes of the generated 

chords and the melody tones in each bar, the notes in contact 

with minor 2
nd

 or major 2
nd

 are relatively selected out. 

However several sound conflicts between tension notes of the 

chords and the melody tones are observed. So several 

improper chords are generated. A possible reason is that the 

target melody tone to be compared with the chord top notes is 

just focused on a melody tone when the chord progression 

changes. In the partial chord progression 1, the top notes are 

selected such that they do not comparatively create a large 

movement, and any unnatural leap is not observed. In the 

partial chord progression 2, since it performs a comparison 

with the music entropy calculated in the partial chord 

progression 1, the generated top notes are in a natural flow. 

 

Fig. 6: An example of partial score 1. 

 

Fig. 7: An example of partial score 2. 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 261



The bassline generates only crotchets and four beat based 

individuals are generated. The first beat and the third beat are 

generated from the notes of the corresponding chord tones, 

and in particular the first beat is mainly generated from the 

individuals with the root of the chord. The second beat and 

the fourth beat are often generated with tension notes to 

collide in a semitone with chord tones and generate dissonant 

sounds. 

From the experiments, in the case of the chord progression 

we observe that tension chords are generated by selecting out 

the sounds with semitone collisions and comparing the music 

entropy for the chord top notes at the fitness evaluation. In the 

case of the baseline generation, we observe that sounds 

suitable for chord tones are successfully generated. However, 

each evaluation formula interferes with each other. Therefore, 

any tone column to satisfy all the evaluation formula is not 

generated. In particular, since the chord progression and the 

bassline tend to generate the sounds causing semitone 

collision that are not completely selected out, it is necessary 

to improve the evaluation formula. 

6 Conclusions 

In this paper, we proposed a chord progression generation 

model considering tension notes and a baseline generation 

model using GPs. Since target music is blues, each part for 

individuals is fixed to 12 bars. 

 The chord progression generation model generates 

chords including tension notes suitable for the given melody 

with applying selection methods based on the specific chord 

progression blues, and select out the sounds where the chord 

top notes and melody tones become dissonant. The bassline 

generation model generates 4
th

 note based bassline suitable 

for the chord progression by fixing the rhythm to crotchet, 

and evaluates the integrity with the corresponding chord tones. 

In addition, both the chord progression model and the 

bassline model adopt an evaluation method for music 

impression by music entropy reported in [1]. Thus, we 

prevent abrupt changes during the top notes of each chord and 

the baseline. In the generation of the partial chord progression 

1 and the partial baseline 1, we select the individuals with 

high transition probabilities between chords or baseline that is 

defined in the music entropy. In the partial score 1, thereby 

individuals such as top notes of chords and the bassline show 

natural flows.  

 Our future work includes the improvement of evaluation 

formula and multipurpose GPs because it is not possible to 

completely select out the sounds that cause semitone collision 

in our current models. Furthermore, we aim to create a system 

to perform a jazz session with human in real-time. Thus, we 

would like to apply our future system to real jazz 

improvisation. 

7 References 

[1] K.Komatsu, T.Yamanaka, M.Takata and K.Joe, “A 

Music Composition Model with Genetic Programming,” in 

Proc. PDPTA’10, II, pp.686-692, 2010. 

[2] J.A.Biles, “GenJam: A Genetic Algorithm for 

Generating Jazz Solos,” In Proceedings of the 1994 

International Computer Music Conference, ICMA, 

SanFrancisco, pp.3-4, 1994. 

[3] T.Kitahara, M.Katsura, H.Katayose and N.Nagata, 

“Automatic Chord Voicing System Using Bayesian Network,” 

IPSJ journal, Vol.50, No.3, pp.1067-1078, 2009. 

[4] N.Emura, et al., “A modular system generating Jazz-

style arrangement for a given set of a melody and its chord 

name sequence,” Acoust.Sci.&Tech., Vol.29, No.1, pp.51-57, 

2008 

[5] Noteflight-Online Music Notation ，
http://www.noteflight.com/. 

262 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



Sign Language Recognition using Leap Motion Controller 
 

Makiko Funasaka, Yu Ishikawa, Masami Takata, and Kazuki Joe 

Department of Information and Computer Sciences, Graduate School of Humanities and Sciences,  

Nara Women’s University, Nara, Japan 

Abstract – Making deaf people use an alternative method 

instead of current voice input to ICT equipment, we propose a 

sign language recognition method using Leap Motion 

Controller. As decisions using sign language, 16 kinds of 

decisions that focus on characteristic of hands and fingers are 

proposed. Sign language recognition algorithm is constructed 

using 16 kinds of decisions. The constructed flowchart is 

differing as order of decisions, recognition rate for all letters 

change from the difference accuracy rate of decisions. For 

sorting of decisions is enormous combination, genetic 

algorithm is applied to search for the optimal solution in the 

automatic construction of sign language recognition 

algorithm. 

Keywords: Leap Motion Controller, sign language 

recognition, Genetic Algorithm  

 

1 Introduction 

 As smart phones and tablet devices have been improved, 

voice input and voice recognition interfaces have been widely 

used. The iPhone has Siri[1] that can answer questions by 

using natural language processing and web services. The 

Google Search[2] is a search engine that accepts voice input, 

too. The advantage of voice input is faster operations than by  

keybord or pad touch, so it is the minimal burden for ordinal 

users, in particular, for elderly users who are not familiar with 

text input. However, the voice input and the voice recognition 

interfaces is extremely difficult for deaf people. Therefore, 

any interfaces, which do not need voice input, should be 

developed for those poeple. 

 A sign language is a kind of communication means for 

deaf people. By using a sign language as an input interface to 

ICT devices, it is possible for deaf people who are considered 

very difficult to input by conventional keyboard and touch 

pad. A sign language use visual information with the use of 

finger, hand and arm operations. At the same time some 

finger operations are used with a part of the face such as line 

of sight and mouth. Fingerspelling can represent one of the 

alphabet 26 letters in the form of fingers. 

 In existing research for sign language recognition, the 

image recognition of color images, depth images and hand 

shapes are used[3]．Since it must be taken with colored 

gloves[3], the glove worn is not convenient. The image 

recogniton requires long computation time to detect the hand 

and fingers. Thus, it takes relatively a long interval to obtain 

the final recogntion result. In the case of the recognition with 

Kinect[4], large space is required for skeletal tracking. It is 

difficult to recognize the fingerspelling anywhere with Kinect. 

Therefore, sign language recogniton is required using a 

compact device that can directly recognize the shape of 

fingers or hands anywhere. 

 In this paper, we propose a fingerspelling language 

recogniton method using Leap Motion Contoroller[5][6]. 

Putting hands and fingers over a Leap Motion controller, the 

fingerspelling recognition is performed. Leap Motion has 

skeletal tracking that recognizes the framework of fingers to 

obtain a highly accurate various data such as the position of 

finger bones and the degree of the thumb and index finger. In 

addition, the use of Leap Motion allows fingerspelling 

recogniton without any physical contact. 

 The rest of the paper is constructed as follows. Section 2 

provides related works of sign language recogniton in detail. 

Section 3 explains a fingerspelling recogniton method. 

Section 4 describes the search for the optimal solution in the 

automatic generation of fingerspelling recogniton algorithms. 

In Setion 5, we perform experiments using the proposed 

method. 

2 Related works 

 As related works of sign language recognition, we 

explain three studies. 

 In the first study, colored gloves are adopted to obtain 

hand shape recognition applied to the conversion of a sign 

language [3]. Colored gloves dyed with 6 different colors are 

worn and the feature vectors are calculated using the 

Morphological Principal Component Analysis from the 

captured images. Hand detection and finger modeling are 

performed in natural background by using the colored gloves. 

The proposed feature vector extraction method makes the 

camera distance be highly independent. To analyze the 

performance of feature extraction, neural network is trained 

for the position recognition of a sign language with 26 

alphabet letters. The neural network is a feed-forward three 

layers perceptron type with the backpropagation learning 

method. The numbers of neurons in the intermediate and 

output layers are 42 and 26, respectively. The 26 alphabet 

letters are characterized by a 20-dimensional vector from 

finger data without the palm of the hand. The result of 

experiments using a test set of 30 samples by each hand 

shows the recognition rate of 93.396%.  

 Second, in order to recognize a static sign language by 

hand, a robust approach using a novel combination of features 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 263



is proposed [7]. The features are the color of images, the 

depth of images and the hand shape. Obtaining depth, color 

and skeleton data by Kinect, the proposed accurate hand 

segmentation divides them into a hand color image and a 

hand depth image. Color and depth feature vectors are 

characterized by the Local Binary Pattern (LBP) histogram 

calculated from the hand color image and the hand depth 

image. Extracting a hand shape from the hand depth image, 

the shape feature vector is characterized. The combination of 

these three feature vectors are used for the recognition using 

template matching and Support Vector Machine (SVM). Two 

experiments are conducted. First, to examine the 

classification accuracy in combinations of different features, 

some experiments are conducted with 4 types of feature 

combinations; depth only, color only, color and depth or color, 

depth and hand shape. The three conditions of skin color, 

hand size and distance of camera are changed at data 

collection, and the proposed hand segmentation algorithm is 

used with different lighting conditions. The dataset composed 

of 8 different hand poses denoting letters of the fingerspelling 

alphabet from ‘A’ to ’H’ is generated. Each sign is performed 

10 times by 12 non-expert signers. It gives a total of 120 color 

and depth images for each of the 8 alphabet signs. As the 

result of the experiment, when the proposed feature 

combination of color, depth and hand shape is applied, the 

recognition rate of 95% is higher than other combinations. 

Next, the target signs from ‘A’ to ’Y’ excluding sign ‘J’ 

and ’Z’ which involve motion are used for the experiment. In 

a fingerspelling data set, 500 color and depth image pairs per 

sign are obtained and five data sets are used for the 

experiment. The result of the experiment is the recognition 

rate of 92.14%. 

 The third is a study to recognize the alphabet 

fingerspelling 26 letters using Leap Motion Controller [6]. In 

this study, finger data is obtained from the Leap Motion API. 

Palm data consists of the unit direction vector of the palm, the 

position of the palm center, the velocity of the palm and the 

accuracy of the data. At the same time, the grab strength, the 

pinch strength, the sphere center and the sphere radius are 

obtained. The finger data consists of the direction of each 

finger, the length of each finger, the tip velocity and the 

position of joints for distal phalanges, intermediate phalanges, 

proximal phalanges and metacarpals. To apply machine 

learning the data obtained from the Leap Motion API, feature 

vectors are calculated. As the features of palm, the pinch 

strength, the grab strength, the average distance, the average 

spread and the average tri-spread are used for the machine 

learning. The average distance is calculated as the sum of the 

distances between the fingertips in adjacent frames. The 

average spread for the palm is estimated based on the distance 

between adjacent fingertips. The tri-spread is the triangular 

area between two adjacent finger tips and the midpoint of the 

two finger’s metacarpal positions. The average tri-spread is 

calculated by adding the triangle area of all pairs of fingers 

and dividing by the total number of the frames.  For each 

finger, extended distance, dip-tip projection, orderX and 

angle are derived. The extended distance is the maximum 

distance of all points of the finger from the palm center. The 

Dip-tip projection is the projection of the dip-to-tip vector 

onto the palm normal vector. The OrderX is the order of the 

finger along the x-z plane with respect to other fingers. For 

the experiment, data are collected from two (deaf and normal) 

teachers of deaf education. In order to classify the 26 letters 

using, a k-nearest neighbor method is applied and the 

recognition rate is 72.78%. The use of SVM improves the 

recognition rate to 79.83%. 

 Among the above studies, in the case of colored glove 

based recognition, the user may feel a troublesome to wear 

them and a photograph picture must be taken with wearing 

the colored glove, which is not very convenient. In the case of 

Kinect based recognition, a large space is required to obtain 

depth as well as and color image for the skeletal tracking, 

which is not easy for ordinal use. In the case of Leap Motion 

based recognition, the machine learning requires large 

computation for a new person. 

3 Sign language recognition using a 

sensor device 

3.1 Detection of finger using Leap Motion 

Controller 

 Hardware and software of Leap Motion Controller are 

used for get the following five functions: 1) hands detected in 

a frame including rotation, position, velocity and movement 

from the last frame, 2) all fingers and pointing tools 

recognized by hand with rotation, position and velocity, 3) the 

exact pixel location on a display pointed at by a finger or a 

pointing tool, 4) recognition of basic finger gestures such as 

swipes and taps, and 5) detection of position and orientation 

changes between frames [6]. In this paper, hands and fingers 

are detected to obtain the normal vector of the palm, 

coordinates of fingertips and finger bone, the direction vector 

of arm and the direction vector of the fingertip. 

3.2 Decision tree and the recognition rate for 

fingerspelling letters 

 The Recogniton target is fingerspelling 24 letters 

without movement out of 26 letters. Although there are 

several alphabetic representations for fingerspelling, we use 

the fingerspelling representation as shown in Fig.1 [9].There 

are differences in fingerspelling representations ; if the palm 

of hand is facing the opponent, if the back of hand is facing 

the opponent, or which finger is bent how. Considering these 

representations, the conditional branches constructing a 

decision tree are 16 kinds of ‘a’ to ’p’ as shown in Table 1, 

and the decision tree is suitable for programming. The detail 

of each conditional branch is shown in Table 1. The 

conditional branch is just two ways of Yes or No. Figure 2 is 

an example of decision trees. In Figure 2, left arrow is Yes 

and right arrow is No. It should be noted that, “a finger is 

fully extended” means all of the first, the second and the third  

264 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



 

Figure 1 : Alphabetical fingerspelling 

 

Table 1 : Detail of each conditional branch 

 Conditional Branch 

a The palm of hand is facing the opponent. 

b Hand orientation is above. 

c 
There is a finger that makes a wheel with the 

first and the second joints 

d The third joints are extended except the thumb. 

e The back of hand is facing the opponent. 

f Hand orientation is below. 

g All of the first and the second joints are bent. 

h The thumb is fully extended. 

i The index finger is fully extended. 

j The middle finger is fully extended. 

k The ring finger is fully extended. 

l The pinky finger is fully extended. 

m The thumb is contact with the middle finger. 

n 
The ball of the middle finger is on the nail tip of 

the index finger. 

o 
The index finger and the middle finger are 

separated. 

p The thumb and the index finger are open. 

 

joints are extended. Also, “hand orientation” means the 

direction of the fingertips from the wrist. 

We perform preliminary experiments for the recognition 

rate at each conditional branch. A right-handed examinee puts 

her hand over a Leap Motion Controller to make the controller 

recognize her fingerspelling. The recognition rate is calculated  

 

Figure 2 : An example of decision trees 

 

Table 2 : The correct answer rate of each condition (%) 

a 95.00 e 96.67 i 96.67 m 90.00 

b 92.92 f 97.08 J 95.83 n 92.92 

c 90.83 g 99.58 k 93.33 o 97.50 

d 95.83 h 95.83 l 95.83 p 100.0 

 

by 10 times experiments for all decision tree nodes.  

 The decision tree consists of nodes (non-terminal) and 

leaves (terminal). The node represents 16 conditional 

branches as shown in Table 1 while the leave represents 

fingerspelling 24 letters. Starting from the root (top node), 

there is a pass to get to each leaf. Each pass consist of one or 

more nodes. A leaf may have a lot of combinations of nodes 

to reach. However, depending on the combination of nodes 

that is required for each fingerspelling, the overall recognition 

rate is different. For example, when we want fingerspelling 

‘M’, the node ‘j’, ‘k’, ‘i’ and ’f’ are Yes and the node ‘g’ is 

No. By using the recognition rates of nodes ‘j’, ‘k’, ‘i’, ‘f’ and 

‘g’ of Table 2, the recognition rate of fingerspelling ‘M’ in 

Figure 2 is calculated as 0.9583 ∗ 0.9333 ∗ 0.9667 ∗
0.9708 ∗ 0.9958 ∗ 100 = 83.58. Calculating the recognition 

rates for other fingerspelling in the same manner, the average 

recognition rate of a decision tree shown in Figure 2 is 

81.97%. 

 Note that there is a decision tree where a fingerspelling 

has multiple passes to reach the terminal node. Namely, there 

is a conditional branch whose decision does not affect the 

recognition result. In this case, the recognition rate of the 

conditional branch is 100%.  

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 265



 

Figure 3: Structure of decision tree 

 

 
(a)         (b)       (c) 

Figure 4: Unnecessary nodes: (a) shows a case including an 

unnecessary node. (b) shows a state deleting ‘g2’. (c) shows a 

state deleting ‘b2’.  

3.3 Fingerspelling recognition algorithm 

The structure of the decision tree is shown in Figure 3. 

The left arrow represents Yes while the right arrow represents 

No, where each node has a condition from “a” to “p”. The 

depth of the decision tree to be generated is 17 with 16 layers 

for nodes (conditional branch) and 1 layer for leaves (final 

fingerspelling letter). At the root node of a decision tree, all 

the fingerspelling letters are candidates. When visiting each 

node, the candidates are sieved by the condition to select less 

candidates until the number of candidates becomes one, 

namely it is a leaf. The leaf represents a fingerspelling letter 

that is determined uniquely by the decision tree. 

In the fingerspelling recognition algorithm, first 16 

kinds of conditions are arranged in an appropriate order. This 

order corresponds to the hierarchical order of the decision tree. 

In other words, the nodes in the same hierarchy have a 

conditional branch from the same node. In addition, when 

generating a decision tree in some hierarchical order, it may 

include unnecessary nodes. The unnecessary node has a 

condition that all the fingerspelling letters from the parent 

node are sent to a child node without splitting the 

fingerspelling letters. Figure 4 is a diagram showing the 

process of deleting an unnecessary node. Figure 4 (a) shows a 

state including the unnecessary node (b2). Node ‘h’ has two 

branches for the left side of node ‘b1’ and the right side of 

node ‘b2’. In addition, the node ‘b2’ has two branches for the 

left side of node ‘g1’ and the right side of node ‘g2’. ‘g1’ has 

3 letters ‘D’, ‘E’ and ‘F’ while ‘g2’ has nothing. Namely, ‘g2’ 

is removable. Figure 4 (b) is the state after removing ‘g2’. In 

Figure 4 (b), since all the fingerspelling letters of ‘b2’ from 

the parent node (‘D’, ‘E’ and ‘F’) are sent to the child node 

(g1) without splitting the letters, ‘b2’ is unnecessary. Figure 4 

(c) is a state that ‘b2’ is deleted. In this way, if unnecessary 

nodes are included, it is possible to shorten the processing of 

fingerspelling recognition by deleting them as shown in 

Figure 4. 

 Since there are 16 kinds of conditions, the possible 

number of decision trees to be generated is 16!, which is 

about 20 trillion ways. In addition, different decision trees 

have different recognition rates for fingerspelling. Therefore, 

it is necessary to obtain an optimum decision tree in 

consideration of the correct answer rate of Table 2. 

4 Search the optimal fingerspelling 

recognition method 

The conditions for fingerspelling recognition proposed 

in Section 3 are changeable by order. Since the correct answer 

rates in Table 2 are different, the average recognition rate for 

fingerspelling letters obtained in decision trees is changeable 

by the order of conditions. We propose an algorithm for 

searching the optimal solution for automatically generated 

decision trees with varying the order of 16 types of conditions.  

As the optimal solution search for combinatorial 

optimization problem, there are a Branch and Bound method 

that gives a strict solution and a Genetic algorithm [10] that 

gives approximate solutions. In the case of Branch and Bound, 

although limited operations narrow the search space, it 

requires huge computation to search all over the limited 

search space. Therefore the amount of computation is 

unrealistic time consuming in order to obtain the result.  

ID3 is known as a decision tree learning algorithm. It is 

for each independent variable with determining the average 

amaount of information and the expected value in the case of 

determining the value of variable. The largest variable is 

selected so that the operation of the variable to the node of the 

tree is performed recursively. In the case of ID3, creating a 

decision tree considering the average recognition rate is too 

difficult.  

Using the Genetic algorithm, it is not possible to find the 

optimum solution because it gives approximate solutions 

while it is determined with less computation time to get 

solutions close to the optimal solution. We employ a Genetic 

alogorithm for the combinatorial optimization problem of 16 

kinds of conditions to find the quasi optimal solution in 

realistic computation time. The constraints of the 

combinatorial optimization problem to be handled in this 

paper are the following. 

1. 16 kinds of conditions are arranged so that the maximum 

average recognition rate of all fingerspelling is obtained.  

2. Each condition is selected only once. 

In this paper, we use a simple genetic algorithm with the 

most basic configuration. One point crossover and a roulette 

selection are adopted. The Order Representation [11] is used 

for the gene expression. Using the Order Representation, it is 

possible to satisfy the above constraint 2 as well as the one 

point crossover without causing lethal genes. The order 

Representation consists of the list L1  where conditions are 

arranged alphabetically and the list L2 where conditions are 

266 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



arranged along a phenotype. The phenotype gives the order to 

perform the conditions. Each conditional branch destination 

of list L2  is searched in list L1  to be replaced, namely the 

initial conditions are removed from the list  L1 . The above 

operation is repeated. Finally list L2  becomes a list 

represented by a genotype.  

Fitness is the recognition rate calculated with the 

automatic generation algorithm for fingerspelling recognition 

described in subsection 3.2 and 3.3. In the case of mutation 

operations, the i-th number from the beginning of the gene list 

by the Order Representation is rewritten by a number less 

than 𝑁 + 1 − 𝑖 to avoid a lethal gene.  

 By the genetic and evolution operations, the individuals 

with high fitness to the target problem are increased. Finally, 

the fitness of the best individual becomes a suboptimal 

solution, and the genes of the best individual represent the 

optimal order for the conditions. 

5 Experiments 

5.1 Experimental method 

We apply a Genetic algorithm to the automatically 

generated fingerspelling recognition algorithms described in 

subsection 3.3. To obtain suboptimal solutions, we perform 

three experiments: 1) Find appropriate crossover probability, 

2) Find appropriate mutation probability, and 3) Obtain 

suboptimal solutions using 1) and 2). 

 In 1), the crossover probability is varied 0.7 to 0.9 by 

0.05 while the mutation probability is fixed to 0.08. In 2), the 

mutation probability is varied from 0.02 to 0.1 by 0.02 while 

the crossover probability is fixed to 0.8. For both 1) and 2), 

the number of individuals and the maximum number of 

generations are 1,000 and 300, respectively. 

 Both 1) and 2) are performed 10 times for each 

parameter. In 3), the appropriate parameters obtained in 1) 

and 2) are used. 3) is performed 100 times with 1,000 

individuals and 300 generations.  

5.2 Experimental results and discussion 

Figure 5 shows the fitness values of the best individual 

at the 300th generation with various crossover probabilities of 

1). As the result of 1), the quasi-optimal solution is 82.71% 

achieved 3, 3, 5, 4 and 4 times out of 10 times trials with the 

crossover probability from 0.7 to 0.9 by 0.05, respectively. 

Figure 6 shows the fitness values of the best individual 

at the 300th generation with various mutation probabilities of 

2). As the result of 2), the quasi-optimal solution is 82.71%  

 

Figure 5: Fitness of the best individuals at the 300th 

generation with various crossover probability 

 

Figure 6: Fitness of the best individuals at the 300th 

generations with various mutation probability 

 

Figure 7: The fitness change by generation in the case of 

quasi-optimal solution. 

achieved 3, 4, 5 and 3 times out of 10 times trials with the 

crossover probability 0.02, 0.06, 0.08 and 0.1, respectively. 

The results of 1) and 2) show that the quasi-optimal 

solution for the fingerspelling recognition is 82.71%. So the  

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 267



 
Figure 8 : An example of quasi-optimal solution of decision 

tree 

optimum parameters for the genetic algorithm are the 

crossover probability 0.8 and the mutation rate 0.08. 

 3) is performed 100 times using the crossover 

probability 0.8 and the mutation probability 0.08. As the 

result, the maximum, average and minimum values of the 

fitness are 82.71%, 82.66% and 82.25%, respectively. The 

dispersion is 0.004. Also, 37 trials out of 100 reach the 

maximum value.  

From the above results, by using the optimal parameter 

(the crossover probability is 0.8 and the mutation probability 

is 0.08) the quasi-optimal solution are stably obtained. Figure 

7 shows the fitness changes by generation in the case of 

quasi-optimal solution 82.71%. The fitness converges at the 

160th generation.  

An example of the quasi-optimal solution is ”p→g→j→

k→ i→ f→d→o→n→b→ l→m→e→h→a→c”, and the 

decision tree is shown in Figure 8. By using the decision tree, 

it is possible to recognize the 24 letters with average 

recognition rate of 82.71%. In addition, the decision tree as 

the quasi-optimal solution can be generated in 3.4 minutes on 

average. 

Although the quasi-optimal decision tree generation 

requires more than three minutes, the resultant decision tree 

can be used in any way. The real-time fingerspelling 

recognition for 24 letters is achieved using the resultant 

decision tree and Leap Motion Controller without any 

compute intensive processes such as image processing or 

neural networks. The real-time fingerspelling recognition is 

required for human interface by fingerspelling. 

6 Conclusions 

 In this papeer, we propose the fingerspelling recogniton 

using Leap Motion Controller to give an alternative method 

of voice input for deaf people. The recogniton target is 

fingerspelling 24 letters exclude 2 fingerspelling letters that 

require finger movement. 

 As conditional branches to be used for the decision tree, 

we use 16 kinds of conditions that forcuse on the 

characteristics of hand and finger. By changing the order of 

the conditional branches, a different decision tree is generated 

with a different average recogniton rate for the fingerspelling 

24 letters. The decision tree is automaticall generated by a 

Genetic algorithm to obtain quasi-optimal solutions. 

 We perform several experiments for the application of 

the Genetic algorithm and we obtain the quasi-optimal 

solution of the recogniton rate 82.71%. From the above, we 

validate the proposed method is very effective. 

 In the future work, it is necessary to include the 

fingerspelling two letters with movement. We think the 

decision tree should not be fixed. As a user makes use of the 

fingerspelling recognition, the recognition rates at conditional 

branches may change. In this case, some incremental learning 

mechamism should be performed. 

7 References 

[1] iOS8 Siri, Apple, https://www.apple.com/jp/ios/siri/ 

(last access: 2015-04-13) 

[2] Google, https://www.google.co.jp/ (last access:2015-04-

13) 

[3] Marcus V. Lamar, Md. Shoaib Bhuiyan, Akira Iwata. 

“Hand alphabet recognition using morphological PCA and 

neural networksNeural Networks”; IJCNN '99. International 

Joint Conference on, vol.4, 2839-2844,(1999) 

[4] Xbox 360 – Kinect, Microsoft, http://www.xbox.com/ja-

JP/Kinect (last access: 2015-04-13) 

[5] Leap Motion, https://www.leapmotion.com/ 

(last :access: 2015-02-03) 

[6] Mischa Spiegelmock. “Leap Motion Development 

Essentials”; Packt Publishing (2013) 

[7] C. S. Weerasekera, M. H. Jaward, N.Kamrani. “Robust 

ASL Fingerspelling Recognition Using Local Binary Patterns 

and Geometric Features”; Digital Image Computing: 

Techniques and Applications (DICTA), 2013 International 

Conference on, 1 – 8, (2013) 

[8]  Ching-Hua Chuan, Eric Regina, Caroline Guardino. 

“American Sign Language Recognition Using Leap Motion 

268 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



Sensor”; Machine Learning and Applications (ICMLA), 2014 

13th International Conference on, 541 – 544, (2014-12) 

[9] Fingerspellingalphabet.com, 

http://www.fingerspellingalphabet.com/fingerspelling-chart-

print-pdf-download/ (last access:2015-04-13) 

[10]  David E. Goldberg. “Genetic Algorithms in Search, 

Optimization, and Machine Learning”; Addison-Wesley 

Professional (1989) 

[11] John J. Grefenstette, Rajeev Gopal, Brian J. Rosmaita, 

Dirk Van Gucht. “Genetic Algorithms for the Traveling 

Salesman Problem”; Proceedings of the 1st International 

Conference on Genetic Algorithms, 160 – 168 (1985) 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 269



Semi-supervised based learning for Idiopathic Interstitial
Pneumonia on High Resolution CT images

Hayaru SHOUNO1, Shoji KIDO2

1 Graduate School of Informatics and Engineering, University of Electro-Communications,
Chofugaoka 1-5-1, Chofu, JAPAN

2 Graduate School of Medicine, Yamaguchi University,
Tokiwadai 2-16-1, Ube, JAPAN

Abstract— In the classification task, the number of labeled
samples is one of the important factor for accuracy, however,
gathering such data is hard work since it requires diagnosing
task in the field of medical engineering, In order to overcome
this problem, we introduce a semi-supervised learning (SSL)
classifier for computer aided diagnosis (CAD) for idiopathic
interstitial pneumonias (IIPs). The semi-supervised learning
requires a lot of unlabeled training data, which does not
require diagnosing cost, as well as labeled data. In this
study, we show the low performance classifier, which has
only chance level classification performance, would be im-
proved to achieve around 90% accuracy performance by
SSL. We also propose a pre-processing method of gray-
scale transformation for appropriate application to the SSL.
Without proper gray-scale transformation, the SSL might
cause decreasing performance however, we find our pre-
processing procedure make increasing the performance in
almost all the cases.

Keywords: Semi-supervised learning (SSL), Idiopathic Intersti-
tial Pneumonia classification, gray-level transformation

1. Introduction
In the medical diagnosis, the classification task is impor-

tant for the diagnosis quality. For classifying and detecting
the idiopathic interstitial pneumonias (IIPs), high-resolution
computed tomography (HRCT) image is regarded to be
effective since IIPs affected part looks diffused in the lung
[1][2][3][4][5]. Unfortunately, determining the border of the
site is difficult work, because the IIPs on HRCT images show
a lot of varieties in the meaning of texture patterns. The qual-
ity of diagnosis is influenced by the ability of physician, and
improving the quality is desired for proper treatment of IIPs.
In order to decrease the burden of physicians, development
of the computer aimed diagnosis (CAD) system is desired
for objective diagnosis in these decades [1][6][5]. The CAD

systems are designed to provide a classification function for
second opinion using machine learning techniques.

In the field of machine learning, the supervised learning
is usually used for such classification task. and it requires
pairs of input patterns and its corresponding labels for its
learning. For improving the classification performance of
such supervised learning system, a lot of labeled learning
data is required, however, the obtaining cost of such data is
expensive since it requires physicians diagnoses to get the
proper labels. On the contrary, the cost for obtaining unla-
beled data, which does not require physicians diagnosis, is
lower than that of the labeled. The semi-supervised learning
(SSL) uses massive unlabeled learning data as well as the
labeled in order to improve the performance of classification
accuracy [7].

The IIPs sites in the HRCT images are usually diffused in
the lung, so that, we can obtain these unlabeled data easily
by slightly shifting of the labeled region of interests (ROIs).
Our purpose is to improve the accuracy performance of the
CAD system for IIPs classification using the SSL by use of
such unlabeled data. In this study, we try to develop and
evaluate a classifying engine for IIPs in the CAD system.

2. Method
2.1 Semi-Supervised Learning system

In this study, we denote the input feature as a vector x,
and its desired label as t. The supervised learning data are
denoted as pairs of the features and labels, {xn, tn}, where n
means the index. On the contrary, we use xu as the unlabeled
input feature, and denote the unlabeled data as {xu

m} where
m means the index.

The fig.1 shows the schematic diagram of a simple SSL,
which is called “self-training” architecture proposed by
Yarowski [8][9]. In the SSL, at first, a supervised classifier
is trained by only use of labeled data {xn, tn}. In the next
step, the supervised classifier predict labels for the unlabeled

270 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



features {xu
m} with beliefs, which mean the confidences for

the labels of the classifier. Thus, the unlabeled data can be
regarded as the labeled {xu

m, tum}, where tum is the label
by the supervised classifier. After that, we drop off the low
belief data by thresholding. The SSL classifier is trained by
both the labeled data for supervised learning and classified
unlabeled data with high beliefs.

This simple algorithm might be applied to the previous
works for IIPs classification[5]. However, it is hard to eval-
uate of the genuine ability of the SSL by use of the complex
learning system, so that, we apply a simple naive naive Bayes
classifier in this study. Assuming the predicting label as y for
the input feature x, the Bayes classifier calculate posterior
probability of P (y | x) by use of the Bayes’ theorem, that
is, we can denote the posterior probability as

P (y | x) = P (x | y)P (y)∑
y P (x | y)P (y)

, (1)

where P (x | y) and P (y) mean the likelihood and prior
probability respectively. The prior P (y) is defined as P (y =

k) = nk/N where k means the class label and nk means
the number of labeled images belonging to the class k in
the training set. N means the total number of the labeled
images of training set N =

∑
k nk.

The likelihood function P (x | y = k) is derived the multi-
dimensional Gauss distribution:

P (x | y = k) =
1√

|2πΣk|
e−

1
2 (x−mk)

TΣ−1
k (x−mk), (2)

where mk and Σk means average of feature vectors in the
class k and corresponding covariance matrix respectively.

In the SSL, the Bayes posterior probability works as
the beliefs for the unlabeled input feature xu

m. The class
label for these unlabeled inputs are given by the supervised
classifier with maximization of the posterior probability:
tum = argmaxkP (tum = k | xu

m). In this maximization
process, we obtain the probability value P (tum = k | xu

m)

which means the confidence for the classification label, so
that, we treat this value as the belief for the label tm = k.

Test: x Semi-Supervised Classifier

Supervised Classifier

Labeled: {x
n
, t

n
}

Unlabeled: {xu

m
}

Train

Train

Label with Belief: {xu

m 
, tu

m
}

Train

Predict

Result yInput

Fig. 1: Schematic diagram of the SSL architecture
(Yarowski, 1995)[8], [9]

3. Experiments

3.1 Materials

In order to construct the SSL classifier, we prepare 360

labeled images and 3600 unlabeled images. In the labeled
images, the number of each class are following: Consoli-
dation(CON):38, Ground-Grass-Opacity (GGO):76, Honey-
comb(HCM):49, Reticular(RET):37, Emphysema(EMP):54,
Nodular(NOD):48, and Normal(NOR):58 cases. We assume
the 32×32 [pixels] ROIs, and each ROI is segmented under
the direction of a physician, and diagnosed by 3 physicians.

The acquisition parameters of those HRCT images are as
follows: Toshiba “Aquilion 16” is used for imaging device,
each slice image consists of 512×512 pixels, and pixel size
corresponds to 0.546 ∼ 0.826 [mm], slice thickness are 1

[mm]. The number of patients is 69 males and 42 females
with age 66.3 ± 13.4. The number of normal donor is 4

males and 2 females with age 44.3 ± 10.3. The origin of
these image data is provided Tokushima University Hospital.
Fig.2 shows a typical image example of each disease in
HRCT image. The left shows an overview of the axial
HRCT images of lungs including lesion, and the right shows
segmented images of typical examples of lesion from the left
image collections. The consolidation (CON) and ground-
grass opacity (GGO) patterns are often appeared with the
cryptogenic organizing pneumonia diseases (COPD). The
GGO pattern is also often appeared in the non-specific
interstitial pneumonia (NSIP). The reticular (RET) pattern
which sometimes includes GGO patterns is also appeared in
the NSIP. The honeycomb (HCM) pattern has more rough
mesh structure rather than that of the crazy-paving, and it
appeared in idiopathic pulmonary fibrosis (IPF) or usual
interstitial pneumonia (UIP).

3.2 Labeled and Unlabeled dataset

From the 360 labeled ROI images, we define the labeled
dataset as followings. The labeled ROI images have been
carried out gray-level transformation in order to diagnose
by physician. The raw HRCT image pixel value, which is
counted with Hounsfield unit (H.U.), is adjusted to describe
the physical matters, and its resolution takes 4096 grades in
the range of [−1024, 3071] [H.U.]. For example, air takes
−1024 [H.U.], water takes 0 [H.U.], and over over 500

[H.U] shows bone typically. In order to diagnose the lung,
which mainly occupied with air, the full resolution of pixel
value is too much information for diagnose, so that gray-
level transformation is applied as pre-process. The gray-level
transformation for the raw HRCT image pixel value I is

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 271



(a) (b) (c) (d) (e) (f) (g)

IIPs
Image DB

ROI
Consolida on GGO Honeycomb Re cular Emphysema Nodular Normal

Fig. 2: Typical HRCT images of diffuse lung diseases: The top row shows each overview, and bottom shows magnified
part (ROI) of each lesion. From (a) to (g) represents “Consolidation”, “GGO”, “Honeycomb”, “Reticular”, “Nodular”
“Emphysema”, and “Normal” image respectively.

described as piece-wise linear transformation:

q =


0 I < WL − WW

2

255 I > WL + WW
2

255
WW

(
I −

(
WL − WW

2

))
else

, (3)

where q means the 256 grades gray image value. Thus, the
gray-level transformation is controlled by the window-level
(WL) and the window-width (WW) parameters. Typically,
these parameters are defined for diagnosing part such like
lung, and sometimes adjusted by the physician manually.
The labeled data has been processed by WL = −600[H.U.]
and WW = 1500[H.U] in order to adjust the pixel values of
the ROI images in [0, 255] range.

The labeled dataset named as L is randomly selected from
each class k (k = 1 · · · 7, which means the class label)
evenly, and we denote the total number of the labeled dataset
L as N . This labeled dataset L is used for the supervised
learning of the Bayes classifier.

We prepare 3 unlabeled datasets as follows. The first
dataset U1 is simply use of the rest of labeled data, which
consists of 360 − N images. The dataset U1 is used for
control dataset against other unlabeled. The other unlabeled
dataset U2 and U3 come from the raw HRCT images.
These unlabeled candidates are gathered from the surrounds
of labeled ROIs site, and the total number of collected
unlabeled image data becomes 3, 600. In order to use these
images for training data, we should carry out the gray
level transformation 3 as a preprocessing. In our gray level
transformation, we assume the transformation parameters
WW and WL are not given since these parameters, which
are adjusted manually, are not rigid even in the labeled
data. Thus, we should infer these parameters, and details
are followings. The pixel of the raw HRCT image has 16-
bit depth in this case and the range of unlabeled data pixels

values are in [−1152, 7281].
Fig. 3 shows the average gray-level histograms of labeled

and unlabeled data. The parameters WL and WW for dataset
U2 are defined by these averaged histograms. We optimize
the parameters WW and WL as to maximize the similarity
between the labeled and transformed unlabeled histograms.
We denote the average histogram of labeled as qL, which
can be regarded as a probability distribution. We also de-
scribe the transformed unlabeled histogram as the function
of the parameters WW and WL, that is, qU (WW,WL).
Then, we introduce Kullback-Leibler (KL) divergence as a
similarity measure between the gray level histograms qL and
qU (WW,WL):

KL(qL | qU ;WW,WL) =
∑

qL ln
qL

qU (WW,WL)
. (4)

We adopt WW and WL as the minimization values of the
KL(qL | qU ). From the strategy, we optimize eq.4 and obtain
the parameters WW = 1234[H.U.] and WL = −434 [H.U.]
for the unlabeled data.

For comparison, we prepare the other unlabeled dataset
name U3 whose WW and WL are chosen as a typical values
to observe lung-area, that is WW = 1500[H.U.] and WL =

−550 [H.U.].

3.3 Feature Extraction and Selection
We introduce a texture analysis proposed by Sugata et

al. for feature extraction [1][10]. From the input HRCT
ROI image, we calculate gray-level histogram, gray-level
difference statistics, the co-occurrence matrix, run length
matrix, and Fourier power spectrum, at first. After that, from
these 5 quantities, we derive 39 texture statistics as the
candidates for features[10]. Using whole statistics candidates
as the input features for classifier might cause the decreasing
the performance because of “curse of dimensionality”. Thus,

272 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



Histogram of Labeled

gray levels

De
ns
ity

0 50 100 150 200 2500.
00

0
0.
00

5
0.
01

0
0.
01

5

Histogram of Unlabeled

CT levels

De
ns
ity

0 2000 4000 60000.
00

0
0.
00

1
0.
00

2
0.
00

3
0.
00

4

q
L

Fig. 3: Gray-level histograms of labeled and unlabeled images. The left shows the labeled which have the range [0, 255].
The right shows the unlabeled that have raw-HRCT values with the range [−1152, 7281].

we would select the 4 input features as the input for the
classifier. These feature are determined experimentally.

3.4 Evaluation Method
In order to evaluate performance, we adopt leave-one-out

cross-validation (LOOCV) [11][12]. In the LOOCV method,
we choose a ROI image from the labeled dataset L and use
other N−1 images for supervised learning. After supervised
learning, M unlabeled images from the unlabeled dataset
U1, U2, or U3 is used for the self-training method. The
preserved ROI image is used for evaluating the classification
performance. This evaluation process is applied alternate to
the whole labeled dataset L, and finally the average accuracy
is used for the performance measure.

For the performance evaluation, we carry out the SSL
method as follows:

1) We trained Bayes classifier (1) by supervised learning
that is we apply only the labeled data. For LOOCV
method, we pulled out a pair of training datum from
labeled dataset. Then, we calculate the mean vector
mk and covariance matrix Σk for the pulled dataset.

2) We predict the class label for the unlabeled dataset
with confident that comes from the posterior prob-
ability. The largest posterior class is to become the
predicted class.

3) By thresholding, we drop out the low confident unla-
beled data. We adopt the threshold value as 0.80 in
this experiment.

4) From the rest of the unlabeled data, which are high
confident unlabeled data, we select M images ran-
domly.

5) We train the Bayes classifier (1) with both labeled and
the M predicted data again

6) We evaluate the classifier accuracy by the selected
labeled data pair in the procedure 1 (LOOCV method).

4. Results
We compare the accuracy performances among the added

number of unlabeled data from U1, U2, and U3 whose
differences are gray-level transformation parameters of WW
and WL. The dataset U1 has identical statistical property
since it comes from labeled data. The dataset U2 might have
similar property to the labeled data in the meaning of the
KL-divergence. The dataset U3 might have the most different
property to the labeled data, however, it is typical parameters
for observing lung areas. Fig.4(a) shows the accuracy per-
formance against the added number of the unlabeled images
M . The horizontal axis shows the number of the unlabeled
images M in log-scale. The vertical one shows the accuracy
performance. The size of labeled dataset L is N = 35.
Adding small number of unlabeled data (M ∼ 100) increase
the accuracy performance in the every unlabeled dataset U1,
U2, and U3. The number of dataset U1 is 360−N , so that,
the curve ends in the value with high accuracy performance.
The curve using the U2 saturate around M ∼ 1000 with
also high accuracy performance. However, the curve using
the dataset U3 saturates in the low accuracy performance,
while U1 and U2 increase the accuracy performance. In this
case, the final accuracy performances for U1, U2, and U3

datasets are 96.6%, 95.8%, and 61.1% respectively.
Fig.4(b) shows also the accuracy performance under the

larger labeled dataset L that have N = 70. In this case
the initial accuracy performance, which comes from the
supervised classifier, is higher than the previous result, that
is, the accuracy performance is 84.5% correct. We can see
the similar tendency to the previous result in the meaning

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 273



 0

 20

 40

 60

 80

 100

 1  10  100  1000

re
co

g
n

it
io

n
 a

cc
u

ra
cy

 [
%

]

number of added unlabeled data  (M)

U1
U2
U3

SupervisedN = 35
U1
U2
U3

Supervised 0

 20

 40

 60

 80

 100

re
co

g
n

it
io

n
 a

cc
u

ra
cy

 [
%

]

number of added unlabeled data  (M)

 1  10  100  1000

N = 70

Fig. 4: Accuracy performance for several unlabeled dataset U1, U2, and U3. The horizontal axis shows the number of added
unlabeled images denoted as M . The vertical shows the accuracy performance. (a): The left shows the result with the
supervised classifier that is trained by N = 35 samples. (b): The right shows the result for the classifier trained by N = 70

labeled samples.

of the performance improvement, while the curve using U3

decrease the its performance. In this case, the final accuracy
performances for U1, U2, U3 dataset are 97.5%, 96.8%, and
77.5% respectively.

From these results, statistical similarity between the la-
beled image and the unlabeled images is important factor to
the accuracy performance.

5. Conclusion & Discussion
We investigate classification performance of the SSL for

the classification task of the IIPs. We can confirm increasing
of the accuracy performance in several cases while the self
training method is a simple method in the SSL.

We found several important factors for the IIPs classifica-
tion by the SSL. One is the statistical quality of the features,
that is, the gray-scale histograms of unlabeled images should
have similar property to that of the labeled images used in
the supervised learning. Fig.5 shows the scatter plot for 2-
dimensional features space. Each horizontal axis shows the
average of gray-level of the ROIs, and vertical shows the
entropy of cooccurance matrix. The left figure shows the
plot for whole labeled data that have N = 360 points. In
the SSL, we assume we can obtain only a part of the labeled
data, so that, randomly selected points, in which N = 35,
are shown in the middle and right figures. The unlabeled
data, which should be processed by the gray-scale transform,
are overlapped to the middle and right figures. Hence, the
middle one shows the unlabeled dataset U2 with labeled
samples, and the right shows the U3 with labeled. We can see

the U2 dataset looks better fit to the labeled dataset. These
figures suggest the optimization parameters WW and WL is
an important factor. The unlabeled dataset U2 optimized for
the minimization of the KL-divergence between gray-level
histograms of labeled and unlabeled. This result suggests that
unlabeled data that come from another HRCT device might
be available when we carry out appropriate pre-processing.

Moreover, we evaluate several trials for the another la-
beled dataset L, and stable improvement is confirmed by
the SSL. When the initial supervised learning make good
accuracy performance, the SSL improvement does not work
well, however, it does not cause cause adverse affect in
this investigation. Thus, we can consider the SSL is a good
framework to improve classification ability for our task.

Acknowledgment

We thank Professor Junji Ueno, Tokushima University.
He provided several advice for this study as well as a set of
high resolution HRCT image of IIPs. This work is supported
by Grant-in-Aids for Scientific Research (C) 25330285, and
Innovative Areas 26120515, MEXT, Japan.

References

[1] R. Uppaluri, E. Heitmman, M. Sonka, P. Hartley, G. Hunninghake,
and G. Mclennan, “Computer recognition of regional lung disease pat-
terns.” American Journal of Respiratory and Critical Care Medicine,
vol. 160, no. 2, pp. 648–654, 1999.

274 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



0
2

4
6

8

0 50 100 150 200

H_mean

C
_
E

P
Y

0 50 100 150 200

H_mean

0 50 100 150 200

H_mean

Labeled (N = 360)

Labeled (N = 35)

Unlabeled U
2
(M=3600)

Labeled (N = 35)

Unlabeled U
3
(M=3600)(a)

(b) (c)

Fig. 5: Scatter plot for the 2 dimensional feature space. The horizontal axis is the mean of the histogram, and the vertical
is the entropy of the co-occurence matrix. (a) shows the scatter plot of whole labeled samples (N = 360). (b) shows the
dataset L which have N = 35 samples, and whole unlabeled samples of U2 (M=3600). (c) shows the dataset L with U3

(M=3600).

[2] H. U. Kauczor, K. Heitmann, C. P. Heussel, D. Marwede, T. Uthmann,
and M. Thelen, “Automatic detection and quantification of ground-
glass opacities on high-resolution CT using multiple neural networks:
comparison with a density mask,” AJR Am J Roentgenol, vol. 175,
no. 5, pp. 1329–1334, Nov 2000.

[3] W. Webb, N. L. Müller, and D. Naidich, High Resolution CT of the
Lung, 4th edn. Baltimore: Lippincott Williams & Wilkins, 2008.

[4] “American Thoracic Society/European Respiratory Society Interna-
tional Multidisciplinary Consensus Classification of the Idiopathic
Interstitial Pneumonias. This joint statement of the American Thoracic
Society (ATS), and the European Respiratory Society (ERS) was
adopted by the ATS board of directors, June 2001 and by the ERS
Executive Committee, June 2001,” Am. J. Respir. Crit. Care Med.,
vol. 165, no. 2, pp. 277–304, Jan 2002.

[5] R. Xu, Y. Hirano, R. Tachibana, and S. Kido, “Classification of diffuse
lung disease patterns on high-resolution computed tomography by a
bag of words approach,” in MICCAI, vol. 14. Springer-Verlag Berlin
Heidelberg, 2011, pp. 183–190.

[6] I. Sluimer, A. Schilham, M. Prokop, and B. Ginneken, “Computer
analysis of computed tomography scans of the lung: A survey.” IEEE
Transactions on Medical Imaging, vol. 25, no. 4, pp. 385–405, 2006.

[7] Z. Xiaojin, “Semi-Supervised learning literature survey,” Computer
Sciences, University of Wisconsin-Madison, Tech. Rep., 2005. [On-
line]. Available: http://www.cs.wisc.edu/˜jerryzhu/pub/ssl_survey.pdf

[8] D. Yarowsky, “Unsupervised word sense disambiguation
rivaling supervised methods,” in Proceedings of the 33rd
annual meeting on Association for Computational Linguistics,
ser. ACL ’95. Stroudsburg, PA, USA: Association for
Computational Linguistics, 1995, pp. 189–196. [Online]. Available:
http://dx.doi.org/10.3115/981658.981684

[9] G. Haffari and A. Sarkar, “Analysis of semi-supervised learning with
the yarowsky algorithm,” in UAI, R. Parr and L. C. van der Gaag,
Eds. AUAI Press, 2007, pp. 159–166.

[10] Y. Sugata, S. Kido, and H. Shouno, “Comparison of two-
dimensional with three-dimensional analyses for diffuse lung
diseases from thoracic ct images,” Medical Imaging and Information
Sciences, vol. 25, no. 3, pp. 43–47, 2008. [Online]. Available:
http://ci.nii.ac.jp/naid/130000097652/en/

[11] M. Stone, “Cross-validation: A review.” Math.Operations.Stat.Ser.Stat,
vol. 9, no. 1, pp. 127–139, 1978.

[12] C. M. Bishop, Pattern Recogition and Machine Learning. Springer,

2006.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 275



An Effective and Interactive Training Data Collection 

Method for Early-Modern Japanese Printed Character 

Recognition 
 

Kazumi Kosaka, Taeka Awazu , Yu Ishikawa , Masami Takata, and Kazuki Joe
 

Dept. of Advanced Information & Computer Sciences, Nara Women’s University, Nara, Japan 

 

 

Abstract – In this paper, we present a web application that 

supports to collect training data efficiently for early-modern 

Japanese printed character recognition. The national diet 

library in Japan provides a lot of early-modern (AD1868-

1945) Japanese printed books to the public, but full-text 

search is essentially impossible. In order to perform advanced 

search in historical literatures, it is required extracting texts 

from images. To solve this problem, we have already proposed 

a multi-font Kanji character recognition method using the 

PDC feature and an SVM. For growing in performance of this 

method, we need big amounts of training data. However, 

collecting training data by hand is extremely inefficient. 

Therefore, we propose a Web application that supports 

collecting training data.   

Keywords: early-modern Japanese printed books, a 

multi-font Kanji character recognition method, Web-

application  

1 Introduction 

The National Diet Library (NDL) [1] in Japan keeps about 

35,000,000 books dating from the Meiji era to the first half of 

Showa era (AD1868-1945). The books cover a broad range 

including philosophies, literatures, histories, technologies, 

natural sciences, etc. Most of them are out of print and 

valuable materials in scholarly. The NDL started a project 

called “The Digital Library from the Meiji Era” from 2002. In 

the project, early-modern Japanese printed books are recorded 

on microfiches page by page. The microfiches are converted 

into digital images and viewable at the project Web site [2]. 

Converting the books into digital images enabled the valuable 

books to be opened to the public while they are preserved in 

good condition. Users can view the digital images of the 

books whenever or wherever with the Internet connection. At 

the NDL Web site, user can search the materials by setting up 

detailed items, such as title, author, publisher and publication 

year. However, since the text of early-modern Japanese 

printed books is exhibited as picture image, full-text search is 

essentially impossible. In order to perform the full-text search, 

it is required extracting texts from images. The information 

including titles and author names of the books in the Digital 

Library is given as text data while main body is picture image 

data. There are no functions for generating text data from the 

image data. Thus full-text search is not supported yet. To 

make early-modern Japanese printed books data more 

accessible, their main body should be presented as text data, 

too. As described above, although there are considerably 

many early-modern Japanese printed books that are 

academically precious, the text extraction of hundreds of 

thousands of books is impossible in budget if it is performed 

by hand. There is no existing research on early-modern 

Japanese printed character recognition. Based on the above 

backgrounds, we collaborate with the NDL to have started the 

research project of automatic text extraction for ‘Digital 

Library from the Meiji Era’. In extracting text data from 

image data of early-modern Japanese printed books, when 

commercially available OCRs are applied to the image data, 

the recognition rates are too low to be practical. We have 

reported that the recognition of early-modern Japanese printed 

characters is possible using a method of handwritten Kanji 

character recognition [3][4]. In early-modern Japanese printed 

books, it is reasonably inferred that each publisher adopts a 

different typography. Even if within the same publisher, we 

have reported that typography differs by age [5]. For these 

reasons, we use the method of handwritten Kanji character 

recognition for text extraction of early-modern Japanese 

printed books. We have proposed a multi-fonts Japanese 

character recognition method for early-modern printed books. 

In this method, the Support Vector Machine (SVM), which is 

one of promising recognition methods, is used for the 

recognition of feature vectors. The fonts used in the early-

modern Japanese printed books vary by publisher and year of 

publication. To recognize image data of early-modern 

Japanese printed books exhaustively, training data for SVM 

must increase. However, it is too heavy burden for persons to 

collect various characters as training data by hand. Thus, in 

order to collect data samples efficiently, we propose a Web 

application based method for early-modern Japanese printed 

character recognition that collects training data efficiently and 

interactively. The process of character recognition and adding 

new characters to the database as training data is performed 

automatically. Thus, what users operate is just to correct 

wrong recognition results which the web application presents, 

therefore the burden of users becomes very light. The web 

application enables plurality of users to access to collect 

training data simultaneously. 

The rest of the paper is organized as follows. In section 2, we 

describe tendency of Kanji included in books. In section 3, we 

276 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



introduce the multi-fonts Japanese character recognition 

method for early-modern printed books. In section 4, we 

present a web application based method for early-modern 

Japanese printed character recognition. In section 5, we 

evaluate the experiment results to compare the results by the 

web application with by hand, and discuss the web application 

availability.  

 

2 Tendency of Kanji occurrence in books 

In order to collect training data, the number and the type of 

Kanji included in the target books should be investigated in 

advance. However, early-modern Japanese books in the 

Digital Library are not presented with text data. On the other 

hand, many titles in text format are published on the web in 

the case of Aozora Bunko [6]. Most of them are included in 

the books found in NDL. Therefore, the Aozora Bunko can be 

substituted for the Digital Library in NDL in the case that we 

investigate the tendency of Kanji occurrence in early-modern 

books. The Aozora Bunko is a Web based online collection of 

the public domain or copyright licensed literary works in 

Japanese since 1997. Users can download the works as text 

data. As the result of the investigation, the Aozora Bunko 

shares 105 books in common with the Digital Library from 

the Meiji era. The number of the total Japanese characters and 

their occurrence frequency are 5,203,045 and 144,076, 

respectively. The number of JIS level-1 to level-2 Kanji set 

[7] and their occurrence frequency are 1,569,439 and 131,080, 

respectively. The total number of JIS level-1 to level-2 Kanji 

types is 5,009, where JIS level-1 to level-2 Kanji set contains 

6355 types. 

Figure 1 shows the number of character occurrence 

frequency of JIS
1
 level-1 to JIS level-2 kanji set. In Fig.1, 115 

Kanji types appear in 100 to 105 books while 2,125 Kanji 

types just appear in 1 to 10 books. We confirm that the 

appearance is biased. Therefore, a lot of books are required in 

order to collect various Kanji types. 

From our past studies, we temporally assume that the 

number of training data for each Kanji type should be at least 

10. Figure 2 shows the number of Kanji types and the 

estimated number of required books to collect at least 10 types. 

In Fig.2, more than 4,000 books are needed to collect all 6,355 

types which are JIS level-1 to level-2 Kanji set. In order to 

collect about 110,000 Kanji characters from the 105 books, 7 

persons work 45 days. The total working time is about 945 

hours. It may be presumed that around 1,000 per page. Figure 

3 shows the number of character types collected manually and 

required working hours. In Fig.3, it takes too much time to 

collect required characters by hand because types and the 

number of characters spread over a wide range in books. 

3 Multi-fonts Japanese character 

recognition 

We use our multi-fonts Japanese character recognition 

method for early-modern printed books [3][4][8]. The 

operation process of the multi-fonts Japanese character 

recognition for early-modern books consists of preprocessing, 

character clipping, PDC (Peripheral Direction Contributively, 

PDC) [9] feature extraction, and the learning phase of SVM 

[10]. In this section, we explain this method in detail.     

                                                           
1
 Japanese Industrial Standards 

Figure 1 : Character occurrence frequency of JIS level-1 and 

level-2 kanji set  

5

1
5

2
5

3
5

4
5

5
5

6
5

7
5

8
5

9
5

1
0
5

0
100
200
300
400
500
600
700
800
900

1000
1100
1200
1300
1400
1500
1600

character occurrence frequency[times] 

th
e 

n
u

m
b

er
 o

f 
ch

a
ra

ct
e 

ty
p

es
[i

te
m

s]
 

Figure 3 : Number of character types and required 

working hours 

Figure 2 : Number of character types and required 

books 

0

1000

2000

3000

4000

5000

2500 3500 4500 5500 6500 7500

n
u

m
b

er
 o

f 
 r

e
q

u
ir

ed
 b

o
o

k
s 

numbers of character types 

0

1000

2000

3000

4000

5000

2500 3500 4500 5500 6500 7500

re
q

u
ir

ed
 w

o
rk

in
g

 h
o

u
rs

 

number of character types 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 277



(2) 

(1) 

3.1 Pre-processing 

First, we apply binarization, noise reduction, angle 

correction and ruby removal to the target image as pre-

processing. 

Information about the density of the character is 

unnecessary for recognizing the character shape. 

Thus, binarization should be adopted to get the 

minimum image information. 

Noise reduction should be also applied since the 

printing and archiving quality of early-modern 

printed books is mostly poor. Therefore, we apply 

noise reduction. Noise reduction prevents that noises 

on a character image are erroneously recognized as 

wrong character lines. 
Most of early-modern Japanese printed books are out of 

print and valuable materials in scholarly. It is impossible to 

press such books against the scanner for converting the books 

into digital images. Thus, once a book is opened, then the 

opened page is recorded as a photo image. Therefore, 

deflection of the page may occur. In order to eliminate the 

displacement of the deflection, angle correction is performed 

to modify the distorted page angle. 

Next, fonts and the ruby system found in early-

modern Japanese printed books are explained. 

Japanese letter consists of three kinds of 

characters: Hiragana, Katakana, and Kanji. The first 

two character sets are syllabaries and include about 

70 phonetic characters while the last character set is 

an ideogram and include more than six thousands 

characters. Sentences in Japanese books are usually 

printed vertically using the above three character sets. 

Ruby is a system for low educated Japanese to 

support pronouncing difficult Kanji characters 

written in the books by locating small Hiragana or 

Katakana characters at the right side of difficult 

Kanji characters. The small phonetic characters and 

the (big) Kanji characters are called as ruby 

characters and parent characters, respectively. Most 

Japanese books adopt the ruby system, and currently 

most books are generated in a desktop publishing 

system, where the standard of fonts and ruby is 

defined by JIS. Since early-modern Japanese printed 

books are published before the standard with 

typographical printing, various fonts and ruby 

systems are used. When a ruby system is used in a 

book, ruby characters are located at the right side of 

the corresponding parent Kanji character so that the 

outer frames of the ruby characters contact with the 

outer frame of the parent Kanji character. In fact, 

ruby characters are often connected with their parent 

Kanji characters with the bleeding ink and likely to 

cause noise that disturbs recognition of early-modern 

Japanese printed books. Therefore we developed a 

new ruby removal method. We apply the method that 

takes notice the ratio between width and height of 

Kanji characters to ruby character removal [8]. It is 

calculated with the averages of widths and heights of 

Kanji characters in each row as (1).   

𝑓1 =
width include ruby  

heights
 

 The formulas generated by genetic programming 

using the averages are used for the ruby removal.   

3.2 Character Clipping 

We clip a character from the digital images performed in 

the pre-processing in subsection 3.1. At first, a 

circumscription rectangle is generated by labeling strongly 

connected black pixels by eight direction neighborhoods. 

Then, the character divided with several small rectangles is 

segmented by the circumscription rectangle generated with 

duplicated small rectangles. A Japanese character consists of 

several strongly connected components in many cases. 

Because of separated components in multiple, it is difficult to 

clip a character just using the circumscription rectangle. 

However, we can clip such a character by integrating the 

components. The conditions for the integration are as follows.  

- The distance between two vertically located components 

is 0.3 times less than the vertical distance between the 

corresponding two adjacent characters. 

- The distance between two horizontally located 

components is 0.2 times less than the average width of the 

characters in the row. 

The average width is explained in subsection 3.1. 

3.3 Peripheral Direction Contributivity    

feature 

 Peripheral Direction Contributivity (PDC) feature [9] is one 

of very efficient features for the recognition of Kanji 

characters written carefully in a standard style by hand. PDC 

feature reflects four statuses of character-lines: complexity, 

direction, connectivity and relative position.  

The complexity of character-lines is represented by line 

density. The direction and the connectivity are represented by 

direction contributivity. The direction contributivity is given 

as a four dimensional vector, which is calculated by dot of 

character bit-map image. 𝑑𝑝  is defined as 𝑑𝑝 = 

(𝑑1𝑝, 𝑑2𝑝, 𝑑3𝑝, 𝑑4𝑝). Each element  𝑑𝑚𝑝 (m=1,2,3,4) is defined 

as 

 

𝑑𝑚𝑃 =
𝑙𝑚 + 𝑙𝑚+4

√∑ (𝑙𝑗 + 𝑙𝑗+4)
24

𝑗=1

 

where li (i=1,2,...,8) is the length of connected black dots 

scanned for eight directions. 

3.4 Recognition using SVM 

 In the Multi-fonts Japanese character recognition, the PDC 

feature is adopted for an SVM. Though the amount of 

278 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



calculation has relatively light with simple principles, it has 

shown good results in various fields. 

In [11], the training data for the SVM has been collected 

with 2,237 types among 2,965 types of JIS level-1 Kanji set 

and 720 types among 3,330 types of JIS level-2 Kanji set. 

Recognition experiment with a set of 1,000 types has been 

performed. The 1,000 types set includes JIS level-1 Kanji with 

five or more training data. The recognition rate of Kanji with 

9 or more training data is about 99%. 

4 The web application for data collection  

To convert book images in the Digital Library, recognition 

accuracy of the multi-fonts Japanese character recognition 

method for early-modern Japanese printed books must 

improve. Thus, it is necessary to efficiently collect the 

training data for SVM. Therefore we develop a Web 

application for collecting training data.  The operation of the 

Web application should be easy for the general users. 

4.1 Configuration of the web application 

Figure 4 shows a flow diagram of the Web application. The 

enumerated alphabets in Fig.4 show the operation procedure 

of the application. Figure 5 shows the flowchart of the user 

interface to operate the Web application in Fig.4 (a) and (d). 

Figure 6 shows the initial screen of the Web application. 

Figure 6(a) is the title of the Web application called ‘the Web 

application of data collection support for early-modern 

Japanese printed character recognition. Figure 6(b) shows user 

instructions. In Fig.4 (a), users specify the NBN (national 

bibliography number)[12] as in Fig.6(c) and select the scope 

of the book they want to recognize in Fig.6 (d). The NBN is 

the number that National Diet Library assigns based on the 

Legal Deposit System, and posted on the national 

bibliography of countries. The national bibliography of 

countries is issued by country. Users access to recognize in 

Fig.6 (e). In Figure 4(b), the image data of the specified books 

to be recognized is loaded and applied the recognition method 

described in Section 3 in the web application. In Fig.4(c), the 

web application displays a set of a recognition result and the 

original image side by side. Users confirm whether the 

recognition result has been recognized correctly by 

referencing the original image. In Fig.4 (d), in the case of 

false recognition, users correct the result. The users can also 

correct using the IME pad. In Fig.4 (e), the corrected result 

character is added to the database of training data as new 

training data. In this way, it is possible to easily increase the 

number of training data when the web application is used, 

which leads to the higher recognition rate. 

4.2 External and internal design 

Figure 7 shows the internal design of the web application. 

Each step is developed with various languages. The processes 

of character clipping, extracting PDC feature, SVM, and the 

access to the database are developed with C/C++, Java, 

Python, and Java, respectively. The web application is 

developed in the servlet format that is written in Java. By the 

servlet format, the all processes can be performed on the 

server side. The processing speed is faster so the burden of 

users is very limited. The web application uses the Apache 

Tomcat servlet container 7. The web server software in 

conjunction with Apache Tomcat is Apache HTTP Server 2.0 

so that it corresponds to the Apache Tomcat 7. The web 

application performs the processing with shared as dynamic 

content processing is performed with Apache Tomcat and 

static content processing is performed with Apache. The 

format of image data is JPEG2000 so that it is used with any 

suitable format according to the process without conversion 

problem. 

 First the web application loads each of spread pages. Next 

the image data is converted to the bmp format from the 

JPEG2000 format and isolates one by half a page. Then, the 

half page image is divided by line. The line image is saved in 

the pbm format. The process of ruby removal requires the 

conversion of the pbm format into the pgm format. Since the 

image format required for extracting PDC features is the bmp 

format, characters clipped from the images are saved in the 

bmp format to pass to the process of PDC feature extraction. 

Figure 6: Initial screen of web 

applications 

(a) 

(b) 
(c) 

(d) 

(e) 

user 

Database  

of training data 

(a) 
(d)) 

(c) 
(e) 

(f) 
(b

) 

Figure4 : Flow of a Web application for data collection 

Figure 5 : Flow chart of user interface 

 

 

start  

 

 

  finish 

Add to training 

data 

 

Modified in such as 

use of the IME 

Whether there 

is a false 

recognition 

Yes 

No 

Bibliography input 

Judgement Of 

Recognition result 

 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 279



We use LIBSVM2.81[13] which is an SVM library for the 

process of SVM identification. The LIBSVM is invoked from 

a Python program. The web application needs to call the 

Python program from Java because some processes are 

written in Java. Therefore, we use a reference implementation 

of Python called Jython. Java with Jython can operate Python 

in Java codes. It is released as a free license under the Python 

Software Foundation and we use Jython 2.5.2 because 

LIBSVM2.83 is suitable for Python supported by Jython 2.5.2.  

The database of training data is configured with three items:  

number, character and PDC features. The number is assigned 

to Hiragana, Katakana and Kanji characters from JIS level-1 

to level-4 kanji set beginning from 1. Otherwise, the number 

is set to 0. We use MySQL5.5.38 for the database. After 

extracting the PDC feature, a process in the SVM accesses the 

database for training data. The result of the SVM process is 

represented by numbers assigned in the database. The 

recognition result is converted to a character corresponding to 

each number. Then the web application displays the 

recognition result as a Japanese character and the original 

image of the half page on the screen side by side. Thus, the 

user can easily find the wrong recognition by just looking at 

them. Figure 8 shows a display screen of a recognition result.  

In order to correct false recognition results, a file displayed 

as the result is downloaded directly from the server as shown 

in Fig.8 (a). When users do not know how to read a displayed 

(correct) Japanese character, an IME pad can be used; the 

IME pad corresponds to JIS level-1 to level-2 kanji set. It is 

not necessary for users themselves to search unknown 

characters by using the IME pad. The IME pad reduces the 

burden of users.  Figure 9 shows a screen that users are 

correcting a false recognition by using the IME pad. Users 

upload the file that they finish modification to the server in 

Fig.9 (a). This process is the last operation. All the operations 

are performed with the buttons on the web. When users finish 

the corrections in all of the specified range, the screen 

displays just a button to add them to the training data in the 

database. 

The web application loads the files that are uploaded to the 

server and the database of training data is finally updated by 

click the confirmation button. The web application displays a 

message that operations are completed. 

Table 1 : Comparison of processing times 

Process 

(times) 

(hour:h,minute:m,second:s) 

Web application 

hand 

Process 5.22s 15h27m 

Extracting PDC features 1.76m 7m 

SVM identification 8.42m 61.2m 

Table 2 : Classified matching rate of the web application 

Comparison Number Mismatch 
Matching 

rate 

(a) 1140 191 83.2% 
(b) 934 69 92.8% 
(c) 304 8 97.5% 

(d) 630 61 90.4% 
(e) 189 105 35.6% 
(f) 17 17 0% 

5 Experiments 

In order to confirm the utility of the web application, we 

compare the cases of collecting training data by hand and by 

the web application. For comparison, we use books published 

Figure 7: Internal design 

 

 

 

  

start 

 

 

  

 Image 

 loading 

Binari-zation 

 

 

 

  finish 

Angle correction 

Ruby 

removal 

SVM 

identification 

Add character 
to database as 

training data 

Spread split 

Noise rejection 

Line cutting 

Character 

clipping 

Extring PDC 

features 

Display of the 
recognition 

result 

Figure 8: The screen of the 

recognition result for modification 

(a) 

Figure 9 : The edit screen 

(a) 

280 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



in 1883. The average number of characters per page is 1,140. 

We use a PC with Core i7-4770K @ 3.50GHz CPU and 16GB 

memory. 

5.1 Comparison results 

Table 2 shows the processing times to collect training data 

by hand and by the web application. Using the web 

application, the operation times of the image pre-processing, 

PDC feature extraction, and SVM identification are about 9.4 

× 10
-5

, 1.4 × 10
-1

, and 2.5 × 10
-1 

times compared with the hand 

collection times, respectively. It is considered to be very 

efficient because the application significantly reduced not 

only calculation times but also physically burden of users. The 

operation of collecting training data by hand takes 

approximately 16 hours and 35 minutes. When users use the 

web application spending the same time, they would collect 

approximately 96.9 times, namely 110,466 pieces of the 

character images for training data. Therefore, considering we 

need to collect a wide variety of training data from more 

books, the web application gives the user much less burden to 

collect training data. 

Next, we examine the matching rates of the recognition 

results between by hand and by the web application. The 

matching rates are represented as a percentage that indicates 

recognition results obtained by both methods. This is different 

from simple recognition rates. Table 2 shows the results. 

Comparison is performed using the items classified as 

follows. 

(a) all of the characters 

(b) characters without character clipping missing 

(c) only Kanji characters out of (b) 

(d) only Hiragana and Katakana characters out of (b) 

(e) characters with character clipping missing 

(f) separated characters with character clipping missing 

Note that (e) and (f) are excluded from the recognition target 

in our previous studies [11]. It is because we used the target 

data collected by hand in our previous studies. In the case of 

(a) matching rate is 83.2%. The recognition with characters 

collected by hand does not include any characters with 

clipping missing. On the other hand, in the case of the web 

application, characters including missing to clip are the target 

of recognition, so the recognition rate is slightly lower. In the 

case of (b), only the characters without clipping missing are 

used similarly to previous studies [11]. However, the 

characters this time includes Hiragana and Katakana and it is 

different from the previous studies (just Kanji). The matching 

rate of (b) is 92.8% where the rate rises 9.6% compared with 

(a). The reason of the improvement is that the characters with 

clipping missing are removed from the target. In the case of 

(c), the target includes just Kanji characters without clipping 

missing. The matching rate of (c) is approximately 97.5% and 

increases 4.7% compared to (b). This is because Hiragana and 

Katakana characters are not included. Hiragana and Katakana 

are not investigated in our previous studies [11]. So we 

investigate the case of (d) where approximately 90.4% of 

Hiragana and Katakana characters without clipping missing 

are correctly recognized. The matching rate of (d) decreases 

by 7.1% compared to (c). We believe that the deterioration of 

Hiragana and Katakana recognition compared to Kanji is their 

simple structures. In general, the simpler a character is, the 

less features the PDC method extracts. So we need to increase 

the number of training data for Hiragana and Katakana rather 

than Kanji. In order to confirm the recognition rate of 

characters with clipping missing, we perform the experiment 

(e). The target characters in (e) are not correctly clipped as 

shown in Fig.10. The matching rate of (e) is approximately 

35.6%. In this paper, we present the method how to increase 

the number of training data for early-modern printed Japanese 

character recognition. So we just abandon the characters with 

clipping missing from the training data target. The 

improvement of character clipping is outside of the scope of 

this paper. Figure 11 shows examples of character images 

incorrectly decomposed in the case of (f). Characters such as 

incorrectly connected, having too wide gaps and improperly 

penetrating between character components are likely clipped 

with incorrect decomposition. It indicates that 1.5% of the 

total characters are incorrectly decomposed from Tab.2. The 

problem of poorly decomposed characters are is currently 

under study.  

 We summarize the above descriptions as follows. From the 

results of (a) to (d), (c) has the highest matching rate. Also, 

from the results of (b) to (d), it is observed that the matching 

rate decreases slightly by including Hiragana and Katakana. 

Thus Kanji shows high recognition rates and likely to match 

the recognition results. By repeatedly using the web 

application, Hiragana and Katakana as well as Kanji are 

expected to be added at any time to the database of training 

data to get better recognition rates. Therefore, considering 

working time and the matching rate between manual and the 

web application, we conclude that the web application is 

sufficiently useful. 

5.2 Comparison of the results by hand with 

the web Application 

We show that we can collect how efficiently training data 

by the web application. Also we consider that how recognition 

rate changes by repeating the use of the web application. The 

initial database of the training data includes 1,000 types of 

characters and 4,345 pieces of the total characters. The 

number of average training data is 4.3. Using the web 

application, the number of training data increases. 

Figure 12 shows the transition of the recognition rate and 

the number of character types. The number of character types 

included in the database becomes approximately 1.3 times 

Figure 10:missing character images 

Figure 11: character images decompose 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 281



compared to the beginning. The recognition rate rises about 

three times. Then we compare the working time using the web 

application with by hand. The total working time is 

approximately 10.5 hours to collect the number of training 

data using the web application while it is approximately 42.9 

hours when collected similarly by hand. Thus, the working 

time for training data becomes approximately 
1

4
 by using the 

web application. 

6 Conclusions 

In this paper, we described the development of a web 

application to efficiently collect necessary training data for 

early-modern Japanese printed character recognition. We 

compared recognition results and working time in the case 

of by hand and by the web application. The total processing 

time is approximately 10.3 minutes in the case of using the 

web application. In the other hand, it is approximately 16 

hours 35 minutes by hand. In addition, the matching rate 

between only Kanji recognition results by the web 

application and by hand is about 97.5%. Then we 

conformed the transition of recognition rate and the types 

and the numbers of characters. The recognition rate 

becomes approximately 3 times compared to the beginning. 

The number of character types becomes approximately 1.3 

times, and the number of the total raising data becomes 

approximately 2.1 times. The total working time by using 

the web application is approximately 10.5 hours while it 

takes approximately 42.9 hours by hand as well. Therefore 

the total working time of the web application is 

approximately 
1

4
 times reduced. Therefore, our web 

application is sufficiently useful for the processing time, the 

matching rate, the recognition rate and the transition of 

types and the numbers of characters included in the 

database. 

Acknowledgment 

This work is partially supported by Grant-in-Aid for 

scientific research from the Ministry of Education, Culture, 

Sports, Science and Technology of Japan (MEXT) No. 

26280119. We would like to give heartful thanks to Saki 

Okamura and Natsuko Takagita and Rena Kakihara and 

Akemi Kanematsu and Satsuki Tomizawa of Nara Women’s 

University for their writing programs. 

References 

[1] National Diet Library :http://www.ndl.go.jp/ 

[2] Degital Library From the Meiji Era, kindai.ndl.go.jp/  

[3] Ishikawa,C.，Ashida,N.，Enomoto,Y.，Takata,M.，

Kimesawa,T.，and Joe,K．：Recognition of Multi-

Fonts Character in Early-Modern Printed Books ，
Proceedings of International Conference on Parallel and 

Distributed Processing Techniques and Applications 

(PDPTA’09)，Vol.Ⅱ，pp．728-734(2009)． 

[4] Fukuo,M. ， Enomoto,Y. ， Yoshii,N. ， Takata,M. ，

Kimesawa,T. and Joe,K．：Evalua-Tion of the SVM 

based Multi-Fonts Kanji Character Recognition Method 

for Early- Modern Japanese Printed Books，Proceedings 

of The 2011 International Conference on Parallel and 

Distributed Processing Technologies and Applications 

(PDPTA2011)，Vol.Ⅱ，pp．727-732(2011)． 

[5] M. Fukuo, M. T. and Joe, K. (2012). The Kanji character 

recognition evalution for the modern book of the same 

publisher (in Japanese). The Information Processing 

Society of Japan. Mathematical Modeling and Problem 

Solving(MPS), 26:1–6. 

[6] Aozora Bunko : http://www.aozora.gr.jp/ 

[7] Japanese Industrial Standards：https ://www.jisc.go.jp/ 

[8] Taeka Awazu, Manami Fukuo, Masami Takata and 

Kazuki Joe : A Multi-Fonts Kanji Character Recognition 

Method for Early-Modern Japanese Printed Books with 

Ruby Characters, International Conference on Pattern 

Recognition Applications and Methods (ICPRAM 2014), 

637-645 (2014.3) 

[9] N. Hagita, S. Naito and I. Masuda. “Handprinted 

Chinese Characters Recognition by Peripheral Direction 

Contributivity Feature”, IEICE, Vol.J66-D, 10, pp.1185-

1192, 1983. (in Japanese)  

[10] Cristianini，N．andShawe-Taylor，J. : Support vector 

machine Introduction，Kyoritsu Publisher(2005)． 

[11] Taeka Awazu, Manami Fukuo, Masami Takata and 

Kazuki Joe : Analysis of the Relation between the 

Number of Necessary Training Data and Each Category 

for Multi-Fonts Kanji Character Recognition Method (in 

Japanese). The Information Processing Society of Japan, 

Mathematical Modeling and Problem Solving(MPS), 

97 :1-6. 

[12] National Institute of Informatics : http://www.nii.ac.jp/ 

[13] V. Vapnik. : “The Nature of Statistical Learning Theory”. 

Springer-Verlag, (1995) 

0.2
0.25
0.3
0.35
0.4
0.45
0.5
0.55
0.6
0.65
0.7

4000

5000

6000

7000

8000

9000

10000

re
co

g
n

itio
n

 ra
te

 

N
u

m
b
e
r 

o
f 

a
ll

 c
h

a
ra

ct
e
rs

 

Number of character types 
number of character types

recognition rate

Figure 12 : transition of the recognition rate[%] and the 

number of character types[items] included in the 

database of training data. 

282 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |

http://www.aozora.gr.jp/
http://www.nii.ac.jp/


Residual Inter-Contact Time for Opportunistic Networks with
Pareto Inter-Contact Time: Two Nodes Case

Juntao Gao1 and Minoru Ito1
1Graduate School of Information Science, Nara Institute of Science and Technology, Ikoma City, Nara, Japan

Abstract— Opportunistic networks (OppNets) are appealing
for many applications, such as wild life monitoring, disaster
relief and mobile data offloading. In such a network, a
message arriving at a mobile node could be transmitted
to another mobile node when they opportunistically move
into each other’s transmission range (called in contact), and
after multi-hop similar transmissions the message will finally
reach its destination. Therefore, for one message the time
interval from its arrival at a mobile node to the time the
mobile node contacts another node constitutes an essential
part of the message’s whole delay. Thus, studying stochastic
properties of this time interval between two nodes lays a
solid foundation for evaluating the whole message delay
in OppNets. Note that this time interval is within the time
interval between two consecutive node contacts (called inter-
contact time) and it is also referred to as residual inter-
contact time. In this paper, we derive the closed-form dis-
tribution for residual inter-contact time. First, we formulate
the contact process of a pair of mobile nodes as a renewal
process, where the inter-contact time features the popular
Pareto distribution. Then, we derive, based on the renewal
theory, closed-form results for the transient distribution of
residual inter-contact time and also its limiting distribution.
Our theoretical results on distribution of residual inter-
contact time are validated by simulations.

Keywords: Opportunistic networks, DTNs, inter-contact times

1. Introduction
Nowadays, portable mobile nodes (e.g., smart phones,

tablets, digital cameras, censors) have been used ubiqui-
tously in our daily life. Equipped with advanced wireless
communication technologies (e.g., Bluetooth, WiFi Direct
and ZigBee), these mobile nodes are now able to commu-
nicate directly with each other when they opportunistically
move into transmission range (also called in contact). This
promises a novel communication paradigm, opportunistic
networks (OppNets)1, which exploit opportunistic direct
contacts of mobile nodes to deliver messages among them
[1], shown in Fig.1a. Since OppNets are cost-effective,
resilient to node failures and can be deployed rapidly, they
can be used to enable communications in extreme environ-
ments (e.g., disaster, rural areas and wildlife monitoring)

1OppNets are also referred to as delay tolerant networks (DTNs).

Fig. 1: (a) Direct communication when node u1 contacts
u2. (b) Relationship between residual inter-contact time and
inter-contact time.

and enhance communications in existing networks (e.g.,
offloading data traffic in cellular networks, where mobile
nodes share data directly when in contact).

In OppNets, a message arriving at a mobile node is
transmitted directly to another mobile node when the two
nodes opportunistically contact each other, and after multi-
hop similar transmissions the message will finally reach its
destination. Therefore, for one message the time interval
from its arrival at a mobile node to the time the mobile node
contacts another node constitutes an essential part of the
whole delay of that message and thus significantly impacts
the message’s delay performance. Note that this time interval
is within the time interval between two consecutive node
contacts (called inter-contact time) as shown in Fig.1b, and
it is also referred to as residual inter-contact time. Since
residual inter-contact time represents the time a message has
to wait at a mobile node before getting transmitted to next
mobile node, its study serves as a cornerstone for evaluating
the whole message delay.

As residual inter-contact time is embedded in inter-contact
time, extensive works have been done first on investigating
inter-contact time distribution. By analyzing real mobility
traces of OppNets [2]–[4], the authors [5], [6] found that
Pareto distribution with or without exponential cutoff is a
good fitting distribution for inter-contact time there. By ana-

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 283



lyzing synthetic mobility models (such as random waypoint,
random walk), the authors [6], [7] also concluded that Pareto
distribution is a reasonable distribution for characterizing
inter-contact time (refer to Section 2 for more related works
on inter-contact time). Based on such findings, researchers
studied the distribution of residual inter-contact time for
OppNets with Pareto inter-contact time. The authors [5]
derived upper and lower bounds for the distribution of
residual inter-contact time. Later, the authors [6] presented a
general expression for calculating the accurate distribution of
residual inter-contact time, but arrived at a wrong distribution
result for OppNets with Pareto inter-contact time [8]. The
authors [8] attempted to derive the correct distribution of
residual inter-contact time, however, they used the limiting
time-average fraction of residual time less than given value
to represent the real distribution of residual inter-contact
time, which is not justified.

Our contribution in this paper is to rigorously derive
the accurate distribution of residual inter-contact time for
homogeneous OppNets, where inter-contact times of all node
pairs follow the same Pareto distribution. Our work also
justifies the result in [8].

• First, we formulate the contact process of a pair of
mobile nodes as a renewal process, where the inter-
contact time features the popular Pareto distribution [5],
[9].

• Then, we derive, based on the renewal theory, closed-
form results for transient distribution of residual inter-
contact time and also its limiting distribution as time
goes to infinity. For a tagged node, we also derive the
distribution of the shortest residual inter-contact time
between that node and all other nodes.

• Finally, we conduct simulations to validate the theo-
retical results on distribution of residual inter-contact
time.

Our results on distribution of residual inter-contact time can
be used to analyze delay performance of popular routing
protocols in OppNets, such as epidemic routing and two-
hop relay routing protocols.

The rest of this paper is organized as follows. In Section
2 we give more related works on inter-contact times. In
Section 3, we present problem formulation by rigorously
defining inter-contact time, residual inter-contact time and
relative quantities. We then derive both transient and limiting
distributions for residual inter-contact time in Section 4. We
present simulation results to validate our derived distribution
in Section 5. Finally, we conclude this paper in Section 6.

2. Related Works
Cai and Eun [10] investigated the age of inter-contact

time between two mobile nodes, which could be used to
study their residual inter-contact time properties. Passarella
and Conti [11] characterized the relationship between the

distributions of inter-contact times of different node pairs
and the resulting aggregate distribution (the distribution
obtained from aggregating samples of inter-contact times
of all node pairs) in heterogeneous opportunistic networks
where inter-contact times of different node pairs follow
different distributions. Through empirical statistical analy-
sis, Zhu and others [12] reported that inter-contact times
of vehicles follow exponential distribution. By modeling
general synthetic mobility model, La [13] showed that the
distribution of inter-contact times can be well approximated
by an exponential distribution under some conditions. Most
works in the literature on inter-contact times used aggregated
samples of inter-contact times of all nodes to estimate inter-
contact time distribution of a pair of nodes, however, Orallo
and others [14] showed this method cannot accurately char-
acterize pair-wise inter-contact time distribution. Instead,
they proposed another two methods (namely, aggregate
nodes and any contact) to better characterize inter-contact
time distribution. Biondi and others [15] studied the effect
of power saving policy (duty cycling) on the performances of
inter-contact times between mobile devices and showed that
the inter-contact times under duty cycling are approximately
exponential when original inter-contact times of devices are
exponential.

3. Problem Formulation
Suppose two mobile nodes u1 and u2 move around in an

OppNet, they employ the same wireless transmission range
as shown in Fig.1a. We define the following terms for the
two nodes.

Contact: We say node u1 contacts node u2 if u2 moves
into the wireless transmission rang of u1, as illustrated in
Fig.1a.

Contact Epoch: A contact epoch is the time instant at
which u1 contacts u2. We denote successive contact epochs
of u1 and u2 by S0, S1, S2, · · · where 0 = S0 < S1 < S2 <
· · · .

Inter-Contact Time: An inter-contact time X for u1

and u2 is the time interval between their two consecutive
contacts, as shown in Fig.1b. Thus, the i-th inter-contact
time Xi = Si − Si−1, where i ≥ 1. We assume Xi’s
are independent and identically distributed (IID) random
variables as previous works [5]–[7].

Contact Process: The contact process of u1 and u2 is
denoted by {N(t); t > 0} where N(t) records the number
of total contacts between u1 and u2 occurring in time interval
(0, t], i.e., up to and including time t. Then, N(t) = n if
and only if Sn ≤ t < Sn+1, as shown in Fig.2. Note also
that if u1 and u2 contact at time t then SN(t) = t. Since all
inter-contact times are IID, the contact process is actually
a renewal process (a renewal process is an arrival process
where all inter-arrival intervals are positive IID random
variables) [16].

284 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



Fig. 2: Sample path of contact process N(t) for u1 and u2.

Residual Inter-Contact Time: Assume a message arrives
at u1 at time t, then the time interval from t to the next time
node u1 contacts node u2 is defined to be the residual inter-
contact time for that message at time t, which is denoted
by R(t) and R(t) = SN(t)+1 − t > 0, i.e., the time interval
within the inter-contact time as shown in Fig.2.

Age of Inter-Contact Time: Assume a message arrives
at u1 at time t, then the time interval from the most recent
contact between u1 and u2 before/at t to time t is defined
to be the the age of inter-contact time for that message at
time t, which is denoted by A(t) and A(t) = t−SN(t) ≥ 0,
as shown in Fig.2.

Note that if N(t) = 0 at time t, it means that no contact
has happened between u1 and u2 in time interval (0, t], then
the first inter-contact time X1 must satisfy X1 > t and
consequently A(t) = t − S0 = t; if N(t) ≥ 1 at time t,
then SN(t) > 0 and A(t) = t − SN(t) < t. To sum up,
0 ≤ A(t) ≤ t.

Concerned Inter-Contact Time: Assume a message
arrives at u1 at time t, then the time interval from the most
recent contact epoch of u1 and u2 before/at t, SN(t), to the
next time they contact each other, SN(t)+1, is defined to be
the concerned inter-contact time, which is denoted by X̃(t)
and X̃(t) = SN(t)+1 − SN(t) = XN(t)+1 > 0.

From the definitions of R(t), A(t) and X̃(t), we have the
followings: X̃(t) = R(t) + A(t) and X̃(t) > A(t), for any
t ≥ 0.

Pareto Inter-Contact Time: Analysis of real mobility
traces and synthetic mobility models suggests that Pareto
distribution can well approximate the distribution of inter-
contact times in OppNets [5]–[7]. Thus, we assume all inter-
contact times Xi’s for node u1 and u2 feature a Pareto
distribution with scalar parameters xm > 0 and α > 1 as
follow [6], [8],

FX(x) = Pr{X ≤ x} =

{
1−

(
xm

x

)α
if x ≥ xm,

0 if 0 < x < xm,
(1)

from which we also have the mean value

X = E{X} =
αxm

α− 1
. (2)

4. Inter-Contact Time Analysis
In this section we derive closed-form results for the

distribution of residual inter-contact time. We first present a
lemma below, which will be used in our following derivation.

Lemma 1: Consider the contact process {N(t); t > 0}
between u1 and u2 defined before. Suppose a message
arrives at u1 at time t. For given constant a, δ and x
satisfying 0 ≤ a < a+ δ ≤ t, a+ 2δ ≤ x, let E denote the
following event

E = {a ≤ A(t) < a+ δ, x− δ < X̃(t) ≤ x}, (3)

where A(t) is the age of inter-contact time at time t for that
message, X̃(t) is the concerned inter-contact time.

Then, we have

Pr{E} =
(
m(t− a)−m(t− a− δ)

)(
FX(x)− FX(x− δ)

)
(4)

where m(t) = E{N(t)}.
Proof: Since the contact process forms a renewal

process, this lemma follows directly from Theorem 5.7.2
[16].

Now, we derive the transient distribution of residual inter-
contact time for nodes u1 and u2.

Theorem 1: For an OppNet with Pareto inter-contact
times given in (1), the transient distribution of residual inter-
contact time R(t) for a message at time t is

Pr{R(t) ≤ r} =
(xm

t

)α

−
( xm

t+ r

)α

+

∫ t

0

(
FX(t− τ + r)− FX(t− τ)

)
dm(τ)

(5)

where r > 0.
Proof: Assume a message arrives at node u1 at time

t. Then,

Pr{R(t) ≤ r} (6)

=Pr
{
X̃(t)−A(t) ≤ r

}
(7)

=Pr
{
X̃(t)−A(t) ≤ r,A(t) = t

}︸ ︷︷ ︸
P1

+ Pr
{
X̃(t)−A(t) ≤ r, 0 ≤ A(t) < t

}︸ ︷︷ ︸
P2

(8)

where (8) follows from the fact that 0 ≤ A(t) ≤ t and the
law of total probability.

We calculate probability P1 first. Recall that X̃(t) is the
concerned inter-contact time containing time t and X̃(t) >

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 285



Fig. 3: Sample points of joint A(t) and X̃(t).

A(t) for any t.

P1 = Pr
{
A(t) < X̃(t) ≤ A(t) + r,A(t) = t

}
(9)

= Pr
{
t < X̃(t) ≤ t+ r,A(t) = t

}
(10)

= Pr
{
t < XN(t)+1 ≤ t+ r,A(t) = t

}
(11)

= Pr
{
t < X ≤ t+ r

}
(12)

= FX(t+ r)− FX(t) (13)

=
(xm

t

)α

−
( xm

t+ r

)α

(14)

where (12) follows from the fact that A(t) = t indicates
no contact happens in (0, t], i.e., N(t) = 0, thus, X̃(t) =
XN(t)+1 = X1. Note also that all Xi’s follow the same
Pareto distribution given in (1).

We next calculate probability P2.

P2 = Pr
{
A(t) < X̃(t) ≤ A(t) + r, 0 ≤ A(t) < t

}
(15)

=
l−1∑
k=0

Pr
{
A(t) < X̃(t) ≤ A(t) + r, kδ ≤ A(t) < kδ +δ

}︸ ︷︷ ︸
P̃k

(16)

where we divide interval 0 ≤ A(t) < t into l sub-intervals
[kδ, kδ + δ), 0 ≤ k ≤ l − 1, and δ = t

l .
Next, we calculate the general term P̃k in (16),

P̃k = Pr
{
A(t) < X̃(t) ≤ A(t) + r, kδ ≤ A(t) < kδ + δ

}
(17)

Note that P̃k is the probability of the event illustrated by the
gray area of sample points of age A(t) and X̃(t), shown in
Fig.3. From this figure, we see that

P̃k ≥ Pr
{
kδ + δ < X̃(t) ≤ kδ + r, kδ ≤ A(t) < kδ + δ

}
,

(18)

=
(
m(t− kδ)−m(t− kδ − δ)

)
·
(
FX(kδ + r)− FX(kδ + δ)

)
, (19)

where (19) follows from Lemma 1. Similarly,

P̃k ≤ Pr
{
kδ < X̃(t) ≤ kδ + r + δ, kδ ≤ A(t) < kδ + δ

}
,

(20)

=
(
m(t− kδ)−m(t− kδ − δ)

)
·
(
FX(kδ + r + δ)− FX(kδ)

)
. (21)

Thus, from (15), (19) and (21), we have

P2 ≥
l−1∑
k=0

(
m(t− kδ)−m(t− kδ − δ)

)
· FX(kδ + r)︸ ︷︷ ︸

L1

−
l−1∑
k=0

(
m(t− kδ)−m(t− kδ − δ)

)
· FX(kδ + δ)︸ ︷︷ ︸

U2

,

(22)

and

P2 ≤
l−1∑
k=0

(
m(t− kδ)−m(t− kδ − δ)

)
· FX(kδ + r + δ)︸ ︷︷ ︸

U1

(23)

−
l−1∑
k=0

(
m(t− kδ)−m(t− kδ − δ)

)
· FX(kδ)︸ ︷︷ ︸

L2

, (24)

where U1 and L1 are just the upper and lower Stieltjes sums
of FX(t− τ + r) with respect to m(τ) on [0, t], U2 and L2

are the upper and lower Stieltjes sums of FX(t − τ) with
respect to m(τ) on [0, t].

Since m(τ) is the expectation of N(t), m(τ) is an
increasing function on [0, t] and thus is of bounded variation
on [0, t] (Theorem 6.5 [17]). Note also that FX(t − τ + r)
is a continuous function on [0, t] since FX(x) is Pareto
distribution. These two conditions indicate the existence of
the following Riemann-Stieltjes integral (Theorem 7.27 [17])∫ t

0

FX(t− τ + r)dm(τ). (25)

The existence of Riemann-Stieltjes integral in (25) further
indicates that (Theorem 7.19 [17]) for any ϵ1 > 0,

0 ≤ U1 − L1 < ϵ1, as l → ∞. (26)

Similarly, the following Riemann-Stieltjes integral also ex-
ists ∫ t

0

FX(t− τ)dm(τ) (27)

and for any ϵ2 > 0,

0 ≤ U2 − L2 < ϵ2, as l → ∞. (28)

286 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



From (26) and (28), we know that for any ϵ > 0,

0 ≤ (U1 − L2)− (L1 − U2) < ϵ, as l → ∞. (29)

Thus, according to Theorem 7.19 [17], we have

P2 =

∫ t

0

(
FX(t− τ + r)− FX(t− τ)

)
dm(τ) (30)

Next, we derive the limiting distribution of residual inter-
contact time R(t) as t → ∞.

Theorem 2: For an opportunistic network with Pareto
inter-contact time given in (1), the limiting distribution of
residual inter-contact time R(t) of a message as t → ∞ is

lim
t→∞

Pr{R(t) ≤ r} =

{
1− 1

α

(
xm

r

)α−1
if r ≥ xm,

rα−r
αxm

if 0 < r < xm.

(31)
Proof: From (5), we know

lim
t→∞

Pr{R(t) ≤ r}

= lim
t→∞

∫ t

0

(
FX(t− τ + r)− FX(t− τ)

)
dm(τ). (32)

From the key renewal theorem [16], we know

lim
t→∞

∫ t

0

(
FX(t− τ + r)− FX(t− τ)

)
dm(τ)

=
1

X

∫ ∞

0

(
FX(x+ r)− FX(x)

)
dx (33)

where FX(x) and X are given in (1) and (2), respectively.
We next calculate the integral in (33). For 0 < r ≤ xm,

FX(x+ r) =

{
1−

(
xm

x+r

)α if x+ r ≥ xm,
0 if 0 < x+ r < xm.

(34)

Thus,

FX(x+ r)− FX(x)

=


(
xm

x

)α −
(

xm

x+r

)α
if x > xm,

1−
(

xm

x+r

)α if xm − r < x ≤ xm,
0 if 0 < x ≤ xm − r.

(35)

Then, we have∫ ∞

0

(
FX(x+ r)− FX(x)

)
dx

=

∫ xm

xm−r

(
1−

( xm

x+r

)α)
dx+

∫ ∞

xm

((xm

x

)α

−
( xm

x+r

)α)
dx

(36)
= r (37)

For r > xm, since x+ r > xm for any x > 0, we have

FX(x+ r) = 1−
( xm

x+ r

)α
, x > 0. (38)

Thus,

FX(x+ r)− FX(x)

=

{ (
xm

x

)α −
(

xm

x+r

)α if x > xm,
1−

(
xm

x+r

)α
if 0 < x ≤ xm.

(39)

Then, we have∫ ∞

0

(
FX(x+ r)− FX(x)

)
dx

=

∫ xm

0

(
1−

( xm

x+r

)α)
dx+

∫ ∞

xm

((xm

x

)α

−
( xm

x+r

)α)
dx

(40)

=xm +
xα
mr−α+1

−α+ 1
− xm

−α+ 1
(41)

To sum up,∫ ∞

0

(
FX(x+ r)− FX(x)

)
dx (42)

=

{
xm +

xα
mr−α+1

−α+1 − xm

−α+1 if r > xm,
r if 0 < r ≤ xm.

(43)

After substituting (2) and (43) into (33), we have

lim
t→∞

Pr{R(t) ≤ r}=

{
1− 1

α

(
xm

r

)α−1 if r > xm,
rα−r
αxm

if 0 < r ≤ xm.

(44)

This completes the proof.
Finally, we want to find out how long it will take a node

with a new arrival message to contact another node in the
OppNet, thus having opportunities to forward the message
to the next node.

Suppose a homogeneous opportunistic network of W
nodes, where all nodes move independently and the inter-
contact times of every pair of nodes feature the same Pareto
distribution given in (1). Let Rij(t) be the residual inter-
contact time for node i and node j, then the time interval
R∗(t) from time t the message arrives at node u1 to the
time u1 contacts any one of the other W − 1 nodes in the
network is

R∗(t) = min
{
R12(t), R13(t), · · · , R1W (t)

}
(45)

Lemma 2: The limiting distribution of R∗(t) is given as
follows.

lim
t→∞

Pr{R∗(t) ≤ r}

=

{
1−

(
1
α

)W−1(xm

r

)(α−1)(W−1)
if r ≥ xm,

1−
(
αxm−rα+r

αxm

)W−1 if 0 < r < xm.

(46)
Proof:

Pr{R∗(t) ≤ r} = 1− Pr{R∗(t) > r} (47)
=1− Pr{R12(t) > r,R13(t) > r, · · · , R1W (t) > r} (48)
=1− Pr{R12(t) > r}Pr{R13(t) > r} · · ·Pr{R1W (t) > r}

(49)

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 287



where (49) follows from the independence of node mobility.
After substituting (31) into (49), we got (46).

5. Simulation Results
To validate the derived distribution of residual inter-

contact time, we developed a customized simulator in C++
to simulate the contact process between two nodes u1,
u2, the random message arrival process to node u1, and
observe the residual inter-contact times regarding message
arrivals. Specifically, we simulated three different network
scenarios where inter-contact times between u1 and u2 all
follow Pareto distribution but with different scalar parameter
settings: (xm = 1.0, α = 1.5), (xm = 1.0, α = 2.0)
and (xm = 2.0, α = 3.0). We assume messages arrive at
node u1 according to a Poisson process with arrival rate of
0.001. During simulations, we measured the residual inter-
contact time for a message as the time interval from the
time it arrives at u1 to the next time u1 contacts u2. From
the measured residual inter-contact times, we calculated
their distribution. The simulated distributions under three
network scenarios are presented in Fig.4, where correspond-
ing theoretical distributions are also given for comparison.
From Fig.4, we can see that our derived distributions for
residual inter-contact time perfectly match the simulated
ones, verifying our theoretical results.

0.1 1 10 100 1000
0.0

0.2

0.4

0.6

0.8

1.0

r   (log scale)

P
ro

ba
bi

lit
y

 theoretical
 simulation

 

 

Xm = 1.0, = 1.5

Xm = 2.0, = 3.0

Xm = 1.0, = 2.0

Fig. 4: Disbribution of residual inter-contact time under
different Pareto distribution parameters.

6. Conclusion
In this paper, we rigorously derived the distribution of

residual inter-contact time for opportunistic networks with
Pareto inter-contact times. Our results have important impli-
cations for applications (by the law of large numbers): for
a homogeneous OppNet, where contacts of all node pairs

follow common inter-contact time distribution (e.g., students
in a campus and corporate users [18]), the distribution of
residual inter-contact times can be found out by collecting
samples of residual inter-contact times from all node pairs
in stead of collecting samples from the same node pair for a
long time. This creates great experiment convenience, since
long-time tracking of the same pair of nodes is usually
prohibited due to privacy while short-time tracking all node
pairs is much easier.

References
[1] L. Pelusi, A. Passarella, and M. Conti, “Opportunistic networking:

Data forwarding in disconnected mobile ad hoc networks,” IEEE
Communications Magazine, vol. 44, no. 11, pp. 134–141, November
2006.

[2] M. McNett and G. M. Voelker, “Access and mobility of wireless pda
users,” ACM SIGMOBILE Mobile Computing and Communications
Review, vol. 9, no. 2, pp. 40–55, April 2005.

[3] J. Su, A. Chin, A. Popivanova, A. Goel, and E. de Lara, “User
mobility for opportunistic ad-hoc networking,” in Proceedings of the
Sixth IEEE Workshop on Mobile Computing Systems and Applications
(WMCSA), 2004.

[4] N. Eagle and A. Pentland, “Reality mining: sensing complex social
systems,” Personal and Ubiquitous Computing, vol. 10, no. 4, pp.
255–268, May 2006.

[5] A. Chaintreau, P. Hui, J. Crowcroft, C. Diot, R. Gass, and J. Scott,
“Impact of human mobility on opportunistic forwarding algorithms,”
IEEE Transactions on Mobile Computing, vol. 6, no. 6, pp. 606–620,
April 2007.

[6] T. Karagiannis, J.-Y. L. Boudec, and M. Vojnovic, “Power law and
exponential decay of intercontact times between mobile devices,”
IEEE Transactions on Mobile Computing, vol. 9, no. 10, pp. 1377–
1390, August 2010.

[7] H. Cai and D. Y. Eun, “Crossing over the bounded domain: From
exponential to power-law intermeeting time in mobile ad hoc net-
works,” IEEE/ACM Transactions on Networking, vol. 17, no. 5, pp.
1578–1591, October 2009.

[8] C. Boldrini, M. Conti, and A. Passarella, “From pareto inter-contact
times to residuals,” IEEE Communications Letters, vol. 15, no. 11,
pp. 1256–1258, November 2011.

[9] A. Clauset, C. R. Shalizi, and M. E. J. Newman, “Power-law distri-
butions in empirical data,” SIAM Review, vol. 51, no. 4, pp. 661–703,
2009.

[10] H. Cai and D. Y. Eun, “Aging rules: What does the past tell about the
future in mobile ad-hoc networks?” in Proceedings of the tenth ACM
international symposium on Mobile ad hoc networking and computing
(MobiHoc), 2009.

[11] A. Passarella and M. Conti, “Analysis of individual pair and aggregate
inter-contact times in heterogeneous opportunistic networks,” IEEE
Transactions on Mobile Computing, vol. 12, no. 12, pp. 2483–2495,
October 2013.

[12] H. Zhu, L. Fu, G. Xue, Y. Zhu, M. Li, and L. M. Ni, “Recogniz-
ing exponential inter-contact time in vanets,” in Proceedings IEEE
INFOCOM, 2010.

[13] R. J. La, “Distributional convergence of intermeeting times under the
generalized hybrid random walk mobility model,” IEEE Transactions
on Mobile Computing, vol. 9, no. 9, pp. 1201–1211, Semptember
2010.

[14] E. Hernandez-Orallo, J.-C. Cano, C. T. Calafate, and P. Manzoni, “A
representative and accurate characterization of inter-contact times in
mobile opportunistic networks,” in Proceedings of the 16th ACM in-
ternational conference on Modeling, analysis & simulation of wireless
and mobile systems (MSWiM), 2013.

[15] E. Biondi, C. Boldrini, M. Conti, and A. Passarella, “Duty cycling in
opportunistic networks: the effect on intercontact times,” in Proceed-
ings of the 17th ACM international conference on Modeling, analysis
and simulation of wireless and mobile systems (MSWiM), 2014.

288 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



[16] R. G. Gallager, Stochastic Processes: Theory for Applications. Cam-
bridge University Press, February 2014.

[17] T. M. Apostol, Mathematical Analysis. Addison-Wesley, 1974.
[18] J. Leguay, T. Friedman, and V. Conan, “Evaluating mobility pattern

space routing for dtns,” in Proceedings of 25th IEEE International
Conference on Computer Communications (INFOCOM), 2006.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 289



Web of Wine Words: Hierarchy Visualization of Wine 
Speak by Restricted Bootstrap 

 
Brendan Flanagan1, Sachio Hirokawa2 

1Graduate School of Information Science and Electrical Engineering, Kyushu University, Fukuoka, Japan 
2Research Institute for Information Technology, Kyushu University, Fukuoka, Japan 

 
 

Abstract - Visualization of the relation of characteristic 
words can be useful for interpreting search results and enable 
comparisons to be made between multiple searches. In this 
paper we introduce a method of analysis by applying 
restricted bootstrapping to a set of characteristic words for 
extracting specificity or generality relations. These relations 
are used to construct a tree structure of the characteristic 
words that represents their hierarchical specificity or 
generality. This method was applied to a corpus of wine 
tasting notes to identify the characteristics of two wine regions 
by hierarchy tree. The results are compared with the 
frequencies of the characteristic words. 

Keywords: Restricted Bootstrap, Characteristic Hierarchy 
Visualization, Topic Drift, Wine Speak 

 

1 Introduction 
  When searching it can be difficult to interpret from the 
results whether a characteristic has specificity or generality to 
the query. This is particularly apparent when trying to 
compare characteristics of search results for queries that 
might share many common attributes, such as wines from 
different regions. The characteristics of wine are often 
described using specialist expressions, called wine speak. 
People not familiar with these types of descriptions can find 
them confusing, as they don’t have an understanding of 
different levels of particular and general expressions. Some 
words might have high generality, such as “smell”, where as 
others are more specific, such as “crushed tomato leaf” as 
used by Joe Czerwinski in his review of a Villa Maria 2009 
Sauvignon Blanc1. 

A situation is also similar to that found when searching on the 
Internet due to the vast quantity of information that is 
available today. A user sometimes finds that the search query 
they have entered does not return the intended results in the 
case of keywords with high generality, or no results in the 
case of keywords that are too specific. This may occur 
because the user did not have an understanding of the 
different levels of particular and general keywords. 

The relations of characteristics are not immediately obvious 
when comparing simple search results. Some characteristics 

                                                             
1 http://buyingguide.winemag.com/catalog/villa-maria-2009-taylors-

could be more of general quality, whereas others might be 
specific to the search query. The characteristics of search 
results can be thought of as a hierarchy tree, with words that 
are similar attaching to the same parent node. The parent 
nodes are then connect to create a word tree in order of 
greatest generality to the query at the root and greatest 
similarity at the lowest leaf nodes. 

In this paper, we will demonstrate how the restricted 
bootstrap algorithm can be used to extract the degree of 
common generality between a pair of words. We investigate a 
method of generating a hierarchy of words from the 
specificity and generality relation of characteristic words and 
a corpus of target documents. 

2 Related work 
2.1 Information Extraction by Bootstrap 
 In previous research, Mihalcea et al. [7] and Palshikar 
[8] analyzed networks of words as undirected graphs made 
from the results of query word searches. Palshikar [8] 
proposed that central vertices in the graph are representative 
keywords of the document.  Mihalcea et al. [7] proposed the 
TextRank method that scores words in a similar way to how 
the HITS algorithm scores hub/authority sites in a graph of 
web pages. Pantel et al. [9] proposed a minimally supervised 
bootstrapping algorithm named Espresso to extract semantic 
relations. Komachi et al. [6] demonstrated that semantic drift 
in bootstrapping is similar to that of the HITS algorithm and 
proposed graph based methods based on von Neumann 
kernels and regularized Laplacian to reduce semantic drift. 
While the above researches were carried out independently of 
each other, Radev et al. [12] notes that they all are based on 
the analysis of word co-occurrence as a bi-partite graph of 
documents and words by traversing back and forth between 
different node types to find feature words and sentences.  
More recently, Tian et al. [14] proposed using bootstrapping 
to extract Chinese hyponyms from a Web corpus by 
extracting double anchored hyponyms using bootstrapping.  

We have previously revealed in [2] that semantic drift can be 
reduced by restricting the query length at each iteration of the 
bootstrap process. This algorithm was used to visualize the 
generality relation of search results in [4]. Also in other 
research, [3] we have examined the relations of wine speak 

290 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



expressions found in wine magazine blogs and visualized 
these as mind maps to support the learning of wine speak. In 
the present paper, we propose a method of extracting the 
specificity or generality relation of characteristic words to a 
search query by applying restricted bootstrapping.  

2.2 Wine Tasting Note Analysis 
 There are many papers on research into the language 
that is used to describe wines, called Wine Speak. Some of 
this research is dedicated to analyzing wine tasting notes from 
different points of view. Caballero [1] focused on how 
manner-of-motion verbs are used from the point of view of 
describing a wine’s intensity and persistence. Manner-of-
motion verbs occur often used in wine tasting notes to depict 
motions, such as “hints of milk chocolate and vanilla sneak in 
on the palate”. A corpus of wine tasting collected from the 
Wine Enthusiast, Wine Spectator, and Wine Advocate was 
analyzed and examples of 56 typical sentences that contain 
such verbs were given. Paradis and Eeg-Olofsson [11] 
examined tasting notes to identify expressions and words that 
are related to the viewpoints of vision, smell, taste, and touch. 
39 typical phrases of these sensory expressions were 
identified. Paradis [10] investigated the analysis of semantic 
middles in wine tasting notes and their use as a recommender 
to estimate prime drinking time. A sub corpus of 200 notes 
was randomly selected from a corpus of 80,000 notes from 
the Wine Advocate and a meticulous evaluation of 38 
sentences was given. 

There is also related research into the visualization of wine 
tasting notes for linguistic analysis. Kerren et al. [5] 
visualized wine tasting notes using word trees generated from 
parts of speech and words. Their system enables the analysis 
of linguistic patterns within single wine reviews or based on 
regions and varieties. The system is highly specialized with 
the intention to be used for linguistic exploration of wine 
tasting notes. A database of 84,864 documents was analyzed 
and various visualizations are given. The word trees that are 
generated are limited to single documents and do not allow a 
visual overview of a subset of the corpus. In previous 
research, we examined the relations of wine speak 
expressions found in wine magazine blogs and visualized 
these as mind maps to support the learning of wine speak [4]. 

In the present paper, we propose a method of using the 
restricted bootstrapping algorithm to search for common 
generality between pairs of query words. This is then 
analyzed to generate a word hierarchy of the query words 
with relation to the target documents in the corpus. 

3 Hierarchy generation by restricted 
bootstrapping 

 The generation of characteristic word hierarchies by 
restricted bootstrapping involves two main steps: firstly, 
applying restricted bootstrapping for each characteristic word 
paired with the target query, and secondly, generating the 

characteristic word hierarchy based on the analysis of the 
restricted bootstrapping results. 

3.1 Restricted Bootstrap Algorithm 
 The second author of this paper initially proposed a 
method of restricted bootstrapping [2] as a solution to the 
problem of semantic drift that sometimes occurs when the 
result of a bootstrap that has been applied to documents and 
words is too far from the initial query. When evaluated on the 
extraction of infrequent characteristic words, we confirmed 
that a tight bootstrap restriction of k = 1 produces a 10% 
increase in the Mean Average Precision when compared to a 
looser restriction of k = 50. However a comprehensive 
quantitative evaluation is still required as future work. 

BS(U,q,k) { 
 W = {} 
 i=0 
 while(true){ 
    Wi = word(doc(U && q)) 
    W = top(k,Wi) 
    last if W == U 
    i = i+1 
    U = W 
 } 
 return W  
}  

 Figure 1. Restricted Bootstrap Algorithm 

 In this paper, the restricted bootstrap algorithm 
BS(U,q,k), shown in Fig. 1, extracts words for each word in 
the characteristic word set U with relation to the initial query 
q. The algorithm starts by searching for a query comprising of 
the initial query q and a word from the characteristic word set 
U. The words of the documents in the search results are then 
ranked. As the algorithm was realized using a search engine 
constructed using GETA2, the default SMART weight [13] 
was used as the word score for ranking each word. The 
bootstrap length restriction k is used to limit the number of 
top ranking search result words that are then used as the query 
for the next iteration of the bootstrap process. The iteration 
continues until the bootstrap has converged, which is when 
the current k top ranked words are the same as the k top 
ranked words from a previous iteration. The top k ranked 
words of the last iteration are returned as the results of the 
restricted bootstrap process. 

3.2 Hierarchy Tree Generation 
 The bootstrap results of words that match at small k are 
closely related to the initial query. Conversely, a larger k 
increases the possibility of topic drift. We propose that these 

                                                             
2 http://geta.ex.nii.ac.jp/ 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 291



properties of restricted bootstrap can be used to analyze the 
relations of words within a corpus.  

Figure 2. Hierarchy Tree Generation 

An overview of the hierarchy tree generation process is 
shown in Fig. 2. The bootstrap results for all characteristic 
words are checked for exact matches at each step of 
increasingly larger k restriction lengths. Exact matches with 
the smallest restriction length k represent the relation between 
two or more characteristic words and are linked to the same 
parent node that represents the k search step. If the k is small, 
then the words have a strong relation to the initial search 
query. If the k is large, then the words have a weak relation to 
the initial search query. Small k nodes are linked with the 
next largest k node, until only one last k node is reached. We 
constructed a directed graph G = (N,E) of 17 characteristic 
words U of wine speak given a query q as follows where N is 
the set of nodes as defined in Equation 1, and E is the set of 
edges as defined in Equation 2. 

𝑁 = 𝐵𝑆 𝑤! , 𝑞, 𝑘 𝑖 = 1, . . ,17; 𝑘 = 0,1,… ;  (1) 

 
E = {𝐵𝑆({𝑢}, 𝑞,𝑚),𝐵𝑆({𝑣}, 𝑞, 𝑛)|  
                        ∃𝑙 ≥ 𝑚  𝑠. 𝑡.𝐵𝑆 𝑢 , 𝑞, 𝑙 = 𝐵𝑆 𝑣 , 𝑞, 𝑛   
                          𝐵𝑆 𝑣 , 𝑞, 𝑛 = 𝐵𝑆 𝑢 , 𝑞, 𝑙!   

    𝑙! = min 𝑙 𝐵𝑆 𝑣 , 𝑞, 𝑛   }                     } 

(2) 

 This method can essentially be thought of as drawing 
paths of restricted bootstrapping results of increasingly larger 
k for each characteristic word in the set U. The paths are then 
merged at the point of an exact match for the lowest existing 
bootstrap restriction k. 

4 Examples of hierarchy trees 
generated by applying restricted 
bootstrapping 

4.1 Data Collection 
 A prototype system of the method was applied to a 
corpus consisting of 91,010 wine tasting notes from the Wine 

Enthusiast Magazine’s Buying Guide3 website. The attributes 
of each wine and the tasting notes were collected. We 
constructed a search engine to analyze the wine tasting notes, 
with each note containing an average of 2.8 sentences made 
up of 40 words. As an example of the method proposed in this 
paper, two types of target wine attributes that had been 
collected were selected for analysis: wine region and grape 
variety. Two regions were selected as the focus for the wine 
region category: New Zealand, and Marlborough. In the grape 
variety category we selected: Pinot Noir, Red Blend, and 
Zinfandel. 

4.2 Characteristic Words: Sensory Expression 
A list of 17 sensory modalities grouped in three categories 
from Paradis and Eeg-Olofsson [11] were chosen as the set of 
characteristic words U as shown in Table 1. 

Table 1. 17 Example words that describe sensory modalities 
[11] 

Modality Example 

VISION purple, ruby, straw, gold, light, 
dark 

SMELL fruity, floral, spicy, smoky, weak 
TASTE & 
TOUCH 

flabby, soft, heavy, thin, long, 
crisp 

 
The authors have previously used these words in the analysis 
of wine blogs [3].  

4.3 Comparison of Wine Regions 
 A naïve analysis method would be to compare the 
frequency distributions of the characteristic word set, which is 
shown in Fig. 3 and Fig. 4. Words of a high frequency would 
have a stronger relation to the corpus than words of lower 
frequency. This is a simple ranking method when compared 
to the restricted bootstrap method proposed in this paper. This 
is because it doesn’t take into account whether the 
characteristic keyword U are specific or general with relation 
to the query q. 

A matching restricted bootstrapping search was applied with 
k from length 1 to 100 for each characteristic word to the 
tasting notes for wines from New Zealand and Marlborough 
(which is a famous region within New Zealand) containing 
1427 and 715 documents respectively. The bootstrap results 
of all the possible pairs of characteristic words matched at 
least once before k = 100. 

In Fig. 5 and 6 the hierarchy word trees produced with the 
proposed method for wine tasting notes from q = 
Marlborough and q = New Zealand are shown respectively, 
where the words in the nodes are colored red, green and blue 

                                                             
3 http://buyingguide.winemag.com/ 

Q
ue

ry
&w
or
ds
�

0� 6�
Bootstrap&Restric2on&Length:&k�

dark�

smoky�

fruity�

BS�

BS�

BS�

BS�

BS� BS�

specificity&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&generality�

k=1� k=2� k=3�

match&&
at&k=2�

match&&
at&k=3�

292 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



for each category. The hierarchy tree is drawn from left to 
right as the bootstrap restriction length k increases, with 
words on the left side of the graph having a stronger relation 
to the corpus than words on the right side of the graph. 

The five least frequent characteristic words U in the New 
Zealand corpus in ascending frequency order are: straw, weak, 
gold, ruby, and flabby. However these words are in the 
middle of the hierarchy tree suggesting that they have a 
stronger characteristic relation to New Zealand wines than 
would be expected by looking at the word distribution. The 
same can also be seen in the six least frequent characteristic 
words U for Marlborough in ascending order are: purple, 
straw, gold, weak, dark, and flabby. These words also occur 
in the middle of the hierarchy tree suggesting a stronger 
relation than could be deduced from the frequency 
distributions. 

The distribution for the characteristic word floral has no 
difference between New Zealand and Marlborough by sample 
size rank (both rank 9), where 𝑟𝑎𝑛𝑘(𝑤!) = #{𝑤! ∈
𝑊|𝑤! > 𝑤!} for the set of characteristic words W. However, 
in the hierarchy word tree, the difference between the depths 
of the floral node from the root of the trees is of 5 nodes. The 
floral node is closer to the root of the tree for the 
Marlborough corpus, which indicates that the minimum k 
matching restricted bootstrap results occurred at a larger k 
than found in the New Zealand corpus. This indicates that 
floral is a stronger characteristic of New Zealand wines than 

those from Marlborough, which is not apparent when 
comparing the distributions of words. 

4.4 Comparison of Grape Varieties 
 Three grape varieties were selected as the focus of the 
example for this category: q = Pinot Noir, q = Red Blend, and 
q = Zinfandel, with each containing 8088, 5190, and 3002 
documents respectively. The frequency distribution for each 
of these grape varieties is shown in Fig. 4. A matching 
restricted bootstrap search was applied in a similar method to 
the previous section, with a restriction length k of 1 to 100 for 
each characteristic word, with all possible pairs matching 
before k = 100. 

The hierarchy trees generated for the three grape varieties, 
Pinot Noir, Red Blend, and Zinfandel, are shown in Fig. 7, 8, 
and 9 respectively. The depths of the grape variety trees are 
greater than those of the wine regions as there are a larger 
number of documents. The less frequency characteristic 
words U for each grape variety are matched near the middle 
of the hierarchy trees (in ascending frequency order, Pinot 
Noir: straw, gold, flabby, weak, purple; Red Blend: gold, 
straw, flabby, weak, purple; Zinfandel: gold, straw, weak, 
ruby, flabby). This is similar to those found in the wine region 
hierarchy trees. 

When comparing by frequency rank, the characteristic word 
floral does not have much variation between the three 
different grape varieties with rank 15, 16, and 16 for Pinot 
Noir, Red Blend, and Zinfandel respectively. However the 

 
Figure 3. Comparison of region by word frequency 

 
Figure 4. Comparison of grape variety by word frequency 

 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 293



results in the hierarchy trees suggest that the relation of this 
attribute is more complex as the node position varies between 
the different grape varieties.  

5 Conclusion and future work 
 In this paper, we proposed that by applying restricted 
bootstrapping for a set of characteristic words to a corpus of 
documents, a hierarchy tree representing the specificity and 
generality relation of the characteristics could be generated. 
This method was then applied to a corpus of wine tasting 
notes as an example of the analysis of differences in sensory 
expression characteristics of wine regions and grape varieties. 
Hierarchy trees were generated using the proposed matching 
restricted bootstrap search method for two wine regions, and 
three grape varieties. The results were then compared to the 
frequencies of the characteristic words as a naïve analysis 
baseline. 

In future work, we plan to investigate the influence that the 
corpus size has on the relations of characteristics and the 
generated hierarchy trees. A formal method is also required to 
evaluate the effectiveness of extracting and generating 
specificity and generality relations of characteristic word sets. 

6 Acknowledgments 
 This work was supported by JSPS KAKENHI Grant 
Number 24500176. 

7 References 
[1] Caballero, R. 2007. Manner-of-motion verbs in wine 
description. Journal of Pragmatics, 39, 12, 2095-2114. 

[2] Hirokawa, S. 2012. Feature Extraction Using Restricted 
Bootstrapping. ICIS2013, 283-288. 

[3] Hirokawa, S., Flanagan, B., Suzuki, T., Yin, C. 2014. 
Learning Winespeak from Mind Map of Wine Blogs. In S. 
Yamamoto (Ed.): Human Interface and the Management of 
Information Part II (Springer LNCS 8522), 383-393. 

[4] Hirokawa, S., Flanagan, B., Yin, C., Nakae, H. 2014. 
Visualization of relation and generality of words in research 
results. ACIS2014, 90-95. 

[5] Kerren, A., Prangova, M.,  Paradis, C. 2011. 
Visualization of sensory perception descriptions. Proc. of the 
2011 15th International Conference on Information 
Visualisation IEEE, 135-144. 

[6] Komachi, M., Kudo, T., Shimbo, M., Matsumoto, Y. 
2008. Graph-based analysis of semantic drift in Espresso-like 
bootstrapping algorithms. In Proc. of the Conference on 
Empirical Methods in Natural Language Processing 
(EMNLP 2008), 1011-1020. 

[7] Mihalcea, R., & Tarau, P. 2004. TextRank: Bringing 
order into texts. Proc. of Conference on Empirical Methods in 
Natural Language Processing (EMNLP’2004), 404–411. 

[8] Palshikar, G. K. 2007. Keyword extraction from a single 
document using centrality measures. In Pattern Recognition 
and Machine Intelligence, Springer LNCS 4815, 503-510. 

[9] Pantel, P., & Pennacchiotti, M. 2006. Espresso: 
Leveraging generic patterns for automatically harvesting 
semantic relations. In Proc. of the 21st International 
Conference on Computational Linguistics and the 44th 
annual meeting of the Association for Computational 
Linguistics, 113-120. 

[10] Paradis, C. 2009. “This beauty should drink well for 10–
12 years”: a note on recommendations as semantic middles. 
Text and Talk - An Interdisciplinary Journal of Language, 
Discourse Communication Studies, 29, 1, 53-73. 

[11] Paradis, C., Eeg-Olofsson, M. 2013. Describing Sensory 
Experience: The Genre of Wine Reviews. Metaphor and 
Symbol, 28, 1, 22-40. 

[12] Radev, D. R., Mihalcea, R. 2008. Networks and natural 
language processing. AI magazine, 29, 3, 16-28. 

[13] Salton, G., McGill, M. J. 1983. Introduction to modern 
information retrieval. McGraw-Hill. 

[14] Tian, F., Yuan, C., Ren, F. 2012. Hyponym extraction 
from the web by bootstrapping. IEEJ Transactions on 
Electrical and Electronic Engineering, 7, 1, 62-68. 

294 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



 

Figure 5. Hierarchy word tree of query word q = Marlborough 

 

Figure 6. Hierarchy word tree of query word q = New Zealand 

 

Figure 7. Hierarchy word tree of query word q = Pinot Noir 

Marlborough

soft

light

heavy

fruity

smoky

spicy

long

crisp

dark

purple

weak

straw

ruby

flabby

floral

gold

thin

New Zealand

soft

light

long

crisp

heavy

floral

fruity

smoky

dark

spicy

weak

straw

ruby

gold

thin

flabby purple

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 295



 

Figure 8. Hierarchy word tree of query word q = Red Blend 

 

Figure 9. Hierarchy word tree of query word q = Zinfandel 

 

 

 

296 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



Visualization of Sensory Weight for Shouldering 

Randoseru 
 

Hitomi Oigawa, Yu Ishikawa, Masami Takata, Kazuki Joe 

Nara Women’s University, Nara, 630-8506, JAPAN 

 

 

Abstract – In this paper, we propose an evaluation method 

for sensory weight of randoserus. We measure the pressure 

distributions of the back of kindergarten children and 

elementary school pupils right after their shouldering a 

randoseru and after the behaviors such as bowing and 

walking with shouldering the randoseru. We propose 4 

evaluation indexes: the burden ratio of the back, the number 

of pressure sensing elements, the variance of each pressure 

sensing element by row, and the variance by column. We 

visualize the evaluation indexes of three types of randoserus 

by a radar graph. As the result, it is possible to intuitively 

understand which randoseru gives the lightest sensory weight. 

Keywords: pressure sensing device, sensory weight, 

visualization  

 

1 Introduction 

Various cultures, traditions and products of Japan have 

been known as "COOL JAPAN". Recently in Japan, a 

considerable number of foreign tourists buy randoserus, 

which are a school bag for elementary school students in 

Japan and known as a COOL JAPAN product. Current 

randoserus are decorated with a variety of colors and delicate 

embroideries that make overseas youth have a lot of attention. 

A famous Hollywood actress with shouldering a randoseru as 

a fashion was reported by CNN in Sep. 2014.  Japanese anime 

also give a great influence to foreigners to buy randoserus as 

a cosplay tool because some anime characters shoulder 

randoserus. 

Apart from the fashion, some foreigners attach importance 

to children’s safety that is the basic function of randoserus. A 

randoseru is a bag for a child who enters the first grade of an 

elementary school. However, since randoserus should be 

tough and kept for 6 years (the period of the elementary 

school in Japan), it is difficult to reduce the weight of 

randoserus. For example, randoserus are designed to be 

durable and thick in order to protect child’s occipital area 

when he/she is overturned. There are many handmade parts 

by craftspeople such as cutting, sewing and finalizing 

randoserus fabric. Craftspeople polish with a day-to-day 

technology to keep the reliable quality. 

In Japan a lot of randoseru manufacturers produce 

different features of randoserus. When someone is going to 

buy a randoserus, the price, color, design, inner dimension, 

and ruggedness of the randoseru are considerable issues. In 

particular, a burden less design for an elementary school pupil 

is an important key [1]. For pupils with a small body to take a 

long commute time, a heavy school bag is physically 

unsuitable [2] [3] and believed to affect the growth of the 

child [4]. Therefore, randoseru manufacturers continue to use 

their thinking mind to solve the problem by reducing the 

sensory weight, which is the weight that is perceived to feel 

on the shoulders rather than the weight of the bag itself, of 

their products. 

When someone considers the purchase of the lightest 

sensor weight randoseru for his/her child, all the targetable 

randoserus need to be actually shouldered by the child for the 

comparison. However, the child (preschool year old) is too 

yang to judge the sensory weight because the number of 

randoseru manufactures and randoseru types is too large to 

compare their shouldering tests. After all, parents or 

grandparents tend to buy a randoseru for his/her child or 

grandchild recommended by the randoseru shop clerk. 

Namely, when buying a randoseru, there is a selection 

problem that has not been solved because of the age of users. 

If the sensory weight of a randoseru is objectively quantified 

to be visualized for ordinal people, the problem is to be 

solved. 

In this paper, we propose an objective quantification 

method for the sensory weight of randoserus so that it can be 

visualized for ordinary people to intuitively understand. We 

use a pressure sensor sheet for the quantification to measure 

the pressure distribution when shouldering a randoseru. The 

measurement results are analyzed with the following 4 items: 

the burden ratio of the back against the total randoseru weight, 

the number of pressure sensing elements detecting any 

pressure, the variance of each pressure sensing element by 

row, and the variance by column. The analyzed results are 

visualized with a radar graph for intuitive understanding. 

The rest of the paper is organized as follows. In section 2, 

we describe the study for the sensory weight of randoserus in 

Japan. We describe the method for measuring the sensory 

weight in section 3. The result and the discussion of 

experiments are presented in section 4. 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 297



2 Related Work 

As for the weight of randoserus, one of direct factors is 

what kind of materials the randoseru is made of. A thinner 

material makes the randoseru lighter but decreases the 

intensity. Therefore, it is difficult to simply decrease the 

weight of randoserus. 

The sensory weight is different from the physical weight. 

When someone holds a bag, he/she feels different weights by 

changing the way of holding the bag. In the case of 

shouldering a randoseru, the sensory weight depends on how 

much it has close contact with the back; the less contact, the 

stronger sensory weight. 

Figure 1 shows the part names of randoseru. The parts 

mainly related to the sensory weight include backrest, 

shoulder straps, and Sekan. A backrest is the cushion part of a 

randoseru which has close contacts with the back. Sekan is a 

joint bracket that connects the shoulder straps and the 

randoseru body. If we just focus on the sensory weight, the 

backrest should be preferably flat. However, considering the 

asperity of the back and the stuffiness in the summer, the just 

flat backrest may affect the fitness and the breathability. 

Shoulder straps are a part that directly contacts the entire 

shoulders and significantly affect the sensory weight as the 

backrest. Considering the fitness and the balance in the right 

and the left shoulders, the mobility of Sekan is most 

important [5]. 

We explain three randoseru products: “Tenshino Hane”, 

“Fit Chan”, and “Hanessel”. Each product has some attempt 

to decrease the sensory weight. 

"Tenshino Hane" by Seiban Co., Ltd. [6] provides a 

mechanism to fit the randoseru at the center of the back using 

a special Sekan that controls to extend the shoulder straps 

equally to the left and right. Furthermore, the inner and the 

outer calibers of the shoulder straps are designed to be short 

and long, respectively, so that the randoseru has larger contact 

area to the child with more balanced weight to decrease the 

sensory weight. Even if the child flounces naughtily, the 

center of the randoseru is stationary and the sensory weight is 

light. 

"Fit Chan" by Hashimoto Co., Ltd. [7,8] provides a 

mechanism to distribute the randoseru’s pressure from the 

shoulders to the back so that the sensory weight is light. 

Concretely speaking, the shoulder straps are hanged up 25 

degrees so that the contacting area to the back increases. 

Furthermore, their research collaboration with Shinshu 

University proposes a method of decreasing the weight on the 

shoulders with making Sekan and shoulder straps round. 

"Hanesseru" by KMW Co., Ltd. [9] provides load 

balancing using the randoseru design based on the analysis of 

the body structure of the child. The shoulder straps have 38 

stage adjustments function by 5mm pitch so that the 

randoseru is fit to subtly tilted shoulders. The length of the 

backrest is set to 28cm because they believe it is the right 

length to make the randoseru fitting to the child’s back. 

In the case of overseas, randoserus are sometimes studied 

instead of usual school bags. [10] studies the burden on the 

back when a child wears a school bag.  

With respect to the sensory weight measurement method, 

the changes in oxygen uptake, changes in the EMG, changes 

in the heart rate, the change in body pressure distribution, and 

the subjective declaration before and after randoseru 

shouldering are reported [11]. In general, since vital data  are 

related each other, we do not think all the above “changes” 

are required. Furthermore, the oxygen uptake, the EMG, and 

the heart rate are affected by the psychological factors such as 

degree of tension. Therefore, those data are not suitable for 

the sensory weight measurement for shouldering a randoseru. 

In addition, the subjective declaration is not also suitable 

because of the age of the users. Thus, the sensory weight of a 

randoseru should be measured by the body pressure 

distribution because it is less sensitive to the state of the body 

and gives the accurate measurement as numeric. 

3 Measurements and analysis 

3.1 I-SCAN 

For the measurement of the randoseru pressure 

distribution to the back of children, we use a surface pressure 

  
Figure 1 Part names of randoseru 

backres

Sekan 

Shoulder 
 strap 

Shoulder 
 strap 

298 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



Figure 2 I-SCAN 

Figure 3 Sensor sheet structure 

Figure 4 the pressure scale by 16 color mapping 

pressure-sensitive  
conductive ink 

distribution measurement system I-SCAN as shown in Fig.2 

[12]. It consists of software and hardware that includes a 

sensor sheet and a sensor connector. The sensor sheet 

measuring the pressure is formed with two thin films that are 

coated with pressure-sensitive conductive ink as shown in 

Fig.3. The ink changes its electrical resistance according to 

the pressure. On the films, column electrodes and row 

electrodes are evenly arranged as a matrix form on the top 

and the bottom. Each intersection between the column and the 

row electrodes is a measurement point. In other words, I-

SCAN calculates the pressure by measuring the electrical 

resistance of the conductive ink, and sends electric resistance 

values of the measurement points to the PC connected via 

USB. When transmitting, each electric resistance value is 

converted into a digital signal with 256 steps (resolution: 

8bits). 

The attached software is used for visualizing the digital 

signals in real time up to 100Hz sampling frequency. The 

visualized data is the pressure scale and the electrical 

resistance. Figure 4 present the representation of the pressure 

scale by 16 colors mapping when a circular load is detected. 

The calibration function is used for the unit conversion from 

the electric resistance (raw) to the pressure value (KPa). 

Furthermore, a noise cut method is available for narrowing 

down the measurement range. The measurement results are 

saved with a format selected from ASCII, AVI, JPEG, and 

MATLAB. 

In this study, the size of the sensor unit is 238 × 238 (mm) 

and the sensor consists of 44 × 44 elements. The calibration 

result shows the measurement range is 0 ~ 271kPa and the 

each pressure value is saved in the ASCII format for 

evaluation. 

3.2 Measurements  

As a prerequisite, we put several books of which weigh is 

2 kg in a randoseru. The weigh is the average of the total 

weighs for the first year elementary school pupils [6]: 

textbooks and writing utensils. The measurement method is 

shown in Fig.5. When shouldering a randoseru, the shoulder 

straps are set perpendicular to the ground and the backrest is 

adjusted in close contact with the back of the examinee so 

that the examinee does not feel painful. An I-SCAN sensor 

sheet is taped on the backrest in advance, and we make the 

examinee shoulder a randoseru with the sensor sheet. At this 

time, before mounting it, we confirm that there are not 

pressures detected using the attached software. 

Measurements of the pressure distribution are performed 

twice per randoseru. The first is measured immediately after 

mounting when the examinee is upright while the second is 

measured when the examinee is in an upright state right after 

the operations of bowing or walking with shouldering the 

randoseru. 

Figure 5 Measurement by an I-SCAN 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 299



3.3 Analysis  

Figure 6 and 7 show the contents of the file that includes 

the results of a measurement with an I-SCAN in the ASCII 

format. Figure 6 shows the header part while Fig.7 shows the 

result of the pressure values measured at each measurement 

point of 44 × 44. In the header, the types of sensor sheet and 

the calibration data, etc., are described. After the header, 

pressure values for a measurement point of 44 × 44 are 

recorded as an array of 44 × 44. In the matrixes used in the 

following evaluation indexes, a row 𝑖 (= 0, 1, ..., 43) is an 

observation point at the shoulder direction from the waist in 

the ascending order while a column 𝑗  (= 0,1, ..., 43) is an 

observation point at the right direction from the left in the 

ascending order. 

In the analysis, we focus on the following four items: the 

burden ratio of the back against the total randoseru weight R, 

the number of pressure sensing elements 𝑆𝐸, the variances of 

each pressure sensing element by row 𝑉𝑖, and by column 𝑉𝑗. 

 The burden ratio of the back against R is expressed by the 

following equation. 

𝑆𝑃 = ∑ ∑ 𝑝𝑖𝑗

𝑛

𝑗=0

𝑛

𝑖=0

 (1) 

𝑆𝑤 = 0.01𝑆𝑃𝑎  (1𝑘𝑃𝑎 = 0.01𝑘𝑔/𝑐𝑚2 ) (2) 

R = 𝑆𝑤/𝑇𝑤 (3) 

  

where 𝑆𝑃  is the sum of measured pressure values and 𝑝𝑖𝑗  is 

the pressure value of each measurement point. By adding all 

the pressure values, the total pressure value of the back is 

calculated. Since the matrix is 44 × 44, 𝑛 = 43 is used. Also 

𝑆𝑤 represents the weight to the back with multiplying the area 

with the total pressure value. 𝑎  represents an area for a 

corresponding sensor. Namely, 𝑎 = 23.82/442 is used. 𝑇𝑤 

shows the total weight of the randoseru. 

The number of pressure sensing element 𝑆𝐸 is the number 

of observation points detected greater than zero pressure in 

the observation point 44 × 44. 

 The variance 𝑉𝑖  of each pressure sensing element that 

focuses on the row is expressed by the following equation.  

𝑉𝑖 =
1

𝑆𝐸

∑ (𝑖𝑚 − 𝑖)̅2

𝑆𝐸

𝑚=1

 (4) 

  
where 𝑖𝑚 is the column number of the 𝑖-th row and 𝑗-th row 

element detecting pressure value 𝑝𝑖𝑗  and 𝑖 ̅is an average value 

obtained by dividing the number of pressure sensing elements 

𝑆𝐸 with the sum of the row number of the pressure sensing 

elements. The variance is calculated by the mean square of 

the differences between 𝑖𝑚 and  𝑖.̅ 

The variance 𝑉𝑗  of each pressure sensing element that 

focuses on the column is expressed by the following equation.  

𝑉𝑗 =
1

𝑆𝐸

∑ (𝑗𝑚 − 𝑗)̅2

𝑆𝐸

𝑚=1

 (5) 

  

where 𝑗𝑚  is the column number of the 𝑖 -th row and 𝑗 -th 

element detecting pressure value 𝑝𝑖𝑗  and 𝑗 ̅is an average value 

obtained by dividing the number of pressure sensing elements 

𝑆𝐸 with the sum of the column number of the pressure sensing 

 

Figure 6 Results of measurement, 

header part 

 

Figure 7 Results of measurement, 

pressure values 

 

300 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



elements. The variance is calculated by the mean square of 

the differences between 𝑗𝑚 and  𝑗.̅ 

3.4 Evaluation indexes  

A randoseru is supported by the back and the shoulders. 

When the pressure is to be more dispersed in the back and the 

shoulders, it is possible to support the randoseru on the entire 

upper body and the sensory weight decreases, namely, it leads 

to feel easy to shoulder the randoseru. In particular, the 

supporting back is divided by the top around the shoulder 

blade and the bottom around the waist. In other words, when 

the randoseru comes into contact with the upper back, the 

gravity center verge the bottom and it make the examinee 

stand straight and feel that the sensory weight is light. 

Conversely, when the randoseru is not in contact with the 

back so much, the randoseru is pulled back and it makes the 

examinee be a position of anteversion and feel a burden on 

the lower part of the shoulders and the back [11]. From the 

above investigations, we find two important things for the 

reduction of the sensory weight with a randoseru: 1) the 

variance of pressures on the back and the shoulders and 2) the 

contact area between the back and the randoseru. 

As for the variance, we evaluate it by using the ratio R of 

the burden ratio of the back 𝑆𝑤  against the total randoseru 

weight 𝑇𝑤. Incidentally, the ratio 1-R is the burden except the 

back and is the ratio of the pressure of the shoulder straps on 

the shoulders.  

As for the contact area, we calculate it using the number 

of pressure sensing elements 𝑆𝐸 . With the use of 𝑉𝑖  we can 

see how many elements are dispersed toward the shoulder 

blades from the waist within the back while with the use of 𝑉𝑗 

we can see how many elements are dispersed from the left to 

the right. These two variance values are used for the 

calculating how the pressure sensing elements in the entire 

back are dispersed  and it is possible to infer the effective area 

that supports the randoseru. 

To evaluate multiple randoserus, we compare the 

analytical results by examinee and analysis item. The 

analytical results are normalized (0-100) for easy comparison. 

4 Experiments 

 By using the evaluation indexes described in subsection 

3.4, we compare multiple randoserus. The indexes are 

expressed as follows. 

(1) The burden ratio of the back against the total randoseru 

weight 

(2) The number of pressure sensing elements 

(3) The variance of each pressure sensing element by row 

(4) The variance of each pressure sensing element by column 

4.1 Examinees 

The examinees are kindergarten children or elementary 

school pupils, proviso from 5 years to 7 years old. The 

number of the examinees is 20 (10 boys and 10 girls). The 

reason for limiting the examinee’s age from 5-year-old to 7-

year-old is that 6-year-old children start to use randoserus. 

Actually, the average heights of the examinee groups are boys 

117.1 ± 4cm (112-122cm) and girls 116.1 ± 4cm (111-

121cm). The school health statistical survey reports that the 

6-year-old average height of boys is 116.6 ± 5cm and girls is 

115.8 ± 5cm [13]. Provided with the 1% significance level, 

the test statistic for boys is 0.3188 (≤2.576) and girls is 

0.3274 (≤2.576). So we confirm that there is no significant 

difference between the examinee groups. 

4.2 Randoseru 

It takes approximately 20 minutes for the measurement, 

and the examinees bear about 3kg; the weight of the 

randoseru itself and text books. We use three kinds of 

randoserus for the comparison with considering the 

examinees’ ability to concentrate against the burden. 

We use randoserus A, B, and C as shown in Fig.8. All the 

randoseru material is Clario. The weights of A, B, and C are 

900g, 1,100g, and 1,100g, respectively. Each randoseru is  

Randoseru A 

 

Randoseru B 

 

Randoseru C 

Figure 8 Three Randoserus 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 301



Figure 9 Visualize each evaluation index for three 

randoserus by a radar graph 

Table 1 Analysis result right after shouldering  

 (1) (2) (3) (4) 

A 28.55 41.05 195.49 117.78 

B 38.86 57.90 218.19 128.85 

C 36.98 54.45 137.53 141.54 

Table 2  After behaviors of bowing and walking  

 (1) (2) (3) (4) 

A 22.08 32.20 188.74 129.76 

B 44.52 63.15 204.36 121.87 

C 30.62 45.10 175.63 123.46 

Table 3 comparison of each Randoseru of two states 

 (1) (2) (3) (4) 

A -6.48 -8.85 -6.75 11.98 

B 5.66 5.25 -13.84 -6.98 

C -6.36 -9.35 38.11 -18.09 

 

manufactured by different makers. The differences in each 

randoserus include the form of backrest, the positions of 

shoulder strap’s cushion and the belt hole, and the mobility of 

the shoulder straps using Sekan. 

4.3 Measurement result 

Table 1 shows the analysis results right after shouldering 

the randoserus. The row and the column represent the 

analysis items and the types of randoseru, respectively. A is 

the worst about (1) and (2). From the viewpoints of (1), (2), 

and (3), B is the best. C is the best for (4) while the worst for 

(3). 

Table 2 shows the analysis results after the behaviors of 

bowing and walking while shouldering randoserus. A is the 

best for (4) while poor in (1) and (2). From the viewpoints of 

(1), (2), and (3), B is the best. C is the worst for (3).  

Table 3 shows the comparison of each randoseru of two 

states. Each value is obtained by subtracting the values of 

Tab.2 with Tab.1. A is better in (4) while (1) and (2) decrease 

significantly. As for C, (1) and (2) decrease significantly as 

same as A while (3) is the best. B is the best for (1) and (2); 

they increase unlike A and C. However, (3) is the worst and 

(4) is not so good. 

The results of comparison of three randoserus are 

presented as a radar graph in Fig.9. The averages for all the 

items are 63.85, 86.12, and 71.81 for A, B, and C, respectively. 

4.4 Discussions 

 In Tab.1, it is observed that A forces the most intense 

shoulder burden because both (1) and (2) are the lowest. On 

the other hand, we find that B is well balanced although the 

vertical range is not in effective use. 

In Tab.2 and 3, which describe the state changes between 

initial and after behavior, since randoserus A and C are less in 

(1) and (2), and the contact area between the back and the 

randoserus is reduced, it is regarded that the load on the 

shoulders increases. In the meanwhile, (1) and (2) of B 

increase after the behavior, so the contact area between the 

back and the randoserus increases. Since the load on the 

shoulders is regarded as dispersed, the sensory weight 

becomes lighter by the behavior. Namely, by the behavior, B 

fits to the body and examinees feel easy to shoulder the 

randoseru. Furthermore, although (3) is reduced compared 

with A and C, the values themselves of (3) are the highest. 

Thus we conclude B is the best randoseru. 

In Fig.9, the higher the evaluation index values are, the 

lighter the sensory weight is. A shows the lowest value for 

most items. Thus, although the weight of randoseru itself is 

lightest among the three types, the sensory weight is the 

largest and we conclude A is a large burdened randoseru. For 

B, from the fact that it achieves the highest value for the most 

items, the sensory weight is lighter. For C, the initial 

shouldering randoseru state is relatively close to the state of B, 

but after the behavior C is isolated heavily rather than B. 

Therefore, from the viewpoint of shouldering time, we 

conclude C is a randoseru that gives a considerable burden to 

elementary school pupils. 

The averages of values for all the evaluation items are the 

same order, too. From the foregoing results, we conclude the 

lightest sensory weight is given by B. Further, the 

visualization of analysis results with a radar graph intuitively 

explains the sensory weight. 

5 Conclusions 

In this paper, we measure and analyze the pressure 

distribution on the back with a randoseru to visualize the 

sensory weight of randoseru. As the measurement conditions, 

we measure the pressure distributions at the time examinees 

shoulder a randoseru and the time after the behaviors of 

302 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



bowing and walking. 20 examinees from 5 to 7 years old 

shoulder three types of randoserus to measure the pressure 

distributions using a pressure sensor sheet. To measure the 

pressure distribution, four evaluation indexes are used: (1) the 

burden ratio of the back, (2) the number of pressure sensing 

elements, (3) the variance by row, and (4) the variance by 

column. From the results of the experiments, we found that 

type B randoseru gives the lightest sensory weight. It is 

intuitively presented by the visualization, too. 

Our future work includes more evaluation indexes for 

improvement posture using a three-axis accelerometer. In 

concrete, mounting a three-axis acceleration on children's 

back, we calculate the angle of the back to the ground at the 

time of shouldering randoserus and after several behaviors. 

By comparing various randoserus, we show an evidence to 

“Which randoseru is the best?”. 

6 References 

[1] "kuraray Randoseru purchaser questionnaire in 2011" 

[online]Available:http://www.kuraray.co.jp/enquete/ransel/20

11/data1.html 

[2] Pascoe,D.D,Pascoe,D.E.,Wang,Y.T.,shim,D.-M.,and 

Kim,C.,K., "Influence of carrying book bags on gait cycle and 

posture of youths”, Ergonomics, vol.40, issue 6, 631—

641,1997 

[3] Minako Yoshida, Yoshie Shibata, Maya Tanaka, Kaori 

Tanaka, and Kozo Hirata, "Effects of Prolonged Rucksack-

Atrap pressure on Blood Flow and Pressure Sensation", 

Descente Sports Science, Vol.20,184—191,1999 

[4] Clare Haselgrove, Leon Straker, Anne Smith, Peter 

O’Sullivan, Mark Perry, and Nick Sloan,” Perceived school 

bag load, duration of carriage, and method of transport to 

school are associated with spinal pain in adolescents: an 

observational study”, Australian Journal of Physiotherapy, 

vol.54,issue 3, 193—200,2008 

[5] "Japan bag Association Randoseru Industry Association 

Randoseru Nomenclature "  

[online]Available:  http://www.Randoseru.gr.jp/check1.htm 

[6] "Features of Seiban’s Randoseru",  

[Online]Available: https://www.seiban.co.jp/six/function.html 

[7] "Fit-chan Randoseru  Secret of feeling light"  

[online]Available:   

http://www.fit-chan.com/reason/durable/durable01.html 

[8] Harumi Morooka, Tomoko Kawakami, and Hideo 

Morooka, "Discussion on School Bags Using Shoulder Strap 

Pressure for Reducing Body Load", SEN’I GAKKAISHI, 

vol.65 No.12, 325—331,Des 2009 

[9] "harnessel 2015 model "  

[Online]Available: 

http://harnessel.jp/new_model_2015/index.html 

[10] Hamish W.Mackie, Joan M. Stevenson, Susan A.Reid,  

and Stephen J.Legg,” The effect of simulated school load 

carriage configurations on shoulder strap tension forces and 

shoulder interface pressure”, Applied Ergonomics, vol.36, 

issue 2, 199—206,Mar 2005 

[11] " Development of comfortable school for bags "  

[online] Available: http://www.laponte.co.jp 

[12] "the surface pressure distribution measurement system I-

SCAN" 

[Online]Available:http://www.nitta.co.jp/?post_type=sensor&

p=7434&fnkey=product 

[13] " The school health statistical survey reports 2013 fiscal 

national table"  

[online]Available:http://www.e-

stat.go.jp/SG1/estat/List.do?bid=000001052598&cycode=0 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 303

http://www.randoseru.gr.jp/check1.htm


Recipe clustering based on Japanese Food Guide Spinning Top

Yasuhiro Tajima1, Yoshihiro Suwa2, Genichiro Kikui1, Rikako Inoue3 and Megumi Kubota3
1Department of Systems Engineering, Okayama Prefectural University, Soja, Okayama, Japan

2Graduate School of Comp. Sci. and Sys. Eng., Okayama Prefectural University, Soja, Okayama, Japan
3Department of Nutritional Science, Okayama Prefectural University, Soja, Okayama, Japan

Abstract— Food recipe site is one of the hottest web service
in recent years. Especially, a user posting style recipe site is
the most popular service style. Such a recipe site contains
thousands recipes posted by users, and the variation is very
wide such that daily meal, take out foods, special conditioned
meal for allergy and so on. On the other hand, Japanese
government prepares an illustrated tool called “Japanese
Food Guide Spinning Top” for selecting daily foods. There
are some classes of foods and if you select foods from each
class then daily food balance will be kept good. We propose
an automatical method to classify a recipe to a class of the
foods in Japanese Food Guide Spinning Top. Experimental
evaluation is done and we obtain about 70% of accuracy as
the result.

Keywords: Rakuten Recipe, Japanese Food Guide Spinning Top

1. Introduction
Recipe sites are the hottest web service, now. There are

many service sites and we can summarize them into the
following types.

• User posting style : Service site is operated by some
companies but recipe contents are constructed from
users’ post. Various and many recipes can be gathered
but it is difficult to keep the service provider’s policy
for each recipes. There are many similar recipes and
reliability is also low.

• Operated by an organization : one company or one orga-
nization controls all contents and recipes. For example,
if a cooking school operates a recipe service site, then
they can present nutrition values of each recipe. The
balance of recipes can be controlled. For example, the
site operator can select vegetable recipes as many as
meat recipes.

Now, user posting style is more important for web tech-
nologies because there exists big data and remains many
unorganized data. There are many related studies for user
posting style recipe sites. In [2], the title of a recipe is
evaluated whether it matches the recipe’s content. In [3],
using recipe clustering, subsutitutional ingredients are found
from the recipe repository.

On the other hand, Japanese Food Guide Spinning Top is
provided by Japanese government. This is a tool for selecting
daily foods to balance nutrition. In this tool, there are 6 class

of foods and if we take appropriate quantity from each class
per day, then we can keep healthy life.

In this paper, we propose a mapping method from a recipe
to the class on Japanese Food Guide Spinning Top. Then
experimental evaluations are also done.

2. Japanese Food Guide Spinning Top
Japanese Food Guide Spinning Top[1] is an illustrated tool

for daily food choice. This tool is provided by Japanese Min-
istry of Agriculture, Forestry and Fisheries. In the following,
we call this tool the Guide for short.

Figure 1 is the illustration. This guidance consists of the
following components.

[ Spinning Top ](at the left side of the figure)
The illustration expresses the balance of daily food.
It represents the quantity image of daily eating. This
spinning top is divided into following three dishes and
three items.

1) Grain dishes
This dish provides carbohydrates. For example,
rice, bread, noodles and so on.

2) Vegetable dishes
This dish provides vitamins, minerals or dietary
fiber. For example, vegetables, tubers, corms,
bulbs, mushrooms, seaweeds and so on.

3) Fish and Meat dishes
This dish provides proteins. For example, meat,
eggs, fishes, beans and so on.

4) Milk
This item provides calcium. Milk and dairy prod-
ucts are classified into this item.

5) Fruits
Any fruits are classified into this item.

6) Sweets
We can also take little sweets.

These dishes and items are called the “class” in the
Guide. Every class contain some example figures of
foods. The center axis of the spinning top represents
water. Healthy life can be kept since we make the
spinning top rounding and standing.

[ Target SV(serving) values ](at the middle of the figure)
The SV value (which means SerVing value) is the target
quantity for every class in the Guide. One SV means
about one meal. Target values are set as follows.

304 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



Fig. 1: Japanese Food Guide Spinning Top

– Grain dishes : 5 to 7 SV
Here, 1 SV is about 40g of carbohydrates. Thus 5
to 7 SV per day means 200g to 280g carbohydrates
to eat per day. In Japan, rice is served by a rice
bowl which contains about 100g, and 100g of rice
contains about 40g carbohydrates, then a regular
size of rice bowl serves 1 SV.

– Vegetable dishes : 5 to 6 SV
Here, 1 SV is about 70g of foods’ net weight in
this class.

– Fish and Meat dishes : 3 to 5 SV
Here, 1 SV is about 6g of protein. It is hard to
find the net weight of protein which is contained
in a food. Thus, there are some examples to count
this SV value. An egg dish has 1 SV. A fish dish
has 2 SV. A meat dish has 3 SV. This is very
rough counting method, but easy counting is prior
to accuracy.

– Milk : 2 SV

Here, 1 SV is about 100mg of calcium. When we
use this tool, we regard a cup of milk as 1 SV.

– Fruits : 2 SV
Here, 1 SV is about 100g of foods’ net weight. In
many case, we count 1 piece of fruit as 1 SV.

– Sweets does not have SV value, because little
quantity is allowed to eat per day.

[ Examples of dishes and SV value ](at the right of the
figure)
This area represents examples of dishes and example
SV values of dishes. There are some figures of foods
and whose SV values. The SV values are aimed to
balance the quantity of daily eating but finding precise
values is difficult for every dishes. Thus, such illustrated
guide of dishes are useful to find rough SV values.
Such roughness is more important to use this tool
continuously.

With this illustrated tool, we can count the total SV values
for each meal or the total value of every day. We can take

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 305



balanced meals by aiming the SV values of each dishes or
items at the target values.

3. Classification of Recipes

3.1 Rakuten recipes
Rakuten Recipe is one of the most popular recipe website

in Japan. And there are repositories of recipes for research
or study use[5] called Rakuten data.

Fig. 2 is a sample page of Rakuten Recipe. There are
following compositions.

[ Recipe Title ] : This title is set by the user who submit
the recipe to Rakuten recipe site. So, it tends to more
impressive word will be written by the author.

[ Photos ] : This photo is the dish after cooking. This
is taken by the author of this recipe and usually dish
quantity is as same as the following ingredients list.

[ Ingredients List ] : The list of ingredients also provided
by the author of this recipe. Every entry of the list
consists of a ingredient’s name and its quantity. These
name and quantity are also provided by the author of
this recipe.

[ Cooking Procedure ] : Cooking procedure consists of
the text of the process and its photo. Some steps does
not have a photo and only text description is remained.

[ Comments ] : In this site, user can add a comment to
the recipe which is called “making report” (in Japanese
“Tsukurepo”).

[ Categories ] : Every recipe has its three categories, that
is big category, middle category and small category.
The big category has the following nine names:

– Grain dish
– Side dish
– Snacks
– Takeout foods
– Sauce or Jam
– Drinks
– Season foods
– Local foods
– Special purpose

Middle and small categories are defined for every big
category. For example, the middle category for Snacks
is as follows.

– Snacks/Cakes
– Snacks/Foreign snacks
– Snacks/Japanese snacks
– Snacks/Others

Small category is defined for every middle category,
then there are 733 small categories. The total number
of middle categories is 61.

There are about 410 thousand recipes in Rakuten data.

3.2 Making correct classification
Using the category labels, we make a correct data of the

Guide. The correct data is hand made and the following is
how to make the correct data.

1) If the big category is identical to a class in the Guide,
then all recipes in the big category is marked by the
class name in the Guide. For example, the big category
“Grain dish” can obviously be classified into “Grain
dishes” class in the Guide.

2) If the big category can not be decided into one class
in the Guide then, using middle category, we try to
select a class in the Guide. For example, recipes with
the middle category of “Snacks/Cakes” are classified
into “Sweets” class in the Guide.

3) If we can not decide one class by the above step then,
using the small category, we try to select a class in the
Guide.

4) If we can not decide one class using small category
then all recipes with the small category is classified
int “Others” class.

With the above process, we can classify all recipes in
Rakuten data into classes of the Guide.

Table 1 shows the number of recipes of each class in the
Guide.

3.3 Classification method
Classification is done by Support Vector Machine(SVM

for short)[4] in our experiments. The kernel is not used
(=linear) and soft margin parameter is found by preliminary
experiment.

The input vector of the SVM has the size of the vocabulary
of learning data. It means that each element of an input
vector is identical to a word of learning data. All texts in
learning data are morphological analyzed by mecab[6]. The
value of each element of an input vector is TF-IDF value
where a recipe is a document.

For multi-label classification, we use one-versus-rest
method with SVM. In this setting, we make n SVMs for n-
class classification. Then, it is selected that the class whose
SVM has the longest distance from the hyperplane. With this
condition, we evaluate the performance of the classification
method.

4. Experiments and Results
At first, we make input vectors from restricted mor-

phemes. For the texts of cooking process and the table of
ingredients, we restrict the following morphemes. The input
vectors are constructed from one of these combinations.

• verb
• noun
• noun + verb
• noun + verb + adjective

306 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



Recipe Title 

Photos 

Ingredients List 

Cooking Procedure 
and Comments 

Categories 

Fig. 2: Rakuten Recipe sample page

Table 1: The number of recipes for each class in Japanese Food Guide Spinning Top
Grain dishes Vegetable dishes Fish and Meat dishes Milk Fruits Sweets Others

91436 134187 96967 3817 2143 44609 37819

Evaluation is done by 5-fold cross validation. All results
are the average of these 5 tests. Table 2 shows the accuracy
of the output of one-versus-rest method. Here, accuracy is
calculated by the following equation.

accuracy =
correct inferred recipes

all test recipes

“correct inferred recipes” is the number of recipes whose
correct class corresponds to the inferred class.

Bigger size of input vector marks high performance from
this result. Especially, the accuracy becomes over 70% when
the size is bigger than 20000.

Next, we show the performance of each SVM which is
two values classifier. In one-versus-rest method, there are 7
SVMs for each class of the Guide. Each of them classifies
that the input recipe is in the class or not. In the previous
experiment, we select the final class by the distance from
the hyperplane. In the next tables, we show the performance

of each SVM. Table 3, 4 and 5 show precision, recall and
F-value of each SVMs, respectively.

Here, precision, recall and F-value is calculated by the
following equations.

precision =
correct inferred recipes(each class)

positive inferred recipes

recall =
correct inferred recipes(each class)

positive labeled recipes

F = 2/((1/recall) + (1/precision))

In this experiment, we are concerned with one target class.
“correct inferred recipes(each class)” is the number of
recipes which is correct inferred on the target class. “positive
inferred recipes” is the number of recipes such that the
SVM for the target class outputs the positive label. “positive
labeled recipes” is the number of recipes whose correct class
is the target class. For example, assume that the target class

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 307



Table 2: Accuracy of restricted morphemes
morphemes input vector size accuracy

verb 4961 0.5864
noun 21830 0.7658

noun + verb 25003 0.7722
noun + verb + adj 25410 0.7726

Table 3: Precision with restricted morphemes
morphemes Grain Vegetable Fish and Meat Milk Fruits Sweets Others

verb 0.6293 0.5580 0.5778 0.4262 0.0000 0.6470 0.4944
noun 0.8480 0.7383 0.7439 0.6100 0.4036 0.7708 0.6714

noun + verb 0.8531 0.7476 0.7506 0.5820 0.4181 0.7767 0.6682
noun + verb + adj 0.8534 0.7485 0.7509 0.5939 0.4148 0.7770 0.6685

Table 4: Recall with restricted morphemes
morphemes Grain Vegetable Fish and Meat Milk Fruits Sweets Others

verb 0.6316 0.7719 0.4966 0.0030 0.0000 0.6364 0.0950
noun 0.8631 0.8560 0.7466 0.1349 0.0437 0.8731 0.2370

noun + verb 0.8690 0.8586 0.7550 0.1524 0.0533 0.8744 0.2583
noun + verb + adj 0.8688 0.8596 0.7557 0.1533 0.0567 0.8743 0.2595

Table 5: F-value with restricted morphemes
morphemes Grain Vegetable Fish and Meat Milk Fruits Sweets Others

verb 0.6304 0.6477 0.5341 0.0059 0.0000 0.6416 0.1409
noun 0.8555 0.7928 0.7452 0.2203 0.0787 0.8187 0.3502

noun + verb 0.8610 0.7992 0.7527 0.2406 0.0940 0.8227 0.3723
noun + verb + adj 0.8610 0.8002 0.7532 0.2428 0.0995 0.8228 0.3737

is Grain and every test data contains even numbers of Grain
recipes, then “positive labeled recipes” for one test is 18287
(= 91436 / 5).

From these results, we find 0.56 F-value average when
input vectors are made from noun, verb and adjective. The
performances of Milk and Fruits are low because of few
examples.

Next, we restrict text areas to construct input vectors. The
following restrictions are evaluated.

• ingredients
• (cooking) process
• ingredients + (recipe) title
• process + title
• ingredients + process
• ingredients + process + title

Table 6 shows the accuracy of every condition. Obviously,
text conditions which contain the recipe title get high per-
formance than the others. From this, the recipe title name is
useful for automatic classification even though upload users
can select words in the title freely.

Table 7, 8 and 9 show precision, recall and F-value of
each SVMs, respectively.

From these results, recipe title is also important to decide
classes. Almost all conditions, if they contains the recipe
title, the F-value is higher than that in the condition without
the recipe title. Only on the condition that “ingredients +
process + title” for Fruits, the F-value is smaller than that
on “ingredients + process” for Fruits. This is also because
of lack of learning examples.

5. Conclusions

We have shown a classification method for a recipe to a
class on Japanese Food Guide Spinning Top. This is done
by SVMs with one-versus-rest. The accuracy is about 0.7 to
0.8 and the title of the recipe is important to classify. For the
future work, inferring SV value for a recipe is remaining.
We can make the automatic food guide system if we can
combining them.

308 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



Table 6: Accuracy of text restriction
text input vector size accuracy

ingredients 29377 0.7502
process 25410 0.7726

ingredients + process 53332 0.7885
process + title 34809 0.8119

ingredients + title 44251 0.8217
ingredients + process + title 61079 0.8090

Table 7: Precision with text restriction
text Grain Vegetable Fish and Meat Milk Fruits Sweets Others

ingredients 0.8590 0.7184 0.7213 0.4624 0.3488 0.7504 0.5911
process 0.8534 0.7485 0.7509 0.5939 0.4184 0.7770 0.6685

ingredients + title 0.8829 0.8178 0.7981 0.6330 0.4745 0.8179 0.7270
process + title 0.8726 0.8031 0.7915 0.6682 0.4607 0.8099 0.7194

ingredients + process 0.8667 0.7678 0.7641 0.6150 0.4415 0.7890 0.6936
ingredients + process + title 0.8723 0.8024 0.7842 0.6585 0.4356 0.8038 0.7175

Table 8: Recall with text restriction
text Grain Vegetable Fish and Meat Milk Fruits Sweets Others

ingredients 0.8426 0.8552 0.7371 0.0974 0.0508 0.8777 0.1424
process 0.8688 0.8596 0.7557 0.1533 0.0567 0.8743 0.2595

ingredients + title 0.9159 0.8718 0.8083 0.2743 0.1116 0.8983 0.4553
process + title 0.9087 0.8677 0.7903 0.2493 0.0595 0.8992 0.4317

ingredients + process 0.8901 0.8651 0.7756 0.1866 0.0554 0.8925 0.2843
ingredients + process + title 0.9032 0.8658 0.7896 0.2131 0.0495 0.8978 0.4271

Table 9: F-value with text restriction
text Grain Vegetable Fish and Meat Milk Fruits Sweets Others

ingredients 0.8507 0.7808 0.7290 0.1601 0.0884 0.8091 0.2292
process 0.8610 0.8002 0.7532 0.2428 0.0995 0.8228 0.3737

ingredients + title 0.8991 0.8439 0.8031 0.3809 0.1798 0.8562 0.5597
process + title 0.8902 0.8341 0.7909 0.3624 0.1048 0.8522 0.5392

ingredients + process 0.8782 0.8135 0.7697 0.2848 0.0983 0.8376 0.4030
ingredients + process + title 0.8875 0.8329 0.7868 0.3206 0.0880 0.8482 0.5352

References

[1] N. Yoshiike, F. Hyashi, Y. Takemi, K. Mizoguchi and F. Seino, A new
food guide in Japan : the Japanese Food Guide Spinning Top, Nutr.
Rev. vol.65, no.4, pp.149–154, 2007.

[2] R. Takahashi, S. Oyama, H. Ohshima and K. Tanaka, Measuring
relevancy of modifiers in the recipe names on the user-generated recipe
websites, IEICE Trans. (in Japanese), vol.J94-A, no.7, pp.467–475,
2011.

[3] Y. Shidochi, I. Ide, T. Takahashi and H. Murase, Finding replaceable
materials by cooking recipe mining, IEICE Trans. (in Japanese),
vol.J94-A, no.7, pp.532–535, 2011.

[4] N. Cristianini and J. S. Taylor, An introduction to support vector
machines and other kernel-based learning methods, Cambridge Univ.
Press, 2000.

[5] The Rakuten Data Release provided by Rakuten, Inc.

[6] MeCab: Yet Another Part-of-Speech and Morphological Analyzer
http://mecab.googlecode.com/svn/trunk/mecab/doc/index.html

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 309



Evaluating Elements of Communicative Stuffed-toy Device
Describes Scripts on SNS

Haruka Mase1, Tomoko Yonezawa2, and Kazuki Joe1
1Dept. of Advanced Information and Computer Sciences, Nara Women’s University, Nara, Japan

2Faculty of Informatics, Kansai University, Osaka, Japan

Abstract— This paper investigates the elements of our pro-
posed stuffed-toy device that is expected to work as an outlet
target receptacle of a user’s mental anguish. When the user
physically interacts with the stuffed toy, a script of the stuffed
toy is post on an SNS, such as Twitter. We aim for an
indirect and unforced communication between the damaged
user and other participants in SNS through the scripts of the
stuffed toy device that indicates sympathetic understanding
for user’s mood recognition.

Keywords: Stuffed-toy, Twitter, SNS, Rapport, Communication
support

1. Introduction
There are many people under various strains in a stressful

society today. In March 2011, we have received strong
mental stress due to the Great East Japan Earthquake. It is
considered that the method of solutions for those problems
are counseling and healing programs. However, there are
still additional problems and psychological burdens to have
such programs; not only do they need time and money but
it is also difficult to remove hesitation to have the programs
especially for the first time. Moreover, it takes mental energy
to find a suitable counselor for each person. To confirm
such tendencies, we conducted a preliminary survey of the
impression for counseling with questionnaire sheets. As
results, it was confirmed that there were a lot of negative
attitudes such as “I feel reluctance to get counseling," “I do
not want to talk with strangers,” and so on with only few
responses with positive impressions.

In this paper, we propose a communicative stuffed-toy
device that works as a emotional outlet for effusion of
the user’s psychological burdens. Our proposed device is
expected to reduce the hesitation to understand the user’s
own mental situation by nonverbal effusion to artificial
presence rather than by verbal explanation in a counseling
session that requires self-discourse to another person. The
proposed system has two types of feedbacks when the user
touches on the stuffed-toy device, 1) the stuffed toy makes
nonverbal motions by its head or arm and 2) it makes its
own comment on an SNS such as Twitter1. The former
interaction is expressed for the live-communicative healing

1Twitter : https://twitter.com/

of the user, and the latter interaction is a method for an
indirect communication between the user and the family
and friends of the user. The pull-type indirect representation
without intrusion is possible to promote future proactive
communications.

Additionally, in this paper, we conveyed the system evalu-
ations focusing on the elements: surface materials, existence
of the face, physical motions, and text messages. From the
results of the experiment, we discuss whether the stuffed toy
has the reduction effect of the user’s stress and the effect as
the receptacle of the user’s emotional effusion.

2. Related Works
Here, we discuss the related works on anthropomorphic

agent-based counseling systems and communication sys-
tems.

ELIZA(DOCTOR)[1] is a text-based interactive counsel-
ing system with a computer in 1960s. ELIZA is a di-
alogue system that simulates a conversation between the
psychoanalyst and a patient without a tangible body or
virtual presence with any physical embodiment. When we
consider verbal communication with an artificial presence,
the conversation tends to become unnatural because of the
mismatched keywords used to generate verbal replies from
the system. ELIZA replies to the user’s texts by repeating
like a parrot without any dialogic analyses. Even such simple
replies could make effective results.

To avoid the complex processes and the problems in the
verbal communication and also to enrich the non-verbal
and physical interactions, we adopted a stuffed animal as
a medium covering the interface device. Stuffed toys do
not make physical motions by themselves so that they
have flexible characteristics as shown in their usages both
as partners and as avatars of the user in playing house.
Moreover, there are psychological therapies using stuffed
toys as same as shown in animal therapy[2]. Consequently,
we involved anthropomorphic physical interactions with
nonverbal input from the user to take advantage of intuitive
healing methods. The stuffed toy describes information of
the user’s interaction onto SNS such as Twitter to indirectly
represent the user’s close members of the family or friends
how the user interacted with the stuffed toy.

On the other hand, the continuous interaction needs to
establish a trustful relation, “rapport,” between the user

310 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



Table 1: Experiences with stuffed toys
Male (/123) Female (/80)

Have spoken to 22.0% 63.8%
Have hugged 30.9% 77.5%

and the stuffed toy. In establishing rapport, the cooperative
attitude, such as appropriate gaze as attentiveness and the
positivite attitude are especially important[3]. In this paper,
we adopt the nod gesture of the stuffed toy as a cooperative
attitude in order to engage the more familiar rapport between
the user and the stuffed toy.

Nakatani et al. introduced a stuffed-toy robot system that
shows breathing expression like a living presence in order
to produce a sense of affective feeling [4]. This study has
focused on a presence like living beings. Contrary to their
approach, we focus on tactile communication with rapport
to provide the user a sense of peace of mind.

Nakagawa et al. developed Keepon [5] that is a com-
munication robot which aims for drawing communicative
behavior of children. Keepon aims at emotional expressions
by nodding and tilting the head. The idea of the head
gestures for the communication is similar to our device. We
regarded the nod of the stuffed toy as a basic attitude of
engaging rapport for promoting continuous interaction, and
focused on the nonverbal contents of the communication for
further indirect communication with other people.

Osumi et al. has proposed an automatic generation of
a robot’s motions from weblogs [6]. The purpose of this
study has similar aspect to our challenge in supporting
the indirect communication among people. However, from
the viewpoint of the receptacle of emotional effusion, we
consider the role of the stuffed toy as a communicative
medium, and the robot is not expected to directly talk verbal
content to the user nor to explicitly show the presence of the
audience in the SNS media. From the viewpoint of both 1)
the nonverbal interaction for therapeutic effusion and 2) the
indirect communication between the user and other people,
we designed two types of interactions corresponding to the
user’s input.

3. System Implementation
3.1 Preliminary survey with questionnaires
3.1.1 Purpose of the Preliminary Survey

We investigated various daily-uses of stuffed toys, such
as the target of the user’s affective emotions, feelings, and
contexts of the interactions, to consider the possibility of
affective communication using a stuffed toy. 203 people (123
males and 80 females) aged from 19 to 24 years old were
the target of our survey.

3.1.2 Items of Questionnaires
We prepared a questionnaire survey focusing on tactile

interaction and one-way utterance to the stuffed toy. The

Table 2: Situations when the
male respondents have talked
to stuffed toys(Male)

positive situations
happy 2
enjoyable 1

negatives ituations
depressed 2
lonely 5
sad 3
anxiety 1

other situations
spare time 6
emotional swing 2
use as cusion 1
need to move 1
sleeping 1
playing 4

Table 3: Situations when the
male respondents have em-
braced stuffed toys(Male)

positive situations
happy 1

negative situations
depressed 4
tired 7
lonely 4
sad 1
anxiety 5
irritated 1

other situations
sleeping 7
without meaning 3
need warming 1
need healing 3

Table 4: Situations when the
male respondents have talked
to stuffed toys(Female)

positive situations
happy 7
enjoyable 7

negative situations
tired 1
lonely 9
sad 10
painful 1

other situations
sleeping 3
playing 9
greeting 1
dropped 4
without meaning 5

Table 5: Situations when the
male respondents have em-
braced stuffed toys(Female)

positive situations
happy 8
negative situations
tired 1
lonely 17
sad 7
anxiety 3
irritated 1

other situations
want to hug 6
sleeping 9
feel cute 8
playing 1
need healing 5

question items are as follows.
• Have you talked to stuffed toys?
• When do you talk to stuffed toys?
• Have you held on stuffed toys?
• What do you think the reason when you held the

stuffed-toy / did not held it?

3.1.3 The Results of the Preliminary Survey
The results of the questionnaires survey are summarized

in Table 1. As can be seen, the ratios of the people who
have experiences of hugging or talking to the stuffed toys
are different between the results for males and females. It is
conjectured that the differences are caused by a stereotype
image of girls in using stuffed toys and dolls in playing
house, especially in the investigated targets in Japan.

Table 2 and Table 3 show the contexts of the male
interviewees interacted with the stuffed toys. The verbal
talks were to stuffed toys were made in various contexts,
in contrast, the embraces or hugs were made while the male
inteviewees were in negative contexts.

Table 4 and Table 5 show the contexts of the female
interviewees interacted with the stuffed toys. The results

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 311



Fig. 1: Block diagram of the proposed system

Fig. 2: Hardware structure of the system

were similar to the male interviewees with few tendencies
of negative motivations.

In total, we could find the strong tendency of interaction
under negative contexts. It is considered that people interact
with, especially embrace, the stuffed toys when they have
stresses from negative feelings or thoughts. From these
results, the possibility of the stuffed toys is expected to
become a role as an acceptant of the user’s strong emotions.

3.2 System
3.2.1 System concept

The basic concept of our stuffed-toy system is built to
give the device two aspects of communication roles; the
first role is the acceptant of the user’s strong emotions, and
the second role is the medium as an indirect communicator
with other people. An embodied stuffed toy enables physical
and nonverbal interactions from the user without caring
the other person. The recorded logs of the interaction can
also indirectly inform simple situation of the user in SNS
community so that her/his family and friends can roughly
understand the user’s state.

3.2.2 System summary
In this research, we adopted a bear-type stuffed toy

as a physical embodiment of the device. Figure 1 shows

Fig. 3: Example use (1):
(make-believe play by pat-
ting its head).

Fig. 4: Example use (2):
make-believe play by bend-
ing its arm

Fig. 5: Example use (3): hugging it as a partner

the process flow of the proposed system. The stuffed toy
includes three sensors and one servomotor in its body under
the fur skin. The user’s inputs such as stroking, embracing,
or bending the arm of the stuffed toy are automatically
recognized and the stuffed toy makes nods or other motions
corresponding to the user’s input. At the same time, a
message related to the user’s contexts and interactions is
automatically sent to SNS server as a comment on Twitter.

3.2.3 Hardware Structure
Figure 2 shows the hardware structure of the system. We

assumed three types of user’s inputs:stroking or patting on
the head of the stuffed toy (Figure 3), bending the arm of the
stuffed toy to make some gestures (Figure 4), and embracing
the stuffed toy (Figure 5). Figures from 6 show sensor values
in the stuffed toy. In order to establish rapport between the
user and the stuffed-toy device, we designed the motion of
the device’s head to move back and forth (nods) by a servo
motor in the neck of the stuffed toy. This motion makes the
user feel as though the stuffed toy nodded corresponding to
his/her inputs.

3.2.4 Software Structures
The physical inputs from the user to the stuffed toy

are detected from On/Off signals of the sensors by each
threshold value although there should be various patterns
and levels of delicate inputs. In order to produce reasonable
and understandable reaction of the stuffed toy, we adopted
a simple judgement of the inputs using threshold values. In
the case when at least one of the sensors detect a value over

312 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



Fig. 6: Example values of the sensors

Table 6: The scripts of the stuffed toy in Twitter
context

actions
hug pat on the head bend the arm

morning Good morning,
thanks for hug.
Should be surely a
good day today!

Good morning, I’ll
cheer for you to-
day.

Thanks for playing
with me! Speak to
me anytime.

noon Thanks for hug.
What’s up? Please
talk anything to
me.

Thank you for pat-
ting me. It is nec-
essary to have a
break sometimes.

Thanks for playing
with me! How are
you today?

evening Thanks for hug.
I’m going to be
along with you to-
morrow too.

Thanks for your
patting. What’s up
today?

Thanks for play-
ing a lot with me!
Let’s play again
tomorrow.

stronger input
than usual

What’s up? I
hear anything, so,
please try to talk
anything.

What’s up? I’ll lis-
ten to you any-
time, so please talk
more and more.

What’s up? I can
play with you any-
time, so don’t hes-
itate!

the threshold, the AVR (Arduino2) sends the values of the
sensors to PC (Processing3) by serial communication, and
Processing selects an appropriate script for the comment
in SNS based on the assumed context of the interaction
from the scripts database (Figure 7). Based on the results
of the preliminary surveys, we focused on the stuffed-toy’s
scripts to express concern of it for the user. The script
database have twelve patterns of scripts for the stuffed toy on
Twitter corresponding to the types of interaction, strength,
and timing as shown in Table 6.

3.2.5 User Feedbacks in Demonstration Exhibition
Some participants in Maker Faire Tokyo 20134 experi-

enced our proposed stuffed-toy device with the same func-
tions, while the contents of the comments were different
from Table 6. Some participants told us familiar feedbacks
such as “The proposed stuffed-toy device is more popular
than a normal stuffed animal.” On the other hand, there

2Arduino : http://www.arduino.cc/
3Processing : https://www.processing.org/
4Maker Faire Tokyo 2013: http://makezine.jp/event/mft2013/

Fig. 7: Automatic Tweets of the stuffed toy

were several people who indicated negative opinions such
as “It is scary.” or “I have some hesitation of use because
the interactions are uploaded automatically.”

4. Evaluations of Stuffed-toy Device
Focusing on the direct interaction between the stuffed toy

and the user, we evaluated the possibility of the proposed
system for the user’s emotional effusion.

4.1 Setting for experiment description
Purpose: We evaluated the following four verifications:

• Whether the stuffed-toy device can decrease the user’s
stress.

• Whether the user regards the stuffed-toy device as a
communication partner.

• Whether the stuffed-toy has a role as an accepter of
feelings.

• Whether it is possible to form the rapport.
Participants: Twenty-five people participated in this exper-
iment. These participants are undergraduate or graduate
students aged from 19 to 24 years old with sixteen male
participants and nine female participants.
Factors in the experiment: We set the following factors
based on the hypothesis above.

A The surface material of the device
B The arrangement of facial parts of the device
C The gestural motion of the device
D Text message

Level：
A Cloth / styrene board
B Face-like arrangement of the eyes and the mouth in a

surface as a face. / Abnormal arrangement of the facial
parts. (See Figure 9)

C With nods / without nod
D Existence / non-existence of a text message

Conditions: A branching table of the conditions is shown in
Table 7. Two standards were set up to 4 factors of everything
and the experiment was prepared by total of 16 conditions.
Hypotheses:

A When the surface material of the stuffed-toy device is
cloth, the user feel relaxed and relieved with familiar
emotion toward the stuffed toy.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 313



Fig. 8: Screen of the character message(two types)

Fig. 9: The device in the experiment

B A robot with a face enables to make eye contact and to
express emotions on its face. From the expressiveness
of the face, the user become possible to can trust the
robot (the engagement of rapport).

C When the stuffed-toy device nods, the user regards the
robot as a trustworthy and communicative partner. In
addition, the user feels easier to effuse her/his own
emotion rather than the device without nod.

D When the user receives a text message from the robot,
the user interprets it as that the stuffed-toy device is
trying to communicate with the user.

Procedures: This experiment was prepared as a within-
subjects design. Before the experiment, each participant had
a POMS-SF test in order to measure the state of her/his
stress. The participants were instructed to pay attention not
only to the device but also the monitor, which shows a text
message on the screen in the condition with the message.

In advance of the experiment, an experimenter directed
the participant to pat on the robot’s head and to embrace it
during the experiment session. The participant can touch the
device as she/he likes after the directed inputs. The partici-
pant’s hand motions were recorded with a web-camera. After
each session with a touch and embrace of the device the
participant evaluated the evaluation items. The experiment
sessions were randomized for counter-balance.
The robot for the experiment use: Robots used by this ex-
periment is indicated on Figure 9.
Evaluation Items 1: subjective evaluations:

1) You felt at ease.
2) The robot seemed to try to tell you something.
3) You became an unpleasant feeling.

Table 7: Conditional branch table
　 　 message ○ message ×

Cloth normal face nod ○ Condition1 Condition2
　 nod × Condition3 Condition4
abnormal face nod ○ Condition5 Condition6
　 nod × Condition7 Condition8

Styrene board normal face nod ○ Condition9 Condition10
　 nod × Condition11 Condition12
abnormal face nod ○ Condition13 Condition14
　 nod × Condition15 Condition16

Table 8: The POMS-SF scores of the participants
The degree of stress Value The number of people

Low 23～48 17
Middle 49～73 5
High 74～98 3

4) You were relieved.
5) The robot reacted to your action.
6) The robot seemed to try to communicate with you.
7) You could communicate with the robot easily.
8) The robot seemed to mind nothing.
9) You felt familiar feeling to the robot.

10) You felt that the robot was reliable.
11) The communication with the robot was natural.
12) The robot seemed to have an intention.
13) You felt like talking to the robot.
14) You touched the robot strongly.
Evaluation Items 2: POMS-SF test POMS-SF test is a

reduction edition of POMS test (the degree of stresses
measurement check). As the value of the result becomes
big, the degree of stress becomes high. POMS-SF test was
performed to all participants first by this experiment. As a
result, the lowest numerical value is 23 and the maximum
value is 98 of participants. Table 8 shows the one which
classified the numerical value into three classes according
to the degree of the stress and totaled one in this area.

4.2 Result
Analyses of variance (ANOVA) with repeated measure-

ment among the conditions(*p<.05) are shown in Table 9.
The results of the means opinion scores (MOS) are shown
in Figure 10 and 11.

The evaluation items 1, 4, 9 and 13 showed significances
by all factors. Moreover, from the result of the evaluation
item 3, the significant difference was found by the factor of
material, face, and text message. Accordingly, It is suggested
that the hypothesis A was confirmed.

From the results for the evaluation item 2, the significant
difference was found by the factors of nod and text message
in particular with the significant interaction between them.
It is suggested that the robot’s intention of the commu-
nication could be expressed by at least one modality of
the expression. Moreover, the significant difference in the
evaluation item 5 was confirmed by the factors of face, nod,

314 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



and text message with an interaction between the nod factor
and the message factor. The item 8 showed significances
by all factors with an interaction between the nod factor
and the character factor. Additionally, the evaluation item
12 showed significant difference by the factors of face, nod,
and message with the interaction between the nod factor and
the message factor. From these results, the hypothesis B was
confirmed.

Moreover, the results for the evaluation items 6, 7, 10 and
13 showed significant differences by the all factors so that
the hypotheses C and D were confirmed.

The evaluation item 14 did not show any significance.

5. Discussion
Now, we discuss the effectiveness of the stuffed-toy de-

vice and two types of communication possibilities. From
the results of four factorial analyses of variance, it was
revealed that the appearance of the stuffed toy device and the
interactions with the user are important from the evaluations
for “whether the user felt at ease,” “whether relationship of
mutual trust can be built between the user and the stuffed
toy device(formation of rapport),” and “whether the stuffed
toy device can be a communication partner" as the ANOVA
results.

From the results for the evaluation item 1, 3, 4, 9 and
13, the users could become relieved and familiar to the
stuffed toy by the soft material of the robot’s covering
cloth. Additionally, it was revealed that the users tend to
become easy to make emotional effusion by the soft material.
However, the interactions between the face and nod factors
and between the face and message factors were confirmed
by all items mentioned above; therefore, it is suggested that
some motion of the stuffed toy are also important as well as
having a normal face.

The result for the evaluation items 6, 7, 10 and 13
showed that the facial appearance of the stuffed toy enabled
eye contact with the user and the nodding of the stuffed
toy represented the reliable and communicable partner.
Additionally, from the result of the evaluation item 6, it
is conjectured that a rapport was established between the
user and the robot by adopting the material and engaging
gestures of the stuffed toy. It is also considered that the
representation of the text message enriched the user’s feeling
of the robot’s effort to communicate with the user. Moreover,
many interactions were confirmed by the factors about the
appearance. For these reasons, the appearances of the stuffed
toy could elevate the possibility of the user’s relieved and
reliable communication. The importance of the nod and
message factors was confirmed by both the interactions
between the nod factor and the other factor in the evaluation
item 8 and the interactions between the message factor and
the other factor in the evaluation item 12.

From the result of the evaluation item 3, it is suggested
that the user’s unpleasant feeling would be caused by un-

comfortable touch or the inappropriate appearance of the
anthropomorphic presence. The appearances of the stuffed
toy without any message are considered to draw the negative
feeling of the user as though the reaction of the toy were
not really showing earnest attitude.

From the results for the evaluation item 2, 5, 8 and 12,
it is suggested that the text message with concrete contents
make the user interpret as though the artificial presence had
its own intentions. Moreover, the results of evaluation item 8
and 12 showed the importance of the material of the device
for expressing its intentions. Thus, the animal-like or living-
being-like appearances could affect the user’s interpretation
of the anthropomorphic presence.

Figure 10 and 11 showed that the condition 16 was the
highest score in the evaluation item 3. Additionally, The
conditions without nods nor messages were highly scored
in the evaluation item 8. In contrast, the condition 1 was the
highest score in all evaluation items except for the items 3,
8, and 14.

From these results, we could confirm the effectiveness of
our proposed device in interpretation of anthropomorphic
communication. We should develop further evaluations of
not only the direct communication but also the indirect
communication with the other people through the SNS text
message of the stuffed toy.

6. Conclusion
In this paper, we proposed a communicative stuffed-toy

system as an acceptant of the emotional effusion of a user’s
psychological burdens. The proposed system consists of
a stuffed-toy device, tactile sensors, and servo motors as
actuators with network connection through a PC. The device
captures, the physical and nonverbal inputs from the user not
only for communicative interaction between the stuffed toy
and the user but also for the indirect communication through
posted messages between the user and the other people such
as her/his remote family.

The experiment on the effectiveness of the proposed
stuffed-toy device revealed that the user’s stress is able to be
reduced by using the stuffed-toy. Moreover, the relationship
between the user and the stuffed-toy device has been grown
by its nods and indicated messages in SNS such as Twitter.
Finally the our aiming rapport, that is the mutual trust, was
established at least in the feeling of the user. Thereby, we
found out that the user regards the stuffed-toy toy device as
a communication partner in emotional interaction that needs
mutual trust.

In future work, we should consider to perform the user’s
gestural recognition which shows emotional feelings. The
system also needs to understand the environment surround-
ing user by using such as sound recognition. Moreover,
further evaluations for stress reduction should be conducted
in future.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 315



Table 9: The results of four-factor ANOVAs
　 material(A) face(B) nod(C) message(D) 　
　 F(24) p F(24) p F(24) p F(24) p interaction
Q1 85.888 ＜ 0.01* 35.266 ＜ 0.01* 53.275 ＜ 0.01* 51.826 ＜ 0.01* BC*
Q2 1.854 0.19 6.060 0.02* 265.962 ＜ 0.01* 89.363 ＜ 0.01* CD*
Q3 35.552 ＜ 0.01* 16.358 0.01* 2.047 0.17 9.152 0.01* BD*
Q4 71.14 ＜ 0.01* 24.24 0.01* 33.62 ＜ 0.01* 38.44 ＜ 0.01* BC*
Q5 2.489 0.13 8.197 0.01* 318.500 ＜ 0.01* 151.034 ＜ 0.01* CD*
Q6 12.04 0.01* 20.54 0.01* 220.94 ＜ 0.01* 98.08 ＜ 0.01* CD*, ABC*, ACD*
Q7 37.883 ＜ 0.01* 30.438 ＜ 0.01* 147.975 ＜ 0.01* 75.013 ＜ 0.01* AC*, BC*
Q8 6.083 0.02* 19.989 0.01* 79.976 ＜ 0.01* 18.416 0.01* AC*, BC*, CD*
Q9 62.49 ＜ 0.01* 27.48 ＜ 0.01* 71.44 ＜ 0.01* 66.46 ＜ 0.01* BC*, BD*
Q10 27.12 ＜ 0.01* 49.31 ＜ 0.01* 74.33 ＜ 0.01* 24.00 0.01* BD*
Q11 14.852 0.01* 29.538 ＜ 0.01* 108.859 ＜ 0.01* 49.596 ＜ 0.01* 　
Q12 2.94 0.1+ 19.89 0.01* 186.90 ＜ 0.01* 46.26 ＜ 0.01* AD*, BD*, CD*, ABC*
Q13 16.97 0.01* 32.47 ＜ 0.01* 40.84 ＜ 0.01* 16.07 0.01* BD*
Q14 0.518 0.48 0.170 0.68 0.376 0.55 3.827 0.06+ 　

+ p＜.10, * p＜.05

Fig. 10: ANOVA result graph - 1

Fig. 11: ANOVA result graph - 2

Acknowledgment
This research was supported in part by JSPS KAK-

ENHI 15H01698, JSPS KAKENHI 25700021, and JSPS
KAKENHI 24300047. The authors would like to thank the
participants in the experiment.

References
[1] J.Weizenbaum: “ELIZA-A Computer Program For the Study of Natural

Language Communication Between Man and Machine,” Communica-
tions of the ACM, Vol.9, No.1, pp.36–45, 1966.

[2] Tomoko Yonezawa, Hirotake Yamazoe, Akira Utsumi, Shinji Abe:
“Attractive, Informative, and Communicative Robot System on Guide
Plate as an Attendant with Awareness of User’s Gaze,” Paladyn. Journal
of Behavioral Robotics, Vol.4, Issue 2, pp.113–122, 2013.

[3] Tickle-Degnen, L., Rosenthal, R.: “The Nature of Rapport and Nonver-
bal Correlates,” Psychological Inquiry, Vol.1, No.4, pp.285–293, 1990.

[4] Yukari Nakatani, Tomoko Yonezawa: Breatter: “A Simulation of Liv-
ing Presence with Breath that Corresponds to Utterances,” HRI2014,
pp.254–255, 2014.

[5] Hideki Kozima, Marek Piotr Michalowski, Cocoro Nakagawa:
“Keepon: A playful robot for research, therapy, and entertainment,”
International Journal of Social Robotics, Vol.1, No.1, pp.3–18, 2009.

[6] Toshihiro Osumi, Kenta Fujimoto, Yuki Kuwayama, Masato Noda,
Hirotaka Osawa, Michita Imai, Kazuhiko Shinozawa: “BlogRobot:
Mobile Terminal for Blog Browse Using Physical Representation,”
International Conference on Social Robotics, pp.96–101, 2009.

[7] Tomoko Yonezawa, Brian Clarkson, Michiaki Yasumura, Kenji Mase,
“Context-aware sensor-doll as a music expression device,” CHI’01
Extended Abstracts on Human Factors in Computing Systems, pp. 307–

308, 2001.

316 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



A study on Non-Correspondence in Spread between Objective
Space and Design Variable Space and Application to Genetic Search

Tomohiro Yoshikawa, Toru Yoshida, Toshihiro Kishigami
Dept. of Computational Science and Engineering

Nagoya University
Furo-cho, Chikusa-ku, Nagoya 466-8603, Japan

Abstract— Recently, a lot of studies on Multi-Objective
Genetic Algorithm (MOGA), in which Genetic Algorithm is
applied to Multi-objective Optimization Problems (MOPs),
have been reported actively. MOGA has been also applied
to engineering design fields, then it is important not only to
obtain high-performance Pareto solutions but also to analyze
the obtained Pareto solutions and extract some knowledge in
the problem. In order to analyze Pareto solutions obtained
by MOGA, it is required to consider both the objective space
and the design variable space. In this paper, we define "Non-
Correspondence in Spread" between the objective space and
the design variable space. We also try to extract the Non-
Correspondence area in Spread with the index defined in
this paper. Moreover, we apply the defined index to genetic
search to obtain Pareto solutions that have different design
variables one another having similar fitness values. This
paper applies the above index to the trajectory designing
optimization problem and extracts Non-Correspondence area
in Spread int the acquired Pareto solutions. This paper also
shows that robust Pareto solutions can be acquired by the
genetic search with the index.

Keywords: Non-Correspondence, Objective Space, Design Vari-
able Space, Distributed Area, Multi-objective Optimization Prob-
lem

1. Introduction
Genetic Algorithm (GA) is expected to be effective

for solving Multi-objective Optimization Problems (MOPs),
which maximizes or minimizes multiple objective func-
tions at the same time. Recently, Multi-Objective Genetic
Algorithm (MOGA), applying GA to MOPs, are getting
much attention and a lot of studies have been reported[1].
Generally, it is difficult to obtain the optimized solution
satisfying all objective functions because of their trade-offs.
Then, it is necessary to obtain Pareto solutions which are not
inferior to other solutions in at least one objective function.

In recent years, it is reported that MOGA is applied
to engineering design problems in the real-world due to
the improvement of computing performance[2][3][4]. In the
engineering design problems, it is required not only to obtain
high performance Pareto solutions using MOGA but also to
analyze and extract design knowledge in the problem. And

in order to analyze Pareto solutions obtained by MOGA, it is
required to consider both the objective space and the design
variable space.

Obayashi obtained Pareto solutions for aircraft configura-
tion problem by MOGA and tried to analyze the obtained
Pareto solutions through the visualization of the relationship
between fitness values and design variables using Self Orga-
nizing Map (SOM)[2]. Kudoet al. proposed a visualization
method that visualized the geometric distance between data
in the design variable space based on their relationship in the
objective space, and they analyzed the relationship between
the fitness values and the design variables in the conceptual
design optimization problem of hybrid rocket engine[5].

In this paper, we analyze obtained Pareto solutions con-
sidering the objective space and the design variable space,
and we especially focus on "Non-Correspondence" between
two spaces. In this study, we have introduced 3 patterns of
Non-Correspondence between the objective space and the
design variable space.

• Non-Correspondence in Sequence
• Non-Correspondence in Spread
• Non-Correspondence in Linear Relationship

We have already reported on the Non-Correspondence in
Sequence[6]. In this paper, we define "Non-Correspondence
in Spread" and propose the quantitative index to extract Non-
Correspondence area in Spread. Non-Correspondence area in
Spread is the area where solutions are distributed densely in
the objective space but are distributed widely in the design
variables space, and vice versa.

This paper applies the proposed method to the trajec-
tory designing optimization problem known as DESTINY
(Demonstration and Experiment of Space Technology for
INterplanetary voYage)[7] provided by Japan Aerospace
Exploration Agency (JAXA). We apply NSGA-II (Non-
dominated Sorting Genetic Algorithm-II)[8] to this problem.
We also analyze the extracted Non-Correspondence area in
Spread in the obtained Pareto solutions. We also apply the
defined index to genetic search to obtain Pareto solutions that
have different design variables one another having similar
fitness values.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 317



2. Non-Correspondence in Spread
2.1 Definition of Non-Correspondence in
Spread

In this paper, we focus on Non-Correspondence in Spread.
The area with Non-Correspondence in Spread, called Non-
Correspondence area in Spread, is defined as the area where
solutions are distributed densely in the objective space but
are distributed widely in the design variables space, and
vice versa (Hereinafter we call simply "Non-Correspondence
area."). The former means that there are a lot of design
patterns with similar performance and the later means that
the design variables are sensitive, i.e. the small change of
design variables causes the large change of fitness values.
For designers, the former is especially important because
they can select design variables from some design patterns
having similar performance in consideration of the cost of
design or the difficulty level of design and the later is
because they have to choose design variables very carefully.
Figure 1 shows an example of Non-Correspondence area.
In Fig. 1, data 5-6-7-8 are distributed widely in the design
variable space compared to the distribution of the objective
space.

��������� 	
��� ��	������������	
���
����

����

��

��

�

�
�

�

�
�

�

�

�
�

�
�

�
�

�

�

Fig. 1: Non-Correspondence area in Spread

2.2 Index for Non-Correspondence Area in
Spread

Here, we define the quantitative index for Non-
Correspondence in Spread to extract the Non-
Correspondence area. The index is calculated in the
following procedure.

1) Define the neighborhood radiusϵ (eq. (1)) in the
objective space or the design variable space.

2) Extract the individuals as target individuals within
radiusϵ from individual i.

3) Calculate the center of gravity of the target individuals.
4) Calculate the index for Non-Correspondence in Spread

vi according to eq. (2).

By the above procedure, the indexvi is calculated for
each individual. The neighborhood radiusϵ is defined by
eq. (1). In eq. (1),η denotes the parameter that defines the

neighborhood radius,flmax, flmin mean the maximum and
the minimum fitness values, which are normalized, in the
Pareto solutions for objective functionl, andMf is the num-
ber of objective functions.xlmax, xlmin mean the maximum
range and the minimum range of design variablesl, andMd

is the number of design variables. If the neighborhood is
defined in the objective space, the upper equations in eq. (1)
and eq. (2) are employed and otherwise the lower equations
are employed to calculate the value of indexvi. In eq. (2),
ddcik is the normalized Euclidean Distance between target
individual k and the center of gravity in the design variable
space,dfcik is that in the objective space,N is the number
of the target individuals andvi is the index for individual
i. Individuals with large indexes are distributed densely in
the objective space / design variable space and distributed
widely in the design variable space / objective space.

ϵ =



√∑Mf
l=1(flmax−flmin)2

η

(Neighborhoodwas defined in the objective space.)√∑Md
l=1(xlmax−xlmin)2

η

(Neighborhoodwas defined in the design variable space.)
(1)

vi =


1
N

∑N
k=1(ddcik)

(Neighborhoodwas defined in the objective space.)
1
N

∑N
k=1(dfcik)

(Neighborhood was defined in the design variable space.)
(2)

2.3 Application to Genetic Search
By applying the index defined above to genetic search, it

is aimed to obtain solutions whose fitness values are robust
to the change of design variables. In this paper, we apply the
index value instead of Crowding Distance that is one of the
distinguish mechanism in NSGA-II. We introduce the new
search criterionR according to eq. (4) . In eq. (4),CDi is
Crowding Distance of individuali andvi is the index value
of Non-Correspondence in Spread defined by eq. (2). As the
aim of 2.2 is to extract the Non-Correspondence area,vi
is calculated using the distance between target individuals
and the center of gravity of them. On the other hand,
vi is calculated according to eq. (3) using the normalized
Euclidean Distanceddik between the individuali and the
target individualk because the index value is introduced
into each individual as search criterion. In addition, this
paper aims to obtain solutions with the robustness to the
change of fitness values in regard to the change of design
variables, then the neighborhood radius is defined in the
objective space.

vi =
1

N

N∑
k=1

(ddik) (3)

318 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



Ri = CDi ∗ vi (4)

The larger the value ofCD or v is, the larger the value of
R is. Thus it is expected that this method can consider the
diversity in the objective space and the robustness of fitness
values.

3. Experiment
In this paper, we applied the above calculation to the

trajectory designing optimization problem“DESTINY”pro-
vided by JAXA and analyzed the obtained Pareto solutions.

3.1 Trajectory Designing Optimization Prob-
lem

The aim of this problem is to reach the moon as early
as possible with less fuel and to reduce the degradation of
the solar array panel of the spacecraft due to the damage
by the radiation of the Van Allen belt. As shown in Fig.
2, the spacecraft is launched by Epsilon Rocket and put
elliptical orbits around the earth. Once being put in orbit,
the spacecraft is released and accelerates with Ion Engine
until it reaches the moon. The spacecraft firstly aims to gain
the altitude of perigee and switches to gain the altitude of
apogee on the way, then it gradually moves closer to the
moon.

This paper tries to optimize the trajectory designing of the
spacecraft until it reaches the moon ((1),(2) in Fig. 2). The
objective functions, the design variables, and the range of
each design variable in this problem are shown in TABLE
1, TABLE 2, and TABLE 3, respectively.V 6 is used in the
case of optimization for 6 objective functions. As shown in
TABLE 1, this problem can be expanded to six objective
optimization problem. This paper deals with 5 objective
functionsObj1, Obj2, Obj3, Obj4, Obj5 in TABLE 1.

(1)Launch by Epsilon Rocket

(2)Acceleration with Ion Engine (3)Lunar Swing-by

(5)Escape from L2 Halo Orbit

(4)Injection into L2 Halo Orbit

L�

�������

� �� ���

� � � 	


 � �� �

Fig. 2: Consept of DESTINY

3.2 Experimental Condition
NSGA-II was applied to the problem described above and

2000 Pareto solutions were obtained. We employed SBX[9]
for the crossover and Polynomial Mutation[10]. Crossover

rate was 1.0, mutation rate was 0.2, population size was
715, and generation was 100.

Figure 3 shows the visualization result of the distribution
of obtained Pareto solutions in (a)the objective space and
(b)the design variable space by Multi-Dimensional Scaling
(MDS)[11].

Table 1: Objective Functions

Obj1 time to reach altitude of 20000km Min
Obj2 IES (Ion Engine System) operation time Min
Obj3 the time to reach the Moon Min
Obj4 the maximum eclipse time Min
Obj5 the time to reach an altitude of 5000km Min
Obj6 Initial mass of the spacecraft Max

H

Table 2: Design variables

V 1 : Launching date
V 2 : Launching time
V 3 : Switching apogee-perigee date
V 4 : Range of IES operation time in perigee rise phase
V 5 : Range of IES operation time in apogee rise phase
V 6 : Initial mass of spacecraft

(a) objective space

(b) design variable space

Fig. 3: Distribution of Pareto Solutions

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 319



Table 3: Ranges of design variables
V 1 2017/1/1-2017/12/31
V 2 00:00:00-23:59:59
V 3 90-365[days]
V 4 0-180[degrees]
V 5 0-180[degrees]
V 6 350-450[kg]

3.3 Extraction of Non-Correspondence Area in
Spread

The result of the index values for Non-Correspondence
in Spread calculated by eq. (2) for obtained 2000 Pareto
Solutions, in which the neighborhood was defined in the
objective space, are shown in Fig. 4. Neighborhood radiusϵ
was set asη = 8 in eq. (1). The parameter of neighborhood
radius ϵ was not sensitive and the results were not much
changed by the difference ofϵ in the experiments of this
paper. The individuals in Fig. 4 are sorted in descending
order of the indexvi. The vertical axis shows the value of
the indexvi and the horizontal axis shows the individual
label.

We focused on the top 50 individuals with large index
values. Figure 5 shows the result of visualization of the
distribution in which these 50 individuals are colored by red
on the result of the objective space and the design variable
space shown in Fig. 3. As shown in Fig. 5, the individuals
with red color are distributed widely in the design variable
space compared to the distribution in the objective space. We
extracted 2 individuals in these 50 individuals and the fitness
values and design variables of them are shown in TABLE 4.

In TABLE 4, each fitness value in the second and the
third rows is normalized by the maximum and the minimum
fitness values of the obtained Pareto solutions into the range
of [0,1], and each design variable is normalized by the
feasible ranges shown in TABLE 3 into [0,1]. In TABLE
4, though A and B have similar fitness values each other,
the design variables are widely different. For example, the
launching dates are March and December, the launching
times are 1 in the midnight and 8 in the morning, andV 3
and V 5 are also different. In this area, there were some
individuals that design variables are widely different with
similar fitness values.

The result of the index values in eq. (2), in which the
neighborhood was defined in the design variable space, are
shown in Fig. 6. Neighborhood radiusϵ was set asη = 8
in eq. (1). Figure 6 shows the value of indexvi for each
individuals same as Fig. 4.

Figure 7 shows the result of the visualization of the
distribution of the top 50 individuals with large index values.
As shown in Fig. 7, the individuals with red color are
distributed widely in the objective space compared to the
distribution in the design variable space. TABLE 5 shows
the extracted 2 individuals C and D in Fig. 7 in the same

�

����

���

����

���

����

���

����

� ��� ���� ���� ����

Individual Label

vi

Fig. 4: Value of Indexvi in eq. (2) for each Individual
(Neighborhood : Objective Space)

�
�

(a) objective space

(b) design variable space

Fig. 5: Distribution of Pareto Solutions for Non-
Correspondence Area (Neighborhood : Objective Space)

way with TABLE 4. In TABLE 5, though C and D have
similar design variables each other, the fitness values are
widely different. In this area, there were some individuals
that fitness values were very sensitive to the change of design
variables. Thus it is required for the designer to choose or
design very carefully a Pareto solution in this area.

3.4 Acquirement of Robust Pareto Solutions
In the experimental condition here, population size was

100, and generation was 100. We compared the proposed

320 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



Table 4: fitness values and design variables of selected
individuals (A, B)

NormalizedValue Actual Value
A B A B

Obj1 0.006 0.011 1434.70 1437.75
Obj2 0.846 0.910 8545.60 8713.77
Obj3 0.035 0.0005 401.08 395.65
Obj4 0.097 0.167 1.524 2.009
Obj5 0.018 0.085 217.71 221.07
V 1 0.201 0.916 2017/3/15 2017/12/1
V 2 0.051 0.336 01:13:47 08:4:14
V 3 0.977 0.313 358 175
V 4 0.999 1.000 179.94 180.00
V 5 0.818 1.000 147.99 180.00

�

����

���

����

���

����

���

� ��� ���� ���� ����

Individual Lavel

vi

Fig. 6: Value of Index viin eq. (2) for each Individual
(Neighborhood : Design Variable Space)

Table 5: fitness values and design variables of selected
individuals (C, D)

NormalizedValue Actual Value
C D C D

Obj1 0.660 0.857 1801.06 1911.56
Obj2 0.226 0.061 6891.16 6452.99
Obj3 0.660 0.890 497.49 533.10
Obj4 0.156 0.694 1.938 5.689
Obj5 0.290 0.385 231.23 236.01
V 1 0.750 0.750 2017/10/1 2017/10/1
V 2 0.382 0.385 09:10:59 09:14:16
V 3 0.038 0.038 100 100
V 4 0.999 0.985 179.95 177.37
V 5 0.864 0.841 155.53 151.43

methoddescribed in 2.3 and NSGA-II as the conventional
method. Note that the difference between the proposed
method and the conventional method was only the difference
between Crowding Distance (CDi) and Ri by eq. (4).
Figure 8 shows the visualization result of the distribution
of obtained Pareto solutions in the objective space by MDS.
In Fig. 8, the color of solutions indicates the value of index
v, in which red color means large value and green color
means small value.

(a) objective space

�

�

(b) design variable space

Fig. 7: Distribution of Pareto Solutions for Non-
Correspondence Area (Neighborhood : Design Variable
Space)

As shown in Fig. 8, Pareto solutions by the proposed
method have many solutions with large value ofv compared
to the solutions by the conventional method. We extracted
the solutions with large value ofv (in the circle in Fig. 8(b))
from the obtained Pareto solutions by the proposed method.
Next, we extracted the solutions having same fitness values
in the conventional method and compared the values of
design variables. The maximum and minimum fitness values
in the extracted solutions are shown in TABLE 6.

We focused on Start Date and Time (V 1 and V 2), and
showed the result of comparison in terms of Start Date and
Time in Fig. 9. In Fig. 9, the horizontal axis shows the
label of each solution and the vertical axis shows the value
of each design variable. Red plots indicate Start Date and
Time of solutions by the proposed method with the range of
fitness values in TABLE 6 and blue plots indicate those of
solutions by the conventional method. As shown in Fig. 9,
the proposed method could obtain the solutions with Start
Date and Time which the conventional method could not do
(from December to February, from 23 o’clock to 2 o’clock).

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 321



(a) Result of conventional method

(b) Result of proposed method

Fig. 8: Distribution of Pareto Solutions (Objective Space)

This result shows that the proposed method could obtain a
lot of solutions having same fitness values and different Start
Date and Time.

Table 6: Maximum and Minimum of Fitness Values

Max Min
Obj1 1544.51 1442.90
Obj2 8364.64 7999.78
Obj3 438.76 424.75
Obj4 1.893 1.144
Obj5 223.87 218.014

4. Conclusion
In this paper, we defined Non-Correspondence in Spread

between the objective space and the design variable
space. We proposed the quantitative index to extract Non-
Correspondence area in Spread. This paper applied the
proposed method to the trajectory designing optimization
problem known as DESTINY provided by JAXA and ana-
lyzed the extracted Non-Correspondence area in Spread in
the obtained Pareto solutions. This paper showed that the

� �� �� �� �� ��� ��� ���
Jan.

Nov.

Mar.

May

Jul.

Sep.

(a) Start Date（V1）

�

�

��

��

��

��

� �� �� �� �� ��� ��� ���

[h]

(b) Start Time（V2）

Fig. 9: Start Date and Time

Pareto solutions having widely different design variables
with similar fitness values could be extracted. This paper
also applied the defined index to genetic search and obtained
a lot of Pareto solutions having similar fitness values but
different Start Date and Time. For the future work, we will
apply the proposed method to other problems with more
objective functions or higher dimensional design variables
and study Non-Correspondence in Linear Relationship.

5. Acknowledgment
This research is partially supported by High Performance

Computing Initiative Field 4: Industrial Innovation R and
D Topic 4 [Design innovation with mutiobjective design
exploration][12].

References
[1] K. Deb, Multi-objective optimization using evolutionary algorithms.

Wiley, 2001.
[2] S. Obayashi, “Multiobjective design optimization of aircraft configu-

ration (in japanese),”The Japanese Society for Artificial Intelligence,
vol. 18, pp. 495–501, 2003.

[3] K. Deb, “Unveiling innovative design principles by means of multi-
ple conflicting objectives,”Engineering Optimization, vol. 35, no. 5,
pp. 445–470, 2003.

[4] K. H. Akira Oyama, Yasuhiro Kawakatsu, “Application of multiob-
jective design exploration to trajectory design of the next-generation
solar physics satellite,”Japanese Society for Evolutionary Computation,
2010.

322 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



[5] F. Kudo and T. Yoshikawa, “Knowledge extraction in multi-objective
optimization problem based on visualization of pareto solutions,”WCCI
2012 IEEE World Congress on Computational Intelligence, pp. 860–
865, 2012.

[6] T. Yoshida and T. Yoshikawa, “An extraction of non-correspondence
area between objective space and design variable space based on order
correlation of distance relation（in japanese）,” The Japanese Society
for Artificial Intelligence, 2013.

[7] A. L´ opez, A. Oyama, and K. Fujii, “Evaluating two evolutionary
approaches to solve a many-objective space trajectory design problem,”
The Japanese Society for Evolutionary Computation, 2012.

[8] K. Deb, A Fast and Elitist Multiobjective Genetic Algorithm : NSGA-II.
2002.

[9] K. Deb and R. Agrawal, “Simulated binary crossover for continuous
search space,”Complex Systems, vol. 1, no. 9, pp. 115–148, 1994.

[10] K. Deb and M. Goyal, “A combined genetic adaptive search (geneas)
for engineering design,”Computer Science and Informatics, vol. 26,
pp. 30–45, 1996.

[11] J. W. Sammon, “A nonlinear mapping for data structure analysis,”
IEEE Transactions on computers, vol. 18, no. 5, pp. 401–409, 1969.

[12] http://www.ciss.iis.u-tokyo.ac.jp/supercomputer/about/.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 323



Quantitative Evaluation of Reconstructed Image
with Filtered Back Projection Bayes Method

Nodoka IIDA1 Hayaru SHOUNO1 Muneyuki SAKATA2 Yuichi KIMURA3

1 Graduate School of Informatics and Engineering, University of Electro-Communications,
Chofugaoka 1-5-1, Chofu, Tokyo, JAPAN

2 Tokyo　Metropolitan Institute of Gerontology,
35-2 Sakae-cho, Itabashi-ku, Tokyo, JAPAN

3 Faculty of Biology-Oriented Science and Technology, Kinki University,
930, Nishimitani, Kinosawa, Wakayama, JAPAN

Abstract— We compared a Bayesian reconstruction method
with conventional filtered back projection (FBP) method in
positron emission tomography (PET). In the medical scene,
PET scanning plays an important role for functional diag-
nosis such like measuring the cerebral glucose metabolisms.
Tomographic image is reconstructed from the observed data,
which is the recieved signals from administrated-radioactive
substances existing in the target tissue, by a PET scanner.
Various reconstruction methods have been proposed, and we
focus on a Bayesian approach of our previous method, that
is, introducing a Gaussian Markov random field (GMRF) as
a prior and Gaussian observations as likelihood function.
We evaluate reconstruction performances of our method in
a region of interest (ROI) based approach and compare
with the one of FBP method. In the result, we obtain our
Bayesian approach might be able to suppress fluctuation of
the observation noise.

Keywords: Positron emission tomography (PET), Filtered back
projection (FBP), Bayes inference, Quantitative evaluation

1. Introduction
In the field of medical imaging, the positron emission

tomography (PET) plays an important role for diagnosis.
Observed data, or projection data can be obtained by a
PET scanner which collects the distribution of radioactive
substances, called a tracer, which emits positron, admin-
istrated in an target. Tomographic image is reconstructed
from the projection data. Radon transform is usually used in
mathematical formulation.

On the other hand, the quality of reconstructed image is
always influenced with the ratio of signal and noise (S/N) in
the observation. Generally, the larger S/N ratio brings, the
better reconstructed images become. It is desired to obtain
a high quality image as much as possible from observed

data including much noise for reducing radiation exposure,
or observed signals.

A lot of algorithms and methods for image reconstruction
are proposed [1][2]. The filtered back projection (FBP)
method is one of the most famous and standard recon-
struction method as is introduced in PET scanner imaging
systems.

On the contrary, image restoration method using Bayes
inference has been discussed [3]. Thus, in our previous
work, we extend the FBP method with introducing Bayes
inference method[4][5]. Hereafter we call the method as
FBP-Bayes method. Even though our method is expected in
improvement in image quality compared with FBP method,
there has not been any comparative experiments.

In the field of computer vision, PSNR(Peak Signal-to-
Noise Ratio), which means the ratio between the power of
a peak signal and the noise mixed in the whole image, or
amount of degradation in image quality, is used for quantita-
tive evaluation of restoration method. However, it is needed
to know how much does the reconstructed image indicate
physical quantity in the original space correctly in PET
images. This is because the final goal of PET reconstructed
image is to know how much does the radioactive substance
in the region of interest (ROI) exist in the topical position
of the target object. Therefore, PSNR itself does not play an
important role.

In this paper, we compare images reconstructed by FBP
method introduced in a commercial PET console and images
reconstructed by proposed FBP-Bayes method, quantita-
tively.

2. Formulation
2.1 Radon Transform

Briefly, the Radon transform assumes that the observed
signals are transmitted through the target object. Fig. 1 shows
the schematic diagram of the Radon transform. We describe

324 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



x

y

s

t

Object: ξ(x, y)

Projec on: τ(s, θ)

θ

Fig. 1: Schematic diagram of the Radon transform. Detectors
are aligned on the s axis, which has an angle described as
θ.

the target object density as the function (x, y) coordinate,
and assume that the detectors are aligned along the s axis that
is rotated in θ degree. We can thus denote the relationship
between the (x, y) and (s, t) coordinates as a rotation:(

s

t

)
=

(
cos θ sin θ

− sin θ cos θ

)(
x

y

)
. (1)

We describe the density of the target as ξ(x, y); that is,
detectors are aligned on the s axis, so that we describe
the observation τ(s, θ), or a sinogram, as the following
formulation, called Radon transform,

τ(s, θ) =

∫
dt ξ(x, y) =

∫
dt ξ (x(s, t), y(s, t)) . (2)

2.2 Conventional FBP Method
This reconstruction method is mainly formulated on

the frequency domain, so we introduce the 2-dimensional
Fourier transform of the reconstruction image σ(x, y) and
its inverse transform pair as

σ̃(x̃, ỹ) =

∫∫
dxdy σ(x, y) e−2πj(xx̃+yỹ) (3)

σ(x, y) =

∫∫
dx̃dỹ σ̃(x̃, ỹ) e2πj(xx̃+yỹ), (4)

where the (x̃, ỹ) coordinate represents the space frequency.
Meanwhile, we can apply a 1-dimensional Fourier trans-

form for the s of the observed data τ(s, θ) as τ̃(s̃, θ). The
τ̃(s̃, θ) satisfies the following relationship, which is called a
projection theorem:

τ̃(s̃, θ) =

∫
ds τ(s, θ)e−2πjss̃ (5)

= ξ̃(s̃ cos θ, s̃ sin θ). (6)

The FBP method is derived as a transformation of the
from Cartesian coordinate (x̃, ỹ) into the polar coordinate

(s̃, θ) in the inverse Fourier transform (4):

σ(x, y) =

∫∫
dx̃dỹ σ̃(x̃, ỹ) e2πj(xx̃+yỹ) (7)

=

∫ π

0

dθ

∫ ∞

−∞
ds̃ |s̃| σ̃(s̃ cos θ, s̃ sin θ) e2πjss̃. (8)

Omitting the observation noise, we can substitute eq.(6) into
the part of eq. (8):

g(s, θ) =

∫
ds̃ |s̃| σ̃(s̃ cos θ, s̃ sin θ) e2πjss̃,

=

∫
ds̃ |s̃| τ̃(s̃, θ) e2πjss̃. (9)

Eq.(9) means the inverse Fourier transform of the projection
τ̃(s̃, θ) through the filter |s̃|. Thus, the reconstructed image
is obtained by the integral of the filtered projection g(s, θ):

σ(x, y) =

∫ π

0

dθ g(x cos θ + y sin θ, θ), (10)

where s = x cos θ + y sin θ from eq.(1). We call this
reconstruction method as the FBP method.

2.3 Stochastic Model
In this section, we introduce the observation noise as the

stochastic model into the FBP method. Of course, we should
consider Poisson noise for observation in a realistic model;
however, solvable model is also important for understanding
the reconstruction process.

Hence, in this study, we introduced additive Gaussian
noise for observation on the signal ξ(x, y). When we con-
sider the Gaussian noise np(x, y) on the image ξ(x, y),
the observation through the Radon transform τ(s, θ) can be
described as

τ(s, θ) =

∫
dt (σ(x, y) + np(x, y)) (11)

=

∫
dtσ(x, y) +Np(s, θ), (12)

where Np(s, θ) =
∫
dtnp(x, y). Therefore, we treat Np(s, θ)

as the Gaussian noise. In manner of the conventional image
restoration method proposed by Tanaka & Inoue, we also
introduce the energy function Hn(τ |σ) as following[7] [8]:

Hn(τ | σ) = 4π2γ

∫ π

0

dθ

∫
ds

(
τ(s, θ)−

∫
dt σ(x, y)

)2

.

(13)

The hyper-parameter γ represents a precision parameter that
is proportionate to the inverse of the variance of the Gaussian
noise Np(s, θ); that is, the large γ indicates a good S/N
ratio in the observation. We can thus denote the observation
process as

p(τ | σ) ∝ exp(−Hn(τ | σ)). (14)

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 325



To reconstruct an image from noisy data, we also adopt the
prior distribution in this study. We treat the energy function
Hpri(σ) of the prior as

Hpri(σ) = β

∫∫
dx dy ||∇σ(x, y)||2 (15)

+ 4π2h

∫∫
dx dy σ(x, y)2. (16)

In Eq. (16), the first term corresponds to the Markov random
field (MRF) like constraint; that is, neighboring pixel values
should be similar to the target pixel, and the second term that
corresponds to that pixel value should not take such a large
value. The hyper-parameters β and h control the strength of
each constraint. The prior probability can thus be described
as the following when we adopt the polar coordinate in the
frequency domain:

p(σ) ∝ exp(−Hpri(σ)). (17)

From Equations (14) and (17), we can derive the posterior
probability with Bayes theorem

p(σ | τ ) = p(τ | σ)p(σ)∑
σ p(τ | σ)p(σ)

. (18)

2.4 Image Reconstruction method
We adopt the marginalized posterior mean ⟨σ(x, y)⟩ for

the image reconstruction solution. The posterior mean can
be denoted as

⟨σ(x, y)⟩ =
∫ π

0

dθ

∫ ∞

−∞
ds̃ |s̃| ⟨σ̃s̃,θ⟩ e2πjs̃(x cos θ+y sin θ).

(19)

Thus {⟨σ̃s̃,θ⟩} represents an average set of Fourier expres-
sions, is required to obtain the mean pixel value over the
posterior ⟨σ(x, y)⟩. The average set can be denoted as

⟨σ̃s̃,θ⟩ =
∑
σ

σ̃s̃,θ p(σ | τ ). (20)

This solution, called the posterior mean (PM), provides
identical result as the MAP does, and it also provides the
maximizer of the posterior marginals (MPM) solution of Eq.
(18).

2.5 Hyper-parameter inference
To reconstruct an appropriate tomography image with our

Bayesian inference, we need to assign proper values to the
hyper-parameters β, h, and γ. The hyper-parameters β and
h control the strength of constraints, while γ controls the
fidelity of the observation. We infer these hyper-parameters
by using maximization of marginal log-likelihood, which is
sometimes called the type II maximum likelihood method.

Fig. 2: Example of ROI extraction: ROIs are extracted from
reconstructed images corresponding to that of the places in
digital phantom. We focus on standard deviation and mean
of each ROI; smaller change of the values by time means
accuracy is better than the other.

The marginal log-likelihood denoted as the linear combina-
tion of log partition functions is

ln p(τ | β, h, γ) = lnZpost(β, h, γ)

− lnZn(γ)− lnZpri(β, h), (21)

where

Zpri(β, h) =
∑
σ

e−Hpri(σ | β,h) (22)

Zn(γ) =
∑
τ

e−Hn(τ | σ,γ) (23)

Zpost(β, h, γ) =
∑
σ

e−Hpri(σ | β,h)−Hn(τ | σ,γ). (24)

The partition functions Zpri(β, h), Zn(γ), and Zpost(β, h, γ)

correspond to the prior distribution, observation channel, and
posterior distribution, respectively.

For maximization of marginal log-likelihood (21), we
adopt a naive gradient method corresponding to the hyper-
parameters β, h, and γ.

3. Quantitative Evaluation Method for
Region of Interests

Quantitative evaluation of PET image, which means corre-
spondence between pixel intensity and tracer density, in the
original space is important for diagnose. For practical use for
the diagnose of the PET image, we use following evaluation
method. First, square shaped areas, whose distributions are
equable, were extracted from digital phantom image as
region of interest (ROI). In the ROI, from its homogeneity,
the tracer density might be uniform distribution in ideal. Fig.
2 shows the ROIs in the each corresponding positions. The
left shows the ROIs on the phantom image, which means
the ideal reconstruction image. The middle one shows the
conventional PET-FBP image with ROIs on the same loca-
tions in the Phantom. The right shows FBP-Bayes method

326 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



Fig. 3: Hoffman 3-D Brain phantom: It is a 3 dimensional
model of the normal brain with 20 pieces. In the model, each
of the gray matter part and the white matter part uptakes the
tracer with the ratio of 4:1.

with ROIs in the manner of the middle one. The bottom
part shows the magnified ROIs on corresponding images.
Because the bandwidth gets narrower when using FBP-
Bayes method compared to PET-FBP method (see Fig.5),
mean of ROIs extracted from each method cannot be com-
pared with each other. Therefore, we calculated the mean
and the standard deviation (SD) of each ROI, and regarded
the ratio of them, which means SD/mean, as the indicator
of the image quality. If an image which has the smaller
SD/mean, the image has the better quality. We applied 5
kinds of sizes of ROI: 4 × 4 [pixels], 6 × 6 [pixels], 8 × 8

[pixels], 10 × 10 [pixels], and 12 × 12 [pixels], covering
all over the target domain (uptake ratio 1 and 4) of the
images. In order to align the whole object location, which
is called “co-register” procedure, we apply a software called
Statistical Parametric Mapping (SPM; the Wellcome Trust
Centre for Neuroimaging) between the digital phantom and
each reconstructed image in the pre-processing.

We applied 5 kinds of sizes of ROI: 4× 4 [pixels], 6× 6

[pixels], 8×8 [pixels], 10×10 [pixels], and 12×12 [pixels],
covering all over the target domain (uptake ratio 1 and 4) of
the images.

4. Reconstruction and Evaluation
In the reconstruction experiment, we compared each of re-

constructed images with corresponding slice in the Hoffman
3-D brain phantom. Fig.3 shows an example of the Hoffman
3-D Brain phantom. The Hoffman phantom consists of 20
slices, and each slice simulates the shape of a normal brain.
Each slice consists of gray and white matter parts, and each
part uptakes the tracer with ratio of 4:1. Thus, the pixel value
in the cross-sectional image of Hoffman 3-D Brain phantom,
which is called digital phantom,was 0, 1, and 4 ideally.

23.1 MBq of 11C carfentanil were put in Hoff-
man phantom (see Fig.3) which was observed at Tokyo
Metropolitan Institute of Gerontology (PET model:SET-
2400W(Shimadzu,Tokyo,Japan)). We went 120 minutes of
observations by 3 minutes per frame. We call each observa-
tion as ”sequence.”

As Fig. 4 shows, since we did not perform attenuation
correction, the radiation is attenuated by half-life of 20.3
minutes. That is, signal intensity became weak and the
reconstructed image became noisy.

For comparison, we also obtain the reconstruction images
with FBP method introduced in the scanner console. Here,
the applied FBP method, hereafter we refer as PET-FBP
method, is just a little different from the original method
proposed by Ramachandran and Lakshminarayanan [6]. The
original FBP method contains a filter such like |s̃| in Eq.(9),
which enhance high frequency component in the meaning
of the spatial frequency. Thus, the high frequency noise
component also enhances. The purpose of FBP filter design
is to suppress the high frequency noise component. Fig.5
shows FBP filters in the spatial frequency expression. The
horizontal axis shows the spatial frequency, and the vertical
one shows filter strength. As shown in the figure, the shapes
of filters are different from each method. The standard FBP
shows the original FBP curve |s̃|[6]. The filter of PET-FBP
method, which is designed under a radiological technologist
instruction, is configured as a butterworth filter (cutoff: 1.25
cycle/cm, order:2). Our Bayes FBP filter is controlled hyper-
parameters β, γ, and h for each observation. Thus, each
filter curve is different under the condition of observation
sequence and position.

4.1 Reconstructed Images
Fig. 6 shows examples of the reconstructed images of

PET-FBP and FBP-Bayes method compared with digital
phantom images. Their sizes are all 128×128 [pixels]. Each
pixel size nearly equals 2 [mm]. As the signal intensity get
weak as time goes by, the reconstructed images of PET-FBP
method seem to get noisier, and reconstructed images of
FBP-Bayes method seem to get smoother.

In order to compare and evaluate the two methods more
accurately, we propose a quantitative image comparison
method written below.

4.2 Results
Figures 7, 8, and 9 show transitions of (mean of standard

deviation) divided by (mean of mean) by time in each size of
ROIs. As mentioned in previous section, we applied 5 kinds
of sizes of ROI. However, we introduce 3 of them in this
paper: 4×4, 8×8, and 12×12 ROI. From these results, in

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 327



Time [min]
0 20 40 60 80 100 120

R
ad

io
ac

tiv
ity

 [%
]

0

20

40

60

80

100

Fig. 4: Radioactive decay of 11C isotope.

Frequency [cycle/cm]
0 0.5 1 1.5 2 2.5

P
ow

er
 [d

B
]

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Standard FBP
PET-FBP
FBP-Bayes 1.5 min, iZ=1
FBP-Bayes 1.5 min, iZ=10
FBP-Bayes 18.5 min, iZ=1
FBP-Bayes 18.5 min, iZ=10

Fig. 5: Difference of frequency filter among the original
FBP, PET-FBP, and FBP-Bayes which depends on hyper-
parameters β, h, and γ.

any size of ROI, standard deviation of ROIs change smaller
and values themselves are smaller using FBP-Bayes method
than PET-FBP. Therefore, we are able to affirm that FBP-
Bayes method can reconstruct images more accurate than
PET-FBP method.

5. Conclusion
We evaluated images reconstructed by real observation

which introduces FBP method, referred as PET-FBP method
in this paper, and images reconstructed by FBP-Bayes
method using a quantitative-image evaluation method we
proposed. FBP-Bayes method is formulated such like the
MRF-like distribution p(σ) for the prior, and also the

Fig. 6: Reconstructed images compared to digital phantom
image. Observations were carried out 40 times in 120
minutes, where reducing radiation exposure were occurring;
signal intensity get weak and the images get noisy.

observation process as p(τ |σ) by assuming the process was
carried out through the Gaussian channel.

To evaluate PET-FBP method and FBP-Bayes method,
we proposed a quantitative image evaluation method us-
ing standard deviation of extracted ROIs. Smaller change
of standard deviation of ROI indicated better accuracy in
reconstructing when using FBP-Bayes method than when
using the conventional PET-FBP method. However, the mean
of ROI was not stable, which means there is room for
improvement the FBP-Bayes method.

References
[1] L. A. Shepp and Y. Vardi: Maximum Likelihood Reconstruction for

Emission Tomography, IEEE Trans. Med. Imag.Vol.1, pp.113–122,
(1982).

[2] P. J. Green: Bayesian Reconstructions from Emission Tomography Data
Using a Modified EM Algorithm, IEEE Trans. Med. Imag. 9 pp.84–93,
(1990).

[3] K. Tanaka: Statistical-Mechanical Approach to Image Processing,
J.Phys.A: Math. Gen., 37, pp. R81–R150, (2002).

[4] M. Yamasaki, H. Shouno, and M. Okada: A Bayesian Hyperparam-
eter Inference for Radon-Transformed Image Reconstruction, Intl. J.
Biomed. Imag. ID870252, (2011)

328 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



Time [min]
0 20 40 60 80 100 120

 S
ta

nd
ar

d 
D

ev
ia

tio
n 

/ M
ea

n 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Transision of Standard Deviation / Mean of 4*4 ROI

FBP-Bayes ratio:4
FBP-Bayes ratio:1
PET-FBP ratio:4
PET-FBP ratio:1

Fig. 7: Transition of standard deviation divided by mean of
4× 4 pixel ROI.

[5] M. Yamasaki, H. Shouno, and M. Okada: Bayes Tomography Image
Reconstruction using 4-Dimensional Markov Random Field Prior,
IEICE Trans. D-II, Vol.96-D(4), pp.791–802, (2013) (in Japanese)

[6] G. N. Ramachandran and A.V.Lakshminarayanan: Three-Dimensional
Reconstruction from Radiographs and Electron Micrographs, Proc.
Natl. Acad. Sci.68, pp.2236–2240, (1971).

[7] K. Tanaka, H. Shouno, M. Okada, and D. M. Titterington: Accuracy of
the Bethe approximation for hyperparameter estimation in probabilistic
image processing, J. Phys. A: Math. Gen. 37, pp.8675–8695 (2004).

[8] J. Inoue and K. Tanaka: Dynamics of Maximum Marginal Likelihood
Hyper-Parameter Estimation in Image Restoration: Gradient descent vs.
EM algorithm, Phys. Rev. E 65, 016125, (2002).

Time [min]
0 20 40 60 80 100 120

 S
ta

nd
ar

d 
D

ev
ia

tio
n 

/ M
ea

n 
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Transision of Standard Deviation / Mean of 8*8 ROI

FBP-Bayes ratio:4
FBP-Bayes ratio:1
PET-FBP ratio:4
PET-FBP ratio:1

Fig. 8: Transition of standard deviation divided by mean of
8× 8 pixel ROI.

Time [min]
0 20 40 60 80 100 120

 S
ta

nd
ar

d 
D

ev
ia

tio
n 

/ M
ea

n 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Transision of Standard Deviation / Mean of 12*12 ROI

FBP-Bayes ratio:4
FBP-Bayes ratio:1
PET-FBP ratio:4
PET-FBP ratio:1

Fig. 9: Transition of standard deviation divided by mean of
12× 12 pixel ROI.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 329



330 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



SESSION

POSTER PAPERS

Chair(s)

TBA

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 331



 

332 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



A CPU and GPU Heterogeneous Processing of Multimedia Data by using OpenCL
1
 

 

Heegon Kim, Sungju Lee, Yongwha Chung, Daihee Park 

Dept. of Computer and Information Science, Korea University, Sejong City, Republic of Korea 

 

 

                                                           
1
 "This paper is being submitted as a poster". 

Abstract - In recent times, it has become possible to 

parallelize many multimedia applications using multicore 

platforms such as CPUs and GPUs. In this paper, we propose 

a parallel processing approach for a multimedia application 

by using both the CPU and GPU. Instead of distributing the 

parallelizable workload to either the CPU or GPU, we 

distribute the workload simultaneously to both by using 

OpenCL. Based on our experimental results, using both the 

CPU and GPU, we confirm that the proposed parallel 

processing approach provides better performance than typical 

parallel processing approaches on account of maximal 

utilization of the given resources. 

Keywords: CPU, GPU, Heterogeneous Computing, OpenCL  

1 Introduction 

 As multicore processors are now widely available, 

parallel processing approaches have been developed for many 

applications. In this paper, we focus on parallelizing 

multimedia applications by using both the CPU and GPU. 

Especially, OpenCL [1] has been defined as a standard for 

heterogeneous parallel computing. It provides a cross-

platform framework for writing software able to run on 

different kinds of devices, from multicore CPUs to GPUs. 

That is, a parallel program written with OpenCL can be 

executed on either a CPU or GPU [2]. Generally, it is true that 

a GPU can provide better performance than a CPU for 

multimedia applications. However, current multicore CPUs 

are also powerful processors, and thus, when used together 

with a GPU, the total execution time can be reduced.  

 We propose a load balancing approach that can 

overcome the performance limits of either CPU-only or GPU-

only execution. We first attempt to achieve parallelism in a 

typical multimedia application (i.e., photomosaic application 

[3]) using OpenCL, and measure its execution time on the 

CPU and GPU, respectively. Then, we partition the 

parallelized workload into two parts, based on the relative 

performance of the GPU over the CPU and some parallel 

overhead. Finally, we assign the GPU-portion of the workload 

to the GPU by using a non-blocking command, and then 

assign the remaining parallel portion to the CPU without 

waiting for a result from the GPU. By reducing the idle time 

on either the CPU or GPU, we maximally overlap the GPU 

execution with the CPU execution.  

2 Heterogeneous processing of Photomosaic 

 A GPU has many cores with low clock frequency, 

whereas a CPU has few cores with high clock frequency. 

Because a GPU is based on a Single Instruction, Multiple 

Data (SIMD) architecture with many cores, it can efficiently 

compute the same operations over large images with no data 

dependency, as required by the photomosaic application. That 

is, the photomosaic application can perform better using a 

GPU than a CPU. A large number of studies of GPU-

equipped environments using only GPU-based parallel 

processing have been published [4-5]. However, a current 

multicore CPU is also a powerful processor, and thus, when 

used together with a GPU, the total execution time can be 

reduced. 

 To generate the photomosaic based on a CPU-GPU 

heterogeneous computing environment, we employ OpenCL 

[1]. Figure 1 shows the OpenCL code for generating the 

photomosaic using both the CPU and GPU. After initializing 

the CPU and GPU, they are each assigned a workload (i.e., 

some row pixels of the image), respectively. Because of the 

speed discrepancy between the CPU and GPU, we assign the 

workload carefully such that the possible idle time on either 

the CPU or GPU should be minimized. Then, the OpenCL 

clEnqueueReadBuffer function with non-blocking mode is 

used for execution of the code on the GPU. Finally, the 

OpenCL clFinish function is used to synchronize between the 

CPU and GPU. 

 

 The amount of workload assigned to each processor is 

determined by the clCreateBuffer function and the 

clSetKernelArg function. In this paper, we propose a simple, 

but effective load balancing approach in order to reduce the 

possible idle time on either the CPU or GPU. We first execute 

the OpenCL code for CPU-only (i.e., assign 100% of the 

workload to CPU) and GPU-only (i.e., assign 100% of the 

workload to GPU) cases. Using the speed discrepancy 

between the CPU and GPU, we set the initial workload to 

each processor. Note that the non-blocking mode of the 

execution also incurs some overhead on the host (i.e., CPU). 

OpenCL initialization with GPU 
clCreateKernel()
clCreateBuffer()
clSetKernelArg()

OpenCL initialization with CPU
clCreateKernel()
clCreateBuffer()
clSetKernelArg()

clEnqueueNDRangeKernel()

clEnqueueNDRangeKernel()

clEnqueueReadBuffer()

clEnqueueReadBuffer()

Start GPU Kernel

Start CPU Kernel

Non-blocking mode (GPU)

Blocking mode (CPU)

GPU 
Kernel Code

CPU
Kernel Code

clFinish()
 

Figure 1. OpenCL code for the photomosaic 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 333



Thus, we start searching for the optimal load distribution by 

comparing the execution time of the initial load distribution 

(i.e., determined by the speed discrepancy between the CPU 

and GPU) with that of the “CPU-less” load distribution (i.e., 

some of the initial CPU load is assigned to the GPU). If the 

CPU-less case provides faster execution time, this comparison 

is repeated until no more improvement can be found. As we 

will explain in the next Section, we can determine the optimal 

load distribution with very few comparisons.  

 Note that, determining the actual execution time on 

either the CPU or GPU analytically is a very difficult problem. 

Because the OpenCL code can be run on both the CPU and 

GPU, we can easily measure, with very few comparisons and 

fine tune the workload distribution, in addition to handling the 

speed discrepancy between the CPU and GPU (i.e., CPU-only 

and GPU-only cases). 

3 Experimental Result 

 For evaluating the proposed approach, we used two 

platforms. Platform 1 was composed of an AMD Phenom II 

X4 955 CPU (4 cores) and a GeForce GTX 285 GPU (336 

cores). Platform 2 was composed of an Intel Core i5-2500 

CPU (4 cores) and a GeForce GTX 560 GPU (336 cores). 

The target image size was 3072×2048, and the image was 

partitioned into 64×64 blocks of data for the photomosaic. 

That is, we need to assign each of the 32 (= 2048/64) row 

blocks to each processor. In order to obtain the speed 

discrepancy between the CPU and GPU, we first executed the 

photomosaic for CPU-only and GPU-only cases. For platform 

1, the GPU performs 2.3 times better than the CPU, whereas 

on platform 2, CPU performs 1.7 times better than GPU. 

Therefore, from the total of 32 row blocks, we set the initial 

load distribution CPU:GPU = 10:22 on platform 1 and 

CPU:GPU = 20:12 on platform 2.  

 Then, we compared the execution time of this initial 

distribution with that of CPU-less distribution. In our 

experiment for the minor tuning of the load distribution, we 

decreased the CPU workload in each comparison (i.e., the 

first iteration compared the workload ratio 10:22 with 9:23 for 

platform 1, and compared the workload ratio 20:12 with 

19:13 for platform 2). Because the workload ratio 9:23 was 

faster than 10:22 on platform 1, we compared the workload 

ratio 9:23 with 8:24 in the next iteration. Similarly, since the 

workload ratio 19:13 was faster than 20:12 on platform 2, we 

compared the workload ratio 19:13 with 18:14 in the next 

iteration. The comparison was terminated when improvements 

cannot be obtained. We derived the optimal load distribution 

for this example (i.e., workload ratio of CPU:GPU = 7:25 for 

platform 1 and 18:14 for platform 2).  

 Note again that our approach does not need to measure 

all the cases. In addition to CPU-only and GPU-only (for the 

initial load distribution), only the cases of workload ratio from 

10:22 to 6:26 (i.e., five workload ratio cases) were measured 

on platform 1, and only the cases of workload ratio from 

20:12 to 17:15 (i.e., four workload ratio cases) were measured 

on platform 2, in order to derive the optimal load distribution. 

Finally, Table 1 compares the speedup of CPU-only, GPU-

only, and the proposed approach.  

Table 1. Speedup comparison 

 
Speedup 

Platform 1 Platform 2 

CPU-only 

(CPU:GPU = 32:0) 
16.8 19.5 

GPU-only 

(CPU:GPU = 0:32) 
38.5 11.7 

Proposed approach 
45.0 

(CPU:GPU = 7:25) 

26.0 

(CPU:GPU = 18:14) 

 

4 Conclusions 

 We have proposed an efficient heterogeneous parallel 

processing approach to reduce the CPU idle time in a 

multimedia application. The approach using OpenCL, 

involves using both the CPU and GPU, and decreases total 

execution time resulting in better performance. 

 Experiments with the use of both the CPU and GPU for 

parallel processing have demonstrated that our parallel 

processing approach can provide a speedup of 45 (17% better 

performance than the typical parallel processing approach 

using GPU-only) on platform 1 and a speedup of 26 (222% 

better performance than using GPU-only) on platform 2. Our 

approach exploits the main advantage of OpenCL (i.e., 

portability across platforms) and derives the optimal load 

distribution without using complicated scheduling techniques. 

5 Acknowledgement 

 This research was supported by Basic Science Research 

Program(through the NRF funded by the Ministry of 

Education, Science and Technology, No. 

2012R1A1A2043679). 

6 References 

[1] J. Stone, D. Gohara, and G. Shi, “OpenCL: A Parallel 

Programming Standard for Heterogeneous Computing 

Systems,” Computing in Science and Engineering, Vol. 12, 

No. 3, pp. 66-73, 2010. 

[2] R. Gaetano and B. Pesquet-Popescu, “OpenCL 

Implementation of Motion Estimation for Cloud Video 

Processing,” in Proc. of International Symposium on 

Multimedia Signal Processing, pp. 1-6, 2011. 

[3] R. Silvers and M. Hawley, Photomosaics, Henry Holt, 

New York, 1997. 

[4] J. Cao, X. Xie, J. Liang, and D. Li, “GPU Accelerated 

Target Tracking Method,” Advances in Intelligent and Soft 

Computing, vol. 128, pp. 251-257, 2012. 

[5] D. Davendra and I. Zelinka, “GPU Based Enhanced 

Differential Evolution Algorithm: A Comparison between 

CUDA and OpenCL,” Intelligent Systems Reference Library, 

vol. 38, pp. 845-867, 2013. 

334 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



 On the Scalability of Parallel Quicksort: A Case
Study on Distributed vs. Shared-Memory Models 

David Paulius
Department of Computer Science and Engineering

University of South Florida
Tampa, Florida, USA

davidpaulius@mail.usf.edu

Marc Boumedine
Computational and Computer Sciences Department

College of Science and Mathematics
University of the Virgin Islands

St. Thomas, U.S.V.I
mboumed@uvi.edu

ABSTRACT/POSTER  PAPER —  The  increasing
availability  of  parallel  systems  affords  undergraduates
opportunities to experience firsthand the potential benefit and
pitfalls  of  parallel  programming.  However,  a  clear
understanding  of  the  underlying  architecture  is  critical  to
achieve the anticipated speed up of serial  programs.  To this
end,  analyzing  performance  metrics  is  essential  for  tuning
parallel  implementations and determining what improvement
can be expected by scaling out or increasing the number of
processes  [1-4].  Without  considering important  aspects  such
locality,  load  balancing  and  communication  overheads
associated  with  each  available  parallel  system,  students  are
having a  hard  time obtaining the intended performance  and
determining which approach is suitable to solving the problem
at  hand.  Finding  the  best  mapping  between  the  parallel
implementation and the parallel platform available is hard to
achieve without clear guidance or practical experiences. Given
some  legacy  code,  a  first  approach  consists  of  looking  at
parallel programming patterns such as divide-and-conquer or
decomposition techniques. This pattern has been used widely
to  design  a  number  of  efficient  algorithms  for  a  variety  of
applications  [5].  Students  are  already  familiar  with  the
approach  of  recursively  partitioning  a  problem into  smaller
sub-problems.  Identification  of  sub-problems  which  can  be
solved independently is an intuitive choice for achieving speed
up. Even if this is not always the case, this approach allows
students  to  quickly  implement  embarrassingly  parallel
programs  using  message  passing  and  shared-address  space
programming paradigms. Ultimately, performance metrics are
collected and contrasted with the serial  and parallel  runtime
implementations.  Sources  of  overhead  affecting  the
performances of the algorithms are examined and discussed.
This practical  approach can be repeated on various classical
problems (matrix multiplication, sorting, numerical integration
and the gravitational N-body) and extended to new problems
by applying various parallel programming patterns 

This  case  study walks  through  the  steps  of  solving  the
problem of speeding up sorting serial problems from legacy
code for both shared memory and distributed memory models
on a small system multi-core cluster called  Bucc.  Bucc  is a
small  cluster  available  to  undergraduate  students  at  the
University  of  the  Virgin  Islands  who  are  exposed  to  high-
performance  computing  applications  and  are  interested  in

solving computational  science  problems.  Bucc consists  of  a
head  node  with  2  Intel  Westmere,  2.40GHz,  six-core,
processors and five twin compute nodes, each with two Intel
2.40GHz six-core processors.   It  is configured with 2 GB of
RAM per core. The interconnects are InfiniBand 40Gbps. 

This study focuses specifically on  the sorting task for both
the  distributed  and  shared-memory  models  on  the  Bucc
system.  Sorting is an recurrent critical problem for organizing
and processing efficiently information in many fields such as
combinatorial searching, optimization, simulation, information
retrieval,  scientific computing etc.  Sorting is also used as  a
core  utility  in  many  libraries.  Because  of  its  essential  role
computer  scientists  have  devoted  many  studies  on  sorting
techniques and have been focusing on finding the fastest serial
and parallel implementations. The  quicksort  algorithm is one
of the most popular algorithms known for its time complexity
of O(N log N). As a divide-and-conquer algorithm, it uses the
notion of  pivoting to divide the data set  into two halves  or
subsets that are recursively solved; there are several ways of
determining the pivot such as finding the median, selecting the
middle value, or simply selecting a random value in the data
set. Selecting the pivot is important as it ultimately affects the
time  taken  to  sort  and  merge  all  the  results  together.  The
quicksort algorithm has the worst case of being O(N2), which
can  render  it  as  slow  as  the  selection  and  bubble  sorting
algorithms.  Due  to  its  divide-and-conquer  nature,  intuitive
parallel  implementations  are  usually  implemented  using
message  passing interface  libraries  (MPI)  and  shared-addess
space libraries (OpenMP). Other hybrid programming models
are also considered but not examined in this study.

The naive  parallel  formulation  of  the  serial  quicksort
consists  of  sorting  a  global  array  A  of  n  element  on  p
processes.  Each  process  is  given  a  sub-array  which  is  a
sequence of n/p items. The sub-array is partitioned recursively
around  a  pivot  using  a  compare  and  split  routine.  The
algorithm terminates when the sub-array can not be partitioned
anymore. Fig. 1 show the serial quicksort runtime of Bucc. The
performance  and  scalability  of  parallel  programs  (MPI and
OpenMP) are discussed.  OpenMP quicksort spawns t threads
each of them handle a partition of the array. Each thread uses
the serial  qsort() from the C libraries [6]. Once all partitions
have been sorted, the sub-arrays are then merged together. The

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 335



runtimes  were  recorded  during  various  experiments  by
varying the size of the data size and the number of processes
(see Figs. 2-5). The array sizes were increased incrementally
(1000 x 2N items, where  N= 0,...,12).  The MPI experiments
shown on Figs. 2-3 were derived with p processes (p=1,...,128).
Figs. 4-5 show OpenMP implementation results by increasing
the  number  of  threads  from  1  to  512.  The  data  sets  were
randomly  generated  with  integers  using  the  C’s  drand()
function  for  better  generalization  purposes.  Runtimes  were
recorded  and  plotted  on  Figs.  1-5.  Common  performance
metrics  such  as  speedup and  efficiency  were computed  on
Bucc.  Speedup  is the performance gain of parallel processing
versus sequential processing. It is defined as [7-8]:

S(p)= T(N,1)/T(N,p) 

where T(n,1) is the runtime on one processor executed on size
N input, T(n,p) is the runtime on p processors executed on size
N input.

Efficiency of a parallel program is a measure of how much of
available processing power is being used. 

E(p) = S(p)/ p

where S(p) is the parallel runtime on p processors

This  metric  provides  an  accurate  measure  of  the  true
efficiency  of  a  parallel  program  compared  to  CPU  usage
(redundant calculations and idle times are included) [1-3].

Fig.6  shows  speedup  results  for  the  MPI  and  OpenMP
implementations over the serial quicksort. Overall, the results
for the OpenMP implementation show significant performance
improvement  on  over  the  MPI implementation  on  relatively
large problem size (N= 4,096,000), where 16 threads yield a
~700% time performance increase (see Fig.  7).  Both parallel
implementations  improve  performance  when  item  sizes  are
greater  than  32,000.  However,  the  naive  parallel
implementations have no gain for small  problem sizes  (N <
32,000) on the Bucc architecture. Figs 6-7 show that the current
quicksort implementations are not scalable on Bucc. For some
experiments,  the  parallel  versions  solve  the  problem with  a
superlinear speed up for (OpenMP with 8, 16 and 32 threads).
On the other hand, the execution with 2 and 4 threads results in
a sublinear speedup (see Fig. 7).  Based on these results, it is
clear that the experiments conducted with the current parallel
implementations  must  be  re-examined  in  order  to  identify
sources  of  parallel  overhead  such  as  load  imbalancing,
intranode  and  internode  communication  overhead,  the
partitioning of the array and the size of the cache available at
each  compute  node.  The  pivot  selection  is  also  critical  in
avoiding  idle  processes/threads  and  must  be  considered  in
revised versions.

This  case  study  highlighted  the  challenges  undergraduate
students  are  facing  during  the  design  and  development  of
parallel  applications. Students were tasked to parallelize the
serial  quicksort  algorithm  on  Bucc  cluster.  Naive  parallel
algorithms were implemented using OpenMP and MPI. These
implementations  were  compared  in  terms  of  speed  up,
efficiency and scalability. Results have shown that the parallel
naive  implementations  can  be  improved  significantly  by
reviewing the designs and implementations as well as taking

into  account  the  underlying   architecture.  In  the  future  we
want to combine  the  benefits of MPI and OpenMP code with
a  hybrid  programming  model  and  examine  speedup  and
scalability metrics on Bucc.

Fig. 3: Quicksort MPI implementation on Bucc for large data sets  

Fig. 1: Serial Quicksort Running time vs.  problem sizes 

Fig. 2: MPI Quicksort runtimes on Bucc for small size sets

336 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



REFERENCES

[1] Rajput, I., Kumar, B. and Singh, T. 2012. Performance Comparison of
Sequential  Quick  Sort  and  Parallel  Quick  Sort  Algorithms,
http://research.ijcaonline.org/volume57/number9/pxc3883363.pdf

[2] Foster,  I. 1995.  Designing  and  Building  Parallel  Programs,
http://www.mcs.anl.gov/~itf/dbpp/

[3] Miller, R. and Boxer, L. 2013.  Algorithms Sequential and Parallel: A
Unified Approach, 3rd Edition.

[4] Grama  A.,  Gupta  A.,  Karypis  G.  ,  Kumar  V.(2003)  Introduction  to
Parallel  Computing:  Design  and  Analysis  of  Algorithms,  Second
Edition, Addison Wesley.

[5] Berna  L.  Massingill,  Timothy  G.  Mattson,  and  Beverly  A.  Sanders
"Reengineering  for  Parallelism:  An  Entry  Point  for  PLPP  (Pattern
Language  for  Parallel  Programming)  for  Legacy
Applications"Proceedings of the Twelfth Pattern Languages of Programs
Workshop  (PLoP  2005),  2005. http://www.idris.fr/eng/turing/turing-
mapping-eng.htmlD

[6] Wiesland,  C.  2012.  Hypercube-Quicksort-MPI,
https://github.com/utahwithak/Hypercube-Quicksort-
MPI/blob/master/QuickSort/main.c

[7] Monteiro,  M.  2010.  Parallel  Programming:  Parallel  Algorithms
Sorting, http://paginas.fe.up.pt/~apm/CPAR/docs/cpar12.pdf 

[8] Kumar,  V.  and  Gupta,  A.  1993.  Analyzing  Scalability  of  Parallel
Algorithms  and  Architectures,  Journal  of  Parallel  and  Distributed
Computing, volume 22, pgs. 379-391.

Fig. 6: MPI implementation Speed up

Fig. 5: Quicksort OpenMP implementation on Bucc

Fig. 4: Quicksort OpenMP implementation on Bucc

Fig.7:OpenMP Speed up (%)

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 337

http://research.ijcaonline.org/volume57/number9/pxc3883363.pdf
http://paginas.fe.up.pt/~apm/CPAR/docs/cpar12.pdf
https://github.com/utahwithak/Hypercube-Quicksort-MPI/blob/master/QuickSort/main.c
https://github.com/utahwithak/Hypercube-Quicksort-MPI/blob/master/QuickSort/main.c
http://www.idris.fr/eng/turing/turing-mapping-eng.html
http://www.idris.fr/eng/turing/turing-mapping-eng.html
http://www.mcs.anl.gov/~itf/dbpp/


338 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



SESSION

PARALLEL PROCESSING ALGORITHMS,
SYSTEMS, APPLICATIONS, AND RELATED

ISSUES

Chair(s)

TBA

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 339



340 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



Distributed Caching Using the HTCondor CacheD
Derek Weitzel, Brian Bockelman,

and David Swanson
Computer Science and Engineering
University of Nebraska – Lincoln

Lincoln, Nebraska 68588
Email: dweitzel@cse.unl.edu

Abstract—A batch processing job in a distributed system has
three clear steps, stage-in, execution, and stage-out. As data sizes
have increased, the stage-in time has also increased. In order
to optimize stage-in time for shared inputs, we propose the
CacheD, a caching mechanism for high throughput computing.
Along with caching on worker nodes for rapid transfers, we also
introduce a novel transfer method to distribute shared caches
to multiple worker nodes utilizing BitTorrent. We show that
our caching method significantly improves workflow completion
times by minimizing stage-in time while being non-intrusive to
the computational resources, allowing for opportunistic resources
to utilize this caching method.

I. INTRODUCTION

Large input datasets are becoming common in scientific
computing. Unfortunately for campus researchers, the staging
time of the datasets to computational resources has not kept
pace with the increase in dataset sizes. The typical large dataset
workflow may consist of thousands of individual jobs, each
sharing input files.

The campus resources made available to researchers are
shared; therefore, the researchers have the limitation of not
having access to install programs on the clusters. Previous
work [1] built an overlay on top of campus resources to create
a virtual, on-demand pool of resources for task execution.
We expand the capabilities of this virtual pool to include
data caching and novel transfer methods to enable big data
processing.

An excellent example of a big data workflow is that of the
bioinformatics application: BLAST [2]. Each BLAST query
requires an entire reference database, which can range in size
from a few kilobytes to many gigabytes. The workflow to run a
BLAST query requires a large stage-in time in order to make
the reference database available. Additionally, the databases
are frequently updated with new entries.

Users in the past have copied the database using various
methods. The naı̈ve method includes copying the database
for each job. Storing the database on a shared filesystem has
the same effect as copying the database for each job, since
the database must be transferred to the execution node for
each job. We propose caching the database on the node for
subsequent executions.

We find that the BLAST workflow described above is
common among large data researchers.

Bosco [1] is a remote submission tool that can create overlay
virtual pools designed for campus resources. In previous work,

Bosco allowed campus researchers to submit high throughput
jobs to high performance clusters. We extend Bosco to include
data caching and novel data transfer methods.

We limit our design and analysis to a campus cluster
computing environment. Our solution is unique in that it is
designed to run opportunistically on the campus computing
resources. Additionally, they do not require administrator
intervention in order to create a virtual, on-demand pool of
resources.

II. BACKGROUND AND RELATED WORK

Data caching on distributed systems has been used many
times and at many levels. Caching can be done on the storage
systems and on the execution hosts, as well as well as in within
the infrastructure separating the two.

Some distributed filesystems use local caches on the worker
nodes. GPFS [3] has a read-only cache on each worker node
that can cache frequently accessed files. It is designed for a
fast, shared filesystem and is recommended when file access
latency is a concern. It is not recommended for large files since
internal bandwidth to the local disk is assumed to be less than
the bandwidth available to the GPFS shared filesystem. GPFS
file transfers are typically done over high speed interconnects
which can provide high bandwidth for large files. These
interconnects are not typically available to a user’s jobs for
transferring data from a remote source.

HTTP caching is used throughout the web to decrease
latency for page loads and to distribute requests among servers.
In high throughput computing, a forward proxy is commonly
used to cache frequent requests to external servers. The for-
ward proxy caches files requested through it, and will respond
to subsequent requests for the same file by reading it from
memory or its own disk cache.

The HTTP forward proxy caching does have limitations.
The HTTP protocol was designed and is used primarily for
websites. Websites have very different requirements from
high throughput computing. The data sizes are much smaller.
Software designed as forward proxies, such as Squid [4], are
optimized for web HTTP traffic, and therefore do not handle
large data file sizes optimally. Further, the Open Science Grid
(OSG) [5] sites typically only have one or possibly a few squid
caches available to user jobs. They are not designed to scale
to large transfers for hundreds of jobs, our target use case.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 341



Parrot [6] is another application that will cache remote
files when using certain protocols. Parrot uses interposition
[7] to capture and interpret IO operations by an unmodified
binary application. The interposition allows Parrot to provide
a transparent interface to remote data sources. Parrot caches
some of those sources such as HTTP with GROW-FS, a
filesystem using HTTP. Parrot caches an entire file to the local
storage. Parrot must download directly from the source the first
time it is requested, exhausting WAN bandwidth quickly for
large files.

CernVM-FS [8] provides a filesystem over the HTTP proto-
col. It integrates into the worker node system using the FUSE
[9] interface. The CernVM-FS local node client caches files
on the node, as well as using Squid to cache files at the site.
Again, since it uses the HTTP, it’s not designed to cache large
files. Neither the Squid caches nor the web servers optimally
transfer large files, nor are they designed for large data sizes.
Further, CernVM-FS requires administrator access in order to
install and configure, a privilege that campus users do not
have.

XrootD [10] is designed for large data access, and it has
even been used for WAN data transfers [11] using a federated
data access topology. There has been some work in creating
a caching proxy for the XrootD [12]. The caching proxy is
designed to cache datasets on filesystems near the execution
resources. The caching proxy requires installation of software
and the running of services on the cluster. Unprivileged
campus users will be unable to run or install these services.

We define local caching as saving the input files on the
local machine and making them available to local jobs. Local
caching is different from site caching, which is done in the
OSG by Squid caches. We define site caching as when data
files are stored and available to jobs from a closer source than
the original. In most cases on the OSG, the site cache is a
node inside the cluster that has both low latency and high
bandwidth connections to all of the execution hosts.

We use distributed transfer to mean transfers that are not
from a single source. In our case, we will be using BitTorrent
[13], in which a client may download parts of files from
multiple sources. Additionally, the client may make available
to other clients parts of the files that have already been
downloaded.

BitTorrent is a transfer protocol that is designed for peer-
to-peer transfers of data over a network. It is optimized to
share large datasets between peers. The authors of [14] and
[15] discuss scheduling tasks efficiently in peer-to-peer grids
and desktop grids. Their discussion does not take into account
the network bottlenecks that are prevalent in campus cluster
computing.

In [16], the authors use scheduling, caching, and BitTorrent
in order to optimize the response time for a set of tasks on
a peer-to-peer environment. They build the BitTorrent and
caching mechanisms into the middleware which is installed
and constantly running on all of the peers. They do not
consider the scenario of opportunistic and limited access to
resources. Their cluster size is statically set, and therefore may

not see the variances that users of campus clusters may see.

III. IMPLEMENTATION

The HTCondor CacheD is a daemon that runs on both the
execution host and the submitter. For our purposes, a cache
is defined as an immutable set of files that has metadata
associated with it. The metadata can include a cache expiration
time, as well as ownership and acceptable transfer methods.

The CacheD follows the HTCondor design paradigm of
a system of independent agents cooperating. Each CacheD
makes decisions independently of each other. Coordination is
done by CacheDs communicating and negotiating with each
other.

Each caching daemon registers with the HTCondor Col-
lector. The collector serves as a catalog of available cache
daemons that can be used for replication.

In addition to the CacheD, a transfer plugin is used to
perform the cache transfers in the job’s sandbox. The plugin
uses an API to communicate with the local CacheD to request
local replication requests to the local host. After the cache is
transferred locally, the plugin then downloads the cache to the
job’s working directory.

Expiration time is is used for simple cache eviction. A user
creates a cache with a specific expiration time. After a cache
has expired, a caching server may delete it to free space for
other caches. The expiration may be requested to be extended
by the user

The CacheD supports multiple different forms of transfer-
ring data. Using HTCondor’s file transfer plugin interface,
it can support pluggable file transfers. For this paper, we
will only use the BitTorrent and Direct transfer methods.
The BitTorrent method uses the libtorrent library to manage
BitTorrent transfers and torrent creation. The Direct method
uses an encrypted and authenticated stream to transfer data
from the source to the client.

An important concept of the caching framework is a cache
originator. The original daemon that the user uploaded their
input files to is the cache originator. The cache originator is in
charge of distributing replication requests to potential nodes,
as well as providing the cached files when requested.

The caching daemons interact with each other during repli-
cation requests. A cache originator sends replication requests
to remote caching daemons that match the replication policy
that is set by the user. The remote caching daemon then
confirms that the cache data can be hosted on the server. The
remote cache then initiates a file transfer in order to transfer
the cached data from the origin to the remote CacheD.

The receiving CacheD can deny a replication request for
many reasons, including:

• The resource does not have the space to accommodate
the cache.

• The resource may not have the necessary bandwidth
available in order to transfer the cache files.

• The resource does not expect to be able to run the user’s
jobs and has determined that the cached files will not be
used.

342 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



The ability of the receiving CacheD to deny a replication
request follows HTCondor’s independent agent model.

The policy expression language is modeled after the match-
making language in the HTCondor system [17]. The caching
daemon is matching the cache contents to a set of resources;
therefore, it is natural to use HtCondor’s same matchmaking
language that is used to match jobs to resources. Once a
resource is determined to match the cache’s policy expres-
sion, the caching daemon will contact the resource’s caching
daemon in order to initiate a cache replication. The caching
daemon on the remote resource is an independent agent
that has the ability to deny a caching replication even after
matchmaking is successful.

Libtorrent is built into the CacheD to provide native BitTor-
rent functionality. The CacheD is capable of creating torrents
from sets of files in a cache, as well as downloading cache files
using the BitTorrent protocol. Since this is a distributed set of
caches, we will not use a static torrent tracker. Rather, we will
use a Distributed Hash Table [18] and local peer discovery [19]
features of the BitTorrent protocol. This ensures that there are
no single points of failure.

A. Creation and Uploading Caches

The user begins using the caching system by uploading a
cache to their own CacheD, which then becomes the cache
originator. This is very similar to a user submitting a job to
their own HTCondor SchedD. Using the cache’s metadata, the
CacheD decides whether to accept or reject the cache. If the
CacheD accepts the cache, it stores the metadata into resilient
storage. The user then proceeds to upload the cache files to
the CacheD.

The CacheD stores the cache files into its own storage
area. Once uploaded, the CacheD takes action to prepare the
cache to be downloaded by clients. This includes creating a
BitTorrent torrent for the cached files.

Numerous protections are used in order to ensure proper
usage of the CacheD. The upload size is enforced to the size
advertised in the metadata. The client cannot upload more
data to the CacheD than was originally agreed upon during
cache creation. Further, the ownership of the cache is stored
in the metadata, and is acquired by authenticating with the
client upon cache creation. Only the owner may upload and
download files from the cache directly.

A client may mark a cache as only allowing certain replica-
tion methods. This can be useful if a user wishes to keep data
private. BitTorrent doesn’t offer the authorization framework
to ensure privacy of caches. Users may mark the cache as
only allowing DIRECT replications, which are encrypted and
authenticated.

B. Downloading Caches

When a job starts, the CacheD begins to download the cache
file. The cache is identified by a unique string that includes
the cache’s name and the cache’s originator host. The flow of
replication requests is illustrated in Figure 1. The replication
requests originate from the file transfer plugin, which sends the

replication request to the node local CacheD. The node local
CacheD then sends the replication to its parent or the origin
cache. The propagation of replication requests are modeled
after well-known caching mechanisms such as DNS.

Request Cache
Replication

File Transfer
Plugin

Node Local
CacheD

Origin Cached

Request Cache
Replication

Notice of replication
complete

Wait

Download Cache

.

.

.

.

.
Request Cache

Replication

Notice of replication
complete

Download
Request

Symlink
Creation

Fig. 1. Flow of Replication Requests

1) The plugin contacts the node local CacheD daemon on
the worker node. It requests that the cache is replicated
locally in order to perform a local transfer.

2) The node local CacheD responds to the file transfer
plugin with a “wait” signal. The file transfer plugin
polls the node local CacheD periodically to check on
the replication request.

3) The local CacheD daemon propagates the cache repli-
cation request to its parent, if it exists. If the CacheD
does not have a parent it contacts the cache originator
in order to initiate a cache replication.

4) If the cache is detected to be transferable with BitTor-
rent, the download begins immediately after receiving
the cache’s metadata from the parent or origin.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 343



5) Once the cache is replicated locally, the plugin down-
loads the files from the local CacheD.

Each download is negotiated for the appropriate transfer
method between the parent and the client. Between parent and
client CacheD’s, the cache’s individual replication preferences
are honored. Between a CacheD and the transfer plugin, an
additional protocol is offered: symbolic link (symlink).

If the transfer plugin successfully authenticates with a local
CacheD, transfer methods are negotiated. If supported, the
symlink method may be chosen. The symlink transfer method
allows near instant transfer of the cache from the CacheD to
the plugin. A symlink is created by the CacheD in the job’s
working directory pointing to the cache directory. This symlink
method eliminates transferring the cache to each job.

Replication

User’s Submit Machine

HTCondor CacheD

Cluster

Glidein

HTCondor CacheD

Glidein

HTCondor CacheD

Glidein

HTCondor CacheD

Glidein

HTCondor CacheD

NAT or 
Network 

Connection

Fig. 2. Cache Replication Showing Bottleneck

In Figure 2, you can see a traditional configuration of a clus-
ter. The configuration shows that there is a Network Address
Translation bottleneck or a network bottleneck between the
submit machine and the execution nodes. The bottleneck limits
the bandwidth between the submit machine and the execution
nodes.

C. Parenting of CacheDs

During testing of the CacheD, it was apparent that BitTor-
rent increases the IO queue on the host server significantly,
degrading the IO performance for all jobs on the server. This
increased IO queue leads to competition between BitTorrent-
enabled CacheD’s on the same host. In order to address the
increased IO queue, each CacheD will designate a single dae-
mon on the host that downloads the files through BitTorrent.
All other CacheDs will then download the cache from the
parent using Direct file transfer mechanisms.

IV. RESULTS

A. Experimental Design

To evaluate our solution, we will run a BLAST benchmark
from UC Davis [20]. We chose a BLAST benchmark due to
many factors. BLAST is used frequently on campuses, but
used infrequently on clusters due to the size of the database.
BLAST has very large databases that are required by each
job. This makes it difficult to use on distributed resources
since each job requires significant data. BLAST databases are
frequently updated, making them poor candidates for static
caching, but good candidates for short-term caching, for which
our CacheD specializes.

The BLAST database distributed with the benchmark is a
subset of the Nucleotide NR database. In our tests, we will use
a larger subset of the NR database in order to demonstrate the
efficiency of our solution.

For researchers, the time to results is likely the most
important metric. The stage-in time of data can be a large
component of the entire workflow time. We will measure the
time for stage-ins as well as the average stage-in time.

We designed two experiments that represent our experience
on campus infrastructure. In the first experiment, we will
allow 100 simultaneous jobs to start at the same time and
measure the average download time versus the number of
distinct nodes. This experiment also includes the download
time for child caches. We chose 100 jobs somewhat arbitrarily
in order to completely fill all of the nodes we were allocated
on the cluster.

In the second experiment, we compare the total stage-in
time for a variable number of jobs while number of distinct
nodes remains constant at 50. This will show that the cache is
working to eliminate transfer times when the files are already
on the node. Further, it will compare HTCondor’s File Transfer
method versus the CacheD’s two transfer methods: BitTorrent
and Direct.

When the number of jobs is fewer than 50, each job must
download the cache since there are 50 nodes available for
execution. When the number of jobs is more than 50, all jobs
that run after the initial download use a cached version of the
data.

In our experiments, each job will use the CacheD to stage-
in data to the worker nodes. The jobs will be submitted
with glideins created by Bosco [1] and the Campus Factory
[21]. Bosco allows for remote submission to campus resources
while the Campus Factory allows for on-demand glidein
overlay of remote resources. The Campus Factory is used in
order to create and run glideins which, in turn, run the CacheD
daemon. Bosco was used in order to submit to multiple campus
resources simultaneously.

These two experiments were conducted on a production
cluster at the Holland Computing Center at the University of
Nebraska–Lincoln (UNL).

B. Results

We completed 41 runs of the BitTorrent versus Direct
transfer experiments on the UNL production cluster. We first
confirmed our suspicion that the Direct transfer method would
result in a linear increase in the average stage-in time to trans-
fer the cache as we increased the number of distinct nodes.
Conversely, we found that the BitTorrent transfer method did
not significantly increase the average stage-in time as we
increased the number of distinct nodes. The BitTorrent transfer
method was faster than the Direct in all experiments.

Figure 3 shows that the BitTorrent transfer method is supe-
rior to Direct for all experiments that were run. Since multiple
CacheDs on the same node will parent to a single CacheD,
the number of distinct nodes is the dependent variable. After
the parent cache downloads the cache for the node, then each

344 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



●

●
●

●

●
●●● ●

●

●●
●

●
● ●

●
●

●
●

● ● ●

●

●
●

●

●
●●● ●

●

●●
●

●
● ●

●
●

●
●

● ● ●

2000

4000

6000

20 30 40 50 60 70
Number of Distinct Nodes

S
ta

ge
−

in
 T

im
e 

(s
ec

on
ds

)

Transfer Method

●● BitTorrent

Direct

Average Stage−in Time vs. Number of Distinct Nodes

Fig. 3. Comparison of Direct and BitTorrent Transfer Methods with Increasing Distinct Node Counts

child cache will download from the parent using the Direct
transfer method.

The Direct method of transfer follows a linearly increasing
time to download the cache files. This can be explained by
bottlenecks of the transfers between the host machine and the
execution nodes. The increase in number of distinct nodes
increases the stage-in time for any individual node.

The average download times for BitTorrent stage-ins are
also shown in Figure 3. The stage-in time does not signifi-
cantly increase as the distinct nodes increases. This meets our
expectations. We expect this trend to continue as the number
of distinct nodes increases since BitTorrent can use peers to
speed up download time.

Fig. 4. Historgram of Transfers Mode vs Download Times

To better illustrate how parenting affects the download time

of a cache, we show a histogram of the different modes in
Figure 4. The figure shows that while the parents download
first, and nearly at all the same time, the children take a
variable amount of time to download. This variability can be
attributed to the number of children on a node. The more
children downloading the cache at the same time, the slower
each download will take.

For our second experiment, we calculated the total stage-in
time for a variable number of jobs.

When we limit the number of nodes to 50, we can clearly
see the effect of the caching by varying the number of jobs. In
Figure 5, both the Direct and BitTorrent transfer methods have
a natural bend at about 50 jobs. This correlates to when the
CacheD has on-disk caches of the datasets, and the transfer to
the job’s sandbox is nearly instantaneous.

The HTCondor file transfer method has a shorter stage-
in time for low numbers of distinct nodes than the Direct
method. This can be explained by the increased overhead
that the CacheD introduces when transferring datasets. After
all 50 nodes have the dataset cached locally, the Direct
transfer method becomes more efficient than the HTCondor
file transfers.

V. CONCLUSIONS

We have presented the HTCondor CacheD, a technique to
decrease the stage-in time for large shared input datasets. Our
experiments proved that the CacheD decreases stage-in time
for these datasets. Additionally, the transfer method that the
CacheD used can significantly affect the stage-in time of the
jobs.

The BitTorrent transfer method proved to be a efficient
method to transfer caches from the originator to the execution
hosts. In fact, the transfer time for jobs did not increase as the
number of distinct nodes requesting the data increased. Any

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 345



● ●● ●
● ●

●● ● ●●
●

●

0

100

200

300

0 50 100 150 200
Number of Jobs

S
ta

ge
−

in
 T

im
e 

(h
ou

rs
)

Transfer Method

● Bittorrent

Direct
HTCondor File
Transfer

Stage−in Time vs. Number of Jobs

Fig. 5. Transfer Method vs Number of Jobs

bottlenecks that surround the cluster are therefore irrelevant
using the BitTorrent transfer method.

In the future we plan to investigate incorporating job match-
making with cache placement. The HTCondor Negotiator
could attempt to match jobs first against resources that have
the input files before matching against any available computing
resources.

ACKNOWLEDGMENT

This research was done using resources provided by the
Open Science Grid, which is supported by the National Sci-
ence Foundation and the U.S. Department of Energy’s Office
of Science.

REFERENCES

[1] D. Weitzel, I. Sfiligoi, B. Bockelman, J. Frey, F. Wuerthwein, D. Fraser,
and D. Swanson, “Accessing opportunistic resources with bosco,” Jour-
nal of Physics: Conference Series, vol. 513, no. 3, p. 032105, 2014.

[2] S. F. Altschul, T. L. Madden, A. A. Schäffer, J. Zhang, Z. Zhang,
W. Miller, and D. J. Lipman, “Gapped blast and psi-blast: a new
generation of protein database search programs,” Nucleic acids research,
vol. 25, no. 17, pp. 3389–3402, 1997.

[3] F. B. Schmuck and R. L. Haskin, “Gpfs: A shared-disk file system for
large computing clusters.” in FAST, vol. 2, 2002, p. 19.

[4] Squid. (2015) Squid: optimizing web delivery. [Online]. Available:
http://www.squid-cache.org/

[5] R. Pordes, D. Petravick, B. Kramer, D. Olson, M. Livny, A. Roy,
P. Avery, K. Blackburn, T. Wenaus, F. Würthwein et al., “The open
science grid,” in Journal of Physics: Conference Series, vol. 78, no. 1.
IOP Publishing, 2007, p. 012057.

[6] D. Thain and M. Livny, “Parrot: An application environment for data-
intensive computing,” Scalable Computing: Practice and Experience,
vol. 6, no. 3, pp. 9–18, 2005.

[7] ——, “Multiple bypass: Interposition agents for distributed computing,”
Cluster Computing, vol. 4, no. 1, pp. 39–47, 2001.

[8] J. Blomer, P. Buncic, and T. Fuhrmann, “Cernvm-fs: delivering scientific
software to globally distributed computing resources,” in Proceedings of
the first international workshop on Network-aware data management.
ACM, 2011, pp. 49–56.

[9] M. Szeredi et al., “Fuse: Filesystem in userspace,” Accessed on, 2010.

[10] A. Dorigo, P. Elmer, F. Furano, and A. Hanushevsky, “Xrootd-a highly
scalable architecture for data access,” WSEAS Transactions on Comput-
ers, vol. 1, no. 4.3, 2005.

[11] L. Bauerdick, D. Benjamin, K. Bloom, B. Bockelman, D. Bradley,
S. Dasu, M. Ernst, R. Gardner, A. Hanushevsky, H. Ito et al., “Using
xrootd to federate regional storage,” in Journal of Physics: Conference
Series, vol. 396, no. 4. IOP Publishing, 2012, p. 042009.

[12] L. Bauerdick, K. Bloom, B. Bockelman, D. Bradley, S. Dasu, J. Dost,
I. Sfiligoi, A. Tadel, M. Tadel, F. Wuerthwein et al., “Xrootd, disk-based,
caching proxy for optimization of data access, data placement and data
replication,” in Journal of Physics: Conference Series, vol. 513, no. 4.
IOP Publishing, 2014, p. 042044.

[13] B. Cohen, “The bittorrent protocol specification,” 2008.
[14] B. Wei, G. Fedak, and F. Cappello, “Scheduling independent tasks

sharing large data distributed with bittorrent,” in Proceedings of the
6th IEEE/ACM International Workshop on Grid Computing. IEEE
Computer Society, 2005, pp. 219–226.

[15] ——, “Towards efficient data distribution on computational desktop
grids with bittorrent,” Future Generation Computer Systems, vol. 23,
no. 8, pp. 983–989, 2007.

[16] C. Briquet, X. Dalem, S. Jodogne, and P.-A. de Marneffe, “Scheduling
data-intensive bags of tasks in p2p grids with bittorrent-enabled data
distribution,” in Proceedings of the second workshop on Use of P2P,
GRID and agents for the development of content networks. ACM,
2007, pp. 39–48.

[17] R. Raman, M. Livny, and M. Solomon, “Matchmaking: Distributed
resource management for high throughput computing,” in High Perfor-
mance Distributed Computing, 1998. Proceedings. The Seventh Interna-
tional Symposium on. IEEE, 1998, pp. 140–146.

[18] J. Dinger and O. P. Waldhorst, “Decentralized bootstrapping of p2p
systems: a practical view,” in NETWORKING 2009. Springer, 2009,
pp. 703–715.

[19] A. Legout, N. Liogkas, E. Kohler, and L. Zhang, “Clustering and sharing
incentives in bittorrent systems,” in ACM SIGMETRICS Performance
Evaluation Review, vol. 35, no. 1. ACM, 2007, pp. 301–312.

[20] G. Coulouris. (2015) Blast benchmark. [Online]. Available:
http://fiehnlab.ucdavis.edu/staff/kind/Collector/Benchmark/Blast Benchmark

[21] D. Weitzel, “Campus grids: A framework to facilitate resource sharing,”
Master’s thesis, University of Nebraska, 2011.

346 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



A Queueing Model of Hybrid Parallel Pipelines
PDPTA’15

Fahad Khalid*, Lena Herscheid, Andreas Polze
Hasso Plattner Institute for Software Systems Engineering

14482 Potsdam, Germany
fahad.khalid, lena.herscheid, andreas.polze@hpi.uni-potsdam.de

Abstract— Hybrid parallel pipelines are suited for many
scientific algorithms, which can be sped up significantly by
using CPU and GPU hardware. However, the complexity
of modern applications and hardware makes it hard to
optimally configure hybrid parallel pipelines. To this end,
analytical modeling approaches are needed.

We present a novel Queuing Theory model of hybrid paral-
lel pipelines, which can be used for performance prediction
and optimization. Based on this model, we propose an
algorithm for automatically identifying the bottleneck stage
and tuning its degree of parallelism. Empirical evidence from
various pipeline configurations demonstrates the validity of
our model.

Keywords: parallel pipeline, optimization, hybrid architectures,
queueing theory, queueing model

1. Introduction
Emerging hybrid parallel architectures (including both

CPUs and accelerators such as graphics processing units
(GPUs)) make huge performance gains possible, if the
hardware is used efficiently and idle times are avoided.
However, the problem of partitioning work cleverly over
different processors while also keeping data access and
transfer latencies low, is a hard one to solve.

In this context, pipeline parallelism is a pattern suited to
many scientific applications. The computation on data items
is performed in a sequence of pipeline stages. Each pipeline
stage can be parallelized internally, by exploiting data or
task parallelism. Since the different stages can operate on
different items independently of each other, computation can
be overlapped, leading to performance gains.

Within software pipelines, the question arises of how
compute resources should be distributed across pipeline
stages, and how the issues of load imbalance and data
transfer bottlenecks should be addressed. The tuning of such
parameters is a complex task depending on various system
parameters. To this end, analytical models enable predicting
the performance of different pipeline configurations.

Queueing Theory [1] is a mathematical modeling tool for
processes, where pending items in queues are processed by
servers, whose throughput is expressed as stochastic distri-
butions. A queueing network consists of different servers,

linked together by their input and output queues. Queueing
networks allow for the computation of the overall through-
put, utilization metrics and the expected number of waiting
items. They are therefore a powerful tool also for predicting
the performance of parallel pipelines. We present a Queueing
Theory model of hybrid parallel pipelines and use it to guide
performance optimizations. In particular, we show how GPU
stages can be represented realistically in such a queueing
network. Our model can be employed to tune the assignment
of threads to pipeline stages.

2. Related Work and Our Contribution
Foremost, our work builds upon that of Navarro et al. [2],

[3]. In their research, a queueing network model is presented
for multithreaded CPU-only applications. This queueing
model, which consists of an exponentially distributed queue
for each pipeline stage, is then used to optimize the number
of tokens (i.e., work items) in the system and the number of
threads assigned to each pipeline stage.

Analytical Performance Models for software pipelines:
Gonzalez et al. [4] propose an analytical model for software
pipelines which can be used to optimally assign pipeline
stages to a ring of processors.

Wei et al. [5] analytically minimize the communication
overhead in accelerator-based architectures using integer
linear programming (ILP). This minimization problem has
also been tackled by model checking data flow graphs [6].

Analytical Performance Models for GPUs: The perfor-
mance of hybrid parallel architectures is hard to predict, as
it depends on multiple platform and application dependent
parameters. There have been multiple attempts at analytically
characterizing the performance of such hybrid architectures.

The GPURoofline model [7], as a GPU-focussed ex-
tension of the roofline model [8], enables the prediction
of a theoretical upper bound on kernel performance, and
the evaluation of optimizations, which improve the com-
munication to computation ratio. The boathull model [9]
builds upon GPURoofline, additionally including host to
accelerator data transfer. Algorithms are classified by the
number of parallel work units, the amount of computation,

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 347



data I/O, and memory access patterns. Prior to the actual
development of kernel source code, the boathull model can
be used to make performance predictions.

GROPHECY [10] is a framework for predicting GPU
performance by means of CPU code skeletons. Several
parameters regarding the code layout (the number of distinct
code blocks, and tasks assigned to each thread) and regarding
the workload (the number of memory accesses and instruc-
tions per thread), are used to project GPU performance
without having to write actual GPU code.

Low-level models, which are based on the analysis of
kernel source code or even GPU assembly, have also been
discussed [11], [12], [13].

Optimizations for Software Pipelining: Pipeline paral-
lelism has been identified as a commonly occurring pattern
[14], lending itself to performance optimizations by over-
lapping different pipeline stages. Software Pipelines exhibit
a special distribution of workload, and are characterized
with special benchmarks such as ferret and dedup [15].
Various approaches to auto-tuning software pipelines have
been discussed recently.

On-the-fly pipeline parallelism [16] determines the
pipeline structure dynamically during runtime. Integrated
into a Cilk-based work stealing system, this approach has
demonstrated good performance in pipeline benchmarks.

Feedback-directed pipeline parallelism [17] is the auto-
tuning of core-to-stage allocation by repeatedly finding the
slowest pipeline stage and gradually providing it with more
resources, until no more performance is gained. This hill
climbing approach, has been shown to improve performance
in CPU-only software. It can be integrated into software
libraries such as TBB.

Load-balanced pipeline parallelism [18] tries to extract
fine-grained pipeline parallelism from loops by analyzing the
program graph. Different types of intra- and cross-iteration
dependencies are identified and barriers for serial stages are
inserted automatically. The approach is implemented in a
compiler and does not yet tackle GPU architectures.

Parallel-Stage Decoupled Software Pipelining (PS-DSP)
[19], an extension of Decoupled Software Pipelining
(DSWP) [20], is the extraction of pipeline parallelism from
loops in the presence of loop-carried dependencies, for
compiler-based automatic code transformations. A more
recent extension to this work is speculative DSP [21], which
speculatively ignores infrequent dependencies.

Van Der Wijngaart et al. [22] have shown how fine grained
software pipelines (at the instruction level) can be modeled
and optimized analytically.

Stream Programming Models: Another vast body of
related work studies how streams of data can be modified
efficiently using a sequence of compute kernels. The focus

of stream programming has recently shifted from multimedia
applications to other data-intensive computations. It has been
acknowledged that the stream programming style lends itself
to pipeline parallel optimizations [23]. A catalogue of stream
processing optimizations is presented in [24].

Thies et al. [25] presented an annotation-based tool for
C programs, which facilitates the representation of coarse
grained software pipelines. Based on Valgrind and a custom
runtime for the resulting pipeline application, this approach
has proven helpful for various streaming applications.

There have been multiple approaches to mapping stream-
ing programs, often written in a dedicated language, to
multicore architectures [26], [27]. An extension of the
OpenMP standard, which incorporates language constructs
for expressing streams and pipeline parallelism, has been
proposed [28]. Recently, GPUs have also become a target
platform for the execution of streaming applications [29].

2.1 Research Gap and Our Contribution
Past research has been done on predictive analytical

models, as well as on optimization approaches for certain
architectures, often using runtime information. Our contri-
bution lies in the intersection of these two research areas.
We first present an analytical Queueing Theory model of
pipeline parallelism, which can predict the throughput of
different pipeline configurations. On the basis of this model,
we also demonstrate how to optimize away the bottleneck
stage of a pipeline automatically. The predictions from our
model can be used to avoid the time-consuming effort of
manually trying out numerous pipeline configurations.

In contrast to previous research, in particular that of
Navarro et al. [2], our model describes hybrid GPU-CPU
systems, where pipeline stages can run either on accelerator
hardware, or on the host. Thus, we contribute a novel way
of modeling hybrid parallel pipelines both for performance
prediction, and for optimization.

3. The Concept of Hybrid Pipeline
We define a hybrid parallel pipeline as an implementation

of the parallel pipeline pattern in such a way that the
at least one pipeline stage is executed on a conventional
CPU, and at least one other pipeline stage is executed on
an accelerator architecture. In this paper, we assume the
accelerator architecture to be a Graphics Processing Unit
(GPU). Throughout the rest of the paper, we will refer to
the CPU as Host, and the GPU as Device.

We further assume that Device memory is separate from
the Host memory. Therefore, in order for the Device to
process data, the data must first be transferred from the Host
to the Device, and finally the results transferred from the
Device to the Host.

The total computation time can be reduced by overlapping
kernel execution and data transfer. This is achieved by

348 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



Fig. 1: A typical hybrid pipeline. Stages include data transfer to and from the Device, a computation kernel on the Device,
and a Post Processing and Input stage on the Host. Each stage can be modeled as an M/M/c queue, where c = 1 for Device
and serial Host stages. The service rates of the different stages µi determine the overall throughput and bottleneck stage.

using asynchronous (non-blocking) routines for data transfer
between Host and Device.

Figure 1 depicts a typical hybrid parallel pipeline. Fol-
lowing is a description of the stages:

1) Input: The purpose of this stage is to generate input
data that is processed by the following stages. This
stage can either comprise reading input files, or pre-
processing already read data. Here we assume that this
stage is executed on the Host, and that it is possible
to utilize more than one Device threads to process this
stage.

2) H2D: This stage represents the asynchronous transfer
of input data from Host to Device. We assume that
this stage can only be processed by one Host thread,
since there is only one channel available for transfer
of data from Host to Device.

3) Device Kernel: This stage represents the Device kernel.
We assume that the Device cannot process more than
one kernel at a time, and therefore only requires
one Host thread. In this case, parallelism is within
the Device kernel; multiple Device kernels cannot be
executed in parallel.

4) D2H: This stage represents the asynchronous transfer
of result data from Device to Host. We assume that
this stage can only be processed by one Host thread,
since there is only one channel available for transfer
of data from Device to Host.

5) Post Processing: This stage represents a Host kernel
that is used to post-process results generated by the
Device. We assume that it is possible to utilize multiple
Host threads to process this stage.

3.1 Item flow through the pipeline
Here we use the above mentioned description of pipeline

stages to present a hypothetical scenario for the flow of items
through the pipeline.

1) The Input stage generates multiple items; one item is
generated per Host thread used for this stage.

2) Items generated by the Input stage are queued in the
H2D stage. This stage transfers input data from Host

to Device for one item at a time in a first come first
served manner.

3) Items forwarded by the H2D stage are queued in the
Device Kernel stage. This stage executes the Device
kernel for one item at a time in a first come first served
manner.

4) Output items generated by the Device Kernel stage are
queued in the D2H stage. This stage copies output data
from Device to Host for one item at a time in a first
come first served manner.

5) The Post Processing stage can use multiple threads to
process multiple output items in parallel, queued by
the D2H stage.

4. Analytical Model of Hybrid Parallel
Pipelines

We use Queuing Theory to model a hybrid parallel
pipeline as a network of queues. In this Section, we first
define the relevant parameters of the queuing model, and
then map these to the hybrid parallel pipeline example
discussed earlier.

The following parameters are used for each queue in the
model.

• Tarrival = inter-arrival time, i.e., time duration between
the arrival of two successive items in the queue

• Tservice = service time, i.e., time it takes for the service
to process one item

• c = number of servers
The above mentioned definitions can be used to derive the

following quantities:
• Arrival rate, defined as item arrival per unit time,

λ =
1

Tarrival
(1)

• Service rate, defined as items serviced per unit time,

µ =
1

Tservice
(2)

For each queue, we assume exponential distributions for
both Tarrival and Tservice. This assumption implies that the
service and arrival rates are, at some point, in a steady state

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 349



and do not vary much. Such a queue can be represented as
a M/M/c queue in Kendall’s notation. Each stage in the
pipeline of Figure 1 is a M/M/c queue. For H2D, Device
Kernel, and D2H stages, we assume c = 1. For Input and
Post Processing stages, c ≥ 1. The complete pipeline is
modeled as a network of M/M/c queues.

Let λi be the arrival rate for stage i, and µi be the service
rate for stage i. Then,

λi = µi−1 (3)

i.e., arrival rate at stage i is equal to the service rate at
stage i− 1.

We define throughput of the stage as,
number of processed items

time
= service rate = µ (4)

Then, given that service rate for the slowest stage defines
the upper bound on the overall pipeline throughput, we
define the overall pipeline throughput as,

X = min (M) (5)

where, M = {µs,∀s ∈ S}, and S is the set of all stages.
In order to compare the predictions of the model with

experiment results, we define a quantity that is derived from
the above mentioned parameters, but can also be measured
directly. This metric is time, i.e., the total time taken by the
pipeline. Using Little’s Law, it is defined as,

T =
n

X
(6)

where n is the total number of items processed by the
pipeline.

4.1 Optimizing Pipeline Parameters
In the above mentioned model, arrival times and service

times are measured using serial execution of the pipeline
stages. Then, a degree of freedom exposed in the model that
can be used to optimize total throughout, is the number of
threads per parallel Host stage, i.e., c.

As mentioned earlier, the total throughput of a pipeline is
constrained by the throughput of the slowest stage. There-
fore, we can optimize total throughput using c if and only
if the slowest stage is a Host processing stage which can be
modeled as a queue with multiple servers. Input and Post
Processing stages of Figure 1 fit this criterion.

Let us call the slowest stage in the pipeline the bottleneck
stage. For simplicity, we assume that only one of the stages
can be the bottleneck stage. Then, we can identify the
bottleneck stage as,

Sbottleneck = {Si ∈ S|µsi = min (M)} (7)

Now, let us assume that Sbottleneck is a Host processing
stage that satisfies the condition: c ≥ 1. Then let us define
a new parameter called traffic intensity as,

ρ =
λ

cµ
(8)

Using the stability condition for a M/M/c queue, we
have,

λ

cµ
< 1 (9)

This implies that if c = 1, and λ
µ > 1, the optimal number

of threads for Sbottleneck,

cbottleneck ≥
λ

µ
(10)

This provides us with the lower bound on cbottleneck. In
order to compute the optimal value, we can simply measure
the value for c such that,

λ

µ
≤ c ≤ cmax (11)

where, cmax is the maximum number of threads available
for Sbottleneck.

The number of live items, nlive, is another variable that
affects pipeline throughout. It can be defined as the number
of items that can be processed simultaneously over the entire
pipeline. In our model, we assume nlive = max{c,N},
where N is total number of pipeline stages.

Algorithm 1 summarizes the process of finding the opti-
mal number of servers per stage.

Algorithm 1: Algorithm for finding the optimal number
of threads per server to maximize pipeline throughput.
cmin µ is the c corresponding to the lowest µ determined
within the foreach loop.
Input : P: Set of parallel stages

M: Throughputs of all pipeline stages
Output: Optimal value of c for bottleneck stage

1 Sbottleneck = {Si ∈ S|µsi = min (M)};
2 if Sbottleneck ∈ P then
3 cstart =

λ
µ ;

4 foreach c: from cstart to cmax do
5 Store µ corresponding to c;
6 end
7 coptimal = cmin µ;
8 end

5. Empirical Analysis
In this Section, we use two different hybrid parallel

pipelines to evaluate the optimization algorithm presented
earlier. We begin by providing essential information about
the test environment, and proceed with descriptions of the
two use cases. We compare the results of executing the
pipelines with the results predicted by the queuing model.

350 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



5.1 Test Environment
The empirical measurements discussed in this paper were

conducted on an Intel Nehalem EX architecture based quad-
core Xeon E5520 CPU with 4 cores, each of which supports
2 hardware threads. The machine contains 17GB of RAM.
The installed operating system is Ubuntu 12.04 LTS. As an
additional device, the machine contains an NVIDIA GTX
680 GPU with 4GB of device memory, which supports
compute capability 3.0. All tests were run using CUDA
driver version 5.5. Our tested code can also be used with
CUDA 5.0, which is the earliest version supporting callback
functionality. The compilers we used are GCC version 4.6.3
and NVCC version 5.5.

5.2 Use Case I – Toy Pipeline
As the first use case, we use a 5−stage toy pipeline. The

purpose of this use case is to be able to experiment with
different pipeline configurations, in order to thoroughly test
the queuing model. Real life examples tend to be much less
flexible, since the purpose of such codes is to solve specific
problems. Our toy pipeline framework, however, makes it
possible for us to test the following different scenarios: 1)
Post Processing constitutes the bottleneck stage, 2) Input
constitutes the bottleneck stage, and 3) Device Kernel even-
tually becomes the bottleneck stage.

Stages in the toy pipeline are based on the concepts
described in Section 3. The implementation allows us to run
the pipeline with different λ and µ values, configurable for
each stage. It is also possible to configure c for the Input and
Post Proccessing stages. The pipeline has been implemented
using the Hybrid Pipeline Framework (HyPi) [30].

5.2.1 Results
Table 1 presents results for three test scenarios. The

topmost entry shows a setup where the Post Proccessing
stage comprises the pipeline bottleneck. We see that the
queuing model correctly identifies the bottleneck stage. We
further observe that the optimization algorithm correctly
identifies the optimal value of c for the bottleneck stage.
Similar results are presented in the second table entry, a
scenario where the Input stage constitutes the bottleneck.

Table 1: Comparison of Sbottleneck and coptimal values
predicted by the model, with values measured from the
simulation runs. Each row indicates one of the scenarios
mentioned in Section 5.2.1. The predicted values are com-
puted as floating point values, which are rounded up to the
nearest integer.

Sbottleneck coptimal

Predicted Measured Predicted Measured

PP PP d1.43e = 2 2
Input Input d1.35e = 2 2
PP, Input PP, Input d1.35e, d3.78e 2, 4

The last entry in Table 1 presents results for a scenario
where we first optimize c for the Post Proccessing stage,
which shifts the bottleneck to the Input stage. We then
optimize c for the Input stage, which results in the Device
Kernel forming the final bottleneck stage. This scenario runs
the optimization algorithm multiple times, until there is no
further opportunity for optimization.

5.3 Use Case II – Combinatorial Candidate
Generation

In this Section, we present results of applying the queuing
model to a real simulation from the domain of Computa-
tional Biology. Combinatorial Candidate Generation is the
most compute intensive part of the Nullspace [31] algorithm
for enumerating elementary flux modes in metabolic net-
works. It has been shown in previous work [32] that using
a hybrid parallel pipeline is an effective strategy to improve
the performance of Combinatorial Candidate Generation.

A metabolic network comprises metabolites – chemical
compounds – and reactions. A path in the network consists
of one or more substrate metabolites being converted into
one or more product metabolites. Such a system can be
modeled as a node-weighted directed hypergraph, where
nodes represent metabolites and edges represent reactions.
The Nullspace [31] algorithm is used to enumerate all
Elementary Flux Modes (EFMs) in the network, where an
EFM is a minimal subnetwork that operates at equilibrium.
For the sake of brevity, we refer the reader to [33] for a
detailed description of the Nullspace algorithm. Here, we
only present a brief description of how the combinatorial
candidate generation algorithm is mapped on to a hybrid
parallel pipeline.

Following is a description of the 3−stage hybrid parallel
pipeline used for the combinatorial candidate generation
algorithm:

1) Generate: This stage is implemented as a Device ker-
nel. The kernel implements a combinatorial algorithm,
which takes as input two bit-matrices. A bitwise-OR
operation is performed on all possible combinations of
columns of the two matrices. On each vector resulting
from the bitwise-OR operation, a popcount operation
is performed. If the popcount value is greater than a
certain predefined threshold τ , a result bit correspond-
ing to the combination vector is set in the result vector.

2) D2H: Due to the combinatorial nature of the Device
kernel, the result vector can be very large, even for
small input matrices. This stage is responsible for the
asynchronous transfer of the result vector from Device
to Host.

3) Map: This stage is executed on the Host. It parses the
result bit-vector generated by the Device kernel, and
maps all set bits to the respective column indices. This
is a memory-intensive operation with low arithmetic
intensity, and is therefore implemented as a Host stage.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 351



5.3.1 Results
As mentioned in Section 3, the Device Kernel and D2H

stages are implemented as serial stages due to the inherently
serial nature of the stages. This holds true for the Generate
and D2H stages in this pipeline. Therefore, Map is the only
stage with the possibility to optimize the number of parallel
threads, c.

Results of the simulation with different c values are
plotted in Figure 2. We observe that the queuing model
accurately predicts the pipeline performance. Also, coptimal
calculated using Algorithm 1 is in agreement with the
simulation results.

Fig. 2: Measured times for the Combinatorial Candidate
Generation pipeline against different values of c. The model
predicted c = 5.37 for the Map stage, which we round up
to 6. Simulation runs confirm that c = 6 results in optimal
performance.

A particularly interesting aspect of this simulation is the
fact that the Generate stage automatically partitions the
result vector according to the available Device memory. This
makes it possible to run simulations for arbitrarily large
datasets, since partitions are processed one at a time. A
computed partition is transferred from Device to Host, which
leads to the processing of the next partition. The maximum
partition size is always kept lower than the available Device
memory size.

Common wisdom would lead us to believe that partition
size should be kept as large as possible in order to improve
the Device to Host data transfer. Figure 3 shows the per-
formance impact of different partition sizes on simulation
performance. It can be observed that the performance de-
grades only for a very large number of partitions. Up to a
certain small number of partitions, the performance does not
vary significantly with the varying number of partitions.

The above mentioned result is very important for pipeline
performance. If we use a single large partition, it can only
be consumed by one Map server. In order to exploit c > 1
in the Map stage, it is essential that we generate multiple
smaller partitions so that these can be consumed in parallel.

Fig. 3: Correlation between number of partitions and total
simulation time. The x−axis depicts increasing partitions
sizes. As partitions size increases, the number of partitions
decreases. We observe that number of partitions only affects
performance significantly for a high number of partitions.
Afterwards, the performance stabilizes.

Note that this holds true only if the following stage supports
c > 1. In the toy pipeline presented in Section 5.2, the Input
stage would not benefit from this strategy, since the stage
that follows is inherently serial.

6. Conclusion
Summary: We have presented an approach to mathemati-
cally model hybrid parallel pipelines using Queuing Theory.
The model is complemented by an algorithm that can be
used to identify the bottleneck stage, as well as the optimal
number of threads to use for Host processing stages that
can process items in parallel. We have provided empirical
evidence to support our claims.

Discussion: Throughout the paper, we have assumed that
a Device Kernel stage is executed on a single Device such
as GPU. Here we propose that the model can be extended
to describe multi-GPU systems as well. This would require
H2D, D2H, and Device Kernel stages with c = number of
GPUs.

The model is also designed to assume a one-to-one
mapping between software and hardware threads. This is due
to the fact that the performance of an oversubscribed system
is dependent on scheduling algorithms used by the pipeline
framework and the operating system. This means that it is
not possible to present results for such systems without loss
of generality. Therefore, we decided not to include results
of modeling oversubscribed systems.

In the future, we would like to investigate the possibility
of utilizing further insights from Queuing Theory to improve
the design and performance of hybrid parallel pipelines.
Moreover, it would be interesting to extend the concept of

352 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



Device to other types of accelerators, such as the Intel Xeon
Phi co-processor. At this point, we do not know whether
the model presented in this paper can be extended to other
Devices.

References
[1] R. Jain, “The art of computer system performance analysis: techniques

for experimental design, measurement, simulation and modeling,” New
York: John Willey, 1991.

[2] A. Navarro, R. Asenjo, S. Tabik, and C. Cascaval, “Analytical
modeling of pipeline parallelism,” in Proceedings of the 2009 18th
International Conference on Parallel Architectures and Compilation
Techniques, ser. PACT ’09, 2009, pp. 281–290.

[3] A. Navarro, R. Asenjo, S. Tabik, and C. Caşcaval, “Load balancing
using work-stealing for pipeline parallelism in emerging applications,”
in Proceedings of the 23rd International Conference on Supercomput-
ing, ser. ICS ’09, 2009, pp. 517–518.

[4] D. González, F. Almeida, L. Moreno, and C. Rodríguez, “Towards the
automatic optimal mapping of pipeline algorithms,” Parallel Comput.,
vol. 29, no. 2, pp. 241–254, Feb. 2003.

[5] H. Wei, J. Yu, H. Yu, and G. R. Gao, “Minimizing communication in
rate-optimal software pipelining for stream programs,” in Proceedings
of the 8th Annual IEEE/ACM International Symposium on Code
Generation and Optimization, ser. CGO ’10, 2010, pp. 210–217.

[6] A. Malik and D. Gregg, “Orchestrating stream graphs using model
checking,” ACM Trans. Archit. Code Optim., vol. 10, no. 3, pp. 19:1–
19:25, Sept. 2008.

[7] H. Jia, Y. Zhang, G. Long, J. Xu, S. Yan, and Y. Li, “GPURoofline:
A model for guiding performance optimizations on GPUs,” in Pro-
ceedings of the 18th International Conference on Parallel Processing,
ser. Euro-Par’12, 2012, pp. 920–932.

[8] S. Williams, A. Waterman, and D. Patterson, “Roofline: An insightful
visual performance model for multicore architectures,” Commun.
ACM, vol. 52, no. 4, pp. 65–76, Apr. 2009.

[9] C. Nugteren and H. Corporaal, “The boat hull model: Enabling perfor-
mance prediction for parallel computing prior to code development,”
in Proceedings of the 9th Conference on Computing Frontiers, ser.
CF ’12, 2012, pp. 203–212.

[10] J. Meng, V. A. Morozov, K. Kumaran, V. Vishwanath, and T. D. Uram,
“Grophecy: Gpu performance projection from cpu code skeletons,” in
Proceedings of 2011 International Conference for High Performance
Computing, Networking, Storage and Analysis, ser. SC ’11, 2011, pp.
14:1–14:11.

[11] Y. Zhang and J. D. Owens, “A quantitative performance analysis
model for GPU architectures,” in Proceedings of the 2011 IEEE 17th
International Symposium on High Performance Computer Architec-
ture, ser. HPCA ’11, 2011, pp. 382–393.

[12] S. Hong and H. Kim, “An analytical model for a GPU architecture
with memory-level and thread-level parallelism awareness,” SIGARCH
Comput. Archit. News, vol. 37, no. 3, pp. 152–163, June 2009.

[13] S. S. Baghsorkhi, M. Delahaye, S. J. Patel, W. D. Gropp, and W.-m. W.
Hwu, “An adaptive performance modeling tool for GPU architectures,”
SIGPLAN Not., vol. 45, no. 5, pp. 105–114, Jan. 2010.

[14] J. Dongarra, I. Foster, G. Fox, W. Gropp, K. Kennedy, L. Torczon, and
A. White, Eds., Sourcebook of Parallel Computing. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 2003.

[15] in Computer Architecture, ser. Lecture Notes in Computer Science,
A. Varbanescu, A. Molnos, and R. van Nieuwpoort, Eds., 2012, vol.
6161.

[16] I. Lee, T. Angelina, C. E. Leiserson, T. B. Schardl, J. Sukha, and
Z. Zhang, “On-the-fly pipeline parallelism,” in Proceedings of the
twenty-fifth annual ACM symposium on Parallelism in algorithms and
architectures. ACM, 2013, pp. 140–151.

[17] M. A. Suleman, M. K. Qureshi, Khubaib, and Y. N. Patt, “Feedback-
directed pipeline parallelism,” in Proceedings of the 19th International
Conference on Parallel Architectures and Compilation Techniques, ser.
PACT ’10, 2010, pp. 147–156.

[18] M. Kamruzzaman, S. Swanson, and D. M. Tullsen, “Load-balanced
pipeline parallelism,” in Proceedings of the International Conference
on High Performance Computing, Networking, Storage and Analysis,
ser. SC ’13, 2013, pp. 14:1–14:12.

[19] E. Raman, G. Ottoni, A. Raman, M. J. Bridges, and D. I. August,
“Parallel-stage decoupled software pipelining,” in Proceedings of the
6th Annual IEEE/ACM International Symposium on Code Generation
and Optimization, ser. CGO ’08, 2008, pp. 114–123.

[20] R. Rangan, N. Vachharajani, M. Vachharajani, and D. I. August,
“Decoupled software pipelining with the synchronization array,” in
Proceedings of the 13th International Conference on Parallel Archi-
tectures and Compilation Techniques, ser. PACT ’04, 2004, pp. 177–
188.

[21] N. Vachharajani, R. Rangan, E. Raman, M. J. Bridges, G. Ottoni, and
D. I. August, “Speculative decoupled software pipelining,” in Proceed-
ings of the 16th International Conference on Parallel Architecture and
Compilation Techniques. IEEE Computer Society, 2007, pp. 49–59.

[22] R. F. Van der Wijngaart, S. R. Sarukkai, and P. Mehra, “Analysis
and optimization of software pipeline performance on MIMD parallel
computers,” Journal of Parallel and Distributed Computing, vol. 38,
no. 1, pp. 37–50, 1996.

[23] M. I. Gordon, W. Thies, and S. Amarasinghe, “Exploiting coarse-
grained task, data, and pipeline parallelism in stream programs,”
SIGARCH Comput. Archit. News, vol. 34, no. 5, pp. 151–162, Oct.
2006.

[24] M. Hirzel, R. Soulé, S. Schneider, B. Gedik, and R. Grimm, “A catalog
of stream processing optimizations,” ACM Comput. Surv., vol. 46,
no. 4, pp. 46:1–46:34, Mar. 2014.

[25] W. Thies, V. Chandrasekhar, and S. Amarasinghe, “A practical ap-
proach to exploiting coarse-grained pipeline parallelism in C pro-
grams,” in Proceedings of the 40th Annual IEEE/ACM International
Symposium on Microarchitecture, ser. MICRO 40, 2007, pp. 356–369.

[26] J. Gummaraju and M. Rosenblum, “Stream programming on general-
purpose processors,” in Proceedings of the 38th Annual IEEE/ACM
International Symposium on Microarchitecture, ser. MICRO 38, 2005,
pp. 343–354.

[27] Y. Choi, C.-H. Li, D. D. Silva, A. Bivens, and E. Schenfeld, “Adaptive
task duplication using on-line bottleneck detection for streaming
applications,” in Proceedings of the 9th Conference on Computing
Frontiers, ser. CF ’12, 2012, pp. 163–172.

[28] A. Pop and A. Cohen, “A stream-computing extension to openmp,” in
Proceedings of the 6th International Conference on High Performance
and Embedded Architectures and Compilers, ser. HiPEAC ’11, 2011,
pp. 5–14.

[29] A. H. Hormati, M. Samadi, M. Woh, T. Mudge, and S. Mahlke,
“Sponge: Portable stream programming on graphics engines,”
SIGARCH Comput. Archit. News, vol. 39, no. 1, pp. 381–392, Mar.
2011.

[30] F. Khalid, F. Feinbube, and A. Polze, “Hybrid CPU-GPU Pipeline
Framework PDPTA’14.”

[31] C. Wagner, “Nullspace approach to determine the elementary modes
of chemical reaction systems,” The Journal of Physical Chemistry B,
vol. 108, no. 7, pp. 2425–2431, 2004.

[32] F. Khalid, Z. Nikoloski, P. Tröger, and A. Polze, “Heterogeneous
combinatorial candidate generation,” in Euro-Par 2013 Parallel Pro-
cessing. Springer, 2013, pp. 751–762.

[33] D. Jevremovic, C. T. Trinh, F. Srienc, and D. Boley, “On algebraic
properties of extreme pathways in metabolic networks,” Journal of
Computational Biology, vol. 17, no. 2, pp. 107–119, 2010.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 353



An FPGA Architecture for Text Search Using a Wavelet-Tree-Based

Succinct-Data-Structure

Hasitha Muthumala Waidyasooriya, Daisuke Ono, Masanori Hariyama and Michitaka Kameyama

Graduate School of Information Sciences, Tohoku University

Aoba 6-6-05, Aramaki, Aoba, Sendai, Miyagi, 980-8579, Japan

Email: {hasitha, ono1831, hariyama, kameyama}@ecei.tohoku.ac.jp

Abstract— Succinct data structures are introduced to effi-

ciently solve a given problem while representing the data

using as little space as possible. The full potential of

the succinct data structures have not been utilized in the

software-based implementations. This paper discusses an

FPGA-based hardware architecture for text search that uses

succinct data structures. We proposes a hardware-oriented

data structure and its decoding method. The proposed ar-

chitecture can be used in text searches using up to 4.3GB

large text files.

Keywords: Succinct data structures, text-search, FPGA.

1. Introduction
Succinct data structures [1] are introduced to efficiently

solve a given problem while representing the data using as

little space as possible. Such data structures are used in many

fields such as bio-informatics, text processing, etc. To solve

the problem efficiently, the original data are usually pre-

processed. If the original data contain n bits, “a little space”

means that the storage space of the pre-processed data must

be in the order of n (O(n)). To efficiently solve the problem,

the processing time must be in the order of 1 (O(1)). That

is, the processing time does not depend on the input data

size.
Although the data storage size is in the order of n, the

actual storage size is k × n, where k usually takes a value

from tens to thousands. As a result, the storage size of

the succinct data structure is many times larger than the

original data size. However, recent computers have a very

large memory capacity and extremely large hard disk space.

Therefore, implementing such data structures is possible and

some of those implementations have given reasonably good

results. However, they have many limitations so that the

full potential of the succinct data structures have not been

utilized. The main problem is the memory access bottleneck.

Although the processing time is independent of the data size,

the memory access is unpredictable and requires many clock

cycles. Moreover, the data are usually in a compressed or

encoded state, so that a decompression or decoding overhead

is required. Therefore, it is often a serious challenge to

efficiently utilize the succinct data structures for massively

parallel implementations.

Designing a custom hardware is a good solution to such

problems. A custom hardware contains a large number of

compact processing elements (PE) that are specialized to

solve only the given problem. The data paths between the

PEs and the memory can be designed to efficiently use the

full memory bandwidth. The decompression/decoding can

be done in parallel in minimum number of clock cycles.

we consider an FPGA-based accelerator for text search

applications. An FPGA is a reconfigurable LSI that contains

millions of programmable logic gates. Recently, speed and

power consumption of the FPGAs are greatly improved, and

it would be very practical to use the FPGA-based platform

for real applications. However, the lack of huge DDR3

memories is a major problem in FPGA boards. Many high-

end FPGA boards contain just 4 GB of memory capacity.

Therefore, we have to compress the data as much as possible

while still allowing the efficient access to the data.

To implement succinct data structures on hardware, we

can not rely on the order of the computations. Even the order

is small, the processing time or the storage space could be so

large that the data structure may not be implemented on the

hardware. In this paper, we consider the factors such as the

memory bandwidth, word width of the memory, storage size

etc to find a hardware-compatible succinct data structure,

which could actually be implemented on the hardware. We

also consider hardware-oriented data compression method

to reduce the storage space further without increasing the

processing time.

2. Succinct-Data-Structure

2.1 Text search using rank

In this paper, we limit the given problem to the text search.

The operation rankq (T, x) returns the number of “element

q”s from a text T up to the position x. The element q could

be any symbol such as a number, a letter, a byte, etc, and T

is an array that contain many elements. The implementation

of the rank operation in a constant time is presented in [1],

[2]. Using the rank, a quarry can be searched in a text with

a processing time proportional to the size of the quarry and

not proportional to the size of the text. That is, the search

time does not increase with the size of the text.

354 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



Search(Q, i, k, l)

begin

I = φ

k = 0

l = |X|

for i = |Q| − 1 to i = −1 do

if i == −1 then
return [k, l]

end

k = C (Q[i]) + rankQ[i] (B, k − 1)

l = C (Q[i]) + rankQ[i] (B, l) − 1

//B is the BWT string of X

if k ≤ l then

i = i − 1

else

return φ //return empty

end

end

end
Algorithm 1: Text search algorithm

The text search method is shown in algorithm 1. In this

algorithm, the search quarry Q is searched in the text X.

The number of elements in X and Q are given by |X| and

|Q| respectively. The text X is pre-processed to construct the

rank table and the array C(.). We explain the pre-processing

using an example in Fig.1. The text X is shown in Fig.1(a)

where the end of the text is identified by “$”. As shown in

Fig.1(b), the text is shifted to the left until all the symbols are

moved. The shifted (rotated) text is sorted in lexicographical

order as shown in Fig.1(c). The suffix array (SA) in Fig.1(c)

shows the sorted array of all the suffixes. This rotation and

sorting is also called the Burrows-Wheeler transform (or BW

transform) [3] and the string in the last column of Fig.1(c) is

called the “BWT string” and denoted by B. Then we count

the number symbols from the beginning to each index and

put those values on a table. This “rank” table is shown in

Fig.1(d). For example, rankE(B, 3) = 1, since there are only

one “E” appears from the index 0 to 3 in the rank table. The

number of symbols that are lexicographically smaller than a

is given by C(a) where a ∈ B .
Fig.2 shows the searching of the quarry (Q) in text (X).

The quarry Q and C(.) array are shown in Figs.2(a) and 2(b)

respectively. According to [4], if a quarry q is a substring

of the text X and k(aq) ≤ l(aq), the quarry aq is also a

substring of X where aq equals the quarry {a, q}. The terms

k and l, given by Eqs.(1) and (2) respectively, are the lower

and upper bounds of the suffix array interval of X.

k(aq) = C(a) + ranka (B, k(q) − 1) (1)

l(aq) = C(a) + ranka (B, l(q))− 1 (2)

We can find the position of Q in X by repeatedly applying

Eqs.(1) and (2) to every symbol in Q as shown in Fig.2(c).

(a) Text data (X) (b) Moving (rotation) of the text

(c) Sorting of text data (d) C(.) and rank data

Fig. 1: Pre-processing the text

The suffix array interval (SA) is [6,6] so that we can find the

actual position using the suffix array in Fig.1(c). In this case,

S A[6, 6] = 2. The search is done in 3 steps proportional to

the number of symbols in the quarry Q.

2.2 Data storage and processing time

In the initial work of succinct data structures [1], a method

to store the rank data and compute the rank in a constant

time is proposed. Given a binary sequence B[0, n − 1] of

size n, a two-level directory structure is built. The first level

contains large blocks of size log2n × log2n. For each large

block, the rank of the first entry is stored in a separate array.

This requires n/log2n storage. Each large block is divided

in to small blocks of size log2n/2. Therefore, each large

block contains 2log2n number of small blocks. Within a large

block, another array is used to store the rank of the first

entry of all small blocks. For all large blocks, this array

requires 4nlog2(log2n)/log2n bits. A look-up table is used

to store the answer to every possible rank on a bit string of

size log2n/2. It requires 2log2n/2× log2/2× log2(log2n/2) bits.

All arrays and tables can be implemented using O(n) bits,

and it supports rank queries in a constant time. Please refer

[1] for more details. Since we use many arrays and tables,

this method needs multiple (although a constant number of)

memory reads to compute the rank. Moreover, this method

is proposed for bit vectors. It is not efficient to use this

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 355



(a) Search quarry (Q) (b) C array

(c) Searching of the quarry (Q) in text (X)

Fig. 2: Searching the quarry Q in text X

Fig. 3: rank data encoding of a human genome

method when the input is not a bit vector but contain multiple

characters, such as general text.

A different data structure for the multi-character text

search is proposed in bio-informatics applications such as

short-read alignment [5]. In short-read alignment, a short

DNA fragment is searched in a large genome, which is

basically a text search. Genome data contains 4 symbols,

“A,C,G,T” that are represented by 2 bits. Fig.3 shows a

rank table of 16 entries. We divide the rank data table into

two blocks where each block contains 8 entries. Then the

first entry is chosen as the header. The rest of the entries

are replaced by the BWT symbols. Since one BWT symbol

has significantly smaller size compared to a rank entry, this

method reduces the storage size. However, in the decoding,

we have to count the number of symbols of each character in

the body. To do this in constant time, we need a population

count (popcount) hardware.

A human genome contains approximately 3 billion sym-

bols. Therefore the rank table contain 3 billion entries where

each entry has log2(3 billion) × 4 bits. That is 128 bits.

Therefore, the storage space for the rank table requires

128×3 billion bits which is approximately 48GB. The above

encoding method is used in [6] to successfully implement

the short-read alignment using just 1.5 GB of data. In [6],

the rank table is divided in to blocks where each block

contain 64 entries. The first entry of each block is used for

the header, which requires 128 bits. The rest of the entries in

each block are replaced by the BWT symbols. Since 2 bits

are required to represent the “A,C,G,T” symbols, the body

contains only 128 bits (2×64). Therefore, one code word is

256 bits and we need 3 billion/64 of such code words. That

is 1.5 GB. Moreover, 256 bits can be read in one memory

read in FPGA. Note that, one memory read provides the

access to a block of consecutive data. The popcount of 64

symbols can be done in a few steps in hardware and many

such popcount architectures are already proposed [7].

To use this method in text search, let us consider a general

case that has n symbols in the BWT string. We consider m

different symbols in the alphabet. Therefore, one rank data

entry requires m × log2n bits. Since there are n entries we

need a total of n × m × log2n bits. We divide the rank data

into multiple blocks where each block contain p entries. In

each block we store the first entry as the header. The rest

of the entries in a block is replaced by the symbols in the

BWT string. Therefore, the required total bits (Tbit) is given

by Eq.3.

Tbit = (m × log2n) ×
n

p
+ n × log2m (3)

If this data structure is to be succinct, Tbit must be in the

order of O(n). To satisfy this condition, the block size p must

be greater than or equals to log2n. Moreover, the symbol

count of a block must be done in a constant time irrespective

of the size of n. That is, popcount(p) must be done in

a constant time. Since there are popcount hardware that

have constant computation time, constant processing time

is achieved.

Since we use FPGA, we consider a memory size of 4GB.

This condition is reasonable since many FPGA boards with

high-end FPGAs contain this much of memory. Now let

us calculate how much memory is required and how large

is a block when we consider a 1GB input text file. We

also consider each letter in the input file contain 8 bits (1

Byte) and there are 128 meaningful letters in the alphabet.

Therefore, n = 1GB/1B and m = 128. From Eq.3, when the

total bits Tbit equals to 4GB, the block size p = 1229. As

a result, one code word contains a header of 128 × 30 bits

and a body of 1229 × 7 bits. That is 12443 bits. Therefore,

if the word width of the memory is 512 bits (512 bits are

accessed in one read), 25 memory reads are required to get

one rank data value. After that, we have to perform the

popcount function for 1229 symbols. As wee can see here,

although we can store the data, accessing it and decoding

it is very costly in terms of both time and area. Even a

single memory access may take several cycles to complete,

356 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



25 memory reads per a rank data is not practical. Therefore,

we need a better data structure.

2.3 Wavelet tree based data structure

As we saw above, the strategies relating to the binary

sequences or small number of symbols cannot be applied

directly to the data structures with many symbols. The

wavelet tree proposed in [8] permits a way to compute

the rank of an arbitrary alphabet of size m efficiently. Let

us explain the construction of the wavelet tree using the

example in Fig.4. For a given text B shown in Fig.4(a),

a code is assigned to every symbol as shown in Fig.4(b).

The construction of the wavelet tree start from the most

significant bit (MSB) of the code. A bit vector b is created

by using the MSB of each symbol in the text B as shown

in Fig.4(c). That is, “0” is assigned to the symbols “$, A,

E” and “1” is assigned to the symbols “G, H”. Then we

divide the bit vector in to two groups. One group contains the

symbols that their corresponding bits in b are 0. The other

group contains the symbols that their corresponding bits in

b are 1. Then we assign bit vectors b0 and b1 for each group

using the second most significant bit. This process continues

until a unique bit (0 or 1) is assigned for every symbol in a

group. After the construction of the wavelet tree, we create

rank tables for each bit vectors.

Fig.5 shows how to compute rank using wavelet tree. In

this example, rankE(B, 4) is considered. Note that, B is the

text shown in Fig.4(a). The computation of rank is done from

the top to the bottom of the wavelet tree. Since the MSB of

the symbol “E” is zero, we compute rank0(b, 4). Then we

come down to the second level of the wavelet tree and use

the input vector b0, since “E” is included in the group that

the MSB of “E” is zero. Then rank1(b0, 2) is calculated.

Similarly, the calculation is done for all the levels in the

wavelet tree as shown in Fig.5.

Although Fig.4(c) shows the rank table for the symbols

“0” and “1”, we just have to store the rank of only one

symbol. The rank of the other symbol is derived by sub-

tracting the rank of the known symbol from the index. For

example, rank0(b, x) = x − rank1(b, x) where b is the bit

vector and x is the index. There are many rank tables in

log2m levels. However, in each level, the sum of all entries

in all tables equals to the number of symbols in the reference

text. Therefore, the total number of bits required (Twavelet) is

given by Eq.(4).

Twavelet =

{

log2n ×
n

p
+ n

}

× log2m (4)

Using Eq.(4), we can obtain the block size for the example

of 1GB input data. In this case, p = 68. Therefore, in one

block we have a 30 bits large header and 68 bits large body.

Therefore, a code word contains a total of 98 bits. This much

of data can be accessed in one memory read. Note that, the

wavelet tree has log2m levels of bit vectors and we have to

(a) Text (B) (b) Code

(c) wavelet tree representation of text B

Fig. 4: Construction of a wavelet tree

Fig. 5: Computation of rankE(B, 4) using wavelet tree

access a bit vector in each level. Therefore, in this example,

a total of 7 memory reads are required to obtain one rank.

This is a substantial reduction of the memory reads.

2.4 Proposed data structure for FPGAs

In this paper, we discuss a data structure that considers

the hardware specification. We consider a memory model

where each read access W bits from the memory. As shown

in Fig.6, a code word consists of a header and a body. The

size of the header is decided by the number of symbols n in

the text. The size of the body is decided by the number of

entries in a block of the rank table. Since the header requires

log2n bits, the body contains maximum of W − log2n bits

which should be equal to the number of entries in a block.

Therefore, the block size p = W − log2n. The body size

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 357



Fig. 6: A cord word of W bits long

could be further reduced by using byte-pair encoding (BPE).

BPE [9] is a simple data compression method that the most

common pair of consecutive bytes of data is replaced with a

byte that is not been used already in the compressed data file.

The same method could be applied for the bit array too and

it is already used in text processing in [10]. In this case, we

apply BPE for each cord word separately by using a common

dictionary data. According to the experimental results using

various text files. we found that 80% compression ratio could

be achieved. The compression ratio is decided by the worst

case. The required memory size Tprop is given by Eq.(5).

Tprop =

{

log2n ×
0.8n

W − log2n
+ n

}

× log2m (5)

In practical cases, W − log2n is much larger than log2n.

Therefore, the storage is in the order of O(n). The memory

access is in the order of O(log2m) which is independent of

n. Therefore, we can say that this data structure is succinct.

3. FPGA architecture and evaluation
Fig.7 shows the overall architecture. It consists of a PE

array and two DDR3 memories. The rank data of the text

are stored in the DDR3 memory. Then the search queries

are transfered to the DDR3. PEs process the search queries

and find the search positions. Those data are written to a

shared memory and later read by the host computer. The

search queries can be sent in batches. After one batch is

finished, another batch is transfered to the DDR3 memory.

Therefore, we can process any number of search quarries

while the quaries in a batch are processed in parallel by

multiple PEs.

The structure of a PE is given in Fig.8. It consists of a

32-bit adder, a comparator and pipeline registers to perform

the calculations explained in algorithm 1. The “ADD/SUB”

unit in PE is used to calculate the suffix array interval given

by Eqs.(1) and (2). The comparator and the control path

do all the conditional branches in the “Search” procedure.

New search queries are fed to the PEs after the old ones are

searched. The output is read by the CPU. Unlike the CPU

that has a complex floating-point ALU and very complicated

control circuit, a PE is a very simple unit that specialized

only to search a query. It is designed using minimum

resources. Therefore, we can have a lot of PEs in the same

FPGA to provide performance comparable to a computer

cluster that has many CPUs.

The hardware module that decodes the rank data is shown

in Fig.9. We extract only the required bits from the body of

Fig. 7: Accelerator architecture

Fig. 8: Structure of a PE

a code word. For example, if we need only 16 bits starting

from the LSB (least significant bit), we do the “bitwise

AND” operation with a mask. In this case, the mask is

0xFFFF. Since the memory address corresponds to the rank

entry number, the mask is obtained by decoding the memory

address. After the required bits are determined, we count the

number of 1’s using a popcount module. Finally, the symbol

count is added to the header. The decoder is pipelined, and

an output is produced in every clock cycle after the pipeline

is fully filled.

This decoding method has an added advantage of reducing

Fig. 9: Hardware decoder

358 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



Fig. 10: Sharing of the decoded data

Fig. 11: Evaluation environment

the memory access. For example, let us consider the text file

of 1GB large. The number of symbols in the file is given by

n and log2n = 30, so that the header is 30 bits. If the word

size of one memory read is 512 bits, the body contain 482

bits. Therefore, is it possible to obtain 482 rank data entries

by decoding one code word as shown in Fig.10. Since we do

parallel processing using multiple PEs, some of those rank

data could be used in more than one PE. In such cases, the

number of memory accesses are reduced.

For the evaluation, we used DE5 board [11] that contains

“Altera 5SGXEA7N2F45C2 FPGA” and two 2GB DDR3-

SDRAMs. The system shown in Fig.11 contains a core

i7-960 CPU and a DE5 board connected through the PCI

express port. The operating frequency of the accelerator is

estimated to be 100MHz. We estimated that around 128 PEs

can be implement on the FPGA.

Table 1 shows the size of the original text and encoded

text. Usually, text data are in bytes so that the original

text size is calculated by the actual file size. However, in

the evaluation, we consider an alphabet of 128 characters.

Therefore, one symbol requires only 7 bits. Compared to

that, the FPGA implementation require a similar amount of

bits with an increase of just 5.5%. In fact, the storage size

is smaller than the original text file size. The reason for the

small storage size is that we encode a large block of over 400

entries into a single code word. Therefore, the header size is

very small. Since we use the wavelet tree representation, the

Table 1: Required data size

Original data size of the text Required storage size
(8bits per a symbol) (7bits per a symbol) after encoding

1GB 0.88GB 0.92GB
2GB 1.75GB 1.84GB
4GB 3.50GB 3.69GB

4.3GB 3.76GB 3.97GB
5GB 4.38GB 4.61GB

header size is further reduced. However, using more bits in

the body require a larger popcount function. That increases

the hardware overhead. To reduce the hardware overhead,

we have to reduce the number of bits in the body.

4. Conclusion
This paper discusses an FPGA-based hardware architec-

ture for text search that uses succinct data structures. We

proposes a hardware-oriented data structure and its decoding

method. The proposed architecture can be used in text

searches up to 4.3GB large data. The storage space is just

5.5% larger than the original data size (7bits per symbol)

and smaller than the input file size (1 byte per symbol).

Acknowledgment
This work is supported by MEXT KAKENHI Grant

Numbers 24300013 and 15K15958.

References
[1] G. Jacobson, “Succinct static data structures. PhD thesis”, Carnegie

Mellon University, 1989.
[2] G. Jacobson, “Space-efficient static trees and graphs”, 30th Annual

Symposium on Foundations of Computer Science, pp.549-554, 1989.
[3] M. Burrows and D. J. Wheeler, “A block-sorting lossless data com-

pression algorithm”, Digital Equipment Corporation, Palo Alto, CA,
Technical report 124, 1994.

[4] P. Ferragina and G. Manzini, “Opportunistic data structures with ap-
plications”, Proc. of 41st Symp. on Foundations of Computer Science,
pp.390-398, 2009.

[5] Heng Li and Richard Durbin, “Fast and accurate short read align-
ment with Burrows-Wheeler transform”, Bioinfomatics, Vol.25, No.14,
pp.1754-1760, 2009.

[6] H. M. Waidyasooriya, M. Hariyama and M. Kameyama, “Implemen-
tation of a custom hardware-accelerator for short-read mapping using
Burrows-Wheeler alignment”, Conf Proc IEEE Eng Med Biol Soc.,
pp.651-654, 2013.

[7] H. S. Warren, “Hacker’s Delight (2nd edition) - Chapter 5”, 2012.
[8] R. Grossi, A. Gupta, J.S. Vitter, “High-order entropy-compressed text

indexes”, Proc. of ACM-SIAM Symposium on Discrete Algorithms
(SODA’03), pp.641-650, 2003.

[9] Philip Gage, “A New Algorithm for Data Compression”, C/C++ Users
Journal, 12(2), pp23-28, 1994.

[10] H. M. Waidyasooriya, D. Ono, M. Hariyama and M. Kameyama,
“Efficient Data Transfer Scheme Using Word-Pair-Encoding-Based
Compression for Large-Scale Text-Data Processing”, Conf Proc IEEE
Asia Pacific Conference on Circuits and Systems (APCCAS), pp.639-
642, 2014.

[11] http://www.altera.com/education/univ/materials/boards/de5/unv-de5-
board.html.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 359



Parallel processing of Breadth First Search by Tightly
Coupled Accelerators

Takahiro Kaneda
Keio University

3141 Hiyoshi, Yokohama,
2238522, Japan

kaneda@am.ics.keio.ac.jp

Takuji Mitsuishi
Keio University

3141 Hiyoshi, Yokohama,
2238522, Japan

mits@am.ics.keio.ac.jp

Yuki Katsuta
Keio University

3141 Hiyoshi, Yokohama,
2238522, Japan

katsuta@am.ics.keio.ac.jp
Takuya Kuhara

Keio University
3141 Hiyoshi, Yokohama,

2238522, Japan

kuhataku@am.ics.keio.ac.jp

Toshihiro Hanawa
The University of Tokyo

515 Kashiwanoha, Kashiwa,
2778589, Japan

hanawa@cc.u
tokyo.ac.jp

Hideharu Amano
Keio University

3141 Hiyoshi, Yokohama,
2238522, Japan

asap@am.ics.keio.ac.jp

Taisuke Boku
University of Tsukuba

111 Tennodai, Tsukuba,
3058573, Japan

taisuke@cs.tsukuba.ac.jp

The Tightly Coupled Accelerators (TCA) architecture con-
nects a number of graphics processing units(GPUs) directly
through PCI express using dedicated switches called PEACH2
(PCI-Express Adaptive Communication Hub Ver.2). By
making the best use of the low-latency communication sup-
ported by PEACH2, the breadth-first search (BFS) algo-
rithm from Graph500 which requires frequent communica-
tions between GPUs, was implemented with multiple GPU
systems. In using the BFS with the TCA, 1.58 times better
performance was achieved than with a common implemen-
tation using MPI.

Keywords
GPU, Cluster, Tightly coupled accelerators architecture, PEACH2

1. INTRODUCTION
In recent years, due to the spread of general purpose com-

putation using on graphics processing units(GPUs), hetero-
geneous clusters with multiple hosts each equipped with
GPUs, have been the mainstream of high performance com-
puting systems. Such systems are expected to be used for
the recently emerging big data processing as well as for nu-
merical computation. However, such heterogeneous clusters
cause a large latency between GPUs communicating across
nodes by indirect communication via the memory of host
CPUs. In non-numerical computation procedures such as
graph processing, small data communication is frequently
required and the communication latency tends to bottleneck
the performance improvement obtained by using multiple
GPUs provided in heterogeneous clusters.

This work was presented in part at the international symposium on Highly
Efficient Accelerators and Reconfigurable Technologies (HEART2015)
Boston, MA, USA, June 12, 2015.

The Tightly Coupled Accelerators (TCA) architecture[1][2]
provides direct data communication between accelerators
connected to different nodes. PEACH2 (PCI Express Adap-
tive Communication Hub Ver.2) is a realizaton of TCA ar-
chitecture implemented by field-programmable gate array(FPGA),
and it uses the PCI Express(PCIe), commonly connects a
host CPU and accelerators, as a network link. The hard-
wired logic on the FPGA of PEACH2 provides a direct mem-
ory access (DMA) controller(DMAC) that can handle PCIe
transfers directly. Using PEACH2 enables a double ring
network to be formed with the PCIe, which was originally
designed only for a tree network with a single host CPU
as a root. The memories of host CPU and attached GPUs
which are connected by PEACH2 are mapped into a single
address space of the PCIe, and data can be transferred by
write access to the address. The current PEACH2 is imple-
mented on Altera’s Stratix IV FPGA, operates on a 250MHz
clock, and the minimum latency between two GPUs is only
2.3 ms, much smaller than that using the MVAPICH2 with
Infiniband.

HA-PACS/TCA is a testbed as a proof-of-concept sys-
tem for TCA architecture in the University of Tsukuba’s
Center for Computational Science and started using it for
scientific computation. However, the low latency commu-
nication it provides can be most efficiently used for non-
numerical computing rather than large scale scientific com-
puting programs, which require a higher bandwidth to cope
with large block data transfers. Recently, big data com-
puting functions such as graph analysis have come to re-
quire short, frequent messages, and these are difficult to
handle with standard Infiniband connected heterogeneous
clusters. In the work reported in this paper, we implemented
the breadth-first search(BFS) algorithm from Graph500 on
the HA-PACS/TCA and compared the performance obtaind
with that obtained when using MPI over Infiniband.

360 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



Table 1: Specifications of PEACH2
FPGA family Stratix IV GX
FPGA chip EP4SGX530NF45C2

Process Technology 40nm
hline Port PCIe Gen2 x8 * 4 port

Max bandwidth fo a port 4GB/sec
Max Frequency 250MHz

Internal bus width 128bit
On-board DRAM DDR3 512MByte

2. COMMUNICATION USING PEACH2

2.1 PEACH2
Although PCIe has been commonly used in recent CPUs,

it is designed for I/O networks with a tree structure and
makes it difficult to connect multiple nodes directly. How-
ever, the PEACH2 switching hub enables PCIe to be used
as a low-latency network. Figure 1 shows a block diagram
of a PEACH2 chip implemented on an FPGA. There are
four ports on it; port N is an endpoint for PCIe Gen2 x8
and is plugged into the PCIe connector on the host CPU
board. A node is formed by connecting GPUs to the same
back-plane board. Multiple nodes are connected as a ring
network formed with two ports: Port E, an endpoint, and
Port W, a root complex. The remaining Port S is a switch-
able x16 port which works as x8 port and is used to connect
two ring networks, each of which can connect 8 nodes. The
routing function embedded in the FPGA determines the des-
tination port merely by checking the destination address of
a PCIe packet to form a single address space for data trans-
fers. The DMAC supports sophisticated block data transfers
in the address space. Table 1 shows the details of PEACH2.
It was implemented with Altera’s Stratix-IV and operates
on a 250MHz system clock. A 512MByte DDR3 SDRAM is
provided on the board.

Figure 1: Block diagram of PEACH2

2.2 Communication with PEACH2
Figure 2 shows a multi-node system connected with PEACH2.

Since 8 nodes form a ring by using Ports E and W, 16 nodes
can be connected with Port S in total. If more nodes need
to be connected, the next level network using Infiniband is
required. Figure 4 shows an example of the shared address
setting for 16 nodes.

The 512 GByte total address region is split, and a 32GByte
address is assigned to each node. The routing function pro-
vided in PEACH2 has control registers for address mask as
well as for lower bound and upper bound, and the destina-
tion port is statically determined by checking the address
with the address mask. On PEACH2, memory accesses to
remote nodes are restricted to memory write requests. In-
stead of memory read, which is difficult to implement ef-
ficiently, the proxy write mechanism can achieve the same
effect by using driver support.

Figure 2: Multi-node system connected with
PEACH2

The PEACH2 provides two types of communication: PIO
and DMA. The former is useful for short message transfers,
while the latter can only perform a store operation to re-
mote nodes. In order to enable PIO communication, the
PCIe region assigned to the PEACH2 is mapped through
the device driver for the user space by an mmap interface.
The PEACH2 DMAC supports enhanced DMA functions,
including chaining using descriptors and block stride data
transfer.

The TCA system specifications are shown in Table 2. The
physical configuration of the two nodes in Figure 4, shows
they are connected. An FPGA borad (that of PEACH2),
two Ivy Bridge processors, and four of NVIDIA K20X GPUs
are installed on each node. For the PEACH2 in PCIe Gen2
x8, GPUs are connected by a PCIe Gen2 x16 bus. Multiple
nodes in the cluster are connected by PEACH2, and each

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 361



Figure 3: PCIe address spaces of PEACH2

node has a two-step configuration for connecting to a higher
level network via the Infiniband standard. Figure 1 shows a
block diagram of the entire system.

Figure 4: PCIe address spaces of PEACH2

2.3 Details of the target system
Table 3 shows the system we used in the implementation.

It is an experimental cluster system as a prototype of HA-
PACS/TCA in the University of Tsukuba’s Center for Com-
putational Sciences. It provides almost the same configura-
tion as the HA-PACS/TCA available for use at the center,
which in 2013 took third place in the Green500, the rank-
ing of the most energy efficient supercomputers in the world.
For performance comparison, it provides both PEACH2 and
Infiniband for each node. The communication performance
of PEACH2 was reported in [3]; the ping-pong latency in
case of GPU-GPU is only 2.3 ms, as opposed to 6.5ms for
MVAPICH2-GDR2.0 using GPUDirect for the RDMA op-
tion with Mellanox Infiniband. The maximum bandwidth
between GPUs over nodes is about 2.3GBytes/sec.

3. BREADTHFIRST SEARCH AND ITS PAR
ALLEL PROCESSING

Table 2: Specifications of HA-PACS/TCA

CPU Intel Xeon E5-2680 v2(Ivy Bridge-EP)
Num of Core 20 Core/Node (10 Core/Socket 　 2 Socket)

Clock 2.8 GHz
Peak spec 364 TFLOPS
PCI-express Generation 3 　 80 Lane (40 Lane/CPU)
Memory 128 GB, DDR3 1866MHz,

4 channel/Socket, 119.4 GByte/s/Node

GPU NVIDIA Tesla K20X
Num of GPU 4 GPU/Node

Memory 24 GByte/Node (6 GByte/GPU)

Node Cluster Infiniband QDR　 2 rail
Connection (Mellanox ConnectX-3 dual head)
TCA board Stratix IV 530 GX

Table 3: Evaluation environment
CPU Intel(R) Xeon(R) CPU E5-2680
Clock 2.80GHz
Memory 128GB
GPU NVIDIA Tesla K20m
Memory 5GB
PEACH2 Stratix IV EX4SGX530
OS CentOS6.4
Host Compiler GCC 4.4.7
CUDA Toolkit 6.0
MPI MVAPICH2-GDR 2.0
Library CUB v.1.3.2

3.1 Level synchronized BFS
Breadth-first search (BSF) is an algorithm with which ev-

ery vertex of a graph is visited in the breadth first order.
Each vertex is labeled by the parent number or distance
from the source vertex. Here, the label of each vertex is rep-
resented by the parent as in the Graph500 benchmark[4].
The target graph is represented by an adjacency matrix in
a compressed sparse row (CSR) sparse matrix format. We
used Level Synchronized BFS, which is a representative par-
allel BFS, and processed it as shown in the following pseudo-
code.

A CQ holds vertices of the current depth level, while an
NQ holds the vertices of the next depth level. The array
visited holds whether a vertex has been visited or not. The
search results are stored in the array pred as the parents
identifiers. If there are no parents, -1 is held in pred.

3.2 Related work
A lot of research has been reported on the parallel execu-

tion of level-synchronized BFS with a single GPU or mul-
tiple GPUs. Harish et al. proposed algorithms for a single
GPU[5], and we extended the method for multiple GPUs.
Mastrostefano[6] extended it to multi-GPU systems and pro-
posed a method for reducing the communication. Mitsuishi
et al.[7] improved it for multi-GPU systems with poor com-
munication capacity. Suzumura et al. implemented level
synchronized BFS on a TSUBAME2.0 supercomputer at the
Tokyo Institute of Technology[8]. For executing the BFS on
a large scale supercomputer, they used the 2D Partitioning-
Based BFS, which places processors, vertices and adjacency

362 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



Algorithm 1 Level-synchronized BFS

1: for all vertex v in parallel do
2: pred[v]← −1
3: pred[r]← 0
4: Enqueue(CQ, r)
5: while CQ! = Empty do
6: NQ← empty
7: for all uinNQ in parallel do
8: u← Dequeue(CQ)
9: for each v adjaccent to u in parallel do
10: if pred[v] = −1 then
11: pred[v]← −1
12: Enqueue(NQ, v)
13: end if
14: end for
15: end for
16: swap(CQ,NQ)
17: end while
18: end for

matrices in a two-dimensional array to improve the perfor-
mance.

4. DESIGN AND IMPLEMENTATION
In implementing the level-synchronized BFS, we adopted

a standard approach for comparing TCA architecture and
an MPI-connected GPU cluster.

4.1 The BFS in a multiGPU system
Algorithm?? for a single GPU can be extended to multi-

GPU systems by replacing CQ and NQ with the arrays of
bit-vector in queue and out queue, respectively.

1. Each GPU has an adjacency matrix in the CSR sparse
matrix format. First, the root is stored in in queue,
and corresponding bsf tree is marked as visited. Oth-
ers are set to be unvisited by storing 0. The content
of out queue is also initialized to be 0.

2. Each GPU checks an assigned vertex u. If u is unvis-
ited, go to the next step. Otherwise, check the next
vertex.

3. Check all neighboring nodes of u. If the corresponding
location of in queue is 1, update bsf tree, and write 1
into visited and out queue.

4. Gather all data in out queue of all GPUs and make an
in queue. If all values in in queue are 0, it shows that
the search is finished.

5. Go to step 2.

This algorithm includes communication between GPUs
connected to different nodes for exchanging data in out queue.
When BFS is executed in a multi-GPU system, GPUs

need to communicate with other GPUs connected to the dif-
ferent nodes. The communication across the node becomes
the performance bottoleneck. To reduce the communication
overhead, the amount of transfer data is compressed by us-
ing the replicated-csr method. This data exchange is done
by using the MPI function in common Infiniband clusters.
In the case of TCA, we can use an application programming
interface(API) by using the shared data space supported by
PEACH2.

4.2 Communication data size reduction
Each out queue is a bit-vector whose location correspond

to an index of a vertex. That is, we need to transfer the
out queue whose size is equal to (allvertices/thenumberofGPUs).
Here, we compress the size of exchanged data with the method
shown in Figure 5.

Figure 5: An example of bit-vector compression

First, a scan array is made by performing a scan calcula-
tion that accumulates the number ”1” in out queue. If there
is a position where the number in scan array is changed it
means that there is a ”1” in the out queue. Thus, we can
make a transfer array that only includes the position of
”1”, and it is transferred until ”-1” is found. A GPU can re-
store the original ”out queue” from the receiving data. Note
that this compression can be performed for the ”out queue”
of all vertices in parallel. This method is especially advan-
tageous when the target graph is sparse. The compression
algorithm is shown in Algorithm2.

Algorithm 2 Compression algorithm

1: scan array ← Perform scan calculation for out queue
of all vertices in parallel

2: transfer num← scan array[last]
3: if out queue[index] = 1 then
4: transfer array[scan array[index]] ← index in par-

allel
5: end if
6: Transfer transfer array
7: Return the in queue the flag form

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 363



Note that this compression is only effective for TCA com-
munication that supports quick transfer for small data size.
For MPI communication, MPI Allgather() which only sup-
ports fixed length is advantageous for Infiniband GPU clus-
ters.

4.3 The communication path in a GPU
In the target multi-GPU system, two GPUs form a node

and two nodes are connected with TCA or MPI. First, two
GPUs in the same node communicate with each other by
using the CUDA API. Then, GPUs connected to the differ-
ent nodes exchange the data by using the TCA API or MPI
as shown in Figure 6. For a GPU, all data can be gathered
with two inner-node data transfers and one inter-node data
transfer.

Figure 6: Communication path

5. EVALUATION
In this section, we show how we evaluated and compared

the performance of the BFS with TCA and that with MPI.
Graphs from the Graph500 benchmark are used as target
graphs.

5.1 Evaluation environment
We used an experimental cluster with two nodes in the

University of Tsukuba’s Center for Computational Sciences.
The node specifications are shown in Table3. In the system,
two nodes are connected with TCA by using two PEACH2
boards attached to each node. Each host has Infiniband

as an independent network, which enables to compare two
networks having exactly the same node configuration.

5.2 Graph500
For the measurements we used the Graph500, which is

a benchmark for measuring performance by evaluating the
processing time of the graph search.

A graph is generated with parameters called scale and
edgefactor. The scale represents the number of vertices of
the graph with the formula: the number of vertices =
2scale. The edgefactor determines the number of edges:
that is, the number of edges = the number of vertices ∗
edge factor

Performance is represented by the number of edges tra-
versed in a second. This measure is called TEPS (Traversed
Edges Per Second); a larger TEPS means better perfor-
mance.

5.3 Evaluation result
Figures7, 8, and 9 show the results obtained for the BFS

while changing the scale and the edge factor. All figures
show that the BFS performance becomes better as the scale
becomes larger. It is obvious that a lot of threads can work
in parallel for large scale. In addition, the BFS using TCA
is more advantageous than that using MPI with large scale.
When scale = 16 and edgefactor = 64, the performance
of the BFS using TCA is 1.58 times faster than that with
MPI. Table.4 show the reduction ratio values obtained. We
achieved reduction by roughly 406̃0%. Figure10 is the graph
that shows execution time when the data are exchanged be-
tween nodes. The execution time and target communica-
tion time are shown for ”tca” or ”mpi”, which includes cu-
daMemcpyDtoH, HtoD, cudaMemset and kernels for data
reduction in TCA, and cudaMemcpyDtoH HtoD and cud-
aMemset for the same in MPI.

Figure10 makes it clear that the run time for the TCA ver-
sion is shorter in many cases. When the scale is small, there
is large variation in the datae, and the results may therefore
change for each run. However, even these small advantages
will have a positive effect on the execution performance.

In the BFS, searching accounts for 90% of the execution
time, and less than 10% of the communication time. It
is unreasonable to assume that the data reduction and low
latency communication achieved with TCA are the only rea-
sons for the improved performance that was obtained. An-
other reason that can be considered is the data exchanged
by sandwiching a process such as reduction while performing
a large number of consecutive data write operations. How-
ever, it is difficult to analyze this in detail. In the work
we report here, we measured the communication time with
MPI Wtime() and the others by using ”nvprof”. However,
the measurement data obtained is not enough sufficiently
accurate for conducting a detailed analysis.

When 9 <= scale <= 10, the BFS with MPI outper-
formed that with TCA. This might come from the fact that
in this case the execution time needed for the reduction can-
cels positive the effects of the small latency.

6. CONCLUSION
We implemented the breadth-first search(BFS) algorithm

on multiple graphics processing unit clusters using the Tightly
Coupled Accelerators(TCA) architecture and optimized the
communication for the TCA by making use of its lower

364 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



Figure 7: edgefactor = 16

Figure 8: edgefactor = 32

Figure 9: edgefactor = 64

Table 4: average ratio after data reduction(%)

Figure 10: execution time

latency than the MPI over Infiniband. For a graph from
Graph500, the BFS with the TCA achieved 1.58 times per-
formance than that with the MPI.

In future work, we will need to evaluate the performance
obtained carrying out the following optimization procedures.

• Optimizing for larger scale,

• optimizing for a larger number of nodes,

• using additional techniques to reduce data size,

• using the new application programming interface (API)
for PEACH2, and

• developing more accurate profiling tools.

These procedures will be necessary because currently the
scale and the number of corresponding nodes are too small
for the system that the TCA targets. In addition there are
still a lot of data reduction methods that can be applied, and
the newly developed API for PEACH2 is more suitable for
higher performance implementation. Finally, more accurate
profiling tools will need to be developed.

7. ACKNOWLEDGEMENT
The present study is supported in part by the JST/CREST

program entitled “Research and Development on Unified
Environment of Accelerated Computing and Interconnection
for Post-Petascale Era” in the research area of “Develop-
ment of System Software Technologies for post-Peta Scale
High Performance Computing”.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 365



8. REFERENCES
[1] S. Otani, H.Kondo, T. Hanawa, S. Miura, and T. Boku.

Peach: A multicore communication system on chip
with pci express. In IEEE Micro, pp. 39–50, 2011.

[2] T. Hanawa, Y. Kodama, T. Boku, and M. Sato.
Tightly coupled accelerators architecture for
minimizing communciation latency among accelerators.
In IEEE 27th IPDPSW, pp. 1030–1039, 2013.

[3] Yuetsu Kodama, Toshihiro Hanawa, Taisuke Boku, and
Mitsuhisa Sato. PEACH2: An FPGA-based PCIe
network device for Tightly Coupled Accelerators. In
Highly-Efficient Accelerators and Reconfigurable
Technologies (HEART2014), pp. 5–10, 6 2014.

[4] Graph 500. ”http://www.graph500.org/”.

[5] Pawan Harish and P.J. Narayanan. Accelerationg Large
Graph Algorithms on the GPU Using CUDA. In HiPC
2007, pp. 197–208, 2007.

[6] Enrico Mastrostefano. Large Graphs on multi-GPUs.
PhD thesis, Spienza University of Roma, 2013.

[7] Takuji Mitsuishi, Shimpei Nomura, Jun Suzuki, Yuki
Hayashi, Masaki Kan, and Hideharu Amano.
Accelerating breadth first search on gpu-box. In
International symposium on Highly Efficient
Accelerators and Reconfigurable Technologies,
HEART’14, July 2014.

[8] Toyotaro Suzumura, Koji Ueno, Hithoshi Sato, Katsuki
Fujisawa, and Satoshi Matsuoka. Performance
Evaluation of Graph500 on Large-Scale Distributed
Environment. In IISWC, pp. 149–158, Nov 2011.

366 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



Butterflies Solve Bidiagonal Toeplitz Systems

Brian J. Murphy1,2 Aron Wolinetz2 Joshua Rogers1

brian.murphy@lehman.cuny.edu aronw26@gmail.com joshuajoskow@gmail.com

1 Department of Mathematics and Computer Science 2 Ph.D. Program in Computer Science
Lehman College, Bronx, NY 10468 USA The Graduate Center, New York, NY 10016 USA

City University of New York City University of New York

Abstract— We reduce bidiagonal Toeplitz matrix inversion

to f-circulant matrix inversion. In so doing we derive a

fast Fourier transform based parallel solver for diagonally

dominant as well as ill-conditioned bidiagonal Toeplitz

systems. The number of parallel steps required by our

algorithm depends on the degree of diagonal dominance

or ill-conditioning and not system size. Our algorithm is

designed with implementation on an array of parallel FFT

processors in mind.

Keywords: Bidiagonal Toeplitz, Diagonally Dominant, Ill-
conditioned, FFT.

Introduction
Our subject is parallel solution of a bidiagonal Toeplitz

system of linear equations Tx = b which expands to









1
c 1

. . .
. . .
c 1

















x0

x1

...
xn−1









=









b0
b1
...

bn−1









. (1)

Here and hereafter T = (ti,j)
n−1
i,j=0, ti,j = 1 for i − j = 0,

ti,j = c 6= 0 for i − j = 1, and ti,j = 0 otherwise,
x = (xi)

n−1
i=0 , and b = (bi)

n−1
i=0 . Note that the system is

scaled so that the main diagonal is composed exclusively
of ones, with no loss of generality. These systems are at
the heart of problems as diverse as cubic spline and B-
spline curve fitting [3], [11], preconditioning for iterative
linear solvers [2], [13], computation of photon statistics
in lasers [8], computational fluid dynamics [26], solution
of multidimensional diffusion computations [9], solution of
neuron models by domain decomposition [14], and more.

We propose a parallel algorithm based on the fast Fourier
transform (FFT) to solve such systems. Cooley and Tukey
[4] introduced the FFT in 1965 as a mechanism for fast
computation of the discrete Fourier transform (DFT) on
computers. General parallel architectures tend to suffer from
high latency and restrictive bandwidth for communication
between processing units and/or clusters of processing units
and dedicate effort to fetching and decoding instructions.
Specialized hardware to perform the FFT in parallel allevi-
ates these impediments to efficient parallel computation. A

simple set of computations at the heart of the FFT can be
carried out by a circuit known as the Butterfly. A Butterfly
circuit as depicted in Figure 1 accepts two inputs. One input
is multiplied by what is referred to as a twiddle factor, which
are nth roots of unity for an FFT of dimension n. Then in
parallel this product is both added to and subtracted from
the other input. The two resulting values are the output of
the Butterfly circuit. FFT processors generally incorporate
log2 n stages of n/2 parallel Butterfly circuits to provide
pipelined computation of an n point DFT.

Fig. 1: Butterfly circuit with two inputs x0 and x1 and
twiddle factor −1.

Field Programmable Gate Arrays (FPGAs) capable of
implementing a 64 point parallel pipelined FFT and capable
of producing 25.6 giga samples per second (GSPS) are
readily available [7]. For our Bidiagonal Toeplitz solver the
pipelining of the underlying FFTs available from FPGA’s
and other more efficient hardware is of great practical inter-
est. This both because a number of real world applications
involve solving large numbers of these systems [10], [26]
and because our method partitions the computation into
multiple smaller independent FFTs that can be pipelined if
not performed entirely in parallel.

Our algorithm is fast, scalable, fine grained, and exhibits
a simple implementation based on an FFT kernel. It depends
on a reduction of the inversion of T to the inversions of a
circulant matrix and a skew circulant matrix. Circulant and
skew circulant matrices are defined by their first column,
maintain their structure when inverted, and are diagonalized
via FFT so that they are easily and efficiently inverted
by applying an inverse FFT (IFFT) to the element-wise
reciprocal of their first column’s Fourier image [21]. An n
input FFT requires O(n log2 n) arithmetic operations (ops)

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 367



and O(log2 n) parallel steps. Our algorithm improves on this
bound for n × n systems by partitioning the problem into
multiple smaller instances of the original problem, each of
which can be processed independently of the others. The
level of partitioning and therefore the number of parallel
steps required by our algorithm is determined by the degree
of diagonal dominance or ill-conditioning inherent in the
system and not by n. The partitioning reduces both the
number of ops and parallel steps required to produce a
solution as well as the number of transistors applied. This
algorithm is fully scalable in an embarrassingly parallel way,
because multiple smaller and independent FFTs replace a
single larger FFT and for a given degree of diagonal domi-
nance or ill-conditioning the size of these FFT computations
is constant as n grows.

0.1 Organization of our paper

We have organized the rest of our paper as follows: We
provide some background in Section 1. We consolidate defi-
nitions and preliminary facts for later use in the next section.
We present original work, which forms the mathematical
basis for our algorithm in Section 3. We present and analyze
our algorithm in Section 4. We report experimental results
in Section 5.

1. Background

1.1 Computation with Toeplitz Matrices

Given vector t = (ti)
m−1
i=1−n, T = (ti,j)

m−1,n−1
i,j=0 where

ti,j = ti−j is a Toeplitz matrix. Such matrices are invariant
along their diagonals. Note that it is the special case for T
illustrated in (1) to which T will refer hereafter.

An intimate relationship holds between polynomial multi-
plication and many Toeplitz matrix computations. We recall
the basis for this simple but fundamental connection.

Theorem 1: (Cf. [21, Section 2.4.3].) The matrix equation






















u0 O
...

. . .
...

. . . u0

um

. . .
...

. . .
...

O um



























v0

...
vn



 =





















p0

...

...
pm

...
pm+n





















(2)

is equivalent to the polynomial equation
(

m
∑

i=0

uix
i

)(

n
∑

i=0

vix
i

)

=

m+n
∑

i=0

pix
i.

The theorem immediately reduces polynomial multiplication
to Toeplitz matrix-by-vector multiplication and vice versa
[21, Section 2.4].

It is well known that the product of two polynomials
degree n and m, n ≥ m, can be determined via a convolution
of their coefficient vectors efficiently via FFT in O(n log2 n)

ops [5]. The FFT is utilized to perform a multi-point
evaluation of both polynomials. Corresponding points on the
polynomials are multiplied producing points on the product
polynomial. Finally, these points are interpolated to produce
the product polynomial via IFFT. The link demonstrated
above in Theorem 1 tells us that the same fast procedure will
accommodate Toeplitz matrix-by-vector multiplication [21].
By extension FFTs apply to Toeplitz matrix multiplication,
inversion, and system solving [1], [19], [25].

1.2 Some Bidiagonal and Tridiagonal Solvers

One can invert an n × n bidiagonal Toeplitz matrix T ,
as depicted in (1), in n + 1 arithmetic operations (ops) via
simple application of the recurrence

m0 = 1, mk = −cmk−1,

where m = (mi)
n−1
i=0 = ((−c)i)n−1

i=0 is the defining first
column of triangular Toeplitz matrix

T−1 =









1
−c 1
...

. . .
. . .

(−c)n−1 . . . −c 1









. (3)

Further, one can solve an n×n bidiagonal Toeplitz system
of equations Tx = b in 2n − 1 ops via the recurrence
x0 = b0, xi = bi − cxi−1 for i = 1, 2, . . . , n − 1. How-
ever, due to data dependencies between successive iterations
parallelization is stymied.

Other algorithms incorporate additional ops to achieve
parallelism. For instance recursive doubling [24] requires
O(n log2 n) ops and while cyclic reduction [10] and the
Spike Algorithm [22] both require O(n) ops their constants
of proportionality far exceed 2. O(log2 n) parallel steps is
the asymptotic record bound for direct solution of bidiagonal
systems in general and is shared by the aforementioned
algorithms. In the case of a diagonally dominant system,
these and other algorithms can trade accuracy for some
speedup by employing an early termination. The speedup,
however appears insignificant [12]. Additionally, these and
other algorithms either fail to provide fine grained par-
allelism or their implementation on generalized parallel
hardware necessitates agglomeration of data elements due to
tremendous communication demands thereby requiring the
surrender of parallelism.

1.3 Connecting Bidiagonal and Tridiagonal

Toeplitz System Solving

A tridiagonal Toeplitz matrix

M =











d 1

c d
. . .

. . .
. . . 1
c d











368 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



is easily and efficiently split into the product of two bidi-
agonal Toeplitz matrices plus a perturbation term via the
quadratic formula. Our focus is on two different ways to
represent M , i.e.

0

B

B

B

B

B

B

B

B

@

1

r1

.
.
.

.
.
.

.
.
.

r1 1

1

C

C

C

C

C

C

C

C

A

0

B

B

B

B

B

B

B

B

@

r2 1

.
.
.

.
.
.

.
.
. 1

r2

1

C

C

C

C

C

C

C

C

A

+

0

B

B

B

B

B

B

B

@

d − r2
1

C

C

C

C

C

C

C

A

,

and
0

B

B

B

B

B

B

B

B

@

r2 1

.
.
.

.
.
.

.
.
. 1

r2

1

C

C

C

C

C

C

C

C

A

0

B

B

B

B

B

B

B

B

@

1

r1

.
.
.

.
.
.

.
.
.

r1 1

1

C

C

C

C

C

C

C

C

A

+

0

B

B

B

B

B

B

B

@

d − r2

1

C

C

C

C

C

C

C

A

,

where r1 = d±
√

d2−4c
2 , r2 = d− r1 and |r1| < 1 < |r2|.

Conforming values for r1 and r2 can always be found [20].
Hereafter, we write the matrix equations M = LU +P1 and
M = UL + P2 to represent the above depictions of M .

For a symmetric M several algorithms were devised.
Rojo [23] solved (LU + P1)x = b by solving LUy = b

via backward and then forward substitution followed by
application of the Sherman Morrison formula to correct for
the perturbation represented by P1. Yan and Chung [27]
based their approximation algorithm on the same splitting,
but corrected a smaller segment of the solution to LUy = b.
McNally [16] and McNally et al. [18] built on these works to
produce parallel algorithms for approximating the solution.
McNally [17] and Nemani [20] both extended these ideas
to non-symmetric systems. For each of these algorithms the
pattern established by Rojo [23] whereby a correction step is
applied after solving a system based on the perturbed matrix
M −P1 = LU continued. For diagonally dominant systems
McNally [15] did away with the correction step by solving
portions of both LUy = b and ULz = b recognizing that
the leading elements of z and the trailing elements of y are
very good approximations for the corresponding elements
of x = M−1b. This eliminated communication between
partitions of the decomposition. Each of these methods based
on the Toeplitz LU + P splitting applies a course-grained
decomposition.

1.4 Executing a Parallel Bidiagonal Solver

The runtime clocked speed of a parallel algorithm is
intimately tied to the hardware on which it is executed. It
is a function of many parameters beyond the number of ops
and/or steps the algorithm performs. Number of processors,
memory hierarchy, synchronization, communication, latency,
bandwidth, and other factors can play a major role in its
determination. The core computations at the heart of most
parallel bidiagonal and tridiagonal solvers do not generalize
to a vast array of other computations. Therefore specialized
hardware dedicated to these computations is not readily
available. Most parallel bidiagonal and tridiagonal solvers
then are just about guaranteed to be implemented in software

for processing on a generalized hardware platform such
as networked central processing units, vector processors,
and graphics processing units. Such devices incur overhead
costs for performance of their fetch execute cycle, memory
hierarchy latencies and bandwidth limitations, as well as
other inefficiencies built-in to allow for the flexibility of
executing an algorithm inscribed in software. Of course
where needed network communication can be a huge drag
on performance when its latency cannot be hidden behind
computation and when bandwidth becomes a bottleneck.

Parallel bidiagonal and tridiagonal solvers can encounter
additional implementation issues that limit their processing
speed, particularly for large system size and where the finest
of granularity is desired. Take CR and Spike for instance.
Implementation of CR generally requires agglomeration of
data points for processing large systems. This due to the
need for communication at every stage between neighboring
nodes, where those nodes considered to be neighbors are
increasingly distant at each stage of the parallel computation.
To make such communication reasonably efficient one would
need to overcome ostensibly inherent obstacles in memory
system design to meet the seemingly contradictory require-
ment to produce a fast symmetric shared memory serving all
processors. On the other hand the Spike Algorithm success-
fully decouples computation into independent partitions, but
does not allow for the finest of granularity. Additionally, the
decomposition stage of Spike can involve multiple iterations
thereby adding parallel steps. Work efficiency can be an
important factor in choosing a parallel algorithm. This is
certainly a major consideration when the number of data
points is far in excess of the number of available processors.
In such a case the CR and Spike algorithms can be good
candidates for implementation.

On the other hand, achieving a payoff by matching pro-
cessor count to the number of data points is a difficult propo-
sition. Maximizing parallelism can often be counterproduc-
tive. Rather than boosting performance, communication can
easily overwhelm computation and result in performance
degradation [6].

Our algorithm when matched to FFT processors avoids
all of these issues that plague the efficient implementation
of other algorithms for solving these systems.

2. Some Preliminaries

2.1 Definitions

• Ω = (Ωi)
n−1
i=0 where Ωi = e(−2π

√
−1/2n)i.

Each Ωi is a 2nth root of unity.
• I is the n × n identity matrix, n defined by context.
• ei is the ith column of I.
• ||M ||2 is the 2-norm of a matrix M .
• ε is the machine epsilon, i.e. the smallest floating point

value such that 1 ± ε 6= 1.
• u = (ui)

n−1
i=0 and v = (vi)

n−1
i=0 are n-vectors.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 369



• w = (wi)
k−1
i=0 is a k-vector, k ≤ n.

• u . ∗ v = (uivi)
n−1
i=0 .

• s ./ v = (s/vi)
n−1
i=0 .

• u ./ v = (ui/vi)
n−1
i=0 .

• topk(v) = (vi)
k−1
i=0 : leading k elements of v, k ≤ n.

• botk(v) = (vi)
n−1
i=n−k: trailing k elements of v, k ≤ n.

• padn(w) = v = (vi)
n−1
i=0 , where vi = wi for 0 ≤ i < k

and vi = 0 for k ≤ i < n.
• Fn(w): n-vector DFT of n-vector padn(w).
• Wn(u): n-vector Inverse DFT (IDFT) of n-vector u.
• m(n): number of steps required to compute Fn(w) on

n processors.
• Zf = (zi,j): n × n matrix such that zi,i−1 = 1, for

i = 1, . . ., n−1, z0,n−1 = f , and zi,j = 0 for all other
pairs (i, j).

• Zf (v) =
∑n−1

i=0 viZ
i
f : n×n f-circulant matrix defined

by its first column v, and scalar f , so that matrices
Z0(v), ZT

0 (v), Z1(v), and Z−1(v) are lower triangular
Toeplitz, upper triangular Toeplitz, circulant, and skew-
circulant respectively.

2.2 Facts

The following are known (see [21]) and presented without
proof:

Z−1
f (v) = Zf (u), where each pair v, u is unique. (4)

Z0(v) = [Zf(v) + Z−f (v)]/2 (5)

Z0(v)u = topn(W2n(F2n(v). ∗ F2n(u))) (6)

Z−1
1 (v)e0 = Wn(1./Fn(v)) (7)

Z−1
−1(v)e0 = Wn(1./Fn(Ω. ∗ v))./Ω (8)

Z1(v)u = Wn(Fn(v). ∗ Fn(u)), (9)

Z−1(v)u = Wn(Fn(Ω. ∗ v). ∗ Fn(Ω. ∗ u))./Ω (10)

We will express our algorithm in terms of lower bidi-
agonal Toeplitz matrices, however, because (Z−1

0 (v))T =
(ZT

0 (v))−1 they apply equally to the upper bidiagonal
case. Hereafter, where it is notationally convenient and
without loss of generality because topm(Z−1

0 (v)e0) =
Z−1

0 (topm(v))e0, n ≥ m, we assume n = 2i for a positive
integer i.

3. The Basis for our Algorithm

3.1 In General

The following lemma indicates that given lower bidiag-
onal Toeplitz matrix T = Z−1

0 (v) and f-circulant matrix
C = Z−1

f (v) defined by identical first columns, v, a scalar
factor is all that differentiates the first columns of T−1 and
C−1.

Lemma 1: Z−1
0 (v)e0 = [1 − f(−c)n ]Z−1

f (v)e0 where
v = e0 + ce1 and f(−c)n 6= 1.

Proof: Zf (v) and Z0(v) differ only in the last
element of their respective first rows. Inspection con-
firms Z−1

0 (v)e0 = ((−c)i)n−1
i=0 . Consider then the prod-

uct Zf (v)Z−1
0 (v)e0. Its first element, the dot product of

ZT

f (v)e0 and Z−1
0 (v)e0, is (1)(1) + fc[(−c)n−1] = 1 −

f(−c)n . Because all other rows of Zf (v) are identical
to the corresponding rows of Z0(v) the remaining n − 1
elements of Zf (v)Z−1

0 (v)e0 are all zero. We have then
that Zf (v)Z−1

0 (v)e0 = [1 − f(−c)n ]e0. Clearly then
Z−1

0 (v)e0 = [1 − f(−c)n ]Z−1
f (v)e0.

The next lemma reduces inversion of a lower bidiagonal
Toeplitz matrix to the inversions of a circulant and a skew
circulant matrix.

Lemma 2: Z−1
0 (v) = {[1 − (−c)n]Z−1

1 (v) + [1 +
(−c)n ]Z−1

−1(v)}/2, where v = e0 + ce1 and |cn| 6= 1.
Proof: Due to (4), Z−1

0 (v) = Z0(u) and [1 −
f(−c)n ]Z−1

f (v) = Zf (w). According to Lemma 1, n-vector
u = w. (5) tells us Z0(u) = [Z1(u) + Z−1(u)]/2.

3.2 In the Diagonally Dominant Case

Where |c| < 1 we have diagonal dominance. Obviously,
for numerical computation, if |cn| < ε then 1 ± (−c)n = 1.
Under such circumstances Lemma 2 tells us that

Z−1
0 (v)b ≈ [Z−1

1 (v) + Z−1
−1 (v)]b/2. (11)

Clearly, from (5), (6), (7), (8), (9), (10), and (11), in this
case Z−1

0 (v)b = topn(W2n(F2n(b)./F2n(v))), and so
Z−1

0 (v)b is computed as a subvector of a vector convolution.

3.3 In the Ill-Conditioned Case

Where |c| > 1 we may have an ill-conditioned system.
Here we demonstrate that (11) applies when |cn| > 1/ε.
Obviously, b0 = x0 and bi = xi + cxi−1 otherwise. Let
S = ZT

0 (u), where u0 = 0 and ui = (−1)i−1c−i otherwise.
After some telescoping, we see that x̂ = Sb takes the form

0

B

B

B

B

B

B

B

B

@

x0 + c1−nxn−1

x1 + c2−nxn−1

.

.

.

xn−2 + c−1xn−1
0

1

C

C

C

C

C

C

C

C

A

=

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

0 c−1
−c−2 . . . c1−n

.
.
.

.
.
.

.
.
.

.

.

.

.
.
.

.
.
.

−c−2

.
.
. c−1

0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

0

B

B

B

B

B

B

B

@

x0
cx0 + x1
cx1 + x2

.

.

.
cxn−2 + xn−1

1

C

C

C

C

C

C

C

A

,

where x̂ = (x̂i)
n−1
i=0 such that x̂n−1 = 0 and x̂i = xi +

c1−n+ixn−1, for i = 0, 1, . . . , n − 2. Given that the goal is
to solve Tx = b, computing the product x̂ = Sb results in
an error vector

x − x̂ =







−cn−1xn−1

−cn−2xn−1

.

.

.

−c−1xn−1
xn−1






. (12)

It is clear from (12) that for large n many of the leading
elements of x will be very well approximated by the
corresponding elements of x̂. If |ckxn−1| < ε then xi = x̂i

for 0 ≤ i < k up to machine precision. Only the xi for

370 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



k ≤ i < n are poorly approximated by x̂. Obviously, k
depends on c and to a lesser extent xn−1, but not on n.
Clearly, larger values of c, which correspond to systems
“suffering” from higher condition numbers, will result in
a lower absolute error in the approximations of each xi.

Note that S is ill-conditioned. However, discarding its
first column and last row, which are zero vectors, results
in a submatrix that is well conditioned. The computation
that determines x̂ is effectively limited to multiplication by
this submatrix. Therefore multiplying b by S is numerically
stable, unlike multiplying b by T−1.

Consider the diagonally dominant triangular Toeplitz ma-
trix I − S. Clearly it’s inverse, (I − S)−1 , is a diagonally
dominant upper bidiagonal Toeplitz matrix with 1/c on the
first super diagonal. Therefore, we can solve (I−S)−1y = b

to find

x̂ = b − y = b − (I − S)b = b + Sb − b.

In effect we derive very good approximations for many ele-
ments of the solution vector to an ill-conditioned bidiagonal
Toeplitz system by solving a diagonally dominant bidiagonal
Toeplitz system followed by a vector subtraction.

Now consider Lemma 1 when f = 1 and cn > 1/ε.
Under such circumstances 1 + cn = cn and 1 − cn = −cn

at machine precision so that

Z−1
0 (v)e0 ≈ −cnZ−1

1 (v)e0 ≈ cnZ−1
−1(v)e0

and of course

c−nZ−1
0 (v)e0 ≈ −Z−1

1 (v)e0 ≈ Z−1
−1 (v)e0. (13)

(13) and (3) tell us that

S ≈ [Z−1
1 (v) + Z−1

−1 (v)]/2. (14)

(14) tells us that (11) applies not only to the diagonally
dominant case, but to the ill-conditioned case as well.

3.4 Further Numerical Chicanery

(a) k × k blocks (b) Augmented with k × 2k

blocks

Fig. 2: Partitioning the Computation

All entries on the ith sub-diagonal of T−1 are (−c)i as
indicated in (3). Therefore, beyond a prescribed bandwidth k
dependent on |c|, T−1 will decay to numerical insignificance
when |c| < 1. In this case we deliver computational savings,

in essence, by treating T−1 as a banded triangular Toeplitz
matrix of bandwidth k or higher. For notational convenience
and with no loss of generality then, hereafter, we assume
k = 2i for a positive integer i and will refer to T−1 as if it
were in fact k-banded.

We can partition T−1 into k × k blocks producing n/k
identical lower triangular Toeplitz blocks along the block
main diagonal and n/k−1 identical upper triangular Toeplitz
blocks on the block first subdiagonal as depicted in Fig.2a.
These 2n/k−1 blocks encompass all “non-zero” elements of
“k-banded” T−1. However, we improve on this partitioning
as illustrated in Fig.2b. We augment T−1 by concatenating
k additional columns on its left to form an n × (n + k)
matrix B that extends both the “k-banded” Toeplitz pattern
of T−1 and the k × k block partitioning. We combine the
pairs of non-zero blocks that share the same row of block
matrix B to form n/k identical k × 2k Toeplitz blocks.
We concatenate a zero vector of dimension k to the top
of n-vector b to form (n + k)-vector b̂. We then solve the
original system Tx = b by multiplying each of the n/k
identical non-zero k× 2k blocks of B by the corresponding
subvectors of b̂. These products are computed as wrapped
convolutions of the first row of each of the n/k non-zero
blocks of B and its corresponding subvector of b̂. Wrapped
convolutions are computed efficiently via FFT/IFFT. It is the
central n elements of these convolutions that we seek, and
which survive the wrapping intact. Of course the previous
subsection makes it clear that this partitioning scheme ap-
plies to ill-conditioned systems as well.

4. Our Algorithm

Based directly on the work presented in Section 3 we
derive the following algorithm:

Algorithm 1: Diagonally Dominant
Lower Bidiagonal Toeplitz Solver

INPUT: Scalar c where t = e0 + ce1 and T = Z0(t),
and n-vector b.

COMPUTE: x = (xi)
n/k−1
i=0 ,

computing each xi in parallel, where

xi = botk(W2k(F2k(bi)./F2k(t))), where

bi = (bj)
k(i+1)−1
j=k(i−1), bj = 0 for j < 0,

where ck < ε for an integer k,
where k is the effective numerical
bandwidth of T−1

OUTPUT: x ≈ T−1b.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 371



Algorithm 1 indicates that each of the xi can be de-
termined in parallel. Further these computations can be
carried out in isolation with no need for communication
across partitions. F2k(t) can be computed once and shared
globally or computed redundantly more locally. F2k(t) =
F2k(e0 + ce1) = F2k(e0) + cF2k(e1). Clearly then, we can
pre-compute F2k(e0) and F2k(e1), so that computation of
F2k(t) requires only O(1) steps. F2k(t) and F2k(bi) can
be computed simultaneously. Computing F2k(bi) via FFT
requires O(log2 k) steps as does application of the IFFT. The
element-wise division is performed in O(1) steps. Therefore,
finding each xi entails 2m(2k)+2 steps. Note that this step
count does not depend on n, but instead on c, as c determines
k. Clearly, choosing k such that ck < ε will provide optimum
accuracy for this algorithm on a given machine.

5. Experimental Results
Experiments support this contention. Table 1 presents

minimum values for k determined empirically.

|c| ≤ .34 .59 .76 .87 .93 .96 .98
k 32 64 128 256 512 1024 2048

Table 1: Experiments provide the above guidance for choos-
ing the size of partitions, k, depending on the degree of
diagonal dominance.

For proof of concept and to verify numerical stability,
our algorithm has been tested in MATLAB and CUDA
implementations, but not on the hardware for which it is
best suited in terms of accelerating throughput.

c Condition# Recurance G.E. FFT
1.0E-08 1.0E+00 7.0E-19 7.0E-19 1.7E-16
1.0E-06 1.0E+00 8.3E-19 8.3E-19 1.8E-16
1.0E-03 1.0E+00 1.6E-18 1.6E-18 1.7E-16
1.0E-01 1.2E+00 3.0E-17 2.8E-17 1.7E-16
5.0E-01 3.0E+00 4.5E-17 4.5E-17 1.7E-16
9.0E-01 1.9E+01 8.0E-17 7.8E-17 1.8E-16
9.9E-01 2.0E+02 2.1E-16 2.0E-16 1.7E-16∗

1.01E+00 1.6E+04 9.3E-15 9.0E-15 3.4E-02∗

1.1E+00 2.8E+15 5.8E+03 5.8E+03 3.2E-02
2.0E+00 1.6E+16 9.5E-01 9.5E-01 3.2E-02
1.0E+01 Inf NaN NaN 3.2E-02
1.0E+03 Inf NaN NaN 3.4E-02
1.0E+06 Inf NaN NaN 3.9E-02
1.0E+08 Inf NaN NaN 3.7E-02

Table 2: Relative Errors ||b − T x̂||2/||b||2 by Method for
n = 2048. ∗ - indicates n = 2048 was not large enough for a
meaningful result and so here n = 8192. For ill-conditioned
matrices the table shows deceiving results, as a small number
of poorly approximated elements greatly influence the norm.
If these trailing elements are taken out of consideration the
numbers for the ill-conditioned systems mirror those for the
diagonally dominant.

We present accuracy results in Table 2. For each entry
in Table 2, multiple runs of 1000 iterations were performed

and the mean relative error determined. Relative error was
calculated as ||b − T x̂||2/||b||2. Due to machine precision
limits many iterations of the recurrence x0 = b0, xi =
bi−cxi−1 and MATLAB’s Gaussian elimination are found to
have a relative error of zero. This contributes to an artificial
lowering of some of the relative error means associated with
these algorithms below machine detectable levels. In some
cases the inaccuracy is around two orders of magnitude.
Table 2 shows us that the new solver provides a high level of
accuracy for the diagonally dominant case that comes very
close to the machine’s double precision accuracy. When the
system is ill-conditioned our algorithm provides excellent
results for a good many entries of the solution vector.
The relative error calculation does not differentiate between
a localized error and an error distributed throughout the
solution vector and so it does not provide a full picture
of the results in these cases. Empirical results though bear
out the work in Section 3. In the ill-conditioned case, our
algorithm produces a cluster of inaccurate values at the tail
end of each partition of the solution vector. A simple tweak
to our algorithm produces a solution vector with only one
such cluster at the end of the solution vector. At the expense
of additional computation, and potentially one additional
parallel step, due to a potential doubling of the partition
size, we overlap the matrix blocks so that the corrupted tail
end of one partition is computed as the leading end of its
next neighbor.

Our CUDA implementation was executed on an NVIDIA
580 GTX Fermi device. For real systems partitioned to
match k to the 32 thread processors(TPs) of a symmetric
multiprocessor (SMP), our algorithm is competitive with
other algorithms implemented on Fermi devices. After dis-
tributing such partitions to all 16 TPs throughput is approxi-
mately 0.3 GSPS. As expected, as k grows other more work
efficient algorithms grow in superiority there on. The use of
Titan units from NVIDIA with 128 TPs per SMP and the
register shuffling feature may tilt the field in favor of an FFT
based algorithm where k ≤ 256, but clearly an architecture
designed to process FFTs will prevail here.

6. Concluding Remarks

While we lack the expertise to bring together the hardware
components best suited for these algorithms, it is clear that
the main component is readily available. For instance Dillon
Engineering [7] produces a FPGA capable of producing
25.6 GSPS when configured as a pipelined 64 point FFT
processor. The supporting circuitry around the FFT processor
need only perform a handful of predetermined floating point
operations in an embarrassingly parallel fashion. Our FFT
based algorithm would allow an array of small FFT proces-
sors and their supporting circuitry embedded on FPGAs to
tackle large linear systems by processing system blocks in
complete isolation.

372 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



Clearly our algorithm could be implemented on a 64 point
device to solve any bidiagonal Toeplitz system where |c| ≤
1/4. For a real system where |c| ≤ 1/2 a few extra steps can
be added due to symmetry in the Fourier image and the same
64 point device can be applied. At one end of the spectrum,
a single such FPGA could handle all partitions on its own at
a pipelined theoretical 25.6 GSPS for real systems. At the
other end of the spectrum two FPGAs could be assigned to
each partition. In addition to the embarrassingly parallel O(1)
step computations, one FPGA would apply the FFT to the
input as it arrives for processing and the other the IFFT that
produces the final output. The FPGAs in separate partitions
work independently in an embarrassingly parallel manner.
Samples per second theoretically approach 25.6 GSPS times
the number of partitions. Providing each processor with its
input at a rate to keep the pipeline saturated is perhaps the
biggest challenge. But even the memory can be partitioned
into banks to serve the processors in parallel. Fortunately, if a
hardware package including the FFT processor(s) can handle
a single partition, scaling up could be almost as simple as
dropping in additional hardware.

In all, our algorithm when implemented on FFT proces-
sors with minimal supporting circuitry has many advantages
over other algorithms. Not only does it exhibit the finest of
granularity, but is designed for implementation on readily
available hardware that can actually take full advantage of
that granularity thereby maximizing parallelism even for the
largest of linear systems. For a given k its op count is
O(n) and it requires O(1) parallel steps. That’s O(n log2 k)
and O(log2 k) respectively when k is not held constant,
but log2 k will not be large except when c is exceptionally
close to 1 as Table 1 and extrapolation thereof indicates.
CR requires O(log2 n) steps but requires a great deal of ag-
glomeration. SPIKE requires O(n/p) steps on p processors,
but is very course grained. Combine the low computational
requirements of our algorithm with hardware designed to
carry out these specific computations and it becomes clear
that the algorithm will compete successfully.

The next step must be to find collaborators and get
our algorithm implemented on FPGAs. In this context, in
addition to FFTs, number theoretic transforms should be
investigated as kernels for our algorithm.

A MATLAB implementation of our algorithm is found at:
http : \\comet.lehman.cuny.edu/bmurphy/bidiagonal

References

[1] R. R. Bitmead and B. D. O. Anderson. Asymptotically Fast Solution
of Toeplitz and Related Systems of Linear Equations. Linear Algebra
and Its Applications, 34:103Ű–116, 1980.

[2] Raymond H. Chan. Toeplitz preconditioners for Toeplitz systems
with nonnegative generating functions. IMA Journal of Numerical
Analysis, 11(3):333–345, 1991.

[3] K.-L. Chung and L.-J. Shen. Vectorized algorithm for b-spline curve
fitting on Cray X-MP EA/16se. In Proceedings of the 1992 ACM/IEEE

conference on Supercomputing, Supercomputing’92, pages 166–169,
Los Alamitos, CA, USA, 1992. IEEE Computer Society Press.

[4] James W. Cooley and John W. Tukey. An algorithm for the machine
calculation of complex fourier series. Math, Comp., 19:297Ű–301,
1965.

[5] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest.
Introduction to Algorithms. The MIT Press and McGraw-Hill Book
Company, 1989.

[6] James Demmel. Avoiding Communication in Numerical Linear

Algebra.
[7] Dillon Engineering. http://www.dilloneng.com/fft_ip/parallel-fft.
[8] J. Guitart and S. Ruiz-Moreno. Strict calculation of the light statistics

at the output of a traveling wave optical amplifier. Electronic Letters,
29:1589–1590, 1993.

[9] D. Heller. Some aspects of the cyclic reduction algorithm for block
tridiagonal linear systems. SIAM Journal on Numerical Analysis,
(13):484–496, 1976.

[10] R. W. Hockney. A fast direct solution of PoissonŠs equation using
Fourier analysis. Journal of the ACM, 12(1):95–113, Jan. 1965.

[11] Joseplluis Larriba-Pey, Juan J. Navarro, and Angel Jorba. Vectorized
algorithms for natural cubic spline and b-spline curve fitting. In
Proceedings of PDP’96, pages 385–392, 1996.

[12] Joseplluis Larriba-Pey, Juan J. Navarro, Angel Jorba, and Oriol Roig.
Review of General and Toeplitz Vector Bidiagonal Solvers. Parallel
Computing, 22(8):1096–1126, 1996.

[13] Fu-Rong Lin and Wai-Ki Ching. Inverse Toeplitz preconditioners
for Hermitian Toeplitz systems. Numerical Linear Algebra with
Applications, 12(2–3):221–229, March/April 2005.

[14] M. Mascagni. A parallelizing algorithm for computing solutions to
arbitrarily branched cable neurons. Journal of Neuroscience Methods,
(36):105–114, 1991.

[15] Jeffrey M. McNally, L.E. Garey, and R.E. Shaw. A communication-
less parallel algorithm for tridiagonal Toeplitz systems. Journal of
Computational and Applied Mathematics, (212):260–271, 2008.

[16] Jeffrey Mark McNally. Fast parallel algorithms for tri-diagonal
symmetric toeplitz systems. Master’s thesis, University of New
Brunswick (Canada), St. John, 1999.

[17] Jeffrey Mark McNally. A scalable communicationless parallel algo-
rithm for tri-diagonal Toeplitz systems. PhD thesis, University of New
Brunswick (Canada), St. John, 2003. AAINQ87633.

[18] Jeffrey Mark McNally, L.E. Garey, and R.E. Shaw. A split-correct
parallel algorithm for solving tri-diagonal symmetric Toeplitz systems.
Internaional Journal of Computing and Mathematics, 75:303–313,
2000.

[19] M Morf. Doubling Algorithms for Toeplitz and Related Equations.
pages 954Ű–959, 1980.

[20] S. S. Nemani. Perturbation methods for circulant-banded systems
and their parallel implementation. PhD thesis, University of New
Brunswick (Canada), St. John, 2001.

[21] Victor Y. Pan. Structured Matrices and Polynomials: Unified Superfast

Algorithms. Birkhäuser, Boston, MA, USA, 2001.
[22] Eric Polizzi and Ahmed H. Sameh. A parallel hybrid banded

system solver: the spike algorithm. Parallel Comput., 32(2):177–194,
February 2006.

[23] O. Rojo. A new method for solving symmetric circulant tri-diagonal
system of linear equations. Comput. Math. Appl., (20):61–67, 1990.

[24] Harold S. Stone. An efficient parallel algorithm for the solution of a
tridiagonal linear system of equations. J. ACM, 20(1):27–38, January
1973.

[25] Volker Strassen. Gaussian Elimination is not Optimal. Numer. Math,
13:354Ű–356, 1969.

[26] Xian-He Sun and Stuti Moitra. A fast parallel tridiagonal algorithm
for a class of CFD applications. Technical Report 3585, NASA, 1996.

[27] W. M. Yan and K. L. Chung. A fast algorithm for solving special
tri-diagonal systems. Computing, 52:203–211, 1994.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 373



BSPonP2P: Towards Running Bulk-Synchronous Parallel
Applications on P2P Desktop Grids

Rodrigo da Rosa Righi, Gustavo Rostirolla, Vinicius Facco Rodrigues, Alexandre Veith,
Cristiano André da Costa

Applied Computing Graduate Program, Unisinos, Av. Unisinos, 950, São Leopoldo, Rio Grande do Sul, Brazil

Abstract— Today, BSP (Bulk-Synchronous Parallel) repre-
sents one of the most used models for writing tightly-coupled
parallel programs. A BSP application is divided in one or
more supersteps, each one ending with a synchronization
barrier. As resource substrates, commonly clusters and even-
tually computational grids are used to run BSP applications.
In this context, we investigate the use of collaborative
computing and idle resources to execute this kind of demand,
so we are proposing a model named BSPonP2P to answer
the following question: How can we develop an efficient and
viable model to run BSP applications in P2P Desktop Grids?
We answer it by providing both process rescheduling and
checkpointing, enabling BSPonP2P to address dynamism at
application and infrastructure levels and resource hetero-
geneity. The results concern a prototype that ran over a
subset of the Grid5000 infrastructure, showing encouraging
results on using collaboration and volatile resources for
obtaining High Performance Computing effortlessly.

Keywords: Bulk-Synchronous Parallel, P2P, Process Reschedul-
ing, Checkpointing, Performance

1. Introduction
The widespread use of parallel machines crucially depends

on the availability of a model of computation simple enough
to provide a convenient basis for software development.
Concerning this, the Bulk Synchronous Parallel (BSP) model
of computation has been proposed by L. G. Valiant as an uni-
fied framework for the design and programming of general
purpose parallel computing systems [17]. BSP applications
are composed by a set of processes that execute supersteps,
each one divided into three phases: (i) local computations
on each process; (ii) global communication actions and; (iii)
a synchronization barrier. The barrier phase should wait for
the slowest process before starting the next superstep, so an
efficient process-processors mapping is crucial for getting an
acceptable performance [8]. This topic is yet more relevant
when considering heterogeneous (different processing and
network bandwidth capacities) and dynamic (fluctuations in
network bandwidth and processors’ load) environments [12].

BSP represents a common used model for writing success-
ful parallel programs that exhibit phase-based computational
behaviors, being extensively used to organize MPI (Mes-
sage Passing Interface) codes [6]. As deployment machines,

this programming model has been used on clusters and
computational grids [7]. Particularly, this kind of grid is
known by normally presenting a centralized or hierarchical
architecture, high-speed networks linked to the Internet
and nodes that slowly change their participation behavior
along the time [5], [7]. In addition, for using one of the
aforementioned parallel machines, the user must either buy
the computational and network infrastructures or present a
previous contract/agreement with the institution that host
them. Concerning this landscape, we started the study of
low cost and collaborative environments to take profit of end
nodes around the Internet effortlessly. This effort culminated
in an architecture proposed by Zhao, Liu and Li named P2P
Desktop Grids [19] (PDG). Although joining the power of
idle resources, a high level of dynamism with the sudden
leaving of users (and consequently, reducing also the avail-
able CPU cycles of the system) and the use of worldwide-
scale and Internet-based connections are challenges when
associating this architecture with the purpose of HPC (High
Performance Computing). In this way, our work presents the
following problem statement: How can we explore collabo-
rative computing in PDG to run BSP applications efficiently?

Aiming at answering the posed question, we are proposing
BSPonP2P - a model that encompasses an infrastructure,
overlay network, scheduling algorithms and runtime man-
agement to run BSP programs in PDG. Unlike computational
grids, the target architecture is not managed by skilled
professionals. BSPonP2P addresses collaborative computing
at middleware level, where programmers do not need to
change their applications in order to execute them in a
P2P setting. Taking profit of the formal organization of
BSP programs and mixing structured and nonstructured P2P
deployments, the proposed model addresses performance but
do not putting away the need of a fault tolerance layer that
is crucial on PDG. This article describes BSPonP2P and its
runtime strategies to answer the problem statement. More-
over, we also present its evaluation with a BSP scientific
application in a real Grid infrastructure. In the best of our
knowledge, BSPonP2P is the first proposal to cover BSP
programs and P2P settings, being the pioneer on covering
round-based parallel applications with spatial decoupling in
an easier and costless way.

The remainder of this article will first introduce the
related work in Section 2. Section 3 describes BSPonP2P

374 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



in details, demonstrating its rationales and contributions.
Evaluation methodology and the discussion of the results are
presented in Sections 4 and 5, respectively. Finally, Section 6
emphasizes the scientific contribution of the work and notes
several challenges that we can address in the future.

2. Related Work
This section briefly presents initiatives to run applications

on collaborative environments. Focusing to support Bag-of-
Tasks (BoT) applications, the authors in [1] present a generic
content-based publish/subscribe system called DPS. More-
over, Leite et al. [10] propose a load balancing architecture
using a P2P-like structure for desktop grids.

Besides BoT, the master-slave approach is addressed in
[4], [14], [15], [18]. Balasubramaniam et al. [2] and Byung
et al. [16] presented aproaches targeting Desktop Grids, and
Godfrey et al. [4], Shudo [15], Senís et al. [14] and Wu and
Tian [18] present aproaches targeting PDG.

Concerning BSP parallel applications, both Mizan [8] and
Camargo et al. [3] are representative for heterogeneous and
dynamic environments. Mizan is a dynamic load balancing
that captures data from computation and communication
metrics. Camargo enable the use of not only idle processor
cycles, but also unused disk space of shared machines, and
a checkpointing-based mechanism.

Table 1 presents a summary of the aforementioned sys-
tems and algorithms. As shown, the initiatives approach
different models for collaborative environments and assorted
scheduling strategies. We can note that few works are focus-
ing on metrics different of computation, as well as on failure
control. In this regard, we observe a research opportunity
to work with tightly-coupled applications, such as BSP, on
collaborative environments, offering pertinent strategies to
cover BSP features on highly dynamic and heterogeneous
substrates.

3. BSPonP2P: Proposal to Run BSP
Programs in P2P Desktop Grids

Considering both the Internet advances and the ease on
acquiring computing resources (in this case, personal com-
puters, tablets and smartphones), we observe the increase
adoption of collaborative computing to run any kind of ap-
plications at a low financial cost. The simple idea is to profit
idle CPU cycles, since the aforementioned resources are
used mostly to access social networks, Internet queries and
programs that consume a low computational substrate [9].

In this regard, we are proposing the BSPonP2P model
to design how BSP applications would run in PDG effi-
ciently. To accomplish this, BSPonP2P proposes a network
overlay architecture, as well as strategies to turn viable
the matching involving collaborative infrastructure and the
BSP programming model. To accomplish this viability, we
are exploring both process checkpointing and rescheduling.

Checkpointing brings reliability and performance saving to
the model: when someone leaves the system in a superstep
then a checkpoint is used to restart the application in the
last saved point. Rescheduling, in its turn, aims at covering
dynamism, since both nodes and networks can become
overloaded at application runtime; so, process can be on-
the-fly migrated to novel locations to improve application
performance. Particularly, rescheduling is highly pertinent
in BSP programs, since they are composed by supersteps
limited by a synchronization barrier in which the slowest
process always bounds the parallel performance.

3.1 Network Overlay Architecture
BSPonP2P architecture was developed taking in mind

both structured and unstructured P2P networks, as shown
in Figure 1. Firstly, we are working with a structured ring-
based network following the so-called Chord P2P proto-
col [11]. Chord uses a DHT and a Finger table to provide
message exchange and routing in an efficient, scalable and
secure way. This kind of network is used to connect nodes
defined as Managers. We are using a timer denoted tto

(time-to-organize) to reorganize the Managers in the Chord
ring, aiming at optimizing communication latency among
them. Each Manager is responsible for a specific cluster,
where the cluster here means a parallel machine, a local
network, a mobile device, or a single computer. Structured
P2P networks aim at providing performance for large scale
deployments [19], emphasizing our design decision for us-
ing them for Managers Interactions because of we plan
to compose a worldwide scale architecture. A cluster, in
turn, is organized in an unstructured manner. This decision
was taken because this kind of organization offers better
flexibility and dynamism with heterogeneous and unstable
resources. The nodes inside a cluster are named End Nodes,
or only Nodes, and they are responsible to execute the BSP
applications actually.

Ring-based Managers Network
Structured P2P Network

End Nodes
Network

Non-Structured
P2P Network

Cluster

Fig. 1: Computational Overlay Network with two commu-
nication levels: (i) among the Managers; (ii) between a
Manager and an End Node.

Each resource can act as a Manager or End Node. We
created a Computational Overlay Network (CON) to manage
message routing, scheduling, as well as the entrance and the
leaving of a resource in the infrastructure. Each cluster i has
a maximum of n

i

End Nodes. This value is configurable and
the administrator can change it according to network size.
Thus, the first resource will act as a Manager and the others

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 375



Table 1: Comparison among initiatives to run parallel applications on collaborative environments.
Initiatives Target

system
Model
application Migration Data

Replication
Load
balancing Monitoring

Anceaume et al. [1] PDG Bags of Task - - Computation Computation
Balasubramaniam et al. [2] Desktop Grids Master/Slave - - Computation Computation
Camargo et al. [3] PDG BSP yes yes Computation Computation
Godfrey et al. [4] PDG Master/Slave yes yes Computation Computation
Khayyat et al. [8] Desktop Grids BSP yes no Computation Computation
Leite et al. [10] PDG Bags of Task yes yes Work Stealing Computation
Sentís et al. [14] PDG Master/Slave yes no Computation Computation and Memory
Shudo et al. [15] PDG Master/Slave yes no Computation Computation
Byung et al. [16] Desktop Grids Master/Slave yes no Computation Computation
Wu et al. [18] PDG Master/Slave yes yes Computation Computation

up to n

i

will serve as End Nodes to the composed cluster
i. After reaching n

i

, another Manager is selected and then,
other cluster is created. Upon entering the network, an End
Node must report how much of their computing resource will
be available to BSPonP2P. The resource’s owner sets this
parameter. By default, 100% of CPU is available when the
user is not using the equipment or a percentage is employed,
otherwise.

Aiming at getting End Node data periodically, a Manager
sends query requests at intervals of t

i

seconds. Each Man-
ager defines t

i

for cluster i at launching time. The queries
are sended in a random Walk strategy. By definition, if the
Manager does not receive a response from an End Node
two consecutive times, then the Manager disconnects it from
the CON. This procedure is executed to ensure that the
Node is connected and able to execute a process from a
future demand. Each cluster with less than n End Nodes is
a candidate to receive the next incoming resource. Among
them, the cluster with the lowest identification is actually
chosen to host this new resource.

CON automatically reorganizes the network when a node,
either a Manager or End Node, suffers a crash or intention-
ally leaves the collaborative infrastructure. In the case of a
Manager, the oldest End Node in the cluster (comparing the
stay time in the CON, and not other metrics like compu-
tational power since a Manager is responsible mainly for
routing) is promoted to be the Manager. This new Manager
is then updated with the data about cluster itself, supersteps
in execution (if any) and the applications running in the
resources under its responsibility. If an End Node crashes
and it was executing supersteps of one or more applications,
the Manager has partial data about the execution and can
select other peer in accordance with the scheduling function
to relaunch the application from the last saved checkpoint.

3.2 Scheduling and Runtime Strategies
This subsection describes how are deploying a BSP

application in a P2P setting, showing also the runtime
strategies to address performance and fault tolerance. We are
targeting phases-based applications such as BSP, however the
application model applied in BSPonP2P diverges from the
traditional BSP [17], since this last one was firstly defined
for homogeneous clusters.

The communication within the CON is divided into two

levels, depending on the node’s role: the first level comprises
communication among the Managers, while the second level
represents an interaction between a Manager and an End
Node. After this introduction, the application launching
occurs as follows. An End Node has a BSP demand and
submits it to its Manager (the Manager just acts as organizer,
it doesn’t process the demand), informing the binary code
and the number of process to run the application. Using the
first-level communication, the mentioned Manager chooses
the target cluster for each process.

The second-level communication is important to notify a
Manager to choose an End Node under its responsibility to
run a process. After selecting one End Node per process, an
Execution Network is composed as depicted in Figure 2. It
comprises a direct connection of each End Node (computing
resource) to the Manager that started the BSP demand. This
Manager will coordinate process communication and will
pass the final result to the requester. The idea here is to save
hops while performing communication actions among the
BSP processes.

End Node that
Launches the

BSP Application

Overlay Network

Application
Execution
Network

Fig. 2: Creation of an Execution Network, in which the
Manager that receives the BSP demand acts as a gateway
that directly communicates with all End Nodes involved in
the BSP computation.

The evaluation of the first level will decide which cluster
will execute a particular process. For that, we are using
a decision function denoted PM (Potential of Migration)
proposed by Righi et. al. [12] in the MigBSP proposal.
PM is computed through Equation 1, which receives as
inputs i and j, a process and a cluster, respectively. In
this context, Comp, Comm and Mem denote computation,
communication and memory metrics, respectively. The larger
the PM value, the most profitable is the target cluster j in
receiving a process i. Each process is tested against each
cluster and the largest PM value indicates the cluster for
the process. Different from MigBSP, BSPonP2P uses PDG,

376 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



which implies in a modification of the computation metric in
accordance with Equation 2. T (i) and Set(j) are inherited
from MigBSP [12], and denote the computational time of
process i in the last superstep and the relative performance
of the cluster j, respectively. BSPonP2P adds X

Resource

and
X

User

with the following objectives:
• User: here, X

User(j) is used to evaluate the users that
either are running or have already ran applications in
the resources of the cluster j in evaluation. If the users
in the aforementioned context present a behavior of low
usage of CPU power, this metric is close to 1. On the
other hand, the value is close to 0 if the historical data
does demonstrate a higher utilization of CPU cycles.

• Resource: The metric X

Resource(j) denotes an arith-
metic average of the resources utilization in the cluster
j. The idea is to work with a historical data in this met-
ric, where close to 1 represents a lower usage of CPU
or close to 0, otherwise. Thus, User metric analyses
the pattern of access by the users, while the Resource
observes the utilization degree of the resources.

PM(i, j) = Comp(i, j) + Comm(i, j)�Mem(i, j) (1)

Comp(i, j) = (
X

Resource(j) +X

User(j)

2
).T (i).Set(j)

(2)
Table 2 presents an example of how we are computing

both User and Resouce metrics. The first column of this
table refers to the captured observations on each cluster. In
this scenario there are three users, named X , Y and Z, and
two clusters, C1 and C2. C1 is composed by machines the
A and B, while C2 includes machines C and D. Assuming
the distribution among the clusters as presented in Table
2, the computation of the metric Users in cluster C2 will
result 25% ( 10%+20%+30%+40%

4 ) while the Resource usage
in cluster C2 will result in 15% ( 10+20

2 ). Note that the
user Z does not have influnce in the User metric for cluster
C2, because it is not performing any task in cluster C2. In
the same way, Resource for C1 is 53.33% (30%+40%+90%

3 ),
while User for this cluster is 38% (10%+20%+30%+40%+90%

5 ).

Table 2: Example of infrastructure usage, including 2 clus-
ters and 3 users

Observation User Machine Cluster % of Machine use (CPU)
1 X C C2 10
1 Y D C2 20
2 X A C1 30
2 Y A C1 40
2 Z B C1 90

The evaluation with the second communication level is
used to define which End Node in a cluster will run a specific
process. The definition of the executor node is made based
on the availability of the equipment. At this point, a simple

assessment is made, where samples of at least three ratings
and a maximum of ten reviews of availability (amount of
computational resource available) are used. The samples are
based on past records received by the Manager.

As runtime strategies, BSPonP2P offers process
rescheduling and checkpointing. Both take place after
ending a particular superstep, this point refers to a
consistent global state of the distributed system. The idea
is to offer a runtime management that aims at reducing
the load imbalance among the processes, so decreasing
the execution time of each superstep. Rescheduling tests
are done not at each superstep, but the superstep index is
defined in accordance with the MigBSP parameter called
↵. The system is launched with a predetermined value of
↵, which represents the interval of supersteps to evaluate
process rescheduling. At each ↵ supersteps rescheduling
may occur if there is another most suitable cluster to
execute a process according to PM function.

Aiming at dealing with dynamic environments, BSPonP2P
profits from the phases-based organization of a BSP ap-
plication to take a distributed snapshot of the application.
This is done by saving a local checkpoint in each process,
representing a basic BSPonP2P mechanism for addressing
fault tolerance. The idea consists of not restarting the ap-
plication from scratch in the presence of a node failure or
outgoing user. Only data of the last superstep is saved, since
all processes advance in a round-based fashion. This feature
allows a time reduction if happens any crash in the system,
for example, if anyone that is participating in a superstep
leave the network (a Manager or End Node), the model
have been projected to restart from the last point saved. The
execution only lose a few supersteps and it doesn’t need to
restart from the beginning of the demand.

3.3 Observing Different Scenarios and Goals
The BSPonP2P’s differential approach is highlighted by

the adoption of process migration and checkpointing. Fig-
ure 3 illustrates different scenarios after running a BSP ap-
plication using BSPonP2P. Scenario i represents the simple
execution of a BSP application, disabling any service or
scheduling functionality. The End Node-process mapping is
fixed, being defined by the user.

Scenario ii adds the scheduling calculus in the first and
second levels of the CON. Scenario i always outperforms
scenario ii, since this last one adds dynamic scheduling over-
head. Situations c, d, e and f represent the possibilities found
in scenario iii. This scenario enables process checkpointing
and rescheduling. Situations c and d present not suitable
migrations, or yet, migrations were profitable but the number
of remaining supersteps are not so large to get back the time
in migration investment.

Both situations e and f represent the success in running
BSPonP2P. Although situation e has a larger time when
compared to situation a, it was computed using the check-

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 377



pointing strategy. Therefore, we can gain by not needing to
restart the application from the first superstep in the case of
a node crash. Process migration was responsible for a better
resource usage and performance in the last situation.

x

x

x

x

      x

   x

y

y

y

y

z

z w

z w

y z w

x

y

z

w

Application execution

Scheduling Calculus

Process Migration

Process Checkpointing

Legend:
Possible Situations

(a)

(b)

(c)

(d)

(e)

(f)

Time

Scenario i

Scenario ii

Scenario iii

Fig. 3: Different execution scenarios of BSPonP2P. Both
situations e and f of scenario iii are considered the main
BSPonP2P’s goal.

4. Evaluation Methodology
The evaluation was performed using SimGrid1, a de-

terministic scientific instrument to study the behavior of
scheduling algorithms in heterogeneous platforms, due to
its high adoption in the scientific community. We applied
simulation in three different scenarios using the Simgrid’s
MSG module: (i) Simple application execution; (ii) Appli-
cation execution along with BSPonP2P scheduler without
migration or checkpoint; (iii) Application execution with
BSPonP2P scheduler with migration and checkpoint. The
scenarios are graphically presented in Figure 3. The objective
of the mentioned scenarios is to show the overload imposed
by BPSonP2P (comparing scenarios i and ii), and the gain or
loss of time when migration is enabled (comparing scenarios
i and iii).

We also performed a recovery validation: in this case, we
evaluated the time to resume the execution with checkpoint
and compared with the time without this service. Without the
checkpoint when a fault occurs, the system restarts from the
beginning of the execution, instead of resuming from the last
saved barrier as explained before. The comparison will be
based on the exit of a host running a process in BSPonP2P.

We implemented a BSP application for computational
fluid dynamics based on the principle of the Lattice Boltz-
mann Method (LBM) [13]. Each superstep is modeled by
dividing the data in blocks, where each process performs
a local computation using the block and, after that, sends
updated data to its neighbor at the right. In order to perform
the tests we allocated the first 15 nodes from each of the
following Grid5000 clusters2: chimint and chicon located
in Lille, paradent from Rennes, grephene from Nancy, gdx
from Orsay, capricorne from Lyon, adonis from Grenoble,
borderplage from Bordeaux, pastel from Toulouse and suno
from Sophia, giving a total amount of 150 nodes.

1http://simgrid.gforge.inria.fr
2Details about computing resources and network connections can be

found at http://www.grid5000.fr

Tests conducted in each scenario suffered the variation
of three parameters: (i) ↵, which defines the interval of
supersteps to perform the migration process starting with 4, 8
and 16 (same values used by [12]); (ii) Amount of supersteps
whose values tested were 10, 50, 100, 500, 1000 and 2000;
(iii) Amount of processes, assuming the values 11, 26, 51
and 89, randomly chosen to represent the environment that
is found in PDG.

In order to represent the user interaction with the nodes
and the variation of cluster availability we also created
weight vector which represents the amount of computation
available for the process to be executed. This values varied
between 30 and 99 percent during all the executions chang-
ing at each superstep.

5. Discussing the Results
This section presents the results obtained when executing

the LBM in the PDG varying the ↵ value, number of
supersteps and processes against each scenario. First we are
going to evaluate BSPonP2P in the aforementioned scenarios
without any machine leaving the CON. After, we evaluate
the variation in the average time of supersteps and finally
the checkpoint activation impact in the execution time when
a machine leaves the CON.

5.1 Analysis of the Model Parameters
Analyzing the changes in the execution time according

to the variation of the parameters presented above we can
observe that the load imposed by BSPonP2P checkpointing
and migration varies between an improvement of 6% with 26
processes, 2000 superstep and ↵ equal to 16 and an overload
of 17% with 89 processes, 100 supersteps and ↵ equal to 4.
Yet, in 76% of the cases the overload imposed was smaller
than 5% in the total execution time. Also with ↵ equal to
4 scenario iii is always better than scenario ii and with ↵

equal to 8 scenario iii is better than scenario ii in all the
cases with more than 11 processes.

The variation in execution time with different ↵ values
is better observed in Figure 4 where a comparison of the
execution time between scenarios i and iii is presented. With
the number of supersteps above 500 there is a decrease in
the execution time, varying between -2.9% and -4.5% when
↵ is equal to 4, -1.6% and -4.5% when ↵ is equal to 8, and
-3.8% to -5.5% when ↵ is 16.

When evaluating the average time between each superstep,
presented in Figure 5, we can observe a variation between
23.4 seconds with ↵ 4 and 20.1 seconds with ↵ 16. In
some cases the migration do not present an improvement
in the execution time, nevertheless with all ↵ values there is
an improvement in the average time between supersteps if
compared to it’s initial value (i.e. after the first migration).

The increase found in migration 3 and 4 in Figure 5 with
↵ equal to 8 is given by the increased use of resources. The
cluster elected to run the migration 4 had PM equal 2.89 and

378 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



6.
8% 7.

8%

7.
0%

-2
.9

%

-3
.5

%

-4
.5

%

3.
2% 3.

8%

3.
7%

-1
.6

%

-3
.1

%

-4
.5

%

0.
0%

4.
2%

3.
6%

-3
.8

%

-4
.8

%

-5
.5

%

-10%

-8%

-6%

-4%

-2%

0%

2%

4%

6%

8%

10%

10 50 100 500 1000 2000

R
el

at
iv

e 
tim

e 
ch

an
ge

Number of supersteps

Alpha 4 Alpha 8 Alpha 16

Fig. 4: Relative time variation of scenario iii when compared
to scenario i varying the number of supersteps with 26
processes.

the average use of the cluster was 15% (18% of use among
users and 12% utilization of the equipment). In the step that
the migration 4 occurred the cluster PM which was running
the previous superstep was 2.72. The reduction comparing
the PMs was generated from the historical consumption
of 18% found in the cluster that was running step 3, in
this context the process was migrated to higher PM. Thus,
the small increases found in Figure 5 are generated by
differences in consumption of the user equipment and the
network participants that occurred after the migration.

20.0

20.5

21.0

21.5

22.0

22.5

23.0

23.5

24.0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Av
er

ag
e 

Su
pe

rs
te

ps
 T

im
e 

(s
ec

on
ds

)

Migration

Alpha 4 Alpha 8 Alpha 16

Fig. 5: Average time of supersteps in each migration with
26 processes varying the ↵ value.

This dynamism in the resource utilization generated by the
participants of the network leads to a tendency of unbalanced
tasks. In Figure 6 we can observe that despite of alpha and
amount of processes variation the migrations occurred along
the entire execution.

This variation is also confirmed observing Figure 7 that
shows the final tasks allocation with 51 processes and
all ↵ values. Despite of better computational resources of
cluster Graphene (144 CPUs Xeon X3440, 16 GB memory
and Infiniband-20G) when compared to Chicon (52 CPUs

Fig. 6: Migrations distribution along the application execu-
tion varying the ↵ value and number of processes.

Opteron 285, 4 GB memory and Myri-10G) for instance
no migration pattern to this cluster can be detected. This
behavior is highly related to Equation 2 which represents
the computation resources usage by the user and equipments
and is also used in migration calculus.

Fig. 7: Distribution of 51 processes among the clusters. The
first graph indicates the initial distribution and the others the
final distribution according to the ↵ values.

5.2 Impact of the Checkpoint Activation
As mentioned earlier, we evaluated the overhead caused

by BSPonP2P calculus, and the migrations occurred during
an execution without any machine leaving the CON. In this
experiment we analyze the recovery after an unexpected
exit of a machine from the CON, since a user can leave
the P2P network anytime. When there is no checkpoint the
application must restart the execution from beginning, i. e.,
scenario i, although with BSPonP2P whenever a migration
occurs a checkpoint is saved and the application can restart
from this point. In this context we evaluate scenario iii with
89 processes running, 2000 supersteps and ↵ equal to 16,
simulating an exit in different supersteps as can be seen in
Figure 8.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 379



454

1684

3054

15244

40246

68742

454

813

1507

6904

15925

29178

0 10000 20000 30000 40000 50000 60000 70000 80000

9

49

199

499

999

1999

Time (seconds)

Su
pe

rs
te

p 
w

ith
 fa

ilu
re

With checkpoint Without checkpoint

Fig. 8: Performance with and without checkpointing accord-
ing to the supersteps with failure

Observing the results we can see that an exit in superstep
9 for instance did not cause any gain because there was
no migration and consequently no checkpoint. On the other
hand, when there is a bigger amount of superstep and a
closer checkpoint, like the one occurred in the last case with
an error in the superstep 1999 and the last checkpoint in the
superstep 1016, an economy of more than 57% in time could
be obtained.

6. Conclusion
This article presented BSPonP2P as an alternative to run

BSP applications in PDG infrastructures. To the best of our
knowledge, the proposed model is the first that joins the
aforementioned programming model and the collaborative
execution environment. Process rescheduling and check-
pointing management is the BSPonP2P’s scientific contri-
bution. Thanks to both strategies, we demonstrated that the
word “efficiency” referred in the problem statement means
here performance and fault tolerance.

Besides presenting situations in which BSPonP2P out-
performs the simple execution of a BSP application, most
of the results using Grid5000 clusters showed an average
overhead of 1.09% when using process rescheduling and
checkpointing. We classify this rate as positive to BSPonP2P,
because of an application must not be restarted from the
scratch when any fault occurs (either when a node crashes or
when an user sudden leaves the collaborative infrastructure).

Finally, we would like to emphasize that BSPonP2P is
not restricted to BSP applications, but it can be used to
manage any round-based computations in collaborative envi-
ronments. Future research should evaluate BSPonP2P with
process replication in order to launch copies of a process
at specific superstep to run concurrently, so helping at both
performance and fault tolerance areas.

Acknowledgment
This paper was partially founded by Santander and the

following Brazilian agencies: CNPq, CAPES, FAPERGS.

References
[1] E. Anceaume, M. Gradinariu, A. Datta, G. Simon, and A. Virgillito.

A semantic overlay for self- peer-to-peer publish/subscribe. In
Distributed Computing Systems, 2006. ICDCS 2006. 26th IEEE Int.
Conf. on, pages 22–22, 2006.

[2] M. Balasubramaniam, N. Sukhija, F. Ciorba, I. Banicescu, and
S. Srivastava. Towards the scalability of dynamic loop scheduling
techniques via discrete event simulation. In Parallel and Distributed
Processing Symposium Workshops PhD Forum (IPDPSW), 2012 IEEE
26th Int., pages 1343–1351, 2012.

[3] R. Camargo, F. Castor, and F. Kon. Reliable management of
checkpointing and application data in opportunistic grids. Journal
of the Brazilian Comp Society, 16(3):177–190, 2010.

[4] B. Godfrey, K. Lakshminarayanan, S. Surana, R. Karp, and I. Stoica.
Load balancing in dynamic structured p2p systems. In INFOCOM
2004. Twenty-third AnnualJoint Conf. of the IEEE Comp and Com-
munications Societies, volume 4, pages 2253–2262 vol.4, March 2004.

[5] F. P. Hargreaves, D. Merkle, and P. Schneider-Kamp. Group com-
munication patterns for high performance computing in scala. In
Proceedings of the 3rd ACM SIGPLAN Workshop on Functional High-
performance Computing, FHPC ’14, pages 75–85, New York, NY,
USA, 2014. ACM.

[6] B. Hendrickson. Computational science: Emerging opportunities and
challenges. Journal of Physics: Conf. Series, 180(1):012013, 2009.

[7] K. Khan, K. Qureshi, and M. Abd-El-Barr. An efficient grid
scheduling strategy for data parallel applications. The Journal of
Supercomputing, 68(3):1487–1502, 2014.

[8] Z. Khayyat, K. Awara, A. Alonazi, H. Jamjoom, D. Williams, and
P. Kalnis. Mizan: a system for dynamic load balancing in large-scale
graph processing. In Proceedings of the 8th ACM European Conf. on
Comp Systems, EuroSys ’13, pages 169–182, New York, NY, USA,
2013. ACM.

[9] E. Kijsipongse and S. U-ruekolan. Scaling hpc clusters with volunteer
computing for data intensive applications. In Comp Science and
Software Engineering (JCSSE), 2013 10th Int. Joint Conf. on, pages
138–142, May 2013.

[10] A. F. Leite, H. C. Mendes, L. Weigang, A. C. M. A. Melo, and
A. Boukerche. An architecture for p2p bag-of-tasks execution with
multiple task allocation policies in desktop grids. Cluster Computing,
15(4):351–361, 2012.

[11] L. Lin, K. Koyanagi, T. Tsuchiya, T. Miyosawa, and H. Hirose. Im-
proving routing load balance on chord. In Advanced Communication
Technology (ICACT), 2014 16th Int. Conf. on, pages 733–738, Feb
2014.

[12] R. d. R. Righi, L. Graebin, and C. A. da Costa. On the replacement
of objects from round-based applications over heterogeneous environ-
ments. Software: Practice and Experience, pages n/a–n/a, 2014.

[13] C. Schepke and N. Maillard. Performance improvement of the parallel
lattice boltzmann method through blocked data distributions. In Comp
Architecture and High Performance Computing, 2007. SBAC-PAD
2007. 19th Int. Symposium on, pages 71–78, Oct 2007.

[14] J. Sentís, F. Solsona, D. Castellà, and J. Rius. Discop2p: an efficient
p2p computing overlay. The Journal of Supercomputing, 68(2):557–
573, 2014.

[15] K. Shudo, Y. Tanaka, and S. Sekiguchi. P3: P2p-based middleware
enabling transfer and aggregation of computational resources. In
Cluster Computing and the Grid, 2005. CCGrid 2005. IEEE Int.
Symposium on, volume 1, pages 259–266 Vol. 1, 2005.

[16] B. H. Son, S. woo Lee, and H.-Y. Youn. Prediction-based dynamic
load balancing using agent migration for multi-agent system. In High
Performance Computing and Communications (HPCC), 2010 12th
IEEE Int. Conf. on, pages 485–490, 2010.

[17] L. G. Valiant. A bridging model for parallel computation. Commun.
ACM, 33(8):103–111, Aug. 1990.

[18] D. Wu, Y. Tian, and K.-W. Ng. On the effectiveness of migration-
based load balancing strategies in dht systems. In Comp Communica-
tions and Networks, 2006. ICCCN 2006. Proceedings.15th Int. Conf.
on, pages 405–410, 2006.

[19] H. Zhao, X. Liu, and X. Li. A taxonomy of peer-to-peer desktop grid
paradigms. Cluster Computing, 14(2):129–144, 2011.

380 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



Coarse Grained Parallel Algorithm for Hamiltonian Circuit in

Convex Bipartite Graphs

Marco A. Stefanes1, Diego P. Rubert1, and José Soares2

1Faculdade de Computação, Federal University of Mato Grosso do Sul, Campo Grande-MS, Brazil
2Department of Computer Science, University of S. Paulo, S. Paulo-SP, Brazil

Abstract— A bipartite graph G = (V,W,E) is convex if

there exists an ordering of the vertices of W such that, for

each v ∈ V , the neighbors of v are consecutive in W . In this

work, we address the Hamiltonian Circuit Problem, a well-

known problem in Combinatorial Optimization. We present

a novel sequential linear-time algorithm for determining a

Hamiltonian circuit in convex bipartite graphs which can

be easily parallelized. We also describe a coarse grained

parallel algorithm for that problem which runs in time

O((|V |/p) lg(|V |/p) lg p), for p processors, using O(lg p)
communication rounds. We also show how to efficiently

implement our solution into PRAM and coarse grained

parallel models. Our algorithm provides parallel scalability

on commodity clusters. We have made experiments in a

cluster composed of 64 processors, obtaining increasing

speedups in our implementation. As far as we know, that is

the first coarse grained parallel algorithm for the problem.

Keywords: Scalable parallel algorithms, Convex bipartite graphs,
Linear-time Hamiltonian circuit, Coarse grained parallel computing

1. Introduction
PRAM – parallel random access machine – is the main

theoretical model of parallel computing. However, for many
problems PRAM algorithms do not attain expected results
in practice. One of the reasons is that fine grained PRAM
model does not consider accordingly communication and
computation costs. Features of commercially available par-
allel computers have shown we should take into account that
communication costs are different of processing costs during
the design of algorithms. Recently, several problems are im-
plemented in more practical models which have been tested
in cluster systems [1], [2], [3], [4], in cloud environments [5]
and Hybrid environments [6], where it is possible to explore
parallelism in multiple levels. An important feature of such
parallel algorithms is its scalability, that is, the ability to
handle efficiently a growing amount of work. We refer
to such models as coarse grained parallel models. They
are very appropriate to current parallel machines, since the
computation speed is faster than communication speed in
such machines.

Bipartite convex graphs were introduced by Glover [7],
initially motivated by some industrial applications. Nowa-
days algorithms have been developed for this class of graphs

in many applications, such as scheduling problems [8],
DNA analysis [9] and constraint programming [10]. Several
other applications of convex bipartite graphs were described
in [11], [12], [13]. Sequential and parallel algorithms ([11],
[8], [14], [15]) have been developed for finding a maximum
matching in those graphs. A maximum matching is also used
in [11], [16], [17] for determining a maximum independent

set in convex bipartite graphs. In this paper, we use a
maximum matching algorithm for finding a Hamiltonian
circuit.

A Hamiltonian circuit in a graph G = (V,E) is a simple
circuit (v1, . . . , vn, v1), n = |V |, containing each vertex of
V exactly once. If a graph contains a Hamiltonian circuit,
then it is called a Hamiltonian graph. The problem of decid-
ing whether a graph is Hamiltonian or not is a well-known
topic in graph theory. The problem is NP-complete [18] even
for bipartite graphs [19] or chordal bipartite graphs [20].

Let G = (V,W,E) be a bipartite graph, where (V,W ) is
the partition of the vertices and E the set of edges. We say
that G is convex if there is an ordering “≤” of the vertices of
W such that, for each vertex v ∈ V , the neighbors of v are
consecutive in W . Considering the ordering of W , G can be
represented by a set of |V | pairs {(begin(v), end(v))|v ∈
V }, where begin(v) ∈ W (end(v) ∈ W ) is the smallest
(largest) vertex of W adjacent to v. This is called a compact

representation of G. Throughout this work convex bipartite
graphs are given by their compact representation.

A goal of this work is to determine a Hamiltonian circuit
in convex bipartite graphs. We present an O(|V |) sequential
algorithm for the problem and its version in PRAM and
coarse grained parallel models. As far as we know, that is
the first coarse grained parallel algorithm for the problem.
Müller describes in [20] an O(|V |2) algorithm for the same
problem. In a more general class of graphs, the circular

convex bipartite graphs, Liang and Blum [12] present a se-
quential algorithm O(|V |) for finding Hamiltonian circuits.
However, our sequential algorithm has the feature of being
easily parallelizable, as showed in this work. By experiments
made in a cluster composed of 64 processors, we show
the algorithm is scalable, since its performance improves
proportionally to the growing in the number of processors.
We obtained increasing speedups ranging from 0.71 to 3.92
in such machines.

The remainder of this work is structured as follows. First

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 381



of all, we specify the models of parallel computing in
Section 2. In Section 3 we describe an O(|V |) sequential
algorithm for deciding whether a convex bipartite graph is
Hamiltonian. The complexity and correction of the algorithm
is presented in section 4. In Section 5 we detail how to im-
plement the algorithm in the PRAM and BSP/CGM parallel
models. Then, in Section 6 we report some experimental
results. Finally, in Section 7, we present some conclusions.

2. Parallel Models
PRAM [21] is the best known parallel model, which is a

straightforward generalization of the Von Neumann model.
It is an idealized theoretical model of a shared memory
MIMD machine. Although PRAM model is important from
theoretical viewpoint, speedups obtained in practical im-
plementations do not correspond to that expected in avail-
able parallel computers. There is a more practical model:
BSP/CGM which is a coarse grained parallel model. In this
model the communication between processors is done via an
arbitrary network. Under the BSP [22] (Bulk Synchronous

Parallel), computations are organized as a sequence of
supersteps separated by synchronization barriers. The pa-
rameters of this model are: p, the number of processors;
L, the minimum time of a superstep; and g, the quotient
between speed of local computation and network bandwidth.
The model CGM [23] (Coarse Grained Multicomputer)
is a version of the BSP consisting of p processors with
O(n/p) local memory each, where n/p ≥ pǫ, for some
ǫ > 0. A BSP/CGM algorithm consists of local computation
alternated with global communication. In a communication
round, each processor sends and receives O(n/p) data items.

3. Sequential Algorithm
The Algorithm Hamiltonian Circuit and its parallel ver-

sions are closely related to greedy maximum matchings. A
matching M in a graph G is a subset of the edges of G such
that no two edges in M are incident to a same vertex of G.
A matching is maximum if its cardinality (number of edges)
is as large as possible. A vertex v is matched by M if there
exists an edge in M incident to v. A vertex v is free with
respect to M if v is not matched by M . If there is no free
vertex with respect to a matching M , it is called a perfect

matching. The following concept, which uses the ordering
“≤” of W , has been shown to be very useful for determining
a maximum matching in bipartite convex graphs.

Definition 3.1: A matching M in a bipartite convex graph
G = (V,W,E) is greedy if it has the following two
properties:

1) if (v, w) ∈ M and v ∈ V , then, for each w′ ∈ W ,
with begin(v) ≤ w′ < w, there exists v′ ∈ V such that
(v′, w′) ∈ M and end(v′) ≤ end(v);

2) if w ∈ W is connected to a free vertex v′ ∈ V , then
there exists v ∈ V such that (v, w) ∈ M and end(v) ≤
end(v′).

v1v1 v2v2 v3v3 v4

w1w1 w2w2 w3w3 w4

GA GB

VV

WW

Fig. 1: Two Hamiltonian convex bipartite graphs illustrating
the relationship between Hamiltonian circuit and perfect
matching.

An important property of greedy matchings was discovered
by Glover [7]: every greedy matching is also a maximum

matching.
In Hamiltonian convex bipartite graphs we will show how

to find a Hamiltonian circuit in convex bipartite graphs
consisting, essentially, of the disjoint union of two perfect
matchings. Although every Hamiltonian circuit in a bipartite
graph is a union of two disjoint perfect matchings, it is
not true that the union of two disjoint perfect matchings is
always a Hamiltonian circuit. This fact is illustrated by the
graph GA in the Figure 1. The union of the two disjoint per-
fect matchings {(v1, w1), (v2, w2), (v3, w3), (v4, w4)} and
{(v1, w2), (v2, w1), (v3, w4), (v4, w3)} is the union of two
disjoint circuits. Depending on the choice of the first perfect
matching, the remaining graph may not even contain another
perfect matching. This fact is illustrated by the graph GB

in the Figure 1. The matching {(v1, w1), (v2, w2), (v3, w3)}
leaves the graph without another perfect matching.

As before we assume that a graph G = (V,W,E) is
given by its compact representation. We assume that the
vertices of W are labeled is such a way that the sequence
w1, w2, . . . , wm are the vertices of W listed according to the
ordering “≤”. We also define, for each w ∈ W , next(w)
as the vertex after w according to that ordering. Note that
next(wm) is undefined. Let M be a matching in G. If v ∈ V
and (v, w) ∈ M , we denote by M(v) the vertex w. For
X ⊆ V , we denote by N(X) ⊆ W the set of vertices in W
adjacent to vertices in X . Again, let n be |V |.

Algorithm Hamiltonian Circuit

Input: A graph G = (V,W,E) in its compact representa-
tion.
Output: A Hamiltonian circuit if G is Hamiltonian.

(1) If |V | 6= |W |, then return “G is not Hamiltonian.”
(2) Let v1 be any vertex in V adjacent to w1. G1 := G −

v1 − wn.
(3) Find a greedy matching M in G1.
(4) If |M | < n− 1, then return “G is not Hamiltonian.”
(5) G2 := G− w1.
(6) For vi ∈ V \{v1} do begin(vi) := next(M(vi)).

382 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



v1

w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11

V

W

Fig. 2: Graph G with |V | = 11 showing the choice of v1 by
algorithm.

v2 v3 v4 v5 v6 v7 v8 v9 v10 v11

w1 w2 w3 w4 w5 w6 w7 w8 w9 w10

V

W

Fig. 3: Graph G1. Bold lines are edges of M . V is labeled
according to M .

If, for some vi, next(M(vi)) is undefined, then return
“G is not Hamiltonian.”

(7) Find a greedy matching M ′ in G2.
(8) Let vk ∈ V be a free vertex with respect to M ′. If

|M ′| < n − 1 or wn 6∈ N({vk}), then return “G is not
Hamiltonian”. Else, return M∪M ′∪(v1, w1)∪(vk, wn).

Figures 2, 3, 4 and 5 describe an example of a running
of the algorithm beginning by the choice of the vertex v1
in the Step 2, the greedy matching M found in G1 in the
Step 3, the greedy matching M ′ found in G2 in the Step 7
and the resulting Hamiltonian circuit.

The Hamiltonian circuit found by the algorithm consists
of either the circuit

(w1, v1,M
′(v1),M(M′(v1)),M

′(M(M′(v1))), . . . , vk, wn,

M
′(wn),M(M′(wn)),M

′(M(M′(wn))), . . . ,M(w1), w1)

or the circuit

(w1, v1,M
′(v1),M(M′(v1)),M

′(M(M′(v1))), . . . , wn, vk,

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11

w2 w3 w4 w5 w6 w7 w8 w9 w10 w11

V

W

Fig. 4: Graph G2. Dashed lines are edges of M ′.

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11

w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11

V

W

Fig. 5: Graph G. The Hamiltonian circuit consists of bold
lines (M ), dashed lines (M ′), plus edges (v1, w1) and
(v7, w11), where v7 and w11 are free vertices with respect
to M ′ and M , respectively.

M(vk),M
′(M(vk)),M(M′(M(vk))), . . . ,M(w1), w1).

4. Correctness and Complexity
In this section, we demonstrate the correctness and time

complexity of the Algorithm Hamiltonian Circuit. The fol-
lowing lemmas are useful to show the correctness of the
algorithm.

Lemma 4.1: If G = (V,W,E) is a Hamiltonian bipartite
graph, then, for any proper non-empty subset S of V , we
have |S| < |N(S)|.
Proof. Let C be a Hamiltonian circuit in G. Since S is a
non-empty proper subset of V , considering only the edges
in C incident to vertices in S, we find a neighborhood of S
whose cardinality is larger than |S|.

Lemma 4.2: If G is Hamiltonian, then G1 contains a
perfect matching.
Proof. Let C be a Hamiltonian circuit in G. Let P be the
path from v1 to wn in C, and P ′ be the path from wn to v1
in C. Notice that, since the graph is bipartite, both P and
P ′ have odd number of edges. The paths P − v1 − wn and
P ′ − v1 − wn are vertex disjoint and their edges contain a
perfect matching in G1 = G− v1 − wn.

For the sake of analysis, we consider next that vertices in
V are labeled in such a way that for each i, 1 < i ≤ n,
M(vi) = wi−1.

Lemma 4.3: If G is Hamiltonian, then M(vj) < end(vj)
for each j, 1 < j ≤ n.
Proof. By contradiction, suppose that G is Hamiltonian and
there exists 1 < j ≤ n such that M(vj) = wj−1 ≥
end(vj). Since vj is matched to wj−1, there can only be
the case that M(vj) = end(vj). If N({v1, . . . , vj−1}) ⊆
{w1, . . . , wj−1}, we have, by Lemma 4.1, G is not Hamil-
tonian, a contradiction. So, we may assume that there exists
r < j such that end(vr) > end(vj). We choose r as
large as possible, in such a way that, for each i, r <
i ≤ j, we have that end(vi) ≤ end(vj). From the above
observation, and remembering that M is greedy, it holds that

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 383



begin(vi) > M(vr) for each r < i ≤ j. Hence, it follows
that N({vr+1, . . . , vj}) = {M(vr+1), . . . ,M(vj)}, and, by
Lemma 4.1 G, is not Hamiltonian. A contradiction.

Lemma 4.4: If G is Hamiltonian, then each vertex in W−
{w1} is matched by M ′.
Proof. Since M = {(v2, w1), (v3, w2), . . . , (vn, wn−1)} is
a matching, using the Lemma 4.3 and the convexity of G,
M ′′ = {(v2, w2), (v3, w3), . . . , (vn, wn)} is also a matching.
Notice that M ′′ is a matching in G2 that matches each vertex
in W − {w1}. Since M ′ is a maximum matching, M ′ will
also match each vertex in W − {w1}.

If the graph G is Hamiltonian, then, after Step 7 of the
algorithm, the graph G contains two matchings M and M ′,
both of them with size n− 1. Since in G2 we have |V | = n
and |W | = n − 1, there exists exactly a free vertex in V
with respect to M ′.

Lemma 4.5: Let vk be the free vertex of V in M ′. If G
is Hamiltonian, then vk is adjacent to wn.
Proof. By contradiction, suppose that vk is not adjacent to
wn. Let q be such that end(vk) = M(vq) = wq−1. Since by
Lemma 4.3 end(vk) > M(vk), we have that k < q.

First we show that, for each i, 1 ≤ i < q, M′(vi) ≤ M(vq).
By construction of G2, the only vertices in G2 that can be
adjacent to vertices in W ∗ := {w2, w3, . . . , wq−1} are the
vertices in V ∗ := {v1, v2, . . . , vq−1}. As vk is one of those
vertices and, by Lemma 4.4, all the vertices in W − {w1}
are matched by M ′, M ′ induces a bijection between W ∗

and V ∗ − vk.
By Lemma 4.1, we have that |N(V ∗)| >

|{w1, w2, . . . , wq−1}|. Hence, there exists an r < q
such that end(vr) > wq−1. Choose r with that property
in such a way that j is maximum, where wj := M

′(vr).
As end(vk) < end(vr), vk is free in M ′ and M ′ is
greedy, we have that wj is not adjacent to vk in G2. Since
wj = M

′(vr) ≤ M(vq) and the neighbors of vk in G2 are
wk, wk+1, . . . , wq−1, we obtain that wj < wk.

We now show that j = r. Since wj = M
′(vr), by

construction of G2, we have that j ≥ r. If j > r, since vj
is adjacent to wj in G2 and M ′ is greedy, we can conclude
that end(vj) ≥ end(vr). This would contradict the choice of
r, because M

′(vj) would be larger than M
′(vr). So, j = r.

Notice that there exist r − 1 vertices smaller than vr
matched by M ′. So, one of them is matched to some vertex
not in the set {w2, w3, . . . , wr−1}. Let vs be such vertex. It
follows that M′(vs) > M

′(vr) = wr. Since vs is not matched
by M ′ to wr, we have that end(vs) ≥ end(vr). Again, this
contradicts the choice of r, showing that there exists no such
r. A contradiction, proving the lemma.

Using the lemmas above, we are ready to prove the
following theorem. So, we conclude the algorithm correctly

compute the Hamiltonian Circuit.

Theorem 4.6: The Algorithm Hamiltonian Circuit solves
the problem of the Hamiltonian circuit in convex bipartite
graphs.

Proof. We will show that the edge set EC := M ∪ M ′ ∪
(v1, w1) ∪ (vk, wn) are exactly the edges of a Hamiltonian
circuit in G.

Firstly observe that, by construction, (v1, w1) is an edge
in G. The existence of the matchings M and M ′ and the
edge (vk, wn) are guaranteed by Lemmas 4.2, 4.4, and 4.5.

By inspection, we can verify that EC induces a subgraph
of G where each vertex has even degree. Hence, EC induces
a collection of disjoint circuits in G. We need to show that
EC induces exactly one circuit, and, therefore, a Hamiltonian
circuit.

Let C be one of the circuits induced by EC . We shall
show that the edge (vk, wn) is used by C. Since the choice
of C is arbitrary and the circuits are disjoint, EC has to
induce exactly 1 circuit.

Since C contains at least 4 edges, the circuit C has to
use at least one edge of M . So, we may consider that C =
(wj1 , vi1 , wj2 , vi2 , . . . , wj1), where M(wj1) = vi1 . We will
proof that the sequence j1, i1, j2, i2, . . . is increasing, up to
the edge (vk, wn) is used.

Recall that the vertices of V were labeled in such a way
that for each i, M(vi) = wi−1. So, it holds that i1 = j1+1,
showing that j1 < i1. Next, we show that i1 ≤ j2. If
(vi1 , wj2) = (vk, wn), C uses the edge (vk, wn), as wished.
So, we may assume that (vi1 , wj2) 6= (vk, wn). Since i1 > 1,
it cannot be the case that (vi1 , wj2) = (v1, w1). Hence, it
is true that M

′(vi1) = wj2 . As M ′ is a matching in G2,
where for each i, beginG2

(vi) = next(M(vi)), it holds
that M

′(vi1) = wj2 ≥ beginG2
(vi1) = next(M(vi1)) =

next(wi1−1) = wi1 . It follows that i1 ≤ j2.

Applying the same idea of the above paragraph, we can
show that j2 < i2 ≤ j3, unless the edge (vk, wn) is used.
Since the circuit finishes in wj1 , the sequence of indices
cannot be always increasing and the edge (vk, wn) has to
be used by C.

The time complexity of the algorithm is dominated by the
Steps 3 and 7, which consists in finding greedy matchings
in a convex bipartite graph. Lipski and Preparata [11] pre-
sented an algorithm for finding a greedy matching in convex
bipartite graph which can run in time O(|V |), provided that
a special version of the union-find algorithm is used [24].
Summarizing, we have the following theorem.

Theorem 4.7: The Algorithm Hamiltonian Circuit solves
the problem of the Hamiltonian circuit in convex bipartite
graphs in linear-time.

384 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



5. Parallel Algorithms

The sequential algorithm from the previous section con-
sists essentially of finding two greedy matchings in a convex
bipartite graph G = (V,W,E). Our parallel version consists
in distributing the input graph uniformly among the proces-
sors. So, in steps 3 and 7 of the Algorithm Hamiltonian
Circuit, we call a parallel greedy matching procedure. The
remain of the algorithm stays the same as before. In order to
do the steps 3 and 7 in the PRAM model, Dekel e Sahni [8]
developed a EREW PRAM algorithm for the maximum
matching problem that runs in time O(lg2 n) using O(n)
processors, where n = |V |. In coarse grained parallel
computing we can solve the maximum matching problem
using the algorithm described by Soares and Stefanes [25]
or the algorithm presented by Chan et al. [15] which use
p processors, O(lg p) communication rounds, and spend
O((n lg p)/p) time of local computations. The maximum
matching found by those algorithms are greedy. Therefore,
we have the following theorems.

Theorem 5.1: Given a convex bipartite graph G =
(V,W,E), the Hamiltonian circuit problem in G can be
solved in the EREW PRAM model in time O(lg2 |V |), using
|V | processors.

Another solution for the Hamiltonian Circuit described
in PRAM model and spending O(lg |V |) time, using |V |2

processors is given by Bertossi and Bonuccelli [26].
Theorem 5.2: Given a convex bipartite graph G =

(V,W,E), the Hamiltonian circuit problem in G can be
solved in the BSP/CGM model using p processors, O(lg p)
communication rounds and O((|V | lg p)/p) time of local
computations.

6. Experimental Results

Our experiments were carried out in a high performance
cluster at UFMS (Federal University of Mato Grosso do Sul)
using 32 nodes. Each node is a 2.5Ghz quad core Xeon with
2GB of memory. Communication was carried out using a fat
tree network implemented over an optical Myrinet switch
with 10Gbits/s links.

6.1 Testing Graphs

For each convex bipartite graph G = (V,W,E) we have
used in tests, we generated its compact representation as
follow. After choose the size of set W , for each vertex
v ∈ V , we choose randomly the middle of the interval
[begin(v), end(v)] and with a previously defined density
we determine the interval length derived from the Poisson
distribution.

In order to test the implementation, we create graphs with
intervals using density of 8%, i.e, we generated intervals
with average length of 8% of the size of W . That value was

chosen aiming to test some special details of the algorithm.
We mean, in the Algorithm Hamiltonian Circuit, the interval
density of 8% generates, in general, a Non-Hamiltonian
graph and, with high probability, with only one matching the
algorithm can decide whether the input graph is Hamiltonian
or not. In another tests, we generated graphs using interval
density of 45%, which enforce the algorithm to invoke
matching procedure twice.

6.2 Results

The results related in this section were obtained from
average time of ten executions of each instance. The size
of the graphs was chosen aiming to equilibrate processing
and communication costs, since we observed the algorithm
speedup improves as the graph size grows.

2 4 8 16 32 64
0

1

2

3

4

Processors

S
pe

ed
up

1× 107

5× 107

1× 108

Fig. 6: Parallel algorithm speedups × number of processors
for Hamiltonian Circuit, labels represent size of V .

Figure 6 shows the speedups of the algorithm in the
cluster for graphs of sizes 1 × 107, 5 × 107 and 1 × 108.
Speedups obtained by the algorithm ranged from 0.71 to 3.92
using 64 processors. We can see the algorithm is scalable
when number of processors increases, although the speedup
was less than 1 for 2 and 4 processors due to the cost of
parallelization.

When sequential algorithm has time complexity O(n) or
O(n lg n), parallel version of this algorithm tends to have
communication cost higher compared to local processing
time, mainly when the communication rounds are increasing
with the number of processors. The Hamiltonian Circuit
Problem has that feature as we can see in Table 1, where we
show the processing time compared to communication time.

In the Figures 7 and 8, we see the running time of the
Hamiltonian Circuit algorithm for two different kinds of
instances, respectively, generated graphs with density of 8%
and 45% of the neighborhood for each v ∈ V .

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 385



Table 1: Processing time and communication time, in
seconds, for Hamiltonian Circuit Algorithm where |V | =
1× 107 , 5× 107 and 1× 108

1× 10
7

5× 10
7

1× 10
8

Proc Com Proc Com Proc Com

2 31.7 8.1 170.3 41.9 309.1 80.6

4 21.0 10.3 113.0 54.0 204.1 101.4

8 12.9 8.6 70.0 45.8 126.0 85.9

16 7.6 7.1 41.3 36.7 74.3 69.6

32 4.4 6.5 23.8 30.1 42.8 56.5

64 2.5 5.4 13.7 24.4 24.7 46.0

1 2 4 8 16 32 64
0

100

200

300

400

Processors

T
im

e
(s

)

Graphs with density of 8% of neighborhood

1× 107

5× 107

1× 108

Fig. 7: Total running time in seconds × number of processors
for Hamiltonian Circuit using interval density of 8%, labels
represent |V |.

As shown in results, the running time of Hamiltonian Cir-
cuit Algorithm is basically the maximum matching running
time. In the first case, displayed in Figure 7, the input graph
is not Hamiltonian and the algorithm performs only one
matching in order to make a decision, and in the second
case, shown in Figure 8, the input graphs are Hamiltonian
and the algorithm calls the maximum matching algorithm
twice before making a decision.

7. Concluding Remarks

In this paper, we have investigated parallel solutions to the
Hamiltonian Circuit Problem in convex bipartite graphs. We
described a linear-time algorithm for finding a Hamiltonian
circuit in G = (V,E) that can be implemented under
BSP/CGM model using p processors, O(lg p) communi-
cation rounds and O((|V | lg p)/p) time. We show through
practical experiments our algorithm has good scalability. We
also presented an algorithm where the Hamiltonian circuit

1 2 4 8 16 32 64
0

200

400

600

800

Processors

T
im

e
(s

)

Graphs with density of 45% of neighborhood

1× 107

5× 107

1× 108

Fig. 8: Total running time in seconds × number of processors
for Hamiltonian Circuit using interval density of 45%, labels
represent size of V .

problem can be solved in the EREW PRAM model in time
O(lg2 |V |), using |V | processors. A frequently considered
hierarchy of graph classes is: permutation bipartite graphs
⊂ doubly convex bipartite graphs ⊂ convex bipartite graphs
⊂ chordal bipartite graphs [27]. It would be interesting to
develop parallel algorithms to the same problem for the
class of chordal bipartite graphs. As future work, we could
suggest the analysis of parallel Maximum Edges Bicliques
Problem in this class of graphs. Besides, the study of the
problem addressed here in more general classes of graphs,
for instance, interval graphs, seem us appropriated.

References

[1] D. R. Higa and M. A. Stefanes, “A coarse-grained parallel algorithm
for the matrix chain order problem,” in Proceedings of the 2012

Symposium on High Performance Computing. Society for Computer
Simulation International, 2012, pp. 1:1–1:8.

[2] C. E. R. Alves, E. N. Cáceres, and S. W. Song, “Finding all maximal
contiguous subsequences of a sequence of numbers in O(1) com-
munication rounds,” IEEE Transactions on Parallel and Distributed

Systems, IEEE Computer Society, vol. 24, no. 3, pp. 724–733, 2013.
[3] A. Ferreira, I. GuÃl’rin Lassous, K. Marcus, and A. Rau-Chaplin,

“Parallel computation on interval graphs: algorithms and experi-
ments,” Concurrency and Computation: Practice and Experience,
vol. 14, pp. 885–910, 2002.

[4] J. F. A. Vasconcellos, C. Nishibe, N. F. Almeida, and E. N. Cáceres,
“Efficient parallel implementations of multiple sequence alignment
using BSP/CGM model,” in Proc. of the 2014 International Workshop

on Programming Models and Applications for Multicores and Many-

cores, in conjunction with PPoPP ’14 ACM SIGPLAN Symposium on

Principles and Practice of Parallel Programming, 2014, pp. 103–110.
[5] A. Kraemer, J. C. d. Oliveira, F. A. G. d. Santos, A. C. Maciel,

A. Goldman, and D. Cordeiro, “Dynamic creation of BSP/CGM
clusters on cloud computing platforms,” in Emerging Intelligent Data

and Web Technologies (EIDWT), Fourth International Conference on.
IEEE, 2013, pp. 767–772.

386 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



[6] L. G. Valiant, “A bridging model for multi-core computing,” Journal

of Computer and System Sciences, vol. 77, p. 154âĂŞ166, 2011.
[7] F. Glover, “Maximum matching in a convex bipartite graph,” Naval

Research Logistic Quarterly, vol. 14, pp. 313–316, 1967.
[8] E. Dekel and S. Sahni, “A parallel matching for convex bipartite

graphs and applications to scheduling,” Journal of Parallel and

Distributed Computing, vol. 1, pp. 185–205, 1984.
[9] D. Nussbaum, S. Pu, J.-R. Sack, T. Uno, and H. Zarrabi-Zadeh,

“Finding maximum edge bicliques in convex bipartite graphs,” Al-

gorithmica, vol. 64, no. 2, pp. 311–325, 2012.
[10] G. S. Brodal, L. Georgiadis, K. A. Hansen, and I. Katriel, “Dynamic

matchings in convex bipartite graphs.” in MFCS, ser. Lecture Notes
in Computer Science, L. Kucera and A. Kucera, Eds., vol. 4708.
Springer, 2007, pp. 406–417.

[11] W. Lipski and F. P. Preparata, “Efficient algorithms for finding
maximum matchings in convex bipartite graphs and related problems,”
Acta informatica, vol. 15, pp. 329–346, 1981.

[12] Y. D. Liang and N. Blum, “Circular convex bipartite graphs: maximum
matching and Hamiltonian circuits,” Information Processing Letters,
vol. 56, pp. 215–219, 1995.

[13] G. Steiner and J. S. Yeomans, “A linear time algorithm for maximum
matchings in convex, bipartite graphs,” Computers and Mathematics

with Applications, vol. 31, no. 12, pp. 91–96, 1996.
[14] G. Gallo, “An O(n logn) algorithm for the convex bipartite matching

problem,” Operations Research Letters, vol. 3, pp. 31–34, 1984.
[15] A. Chan, F. Dehne, P. Bose, and M. Latzel, “Coarse grained parallel

algorithms for graph matching.” Parallel Computing, vol. 34, no. 1,
pp. 47–62, 2008.

[16] A. Czumaj, K. Diks, and T. M. Przytycka, “Parallel maximum

independent set in convex bipartite graphs,” Information Processing

Letters, vol. 59, pp. 289–294, 1996.
[17] J. Soares and M. A. Stefanes, “Algorithms for maximum independent

set in convex bipartite graphs,” Algorithmica, vol. 53, no. 1, pp. 35–49,
2009.

[18] M. Garey and D. Johnson, Computers and Intractability, A Guide to

the Theory of NP-Completeness. Freeman, 1979.
[19] M. Krishnamoorthy, “An NP-hard problem in bipartite graphs,” in

SIGACT News, vol. 7, 1975, p. 26.
[20] H. Müller, “Hamiltonian circuits in chordal bipartite graphs,” Discrete

Mathematics, vol. 156, pp. 291–298, 1996.
[21] J. Jájá, An Introduction to Parallel Algorithms. Addison-Wesley

Publishing Company, 1992.
[22] L. Valiant, “A bridging model for parallel computation,” Communica-

tions of the ACM, vol. 33, pp. 103–111, 1990.
[23] F. Dehne, A. Fabri, and A. Rau-Chaplin, “Scalable parallel geometric

algorithms for coarse grained multicomputers,” in 9th Annual ACM

Symposium on Computational Geometry, 1993, pp. 289–307.
[24] H. N. Gabow and R. E. Tarjan, “A linear-time algorithm for a special

case of disjoint set union,” Journal of Computer and System Sciences,
vol. 30, pp. 209–221, 1985.

[25] J. Soares and M. Stefanes, “BSP/CGM algorithm for maximum
matching in convex bipartite graphs,” in 15th Symposium on Computer

Architecture and High Performance Computing - SBAC-PAD, 2003,
pp. 167–174.

[26] A. A. Bertossi and M. A. Bonuccelli, “Some parallel algorithms on
interval graphs,” Discrete Applied Mathematics, vol. 2, pp. 101–111,
1987.

[27] M. Golumbic, Algorithmic Graph Theory and Perfect Graphs. Aca-
demic Press, 1980.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 387



 

Associative Operations from MASC to GPU 
 

Mingxian Jin 

Department of Mathematics and Computer Science, Fayetteville State University 

1200 Murchison Road, Fayetteville, NC 28301, USA 
 

 

Abstract - The Multiple Associative Computing (MASC) 

model is an enhanced SIMD (Single Instruction-stream 

Multiple Data-stream) model in the associative style for 

general parallel computation that has been studied last two 

decades. There have been a number of algorithms developed 

for this model. Recent research shows this model is extremely 

efficient when used for real-time scheduling in air traffic 

control systems. Associative operations are indeed key 

properties of this model. In particular, they all take constant 

time. In this paper, we present an implementation outline of 

these MASC associative operations on the popular 

architecture of GPU (Graphic Processing Units). This 

research aims to provide a bridge or general guidance to 

convert MASC algorithms to their GPU implementation. As 

the MASC architecture in today’s technologies has not been 

built yet, this provides a possible way to implement MASC 

algorithms on an alternative platform so to verify their 

correctness and efficiencies especially for massive data input.  

 

Keywords: MASC, Associative computing, GPU, SIMD 

 

 

1 Introduction 

The Multiple Associative Computing (MASC) model is 

an enhanced SIMD (Single Instruction-stream Multiple Data-

stream) model in the associative style for general parallel 

computation. It extends the concept of SIMD with associative 

properties and possesses features of easy programming and 

highly scalable.  During last two decades, intensive research 

has been conducted regarding this model, mainly at Kent State 

University. It has been shown that this model is as powerful as 

some other well-known parallel computation models like 

PRAM (parallel random access machine) and restricted RM 

(reconfigurable meshes) [9]. There have been a number of 

algorithms developed on this model. These algorithms are 

across different application fields such as computer geometry, 

graphics, string matching, etc. Examples are in [1, 2, 4, 8].  

Most recently, it has been shown that this model is extremely 

efficient when used for real-time scheduling in air traffic 

control system compared to its multiprocessor counterpart 

[12]. 

While more MASC algorithms are being developed, how 

to implement them becomes an interesting problem. Past 

effort has been made to build the MASC architecture, or ASC 

processor, using modern technologies of FPGS (field-

programmable gate array) [10].  This research is still in the 

stage of experiment with up to 52 processing units. It is 

difficult to be used for any massively parallel processing, 

which is normally expected in a MASC algorithm. A standard 

associative language, called ASC, has also been developed for 

MASC across some platforms including 

Goodyear/Loral/Martin-Marietta’s ASPRO and Thinking 

Machine’s CM-2 [7, 8]. However, these platforms are not 

accessible in today’s computer lab settings. Although the ASC 

programming language has been emulated on both PCs and 

workstations running UNIX to compile and execute simple 

ASC programs, the running environment is restricted by the 

emulating software and the non-associative style hardware 

construction. It is impossible to truly evaluate the 

performance of a MASC algorithm with massive data input. 

We look for an alternative platform that is able to emulate 

the MASC model so to implement its algorithms in massively 

parallel with minimum efficiency loss. An ideal platform must 

have a close architecture and also be easily accessible.  There 

is no doubt that GPU is an excellent choice. 

A general- purpose computer with graphic processing 

units (GPU) is an emerging architecture that has attracted a lot 

of attention in last few years. The original purpose of using 

GPU is to accelerate intensive graphic data processing. Later, 

with introduction of NVDIA CUDA (compute unified device 

architecture), a high-level programming interface, GPU is 

evolved to be a powerful computing platform to support 

general purpose parallel computation. It has been used in 

numerous application fields for massively data parallel 

processing [6, 11]. GPU is a typical SIMD architecture and is 

especially good for fine-grained large amount data-intensive 

parallel computation. Its features provide possibility of 

implementing MASC algorithms with easy accessibility and 

high scalability.  

In the MASC model, associative operations are indeed its 

key properties. To implement a MASC algorithm on a 

different architecture, we need to find a way to execute each 

of these operations in the corresponding running environment. 

This is our contribution in this paper. The remaining paper is 

organized as follows. Section 2 gives a description of the 

MASC model and the related research. Section 3 provides a 

388 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



 

brief overview of GPU architecture with CUDA framework. 

Section 4 presents implementation steps for each MASC 

associative operation on GPU. Section 5 remarks general 

comparison between MASC and GPU to conclude the paper 

and also discusses future work.     

2 The MASC Model 

The MASC (for Multiple Associative Computing) model 

was developed at Kent State University based on earlier 

STARAN architecture at Goodyear Aerospace. It has been 

studied since the early 1970’s. The MASC model consists of 

an array of processing elements (PEs) and one or more 

instruction streams (ISs), each of which issues commands to a 

disjoint set of PEs partitioned dynamically. In a MASC 

machine, the number of IS is normally expected to be small in 

comparison to the number of PEs. In this paper, we assume 

the MASC with one IS unless explicitly specified.  

Detailed features of the MASC model can be found in [8]. 

A brief description follows. Each PE (or cell) has a local 

memory and is capable of performing the usual functions of a 

sequential processor other than issuing instructions. An IS is 

logically a processor which has a bus connecting it to each 

cell and can send an instruction to all cells. Each cell listens to 

only one IS and can switch to another IS based on local data 

tests when multiple ISs present. Cells can be active, inactive, 

or idle. An active cell executes the program steps from its IS 

while an inactive cell only listens. An IS can instruct an 

inactive cell to become active again (Fig 1). 

If the word length is assumed to be a constant, then the 

MASC model supports the following associative operations in 

constant time. These have all been justified in [3]. 

 Global reduction of OR and AND of binary values each 

being held by an PE 

 Global maximum and minimum of integer or real values 

each being held by an PE  

 Associative search which finds all cells whose data value 

matching the search pattern. All data in the local 

memories of the cells is located by content rather than by 

address. These matching cells are called responders and 

those not are called non-responders.  

 Pick-one which is used by the IS to select (or “pick one”) 

arbitrary responder from the set of its active cells 

 Broadcast which is used by the IS to instruct the selected 

cell to place a data item on the bus and all other cells 

listening to the IS receive this value in one step. 

The MASC model may also include a cell network used 

for communications among PEs, an IS broadcast/reduction 

network (or the resolver network as another name) used for 

communication between the IS and cells, and a possible IS 

network in the case of multiple ISs that is used for IS 

communications. 

A wide range of types of algorithms and several large 

programs have been developed for the MASC model and 

many of these have appeared in the literature. Examples are in 

[1, 2, 4, 8]. Moreover, simulations between MASC and other 

well-known parallel computation models such as PRAM and 

restricted RM have been well studied and published in the 

literatures as well. (See [9] for example). Most recent research 

has shown that this model is extremely efficient when used for 

real-time scheduling in air traffic control system compared to 

its multiprocessor counterpart [12].   

As mentioned earlier, a standard associative language, 

called ASC, has been developed for MASC with one IS across 

certain platforms including Goodyear/Loral/Martin-Marietta’s 

ASPRO, the WaveTracer, and Thinking Machine’s CM-2, and 

provides true portability for parallel algorithms [7]. In 

addition, an ASC simulator has been implemented on both 

PCs and workstations running UNIX. It provides an efficient 

and easy way to test simple programs for algorithms designed 

for the MASC model. However, they cannot be used to truly 

evaluate performance of an MASC algorithm due to the 

restrictions of the emulating software and the non-associative 

style hardware construction. 

Since the MASC model is developed based on early 

STARAN architecture that existed over 40 years ago, much 

effort has been made to build a new architecture based on 

today’s technologies of FPGA so to support the MASC model 

and implement its algorithms. In [10], a scalable ASC 

processor with one IS using the FPGA technology is 

experimented with up to 52 PEs.  It is still under study so 

difficult to be utilized for any MASC algorithm execution. It 

becomes a rising interest for us to find an alternative platform 

to implement MASC algorithms so to verify their correctness 

and efficiencies based on massive amount data input size.  

Broadcast/reduction Network 

IS 

   
   

   
   

   
   

 C
el

l  
   

N
et

w
o

rk
 

 

          

Memory PE 

Memory PE 

Cells 

Memory PE 

Fig. 1 The MASC model with one instruction stream 

       Active 
       Inactive 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 389



 

GPU is an ideal choice which possesses features of easy 

accessibility and high scalability.  

 

3 The GPU with CUDA framework 

A general- purpose computer with graphic processing 

units (GPU) is an emerging architecture that has been 

attracted a lot of attention in the past decade. GPU was 

originally used to accelerate graphic computation and later 

evolved to perform general computation with introduction of 

high-programming languages and a specific framework 

CUDA (Computer Unified Device Architecture) as the 

programming interface. It becomes a very popular computing 

platform and has been used in numerous application fields [5, 

6, 11].  

A modern GPU consists of a host computer with an array 

of streaming multiprocessors forming groups of building 

blocks as the device. The host is normally considered to be a 

traditional central processing unit (CPU). In each streaming 

multiprocessor, there are a fixed number of streaming 

processors that execute the same instruction stream but 

running on different data sets. Each stream processor runs its 

own thread, as shown in Fig 2.  

A CUDA-capable GPU supports several types of memory. 

Global memory and constant memory (not shown in the figure) 

can be read and written by the host such that data can be 

transferred between the host and the device. Each block has 

its shared memory that can be accessed by all threads. This 

provides an efficient way for threads within the block to 

communicate by sharing their input data and intermediate 

results during program execution. Each individual thread has 

registers as its locally accessed memory (not shown in the 

figure).  

Commonly a GPU uses the host as the instruction steam 

to instruct multiple graphic processing units to perform data-

intensive computation. This architecture is similar to the 

MASC model in that the host can be a multi-core CPU which 

can be corresponded to multiple ISs in MASC and many-core 

GPUs corresponding to MASC cells. Specifically, GPU 

executes in a SIMT (Single Instruction-stream and Multiple 

Threads) manner in which a thread is comparable to a MASC 

cell.  

4 Associative Operations on GPU   

Now implementation steps for MASC associative 

operations on the GPU platform are presented in this section. 

We map the data structures from MASC to GPU first. Then 

each associative operation is discussed one by one in regard of 

its implementation on GPU.  

4.1 Mapping of the data structures 

On MASC, data is stored by content instead of by address. 

In particular, data is organized in a tabular format with each 

PE holding a group of associative data. In an associative 

search, the search pattern is compared against the table of 

stored data in a bit-serial fashion. This allows search can be 

done in massively parallel and much faster.  For example, a 

graph can be stored as a table structured as its adjacent matrix 

with each PE holding one row of data representing a vertex. In 

addition, other data pertaining to the vertex can also be stored 

on the same PE for parallel processing.  Alternatively, one PE 

can hold data of one edge which includes weight, two end 

vertices, and/or other data depending on the application needs.  

Another example is that, in an air traffic control system, each 

PE holds all the data pertaining to an aircraft such as (x, y) 

positions, altitude, velocity, and so on.  

GPU is in the traditional way to store data. A data item is 

identified by its memory address. In particular, for the device, 

a data item is stored in shared memory having its own 

memory address space or in the local memory of a thread that 

is addressed by its block index and thread index.     

To simplify our discussion, we assume both ASC and 

GPU have sufficient numbers of PEs and device threads.  In 

order to map associative data items from an MASC PE to a 

GPU thread, we can make a direct function map: 

PE[k]  blockIdx (i).threadIdx(j)  

Calculated by  i = floor(k / blockSize) and   
j = k MOD blockSize  

where 0 ≤ k ≤ n for the MASC with n PEs and  

0 ≤ i ≤ blockSize -1 and  

0 ≤ j ≤ (number of threads in a block) – 

1 on the GPU 

 

 

block 

     …             

 Shared memory 

   
   

   
   

  H
o

st
 

   
   

   
   

   
   

 G
lo

b
al

 M
em

o
ry

 

. . . 

block 

     …             

 Shared memory 

block 

     …             

 Shared memory 

Fig. 2 Architecture of GPU with CUDA 

framework 

390 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



 

All data that resides in local memory of a PE is mapped 

to the local memory of the corresponding thread. This 

provides a straightforward data mapping except identification 

number conversion.   

4.2 Global reduction of OR and AND 

Although CUDA provides atomicOR and atomicAND 

functions, these functions are used to perform logic OR and 

AND operations on the two words of data at a specified 

address in global memory or in the shared memory. They 

cannot be used for the global reduction of OR and AND on a 

group of data items as on MASC.  

To perform a global reduction of OR on a group of data 

items on GPU, the n data items are assumed to be originally 

resided in the local memory of each thread. A global 

reduction is computed in the shared memory of the device 

with a block and then in the global memory among blocks. 

The final result is read by the host from the global memory.  

We follow the idea in [5] for a global reduction of partial 

sum. Every two data items from two adjacent threads are 

reduced to one by moving the data items to the shared 

memory. All even-numbered threads perform this reduction in 

parallel which reduces the number of data items from n to n/2. 

Next round, every two data items from two adjacent even-

numbered threads are reduced and the partial results are in the 

four multiple numbered threads. Iteratively, all data items will 

be reduced to one result as the global result. In order to avoid 

thread divergence
1

, the data movements can be slightly 

changed by aligning the first half block and the second half 

block. All aligned threads are reduced in pair in parallel and 

partial results are stored in the first half threads corresponded 

shared memory. Iterations are going through in the same 

manner until the last result is obtained. The reduction is done 

in place, which means the data item in the shared memory is 

replaced by the partial result of logic OR. The CUDA-

compatible code is shown as follows.   

1. _shared_ boolean partialOR[ ]; 

2. unsigned int t = threadIdx.i; 
3. for (unsigned int hop = blockSize.i >> 1;  
          hop > 0; hop >> 1) 
4. { 

5.   _syncthreads( ); 

6.   if (t < hop) 
7.       partialOR[t] = partialOR ||  

   partialOR[t + hop]; 
8. } 

 

                                                             
1 Device divergence is a problem that occurs when some threads 

have to run a different instruction from other threads. It is usually 

caused by an if-then-else statement and degrades parallel processing 

performance. 

After each block gets its last result, it is further sent to the 

global memory. The final result across all blocks can be 

obtained using a few more logic OR operations and then read 

by the host from the global memory. 

Since this implementation uses software steps to emulate 

a hard-wired execution. It takes longer time by a factor of 

O(log n) for n threads, compared to the true MASC 

implementation. 

It is obvious that a global reduction of AND can be done 

in the similar way. 

4.3 Global reduction of maximum and 

minimum 

On MASC, a global reduction maximum executes global 

OR in the bit-serial fashion. If the word length is ω, a global 

maximum takes O(ω). Since a word length is generally 

considered to be constant in all modern architectures, this is 

considered to be a constant operation as well. See [3] for 

detailed discussion.   

On GPU, we will not use the bit-serial fashion as on 

MASC. This is because a global OR operation on GPU 

already uses programmed steps in its implementation. There is 

no need to perform the operation in bit-serial. The same 

approach as in Section 4.2 can be applied to implement a 

global reduction of maximum (or minimum). Partial 

maximum (or minimum) is updated by iterative comparisons. 

The previous intermediate larger (or smaller) data value is 

kept as the partial result for next round comparisons until the 

last result is obtained. We process data from all threads within 

a block in the share memory and then process all data from all 

blocks. The final result is sent to the global memory and read 

by the host. 

Since this reduction operation goes through the same 

iterations as a global OR/AND as in section 4.2. It takes the 

same extra time in O(log  n) for n threads.       

4.4 Broadcasting 

Broadcasting on GPU is fairly easy as there are different 

levels of memory providing read/write access for the host 

and/or all units on the device(s). The data item that needs to 

be broadcast can be placed by the sending thread in a 

specified shared memory location. Then blocks/threads can 

read from it directly. This does not take any extra time.   

4.5 Associative search 

Search on the ASC model is an operation combing 

broadcasting and global reduction of OR. On MASC, the IS 

broadcasts the search pattern to all PEs first. Each PEs 

compares this pattern with its local data. A PE with matching 

data sets a flag and is called a responder. Otherwise, the PE 

resets the flag and is called a non-responder. A global 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 391



 

reduction of OR is performed and sends the search result back 

to the IS. A global reduction of OR on the designated flags 

can be performed on GPU as described in 4.2. The final result 

of 1 or 0 indicates the search is successful or unsuccessful.  

After an associative search, all responders are normally 

instructed to do specified tasks and non-responders are set 

inactive to wait for future activation. On GPU, this can be 

executed by running these specific tasks on corresponding 

threads and set other threads idle without doing anything until 

they are activated later. It is similar to executing an if-then-

else statement on GPU for any general computation. Once 

again, device divergence could be a potential problem.   

The time complexity is dominated by the time of the 

global reduction of OR, which is O(log n), as broadcasting 

and setting flags only take constant number of steps by all 

threads in parallel.  

4.6 PickOne 

An associative search may also be followed by a PickOne 

operation. An arbitrary PE (or a thread on GPU), normally the 

first responder in the responder group, is selected to perform 

individually instructed tasks. Using the function of 

CUDAGetDevice provided by the CUDA framework on GPU, 

this can be implemented. It takes the same time as the 

function. 

It is noted that responder execution after a PickOne 

operation can cause the device divergence problem as 

mentioned in 4.5. Depending on algorithm design, we may 

expect different levels of performance degradation due to this 

problem.   

5 Concluding remarks and Future Work 

MASC and GPU present many similarities. Both of them 

are in the SIMD category (SIMD vs. SIMT) in parallel 

computation. They are especially advantageous in fine grained 

parallel processing for massively data-intensive problems. 

They both have an ability of restrictive control parallelism 

with multiple ISs and the multi-core CPU, respectively. Both 

of them possess features of easy programmable (ASC vs. 

CUDA, respectively). They are also highly scalable because 

the array of cells and threads can be easily extended. 

Normally there are light or no overheads due to single 

instruction stream. 

The two architectures have some differences as well, 

however. There are constructed significantly different in 

hardware. MASC is a bit-serial model. On the other hand, 

GPU assumes each processing unit in a traditional manner. 

MASC allows cells communicate through the cell network. 

On GPU, there is no separate network connecting blocks and 

threads. All communications are through different levels of 

memory reads/writes.  It is fast but lacks flexibility to 

dynamically partition threads. Threads within a block can be 

collaborated. However, threads across blocks cannot. In a 

MASC algorithm, an advantage to represent complex data 

structures is tabular representation. All data on a PE is stored 

and located by its content instead of by its address. This 

allows fast locate data and return the search results in constant 

time through the hardware construction – the resolver network. 

However, GPU locates data by memory address, in particular, 

block indices and thread indices.  

With these similarities and differences in mind, in this 

paper, we have presented outlined implementation of 

associative operations of the MASC model on the GPU 

architecture. As shown in Section 4, most of these associative 

operations can be implemented on GPU with an extra O(log n) 

efficiency loss. This is due to the fact that software 

programmed steps on GPU are used to replace hardware 

wiring as the resolver (broadcast/reduction) network on 

MASC. These steps can be directly used to convert a MASC 

algorithm so to be implemented on the GPU-CUDA platform. 

Due to time limit and space constraints, the actual 

implementation results and performance analysis are not 

included in this paper. Future work is to analyze these results 

and evaluate their performance. Also, for some problems, if 

there exist an algorithm directly designed on GPU and it also 

has a MASC algorithm, it would be interesting to compare the 

performance of the GPU algorithm and the converted MASC 

algorithm running on GPU. 

6 Acknowledgement 

This work is partially supported by the FSU Integrated 

STEM Academic Success (ISAS) program. 

7 References 

[1]  M. M. Atwah and J. W. Baker "An associative static and 

dynamic convex hull algorithm",  in Proc. of the 16th 

International Parallel and Distributed Processing Symposium 

(Workshop in Massively Parallel Processing), abstract on 

page 249, full text on CDROM, April 2002 

[2]  M. Esenwein and J. Baker, "VLCD string matching for 

associative computing and multiple broadcast mesh",  in Proc. 

of the IASTED International Conference on Parallel and 

Distributed Computing and Systems, pages 69-74. 1997 

[3]  M. Jin, J. Baker, K. Batcher, “Timings for associative 

operations on the MASC model”, in: Proc. of the 15th 

International Parallel and Distributed Processing Symposium, 

IEEE Workshop on Massively Parallel Processing, San 

Francisco, CA, 2001, pp. 193–200 

[4]  M. Jin, J. Baker, “Two graph algorithms on an 

associative computing model”, in Proc. Of International 

392 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



 

Conference on Parallel and Distributed Processing 

Techniques and Applications, PDPTA, Las Vegas, 2007.  

[5]  D.B. Kirk and W. W. Hwu, Programming Massively 

Parallel Processors, Morgan Kaufmann Publishers, 2010 

[6]  I. Park, N. Signhal, M. Lee, S. Cho, and C. Kim, 

“Design and performance evaluation of image processing 

algorithms on GPUs”, IEEE Transactions on Parallel and 

Distributed Systems, Vol. 22, No.1, January 2011 

[7]  J. Potter, Associative Computing: A Programming 

Paradigm for Massively Parallel Computers, Plenum Press, 

New York, 1992  

[8]  J. Potter, J. Baker, S. Scott, A. Bansal, C. Leangsuksun, 

C. Asthagiri, “ASC: an associative-computing paradigm”, 

Computer 27 (11) (1994) 19–25 

[9]  J. Trahan, M. Jin, W. Chantamas, J. Baker, “Relating the 

power of the multiple associative computing model (MASC) 

to that of reconfigurable bus based models”, Journal of 

Parallel and Distributed Computing, Elsevier Publishers, Vol. 

70, No. 5, (2010) 458–466 

[10]  H. Wang, and R. Walker, "Implementing a scalable 

ASC processor", in Proc. of the 17th International Parallel 

and Distributed Processing Symposium (Workshop in 

Massively Parallel Processing), April 2003  

[11]  W. W. Hwu, GPU Computing Gems Emerald Edition 

(Applications of GPU Computing Series), Morgan 

Kaufmann; 1 ed. February 2011 

[12]  M. Yuan, J. W. Baker, W. C. Meilander, “Comparisons 

of Air Traffic Control Implementations on an Associative 

Processor with a MIMD and Consequences for Parallel 

Computing”, Journal of Parallel and Distributed Computing, 

Elsevier Publishers, Volume 73, Issue 2, February 2013, 

pages 256-272, ISSN 0743-7315 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 393



Implementation and Analysis of Parallelized Binary 
Decision Diagram Manipulation on Multicore Processors 

 

Myoung Ha Kim, Jong Kang Park, and Jong Tae Kim 
 

Department of Electrical and Computer Engineering 
Sungkyunkwan University  

Suwon, Korea 
 
 

Abstract – As multi-core or many-core era has emerged, 
multi-core programming became important to System-on-a-
chip designs. We applied the parallelization tools to Binary 
Decision Diagram (BDD) manipulation and analyzed the 
performance result using profiling tools. BDD is useful data 
structure for synthesis and verification of circuits in CAD 
software. Many studies made fault propagation model using 
Binary Decision Diagram (BDD). We implemented BDD 
manipulation program based on previous researches and 
parallelized the program. Using a profiling tool, Intel Vtune 
Amplifier XE 2015, we observed the performance of the 
program and analyzed experimental results according to 
parallelization. Finally, we suggest future work with 
consideration of analyzed result. 

Keywords: Multi-core programming, Parallelization, Binary 
Decision Diagram 

 

1 Introduction 
 Since 2005, raising CPU core frequency has been 
difficult due to high power consumption and overheating. As 
a result, Single Instruction Multiple Data (SIMD) process and 
multi-core or many-core system became main ways for 
increasing the performance of applications. In this perspective, 
multi-core programming is becoming more important to 
commercial system-on-a-chip designs. In recently emerging 
issues like cloud computing and Internet of Things, multi-core 
programming is in a general trend for new technology 
developments. Some APIs which help programmers to 
implement the multi-core program are being provided. POSIX 
thread, OpenCL, OpenMP and Message Passing Interface 
(MPI) are typical APIs for multi-core programming [1]. GPU 
is also a good example of multi-core system. The original 
purpose of GPU is image processing, but GPGPU which takes 
advantage of GPU for general purpose exists [2] and Compute 
Unified Device Architecture (CUDA) platform is provided for 
GPGPU programming. However, there are some limitations 
for fully exploiting the resources of multi-core system. The 

representative cases are synchronization issues in shared 
memory or race condition problems. 

 This paper presents the analysis of a parallelized 
application which deals with Binary Decision Diagram (BDD) 
in the digital circuits [3]. Some studies used BDD for circuit 
fault expectation model [4][5]. However, as the complexity of 
the circuit rises, the size of BDDs exponentially increases and 
the execution time of the program also increases. To 
compensate this disadvantage, we parallelize the procedure of 
BDD manipulation and analyze the problems after observing 
the amount of the performance improvement. 

 In this paper, we introduce how to analyze circuit faults 
using BDD in Section 2. Section 3 briefly explains 
parallelization and analysis tools. Section 4 presents how to 
implement BDD manipulation program. Parallelization of the 
program and analysis of the results are shown in Section 5. 
We conclude our tasks and suggest future work in Section 6. 

2 Circuit fault analysis using binary 
decision diagram 

 Our case study is BDD manipulation program for circuit 
analysis. As a circuit fault expectation model, we used the 
results of the previous works utilizing the symbolic 
frameworks based on binary decision diagram [4][5]. Binary 
Decision Diagram (BDD) is a useful data structure for 
representing boolean functions and related manipulation 
algorithms [6]. In this approach, BDDs have logical property 
besides electrical property of the target circuit, so more 
accurate fault rate calculation is possible. 

 Figure 1 shows the generation of the voltage pulse for a 
transient fault when a noisy problem occurs during circuit 
operation. Prior to the generation of the transient fault, the 
terminal nodes of BDD only include logical 0 or 1 value and 
it is called static BDD. On existence of noise sources, the 
transient fault occurs according to cell library on input bias 
conditions. Bottom part of Figure 1 reflects this property and 
this type of BDD is called event BDD [4]. 

394 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



 

Figure 1. Difference of static BDD with normal condition and 
event BDD generated by the transient fault with bias condition 
‘11’. 

 
 When some static BDDs or event BDDs are combined 
on a certain logic gate, the BDD construction function should 
be executed as proposed in [6]. Only the process of handling 
the terminal nodes which contain voltage pulse information of 
event BDD is different. For example, if terminal nodes of 
each BDD are combined in the construction process and those 
terminal nodes have transient faults, output terminal node 
would be generated based on the corresponding cell library 
information. The example of this process is shown in Figure 2. 
The error pulse propagates to the primary output or attenuated, 
and finally, the fault probability can be calculated with the 
BDD on the primary output. This process will be executed 
iteratively on the all of the internal circuit nodes and the 
variation of noisy conditions. 

 

Figure 2. An example of the fault generation and propagation 
on BDDs. 

 

3 Parallelization and analysis tools 
 We exploited OpenMP API to parallelize the problem of 
BDD manipulation, and Intel Vtune Amplifier XE 2015 for 
analyzing parallelization result. 

3.1 OpenMP 
 OpenMP is an API which contains compiler directives 
and runtime library routines for parallelism in shared memory 
system [7]. OpenMP is consistent and portable interface 
which makes parallelization on various architectures and 
systems. In parallelized program built by OpenMP, master 
thread executes the program alone before joining the #pragma 
directives. After joining the #pragma directives, the master 
thread creates other threads which are able to progress in 
parallel. After the works in parallel region are finished and the 
implicit synchronization is completed, then master thread 
destructs other threads of operation. The notable advantage of 
OpenMP is simple implementation and it can make 
programmer modify just a few amount of original code. 

3.2 Intel Vtune Amplifier XE 2015 
 Intel Vtune Amplifier XE 2015 provides much 
information for tuning the program. It collects the data for 
analyzing hotspots, threading, locks and waits. Also, it helps 
profiling through hardware event-based collection using 
performance monitoring unit. By this profiled information, it 
shows us CPI, last level cache miss, branch misprediction, 
memory latency and etc. 

4 Implementation 
 We implemented the BDD manipulation code and its 
parallelized program. The entire procedure is illustrated in 
Figure 3. At first, the code parses synthesized gate-level 
Verilog HDL code and represent the circuit as a graph. Then 
the software reads the cell library to handle the electrical 
property of the faults. To make static BDDs along the fault 
propagation paths, topological sort is conducted. The static 
BDDs are used for generating event BDDs during the 
subsequent fault propagation stages. After making static 
BDDs completed, propagation process on each circuit node 
can be executed. The box marked as “Propagation” in Figure 
3, generates the transient fault and the corresponding event 
BDD at a certain circuit node and propagates event BDDs to 
the primary outputs or the inputs of the flip-flops. The 
percentage values next to some procedures are the proportions 
of the total execution time. The construction and reduction 
functions for BDDs [6] which manipulate BDDs occupy 
almost all execution time of the program. 

 The parallelizable region of this program is clear. The 
procedure that generates and propagates the error pulse is a 
hotspot and almost independent work, thus propagation box 
can be parallelized. The separated threads taking each node 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 395



Parse the synthesized VHDL 
codea and make circuit graph

&
Read cell library

Sort circuit graph topologically
&

Generate Static BDD
on each node

Search that node in the 
topologically sorted list

(previous node get static BDD)

Have all nodes 
their BDD?

Is it primary 
output?

Apply the BDDs of input 
nodes on current node & 

Reduction

Accumulate the 
probability of 
fault arrival 

Did complete the 
propagation on all 

node?

each node

From searched node,
in order by 

topological sort

No

No

Yes

Yes

No

End

Yes

Propagation

Generate fault BDD 
on searched node.

0.03%

4.65%

48.6% + 39.5%

Figure 3. Flow chart for BDD manipulation program 

share the data of static BDDs and the probability of fault 
arrival on primary outputs. Static BDDs are needed to all 
threads, but threads only read the data so there is no need to 
synchronization. The data storing the probability of fault 
arrival value on primary output is written by all threads so this 
action should be atomic. OpenMP provides some 
constructions like critical or reduction for these type of 
actions.  

 Our application is executed on following environment. 
CPU is Intel Xeon CPU E5-2687W 3.10GHz double octa-
core. Each core has 32KB L1 cache, 256KB L2 cache, and 
one octa-core has 20MB L3 cache. The size of main memory 
is 8x8GB. 

5 Result and analysis 
5.1 Result of parallelism 
 BDD manipulation is used for Soft Error Rate (SER) 
estimation of the gate-level digital designs [4]. Because the 
individual fault generation can be fully parallelized in this 
problem, the ideal execution time is identical to the execution 
time of sequential program divided by the number of threads. 
Figure 4 represents the effect of parallelism. The values of the 

Figure 4. Parallelization degree of c432 and c1908 benchmark 
circuit. 

graph are generated by a quantity called as parallelization 
degree as follows. 

timeexecutionidealthe
timeexecutionrealthereezationparalleli =deg      (1) 

 Therefore, it is better for these values to be closer to 1. 
But the values start to decrease when the number of threads is 
more than a certain number.  

5.2 Analysis of the result 
 We obtained several metrics of the program with Intel 
Vtune amplifier XE 2015 as shown in Figure 5. CPI and 
unfilled pipeline slots are measured by hardware event-based 
sampling with performance monitoring unit. 

 At first, we can see that CPU utilization is uniform, 
regardless of the number of simultaneous threads. It means all 
cores taking each thread are busy with no rest. However, the 
values of CPI and unfilled pipeline slots are not constant. 
When the number of threads exceeds 10, it starts to increase. 
Especially unfilled pipeline slots in front-end do not change 
much, but unfilled pipeline slots in back-end which are the 
part of subsequence of instruction fetch increase. Figure 6 
also represents similar results. CPI and unfilled pipeline slots 
in back-end also starts to increase from eight threads. 

 These results correspond to the result of parallelization 
degree. The result that CPU utilization is consistent and the 
reason of an increase in CPI is due to unfilled pipeline slots in 
back-end, can be interpreted in the terms of latency for 
memory access. Because all cores cannot access 
simultaneously last level cache or main memory, as the 
number of threads which try to access low level memory 
increases, the threads should wait before the other threads 
finish the accesses. The reason that the points where 
parallelization degree starts to decrease are different can be 
analyzed as because of the size of shared data. We can expect 
that the difference of the points where CPI and unfilled 
pipeline slots in back end decreases is due to same reason. 

396 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



Figure 5 Performance metrics of the parallelized program for 
c432 benchmark circuit. 

 
Figure 6 Performance metrics of the parallelized program for 
c1908 benchmark circuit. 

 
6 Conclusions 
  In this paper, we observed parallelization results of the 
BDD generation and propagation algorithms in a case study 
for soft error rate estimation. We analyzed the effects of the 
parallelization with performance metrics. For propagating 
transient faults along the circuit nodes, we utilized BDD 
structure and the existing construction and reduction methods. 
We implemented this structure and the parallelized program 
with change of the number of threads. As increasing the 
number of threads, we could observe some tendencies of the 
performance metrics. The observed characteristics represent 
uniform CPU utilization and increasing CPI and unfilled 
pipeline slots in back-end. These could be interpreted as the 
increase in the latency of memory. 

 Our simple parallelization method occupy so much 
memory so parallelization effect starts to decrease when the 
number of threads exceed certain the number. Our future work 
will modify parallelization strategy focusing on the use of 
memory. 

Acknowledgment 

This research was supported by Basic Science Research 
Program (NRF-2013R1A1A2060954) funded by the Ministry 
of Education. 

References 

[1] J. Diaz, C. Munoz-Caro and A. Nino, “A Survey of 
Parallel Programming Models and Tools in the Multi and 
Many-Core Era,” IEEE Trans. on Parallel and Distributed 
Systems, Vol. 23, pp. 1369-1386, 2012. 

[2] M. Macedonia, “The GPU Enters Computing's 
Mainstream,” IEEE Trans. Computers, Vol. 36, pp. 106-108, 
2003.  

[3] J.D. Andrews and S.J. Dunnett, “Event-tree analysis 
using binary decision diagrams,” IEEE Trans. on Reliability, 
Vol. 49., pp. 230-238, 2002 

[4] B. Zhang, W. –S. Wang and M. Orsharnsky, “FASER : 
Fast Analysis of Soft Error Susceptibility for Cell-Based 
Designs,” Proc. of 7th Int’l Symposium on Quality Electronic 
Design, pp. 755 – 760, 2006. 

[5] N. M. Zivanov and D. Marculescu, “MARS-C: modeling 
and reduction of soft errors in combinational circuits,” Design 
Automation Conference, pp. 767-772, 2006.  

[6] R. Bryant, “Graph-based algorithms for Boolean 
function manipulation,” IEEE Trans. Computers, Vol. 35., pp. 
677-691, 1986. 

[7] L. Dagum and R. Menson, “OpenMP: An Industry 
Standard API for Shared Memory Programming,” IEEE 
Computational Science and Engineering, Vol. 5., No. 1, pp. 
46-55, 1998. 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 397



Scalability of Parallel Applications: An approach to predict the
computational behavior

Javier Panadero1, Alvaro Wong1, Dolores Rexachs1 and Emilio Luque1
1Department of Computer Architecture and Operating System (CAOS),

University Autonoma of Barcelona, Spain

javier.panadero@caos.uab.es, alvaro.wong@caos.uab.es, dolores.rexachs@uab.es, emilio.luque@uab.es

Abstract— When a message-passing application is executed
many times over a long period of time, using an elevated
number of resources, it is critical to predict its behavior
before executing it. We propose a methodology to predict the
strong scalability behavior for message-passing applications
in specific systems. It is focused on characterizing and
analyzing the communication and computational application
patterns, from a set of executions in small scale, to project
their behavior when the number of processes increases. The
methodology strives to use a reduced number of resources.
This paper presents the general methodology, focusing on
validating the computational time model, which is a regres-
sion based approach. This model allows us to predict the
computation time with high accuracy for a large number
of processes. We executed from 16 to 256 processes and we
predicted the computation time up until 4,096 processes. For
the applications tested, we obtained an error of less than 9%.

Keywords: Performance Prediction, Scalability, MPI Applica-

tions, Computation time prediction

1. Introduction
In recent years, High Performance Computing clusters

have increased the number of cores significantly [1]. As

a consequence, the users of these systems want to get the

maximum benefit from this large number of cores, scaling

their applications [2] .

Due to the complex interaction between message-passing

applications and the HPC system, many applications may

suffer performance inefficiencies, when they scale to a large

number of processes. In order to achieve an efficient use of

the system, it is critical to know the application behavior in

the system before executing it, using an elevated number of

resources.

We propose a methodology to analyze and predict the

strong scalability [2] behavior for message-passing applica-

tions on a given system, by running representative phases

of the application, signatures, in small scale. Moreover, the

methodology could also be useful for scheduling and code

optimization.

Message-passing applications are composed of a set of

phases that are repeated throughout the application [3].

These phases were written in the application using specific

communication and computational patterns, which follow

behavior rules. To obtain these phases automatically, we

use the PAS2P tool [4]. PAS2P allows us to generate the

PAS2P signature, which contains only the relevant applica-

tion phases and their repetition rates (weights).

The methodology focuses on characterizing and analyzing

the communication and computational patterns of each phase

in a transparent way, from a set of signature executions in

small scale. By executing this set of signatures, we can ob-

tain quick information about the phases’s behavior, as the ap-

plication scales, to model the general behavior rules of each

phase. These rules specified the phase behavior and they

allow us to predict their behavior as the number of processes

increases. From these rules, the logical application trace is

generated for a specific number of processes. This Logical

trace has to be complemented with the communication and

computational time, to predict application performance.

To predict the computational time, we use a regression-

based model by phase, which uses as input data the compu-

tation time of each phase of the initial signatures. In many

cases, the regression models are limited by the scope of

prediction, obtaining a high prediction error when a distant

point of the points used to generate the model is predicted.

In order to improve the prediction quality of the model,

allowing us to predict distant points with high accuracy, we

carry out a change of workload domain, using a workload

much less than the original, to emulate the computation time

for the original workload with a large number of processes.

In this way, we are able to measure a distant point without

executing for that large number of processes, to fit the model.

Once the computation time has been predicted for all the

application phases, the physical trace is generated, which

will be used to predict the communication time and obtain

the performance prediction of the application.

In order to validate the method to predict the computa-

tional time, we executed from 16 to 256 processes and we

predict the computational time 4,096 processes. For all the

applications tested, the prediction error is less than 9%.

There are similar works which are related to predicting

the computation time based on regression models, from

executions for a small number of processes. Barnes et al

[5] [6] propose studying the scalability using linear and

398 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



logarithmic regression functions, isolating computation and

communication to predict the application performance. They

use black models, where the internal application behavior is

unknown. Calotoiu et al [7] present a tool to find scalability

bugs. This tool automatically generates asymptotic scaling

models for each part (kernel) of the application. The model

is based on regression models, to fit the performance data

from a set of small-scale performance experiments. Another

similar work, presented by L. Carrington et at [8], offers

a methodology for extrapolating the computational time of

large scale applications by capturing the details of compu-

tational behavior at a series of smaller core counts. Unlike

these works, our method proposes measuring a distant point

using a reduced set of resources, in order to fit the compu-

tation regression model, improving the quality of prediction

for far points.

This paper is organized as follows: Section II presents the

proposed methodology to predict the scalability behavior,

Section III presents the computation time prediction model,

Section IV presents the experimental validation and finally

Section V, the conclusions and future work.

2. Proposed methodology
The main goal of the methodology is to model the parallel

application to analyze and predict the strong scalability

behavior on a given system, by executing a limited set of

application signatures in small scale, as is shown in Fig. 1.

Parallel applications are typically composed of patterns of

computation and communication that are repeated through-

out the application. These patterns are grouped in phases,

which compose the application signature. If we execute the

signature for different number of processes, we can observe

that the number of phases remains constant, but their patterns

change their behavior following behavior rules.

Analyzing the behavior of the phases, we know that the

communications, the communication volume, the number of

instructions and the computational and communication time

can change, modifying their behavior, but the work to be

carried out will still be the same, distributed among more

processes, because we are working with strong scalability. In

order to model the general behavior rules of communication,

computation and weight of each phase, to project their

behaviors as the number of processes increases, the phases

of the signature for a different number of processes will be

related by functional similarity.

Once these general rules have been modeled, we can

generate the logical trace for any number of processes. This

trace is composed of the communication events, the number

of instructions and the weight of each phase. The trace is

generated per process instead of a global trace with the

objective being to model each process indepently.

To predict the application performance, the logical trace

has to be complemented with the communication and com-

putational time. To predict the computation time, we use

Application Characterization 

Computation Communication 

Computational 
Time 

Prediction 

S16 S8 SX . . . 

Parallel Application 

  

Communication 
Model 

Computational 
Model 

Generate the Logical 
Trace 

W 

PAS2P Tool 

Relevant Phases 

Logical  
Trace 

 Ts8 Ts16  Tsx 

Mapping 

Logical Model 

Weight Model 
S32 

 T32 

Weight 

Computational 
Pattern 

Communication 
Pattern 

Weight Pattern 

Computational 
Time Phasei 

  
Scaled  

Physical 
Trace 

Scalability Prediction 

Communication 
Time Prediction 

Performance Prediction 

Fig. 1: Proposed Methodology

a regression-based model by phase, which uses the com-

putation time of each phase of the initial set of signatures

as input data. In order to improve the prediction quality of

the regression computation model, allowing us to predict

points for a large number of processes with a high accuracy,

we use a method based on a change of workload. This

method allows us to measure the phase computation time for

an elevated number of processes (distant point), executing

the signature for a reduced number processes and a small

workload. In this way, we introduce a new distant point in

the model, which allows us to fit the initial computation

regression model, improving its quality of prediction.

Once the computation times have been provided to the

logical trace, the physical trace is generated, which will be

executed by pieces in a small number of cores, in a iterative

way, until all the process has been measured, to predict the

application performance.

In the next subsections, the steps of the methodology are

presented.

2.1 Application Characterization
This step consists of characterizing the application behav-

ior (communication and computation) to obtain information

to build its logical trace. In order to do that, we carry out a

set of signature executions for a small and different number

of processes, which will be analyzed to extract information

from each phase. The application signature extracts infor-

mation of the application phases, which will be saved in a

trace file per process. Fig. 2 shows an example of trace file

obtained with the signature. The trace provides information

#Process Phase Type of 
primitive 

Source Dest. Comm. 
Volume 

#Inst. Comm. Time 
(ns) 

Comp. Time 
(ns) 

Fig. 2: Trace file of the phase 1 for the process 4.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 399



about the phase id, the type of MPI primitive, the source

and destination of the communication, the communication

volume in bytes, the communication time in nanoseconds

and the computational time in nanoseconds.

It is noteworthy that the signature execution time is about

1% of the application execution time, covering approxi-

mately 95% of the whole application.

2.2 Logical Model
Once the phases have been characterized, the communi-

cation and computation patterns and the phase weight have

to be analyzed and modeled to generate the general behavior

rules of each phase. These rules will be used to generate the

logical application trace for a greater number of processes.

2.2.1 Communication pattern modeling
The communication pattern comprises the general behav-

ior equations and the data volume equations for each com-

munication of each phase. The general behavior equations

calculate the message destination from the source, while the

data volume equations calculate the size of the message.

To model the behavior of each phase, all the phases of

the signature for a different number of processes will be

related by functional similarity. To relate the phases, we use

a method which is based on how the sequence of phases

occurs, since it does not depend on the number of processes,

only in the way in which the application was developed.

Once the phases have been related, the predicted data volume

equation of each communication will be obtained by math-

ematical regression models, while for obtaining the general

communication rules (Source-Destination), an algorithm has

been proposed. This algorithm is based on the fact that the

application is well-developed, and it executes a deterministic

communication pattern for all the processes, without non-

predictive conditional sentences as the number of processes

increases. Fig. 3 shows an overview of the procedure. This

algorithm is based on obtaining the communication equa-

tions (eq.processes) for each phase (local equations), which

represent its communication pattern. From these equations,

the general equation is modeled by each phase, which allows

us to predict the evolution of the communication pattern of

the phase for a greater number of processes.

2.2.2 Weight modeling
In order to model the weight behavior, regression models

are used. Due to the deterministic way of the weight behav-

ior as the application scales, there is a linear dependence

between the number of processes and the weight of the

phase. For this reason, linear regressions are initially more

appropriate to fit the weight, because it allows us to obtain

a prediction equation such as y = a + bx0, using as an

independent variable the number of processes to execute

the application, which represents exactly the phase weight

behavior, obtaining a R− square = 1.

Ph1 

F(64) = eq64 

f(16) = eq16 

f(n) = GEN 

f(32) = eq32 

f(128) = eq128 

Ph1 

Ph1 

Ph1 

P16 

P32 

P64 

P128 

Fig. 3: Modeling the general equation of the communication

pattern from a set of application signatures

Scientific applications cannot be executed for any number

of processes, but they also follow execution rules. Depending

on the number of processes required to execute the appli-

cation, it can be possible that the linear regression does not

fit properly, obtaining a correlation index R-square distant

to 1. In this case, another kind of regression could be more

appropriate. This happens by the distance between the input

samples (Number of processes to execute the application)

used to fit the regression. In fig. 4 we show an example,

where through the limitations of the application (the users

can only execute the application using a square number of

processes), we use this to generate the model for the input

points: 16, 25, 36, 49 and 64 processes.

As we can see in the figure, the distance of the input points

used to model the regression is non-uniform, so, if we fit

the points by a linear regression, we obtain a R−square =
0.98253. Through the theory of statistical regression models,

we know that if we use an equation with this correlation

index, the prediction error will be considerable and it will

be higher as we move away from the executed points. In

order to use a linear regression with an R−square = 1, we

make a linealization process based on a change of domain,

where the objective is to obtain an uniform distance among

all the points. As we can see in the figure, we change the

number of processes by a sequential index (displacement),

making a distance of 1 for all the points. In this way, we

obtain a R− square = 1 using a linear regression.

16 1 753 
25 2 1004 
36 3 1255 
49 4 1506 
64 5 1757 

Fig. 4: Modeling the weight of the phase

400 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



Total Phase1 
Instructions 

Total Phase2 
Instructions 

Total Phase3 
Instructions 

Total Phase4 
Instructions 

Ph2 Ph1 Ph3 

Ph4 

F1 

Ph2 Ph1 

Ph2 Ph1 

Ph3 Ph4 
Ph1 Ph2 

Ph3 Ph4 

Ph3 Ph4 

Ph4 

Constant 

16 

64 

32 

N 

#Processes 
Total application 

instructions16 

Total application 
instructions32 

Total application 
instructions64 

Total application 
instructionsN 

Fig. 5: Behavior of the strong scalability by phase.

2.2.3 Computational Pattern Modeling
In strong scalability, the application workload remains

constant as the application scales. The workload is dis-

tributed among all the processes, and the instructions exe-

cuted by each process decrease, as the number of processes

increases, being the total number of instructions practically

constant. We can extrapolate this concept to the application

phases, maintaining its total number of instructions constant,

as the application scales, as is shown in fig. 5.

To predict the number of instructions of each process

by phase, we model as the instructions are distributed in

the phase when the number of processes increases. To

model these equations, the processes with a similar behavior

in computation, that is a similar number of instructions

(95% similarity), are grouped in Instructions Groups (IGi).
The total number of instructions of each Instruction Group

remains constant. Then, each Instruction Group is modeled

as the instructions are distributed as the number of processes

increases. The sum of instructions of each group multiplied

by the weight of the phase is the total number of instructions

of the phase, as is shown in Eq. 1, where x is the total

number of groups.

Fig. 6 shows an example of a phase with 4 processes

with a different number of instructions. Processes 0 and 1

have a similar number of instructions, and processes 2 and 3

another. Scaling the application for 8 processes, processes 0

and 1 distribute their instructions between processes 0 to 3,

while processes 2 and 3 distribute their instructions between

processes 4 to 7, following their computation rules. Then,

P0 

P1 

P2 

P3 

P4 

P5 

P6 

P7 

P0 

P1 

P2 

P3 

Fig. 6: Distribution of instructions as the number of pro-

cesses increases.

for this example, we have 2 different groups, IG1 and IG2,

where each group distributes its number of instructions in

a specific way, following a behavior rule of distribution. As

we show in the Eq. 2, which calculates the total number of

instructions of the set of processes of a group (n), the total

instructions of the group is the sum of the instructions of

each process (Pi) involved in the group, multiplied by the

weight of the phase.

If we focus on Eq. 2, the aim is to predict the term "Pi"

for a greater number of processes. We know that the term

TotalIG is constant, the weight of the phase is predicted

by linear regression methods, and the number of processes

between the instructions distributed in the group have been

modeled. Then, we can predict the instructions of each

process, isolating the term "Pi", as is shown in Eq 3.

TotalPhaseInstructions =
x∑

i=1

TotalIGi ∗ weight (1)

TotalIG =
n∑

i=0

(Pi) ∗ weight (2)

Pi =
TotalIG

n

weight
(3)

2.3 Performance prediction
The logical trace has to be complemented with the com-

putational time, in order to generate the physical trace. To

predict the computation time, we use a regression-based

model by phase. As this is the main point of this work, this

procedure will be explained in detail in the next section.

Once the physical trace has been generated, the communi-

cation time is predicted. To predict the communication time,

the physical trace will be executed by range of processes in

a reduced number of cores, in an iterative way, until all

the processes have been executed. Once the communication

time has been predicted, we will have the predicted execution

times of each phase and their weight. Then, we apply eq.

4 to obtain the application performance, where PET is the

Predicted application Execution Time, m is the number of

phases, TEPhasei is the Phase i Execution Time and Wi is

the weight of the phase i.

PET =
m∑

i=1

(TEPhasei)(Wi) (4)

3. Computational time prediction
To predict the computational time of each phase, we use a

regression-based approach named Computational Regression

Model (CRM), which uses as input data the computational

time of each phase for the initial set of signatures.

Despite predicting the computational time by phase in-

stead of the whole application, the prediction error improves

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 401



(a) Computation Regression Model (CRM) (b) Computation Regression Model (CRM) with
distant point

Fig. 7: Regression models used to predict the computation time

considerably, because each phase has a different computa-

tion behavior which has to be approximated by a specific

regression function, we know that the regression models are

limited by the scope of the prediction. If we predicted a

distant point from the real points used to generate the model,

we would obtain an elevated prediction error as we move

away from the measured points, as we can see in fig. 7a.

In order to avoid this problem, and therefore to improve

the quality of prediction for a large number of processes

(distant points) of the model, we propose a method which

consists of measuring a far point, without using a large

number of application processes and resources, to fit the

initial Computational Regression Model (CRM) with this

new point, as we can see in fig. 7b. Using this method, we

manage to improve the accuracy of the model, predicting far

points with a high level of accuracy.

The proposed method to measure this new point is based

on doing a change of workload domain, using a workload

much less than the original, to emulate the application

computation time of each process for the original workload

with a large number of processes.

A phase is a reduced segment of code, which executes

a specific function. We can select a new workload for the

phase, smaller than the original, which will be executed over

a small number of processes. The objective is to achieve a

similar number of instructions and cache misses by each

process, rather than the original workload executed over a

large number of processes, to emulate the computational

time by process of the phase. In fig. 8 we show an example.

We have an application, which is executed for 64 processes

with a workload W. This workload is distributed between the

application processes in a uniform way, with each process

receiving a work w’ . If we executed the same application

for 4 processes with a new workload M, which is w’ x 4, the

processes are carrying out the same work (same instruction

number and cache misses) as when executing the application

for 64 processes with a workload W .

In fig. 9 we show a flowchart of the method used to predict

the computation time of a phase:

1) From the logical trace obtained in the modeling step,

we generate a new table, named Instruction Prediction Table

(IPT), which contains a computational global vision of each

phase. IPT contains the information about the number of

instructions by process, the number of processes, the weight

of the phase and its displacement, and finally the total

number of instructions, as the application scales. Moreover,

contains two different parts, a measured part and a predicted

part. The measured part is generated from the information

obtained during the execution of the initial set of signatures,

while the predicted part is generated from the equations of

computation generated in the logical trace. The measured

part allows us to validate the accuracy of the model.

In order to obtain more than one Instruction Group in

the computation pattern modeling, we generate as many

Instruction Prediction Tables as Instruction Groups. The total

number of instructions of each Instruction Prediction Table

will be the total number of instructions of the phase.

2) At the same time, to generate the IPT table, we

use the computation time of each phase of the initial set

of signatures, in order to generate the initial Computation

Regression Model (CRM), which will be used to predict the

computation time of each phase.

3) From the IPT, we check if the total number of in-

structions is practically constant, as the number of processes

increases. If this assumption is not met, the method is not

applicable and we cannot obtain a distant point to improve

the initial CRM model. In this case, we use the regression

equation obtained in the CRM model, generated in the last

step, to predict the computation time. Otherwise, we follow

on to the next step to obtain a distant point.

4) In order to measure this new point, we select a small

workload and we execute the signature with this workload

for a small number of processes. We start executing the

Application Workload (M) 
Number of Processes (4) 

W’ = W/ #Processes  
M = w’ x 4 

Application Workload (W) 
Number of Processes (64) 

Fig. 8: Emulating the computation time of a process chang-

ing the application workload

402 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



Fig. 9: Flowchart of the method used to predict the compu-

tation time

signature for 16 processes, and we increase the number of

processes following the application execution model, until

we find the minimum CPI of the phase. We select the

minimum CPI because of two main goals, the first being that

by using the minimum CPI we are sure that the workload is

small enough to obtain a sufficiently distant point to fit the

regression. The second reason is to avoid the effect of cache

misses, since if we predict the computation time between

the points of signatures used to generate the CRM model

and the distant point, the model considers the cache effects.

In addition, if we predict the computation time from the

distant point, the cache effects practically do not have any

influence in the model. Once we have executed the signature,

we save this number of instructions and the computational

time. We know that in some cases, because of limitations

of the parallel application, it is not feasible to generate a

different workload from the original. In these cases, it is not

possible to obtain the distant point.

5) Then, we relate the number of instructions obtained

in the previous step, with the number of processes for

the original workload. In order to obtain this number of

processes, we used the IPT generated in step 1. In the table,

we seek the number of instructions closest to the number

of instructions obtained by the small workload. Then, we

will obtain the number of processes for this number of

instructions.

6) Once we have the number of processes for the original

workload, and the computational time, measured in step 4,

we incorporate this new point to the the CRM model, to

generate a more accurate new regression function.

7) We use this new regression function to predict the

computation time.

4. Experimental Validation
In this section, the method to predict the computation time

has been validated. We used different benchmarks such as:

BT, CG, SP and LU from the NPB NAS [10] suite, using

Table 1: Instruction prediction table for phase 1 of BT

Number of Number of Weight Total inst.
Instructions Processes Weight Displacement Number

Measured Values (Initial Set of Signatures)
1539358893 16 1255 3 30910326571440
820993294 25 1506 4 30910397519100
488835328 36 1757 5 30919812166656
314154733 49 2008 6 30910312489336
213799791 64 2259 7 30910318583616
152035493 81 2510 8 30910336081830
111953973 100 2761 9 30910491945300

Predicted Values (Instruction Prediction Table)
1539358780 16 1255 3 30910324302400
..... ..... ..... ..... .....
152035395 81 2510 8 30910316157450
111953349 100 2761 9 30910319658900
84813133 121 3012 10 30910315829644
65784545 144 3263 11 30910315829644
..... ..... ..... ..... .....
1877266 1600 10291 39 30910315829644
1744266 1681 10542 40 30910315829644
1623539 1764 10793 41 30910315829644
1513701 1849 11044 42 30910315829644

as input class D. Moreover, we used two applications: QCM

[11] and N-Body. We predicted the computation time of each

phase for BT and SP for 1024 processes, CG, LU and N-

body for 4096 processes and QDIM for 2048 processes.

For the BT, we predicted the computational time of each

phase for 1,024 processes. We executed the signatures for

16, 36, 64, 81 and 100 processes, using the workload D, to

generate the initial Computation Regression Model (CRM).

We obtained 6 phases for this application.

For the case of phase 1, first of all, we modeled the

computation pattern and the weight pattern in the logical

model step. Through the modeling of the computation pat-

tern, we obtain that all the processes have the same number

of instructions, so we have only one Instruction Group,

therefore, one IPT. Regarding the weight modeling, we used

the linear regression equation y = 251 ∗ x+502, where "y"

is the predicted weight and "x" is the displacement, as we

increase the number of processes. This regression equation

has a R− square = 1 . From this information, we generate

the IPT table, which is shown in Table 1. As we can check

on the top of the table, the total number of instructions for

the phase is practically constant, as the number of processes

increases. For this reason, we look for a far point in order

to be provided to the CRM.

To obtain a far point, we executed the signature of the

BT using workload B (much less than workload D) for a

reduced number of processes, until we found the minimum

CPI. In table 2, we show the information of the different

signature executions for phase 1 for this workload. We

Table 2: Signature executions for BT using the CLASS B

Number of Number of. Number of LLC CPI Computation
Processes Instructions Cycles Misses time (nsec.)
16 34356426 27621512 20241 0.803 17263445
25 17836224 14324977 10275 0.803 8953111
36 9915863 7861580 5479 0.792 4913488
64 4027761 3104163 1467 0.770 1940102
81 2392021 1721033 865 0.719 1075646
100 1759558 1265527 695 0,719 790954

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 403



show the number of processes for which the signature was

executed, the number of instructions by process, the cycles,

the misses of Last Level of Cache (L2), the CPI and the

computation time in nanoseconds. As we can see in the table,

from 81 processes we obtain the minimum CPI (0.719).

We know what the minimum CPI is because for the next

execution (100 processes), we obtain the same CPI and

the number of misses is insignificant. Then, we select the

number of instructions for the last execution of 100 processes

(1759558) and its computation time (790954 ns).

The next step is to relate the instructions obtained for

workload B with the number of processes of workload D. In

order to do that, we seek the number of instructions obtained

(1759558) in the Instruction Prediction Table for this phase.

As we can see in table 1, the closest number of instruc-

tions is 1744266, which has a difference of 0.87% with

the number of instructions of workload B (1759558). This

number of instructions corresponds to the execution of class

D with 1681 processes. Thus, we select this number of

processes to improve our model.

We introduce this new point in our model (number of

processes and execution time), obtaining the regression

equation y = 9 ∗ 109 ∗ x−1.547 , where the variable y is

the computation time and the variable x is the number of

processes to be predicted. We used this equation to predict

the computation time for the phase for 1024 processes. As

we can see in table 3, we obtain a prediction error of 2.11%.

In the same table, we show both the prediction error

for the other phases of BT and the other applications

tested, which were predicted to carry on with the same

procedure. For the CG, LU, N-body and QDIM, we execute

the signatures from 16 to 256 processes, while for SP, we

execute the same number of signatures as for BT. All the

phases of the application fulfilled the condition that the total

Table 3: Summary of error prediction for the application

phases

Summary of phases of BT (prediction for 1024 processes)
Phase Real Predicted Prediction Regression
Num. time(ns) Time(ns) Error (%) Equation

Phase 1 1941784 1982934 2.11% y = 9 ∗ 109 ∗ x−1.547

Phase 2 35960361 39114740 8.77% y = 1 ∗ 1011 ∗ x−1.132

Phase 3 165862020 160857620 3.01% y = 2 ∗ 1011 ∗ x−1.028

Phase 4 451140 480522 6.51% y = 3 ∗ 1010 ∗ x−1,593

Phase 5 2214673 2096107 5.35% y = 8 ∗ 1010 ∗ x−1,522

Phase 6 36062311 39114740 8.46 % y = 1 ∗ 1011 ∗ x−1.132

Summary of phases of CG (prediction for 4096 processes)

Phase 1 2698523 2796674 3.63% y = 2 ∗ 1010 ∗ x−1.067

Phase 2 137928 149985 8.74% y = 3 ∗ 107 ∗ x−0.637

Phase 3 344297 375251 8.99% y = 2 ∗ 107 ∗ x−0.478

Phase 4 601238 562501 6.44% y = 8 ∗ 107 ∗ x−0.596

Summary of phases of LU (prediction for 4096 processes)

Phase 1 51549 49647 3.83% y = 2 ∗ 108 ∗ x−0.998

Phase 2 34645 32573 6.36% y = 4 ∗ 108 ∗ x−1.132

Summary of phases of SP (prediction for 1024 processes)

Phase 1 165110327 163103109 1.21% y = 4 ∗ 1011 ∗ x−0.926

Phase 2 561715 598590 6.56% y = 4 ∗ 1010 ∗ x−1.635

Phase 3 240359 260203 8.25 % y = 2 ∗ 1010 ∗ x−1.623

Summary of phases of N-BODY (prediction for 4096 processes)

Phase 1 449150 430921 4.23% y = 2 ∗ 1010 ∗ x−0.975

Summary of phases of QDIM (prediction for 2048 processes)

Phase 1 16428976 17724522 7.88% y = 3 ∗ 1013 ∗ x−2.039

Phase 2 26478907 25170124 4.94% y = 5 ∗ 1010 ∗ x−0.996

number of instructions is constant. Therefore, the method to

find the distant point was applied. For all the phases of the

applications, the prediction error is below 9%.

5. Conclusions and future work
In this paper, we have presented a methodology that allows

us to analyze and predict strong scalability for message-

passing applications on a given system, by executing a

limited set of application signatures in small scale. The

methodology has been explained focusing on validating the

method to predict the computational time of each applica-

tion phase. The proposed method allows us to predict the

computation time for a large number of processes with a

high accuracy using a reduced number of processes. For all

the applications tested, the prediction error is less than 9%.
As future work, we are working on extending the com-

putation model to measure far points of phases which do

not have a similar number of instructions, as the number of

processes increases.

Acknowledgment
This research has been supported by the MINECO

(MICINN) Spain under contract TIN2011-24384

References
[1] N. Attig, P. Gibbon, and T. Lippert, “Trends in supercomputing: The

european path to exascale,” Computer Physics Communications, vol.
182, no. 9, pp. 2041 – 2046, 2011.

[2] R. Nishtala, P. Hargrove, D. Bonachea, and K. Yelick, “Scaling
communication-intensive applications on bluegene/p using one-sided
communication and overlap,” in Parallel Distributed Processing, 2009.
IPDPS 2009. IEEE International Symposium on, May 2009, pp. 1–12.

[3] A. Wong, D. Rexachs, and E. Luque, “Parallel application signature
for performance analysis and prediction,” in IEEE Transactions on
Parallel and Distributed Systems (TPDS), 2014 (Acepted).

[4] J. Panadero, A. Wong, D. Rexachs, and E. Luque, “A tool for selecting
the right target machine for parallel scientific applications,” in ICCS,
2013, pp. 1824–1833.

[5] B. J. Barnes, J. Garren, D. K. Lowenthal, J. Reeves, B. R. de Supinski,
M. Schulz, and B. Rountree, “Using focused regression for accurate
time-constrained scaling of scientific applications,” in IPDPS, 2010,
pp. 1–12.

[6] B. J. Barnes, B. Rountree, D. K. Lowenthal, J. Reeves, B. de Supinski,
and M. Schulz, “A regression-based approach to scalability predic-
tion,” in Proceedings of the 22Nd Annual International Conference
on Supercomputing, ser. ICS ’08, 2008, pp. 368–377.

[7] A. Calotoiu, T. Hoefler, M. Poke, and F. Wolf, “Using automated
performance modeling to find scalability bugs in complex codes,” in
Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis, ser. SC ’13, 2013, pp.
45:1–45:12.

[8] L. Carrington, M. Laurenzano, and A. Tiwari, “Characterizing large-
scale hpc applications through trace extrapolation,” Parallel Process-
ing Letters, vol. 23, no. 4, 2013.

[9] J. Dongarra, A. D. Malony, S. Moore, P. Mucci, and S. Shende, “Per-
formance instrumentation and measurement for terascale systems,” in
European Center for Parallelism of Barcelona, 2003, pp. 53–62.

[10] D. Bailey, E. Barszcz, J. Barton, and D. Browning, “The NAS Parallel
Benchmarks,” International Journal of Supercomputer Applications,
vol. 5, no. 3, pp. 66–73, Jan 1991.

[11] S. Hioki, “QCDMPI—pure QCD monte carlo simulation code with
mpi,” Nuclear Physics B-Proceedings Supplements, vol. 63, pp. 1000–
1002, Apr. 1998.

404 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



SESSION

CLOUD COMPUTING AND APPLICATIONS

Chair(s)

TBA

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 405



 

406 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



DISCO: Unified Provisioning of Distributed Computing Platforms
in the Cloud

P. Harsh1, and T. M. Bohnert1
1InIT, Zurich University of Applied Sciences (ZHAW), Winterthur, Zurich, Switzerland

Abstract— Big data is ubiquitous. The modus operandi
recently has been to collect all possible data and then pro-
cess later. Advances in distributed systems, fault tolerance
and resiliency together with computational shift to cloud
computing has enabled cheap storage and fast processing of
huge amounts of data. Cluster computing has been there for
decades, clouds bring the benefits of on-demand, pay-as-you-
go, multi-tenancy, rapid elasticity to cluster/grid computing.
There is an explosion of high quality open source distributed
processing platforms (Spark, Hadoop, Storm, etc.). Further-
more, there is a plethora of add-ons for these platforms to
enable specialized data processing needs of the scientific and
business community. A unified semi-automated provisioning
mechanism is necessary to reduce the complexity in using
such platforms. In this paper we present our architecture
and rationale for such a provisioning system which would
take into account the data processing requirements of the
researcher, and provide a unified experience for on-demand
creation of a specialized data processing platform over IaaS
clouds. We further show how our solution incorporates all
major tenets of the cloud.

Keywords: cloud computing, provisioning, big data

1. Introduction
Big-data [1] is defined as the increase in the volume,

variety, velocity of data to such an extent that it becomes
increasingly difficult to process using common statistical
methods, and analyze through traditional databases. The
world is becoming increasingly connected, with efforts being
made by large technology firms to bring basic connectivity
to every nook and corner [2] [3] of this planet. With cyber-
physical systems [4], Internet of Things (IoT), connected
cars [5] and home automation - billions of devices will
be connected to the Internet. There will be an explosion
of data which will provide huge opportunities as well as
challenges to the entities hoping to make use of them.
These big-data sources will present challenges of collection,
storage, privacy, security, etc. but despite these, they will
prove invaluable for future smart city planning, better and
targeted advertisements, timely health care regimen, etc. The
potential of such a scenario is limitless.

Distributed systems and processes, in particular cloud
computing, have provided a reasonable technology platform
for storage and processing of big data. Scientific community

has traditionally relied on specialized super computers, huge
government funded data clusters and grids for processing
massive data sets in the past. In addition to scientific datasets,
modern day general consumers are constantly generating big
data through their social networking activities and online
behavior. Naturally, businesses are increasingly becoming
interested in using the power of data for better marketing
of their services. Clouds provide businesses with a cheap
alternative (to scientific grids) for processing big-data.

Last few years have seen an explosion of mature open
source toolkits and platforms that allow scientific and busi-
ness community perform distributed computing efficiently.
There are numerous plugins [6] available for any popular
platform for supporting variety of use cases. Every platform
comes up with it’s own challenges, configuration optimiza-
tions, provisioning specificities, and additionally, there is the
challenge of making the platform operate seamlessly in a
cloud environment.

Our work focuses on reducing the challenges in orches-
trating and provisioning a desired distributed computing
solution in the cloud from an end user perspective. We
will outline the architecture of our distributed computing
provisioning framework that would allow the user to specify
the nature of the processing task, capacity requirements, and
other relevant parameters following which the provisioning
system takes over, creates the cluster computing environment
over cloud, and returns necessary endpoints to the researcher
/ scientist for data uploads, job submissions, and result
collection. We will also show how the platform could hook
into cloud billing solutions so that metered consumption can
be facilitated.

The rest of the paper is organized as follows: candidate
data processing platforms and tools would be analyzed in
section 2, architecture of our framework - DISCO will be
presented in section 3, and work-flow analysis of DISCO
will be carried out in section 4. We will present our analysis
of a few selected related projects in section 5, and then we
will conclude with a summary and plans for the future course
of our work.

2. Popular Platforms
Distributed computing world has used map-reduce pro-

gramming paradigm since a few decades, but it was made
popular in the mainstream by the Google MapReduce [7]

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 407



paper that first came out in 2004. Since then rapid progresses
were made in the maturity of the paradigm after Yahoo
developed Hadoop for optimizing its search engine pro-
cesses, which in part were also inspired from the Google File
System [8] work1. Hadoop has gained popularity ever since,
with an impressive ecosystem of tools and enhancements
around it. In recent times, the focus of data analysis is
getting broadened, to not only include batch processing
tasks with stored data objects, but also handle non map-
reduce jobs, and streaming data processing for more time
sensitive (real-time) analytics. Stream processing is gaining
significance as businesses want more real time trends from
daily or even hourly data. Yahoo! uses S4 [9] for analyzing
users’ query submissions and click-through rate, Twitter
uses Storm for real time classification and organization
of tweets [10]. In some incident management systems,
streaming data processing forms the core of the offering.
Although there are numerous plugins available that allow
most of the popular data processing platforms to support all
kinds of the computations (batch, stream, graph, query, etc.)
tasks, we will look into these following candidate platforms
for supporting (initially) within our distributed computing
provisioning framework DISCO. DISCO framework will
support the full Berkeley Data Analytics Stack (BDAS)2 in
the later releases.

2.1 Apache Hadoop
Apache Hadoop is a mature open source map-reduce plat-

form with a vibrant ecosystem of tools around it to support a
myriads of data processing needs. The Hadoop map-reduce
ecosystem consists of projects such as Pig, Mahout (for
machine learning), Hive, etc. The Hadoop distribution uses
YARN [11] as cluster manager from version 2 onwards,
which is a monolithic (single-stage) scheduler. Application
and resource scheduling were built inside Hadoop core in
previous versions. The datasets are hosted in a distributed file
system (HDFS) [12] that ensures recoverability in the face
of node failures. Due to separation of scheduler logic from
version 2 onwards, Apache Hadoop has started supporting
not only map-reduce tasks, but other tasks as well such
as matrix, graph, machine learning computation, etc. in a
more efficient manner. In Hadoop, when a client submits a
task, the YARN resource manager schedules and manages
the task.

2.2 Apache Spark
Apache Spark [13] is a distributed data processing plat-

form from UC Berkeley’s amplab3 and is the key piece in the
Berkeley Data Analytics Stack (BDAS) [14]. Spark runs over

1part of the hadoop history was based on Gigaom article
https://gigaom.com/2013/03/04/the-history-of-hadoop-from-4-nodes-to-
the-future-of-data/ [retrieved: 11.03.2015]

2BDAS: https://amplab.cs.berkeley.edu/software/ [accessed: 18-03-2015]
3amplab: https://amplab.cs.berkeley.edu/

a distributed memory-centric storage system called Tachyon
[15], but also supports HDFS, Amazon S3, and GlusterFS.
Spark execution engine supports not only map-reduce batch
tasks, but stream processing, graph computations, machine
learning, query processing, etc. Being largely based upon
in-memory processing, Spark achieves higher processing
speedup by manifolds compared to Apache Hadoop, es-
pecially for repetitive tasks through intelligent use of in-
memory caches. The datasets are distributed as read-only
resilient distributed datasets (RDDs). Spark runs over Mesos
[16] which provides 2 level scheduling which enables variety
of applications to manage in application task scheduling in
a fine-grained manner.

2.3 Apache Storm
Apache Storm4 is an open source, real time data process-

ing platform originally released by Twitter after acquiring
BackType [17]. It allows processing of infinite streams
of data using tuple-at-a-time computational model. It uses
Nimbus as the master node, Apache Zookeeper5 for cluster
coordination and a number of Supervisors which are the
worker nodes. The Storm job topology consists of Spouts and
Bolts arranged in a directed acyclic graph (DAG). Spouts are
simply sources of streaming data. And bolts process a small
batch of tuples from the stream. Storm platform guarantees
data processing through the network of spouts and bolts, and
supports at-least-once delivery, and transactional topologies
[18].

3. DISCO Architecture
The DISCO architecture is influenced by the require-

ments of properly deploying and managing the candidate
technologies listed in the previous section based on the
user requirements. The high-level architecture is shown in
the Figure 1. It shows the user facing elements, the core
platform components, and also the relevant external cloud
components for completeness. The architecture provides for
an integration point towards the cloud rating-charging-billing
platform Cyclops [19] [20] [21]. It supports both web-based
(DISCO UI) as well as command line interfaces (DISCO
CLI) towards end users. These communicate with the DISCO
provisioning platform via RESTful [22] HTTP calls. The
REST API Server is the only publicly exposed service. Every
REST call is properly authenticated and authorized, although
the authentication and authorization services are not shown
in the architecture for brevity6.

4Apache Storm: https://storm.apache.org/
5Apache Zookeeper: https://zookeeper.apache.org/
6OAuth protocol can be used to secure the internal services that makes

up the core of the DISCO platform. Again, for brevity such inter services
interactions have been left out.

408 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



DISCO

Platform 
Template 

Store

Configuration 
Store

NFS
HDFS

Curated VM 
Image Index

HDFS

DISCO UIDISCO CLI

REST API Server

Configuration 
Management Server

Configuration 
Optimization

Log Analyzer

Configuration 
Optimizer

Change 
Planner

Actuator

Requirement Analysis

Deployment Planner

Platform 
AdaptersPlatform 

AdaptersPlatform 
Adapters

Orchestrator
Cloud Driver

Requirements

Platform Choice

Plan

VM 
Image 
Store

HDFS

distributed compute
cluster A

distributed compute
cluster B

Log Server

Cloud Manager
Cyclops RCB 

Platform

Platform 
Catalog Store

Fig. 1: DISCO Architecture

3.1 Core Components - Essential
The core of the platform is made up of these components:

Requirement Analysis Module
As the name suggests, the task of this module is
to analyze the end users platform requirements,
type of computation, resource requirements, nature
of the data source, etc. to determine which of
the supported distributed computing technologies
is best suited for their needs. The Requirement
Analysis module provides the technology selec-
tion along with other parameters (capacity hints,
placement requirements, etc.) to the Deployment
Planner module.

Deployment Planner Module
The deployment planner creates the proper cloud
deployment strategy, it uses the technology sug-
gestion, together with resource requirements to
query the Platform Template Store, Curated VM
Image Index, and Configuration Store to generate
the deployment template for the Orchestrator. This
module also initializes the base-line configuration
of the soon to-be deployed distributed compute
cluster in the Configuration Management Server.

Orchestrator
The Orchestrator is responsible for deployment
of the selected distributed computing platform
over the cloud. The orchestrator uses the Cloud
Driver to interface with the Infrastructure (IaaS)

Cloud Manager (popular open-source choices be-
ing OpenStack7, CloudStack8, OpenNebula9, etc.),
and sends the correct sequence of commands to
create the collection of virtual machines (VMs), in
a predefined order, with correct software packages
and configurations to make the data-processing
service usable by the requesting person. Once the
VMs are properly deployed, it returns the deployed
virtual-compute-platform (VCP) entry points (IPs,
other access details) to the calling environment.
This way the access details are eventually passed
on to the requesting user.

Configuration Management Server
The Configuration Management Server keeps the
current and past (checkpoints) configuration values
for every VCP currently provisioned and main-
tained within the DISCO environment. The VMs
are pre-configured to periodically contact this ser-
vice and get any updates to the configuration
parameters. The rationale behind this is runtime
configuration optimization for long running ser-
vices. The updated configuration can be applied
in the VMs if there are no active jobs within the
VCP. This is subject to acceptable configuration
management policy agreed or specified by the
user10.

Configuration Store
The baseline configuration for various distributed
data processing technologies are stored in this
database.

Curated VM Image Index
The DISCO platform keeps track of the prepared
VM images for each of the supported technologies
in this index. This comes in handy during the
deployment planning stage. The entries depend a
lot on the underlying IaaS cloud platform.

Platform Template Store
This is a collection of various deployment tem-
plates for each of the supported data processing
platforms. The template is filled with missing de-
tails before being sent to the Orchestrator module
depending on the user requirements.

Platform Catalog Store
This store keeps track of the state of currently
active virtual compute clusters managed through
the DISCO framework. It stores the access details,
relevant endpoints, health parameters, incidents /
events, etc.

7OpenStack: http://www.openstack.org/
8Apache CloudStackTM: http://cloudstack.apache.org/
9OpenNebula: http://opennebula.org/
10This functionality is very similar to features offered by popular con-

figuration management tools such as Puppet, Chef, Ansible, etc.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 409



These are the bare minimum required modules for imple-
menting a usable provisioning and management framework
for various distributed compute solutions.

3.2 Core Components - Optional
The core of the platforms consists of these (optional)

value-addition components:
Platform Adapters / Drivers

These driver programs enable the DISCO frame-
work to periodically query the VCPs, which for
the initial prototype would be Hadoop, Spark or
Storm clusters. Using these drivers, the provision-
ing system could track cluster statistics, job status,
etc. and could enable the REST API server to fetch
on-demand status and statistics to be returned back
to the user. This would enable us to design and
implement a more functional CLI and web UI for
end users.

Configuration Optimization
Configuration Optimization service will periodi-
cally check log server entries from various VCPs,
analyze them, and if errors or warnings are found,
look into the applied configuration parameters, and
past check-pointed configurations (if available).
This module will look into knowledge-base (not
shown in the picture) to locate safe and optimal
configuration parameters (from previous runs). If
not found, then the problem can be propagated
to the operators for manual intervention. The idea
behind this module borrows a lot from Incidence
Management [23] [24] domain and aligns with
the widely accepted MAPE-K [25] loop reference
model. The change planner plans the correct or-
der of the configuration updates to be applied
among various VMs, and services in them, which
comprises the concerned VCP. The actuator sim-
ply updates the Configuration Management service
which in turn checkpoints the previous values, and
prepares them for storage into the knowledge-base.

3.3 External Components
For sake of completeness, here we briefly describe the ex-

ternal components / services with which DISCO framework
has either required or optional dependencies.

Log Server
All the VMs are pre-configured to send logs to
a remote log server in addition to storing them
locally in the VM’s scratch space. The remote log-
ging can be enabled on request by the user if they
wish to enable run-time optimizations through the
Configuration Optimization module in the DISCO-
core.

Cloud Manager
Cloud manager is the external component that

not only enables life-cycle management of VMs
running in the cloud, but also creation of the
IaaS cloud from physical servers in the data-center.
In our prototypical implementation, this is Open-
Stack. Other popular cloud managers are Eucalyp-
tus, CloudStack, OpenNebula, etc. DISCO interacts
with various IaaS clouds through the appropriate
Cloud Driver which enables the Orchestrator to
communicate with the cloud managers through
their APIs.

VM Image Store
All customized VM images that allows DISCO to
provision and manage the requested (supported)
distributed data-processing platform are kept in the
VM Image Store. Most Cloud Management soft-
wares, including OpenStack come with a preferred
Image Store. In our case, this will be OpenStack
Glance11.

NFS Service
Sometimes it become necessary to enable end users
to easily upload files for processing in the VCP. In
some cases (esp. Apache Spark), the files in all the
worker nodes in the (virtual) cluster must reside at
the same path. This can be easily achieved if all
VMs have a common remote network file system
(NFS) [26] share mounted at the same absolute
path in their local file-system.

Cyclops
Cyclops [19] [20] is an open source framework
that allows custom rating-charging-billing solution
for cloud based services. It exposes a REST API
for external (non IaaS) services to send in metered
data. Using a combination or variety of metered
data, various billing strategies can be implemented.
DISCO will integrate with Cyclops and send in
any non standard, framework specific metered data
into it. This will enable measured, pay-as-you-go
service utilization cloud principle.

4. Workflows & Platform Analysis
DISCO framework’s unique features are -
• unified provisioning
• runtime configuration optimization
• virtual cluster lifecycle management & enabling mea-

sured service
The sequence diagrams and algorithms shown here will
analyze how these features are operationalized within the
architectural framework described earlier.

4.1 Unified Provisioning
Sequence diagram shown in Figure 2 presents a highly

simplified work-flow involved in a unified provisioning of

11OpenStack Glance: http://glance.openstack.org/

410 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



any selected distributed computing platform in the target
IaaS cloud. It presents the basic steps from user filling a
request form / questionnaire in the Web-UI and from clicking
submit until the selected compute cluster is provisioned over
the cloud. Upon successful provisioning the access details
for the cluster is returned back to the user. The various

Fig. 2: Unified Provisioning Work-flow

other usual steps such as data preparation and on-boarding,
authentication and authorization, etc. are not shown in the
steps for simplicity.

4.2 Runtime Optimization
The DISCO platform periodically looks for log entries

from all active virtual compute platforms (VCPs), and then
attempts to identify suboptimal state from them. The runtime
optimization component searches the knowledge-base for
historical occurrences of similar incidences, and prepares
the new configuration to help the VCP reach efficient state
(if possible). If a discovered incident can not be resolved
by the module independently, then an alert is raised to the
operator, to bring in human in the loop. A new entry is then
entered by the operator in the knowledge-base so that similar
incidents can be automatically handled in the future. The
pseudo-code for a possible platform runtime optimization
approach is shown in Algorithm 1.

The sys-admin upon receipt of the alert would manually
intervene, investigate the incident, and apply the fix manually
to the virtual cluster. In this process he will update the
resolution notes in the placeholder knowledge-base entry
enabling similar incidences to be handled automatically.

4.3 Cluster Life-cycle Management & Cloud
Principles Enablement

The DISCO framework allows users to provision a dis-
tributed compute cluster through a web interface or a CLI
client-tool. This enables on-demand self-service provisioning
of any supported platform. The cluster is made up of a
number of virtual machines running over an IaaS cloud,
therefore the usage measurement taken at the IaaS level

Data: Log entries from the log server
Result: Optimal VCP entity configuration to resolve

any identified adverse incident / event
initialization;
filter log messages to type WARN or ERROR from log
files;
foreach entry in WARN or ERROR list do

identify the VCP id for this log;
collect all WARN or ERROR level messages for
this VCP instance;
look in knowledge-base for the possible fix;
if fix located then

create a patch configuration based on
knowledge base entries / notes;
create the patch application plan based on the
number of VMs in the VCP;
write the patched configuration and application
plan into configuration management server;
update the knowledge-base;

end
else

//no knowledge-base entry was located;
create a ticket for the system admin;
create a placeholder knowledge-base entry;
send alert with ticket-id to administrator;
//unresolved events are tracked inside the
platform catalog;
create a pending resolution entry for this event
in the platform catalog store;
//duplicate entries (if exist) are merged;

end
end

Algorithm 1: Runtime Optimization Process

covers the major part of DISCO metering. Integration with
Cyclops would allow DISCO to send in non-IaaS metered
data into the charging and billing platform. Cyclops allows
measured use of the DISCO framework. On demand elastic-
ity is supported by virtue of the cloud use. Dynamic scaling
of the compute cluster is generally supported in all major
open-source distributed computing platforms.

The compute cluster life-cycle management - from cluster
deployment, to configuration management, runtime opti-
mizations, and cluster disposal when no longer needed, is
handled in the DISCO framework. Most of the processes and
work-flows are intuitive based on the architectural element
described earlier, and are facilitated by the cluster states
and access data is maintained in the platform catalog store.
The DISCO framework uses easy primitives and simple
work-flows, an example of which is the way it handles the
unresolved incident / event (as reported by the Configuration
Optimization module) in the Platform Catalog Store. This is
shown in Algorithm 2.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 411



Data: Platform State Data from Platform Catalog Store
Result: Update of Platform State in the Platform

Catalog Store
if VCP event flag is set then

if VCP event is in unresolved state then
resend alert to the sysadmin;
//this allows alerts to be sent periodically until
the event is resolved;

end
else

//sysadmin has manually intervened and fixed
the errors in the VCP;
//after which he has likely updated the
knowledge-base with resolution notes for this
class of events;
//the manual update of the knowledge-base
already marks the event state as resolved;
reset the VCP event flag;
if Configurations in Configuration Management
Server is not updated then

update the VCP configurations in the
Configuration Management Server;
//this would make sure that the older
configurations are accidentally not applied
during future configuration syncs;
//ideally the new configurations for the VCP
is immediately updated in the Configuration
Management Server.

end
end

end
Algorithm 2: VCP Unresolved State Resolution Process

5. Related Projects and Service Offer-
ings

Almost all major cloud providers support on-demand big-
data analytics platform provisioning. There are a few open-
source projects that look into similar service. A small subset
of prominent alternatives are discussed next.

5.1 OpenStack Sahara
Sahara [27] is an integrated, community driven, open-

source project in the OpenStack ecosystem where the prin-
cipal goal is to provide Apache Hadoop as a service to
users. Their road-map includes providing support for Apache
Spark platform in the near future and an early prototype
towards that goal was demonstrated by Eurocom [28]. The
project goals are similar to DISCO architecture, but is
intimately tied to OpenStack cloud platform and its various
internal services. The project allows user to choose certain
characteristics of their hadoop cluster - cluster size, heap
size, etc. For data analytics, it supports a number of Hadoop
plugins such as pig [29], hive [30] and allows upload of

custom jar files. Data files are assumed to reside in Swift12

object store. DISCO additionally plans to support continous
cluster optimization wherever possible in addition to support
multiple platforms over possibly many cloud environment.

5.2 Apache Ambari
The architecture of Apache Ambari [31] is similar to

the one proposed for DISCO. Ambari allows provisioning,
managing and monitoring of Hadoop clusters. It tracks the
health for worker nodes, and sends out alerts to sysadmins
if a node is unreachable. It also handles configuration man-
agement. Similar to the proposed DISCO features, Ambari
provides a REST interface and provides both Web-UI for
interacting with the core service, and various command line
clients. Conceptually, it is similar to bare-metal provisioning
systems like Foreman13 and Juju14 but designed specifically
for the Hadoop provisioning. DISCO architecture is not tied
to any specific data processing platforms, although it will
support Hadoop, Spark and Storm to start with. The run-time
configuration optimization and domain-specific encoding for
platform selection algorithm is novelty in DISCO.

5.3 Pivotal Big Data Suite
Pivotal’s Big Data Suite recently was made open-source

and the development in this effort is governed within
the ambit of Open Data Platform (ODP)15. The principal
goal of ODP initiative is to prevent the fragmentation in
the Apache Hadoop ecosystem. The Pivotal’s Open Data
Platform provides Hadoop based big data processing so-
lutions, governed by the same goals targeted by DISCO.
The DISCO framework tries to go a bit farther by aiming
to encode the scientific and research communities’ data
platform selection logic into a decision making module to
automate this process; this would enable faster convergence
towards the optimal platform choice for DISCO’s clients.
Furthermore, continuous configuration optimization in the
light of differentiated use cases is a unique feature in DISCO.
Furthermore, the core goal of ODP and Pivotal’s Big Data
Suite is faster monetization of big-data solutions and sup-
porting enterprise business logic through promotion of data
driven applications. DISCO is geared towards scientific and
research community, but in the process would facilitate data
driven applications in enterprises also.

5.4 Azure HDInsight
Microsoft’s popular cloud offering Azure recently started

supporting map-reduce data analytics called HDInsight16.
Their platform leverages Hortonworks Data Platform (HDP)

12OpenStack Swift: http://docs.openstack.org/developer/swift/
13http://theforeman.org/
14https://jujucharms.com/
15ODP: http://opendataplatform.org/
16HDInsight: http://azure.microsoft.com/en-us/solutions/big-data/ [ac-

cessed 16-03-2015]

412 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



Hadoop distribution and provide support for Apache
Hadoop, HBase and Storm platforms. Additionally they
support Ambari17 for provisioning, monitoring, and man-
agement of Hadoop clusters, Hive, Mahout18 for machine
learning, Pig and other projects from the Hadoop ecosystem.
HDFS [12] is the standard file system in HDInsight. It
allows users to export results in Excel among other Microsoft
supported platform formats.

5.5 Amazon EMR
Amazon supports data analytics through its Amazon

Elastic MapReduce (EMR) service. It enables data stored
in Amazon S3 and DynamoDB to be processed in EMR
clusters and supports many of the popular Apache Hadoop
ecosystem modules & plug-ins including Pig, Hive, Spark,
among several others. Amazon EMR is well integrated with
other Amazon EC2 solutions including virtual private cloud.
It allows resizing of a running EMR cluster19. DISCO in
comparison is an open source solution that aims to achieve
most of the functionality, but using a modular, cloud plat-
form agnostic approach. Our aim is not only to support map-
reduce jobs but other statistical tasks using a semi automated
platform selection process which is optimized for the task
at hand.

Brief Analysis
DISCO aims to bring distributed computing in the cloud to

scientific and business community through a highly intuitive,
unified and semi-automated provisioning framework. The
proposed framework will encode various scientific domain
expertise in the implemented algorithms for platform selec-
tion, configuration management subsystems, and will have
an element of learning built-in to continually update the
optimal configuration knowledge-base based on past and
present run experiences. This is in stark contrast to other
open source initiatives including OpenStack Sahara.

6. Conclusion
In this paper we have presented and defended the archi-

tectural choice of our unified cloud provisioning framework
for big-data and distributed computation in the cloud, called
DISCO. The design is generic and independent of any
specific cloud platform, the integration with various clouds
is achieved through specific drivers leaving the general
mechanism unchanged. In the initial prototypical implemen-
tation of the platform we have chosen Apache Hadoop,
Spark and Storm open source solutions to support over
OpenStack cloud, but this does not limit us from integrating
and supporting other platforms in the future. One feature
of our platform is the manifestation of all the key cloud

17Ambari: http://ambari.apache.org/
18Apache Mahout: http://mahout.apache.org/
19AMR product Details: http://aws.amazon.com/elasticmapreduce/details/

[accessed: 16.03.2015]

principles - self-service, on-demand, elastic, measured pay-
as-you-go, etc. This is similar to commercial services such as
Amazon EMR, but DISCO framework will be open-source,
in principle, and will provide support for wide variety of
distributed computing paradigms and not just map-reduce.

We realize that many scientific groups have their own in-
house developed, supported data analysis solutions, hence
our focus will also be on enabling such teams to bring in
their custom distributed computing application through our
DISCO framework onto popular IaaS clouds. In [32], authors
have proposed a cost-optimized configuration management
and deployment strategy of a data analytics workload in the
cloud. Their work attempts to search the optimal configu-
ration that satisfies the Service Level Objectives (SLOs) of
the workload while minimizing the cost of deployment over
a public cloud. This could form the basis for SLO and SLA
aware deployment and configuration management in DISCO.

Acknowledgment

The work is inspired partly by the MCN orchestration
framework and is supported by the European Community
Seventh Framework Programme (FP7/ 2001âĂŞ2013) under
grant agreement no.318109.

References

[1] I. A. T. Hashem, I. Yaqoob, N. B. Anuar, S. Mokhtar,
A. Gani, and S. U. Khan, “The rise of big data on cloud
computing: Review and open research issues,” Information Systems,
vol. 47, no. 0, pp. 98 – 115, 2015. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0306437914001288

[2] “Loon for All - Project Loon - google,” http://www.google.com/loon/,
accessed: 2015-03-11.

[3] “internet.org by facebook,” http://internet.org/, accessed: 2015-03-11.
[4] P. Bogdan and R. Marculescu, “Towards a science of cyber-physical

systems design,” in Proceedings of the 2011 IEEE/ACM Second
International Conference on Cyber-Physical Systems, ser. ICCPS ’11.
Washington, DC, USA: IEEE Computer Society, 2011, pp. 99–108.
[Online]. Available: http://dx.doi.org/10.1109/ICCPS.2011.14

[5] “Open Automotive Alliance,” http://www.openautoalliance.net/, ac-
cessed: 2015-03-12.

[6] A. Mostosi, “The Big-Data Ecosystem Table,” http://bigdata.
andreamostosi.name/, accessed: 2015-03-11.

[7] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on
large clusters,” Commun. ACM, vol. 51, no. 1, pp. 107–113, Jan. 2008.
[Online]. Available: http://doi.acm.org/10.1145/1327452.1327492

[8] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The google file
system,” in Proceedings of the Nineteenth ACM Symposium
on Operating Systems Principles, ser. SOSP ’03. New York,
NY, USA: ACM, 2003, pp. 29–43. [Online]. Available: http:
//doi.acm.org/10.1145/945445.945450

[9] L. Neumeyer, B. Robbins, A. Nair, and A. Kesari, “S4: Distributed
stream computing platform,” in Data Mining Workshops (ICDMW),
2010 IEEE International Conference on, Dec 2010, pp. 170–177.

[10] E. Chen, “Improving Twitter Search with Real-Time
Human Computation),” http://blog.echen.me/2013/01/08/
improving-twitter-search-with-real-time-human-computation/,
accessed: 2015-03-19.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 413



[11] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar,
R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth, B. Saha, C. Curino,
O. O’Malley, S. Radia, B. Reed, and E. Baldeschwieler, “Apache
hadoop yarn: Yet another resource negotiator,” in Proceedings of the
4th Annual Symposium on Cloud Computing, ser. SOCC ’13. New
York, NY, USA: ACM, 2013, pp. 5:1–5:16. [Online]. Available:
http://doi.acm.org/10.1145/2523616.2523633

[12] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop
distributed file system,” in Mass Storage Systems and Technologies
(MSST), 2010 IEEE 26th Symposium on, May 2010, pp. 1–10.

[13] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and
I. Stoica, “Spark: Cluster computing with working sets,” in
Proceedings of the 2Nd USENIX Conference on Hot Topics
in Cloud Computing, ser. HotCloud’10. Berkeley, CA, USA:
USENIX Association, 2010, pp. 10–10. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1863103.1863113

[14] M. Franklin, “The berkeley data analytics stack: Present and future,”
in Big Data, 2013 IEEE International Conference on, Oct 2013, pp.
2–3.

[15] H. Li, A. Ghodsi, M. Zaharia, S. Shenker, and I. Stoica, “Tachyon:
Reliable, memory speed storage for cluster computing frameworks,”
in Proceedings of the ACM Symposium on Cloud Computing, ser.
SOCC ’14. New York, NY, USA: ACM, 2014, pp. 6:1–6:15.
[Online]. Available: http://doi.acm.org/10.1145/2670979.2670985

[16] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph,
R. Katz, S. Shenker, and I. Stoica, “Mesos: A platform for
fine-grained resource sharing in the data center,” in Proceedings
of the 8th USENIX Conference on Networked Systems Design
and Implementation, ser. NSDI’11. Berkeley, CA, USA: USENIX
Association, 2011, pp. 295–308. [Online]. Available: http://dl.acm.
org/citation.cfm?id=1972457.1972488

[17] Wikipedia, “Storm (event processor),” http://en.wikipedia.org/wiki/
Storm_%28event_processor%29, accessed: 2015-03-18.

[18] Apache Storm Community, “Transactional Topologies,” https:
//storm.apache.org/documentation/Transactional-topologies.html, ac-
cessed: 2015-03-19.

[19] “CYCLOPS - Rating, Charging, Billing solution for Cloud Providers,”
http://icclab.github.io/cyclops/, accessed: 2015-03-11.

[20] P. Harsh, K. Benz, I. Trajkovska, A. Edmonds, P. M. Comi, and
T. M. Bohnert, “A highly available generic billing architecture
for heterogenous mobile cloud services,” in Proceedings of the
2014 International Conference on Grid & Cloud Computing

& Applications, ser. GCA ’14. CSREA, 2014, pp. 29–
38. [Online]. Available: http://worldcomp-proceedings.com/proc/
proc2014/gca.html

[21] S. Patanjali, B. Truninger, P. Harsh, and T. M. Bohnert, “CYCLOPS:
a micro service based approach for dynamic rating, charging & billing
for cloud,” in The 13th International Conference on Telecommunica-
tions (ConTEL 2015), Graz, Austria, July 2015.

[22] R. T. Fielding, “Architectural styles and the design of network-based
software architectures,” Ph.D. dissertation, University of California,
Irvine, 2000.

[23] W. Guo and Y. Wang, “An incident management model for saas ap-
plication in the it organization,” in Research Challenges in Computer
Science, 2009. ICRCCS ’09. International Conference on, Dec 2009,
pp. 137–140.

[24] J. Cusick and G. Ma, “Creating an itil inspired incident manage-
ment approach: Roots, response, and results,” in Network Opera-
tions and Management Symposium Workshops (NOMS Wksps), 2010
IEEE/IFIP, April 2010, pp. 142–148.

[25] A. Keller, “Towards autonomic networking middleware,” May 2005.
[Online]. Available: http://www.research.ibm.com/people/a/akeller/
Data/ngnm2005_slides.pdf

[26] B. Callaghan, B. Pawlowski, and P. Staubach, “NFS Version 3
Protocol Specification,” June 1995, RFC 1813. [Online]. Available:
http://tools.ietf.org/html/rfc1813

[27] OpenStack Sahara Community, “Sahara - OpenStack,” https://wiki.
openstack.org/wiki/Sahara, accessed: 2015-03-16.

[28] ——, “Sahara/SparkPlugin - OpenStack,” https://wiki.openstack.org/
wiki/Sahara/SparkPlugin, accessed: 2015-03-16.

[29] Apache Pig! Community, “Welcome to Apache Pig!” http://pig.
apache.org/, accessed: 2015-03-16.

[30] Apache Hive Community, “Apache Hive TM,” https://hive.apache.
org/, accessed: 2015-03-16.

[31] Apache Ambari Community, “Ambari Design,” https://issues.apache.
org/jira/secure/attachment/12559939/Ambari_Architecture.pdf,
accessed: 2015-03-18.

[32] R. Mian, P. Martin, and J. L. Vazquez-Poletti, “Provisioning
data analytic workloads in a cloud,” Future Generation Computer
Systems, vol. 29, no. 6, pp. 1452 – 1458, 2013, including Special
sections: High Performance Computing in the Cloud & Resource
Discovery Mechanisms for {P2P} Systems. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S0167739X12000209

414 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



Crowdsourcing the Cloud: Energy-aware Computational 
Offloading for Pervasive Community-Based Cloud 

Computing 
 

Kassahun Adem1, Caspar Ryan1, and Ermyas Abebe2 
1School of Computer Science and IT, RMIT University, Melbourne, Australia 

    2IBM Melbourne Research Lab, Melbourne, Australia 
 

Abstract - Adaptive offloading systems achieve context specific 
optimization on mobile and pervasive devices by offloading 
computational components to a resource copious remote server 
or cloud. However, with the recent advancement in 
computational capacity of mobile and pervasive devices, 
adaptive offloading could facilitate the formation of ad-hoc 
cloud-like environments using collections of mobile and 
pervasive devices, with reduced reliance on centralized 
infrastructure. Therefore, in this paper, we formulate a 
decision-making strategy for global adaptive offloading that 
distributes application components to community-based clouds 
formed from multiple collaborating peers. The goal was to 
extend the collaboration and application lifetime by optimizing 
the Time to Failure (TTF) of devices due to energy depletion, 
while meeting application specific performance constraints. 
Specifically, a max-min technique was used to maximise the 
minimum TTF in order to balance energy consumption across 
collaborating devices. The efficacy, performance and 
scalability of the formulated model were evaluated with the 
proposed algorithm producing an optimal solution to the 
specified model, using integer linear programming, in 
affordable time and energy for a range of application and 
collaboration sizes.  

Keywords: Adaptive Offloading; Collaborative Application 
Partitioning; Energy Conservation; Pervasive Community 
Cloud; Time to Failure; Peer-to-peer Distributed Computing. 

1. Introduction 
In this era of cloud computing, there is a commercial push to 
run everything in the cloud, but nevertheless there exists a 
need for large-scale, cloud-like functionality where cloud 
infrastructure does not exist, such as in emergency situations, 
developing countries or for reasons of privacy or energy 
conservation [1-3]. 

This is because despite obvious benefits in terms of economies 
of scale, cloud-computing poses challenges in terms of 
privacy, monopolistic control by large cloud vendors and 
issues of centralized failure. To some extent, decentralized 
data centres can mitigate risk, but significant technical failures 
such as that of the Amazon Elastic Computing Cloud (EC2) 
[4] and Amazon (S3) cloud [5] demonstrated the cascading 
effect on organizations dependent on Amazon’s infrastructure. 
Other potential examples of cloud infrastructure failure include 
natural and man-made disasters such as: earthquakes and 
tsunamis; war; terrorist attack, and chemical or nuclear 

contamination. In such situations, a crowd sourced community 
cloud based on collaborating mobile and pervasive devices 
could serve as an important backup for providing cloud like 
functionality in the absence of fixed cloud infrastructure. Other 
clear opportunities for community clouds are developing 
countries or NGOs that lack financial power to run their own 
centralized infrastructure or pay for vendor based cloud 
services at international rates; or countries where infrastructure 
is under tight control or where groups desire informal, ad-hoc 
or private computing collaboration. 

Furthermore, cloud computing presents challenges due to its 
ever-increasing energy usage caused by the exponential 
growth of data centres and cloud infrastructure [6, 7]. This 
presents economic challenges due to resource scarcity and 
carbon pricing as well as environmental impact [6]. In 
contrast, pervasive community clouds could facilitate greener 
computing alternatives where individual devices are powered 
by existing local renewable energy resources such as 
residential solar panels or wind turbines, or by harvesting the 
kinetic energy of the human body. In addition, the major share 
of energy consumption in cloud computing data centres comes 
from facility management and plant infrastructure [8, 9] such 
as cooling equipment, uninterruptible power supplies (UPS), 
electrical distribution equipment, security equipment, fire 
suppression, generators, and so on. This energy can be 
conserved by migrating computation to mobile/pervasive 
devices that are distributed among pre-determined or 
opportunistic communities. Moreover, most of these devices 
are fitted with ARM based processors that use significantly 
lower energy than Intel [10-12] based data centres servers, 
which can further reduce energy consumption. 

With current and future pervasive computing environments 
providing increasingly large-scale collaboration [1, 3, 13, 14], 
the crowd-sourced or community-based cloud is becoming 
closer to reality [1]. Nevertheless, running collaborative 
applications using pervasive computing devices has many 
challenges, such as device heterogeneity, battery power 
limitations, and collaborators joining and leaving due to either 
mobility or personal choice. Furthermore, given the dynamic 
and variable nature of such challenges, applications running in 
such environments have to adapt their behaviour to align with 
their frequently varying context. 

Previous research has considered adaptive computation 
offloading (also known as cyber foraging [15]), which 
involves the runtime distribution of computational components 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 415



to devices in order to achieve context specific optimizations. 
However, most of this work has focused primarily on 
offloading components from constrained clients to resource 
copious servers in a client-server fashion. In contrast, this 
paper is concerned with computational offloading to form 
crowdsourced or community cloud infrastructure using 
scalable peer-to-peer configurations of pervasive and mobile 
computing devices. 

Consequently, we present a decision-making strategy for 
global adaptive offloading that extends adaptation lifetime by 
optimizing the Time to Failure of collaborating devices in 
pervasive environments. This is done by balancing individual 
device energy consumption across the collaboration within 
application specific performance constraints. The scalability 
and performance of the formulated model is evaluated using 
synthetic data and test cases, with the proposed algorithm 
producing a global optimal solution, using an integer linear 
programming model, in affordable time and energy for a range 
of application and collaboration sizes on a laptop and a 
smartphone, which serve as typical examples of contemporary 
mobile devices. The remainder of the paper is structured as 
follows: Section 2 discusses exiting adaptive offloading 
approaches as a basis for an energy-aware optimization model 
for peer-to-peer adaptive offloading which is proposed in 
Section 3. Section 4 evaluates the model under a range of 
environmental scenarios to explicitly quantify performance 
and energy usage, and finally, Section 5 provides a summary, 
conclusion and outline of future work. 

2. Background 
The concept of adaptive computational offloading or cyber 
forging is an ongoing field of research [15-19].  

Generally, computational offloading involves at least two 
essential processes. The first is the metrics collection and 
management process, which is responsible for monitoring 
device and environmental context (resource availability, 
network connectivity, movement etc.) as well as the behaviour 
of application components in terms of performance and 
resource utilization. The second is the decision-making 
process, which is responsible for optimizing the placement of 
components on candidate devices according to one or more 
objectives. Typically, such objectives relate to device resource 
availability, component resource usage and the coupling 
patterns between components. 

Adaptive computation offloading can be implemented at 
different levels of component granularity. For an object 
oriented system, such levels (listed from coarse to fine 
grained) include process [20], class [21-23], object [24, 25], 
and method level [26]. A service or component-oriented 
system would share similar levels of abstraction. Furthermore, 
a hybrid granularity approach has also been proposed [27]. 
Given this variation, the model presented in section 3 is a 
general solution that could be applied at any level of 
granularity. 

Additionally, the decision making process for computational 
offloading can be global (centralized) or local (decentralized) 
based on the location in which such decisions are computed 

[28]. In global adaptation, a single device performs adaptation 
decisions by mapping application components to collaborative 
nodes for the entire application in a single pass. Other 
collaborating devices periodically communicate their context 
(usually as formalised metrics) in order to inform adaptation 
decision making. In contrast to global adaptation, local (or 
decentralized) adaptation performs decisions on individual 
nodes in terms of components residing in their local memory 
space. 

Although the focus of this paper is global adaptation, in 
practice, global and local adaptation are complementary rather 
than mutually exclusive, and if combined appropriately, could 
give offloading systems greater flexibility and completeness. 
For instance, adaptive offloading could be run globally to 
bootstrap system startup, as well as at times of significant 
system-wide change. In contrast, local strategies could be used 
for smaller or on-going adaptation. We will explore and 
address local adaptation and hybrid offloading system 
architecture in future work.  

To date, most adaptive offloading research has focused on 
client-server architecture [21, 23, 25, 26, 29-31] in which 
portable devices mitigate one or more constraints by 
offloading components to a remote server or dedicated 
surrogate. 

Of the fewer studies that have been done on peer-to-peer 
offloading [27, 32, 33] the focus has been on small 
collaborations using heuristics and local adaptive offloading 
schemes where efficiency and scalability is less of a challenge. 
In addition, none of the peer-to-peer work explicitly considers 
energy as an offloading decision factor. This is significant 
because even as there is progress in battery technology 
alongside processing capacity, memory size and network 
capacity, increasing application demands continue to negate 
such advances [34, 35]. Furthermore, the failure of one or 
more devices significantly affects the rest of the collaboration 
by triggering further adaptation that takes time and consumes 
additional resources and thus energy. This issue of progressive 
device failure due to energy depletion has not been addressed 
in previous work. 

Therefore, in this paper, we propose a novel optimization 
model that maximises the time to failure of collaborative 
devices in the collaboration by formulating an energy-aware 
adaptive offloading decision-making strategy that conserves 
the energy usage of portable devices in scalable pervasive 
environments, within application specific performance 
constraints. Another critical aspect of computation offloading 
when applied to resource constrained environments is the 
computational complexity of the decision making process. 
This is especially true when full optimization is used instead of 
heuristic approaches. Thus, we consider the efficiency of the 
proposed optimization model, presenting the performance and 
energy over head of this model with a range of application and 
collaboration size in the evaluation of part IV. 

Of particular relevance to this work is the MAUI system by 
Eduardo C. et al. [26], a fine-grained (method-level) code 
offloading framework that aims to minimize a smartphone’s 
energy consumption within required performance constraints. 

416 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



MAUI uses a global optimization model (integer linear 
programming (ILP)) to decide whether a method executes 
locally or on a resource copious remote server. The MAUI 
solver is notable for producing an optimal offloading solution 
with modest runtime and energy overhead. However, MAUI is 
limited to client server architecture based on a single dedicated 
server and thus does not meet the community cloud based aims 
of this paper.  

Consequently, this paper, motivated by the MAUI approach, 
presents an energy-aware linear integer-programming 
optimization model to maximize time to failure of 
collaborative devices as a step towards scalable ad-hoc 
community clouds on pervasive and mobile computing 
platforms. The model is elaborated in the following section. 

3. Formulated Model 
Before presenting the optimization model, some background of 
the proposed scheme follows. 

3.1 Background 

Consider a collaborative application comprising un-
offloadable and offloadable components. The components of 
an application and their interactions can be represented as an 
undirected graph G=(V,E) [23]. The vertex set V, v∈V 

represents the components of the application (components are 
an abstraction of objects/methods/classes/services or hybrid 
variations as discussed in section 2). The edge set e∈E 
represents an invocation or data access between components. 

Assume there are N collaborative devices or nodes that are 
willing to execute certain parts of the application by hosting 
and executing offloadable components. The optimization 
model concerns how to partition the application i.e. distribute 
offloadable application components to N collaborative devices, 
in a way that maximizes the lifetime of collaborative devices 
due to energy depletion whilst meeting the performance 
constraint of the application in terms of resources such as 
shared energy, memory and network capacity.  

Prior to an offloading decision, application components can 
reside in a single device or be distributed across the 
collaboration. For example, in Figure 1.A, all application 
components reside in device n1. In Figure 1.B, application 
components are distributed across different collaborative 
devices. In this second example, n1 and n3 have a complete 
application component graph (abstract application model), 
thus, both these devices can initiate the offloading decision-
making process. Generally, any device in the collaboration 
could initiate offloading as long as it has a complete and up to 
date application component graph.  

 
 

 

Figure 1. Example of application component graph and potential collaborating devices. A) The entire application resides on device n1. B) 
Application components are distributed across devices n1, n3, n4 and n5; devices n1 and n3 have a complete application component 

graph (abstract application model). 

3.2 Optimization Model 

Table 1 lists the parameters used in the following optimization 
model. As discussed above, the objective of the optimization 
model is to maximize the Time to Failure (TTF) of 
collaborative devices due to energy depletion while meeting 
the application performance constraints. In another words, the 
objective function will optimize the energy used on individual 
devices by allocating the best possible (least energy 
consumption) components to the least powerful devices to 
extend the lifetime of devices, while taking into account run 
time performance constraints, device energy and memory. The 

amount of resources dedicated to the collaboration can be 
specified on a per device basis. 

Specifically, TTF for a particular device is determined by the 
computation energy of the components residing and executing 
in that device; communication energy (energy cost of 
transferring code modules and invocation data) between local 
and remote components; and the available energy, which is 
generally either a specified fraction or the complete remaining 
battery capacity of the device.  

Each collaborative device specifies the amount of energy share 
(ES) to be available for collaboration. Hence, the TTF of a 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 417



particular device in the collaboration can be computed as the 
ES of the node divided by the sum of all component energy 
computation rates (ECR) on the device and energy transfer 
rates (ETR) that transfer data (parameters and results) between 
coupled remote components.  

Table 1. METRICS USED IN PROPOSED OPTIMIZATION 
MODEL 

Metric 
Symbols 

Description Unit 

Energy Share 
(ES) 

The energy shared by a device 
for collaboration 

J 

Energy 
Computation 
Rate (ECR) 

The rate of computational 
energy used by components 

J/s 

Energy 
Transfer Rate 

(ETR) 

The rate of energy to transfer 
data between components 

residing in different devices 

J/s 

Number of 
Invocations 

(NI) 

Number of invocations to/from 
a component 

Integer 

Size of 
Serialized 
Parameters 

(SSP) 

Size of serialized parameters 
and return values 

Byte 

Remote 
Invocation 
frequency 

(RIF) 

Remote component invocation 
frequency 

Integer/ms 

Network 
Energy Cost 

(NEC) 

Device energy cost of the 
network per KB of data 

J/byte 

Time (T) Time taken to execute the 
component in a given device 

ms 

Network 
Availablity 

(NA) 

Device network bandwidth 
available for data transfer 

Byte/ms 

Memory 
Utilization 

(MU) 

Component memory utilization  Byte 

Memory 
Availablity 

(MA) 

The memory availability of a 
device 

Byte 

 

Component ECR is the total energy consumption of a 
component on a specific device at a given period of time i.e. 

ECR�� = CCE�� × �	
 ��⁄ 	, ∀v ∈ V	and	∀n ∈ N  (1) 

Where, CCEvn is component computation energy of node N 
and MD is the measure duration of component execution.  

ETR is the aggregate energy consumption rate of data transfer 
between a component (u) and coupled remote component (v). 

ETR�,� = SSP�,� × RIF�,� × NEC�	, ∀n ∈ N	and	�v, u ∈ E 
 (2) 

Generally, the time to failure of a particular device is the aggregate 
time cost of both computation (CT_n) and network transfer 
(NT_((v,u)n)).  

Firstly let us consider, computation time cost for an individual 
component v, 

CT��		 = 	 !"#		
!$%&#		

, ∀n ∈ N, ∀v ∈ V ,  (3) 

For all components in particular device (CT_(n  )) it will be 

CT�		 = 	 !"#		
∑ !$%&#&∈(

, ∀n ∈ N  (4) 

In the above equation (4) the denominator summation of ECR 
produces a ratio and thus the optimization model is non-linear, 
since on the given node the total cost of component ECR is 
determined by whether or not the component executes on that 
node, which is associated with the decision variables in the 
optimization model. To formulate the model as a linear 
optimization equation, we have to represent the total CTn of a 
device in terms of individual component computational times 
(CTvn). This is also true for the network time cost of 
component.  

However, the CTn of all components in terms of CTvn is not a 
straight forward summation of individual component 
computation costs of CTvn,. Rather, the reciprocal sum of 
individual component computation times is equal to the 
reciprocal or multiplicative inverse of the total computation 
time cost of a particular device, i.e. 

CT�		 = 	 !"#		
∑ !$%&#&∈(

= 	 )
∑ �!$%&# !"#	 ⁄&∈(

, ∀n ∈ N (5) 

Due to the above case, instead of maximizing the time to 
failure of devices in the optimization model, we minimize the 
reciprocal of TTF and take the multiplicative inverse of the 
result. Namely, for some variable x, maximization of x is 
equivalent to the reciprocal of minimization of 1/x for all 
positive x. 

Hence, for an individual device n, the objective is to minimize 
the reciprocal of TTF of a device, which is mathematically 
expressed as follows: 

*+,+*+-.	�	∑ 	/0 × 12�/0		 1304 +/∈6 ∑ |	80�8,/ ∈9 −
		/0| 	×	1;�8,/ 130< 	 		 �6 	

Where the indicator variable I is the decision variable, 
whereby when the model executes it will be 1(I_v=1), If the 
component v is allocated to a given node , otherwise it will be 
0 (I_v=0)). 

Therefore, for all Collaborative devices: 

*+,+*+-.	�	∑ �	∑ I�� ×�∈>�∈?ECR��		 ES�4 +∑ |	80�8,/ ∈9 −		/0| 	×	1;�8,/ ES�4 	   (7) 

However, even though this model minimizes the total overall 
sum of the reciprocal of TTF, it could deplete some device’s 
energy faster than others. In other words, it only maximizes the 
total TTF. To alleviate this limitation we model the objective 
function using the min-max [36] multi-objective optimization 
techniques so that it minimizes the reciprocal of TTF of all Iuv 
devices.   

∀∈n N the above equation (7) is expressed as a min-max 
optimization as follows: 

418 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



*+,+*+-.	�	*@A0B),…,D	�	∑ I�� ×�∈>
ECR��		 ES�4 +∑ |	80�8,/ ∈9 −		/0| 	×	1;�8,/ ES�4 	  	(8) 

Next, this Min-Max objective function has to be transformed 
to linear program form. To do so, let us represent the max 
expression of (8) that resides in the brackets with the variable 
Z. 

Z ≥ 	 �	max�B),…,?	�	∑ I�� 	× 	ECR��		 ES�4 +�∈>

	 ∑ |I����,� ∈! −	I��| 	×	ETR�,� ES�4 	   (9)	
Since some variable Z is greater than or equal to the maximum 
of any elements, it is therefore greater than or equal to all 
elements, and thus expression (9) is equivalent to (10). 

I ≥ ��	∑ I�� × ECR��		 ES�4 +�∈> ∑ |	80�8,/ ∈9 −		/0| 	×
	1;�8,/ ES�4 	 	, ∀, ∈ J (10) 

As a result, the final objection function that we wish to 
minimize is summarized as:   

  minimize Z 

Subject to the following constraints 

1. Derivative constraint from objective function 

I ≥ ��	∑ I�� × ECR��		 ES�4 +�∈> ∑ |	80�8,/ ∈9 −		/0| 	×
	1;�8,/ ES�4 	 	, ∀, ∈ J	 �10 	

2. The application must execute within the required 
performance constraint(PC) of the components: i.e 

∑ ∑ �	/0 	× 	;/0 +	∑ ∑ |	80 − 	/0|�8,/ ∈9 	×0∈D/∈60∈D
	33M8,/ × J	8,/ JN0< 	≤ 	PC  (11) 

This constraint compels the model to execute within the 
performance requirement of the application, which is specified 
by the user or calculated by the system relative to the time 
taken to execute all components on the local device. The first 
term of the constraint is the summation of the execution time 
of the components, which is the total time taken to execute 
components residing on the local device. The second term is 
the summation of networking time cost, which is the total time 
it takes to transfer necessary data with remote components 
executing in other devices.  

The above constraints only enforce the performance 
requirement from the perspective of the whole application, 
thus for an interactive application, where results are delivered 
to the user on a per operation basis, this may not be 
appropriate. Thus, we formulate alternative performance 
constraints that check with respect to operation invocations 
based on the original location of the component. 

For all components in all devices, the component computation 
time and data transfer time for all invocations, must be less 
than the time taken to execute if the component executes in its 
original location plus some percentage of acceptable delay 
(e.g. + 10%). 

�	/0 	× 	;/0 +	∑ |	80 − 	/0|�8,/ ∈9 	×
	33M8,/ × J	8,/ JN0< ≤ 	M2/ , ∀P ∈ Q	@,R	∀, ∈ J  (12) 

3. Memory usage of the components cannot exceed the 
available capacity on each device 

∑ 	/0	 × 	�S//∈6 ≤ �N0		, ∀, ∈ J (13) 

This constraint ensures that the allocation of components to 
collaborative devices is within the total memory space shared 
to the collaboration (up to the maximum device memory 
capacity). Each device determines this shared memory size. 
Note that memory constraints could be ignored if we consider 
virtual memory with paging. 

4. Un-offloadable components, e.g. those which interact with 
local resources such as UI, sensors, private or local data 
etc., cannot be allocated for remote execution.  

	/0 	≥ T/0	, ∀P ∈ Q	@,R	∀, ∈ (14) 

For un-offlodable (local) components L_vn = 1, otherwise 
L_vn = 0 meaning that the component can be executed on any 
device including the local device. 

5. Each component is unique and can run only in one node: 

∑ 	/0 = 1,0∈D 	∀P ∈ Q  (15) 

Note that this constraint could be removed in future work if 
replication is considered, for example as proposed by Katmon 
and Ryan [8]. 

4. Evaluation 
This section presents an empirical evaluation of the global 
adaptive offloading decision-making algorithm from section 3. 

4.1 Experimental Setup 

In order to address a range of application behaviours and 
environmental operating conditions, and thus simulate real 
world collaboration scenarios, we generate probabilistic 
undirected graphs based on the Erdos and Reyni graph 
G(V,P)model [37]. Specifically, vertices V of the graph G are 
application components and P is the connective probability 
that any two vertices will form an edge, i.e. any two 
components are coupled by an execution or data dependency. 

The empirical evaluation involves either 2, 4, 8, 12, 16 
collaborative devices, with application component graphs 
containing offloadable and unoffloadable components ranging 
from 8 to 104 incremented by 8. When the application graph is 
generated, connectedness is ensured in order to evaluate the 
performance of the proposed model with fully un-partitioned 
application graphs. A probability value of 0.1 was used for 
application graphs containing 8 to 48 components and 0.05 for 
56 and above, so as to ensure graph connectivity without 
resulting in excessive density or at the extreme case, a fully 
connected mesh graph. 

The evaluation involved a laptop PC and an Android based 
mobile device with the following specifications 1) an Intel 
Core i5 2.30GHZ laptop with 4GB RAM running Windows 7, 
and 2) a Samsung Galaxy s2 Smartphone with 1.2GHZ 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 419



processor and 1GB RAM, running Android OS version 4.1.2. 
Both devices were setup under controlled conditions with non-
essential services and applications halted or removed.  On the 
PC, the evaluation was done using a commercial optimization 
tool, IBM ilog CPLEX [38] to obtain the best possible results. 
Since this tool is not available on the Android platform, we 
used lp_solve [39], which is an open-source mixed integer 
linear programming (MILP) solver. 

To emulate the heterogeneity of participating devices 
including computation capability, energy consumption, and 
wireless standards, we used ranges of parameters for the 
component and environmental metrics used in the optimization 
model experiments. For example, a range from 3,600 to 36,000 
joules was used for the value of participating device energy 
share metrics which is 1 Wh (Watt-hours) to 10 Wh of energy 
(shared battery capacity), which represents low power mobile 
devices through to laptop PCs. For device network energy 
consumption (NEC) we used a range from 0.2 to 50 milli 
joules per 1 kilobyte of data transfer. To provide realistic 
values for NEC and to be inclusive of a wide range of network 
connectivity and sensors, we profiled data transfer energy 
consumption on the two previously specified devices using 
synthetic benchmarks and the IEEE 802.11n radio type. On 
average, consumption ranged from 0.82 to 2.37 milli joules per 
1 kilobyte on the laptop and from 1.08 to 3.46 milli joules on 
the Android device. This supported the established NEC 
ranges (0.2 to 50 milli Joules) which represent different 
communication technologies and connectivity conditions. 
Table 2 shows all the environmental metrics ranges used. Note 
that in a real operational system, rather than being pre-
specified, metrics would be collected online, while being 
potentially augmented with historical and predicative data. 

Table 2. Metrics Value used in EVALUATION of proposed 
optimization model 

Metrics  
 

Value Range 

ES [3600 , 36000] J 

ECR [0.1, 10] J/s 

NI [1,10] 

SSP [0.01, 10] KB 

RIF [1,3] per second 

NEC [0.0002,0.05] J per 1 KB 

T [1,20] s 

NA [160kb/s to 4 Mb/s] ~ [20,512] KB/s 
MU [1,050,000] KB 

 

4.2 Results 

Since the formulated model is based on linear programming, it 
produces the global optimal distribution of components among 

collaborative devices in terms of maximizing the time to 
failure of participating devices within the specified 
performance and resource constraints. Nevertheless, in 
addition to evaluating performance and scalability we also 
evaluate its efficacy against a random distribution. 

To evaluate scalability we measured the runtime performance 
and energy overhead of calculating the optimization for 
increasing numbers of collaborating devices and application 
components (as described in the Experimental Setup Section 
4.1 above). The results are presented in the following four 
subsections. Section 4.2.1 compares the efficacy of proposed 
time to failure optimization with random component 
distribution. Section 4.2.2 evaluates the run time performance 
on the laptop PC with various levels of connectivity graphs. 
Section 4.2.3 shows the run time performance overhead of the 
optimisation on the Android-based device. Finally, Section 
4.2.4 presents the energy overhead of the TTF optimisation on 
the Android-based mobile device. 

4.2.1 Efficacy 
The efficacy of the proposed time to failure model is measured 
by the degree to which component distributions satisfy the 
objective of maximizing all participating devices time to 
failure while attaining the performance and other constraints 
specified in the optimization model section 3.2. Results are 
compared to a random component distribution. As an example, 
Figure 2, shows the time to failure distribution of all 
participating devices in collaborations of up to 8 devices. As 
expected by the min max optimization, the time to failure of 
each participating device is relatively smooth and uniform, 
thereby meeting our goal for an opportunistic community 
cloud, which is to maximize the collaboration duration for all 
devices while meeting the performance constraints. In contrast, 
the random distributions are uneven with a high TTF for 1 or 2 
devices (where either few components, or low power 
consuming components, are distributed to high capacity 
devices). However the rest of the participating devices have 
lower TTF due to many or high energy consuming components 
executing on less capacious devices. This would reduce 
performance and lead to subsequent adaptation as each device 
fails and would also mean that users of failed devices can no 
longer interact with the application (e.g. run a UI component). 
This is due to the lack of global view across all participating 
devices in the random model, whereas the proposed min-max 
model has a global focus not an individual device TTF. 
Furthermore, the standard deviation and mean in Figure 3 and 
Figure 4 respectively, clearly shows the achieved uniformity 
based on the optimised distribution of components in the 
proposed model. 

420 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



 

Figure 2. TTF of Participating devices of proposed model (top smooth surface) vs random component distibution (uneven surface with 
most parts underneath)

 
Figure 3. Standard devation of proposed vs random component 

distibution model.  

 
Figure 4. Mean of proposed vs random component distibution 

model. 

4.2.2 Runtime Performance in PC 
Figure 5, shows the runtime performance overhead of the 
formulated model when executing on the laptop. It can be 
observed that the runtime performance of the formulated model 
is consistent and fast for medium collaborations. For example, 
with a collaboration of 16 devices and 56 application 

components, the TTF model produced the optimal component 
distribution within a second. When the application size 
increases, the performance overhead will also increase and 
adaptation times become more inconsistent due to the variable 
nature of mixed linear integer programming solver performance 
[40]. Nevertheless, Figure 5 shows that adaptation was 
performed in consistent and affordable time for a range of 
application and collaboration sizes. Furthermore, by 
parallelizing the adaptation computation (solving the 
optimization model) and distributing it across multiple peers, it 
is possible to decrease the performance overhead and manage 
larger applications and collaborations. Note that time taken to 
execute an optimisation for a given application has a direct 
influence on the level of granularity that is used for offloading. 
i.e. for a large application with many application components, a 
higher granularity such as class or service level would need to 
be used. Whereas for a small application with only a few 
components, instance or method level could be used which 
gives greater offloading flexibility and thus efficacy. This is 
discussed further in the context of the mobile device experiment 
in section 3 below. 

 
Figure 5. Performance of TTF model in laptop.  

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ
æ

à à
à

à
à

à
à

à
à

à
à à à

20 40 60 80 100
0

2

4

6

8

10

Number of Components

TT
F

S
TD

E
V à TTF

æ Random

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ æ

æ
æ

à

à à à
à

à à à à à à à à

20 40 60 80 100
0

2

4

6

8

10

Number of Components

TT
F

M
ea

n à TTF

æ Random

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 421



4.2.3 Runtime Performance Overhead in Mobile-device 
Figure 6, shows the runtime performance of executing the 
optimisation model on the Android based mobile device. We 
evaluated 2, 4, 6 and 8 device collaborations with 8, 16, 24 and 
32 application graph sizes. As expected, the runtime 
performance of TTF adaptation is considerably higher than on 
the PC but is still feasible for smaller collaborations or higher 
component granularity (e.g. service level). 

 
Figure 6. Performance of TTF adaptation in mobile device. 

For example, with a collaboration of 6 devices with 24 
application components, the TTF model takes 53 seconds to 
find the optimal component distribution solution. While 24 
components is a small number when using fine granularity such 
as method individual component instance, it could be used to 
manage a substantial application if coarse-granularity such as 
class or service level is used. This is intuitive since 24 services 
could provide considerable application behaviour, although it 
would reduce the adaptation granularity and thereby reduce the 
efficacy of the solved adaptation placement topology [32]. In 
addition, the optimisation performance difference between the 
PC and Android-based device was exacerbated by the 
optimisation framework used. Namely, lp_solve is significantly 
slower [36], but was used since CPLEX was not available on 
the Android platform. 

4.2.4 Energy overhead in Mobile Device 
To measure the energy overhead of the TTF adaptation model 
in the Android device, we instrumented the solver model to 
record the energy utilization required to solve each instance of 
application adaptation. Figure 7, illustrates the energy 
utilization for the same application and collaboration size 
specified above in part 3. For instance, in the case of 24 
application components with 6 collaborating devices, the 
adaptation computation consumes 25 Joules of energy which is 
0.014% of the total battery capacity of the mobile device 
(which has 6.11Wh of battery capacity on a full charge). 
However, obviously this energy utilization overhead increases 
as the runtime to solve the TTF model increases. It should be 
noted that in a community cloud it would where possible be 
desirable to perform the application adaptation decision making 
(TTF optimisation process) on a more energy copious device 
such as a dedicated server or PC connected to mains AC power. 
Nevertheless, the runtime and energy overhead result shows the 
proposed TTF model can be solved in affordable time and 
energy on energy constrained devices for a range of application 

and collaboration sizes, especially where a higher level of 
offloadable component granularity is used.  

 

Figure 7. Energy over head of TTF adaptation in mobile device.  

5. Conclusions And Future Works 
This paper has formulated a global adaptive offloading 
decision-making model that extends the adaptation lifetime of 
participating devices in a community cloud (TTF due to energy 
depletion) by conserving individual device energy while 
attaining specified application performance requirements. The 
proposed model enables optimal distribution of context aware 
application components to create ad-hoc pervasive community 
clouds as an alternative architecture to proprietary cloud 
computing. Generally, the strategies proposed here will 
facilitate the development of a computing system that makes 
use of inexpensive networking distribution of context aware 
application components to create ad-hoc pervasive community 
clouds as an alternative architecture to proprietary cloud 
computing. Generally, the strategies proposed here will 
facilitate the development of a computing system that makes 
use of inexpensive networking sensors, communication, and 
computing devices distributed among pre-determined or 
opportunistic communities. As a proof of concept, we evaluated 
the efficacy, performance and scalability of the formulated with 
a range of application scenarios. The simulation results 
demonstrated that optimal component distribution decisions can 
be made within affordable time and energy for collaborations of 
useful size (within the constraint of choosing an acceptable 
level of offloading granularity) using contemporary pervasive 
devices.  

Since the focus of this paper was formulating an efficient global 
offloading decision-making algorithm, other issues like 
candidate selection, context sharing model, and collaboration 
incentives were not addressed and thus are left to future work. 
Furthermore, future work will aim to implement and 
empirically evaluate the model with real test applications to 
complement the synthetic evaluation presented in this paper. 

6. References 
[1] D. J. Cook and S. K. Das, "Pervasive computing at scale: Transforming 

the state of the art," Pervasive and Mobile Computing, vol. 8, pp. 22-35, 
2012. 

[2] A. Marinos and G. Briscoe, "Community Cloud Computing," in Cloud 
Computing. vol. 5931, M. Jaatun, G. Zhao, and C. Rong, Eds., ed: 
Springer Berlin Heidelberg, 2009, pp. 472-484. 

422 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



[3] F. Zambonelli, "Pervasive urban crowdsourcing: Visions and challenges," 
presented at the IEEE International Conference on Pervasive Computing 
and Communications Workshops (PERCOM Workshops),, 2011. 

[4] T. A. Team. (2011). Summary of the Amazon EC2 and Amazon RDS 
Service Disruption in the US East Region. Available: 
http://aws.amazon.com/message/65648/ 

[5] J. Modine. (2008). Web startups crumble under amazon s3 outage 
Available: 
http://www.theregister.co.uk/2008/02/15/amazon_s3_outage_feb_2008/ 

[6] W. F. James M.Kaplan, Noah kindler. Revolutionizing data center energy 
efficiency [Online]. Available: 
http://www.ecobaun.com/images/Revolutionizing_Data_Center_Efficienc
y.pdf 

[7] P. Jones, " INDUSTRY CENSUS 2012: EMERGING DATA CENTER 
MARKETS," ed, October 2012. 

[8] J. Baliga, R. W. A. Ayre, K. Hinton, and R. Tucker, "Green Cloud 
Computing: Balancing Energy in Processing, Storage, and Transport," 
Proceedings of the IEEE, vol. 99, pp. 149-167, 2011. 

[9] L. Jie, Z. Feng, L. Xue, and H. Wenbo, "Challenges Towards Elastic 
Power Management in Internet Data Centers," in Distributed Computing 
Systems Workshops, 2009. ICDCS Workshops '09. 29th IEEE 
International Conference on, 2009, pp. 65-72. 

[10] R. Courtland, "The high stakes of low power," Spectrum, IEEE, vol. 49, 
pp. 11-12, 2012. 

[11] M. Jarus, S. Varrette, A. Oleksiak, and P. Bouvry, "Performance 
Evaluation and Energy Efficiency of High-Density HPC Platforms Based 
on Intel, AMD and ARM Processors," in Energy Efficiency in Large 
Scale Distributed Systems, J.-M. Pierson, G. Da Costa, and L. Dittmann, 
Eds., ed: Springer Berlin Heidelberg, 2013, pp. 182-200. 

[12] B. Smith, "ARM and Intel Battle over the Mobile Chip's Future," 
Computer, vol. 41, pp. 15-18, 2008. 

[13] S. Citro, J. McGovern, and C. Ryan, "Extending Real Time Mobile 
Collaboration Algorithms to Handle Membership Events in an Ad-Hoc 
Mobile Network," in 2nd  International Conference Collaborative 
Computing: Networking, Applications and Worksharing, Atlanta, 
Georgia, 2006, pp. 1-9. 

[14] M. Conti, S. K. Das, C. Bisdikian, M. Kumar, L. M. Ni, A. Passarella, G. 
Roussos, G. Tröster, G. Tsudik, and F. Zambonelli, "Looking ahead in 
pervasive computing: Challenges and opportunities in the era of cyber–
physical convergence," Pervasive and Mobile Computing, vol. 8, pp. 2-21, 
2012. 

[15] M. Satyanarayanan, "Pervasive computing: vision and challenges," 
Personal Communications, IEEE, vol. 8, pp. 10-17, 2001. 

[16] O. Holder, I. Ben-Shaul, and H. Gazit, "Dynamic layout of distributed 
applications in FarGo," presented at the Proceedings of the 1999 
International Conference on Software Engineering, 1999. 

[17] G. C. Hunt and M. L. Scott, "The Coign automatic distributed partitioning 
system," presented at the Proceedings of the third symposium on 
Operating systems design and implementation, New Orleans, Louisiana, 
United States, 1999. 

[18] V. Krishnaswamy, I. B. Ganev, J. M. Dharap, and M. Ahamad, 
"Distributed object implementations for interactive applications," 
presented at the IFIP/ACM International Conference on Distributed 
systems platforms, New York, New York, United States, 2000. 

[19] G. Xiaohui, K. Nahrstedt, A. Messer, I. Greenberg, and D. Milojicic, 
"Adaptive offloading inference for delivering applications in pervasive 
computing environments," presented at the Proceedings of the First IEEE 
International Conference on Pervasive Computing and Communications. 
(PerCom 2003). 

[20] D. S. Miloji, F. Douglis, Y. Paindaveine, R. Wheeler, and S. Zhou, 
"Process migration," ACM Comput. Surv., vol. 32, pp. 241-299, 2000. 

[21] H. Dong, W. Ping, and D. Niyato, "A Dynamic Offloading Algorithm for 
Mobile Computing," Wireless Communications, IEEE Transactions on, 
vol. 11, pp. 1991-1995, 2012. 

[22] S. Ou, K. Yang, and A. `Liotta, "An Adaptive Multi-Constraint 
Partitioning Algorithm for Offloading in Pervasive Systems," in 
Proceedings of the Fourth Annual IEEE International Conference on 
Pervasive Computing and Communications, 2006, pp. 116-125. 

[23] S. Ou, K. Yang, and J. Zhang, "An effective offloading middleware for 
pervasive services on mobile devices," Pervasive and Mobile Computing, 
vol. 3, pp. 362-385, 2007. 

[24] H. Christian, "Runtime Locality Optimizations of Distributed Java 
Applications," presented at the 16th Euromicro Conference on Parallel, 
Distributed and Network-Based Processing (PDP 2008), 2008. 

[25] X. Gu, K. Nahrstedt, A. Messer, I. Greenberg, and D. Milojicic, "Adaptive 
offloading for pervasive computing," Pervasive Computing, IEEE, vol. 3, 
pp. 66-73, 2004. 

[26] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu, R. 
Chandra, and P. Bahl, "MAUI: making smartphones last longer with code 
offload," in Proceedings of the 8th international conference on Mobile 
systems, applications, and services, San Francisco, California, USA, 2010, 
pp. 49-62. 

[27] E. Abebe and C. Ryan, "Adaptive application offloading using distributed 
abstract class graphs in mobile environments," Journal of Systems and 
Software, vol. 85, pp. 2755–2769, 2012. 

[28] C. Ryan and P. Rossi, "Software, performance and resource utilisation 
metrics for context-aware mobile applications," presented at the Software 
Metrics, 2005. 11th IEEE International Symposium, 2005. 

[29] X. Changj, L. Yung-Hsiang, and L. Zhiyuan, "Adaptive computation 
offloading for energy conservation on battery-powered systems," 
presented at the Parallel and Distributed Systems, 2007 International 
Conference on, 2007. 

[30] [30] J. Flinn, S. Park, and M. Satyanarayanan, "Balancing Performance, 
Energy, and Quality in Pervasive Computing," presented at the 
Proceedings of the 22 nd International Conference on Distributed 
Computing Systems (ICDCS'02), 2002. 

[31] D. Kovachev, Y. Tian, and R. Klamma, "Adaptive Computation 
Offloading from Mobile Devices into the Cloud," presented at the 2012 
IEEE 10th International Symposium on Parallel and Distributed 
Processing with Applications (ISPA),, 2012. 

[32] E. Abebe and C. Ryan, "A Hybrid Granularity Graph for Improving 
Adaptive Application Partitioning Efficacy in Mobile Computing 
Environments," in 10th IEEE International Symposium on Network 
Computing and Applications (NCA), 2011, pp. 59-66. 

[33] P. Rossi and C. Ryan, "Empirical Evaluation of Dynamic Local 
Adaptation for Distributed Mobile Applications," in On the Move to 
Meaningful Internet Systems 2005: CoopIS, DOA, and ODBASE. vol. 
3760, R. Meersman and Z. Tari, Eds., ed: Springer Berlin Heidelberg, 
2005, pp. 828-845. 

[34] R. Kemp, N. Palmer, T. Kielmann, and H. Bal, "Cuckoo: A Computation 
Offloading Framework for Smartphones," in Mobile Computing, 
Applications, and Services. vol. 76, M. Gris and G. Yang, Eds., ed: 
Springer Berlin Heidelberg, 2012, pp. 59-79. 

[35] A. Sagahyroon, "Battery and Power Consumption of Pocket PCs," Journal 
of Computers, vol. 7, 2012. 

[36] H. Aissi, C. Bazgan, and D. Vanderpooten, "Min–max and min–max 
regret versions of combinatorial optimization problems: A survey," 
European Journal of Operational Research, vol. 197, pp. 427-438, 2009. 

[37] P. E. a. A. Renyi, "On the evolution of random graphs," presented at the 
Publications of the Mathematical Institute of the Hungarian Academy of 
Sciences, 1960. 

[38] Y. Xiao, Y. Cui, P. Savolainen, M. Siekkinen, A. Wang, L. Yang, Yl, 
x00E, J., x00E, x00E, A. ski, and S. Tarkoma, "Modeling Energy 
Consumption of Data Transmission over Wi-Fi," Mobile Computing, 
IEEE Transactions on, vol. PP, pp. 1-1, 2013. 

[39] lp_solve. Available: http://lpsolve.sourceforge.net/5.5/ 

[40] S. Mahadev, P. Bahl, R. Caceres, and N. Davies, "The Case for VM-
Based Cloudlets in Mobile Computing," Pervasive Computing, IEEE, vol. 
8, pp. 14-23, 2009. 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 423



A Multi-Platform Workflow Management System
optimized for Cloud Computing Platforms

A. Carrión1, M. Caballer1, I. Blanquer1, N. Kotowski2 and A.M.R. Dávila2
1Instituto de Instrumentación para Imagen Molecular (I3M),

Centro mixto CSIC - Universitat Politècnica de València - CIEMAT, Valencia, España
2Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ),

Rio de Janeiro, Brazil

Abstract— The scientific experimentation is facing a data
deluge in which the amount of data generated is reaching
the order of terabytes per day, and thus huge capacity
is required to process this data. Computationally, these
processes are modelled using Scientific Workflows. However,
the execution of a Scientific Workflow can be a complex
and resource-demanding task that must be managed by
Workflow Management Systems (WMSs). As new computing
paradigms emerge and infrastructures evolve, WMSs are
extended to support these new computing back-ends. In
fact, in the last years, Cloud Computing has appeared as
another viable platform for running scientific applications.
However, current WMSs are not optimized to exploit key
cloud features. For that reason, this work details the design
and implementation of a multi-platform WMS with a novel
approach for efficiently supporting cloud resources. The
engine has been successfully tested in the execution of a
comparative genomics workflow called Orthosearch.

Keywords: Workflow, Workflow Management Systems, Cloud
Computing, Comparative-genomics.

1. Introduction
The relation between Science and computing goes back

to the 1960s, when powerful computers (supercomputers)
were introduced for performing scientific and engineering
problems. At that time, a typical experimental scenario con-
sisted in a repetitive cycle of moving data to a supercomputer
for processing, submitting the executions and retrieving the
outputs from the data storage [1]. Obviously, this process
had to be automated for allowing scientists to focus on
their research and not in the computational management.
Fortunately, at the same time, the business community was
addressing how to automate business processes and as a
result the Workflow concept was born. In the business
context, a Workflow can be defined as the orchestration
of a set of activities in order to accomplish a larger and
sophisticated goal. A specialization of this idea was adopted
by the research community to model e-Science processes, the
Scientific Workflows (SWFs). In this programming model,
scientific applications are described as a set of tasks that
have dependencies between them. It means that a task will

start its execution only when the tasks it depends on have
completed their execution.
The execution of workflow applications is a task with many
details. A typical workflow is composed of hundreds of
tasks that must be executed in a coordinated way. Moreover,
all these tasks must be submitted to specific computing
resources and the required inputs must be made available
to the application. Software in charge of dealing with all
these aspects are called Workflow Management Systems.
As new computing paradigms emerge and infrastructure
evolve, so do the WMSs that support these computing back-
ends. Traditionally, Scientific Workflow Applications have
been extensively deployed in high-performance computing
infrastructures, such as powerful clusters and supercom-
puters. Later, a highly distributed infrastructure, the Grid,
appeared as an alternative to traditional approaches. In the
last years, a new distributed computing paradigm, Cloud
Computing, has appeared as another viable [2] platform for
running scientific applications. In fact, some of their main
features, such as rapid elasticity, resource pooling, and pay
per use, are well suited to the nature of scientific applications
that experience a variable demand during its execution.
Because the scientific experimentation is suffering from a
data deluge phenomenon where the amount of data generated
is reaching the order of terabytes per day, a huge amount of
resources are needed to process this data and enable research.
For that reason, it is crucial that WMSs have multi-platform
support. Although current WMSs already support various
platforms for the execution of workflow applications, many
desirable features of cloud computing are not implemented,
such as the dynamic provisioning of resources. For that
reason, in this work we present a WMS with multi-platform
support but also optimized to execute workflow applications
in cloud computing platforms.
The remainder of the paper is structured as follows. Firstly,
Section 2 gives an overview of the state-of-the-art WMSs.
Afterwards, Section 3 explains in detail the architecture of
a novel multi-platform WMS with actual support of cloud
computing resources. Section 4 describes the comparative-
genomics workflow, Orthosearch, selected as use case and
Section 5 the experimentation and results obtained with it.
Finally, conclusions and future working lines are exposed.

424 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



2. Related work

Due to the crucial role that workflow applications play in
the scientific community, most current WMSs were devel-
oped to enable the execution of these applications in grid
computing platforms. When Clouds became mainstream,
WMSs were enhanced to support it. In this section, we
present a brief description of the most prominent WMS
found in the state-of-the-art which are related with our work.
Pegasus [3] is a mature Workflow Management System that
combines features such as portability across a wide range
of infrastructures, scalability, data management capabilities,
exhaustive monitoring and complex workflow restructuring
or transformations. It can be used with popular programming
languages among the scientific community (such as Java,
Python Perl) through its APIs (application programming
interfaces) and also supports submission via web portals.
Although it supports multiple cloud providers, it does not
dynamic provision resources with different hardware and
software requirements.
Taverna [4] is a WMS with a strong focus on bioinformatics
where all computational workflow steps are Web Services.
Workflows can be designed and executed on local desktop
machines through the workbench or through other clients or
web interfaces using the server mode. The server supports
requests from many users to execute remote workflows
with support of both grid and cloud platforms. It uses
myExperiment [5] as repository for sharing and reusing
workflows and the BioCatalogue and Biodiversity catalogue
for Web Services discovery.
Kepler [6] is build upon the mature, dataflow-oriented
Ptolemy system. From it, Kepler inherits several features
such as the GUI and the Actor-Director model. In Kepler,
workflows can be created connecting components called
Actors which will process the data. An actor has several
Ports for expressing input and output data and the director
determines the model of computation used by the workflow.
To the best of our knowledge, it only supports distributed
execution via Web and Grid services, but not Cloud Com-
puting platforms.
Galaxy [7] is an open, web-based approach that facilitates
genomics research. It provides a collaborative environment
for performing complex analyses, with automatic provenance
tracking, allowing the transparent sharing of computational
details, intent and context. Its objective is to offer acces-
sible, reproducible and transparent computational research.
A Galaxy instance supports running on compute clusters
through Portable Batch System (PBS) and Sun Grid Engine
(SGE).
The WMS described in this work distinguishes from the
previous ones with features such as multi-cloud (public,
private, hybrid) and multi-platform support (clusters and
clouds). In addition, it presents a novel approach for the
on-demand provisioning of cloud resources with ad-hoc

hardware and software requirements. The solution will be
released under GPL v3 license and it will be available for
downloading at github (https://github.com/abel-carrion) very
soon.

3. System architecture
The aim of this section is to describe the design and

implementation of the architecture behind the WMS
developed. The overall organization of the system is
depicted in Figure 1. This schema is based on the one
showed in [8], one of the most cited papers about the
taxonomy of Grid WMSs. Our architecture is almost
identical but extended to support a multi-platform scenario.
In fact, our WMS currently supports execution on clusters,
public clouds (Amazon EC2, Google Cloud Platform and
Microsoft Azure) and private clouds (OpenNebula and
OpenStack).

Users

Workflow Design 
& Definition

Build Time

Run Time

Workflow 
Execution & 

Control

Interaction with 
Computing & 

Data Resources

Workflow 
Specification

Workflow Enactment Service

Connectors

Workflow Scheduling

Data 
Movement

Fault 
Tolerance

Computing Resource

Cluster On premise
Cloud

Public
Cloud

Data Sources

Public
Storage

On premise
Storage

Cluster

Fig. 1: WMS architecture.

3.1 Design principles
The key principles of our architecture are:
• Platform-agnostic client. The client program has been

developed using a platform-agnostic programming lan-

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 425



guage and thus can be used in a wide spectrum of
Operating Systems.

• Generality. It should be possible to execute any kind
of workflow application that can be expressed as a
Directed Acyclic Graph.

• Extensibility. The architecture can be extended to
include new functionality such as support for a new
computing and/or storage back-ends.

• Modularity. A change on a part of the system should
not require changes on the rest of the system if the
interfaces are preserved.

• Multi-platform. Each part of the workflow can be
executed using different computing back-ends.

• NIST Cloud Computing definition compliant. When
using cloud resources, the system follows the require-
ments expressed by the National Institute of Standards
and Technology (NIST) cloud computing definition.

3.2 Workflow structure
In our system, workflows applications are composed of a

number of tasks which have data dependencies (in the form
of files) between them. A task depends on the output(file(s))
of one or more tasks to be used as its input. Only when the
inputs of the task are available, it will start its execution.
In formal terms, these workflows can be represented by a
Directed Acyclic Graph (DAG) where the nodes represent
computational tasks and the directed edges the dependencies
between them.

3.3 Workflow specification
A workflow specification (also called workflow model)

defines a workflow including its task definition and structure
(task connectivity). There are two types of workflow models:
abstract and concrete (executable).

3.3.1 Abstract workflow
The abstract workflow specification is a template that

describes the tasks that must be executed and for each of
these tasks, the inputs, outputs, commands and arguments to
be used when invoked. The resources-independent nature of
these descriptions has two benefits: firstly, workflows can be
ported to different computing infrastructures and secondly,
these templates can be shared between users working on the
same field of interest. Listing 1 shows a JSON template of
a test workflow. According to this template, the workflow
executes one stage named process0 that must be executed in
the front-end machine (ramses) using as Operating System
the 64-bit version of Ubuntu. The requirements of the
process are deploying 4 single-core machines with 4GB of
memory and one disk of 20 GB. The execution of the stage
requires invoking, for each node, the program test using as
argument the filename of one file contained in input0. The
output of the stage (and also of the workflow) are all .txt
files generated by the program. Notice that all the values that

start with # are references to JSON objects defined in the
same file or the resource configuration file described below.

{
"stages": [
{
"id": "process0",
"hostId": "#ramses",
"environmentId": "#ubuntu64bit",
"nodes": [
{

"numNodes": "4",
"coresPerNode": "1",
"memorySize": "4096m",
"disks": [
{
"nDisk": "0",
"diskSize": "20g"

}
]

}
],
"execution": [

{
"path": "./test",
"arguments": "#input0(1)"

}
],
"stageIn": [

{
"id": "#input0"

}
],
"stageOut": [

{
"id": "output0",
"type": "File",
"filterIn": "*.txt",
"replica": "none"

}
]

}
]

}

Listing 1: Workflow template example

3.3.2 Resource information file
To convert the abstract workflow into a concrete workflow

or executable workflow, the WMS needs information about
the hosts, the environments and the input files. This informa-
tion can be found in a configuration file like the one showed
in Listing 2 for the previous workflow. The array hosts
contains a list with the data for connecting to the front-end
hosts such as: the host name, port and different credentials
depending on the platform to be used (for instance, a
certificate for Windows Azure and a user/password pair
for a cluster). Environments is an ad-hoc field for cloud
platforms that defines the required features of the VMI
(Virtual Machine Image) to use as a base to create the VMs
and the software packages that should be installed on it.
VMIs are obtained from the image repository associated to
each deployment. Finally, inputFiles declares the input files
of the workflow: the identifier, the type (File, Parameter, etc.)
and the physical location (URI).

426 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



{
"hosts": [
{

"hostId": "ramses",
"type": "Cloud",
"subType": "OpenNebula",
"hostName": "ramses.i3m.upv.es",
"port": "1111",
"credentials": {

"userName": "userName",
"password": "passWord"

}
}

],
"environments": [
{

"environmentId": "ubuntu64bit",
"osName": "linux",
"arch": "x86_64",
"osFlavour": "ubuntu",
"osVersion": "14.04",
"packages": [

"unzip"
]

}
],
"inputFiles": [
{

"id": "input0",
"type": "File",
"values": [

"db.zip"
],
"extract": "true"

}
]

}

Listing 2: Configuration file

3.4 Workflow validation
The first step is parsing and validating the workflow tem-

plate and the resource information file with a JSON proces-
sor. Once both documents have been analysed, the next step
is to carry out the semantic validation by cross-validating the
information provided in both files. The WMS implements
a semantic validator which checks if the documents meet
different rules. For instance, some fields only allow concrete
types of values (memory is an integer followed by the
characters ‘m’, ‘g’ or ‘t’). Moreover, every reference in the
workflow template should exist in the resource configuration
file. If any rule is violated, the system prompts to the user
the erroneous file and line.

3.5 Workflow planning
The mapping or planning process distinguishes our WMS

from other systems by providing a novel approach that dy-
namically provisions cloud computing resources. It uses the
information of the resource configuration file for transform-
ing the abstract workflow into an executable workflow. The
mapper component of the system adds tasks for deploying
cloud resources only when they are needed and tasks for
undeploying them when their outputs have been staged-
out. In addition, data management tasks are added for data

A

C

DEPLOY
A

A

COPY
A

COPY
B

COPY
C

UNDEPLOY
A

B

DEPLOY
C

C COPYOUT
C

UNDEPLOY
C

B

CLEANUP
B

Fig. 2: Planner conversions.

staging in/out the required input by the tasks or output to
the user selected location, respectively. Figure 2 shows the
mapping process of a simple workflow with three tasks (A,
B and C) to an executable workflow where A and C are
deployed on cloud resources and B in a cluster. Although
next subsection gives an extensive explanation of each task,
the planner produces four types of nodes: deploy, copy,
undeploy, cleanup and copyout.

3.6 Workflow execution
Once the mapper has produced the executable, it is sub-

mitted to the workflow execution engine. The execution of
the workflow begins with the initialization of every element:
the state of the tasks are set to IDLE and the state of
the inputs/outputs to DISABLED. Next, due to the data-
flow nature of the workflow system, the inputs provided by
the user are ENABLED, allowing the execution of the first
task(s). The workflow execution engine is controlled by two
core functions: runTask and getStatus. The runtime checks
if all the inputs of a task are enabled, calling runTask in
that case. When a task is submitted, the engine periodically
monitors its status through the getStatus function and if it has
finished successfully, enables the outputs of the tasks (which
in turn are normally inputs of the next tasks). Obviously, the
behaviour of runTask and getStatus will vary according to
infrastructure (cluster and cloud) and the task type (deploy,
copy, user-defined, undeploy, cleanup or copyout).

3.6.1 Deploy task execution

The execution of a deploy task is required when the
user desires to execute a task of the abstract workflow in
a cloud platform. In order to dynamically deploy cloud

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 427



computing resources, the system makes a request to
the IM (Infrastructure Manager) [9]. The main function
of the IM is to deploy and automatically configure the
virtual infrastructure required to execute and manage an
application in a cloud computing environment, expressed in
a RADL (Resource and Application Description Language)
document.
On the one hand, the runTask function in a deploy task calls
the deploy function of the IM API. Prior to it, the system
needs to build a RADL document, using the hardware and
software requirements of the task expressed in the JSON
document. By means of a RADL document, the WMS calls
the IM to configure the deployment as a Portable Batch
System (PBS) cluster where all nodes share the same disk
via NFS. In this manner, PBS acts as the scheduler of the
jobs that the task should execute. On the other hand, the
getStatus invokes the API function that queries the status
of the infrastructure. The task is considered to be finished
when the status returned by the API is configured. From this
point on, the WMS interacts with the cloud infrastructure
through SSH, using the information returned by the API
(public IP and user credentials).

3.6.2 Copy task execution
The copy task is in charge of the data management

during the execution, one of the most crucial parts of any
WMS. Moreover, these tasks are executed regardless of the
computing platform used (cluster or cloud). With respect to
the input data, the system can download any file that can
be retrieved with the protocols supported by the unix wget
command (http, https and ftp). Another important feature
is the possibility of explicitly indicating that the input files
should be extracted on the destination resources. However,
since there are tools that require compressed data as input,
this extraction should be optional. In any case, the stage-in of
an input file triggers the submission of a job to the physical
or virtual cluster scheduler for downloading the file and next,
if it is required, extracting the file.
The other type of stage-ins are the intermediate results
produced by previous tasks in the DAG. To handle the
transference of this kind of data, the WMS submits a basic
job that invokes the scp (Secure Copy Protocol) program
with the corresponding credentials and arguments.
The goal of getStatus in a copy task is to make sure that all
the jobs submitted by runTask have finished successfully.

3.6.3 User-defined task execution
In contrast to the previous tasks, user-defined tasks are the

same that appear in the abstract workflow specification but
now they are executable. In our WMS, a user-defined task is
said to be executable when two conditions are met: firstly,
the target infrastructure is already available (the cluster is
accessible or the cloud computing platform is deployed),

and secondly, the input data needed by the tasks has been
staged-in to these resources. As it can be appreciated, both
conditions correspond to the actions performed by the deploy
task and copy task, respectively.
According to the abstract workflow, a task can contain a
block of executions or commands to execute. When the
runTask function is invoked for this kind of tasks, the WMS
analyses the commands to determine if there is parallelism
in the submission of the job or not. The parallelism of a task
is explicitly indicated by the user in the abstract workflow,
appending the “(x)" expression to an argument where x is
the granularity. The granularity refers to the number of files
processed per computing node.

3.6.4 Undeploy task execution
As in the deployment task execution case, the runTask

function calls the proper function of the IM API, destroyIn-
frastructure.
The aim of getStatus in this case is to make sure that the
infrastructure removal operation is correctly carried out. This
is especially important when public clouds are used to avoid
incurring in unnecessary costs.

3.6.5 Cleanup task execution
The cleanup task is the equivalent of the undeploy task

but for the case of clusters. Because a workflow task
usually generates large of amounts of data and clusters
are infrastructures shared with other users, a best practice
consists on cleaning up the data once it has been staged-
out. Thus, the function runTask simply deletes via SSH the
whole execution directory created for the task and getStatus
makes sure that the operation is actually done.

3.6.6 Copyout task execution
From the user’s point of view, the purpose of the copyout

tasks is to retrieve the data products of the computations.
The mapper attaches these special tasks only to the final
tasks of the abstract workflow specification (i.e tasks which
don’t have dependencies with other tasks).
The runTask function starts the stage-out of the output to
one or more locations. The default action is to transfer the
data to the user local space (where the submit host is being
executed). If besides the field replica of the output contains
references to another data storage sites, the data will be also
copied to these locations. The other function, getStatus, will
monitor the data transference until all of them are completed.

3.7 Fault tolerance
Although workflow execution failures in clusters and

Cloud Computing platforms are not very common, fault
tolerance is of most importance in distributed computing
environments. It is necessary to provide the proper fault-
tolerance mechanisms to handle failures and support the

428 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



reliable execution in the presence of software or hardware
failures. Due to the difference in terms of requirements be-
tween the tasks that compose a workflow, the WMS defines
different fault tolerance policies for each task. The policies
simply define the number of retries in case of software failure
or hardware failure. The user also has the possibility of
indicating such values in the abstract workflow specification,
using the object retries and its fields OnWallTimeExceeded,
OnSoftwareFailure and OnHardwareFailure inside a stage
object. If, for some reason, a task exceeds the maximum
number of retries for any type of failure, the execution of
the workflow is automatically aborted.

3.8 Provenance
Workflow provenance is critical to users to be able to

follow the evolution of their executions and to determine the
cause behind a failure. In that sense, the WMS implements
a logging system that registers in a file the events that occur
during the execution along with other important information
(for example, the elapsed time of a task that has finished).
This information is not only useful for monitoring the
progress of the experiment but also for getting performance
statistics as we have done in the use case presented in the
next section.

4. Use case: Orthosearch
OrthoSearch (Orthologous Gene Searcher) [10] [11] is

a genomics comparative workflow. Initially conceived as
a Perl-based routine, it is a profile-protein, reciprocal best
hits (RBH) based solution for homology inference among
species. It comprises several stages and uses distinct bioin-
formatics tools, such as Mafft [12] and HMMER [13]
which confront an orthologous database with an organism
multifasta protein data. The workflow structure is depicted
in Figure 3.

OrthoSearch was initially built in order to infer homology
between Protozoa species, although there is no restric-
tion to any specific genome. It has already been evalu-
ated and proven to be effective when inferring orthology
among five Protozoa organisms with two distinct orthologous
databases [14], NCBI COG and KOG.

5. Experimentation
5.1 Data selection

We selected a subset of EggNOG database version 4 [15]
which comprises eukaryotic ortholog groups only, EggNOG
KOG. Its design comprises up-to-date techniques for or-
tholog groups construction, inparalogs recognition, robust
automatic annotation, single-copy ortholog groups nesting
and reconstruction of phylogenetic trees based on the gen-
erated clusters multiple alignments.
Three Protozoa species were selected to be confronted
with EggNOG KOG database: Cryptosporidium hominis,
Entamoeba histolytica and Leishmania infantum.

Organism

Multifasta

Protein Data

fasta2stockholm

Mafft

hmmbuild

cat

hmmpress

hmmscan

hmmsearch

Reciprocal

Best Hits 

Data

Reciprocal

Best Hits

Ortholog

Database

Fig. 3: Orthosearch abstract workflow.

5.2 Sequential execution
Figure 3 displays that the Orthosearch pipeline is com-

posed of 8 stages or processes: Mafft, fasta2stockholm,
hmmbuild, hmmsearch, cat, hmmpress, hmmscan and Re-
ciprocal_Best_Hits. Initially, the serialized version of this
pipeline was executed using a single Ubuntu 14.04 compute
instance with 16 CPU cores, 24GB RAM and 100GB disk.

5.3 Workflow engine execution
After the sequential execution, the workflow was executed

using the WMS presented in this work. The first action that
the tool carries out is restructuring the workflow according to
the parallelism expressed for each stage on the abstract speci-
fication. As a result, the original 8 stages of the pipeline were
reduced to 4 stages: Mafft/fasta2stockholm/hmmbuild, hmm-
search, cat/hmmpress/hmmscan and Reciprocal_Best_Hits.
On the one hand, Mafft/fasta2stockholm/hmmbuild and
hmmsearch are stages that admit trivial parallelism and it
fits very well the cloud computing execution model. The
resources allocated for this task were 16 Ubuntu 14.04 con-
textualized VMs on a public cloud (supported by OpenNeb-
ula). On the other hand, cat/hmmpress/hmmscan requires the
execution of a specific parallel version of hmmscan, imple-
mented on MPI. For that reason, a cluster (kahan.dsic.upv.es)
was selected for executing this part of the workflow with 6
concurrent processes. The last stage, Reciprocal_Best_Hits

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 429



cannot be parallelized and so was executed on a VM with
hardware features similar to the one used on the sequential
execution.

5.4 Performance results
Table 1 shows a comparison between the response time

on the sequential case and the WMS execution for each
protozoic organism used.

Table 1: Response time for each scenario.
Cryptosporidium Entamoeba Leishmania

Total time 414 minutes 611 minutes 575 minutes
Speed-up 5X 3,84X 4,13X

In our best scenario, the WMS provided a 5.0 speedup
ratio, with a total 6 hours and 54 minutes of execution time.
The same experiment, in a sequential approach, required 34
hours and 10 minutes.

6. Conclusions and future directions
The advent of Cloud Computing and its core character-

istics (rapid elasticity, resource pooling, and pay-per-use,
among others) are well-suited to the nature of scientific
applications that experience a variable demand during execu-
tion. As a consequence, many WMSs derived from projects
in the area of grid computing were updated to support
the execution on Cloud resources. However, many of their
features are optimized for grids and thus are unable to obtain
the most key aspects of clouds, such as dynamic provisioning
of resources. For that reason, this work presents a novel
multi-platform (clusters and clouds) WMS with support for
on-demand provisioning of multi-cloud (public, private and
hybrid) customized cloud computing resources.
The tool developed in this work has been tested using a com-
parative genomics pipeline, called Orthosearch. Promising
results were obtained, with significant speedup ratio com-
pared to the batch-oriented pipeline. The current working
lines include adding support for Grid computing, using a
more efficient transference protocol than SSH and imple-
menting data privacy.

Acknowledgments
This paper wants to acknowledge the support of the

EUBrazilCC project, funded by the European Commission
(STREP 614048) and the Brazilian MCT/CNPq N◦ 13/2012,
for the use of its infrastructure. The authors would like
also to thank the Spanish “Ministerio de Economía y Com-
petitividad" for the project “Clusters Virtuales Elásticos
y Migrables sobre Infraestructuras Cloud Híbridas" with
reference TIN2013-44390-R.

References
[1] E. Deelman, D. Gannon, M. Shields, and I. Taylor, “Workflows and e-

science: An overview of workflow system features and capabilities,”
Future Generation Computer Systems, vol. 25, no. 5, pp. 528–540,
2009.

[2] C. Hoffa, G. Mehta, T. Freeman, E. Deelman, K. Keahey, B. Berriman,
and J. Good, “On the Use of Cloud Computing for Scientific Work-
flows,” in 2008 IEEE Fourth International Conference on eScience,
pp. 640–645, IEEE, Dec. 2008.

[3] E. Deelman, K. Vahi, G. Juve, M. Rynge, S. Callaghan, P. J.
Maechling, R. Mayani, W. Chen, R. Ferreira da Silva, M. Livny, and
K. Wenger, “Pegasus, a workflow management system for science
automation,” Future Generation Computer Systems, vol. 46, pp. 17–
35, May 2015.

[4] K. Wolstencroft, R. Haines, D. Fellows, A. Williams, D. Withers,
S. Owen, S. Soiland-Reyes, I. Dunlop, A. Nenadic, P. Fisher, J. Bha-
gat, K. Belhajjame, F. Bacall, A. Hardisty, A. Nieva de la Hidalga,
M. P. Balcazar Vargas, S. Sufi, and C. Goble, “The Taverna workflow
suite: designing and executing workflows of Web Services on the
desktop, web or in the cloud.,” Nucleic acids research, vol. 41,
pp. W557–61, July 2013.

[5] C. A. Goble, J. Bhagat, S. Aleksejevs, D. Cruickshank,
D. Michaelides, D. Newman, M. Borkum, S. Bechhofer, M. Roos,
P. Li, and D. De Roure, “myExperiment: a repository and social
network for the sharing of bioinformatics workflows.,” Nucleic acids
research, vol. 38, pp. W677–82, July 2010.

[6] I. Altintas, C. Berkley, E. Jaeger, M. Jones, B. Ludascher, and
S. Mock, “Kepler: an extensible system for design and execution of
scientific workflows,” in Proceedings. 16th International Conference
on Scientific and Statistical Database Management, 2004., pp. 423–
424, IEEE, 2004.

[7] J. Goecks, A. Nekrutenko, and J. Taylor, “Galaxy: a comprehensive
approach for supporting accessible, reproducible, and transparent
computational research in the life sciences.,” Genome biology, vol. 11,
p. R86, 2010.

[8] J. Yu and R. Buyya, “A Taxonomy of Workflow Management Systems
for Grid Computing,” Journal of Grid Computing, vol. 3, pp. 171–200,
Jan. 2006.

[9] M. Caballer, I. Blanquer, G. Moltó, and C. de Alfonso, “Dynamic
Management of Virtual Infrastructures,” Journal of Grid Computing,
Apr. 2014.

[10] S. M. S. da Cruz, M. Mattoso, V. Batista, A. M. R. Dávila, E. Silva,
F. Tosta, C. Vilela, M. L. M. Campos, R. Cuadrat, and D. Tschoeke,
“OrthoSearch,” in Proceedings of the 2008 ACM symposium on
Applied computing - SAC ’08, (New York, New York, USA), p. 1282,
ACM Press, Mar. 2008.

[11] S. M. S. da Cruz, V. Batista, E. Silva, F. Tosta, C. Vilela, R. Cuadrat,
D. Tschoeke, A. M. R. Dávila, M. L. M. Campos, and M. Mattoso,
“Detecting distant homologies on protozoans metabolic pathways
using scientific workflows.,” International journal of data mining and
bioinformatics, vol. 4, pp. 256–80, Jan. 2010.

[12] K. Katoh and D. M. Standley, “MAFFT multiple sequence alignment
software version 7: improvements in performance and usability.,”
Molecular biology and evolution, vol. 30, pp. 772–80, Apr. 2013.

[13] R. D. Finn, J. Clements, and S. R. Eddy, “HMMER web server:
interactive sequence similarity searching.,” Nucleic acids research,
vol. 39, pp. W29–37, July 2011.

[14] R. R. C. Cuadrat, S. M. da Serra Cruz, D. A. Tschoeke, E. Silva,
F. Tosta, H. Jucá, R. Jardim, M. L. M. Campos, M. Mattoso, and
A. M. R. Dávila, “An orthology-based analysis of pathogenic protozoa
impacting global health: an improved comparative genomics approach
with prokaryotes and model eukaryote orthologs.,” Omics : a journal
of integrative biology, vol. 18, pp. 524–38, Aug. 2014.

[15] S. Powell, K. Forslund, D. Szklarczyk, K. Trachana, A. Roth,
J. Huerta-Cepas, T. Gabaldón, T. Rattei, C. Creevey, M. Kuhn, L. J.
Jensen, C. von Mering, and P. Bork, “eggNOG v4.0: nested orthology
inference across 3686 organisms.,” Nucleic acids research, vol. 42,
pp. D231–9, Jan. 2014.

430 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



An Environment-aware Anomaly Detection Framework 
of Cloud Platform for Improving Its Dependability 

 
Guiping Wang1, Shuyu Chen2,3*, and Jun Liu1 

1College of Computer Science, Chongqing University, Chongqing, CHINA 
2School of Software Engineering, Chongqing University, Chongqing, CHINA 

3Department of Electrical and Computer Engineering, McGill University, Montreal, CANADA 
netmobilab@cqu.edu.cn 

 
 

Abstract - Virtualization technology is a core technology in 
Cloud Platform, which allows the hardware, the operating 
systems, and the applications running atop to be encapsulated 
into virtual machines (VMs). Along with the increasing scale 
and complexity of Cloud Platform, various faults cause the 
frequent downtime accidents of VMs, which has seriously 
lowered the dependability of Cloud Platform. Anomaly 
detection can detect anomalous status of VMs, while 
subsequent fault diagnosis can further discriminate the 
reasons of the detected anomalies. The former means is the 
foundation of the latter one. VMs are isolated one another in 
Cloud Platform. An anomalous VM usually does not affect 
other VMs. Aiming at detecting anomalous VMs in Cloud 
Platform, this paper proposes an environment-aware anomaly 
detection framework. 53 performance metrics of each VM are 
collected to characterize its current status. A series of 
processing steps are then conducted to judge whether the VMs 
in Cloud Platform are normal or abnormal. The experimental 
results show that the proposed framework can detect 
anomalous VMs in real time and with high accuracy rate, thus 
improving the dependability of Cloud Platform. 

Keywords: Cloud Platform; Virtual Machine (VM); 
Dependability; Anomaly Detection; Performance metrics. 

 

1 Introduction 
 Cloud computing has the following essential 
characteristics: on-demand self-service, broad network access, 
resource pooling, rapid elasticity, and measured service ([1]). 
Currently, it has become the mainstream of computing and 
service mode. Virtualization technology is a core technology 
in Cloud Platform, which allows the hardware, the operating 
systems, and the applications running atop to be encapsulated 
into virtual machines (VMs). Along with the increasing scale 
and complexity of Cloud Platform, various faults cause the 
frequent downtime accidents of VMs, which has seriously 
lowered the dependability ([2]) of Cloud Platform and 
restricted the development of cloud computing. 

 The frequent downtime accidents of VMs cause huge 
losses on not only Cloud service providers but also users. On 

Jan. 2, 2010, a Ruby-on-Rails application hosting company, 
Heroku, experienced the complete failure of their 22 VMs 
which were hosted on Amazon EC2 and ran 44,000 popular 
applications and development services. These specialized and 
high-capacity Amazon EC2 instances disappeared all of a 
sudden without any warning ([3]). On Jun 29, 2012, Amazon 
Web Services (AWS) broke down due to failed generators. A 
lengthy server reboot process exacerbated this outage. 7% of 
VM instances in Virginia availability region were affected by 
this incident ([4]). Fig. 1 illustrates the statistics of Amazon 
AWS downtime accidents from 2006 to 2013. The 
researchers from University of California at Berkeley 
summarize top 10 obstacles to the growth of Cloud, where the 
first one is availability (an important attribute of 
dependability) of Cloud service ([5]). 

1 2
4

5

13

5

8

5

0
2
4
6
8

10
12
14

2006 2007 2008 2009 2010 2011 2012 2013

# of accidents   

406 503 855
1831

5748
6866

3472

274
0

2000

4000

6000

8000

2006 2007 2008 2009 2010 2011 2012 2013

The total downtime (min)  

0
1000
2000
3000
4000
5000
6000

06
-4-

1
08

-6-
6

09
-10

-5
10

-5-
4

10
-9-

28

11
-2-

26

11
-11

-26

12
-6-

13

12
-12

-24

13
-8-

25

The recovery time (min)   

5

1

7

3 4

10

2 1 2 2

6

0
2
4
6
8

10
12

EC2
ELB

EBS S3
DNS

Pow
er

DDoS

Sim
pleD

B

Clou
dFro

nt

Con
nect

ivi
ty N/A

The reason of accidents (times)  

Fig. 1. The statistics of Amazon AWS downtime accidents from 
2006 to 2013 

 VMs are the important carrier for Cloud services. They 
are isolated one another in Cloud Platform. An anomalous 
VM usually does not affect other VMs. Aiming at detecting 
anomalous VMs in Cloud Platform, this paper proposes an 
environment-aware anomaly detection framework, which first 
partitions all VMs into several monitoring domains according 
VMs' running environment attributes and then executes 
anomaly detection in each domain. This paper conducts 
experiments on the framework to verify its performance. 

 The remainder of this paper is organized as follows. 
Section 2 summarizes related work. Section 3 presents the 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 431



definitions and preliminaries. Section 4 describes the 
proposed anomaly detection framework in detail. Section 5 
introduces the collected performance metrics, and conducts 
experiments on the framework. Section 6 concludes this 
paper and looks into future work. 

2 Related work 
 Since there is little research work in literature on 
understanding the dependability of Cloud environment, Guan 
et al. ([6]) first attempt to present a cloud dependability 
analysis (CDA) framework for characterizing system 
dependability in cloud computing. In order to analyze the 
correlation of various performance metrics with failure events 
in virtualized and non-virtualized environments, they design 
failure-metric DAGs (directed acyclic graph). By comparing 
the generated DAGs in these two environments, they gain 
insight into the impact of virtualization on the cloud 
dependability. Melo et al. ([7]) study high availability of 
Cloud environment from software rejuvenation point of view. 
They present a comprehensive availability model to evaluate 
the utilization of live migration mechanism to enable VMM 
rejuvenation with minimum service interruption. 

 Currently, anomaly detection under distributed 
environments (such as Cloud Platform) is a research focus in 
literature ([8]-[18]). During the operation of distributed 
systems, a large number of log data are produced in operating 
system, database, and applications, etc., which can reflect 
their operation state. Various detection data also can be 
collected by dedicated detecting tools or programs. These log 
data and detection data are referred to as monitoring data 
([8]), which mainly record the operations of users on the 
observed system, reflect the performance or state of servers, 
physical hosts, storage systems, VMs, etc., or depict the 
behavior of the applications. Concretely, the main monitoring 
data adopted in literature to characterize the status of an 
observed distributed system include performance metric ([8]-
[13]), system call sequence ([14][15]), network traffic ([16]), 
and system log ([17][18]). 

 Lan et al. ([9]) present an automated mechanism for 
node-level anomaly identification in large-scale systems. 
Health-related performance metric data (e.g., CPU utilization, 
available memory size, I/O, network traffic) are collected 
across the system for anomaly identification. Node grouping 
dynamically divides system resources into groups and the 
nodes in the same group are expected to exhibit similar 
behaviors. Data transformation, feature extraction, and outlier 
detection, are applied per group to find abnormal nodes (i.e., 
anomalies). The detected anomalies are manually be validated 
by system administrators. However, they do not clarify how 
to dynamically group nodes. 

 In order to improve dependability of Cloud platforms, 
Fu et al. ([10]) propose a hybrid adaptive anomaly detection 
framework using one-class and two-class support vector 

machines (SVM) detection models. However, once the 
framework switches from one model to the other, the model 
needs to be retrained, which costs much computing time. 

 Alarifi and Wolthusen ([14]) present a Hypervisor based 
anomaly detection system, which monitors system call 
sequences between a VM and its host kernel to detect 
abnormal VM's behaviors. The detection system uses hidden 
markov to construct a model about VM's normal behavior and 
obtains the classifier. The new system call sequences are then 
detected by the classifier. Xiong et al. ([16]) put forward two 
detection methods by analyzing dynamic characteristics of 
the network traffic in Cloud communications to detect 
anomalies. 

 System logs also can characterize system behaviors, and 
therefore be adopted in anomaly detection. Fu et al. ([17]) 
propose an unstructured log analysis method to detect 
anomaly in distributed systems. They first convert text 
messages in log files to log keys, and then learn a Finite State 
Automaton (FSA) to present the normal work flow for each 
system component. A performance measurement model is 
obtained to characterize the normal execution performance. 
New log files are then input to the model to detect anomalies. 

 The main problem in log or system call sequence based 
anomaly detection is that, under large-scale and high dynamic 
distributed environments (i.e., Cloud Platform), it is hard to 
construct a stable model to characterize system's normal 
behavior. 

 Chandola et al. ([19]) conduct a comprehensive survey 
on the researches in literature about anomaly detection. They 
classify existing techniques in anomaly detection into six 
different categories based on the underlying approaches: 
classification-based, nearest neighbor-based, clustering-based, 
statistical, information theoretic, spectral. They summarize 
the advantages and disadvantages of the techniques in each 
category. Using 121 UCI data sets, Delgado et al. ([20]) 
evaluate 179 classifiers from 17 families. Their research 
results show that random forest (RF) and support vector 
machine (SVM) are the best two classifiers. 

3 Definitions and Preliminaries 
 This section first clarifies a set of general concepts 
related to dependability, and introduces new meanings into 
dependability. Then it describes the detection principles, and 
introduces preliminaries of the proposed framework. 

3.1  Definitions Related to Dependability 
 Definition 1 (Dependability): The dependability of a 
system refers to the comprehensive abilities to deliver service 
that can justifiably be trusted ([2]). 

 Definition 2 (Attributes of Dependability): 

432 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



Dependability is composed of five attributes: reliability, 
availability, safety, integrity, and maintainability ([2]). 

 Reliability refers to continuity of correct service, which 
can be measured by mean time to failures (MTTF). 
Maintainability refers to ability to undergo modifications and 
repairs, which can be measured by mean time to repair 
(MTTR). Availability refers to readiness for correct service, 
which can be measured by the ratio of MTTF to mean time 
between failures (MTBF), where MTBF = MTTR + MTTF. 
Safety refers to absence of catastrophic consequences on the 
user(s) and the environment. Integrity refers to absence of 
improper system alterations. 

 Definition 3 (Threats to Dependability): The threats to 
dependability include failures, errors, and faults. A service 
failure (or failure for short) is an event that occurs when the 
delivered service deviates from correct service. A service 
failure means that at least one (or more) external state of the 
system deviates from the correct service state. The deviation 
is called an error. The adjudged or hypothesized cause of an 
error is called a fault ([2]). 

 Despite the researches of anomaly detection in statistics 
can be traced back to the end of the 19th century ([21]), the 
researches of anomaly detection in distributed environments 
spring up until about 2010 ([8]-[18]). The underlying reason 
is that the past researches mainly focused on failure (e.g., 
downtime, outage) detection under distributed environment; 
however, along with the increasing scale and complexity of 
distributed systems, it may appear some anomalies before real 
failures occur. These anomalies include system performance 
degradation, system workload or performance fluctuation, 
and system response time slowing down. 

 The detecting system can detect the anomalies in real 
time, and remind human operators before failures. The 
detecting results can facilitate human operators adopting 
relevant measures and reducing the adverse effects of faults 
in a distributed system, thus improving its dependability. 
Therefore, this paper introduces new meanings, i.e., anomaly 
and anomaly detection, into dependability. 

 Definition 4 (Anomaly): From dependability point of 
view, an anomaly refers to the status of a detected system (or 
a node in the system) that deviates from the expected normal 
status, or deviates from the status of most of the time (or most 
of other nodes in the system). 

 Anomalies can be caused by faults, including hardware / 
software, malicious / non-malicious, and deliberate / non-
deliberate faults ([2]). They can also be caused by non-fault 
factors, including normal workload fluctuation, the increasing 
of concurrent access, and changed environment. Anomaly 
detection can detect anomalous status of an observed system, 
while subsequent fault diagnosis can further discriminate the 
reasons of the detected anomalies. The former means is the 

foundation of the latter one. This paper only focuses on the 
former means, i.e., anomaly detection. 

 Definition 5 (Anomaly Detection): Anomaly Detection 
is a function of detecting the anomalous status of a detected 
system or anomalous nodes in a detected system. 

 The proposed framework can timely detect anomalous 
VMs and report them to human operators before failures, thus 
prolonging MTTF and improving the reliability of Cloud 
Platform. Anomaly detection and subsequent fault diagnosis 
can diagnose the types of faults and trace the sources of faults 
in real time before these faults cause catastrophic 
consequences, thus improving the safety of Cloud Platform. 
Meanwhile, these two means can reduce the difficulty level 
of recovery and reduce MTTR, thus improving the 
maintainability of Cloud Platform. Through the above 
improvements, these two means can improve the percentage 
time of providing correct service, thus improving the 
availability of Cloud Platform. Through improving reliability, 
safety, maintainability, and availability, the proposed 
framework can ultimately improve the Cloud Platform's 
comprehensive abilities (i.e., dependability) to deliver service 
that can justifiably be trusted. 

3.2 Detection Principles & Preliminaries 
 In Cloud environment, the performance of VMs can be 
characterized by performance metrics, while the value of a 
performance metric is also affected by the factors including 
resource configuration of the VM, the workload of the VM, 
and the resource configuration of the underlying physical host. 
A same VM will exhibit different performance under 
different running environment. The detecting system should 
exclude the performance deviation between VMs caused by 
different running environment. Otherwise, it will result in a 
large number of false positives. 

 Therefore, in order to improve the detection accuracy, 
VM's running environment attributes and performance 
metrics are collected at the same time. The proposed 
framework adopts environment-aware detection. To be 
specific, the framework divides a large number of VMs in 
Cloud Platform into several monitoring domains based on 
VMs' running environment attributes, which makes VMs in a 
same monitoring domain have similar running environment. 
In each domain, the anomaly detection algorithms detect 
anomalous VMs based on their performance metrics. 

 Based on the above detection principles, two important 
definitions are given below. 

 Definition 6 (VM's Running Environment Attribute 
Set): This attribute set includes resource configuration of a 
VM, the workload of the VM, and the resource configuration 
of the underlying physical host. The attribute set can be 
formalized by the following vector: 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 433



T
rRRR ]      [ 21 R ,                          (1) 

where Ri represents an environment attribute, r is the number 
of attributes. 

 Definition 7 (VM's Performance Metric Set): This set 
includes a set of metrics. Each metric is an individually 
measurable variable, which characterizes the performance or 
status of a VM from a certain point of view. The metric set 
can be formalized by the following vector: 

T
nXXX ]      [ 21 X ,                        (2) 

where Xi represents a performance metric, n is the number of 
metrics. 

4 The Proposed Anomaly Detection 
Framework 

 Fig. 2 illustrates the proposed anomaly detection 
framework for Cloud Platform. The framework is composed 
of several modules, including Partition & Deployment, 
Collection & Transmission, Data Processing, Environment-
aware Detection, and Candidate VMs Detection. Each 
module contains several function modules. The key modules 
are described as follows. 

Cluster 1Cloud Platform

Collection & Transmission

Data Processing

Environment-aware Detection

Candidate VMs 
Detection

Partition & Deployment

Candidate VMs Set

VM 1 … …VM 2 VM n

Cluster N

Collection Functions, 
Tools, Algorithms

Anomaly Detection 
Algorithms (C-SVM, 

OCSVM, StSVM, MSVM, 
ASVM, OLSVM)

Algorithms, Tools, Functions, & StrategiesFunction Module

Data Collection

Detector DeploymentCollection Network Dynamic 
Construction

Detection Domain 
Partition

Data Transmission

Preprocessing Feature Extraction (Unsupervised/Supervised)

SOM-based Dynamic Adaptive 
Anomaly Detection Mechanism

Feature Selection

Anomaly Detection

VM 1 …VM 2 VM n

The Collected Data :Performance Metrics, 
Running Environment Information

LOF-based Online Anomaly 
Detection Mechanism

Legend:

 

Fig. 2. The anomaly detection framework for Cloud Platform 

 Partition & Deployment module is responsible for 
partitioning the VMs into several monitoring domains 
according to VMs' running environment attribute set. 
Concretely, all VMs are clustered into several clusters based 
on their running environment attribute set. Each obtained 
cluster is a domain. 

 Collection & Transmission module is responsible for 
collecting the performance metric data and running 
environment attribute data of all VMs and transmitting to the 
upper module. 

 Data Processing module is responsible for 
indispensable processing on collected data before anomaly 
detection, including preprocessing (zero-mean, decorrelation, 
standardization, etc.) and feature extraction. 

 Environment-aware Detection module is responsible for 
preliminarily detecting anomalous VMs and submitting the 
set of candidate VMs to the upper module for further 
detection. The detection adopts SOM (Self Organizing Map) 
based or LOF (Local Outlier Factor) based anomaly detection 
mechanism (optionally). 

 Candidate VMs Detection module is responsible for 
further detecting anomalous VMs using more precise and 
powerful detection algorithms (i.e., SVM-based algorithms). 
The research of Delgado et al. ([20]) shows that SVM is one 
of the best classifiers. Moreover, the SVM-based algorithms 
can solve the challenges of anomaly detection under Cloud 
environment, such as multiple categories of anomalies, 
imbalance in datasets, online learning. Before anomaly 
detection, feature selection is executed on the performance 
metric data to reduce dimensionality and reserve some 
original performance metrics for future anomaly localization 
and fault diagnosis. 

5 Experiments 
5.1 The collected performance metrics 
 The collected performance metrics can be classified into 
two categories: host performance metrics and network 
performance metrics. Further, the metrics in the former 
category can be classified into four sub-categories: 
computation, storage, disk I/O, process. Totally, 53 
performance metrics are collected, which are listed as follows. 

 1) Computation resource performance metrics: the 11 
metrics listed in Table 1 reflect the current computation 
resource utilization in a VM and the underlying physical host. 

 2) Storage resource performance metrics: the 12 metrics 
listed in Table 2 reflect the current storage resource 
utilization in a VM and the underlying physical host. 

 3) Disk I/O performance metrics: the 9 metrics listed in 
Table 3 reflect the current disk I/O performance in a VM and 
the underlying physical host. 

 4) Process performance metrics: the 6 metrics listed in 
Table 4 reflect the current process performance in a VM and 
the underlying physical host. 

434 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



 5) Network performance metrics: the 15 metrics listed in 
Table 5 reflect the current network performance in a VM and 
the underlying physical host. 

Table 1. The collected computation resource performance metrics 

Metrics Description 
cpu_idle Percentage of CPU idle time. 

cpu_user 
Percentage of CPU utilization that occurred 
while executing at the user level. 

cpu_system 
Percentage of CPU utilization that occurred 
while executing at the system level. 

cpu_nice 
Percentage of CPU utilization that occurred 
while executing at the user level with nice 
priority. 

cpu_iowait 
Percentage of CPU time waiting I/O 
operations. 

cpu_irq 
Percentage of CPU time spent to service 
hardware interrupts. 

cpu_softirq 
Percentage of CPU time spent to service 
software interrupts. 

cpu_cs Percentage of CPU time for process switch. 
cpu_running Number of running tasks in queues. 
vcpu_run Runtime of VCPU 
vcpu_run_rate Percentage of VCPU utilization 

Table 2. The collected storage resource performance metrics 

Metrics Description 
mem_swapd Amount of occupied swap space. 
mem_free Amount of available memory. 
mem_buf Buffer size of block device. 
mem_cache Buffer size of character device. 

mem_si 
Amount of virtual memory per second read 
from physical disk. 

mem_so 
Amount of virtual memory per second 
written to physical disk. 

mem_total Total amount of physical memory. 
mem_slab Amount of memory for kernel. 
vmem_cur Amount of virtual memory in VM. 
vmem_rate Utilization rate of virtual memory in VM. 

vmem_max 
Maximum amount of occupied virtual 
memory in VM. 

vmem_max_rate 
Maximum utilization rate of virtual memory 
in VM. 

Table 3. The collected disk I/O performance metrics 

Metrics Description 

disk_await 
The average wait time (in milliseconds) for I/O 
requests issued to the device to be served. 

disk_svctm 
The average service time (in milliseconds) for 
I/O requests issued to the device to be served. 

disk_util Percentage of I/O time per second. 

disk_r 
Number of operations of reading I/O devices 
per second. 

disk_w 
Number of operations of writing I/O devices 
per second. 

disk_queue Average length of I/O queues. 
disk_rq Average amount of data in an I/O operation. 

vbd_rd 
Number of operations of reading virtual block 
devices per second. 

vbd_wr 
Number of operations of writing virtual block 
devices per second. 

Table 4. The collected process performance metrics 

Metrics Description 

pro_size 
Total amount of memory occupied by 
processes. 

pro_share 
Total amount of share memory occupied 
by processes. 

pro_cpu 
Percentage of CPU time occupied by 
processes. 

pro_mem 
Percentage of memory occupied by 
processes. 

pro_time Total CPU time occupied by processes. 
pro_thread_count Number of threads. 

Table 5. The collected network performance metrics 

Metrics Description 
net_rx_byte Network data received per second. 
net_tx_byte Network data transmitted per second. 
net_rx_packet Number of received packets per second. 
net_tx_packet Number of transmitted packets per second. 

net_rx_loss 
Number of lost packets in receiving per 
second. 

net_rx_loss 
Number of lost packets in transmitting per 
second. 

icmp_rx_ packet
Number of received ICMP packets per 
second. 

icmp_tx_packet
Number of transmitted ICMP packets per 
second. 

icmp_rx_loss 
Number of unreachable packets in received 
ICMP packets per second. 

icmp_tx_loss 
Number of unreachable packets in 
transmitted ICMP packets per second. 

net_load Network load rate. 
vnet_rx Virtual network data received per second. 
vnet_tx Virtual network data transmitted per second. 

vnet_rx_rate 
Rate of virtual network data received per 
second. 

vnet_tx_rate 
Rate of virtual network data transmitted per 
second. 

5.2 Experiments on performance metrics 
 In order to test the probability distribution of the 
collected performance metrics, all performance metrics of a 
random selected VM and the underlying physical host are 
sampled every 5 seconds lasting 2 hours. Therefore, 1440 
sampled values are obtained. 

0 1 2 3

x 10
5

0

200

400

600

800

0 2 4 6

x 10
5

0

100

200

300

400

0 2 4 6

x 10
4

0

200

400

600

0 2 4 6

x 10
5

0

200

400

600

 

Fig. 5. The histograms of four performance metrics. 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 435



 In Fig. 5, four performance metrics are randomly chosen, 
and their histograms are plotted. From this figure, it is 
concluded that typically the performance metrics do not 
follow the Gaussian distribution. Therefore, the feature 
extraction and anomaly detection algorithms based on the 
Gaussian distribution assumption are not considered in this 
paper. 

5.3 Anomaly Injection 
 In order to evaluate the performance of the proposed 
framework, this paper constructs a Cloud Platform testbed, 
which is composed of several physical hosts. 0-4 VMs are 
deployed on each host. 

 In addition, to make the sample set include abnormal 
samples excluding normal ones, four types of anomalies are 
injected to randomly selected VMs in the Cloud Platform, 
which are listed as follows. 

 1) Anomaly in computation resource consumption: A 
computing-intensive program runs in a VM, and persistently 
over-consumes computation resources. 

 2) Anomaly in memory resource consumption: A 
running program in a VM continues to apply for dynamic 
memory through malloc() function without releasing the 
assigned memory, which causes memory leak and over-
consumption of the VM’s memory resources. 

 3) Anomaly in disk I/O operation: A running program in 
a VM persistently reads large files on disk, generating large 
amounts of disk I/O operations to simulate anomalous disk 
I/O. 

 4) Anomaly in network access: Several users run 
LoadRunner from their own physical personal computer to 
simultaneously access a Web application server deployed on 
a VM, generating a large number of HTTP connections to 
simulate anomalous network behavior. 

 During the experiments, these anomalies are injected 
solely (single-anomaly) or in the form of combination 
(combination-anomaly). 

5.4 Experiments on the anomaly detection 
framework 

 This paper adopts the following two accuracy measures 
to evaluate the performance of the designed anomaly 
detection framework. (FP, False Positive; FN, False Negative; 
TP, True Positive; TN, True Negative) 

 1) Sensitivity: the proportion of True Positive (i.e., 
correctly detected anomalous VMs) to the number of actual 
anomalous VMs. 

NP

P

FT

T
ySensitivit

+
=                           (3) 

 2) Specificity: the proportion of True Negative (i.e., 
correctly detected normal VMs) to the number of actual 
normal VMs. 

NP

N

TF

T
ySpecificit

+
=                          (4) 

 The experimental results of four single-anomaly tests 
are listed in Table 6. (Each experiment is conducted 10 times, 
and the results are averaged. The results of all experiment are 
also averaged in the last row.) 

Table 6. Performance measures of four single-anomaly tests 

Anomaly Sensitivity Specificity 
Computation 1.00 0.96 

Memory 1.00 0.97 
Disk I/O 1.00 0.95 
Network 0.97 0.92 
Average 0.99 0.95 

 This paper also conducts experiments on the 
combination of two types of anomalies. The experimental 
results of six combination-anomaly tests are listed in Table 7. 
The last row is the average result of all experiments. 

Table 7. Performance measures of six combination-anomaly tests 

Anomaly Sensitivity Specificity 
Computation & Memeory 1.00 0.96 
Computation & Disk I/O 1.00 0.93 
Computation & Network 0.98 0.93 

Memeory & Disk I/O 1.00 0.95 
Memeory & Network 0.97 0.93 
Disk I/O & Network 0.97 0.94 

Average 0.987 0.940 

 From the above experimental results, it is concluded that 
the accuracy of the designed anomaly detection framework 
meets the practical requirements under Cloud environment. 
Averagely, the detection sensitivities are 0.99 and 0.987 
under single-anomaly and combination-anomaly respectively, 
and the detection specificity are 0.95 and 0.94 respectively. 

 The real-time performance of the designed framework 
also meets the practical requirements. In the experiments 
including single-anomaly and combination-anomaly tests, the 
designed framework takes less than 0.35 second to produce a 
list of anomalous VMs. 

6 Conclusions and Future Work 
 This paper proposes an anomaly detection framework 
for detecting anomalous VMs under Cloud environment. The 
main prominent feature of the framework is environment-
aware detection, which makes the framework achieve high 

436 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



detection accuracy. The future work of this paper will focus 
on anomaly localization and fault diagnosis. These 
subsequent means can further discriminate the reasons (fault 
or non-faults) of the detected anomalies and trace the sources 
of faults. The ultimate goal of these means is to improve the 
dependability of Cloud Platform. 

7 Acknowledges 
 The work of this paper is supported by National Natural 
Science Foundation of China (Grant No. 61272399). 

8 References 
[1] The NIST Definition of Cloud Computing. 
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-
145.pdf. 

[2] A. Avizienis, J. C. Laprie, B. Randell, et al. Basic 
concepts and taxonomy of dependable and secure computing, 
IEEE Transactions on Dependable and Secure Computing, 
vol. 1, no. 1, pp. 11-33, 2004. 

[3] C. Books, Heroku learns from Amazon EC2 outage, 
http://searchcloudcomputing.techtarget.com/news/1378426/H
eroku-learns-from-Amazon-EC2-outage, Jan. 8, 2010. 

[4] J. Saarinen, Amazon explains recent outages, 
http://www.crn.com.au/News/307746,amazon-explains-
recent-outages.aspx, July 6, 2012. 

[5] M. Armbrust, A. Fox, R. Griffith, et al. A view of cloud 
computing. Communications of the ACM, vol. 53, no. 4, pp. 
50-58, 2010. 

[6] Q. Guan, C. C. Chiu, and S. Fu. CDA: A cloud 
dependability analysis framework for characterizing system 
dependability in cloud computing. Proceedings of IEEE 
Pacific Rim International Symposium on Dependable 
Computing (PRDC), pp. 11-20, 2012. 

[7] M. Melo, P. Maciel, J. Araujo, et al. Availability study 
on cloud computing environments: Live migration as a 
rejuvenation mechanism, Proceedings of IEEE/IFIP 43rd 
International Conference on Dependable Systems & 
Networks (DSN), 2013. 

[8] H. S. Pannu, J. G. Liu, Q. Guan, et al. AFD: Adaptive 
Failure Detection System for Cloud Computing 
Infrastructures, Proceedings of 31st IEEE International 
Performance Computing and Communications Conference 
(IPCCC), pp. 71-80, 2012. 

[9] Z. L. Lan, Z. M. Zheng, and Y. W. Li. Toward 
automated anomaly identification in large-scale systems. 
IEEE Transactions on Parallel and Distributed Systems, vol. 
21, no. 2, pp. 174-187, 2010. 

[10] S. Fu, J. G. Liu, and H. Pannu. A hybrid anomaly 
detection framework in cloud computing using one-class and 
two-class support vector machines, Proceedings of 8th 
International Conference on Advanced Data Mining and 

Applications (ADMA), pp. 726-738, 2012. 

[11] K. Bhaduri, K. Das, and B. L. Matthews. Detecting 
Abnormal Machine Characteristics in Cloud Infrastructures, 
Proceedings of 11th IEEE International Conference on Data 
Mining Workshops, pp. 137-144, 2011. 

[12] H. Nguyen, Z. M. Shen, Y. M. Tan, et al. FChain: 
Toward black-box online fault localization for cloud systems, 
Proceedings of the 33rd IEEE International Conference on 
Distributed Computing Systems, pp. 21-30, 2013. 

[13] G. P. Wang, S. Y. Chen, Z. Zhou, and M. W. Lin. A 
Dependable Monitoring Mechanism Combining Static and 
Dynamic Anomaly Detection for Network Systems, 
International Journal of Future Generation Communication 
and Networking, vol. 7, no. 1, pp. 1-18, 2014. 

[14] S. Alarifi and S. Wolthusen. Anomaly detection for 
ephemeral cloud IaaS virtual machines, Proceedings of 7th 
International Conference on Network and System (NSS), pp. 
321-335, 2013. 

[15] A. Patel, M. Taghavi, K. Bakhtiyari, et al. An intrusion 
detection and prevention system in cloud computing: A 
systematic review, Journal of Network and Computer 
Applications, vol. 36, no. 1, pp. 25-41, 2013. 

[16] W. Xiong, H. P. Hu, N. X. Xiong, et al. Anomaly secure 
detection methods by analyzing dynamic characteristics of 
the network traffic in cloud communication, Information 
Sciences, vol. 258, pp. 403-415, 2014. 

[17] Q. Fu, J. G. Lou, Y. Wang, and J. Li. Execution 
anomaly detection in distributed systems through 
unstructured log analysis, Proceedings of IEEE International 
Conference on Data Mining, pp. 149-158, 2009. 

[18] H. B. Mi, H. M. Wang, Y. F. Zhou, et al. Toward Fine-
Grained, Unsupervised, Scalable Performance Diagnosis for 
Production Cloud Computing Systems, IEEE Transactions on 
Parallel and Distributed Systems, vol. 24, no. 6, pp. 1245-
1255, 2013. 

[19] V. Chandola, A. Banerjee, and V. Kumar. Anomaly 
Detection: A Survey. ACM Computing Surveys, vol. 41, no. 
3, Article 15, 2009. 

[20] M. F. Delgado, E. Cernadas, S. Barro, and D. Amorim. 
Do we Need Hundreds of Classifiers to Solve Real World 
Classification Problems? Journal of Machine Learning 
Research, vol. 15, pp. 3133-3181, 2014. 

[21] F. Y. Edgeworth. On discordant observations, 
Philosophical Magazine, vol. 23, no. 5, pp. 364-375, 1887. 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 437



438 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



SESSION

BIG DATA ANALYTICS, DATA WAREHOUSES,
AND RELATED METHODS AND SYSTEMS

Chair(s)

TBA

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 439



440 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



Hadoop Scalability and Performance Testing in Heterogeneous
Clusters

Fernando G. Tinetti1, Ignacio Real2, Rodrigo Jaramillo2, and Damián Barry2
1III-LIDI, Facultad de Informática, UNLP,

Comisión de Inv. Científicas de la Prov. de Bs. As.
La Plata 1900, Argentina

2LINVI, Departamento de Informática, Facultad de Ingeniería, UNPSJB,
Puerto Madryn 9120, Argentina

Abstract— This paper aims to evaluate cluster configura-
tions using Hadoop in order to check parallelization perfor-
mance and scalability in information retrieval. This evalu-
ation will establish the necessary capabilities that should
be taken into account specifically on a Distributed File
System (HDFS: Hadoop Distributed File System), from the
perspective of storage and indexing techniques, and queriy
distribution, parallelization, scalability, and performance
in heterogeneous environments. The software architecture
will be designed and evaluated as either centralized or
distributed, and the relevant experiments will be carried
out establishing the performance improvement for each
architecture.

Keywords: Big Data, Information Retrieval, HDFS, MapReduce,
Cluster, Parallelization, Scalability, Performance

1. Introduction
The amount of information is continuously growing: so-

cial networking, content management systems (CMS) and
portals in general and as collaboration platforms in particu-
lar, data within organizations generated either by production
systems or by digitizing existing information. Data usually
measured in gigabytes a few years ago is now measured
un terabytes and petabytes [5] [6]. Data as well as relevant
applications typically require more resources than those
available on a single computer. The challenge is therefore to
produce and handle computing infrastructure that allows to
take advantage (harnessing) of existing computing platforms,
usually heterogeneous. Thus, several computers wroking
collaboratively, would reach availability and scalability to
cope with the currently needed information processing [7]
[8]. Reusing low-cost equipment allows to address the afore-
mentioned problem, and requires techniques of distributed
systems, where each computing system has local storage and
computation facilities so that processing and access can be
distributed and balanced in a heterogeneous cluster [9]. A set
of desirable properties for an information sharing and data
reocovering system in a heterogeneous and scalable envi-
ronment a could be defined [7] [10] [11]: high performance,
fault tolerance and heterogeneous computing. Moreover, the

NoSQL solutions for managing large volumes of data are
typically based on the usage of a heterogeneous system.

There are several techniques for configuring heteroge-
neous computing environments. We have concentrated our
work in the framework programmed in Java called Hadoop
to store and process large amounts of data in clusters [1]
[2]. HDFS besides being a distributed file system, scalable
and portable, solves availability and reliability issues by
replicating data in multiple computers [9].

1.1 Hypothesis
The amount of data that humans are capable of generating

and storing hinders the analysis and information processing
in general. Processing/analysis in this field is commonly
referred to as Big Data applications [3]. Several problems are
involved, two of the most complex ones could be reduced
to the following questions:

• 1. How to store and protect the large volume of avail-
able data?

• 2. How to process and evaluate data in an acceptable
period of time?

Specifically with regard to the latter question, the hypothesis
from wich we work is the existence of a performance and
scalability characterization of each heterogeneous cluster.
This characterization is given in the context of the different
techniques for handling large volumes of data while varying
the number of nodes that comprise it.

1.2 Contribution
At least, we check a real usage of the infrastructure,

Hadoop, proposing a design that facilitates scalability. This
design could be especially used by organizations and agen-
cies that need to handle large volumes of information, as in
national or local governments or private sector companies.
Another significant contribution lies in the utility that pro-
vide this type of architecture in the field of research and
development.

1.3 Goals
We have defined a set of objectives guiding the work

reported in this paper:

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 441



1) Design different scalable architectures for a Hadoop
cluster varying the number of nodes in order to analyze
processing time.

2) Select bibliographic material and generate a knowl-
edge based on the techniques and methods used in
partitioning, replication, and distribution in the Apache
Hadoop infrastructure.

3) Set parameters and evaluate different architectures for
optimizing Hadoop configuration.

2. Hadoop
Hadoop is a framework that allows to build a cluster

architecture, providing parallel recovery of information and
replication. Also, Hadoop implement a simple way to add
and/or drop cluster nodes, improving scalability, minimizing
the likelihood of failure nodes containing distributed data.
Developed in the Java programming language, by the com-
munity of free software Apache, the Hadoop architecture is
composed of three main components:

• The Hadoop Distributed File SystemHDFS, using a
master/slave architecture, as shown in Fig. 1.

• The MapReduce framework, which allows the program-
mer to split and parallelize complex calculations in any
number of computers.

• The Hadoop Common, a set of tools for integrating
Hadoop subprojects.

Fig. 1: Hadoop Architecture

The two main components, the HDFS and MapReduce,
define a stable, robust, and flexible framework for distributed
applications, making it possible to work with multiple nodes
and process large amounts of information.

The HDFS is designed to provide high performance
and data reliability on heterogeneous hardware. MapReduce
allows the development of parallel processing applications,
focused on scalability. Queries on distributed data could be
distributed as well, thus enhancing performance via par-
allel/distributed processing. Both (HDFS-MapReduce) are

designed to analyze large amounts of structured and unstruc-
tured data.

2.1 Hadoop DFS

HDFS implements a master/slave architecture as shown
in Fig. 2, where: a) NameNode is the master process, b)
DataNodes are the slave processes, and c) the master process
is replicated in a Secondary NameNode. The HDFS keeps
separately metadata (in the NameNode) and data (in the
DataNodes). System (data) reliability is achieved by repli-
cating files in multiple DataNodes, which also allows faster
transfer rates and access. All files stored in HDFS system
are divided into blocks, whose size usually is between 64
MB and 128 MB. A Hadoop cluster can consist of thou-

Fig. 2: HDFS Architecture

sands DataNodes wich respond to different read and write
requests from clients, also maintaining block replication. The
DataNodes regularly send information to the NameNode of
its blocks to validate consistency with other DataNodes. A
cluster may consist of thousands of DataNodes, each of
which stores a portion of (possibly replicated) data. Each of
the DataNodes is likely to fail. The HDFS provides rapid and
automatic failover recovery via replication and the metadata
contained in the NameNode.

During normal operation the DataNode sends signals
(heartbeats) to NameNode every three seconds by default.
If the NameNode does not receive a defined number of the
heartbeats from a DataNode, the DataNode is considered out
of service. Then the NameNode triggers the creation of new
replicas of the DataNode out of service in other (not failing)
DataNodes. Heartbeats also contain information about the
total storage capacity, the fraction of storage that is in use,
and the number of files or data transfer in progress.

442 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



2.2 Hadoop MapReduce

MapReduce allows Hadoop the parallel processing on
large volumes of data through multiple nodes in a cluster,
the data to be processed may be stored in the HDFS. The
execution of a MapReduce process usually divides the input
data into a set of independent chunks of information that are
processed by the Map tasks in parallel. Then, the results of
the map tasks are classified and will be the input to Reduce
tasks. Typically both the input data and output data are stored
in the file system.

MapReduce is based on the Master/Slave architecture,
similar to that of the HDFS, as shown in Fig. 3. The Master
runs the so called JobTracker and slaves run the Task-
Trackers. The JobTracker is responsible for the management
and control of all sumitted jobs. Also, it is responsible for
task distribution and management of available TaskTrackers,
trying to keep the job as close to the data as possible. The
JobTracker takes into account the machines (nodes) that are
close to and/or contain the data needed.

Fig. 3: MapReduce Architecture

MapReduce is based on key/value pairs, which are pro-
cessed in (are the input to) Map tasks. Every Map task
returns a list of pairs in a different domain data. All the
pairs (generated by the Map tasks) with the same key are
grouped and processed by a Reduce task.

MapReduce handles fault tolerance in a similar way to that
described for the HDFS: each TaskTracker process reports
regularly its status to the JobTracker process. If over a
period of time the JobTracker process has not received any
report from a TaskTracker process, the TaskTracker process
is considered as not running. In case of failure, the task is
reassigned to a different TaskTraker process.

3. Design and Implementation of Exper-
iments

Different cluster configurations were evaluated from the
point of view of scalability and (raw) performance. We also
used two benchmarks, each used for measuring different per-
formance metrics. Hardware and benchmarks are described
in the following subsections.

3.1 Computers-Hardware
We specifically focused our work on heterogeneous com-

puting cluster configurations, using the computers detailed
below:

1) Name: Master
Processor: Intel(R) Core(TM) i5-2400 CPU @
3.10GHz
Memory: 10 GB
SATA Disk: 500 GB

2) Name: Slave1
Processor: Intel(R) Core(TM) i7-2600 CPU @
3.40GHz
Memory: 16 GB
SATA Disk: 500 GB

3) Name: Slave2
Processor: Intel(R) Core(TM) i7-2600 CPU @
3.40GHz
Memory: 8 GB
SDisk: 1 TB

4) Name: Slave3
Processor: Intel(R) Core(TM) i3 CPU 540 @ 3.07GHz
Memory: 8 GB
SATA Disk: 1TB

The computers were used for different testing scenarios: a
centralized one and three cluster-like installations. Initially,
the Master was used as a standalone centralized Hadoop
installation, including a Master and a DataNode. We will
use this installation as the departure point for testing the
Hadoop software as well as measuring a non-distributed
environment. The different cluster installations (from 1 to
4 computers) were made up just taking advantage of the
previous installation by adding one more computer including
one more DataNode. The same number of Map and Reduce
tasks per node is maintained in all the experiments.

The Hadoop client process (which is not part of the
main Hadoop infrastucture shown in Fig. 1 before) in every
experiment was run on

• Name: Client
Processor:AMD Turion(tm) X2 Dual-Core Mobile
Memory: 4 GB

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 443



SATA Disk: 320 GB

3.2 Benchmarks-Software
We used two well-known tests provided by the Hadoop

software: TestDFSIO and TeraSort. TestDFSIO is aimed at
assessing the performance of the cluster/Hadoop installation
and TeraSort is focused on scalability and parallelization.

The Hadoop TestDFSIO benchmark is used for reading
and writing files in the HDFS, indicating number and size of
files. TestDFSIO provides timing information, performance,
and the average I/O speed. Basically, TerstDFSIO is useful
for:

• Measurement tasks such as stress tests on HDFS.
• Discovering bottlenecks in the network.
• Evaluating the hardware performance.
• Checking the operating system configuration and

Hadoop cluster machines in general.
In short, TestDFSIO gives a first impression of how fast the
cluster works in terms of I/O. This test runs MapReduce jobs
it is a MapReduce program that reads/writes random data
from large files. Each Map task performs the same operation
in a separate file and informs speed to a Reduce task, which
is programmed to collect and summarize all measurements,
given in MB/seg.

The Hadoop Terasort benchmark is designed to assess
the performance and scalability of a Hadoop installation. It
is specifically designed to check the distrubution of processes
in the cluster using Map Reduce. TeraSort execution actually
involves the execution of three MapReduce programs:

TeraGen for data generation
TeraSort for sorting the generated data
TeraValidate for sorted data validation

The TeraGen program writes data to disk just like
testDFSIO-write creates random data. TeraSort sorting per-
formance is based on the way that divides data between
mappers/reducers and how data is collected and written by
the partitioner. A partitioner is implemented for achieving
a balanced workload. The partitioner uses an ordered list
of N-1 sample keys that define the range of keys for each
Reduce. In particular, a key is sent to the i-th Reduce if
it resides within a range such that sample[i-1] <= key <
sample[i], this ensures that the ith Reduce output is less than
the output of the (i+1)-th Reduce. The TeraValidate program
ensures that the output is globally sorted out by controlling
(in the output data) that each key is less than or equal to the
previous one.

4. Results
A TestDFSIO preliminary test was carried out for assesing

Hadoop I/O performance of different cluster configurations.
This test was run increasing from 1 to 14 the number of files
of size 1 GB each (i.e. from 1 to 14 GB). Cluster architecture

was also increased from 1 to 4 nodes, as shown in Fig. 4.
Read operation results were taken into account for this run,
with default settings, which imply

• BufferSize: 1000000 bytes
• Replication factor: 3
• Number of tasks in parallel by node: 2
• Block size: 64 MB

Fig. 4: TestDFSIO Read Performance

Fig. 4 shows how the performance decreases as the number
of files (and involved data) increases, due to several factors
among wich we can mention network traffic, local disk
accesses, etc. Results are labelled as 1...4 Nodes from
the standalone case to the complete cluster, with 4 nodes
(computers) running the experiment. It is worth mentioning
that heterogeneity does not play an important role and is
almost negligible. However, when using the 4 computers (4
Nodes), performance is slightly penalized as compared to
the case in which only 3 computers (3 Nodes) are used for
the 14 files.

TeraSort results are the ones we are really interested in,
because parallel computing is directly involved. Data to be
sorted has to be generated, and we chose to follow the
Fibonacci sequence ×107. Therefore:

• In the first run 1× 107 records or rows are generated,
where each row is 100 bytes in size.

• 2×107, 3×107, 5×107, 8×107 and 13×107 records
are then generated.

i.e. from 10 to 130 millions of records to be sorted. And
given that each record is 100 bytes long, the total amount of
data is among 1 GB to 13 GB. For each cluster configuration
(from a standalone Master to the complete 4 nodes cluster),
TeraGen was first executed to generate the data serie. Once

444 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



the data is generated, TeraSort is run in set of 10 identical
experiments and the average runtime is taken as the result,
just to avoid transient experiment “noise”. Finally TeraVal-
idate was run to confirm that the data were actually sorted.
For each test configuration TeraGen was first executed to
generate the first data series, and TeraSort was run in a
sequence of 10 repetitions, thereby strengthen the statistical
results and obtain representative values. TeraValidate was
always used to confirm that the data were actually sorted.
Table 1 shows measured runtime for each experiment, i.e.
varying the number of computers mand the amount of data

Table 1: Summary of TeraSort Results
1 Node 2 Nodes 3 Nodes 4 Nodes

1 GB 71 80 68 81
2 GB 114 148 113 102
3 GB 247 210 169 163
5 GB 577 373 258 210
8 GB 1042 885 504 316
13 GB 2386 1888 1098 574

to be sorted, where “1 Node” represents the standalone
configuration (only the Master node is running), “2 Nodes”
represents the configuration with the master and Slave1
running, and son on. There are several interesting details
which can be quantified with the values shown in Table 1:

• A larger amount of data to be sorted implies increasing
the runtime, as could be expected a priori.

• For small size data sets (e.g. 1 GB or 2 GB) using more
computers does not imply a performance improvement.
More specifically, the runtime using the Master and
Slave1 increases the runtime for 1 GB and 2 GB data
to be sorted.

• For large size data sets (e.g. 8 GB or 13 GB) using more
computers always imply a performance improvement.
The improvement depends on several factors such as
centralized to distributed (1 Node and 2 Nodes), or
where the added computer is relatively less powerfull
than those already running in the cluster (3 Nodes and
4 Nodes, the 4th node is the least powerfull one in the
cluster).

• For intermediate size data sets of those experimented
with (e.g. 3 GB and 5 GB) gains are difficult to evaluate,
and some more specific experiments should be carried
out even with other benchmark/s.

• Given that Hadoop is expected to handle TB of infor-
mation, all of the results could be considered highly
encouraging, since even handling small size data sets it
is possible to obtain performance gains using heteroge-
nous computers.

• Some results regarding performance enhancements are
linearly related, while others not. Relative computing
power of each node has not been calculated, so the
values cannot be strictically analyzed/evaluated from

a numeric point of view. We have to continue our
experiments (at least) in that line of work.

Fig. 5 shows the values of Table 1 graphically, focused
on experiments runtime (on the vertical axis) depending on
the amount of data to be sorted (on the horizontal axis).
Some scalability details can be identified in Fig. 5, since

Fig. 5: TeraSort Scalability

scaling (increasing) data clearly implies increased runtime.
At this time, it should be recalled that sorting is an O(n2)
problem in general. Also, Fig. 5 clearly shows that increasing
the number of nodes in a cluster the runtime is reduced
using Hadoop with the proper configuration of HDFS and
MapReduce.

5. Conclusions
Even when we have several problems in the Hadoop

installation and configuration stages (mainly due to lack of
documentation at the time we began this research some years
ago) we have set a successful environment for experimenta-
tion with Hadoop in heterogeneous clusters. The installation
and configuration could be replicated in every cluster (either
homogeneous or heterogenous).

We have used TestDFSIO as a departure point: Hadoop
I/O performance. Furthermore, we have found that TestDF-
SIO does not provide any information about parallel comput-
ing and/or scalability. At most, TestDFSIO could be used for
node failure experimentation, varying the replication factor
and injecting node failures in different scenarios.

We have used TeraSort for performance analysis in gen-
eral, and performance scalability in particular. At this point,
the MapReduce programming model and its conceptual basis
are the most relevant. We have analyzed the processes
involved in a Hadoop job so that we were able to determine
the correct amount of Map and Reduce tasks per node and to
properly configure MapReduce parameters. Our experiments
show that processing times decreases as the cluster nodes
are added. Clearly, MapReduce does not solve everything,
is a solution for those problems that fit the model and can be
parallelized. One of the important results of experimentation

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 445



is that having small size data sets to process (maybe up
to 5 GB specifically for sorting) would suggest to avoid
MapReduce at all (see Fig. 5). More specifically: adding
computers to a cluster would not add real/proportional
performance gains.

From using both, TestDFSIO and TeraSort it is possible
to conclude that almost inexpensive infrastructure (basically:
low-cost computers) enables the processing of large volumes
of data. And the obtained performance in general terms,
besides being linked to the implemented hardware, also
depends on the correct configuration.

We have several lines of further work, taking advantage
of the Hadoop experience we have acquired:

• Relative computing power evaluation, as aforemen-
tioned. We should design specific experiment scenarios
and analysis.

• We should try gathering more computers, scalability in
the tens, hundreds and thousands of nodes would give
a better idea. Our results are exiting, but we know we
have a limited number of available computers, and it is
caused by our limited budget.

• We should try others benchmarks, by adapting current
ones or developing new ones. An initial idea would be
to identify different application areas, and use one or
more benchmark per application area.

References
[1] S. Guo, Hadoop Operations and Cluster Management Cookbook, Packt

Publishing, 2013.
[2] A. Holmes, Hadoop in Practice, 2nd. Ed., Manning Publications 2014.
[3] P. C. Zikopoulos, C. Eaton, D. deRoos, T. Deutsch, G. Laspis Un-

derstanding Big Data: Analytics for Enterprise Class Hadoop and
Streaming Data, McGraw-Hill Osborne Media, 2012.

[4] F. G. Tinetti, D. Barry, I. Aita, F. Páez, Distributed Search on Large
NoSQL Databases, PDPTA2011, 2011.

[5] N. Scola, WhiteHouse.gov Goes Drupal [Updated], [Online]. Available:
http://techpresident.com/blog-entry/whitehousegov-goes-drupal

[6] C. Henderson, Building scalable web sites, O’Reilly Media, Inc., 2006.
[7] O. M. Tamer, P. Valduriez, Principles of distributed database systems,

Springer Science & Business Media, 2011.
[8] A. K. Elmagarmid, M. Rusinkiewicz, A. Sheth, Management of hetero-

geneous and autonomous database systems, Morgan Kaufmann, 1998.
[9] J. Venner, S. Wadkar, M. Siddalingaiah, Pro Apache Hadoop, Apress,

2nd ed., 2014.
[10] D. Taniar, C. H. C. Leung, W. Rahayu, S. Goel, High performance

parallel database processing and grid databases, John Wiley & Sons,
2008.

[11] R. Ho, Scalable System Design Patterns, Prag-
matic Programming Techniques, [Online]. Available:
http://horicky.blogspot.com/2010/10/scalable-system-design-
patterns.html 2010.

446 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



Towards adaptive execution strategies for large-scale and real-time
data analytics

Martin Köhler1, Yuriy Kaniovskyi2, and Siegfried Benkner2
1AIT Austrian Institute of Technology GmbH, Vienna, Austria

2Research Group Scientific Computing, University of Vienna, Vienna, Austria

Abstract— The ever increasing amount of data available to
the scientific community poses new challenges for the design
of large-scale data analytics systems. In particular, there
is a need for bringing together recent developments from
the fields of Big Data and High Performance Computing
by integrating data-intensive programming paradigms, such
as MapReduce, and compute-intensive paradigms for mas-
sively parallel architectures and accelerators. However, the
development, configuration and execution of data analytics
workflows on emerging compute- and data-intensive plat-
forms are far from being easily manageable. In this work,
we present the design and major aspects of an advanced
data analytics framework that provides adaptive execution
strategies for optimizing data analytics applications subject
to user-defined QoS constraints on such platforms. Central
to our approach is the design of a description model of the
system environment. Based on the description model we aim
to adapt a data pipelining framework to its environment
considering multiple implementation variants of analytical
modules based on different programming paradigms.

Keywords: Big Data, High Performance Computing, framework
design, adaptive, real time, optimization

1. Introduction
The amount of data available in various research fields

is often enormous in size and available in different formats
such as text files or binary data, or produced continuously
through data streams. To meet ever increasing computational
requirements there is a clear trend towards heterogeneous
multi-core architectures, which combine conventional multi-
core CPUs with different types of accelerators, like GPUs or
co-processors. In both areas, Big Data and High Performance
Computing, new disruptive technologies are emerging that
are converging to meet the challenges exposed by large-scale
data science in various domains.

These technologies lead to a shift in research towards
data-driven approaches for exploring both existing and real-
time generated data-sets, in addition to empiric, hypothesis-
driven, and computational or simulation-driven methods.
These new directions are often referred to as the fourth
paradigm of science [1]. The realization of such a new
paradigm poses many new challenges to the e-Science
domain [2]. One of these challenges is to facilitate real-time

access and interactive usage scenarios on top of complex
data- and compute-intensive workflows.

Enabling real-time processing of large-scale compute-
and data-intensive analytical workflows necessitates the in-
tegration of state-of-the-art technologies from the fields of
Big Data and High Performance Computing. Data-intensive
and massively parallel programming paradigms such as
MapReduce and its open-source execution frameworks (e.g.,
Apache Hadoop) are at the centerpiece of many Big Data
applications analyzing massive volumes of data. The current
development focus aims on extending these systems for
processing high velocity data and for real-time analytics.
Massively parallel platforms, which combine conventional
multi-core CPUs with different types of accelerators, like
GPUs or co-processors have the potential to provide the
required computational power, but their efficient utilization
requires combing different programming models, such as
MPI, OpenMP and CUDA, adding another level of com-
plexity on top of established parallelization techniques.

However, even for experts, configuring and optimizing
analysis workflows on such platforms is a complex and
time-consuming task that requires detailed knowledge of the
underlying hardware and software resources. Consequently,
current approaches are often static (i.e. optimizations are
performed at design time), restricted to a single application
or the workflow layer only, and often assume a fixed
execution environment. Therefore, there is an urgent need
for adaptive mechanisms that autonomously configure and
optimize workflows and their execution environment.

In this paper we present the design of a framework for
real-time data analytics, motivated by new requirements in
the domain of transportation [3]. Our framework is based on
an existing modular data pipeline. For each module of the
data pipeline, different implementation variants optimized
for different types of execution units (e.g. multi-core CPUs,
GPUs, accelerators) can be provided. The framework aims
to adaptively optimize analytical workflows by selecting
for each module the most efficient implementation variant,
depending on the available hardware resources, such that
execution times and data transfer costs are minimized.
Central to our approach is a generic resource description
model which captures major characteristics of storage and
compute resources, the execution platform, the organization
of the data to be analyzed, and the analytical workflow itself.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 447



The remainder of the paper is structured as follows:
Section 2 provides an overview of the design of the large-
scale and real-time data analytics framework. Section 3 illus-
trates our environmental description model, while Section 4
discusses approaches towards adaptive execution strategies.
Section 5 presents application scenarios from the transporta-
tion domain. Finally, we wrap up with concluding remarks,
related work and future plans.

2. Design of the adaptive real-time data
analytics framework

The adaptive real-time data analytics framework aims
to transparently combine large-scale compute- and data-
intensive workflows with stream processing to support real-
time data analytics in the transportation domain. Our frame-
work is based on a modular data pipeline platform and
provides more than 40 modules for importing and exporting
data from and to a variety of data sources, integrating and
analyzing data, which can be flexibly arranged into data
analytics workflows. In addition, a flexible plugin mecha-
nism enables the development and integration of additional
application-specific modules.

At present, the data pipeline platform can be deployed
on shared memory systems only. Pipelines are executed by
concurrent threads on data sources that are available locally.
In case of remote data sources, data has to be transferred on
demand to the execution system.

To overcome these restrictions and to enable real-time
big data analytics on emerging heterogeneous parallel plat-
forms, the pipeline platform is being extended through the
integration of (1) stream processing technologies: processing
sensor data in real-time requires the integration of a stream
processing framework enabling the pre-processing of the
data records and the adaptation of the pipelining platform
towards the integration of live data into analytical pipelines;
(2) data-intensive computing techniques: the amount of data
necessitates a seamless integration of large-scale data storage
systems, such as HDFS, and data-intensive computation
approaches, such as MapReduce, in order to exploit data
locality; and (3) high performance computing: parallel pro-
cessing capabilities on multicore architectures as well as on
GPUs and other types of accelerators. In order to support
emerging processor architectures, the framework will allow
the provisioning of new implementation variants for data
analytics modules optimized for different parallel execution
units using different programming models including MPI,
OpenMP, OpenCL and CUDA.

To address the challenge of workflow orchestration, we
design a generic resource description model that aims to
systematically capture the main characteristics of the un-
derlying hardware, the execution and storage platforms, the
characteristics of the data sources and the application work-
flows. The model aims to support optimization and tuning

Fig. 1: High-level view of the adaptive real-time data ana-
lytics framework

of data analytics workflows for target execution platforms
through selection of different implementation variants for
each analytical module and devising a data placement and
movement strategy in order to meet required quality of
service specifications.

Figure 1 provides a high-level view of the design of our
adaptive real-time data analytics framework that takes into
account all these considerations. The figure delineates the
extended data pipelining framework, including storage re-
sources, computing resources, and modules available for dif-
ferent programming paradigms. Implementation variants and
available resources are characterized by means of generic
descriptors (see Section 3), which form the basis for adaptive
workflow tuning. On top of this, the framework supports the
definition of analytical workflows, which can be separated
into streaming-, time-sensitive-, and compute- and/or data-
intensive workflows. Finally, results of the workflows will be
visualized using state-of-the-art PTV software [4] and Web
frontends.

2.1 Lambda architecture scheme
The framework adopts the lambda architecture scheme [5]

to support real-time stream processing and batch processing
of large data sets. The lambda architecture is a generic
architectural design for scalable and fault-tolerant processing
of large data volumes. It tackles the challenges of real-
time stream processing and massively-parallel processing
of large-scale data sources in a single architectural scheme
by defining three system layers: the speed, the batch and
the serving layers. The batch layer is utilized for storing
the complete data set and supporting massively parallel
execution of data-intensive jobs (e.g. MapReduce paradigm).
The speed layer is introduced for handling new data and
extracting knowledge from live data in real-time. Both layers

448 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



Fig. 2: Data Analytics workflow: flexible mapping of com-
pute and storage resources, as well as implementation vari-
ants

store their results via the serving layer by incremental real-
time and batch views. This type of architecture enables merg-
ing of queries by integrating batch views with incremental
real-time views to allow incremental computation through
incoming live data.

Following the lambda architecture, workflows are catego-
rized into two types: stream (live data) and batch process-
ing. In our case, time-sensitive and compute- and/or data-
intensive workflows are considered batch processing work-
flows, which are explicitly triggered by the user. Contrary,
streaming workflows are triggered by incoming data streams.
Incoming data will be materialized in the storage system and
directly used for incremental computations.

2.2 Data analytics workflows
A data analytics job is defined as an abstract workflow

by means of a YAML file comprising module descriptions.
Each module description includes the name, the type and
the module specific parameters, including a list of input and
output data pipelines. The execution ordering is determined
through specifying and linking input and output pipelines.

The mapping of modules to specific implementation vari-
ants will be done by the adaptive execution strategies delin-
eated in Section 4. An example mapping of a data analytics
workflow is depicted in Figure 2. The figure illustrates a
concrete workflow execution comprising multiple modules
with assigned implementation variants and their respective
execution platform. In addition, inputs and outputs of analyt-
ical modules are assigned to different data storage solutions
in order to exploit data locality for a specific implementation
variant.

In the presented example the first module (e.g. importer)
is executed on the MapReduce execution platform since it
gathers data from a scalable storage solution (HDFS). The

Fig. 3: Generic resource description model: categorization
of descriptors for each resource type at different system
layers. Connecting lines between descriptors indicate their
dependencies.

data is forwarded to a local storage system (local file system)
where the next module (filter) processes it. Assuming it fits,
the result is stored in-memory, where the next module n,
which is assumed to be compute-intensive, is executed on a
GPU. The final results are then pushed to a RDBMS.

3. Generic resource description model

The generic resource description model is designed to
support adaptive execution and data management strategies
by systematically representing the main characteristics of all
system layers and components. These include a description
of the underlying hardware, the execution platforms, their
respective programming paradigms, the characteristics of the
data sources and the application. The organization of the
resource descriptor model loosely follows the NIST model
for Cloud computing [6]. We define different descriptors at
the infrastructure, the platform and the application layers.

An overview of the generic resource descriptor model
is depicted in Figure 3. The infrastructure layer (IaaS)
comprises the systems’ compute and storage resources. The
platform layer (PaaS) comprises the execution and storage
platforms, and the implementation variants. The application
layer (SaaS) comprises descriptions of data analytics jobs
(job specific execution context), the corresponding workflow
descriptors, and the data sets involved. Through the subse-
quent dependencies of descriptors we are able to represent
knowledge about the overall system, and navigate from a
specific job to other environmental descriptors to determine
what infrastructure and platform resources any particular job
can be assigned to.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 449



3.1 Infrastructure descriptors
The infrastructure layer comprises descriptors for compute

and storage resources. Compute resource descriptors capture
important characteristics of the available hardware resources
ranging from single-node to multi-node parallel systems
possibly equipped with GPUs or accelerators. Through a
hierarchical format, the descriptor enables representation of
available nodes and their respective properties, including
the overall processing capacity, the operating system, and
different I/O devices. Additionally, the compute resource
descriptor holds information about various Machine PCI
devices such as GPUs, Xeon Phi and other accelerators, as
well as network and Infiniband interfaces. Compute resource
descriptors are based on existing approaches such as PDL
[7] and hwloc [8]. In addition, we explicitly represent stor-
age resource descriptors complementing compute resource
descriptors with information about the memory hierarchy
detailing on cache, memory, disk and possible attached
remote storage resources.

3.2 Platform descriptors
The platform layer captures relevant information about the

execution platforms, the storage platforms, and the available
modules (and their implementation variants) of the data
pipeline framework. Execution platform descriptors com-
prise information about the available programming models,
such as MapReduce, MPI or CUDA, and interlink compute
resources that support them. The module resource descriptor
is a registry of analytical modules and their available exe-
cution variants. Supported implementation variants for dif-
ferent execution platforms are mapped to the corresponding
execution platform.

Storage platform descriptors represent various types of
database management systems, ranging from in-memory sys-
tems to NoSQL databases. We differentiate distributed and
local storage solutions and map them accordingly through
the compute resource descriptor. The main goal of the stor-
age platform descriptor is to represent performance-related
properties of any data storage instance. Performance metrics
are estimated through average throughput and latency for
data pushing and fetching. Figure 4 illustrates the platform
layer of the description model. Both, the storage and the
execution platform descriptors are mapped to a specific node,
or to a topology of nodes to determine which resources are
available, and can be exploited to gain performance.

In addition, an invocation context provides a generic (key
- value) configuration set of execution parameters for the
target execution and storage platforms. These parameters
can be set by either the adaptive mechanisms at run-time or
the execution platform. Thus, an invocation context for an
execution platform would include, among others, the number
of task threads or, in case of Apache YARN for example, a
specific task scheduler to be used for the execution.

Fig. 4: Platform descriptors: the module descriptor comprises
information about available implementation variants for an-
alytical modules. The variants are mapped to the appropriate
execution platforms that depend on compute resources. The
invocation context provides a generic parameter set for
execution and storage platform configuration.

3.3 Application descriptors
The descriptors at the application layer specify infor-

mation about specific data analytics jobs together with
the workflows and the data required for these jobs. The
job descriptor represents a workflow execution request. In
addition to quality of service policies, this descriptor is
mapped to a workflow descriptor, which contains the abstract
workflow of the analytical modules. Input and output data
of the workflow are specified through dependencies to data
descriptors.

Data descriptors hold the properties of specific data sets
and are interlinked via dependencies to a storage platform.
These dependencies can describe current storage of the
data sets or possible future storage decisions. In addition,
attributes describing data characteristics, such as cardinality,
numerical distribution, time and spatial sparsity, as well as
size are included.

Through subsequent dependencies, the job descriptor en-
ables us to trace infrastructure and platform information of
a particular job execution.

4. Adaptive execution strategies
In the following we describe our approaches towards

adaptive execution strategies within our framework. An
adaptive execution strategy is characterized by (1) a dynamic
arrangement plan of concrete implementation variants of
analytical modules on different execution platforms with
respect to their computational and data requirements, and (2)
a data placement plan that orchestrates data movement upon
workflow execution. The latter is responsible for mapping
input and output data of the complete workflow and the
comprised modules, as well as deciding whether or not to

450 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



move data from the large-scale to local storage facilities for
compute-intensive tasks. By taking both of these aspects
into account, we aim to minimize bottlenecks with regard
to computational performance and data transfer costs with
the ultimate aim to minimize overall execution time such
that real-time access and interactive usage scenarios become
possible.

The implementation of the adaptive execution strategies
will be based on a feedback control loop approach to
select concrete implementation variants and data sets for a
specific job to be executed. The loop adheres to the MAPE-
K reference model [9], [10], [11], known from autonomic
computing. The MAPE-K model formalizes a blueprint of
an adaptive framework and its interactions with the managed
element. In the following, the main components of the loop
and their responsibilities in the context of the adaptive real-
time analytics framework are described.

4.1 Control loop components
The control loop consists of two main elements: a man-

aged resource and its autonomic manager. In our case, the
managed resources are described by the generic resource
description framework and involve the infrastructure and
the platform. While the application layer is not considered
a managed resource, its information regarding contextual
workflow execution parameters (e.g. input data) is required
for adaptive execution strategies. The objective of the au-
tonomic manager is to minimize the runtime for a specific
job.

The autonomic manager will be implemented transpar-
ently within the adaptive real-time analytics framework and
consists of a knowledge component, a monitor, an analyzer,
a planner, and an executor component, which together are
responsible for devising the adaptive execution strategy for
a specific job.

Upon receiving a workflow execution request, the con-
trol loop generates real-time information of the managed
resources and utilizes the knowledge component for hold-
ing and sharing historic information to be utilized by all
components during workflow analysis. Thus, knowledge is a
database, holding not only the current state of the system, but
also system training data in form of historical job executions.

The monitor filters and aggregates compute resource in-
formation within corresponding descriptors, while probing
application metrics and performance parameters through the
APIs of execution platform technologies upon workflow
execution, with the purpose of supporting the systems per-
formance models.

The analyzer determines the pool of available resources,
including execution and storage platforms through analysis
of the parameter scope within the descriptor information via
the knowledge base. Together with the planner component,
the loop establishes performance requirements of workflow

modules regarding computational complexity and data man-
agement. Ranking of different configuration solutions is
usually based on predictive models. Thus, some level of
estimation or inaccuracy through a heuristic is inevitable.

Finally, the executer deploys the concrete workflow
adapted by the planner on top of the execution platforms
and starts the job.

4.2 Analyzing and planning
Throughout the analysis and planning stages of the loop,

workflows are accompanied by performance models that
enable the prediction of (relative) performance aspects of
module implementation variants on different execution plat-
forms. They are evaluated whenever a workflow is sched-
uled for execution and produce a performance description
according to information contained in the knowledge com-
ponent, including platform-independent information relevant
at module invocation time (e.g. input data) and available
computational resources (processing units, memory etc.) of
the target platform. Performance models can be implemented
in different ways including analytic methods, methods that
rely on historical performance data, heuristics, or any com-
bination of these approaches [12]. For instance, utility-based
approaches, reinforced learning and probabilistic techniques
can be utilized and are considered for learning which envi-
ronmental parameters influence performance the most.

The utility function [13] designates a measure of useful-
ness of a concrete workflow. In our case utility represents
a measure of system performance. In our previous works
[14], [15] we applied the utility function to map a small set
of environmental characteristics to determine the utility of a
given job configuration in order to rank them appropriately.
In the prototype we used an auxiliary function for the utility
calculation that weighted environmental parameters using
scalar weights. These however, had to be adapted manually
if the environment or the application changed. Using the
reinforced learning approach [16], the described adaptive
mechanism will be able to scale the environmental char-
acteristics according to the training based on historical data.
The training would necessitate an extensive benchmarking
of implementation variants on different representative data
sets.

Recently, probabilistic techniques have been proposed
throughout self-management literature [17] to provide a cost
sensitive classification of feedback adjustments. By applying
AI and Machine Learning approaches we can establish
probabilistic performance models from historic executions.
A Bayesian network model would describe domain variables
from the environmental descriptors and establish proba-
bilistic dependencies specified by conditional probability
distributions. This model can provide a compact representa-
tion of multi-variate joint distributions and support efficient
classification for inference tasks such as runtime prediction.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 451



5. Application scenarios
The real-time data analytics framework is being developed

in context of the Retida ("Real-Time Data Analytics in the
Mobility Domain") project, funded by the Austrian Research
Promotion Agency. Within the project, application scenarios
are specified using a twofold approach: combining data-
driven analytics capable of computing the current traffic
flows on street networks and simulation-based traffic as-
signment on the street network. The project supports the
utilization of the data analytics results in state-of-the-art
transportation planning and management, traffic engineering
and traffic simulation software PTV Visum [4]. A major goal
is to facilitate interactive utilization of real-time analytics
combined with simulations using the Visum software. As
a result, we will tackle the challenge of implementing
application scenarios for batch processing and for real-time
calculation.

A real-time data analytics scenario demonstrates how
various data sources can be combined and processed in an
efficient manner. The application aims to calculate and visu-
alize the current traffic state on the Austrian street network
in real-time based on cell phone data [18] in order to detect
and highlight untypical incidents such as car breakdowns.

In a second batch processing scenario we will exploit the
capabilities of the framework and the diverse data sources
for comprehensive comparisons of different traffic demand
scenarios. This scenario will enable a detailed ’before and
after’ comparison on top of real-time data of this area and
similar cases. The framework’s ability to gather data for
traffic demand modeling from one single interface reduces
time consuming processes required before actual simulation
steps and increases reliability.

6. Related work
An important contribution to automation and optimiza-

tion of Big Data systems is the Stratosphere Project [19],
now known as Apache Flink. Stratosphere features a pro-
grammable and scalable execution engine, automatic par-
allelization and query optimization techniques through a
declarative query language. They offer a data analysis engine
that acts through external heterogeneous data sources by
connecting them ad-hoc to the framework. They use a query
optimization engine that includes several different processing
algorithms on top of the data source, thus exploiting data
locality. In contrast, we focus on devising a framework that
not only takes data placement strategies into account, but
is also able to exploit and combine various programming
paradigms from Big Data and High Performance Computing.

We also set a contrast to our previous works [14], [15],
where we implemented a prototype for adaptive configura-
tion of Apache Hadoop in the context of a molecular system
biology application. Our current work builds upon this pro-
totype and profoundly extends it. In our current design, we

introduce a much larger set of environmental characteristics
and performance metrics based on a generic description
model. The strategies will also be extended through new
approaches in the field of autonomic computing.

Other works that drive the autonomic incentive include
the Automat toolkit [20], which is a community testbed
architecture that targets research into mechanisms and poli-
cies for autonomic computing that are under closed-loop
control. The toolkit enables researchers to instantiate self-
management virtual data centers and to define the controllers
that govern resource allocation, resource selection, and dy-
namic migration. Our adaptive strategies focus on resource
selection mechanisms and self-configuration of the different
execution environments.

In [21], utility functions in autonomic systems are used
to continually optimize the utilization of managed com-
putational resources in a dynamic, heterogeneous environ-
ment. The authors described a system that is able to self-
optimize the allocation of resources to different application
environments. We apply their approach to large-scale data
processing systems.

The European PEPPHER project [22] proposed a
component-based development approach for heterogeneous
parallel systems, allowing to shield application develop-
ers from low-level implementation details while providing
means for a seamless integration of different programming
APIs, as well as for dynamic code adaptation and op-
timization. Parallel applications are composed at a high-
level of abstraction from components, for which different
implementation variants, optimized for different processing
units, are provided. In our work, we extend this approach
to a flexible data analytics pipeline, also taking into account
data and storage characteristics.

7. Conclusion and future work
The ever increasing amount of data available to the scien-

tific community raises new challenges on how to process
and derive knowledge from this data. Many applications
also require high performance systems in order to provide
a level of viability in execution of scientific workflows.
Data-intensive programming paradigms, such as Hadoop,
and compute-intensive paradigms provide execution environ-
ments that are able to address these challenges. However,
integration, configuration and orchestration of executions on
these platforms is far from being manageable by humans.

In this work, we presented the design of a novel real-
time data analytics framework that aims to combine the
two worlds of Big Data and High Performance Computing.
Our framework design, based on the recently proposed
lambda architecture, supports integration and analysis of
large volumes of data via batch and stream processing. The
data analytics framework is implemented on the basis of a
generic and modular data pipeline and incorporates different
implementation variants of analytical modules, optimized for

452 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



different execution platforms such as Hadoop, MPI, OpenCL
and CUDA.

Furthermore, we discussed adaptive mechanisms, based
on concepts from autonomic computing [23], [12], that
support autonomic mapping of analytical workflows to mul-
tiple platform execution environments, while taking into
account its available resources and configuring them for
resource exploitation. Central to our approach is a generic
resource descriptor model, enabling to not only represent
the underlying compute and storage resources available to
the system, but also the platform execution environment
and the application workflow characteristics in a generic
manner. This information can then be used by an adaptation
of the MAPE-K control loop to derive workflow mapping
solutions that exploit the available resources according to
QoS policies. We take into account state-of-the-art heuristic
strategies enabling adaptive mapping of abstract to concrete
execution plans. The adaptive mechanisms, including the
generic resource description model and the execution strate-
gies, will be implemented in the context of the real-time data
analytics framework.

The presented data analysis framework is currently being
implemented and will be evaluated based on application
scenarios from the transportation domain. The application
scenarios focus on on-demand calculation and analysis of
the current traffic state and are developed in the context of
the Austrian research project Retida.

Future work will include diverse deployment scenarios
of the prototypical framework on emerging heterogeneous
many-core platforms and the tight integration of the auto-
nomic features according to the models presented in this
work. We will present results in this context and answer
important questions related to our system, namely (1) what
resources and environmental characteristics pose a signif-
icance with regard to performance; (2) how to leverage
available system resources in the best possible manner; and
(3) how to optimize scientific workflows with regard to
execution and data storage strategies.

Acknowledgment
The research leading to these results has received funding

from the Austrian Research Promotion Agency (ICT of the
Future/2014-2016) under grant agreement #845606 (Retida
Project).

References
[1] T. Hey, S. Tansley, and K. Tolle, Eds., The Fourth Paradigm: Data-

Intensive Scientific Discovery. Microsoft Research, 2009.
[2] T. Hey and A. E. Trefethen, “Cyberinfrastructure for e-science,”

Science, vol. 308, no. 5723, pp. 817–821, 2005.
[3] R. Kitchin, “The real-time city? big data and smart urbanism,”

GeoJournal, vol. 79, no. 1, pp. 1–14, 2014.
[4] PTV Group, “PTV Visum: http://vision-

traffic.ptvgroup.com/de/produkte/ptv-visum/,” 3 2015.
[5] N. Marz, Big data : principles and best practices of scalable realtime

data systems. [S.l.]: O’Reilly Media, 2013.

[6] P. M. Mell and T. Grance, “Sp 800-145. the nist definition of cloud
computing,” NIST - National Institute of Standards and Technology,
U.S. Department of Commerce, Gaithersburg, MD, United States,
Tech. Rep., 2011.

[7] M. Sandrieser, S. Benkner, and S. Pllana, “Using explicit platform
descriptions to support programming of heterogeneous many-core
systems,” Parallel Computing, vol. 38, no. 1-2, pp. 52 – 65, 2012,
extensions for Next-Generation Parallel Programming Models.

[8] Inria, “Portable Hardware Locality (hwloc): http://www.open-
mpi.org/projects/hwloc/,” 3 2015.

[9] Horn, “Autonomic Computing: IBM’s Perspective on the State of
Information Technology,” IBM Corporation (October 15, 2001), Oct.
2001.

[10] IBM, “An architectural blueprint for autonomic computing,” IBM,
Tech. Rep., June 2005.

[11] C. Intanagonwiwat, R. Govindan, and D. Estrin, “Directed diffusion:
A scalable and robust communication paradigm for sensor networks,”
in Proceedings of the 6th Annual International Conference on Mobile
Computing and Networking, ser. MobiCom ’00. New York, NY,
USA: ACM, 2000, pp. 56–67.

[12] M. C. Huebscher and J. A. McCann, “A survey of autonomic
computing - degrees, models, and applications,” ACM Comput.
Surv., vol. 40, pp. 7:1–7:28, August 2008. [Online]. Available:
http://doi.acm.org/10.1145/1380584.1380585

[13] WIKIBOOKS, “Principles of Economics:
http://en.wikibooks.org/wiki/Principles_of_Economics/Utility,” 7
2011.

[14] M. Köhler and S. Benkner, “Design of an adaptive framework for
utility-based optimization of scientific applications in the cloud,”
in The 2nd International Workshop on Intelligent Techniques and
Architectures for Autonomic Clouds (ITAAC 2012), in conjunction
with The 5th IEEE ACM International Conference on Utility and
Cloud Computing (UCC 2012), USA, November 2012.

[15] M. Köhler, Y. Kaniovskyi, and S. Benkner, “An adaptive framework
for the execution of data-intensive mapreduce applications in the
cloud,” in The First International Workshop on Data Intensive Com-
puting in the Clouds (DataCloud 2011). Anchorage, Alaska: IEEE,
May 2011.

[16] G. Tesauro, “Reinforcement learning in autonomic computing: A
manifesto and case studies,” Internet Computing, IEEE, vol. 11, no. 1,
pp. 22–30, Jan 2007.

[17] A. Bashar, G. Parr, S. Mcclean, B. Scotney, and D. Nauck, “Appli-
cation of bayesian networks for autonomic network management,” J.
Netw. Syst. Manage., vol. 22, no. 2, pp. 174–207, Apr. 2014.

[18] P. Widhalm, Y. Yang, M. Ulm, and M. Gonzales, “Discovering urban
activity patterns in cell phone data,” Springer Transportation, 2015.

[19] A. Alexandrov, R. Bergmann, S. Ewen, J.-C. Freytag, F. Hueske,
A. Heise, O. Kao, M. Leich, U. Leser, V. Markl, F. Naumann, M. Pe-
ters, A. Rheinländer, M. J. Sax, S. Schelter, M. Höger, K. Tzoumas,
and D. Warneke, “The stratosphere platform for big data analytics,”
The VLDB Journal, vol. 23, no. 6, pp. 939–964, Dec. 2014.

[20] A. Yumerefendi, P. Shivam, D. Irwin, P. Gunda, L. Grit, A. Demberel,
J. Chase, and S. Babu, “Towards an autonomic computing testbed,” in
In Proceedings of the Second Workshop on Hot Topics in Autonomic
Computing, 2007.

[21] W. Walsh, G. Tesauro, J. Kephart, and R. Das, “Utility functions in
autonomic systems,” in Autonomic Computing, 2004. Proceedings.
International Conference on, May 2004, pp. 70 – 77.

[22] S. Benkner, S. Pllana, J. L. Träff, P. Tsigas, A. Richards, R. Namyst,
H. Cornelius, C. Kessler, D. Moloney, and P. Sanders, “Peppher:
A comprehensive framework for performance portability and pro-
grammability of heterogeneous many-core architectures,” in Program-
ming Multi-Core and Many-Core Computing Systems. Wiley Inc.,
December 2014.

[23] J. Kephart and D. Chess, “The vision of autonomic computing,”
Computer, vol. 36, no. 1, pp. 41 – 50, Jan. 2003.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 453



A Data Pre-partitioning and Distribution Optimization Approach for Distributed

Data Warehouses

Billel ARRES

Universite Lumiere Lyon 2

69676 Bron, France

billel.arres@univ-lyon2.fr

Nadia KABACHI

Universite Lyon 1

69100 Villeurbanne, France

nadia.kabachi@univ-lyon1.f

Omar BOUSSAID

Universite Lumiere Lyon 2

69676 Bron, France

omar.boussaid@univ-lyon2.fr

Abstract—The increasing volumes of relational data let us
find an alternative to cope with them. The Hadoop framework -
an open source project based on the MapReduce paradigm - is
a popular choice for distributed data warehouses and big data
analytics. In this paper, we propose an original approach for
partitioning and collocating data in distributed file systems,
especially Hadoop-based systems, and this, to overcome the
default data partitioning and placement policies which does not
take any data characteristics into account. The goal is to reduce
the amount of data transfer required during Mapreduce’s
shuffling phase. Indeed, the efficiency of many relational
operations can be improved if a careful data fragmentation
design and placement policy are applied, including indexing,
grouping, aggregation and joins. Based on k-means clustering
methode that allows to master the number of clusters through
its k parameter, we investigate the performance gain for OLAP
cube construction on a multi-nodes cluster with and without
data organization. And this, by varying the number of clusters
and data warehouse size. Our experiments suggest that defining
a good data partitioning and placement schemes during the
implementation of the data warehouse increase significantly
the OLAP cube computation and querying performances.

Keywords-Data warehouses; On-Line Analytical Processing
(OLAP); Mapreduce; Data placement;

I. INTRODUCTION

In the recent past, we have witnessed dramatic increases

in the volume of data literally in every area: business,

science, and daily life to name a few. Today, some claim

that data (more specifically, data-intensive science) are the

fourth paradigm in scientific research after experimenta-

tion, observation, theory, and computational simulation. The

storage and processing of such an overwhelming amount

of data is a challenging task in the current computing

environments. To address the scalability requirements of

today’s data analytic, parallel shared-nothing architectures

of commodity machines (often consisting of thousands of

nodes) have been lately established as the de-facto solution.

MapReduce [9] is a well-known distributed framework

for programming commodity computer clusters to perform

large-scale data processing algorithm. Hadoop [17], an open-

source MapReduce implementation, is able to process big

data sets in a reliable, efficient and scalable way. Based on

Hadoop, many cloud data warehouses (e.g., Hive [4], and

HadoopDB [1]) are developed and widely used in various

fields. Even though these data warehouses support, the per-

formances are unsatisfactory. The reasons for this situation

are: (1) these systems do not provide big data oriented

OLAP optimizations; (2)the join operation, which is quite

common operation in OLAP, is very inefficient when big

data are involved [14]. In this paper, we studied the benefits

of data partitioning and collocation within the context of

data warehousing and OLAP querying. Based on query

workload, we introduce a mechanism called reference table

(RT) as an extension of Hadoop’s distributed file system,

to collocate dimensions tables predicates and attributes that

are related or frequently used on the same or closest set of

nodes, eliminating the network overhead by reducing data

transfer in MapReduce’s shuffle phase, since related set of

files will be processed jointly. The rest of this paper is

organized as follows. Following the introduction, Section 2

presents background and related work. Section 3 describes

the problem we address in this paper. Section 4 details the

proposed approach and system implementation. Section 5

evaluates the efficacy of the proposed approach. Finally,

conclusions and future works are summarized in Section 6.

II. RELATED WORK

OLAP (On-Line Analytical Processing) was introduced

in the work done by [5]. They provided an overview of

data warehousing and OLAP technologies, with an empha-

sis on their new requirements. Considering the past two

decades have seen explosive growth, both in the number

of products and services offered and in the adoption of

these technologies in industry, their other work [6] gave

the introductions of OLAP and data warehouse technologies

based on the new challenges of massively parallel data

architecture. There exist some optimization approaches of

distributed data warehouses system, which are related to this

paper. Data warehousing improvements can be classified as

follows: (1) data layouts; (2) pre-computation for indexing;

(3) intentional data placement. The latter two are close to

our proposal and introduced briefly in this section. Data

layouts aims to enhance MapReduce performance. In this

case, Llama [19] proposes the use of a columnar file (called

454 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



CFile) for data storage in HDFS. This enables selective

access only to the columns used in the query. However, this

type of storage provides more efficient access to data than

traditional row-wise storage only for queries that involve a

small number of attributes. This is not always the case for

data warehouses. For indexing, Hadoop++ [10] is a system

that provides indexing functionality for data stored in HDFS

by means of User Defined Functions (UDFs), i.e., without

modifying the Hadoop framework at all. In fact, Hadoop++

can only collocate two files that are created by the same

job, and requires reorganization of the data as new files are

ingested into the system. In the case of data warehouses it is

necessary to collocate all the data warehouse files (tables),

not only two, and this can be a major inconvenience. Other

research efforts tried to empower Hadoop by an intentional

data organization. CoHadoop [13] is an extension of Hadoop

to enable applications to control where data are stored. It

retains the flexibility of Hadoop since it does not require

users to convert their data to a specific format. However,

it has not proved its efficiency on multidimensional data

processing. In summary, at present the lack of effective

support for multidimensional data processing model and

OLAP analysis needs to be resolved urgently in big data era.

At the same time, Hadoop as a cloud-computing framework

is most widely used in the big data analysis platform, but

the OLAP optimizations, based on Hadoop, are still blank.

Based on our previous research [3], in which we presented

a data collocation mechanism for big data environment,

we designed the proposed approach as an extension of the

Hadoop file system, which has been proven efficient on

analysis of big data. This research has certain theoretical

and practical values.

III. PROBLEM STATEMENT

The implementation of a data warehouse that incorporates

the best features of the MapReduce parallel processing

model - scalability and fault tolerance - is the goal of several

research, eg [18] and [1]. For a program to be executed

concurrently using several processing nodes in a parallel

computer system (e.g. a cluster), the work has to be divided

and assigned to each one of them. This usually requires also

a given input dataset to be divided into blocks (chunks) and

assigned to each of the nodes. This is carried out in a two-

step process: data partitioning (or fragmentation) to divide

the dataset, and data placement (or allocation) to assign the

fragments to the system’s nodes. By default, tables files

are partitioned into a set of partitions (data blocks) using

horizontal data partitioning (HDP) [15], then the Hadoop

distributed file system (HDFS) tries to balance load by

placing the blocks randomly on the Datanodes.

The default data placement policy of HDFS arbitrarily

places partitions obtained across the cluster so that mappers

often have to read the corresponding partitions from remote

nodes. This causes a high data shuffling costs and network

Figure 1: Default DW blocks processing.

overhead when querying step (Figure 1). The goal of our

proposed approach is to minimize this cost instead of

the network overhead by reducing the transferred data in

the shuffle phase. In a context of data warehousing with

Mapreduce, which is based on the Map and Reduce steps,

transferring data between these two phases remind often

more time consuming than processing data itself [2]. Let

us formally define the transferred data which we want to

minimize.
Definition 1: (Data transfer in shuffle phase)

The MapReduce framework operates exclusively on key-

value pairs [17], that is, the framework views the input to

the job as a set of key-value pairs and produces a set of

key-value pairs as the output of the job. The output pairs

can be different types than the input pairs.
Let jobα denote a MapReduce job. It is composed of

Mα = {m1, ...,mp} map tasks and Rα = {r1, ..., rq} reduce

tasks. We do not consider map or reduce tasks which fail or

are the result of speculative execution and are not retained.

We assume that each map task mi processes chunk ci, for

i = 1, ..., p.

Let Iα = {ip1, .., ipm} be the set of intermediate key-

value pairs produced by the map phase. key(ipj) represents

the key of intermediate pair ipj and size(ipj) represents

its total size in bytes. Kα is defined as the set of inter-

mediate keys produced in the execution of jobα, Kα =

∪ip∈Iαkey(ip). We define output(mi) ⊆ Iα as the set of

intermediate pairs produced by map task mi. We also define

input(ri) ⊆ Iα as the set of intermediate pairs assigned to

reduce task ri. This assignment is controlled by the reduce

partitioning function:

part : Kα → Rα

Let N = n1, .., ns be the set of machines that compose

the cluster; node(t) represents the machine where task t is

executed:

node : Mα ∪Rα → N

The way in which this assignment is done depends on

the scheduling algorithm, the properties of the job and

the characteristics and behaviour of the cluster where it is

executed.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 455



Now we distinguish between local and remote transfers

of intermediate tuples. Let ipj be an intermediate key-value

pair, produced in map task m, i.e., ipj ∈ output(m) and

consumed by reduce task r, i.e., ipj ∈ input(r). We define

Pα(ipj) ∈ 0, 1 as a variable that indicates whether ipj is

transferred or not through the network:

Pα(ipj) =

{
0 if node(m) = node(r)
1 if node(m) 6= node(r)

From function Pα we can derive the total amount of data

that is transferred through the network in the execution of

jobα.

transfer(jobα) =
∑

ipj∈αi

size(ipj)Pα(ipj)

Definition 2: Let W = {job1, ..., jobw} be the set of

jobs in the workload sample. Our goal is to minimize the

total amount of data transferred over the network in the

shuffle phase of jobs involved in W :

minimize




∑

jobα∈W

transfer(jobα)




by optimizing: (1) the default data partitioning with a

vertical pre-partitioning of data warehouse schema before

its implementation (2) data placement by collocating related

partition’s chunks obtained. In both cases, we propose a data

mining based approach, which is performed transparently to

the users, in order to free them from the burden of complex

partitioning and collocating optimisations. Our approach is

summarized in Figure 2.

Figure 2: DW blocks processing with data pre-partitioning

and collocation approach.

IV. THE PROPOSED APPROACH

Data partitioning and data collocation are a well known

and widely used optimisation methods (OM) in data base

community. In the context of parallel processing, taking into

account the existing interaction between these two OM’s can

increase significantly the optimizations results.

A. Data Pre-partitioning

Basically the original input data warehouse files (tables)

are stored at a single node or outside the parallel system,

then it has to be divided and transferred to each of the

participating nodes. By default, Hadoop distributed file

system partitions these input data files into large horizontal

partitions (at least 64MB up to 1GB)[10] without taking

any data warehouse schema characteristics into account. Our

first optimisation approach consist on applying a vertical

partitioning where each data warehouse table file is split in

two or more tables having fewer columns but keeping the

same number of rows. Based on a set of query workload, the

process takes as input data warehouse tables files and outputs

fragments by applying the partitioning algorithm described

below. Note that all the process is done off-line.

1) Principle: The data warehouse schema consists of a

set of fact and dimension tables along with their attributes.

Vertical partitioning consists on splitting up a table by

columns: one set of columns goes into one data store, and

another set of columns goes into a different data store, it

is necessary to select the appropriate dimension’s attributes

such that the query cost is minimized.

Figure 3: Data pre-partitioning principle.

2) Building the Relevancy Matrix: The process of build-

ing the Relevancy matrix has two main steps. The first one

consists on generating a query attributes matrix QA from

the query workload.

Let T = {t1, ..., tn} be the set of the warehouse tables

(facts and dimensions tables). The workload consists of a

set of queries W = {q1, ..., qm} and αti = {ae|ae ∈ ti} be

the set of attributes in T . The matrix QA represents couples

(qi, aj), where general term QAij equal to 1 if aj appears

in query qi and to 0 otherwise.

In the second step we build, from the obtained query

attribute matrix, a Relevancy matrix M which is a n × n

symmetric matrix, n is the number of different attributes in

456 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



the tenant’s data, and the elements are the association degree

between two attributes, it is defined as the number of queries

which involves two attributes ai and aj , that is the frequency

of occurrence of two attributes, it can be defined as follows:

Mij = Relevancy(ai, aj) =
∑

T (ai, aj)(ai, aj ∈ αti)

Among which, αti is the tenant’s data attribute sets, ai, aj
are the arbitrary two different attributes in αti, T (ai, aj)
is the operation (query) which involves ai and aj jointly,∑

T (ai, aj) is the total number of operations which involves

ai and aj .

3) Partitional Clustering Based on BEA: Bond Energy

Algorithm [12], short for BEA, proposed by McCormick et

al., is a rearrangement clustering technique which is widely

used in vertical partitioning big tables in distributed database

system. BEA takes the relevancy matrix as input, and keep

replacing arbitrary two rows or columns so that the elements

which has high relevancy could get together, and having a

maximum ME. ME is short for Measure of Effectiveness, it

represents the similarity between each element with the up

and down and left and right the four neighbours, defined as

follows:

ME(AA) =
1

2

M∑

i=1

N∑

j=1

ai,j [ai,j+1+ai,j−1+ai+1,j+ai−1,j ]

AA represents a M×N non negative matrix with boundary

conditions: a0,j = aM+1,j = ai,0 = ai,N+1 = 0. If

element in the matrix on the left side of the left or the right

of the right matrix (upper and lower boundary similarly),

the element value is 0, namely boundary elements and the

elements outside the matrix have no relevancy.

According to the definition of BEA, clustering the rel-

evancy matrix consists on making attributes which have

higher relevancy get together so that ME have a maximum

value. The objective function is defined as follows:

Max{ME(AA) =
1

2

N∑

i=1

N∑

j=1

Relevancy(ai,j[ai,j+1+ai,j−1])}

The clustering process has two steps:

1) Reorganize the init relevancy matrix by first placing

one of the columns arbitrarily, i = 1.

2) Try to place individually each of the remaining N − i
columns in each of the i + 1 possible positions (to

the left and right of the i columns already placed),

and compute each column’s contribution to the ME.

Place the column in the position that gives the largest

incremental ME. Increment i by 1 and repeat this step

until i = N .

The details of the above algorithm can be found in [12].

4) Fragments Construction: The last step takes the clus-

tered relevancy matrix (BEA’s output). Elements with similar

values are grouped together to identify attributes clusters,

making sure that subsets obtained after partition have the

highest relevancy and are not breaking the privacy con-

straints, which are:

Completeness: Guaranteed by the partitioning algorithm,

which assigns each attribute to one partition.

Reconstruction: A relation R decomposed into fragments

R1,R2,...,Rn is reconstructed by the join operation: R =⊲⊳K
Ri, for all Ri.

Disjointness: Attributes have to be disjoint in vertical

fragmentation. Two cases are distinguished: If tuple IDs

are used, the fragments are really disjoint. Otherwise, key

attributes are replicated automatically by the system.

At the end of the process, we obtain a data warehouse

fragments which will be transferred to the distributed file

system. These fragments, initially obtained by a vertical

fragmentation of the initial data warehouse, will be then

horizontally fragmented by the distributed file system and

distributed to data nodes automatically. At this point we

can affirm that this first optimisation, as it combines two

different methods of slicing tables, improves performance

of queries as we will confirm in the evaluation section. The

main advantage is that each of the resulting tables will have

a lot less rows and also less attributes. Thus the method

spatially expands a very large dimension, both vertically and

horizontally, into tables of far smaller sizes.

B. Data Collocation

The main idea of our work suggests that to improve data

warehouse query response time, particularly OLAP queries,

we must first define a good strategy for data partitioning and

distribution. As data partitioning was explained above, we

detail in this section the second part of our approach which

consist on a blocks placement strategy as an extension of

the distributed file system.
1) Principle: Our collocation approach exploit selection

dimension’s attributes found in workload’s queries to derive

suitable blocks placement. It outputs a data warehouse

distribution schema (metadata) and is subdivided into three

steps that are:

1) dimension’s attributes extraction from the workload;

2) dimension’s clustering (using k-means method);

3) reference table construction for data collocation.

2) Dimension’s Attributes Extraction: Selection attributes

set is simply parsed from workload. Let D = {d1, ..., dn}
be the set of the warehouse tables. The workload consists

of a set of queries W = {q1, ..., qm}.

Let αqi = {ae|ae ∈ qi} be the set of attributes related

to a query qi and βdj = {bf |bf ∈ dj} the set of attributes

of a dimension dj . To make it simple, let consider a query

that involves two attributes a1 and a2 belonging to d1 and

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 457



d2 respectively, our strategy consists on collocating the d1j
and d2k blocks (chunks) on the same or closest nodes, while

remaining tables blocks will be placed via Hadoop’s default

strategy over the remaining nodes. For that, as a first step,

parsed dimensions are coded in a query-dimension matrix

QM whose general term QMij equals to 1 if ∃bf in βdj

which is also in αqi, and to 0 otherwise. For example, the

QM matrix corresponding to W and D is featured in Table

1.

d1 d2 d3 d4 ...
q1 1 1 0 0
q2 0 0 1 0
...
q20 0 0 0 1

Table I: Sample query-dimensions matrix QM

3) Dimensions Clustering: Our objective is to derive

blocks placement schema that optimize data access for

queries, especially OLAP queries. Since the HDFS default

block placement policy does not take any data characteristics

into account, clustering data warehouse blocks files with

respect to queries achieves our goal. Intuitively, we ideally

seek to build rectangles (clusters) of 1’s in matrix QM. For

study purpose, we chose the widely-used k-means algorithm

[11] for clustering. But other clustering algorithms can

be used. This algorithm inputs vectors of object attributes

(columns of QM in our case). It attempts to find the centers

of natural clusters in source data by minimizing total intra-

cluster variance:

k∑

i=1

∑

xj∈Ci

(xj − µi)
2

where Ci, i = 1, ..., k are the k output clusters and µi is

the centroid (mean point) of points xj ∈ Ci. Let C be

the set of all clusters Ci. Usually, having k as an input

parameter is viewed as a drawback in clustering. In our

case, this turns out to be an advantage, since we want

to limit the number of clusters, typically to the number

of nodes or sets of nodes (Racks) the data warehouse

will be distributed on. In practice, we used the Weka [8]

SimpleKMeans implementation of k-means. SimpleKMeans

uses the Euclidean distance to compute distances between

points and clusters. It directly inputs matrix QM (acually, the

dj vectors) and k, and outputs set of dimensions clusters

C. For example, on matrix QM (Table 1) with k = 3,

SimpleKMeans outputs: C = ((d1,d2),(d3),(d4)).

4) Reference Table Construction: The reference table

(denoted RT) construction step consists on assigning each

dimensions clustering output (Ci) to a reference (Ref(i)),

each reference Ref(i) is represented by a random integer

value, but other data types may also be used. There is an

N:1 relationship between clusters Ci and references.

Figure 4: Example of four tables blocks collocated using the

Reference Table on a multi-nodes cluster.

During the loading phase, each data warehouse table

file is assigned to at most one reference and many tables

files can be assigned to the same reference. Tables file’s

chunks with the same reference are then placed on the

same (or closest) set of Datanodes, whereas others with

no reference are placed via Hadoop’s default strategy.

The reference table is set with default values according to

the policy location initially defined. Figure 4 shows the

RT corresponding to four tables files collocation on a cluster.

In our work, we extended the Hadoop file system HDFS

to support the customized data warehouse placement policy.

We did not address other aspects such as the variation of

the blocks size, which remains equal to default (64MB). Nor

the replication policy which remains to default (Replication

factor to 3). Our goal is the study of the plain query per-

formance gains due to careful data warehouse organization

in the context of parallelization with MapReduce. We used

on top of our extended Hadoop version the Apache Hive

[4] which is a data warehouse software that allows querying

and managing large datasets residing in distributed storage.

Hive provides an SQL-like language called HiveQL and has

also support for creating data cubes[4].

V. EXPERIMENTAL RESULTS

In the experiments, we aim at comparing our data pre-

partitioning and distribution approach, which is the output of

this project work, to default strategy used on Hadoop based

clusters. We compare the performances (Execution time) of

queries presented in section 5.1, first, without optimization

(Default) using the original Hadoop version, then with

optimization (Optimized) using our HDFS extension.

A. Experimental Conditions

In order to assess the effectiveness of our approach, we de-

signed an adapted benchmark targeted to multidimensional

data, called TPC-OH benchmark, which is inspired from

the well-known TPC-H benchmark [16], the most prominent

decision support benchmark. TPC-H benchmark consists of

a suite of business oriented complex ad-hoc queries and

concurrent data modifications. The workload and the data

458 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



Table II: DW Vertical Pre-partitioning results

Schema Initial (nbr) Fragmented (nbr)

LineItem 01 07

Orders 01 06

Customer 01 05

PartSupp, Supplier, Part 01 03

Region, Nation, Time 01 01

populating the database have been chosen to have broad

industry-wide relevance. The workload is composed of 22

SQL queries with a high degree of complexity. Existing

TPC-H implementation allows the generation of raw data

stored into eight TBL files, namely Region, Nation, Cus-

tomer, Supplier, Part, PartSupp, Orders, LineItem, by using a

specific scale factor SF. The latter determines the final TPC-

H data size. Basically, TPC-OH is a suitable transformation

of the TPC-H benchmark into a multi-dimensional OLAP

benchmark. Indeed, each business question of TPC-H work-

load is mapped into an OLAP star-join query, and a temporal

dimension (Time table) is added to the data warehouse. Such

star-join query use ”with cube” operator to group the

results. Also, we translated the TPC-H SQL workload into

an HQL workload, since we used the Apache Hive as data

warehousing software for querying and managing the data

residing in Hadoop distributed storage system.

B. Cluster Setup

To achieve evaluation objectives, we used 10 PCs in a

cluster (1 NameNode, 9 DataNodes). The NameNode is

equipped with Intel Xeon E5-2630 (Six Core HT,2.6GHz),

16GB (4x4GB) RAM, and a 1TB SATA Hard Drive. The

DataNodes are equipped with Intel Core i5-2400M, 4GB

RAM, and a 300GB HDD. The OS is Ubuntu 12.04 LTS,

and the Mapreduce framework is Hadoop 1.0.3. The network

speed is 1G bps. We implement our data warehouse blocks

placement approach by using the HDFS-385 API (Version

1.2.0) which is an expert-level interface for developers who

want to try out custom placement algorithms to override the

HDFS default placement policy [7]. Our code is written in

Java and is available on demand.

C. Data loading

Table 2 shows the pre-partitioning schema (number of

fragments) of TPC-OH relational data warehouse obtained,

with respect to the workload as explained in Section 4.1.

For data collocation, we arbitrarily fixed k-means parameter

k = 10 to process the workload, which could correspond

to cluster’s size. In this first experiment, we investigate

the effect of the proposed pre-partitioning and collocation

approach on time needed to load data warehouse tables by

the modified (Optimized) file system and the original one

(Default). The data warehouse size is equal to 920GB.

From Figure 5 it can be seen that loading data time

decreases significantly as the cluster size increases. The most

noticeable difference between the two systems is on a 16

nodes cluster size, where about 3493,11 seconds elapsed for

the newly (optimized) file system to execute successfully,

however, the original (default) Hadoop file system takes less

than 3247,2 seconds. A difference of 7 percent. In fact, to

load data files the two systems performed a full MapReduce

job. However, the optimized file system is slightly slower,

as shown in Figure 5. This is due to the increased network

utilization by collocating different files partitions (blocks).

Note that with these initial tests performed in this work,

loading cost encountered by the proposed approach is very

small compared to the savings at query time as shown in

the next section.

Figure 5: Loading data warehouse time (920 GB)

D. Query Execution

In this part of experiments, we used typical business

queries of TPC-H [16] for which the shuffle phase has a

significant impact in the response time. With respect to

the partitioning scheme shown in Table 2, we used the

following queries: Q5 and Q9 that are examples of hash

joins on different columns, Q7 that executes a replicated

join and Q17 that executes a co-group. Figure 6 shows that

the proposed approach improves clearly query response time,

especially for Q17 performing co-group operation, and this

was expected since collocating related data blocks leads to

map only tasks job operations rather than map and reduce

tasks.

In contrast, Figure 7 shows the elapsed time for data cube

computation by varying the data warehouse size on a 10

nodes cluster (N). For data collocation, we fixed k = 10 to

process the workload as in the previous tests. As shown

in the figure, cube computation execution time increases

significantly as the data size increases and the benefits of

the proposed approach are appreciable with the increasing

size compared to default (HDFS) data distribution. The

Figure shows that tables files collocation improves the query

performance from 10% for 160GB to 25% for a 920GB data

warehouse size. This behaviour is expected since collocation

of data, in the context of data warehousing, avoids network

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 459



Figure 6: Queries execution time (920GB)

Figure 7: Building data cube

overhead, besides, it reduces the expensive data shuffling

operation, which is the most time consuming phase for

Mapreduce compared to default data placement policy.

E. Influence of Number of Clusters

In this experiment, we studied the effect of data colloca-

tion on the query response time by varying the clustering

parameter k. As previous tests, we fixed the cluster size (10

nodes), data warehouse size (to 640 and 920 GB) and varied

K-means parameter k to observe its influence on a sample

query response time. Figure 8 confirms that performance

improves quickly when collocation is applied, but tends to

degrade when the number of clusters increases. Furthermore,

it hints that an optimal number of clusters for tested data

warehouse and workload benchmark lies between 5 and 6,

making us conclude that over-collocation can be harmful and

must be detected and avoided. Note that, on Figure 8, k = 1

corresponds to performance records when no collocation is

applied (this one collocation is the HDFS default warehouse

distribution for all DW’s tables).

It is important to note that the distribution and collocation

(of data and processing) using parallel programming models

like Mapreduce are two opposing optimization techniques.

In fact, collocation helps to minimize the data flow between

the map and reduce phases (the shuffle phase) in order to

avoid network overhead, applying the principle that says

”Moving calculation is cheaper than moving data”, allowing

the intermediate results produced by the map phase to be

executed on the same node. However, by seeking to collocate

Figure 8: Influence of number of clusters

data, treatments will be centralized, making the task of each

node heavier by creating a big load imbalance and therefore

slower processing results. In this case, the objective is to

find the right balance between distribution and collocation

data, ie finding the right ”k” which in our case is equal to

5 as shown in Figure 8.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we present a data warehouse pre-partitioning

and placement policy as an extension of the distributed file

system to override the default policy and improve query

performances. Our approach is simple yet flexible; it can be

exploited in different ways by distributed and Hadoop-based

data warehousing solutions. We studied the performance of

our approach under different settings and compared it with

default plain Hadoop solutions. Our experimental results

show that data pre-partitioning and collocation optimization

approach, outperforms default placement strategy in terms of

performance gain by reducing the overhead of data shuffling

and network. In next step, we will extend the experiments

to study the effects of other configuration parameters on

collocation data in the context of parallel data warehousing

such as partitions size, replication factor and OLAP query

complexity. We are also studying an intentional data place-

ment strategy for large data warehouses with the integration

of Multi-Agent Systems (MAS) and Intelligent Agents to

the process, making clusters self-organized and autonomous

dealing with new data and queries which are not included

in the system’s workload and are appended continuously.

REFERENCES

[1] A.Abouzeid, K.B.Pawlikowski, D.Abadi, A.Silberschatz, and
A.Rasin. Hadoopdb: An architectural hybrid of mapreduce
and dbms technologies for analytical workloads. PVLDB,
2(1):922–933, 2009.

[2] A.Elsayed, O.Ismail, and M.E.El-Sharkawin. Mapreduce:
State-of-the-art and research directions. International Journal
of Computer and Electrical Engineering, 6(1):34–39, 2014.

460 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



[3] B. Arres, N. Kabachi, and O. Boussaid. Optimizing olap
cubes construction by improving data placement on multi-
nodes clusters. 23rd International Conference on Paral-
lel, Distributed, and Network-Based Processing, 45:520–528,
2015.

[4] A.Thusoo, J.S.Sarma, N.Jain, Z.Shao, P.Chakka, S.Anthony,
H.Liu, P.Wyckoff, and R.Murthy. Hive: a warehousing solu-
tion over a map-reduce framework. Proceedings of the VLDB
Endowment, 2(2):1626–1629, 2009.

[5] S. Chaudhuri and U. Dayal. An overview of data warehousing
and olap technology. ACM Sigmod record, 26(1):65–74, 1997.

[6] S. Chaudhuri, U. Dayal, and V. Narasayya. An overview
of business intelligence technology. Communications of the
ACM, 54(8):88–98, 2011.

[7] A. S. Foundation. Design a pluggable in-
terface to place replicas of blocks in hdfs.
https://issues.apache.org/jira/browse/HDFS-385, 2014.

[8] G.Holmes, A.Donkin, and H.Witten. Weka: a machine learn-
ing workbench. Proceedings of the 1994 Second Australian
and New Zealand Conference on Intelligent Information Sys-
tems, 14:357–361, 1994.

[9] J.Dean and S.Ghemawat. Mapreduce: simplified data process-
ing on large clusters. Communictions of the ACM, 51:107–
113, 2008.

[10] J.Dittrich, J.A.Quiane-Ruiz, A.Jindal, Y.Kargin, V.Setty, and
J.Schad. Hadoop++: making a yellow elephant run like a
cheetah (without it even noticing). Proceedings of the VLDB
Endowment, 3(1):515–529, 2010.

[11] J.MacQueen. Some methods for classification and analysis
of multivariate observations. Proceedings of the Fifth Berke-
ley Symposium on Mathematical Statistics and Probability,
1:281–297, 1967.

[12] W. T. McCormick Jr, P. J. Schweitzer, and T. W. White. Prob-
lem decomposition and data reorganization by a clustering
technique. Operations Research, 20(5):993–1009, 1972.

[13] M.Eltabakh, Y.Tian, F.Gemulla, A.Krettek, and J.McPherson.
Cohadoop: Flexible data placement and its exploitation in
hadoop. PVLDB, 4(9):575–585, 2011.

[14] J. Song, T. Li, X. Liu, and Z. Zhu. Comparing and ana-
lyzing the energy efficiency of cloud database and parallel
database. Advances in Computer Science, Engineering and
Applications, 167:989–997, 2012.

[15] M. Stonebraker, D. Abadi, D. J. DeWitt, S. Madden, E. Paul-
son, A. Pavlo, and A. Rasin. Mapreduce and parallel dbmss:
friends or foes? Communications of the ACM, 53(1):64–71,
2010.

[16] TPC-H. Transaction processing performance council.
http://www.tpc.org/tpch, 2012.

[17] T. White. Hadoop: The Definitive Guide. O’Reilly Media,
Inc., 1st edition, 2009.

[18] W.Huiju, Q.Xiongpai, Z.Yansong, W.Shan, and W.Zhanwei.
Lineardb: A relational approach to make data warehouse
scale like mapreduce. In Database Systems for Advanced
Applications, volume 6588, pages 306–320. 2011.

[19] Y.Lin, D.Agrawal, C.Chen, and S.Wu. Llama: leveraging
columnar storage for scalable join processing in the mapre-
duce framework. ACM SIGMOD International Conference
on Management of Data (SIGMOD), pages 961–972, 2011.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 461



Big-ETL: Extracting-Transforming-Loading Approach for Big Data

M. Bala1, O. Boussaid2, and Z. Alimazighi3
1Department of informatics, Saad Dahleb University, Blida 1, Blida, Algeria
2Department of informatics and Statistics, University of Lyon 2, Lyon, France

3Department of informatics, USTHB, Algiers, Algeria

Abstract— ETL process (Extracting-Transforming-Loading)
is responsible for (E)xtracting data from heterogeneous
sources, (T)ransforming and finally (L)oading them into a
data warehouse (DW). Nowadays, Internet and Web 2.0 are
generating data at an increasing rate, and therefore put the
information systems (IS) face to the challenge of big data.
Data integration systems and ETL, in particular, should be
revisited and adapted and the well-known solution is based
on the data distribution and the parallel/distributed pro-
cessing. Among all the dimensions defining the complexity
of the big data, we focus in this paper on its excessive
"volume" in order to ensure good performance for ETL
processes. In this context, we propose an original approach
called Big-ETL (ETL Approach for Big Data) in which we
define ETL functionalities that can be run easily on a cluster
of computers with MapReduce (MR) paradigm. Big-ETL
allows, thereby, parallelizing/distributing ETL at two levels:
(i) the ETL process level (coarse granularity level), and
(ii) the functionality level (fine level); this allows improving
further the ETL performance.

Keywords: Data Warehousing, Extracting-Transforming-Loading,
Parallel/distributed processing, Big Data, MapReduce.

1. Introduction
The widespread use of internet, web 2.0, social networks,

and digital sensors produce non-traditional data volumes.
Indeed, MapReduce (MR) jobs run continuously on Google
clusters and deal over twenty Petabytes of data per day [1].
This data explosion is an opportunity for the emergence
of new business applications such as Big Data Analytics
(BDA); but it is, at the same time, a problem given the
limited capabilities of machines and traditional applications.
These large data are called now "big data" and are charac-
terized by the four "V" [2]: Volume that implies the amount
of data going beyond the usual units, the Velocity means
the speed with which this data is generated and should be
processed, Variety is defined as the diversity of formats
and structures, and Veracity relates to data accuracy and
reliability. Furthermore, new paradigms emerged such as
Cloud Computing [3] and MapReduce (MR) [4]. In addition,
novel data models are proposed for very large data storage
such as NoSQL (Not Only SQL) [5]. This paper aims to
provide solutions to the problems caused by the big data in a
decision-support environment. We are particularly interested

in the very large data integration in a data warehouse. We
propose a parallel/distributed ETL approach, called Big-
ETL (ETL Approach for Big Data), consisting of a set
of MR-based ETL functionalities. The solution offered by
the research community, in this context, is to distribute the
ETL process on a cluster of computers. Each ETL process
instance handles a partition of data source in parallel way to
improve the performance of the ETL. This solution is defined
only at a process level (coarse granularity level) and does
not consider the ETL functionalities (fine granularity level)
which allows understanding deeply the ETL complexity and
improve, therefore, significantly the ETL process. To the
best of our knowledge, Big-ETL is a different and original
approach in the data integration field. We first define an ETL
process at a very fine level by parallelizing/distributing its
core functionalities according to the MR paradigm. Big-ETL
allows, thereby, parallelization/distribution of the ETL at two
levels: (i) ETL functionality level, and (ii) ETL process level;
this will improve further the ETL performance facing the
big data. To validate our Big-ETL approach, we developed
a prototype and conducted some experiments.

The rest of this paper is structured as follows. Section 2
presents a state of the art in the ETL field followed by a
classification of ETL approaches proposed in the literature
according to the parallelization criteria. Section 3 is devoted
to our Big-ETL approach. We present in Section 4 our
prototypical implementation and the conducted experiments.
We conclude and present our future work in Section 5.

2. Related work
One of the first contributions on the ETL field is

[6]. It is a modeling approach based on a non-standard
graphical formalism where ARKTOS II is the implemented
framework. It is the first contribution that allows modeling
an ETL process with all its details at a very fine level,
i.e. the attribute. In [7], authors proposed a more holistic
modeling approach based on UML (Unified Modeling
Language) but with less details on ETL process compared
to [6]. Authors in [8] adopted BPMN notation (Business
Process Model and Notation), a standard notation dedicated
to the business process modeling. This work was followed
by [9], a modeling framework based on a metamodel in
MDD (Model Driven Development) architecture. [7] and
[8] are top-down approaches and allow, therefore, modeling

462 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



sub-processes in their collapsed/expanded form for more
readability. Authors in [10] proposed a modeling approach
which consists of a summary view of the ETL process and
adopt the Reo model [11]. We consider that this contribution
could be interesting but is not mature enough and deserves
Reo customization model to support the ETL specifics.

Following the big data emergence, some works tackled
interesting issues. [12] is an approach which focuses on
the performance of ETL processes dealing with large data
and adopts the MapReduce paradigm. This approach is
implemented in a prototype called ETLMR which is a
MapReduce version of the PygramETL prototype [13]. The
ETLMR platform is demonstrated in [14]. [15] shows that
ETL solutions based on MapReduce frameworks, such as
Apache Hadoop, are very efficient and less costly compared
to ETL tools market. Recently, authors in [16] proposed
CloudETL framework. CloudETL uses Apache Hadoop to
parallelize ETL processes and Apache Hive to process data.
Overall, experiments in [16] shows that CloudETL is faster
than ETLMR and Hive for large data sets processing. [17]
demonstrates the P-ETL platform. P-ETL (Parallel-ETL)
is implemented under the Apache Hadoop framework and
provides a simple GUI to set an ETL process and the
parallel/distributed environment. In the batch version, P-
ETL runs thanks to an XML file (config.xml) in which the
same parameters should be set. In the P-ETL approach, the
mappers (Map step) are in charge of standardizing the data
(cleasing, filtering, converting, ...) and the reducers (Reduce
step) are dedicated for merging and aggregating them. To
the best of our knowledge, there are no works having
tackled the ETL modeling issue intended to the big data
environment and more precisely to the parallel/distributed
ETL processing. We focus in this paper on the paralleliza-
tion/distribution issue to improve the performance of the
ETL. The classification proposed in Tab.1 is based on the
parallelization criteria.

Table 1: Classification of ETL works
Approach Purpose Classification

[6] Modeling Centralized approach
[7] Modeling Centralized approach
[8] Modeling Centralized approach
[13] Performance Centralized approach
[12] Performance Distributed approach
[10] Modeling Centralized approach
[15] Performance Distributed approach
[16] Performance Distributed approach
[17] Performance Distributed approach
Big-ETL Performance Distributed approach

a) Centralized ETL process approach: In this paper, the
ETL process approach is defined as centralized (or classical)
when (i) the ETL process runs on an ETL server (one
machine), (ii) in one instance (one execution at the same

time), and (iii) the data are with moderate size.

Fig. 1: Centralized ETL Process approach.

In this context, only the independent functionalities can be
run in parallel way (both the ETL functions and the machine,
on which it will be run, should be multithreaded). An
ETL functionality, such as Changing Data Capture (CDC),
Surrogate Key (SK), Slowly Changing Dimension (SCD),
Surrogate Key Pipeline (SKP), is a basic function that
supports a particular aspect of an ETL process. In Fig. 1,
we can see that (F1 and F3) or (F2 and F3) can be run in
parallel way.

b) Distributed ETL process approach: The well-known
solution to cope with big data is the "paralleliza-
tion/distribution" of the data and the ETL process on a
cluster of computers. The MR paradigm, for instance, allows
splitting large amounts of data sets where each partition will
be subject to an instance of the ETL process.

Fig. 2: Distributed ETL Process approach.

As depicted in Fig. 2, multiple ETL process instances
run in parallel way where each one deals with its data
partition in the Map step. The partial results produced by
the mappers are merged/aggregated in the Reduce step and
then loaded into the DW. All approaches proposed with MR
paradigm, [12] and [15] for instance, apply the distribution

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 463



only at the process level. Big-ETL applies MR at two
levels: (i) Process level (coarse granularity level), and (ii)
functionality level (fine granularity level). We believe that
the ETL, in the context of technological change having af-
fected both data and processes, still presents some scientific
problems such as big data modeling considering its different
characteristics (volume, variety, velocity, veracity,...), data
partitioning, parallel processing in its various forms (pro-
cesses parallelization, process components parallelization,
pipeline parallelization,...), etc. Functionalities as the core
ETL functions deserve a most in-depth study to ensure, at
a very fine level, robustness, reliability and optimization
of the ETL process. Our Big-ETL is a parallel/distributed
ETL approach based on two distribution levels (Process and
functionalities) and two distribution directions (Vertical and
horizontal).

3. ETL Approach for Big Data
We present in this section our Big-ETL approach. We

deployed it on many ETL functionalities such as Chang-
ing Data Capture (CDC), Data Quality Validation (DVQ),
Surrogate Key (SK), Slowly Changing Dimension (SCD),
Surrogate Key Pipeline (SKP). Among all these ETL func-
tionalities, we chose to present, in this paper, CDC to
illustrate our Big-ETL approach.

3.1 Big-ETL principle
Our Big-ETL process is functionalities-based approach

which exploits the MR paradigm. For each of these func-
tionalities, we apply the same principle adopted at a process
level in the "distributed ETL process approach" as depicted
in Fig. 2.

3.1.1 Key Concepts
a) ETL functionality: In order to control the complexity
of the ETL process, we define it thanks to a set of core
functionalities. The ETL functionality is a basic function
that supports a particular ETL aspect such as Changing Data
Capture (CDC), Data Quality Validation (DQV), Surrogate
Key (SK), Slowly Changing Dimension (SCD), Surrogate
Key Pipeline (SKP), etc. The ETL task, however, is an
instance of an ETL functionality. Let SK1 and SK2 be two
ETL tasks that generate a surrogate key for inserting tuples in
PRODUCT and CUSTOMER dimensions respectively. SK1
and SK2 are two different tasks but both are based on SK.
Thus, the SK is the ETL functionality where SK1 and SK2
are its instances. In the follows, we describe an ETL process
in terms of its functionalities.

b) Elementary process/function: When an ETL function-
ality is not atomic (aggregate functionality) in terms of
processing, we consider that it is in charge of several
separated elementary processes where each one is affected

for an elementary function. An elementary process is an
atomic unit of processing which is synchronized with other
elementary processes to ensure the ETL functionality. Each
one of the elementary processes is implemented as an
elementary function. Thus, we consider that the aggregate
functionality is a set of synchronized elementary functions.
For example, the functionality CDC which is responsible to
identify the changes (INSERT, UPDATE, DELETE) having
affected the data in a particular source, can be decomposed
in three elementary functions where each one is in charge
of identifying INSERT, UPDATE, DELETE respectively.

3.1.2 Vertical Distribution of Functionaltilies (VDF)

As shown in Fig. 3, the ETL process runs in one instance,
while each of its functionalities runs in multiple instances.
For example, the functionality F4 (oval) that runs in three
instances (fragments separated by dashes), received its input
data from F2 and F3. These inputs are partitioned and
each of the three partitions is subject to an instance of F4
(mapper). Partial results produced by the three mappers are
merged by reducers to provide the final F4 outputs. This is
a novelty in the parallel/distributed ETL approaches based
on MR paradigm as all other approaches does not consider
the parallelization/distribution at an ETL functionality.

Fig. 3: VDF Approach.

3.1.3 Vertical Distribution of Functionaltilies and Pro-
cess (VDFP)

In case where VDF presents low performance (particularly
if the ETL process contains much sequential functionalities),
the designer should set the ETL process to be run in several
instances. This is an hybrid approach that takes the principles
of the "distributed ETL process" and VDF approaches at the
same time as shown in Fig. 4.

It should be noted that the VDFP approach requires more
resources (cluster nodes, HDD space, RAM, Cache, LAN
bandwith ...). When the ETL process runs in the VDF
approach and reaches F4, it will require three tasks as F4
runs in three instances. The same process executed in the
VDFP approach will require thirty parallel tasks if it runs in
ten instances in addition to the three instances of F4.

464 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



Fig. 4: VDFP Approach.

3.1.4 Horizontal Distribution of Functionaltilies (HDF)
Some ETL functionalities operate several elementary pro-

cesses on source data. In this case, these functionalities are
not atomic and can thereby be decomposed into elementary
functions where each one is in charge of a particular process
unit. Let F be a functionality in an ETL process which
operates some elementary processes units T1, T2, ..., Tn on
the source data.

Fig. 5: Elementary processes (a) and functionalities (b).

We can decompose F into elementary functions noted
f1, f2, ..., fn where each fi is in charge of Ti. FIG. 5 (a)
shows an ETL functionaly F which operates six elementary
processes T1, T2, ..., T6. We note that T1, T2, T3, T4 can be
run in parallel way since no dependencies exist between
them. In the same way, T5 and T6 can be, also, run in paral-
lel. Thus, we can decompose F into six elementary functions
noted f1, f2, ..., f6 which are in charge of T1, T2, ..., T6

respectively (FIG. 5 (b)). Unlike the VDF approach which
distributes the ETL functionality by instanciation, the HDF
approach distributes the ETL functionality by fragmentation.
In a distributed environment, the schema depicted in FIG. 5
(b) allows, in a first phase, distributing F in four fragments
f1, f2, f3 and f4 which run in parallel way. In the second
phase, F is distributed into f4 and f5 that can be run in
parallel way and allow providing the final output of F .

3.1.5 Pipeline Processing Distribution (PPD)
Some ETL functionalities process the source data tuple-

by-tuple in a sequential way called pipeline processing.

Since all the tuples pass by the pipeline, we propose a
synchronization schema in order to process a subset of
tuples in parallel way. The number of tuples present in the
pipeline should be equal to the number of functionalities.
Indeed, when a particular tuple is being processed by the
last functionality in the pipe, its successors should be also
processed according to the order of the functionalities as
defined in the pipe. Let P be a pipe in which is defined a
set of functionalities F1, F2, ..., Fn.

Fig. 6: Sequential (a) and parallel (b) pipeline.

When the tuples of data t1, t2, ..., tm should pass by a
sequential pipe P , the tuple ti is moved in the pipe P
when the tuple ti−1 is completely processed by all the
functionalities F1, F2, ..., Fn (FIG. 6 (a)). Thus, only one
tuple can be present in the pipe at the same time. In order
to improve further the performance of the ETL process, we
propose to parallelize the pipe. In this way, several tuples
can be processed simultaneously in the pipe where each one
is handled by a functionality according to the order defined
in the pipe. Thus, when the tuple ti is being processed by
Fn, the tuple ti+1 is processed, in the same time, by Fn−1,
the tuple ti+2 is processed by Fn−2 and so on. In this way,
the number of tuples being processed in the pipe is equal to
the number of functionalities defined in the pipe (equal to n).
Indeed, when a tuple is moved out the pipe after a complete
process, another tuple (first in the queue) is moved in and
so on until a complete process of the data partition. FIG. 6
(b) depicts the pipe P in the parallel approach.

3.2 Changing Data Capture (CDC) in Big-ETL
approach

Our Big-ETL approach is applied on many ETL function-
alities such as CDC, SCD, SKP, etc. Seeing the paper space
constraint, we illustrate Big-ETL with the CDC functionality.
The ETL functionality CDC is considered as the main
functionality in the E step of ETL. It identifies the data
affected by changes (INSERT, UPDATE, DELETE) in the
source systems. These latter is then extracted and processed
for the DW refresh [18]. The rest of data (unaffected by
changes) is rejected since it is already loaded in the DW.
The most common technique used in this field is based
on snapshots [18]. In the classical algorithms of CDC, the
changes between two corresponding tuples are detected by
comparing them attribute-by-attribute. Furthermore, tuples

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 465



contain hundreds of attributes in data warehousing systems.
In order to improve the CDC performance and make its
cost lower, we adapted the well-known hash function CRC
(Cyclic Redundancy Check) which is widely used in digital
data transmission field [19] and internet applications [20].
We adapted CRC function in the CDC context as follows.
Let tuple1 and tuple2 be two tuples stored in ST and STpv
respectively. If tuple1 and tuple2 satisfy the two equations
1 and 2, it means that they are similar. In this case, the
tuple1 will be rejected by the CDC process as no changes
have occurred. However, if only the equation 1 is satisfied,
it means that tuple1 has been affected by changes and will
be extracted by the CDC process as UPDATE.

tuple1.KEY = tuple2.KEY (1)

CRC(tuple1) = CRC(tuple2) (2)

To propose a CDC schema in the Big-ETL environment,
we consider that both ST and STpv tables contain large data,
the CDC functionality will run on a cluster of computers,
and we adopt the MR paradigm. The classical scheme of
CDC will be supplemented by new aspects namely (i) data
partitioning, (ii) lookup tables, (iii) insert and update data
capture process and (iv) delete data capture process.

3.2.1 Data partitioning
To deal with large data, we adopt the rule of "divide and

conquer". In the context of CDC, the system should, firstly,
sort ST and STpv on the column KEY, and then split them to
obtain usual volumes of data. The partitioning of ST allows
processing the generated partitions in parallel way. STpv is
partitioned to avoid searching ST tuples in a large volume
of data.

3.2.2 Lookup tables
To avoid searching a tuple in all ST and STpv partitions,

we use Lookup tables denoted LookupST and LookupSTpv
respectively. They identify the partition that will contain a
given tuple. Here, are some details on the use of lookup
tables:

• LookupST and LookupSTpv contain the min and max
values of keys (#KEY) for each ST and STpv partitions
respectively;

• For a Ti tuple in ST, it consists of searching the Pstpvk
partition of STpv that satisfies the expression 3 in
LookupSTpv;

• For a Tj tuple in STpv, it consists of searching the
Pstk partition of ST that satisfies the expression 4 in
LookupST.

LookupSTpv.KEYmin ≤ Ti.KEY ≤ LookupSTpv.KEYmax (3)

LookupST.KEYmin ≤ Tj .KEY ≤ LookupST.KEYmax (4)

3.2.3 INSERT-UPDATE data capture (IUDCP) and
DELETE data capture (DDCP) Processes

We propose two parallel processes in the new CDC
scheme that support (i) INSERT and UPDATE data capture
(IUDCP), and (ii) DELETE data capture (DDCP).

Fig. 7: IUDC process architecture.

Fig. 8: DDC process architecture.

Each process runs into multiple parallel instances. Each
instance of IUDCP and DDCP handles ST and STpv partition
respectively. Fig. 7 depicts IUDCP. Each partition Psti is
assigned to a Mapi task which is responsible for checking
the existence of each its partition tuples in STpv. To this end,
the mapper looks up in LookupSTpv the partition Pstpvk that
may contain the tuple. Once the Pstpvk partition is identi-
fied, three cases can arise: (1) #KEY value is nonexistent in
Pstpvk; this means an insertion (INSERT), (2) #KEY value
exists and identifies a similar copy of the tuple in Pstpvk;
the tuple is rejected (3) #KEY value exists in Pstpvk with

466 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



change in at least one attribute between the two tuples; this
is a modification (UPDATE).

Algorithm 1 IU_MAP(Pst)
Input: Pst, LookupSTpv, tuple1: ST record, tuple2: STpv
record
Output: CHANGES

1: while not eof (Pst) do
2: read(Pst, tuple1)
3: Pstpv ← lookup(LookupSTpv, tuple1.KEY );
4: if found() then
5: tuple2← lookup(Pstpv, tuple1.KEY );
6: if found() then
7: if CRC(tuple1) 6= CRC(tuple2) then
8: extracting tuple1 as UPDATE;
9: end if

10: else
11: extracting tuple1 as INSERT;
12: end if
13: else
14: extracting tuple1 as INSERT;
15: end if
16: end while
17: return (CHANGES);

As shown in Fig. 8, DDCP operates on the same principle
as IUDCP but in the opposite direction. In DDCP, we focus
exclusively on the case where the tuple does not exist
(DELETE). In order to have an approach about how to
process the mixing of these multiple operations, we propose
a main program of CDC called CDC_BigData. At this level,
the ST and STpv tables are sorted and then partitioned, the
LookupST and LookupSTpv tables are generated respectively
from ST and STpv, and finally the parallel IUDCP and
DDCP processes are invoked. Algorithm 1 is responsible for
capturing insertions and updates in ST table. A Psti partition
will be processed by an instance of iu_map () function. Line
3 looks up in LookupSTpv for a Pstpv partition which
may contain the tuple readed in line 2. Lines 4-12 describe
the case where the Pstpvk is located. Line 5 looks-up in
Pstpv the tuple. Lines 6-9 treat the case of tuple affected by
changes (UPDATE) by invoking CRC hash function. Lines
10-12 treat the case where the tuple does not exist in the
partition Pstpvk and is thereby captured as an insert. Lines
13-15 treat the case where the tuple does not match with
any partition in the lookup table LookupSTpv and thereby
it is captured as an insert.

4. Implementation and experiment
We developed an ETL platform called P-ETL (Parallel-

ETL) which provides: (i) data distribution, and (ii) parallel
and distributed ETL processing. P-ETL is implemented in

Apache Hadoop environment and uses mainly two modules
(1) HDFS for distributed store and high-throughput access to
application data, and (2) MapReduce for parallel processing.
We defined two levels for our experiments: (i) ETL process
level (coarse granularity level) and (ii) ETL Functionality
level (fine granularity level). We present in this section
the results for the first scenario. To evaluate our P-ETL
platform, we proposed an ETL process example applied on
students’ data gathered at the Education Ministry. The data
source contains student identifier (St_id), his enrollment
date (Enr_Date), his cycle (Bachelor, Master or Ph.D.), his
specialty (medicine, biology, computer , ...) and finally we
find information about scholarship (if the student received
scholarship or not) and about sport (if he practices sport
or not). We developed a program to generate csv source
data. In this experiment, we generated 7 samples of source
data that vary between 244 ∗ 106 and 2, 44 ∗ 109 tuples
where each one has 44 bytes of size. The ETL process
configured to process the data is as follows. The first task is
projection which restricts the source tuples to an attributes
subset by excluding Scholarship and Sport. The process
presents in the second task a restriction which filters tuples
and rejects those having Null value in Enr_Date, Cycle,
and Specialty. The third task in the process is GetDate()
which retrieves year from Enr_Date. The last task is the
aggregation function COUNT() which computes the number
of students grouped by enrolment year, Cycle and Specialty.

We considered the P-ETL scalability by varying the "data
source size" and the "number of tasks". The test environment
is a cluster made up of 10 machines (nodes). Each machine
has an intel-Core i5-2500 CPU@3.30 GHZ x 4 processor
with 4GB RAM, 20 GB of free HDD space. These machines
operate with Ubuntu-12.10 and are interconnected by a
switched Ethernet 100 Mbps in a LAN. The framework
Apache Hadoop 1.2.0 is installed on all the machines. One
of these 10 machines is configured to perform the role
of Namenode in the HDFS system and JobTracker in the
MapReduce system. However, the other machines are config-
ured to be HDFS DataNodes and TaskTrackers. Overall, we
can see, in FIG. 9, that the increasing of tasks improves the
processing time. Indeed, we further analyzed the results and
discovered some interesting aspects. Seeing the paper length
constraint, we can not present all the experiment results.

FIG. 10 shows the "time saving" by increasing tasks.
The "time saving" is calculated as the difference between
"processing time" corresponding to different "number of
tasks". We can see that the time saving to handle 2, 2 ∗ 109
tuples (FIG. 10 (a)) decreases when we configure more than
"5 tasks". Also, to handle 2, 44∗109 tuples (FIG. 10 (b)), the
time saving after "8 tasks" becomes not significant. To sum
up our experiment, we note that the "number of tasks" is not
the only parameter to be set in order to speed-up the process.
Our cluster must be extended in terms of nodes, memory

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 467



Fig. 9: Proc. time (min.) by scaling up data (tuples) and
increasing tasks.

space (RAM, cache), LAN bandwidth, etc. The cluster used
for this experiment is a small-sized infrastructure. The HDD
space is very low (20 GB per node). Thus, trying to increase
tasks, for example, to more than eight while staying on the
same resources in terms of HDD, RAM ..., will not make
Handoop able to improve performance of the process if HDD
space or memory is, already, completely consumed by the
eight tasks.

Fig. 10: Time saving (min.) by increasing tasks.

5. Conclusion
The ETL is the core component of decision-support sys-

tem since all the data dedicated for analysis pass through this
process. It should be adapted following the new approaches
and paradigms to cope with big data. In this context, we pro-
posed a parallel/distributed approach for ETL process where
its functionalities run in parallel way with MR paradigm.
In the near future, we plan to finish our experiments on a
larger scale both in ETL process level and ETL functionality
level. A complete benchmark in which we compare the
four approaches (centralized ETL process approach, dis-
tributed ETL process approach, Big-ETL approach, Hybrid
approach) is an interesting perspective.

References
[1] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing

on large clusters,” Communications of the ACM, vol. 51, no. 1, pp.
107–113, 2008.

[2] S. Mohanty, M. Jagadeesh, and H. Srivatsa, Big Data Imperatives:
Enterprise Big Data Warehouse,BI Implementations and Analytics.
Apress, 2013.

[3] B. Sosinsky, Cloud computing bible. John Wiley & Sons, 2010, vol.
762.

[4] J. Dean and S. Ghemawat, “Mapreduce: a flexible data processing
tool,” Communications of the ACM, vol. 53, no. 1, pp. 72–77, 2010.

[5] J. Han, E. Haihong, G. Le, and J. Du, “Survey on nosql database,” in
6th international conference on pervasive computing and applications
(ICPCA), 2011. IEEE, 2011, pp. 363–366.

[6] P. Vassiliadis, A. Simitsis, and S. Skiadopoulos, “Conceptual modeling
for etl processes,” in Proceedings of the 5th ACM international
workshop on Data Warehousing and OLAP. ACM, 2002, pp. 14–21.

[7] J. Trujillo and S. Luján-Mora, “A uml based approach for modeling
etl processes in data warehouses,” in Conceptual Modeling-ER 2003.
Springer, 2003, pp. 307–320.

[8] Z. El Akkaoui and E. Zimányi, “Defining etl worfklows using bpmn
and bpel,” in Proceedings of the ACM twelfth international workshop
on Data warehousing and OLAP. ACM, 2009, pp. 41–48.

[9] Z. El Akkaoui, E. Zimànyi, J.-N. Mazón, and J. Trujillo, “A model-
driven framework for etl process development,” in Proceedings of the
ACM 14th international workshop on Data Warehousing and OLAP.
ACM, 2011, pp. 45–52.

[10] B. Oliveira and O. Belo, “Using reo on etl conceptual modelling: a
first approach,” in Proceedings of the sixteenth international workshop
on Data warehousing and OLAP. ACM, 2013, pp. 55–60.

[11] F. Arbab, “Reo: a channel-based coordination model for component
composition,” Mathematical Structures in Computer Science, vol. 14,
no. 3, pp. 329–366, 2004.

[12] X. Liu, C. Thomsen, and T. B. Pedersen, “Etlmr: a highly scalable di-
mensional etl framework based on mapreduce,” in Data Warehousing
and Knowledge Discovery. Springer, 2011, pp. 96–111.

[13] C. Thomsen and T. Bach Pedersen, “pygrametl: A powerful pro-
gramming framework for extract-transform-load programmers,” in
Proceedings of the ACM twelfth international workshop on Data
warehousing and OLAP. ACM, 2009, pp. 49–56.

[14] X. Liu, C. Thomsen, and T. B. Pedersen, “Mapreduce-based dimen-
sional etl made easy,” Proceedings of the VLDB Endowment, vol. 5,
no. 12, pp. 1882–1885, 2012.

[15] S. Misra, S. K. Saha, and C. Mazumdar, “Performance comparison of
hadoop based tools with commercial etl tools–a case study,” in Big
Data Analytics. Springer, 2013, pp. 176–184.

[16] X. Liu, C. Thomsen, and T. B. Pedersen, “Cloudetl: scalable dimen-
sional etl for hive,” in Proceedings of the 18th International Database
Engineering & Applications Symposium. ACM, 2014, pp. 195–206.

[17] M. Bala, O. Mokeddem, O. Boussaid, and Z. Alimazighi, “Une
plateforme etl parallèle et distribuée pour l´intégration de données
massives,” Revue des Nouvelles Technologies de l’Information, vol.
Extraction et Gestion des Connaissances, RNTI-E-28, pp. 455–460,
2015.

[18] R. Kimball and J. Caserta, The data warehouse ETL toolkit. John
Wiley & Sons, 2004.

[19] D. V. Sarwate, “Computation of cyclic redundancy checks via table
look-up,” Communications of the ACM, vol. 31, no. 8, pp. 1008–1013,
1988.

[20] M. P. Freivald, A. C. Noble, and M. S. Richards, “Change-detection
tool indicating degree and location of change of internet documents
by comparison of cyclic-redundancy-check (crc) signatures,” Apr. 27
1999, uS Patent 5,898,836.

468 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



Using the column oriented NoSQL model  

for implementing big data warehouses 

 

Khaled. Dehdouh
1
, Fadila. Bentayeb

1
, Omar. Boussaid

1 
, and Nadia Kabachi

1
 

1
ERIC Laboratory/ University of Lyon 2, Bron, France 

 

 

Abstract - The column-oriented NoSQL (Not Only SQL) 

model provides for big data the most suitable model to the 

data warehouse and the structure of multidimensional data as 

the OLAP cube and allows it to be deployed in the cloud and a 

high scalability whilst delivering high performance. In the 

absence of a clear approach which allows the implementation 

of data warehouses using this model, we propose in this 

paper, three approaches which allow big data warehouses to 

be implemented under the column oriented NoSQL DBMS. 

Each one differs in terms of structure and the attribute types 

used when mapping the conceptual model into logical model 

is performed. We use these approaches to instantiate the 

conceptual model of the star schema benchmark (SSB) data 

warehouse into columnar logical models, and show the 

differences between them when decisional queries are 

performed. 

Keywords: Big data warehouses, columnar NoSQL model, 

logical modeling. 

 

1 Introduction 

  A data warehouse is a database for online analytical 

processing (OLAP) to aid decision-making. It is designed 

according to a dimensional modelling which has for objective 

to observe facts through measures, also called indicators, 

according to the dimensions that represent the analysis axes 

[1]. Thus, at the conceptual level, the multidimensional 

modelling gave birth to the concepts of fact and dimension. 

The most popular models used to design data warehouses are 

the star, snowflake, and constellation schemas [2]. These 

models are then converted to the logical models which depend 

on the storage mode that will be adapted at the physical level 

[3]. Classically, the mapping from the conceptual to the 

logical model is made according to three approaches; ROLAP 

(Relational-OLAP), MOLAP (Multidimensional-OLAP) and 

HOLAP (Hybrid-OLAP) [4]. 

However, with the advent of the big data, the logical 

modelling adopted by these approaches does not adapt itself 

to an environment characterized by such amount of data. To 

solve a part of this issue, other models have appeared such as 

the column oriented NoSQL. This latter gives a data structure 

more adequate to the massive data warehouses. Yet, the data 

warehouse implementation process requires to take into 

account the recent data structures and should adapt itself to 

the new technological constraints. 

Figure 1: Implementation process for data warehouses 

As depicted in the figure 1, the logical model aims at 

reorganizing the data according to the most appropriate 

storage architecture for a better taking in charge by the 

DBMS. It is situated between the conceptual and the physical 

models of data. In other words , it not only gives more details 

than the conceptual model on the structuring of data and their 

relations, but it prepares the transition to the physical level as 

well; this makes it the most decisive model in the modeling 

process. 

In order to fully benefit from the columnar NoSQL model 

advantages, and in the absence of a clear approach allowing 

for implementing the columnar NoSQL data warehouses, we 

propose in this paper, three types of the conceptual model 

translations at logical columnar model level namely NLA 

(Normalized Logical Approach), DLA (Denormalized Logical 

Approach), and DLA-CF (Denormalized Logical Approach 

by using Column Family). Each approach leads to a different 

logical model. We describe each one, and show how we can 

use these models for implementing data warehouses.  

To compare between the three translations, we have 

implemented the SSB (star schema benchmark) data 

warehouse [5] according to our propositions. This 

implementation was achieved under HBase which is column-

oriented NoSQL DBMS. We have noticed that the execution 

of decisional queries using the SSB data warehouse with the 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 469



denormalized approaches (DLA and DLA-CF) takes three 

times less compared with an implementation with SSB using 

the normalized approach (NLA). Besides, the use of the 

family column structure for gathering the attributes belonging 

to the same dimension leads to the improvement until 10% of 

the queries’ execution time which involve several attributes of 

the same dimension to perform aggregations. 

The rest of this paper is organized as follows. Section two 

gives the related works of column-oriented data warehouse 

implementation. Section three introduces the column-oriented 

NoSQL model. Section four presents the three approaches 

that we propose for data warehouse implementation under the 

columnar NoSQL DBMS. Section five describes the 

conversion rules from a dimensional model towards the 

logical models according to the three approaches NLA, DLA 

and DLA-CF.  In section six, we conducted experiments to 

evaluate the star schema benchmark implementation 

according to our three approaches that we propose. Finally, in 

section 7, we conclude this paper and give some perspectives. 

2 Related work 

 Although the columnar NoSQL model is widely used for 

storing and analyzing massive data, it does not have, to our 

knowledge, any methods or defined rules which allow us to 

know whether  a column-oriented NoSQL data warehouse is 

well performing or not.  

However, some works are aimed at developing data 

warehouses in columnar NoSQL DBMS. In [6] [7], the author 

has proposed an approach for transforming a relational 

database into a column oriented NoSQL database using 

HBase. However, this approach is limited to the logical level, 

and does not consider the conceptual model of data 

warehouses; i.e.: mapping a relational logical model into a 

column oriented logical model. In recent work [8], we have 

developed a new benchmark for the columnar NoSQL data 

warehouse, but without giving the formalization for the 

modeling process. However, this work is considered as the 

first work which proposes implemented star data warehouse 

under column oriented NoSQL DBMS directly from 

dimensional model. 

Another recent work, based on our benchmark, has tried to 

define a logical model for NoSQL data stores (oriented 

columns and oriented documents) [9].  However, its column 

oriented logical modeling has been only limited to the use the 

columns family concept without considering the attributes 

which are not necessarily belonging to a column family. 

Indeed, the columns oriented NoSQL model proposes two 

kinds of attributes: a simple attribute and a composite attribute 

(nested attribute). This latter is represented by the concept of 

column family (see section 3). Thus, columnar NoSQL 

DBMS rather favors the denormalization of the dimensional 

model, without necessarily using the column families 

(composite attribute). 

To complete these works by taking the simple attributes case 

into a count, we propose three candidate approaches which 

summarize the mapping of the multidimensional conceptual 

data model into a logical modeling adapted to the column-

oriented NoSQL data warehouses. 

 

3 Column oriented NoSQL model 

 In this section, we present the columnar NoSQL model 

which is characterized by non-relational logical representation 

of data, and storing the data of a table column-by-column 

[10]. It allows data warehouse architecture to be deployed in 

the cloud and a high scalability whilst delivering high 

performance [11].  

Indeed, the non-relational aspect of this model allows the 

massive data warehouses to be deployed in a distributed 

environment when scaling up [12], and the column oriented 

aspect for storing data is beneficial to the data warehouse 

when aggregation is performed with value belonging to the 

same column [13]. However, columnar NoSQL model does 

not have a mechanism which takes in charge the links between 

tables; thus, it is assigned to the customer applications level 

[14].  

Consequently, the columnar NoSQL DBMS as HBase favors 

gathering columns in a single table when storing data. Each 

column stores data in the form of a "key/value" pair which can 

be stored in a distributed file system.  The combination <row 

key, column name, timestamp> represents the coordinates of 

the value as depicted in the figure 2.  

 

 
 

Figure 2: Data structure of the columnar NoSQL model 

 

The row key serves for identifying the column values 

belonging to the same tuple. The column name allows 

identifying the attribute of a value; it can be composed by 

column family name and column name. Indeed, the column 

may be composite or simple. If the column name is prefixed, 

this means that the column name consists of the name of the 

column family (prefix) and the name of the nested column. In 

this case, it is called composite attribute (belong to a column 

family), otherwise it is considered as simple attribute. The 

figure 3 represents the corresponding UML class diagram of a 

column-oriented NoSQL data model (tables, rows, column 

families and columns).  

 

470 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



 

Figure 3: UML class diagram of the concepts of a column-oriented 

NoSQL data model. 

Finally, the timestamp allows checking data coherence. Each 

value is allocated a timestamp by the system for the purpose 

of data consistency. It is noteworthy that data replication 

across different machines (nodes) required by the data 

management in a distributed environment (Eventually 

consistent) sometimes leads to different versions of the same 

data during updates. The timestamp associated with each 

value means that it is the most recent version which will be 

taken when a query is entered into the database [15]. 

Moreover, HBase and Cassandra from the Apache Foundation 

and BigTable from Google are three examples of column 

oriented NoSQL DBMS. In the next section, we present a 

logical model which allows implementing data warehouses 

under a column-oriented NoSQL DBMS. 

4 The logical model for the columnar 

NoSQL warehouses 

 In order to implement the big data warehouses within the 

column-oriented NoSQL model, we propose three approaches 

namely NLA (Normalized Logical Approach), DLA 

(Denormalized Logical Approach), and DLA-CF 

(Denormalized Logical Approach by using Column Family). 

Each one differs in terms of the structure and the attribute 

types used when mapping is performed.  

The first one uses different tables for storing fact and 

dimension, and use only the simple attribute for representing 

measure and dimension attributes. The second approach 

proposes storing the fact and dimensions into one table, and 

uses only the simple attribute for representing measure and 

dimension attributes. The third approach proposes storing the 

fact and dimensions into one table, and uses only the 

composite attribute for representing measure and dimension 

attributes. These approaches are described below. 

4.1 Normalized Logical Approach (NLA) 

 This approach proposes to map the dimensional model 

of data warehouse by the normalized approach as the 

relational does. In order to achieve this, the classic 

dimensional models are converted towards relational logical 

models. The dimensions and the facts are stored separately on 

different tables. To ensure the links between these two entities 

(dimension-fact), the dimension table identifier is duplicated 

in the fact table. However, without the referential integrity 

constraints in the columnar NoSQL DBMS, it is the 

responsibility of the customer application level to check this 

scheduler.  

4.2 Denormalized Logical Approach (DLA) 

 This approach proposes transforming the data 

conceptual model into a model based on a large structure 

(table) called BigFactTable, which keeps the facts and the 

dimensions joined. On the opposite of the normalized 

approach which separates the facts from their dimensions, this 

approach favors the denormalization of the schema by 

integrating, in the same table, the fact and the dimension. This 

process is very frequent in the modeling of the data 

warehousing, particularly in the management of the 

dimensional hierarchies; as explained by [16]. To map 

measures and dimensions into logical model, this approach 

uses the simple attribute proposed by the columnar NoSQL 

model. Thus, the fact and dimension values are now identified 

by the same identifier (row key) of the table, and we have no 

longer to achieve joining between tables when aggregation is 

performed. 

4.3 Denormalized Logical Approach by using Column 

Family (DLA-CF) 

This approach proposes transforming the data conceptual 

model into columnar NoSQL logical model as Denormalized 

Logical Approach does. However, this approach uses the 

composite attributes to map the measures and dimensions 

instead the simple ones. Indeed, each dimension is mapped 

into a column family and the attributes belonging to the same 

dimension are gathered in one column family. This allows 

attributes belonging to a given dimension to be shared in the 

same disk space which improves the column access time 

especially when decisional query involves several attributes of 

the same dimension (hierarchy: year, trimester and month) to 

perform aggregations. 

5 Mapping from the dimensional model 

to the columnar NoSQL logical 

models 

 In order to define the rules that cover the mapping 

process from the dimensional model to the candidates’ 

columnar NoSQL logical models defined above (section 4), 

we first formalize the different instantiations that lead to these 

logical models. 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 471



5.1 Formalization 

Given data warehouse dimensional model DW composed by 

the couple (F, D). F represents the set of 

measures , and D represents a set of 

dimensions . Each dimension D grouped a 

set of attributes represents the axe of analysis used for 

observing the measure attributes , it is defined by 

 

Definition 1 (NLA) 

According to NLA, the instantiation of DW leads to map the 

fact F and the dimensions D to separate tables called 

respectively FT (fact table) and DT (dimension table). The 

simple attribute is used for representing both the dimension 

and measure attributes; such as,    , 

and   It means that for each 

dimension table, there is at least an attribute which uniquely 

identify all the attributes of dimension, and there is another 

one which identify both all measure attributes and the 

identifiers of dimensions. 

Definition 2 (DLA) 

The instantiation of DW according to DLA leads to map the 

fact F and the dimensions D to the same table called 

BigFactTable  (BFT). This approach uses the simple attribute 

for representing both the dimension and measure attributes. 

Thus, we consider that the logical modeling is performed 

according to DLA, if and only if there is a sub set of attributes 

E included in BFT, such as:  : 

 It means there is at least an 

attribute which uniquely identify all the attributes of 

dimension and all measure attributes in the BigFactTable. 

Definition 3 (DLA-CF) 

According to DLA-CF, the instantiation of DW leads to map 

the fact F and the dimensions D to the same table called 

BigFactTable (BFT) by using the column family structure CF. 

Indeed, all measure attributes are gathered into a column 

family, and each dimension is converted to a column family, 

too. Thus, the dimension attributes which belong to the same 

dimensions are gathered into a column family. We consider 

that the logical modeling is performed according to DLA, if 

and only if there is a sub set of attributes E included in BFT, 

such as:   It 

means there is at least an attribute which uniquely identify all 

the attributes of dimension and all measure attributes in the 

BigFactTable. 

5.2 Mapping rules from the dimensional model 

 At the conceptual modeling level, the dimensional model 

is independent from the details related to data structuring and 

the environment implementation; hence, we adopt the 

dimensional model as presented by [14] without any 

expansion or modification. However, we expose, in this 

section, the rules which allow to map a dimensional model 

already established towards a logical model according to the 

three approaches that we propose in this work. 

Conceptual model to NLA: in order to instantiate from the 

conceptual model by using this approach, the following rules 

must be applied: 

(R1) Each fact becomes a table called fact table FT, and each 

dimension becomes a table called DT. 

(R2) Each measure  is translated within as a 

simple attribute ( . 

(R3) Each dimension D and each attribute  is 

mapped into DT as a simple attribute (i.e. ), and the 

FT is completed by simple attribute  (the value 

reference of the linked dimension). 

Conceptual model to DLA: in order to instantiate from the 

conceptual model by using this approach, the following rules 

must be verified: 

(R1) Each fact and dimension is converted in one large table 

called BigFactTable BFT. 

(R2) Each measure M € F is translated within  BFT as a simple 

attribute ( . 

(R3) For all dimensions D, each attribute  is 

translated into a simple attribute (i.e. B ). 

Conceptual model to DLA-CF:  in order to instantiate from 

the conceptual model by using this approach, the following 

rules must be checked: 

(R1) Each fact and dimension is converted in one table called 

BigFactTable  BFT  as composite attributes (column families). 

(R2) Each measure  is mapped as a simple attribute 

and included in a column family into a BigFactTable 

. 

(R3) Each dimension D is translated into a composite attribute 

(i.e. B ), and each attribute  is translated as a 

simple attribute included in the  (i.e. BFT. ). 

The matching between entities from the conceptual model 

with those from the logical models that we propose is shown 

in the following table: 

 

472 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



Conceptual model NLA DLA DLA-CF 

Fact  F FT BFT BFT 

Measure  M FT.M BFT.M BFT.CF.M 

Dimension D DT BFT BFT.CF 

Dimension attribute At DT.At BFT.At BFT.CF.At 

Table 1: Matching between the conceptual model and the 

logical models. 

6 Experiments 

 In this section, we have evaluated the performances of 

the star data warehouse under the columnar NoSQL DBMS. 

For this reason, we have implemented a decisional benchmark 

SSB within HBase columnar NoSQL DBMS according to 

three (3) approaches. The first one implements the SSB 

following the normalized logical approach NLA; we called 

this data warehouse NLA-SSB. The second approach 

denormalizes the schema of data warehouse and implements 

the SSB according to the denormalized logical model without 

using the family columns DLA. We called it DLA-SSB. The 

third and last approach implements the SSB according to the 

denormalized logical model by using column family DLA-CF. 

We called it DLA-CF-SSB. To achieve this evaluation, we 

conducted two experiments to study the impact that the choice 

of approach used to implement a data warehouse under the 

column oriented NoSQL DBMS may have on the execution 

time of the decisional queries. 

6.1 Test environment 

 In order to perform our experiments within a column 

oriented NoSQL and distribute environment, we have put in 

place a non-relational and distributed storage and processing 

environment [17]. This environment is based on a private 

Cloud Computing architecture produced using the Hadoop-

2.6.0 and a HBase-0.98.8 DBMS, for managing data in a 

distributed environment. In order to simplify data handling 

and boost the performance of the HBase DBMS, we 

strengthened this configuration with an SQL interface for 

HBase, called Phoenix-4.1.0. This latter is an open source and 

allows the data handling at the HBase level (scan, put and get) 

to be combined to express a selection of data and to apply 

filters [18].  

The test environment is a cluster made up of 25 machines 

(nodes). Each machine has an intel-Core TMi5-3220M 

CPU@3.30 GHZ processor with 8GB RAM. These machines 

operate with the operating system Ubuntu-14.04 and are 

interconnected by a switched Ethernet 100 Mbps in a local 

area network. One of these machines is configured to perform 

the role of Namenode in the HDFS system, the master and the 

Zookeper of HBase [19]. However, the other machines are 

configured to be HDFS DataNodes and the HBase 

RegionServers. Although the private Cloud architecture we 

used is limited in terms of capacity (number of nodes 

composing the cluster), it is sufficient to allow us to deploy a 

non-relational data warehouse with scaling-up and to apply a 

queries set in a distributed environment. 

6.2 Data set 

 In order to perform our experiments, we used data 

generators of SSB which are available according to 

normalized
1
 and denomalized

2
 approaches [8], and we 

populated NLA-SSB, DLA-SSB, and DLA-CF-SSB data 

warehouses according to SF = 1000, this allows to generate 

fact table with 6 × 10
9
 tuples of data sample. 

6.3 Queries set 

 For our experiments, we used a queries set composed of 

eight (8) queries which are divided into two categories as 

depicted in table 2. The first category is composed of four (4) 

queries; they gradually increase in the number of dimensions 

involved when aggregation is performed. Each query in this 

category uses one attribute per dimension. The second 

category is composed of four (4) queries in which they 

involve only one dimension and gradual increase in the 

number of dimensions attributes when aggregation is 

performed. 

Table 2: Descriptive table of queries set 

6.4 Experiment 1 

 In this experiment, the aim is to study the execution time 

impact of the normalized and denormalized approaches by 

                                                           
1
 https ://github.com/electrum/ssb-dbgen 

2
 https://github.com/Dehdouh/DBGEN-CNSSB 

Queries set Query Dimension Attributes Measure 

Category-1 

Query 1.1 Date year, 

Sum         

(revenue) 

Query 1.2 
Date, 

Part 

year, 

category 

Query 1.3 

Date, 

Part, 

Supplier 

year, 

category, 

region 

Query 1.4 

Date, 

Part, 

Supplier, 

Customer 

year, 

category, 

region (Supplier), 

region (Customer) 

Category-2 

Query 2.1 

Part 

color 

Query 2.2 
color, 

type 

Query 2.3 

color, 

type, 

size 

Query 2.4 

color, 

type, 

size, 

container 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 473



using queries which involve attributes from different 

dimensions when aggregations are performed. To do this, we 

applied the first queries set category to NLA-SSB, DLA-SSB, 

and DLA-CF-SSB data warehouses. The results we obtained 

are shown in the following figure: 

 

Figure 7:  Execution time of the category 1 of queries set 

We observed that the denormalized data warehouses 

represented by DLA-SSB and DLA-CF-SSB show better 

performance than normalized data warehouse represented by 

NLA-SSB. Indeed, the query execution times obtained from 

the data warehouses DLA-SSB and DLA-CF-SSB are better 

until three times than those executed by the data warehouse 

NLA-SSB. This is because implementing data warehouse 

according to normalized approach entails higher costs for 

materializing the link between dimension and fact especially 

when the queries involve more joins between the tables for 

performing aggregations. 

However, for denormalized warehouses (DLA-SSB and DLA-

CF-SSB), we found that gathering the dimension attributes in 

a column family does not impact the warehouse performance 

when the query handles attributes belonging to different 

dimensions. 

6.5 Experiment 2 

 In this experiment, the aim this time is to study the 

execution time impact of the normalized and denormalized 

approaches by using queries which involve only one 

dimension and gradual increase in the number of dimensions 

attributes when aggregation is performed. To do this, we 

applied the second queries set category to DLA-SSB, DLA-

CF-SSB, and DLA-CF-SSB data warehouses. The results we 

obtained are shown in the following figure: 

 

Figure 8:  Execution time of the category 2 of queries set 

 We observed that the query execution times is different 

for each data warehouse and gives advantage to DLA-CF-

SSB. Indeed, the queries used in this experiment (category 2) 

involve only one dimension when performing aggregations. In 

the case of NLA-SSB data warehouse, the join between facts 

table and dimension (Part) is performed. Thus, involving 

another attribute belonging to the same dimension (Part) 

entails only additional time related to its scan. This time is 

lower than the time of joining additional dimension. 

On the other hand, we found that DLA-CF-SSB data 

warehouse performs execution times until 10 % better than 

DLA-SSB data warehouse. In the context of big data 

warehouse, this is very important especially in the case of data 

warehouses characterized by a large number of attributes 

which compose the dimensions. Indeed, HBase DBMS stores 

columns by lexicographical order which may sometimes store 

the columns of the same dimension separately in different disk 

spaces. Thus, using the column family allows having the 

attributes belonging to the same dimension stored in the same 

disk space. 

Based on these results, we found that the use of the column 

family for implementing columnar NoSQL data warehouses 

gives benefits only with decisional queries handling attributes 

belonging to the same dimension (i.e.: the dimension 

hierarchy is involved).  

7 Conclusion 

Facing the emergence of large and unusual volumes of data 

(big data), we have proposed three approaches which allow 

mapping the multidimensional conceptual data model into a 

logical modeling adapted to the column-oriented NoSQL data 

warehouses. We have called these approaches; NLA, DLA, 

and DLA-CF. Each one differs in terms of the structure and 

the attribute types used when mapping is performed. We have 

described each one and showed the rules governing the 

instantiation of the conceptual model. Each approach has its 

weaknesses and strengths, and the choice depends of the use 

case. 

We have used these approaches for evaluating the 

performance of SSB data warehouse under distributed 

environment when applied on decisional queries set. Then, we 

have observed that the denormalized data warehouses 

represented by DLA and DLA-CF show better performance 

than NLA which represents normalized approach. Indeed, the 

NLA uses less disk memory, but it is quite inefficient when 

queries with joins are performed. 

Morover, we have found that the DLA-CF is more efficient 

than DLA, but only when query handling attributes belong to 

the same dimension. Thus, the use of the column family 

depends of the type of the queries which are applied to the 

columnar NoSQL data warehouse. 

474 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



As a perspective, we tend to explore in the next work, the 

instantiation of data warehouse across other different NoSQL 

systems namely: key/value, documents-oriented, and graph-

oriented to analyze the big data warehouses. These systems 

give efficient managing of big data corresponding to different 

contexts. 

8 References 

 

[1] Inmon, W. “Building the data warehouse”. QED 

Information Sciences, Inc, 1992. 

[2] Kimball, R. “Kimball Dimensional Modeling 

Techniques”, Kimball Group University, 2013. 

[3] Coronel, C., Morris, S., Rob, P.: “Database Systems: 

Design, Implementation, and Management”, Cengage 

Learning, 2012. 

[4] Chaudhuri, S., Dayal, U., Ganti, V. “Database 

technology for decision support systems”, IEEE Computer 

Society, 48--55, 2002. 

[5] O'Neil P., O'Neil B., Chen X.: The Star Schema 

Benchmark (SSB), http://www.cs.umb.edu/\~poneil/ 

StarSchemaB.PDF, (2009). 

[6] Li, C. “Transforming relational database into HBase: A 

case study”, International Conference on Software 

Engineering and Service Sciences (ICSESS), 683--687, 2010. 

[7] Han, D., Stroulia, E. “A three-dimensional data model in 

hbase for large time-series dataset analysis”, IEEE MESOCA, 

47--56, 2012. 

[8] Dehdouh, K., Boussaid, O., Bentayeb, F. “Columnar 

NoSQL Star Schema Benchmark”, Model and Data 

Engineering MEDI, 281--288, 2014.  

[9] Chevalier, R., El Malki, M., Kopliku, A., Teste, O., 

Tournier, T. “Implementing Multidimensional Data 

Warehouses into NoSQL”. International Conference on 

Enterprise Information Systems (ICEIS 2015), 172--183, 

2015. 

[10] Jing, H., Haihong, E., Guan, L., Jian, D. “Survey on 

NoSQL database”, International Conference on Pervasive 

Computing and Applications (ICPCA), 363--366, 2011. 

[11] Pokorny, J. “Nosql databases: A step to database 

scalability in web environment”, Association for Computing 

Machinery ACM, 278--283, 2011. 

[12] Jerzy, D. “Business Intelligence and NoSQL 

Databases”, Information Systems in Management 1, 25--37, 

2012. 

[13] Matei, G. “Column-oriented databases, an alternative 

for analytical environment”. Database Systems Journal, 3--16, 

2010. 

[14] Apache Software Foundation. “The Apache HBase 

Reference Guide”, http://hbase.apache.org/book/joins.html, 

2014. 

[15] Cattell, R. “Scalable SQL and NoSQL Data Stores”, 

Association for Computing Machinery ACM SIGMOD 

Record, 12--27, 2011. 

[16] Kimball, R., Ross, M. “The data warehouse toolkit: 

The complete guide to dimensional modeling”, Second 

Edition, Inc, 2002. 

[17] Taylor, R. “An overview of the Hadoop-MapReduce-

Hbase framework and its current applications in 

bioinformatics”. BMC Bioinformatics Journal. 2010. 

[18] James, T. https://github.com/forcedotcom/phoenix/wiki 

/Performance, 2013. 

[19] Hunt, P., Konar, M., Junqueira, F. P., Reed, B. 

“Zookeeper: Wait-free Coordination for Internet-scale 

Systems”, Proceedings of the 2010 USENIX Conference on 

USENIX Annual Technical Conference, 11--24, 2010. 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 475



Big Data Analytics and Spatial Common Data Model 

Role 
Ayman Ahmed Samia    

a) Senior GIS Analyst Engineer  Openware  (Kuwait Oil Company)  

 

Abstract - Big data analytics in terms of business 

perspective is the way to extract and derive new 

information based on analytical steps for the 

current raw data. Integration process to create the 

business logic model is one of the main challenges 

in this step, which is required to view raw data in 

new business objective dimension. This paper drills 

into the role of spatial common data model 

(SCDM) in the integration process between various 

workflows to derive unified data logic layer as big 

data analytics foundation. Through the case study, 

SCDM is capable to manage and analyse the basic 

big data dimensions (volume, velocity and 

variability). 

Keywords: Data Analytics, Spatial common data 

model, spatial risk model, quality performance 

index. 

1 Introduction 

Margaret Rouse says that data analytics (DA) 

is the science of examining raw data with the 

purpose of drawing conclusions about that 

information. Thus, raw data has to be captured in 

unified framework or environment to be able to 

analyse and manage the interaction between raw 

data to be able to represent it in the new business 

objective dimension. Integration process is 

responsible for interaction and communication 

between the various workflows to derive the target 

data logic layer. Ayman Sami shows how to deploy 

and implement spatial common data model 

(SCDM) in geographic information system (GIS) to 

act the domain model for the various workflows in 

the enterprise environment. SCDM is based on 

analysing the decomposed activities or workgroups 

for common processes and providing the spatial 

integrity or correlation between the decomposed 

activities, which could be established in GIS 

environment. The following case studies utilize this 

concept or methodology to develop the unified geo 

framework to derive decision-making information 

based on the integration between the current and 

heterogonous workflows in enterprise oil and gas 

industry. 

2 SCDM and spatial management of 

emergency response plan 

This case drills into the development of 

spatial risk model which would act as SCDM to be 

able to spatially manage  the various modules of the 

emergency response plan for both preventive and 

response actions in oil and gas industry based on 

the H2S dispersion model. 

The scope is to create dispersion risk model for 

H2S derived from EUB (Energy and Utility Board) 

dispersion calculation model. Then, calculated EPZ 

(Emergency Planning Zones) spatially for sour 

wells based on phase operation is implemented. 

Wind magnitude and direction impact in case of 

calculated protective action zone are considered. 

Capability of creating actual EPZ zones is based on 

geospatial analysis relationships. These zones are 

recognized with respect to the available geographic 

objects. For example, these objects can be the 

access routes and their availability. 

Implement the spatial risk assessment score matrix 

per sour well to enable the spatial management of 

ERP type related to the well based on its status. 

Proposed spatial data model for ERP management 

based on the spatial risk model:  

 The proposed spatial ERP data model is based on 

the developed spatial risk model derived from the 

defined spatial and non-spatial probable parameters 

as well as the related consequence analysis for H2S 

dispersion through which the emergency level 

could be specified as well as related ERP modules. 

Different factors related to the spatial situation in 

question is being taking care off. Figure 3 shows 

proposed flow chart of spatial ERP management 

based on EPZ consequence analytical zones. 

Customized spatial risk model using python script 

in ESRI environment: 

476 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



The data needed are being gathered. These data are 

being put in the proper form for ESRI computer 

software environment. Figure 4 shows the 

customized GIS model used to extract the main 

output parameters from the calculated EUB 

(Energy and Utility Board) for H2S calculation 

model. Such parameters are the calculated EPZ 

(Emergency Planning Zone), PAZ (Protective 

Action Zone), IIZ (Initial Isolation Zone) distances, 

H2S concentration, wind magnitude, phase 

operation, and other mandatory parameters to be 

accounted for in the spatial risk model.  

Create spatial risk model: 

This model will indicate the amount of risk 

involved depending on the probability analysis 

needed. The spatial EPZ, PAZ, IIZ per analytical 

asset or element (sour well) is being created. Then, 

the spatial risk model can be developed based on 

EPZ consequence analysis and the defined impact 

parameters. 

Figure 5 shows the initial output of the spatial risk 

H2S dispersion model based on the calculated EPZ 

zones from EUB for H2S dispersion model, as well 

as the creation of initial spatial risk model. 

The final resized EPZ, PAZ, IIZ with the modified 

spatial risk model: 

The final spatial model will detect and adapt to 

changes. Figure 6 shows how the spatial model is 

intelligent enough to detect any change in the 

defined risk parameters whether spatial, 

environmental (e.g., wind direction and magnitude 

from sensors, etc.) or non spatial risk parameters 

(e.g., uncontrolled flow, etc.) and adapt 

accordingly. 

3 SCDM and pipeline asset 

management integrity 

This case drills into the utilization of APDM 

(ArcGIS of Pipeline Data Model). ADPM is GIS 

template derived from PODS (Pipeline Open Data 

Standard) which enables GIS specialist to be able to 

easily manage the basic elements for pipeline asset 

management integrity in GIS environment. We rely 

here on the spatial integrity and relationship 

between 3 main basic elements which are : control 

points , station series and risk analysis layers to 

develop SCDM based on the derived spatial risk 

model from the mentioned relationship. 

Figure 7 shows GIS QPI (Quality Performance 

Indicator) surface created based on the polynomial 

relation between the risk and the quality. 

Figure 8 shows how SCDM can be utilized to 

detect the least QPI areas and detect the main 

events with its related consequence which lead to 

low QPI .This could be achieved through the spatial 

analysis and management of the integration process 

between the heterogonous workflows in pipeline 

asset management.  

4 Equations for Spatial Risk 

Score Matrix Development 

and ERP Spatial Management 

1) Refined EPZ radius = EPZ calculated (1 + 

Related consequence value).            [1] 

The actual EPZ  calculated based on the impact of 

spatial and non-spatial parameters on the 

consequence matrix. 

2) (Total Of Risk) TOR = (Probability * 

Consequence) per asset or analytical element.       

[1] [ 2]. 

The total of risk score per asset (object). This value 

is inserted into the risk score matrix for risk 

evaluation. 

 

3) 

22 /2σμ)(xe
σ2π

1
=f (x)  --

.       [ 4] 

Binomial distribution equation: that represents the 

probability relationship between the quality 

performance and related risk. This equation is used 

for the calculation of quality performance indicator 

of the target plan. 

where 2

TOR


, 

 

and 4

2TOR


 

X = 1 (Assumed Random Variable) 

Scale Factor = 100 (Assumed) 

 

4) QPI (Quality Performance Index)   [ 3] 

100f(x) 
    

QPI of target plan is calculated assuming that the 

scale factor is 100. 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 477



 

 

 

 

 

 

 

 

5 Figures 

4 8 12 16 

3 6 9 12 

2 4 6 8 

1 2 3 4 

 

                                             Figure 1: The proposed total of  risk score matrix for spatial ERP 

 

                                           

                                               Figure 2: Phases identified in a typical emergency management process 

 

478 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



                   

Figure 3 Proposed flow chart of spatial ERP management based on EPZ consequence analytical zones. 

 

                                  

 

Fogure 4 The model interface of spatial H2S dispersion model. 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 479



                                      

 

Figure 5 The calculated spatial EPZ zones. 

 

Figure 6 The refined spatial EPZ zones. 

 

480 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



 

Figure 7 Spaial interpolated QPI surface 

 

Figure 8 Rquired information for the Low quality cause based on spatial analytical of data sources 

 

 

 

 

 

 

 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 481



6 References 

[1] “British Columbia Oil and Gas Handbook Emergency Planning and Requirements for Sour Wells,”. Technical 

guideline documentation from BC Oil and Gas Commission.  

[2] The Canadian Association of Petroleum Producers (CAPP), “CAPP Companion Planning Guide to ERCB 

Directive 071,”. Technical guideline documentation from the Canadian Association of Petroleum Producers 

(CAPP).  

[3] A. Sami, “Role Of Geographic Information System For Asset Management Information Risk Assessment For 

Pipelines Utility In Oil And Gas Industry,” ESRI, UC, July 2012.  

[4] A. Sami, “Spatial ERP Management for oil and gas,” IARIA,Geoprocessing, Lisbon February 2015. 

 

 

 

 

 

 

 

 

 

 

 
. 

 

 

 

 

 
 

 

 

 

 

 

482 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



SESSION

DISTRIBUTED PROCESSING, MOBILE
COMPUTING, AD HOC NETWORKS, AND

WIRELESS SENSOR NETWORKS

Chair(s)

TBA

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 483



484 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



On Minimizing Broadcast Latency
in Duty-cycled Wireless Sensor Networks

Duc-Tai Le1, Thang Le Duc1, Vyacheslav V. Zalyubovskiy2, Dongsoo Kim3 and Hyunseung Choo1
1Sungkyunkwan University, South Korea
2Sobolev Institute of Mathematics, Russia

3Indiana University-Purdue University Indianapolis, USA

Abstract— Minimizing broadcast latency is one of the most
important issues for broadcasting in duty-cycled wireless
sensor networks. The existing broadcast schemes do not
allow any collision in a schedule to ensure its completion,
i.e. all nodes receive a broadcast message collision-freely. A
delay of transmission caused by the collision-prevention may
increase the broadcast latency if the delay occurs along a
critical path of the network. In order to minimize broadcast
latency, the paper proposes a broadcast scheduling scheme
that provides preference to nodes along critical paths of
a network. The proposed scheme allows collision at non-
critical nodes to speed up the broadcast process for critical
ones. It ensures the completion of a broadcast scheduling by
retransmission. Simulation results show that the proposed
scheme significantly reduces broadcast latency compared
with the existing schemes, and slightly increases the number
of transmissions due to retransmission.

Keywords: latency efficiency, collision-tolerant, critical path,
broadcast schedule, duty cycle

1. Introduction
Broadcast is a fundamental operation in Wireless Sensor

Networks (WSNs) and plays an important role in commu-
nication protocol design. Like other operations in a wireless
medium, broadcast scheduling also suffers from collisions,
when two or more nodes transmit messages to a common
destination simultaneously. With collision, the destination
node is not able to receive any of these messages. The
Minimum Latency Broadcast Scheduling (MLBS) problem
aims to find a collision-free schedule for broadcast with a
minimum latency. The problem is proved to be NP-hard [1],
and has been widely studied in always-active WSNs, where
all nodes are assumed to be active all the time.

The broadcast gets more complex when recent WSNs have
adopted the duty-cycle scheme to conserve energy and to
extend the network lifetimes [2]. In a duty-cycled WSN, a
sensor node alternates between active and sleep states to
reduce energy consumption. Due to the periodic sleeping
period of each sensor node, a sensor node has to wait until
its receivers wake up before transmitting a message and may
need to transmit the message multiple times if its receivers
have different active slots. The minimum-latency broadcast

problem in duty-cycled WSNs has received significant at-
tention over the last few years.

Hong et al. [3] proved the NP-hardness of MLBS in the
Duty-Cycled (MLBSDC) problem and proposed a broadcast
scheduling scheme following a top-down layered approach
on a Shortest Path Tree (SPT). Jiao et al. [4] improved the
work by exploring the geometric properties of the Maxi-
mal Independent Set (MIS). Recently, the Latency-Aware
Broadcast Scheduling (LABS) scheme [5] further reduces
broadcast latency by allowing nodes to transmit at multiple
time slots in a single working period.

The existing schemes for the MLBSDC problem do not
allow any collision in a schedule to ensure its completion,
i.e. all nodes receive a broadcast message collision-freely.
A delay of transmission caused by collision-prevention may
increase the broadcast latency if the delay occurs along a
critical path of the network. The paper proposes a broadcast
scheduling scheme that provides preference to nodes along
critical paths of a network to minimize broadcast latency.
The proposed scheme allows collision at non-critical nodes
to speed up the broadcast process for critical ones. It ensures
the completeness of broadcast scheduling by retransmission.

The remainder of this paper is organized as follows. In
Section 2, we discuss related works. Section 3 includes
network model, problem formulation, and related terminolo-
gies. Section 4 presents the proposed scheme, and then its
performance evaluation in Section 5. Finally, we conclude
the paper and discuss our future work in Section 6.

2. Related Works
Research on the minimum-latency broadcast problem has

increased over the past few decades. One of the earliest
works is Gandhi et al. [1]. They proved the NP-hardness of
MLBS problem in Unit Disk Graph (UDG) model [6], where
all nodes have the same transmission range. Their proposed
algorithm gives an approximation ratio in terms of latency of
at least 400. Huang et al. [7] exploited the fact that 12 colors
are sufficient to color all the nodes in any independent set
of an UDG and thus the distance between nodes with same
color is more than two hops. As a result, they improved the
latency ratio to 16. The algorithm in [8] recently improved
the ratio to 12 by allowing a node to transmit more than
once to reduce broadcast latency.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 485



However, the above mentioned algorithms fail to capture
the intermittently connected characteristic of duty-cycled
networks. The MLBSDC problem is proven as NP-hard
[3], and there are a handful of directly related works so
far. One-To-All Broadcast (OTAB) algorithm [4] utilizes a
correlation function between network topology information
and the sleep schedule of each node to find the minimum
latency from a source node to every node in a network.
All nodes in the network are divided into layers, accord-
ing to the minimum latency. The algorithm applies a D2-
coloring method on a MIS of each active slot, and schedules
transmissions layer-by-layer based on the assigned colors.
Nevertheless, the algorithm requires all forwarding nodes
in a 1-hop propagation to finish their transmissions before
all neighbors in the next hop. As a result, the mechanism
unnecessarily increases the delay of ensuring collision-free
transmissions from those 1-hop neighbors and hence leads
to a high broadcast latency.

Another notable result is LABS [5] which employs a
flexible layered approach to reduce broadcast latency by
utilizing independent scheduling between consecutive layers.
The scheme allows nodes to transmit at several time slots in
a single working period to maximize the number of receivers
in the working period. It also explores geometric properties
of the MIS to reduce the number of transmissions. A D2-
coloring method is applied to prevent interference between
transmissions for nodes within one layer. Simulation results
show that the scheme consistently outperforms existing
schemes in terms of broadcast latency, total transmissions,
and total energy consumption.

3. Preliminaries
3.1 Network model and assumptions

All sensor nodes are uniformly deployed in a square field
with one randomized source node as in [3]–[5]. The network
topology is modeled as a connected graph. Two sensor
nodes form a bidirectional communication link and become
a neighbor to each other whenever the Euclidean distance
between them is within their transmission range. Each sensor
node in the network is assigned a unique identifier.

In duty-cycled environments, time is divided into unit time
slots. These discrete time slots are grouped into multiple
working periods, with fixed length T . Each sensor node u
randomly selects one time slot in {0, 1, ..., T−1} as its active
slot A(u). The sensor node periodically wakes up at A(u)
for each working period, and stays in the active state for the
time slot.

We assume that every transmission occupies one unit time
slot. A sensor node can forward a broadcast message only
after it receives the message. A sensor node can wake up
at any time slot to transmit a message, and can receive a
message only at its active time slot. Due to the properties of a
wireless environment, whenever a node transmits a message,

all its active neighbor nodes hear the message. If a node
hears more than one message at a time slot, it cannot receive
any of these messages due to a collision. Therefore, sensor
node u successfully receives a message if only one neighbor
of u transmits the message at time slot A(u).

3.2 Problem statement
In a single-source broadcast, a message is disseminated

from source node s to all other nodes in a network. For
simplicity, the source node is assumed to have the message in
advance. Every other node in the network can be scheduled
to transmit the message to its neighbors after its reception.
The broadcast schedule completes when every node receives
the message.

A broadcast schedule assigns transmitting times for all
nodes in the tree such that the broadcast can complete. The
broadcast latency is determined by the maximum assigned
transmitting time. The objective of the MLBSDC problem
is to find broadcast schedule with a minimum broadcast
latency. The MLBSDC problem is an NP-hard problem [3].

4. Proposed Scheme
4.1 Motivation

Existing broadcast scheduling schemes, such as OTAB [4]
and LABS [5], are typically motivated to find a subset of
nodes whose simultaneous transmissions will result in as
many collision-free receptions as possible. In these works,
the authors use the neighborhood information of nodes to
determine whether a particular node needs to transmit a
message. Different transmitting time slots are assigned to
nodes having a common neighbor to prevent any collision.

A conventional broadcast schedule for a duty-cycled WSN
with T = 3 is illustrated in Fig. 1b. In the schedule, the
source node s broadcasts a message to its neighbors a and
b at time slot 0. These two nodes are adjacent to node e
whose active slot is 1. In order to prevent collision at the
common neighbor, either a or b is allowed to forward the
message at the time slot 1, and the other must be delayed
to the next working period. As transmission of b is delayed
in the example, its neighbor node f receives the message at
time slot 4 and forwards it at time slot 5.

Observably, a delay of transmission from b to f increases
broadcast latency as the node f is responsible for transmit-
ting the message further. The problem is more severe in
highly dense networks because there may be more nodes
which cannot be scheduled simultaneously due to the colli-
sion. With the improved schedule in Fig. 1c, a transmission
from b to f can be scheduled at time slot 1 despite causing a
collision at e. Node f can forward the message at time slot
2. Consequently, the broadcast completes earlier than the
conventional schedule, when e receives the message from a
retransmission of a at time slot 4.

486 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



(a) Communication graph. A
number next to a node indicates
its active slot.

(b) Conventional schedule (latency:
5, number of transmissions: 5).

(c) Improved schedule (latency: 4,
number of transmissions: 6).

Fig. 1: Motivation example. A node ID in a time slot
indicates a transmitter.

4.2 Critical-aware Scheduling with Collision-
tolerant (CSC)

In one-to-all broadcast, a critical path of a network is
the longest path in terms of delay among the shortest ones
from the source node to other nodes in the network. Nodes
in a critical path are referred to critical nodes. Obviously,
delaying the receiving times of a critical node will increase
overall broadcast latency. The proposed scheme schedules a
broadcast with preferred nodes along the critical paths of a
network to reduce the broadcast latency. A collision-tolerant
scheduling is employed to offer an opportunity of broadcast
latency minimization.

4.2.1 Criticality awareness

Let G = (V,E) denote the communication graph of a
duty-cycled WSN, where V is the set of vertices, and E
is the set of edges. Let s ∈ V denote a predefined source
node of the network. For each edge in a communication
graph G = (V,E), we define two values, called costs,
corresponding to two asymmetric directions of the edge.
Each cost value is the number of time slots for which a
transmission on a direction of the edge is delayed due to
the sleeping period of its receiver. For simplicity, the source
node s is assumed to have a message in advance, and its
active slot is defined as T−1. The cost of an edge (u, v) ∈ E

with a direction from u to v can be determined as follows:

cost(u, v) =

{
A(v)−A(u), if A(v) > A(u);
A(v)−A(u) + T, otherwise;

The minimum of accumulated costs on the paths from
the source node s to node u ∈ V is referred as level of u.
The level of u corresponds to the minimum latency for u to
receive a broadcast message generated by s. As the source
node s has generated the message in advance, its level is
0. Levels of other nodes in the network can be obtained by
constructing a Shortest Path Tree (SPT) rooted at s on the
latency cost. A critical path of the network is the shortest
path from s to a node with maximum level.

In order to determine the criticality of nodes in the
network, we define a latency-ahead value for each node u,
denoted by la(u), based on the SPT. The latency-ahead value
of a node is accumulated costs from the node to a leaf node
with maximum level in its sub-tree. The value presents the
minimum latency for transmitting a message from a node to
the furthest leaf node in the sub-tree rooted at the node. In
other words, a node with a high latency-ahead value requires
long delay to cover all nodes in its sub-tree. The higher
latency-ahead value a node has, the more critical the node
is. An example of SPT construction, level distribution, and
latency-ahead calculation is showed in Fig. 2. It is worth
noting that every nodes with a level k (k > 0) has an active
slot i = (k − 1) mod T .

(a) A shortest path tree along
with active slots of nodes.

(b) A level-based topology along with
latency-ahead values of nodes.

Fig. 2: An example for calculating latency-ahead value.

4.2.2 Collision-tolerant schedule
In the proposed scheduling, a node is called covered node

if one of its neighbors has been scheduled to transmit a mes-
sage to the node. The covered node is ready to be scheduled
to cover its uncovered neighbors. Let C and C denote the set
of covered nodes and the set of uncovered ones, respectively.
Initially, C contains the source node alone and C contains
the remaining ones. In order to reduce broadcast latency,
Critical-aware Scheduling with a Collision-tolerant (CSC)
algorithm prefers to cover critical nodes in C who have

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 487



high latency-ahead values. In each time slot, the algorithm
minimizes the number of transmissions by selecting some
nodes in C as forwarders so that the number of receivers in
C is maximized.

The broadcast schedule starts at time slot 0 and iteratively
works for each time slot. At each time slot i (i ≥ 0), the
algorithm searches for the most critical uncovered node u
who has the highest latency-ahead and A(u) = i mod T .
All covered neighbors of u are considered as its forwarder
candidates. Among the candidates, the algorithm selects the
node p(u) covering the largest number of uncovered nodes to
reduce the number of transmissions. As a transmission from
the selected forwarder covers all of its uncovered neighbors
whose active slots are equal to A(u), such neighbors become
candidates for receiving a message at time slot i, later on
called listeners.

CSC algorithm continues searching for the most critical
node v, A(v) = i mod T , among the uncovered ones
excluding the listeners. The forwarder candidates of v should
exclude all covered neighbors of listeners whose latency-
ahead values are not smaller than la(v) to prevent any
collision at the critical listeners. A forwarder p(v) for node
v is selected in the same manner among the remaining
forwarder candidates. All p(v)’s uncovered neighbors whose
active slot is equal to A(v), also become listeners. It is
worth noting that collision may occur at some listeners who
are common neighbors of p(u) and p(v). The algorithm
allows such collisions to accelerate transmissions to critical
nodes in the time slot i. Moreover, increasing the number
of simultaneous transmissions is also beneficial for reducing
broadcast latency.

The algorithm iterates the above procedure until it cannot
find any forwarder, or all nodes who are active at the current
time slot are covered. All listeners that have collided are still
uncovered nodes as they cannot receive a message at the
current time slot. The other listeners become covered ones.
CSC algorithm iteratively moves to the next time slot, i.e.
i+ 1, until it covers all nodes in the network. Fig. 3 shows
an example of the proposed algorithm on a network of 12
nodes and T = 3.

5. Performance Evaluation
In this section, the performance of the proposed scheme

is evaluated through extensive simulations. We demonstrate
the efficiency of CSC algorithm using a simulator written in
C#. Broadcast latency and number of transmissions given by
the proposed algorithm are compared with those of OTAB
[7] and LABS [8].

5.1 Simulation environment
For fair comparison, the simulation configuration is simi-

lar to the one in [8]. In all simulations, the network area is a
square of 200m200m, with sensor nodes deployed randomly
within the area. We assume that all sensor nodes have the

(a) At time slot 0, s is the only
selection.

(b) At time slot 1, d, e, and g are
preferred; collision occurs at f .

(c) At time slot 2, collision is not
allow at i as la(i) = la(j).

(d) A retransmission from b to f at
time slot 4, and broadcast completes
at time slot 5.

Fig. 3: An illustration example of proposed scheme. Black
and white colors indicate covered and uncovered nodes,
respectively.

same transmission range of 30m. The number of nodes
ranges from 200 to 1000 with an interval of 200.

The duty cycle which equals to 1/T is changed by varying
T from 10 to 50 with an interval of 10. All the simulations
are conducted with two predefined parameters and the other
one varied. For each configuration, the algorithms are run
on 200 randomly generated graph topologies, and the source
node is randomly chosen as well. Then, the average results
of these simulations are reported to evaluate the performance
of the proposed scheme.

5.2 Simulation results
First, we study the impact of network size on the per-

formance of OTAB, LABS and CSC. The working period
length T is fixed to 20. When the network density becomes
high, i.e. the number of nodes increases, a node needs to
compete with more neighbors to transmit a message. The
broadcast latency of all schemes increases as a node needs
to wait longer to prevent interference with its neighbors. By
accelerating transmissions for critical nodes and allowing
some collisions at less-critical ones, the latency of CSC is
34−36 times shorter than that of LABS as shown in Fig. 4a
The total numbers of transmissions of all schemes grow as

488 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



(a) (b)

Fig. 4: Impact of network size (duty cycle is 0.05).

(a) (b)

Fig. 5: Impact of duty cycle (number of nodes is 400).

the number of nodes does. Fig. 4b shows that the proposed
scheme produces 8.2−66.2 percent more transmissions than
LABS due to retransmissions.

Next, we examine the performance of the algorithms
under different duty cycle 1/T . These simulations are run
with 400 nodes. Because a working period has more time
slots, the number of levels in the shortest path tree increases,
resulting in the increasing latency of broadcast schedules
as shown in Fig. 5a. Instead of deferring a transmission to
prevent collision at every node in a network, CSC algorithm
allows some collisions at non-critical nodes to reduce the
broadcast latency by 25 − 59 times compared to LABS.
Fig. 5b shows that the total number of transmissions grows
with the decrease of the duty-cycle because each forwarding

node may require more transmissions to inform all of its
neighbor nodes with different active slots. We can observe
that the proposed scheme requires 9 − 45.5 percent more
transmissions than LABS because of re-transmissions.

6. Conclusions
This paper presents a novel broadcast strategy for Mini-

mum Latency Broadcast Scheduling in Duty-Cycled (MLB-
SDC) wireless sensor networks. The proposed scheme is a
combination of criticality awareness and collision-tolerant
scheduling which offers the opportunity to reduce the broad-
cast latency. Extensive simulations show that our proposed
algorithm provides at least 25 times shorter latency while
increasing the number of transmissions at most 66.2 percent

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 489



compared with those of LABS. In future, we interested in
finding a threshold so that collision is only allowed at nodes
whose criticality are under the threshold. This approach is
expected to reduce the number of re-transmissions. Broad-
cast schemes that balance energy consumption to maximize
the network lifetime is also another exciting problem.

Acknowledgment
This research was supported in part by MOE and MSIP,

Korean government, under ICT R&D program (B0101-15-
1366), PRCP (NRF-2010-0020210) and Basic Science Re-
search Program (NRF-2013R1A1A2064302) through NRF,
respectively.

References
[1] R. Gandhi, A. Mishra, and S. Parthasarathy, “Minimizing broadcast

latency and redundancy in ad hoc networks”, IEEE/ACM Transactions
on Networking, vol. 16, issue 4, pp. 840–851, 2008.

[2] G. Anastas, M. Conti, M. D. Francesco, and A. Passarell, “Energy
Conservation in Wireless Sensor Networks: a Survey”, Journal Ad
Hoc Networks, vol. 7, issue 3, 2009.

[3] J. Hong, J. Cao, W. Li, S. Lu, and D. Chen, “Sleeping schedule-aware
minimum latency broadcast in wireless ad hoc networks”, in Proc. of
IEEE ICC, 2009.

[4] X. Jiao, W. Lou, J. Ma, J. Cao, X. Wang, and X. Zhou,
“Minimum latency broadcast scheduling in duty-cycled multi-hop
wireless networks”, IEEE Transactions on Parallel and Distributed
Systems, vol. 23, pp. 110–117, 2012.

[5] D.-T. Le, T. Le-Duc, V. V. Zalyubovskiy, D. S. Kim, and H.
Choo, “LABS: Latency aware broadcast scheduling in uncoordinated
duty-cycled wireless sensor networks”, Journal of Parallel and
Distributed Computing, vol. 74, issue 11, pp. 3141–3152, 2014.

[6] B. N. Clark, C. J. Colbourn, and D. S. Johnson, “Unit disk graphs”,
Discrete Mathematics, vol. 86, issue 13, pp. 165–177, 1990.

[7] S.C. Huang, P.-J. Wan, X. Jia, H. Du, and W. Shang, “Minimum-
latency broadcast scheduling in wireless ad hoc networks”, in Prof. of
IEEE INFOCOM, pp. 733–739, 2007.

[8] R. Gandhi, Y.-A. Kim, S. Lee, J. Ryu, and P.-J. Wan, “Approximation
algorithms for data broadcast in wireless networks”, IEEE Transactions

on Mobile Computing, vol. 11, issue 7, pp. 1237–1248, 2012.

490 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



A Message Efficient Group Membership Algorithm in Mobile  
Ad Hoc Distributed Systems 

 
Yong Hwan Cho, Sung Hoon Park, Seon-Hyong Lee and Byeong Sun Hwang 

School of Electrical and Computer Engineering, Chungbuk National Unvi. Cheongju 

ChungBuk 361-763 

E-mail: [spark,yhcho@chungbuk.ac.kr, genexwave@hanmail.net] 

 
 

Abstract 
 

The Group membership paradigm can be used as a 
building block in many practical problems such as 
group communication, atomic commit and replicated 
data management where a group membership 
protocol might be useful. The problem has been 
widely studied in the research community since one 
reason for this wide interest is that many distributed 
protocols need a Group membership protocol. 
However, despite its usefulness, to our knowledge 
there is no work that has been devoted to this 
problem in a mobile ad hoc computing environment. 
Mobile ad hoc systems are more prone to failures 
than conventional distributed systems. Solving group 
membership in such an environment requires from a 
set of mobile nodes to choose a unique node as a 
leader based on its priority despite failures or 
disconnections of mobile nodes. In this paper, we 
describe a solution to the Group membership problem 
from mobile ad hoc computing systems.  

Key-words: Synchronous Distributed Systems, 
Group membership, Fault Tolerance, Mobile Ad Hoc 
Environment. 
 
1. Introduction 

 
Distributed systems consist of groups of processes 

that cooperate in order to complete specific tasks. A 
Group Membership Protocol is of particular use in 
such systems, providing processes in a group with a 
consistent view of the membership of that group. In 
this way, when a membership change occurs, 
processes can agree on which of them must complete 
a pending task or start a new task. The problem of 
reaching a consistent membership view is very 
similar to the one of achieving common knowledge in 
a distributed system, commonly referred to as the 
Consensus Problem [7]. 

The Group membership problem [1] requires that 
every node connected in a network has a consistent 
group membership view if all connected nodes are 
belong to one group. The problem has been widely 
studied in the research community [2,3,4,5,6] since 
one reason for this wide interest is that many 
distributed protocols need a Group membership 
protocol. However, despite its usefulness, to our 
knowledge there is no work that has been devoted to 

this problem in a mobile ad hoc computing 
environment. 

When nodes are mobile, topologies can change and 
nodes may dynamically join/leave a network. In such 
networks, Group membership can be changed 
frequently, making it a particularly critical 
component of system operation.  

Mobile ad hoc systems are more often subject to 
environmental adversities that can cause loss of 
messages or data [8]. In particular, a mobile node can 
fail or disconnect from the rest of the network. 
Designing fault-tolerant distributed applications in 
such an environment is a complex endeavor [9,10].  

The aim of this paper is to propose a solution to the 
group membership problem in a specific ad hoc 
mobile computing environment. This solution is 
based on the termination detection algorithm that is a 
classical one for synchronous distributed systems. 
The rest of this paper is organized as follows. Section 
2 describes the mobile system model we use. In 
Section 3, a solution to the Group membership 
problem in a conventional synchronous system is 
presented. A protocol to solve the group membership 
problem in a mobile ad hoc computing system is 
presented in Section 4. We conclude in Section 5. 

 
2. System Model, Constraints and 
Assumptions 
 

Before developing a Group membership algorithm 
for ad-hoc computing environments, we first define 
our system model based upon assumptions and goals. 
We model an ad hoc network as an undirected graph, 
i.e., G = ( V, E ), where vertices V correspond to set 
of mobile nodes {1, 2,….,n} ( n >1 ) with unique 
identifiers and edges E between a pair of nodes 
represent the fact that the two nodes are within each 
other’s transmission radii and, hence, can directly 
communicate with one another that changes over 
time as nodes move. Each process i has a variable Ni, 
which indicates the neighboring nodes, with that i can 
directly communicate the neighboring nodes. We 
assume that every communication channel is 
bidirectional; j  Ni iff i Nj. More precisely, in the 
network G = ( V, E ), we can define E such that for 
all iV, (i, j)  E if and only if i Nj. The graph can 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 491



become disconnected if the network is partitioned 
due to node movement. Because the nodes may 
changes their location, Ni may be dynamically 
changed and so may G accordingly. We make the 
following assumptions about the nodes and system 
architecture:  
- All nodes have unique identifiers. They are used 

to identify participants during the Group 
membership detection process.  

- Links are bidirectional and FIFO, i.e. messages 
are delivered in order over a link between two 
neighbors. 

- Node mobility may result in arbitrary topology 
changes including network partitioning and 
merging. Furthermore, nodes can crash 
arbitrarily at any time and can come back up 
again at any time.  

- A message delivery is guaranteed only when the 
sender and the receiver remain connected (not 
partitioned) for the entire duration of message 
transfer. Each node has a sufficiently large 
receive buffer to avoid buffer overflow at any 
point in its lifetime. 

The objective of our Group membership 
algorithm is to ensure that after a finite number of 
topology changes, eventually each node i has a 
consistent view of group membership of the group to 
which i belongs.  

 
3. Group Membership Specification 
 
We now define a specification, consisting of four 
properties, for a group membership algorithm. We 
assume the system to be initialized to a start state 
where the sequences are the same at all processes and 
the last nonempty views in their sequences are the 
ones reported by all failure detectors. 
 
Property 1: Agreement. At any point in time, all 
processes have a consistent history. 
 
Property 2: Termination. If there are no more changes 
in the local views of the processes, they eventually 
reach their quiescent states. 
 
Property 3: Validity. If all processes in a view v* 
perceive view v* as their local view and they have 
reached their quiescent states, then the last nonempty 
elements of their sequences of global views are all at 
position j and must be equal to v*. 
 
Property 4: Safety. Once a view is “committed” in the 
sequence of global views, it cannot be changed. 
The first property expresses agreement. Consistent 
history must be an invariant for any program that 
satisfies the specification. The second property 
expresses termination. When the inputs of all 
processes are stable, the processes are eventually 
going to stop changing their output sequences. The 
third property rules out trivial solutions where 
protocols never decide on any new view or always 
decide on the same view. It ensures that a protocol 
that satisfies the specification does something useful, 
by stating that when all processes in a set agree on 

such set, they must commit this common view at the 
same position j in their sequences of global views. 
Note that this requirement is weak because a new 
membership is created only if the local views of the 
different processes in the membership reach 
agreement. The fourth property also rules out trivial 
solutions, requiring processes not to change old views 
in their sequences. 

 
3. Group Membership Algorithm in 
an Ad Hoc Network 
 

In this section, we describe a Group membership 
algorithm based on the termination detection 
algorithm, simply TDA, by diffusing computations. 
In later sections, we will discuss in detail how this 
algorithm can be adapted to a mobile setting. 

 
3.1 A Group Membership based on TDA 
 

We first describe our group membership algorithm 
in the environment of a static network, where we 
assume that nodes and links never fail. The algorithm 
consists of three phases operated at the node that 
initiates the group membership algorithm. 1) 
Scattering phase - it operates by first scattering the 
“who” message and 2) Gathering phase - it operates 
by then gathering the id of each node that is 
connected to the static networks. We refer to this 
computation-initiating node as the source node. 3) 
Completing phase – it operates by deciding the 
consistent view and announcing it as a consistent new 
view to all nodes. 

As we will see, after gathering all nodes’ ids 
completely, the source node will have the information 
enough to determine a consistent group membership 
view and will then broadcast it to the rest of the 
nodes in the network. The algorithm uses three 
messages, i.e., Who, Ack and View.  
 
1) Scattering phase. Who message is used to initiate 
the group membership protocol by “scattering” the 
Who message. When group membership protocol is 
triggered at a source node s, the source node makes a 
waiting list wl and a received list rl and begins a 
diffusing computation by sending an Who message to 
all of its immediate neighbors. Initially the waiting 
list consists of only its immediate neighboring node’s 
ids and the received list is empty.  
When node i receives a Who message from the 
neighboring node for the first time, it immediately 
sends the Ack message to the source node and 
propagates the Who message to all its neighboring 
nodes except the node from which it first received an 
Who message.  
The Ack message sent by node i to the source node 
contains the ids of all its neighboring nodes that are 
needed for the source node to decide the consistent 
view of the nodes connected with a distributed 
network. After that, any Who message received by 
other neighboring nodes will be ignored. 

492 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



2) Gathering phase. When the source node receives 
the Ack message from the node j, it removes j from 
the waiting list and puts j into the received list and 
immediately checks one by one the every node’s id 
contained in the Ack message. If there is the any id in 
the Ack which has already been acknowledged, i.e. 
that means it is in the received list, it is discarded. 
Otherwise, it is put into the waiting list of source 
node and the source node waits the Ack message from 
it.  
The waiting list is growing and shrinking repeatedly 
based on the received Ack messages, but the received 
list is steadily growing by receiving the Ack messages. 
But the waiting list eventually could be empty and 
the received list could include all ids of nodes 
connected to the networks when the source node 
received the Ack messages from all other nodes. 
Hence the source node eventually has sufficient 
information to determine the consistent view of the 
group based on the received list, because the waiting 
list could be eventually empty and it means that the 
source node has received the Ack messages from all 
the nodes.  
 
3) Completing Phase. Once the source node has 
received Acks from all other nodes, it determines the 
consistent view based on the received list and 
broadcasts a View message to all other nodes 
announcing the current view of the group. 
We illustrate a sample execution of the algorithm. 
We describe the algorithm in a somewhat 
synchronous manner even though all the activities are 
in fact asynchronous. Consider the network shown in 
Figure 1(a). In this figure, and for the rest of the 
paper, thin arrows indicate the direction of flow of 
Who message s and dotted arrows indicate the 
direction of flow of Ack messages to the source node. 
As shown in Figure 1, node A is a source node that 
initializes wla and rlb with {B,C} and {A} 
respectively and starts a diffusing computation by 
sending out Who messages (denoted as “E” in the 
figure) to its immediate neighbors, viz. nodes B and 
C, shown in Figure 1(a). 

As indicated in Figure 1(b), nodes B and C in turn 
propagate the Who message to its immediate 
neighbors only except the source node and send the 
Ack message with neighboring node list to the source 
node A. Hence B and C also send Who message s to 
one another. But the Who messages are not 
acknowledged to the source node since nodes B and 
C have already received Who message s from the 
source node respectively. The information about 
neighboring node is piggybacked upon the Ack 
message sent by each node. Upon received Ack 
messages from B and C, node A updates wla = 
{ B,C }, rlb = { A } with the neighboring node 
information piggybacked on the Ack messages. 
 
 
 
 
 
 
 
 

5. Concluding Remarks 
 

In this paper, we proposed an asynchronous, 
distributed group membership algorithm for mobile, 
ad hoc networks and showed it to be correct. We 
formally specified the property of our group 
membership algorithm using temporal logic. We have 
assumed the ad-hoc network topology is dynamically 
changing and nodes are frequently connected and 
disconnected over the networks. With this approach, 
the group membership specification states explicitly 
that progress and safety cannot always be guaranteed. 
In practice, our requirement for progress is that there 
exists a constant c such that if connection or 
disconnections occur for a period of at least c, then 
by end of that period, the system reaches a state 
satisfying a consistent view. Furthermore, the system 
remains in that state as long as no failures or 
disconnections occur. In fact, if the rate of perceived 
a node failures in the system is lower than the time it 
takes the protocol to make progress and accept a new 
consistent view, then it is possible for the algorithm 
to make progress every time there is a node failure in 
the system.  

In real world systems, where process crashes 
actually lead a connected cluster of processes to share 
the same connectivity view of the network, 
convergence on a new consistent view can be easily 
reached in practice. However, the algorithm should 
work correctly even in the case of unidirectional links, 
provided that there is symmetric connectivity 
between nodes. We are currently working on the 
proof of correctness in the case of unidirectional links. 
We are also investigating on how our group 
membership algorithm can be adapted to perform 
clustering in wireless, ad hoc networks. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 493



wla = { B,C }, rla = { A }                  wla = { D,F }, rla = { A,B,C } 
              C             D            “Ack(A,B,D)”  C             D 
      “W”                                                     
    A                                        A          “E”    
      “W”                                                     
              B             F            “Ack(A,C,F)”  B              F 

(a)                                      (b) 
 
wla = { }, rla = { A,B,C,D,F }               wla = { }, rla = { A,B,C,D,F } 
              C             D               “View(G)”  C             D 
      “W”        “Ack(C,F) 
    A      “Ack(B,D)                         A         
      “W”                                 
              B             F                “View(G)” B              F 
                  (c)                                        (d) 
 
Figure 1: An execution of group membership algorithm based on the node detection algorithm. Arrows on the 
edges indicate transmitted Who messages, while dotted arrows parallel to the edges indicate Ack messages.   
In Figure 1(c), the node D and F also send the Ack messages to the sources node when they received the Who 
message s from the B and C respectively. Each of these Ack messages contains the identities of the neighbor. 
Eventually, the source A hears all acknowledgments from all of other nodes except itself in Figure 1(d) and then 
decides the consistent view among the group and broadcasts it, via the View message shown in Figure 1(d).  

6. References 
 
[1] Y. Amir, L. E. Moser, P.M. Melliar-Smith, D.A. 

Agarwal, and P. Ciarfella, “The Totem Single-
Ring Ordering and Membership Protocol,”  
ACM Trans. Computer Systems, vol. 13, no. 4, 
pp. 311-342, Nov. 1995. 

[2] E. Anceaume, B. Charron-Bost, P. Minet, and S. 
Toueg, “On the Formal Specification of Group 
Membership Services,” Technical Report 95-
1534, Computer Science Dept., Cornell Univ., 
Aug. 1995. 

[3] T. Anker, G.V. Chockler, D. Dolev, and I. Keidar, 
“Scalable Group Membership Services for Novel 
Applications,” Proc. Workshop Networks in 
Distributed Computing (DIMACS 45), pp. 23-42, 
1998. 

[4] I. Keidar, J. Sussman, K. Marzullo, and D. Dolev, 
“A Client Server Oriented Algorithm for 
Virtually Synchronous Group Membership in 
WANs,” Proc. 20th Int'l Conf. Distributed 
Computing Systems, Apr. 2000. 

[5] J. Brunekreef, J.-P. Katoen, R. Koymans, and S. 
Mauw, “Design and analysis of dynamic leader 
Group membership protocols in broadcast 
networks,” Distributed Computing, vol. 9, no. 4, 
pp. 157-171, 1996. 
 

[6] D. Bottazi, R. Montanari and G. Rossi, "A self-
organizing group management middleware for 
mobile ad-hoc networks," Computer 
Communications, vol. 31, no. 13, pp. 3040-304, 
8 Elsevier, 2008.  

[7] David Powell, guest editor. Special section on 
group communication. Communications of the 
ACM, 39(4):50-97, April 1996. 

[8] Pradhan D. K., Krichna P. and Vaidya N. H., 
Recoverable mobile environments: Design and 
tradeoff analysis. FTCS-26, June 1996. 

[9] L. Briesemeister and G. Hommel, "Localized 
group membership service for ad hoc networks," 
Proc. International Conference on Parallel 
Processing Workshops, IEEE Computer Society, 
pp. 94-100, 2002. 

[10]  K. Hatzis, G. Pentaris, P. Spirakis, V. 
Tampakas and R. Tan. Fundamental Control 
Algorithms in Mobile Networks. In Proc. of 11th 
ACM SPAA, pages 251-260, March 1999. 

494 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



Optimizing the Global Execution Time with CUDA 
and BIGDATA from a 

Neural System of Off-line Signature Verification 
on Checks. 

 
Francisco Javier Luna Rosas1,2, Julio Cesar Martínez Romo1,  

Damián Martínez Díaz 2, Gricelda Medina Veloz3, Valentín López Rivas1, Cesar Dunay Acevedo1 

e-mail: fcoluna2000@yahoo.com.mx 
 

  1 Computer Science Department, Inst. Tec. Aguascalientes, México.  
2 Universidad Cuauhtémoc, Campus Aguascalientes, México  

3Universidad Tecnológica del Norte de Aguascalientes, México 
 

Abstract - The CUDA platform enables us to use the 
graphic cards not only to process the graphs but also 
to process and perform instructions in a parallel way, 
these improvements in the software have generated a 
wide catalogue of applications   powered by the 
CUDA architecture.  In this article we propose to 
optimize the global execution time of an off-line 
system to verify signatures on checks, our 
architecture operates on two phases, the training 
phase and the verifying phase. The training phase is 
made up of various stages with the purpose of 
generating a model of neuronal networks to 
recognize an off-line signature on checks. The 
verifying phase consists in repeating the first stages 
of the training phase with the purpose of extracting 
features from the signature. The features extracted 
from the signature on the verifying phase are 
compared on the classifier with the results gotten 
from the training phase model.  
 
Keywords: CUDA, Redes Neuronales, Verificación 
de Firmas Off-line, Checks, Optimization. 
 

1.  Overview. 
 
Signature verification consists on determining if 
given a number of samples of the signature of a 
person, an additional signature was performed by the 
same person. In this case the signature verification 
can be used as an authentifier of personality. A 
signature can be verified on-line and off-line. In the 
first case, an instrumented pen or a digitizing tablet is 
used to “capture” the shape of the signature and the 
dynamic movement of the hand [15] and, of course, it 
requires the signature’s owner to be present. The off-
line technique refers to situations in which the 
signature was performed on paper previously and it 
was recorded as an image [15], in this way, the 

valuable dynamic information is lost, and it is 
basically not recovered. In both methods, one 
signature is available, we proceed to get a number of 
features that should be reliable in order to recognize 
genuine signatures as well as to reject forged 
signatures, even skilled forgeries; a certain number of 
features is extracted and figured out from each of the 
sample signatures, and this way a group of patterns is 
formed and at the same time it is useful for the 
training and testing of a classifier. The job of the 
classifier is to “learn” the habitual behavior of the 
features in a signature “to test” later if such features 
behave the “same way” in a test signature. Off-line 
signature verification is a problem in which the 
performance archived can not be as high as in the 
case of on-line signature verification, due to the lack 
of dynamic information. 
 
1.1 Previous work in off-line handwritten 
signature verification. 
 
Off-line signature verification has been a research 
problem during many decades and in different 
countries [15], with many practical and potential 
applications. In [8], the authors identified the three 
kinds of forgeries described in Table 1. In the 
literature related to off-line verification we have 
generally seen good performances of error 
classification in random forgeries, as in [8] where it is 
about 0.38% or in [4] of 3%; however, in simulated 
forgeries and skilled forgeries the percentage of 
classification errors grows dramatically, and just to 
mention one case, lets say Fang in [5], who reports up 
to a 33.7%. However, this situation is not related with 
the ability of the researcher but with the nature of the 
off-line signature verification problem itself and it is 
also due to the loss of dynamic information; a factor 
that worsens the problem of high error under skilled 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 495



forgeries, this is because a model of signature from 
each individual should be prepared based on a few 
samples say 8 to 15 [15], which generates uncertainty 
in the probability to recognize genuine signatures as 
well as to reject forgeries.  
 
Table 1. Types of Forgeries According to Justino. Courtesy 
of  [8]. 

No. Name Description 

1 Random 
Forgery 

No attempt is made to reproduce the shape or 
aspect of the genuine signatures. No 
resemblance of the genuine signature is desired 
by the forger. 

2 Simulated 
Forgery 

Signature is loosely copied, not too detailed or 
accurate. The false signature “tends” to be  
similar to a genuine one. 

3 Skilled Forgery Signature is very similar to a genuine one. 

 
Another main problem in the off-line verification 
approach is to establish and extract a group of 
features from the test signatures that should be 
enough to allow a high capacity to recognize genuine 
test specimens and at the same time to discriminate 
and reject forgeries. In the literature of this topic we 
can find basically three approaches to generate 
features.  
 
One consists on isolating and characterize some 
segments of the signature, (curvature, smoothness) 
[5]; another is to place a grid or array of squares on 
the signature and consider each element (square) of 
the grid as an area to be characterized; a classical 
example of the last mentioned is in [17]; in both cases 
we are searching for a clear representation using 
vectors that describe the values of each feature. In 
some cases, squares overlapping is considered to 
represent the signature like in [12], in which Murshed 
and others used squares of 16x16 pixels with an 
overlapping of 50%. Finally, another approach is 
based on schemes in which the features are implicit in 
one kind of parameter, such as the case of Gouvêa in 
[7], who used neuronal networks in its auto 
associative version. The features are implicit in the 
neuron’s weights.  
 
In the last stage, the classifier will decide whether the 
signature is genuine or not. Neuronal networks of 
different types have been used [7], [4], [12], [15]; and 
hidden Markov models [8] and other less 
sophisticated classifiers such as the nearest k-
neighbors [17] and the minimum distance based on 
Mahalanobis distance [5]. No matter the kind of 
classifier, the reported results on skilled forgeries are 
lower than those obtained under on-line verification. 
 

2. Verifier Architecture in Checks.  
 

The architecture of our automatic verifier for off-line 
handwritten signatures is shown on Fig. 1; two phases 
are distinguished: the training phase (upper part) and 
the verification phase (lower part). The objective of 
the training phase is to generate a model for each 
person enrolled in the system, while the verification 
phase is to do the verification itself. Next we describe 
the constitutive blocks of each phase. 
 
2.1 Training Phase. 
 
The stages of the training phase are found on the 
upper part of Fig. 1 and are described in this section.  
 

 
 

Fig.1 Verifier’s  Architecture in Checks. Courtesy of [11]. 
 
2.1.1 Acquiring signatures on checks.  
 
The first block is the acquisition of images on checks 
with signatures, and it is performed with an image 
searcher on checks on the WEB.  
 

 
 

Fig. 2 Data Base of Checks. Courtesy of [13]. 
 

The searcher gets different images of checks of 
different signatures and are stored on a data base of 
signatures on checks (Fig. 2). An example of “John 
Joner`s” signature is shown on Fig 3. 
 

496 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



 
 

Fig. 3 Acqusition of “Johon Joner`s” Signature on a 
Check`s Image. 

 
2.1.2 Extracting and Processing of Signatures. 
 
On each image of the digital check there is a variety 
of related patterns, therefore, it`s necessary to 
separate the outstanding features from the rest of the 
image (Fig. 4). 
 

 
 

Fig. 4 Segmentation of a Check`s Image. Courtesy of of 
[1]. 

 
As we can observe, point eight is the place reserved 
for the person who signs the check, we have to take 
on account that such signature has to be hand-written. 
The signature remains on a fixed region of the image 
(lower right side) and it`s necessary to extract the 
signature from the check, after being located, in order 
to do this we apply the following algorithm: 
 
1. Change the RGB into a grey scale. 
2. Binarize the image using a specific threshold per 

image. 
3. Apply the search of lighted bits (black) on a 

binary image. 
4. Add a list of coordinates where the lighted bits 

were found. 
5. With the coordinates in the list we generate the 

size of the outcoming image (see Fig. 5). In case 
that the generated image doesn`t have a 
threshold, repeat steps 2 to 5 incrementing the 
threshold for the binarization of the image until it 
fulfills optimal dimentions. 

 

Fig. 5 Extraction of a Signature from a Check. 
. 

As we can see on Fig. 5, the signature still has a noise 
so it`s necessary to apply some post-processing to 
obtain only the signature. 
 
2.1.3 Feature  Extraction. 
 
Features Description. 
 
Since we have only the static information of the 
handwritten signature, the problem of verifying a 
signature is more complex than the verification on-
line if the purpose is to reject the skilled forgeries. 
Our verification strategy is based on the verification 
method of handwritten signatures used by human 
experts. The elements on which a human verifier is 
based, according to Slyter [16], include static and 
dynamic elements. The static elements have to do 
with the shape and design of the signature. The 
dynamic elements include the absolute pressure, the 
variations of pressure and speed grouped in what 
Slyter calls “the rhythms”. The rhythms and shape are 
mixed during the performance of the signature in a 
unique way for each individual, which shows the 
habits developed when performing his signature 
consecutively and for a long period of time, thus any 
attempt to verify a signature should consider the 
balance between rhythms and shape. 
 

 
 

Fig. 6 Feature Vector of 10 Signatures of  “John Doe”. 
Courtesy of [11]. 

 
Using mathematical morphology and a number of 
structural elements it is possible to detect for any 
signature the position of the curved lines (equivalent 
regions of low speed). A graph of one feature vector 
of “John Doe´s”  signature is shown in the left side of  
Fig. 6. Each value in that  vector represents the 
number of pixels “lighted” (which represent a value 
of 1) after the signatures image have been erosioned; 
such number is the same as the number of 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 497



occurrences of the structural element in the image. 
The right side of Fig. 6 shows a graph of ten feature 
vectors corresponding to the same number of “John 
Doe´s” signatures. Notice the repetition in the 
vectors. 
 
2.1.4 Generation of the Model. 
 
In this sub-section the generation of the model of the 
signature is explained and the classifier’s design is 
included. After the signature has been binarized, we 
applied the following steps to generate the model of 
the signature and classifier.  
 
1. Morphological Filtering. The basic idea of the 
morphological image processing is that the structural 
element be used to examine a group of images. A 
group of operations produces structural information 
about the image. Historically, the morphological 
image processing is with binary images and image 
processing in the gray scale. In this case, we will 
work only on the binary case, and the morphological 
operation used is the erosion. 
2. Generation of Training Patterns. On Table 2 we 
observe the entering patterns that will be provided to 
the neural network, note that each row on the table is 
considered as a pattern (or training example). The 
table is divided in the following sections: 
 
Real Patterns: Come from line 1 to 10 and are 
formed by the erosion of each one of the ten 
signatures of a single signer (our fictitious signing 
person “John Doe”). Notice that each column of this 
section belongs to a value that represents the number 
of the structural element from which such signature 
was eroded, thus the whole number that appears in 
the column is the sum of the lighted bits (ones) which 
remained after eroding the signature with the 
structural element in question, each line is a feature 
vector. 
Synthetic Positive Patterns: Belong from line 11 to 
60. To obtain a column of these numbers, random 
numbers are generated in a range of  

 

             

σ
=

±∑ k
k

x
10

1

1
10                                       (1) 

 
where xk is the value of each  EE from Table 2 along 
the signatures Sig1, Sig2, Sig3,…,Sig10.                     
Synthetic Negative Patterns: Belong from 61 to  110. 
To obtain a column of these numbers, random 
numbers are generated in a range of 1 and 300. 
 
 

Table 2. Examples of Training for the Neural Network. 
Courtesy of [11]. 

 
 
3. Backpropagation Neural Network (Classifier). The 
architecture of the neural network [2]  from Fig. 7 is 
formed by an input layer with 54 neurons, a single 
hidden layer with 108 neurons and a neuron in the 
output layer, with a sigmoidal function. There is a 
single neuron in the output layer to map each input 
pattern to +5 (genuine) or -5 (forgery). 
 

1153

1 08

2

1

 I n p u t 

 L a y e r 

O u t p u t 

   L a y e r   

 H i d d e n

  L a y e r
829

568

448

405

393

     I n p u t s

( E x a m p l e s) 

1

2

3

4

5

54

Trainig 

 Range

1

Target

1 ... 1 0

1 1 . . 6 0

61 . .110

+ 5

+ 5

-5

 
Fig. 7 Architecture of the Neural Network. Courtesy of 

[11]. 
 
4. Classifier Training. After the classifier architecture 
has been designed the next step is to train the 
classifier in such a way that it works as a recognition 
tool in the next phase of the verifier. The quadratic 
error was considered a 0.003, the maximum number 
of interactions in case the quadratic error is not 
reached was determined in 1000 interactions, the 
learning rate was established in a value of 1E-20 to 
advance over the surface of the error with small 
increases of the weights.  
 
2.2  Verification Phase. 
 
When a signature under testing is presented to the 
verifier, the following events take place: 

498 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



1.- The first three verification stages are carried out, 
which generate the features that originate the training 
patterns in each signature. 
2.- After the training patterns are generated, the 
classifier is not trained it only verifies the signature 
declaring it as a genuine (+5) or false (-5). 

 
Table 3 shows the results of verification over a group 
of training and test signatures from a single person. 
As we can observe, the genuine test signatures (Sig1-
Sig5) obtain outputs from the neural network very 
close to +5, the success in the verification is because 
in the training group a plenty of samples of genuine 
signatures were provides to the neural network (real 
plus synthetic) and that the neural network also has 
knowledge of the way the genuine signatures are 
NOT, information contained in the group of negative 
synthetic examples.  
 
Table 3. Neural Network Output Obtained During 
Verification. Courtesy of [11]. 

 
 
The negative outputs close to -5 are signatures greatly 
different from the genuine due to the knowledge 
provided by the negative synthetic examples. The 
neural network was further tested with more positive 
synthetic examples (Sig 6 – Sig 10), which were 
recognized as genuine. With non-skilled forgeries 
(Sig 11 – Sig 15), the neural network showed a good 
rejection; with skilled forgeries (Sig 16 – Sig 17) the 
neural network could reject two (according to the 
criteria that we will establish on the next paragraph) 
and was unable to reject one (Sig 18). There is a 
region of uncertainty in the output of the neural 
network to classify a signature as genuine or false, 
which is the region between +2 and +3. In terms of 
similarity from a test signature to a genuine signature, 
it is the region where a forgery can look greatly like a 
genuine signature; therefore, the decision must be 

made based on a threshold θθθθ, being the effectiveness 
of the verifier affected by this parameter. A very low 

θθθθ will permit false signatures to be classified as 

genuine and on the other hand, a very high θθθθ will 
cause that genuine signatures be classified as 
forgeries; the output of the neural network is 
transformed to a degree of certainty that the signature 
is genuine to a range of 0-100 %, so the final 
classification is given on a basis of a parameter 

function type S in such a way that θθθθ    will be mapped 
as shown on Fig. 8, and the genuine/false verdict is 
also shown in such figure.  
 

 
 

Fig. 8 Making Decision About the Genuineness of a 
Signature as an Output Function of the Neural Network. 

Courtesy of [11]. 
 

3. Optimizing the Global Execution 
from a Neural System of Off-line 
Signature Verification on Checks. 
 
3.1 Big Data and CUDA. 
 
The Big Data current applications require great 
capacity of computing, which can be combined with 
new programing architectures in parallel through the 
use of graphic cards (GPU`s) to try to improve the 
performance. CUDA is a platform that allows parallel 
programing making use of the processing power and 
the memory that the current video cards have 
(GPU`s), which have a greater number of processing 
nucleus compared to a CPU [3]. The CUDA platform 
allows us to use graphic cards not only for the 
processing of graphs but also for performing and 
processing instructions and information in a parallel 
way, doing the same task with different data thus 
reducing the processing time on operations with high 
arithmetic costs. We use the CUDA technology for 
the process of extracting the signature from the 
check, the creating of structural elements, training 
and recognizing of the signature. The process was 
done as a global process, and we consider each global 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 499



process as a sprint, we made 10 sprints, as can 
observe on Table 4.  
 
Tabla 4.  Number of Signatures by Global Process. 

Sprint Signatories Signature by 
Signatory 

Total 

1 15 15 225 
2 30 15 450 
3 45 15 675 
4 60 15 900 
5 75 15 1125 
6 90 15 1350 
7 105 15 1575 
8 120 15 1800 
9 135 15 2025 
10 150 15 2250 

 
It is due to mention that the segmentation of the 
check and the mathematic morphology were done in 
a sequential process and only in part of the training 
and verification of the signature is where we did the 
parallel process. Table 5 shows the training times in 
CPU vs GPUs for the Neuronal Network 
Backpropagation.  
 
Tabla 5. Training Times of the Neuronal Network 
Backpropagation in CPU vs GPU. 

Sprint CPU GPUs 
1 0:14:01.000 0:01:31.000 
2 0:29:15.000 0:02:59.000 
3 0:55:21.000 0:04:29.000 
4 1:02:00.000 0:06:01.000 
5 1:21:00.000 0:07:19.000 
6 1:51:00.000 0:08:53.000 
7 2:10:00.000 0:10:21.000 
8 2:19:00.000 0:27:57.000 
9 2:51:00.000 0:40:18.000 
10 3:13:00.000 0:48:28.000 

 
Fig. 9 shows the graph of training times of the 
signature, as we can observe on Fig. 9, the 
performing times on GPU`s  are minor compared to 
those on CPU, demonstrating  the applications that 
implement parallel process in CUDA architectures 
(GPU`s) are more efficient vs CPU, because the times 
reflect a wide distance between each architecture.  
 

 
 
Fig.9 CPU vs GPU`s Processing Times in the Training of 
Neural Network. 
 

Table 6 shows the global performing times for the 
process of extraction from the check`s signature, 
creation of structural elements, training and 
recognizing of the signature.  
 
Tabla 6. Global Execution Time. 

Sprint Total of 
Signatures 

CPU GPUs 

1 225 0:24:12.000 0:11:52.000 
2 450 0:50:17.000 0:23:47.000 
3 675 1:25:00.000 0:35:38.000 
4 900 1:44:00.000 0:47:34.000 
5 1125 2:12:00.000 0:59:57.000 
6 1350 2:53:00.000 1:11:00.000 
7 1575 3:24:00.000 1:23:00.000 
8 1800 3:43:00.000 1:52:00.000 
9 2025 4:27:00.000 2:26:00.000 
10 2250 4:58:00.000 2:57:00.000 

 
On Fig. 10 we can observe the difference of times 
between both implementations (CPU vs GPU`s) to 
find a solution for the off-line verification system of 
signatures on checks. Based on the results, it`s 
demonstrated that using GPU`s can reduce the 
performing time of a verification architecture of 
checks off-line. 
 

 
 

Fig. 10 Global Execution Time from a Neural System of 
Off-line Signature Verification on Checks. 

 

4. Conclusions. 
 
The current Big Data applications  require great 
computing capacities that can be combined with new 
programing architectures in parallel through the use 
of graphic cards (GPU`s) to try to improve 
performance. CUDA allows us to use the graphic 
cards not only for the processing of graphs but also 
for processing and performing instructions and 
information in a parallel way, doing the same task to 
different data thus reducing the  processing time  on 
operations with high arithmetic costs, these 
improvements have generated a wide catalogue of 
applications powered by the CUDA architecture. In 
this article we proposed a verification neuronal 
system of handwritten signatures on checks off-line. 
Our architecture operates on two stages, the training 

500 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



stage and the verification stage. The training stage is 
made up of various stages with the purpose of 
generating a neuronal network to recognize the 
signature. The verifying stage consists on repeating 
the first phases of the training stage with the purpose 
of extracting features from the signature. The features 
of the signature extracted in the verification stage are 
compared in the classifier against the results from the 
model on the training stage. The neuronal verification 
system of hand-written signatures off-line on checks 
requires great computing capacities, which can be 
combined with new programing architectures in 
parallel through the use of graphic cards GPU`s to 
optimize the global answering time. 
 

5. References. 
 
[1] Asesores Bancarios y Financieros. Cheque 
Bancario, Conceptos y Caracteristicas 2015. 
http://www.abanfin.com/?tit=cheque-bancario-
concepto-y-
caracteristicas&name=Manuales&fid=eh0bcab. 
[2] R. Baron, and R. Plamondo. Acceleration 
measurement with an instrumented pen for signature 
verification and handwriting analysis. IEEE 
Transactions on Instrumentation and Measurement, 
38:1132-1138, 1989. 
[3] Cook Shane. CUDA Programming A Developer´s 
Guide to Parallel Computing With GPUs. Morgan 
Kaufmann 2013, ISBN:978-0-12-415933-4. 
[4] J. P. Drouhard, R. Sabourin, and M. Godbout. 
Evaluation of a training method and of various 
rejection criteria for a neural network classifier used 
for off-line signature verification. IEEE International 
Conference on Neural Networks, pp. 4294-4299, 
IEEE World Congress on Computational Intelligence, 
NY, USA, 1994. 
[5] B. Fang, Y. Wang, C. H. Leung, Y. Tang, P. C. K. 
Kwok, K. W. Tse, and Y. K. Wong. An Smoothness 
Index Based Approach for Off-line Signature 
Verification. IEEE., Proceedings of the Fifth 
International Conference on Document Analysis and 
Recognition, pp., 785-787.  ICDAR,  N.Y., USA, 
1999. 
[6] J. B, Fasquel, C. Stolz, and M. Bruynooghe. Real-
time verification of handwritten signatures using a 
hybrid opto-electronical method. Proceedings of the 
2nd.International Symposium on Image and Signal 
Processing and Analysis, pp., 552-557, Pula, Croatia, 
2001. 
[7] R. J. N. Gouvêa, and G. C. Vasconcelos. Off-line 
Signature Verification Using an Autoassociator 
Cascade-Correlation Arquitecture. IEEE Proceedings 
of the Fith International Conference on Document 
Analysis and Recognition, pp.  2882-2886, NY, USA 
1999. 

[8] E. J. R. Justino, F. Bortolozi, and R. Sabourin. 
Off-line signature verification using HMM for 
random, simple and skilled forgeries. IEEE 
Proceedings of the Sixth International Conference on 
Document Analysis and Recognition, pp., 1031-1034, 
Seattle, WA, USA., 2001. 
[9] Kirk David B. and Hwu Wen-mei W. 
Programming Massively Parallel Processors. Second 
Edition Morgan Kaufmann 2013, ISBN:978-0-12-
415992-1. 
[10] L. Lee, and M. G. Lizárraga. An Off-Line 
Method for Human Signature Verification. IEEE 
Proceedings of the 13th International Conference on 
Pattern Recognition, pp. 195-198. N.Y., USA, 1996. 
[11] Luna Rosas Fco. Javier, Martínez Romo Julio 
Cesar. Improving Dynamic Load balancing Under 
CORBA with a Genetic Startegy in a Neural System 
of Off-line Signature Verification. The 2007 
International Conference on Paralled and Distributed 
Processing Techniques and Applications. In 
Computer Science & Computer Engineering, Las 
Vegas Nevada, USA, ISBN: 1-60132-093-0, 1-
60132-094-9 (1-60132-095-7) CSREA Press, June, 
2007. 
[12] N. A. Murshed, F. Bortolozi, and R. Sabourin. 
Off-line Signature Verification, Without a Priori 
Knowledge of Class w2. IEEE Proceedings of the 
Third International Conference on Document 
Analysis and Recognition, pp. 191-196. N.Y., USA, 
1995. 
[13] Pemeena Priyadarsini M. J., Murugesan K., Rao 
Inbathini S., Jabeena A., Sai Tej K., Bank Cheque 
Authentication Using Signature. Intenational Journal 
of Advanced Research in Computer Science and  
Software Engineering, Volumen 3, Issue 5, May 
2013. ISSN:2277128X. 
[14] R. Plamondon and M. Parizeau. Signature 
verification from position, velocity and acceleration 
signals: a comparative study. IEEE Proceedings of 
the 9th International Conference on Pattern 
Recognition, pp. 260-265. USA, 1988. 
[15] R. Plamondon and S. N. Shihari. Online and off-
line handwritting recognition: a comprehensive 
survey. IEEE Tr ansactions on Pattern Analysis and 
Machine Intelligence,  22:63-84, 2000. 
[16] S. A. Slyter. Forensic Signature Examination, 1 
ed. Springfield, Illinois 1995. 
[17] R. Sabourin and G. Genest. An extended-
shadow-code based approach for off-line signature 
verification. IEEE Proceedings of the 12th. IAPR 
International Conference on Computer Vision & 
Image Processing, pp. 450-453. N.Y., USA. 1994. 
[18] R. Sabourin, G. Genest and F. Preteux.Off-line 
signature verification by local granulometric size 
distributions. IEEE Transactions on Pattern Analysis 
and Machine Intelligence, 19:976-988, 1997. 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 501



NDN-based Relational Query Processing in Ad-hoc 
Networks 

 
Zhuhua Liao 1, Aiping Yi2, Yizhi Liu 1 and Guoqing Zhang3 

1 School of Computer Science and Engineering, Hunan University of Science and Technology, Xiangtan, 
Hunan, China 

2School of Foreign Studies, Hunan University of Science and Technology, Xiangtan, Hunan, China 
  3Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China 

 

Abstract Several design and technical challenges arising in 
querying the distributed relational data as the ad-hoc network 
connected a host of relational databases. In this paper, we 
propose a relational data query scheme and the in-network 
query processing algorithms for dealing with the distributed 
relational data querying on the Named Data Networking 
(NDN), since the content can be retrieved by their name, but 
not their address, in the NDN, which can be deployed on the 
ad-hoc network infrastructure. Furthermore, we detailed the 
implementations to prove the feasibility and practicability of 
the NDN-based relational data query in the Ad-hoc network 
which possesses a distributed, dynamic, and content-rich 
cloud of internet-connected resources. 

Keywords: Named Data Networking; Query Translation; 
Name-based Routing; Ad-hoc Query Processing 
 

1 Introduction 
  The mobile ad-hoc network (MANET), wireless sensor 
network (WSN) and self-organizing P2P network have 
trouble dealing with the querying of the dynamic and 
distributed data, since it is necessary to deal with the problems 
of the right and efficient routing, the dynamic distributed 
aggregation and the reliable response [1-4]. The routing 
problem has a significant effect on the query recall, precision 
and data acquisition when querying in the dynamic and 
distributed network. And the dynamic aggregation of query 
results and reliable response will affect the availability, 
reliability of the large scale data in the ad-hoc networks. 
However, the complex form of query will affect the 
personalized ability to retrieve the dynamic and distributed 
data. To better facilitate the complex query and open data 
sharing across the dynamic and distributed network, it is 
important to process the structured metadata of distributed 
databases and form certain network packets to forward all 
queries across the network. 

For retrieving the dynamic and distributed content, a 
routing mechanism (we called hierarchical name-based 
routing) is proposed based on the hierarchical identifiers in 
the NDN (also called CCN) network [5] which can be 
deployed on the ad-hoc networks. The routing mechanism can 
identify the hierarchical classes of content. And more 
important it can replace the IP address with the distributed 

content as the basic processing unit in the routing. The basic 
component of the routing mechanism is the routing indexes 
which were built in routers according to the hierarchical name 
that comes from different sources. All the routing indexes, 
which stored in the forwarding information base (FIB) in 
routers, establish the different forwarding trees with the 
(hierarchical prefix, face(s)) form. So each user’s interest can 
be sent to right sources through the multicast infrastructure 
and the data transmission is very efficient as the interest and 
the returned results will pass through the fastest path to or 
from a right source.  

Facing the dynamic and distributed databases, the relational 
query should convey the complex requirement issued by 
different users on one hand, and adapt to the uncertain 
changes of network topology and the distributed data when 
the query in routing on other hand. Then, all the results can be 
returned and aggregated in the dynamic and distributed 
network. Furthermore, when a client or router forms a query it 
should best not be decomposed to multiple sub-queries, since 
the distribution of data and the forwarding path are 
unpredictable. The methods of current distributed query are 
mainly dependent on the third-party or broadcasting all 
semantics on the network to discover. So it is hard to retrieve 
the dynamic data efficiently and adapt quickly to the changes 
of the network topology or the varieties of data.  

Just as well, the name-based routing mechanism can unify 
the manipulation of interests’ routing and semantic parsing, 
asynchronously multicast interests, and achieve data retrieval 
independent of the address of data. So it can realize the 
semantically matching in routers and adapt to the changes of 
the network topology or the movement of data, and find the 
efficient path of data transmission. If we can explore the 
name-based routing mechanism to study a query method on 
the relational data networking, the complex and similar to the 
SQL-form query in the dynamic and distributed network may 
be solved. When that happens, the higher query recall and 
precision will be beyond the existing query, such as the 
probabilistic search methods [6], identifier-address mapping-
based query methods [7], or the semantic-address mapping-
based query methods [8].  

In the paper, we will address the above challenges in the 
relational query processing for the NDN that deployed on the 
ad-hoc networks and make the main contributions as follows: 

502 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



(1) We present a relational query model and query rewriting 
scheme in order to gear to the needs of relational query in the 
NDN connected with relational databases; 
(2) We put forward a routing mechanism of relational query 
for forwarding the relational query based on the name-based 
routing mechanism in the NDN; 
(3) We present the in-network query processing strategies for 
various relational queries in the NDN, and the aggregation 
algorithm for the distributed and asynchronously response 
results in the dynamic and distributed NDN environment. 

2 Related works 
 Nowadays, for querying the relational data in distributed 
systems, the distributed DBMS can be realized in mainly 
three paradigms: sources with central data repository, 
database federation and P2P. In the central data repository 
paradigm, structural or semantic data are crawled from 
distributed data sources and put into a centralized data store. 
In the database federation paradigm [9, 10], data are 
distributed and a centralized portal is used to receive all data 
requests, decompose them, and finally distribute the resulting 
requests to appropriate data stores. But it is difficult to query 
the relational data distributed the dynamic network. In the 
P2P paradigm, the unstructured Peer to Peer system has the 
potential to employ more complex semantics to query data. 
Early days’ unstructured P2P systems, as well as sensor 
networks and mobile networks [11–13], rely on flooding or 
random walk to locate data, which has poor scalability. In 
response, several methods are proposed to address the 
scalability issue, for example, range query [14], multi-
dimensions query [15], and the routing indices (RIs) [16]. RIs 
provide a list of “directions” towards the potential content 
sources for the query. However, the “directions” information 
maintained in a node’s indices is a list of “coarser” topics and 
the number of files falling into each topic summarized from 
its nearby neighbors, which can’t fully support complex 
queries (e.g., queries with relational constraints). The 
structured Peer-to-Peer system, on the other hand, builds 
around the theory of distributed hash table which uses flat 
identifiers to store and locate data [17, 18]. Using flat 
identifiers, however, is not suitable for complex data queries.  

Support of semantic queries over large-scale networks has 
attracted much attention in recent years. In the layered 
semantic overlay networks (SONs) [19], nodes with 
semantically similar contents are “clustered” together, which 
makes network topology dependent on the contents and 
causes substantial maintenance overhead. In the SQPeer 
middleware [20] approach, each peer has to broadcast its data 
schema—which includes all RDF classes and properties to (or 
requested by) other peer nodes to support semantic queries. 

The NDN, however, mainly focuses on retrieving a single 
named content efficiently by issuing an interest. Zahariadis et 
al. [21] have presented an Autonomic Layer-Less Object 
Architecture (ALLUA) framework which assigns different 
types of properties to content objects. From these properties, 
one can know several things such as the creator of the object, 
its relationship with other objects, and the way it is used. But, 

the problem of data querying with complex constraints in the 
network was not under consideration. The approach of 
similarity content search [22] moves one step further. Based 
on CCN/NDN, it introduces “search” as a top level 
namespace and uses flooding to search similar objects in a 
network, but it does not tackle the complex queries. The 
relational routing scheme [23] is devoted to routing the 
semantic query and aggregating the relevant content for 
querying the semantic data in the NDN, but it does not 
consider the relational data query in the NDN.  
   In short, although there are various distributed query 
techniques and systems, almost none of them were committed 
to deal with the relational data query in the dynamic and 
distributed network (e.g. MANET, WSN, mobile P2P and so 
on). But, this capability is becoming increasingly important as 
network is more and more considered as a large distributed 
data store with rich relationships data than a simple 
communication medium. 

3 The view of relational query in ad-hoc 
networks 
3.1 The feasibility of relational query based on NDN 

Generally, the attributes related to data objects will be 
defined in a database and some hierarchical categories can be 
extracted from these attributes [24-26], and most of the 
relational data can be organized in hierarchies [27]. Therefore, 
if taking the hierarchical categories (or taxonomy) as the 
hierarchical routing indexes, the relational query could be 
implemented in the NDN based on the hierarchical name-
based routing mechanism. An implementation scheme of the 
relational query is showed in Fig.1. The detailed thoughts are 
as follows: (1) Firstly, extracting the hierarchical categories 
(or taxonomy) information about data entity from relational 
databases in each source. (2) The information is then used as 
the routing indexes and spread them to routing nodes, in order 
to serve as the forward information (stored in FIB) in NDN. 
Since the interest can be forwarded to the right sources in 
NDN by using the hierarchical name, the query request may 
also be forwarded to the right sources by using the 
hierarchical information. An approach for describing the 
query is to appropriately extend the interest request. The main 
idea is to extract the hierarchical information and other 
attribute constraints from the user’s demand for forming the 
relational query. If a query statement contains the hierarchical 
categories pertained to the desired data of the user, and carry 
other attribute constraints, the query can be forwarded to all 
related data sources by matching the routing indexes. (3) 
Finally the local query processing can be performed so as to 
get relevant relational data that meet user’s requirements. 

3.2 Data mode 
In a relational database, the table is the mainly form of 

metadata structure. Generally the range of fields’ value and 
other constraints will be stated by a user. Each table contains 
one or more data attributes in fields and each record contains 
a unique data entity. Besides, the link structures (primary key 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 503



to foreign key relationships) often indicate the hierarchy of 
categories (or classes) of data objects. Normally, the 
hierarchical information can be obtained even if the relational 
data set vertically partitioned to multiple slices. Therefore, in 
a given application domain, the relational database established 
in every source essentially includes the 3 types of information: 
(1) things (or concepts); (2) the classification system, usually 
it gets from the hierarchical attributes or the link structures; (3) 
the instances belonged to a class. 
Besides the above information, we can designate the range 

of wanted data and other attribute constraints in a query 
request. In addition, we can extract the hierarchical indexes 
and attribute constraints from the user’s requirement, and this 
information can be used for routing and distributed query 
processing in the NDN. For example, if a NDN network 
stored a lot of electronic books, and the query request is 
"query all books that pertain to ‘network engineering’ and 
published in the past 3 years". The query with SQL-form is:  

Select book name, author, publishing house, 

publishing time From booktable Where subject = 

“ computer”  and specialty = “ network 

engineering”  and (2013- Year(publishing time))<=3 
The principal information can be extracted from the above 

SQL-form query statement: 
Things: book; 
Classification system: subject; 
Hierarchical identifier: “computer / network engineering 
/…/”; 
Attributes’ constraints: “(2013- Year(publishing time))<=3”. 

3.3 Relational query scheme  
Basically, we can use the above information to constitute a 

query packet, and then forward it by the hierarchical name-
based routing mechanism. So, provided we can extract the 
information (the hierarchical information and attributes’ 
constraints) from a query, we may perform the query in the 
NDN which is deployed on the existing network 
infrastructure, such as the MANET, WSN and so on. Fig.1 
shows the scheme of relational query in NDN. When a query 
packet (NDNQL) is forwarded to all related data sources by 
using the Longest Prefix matching (LPM) with FIB, the 
distributed query results (packaged into NDNRS) will be 
returned via the original query routing path, and the results 
aggregation will be performed, which mainly includes the 
fields aggregation and the records aggregation, in the 
convergence nodes. For example: if there are results 
backtracked by using the information of PIT (Pending Interest 
Table) in NDN from different sources that stirred by a query 
packet, the results can be aggregated and then returned to the 
user. 

4  The query translation for NDN 
Whether the syntax of query for NDN can describe these 

operations determines the description ability and flexibility of 
the relational query based on the name-based routing scheme. 
The main query operations in relational database are: 
SELECT, JOIN, PROJECT, AGGREGATION (e.g. SUM), 

etc. If a relational query involves multiple concepts, the 
equivalent NDNQL is necessary to define the query which 
involved one or more routing indexes for discovering all the 
data sources related to every concept of them. 

 Fig1. The scheme of relational query in ad-hoc networks 

4.1 The queries involved with a single concept 
Here, we consider only one hierarchical identifier as the 

routing index for the queries. For the basic SQL query 
statement it mainly involves only a single table or concept. 

What means of each clause in the general form of the SQL 
statement are: 
"Select list<attribute name>": the clause declares the attribute 
value information that should be returned; 
"From table<table name>": the clause specifies the response 
information that belongs to the category of the concept (table 
name); 
"Where <expression list>": the clause points out the 
constraints for selecting the needed relational data (or records), 
such as restricting the category, partial name (the uncertain 
part uses the wildcard to match any character), as well as 
other attribute values (such as time, author, etc.) of relational 
data; 
"Group by <name>": this clause is to classify the returned 
data for aggregation (or Grouping); 
"Having <conditional expression>": the clause states the 
filtering calculation for grouping results according to the 
conditional expression. Generally, the processing needs to 
delay at the last convergence node. 

In view of the semantic information of the SQL query 
statement, we can define a formalized query for the query 
processing in the NDN by using the hierarchical name-based 
routing mechanism. That is, the query can consist of two parts: 
constraint factor and routing factor. The routing factor is 
used to perform the correct and fast routing for the relational 
query and the results back in the dynamic and distributed 
network, while the constraint factor, combining with the 
routing factor, is used to declare the local query and the 
operations of response results aggregation. So we can form 
the NDNQL query packet for performing in NDN as follows: 

The format of the NDNQL query used in NDN is " 
hierarchical identifier (plus partial name) + constraints". The 
“hierarchical identifier (plus partial name)” describes the 
hierarchical category which includes the entities what the user 

504 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



wants to query, even specifies the partial name of these 
entities. The “constraints” is an attribute expression. 

That means for processing a relational query in NDN we 
should extract three types of information, which are routing 
factor, constraint factor and the form of returned results 
(response). As following, we will present how to convert the 
SQL-form query into the above 3 types of information for 
forming the equivalent NDNQL. 

For example: an aggregation (sum) query is that 
summarizing the sales of various commodities (ProductID) in 
line with area (AreaID). The SQL query is: 
Select AreaID,ProductID,Sum(Total)  

From CW_Orderdetail 

Where ostate=1 

Group By AreaID With cube 
The SQL-form query can be converted into a query packet 

for NDN, in which the main 3 types of information are: 
Type Information 

Routing Indexes AreaID/CW_ Orderdetail 

Constraints ostate=1 

Response AreaID,ProductID,Sum(Total); 

Group By AreaID With cube 

4.2 The queries involved with multiple concepts 
When a relational query involves more concepts (or tables), 

and the concepts associated the data that across multiple data 
sources, the query should be sent to each data source where 
stored one or more concepts (tables) of them and then 
response the relevant results, after that the returned results 
need to be aggregated in the convergence nodes. So there are 
multiple hierarchical identifiers extracted from these 
concepts that are used to route the query to the 
corresponding data sources in which stored the relational 
data and contained one or more concepts aforementioned. 
Below we will deal with the problem of the relational query 
transformation which involved with multiple concepts. 

(1) Join query in SQL-form: 
Select customer-name, borrower.loan - number, 

amount 

From borrower, loan 

Where borrower.loan-number=loan.loan-number 
The SQL-form query can be rewritten into the formalized 

query for NDN, and the main 3 types of information are: 
Type Information 

Routing Indexes 1 the hierarchical identifier of the 
“borrower” 

Response1 customer-name, loan-number 

Routing Indexes 2 the hierarchical identifier of the 
“loan” 

Response2 loan-number, amount 

Constraints  borrower.loan-number=loan.loan-
number 

   To translate the query with union, intersect or except 
operation, which also involved with multiple concepts, is used 
in the same manner. 
(2) Nested query in SQL-form: 
Select CustomerID From Sales.Customer Where Ter

ritoryID = (Select TerritoryID From Sales.SalesPerso

n Where SalesPersonID = 276) 
The SQL-form query can also be rewritten into:  

Type Information 

Routing 
Indexes(external) 

the hierarchical identifier of the 
“Sales.Customer” 

Response(external) CustomerID  

Routing 
Indexes(internal) 

the hierarchical identifier of the 
“Sales.SalesPerson” 

Response(internal) TerritoryID 

Constraints 

(external) 

TerritoryID = (Select TerritoryID 
From Sales.SalesPerson Where S
alesPersonID = 276) 

Constraints 
(internal) 

SalesPersonID = 276 

For extracting hierarchical identifiers from relational 
databases, the name of concept should be identified and 
extracted from the tables of local relational database firstly, 
and then the hierarchical relationship between concepts can be 
extracted from the connections between tables or from the 
attribute fields in the tables. This work can be accomplished 
by DBAs or other authorized users, or we also can predefine a 
unified classification criterion before setting up the distributed 
databases and ask users to identify all added concepts and 
entities according to the classification criterion when they 
import fresh data. 

5 Implementation 
For transmitting the relational query, the principal 

information, mainly includes routing indexes, response form 
and attribute constraints that extracted from the SQL-form 
query, and the security parameters (e.g. authenticating and 
authorizing information) and other processing constraints 
added by the user or the client, for example, limits the type of 
sources or forwarding count, specifies whether or not 
aggregating results and so on, should be packaged into a 
network packet (called NDNQL). The format of the NDNQL 
is shown in the Fig.2. Each relevant query processing node 
will receive the packet and then resolve it for query 
processing. The response results (called RS) will also be 
packaged into a response packet (called NDNRS, its format is 
shown in the Fig.3) by sources. In the section, we will 
introduce the implementation scheme of the NDLQL 
processing to some specified types of SQL-form query. 

Routing Indexs Constraints Response Nonce
Other 

Conditions
Security 
Parameters

 
Fig.2 NDNQL: Query Packet 

Routing Indexs Response Security Parameters Timestamp
 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 505



Fig.3 NDNRS: Response Packet 
 

5.1 The in-network processing for simple query 
The simple query mainly refers to the query that involves a 
single concept. For example, the basic relational operation, 

such as projection (e.g. )(,...,1 Rana ) and selection 

(e.g. )(R ), mainly involves a single concept (generally it 

was named relation in DBMS). For this type of query, we 
have given how to define its routing factor (refers to the 
routing indexes) and constraint factor (mainly refers to the 
attribute constraints or the other selection conditions) before. 
To implement this type of distributed query in the NDN, it 
needs a self- organizing processing, which mainly includes 
two parts: the self-organizing routing processing and the self- 
organizing query processing. Fig.4 shows the relational query 
processing for a single concept in the NDN. 

Making the LPM matching between the routing index (or 
its Prefix) and the FIB, then forwarding the query 
packet to the connected routers or data sources
according to the matched interfaces

A routing node receives a query packet NDNQL from the 
connected client 

Recording the main information (the hierarchical 
naming or prefixes, interface number, the security 
parameter)in the PIT table when passing a router

The query packet has been 
forwarded to a data source?

Converting the NDNQL to SQL query, then performing the 
local query processing for getting relevant records 
and attribute values to meet the demand of the user 

Packaging the response results to a NDNRS for 
backtracking in the NDN, and then sending the NDNRS
back to the client by using the information that
registered in the PIT in each retraced router

Y

N

 
Fig.4 The processing of the query that involving single 
concept in NDN 
 
(1) The self-organizing routing processing 

For implementing the self-organizing routing of query, the 
processing steps are as follows: Firstly, making the LPM 
matching between the hierarchical identifier in query packet 
and the prefixes in FIB, and then forwarding the query to the 
next routing nodes according to the interface value of the 
matched records in FIB. In every routing node that received 
the query, repeating the above steps, until the query is 
forwarded to all relevant data sources. In addition, after local 
querying in each data source node, it needs to return the 
results (or the aggregated results processed in a convergence 

node) to the user who issued the query through the path that 
the query has passed through. 
(2) The self-organizing query processing 

The self-organizing query processing mainly includes the 
local query processing and the results aggregation processing. 
To the local query processing, the query should be rewritten 
into the SQL- form in the data source that received the query, 
and then performing the SQL- form query in the local 
database. 

The aggregation processing should be performed in the 
convergence nodes for aggregating the returned results. 
According to the characteristics of the returned results, the 
aggregation processing can be divided into two kinds: 

One is the fields aggregation (or vertical aggregation), that 
is, performing the aggregation of the different returned values 
of fields (or attributes) that are distributed different data 
sources, but the duplicates of attribute-value pair should be 
removed in each record. 

The other one is the records aggregation (or horizontal 
aggregation), that is, performing the aggregation of the 
different records that satisfied the conditions of a query and 
returned from the relevant data sources, but the redundant 
records should be eliminated. 

5.2 The in-network processing for complex query 
The complex query mainly refers to the query that involves 

multiple concepts. To the Union, Intersect and Except 
operation, it should be performed in a distributed and self-
organizing mode, that is, performing the Union, Intersect or 
Except operation multiple times at different source nodes or 
convergence nodes for returning the local results. The Fig.5 
shows the overall processing of the query that involving 
multiple concepts in NDN. A simple approach is to route and 
forward each hierarchical identifier to relevant data sources, 
and then to aggregate the distributed response results and 
return the aggregated results back to the user. 

Making LPM matching 
between the ith identity
or prefix and the FIB, 
and then forwarding the 
query packet to the next 
node according to the 
matched interfaces

Separately 
results 

aggregation 
in the way 

back

Performing querying on 
the local database, and 

then returning the
results according to 
the response form 

Receiving a query packet 
involving multi concepts 

in the router

The No. of the last 
identity or prefix=i?

i=i+1

N

End forwarding

Performing querying on 
the local database, and 
then returning results

according to the 
response form Y

query results

Fig. 5 The processing of the query that involving multiple 
concepts in NDN  

But we should to make an exception in some particular 
queries. The nested query is a query that should be treated 
specially. The processing scheme of nested query is shown in 
Fig.6. If a user issues a nested query to the NDN, the query 
packet will have multiple hierarchical identifiers or prefixes. 
The specific processing steps of the nested query are: 

506 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



(1) Set the innermost layer as the query i, and take the 
query i as a single query; 

(2) Judging the number of concepts that the ith layer query 
involving in is whether more than one. If it is, processing this 
query according to the processing of the query that involving 
multiple concepts in NDN, otherwise processing this query 
according to the processing of the query that involving a 
single concept in NDN; 

 (3) When receiving the ith layer results, determining 
whether the ith layer query is the outermost layer query. If it is, 
turn (5), otherwise turn (4); 

(4) According to the ith layer results, rewriting the (i+1) th 
layer query, and treating it as a query packet, then increasing 
the i by 1, and turn (2); 

(5) Returning the results of the ith layer query back to the 
user. 

Let i = the innermost 
query, and take the ith

layer of the query as 
a query packet

Send a nested query

Judging
the number of concepts 
in the ith layer is

more than one?

N

Y

Performing the query 
that involving a 
single concept

Performing the query 
that involving 

multiple concepts

Is the
ith layer the 
outermost
layer?

According to the results of 
the ith layer , rewriting the 

(i+1)th layer query, and 
treated it as a query packet

Return the results
of the ith layer 

query 

N

Y

i=i+1

Fig. 6 The processing of Nested query in NDN 

5.3 The in-network processing for results aggregation 
The SQL language provides five predefined aggregation 

functions: AVG, MIN, MAX, SUM and COUNT. To perform 
the aggregation function, we can use a recursive method with 
multiple-step aggregation operations in the dynamic and 
distributed network. As for the AVG aggregate function, the 
average calculation can be repeatedly to all the local average 
values that responded from different neighbor nodes, but it 
should be considered the different weights to different local 
average values for the local average values that contained 
different number of the original data. 
 

5.5 Performance analysis and Application 
To the aforementioned relational query processing scheme, 

the performance of its distributed processing determines the 
availability and suitable application scenarios. In this section, 
we analyze the performance characteristics of the distributed 
processing for the NDNQL. 

(1) The recalling rate to the NDNQL query. The recalling 
rate is determined by the query routing model, which affects 
the query whether can be forwarded to all right sources. Once 

the query is forwarded to all right sources, all relevant results 
can be returned to the user. In fact, the query routing model is 
determined by the LMP matching of NDN routing model. 
Many researches or experiments [5,28-29] confirm that the 
NDN routing model can be forwarded the query to nearly all 
right (and even mobile) sources. 

(2) The precision of NDNQL query. It is determined by 
the semantic constraints of NDNQL query. So long as we 
defined clearly the semantic constraints, high precision of 
NDNQL query can be achieved. 

(3) The cost to the asynchronous and distributed results 
aggregation. In the results way back, the aggregation 
operations were dispersed along the multicast tree of the 
query forwarding. So the cost is determined by the times of 
aggregation operations of one farthest result in the way back. 
If we can neglect filtering the duplicate results in the way 
back, we can delay the aggregation to the client for the user 
receives the separately results early. 

The relational query processing scheme we proposed can 
be applied in the following scenarios: (1) For querying the 
relational data on the MANET databases, we can use the 
name-based routing mechanism to perform its routing and 
forwarding. So the query can be forwarded to the right 
sources and the local query results can be returned to the 
client via the routing mechanism. (2) For accessing the 
information in the ad-hoc Vehicle-to-Vehicle (V2V) network, 
we also can implement the relational data query in the ad-hoc 
network based on the NDN naming scheme [30] and query 
processing scheme we proposed on the V2V network. (3) At 
present, the data-centric routing techniques [31] can only 
apply to the simple information query or complex semantic 
query with inefficiency on WSNs. Our scheme can help to 
perform the relational data query and response results in the 
WSNs, after named the hierarchical data in sensors and 
deployed the NDN on the whole WSNs. 

6 Conclusions 
 In this paper, we present a relational query scheme and 

the implementation methods for the relational data query in 
the ad-hoc network (e.g. MANET, WSN) on which deployed 
the Named Data Networking. In particular, for realizing the 
new relational query, the method of the relational (SQL-form) 
query transformed into the query form that suited the targeted 
forwarding of the query in the NDN by using the name-based 
routing mechanism, and the processing capabilities of the new 
in-network query in the dynamic and distributed network are 
all proposed. Furthermore, as for the plethora of distributed 
local query results, this paper also presented the distributed 
aggregation tactics for aggregating all relevant and distributed 
query results in the NDN network. In the future, we will be 
dedicated to the software development and applications of the 
relational query in practical ad-hoc network environment. 

7 ACKNOWLEDGMENTS 

This work was supported in part by the project supported 
by the National Natural Science Foundation of China (Grants 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 507



No. 61370227), the Hunan Provincial Natural Science 
Foundation of China (Grant No. 13JJB004) and Hunan 
Province Universities Innovation Platform of Open Fund 
Project (Grant No.14K037).  

8 References 
[1] A. Eyal, A. Gal. “Self Organizing Semantic Topologies 

in P2P Data Integration Systems”, International Conference 
on Data Engineering (ICDE), March 29- April 2, 2009.  

[2] Samuel R. Madden, Michael J. Franklin, et al. “TinyDB: 
an acquisitional query processing system for sensor 
networks”. ACM Trans. Database Syst. Vol.30, No.1, 122-
173, 2005. 

[3] Mario Gerla, Leonard Kleinrock, “Vehicular networks 
and the future of the mobile internet, Computer Networks”, 
Vol.55, No.2, 457-469, 2011. 

[4] P.Padmanabhan, L.Gruenwald,  et al. “A survey of data 
replication techniques for mobile ad hoc network databases”. 
The VLDB Journal, Vol.17, No.5, 1143-1164, 2008. 

[5] V. Jacobson, D. K. Smetters, et al. “Networking named 
content”, the ACM Conference on Emerging Networking 
Experiments and Technologies, New York, USA, Dec. 2009. 

[6] D.Tsoumakos, N.Roussopoulos. “Adaptive probabilistic 
search for peer-to-peer networks”, International Conference 
on Peer-to-Peer Computing (P2P), 1-3 Sept. 2003. 

[7] M. Harren, J.M. Hellerstein, R. Huebsch, et al. 
“Complex Queries in DHT-Based Peer-to-Peer Networks”. 
Int'l Workshop Peer-to-Peer Systems (IPTPS),  2002. 

[8] D. Fayel, G. Nachouki and P. Valduriez. “Semantic 
Query Routing in SenPeer, a P2P Data Management System”. 
NBiS 2007, LNCS 4658, 365–374, 2007. 

[9] L.M.Haas, E. T. Lin, andM. A. Roth. “Data integration 
through database federation”, IBM Systems Journal, vol. 41, 
No. 4, 578–596, 2002. 

[10] G. Olaf and S. Steffen. “Federated data management 
and query optimization for linked open data”, New Directions 
in Web Data Management, vol. 331, 109–137, Springer, 
Berlin, Germany, 2011. 

[11] Gnutella, http://gnutella.wego.com/. 
[12] J.N.Al-Karaki andA. E.Kamal. “Routing techniques in 

wireless sensor networks: a survey”, IEEE Wireless 
Communications, vol.11, no. 6, 6–27, 2004. 

[13] M. Meisel, V. Pappas, and L. Zhang, “Ad hoc 
networking via named data”, the ACM International 
Workshop on Mobility in the Evolving Internet Architecture,  
ACM, New York, USA, 2010. 

[14] F. Banaei-Kashani and C. Shahabi. “Swam: a family 
of access methods for similarity-search in peer-to-peer data 
networks”, ACM Conference on Information and Knowledge 
Management (CIKM), New York, USA, Nov. 2004. 

[15] X. Sun. “SCAN: a small-world structured p2p overlay 
for multidimensional queries”, International World Wide Web 
Conference, New York, USA, May 2007. 

[16] A. Crespo and H. Garcia-Molina. “Routing indices for 
peer to peer systems”, International Conference on 
Distributed Systems, July 2002. 

 [17] I. Stoica,R.Morris, D.Karger, et al. “Chord: a scalable 
peer-to-peer lookup service for internet applications”, ACM 
SIGCOMM, San Diego, Calif, USA, Aug. 2001. 

[18] S. Ratnasamy, P. Francis, M. Handley, et al. “A 
scalable content-addressable network”, ACM SIGCOMM, 
San Diego, Calif, USA, 2001. 

[19] A. Crespo and H. Garcia-Molina. “Semantic overlay 
networks for p2p systems”, in Agents and Peer-to-Peer 
Computing, LNCS, vol. 3601, 1–13, Springer, 2005. 

[20] G. Kokkinidis and V. Christophides. “Semantic query 
routing and processing in p2p database systems: the ics-forth 
SQpeer middleware”, Proceedings of the Current Trends in 
Database Technology Workshops, vol. 3268, LNCS, 433–
436, Springer, 2005. 

[21] T. Zahariadis, P. Daras, J. Bouwen et al. “Towards a 
content centric internet”, in Towards the Future Internet CA 
European Research Perspective, IOS Press, 227–236, 2010. 

[22] P. Daras, T. Semertzidis, L. Makris, and M. G. 
Strintzis, “Similarity content search in content centric 
networks”, ACM International Conference on Multimedia 
ACM Multimedia, 775–778, New York, USA, Oct. 2010. 

[23] Zhuhua Liao, Guoqiang Zhang, Aiping Yi, and 
Guoqing Zhang. “A Relation Routing Scheme for Distributed 
Semantic Media Query”, The Scientific World Journal, vol. 
2013, 2013. 

[24] Chakrabarti S, Dom B, Agrawal R, et al. “Scalable 
feature selection, classification and signature generation for 
organizing large text databases into hierarchical topic 
taxonomies”. The VLDB journal, 7(3), 163-178, 1998. 

[25] Han J, Fu Y. “Dynamic Generation and Refinement of 
Concept Hierarchies for Knowledge Discovery in Databases”, 
KDD Workshop, 157-168,1994. 

[26] W. Dakka, P. G. Ipeirotis. “Automatic extraction of 
useful facet hierarchies from text databases”. IEEE  
International Conference on Data Engineering (ICDE), 2008. 

[27] D. Martinenghi, R. Torlone. “Taxonomy-based 
relaxation of query answering in relational databases”, The 
VLDB Journal, 466-475, January, 2014. 

[28] V. Jacobson, D. K. Smetters, et al. “VoCCN: voice-
over content-centric networks”. Proceedings of the  workshop 
on Re-architecting the internet. New York, USA, 1-6, 2009. 

[29] G. Xylomenos, C. N. Ververidis, et al. “A Survey of 
Information-Centric Networking Research”, Communications 
Surveys and Tutorials, Vol. 6, No. 2, 1024–1049,2014.  

[30] L.Wang, R.Wakikawa, R.Kuntz, et al. "Data naming in 
Vehicle-to-Vehicle communications," IEEE Conference on 
Computer Communications Workshops, 328-333, 25-30 
March 2012. 

[31] N. Vats Doohan and S. Tokekar. “A Survey on 
Routing Techniques of Data-Centric Wireless Sensor 
Networks”. International Journal of Computer 
Applications, 53(16), 1-5, Sept. 2012. 
 

508 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



SESSION

HARDWARE AND SOFTWARE
RECONFIGURABILITY + NETWORK ON CHIP

(NOC) AND EMBEDDED SYSTEMS

Chair(s)

TBA

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 509



510 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



A More Efficient Use of Separable Allocator With Bypass 

Buffer 

Chung-Da Wu, Yarsun Hsu and Kuo-Feng Liao 

Department of Electrical Engineering, National Tsing Hua University, Hsinchu, Taiwan 

 

 
Abstract - As more processors are integrated into a single 

chip, a robust interconnection network between them is 

becoming more important consequently. Allocator, a critical 

component in a router, plays a key role in determining which 

flit would be delivered forward through crossbar switch. As 

one kind of allocator, separable allocator is a common choice 

for its simple structure and low cost. However, its simple 

operation inevitably leads to lower matching quality. To 

address this problem, bypass buffer is therefore introduced in 

this research to enhance the utilization of the unused ports 

induced by the inefficiency of separable allocator. According 

to the performance and cost evaluation by simulation tools, a 

design with bypass buffer will get most benefit and bring less 

cost percentage when there are more virtual channels in a 

router. Moreover, the more balanced a traffic pattern is, the 

more bypass buffer could be utilized.  

Keywords: NoC, Allocator, Separable Allocator 

1   Introduction 

With the development of semiconductor technology, 
integrating all the components of an electronic system into a 
single chip is an obvious trend in the future [1]. Owing to the 
increasing number of IP cores in a system, how to build a 
stable and reliable interconnection network between each core 
is an important issue in recent years. As a result, a theory on 
NoC (network on chip) [2] has been proposed to achieve better 
performance and higher scalability than the traditional 
network based on bus or crossbar. Thus, how to enhance the 
performance of NoC is becoming increasingly important. 

To improve the performance of NoC, different aspects of a 
network can be focused on, such as topology, routing, flow 
control and router architecture [3] [4]. For router architecture, 
it is the organization of each router in a network. Among all 
the components in a router, switch allocator is a key unit 
which determines how each flit passes through the crossbar 
switch to its corresponding output port. To enhance the 
effectiveness of a switch allocator, the main purpose of this 
study is to examine the impact of switch allocator on the 
network performance, and a reformed allocator is proposed in 
comparison to its original design. 

For a switch allocator, the matching quality is a critical 
factor which directly affects the time a flit has to wait in the 
input port buffer of a router. This time is further responsible 
for the packet transmission latency. Moreover, a bad switch 
allocator could easily lead to network congestion because 

packets cannot be transmitted to their destination nodes 
rapidly. 

To design an allocator, there is always a trade-off between 
matching quality and delay. Separable allocator is a common 
allocator with both low delay and small area, but the produced 
matching quality is not very high. On the other hand, 
wavefront allocator [5] could attain better matching quality but 
is accompanied by higher cost. 

The objective of this research is to address the low 
matching quality problem of separable allocator by adding 
some hardware units to the prototype router. The remainder of 
this research is structured as follows: Section 2 provides a 
brief introduction to allocation and separable allocator. Section 
3 describes the functionality of bypass buffer, which are some 
additional components used to improve traditional separable 
allocator. Section 4 carries out simulations in various 
circumstances to examine the effect of bypass buffer. Section 
5 deals with the cost evaluation of bypass buffer. Finally, 
conclusion is presented and some suggestions are made for 
future research in Section 6. 

2   Related Work 

2.1  Separable Allocator 

Separable allocator is one kind of allocator which 
separates the allocation into two arbitration parts. In the first 
part, the five arbiters are used for each corresponding input 
port to determine which virtual channel [6] would be selected 
to proceed its request to the second stage of arbitration. Next, 
in the second part, if more than one request bid for the same 
output port, the five output arbiters are used to make sure that 
only one request would be granted. Through the allocation, 
which flits could utilize the crossbar switch to their 
corresponding output ports is therefore decided. 

2.2  The Pros and Cons of Separable Allocator 

In comparison with other allocators, because of the 
relatively simple structure and much lower delay and power 
consumption [7], separable allocator is a typical choice for 
allocation. Nevertheless, the lack of coordination between the 
two arbitration stages inevitably results in some side effects 
that the number of generated matching pairs is relatively lower. 

One possible solution to this problem is to perform many 
iterations to allocate the unused resources again [8]. Though 
this method enhances the matching quality, the cost of area 
and delay is increased considerably as a consequence. One 
another common solution is to use wavefront allocator [9], 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 511



which can concurrently take the two arbitration parts into 
consideration. Although the matching quality is therefore 
improved, the cost of area and power for this allocator is about 
two times larger than separable allocator under most 
circumstances [7]. The price of wavefront allocator is still too 
high to be the best choice. 

To solve the dilemma of hardware cost and matching 
efficiency, in the next section, a method of bypass buffer will 
be introduced. With this additional hardware, a router with 
separable allocator could thus achieve better performance, 
while the cost of this structure is relatively lower. 

3   Bypass Buffer 

3.1    Architecture 

Figure 1 is the architecture of bypass buffer. As can be 
seen in this figure, many extra hardware units are added to the 
original router. The five demultiplexers next to each input port 
are used to choose where the flits in the input port buffers 
should be transmitted. Either the crossbar or the bypass buffer 
queue is a possible choice. Similarly, the five multiplexers   
next to each output port are responsible for selecting the place 
from which the flits are received. Likewise, an output port 
could accept flit from either crossbar or bypass buffer queue. 
To determine which bypass buffer queue a flit should be 
placed, the five demultiplexers in front of the five arbiters are 
essential, and the five arbiters are used to deal with the 
situation that several flits are sent to the same bypass buffer 
queue. Since each bypass buffer queue has its own 
corresponding output port, the numbers of bypass buffer 
queues and output ports are equal. The depth of each bypass 
buffer queue is assumed to be one for now, and it will be 
modified in the simulation later. 

3.2    Operation 

After performing the switch allocation by separable 
allocator, those ports failed in the allocation would be inactive 
in the switch traversal stage. Bypass buffer is thus trying to 
utilize these idle resources of ports. Even though an input port 
has failed in the allocation, it still has selected one virtual 
channel from all the virtual channels it contains. According to 
the output port destination of this virtual channel, we would 
know to which bypass buffer queue the flit in this virtual 
channel should be directed because each bypass buffer queue 
corresponds to only one output port. Since the depth of bypass 
buffer queue is assumed to be one, only when the 
corresponding queue is empty will the input port attempt to 
deliver flit to this bypass buffer queue. While those matched 
input ports transmit flits through crossbar, those input ports 
not granted in allocation would send their flits to the bypass 
buffer queues if empty. 

Take Figure 2 for example, assuming the bypass buffer 
queue 1 and 4 are empty, the failed input port 2 and 4 will 
send their flits to the bypass buffer queue 4 and 1 respectively, 
and accordingly utilize those inactive input ports. 

With regard to the output part of bypass buffer, it is trying 
to utilize the inactive output ports. The flit in each bypass 
buffer queue would be sent to the corresponding output port 
which is not matched in the allocation. After sending out a flit, 
the bypass buffer queue would be empty and can receive a 
new flit again. 

DMX

DMX

Output Port 1MUX

Output Port 2MUX

Queue 3

 Queue 4

Queue 5

 Queue 1

Queue 2

Arbiter

Arbiter

Arbiter

Arbiter

Arbiter

DMX

DMX

DMX

DMX

DMX

DMX

DMX

DMX

Output Port 3MUX

Output Port 4MUX

Output Port 5MUX

Input Port 2

Input Port 1

Input Port 3

Input Port 4

Input Port 5

Separable Allocator

 
Figure 1: The architecture of bypass buffer 

Output Port 1

Output Port 2

Output Port 3

Output Port 4

Output Port 5

Input Port 2

Input Port 1

Input Port 3

Input Port 4

Input Port 5

DMX

DMX

MUX

MUX

Queue 3

 Queue 4

Queue 5

 Queue 1

Queue 2

Arbiter

Arbiter

Arbiter

Arbiter

Arbiter

DMX

DMX

DMX

DMX

DMX

DMX

DMX

DMX

MUX

MUX

MUX

4

4

5

1

1
3

1

5

 
Figure 2: A bypass buffer example 

 
However, the newly received flit in the bypass buffer 

queue cannot be delivered immediately. Instead, it would have 
to wait until next cycle and check if its corresponding output 
port is idle before been sent out. That is, it takes at least two 
clock cycles for a flit to get to the output port through bypass 
buffer, since the input part and output part of bypass buffer are 
operated independently. 

This part of operation can also be observed in Figure 2. 
Under the circumstances that the bypass buffer queue 2 and 3 
both contain flit, the originally inactive Output Port 2 and 3 
will receive flits from their corresponding bypass buffer 
queues, and the idle resources of output ports are therefore 
utilized. 

During the switch traversal stage of router pipeline, the 
output part of bypass buffer will be executed first before the 
input part. Thus, bypass buffer could be read and written in 
one cycle. 

512 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



3.3    Restrictions 

As described above, the flits in bypass buffer could only be 
sent out when their corresponding output ports are unused. As 
a consequence, the ordering of the flits within a packet may 
change once part of these flits passes through bypass buffer. 
Nevertheless, the ordering could be restored when a packet 
arrives at its destination node through the sequence number 
contained in each flit. However, since the head flit and the tail 
flit are always the first flit and the last flit of a packet, if they 
are involved in the reordering, a packet would not be able to 
arrive at its destination successfully. To prevent this from 
happening, some restrictions must be imposed on bypass 
buffer. Three possible issues are listed below: 
 

Issue 1: The body flit outpaces the head flit in the same 
packet 

Issue 2: The tail flit outpaces the body flit in the same 
packet 

Issue 3: The head flit of a packet outpaces the tail flit 
belonged to the former packet  

 
The issue 1 will happen when a body flit has reached the 

output port through crossbar while the head flit of the same 
packet remains in bypass buffer. The body flit would replace 
head flit to become the first flit in the packet. Because a body 
flit does not contain any routing information, this packet could 
not proceed anymore. To avoid this fault, a head flit would 
never be allowed to use bypass buffer. 

The second issue happens when a tail flit has left a router 
while the body flit of the same packet is still stuck in bypass 
buffer. As a result, this packet would lose one body flit. To 
address this problem, a tail flit will always be sent to bypass 
buffer even though it has succeeded in the allocation. By 
exchanging the tail flit for body flit in bypass buffer, a tail flit 
would always be the last flit of a packet. Since these two flits 
belong to the same packet, they have the same output port 
destination, and the preserved output port for the granted tail 
flit would otherwise be utilized by the body flit in bypass 
buffer.  

The third issue happens when a packet outpaces its former 
packet by crossbar with one flit of the former packet still in the 
bypass buffer. The flits of two different packets would be 
mixed up on account of bypass buffer. To solve this problem, 
a method primitively used to prevent deadlock is applied here. 

In most cases, to reuse a virtual channel more quickly, a 
virtual channel can be reallocated to another packet if the 
currently occupying packet has left this router. However, if 
part of this leaving packet is still in the downstream router, 
any packet which successfully gets the just released virtual 
channel might appear simultaneously with the former packet 
in the input port buffer of the downstream router. A 
dependency relation between two packets is thus created, so a 
deadlock situation may occur in the network. 

An approach to this deadlock problem is to wait to 
reallocate a virtual channel until receiving the credit from the 
leaving packet. This could make sure that the leaving packet 
has left the downward router, and accordingly the possible 
dependency relation between two packets is broken. As a 
result, two different packets would never coexist in the same 
virtual channel buffer, and the third issue mentioned above is 
avoided by using this method. 

4   Performance Evaluation 

4.1 Simulation Methodology 

Booksim, a cycle-accurate simulator, is designed to 
evaluate the performance of NoC architecture, as it could 
accurately model the behavior of network components [10].  
With this simulator, the performance of the bypass buffer 
design is compared with that of the baseline, a prototype 
router with separable allocator. 

The router pipeline used here is a four-stage pipeline, and a 
credit-based flow control is adopted. Table 1 lists some 
parameters used in the simulation, and some of them including 
traffic pattern, virtual channel number, packet size and bypass 
buffer size will be changed later according to different 
simulation objectives. 

4.2 Traffic Patterns 

In this section, several different synthetic traffic patterns 
are used to evaluate their impacts on performance. Besides 
uniform traffic, which will be used in all the rest simulations 
of this section, five other traffic patterns are also introduced. 
Their behaviors are described in Table 2. Given the source 
node, the destination node of each traffic pattern could be 
determined by this table. The Si and Di represent the ith bit of 
the source and destination address, while the Sx and Dx denote 
the xth radix-k digit of the source and destination address. The 
number b is the bit length of an address and it is computed by 
b=log2N, where N is the number of nodes in the network. 
Since the network to be simulated contains 64 nodes, the 
number b is calculated as 6.  

According to this table, all the traffic patterns except for 
uniform traffic have a fixed destination node. By contrast, 
though generated in the same source node, the packets of 
uniform traffic may be sent to different destinations. 

The simulation results are presented in Figure 3. Because 
uniform traffic could produce a balanced packet distribution in 

Table 1: The network parameters 

Topology 8-ary 2-cube Torus 

Number of Router Ports 5 

Routing Function Dimension-order  

Virtual Channel Allocator Separable Allocator 

Arbiters of Separable Allocator Round-robin Arbiter 

Buffer Size of Virtual Channel 5 Flits 

Traffic Pattern Uniform Traffic 

Number of Virtual Channels 

per Port 

15 

Number of Flits per Packet 10 

Queue Depth of Bypass Buffer 1 

Table 2: The descriptions of traffic patterns 

Traffic Patterns Behavior Descriptions 

Uniform From each source, there would 

be equal amount of traffic sent 

to each destination 

Bit Complement Di = ¬Si 

Bit Reverse Di = Sb-i-1 

Shuffle Di = Si-1 

Transpose Di = Si+b/2 mod b 

Tornado Dx = Sx + ⌈k/2⌉ - 1 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 513



the network, it has the largest throughput. On the contrary, 
owing to the fixed destination node, the five other traffic 
patterns would result in congestion easily at higher injection 
rates, so their throughputs are relatively lower.  

Since bypass buffer could be fully utilized when many 
requests exist simultaneously during an allocation, and this 
situation is more likely to happen in a traffic that could 
generate a more balanced network load. As a result, bypass 
buffer has improved the baseline design most in uniform 
traffic. 

As could be observed in the figure, except for uniform 
traffic, the improvement of bypass buffer is more visible with 
bit reverse traffic and tornado traffic. Despite not being worse, 
bypass buffer is unable to lead to obvious performance 
enhancement with the other three traffic patterns. This could 
be explained by the characteristics of different traffic patterns. 
For example, for bit reverse and tornado traffic, in each router, 
the amount of input ports into which flits would be injected is 
higher than the three other traffic patterns. Consequently, their 
behaviors are much like a uniform traffic, and accordingly the 
improvement that bypass buffer bring about is more apparent. 
However, for the other three traffic patterns, some input ports 
are always left unused; therefore, bypass buffer could not be 
fully utilized, and the improvement is nearly invisible. 

4.3 The Size of Packet 

In this section, the size of each packet varies to examine its 
influence on the performance. As can be observed in Figure 4, 
when the packet size is increased, the network become 
congested more quickly. This is because a larger packet is 
more likely to spread over many routers; besides, the occupied 
virtual channels could not be used by other packets even  

 

Figure 3: Performance of different traffic patterns: (a) 
uniform (b) bit complement (c) bit reverse (d) shuffle (e) 

transpose (f) tornado 

though some buffers are unused. 
If the network becomes congested quickly, the design with 

bypass buffer can enhance the throughput greatly because 
bypass buffer has made the allocation more efficient. Thus, all 
flits could be delivered forward smoothly, and the throughput 
of the network is accordingly improved.  

At lower injection rates, however, since the number of 
requests is relatively lower, the contention between these 
requests is not obvious. As a consequence, the advantage of 
using bypass buffer is not significant, and the latency results 
between these two designs are nearly the same. 

Another explanation for using bypass buffer could achieve 
better performance under the circumstances of larger packet is 
due to the first restriction that bypass buffer must deal with. 
As was described in Section 3, a head flit would never be 
transmitted to bypass buffer. If a packet contains more flits, 
the proportion of head flit to other flits would be lower, so 
more flits are able to use bypass buffer. Since bypass buffer is 
utilized more often, a better performance could thus be 
obtained. 

4.4 The Number of Virtual Channels 

The impact of virtual channel number is explored in this 
section, and the simulation results are shown in Figure 5. 

 

Figure 4: Performance of different packet sizes: (a) 3 flits 
(b) 5 flits (c) 10 flits 

 

Figure 5: Performance of different virtual channel 
numbers: (a) 5 virtual channels (b) 10 virtual channels (c) 15 

virtual channels 

514 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



Table 3: The percentage of flit using bypass buffer 

The Percentage of Flit 

Using Bypass Buffer 

Injection Rate ( Flits / Cycle ) 

0.2 0.6 

One-flit Queue 1.3% 5.8% 

Three-flit Queue 3.4% 9.8% 

Five-flit Queue 4.3% 12% 

 

 
Figure 6: Performance of different bypass buffer queue 

depths 
With only five virtual channels, the bypass buffer design is 

worse than the baseline design. However, by increasing the 
virtual channel number, bypass buffer could raise the 
saturation point of the network substantially. 

This result is attributable to the strict mechanism for the 
bypass buffer design to reallocate a virtual channel. That is, it 
will take longer time for the bypass buffer design to reuse a 
virtual channel. Therefore, by providing more virtual channels, 
this disadvantage could be reduced effectively. 

4.5 The Depth of Bypass Buffer Queue 

In this section, the depth of bypass buffer queue is the next 
parameter to be adjusted. Each bypass buffer queue still has 
only one read port and one write port regardless of the 
increased depth. Namely, in each flit cycle, each bypass buffer 
queue could only receive one flit from input port and send out 
one flit to output port. 

By increasing the depth, each bypass buffer queue could 
accommodate more flits, and consequently there are more 
chances to utilize bypass buffer. Theoretically, a larger buffer 
queue would enlarge the benefit of bypass buffer, and 
accordingly leads to better performance. 

As depicted in Figure 6, though the throughput of the 
network is enhanced indeed by using larger bypass buffer, the 
improvement decreases progressively. If the buffer size is 
large enough for flits to use in most cases, a larger size than 
this could not bring great benefit any more. Compared with 
the base design, using one-flit bypass buffer queue could 
increase the saturation point by 16%, and the three-flit queue 
design could further enhance 4% more than the one-flit queue 
design. However, the five-flit queue design only increases 2% 
saturation point than the three-flit queue design. 

Table 3 shows the ratios under different circumstances that 
a flit would use bypass buffer rather than crossbar to pass a 
router, and they are measured by the choices of all collected 
flits during their transmissions. As the table presents, the five-
flit queue design only increases the utilization of bypass buffer 
little. In spite of the bigger improvement induced by the three-
flit queue design, considering that it takes three times the 
bypass buffer queue size to enhance less than two times the  

Table 4: The modeling parameters for cost evaluation 

Technology 32nm 

Frequency 1G Hz 

Vdd 0.9V 

Temperature 340K 

Number of Router Ports 5 

Number of Virtual Channels per Port 5, 15 

Buffer size of Virtual Channel 5 Flits 

Number of Bits per Flit 64 

Table 5: The area evaluation of bypass buffer 

Area 

(Micrometer2) 

Virtual Channel  

5 15 

5 One-flit Buffer Queues 9.39E02 

5 Five-input Arbiters 4.40E02 

5 Five-output DeMux 1.75E03 

5 Two-input Mux & DeMux 8.75E02 

Bypass Buffer Total 4.00E03 

Original Router 4.43E04 1.18E05 

Increased Percentage 9.04% 3.4% 

ratio at high injection rate, using only one flit depth for each 
bypass buffer queue may be an economical option. 

The table also accounts for the almost identical latency of 
the bypass buffer design and the baseline design at lower 
injection rates. Bypass buffer could not bring much benefit at 
lower injection rates because only few flits would use it. 

5   Cost Evaluation 

5.1 Simulation Setup 

DSENT, a C++ based tool for hierarchical modeling of 
NoC, has been proposed to evaluate the area and power of 
different network configurations [11]. Once the parameters of 
a network are provided, it will build a corresponding model to 
evaluate the related area and power cost. 

As shown in Figure 1, extra components including five 
one-flit buffer queues, five five-input arbiters, five five-output 
demultiplexers, five two-input multiplexers and five two-
output demultiplexers. The increased percentage of cost which 
is brought about by these components will be evaluated later. 

Table 4 lists the parameters which are used in the 
subsequent experiments, and the simulated buffer is DFF-
based RAM. Because using different amounts of virtual 
channels will make a significant impact on the cost of router, 
two kinds of virtual channel number will be simulated to 
compare the increased cost percentage of the additional 
components under different router architectures. To simulate 
the conditions under uniform traffic pattern, all the router 
input ports have the same amount of injected flits. 

5.2 Area 

Table 5 presents the increased area percentage caused by 
those components. The result reflects that the percentage is 
largely influenced by the amount of virtual channels. A router 
with more virtual channels could considerably lower this 
increased percentage caused by bypass buffer. 

5.3 Leakage Power 

The increased percentage of leakage power which is produced 
by those additional components are listed in Table 6.  

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 515



Table 6: The leakage power evaluation of bypass buffer 

Leakage Power 

(W) 

Virtual Channel  

5 15 

5 One-flit Buffer Queues 4.54E-04 

5 Five-input Arbiters 2.12E-04 

5 Five-output DeMux 7.01 E-04 

5 Two-input Mux & DeMux 3.51E-04 

Bypass Buffer Total 1.72E-03 

Original Router 1.88E-02 5.25E-02 

Increased Percentage 9.15% 3.27% 

Since each hardware unit always accompanies by the 
leakage power, the percentage results here are very similar to 
those of the area evaluation. The amount of virtual channels 
has a striking effect on the increased leakage power 
percentage. 

5.4 Dynamic Power 

In this section, the cost to be evaluated is the dynamic 
power, and the results are shown in Table 7 and Table 8. Since 
dynamic power is a data-dependent energy consumption, the 
cost percentage at two different injection rates are presented.  

Except for the two-input multiplexers and two-output 
demultiplexers, for other additional components, dynamic 
power consumption is only dissipated when a flit is sent to 
bypass buffer. 

As have been seen in Table 3, the ratio for a flit to use 
bypass buffer rather than crossbar to leave a router is quite low 
even at high injection rate, so the dynamic power brought 
about by those additional components is not significant.  

The reduced crossbar power item in the table represents 
the saved power by reducing the workload of crossbar. 
Because using bypass buffer would preclude the use of 
crossbar, this item is to be subtracted from the produced 
dynamic power by bypass buffer.  

Adding up all the items in the table, the increased 
percentage of dynamic power is much lower than that of area 
and leakage power. Comparatively speaking, the dynamic 
power caused by bypass buffer could nearly be neglected. 

6   Conclusions 

To address the inefficiency problem of separable allocator, 
this research has proposed the bypass buffer method as a 
possible solution. Through bypass buffer, the idle ports caused 
by matching inefficiency could be used to deliver flits, and 
therefore the time for a flit to wait in an input port buffer is 
reduced. As a result, with bypass buffer, the packet latency 
would be lower than the base design. 

The more the traffic behavior is balanced in a network, the 
better performance that the bypass buffer design could obtain. 
Therefore, uniform traffic is the most suitable traffic pattern 
for the bypass buffer design. 

To prevent some possible faults from happening during 
packet transmission, there are some restrictions for bypass 
buffer to follow. However, by increasing packet size and using 
more virtual channels, the disadvantages induced by these 
restrictions could be largely reduced, and better performance 
could be achieved accordingly. 

 
 
 

Table 7: The dynamic power evaluation of bypass buffer at 
injection rate = 0.2 flits/cycle 

Dynamic Power 

(W) 

Virtual Channel  

5 15 

5 One-flit Buffer Queues 1.65E-06 1.66E-06 

5 Five-input Arbiters 1.95E-07 1.97E-07 

5 Five-output DeMux 1.57E-06 1.58E-06 

5 Two-input Mux & DeMux 3.79E-05 

Reduced Crossbar Power 1.57E-06 1.58E-06 

Bypass Buffer Total 3.97E-05 3.97E-05 

Original Router 1.14E-03 2.28E-03 

Increased Percentage 3.48% 1.74% 

Table 8: The dynamic power evaluation of bypass buffer at 
injection rate = 0.6 flits/cycle 

Dynamic Power 

(W) 

Virtual Channel  

5 15 

5 One-flit Buffer Queues 1.58E-05 2.15E-05 

5 Five-input Arbiters 1.86E-06 2.54E-06 

5 Five-output DeMux 1.50E-05 2.05E-05 

5 Two-input Mux & DeMux 1.14E-04 

Reduced Crossbar Power 1.50E-05 2.05E-05 

Bypass Buffer Total 1.31E-04 1.38E-04 

Original Router 2.81E-03 6.16E-03 

Increased Percentage 4.66% 2.24% 

 
Since the increased percentage of cost considerately 

depends on the router architecture, if more virtual channels are 
used, the cost produced by those extra components would be 
less dominant. Because using more virtual channels could also 
enhance the performance of bypass buffer, the amount of 
virtual channels is the most important parameter to be 
considered while using bypass buffer.  

If the objective of using bypass buffer is to achieve better 
performance with reasonable cost, a one-flit depth of bypass 
buffer queue may be an economical choice. However, if the 
objective is to enhance the throughput as much as possible, a 
deeper bypass buffer queue might be an option, although the 
enhancement will decrease gradually. 

Since bypass buffer could not bring much benefit at low 
injection rate, using bypass buffer in a throughput-oriented 
network is more appropriate than in a latency-oriented 
network. Moreover, using bypass buffer in those networks that 
need a lot of virtual channels to be distributed to several 
classes of packets is also suitable. 

In this research, to reflect the improvement under general 
circumstances, the network setting is quite simple. The routing 
algorithm used in all the previous simulations is dimension-
order routing, which is one kind of deterministic routing that 
will never lead to a deadlock situation. To apply adaptive 
routing, however, the deadlock problem must be solved first; 
thus, each router in the network is prone to use more virtual 
channels [12]. For this reason, using bypass buffer in a 
network with complicated adaptive routing might be possible. 

As presented in Section V, the main power consumption 
for bypass buffer is from leakage power. Since bypass buffer 
could not improve much performance at lower injection rates, 
a feasible method to reduce power consumption is to turn off 
bypass buffer under these circumstances. 

516 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



To simplify the design of bypass buffer, there are only one 
read port and one write port in each bypass buffer queue 
mentioned earlier. However, when the depth of each queue is 
enlarged, increasing the write port number could be a method 
to further improve bypass buffer. Although a more 
complicated control logic is needed, the utilization of bypass 
buffer would be enhanced greatly. 

 

7   References 

[1] L. Benini and G. de Micheli. Networks on Chip: A New 

Paradigm for Systems on Chip Design. In Proceedings of 

the 2002 Design, Automation and Test in Europe 

Conference and Exhibition (DATE'02), 2002. 

[2] W. J. Dally and B. Towles. Route Packets, Not Wires: 

On-Chip Inteconnection Networks. In Proceedings of the 

38th Conference on Design Automation (DAC-38), 2001. 

[3] W. J. Dally and B. Towles. Principles and Practices of 

Interconnection Networks. Morgan Kaufmann Publishers, 

San Francisco, CA, 2004. 

[4] J. Duato, S. Yalamanchili, and Lionel Ni, Interconnection 

Networks: an Engineering Approach, Morgan Kaufmann 

Publishers Inc., 2002. 

[5] Y. Tamir and H.-C. Chi. Symmetric Crossbar Arbiters for 

VLSI Communication Switches. IEEE Transactions on 

Parallel and Distributed Systems, 4(1), 1993. 

[6] W. J. Dally. Virtual-Channel Flow Control. IEEE 

Transactions on Parallel and Distributed Systems, 3(2), 

1992. 

[7] D. U. Becker and W. J. Dally, “Allocator 

implementations for network-on-chip routers,” in Proc.  

Conf.  High Perf. Comput Network. Storage Anal. , Nov. 

2009, pp. 1–12. 

[8] T. Anderson, S. Owicki, J. Saxe, and C. Thacker, “High 

speed switch scheduling for local area networks,” ACM 

Trans. Comput. Syst., vol. 11, no.  4, pp.  319–352, Nov.  

1993. 

[9] J. G. Delgado-Frias and G. B. Ratanpal. A VLSI Wrapped 

Wave Front Arbiter for Crossbar Switches. In 

Proceedings of the 11th Great Lakes Symposium on 

VLSI, 2001. 

[10] . Jiang, D. U. Becker, G. Michelogiannakis, J. Balfour, B. 

Towles, J. Kim, and W. J. Dally, “A Detailed and Flexible 

Cycle-Accurate Network-on-Chip Simulator,” in 

ISPASS’13. 

[11] C. Sun, C.-H. O. Chen, G. Kurian, L. Wei, J. Miller, A. 

Agarwal, L.-S. Peh, and V. Stojanovic, “DSENT - A Tool 

Connecting Emerging Photonics with Electronics for 

Opto-Electronic Net-works-on-Chip Modeling,” in Proc. 

NOCS, 2012. 

[12] Daniel H. Linder and Jim C. Harden. “An adaptive and 

fault tolerant wormhole routing strategy for k-ary n-

cubes.” IEEE Transactions on Computers, 40(1):2–12, 

Jan. 1991. 

 

ACKNOWLEDGMENT 

 

The authors thank the support from MOST under grants 

104-2220-E-007-006 and 103-2220-E-007-021, and 

MOEA under grant 103-EC-17-A-02-S1-202. 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 517



Dynamic Interrupt Controller and Conflict Management 

for Transactional Memory in Embedded System 
 

Jun Young Moon1, Jun Gil Ahn2 and Jong Tae Kim1,2 
1Department of IT Convergence, Sungkyunkwan University, Suwon, South Korea 

2Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, South Korea 

 

 

Abstract – In hardware transactional memory system, 

selecting an interrupt handling mechanism is the one of 

problems. To handle interrupts occur in transactions, all 

systems need special mechanisms but these require more 

hardware or software resources, so this is not acceptable to 

the embedded system that has limitations. In this paper, we 

proposed interrupt handling process and interrupt controller 

that distributes interrupts to proper core in the system. Then 

we present performance metrics for the system and how 

transactional memory policies affect to the metrics. Simulation 

results show that roughly 80% of interrupts that occur in 

transaction can be improved and eager conflict detection, 

polite and polka contention managements are proper polices 

for the proposed system. 

Keywords: Transactional memory, parallel computing, 

interrupt handling, contention management, conflict detection  

 

1 Introduction 

 In multi-core system, the complexity of lock-based 

synchronization is well-known problem to almost 

programmers. The transactional memory (TM) is proposed to 

solve the problem [1]. TM system traces all memory 

operations in critical section and records these in special 

buffers. If the critical section is committed, all memory 

operations is written to memory. In contrast, if the critical 

section is aborted, information about the critical section in the 

buffer is discarded and TM system retries the critical section. 

 There are some problems to implement a real hardware 

transactional memory (HTM) system for embedded systems. 

One of the problems is how to handle interrupts in transaction 

time that is interval between transaction start and end. In an 

embedded system, decreasing response time of user inputs is 

critical to the performance of whole system, because almost 

applications implemented by an embedded system want to 

response to users as soon as possible. As a result how to 

handle interrupts in HTM for embedded systems is more 

important than for high performance computer systems. 

 The traditional method to handle interrupts that occur in 

transaction time is that the interrupts have to be pended or the 

transaction has to be aborted [2]. This is simple and easy to 

implement by hardware. But this method has disadvantages 

because the average response time is decreased so this is not 

applied to embedded systems directly.  

 To solve the problem, some types of TM use special 

mechanisms [3, 4, 5]. Nested institutes a nested transaction 

concept, so the interrupt handler can be executed in 

transaction time [3]. To implement nested transaction, the 

complexity of cache structures and the size of buffers is more 

increased. VTM can suspend transactions so interrupt can be 

handled in transaction time [4]. To support that, it uses 

virtualization concept and need additional hardware controller, 

memory spaces and software layers to save and restore 

overflowed or suspended transaction data. MetaTM uses 

stacked transaction concept to handle interrupts [5]. By using 

transaction push-pop primitives, interrupt handler can suspend 

and restore transaction information. Those solutions always 

need more hardware buffer to store transaction state and 

complex TM controller. As a result, those also have 

disadvantages to embedded systems. Because embedded 

systems that always want to less cost, power and size and the 

systems have more strict criteria to hardware and software 

resource than high performance computer. Eventually, HTM 

for embedded system need interrupt handling mechanism that 

is easy to implement and has short response time. 

 In this paper, we focused on the interrupt handling 

process in TM for embedded systems. First, we present simple 

interrupt controller for TM to be used on embedded system. 

Second, we proposed some performance metrics for interrupt 

handling in the proposed controller and evaluate performance 

of TM systems by using the metrics. Then we analyze how 

many interrupt handlers can be improved and how choosing 

policies affect performance of interrupt handling and propose 

the best policy for the suggested interrupt handling process. 

 In section 2, we present the interrupt handling process in 

the proposed system and suggest the performance metrics. In 

section 3, we analyze the effects of contention management 

policies and conflict detection methods to proposed metrics. 

In section 4, we explain the evaluation environment to check 

tendencies explained in section 3. In section 5, we describe 

the result of experiments. In section 6, we discuss the 

conclusion of this paper. 

518 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



2 Interrupt handling 

 In an embedded system, overheads needed to implement 

HTM system should be small. That means architecture of the 

HTM should have only essential components that has to be 

remained in the architecture to implement transaction concept. 

For example, transaction buffers and modified buses should 

be always in the architecture. In contrast, supporting to handle 

interrupts that happen in transaction time is not an essential 

part to the system. Because, by using pending interrupt 

concept, all interrupts in transaction time always can be 

handled correctly.  Only drawback is increasing response 

time. To reduce that, we modify an interrupt controller that 

almost embedded systems already have.  

 

Figure 1. Dynamic interrupt distribution for TM  

2.1 Interrupt controller 

 Because the proposed architecture cannot support 

handling interrupts happened in transaction time, interrupts 

should be sent to empty core that doesn’t handle interrupt or 

execute transaction at that time as much as possible to 

decrease response time. To find empty cores, the interrupt 

controller read TM status register that each core already have. 

The TM status registers have the information about whether 

each core execute a transaction. Interrupt status of each core 

is stored in interrupt controller registers. Almost interrupt 

controller in multi-core system can distribute interrupts to 

each cores and select what core is a target processor for a 

specific interrupt. As a result it may be not expensive that 

overhead to implement the proposed interrupt controller. 

 Figure 1 shows the concept of the suggested interrupt 

controller. The proposed interrupt controller can know 

whether cores are busy or empty. In figure 1, the state of 

core0, core1 and core3 are busy because core0 and core1 

execute a transaction and core 3 handles an interrupt. But the 

core2 is empty core because it does not execute any 

transaction or handle an interrupt at that time. If the interrupt 

1 is happened at that time, the interrupt controller try to send 

the interrupt to the core 0 that is decided by target register 

statically. But, the interrupt controller know the core0 is busy 

so that it modifies the target core for the interrupt 1 from 

core0 to core2 dynamically to decrease the response time for 

the interrupt 1. 

2.2 Performance metrics 

 To evaluate the interrupt handling performance of the 

suggested TM system, there are three types of performance 

metrics. 

- The ratio of occurring interrupt in transaction time. If the 

number of interrupt is few, the average response time of all 

interrupts is decreased. 

- The interrupt response time of occurring interrupt in 

transaction time. Because the proposed system using the 

interrupt pending mechanism, interrupts that occur in 

transaction time have to wait the transaction end if there are 

not empty core. 

- The number of empty cores at occurring an interrupt in 

transaction time. If existence probability is high, the average 

response time of interrupts is decreased. 

 The last is important to the suggested controller since it 

impacts to the first and second metric. If the existence 

probability of empty cores is increased, the ratio of interrupts 

that occurs in transaction time and how much the second 

metric affects to the total performance of interrupt handling 

are decreased. By using the metrics, we find the effective TM 

policies for the proposed interrupt handling system. 

3 TM policies 

 In TM system design, choosing contention management 

and conflict detection are the most important steps, because 

the performance of almost TM systems is sensitive to the 

policies [6]. Since finding the most effective policy for the 

proposed architecture is important.  

3.1 Existing TM policies 

 There are popular contention management policies are 

proposed in [6]. The polite policy uses the randomized back 

off increased exponentially. The karma policy has priority 

concept to determine what transaction will be aborted and 

uses fixed back off. The timestamp policy also employ fixed 

back off, but priority of transaction is start time of each 

transaction. The karma and polite combine to form the polka 

policy. The priority in the karma and back off in the polite are 

used in the polka policy. The conflict detection mechanisms 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 519



are eager and lazy [7]. The lazy conflict detection checks 

whether there is a conflict between transactions at only 

commit time. But the eager conflict detection detects a 

conflict at every memory operations in transaction. 

3.2 Analyzing the effect of TM policies 

3.2.1 The ratio of occurring interrupt in transaction 

 The first performance metric of a specific system is 

influenced by how long a core execute transactions. If the 

execution time of transaction is long, the probability of 

occurring interrupt in transaction is increased.  

 

Figure 2 Effect of conflict detection to the first metric 

 From the perspective, the lazy conflict detection 

method have more disadvantages than the eager method. The 

features of the eager is that it checks whether there is a 

conflict at every memory operations in transaction so that 

aborting is happened earlier than the lazy method. In figure 2, 

the length of CPU time that execute transactions in the eager 

is shorter than the lazy. So the number of interrupt in the lazy 

case is higher than in the eager case.  

 The efficiency of the contention management policies 

also can be analyzed by using the same perspective. The 

proportion of the time for executing transaction to whole CPU 

time is influenced by what contention management policy is 

used in TM, especially what back off policy is employed in 

each policy. The contention management policy that use fixed 

back off execute more transactions in certain time than other 

policies that use exponentially increased back off. Therefore 

the polite and polka policy that use the back off time 

increased exponentially have advantages to the first metric. 

3.2.2 The interrupt response time of occurring interrupt 

 Average length of transactions affects to the second 

performance metric since interrupt happened in a transaction 

is pended in the proposed system. The average length of 

transactions of the lazy is longer than that of the eager 

methods. Contention management policy does not affect 

interrupt response time. Even if the proposed system selects 

any contention management policy, the length of transactions 

is not changed.  

3.2.3 The number of empty cores 

 Factors that decide the value of the third metric are 

similar to the factors of the first metric. How many CPU times 

are used to execute transactions is important factor to this 

metric. Because the smaller the amount of CPU time that 

execute transactions or interrupt handler is, the higher the 

probability of existence empty core is. As section 3.2.1 

explained, the eager conflict detection method, polite and 

polka contention management policies that use exponentially 

increased back off time have advantages. 

4 Implementation 

  To evaluate tendencies of transactional memory 

policies in the proposed interrupt handling system and how 

many interrupts can be improved by the proposed interrupt 

handler, we make an ESL (Electronic system level) platform 

that support transactional memory concept. The proposed 

system’s target is an embedded system therefore the 

evaluation platform uses four ARM Cortex-A9 that is 

provided by OVP (Open virtual platform) [8]. This core 

model uses the transaction level modeling and doesn’t support 

pipeline and cache system so that the model assumes 

execution time of all instructions is just one-cycle. 

 

Figure 3 Evaluation platform 

  Except the cores, other platform components that are 

transactional memory controller, interrupt controller and ram 

are implemented by using SystemC and OSCI TLM-2.0 [9]. 

The transactional memory controller can change internal 

mechanism among contention management policies and 

conflict detection methods. Supported contention management 

policies are the polite, karma, timestamp and polka. The 

conflict detection is lazy or eager. The controller only 

520 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



supports the lazy version management. So, the controller can 

supports eight types of transactional memory policy. 

  There are two types of workload for evaluating the TM 

system. One is an interrupt workload. In this paper, we 

implement an interrupt generator module that makes 

randomized interrupts that are sent to each cores in figure 3. 

Another is transaction program that is executed on each cores. 

In this paper, we use the counting benchmark [2] and the 

number of transactions that is needed to complete the 

benchmark is set to 4x105. Additionally, to check effects of 

size of transaction, we simulate the benchmark as we change 

the size to 16, 32, 52 or 92 bytes. 

5 Simulation Results 

  Figure 4 shows the proportion of pended interrupt that 

occurs at transaction time to normal interrupt that is handled 

instantly. The size of transaction used to simulations is set to 

32 bytes. The average performance of eager is 39.7% and that 

of lazy is 19.8%. As we explained in section 3.2.1, the 

performance of eager method is better than that of lazy in 

every contention management policies. Between the 

contention management policies, the polite is better than the 

others because that employs exponential back off. The polka 

policy also use same back off mechanism of the polite but the 

performance of the polka is lower than that of the polite. The 

reason of the phenomenon is that the polka policy uses the 

priority concept in karma policy, so the probability of 

increasing waiting time is low.  

 

Figure 4 Proportion of interrupt in transaction time 

  Table 1 shows length of response time that is needed to 

handle an interrupt that occurs at transaction time. The unit of 

length is the number of instructions. In almost contention 

management cases and all transaction size, the eager methods 

is better than the lazy. There are not difference between 

contention management policies except the polite-eager case. 

The reason of polite-eager case is this uses exponential back 

off. If there are many conflict between transactions in the 

polite, the average of back off time is increased continuously. 

The longer the average of back off becomes, the lower 

probability of conflict is. As a result, the eager is being similar 

to the lazy. The polka has also same tendency but that is not 

critical as the polite because the former uses priority concept. 

  16 32 52 92 

lazy 

polite 21.9 50.0 85.0 150.0 

karma 21.1 47.9 83.5 152.0 

timestamp 21.0 47.5 84.5 150.0 

polka 21.4 44.3 77.5 143.8 

eager 

polite 20.6 44.0 77.0 150.0 

karma 20.7 35.0 57.6 95.0 

timestamp 20.5 36.0 56.0 95.0 

polka 20.2 37.4 62.4 108.3 

Table 1 Average response time of interrupt in transaction time 

  Figure 5 shows how many interrupts can be sent to 

empty core when the interrupt occurs at transaction time. The 

y-axis of figure 5 is the percentage of existence of empty core. 

The size of transaction used to simulations is set to 32 bytes. 

In lazy system, 72% of pended interrupts can be sent to other 

empty core. In eager, 97% of interrupt handler for interrupt 

occurs at transaction time can be improved. In addition, the 

polite and polka is better than the karma and timestamp.  

 

Figure 5 Existence probability of empty cores 

  If the size of transaction is increased, CPU time for 

executing transaction is also increased. As a result, the 

probability of existence is also decreased. Figure 6 shows the 

result of simulations that use various size of transaction and 

the lazy conflict detection. Karma, timestamp and polka has 

same tendency except the polite policy. The polite policy has 

a unique tendency that the bigger the size of transaction 

become, the higher the probability of existence is. The 

phenomenon is explained by using the same reason used to 

why the first metric of polite is higher.  

 According to the simulation results, the proposed 

interrupt controller can improve the performance of interrupt 

handling. But there are some performance gap in what 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 521



contention management and conflict detection method are 

selected to TM system. Between conflict detection methods, 

the eager method for conflict detection has many advantages 

about the proposed system. Every contention management has 

better performance when that is combined with eager.  

 

Figure 6 Probability of existence tendency in various 

transaction size 

  Among contention management policies, the polite and 

polka have advantages because those employ exponential 

back off mechanism. In addition, required hardware resource 

to implement the polite is smaller than that of the polka 

because the polite does not use any priority concept so that 

the polite is proper contention management to the proposed 

system. The effect of the size of transactions also shows the 

polite is more appropriate than the polka. But, the proposed 

result is only evaluated about the interrupt handling 

performance. So, other types of performance metric should be 

considered such as elapsed time, abort rate and so on. 

6 Conclusion 

  In this paper, we proposed interrupt handling 

mechanism in TM for embedded system. The proposed 

mechanism uses interrupt controller that has transaction 

information about each cores and distributes interrupts to 

empty core by using the information. Then we present the 

performance metrics to evaluate proper contention 

management and conflict detection method for the proposed 

system. Also we explain the features of each policies that 

affect to the proposed performance metrics. Then we 

implement the ESL platform that has Cortex-A9 quad-core, 

transactional memory controller and interrupt controller and 

evaluate the effect of each policies.  

  The simulation results present that 72% of pended 

interrupts can be improved at lazy on average and 99% of 

pended interrupts also can be improved at eager at the size of 

transaction is 32 bytes. But improvement amounts are affected 

by the size of transaction and what policies is used by the 

transactional memory controller. By using the simulation 

results, we conclude that the eager has advantages to handling 

interrupts. In addition, the exponentially increased back off 

time has advantages so that the polite and polka contention 

management policies are proper to the proposed transactional 

memory system to handle interrupts effectively. Between them, 

the polite is better because the implementation cost is lower 

and the performance tendency about the size of transactions is 

better. 

7 References 

[1] Harris, T. Cristal, A., Unsal, O. S., Ayguade, E. 

Gagliardi, F., Smith, B. and Valero, M.  “Transactional 

memory : An overview”; IEEE Micro, Vol. 27., Issue 3., 8-29,  

2007. 

[2] Herlihy, M. and J. E. B. Moss.  “Transactional memory : 

Architectural support for lock-free data structures” ; ISCA 93 

Proceedings of the 20th annual international symposium on 

Computer Architecture, 289-300, May 1993. 

[3] Moss, J. Eliot B., and Antony L. Hosking.  “Nested 

transactional memory : model and architecture sketches” ; 

Science of Computer Programming, Vol. 63., Issue 2., 186-

201, Dec 2006. 

[4] Rajwar, Ravi, Maurice Herlihy, and Konrad Lai.  

“Virtualizing transactional memory”; ISCA 05 Proceedings of 

the 32nd International Symposium on Computer Architecture, 

494-505,  Jun 2005. 

[5] Ramadan, H. E., Rossbach, C. J., Porter, D. E., Hofmann, 

O. S., Bhandari, A., and Witchel, E. “MetaTM/TxLinux : 

tranasctional memory for operating system”; ACM SIGARCH 

Computer Architecture News, Vol. 35., Issue 2., 92-103,  May 

2007. 

[6] Scherer III, W. N. and Scott, M. L. “Advanced 

contention management for dynamic software transactional 

memory”; Proceedings of the twenty-fourth annual ACM 

symposium on Principles of distributed computing., 240-248,   

2005. 

[7] Rachid Guerraoui and Paolo Romano. “Transactional 

Memory. Foundations, Algorithms, Tools and Applications”. 

Springer International Publishing, 2015.  

[8] Imperas Inc. Open Virtual Platform World. 

http://www.ovpworld.org/.  

[9] Initiative, Open SystemC. "OSCI TLM-2.0 language 

reference manual." Version JA32, http://www.systemc.org, 

2009.  

522 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



 

     Hardware reconfigurability: from concept to implementation 

 
Schagaev Igor1*, Castano Victor2, Kaegi Thomas2 

 

1 London Metropolitan University 166-220, Holloway Road, N7 8DB, London, UK 
2 ITACS Ltd, 157 Shephall View, SG1 1RR, Stevenage, England  

* Correspondence should be addressed: i.schagaev@londonmet.ac.uk, info@it-acs.co.uk 

Abstract. Hardware reconfigurability is 
essential property of the next generation of 
computer architectures. We introduce and 
explain it.  We show that reconfigurability is 
not a property, but a process that should be 
supported at all stages of design and further  
functioning. A novel instrument for system 
reconfigurability, the Syndrome, is described 
with application and the control of all three 
zones of computer architectures: active, 
interfacing and passive. At a lower hardware 
level, a special reconfiguration element - so-
called T-logic is introduced and its operations 
explained. Using the Syndrome, we illustrate a 
process of control of reliability and support of 
graceful degradation.  Applications of 
syndrome for reconfigurability control gaining 
Performance, Reliability and Energy-wise 
operations are discussed. 

Keywords: reconfigurability; performance-, 
reliability-, energy-smart functioning; 
hardware, computer system, hardware 
syndrome 

1. Existing myths and what is really 
required 

The 21st century has started by and with 
repeating of the previous century mantra on 
technology limitations and the need of 
parallelization of computing. Parallelization  is 
discussed at the level of tasks, software, 
hardware as well as schemes of 
implementation and support. Thus, accordingly 
a simple Google search (at 20.02.15) “parallel 

programming” provides 6,510,000 entries, 
“parallel programming model” reaches 
2,340,000 entries and “parallel computing” is 
healthy at 13,400,000. At the same time, 
typical desktops with 4 or 8 processors, now 
renamed as “cores” consume from 350 to 850 
Watts and surprisingly do not provide “at the 
order of magnitude” higher performance. 

Similarly - transfer of similar amount of 
“cores” to mobile devices, again, did not gain a 
lot: we recharge our new mobile phones every 
day now.  Add here: our new devices much 
more often fail to operate: hangs for no reason, 
self-restarting and unexplained loosing of 
battery charge - all this indicates that new 
designs do not really address challenges of new 
applications performance, reliability or power 
efficiency. 

Accounting, banking, health monitoring and 
similar applications are becoming critical and 
wider spread; the router clusters and network 
centers consume a visible amount of power 
generated by power stations. One might ask: 
“what is missing?” and “why are our designs 
not greatly efficient?” 

Clearly, the myth of parallelization and success 
of its implementation did not serve a “silver 
bullet“ role. Surprisingly, the term  
“reconfigurability” is much less popular in 
Google search - 243,000 entries. 

What is missing? What properties of computer 
systems do we expect to have in the nearest 
future? One of those properties is flexibility, 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 523



 

 

the ability to evolve [2]. In turn, system 
flexibility assumes the presence of hardware 
flexibility and system software flexibility. 

System flexibility can be considered as several 
connected properties and supporting features, 
as described in [1],[2],[3],[4]. We list: 
flexibility (of hardware and system software), 
resilience, scalability (task-wise, frequency-
wise, technology-wise), performance-, 
reliability-, energy smart- functioning. We 
aggregate these properties by the name of 
PRE-smart systems (performance-, reliability-, 
energy-). We argue that all mentioned 
properties are required and should be 
implemented within a computer system. Good 
point that it is possible as all of them are based 
at some level on reconfigurability.  

Therefore, efficient design and implementation 
of reconfigurability becomes a task of utmost 
importance for the next generation of computer 
systems. 

 

2. Reconfigurability: a concept 

As it is defined in [1], [2], [3] evolving system 
(EvSy) in terms of evolving properties might 
be considered and designed as a pair of 
hardware and system software;  formally: 

EvSy := <HW, SSW>  

Both main elements, hardware and system 
software, must possess their own 
reconfigurability features and support each 
other: a) Hardware support of system software 
reconfigurability and b) System software 
support of hardware reconfigurability. 

System reconfigurability must be introduced at 
the design level and pursued along at other 
levels, especially for critical applications. 
System reconfigurability should also be 
considered, throughout the entire life cycle.  

Therefore, a system reconfigurability becomes 
not only a feature or property of a system, but 
a process. This process serve the need of 
introduction and maintenance of 
reconfigurability, including ways of changing 
configurations and ability to reconfigure.  

For example, during critical missions, 
reconfigurability should be executed within 
real-time constraints, invisible for applications.  

In turn, during regular operation, system 
reconfigurability should be used to adapt the 
system to different requirements in terms of 
efficient performance, reliability and power 
consumption. We call this PRE-smart 
functioning as defined in [2]. 

Reconfigurability for reliability should be 
implemented with supports the ability of 
system to recover with minimum time 
overheads. Here it is worth to mention that 
reconfiguration might have internal and 
external reasons. For instance, the system 
might exclude or isolate some hardware 
elements from the configuration due to a 
transient/permanent hardware fault detected via 
checking schemes (external reason). This 
isolation should be considered as a process and 
be “fine-tuned" by minimizing the hardware 
loss. Additionally, with energy saving in mind, 
the system could setup a simple hardware 
configuration for a particular task execution 
(internal reason).  

In energy saving functioning, reconfigurability 
has to provide a mechanism to disconnect or 
switch to a lower consumption mode all 
hardware elements that are not required for the 
active program processes. 

 

3. Reconfigurability implementation 

Hardware of computer systems in terms of 
information processing consists of three 
semantically different zones: active, passive 
and interfacing, as Figure 1 illustrates. 

     Fig. 1 Computer zones of information processing 

At first, the information transformation area – 
further called active zone (AZ); secondly the 
information storage area – called passive zone 

524 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



 

 

(PZ). The interconnection of these zones is the 
interfacing zone (IZ). 

Active Zone: The active zone consists of the 
microprocessor elements including the 
arithmetic unit (AU) and logic unit (LU). Both 
units are separated for better fault isolation and 
easier implementation of hardware tests and, 
primarily, reconfigurability. 

Interfacing Zone: This includes all 
communication components such as the 
memory buses and the reconfiguration logic. A 
configurable bus allows the reconfiguration of 
the hardware to exclude any failed hardware 
components and switch into a degraded state, 
or to replace the failed component with a 
working one.  

Passive Zone: This includes basic storage 
systems, such as memory, that do not act by 
themselves but are handled by controllers or 
devices, saving data.  

All three zones have different properties and 
might use different redundancy mechanisms to 
tolerate internal faults and to reconfigure 
efficiently for performance, reliability or 
energy saving purposes. The proposed 
computer structure of each zone is shown in  

         Fig. 2 Reconfigurability of computer system 

Note that efficient reconfigurability can be 
achieved when it is implemented with 
minimum deliberate redundancy been 
introduced in the system [4]. In our case 
hardware redundancy exists in the form of 
buffer, register files, replicated memory 

modules, majority voting schemes and 
interfacing logic. 

With regards to SSW, some extra elements 
required to support reconfigurability and fault 
tolerance are: checkpoint monitor, recovery 
point monitor, process synchronization and 
reconfiguration monitor. These are named 
monitors to express their uninterruptible mode 
of operation [1].  

All three zones, (see Fig. 1 and Fig. 2) must be 
reconfigurable for their own purposes as well 
as other zones requests. Each zone might have 
different reconfiguration properties. 
Interactions between zones define the level of 
reconfigurability and flexibility of the 
architecture.  

 

4. System Syndrome 

4.1 Definitions 

As mentioned earlier, the new system property 
must be supported by hardware and system 
software implementation of all required 
processes that make this property. For this 
purpose we introduce a special hardware 
scheme called a Syndrome.  

The term Syndrome is new Latin (origin 1535-
45) and was originated from Greek 
“Syndrome” where: “Syn-“ from combination, 
concurrence. For our purposes a Syndrome is 
not just passive, i.e. presenting “a snapshot 
status” of a system, but also active, a serving 
tool to control the system configuration. For us 
a Syndrome is 

 “a group of related or coincident things, 
events, actions, signs and symptoms that 
characterize a particular abnormal condition”. 

A Syndrome also might help to answer the 
questions that have been omitted in the vast 
majority of research on fault tolerance and 
performance: “what provides the fault 
tolerance of the system?” and “how big a 
performance, reliability, energy-saving gain 
might be achieved?” 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 525



 

 

It is usually assumed that the hardware core 
logic is ultra-reliable and guarantees control of 
configuration and reconfiguration. 
Unfortunately, using homogeneous redundancy 
limits the reliability gain - since techniques 
based on the same type of redundancy are 
vulnerable to the same threats.  Hybrid 
techniques based on heterogeneous redundancy 
can be more effective.   

Thus, even when memory or processor 
checking schemes detect error and transfer 
information to the Syndrome, this information 
might not be useful if the system does not 
include either one or both: “External elements” 
responsible for exercising reconfiguration and 
making decisions on configuration/ 
reconfiguration. Reconfiguration might be 
initiated externally, by other system elements 
to create best –fit for task configuration, or,  if 
necessary, by “Internal elements” that are 
capable to initiate the required sequence of 
reconfiguration for internal purposes and 
reasons – faults, errors or power-saving.  

Indeed, in regular computing systems, when 
there are faults in the processing logic, to 
expect that it is able to perform self-healing 

and then control and monitor the configuration 
of the rest of the system looks like a part of 
fairy tale, not engineering.  

There is a solution though, as described below. 
To be able to absorb any trustworthy 
information about the status of system 
elements we have to aggregate all checking and 
status signals about the condition of registers, 
memory, AU and LU as well as control unit.  
This aggregating scheme we call a Syndrome.  

Clear, reconfigurabilities of passive, 
interfacing and active zones are different. 
Therefore, a scheme of implementation of 
reconfigurability should separate the passive 
zone and active zone of the proposed 
architecture. 

A clear separation of the functions of 
processing (of data operation) and storing 
(memory) enables to apply various checking, 
recovery and reconfiguration solutions and 
making system more flexible. The Syndrome 
acts as a control center for three main functions 
including fault monitoring, reconfigurability 
and recovery.  

Fig 3 illustrates Syndrome application. 

Fig. 3 Syndrome functions for reconfigurability 

526 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



 

 

These three functions serve for the purpose of 
performance, reliability and power efficiency.  

The principle and function of Syndrome from 
system software point of view are presented 
using our Evolving System Architecture (ERA) 
as described in [3], here we address hardware/ 
hardware configuration concept that might help 
to implement reconfigurability as essential 
property of the next generation of computer 
systems. 

4.2 Implementation 

From a hardware point of view the Syndrome 
is represented as a special register that interacts 
with the system via hardware interruption 
schemes. Semantically, the structure of the 
Syndrome is subdivided in three different areas 
namely, (Fig. 4): Fault control, Configuration 
control and Power control areas.  

Fig. 4 Syndrome for reconfigurable architecture 
 

4.3 Memory Reconfigurability 

The configuration area of the Syndrome 
reflects the current memory mode that ERA is 
currently using.  
The Bit mode field defines whether the 
addressing mode is 16- or 32-bits, whereas the 
L/R field defines whether the memory banks 
are in linear or redundant mode.   
Bit mode “0” means RAM is used in 16-bit 
addressing mode; mode “1” is a 32-bit 
addressing mode. RAM modes define how 
memory can be used: main (“0”) or redundant 
(“1”). RAM Module 1, 2, 3 and 4 represent 
whether the respective memory module is 
powered: “0” = Power Off; “1” = Power On. 
 The power management area reflects the status 
of the modules in terms of power.   

The combination of the three areas of the 
Syndrome: Fault management, Configuration 
management and Power management defines 

and controls the state of the system. For 
example, a memory module could be in the 
following states: faulty, failed, stand-by, ideal 
and off-power. Failed state is assigned to the a 
malfunctioned element by checking schemes, 
when real reason behind the malfunction and 
the ability to operate further is still not 
clarified. When reconfiguration is initiated by 
software, the states of hardware elements as 
well as state of Syndrome might be mirrored in 
system memory. 

Without a doubt, the Syndrome is one of the 
most critical parts of the system. For reliability 
purposes, the Syndrome should be made 
virtually failure-free, for example by 
implementing three copies of the 32-bit register 
Syndrome connected to a voter within the 
processing element.  

Another option that solves the complexity 
would be low-level hardening techniques 
and/or using different technologies (such as 
flash memory) just for the Syndrome register. 

The Syndrome scheme allows to monitor 
configuration of memory in a pretty flexible 
manner, allowing the platform to adapt to 
different application requirements.  

For aerospace applications, for example, a 
flight control system requires highest 
reliability, which is possible to achieve, for 
example, by using duplication for ROM and 
triplication spare for RAM. On the downside of 
brutal replication approach we are facing the 
efficiency problem - the available hardware 
resources for the program execution become 
much smaller, i.e. only one fourth of the total 
amount of available memory is used.   

This also implies that only the most critical 
programs should run on this system, all non-
safety critical programs should be moved to 
another system, making flexibility and 
efficiency even harder to achieve. 

When we are acting on redundant schemes 
only when we need them – using a syndrome 
monitoring the chosen configuration allows to 
tolerate permanent faults by reconfiguring the 
memory, excluding the faulty unit and if 
possible including a spare one we are able to 
exploit a system much more efficient. A 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 527



 

 

syndrome allows to use standard classic 
triplicated scheme of memory or processor 
with much higher efficiency. 

Thus the Syndrome allows expansion of the 
working states for memory and other hardware 
elements of the architecture.  

In contrast to classic triplicated configuration 
with 3 working states reconfigurability of the 
system supported by proposed Syndrome make 
overall reliability much higher that known 
schemes. Our proposed architecture might 
implement and be operational in 14 different 
working states, like Markov reliability diagram 
illustrates at Fig. 5. The dotted lines illustrate 

toleration of malfunctions. λ and μ stand for 
ratio of fault and recovery respectively. For 
example, a modified triplicated scheme [5] 
combined with systems reconfiguration for 
malfunction tolerance  [6] enables  to achieve 
an order of five reliability boost.  
 
Markov analysis of reliability is useful for the 
pre-design phase of computer systems. 
It turn,  real time functioning requires an 
implementation of reconfigurability during the 
mission making reliability requirements, 
performance. Therefore using a syndrome 
makes requirements PRE achievable. 

 

 

                            

 

 

 

 

 

 

 

 

 

                           
Figure 5 Reliability diagram for reconfigurable RAM using Syndrome 

One of the schemes how to make memory of 
the system really reliable and flexible is 
presented in Fig. 6. The syndrome register is 
directly connected to the Memory Management 
Unit (MMU), which is an extended memory 
controller with reconfiguration support at 
runtime.  
 
The MMU manages the connectivity of the 
memory, configures and reconfigures the 
working mode to a 16-bit single memory, 32-

bit double memory with master/slave 
configuration or any of the memory addressing 
schemes available. 
 
The Configuration and Power management 
flags of the syndrome describe the different 
states of the memory modules. Different values 
in the configuration area of the syndrome 
select the bank used and the mode.  
The output memory lines of the processor 
determine a location within a memory bank, 

528 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



 

 

whereas the Configuration and Power areas of 
the syndrome specify which banks are to be 
used and in which mode.  
 
By using this method we can increase the 
independence of software/hardware 
configurations for the PRE- purposes. Memory 

addresses within the code do not need to be 
arranged, as code integrity is a crucial 
requirement for safety critical systems. 
 
Special logic schemes -configurators as shown 
at Fig. 2 are physically included in the MMU. 
 

 

 

Figure 6 Syndrome use for memory control 

5. Reconfigurability - executive element 

Using the proposed concept and 
implementation of the Syndrome, one might 
implement reconfiguration of the system 
providing interconnection and dynamic 
inclusion or exclusion of hardware components 
from the working configuration. 

For this, we suggest to use so-called “a T-logic 
inter-connector”, illustrated by Figures 2, 3 and 
6, an idealized concept of a hardware switch 
that from the system point of view behave like 
switch in the form of a ”T”.  

“T” can connect or disconnect hardware 
elements for the purposes of fault containment, 
power saving or performance gain. “Rotating” 
of “T” is virtual and used for illustrative 
purposes. Detailed description of T-element 
design is beyond the purpose of this paper for 
the reason or IPR. 

This T-logic serves in the hardware 
architecture as a scheme that execute 
configuration scheme, defined by the software 
or hardware.  For example, let us suppose that 
a fault is detected in a hardware element of a 
system and thus this element can’t be involved 
in further program execution, either on a 
temporary or permanent basis.   

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 529



 

 

It should be excluded from working 
configuration “until further notice”. 
The four T-logic inter-connectors, one per 
memory module, are physically contained in 
the T-logic Management Unit or TLMU.  
 
Using the TLMU enables the memory to be 
configured and reconfigured according to all 
supported modes shown in (Table 1) and 
supports module isolation and power 
management.  
 
Table 1 System configuration using T-logic scheme 

Configuration Explanation 

 

“T” logic connect all three 
components with processor.  Top 
system component acts as leading 
element. The rest system elements 

compare the results and 
participate in voting. This 

configuration provides maximum 
reliability. 

 

This system configuration serves 
for maximum energy saving.  In 
this case “T” element connects 

only one system component with 
processor, while the rest are idle. 

 

In this case, all three components 
are used for maximum hardware 
capacity.When performance of 
application is main priority this 
configuration fits the purpose. 

 

6. Conclusion 

- System architectures are considered having 
new properties such as higher efficiency in 
terms of performance, reliability and energy-
smart functioning.   
- The structural organization of computer 
systems is introduced as of information 
processing including active, passive and 
interfacing zones.  
- System-level reconfigurability can be 
implemented using a new concept and 

implementation of hardware element called 
Syndrome; Syndrome aggregates essential 
information about hardware conditions.            
- Functions of the Syndrome for reliability, 
performance and energy-smart functioning 
have been described and explained.   
- Reconfigurability of a real-time architecture 
at the system level was proposed and analyzed 
in the context of each zone. With regards to the 
interfacing zone, but not limited to, we propose 
a new hardware element (T-logic), as a basic 
element or of execution of reconfiguration, 
making different configurations possible; 
- We explained how flexibility, reliability and 
power-smartness can be achieved using the T-
elements; 
- Taking into account the memory usage has, 
by design, a high impact on system reliability 
and power consumption, reconfigurability of 
the passive zone has been analyzed and 
described with explanation of configuration 
control and the phases of hardware 
degradation. 
 
7. References 

[1]  Kaegi T, Schagaev I. System software support 
of hardware efficiency, IT-ACS Ltd, 2013, ISBN 
ISBN 978-0-9575049-0-5 
[2]  Monkman S., Blaeser L.,  Schagaev I.  
Evolving systems, Proc. FCS'14 - ISBN #:  1-
60132-270-4), Editors: Hamid R. Arabnia, George 
A. Gravvanis, George Jandieri, Ashu M. G. Solo, 
Fernando G. Tinetti, pp. 169-179, 2014. 
http://worldcomp-
proceedings.com/proc/p2014/FCS3102.pdf 
[3] Castano V., Schagaev I. Resilient computer 
system design, Springer 2015, ISBN 978-3-319-
15068-0 
[4] http://faculti.net/video?v=68 
[5] Buhanova G., Schagaev I . Comparative Study 
of Fault Tolerant RAM Structures. Proc. IEEE 
Dependable Systems and Networks Conference, 
Guteborg, July  2001. 
[6] Schagaev I. Reliability of malfunction 
tolerance, PP733-737. Proc. Comp science and 
Information Technology Conf. , IMCIT08

 

530 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



SESSION

INFORMATION SHARING NETWORK SYSTEMS
AND SERVICES ACHIEVING HIGH

DEPENDABILITY, EFFICIENCY AND USABILITY

Chair(s)

Prof. Hiroaki Nishikawa

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 531



532 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



A Concept of Community Care System and Community 

Information Network 
 

Ayami Manaka1, Akio Ogata2, Hirohide Matsuzaka2, Hayato Taniguchi2, Masaya Nomoto2, 

Minoru Fukuzaki2, Hiroshi Ishii2, Yasuhiro Nozawa3, and Keisuke Utsu2 
1Graduate Sch. of Information and Telecommunication Engineering, Tokai University, Minato City, Tokyo, Japan 

2Sch. of Information and Telecommunication Engineering, Tokai University, Minato City, Tokyo, Japan 
3Collaboration Project Section, Minato City, Tokyo, Japan 

 

Abstract - To enable the citizens to send their safety 

information using smartphones to the city government or its 

branches, we are studying and developing Community Care 

System (CCS). We are taking into account of real 

circumstances in Minato City, Tokyo, Japan, as a model case 

of CCS. In addition, we also developing Community 

Information Network (CIN), which is a network service 

platform to support CCS. CIN provides CCS with connectivity 

between citizen’s smartphones and servers of city government 

and at the same time provides access from not only citizen but 

tourism to the Internet. This paper reports the concept of the 

CCS, the prototype development of one of CCS functions 

(services), the concept of CIN, and the prototype development 

of access point devices of CIN. 

Keywords: Community, Application, Network  

 

1 Introduction 

  Japanese society is aging rapidly that results in the 

increase of the number of elderly people that are living alone. 

Traditionally, people living in a close-knit community have 

helped each other out. Today, such social ties are becoming 

weaker particularly in urban areas, which is making it 

difficult to confirm the well-being of elderly or physically 

handicapped people on a daily basis. The problem is 

becoming more and more serious because confirmation of 

their well-being depends on inefficient ways such as 

telephone calls or visits made by social workers who are 

increasingly overstretched and in short supply. 

 One solution of this problem is to improve the efficiency 

of collecting and sharing the information on the well-being of 

these vulnerable people on a regular basis using mobile 

devices such as smartphones and tablet PCs which are now 

widely used in Japan. Japan has a well-developed 

communication infrastructure. According to a report by the 

Ministry of Internal Affairs and Communications, the 

percentage of smartphone users aged 60 or older is rapidly on 

the rise. It was 7.3% in fiscal year 2013 compared to 3.4% in 

the previous year [1]. The authors expect that this percentage 

will continue to increase rapidly in the near future as people 

in their 50s and early 60s, who routinely use their 

smartphones for business and private purposes, join the ranks 

of the elderly. 

  In light of the above circumstances, we are 

developing, in collaboration with the Minato Ward Office in 

Tokyo, a community care system (CCS) that is designed to 

meet local needs for confirming the well-being of the elderly 

on a regular basis. An experiment is being conducted in an 

area in Takanawa, Minato city, Tokyo. This area was chosen 

as a model case because the Minato Ward has a dense 

population in which the proportion of elderly people is rising 

rapidly and will come to characterize many other localities in 

Japan in the near future. This paper reports the concepts of 

CCS and the prototype development of one of the functions 

(services) of CCS. 

 In addition, we are developing a Community 

Information Network (CIN) which supports CCS application 

by providing wireless LAN (Wi-Fi) connections, in the area. 

The paper also reports the concepts of CIN and the prototype 

development of access point (AP) devices. 

 The rest of the paper is organized as follows.  Section 2 

introduces the concept of CCS and the prototype development 

of the system which is one of the functions (services) of tCCS. 

Section 3 introduces the concept of the CIN and the prototype 

development of AP devices. Lastly, Section 5 summarizes 

this paper. 

2 Community Care System, CCS 

2.1 Concept of CCS 

In the near future, an insufficiency of the support staffs 

becomes more serious due to progression of aging. The 

number of people who have no support person for the daily 

or emergency situations will be increased. We develop CCS 

to tackle the above problems by realizing the following 

functions 1) and 2).  

1) Safety confirmation for elderly and/or handicapped 

people 

The safety confirmation for elderly people and handicapped 

people is made by telephone and patrols by social workers. 

However, the ways are insufficient solutions in the 

metropolitan area such as Minato city. There is another way 

to apply services which are provided by network carriers or 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 533



communication device manufacturers. However, the 

installation and running costs are so expensive that the way is 

difficult to apply in the areas.  Therefore, an alternative way 

which can be realized at a low cost is needed. 

2) Local information notifications by the local 

government: 

Local information such as daily information, event 

announcements, and emergency notifications are provided by 

message boards, handbills, and radio broadcast in general. 

The information provision should be realized more quickly 

and certainly. 

2.2 Outline of the safety confirmation and notification 

system 

We are planning to build up the CCS in step-by-step 

manner. As the first step, we develop the prototype of the 

safety confirmation and notification service system. This 

system is server-client based and application software is 

defined in each side of server and user. 

 This system assumes that the necessary servers are 

installed in the ward office and/or its branch offices and that 

users, i.e., elderly people, have smartphones. The 

administrator at the ward office or a branch office sends users 

a message containing an inquiry about their well-being and a 

list of possible answers. The user can send a response to the 

question by simple touch operation (selection of answer) on 

his/her smartphone. Then, the administrator confirms 

responses from the users and takes appropriate action if 

needed. In an actual operation, the messages will be sent 

regularly. Since the system facilitates the workload reduction 

for the ward office staffs and social workers, it can contribute 

to realizing the function 1) in Section 2.1. In addition to the 

inquiry messages, daily information, event announcements, 

and emergency notifications are also sent to the citizen. By 

sending those information by the system, to the citizen, the 

citizens can share the information more quickly and certainly. 

Hence the system can contribute to realizing the function 2) 

in Section 2.1. 

2.3 The prototype of the safety confirmation and 

notification system 

 The prototype of the safety confirmation and 

notification system is configured as shown in Fig. 1. Our 

experimental system uses a virtual machine on Amazon 

Elastic Compute Cloud (Amazon EC2), which is an IaaS 

(Infrastructure as a Service). The OS of the server is Ubuntu 

14.04 LTS. A Web server, Apache2, and a database, MySQL, 

run on it. The server side application is implemented using 

PHP (Hypertext Processer). The user needs to have a 

smartphone or a tablet that runs on Android (version 4.0 or 

higher), and also to be in an environment that allows access to 

the Internet. The implementation on other platforms is a 

further issues to be studied. The implementation of the 

application on other OSs will be studied in the future. 

 

 
Fig. 1 System prototype configuration of the safety 

confirmation and notification system  

 

2.3.1 Server side application 

 The administrator logs into the system by entering 

his/her user name and password. After that, Admin screen #1 

(Fig. 2) appears. It has “Notify”, “Confirm” and Register” 

buttons. The administrator registers users in advance on 

Admin screen #2 (Fig. 2). The server identifies a user 

terminal using the MAC address of the Wi-Fi communication 

device mounted on the terminal because a MAC address is 

unique to each terminal. 

 The administrator composes a request for information 

about the user’s general condition on Admin screen #3 (Fig. 

2). The administrator enters a question and possible answers 

on this screen and can also include information about 

precautions in daily life and upcoming events in the request 

message. When the administrator clicks the Send button, the 

request message is sent to user terminals. 

 The administrator can read user responses on Admin 

screen #4 (Fig. 2). The information on this screen is updated 

in real time as responses arrive. The list of response messages 

can be sorted by user name, question, answer, and response 

date and time. 

2.3.2 Users side application 

 Messages requesting information about the well-being 

of users are sent to user terminals via the Internet. The request 

information is automatically displayed on the user terminal 

screen. The user can reply by simple touch operation because 

a list of possible answers to choose is displayed. For example, 

to the question “Please answer your health condition.”, 

possible answers are: “Reply 1: Good”, “Reply 2: Not good”, 

“Reply 3: I need consultation / I have a question” and “Reply 

4: Nearby people are in trouble .”  

534 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



2.4 Example of use 

Examples of messages, questions, and answer choices 

assumed to be sent are as follows. 

 

Example 1: general notifications and questions 

 Message: In Minato city, the highest temperature will be 

more than 35 degrees Celsius (95 degrees Fahrenheit) 

today. Please be careful about heat stroke. 

Please answer your health condition. 

 Answer choice 1: Good 

 Answer choice 2: Not good 

 Answer choice 3: I need consultation / I have a question 

 Answer choice 4: Nearby people are in trouble 

 

Example 2: event announcements and questions 

Message: In Minato city, x festival will be held at x park 

at 10:00am, Today. Please come and visit. Please answer 

your health condition. 

 Answer choice 1: Good 

 Answer choice 2: Not good 

 Answer choice 3: I need consultation / I have a question 

 Answer choice 4: Nearby people are in trouble 

 

Example 3: emergency notifications and questions 

 Message: We have just experienced a big earthquake in 

Minato City. Tsunami will not occur. Please answer your 

safety. 

 Answer choice 1: Safe and not injured 

 Answer choice 2: Minor injured but can move 

 Answer choice 3: Can’t move 

 Answer choice 4: Nearby people are in trouble 

 

Example 4: emergency notifications and questions 

 Message: A typhoon is coming soon. Please refrain from 

unnecessary going out. Please answer your health 

condition. 

 Answer choice 1: Good 

 Answer choice 2: Not good 

 Answer choice 3: I need consultation / I have a question 

 Answer choice 4: Nearby people are in trouble 

 

2.5 Issues to be improved 

 In the future, we plan to improve the following issues of 

the prototype system.  

 Each number of people who made each choice should be 

visible on the administrator side. 

 In particular, since a person may be identified by using 

information such as date of birth, there are some citizens 

who hesitate to register such personal information. 

 The safety information of the citizen who requires daily 

support should be highlighted. 

 The system should enable the citizen to upload 

optionally his present location which is obtained by GPS 

(Global Positioning System) on his terminal. 

 

Fig. 2 Screen transition of CCS application 

Admin screen #3 Admin screen #4

Admin screen #1

Administrator

User terminal screen #2User terminal screen #1

Admin screen #2

User

Request Reply

replied

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 535



 Since city newsletters are published every 10 days, the 

inquiry and notification message should be sent with 

them. It can be expected that the administrator obtain the 

responses from the citizens more certainly. 

3 Community Information Network, CIN 

3.1 Needs of CIN 

 As locally launched communication network services, 

access points have been equipped to provide tourists with 

public Wi-Fi services in Japan [2][3]. On the other hand, as a 

technology, IEEE802.11s mesh network has been studied [4]. 

Hence, CIN will make the most of those services. We 

consider that there are following 2 requirements to realize the 

CIN. 

1) The CIN makes it possible for the residents and/or 

tourists to be provided the internet connection service by 

deploying Wi-Fi APs. As a result, CIN makes it possible 

for the users to use the application everywhere in the 

city even when the infrastructures of communication 

carriers are unavailable due to disasters. 

2) Even when the infrastructures of communication carriers 

are unavailable due to disasters, CIN makes it possible 

for the users to use the application. 

3.2 Concept of CIN 

 To satisfy the requirements and at low costs, we are 

considering CIN as follows.  

 First let us consider the AP. In Merry Road Takanawa 

area, many streetlamps have been equipped by Minato-city 

government. An example of a streetlamp is shown in Fig.3. 

As an interval between any two streetlamps is around 20 

meters, we assume to equip the APs on these streetlamps. 

Each AP is assumed to be furnished with 2 radio interfaces. 

The one interface runs ad hoc mode to communicate with 

other APs, and the other one runs infrastructure mode to 

communicate with user terminals in its coverage. 

 Next, the CIN is composed of a number of sub-areas, 

each of which is composed of several APs, as shown in Fig. 4. 

An AP in each sub-area is a gateway to other sub-areas and/or 

the external network (Internet). How to realize the 

connections among sub-areas and between the CIN and the 

internet needs further study.  The network performance of 

broadcast and unicast communication among APs in for a 

model assuming of the CIN sub-area by network simulations 

are shown in [5][6].  

 

Fig. 3 An example of a streetlamp at Merry-road Takanawa 

 

 

Fig.4 CIN and CCS application 

 

3.3 Prototype development of AP 

 To facilitate the development of the practical APs to 

deploy CIN in the future, we develop and evaluates a 

prototype AP by use of a Raspberry Pi board [7]. The board is 

a low cost and single-board microcomputer and equips an 

ARM processor, developed by Raspberry Pi Foundation in 

the United Kingdom. Since the board is low price, Linux-

compliant, and it runs with a low energy consumption, we can 

easily implement the AP functions on it. 

  Two wireless LAN adaptors are installed in each AP. 

The one is running as the ad hoc mode for the inter-AP 

channel (IF0) for multi-hop LAN, and the other one is 

running as the infrastructure mode for connections with the 

user terminals (IF1). This study adopts Raspberry Pi Type B 

as shown in Fig.5. We develop a set of 4 APs by Raspberry Pi 

type B boards with the spec shown in Table 1. The board is 

credit card sized. It has a CPU, 2 USB ports, a HDMI port, 

and a Wired LAN port. The OS of the board is Raspbian OS, 

on top of which necessary functions are implemented. Two 

USB connected wireless LAN adaptors are installed on the 

board. The adaptor for IF0 is running on the ad hoc mode and 

uses IEEE802.11g as the MAC layer. The adaptor for IF1 is 

running on the infrastructure mode by hostapd [8], and uses 

IEEE802.11g as the MAC layer. 

536 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



 A multi-hop network is constructed by the static routing 

as shown in Fig.6. Actually, a dynamic routing protocol 

should be applied to the routing. A suitable routing protocol 

will be adopted in the further study. In the experiment, the 

number of APs between the user terminals (n) is assumed to 

be 2, 3, or 4, i.e. the number of hops in the inter-APs channel 

(n-1) becomes 1, 2, or 3, For each of three cases, the 

throughputs are evaluated. User terminals x and y are 

connected to AP_0 and AP_n, respectively. The experiment is 

made in indoors. The distance between the adjacent APs and 

that between the AP and the user terminal are 10m. User 

terminal x generates traffics using Netperf [9]. In the 

measurement of the TCP throughput, the maximum volume 

of the load (i.e. line rate) is generated, then the throughput is 

calculated by the volume of the exchanged traffic. In the 

measurement of the UDP throughput, the maximum volume 

of the load is generated, then the throughput is calculated by 

the volume of the received packets at User terminal y.  

 The throughput of TCP and UDP were observed for 60 

samples, the maximum 5 and minimum 5 samples were 

discarded, and then 50 samples were evaluated. The 

mesurement results are shown in Fig. 7. The deviation bars in 

the graphs show the standard deviations of the evaluated 

values. Here, the throughput values were decreased as the 

number of hops increased. This was due to contention 

resolution mechanisms in CSMA/CA (Carrier Sense Multiple 

Access Collision Avoidance) on the wireless LAN MAC 

layer.  

 In the future, we plan to develop the practical and cost-

effective APs and also study and implement a suitable 

dynamic routing protocol on them. Finally we will execute 

field tests by deploying the APs in the town street. 

Table 1  Spec of Raspberry Pi Type B board 

CPU BCM2835, 700MHz 

RAN 512MBytes 

USB port 2 ports 

Board size 3.370 in × 2.22 in 

Price USD 35.00 

 

 

 

Fig. 5 Raspberry Pi board 

 

 

 

Fig. 6 Network composition of the experiment 
 

 

Fig. 7 Experiment result of TCP and UDPthroughput 

 

4 Summary 

 We are studying to develop CCS and CIN taking the real 

situations in Takanawa, Minato city, Tokyo, as a model case. 

This paper introduced the concept of CCS and CIN. As CCS, 

the paper showed the development and test installation of the 

safety confirmation and notification system which is one of 

the functions of CCS. In the future, we plan to make the test 

installation of the system and to improve it. As CIN, the paper 

showed the prototype development of the AP devices. The 

multi-hop wireless network was configured and the 

throughput was evaluated in the experiment. In the future, we 

plan to make field tests using them. 

5 Acknowledgments 

This study has been supported by the following funds. 

 COC (Center of Community), Ministry of Education, 

Culture, Sports, Science and Technology, Japan 

 KAKENHI 26420372, Japan Society for the Promotion 

of Science. 

6 References 

[1] Ministry of Internal Affairs and Communications， 

Japan, 

http://www.soumu.go.jp/johotsusintokei/statistics/data/

140627_1.pdf, 2014 

2.52 

1.48 1.34 

5.10 
4.62 

2.22 

0.00

1.00

2.00

3.00

4.00

5.00

6.00

1 2 3

The num. of hops in the inter-AP channel

T
h
ro

u
g
h
p
u
t 

[M
b
p
s]

TCP Throughput UDP Throughput

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 537



[2] Kobe City, “KOBE Free Wi-Fi,” 

http://www.city.kobe.lg.jp/information/press/2014/07/2

0140704142001.html 

[3] Fukuoka City, “Fukuoka City Wi-Fi,” 

http://www.city.fukuoka.lg.jp/wi-fi/ 

[4] Shiro Sakata, Akira Yamada, Hiroyuki Iizuka, Tetsuya 

Ito, “Trend on Wireless LAN Mesh Network,” J. IEICE, 

Vol.92, No.10, pp.841-846, 2009 

[5] Ayami Manaka, Keisuke Utsu, Chee Onn Chow, 

Yasuhiro Nozawa, Minoru Fukuzaki, Hiroshi Ishii, An 

Application of Broadcast Based Information Sharing 

System to A Community Information Network”, 

MJIIT-JUC Joint International Symposium 2014, 

1570022779, 2014 

[6] Ayami Manaka, Tomomi Itoh, Yasuhiro Nozawa, Chee 

Onn Chow, Minoru Fukuzaki, Hiroshi Ishii, Keisuke 

Utsu, "Performance Evaluation of a Community 

Information Network for a Daily Life Support System", 

the 2015 International Conference on Parallel and 

Distributed Processing Techniques and Applications 

(PDPTA'15), 2015 

[7] Raspberry Pi, https://www.raspberrypi.org/ 

[8] hostapd, http://w1.fi/hostapd/ 

[9] Netperf, 

http://www.netperf.org/netperf/NetperfPage.htm  

538 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



Performance Evaluation of A Community Information 

Network for A Daily Life Support System 
 

Ayami Manaka1, Tomomi Itoh2, Yasuhiro Nozawa3, 

Chee Onn Chow4, Minoru Fukuzaki2, Hiroshi Ishii2, and Keisuke Utsu2 
1Graduate Sch. of Information and Telecommunication Engineering, Tokai University, Minato, Tokyo, Japan 

2Sch. of Information and Telecommunication Engineering, Tokai University, Minato, Tokyo, Japan 
3 Collaboration Project Section of Minato City, Minato City, Tokyo, Japan 

4Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia 

 

Abstract - We are studying a daily life support system for 

citizens which consists of Community Care System (CCS) 

application and Community Information Network (CIN). CIN 

provides CCS application with network service by use of 

wireless LAN (Wi-Fi) connections. The study takes into 

account of the actual circumstance in Minato city, Tokyo, 

Japan, as a model case. The CIN is composed of  multiple Wi-

Fi access points (APs), multi–hop links among APs, and 

wireless terminals under each AP. This study evaluates the 

network performance of broadcast and unicast 

communication among APs for a model of CIN by network 

simulations. 

Keywords: Community Information Network, Wireless LAN, 

Simulation 

1 Introduction 

  We are studying a daily life support system for citizens 

which consists of Community Care System (CCS) 

application and Community Information Network (CIN) 

which supports the application by providing wireless LAN 

(Wi-Fi) connections. CCS application and CIN are assumed 

to be deployed in Takanawa area, Minato-city, Tokyo, Japan, 

as a model case [1][2]. This paper shows the performance 

evaluation of CIN by network simulations.  

 As a preliminary evaluation, we assume that the CIN is 

made of only “one” sub-area and that it is closed (without 

connection the external network). We assume two types of 

communications. The one is the broadcast communications, 

as shown in Fig.1. A public office and/or its branch office in 

a sub-area generates information, and it is delivered to all the 

nodes in the sub-areas. The other one is the unicast 

communication between the public office and/or its branch 

office and the user terminal in the subarea, as shown in Fig.2. 

In this paper, the performances of broadcast and unicast 

communication are evaluated by the network simulation. 

 Sections 2 and 3 show simulation evaluation on several 

performance items for both the broadcast and unicast 

communications. Lastly, Section 4 concludes the paper. 

2 Broadcast communication in the CIN 

sub-area 

 Here, we consider the case where information is 

broadcast in the network without any specific destination. The 

broadcast is very useful to distribute some information over 

the network. As shown in Fig.1, the information generated at a 

city government or its branch office is firstly transferred to the 

APs, and then each AP distributes the information to the user 

terminals connecting to the AP. In addition to the above case, 

there are cases where the user terminals generate the 

information, i.e. the information is generated by unspecific 

terminals under the APs. Anyway, first of all, the generated 

information should be certainly delivered to each AP. 

 The content types of the information will be images, 

voices, and text data, whose size usually exceeds the payload 

size of a packet so that the information are divided into 

multiple packets. Therefore, even if one of the packets of the 

information is lost (an unreached packet), the information 

cannot be reassembled at the receiving side. One of the 

popular broadcast delivery methods; Simple flooding (SF), 

and its improved methods have been used usually in mobile 

ad hoc networks [3][4]. However, these methods cannot 

perform the sufficient performance such as reachability and 

efficiency because these method cannot complement 

unreached packets. On the other hand, BBISS (Broadcast 

Based Information Sharing System) [1] can deliver the 

information composed by multiple packets with high 

efficiency and reliability. The system can run on the wireless 

LAN in ad hoc mode, and it can deliver information using 

broadcast transmission.  

 The outline of BBISS is as follows. Below “send” 

means ”broadcast” in this section. As a matter of fact, the 

information is generated by nodes connecting to APs. In our 

assumption, since the channels among APs and that for the 

user terminals to APs are independent, the information can be 

assumed to be generated by APs. First of all, the information 

initiator node which starts information transmission divides 

the information into multiple packets (Here, since this paper 

focuses on the communication among APs, any AP(s) will be 

the initiator node), and sends the packets sequentially with a 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 539



fixed time interval which is determined by send_interval (as 

Sending state in Fig.3). Then the packets are received by a 

node around the initiator node (as Receiving state in Fig. 4). 

 A node that has received all packets does not 

immediately relaying them but waits during a random period. 

During the period, the node listens to other nodes and counts 

the number of nodes relaying the same information that it has. 

If the number of relaying nodes reached to a predetermined 

threshold (relay_threshold), the relaying by itself is canceled. 

The operation can save redundant relays and reduce traffic 

load. After the period, if the number of relaying nodes is not 

reached to relay_threshold, the node relays the information 

(as Sending state in Fig.3). 

 In the architecture, unreached packets may possibly be 

complemented by redundancy of broadcast transmission. In 

the case where the unreached packets cannot be 

complemented (as the right bottom node in Fig.5), a NACK 

(Negative Acknowledgments) based retransmission control is 

operated as shown in Fig.6. The number of trials to send 

retransmission request packet is limited to a predetermined 

threshold (req_threshold). 

 In the following we evaluate the performance of 

broadcast communication among APs by the network 

simulation. 

 City government 
or its branches

 
Fig. 1 Broadcast communication on the CIN sub-area 

 

 City government 
or its branches

 
Fig.2 Unicast communication to the user terminal on the CIN 

sub-area 

2.1 Condition of the simulation 

 We use OPNET Modeler 17.5 as a network simulator 

[5]. The simulation area size can cover Merry Road Takanawa 

Street. The APs are assumed to be equipped there covering 

the street in about 100m intervals, as shown in Fig. 7. The 

radio communication range (transmission radius) is 150m. 

The MAC layer protocol is IEEE802.11a, and the data rate is 

54Mbps. 

 AP1, 6, and 8 are in one hop radio range of AP0. AP2 

and 7 are in the two-hop range from AP0. AP3 is reachable 

with three hops from AP0. AP4 and 5 are four hops away 

from AP0. The radio channel for inter-APs and that for the 

AP to user terminals are assumed not to interfere each other. 

In the simulation, traffic is assumed to be generated from the 

AP. 

Initiator

(Sender)

broadcast

SendingReceiving

Receiving

Receiving

Receiving

 

Fig.3 Sending and Receiving states in BBISS 

Relay decision Relay decision

Relay decision Receiving

2 packets

unreached

Retrans. wait.

 

Fig.4 Relay decision state in BBISS 

Sending Sending

Relay decision Receiving

2 packets

unreached

Retrans. wait.

 

Fig.5 Relay decision and Sending states in BBISS 

Retrans.Req
Packet

Retrans.
Packet

Retrans. send.

Retrans. req.

 

Fig.6 Retransmission operation for complementing 

unreached packets in BBISS 

 

540 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



  

200m

: AP

AP0

AP2

AP4

AP7

AP1

AP3

AP6

AP5

AP8

 
Fig. 7 Assumption of the APs’ placement 

 

 The simulated information transfer methods are SF and  

BBISS, and the performances of them are compared. For SF, 

we set up two parameter sets: SF-A and SF-B are simulated. 

As SF-A, send_interval is set 0.032s, and the random waiting 

time for the packet relaying is randomly selected from the 

range of (0.032, 0.320)s. As SF-B, send_interval: 0.032s, and 

the random waiting time: in the range of (0.064, 0.640)s. For 

BBISS simulation, send_interval is set 0.032s, and the 

random waiting time for the information relaying is chosen 

from the range of (0.032, 0.320)s. The other parameters for 

BBISS are set according to [6], that is, relay_threshold is set 

2, and req_threshold is set 3. 

 As described before we assume information is generated 

by APs. The numbers of APs generating the information 

simultaneously (source APs) are 1 (AP0, in Fig.7), 2 (AP0 

and AP2), or 4 (AP0, AP2, AP4, and AP7). The larger the 

number is, the heavier the traffic load is. The data size of the 

information is 100kByte, and payload_size (the payload size 

of each packet) is 1024 Byte, i.e. one information is 

composed of 100 packets. The number of information 

transmission is 10. 

2.2 Evaluated items 

The following 2 items are evaluated. 

(i)The number of information receiving APs 

The number of APs that has received information 

successfully is calculated for each generated information. Here, 

the source APs are not included. Then, the numbers for all 

generated information are averaged. The larger number is, the 

better performance is. 

(ii) Information delivery time [s] 

The time between the information is generated at the source 

AP and received at the other APs (when all the packets 

belonging to the same information are received) is calculated. 

The AP could not receive the whole information are 

eliminated. The times for all receiving APs are averaged. The 

smaller the value is, the better the performance is. 

 

2.3 Simulation results and discussions 

(i)The number of information receiving APs 

 The simulation result is shown in Fig. 8. The 

deviation bar in the graph means the standard deviation. In SF, 

both SF-A and SF-B showed that as the number of source APs 

increased, the number of information receiving APs decreased 

due to data frame collisions. On the other hand, the numbers 

of information receiving APs are almost 8 regardless of the 

number of source APs. In other words, BBISS can deliver the 

information to almost all the APs. Since the AP relays the 

information just after the AP receives whole information, the 

traffic load is lighter than SF.  

(ii) Information delivery time [s] 

 The simulation result is shown in Fig. 9. The deviation 

bar in the graph means the standard deviation of the delivery 

time for each generated information (the case which has no 

difference of the delivery time is eliminated). In SF, SF-A 

showed about 3s, and SF-B showed about 6s. On the other 

hand, BBISS showed 7-9s, that was 1-3s longer than SF-B. 

Here, in the case that the number of source APs was 4, the 

delivery time was longer than those of 1 and 2 cases. It was 

because there were some unreached packets and the 

retransmissions were operated. Therefore, the delivery time 

for the latter case was lengthened. 

 The simulation results can be discussed as follows. In 

the broadcast communication in CIN, the generated 

information should be certainly delivered to each AP, i.e. the 

most important metric for the delivery methods is the 

reachability. The result showed that BBISS was proved to 

perform higher information reachability regardless of the 

instantaneous traffic load. Therefore, BBISS has higher 

applicability for the broadcast information delivery among the 

APs than SF. However, the delivery time for BBISS was 

longer than that for SF. The delivery time shortening of 

BBISS is a further issue. 

 The simulation environment in this paper assumed to 

have rather small number of APs, or the low node density. 

Our previous paper, however, shows that BBISS in the high 

node density (with high redundancy) can achieve better 

delivery performance than that in the low node density. We 

have to study the optimum number and placement of the APs 

in the future. In case where we adopt broadcast transfer 

method in CIN, we can conclude that BBISS is the 

appropriate candidate.  

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 541



 

0

2

4

6

8

10

1 2 4

T
h

e 
n

u
m

. 
o

f 

in
fo

rm
at

io
n

 r
ec

ei
v

in
g

 A
P

s

The num. of source APs

SF-A

SF-B

BBISS

 
Fig. 8 Simulation result for the average number of information 

receiving APs 

 

 

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

1 2 4

D
el

iv
er

y
 t

im
e[

s]

The num. of source APs

SF-A

SF-B

BBISS

 
Fig. 9 Simulation result for the average delivery time 

 

3 Unicast communication in the CIN 

sub-area 

In the section, we evaluate throughput of unicast 

communication in the CIN sub-area. APs’ placement is the 

same as Section 2.1. We assume that any unicast 

communication is made between AP0 and other APs, that is, 

the gateway node is AP0, which is located in Takanawa police 

station. The routing protocol for multi-hop communications 

among the APs is Optimized Link State Routing (OLSR) [7] 

that is pre-installedon the simulator. However, the appropriate 

routing protocol among the APs is our further study. 

3.1 Evaluation 1: Evaluation of the UDP maximum 

throughput among the APs 

We evaluate the UDP maximum throughput between AP0 

and each AP.  No background traffic is assumed. In the 

evaluation, each AP (AP1, 2, ..., or 8) generates the traffic 

load to AP0 by  constant bit rate (CBR)  with the bit rates 

1.00, 2.00, 3.00, 4.00, 8.00, …, or 40.00Mbps. The packet 

size is 1400Byte which assumes a normal packet size of about 

Web browsing using HTTP (Hyper Text Transfer Protocol). 

The evaluation result is shown in Fig.10. To understand the 

figure clearly, the throughputs between AP0 and each of AP1, 

2, 3, 4, and 6 are shown in Fig.10 (a). The throughputs 

between AP0 and each of AP5, 7, 8 are shown in Fig.10 (b). 

The throughput is about 29Mbps between AP0 and each of 

AP1, 6, and 8 which are in one-hop neighboring area of AP0. 

The throughput is about 12Mbps between AP and each of AP2 

and 7 which are two-hop neighboring area of AP0. The 

throughput is about 7Mbps between AP0 and AP3 that is three 

hops away  from AP0. Then, the throughput between AP0 and 

AP4 that is four hops away  from AP0 is about 5Mbps. 

The evaluation results show that the network model 

covering Merry Road Takanawa area can perform at least 

5Mbps throughput. We can guess the comparable throughput 

can be expected for the comparable scale with our model. 

  

0.00

8.00

16.00

24.00

32.00

0.00 8.00 16.00 24.00 32.00 40.00

T
h

ro
g

h
p

u
t[

M
b

p
s]

Load[Mbps]

AP1, AP6 - AP0 AP2 - AP0 AP3 - AP0 AP4 - AP0

 
(a) Throughput between AP0  and AP{1, 2, 3, 4, 6} 

 

  

0.00

8.00

16.00

24.00

32.00

0.00 8.00 16.00 24.00 32.00 40.00

T
h

ro
g

h
p

u
t[

M
b

p
s]

Load[Mbps]

AP5 - AP0 AP7 - AP0 AP8 - AP0

 
(b) Throughput between AP0 and AP{5, 7, 8} 

 

Fig.10 Evaluation 1: UDP maximum throughput between 

AP0 and each of AP1-8 

 

3.2 Evaluation 2: Evaluation of the HTTP 

communication performance 

To know the characteristics of actual communication 

service, we evaluate the HTTP communication performance 

from the user terminals under the APs. As mentioned before, 

since the radio channel for inter-APs and that for the AP to 

user terminals are assumed not to interfere each other, HTTP 

request is assumed to be generated from the AP, i.e. each AP 

is a assumed to be the user terminal(s). A web server is 

assumed to be AP0. 

Simulation duration is 600 seconds. During the simulation, 

each user terminal sends the web page download requests to 

the web server based on a built-in communication model 

542 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



named "Heavy Browsing", which is shown in Table 1. The 

time interval of the download request transmissions is based 

on exponential distribution (average 1 / λ = 60 [s]). The 

number of user terminals under each AP is set 1, 4, 8, …, or 

24. Since the total number of APs excluding the AP0 is 8 and 

we assume same number of terminals exist per AP, the 

number of user terminals in the entire network is 8, 32, 64, ..., 

or 192. 

We evaluate the expected download response time at a user 

terminal. Here, the download response time means the time 

between a HTTP request packets is generated and the 

requested contents is downloaded completely at the AP. The 

download response time is observed in each AP. The median 

value of download response time of all communications made 

during the simulation (we used the median value in order to 

eliminate the effect of specifically large value). The 

evaluation result is shown in Fig.11. To show the results 

clearly, the results for AP1, 2, 3, 4, and 6 are shown in Fig.11 

(a), and those for AP5, 7, and 8 are shown in Fig.11 (b). In the 

cases for the number of user terminal was smaller than 16 

under each AP, download response time was expected within 

5 seconds in any APs. On the other hand, in the cases for the 

number of the user terminal under the AP was more than 16, 

the download response time was drastically increased. 

Below, the expected HTTP throughputs against the number 

of connecting nodes under each AP are evaluated. The 

throughput is calculated as total amount of successfully 

received web page data divided by the total download 

response time at the AP. To show the results clearly, the 

throughputs observed in the terminals under AP1, 2, 3, 4, and 

6 are shown in Fig.12 (a), and those under the AP5, 7, and 8 

are shown in Fig.12 (b). The results showed that as the 

number of user terminals under the AP increased the expected 

throughput in the user terminal decreased. 

Table 1 Contents included in a web page downloaded by an 

user terminal for “Heavy Browsing” model 

 

Contents 
Number 

of data 

Data of 1000Byte, assuming text data, etc. 1 

Data size of uniform distribution in the range of 

(500, 2000)Byte, assuming a medium-sized image 
5 

Data size of uniform distribution in the range of 

(10000, 350000)Byte, assuming a short video 
2 

 

 

  

0

5

10

15

20

25

1 4 8 12 16 20 24

M
ed

ia
n 

of
 d

ow
nl

oa
d 

re
sp

on
se

 ti
m

e 
[s

]

Num. of connecting nodes at each AP

AP1

AP2

AP3

AP4

AP6

better

 
(a) AP1, … , 4, and 6 

 

  

0

5

10

15

20

25

1 4 8 12 16 20 24M
ed

ia
n 

of
 d

ow
nl

oa
d 

re
sp

on
se

 ti
m

e 
[s

]

Num. of connecting nodes at each AP

AP5

AP7

AP8

better

 
(b) AP5, 7, and 8 

 

Fig.11 Evaluation 2: HTTP download response time 

 

  

0.00

1.00

2.00

3.00

4.00

5.00

1 4 8 12 16 20 24

H
T

T
P

 t
h

ro
u

g
h

p
u

t 
[M

b
p

s]

Num. of connecting nodes at each AP

AP1

AP2

AP3

AP4

AP6

better

 
(a) AP1, 2, 3, 4, and 6 

 

  

0.00

1.00

2.00

3.00

4.00

5.00

1 4 8 12 16 20 24

H
T

T
P

 t
h

ro
u

g
h

p
u

t 
[M

b
p

s]

Num. of connecting nodes at each AP

AP5

AP7

AP8

better

 
(b) AP5, 7, and 8 

 

Fig.12 Evaluation 2: expected HTTP throughput at user 

terminals 

 

 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 543



The simulation result of the number of pages downloaded 

successfully in the network is shown in Fig.13 for reference. 

As the number of user terminals under each AP increased, the 

number of pages successfully downloaded was supposed to 

increase linearly. However, in the case for the number of 

communication nodes under each AP was more than 16, the 

number of pages successfully downloaded did not increase 

linearly. Finally, in the case for the number of communication 

nodes under each AP was more than 16, the number of pages 

successfully downloaded decreased, therefore the network 

falls into the congestion.  

Moreover, we can guess the comparable HTTP throughput 

and download response time can be expected for the 

comparable scale with our model (comparable network scale 

with this study and similar number of the user terminals under 

each AP). 

  

0

200

400

600

800

1000

1200

1 4 8 12 16 20 24

N
u
m

.
o
f 

su
cc

es
sf

u
l 

d
o
w

n
lo

ad

Num. of connecting nodes at each AP  
Fig.13 Evaluation 2: Number of successful download 

 

3.3 Evaluation 3: Evaluation of the throughput of 

uniform loads to each AP 

To know the fairness among each pair of AP0 and other AP 

and maximum throughput when multiple connections are set 

up simultaneously, we study the throughput when the UDP 

load is uniformly given among each AP pair. The uniform 

UDP load of Constant Bit Rate (CBR) is generated from AP0 

(gateway AP) to each AP or from each AP to AP0 and then 

the throughput is evaluated per an AP pair. 

The evaluation result is shown in Fig.14. The transmission 

from AP0 to each AP is described as “down” (assuming 

downloading from AP0). Also the transmission from each AP 

to AP0 is described as “up” (assuming upload to AP0). The 

dotted line in the figure means the ideal throughput, which is 

the line of load = throughput. The evaluation result showed 

that the ideal throughput was achieved in the cases where the 

load was 1.2Mbps or less in both cases for "up" and "down". 

In other words, the network model can fairly perform 

1.2Mbps throughput to each AP. In addition, the similar 

throughputs can be expected on a network, which has the 

similar network scale in this study and has the similar number 

of the user terminals under each AP. 

  

0.00

0.40

0.80

1.20

1.60

2.00

0.00 0.40 0.80 1.20 1.60 2.00

A
v
er

ag
e 

th
ro

g
h
p

u
t 

[M
b
p
s]

 

Load per flow [Mbps]

Ideal throughput Average throughput (down) Average throughput (up)
 

Fig.14 Throughput for each AP against an uniform UDP 

load for APs 

3.4 Discussions 

The performance for the unicast communication in CIN is 

evaluated in this section. The simulation results shows that we 

can expect the performance as follows. 

 Evaluation 1: the network model can perform at least 

5Mbps for the UDP maximum throughput between AP0 

and each AP. 

 Evaluation 2: the network model may fall into congestion 

when there are greater than 16 user terminals browsing by 

HTTP heavily under each AP. 

 Evaluation 3: the network model can fairly perform 

1.2Mbps for the UDP throughput to each AP 

We can guess the comparable throughput can be expected to 

perform on a network, which has the comparable scale with 

our model. 

4 Conclusion 

This paper discussed Community Information Network 

(CIN) which is assumed to be deployed in Merry Load 

Takanawa Street, Minato-city, Tokyo, Japan, as a model case. 

The performance are evaluated for both broadcast 

communications using BBISS among APs and the unicast 

communications by the network simulations.  

As a result, for broadcast communications among APs, The 

result showed that BBISS was proved to perform higher 

information reachability regardless of the instantaneous traffic 

load. Therefore, BBISS has higher applicability for the 

broadcast information delivery among the APs than SF. 

However, the delivery time for BBISS was longer than that 

for SF. The delivery time shortening of BBISS is a further 

issue. 

For the unicast communications, we discussed the expected 

communication performance of the communication among 

544 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



APs. The fisrt evaluation, related to the UDP maximum 

throughput among the APs, showed that the network model 

can perform at least 5Mbps for the UDP maximum throughput 

between AP0 and each AP. The second evaluation, related to 

the HTTP communication performance, showed that the 

network model may fall into congestion when there are 

greater than 16 user terminals browsing by HTTP heavily 

under each AP. The third evaluation, related to the throughput 

of uniform loads to each AP, showed that the network model 

can fairly perform 1.2Mbps for the UDP throughput to each 

AP. We can guess the comparable throughput can be expected 

to perform on a network, which has the comparable scale with 

the simulated model. Those results gave a good guide 

principles for designing the real CIN. 

In the future, we plan to develop actual CIN environment 

and CCS over it in Takanawa area. For the purpose, we will 

evaluate the performance of actually implemented CIN by 

installing the AP device in Takanawa area. 

 

5 Acknowledgments 

This study has been supported by the following funds. 

      COC (Center of Community), Ministry of Education, 

Culture, Sports, Science and Technology, Japan 

 The Science Research Promotion Fund, The Promotion 

and Mutual Aid Corporation for Private Schools of 

JapanThis study has been supported by KAKENHI 

26420372, Japan Society for the Promotion of Science. 

 

6 References 

[1] Ayami Manaka, Keisuke Utsu, Chee Onn Chow, 

Yasuhiro Nozawa, Minoru Fukuzaki, Hiroshi Ishii, “An 

Application of Broadcast Based Information Sharing System 

to A Community Information Network”, MJIIT-JUC Joint 

International Symposium 2014 (MJIIS2014), 1570022779, 

Malaysia,  2014 

[2] Ayami Manaka, Akio Ogata, Hirohide Matsuzaka, 

Hayato Taniguchi, Masaya Nomoto, Minoru Fukuzaki, 

Hiroshi Ishii, Yasuhiro Nozawa, and Keisuke Utsu, "A 

Concept of Community Care System and Community 

Information Network", the 2015 International Conference on 

Parallel and Distributed Processing Techniques and 

Applications (PDPTA'15), 2015 

[3] Brad Williams, Tracy Camp, “Comparison of 

Broadcasting Techniques for Mobile Ad Hoc Networks,” 

Proceedings of the 3rd ACM International Symposium on 

Mobile Ad Hoc Networking and Computing, pp. 194-205, 

2002 

[4] Yu-Chee Tseng, Sze-Yao Ni, Yuh-Shyan Chen, Jang-

Pinig-Sheu, “The Broadcast Problem in a Mobile Ad Hoc 

Network,” Wireless Networks Volume 8, Springer, Kluwer 

Academic Publishers, pp. 153-167, 2002 

[5] The network simulator OPNET, 

http://www.riverbed.com/products/performance-management-

control/opnet.html 

[6] Sayuri Wada, Hiroshi Ishii, Hiroaki Nishikawa and 

Keisuke Utsu, “An Optimization Study on Broadcast Based 

Information Sharing System (BBISS)”, the 2014 International 

Conference on Parallel and Distributed Processing 

Techniques and Applications (PDPTA’14) , pp.485-489,  

2014 

[7] T.Clausen, P,Jacquet, “Optimized Link State Routing 

Protocol (OLSR)”, Request for Comments: 3626, 

http://www.ietf.org/rfc/rfc3626.txt 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 545



A Study on Secure Communication Method Using Secret 
Sharing Schemes over MANET 

 
Kei Kobayashi1, Yosuke Totani2, Keisuke Utsu2, and Hiroshi Ishii2 

1Graduate School of Information and Telecommunication Engineering, Tokai University, Minato, Tokyo, 
Japan 

2School of Information and Telecommunication Engineering, Tokai University, Minato, Tokyo, Japan 
 
 

Abstract – A Mobile Ad-hoc Network (MANET) has been 
studied as a technology for building infrastructure 
independent and autonomously distributed controlled network 
in the disaster situation [1]. However, MANET has many 
issues. One of the issues to be solved in MANET is security 
problem. For example, MANET is vulnerable to network 
sniffing because it is using a wireless communication that can 
be heard by others and existing security approaches are 
difficult to be applied to it. In this paper we propose a novel 
communication method that cannot easily be subjected to 
network sniffing even in the aspect of security. In addition, we 
evaluate the proposed method and show its effectiveness.  

Keywords: Mobile Ad-hoc Network, Secret Sharing 
Schemes, Secure Communication 

 

1 Introduction  
 A MANET is one of the methods to build a 
communication in the disaster situation by mobile device 
(node) such as smart phone or rap top PC. If node needs to 
send a data packets to another nodes outside its radio range, 
the data packet is relayed by neighboring nodes within a 
range. However, MANET has many issues should be solved 
such as security problems [2]. For example, MANET is 
vulnerable to network sniffing because it is using a wireless 
communication and existing security approaches are difficult 
to be applied in MANET. In this paper we propose a secure 
communication method that cannot easily be subjected to 
network sniffing over MANET by using secret sharing 
schemes.  

 Section 2 describes relevant studies. In section 3, we 
explain about our proposed method. Section 4 shows 
evaluation of the proposed method through network 
simulation, its effectiveness. Section 5 concludes this paper. 

2 Relevant studies 
2.1 Simple flooding 
 Simple flooding is the simplest communication method 
in the MANET. In this method, a transmission node 
broadcasts a data packet. If other node than the transmission 
node receives the packet for the first time, it broadcasts the 

packets for next hop nodes. This is used for data and key 
transmission in our approach. 

2.2 Secret Sharing Schemes 
 Secret sharing schemes are methods by which a dealer 
distributes shares to parties such that only authorized subsets 
of parties can reconstruct the secret. A typical example of 
secret sharing scheme is the (k,n) threshold scheme [3][4]. In 
this scheme, a person who generates a secret splits it into n 
shares and distributes shares to n members. The secret can be 
reconstructed if someone of members gathers k shares among 
n. 

3 Proposed method 
 As described in section I, since MANET uses open radio 
channel and shall rely on intermediate relay nodes, it is 
difficult to establish secure communication. To resolve this 
problem, this paper proposes a secure communication method 
using secret sharing scheme over MANET. In this section, the 
details of the proposal is explained. Before entering the 
detailed explanation, we show the essence of our proposal.  

 The source node generates a secret information to be 
sent to the destination. By use of (k,n) threshold scheme, the 
source node splits the secret into multiple (n) shares and put 
each share into different data packet. Here, to avoid malusers 
from easily sniffing and decoding the share, our proposal 
obfuscates the share by use of HELLO information (node ID, 
location and sent time) and send it to selected members who 
will relay the share to the destination. If the destination node 
collects at least “k” shares from the member nodes, it can 
reconstruct the secret information. Fig. 1 shows the outline of 
our proposal.  

 

546 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



Fig 1. Outline of proposed method 

 Details of the proposal are shown below  

3.1 Procedure of HELLO exchange 
 Each node exchanges HELLO packets with neighboring 
nodes to inform node ID, node location, and time stamp of 
sending. The HELLO penetrates in the network according to 
the HELLO TTL value. Each node stores HELLO packets 
submitted by it self in the send HELLO buffer. If the buffer 
becomes full, oldest HELLO is discarded. Each node stores 
HELLO packets received from neighboring nodes in the 
receive HELLO buffer. If the buffer becomes full, oldest 
HELLO is discarded. We assume that these HELLO packets 
are broadcast every 5 seconds and its TTL value is 1 or 2. 
HELLO packets have following format. The format is 
contained in the payload of layer 3 packet with broadcast 
address.  

 Normal data packet has also the packet type as shown in 
Fig.2. 

 

Fig. 2 HELLO packet format 

3.2  Procedure in source node 

3.2.1 Generation of share data 
 A source node generates data (secret information) 
to be transmitted to the destination node. It fragments 
the secret information into n pieces by using (k,n) 
threshold scheme. 

3.2.2 Selection of member nodes 
 The source node selects n nodes (member nodes) 
among nodes from which the source node has received 
HELLO packets by seeking in the receive HELLO 
buffer 

3.2.3 Share obfuscation 
 Source node obfuscates each share before storing it 
in the packet payload to prevent inappropriate nodes 
(non-members) from restoring shares by use of HELLO 
information of the member node. The obfuscation 
algorithm is shown below. 

 

 

Table 1. The description of variables 

 

 The algorithm is explained as follows. The source 
node selects a HELLO message sent by a member node 
in the receive buffer and extracts its node ID, location 
data and hello tome. Then the source executes the 
operation shown above and get the obfuscated share for 
a member node. And the operation is made for other (m-
1) member node. 

3.2.4 Transmission of the obfuscated share data 
 The source node creates m packets each of which 
carries each obfuscated share data and then broadcasts 
these packets to the network area. At this time, the value 
of the share_type field of these packets set to 1 to 
indicate that the packets are data packets. The 
destination address of the packet layer is “broadcast 
address”. Fig 3 shows the packet format of share data 
packets. 

 

Fig.3 Share data packet format 

3.3 Procedure of Member nodes 

3.3.1 Decoding an obfuscated payload 
 When a member node receives a packet containing 
obfuscated share with packet_type field = 1, the node 
knows the packet is a data packet in secure 
communication and try to decode it. Since the share is 
obfuscated by HELLO information of a member node, 
member node refers to own send HELLO buffer, picks 
up a HELLO and extracts node ID, location and time 
which are sent by itself.  

 Then it  calculates the hash value of concatenation 
of node ID, location and time and executes exclusive-
OR with the received packet. If the first part (20 bytes 
from the beginning if using of sha1 hash algorithm [5]) 
of exclusive OR result matches the hash value of its own 
ID, the node knows the packet is submitted to itself and 
picks up the share data from the packet. If not, the node 
selects the next HELLO from its send HELLO buffer 
and executes the same calculation in a brute force for 
decoding the packet.  

packet_type� ttl� check_sum� Share_data�

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 547



 Lastly if none of its HELLOs can decode the 
packet, the node knows the packet is submitted to other 
nodes and discards it or rebroadcasts it to neighboring 
nodes according to TTL  

 

Fig 4. Image of decoding an obfuscated payload 

Member nodes which can decodes share refer to 
share_type field. If share_type field is 0, the nodes know 
the share is submitted to itself and move onto next 
procedure 

3.3.2  Broadcasting obfuscated share packets 
  The member node submits the share to the 

destination node if the node can decode it section 3.3.1. 
At this time, the process of obfuscating is executed by 
use of HELLO information from the destination node in 
same manner as section 3.2.3.  But if the member node 
never receive HELLO packets from the destination node 
or does not remain it (receive HELLO buffer overflow), 
the member node cannot broadcast the share to the 
destination node. In the case that member nodes 
broadcast to the destination node, share_type field is set 
to 1.  

3.4  Procedure of destination node 

3.4.1  Decoding of obfuscated payloads 
 When the destination node receives obfuscated 
data packet, the node checks share_type field of the 
packet. If the share_type field is 1, the destination node 
tries to decode the payload as with 3.3.1. The exact 
calculation is  

shown below. After the destination node decode the 
share data, it stores the share and waits for another share 
packet.  

 

 

 

 

Table 2. The description of variables 

 

3.4.2  Restoration the secret information 
 If more than k number of share data packets arrives 
to destination node, the destination node can restore the 
secret information by using k shares. 

3.5  Effects of obfuscation 
 A member node can restore a share by use of his node 
ID, location data and hello time in the algorithm shown in 
section 3-2-2. Suppose the node has m buffer to store m 
combinations of location data and hello time. Then the 
member node needs m/2 times computations in average (half 
size of the buffer). However, for non-member that tries to 
sniff and restore members’ shares, he needs more 
computation. First of all, he must assume a member node ID 
and search his memory storing location data and hello time of 
the member node. In this case, he needs m/2 calculations in 
average same as member nodes. He must try N/2 times in 
average for different node IDs. Moreover, he must get at least 
k shares. Hence, the non-member node needs (N/2)*(m/2)*k 
calculations.  

𝐶! =
𝑘 ∙ 𝑁2 ∙

𝑚
2

𝑚
2

= 𝑘 ∙   
𝑁
2

 

where, Cc=complexity of computation of our proposal,  
    N = total number of nodes  
 
4 Evaluation 
 Here, we evaluate our proposal and show results. The 
simulation conditions are shown in Table 3. 

Table 3. Simulation condition 

 

548 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



4.1 Reachability of secure communication 
 Figure 5 and 6 shows the Reachability of secure 
communication when values of k are 3 and 4. The vertical 
axis indicates the percentage of number of secret information 
that are successfully received by the destination to the number 
of sent secrets by the source. And horizontal axis indicates 
buffer size of nodes. Except the region where the memory 
size is small, our approach achieves rather high reachability. 

 

Fig 5. Reachability of secure communication (k = 3) 

 

Fig 6. Reachability of secure communication (k =4) 

4.2 Number of non-member nodes that are 
capable of restoring a secret information 

 Figure 7 and 8 shows the number of non-member nodes 
that are capable of restoring a secret information by trying 
brute force attack. The vertical axis indicates number of 
nodes that succeeds restoring and horizontal axis indicates 
buffer size of nodes. The results show that it is very difficult 
to sniff and restore the secret.  

 

Fig 7. Number of non-member nodes that are capable of 
restoring a secret information (k = 3) 

 

Fig 8. Number of non-member nodes that are capable of 
restoring a secret information (k = 4) 

4.3 Differences of computational complexity 
between legitimate nodes and non-member 
nodes 

 Figure 9 shows differences of computational complexity 
between legitimate nodes and non-member nodes. For 
example, in case that number of nodes are 100, our proposal 
achieves inappropriate nodes needs 200 ~ 500 times of 
computational complexity compared with legitimate nodes. 

 

Fig 9. Differences of computational complexity between 
legitimate nodes and inappropriate nodes 

200#

300#

400#

500#

150#

225#

300#

375#

100#

150#

200#

250#

50#
75#

100#
125#

0 

100 

200 

300 

400 

500 

600 

2" 3" 4" 5"

C
om

pu
ta

tio
na

l  
co

m
pl

ex
ity
�

value of k�

N = 100 N =75 N = 50 N = 25 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 549



5 Conclusions 
 This paper has proposed a secure communication 
method that cannot easily be subjected to network sniffing 
even in the aspect of security. And we evaluate the proposed 
method and show its effectiveness. Through simulation 
evaluation, our proposed method maintains high reachability 
and high difficulty of sniffing by non-member nodes. Further 
study is needed to realize more improvement in reachability 
of secure communication and to clarify how to decrease the 
number of non-member nodes that are capable of restoring 
secret information. 

6 Acknowledgment 
 This research is partly conducted as JSPS Grants-in-Aid 
for Scientific Research 26430372. 

7 References 
[1] Ken’ichi Mase, Shiro Sakata, “AdHoc Networks and 
Mesh Networks”, corona publishing co., LTD, vol. 1 2007  

[2] fa Priyanka Goyal, Vinti Parmar and Rahul Rishi, n 
legitimate nodes and inappropriate nodescause it is using a 
wireless communication and also putational Engineering & 
Management, Vol. 11, January (2011) 

[3] Shamir, A., “How to share a secret”, Comm. Assoc, 
Comput, Mach., vol22, no.11, pp612-613, Nov, 1979 

[4] Amos Beimel, “Secert-Sharing Schemes: A Survey” 
IWCC (2011) 

[5] D. Eastlake 3rd, P. Jones “US Secure Hash Algorithm 1 
(SHA1)” http://tools.ietf.org/rfc/rfc3174.txt, (September 
2001) 

550 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



Efficient Location-aided Route Discovery Mechanism for 

Ad-hoc networks 
 

P. Phoummavong
1
, K. Utsu

2
, H. Nishikawa

3
, and H. Ishii

2
 

1
 Graduate School of Science and Technology, Tokai University, Takanawa, Japan 

2
 School of Information and Telecommunication Engineering, Tokai University, Takanawa, Japan 
3
 Graduate School of Systems and Information Engineering, University of Tsukuba, Ibaraki, Japan 

 

 

Abstract - The location-based routing protocols of Mobile Ad 

hoc Networks (MANETs) are very important and useful in 

terms of energy saving and prolonging network lifetime, 

especially in emergency situations without an IP address. 

Previous approaches do not work efficiently or well. They may 

produce a large overhead of packets, which affects their 

scalability. Moreover, the reachability from source to 

destination is low in existing methods because route discovery 

fails and long end-to-end delays may occur due to inefficient 

route discovery. To solve these problems, we propose route 

discovery based on location-aided two-hop neighbor 

information. In this paper, we introduce a pair of approaches 

to enhance route discovery. The first approach considers the 

minimum average distance to the destination from two-hop 

neighbors of the source, and the second approach considers 

the relation between the source-neighbors’ distances from the 

destination and the number of two-hop neighbor nodes from 

the source. Furthermore, we compare our approaches with 

existing algorithms through computer simulation and analysis. 

The simulation results show that our approaches can achieve 

higher performance than existing algorithms. 

Keywords: location aided routing; two-hop neighbor 

information; relay nodes; ad hoc networks 

 

1 Introduction 

  A mobile ad hoc network (MANET) [1] is deployed by a 

group of independent mobile nodes without pre-installed 

infrastructure. Recently, therefore, MANETs have been 

widely used to support various organizations, including 

industry, education, military, and medical and emergency 

services. 

 Usually MANET nodes use a topology-based routing 

protocol, which assumes that each node is assigned a unique 

IP-address. However, considering the deployment of MANET 

in the face of a recent or ongoing disaster such as an 

earthquake or tsunami, we see that IP address assignment is 

difficult and a topology base routing protocol is not suitable. 

Hence, this paper proposes a location-based routing protocol 

that can operate in a disaster area without specific IP 

addresses. Usually, a location-based routing protocol is 

designed for a mobile ad hoc network by using the global 

positioning system (GPS), and location services are used 

instead of IP-addresses. However, in such networks, the 

power supply of mobile nodes is limited, so routing activities 

should not consume more than the minimum necessary 

overhead of packets in order to avoid degrading the ability to 

send data from source (S) to destination (D). Moreover, the 

decisions of the forwarders are the critical mechanism that is 

used to relay data packets when route discovery is enabled.  

Many different location-based routing protocols have been 

proposed. Before discussing our proposed mechanism, let us 

describe existing approaches and crucial problems. 

 First, Simple Flooding (SF) [2] is considered as a 

reference point. SF is a simple system that forwards data 

packets to all neighbor nodes. This approach guarantees that 

the data packet will reach the destination (perfect 

‘reachability’), but it requires a great deal of overhead.  

 Second is Greedy Perimeter Stateless Routing (GPSR) 

[3],[4]. This algorithm has two modes 1) greedy forwarding 

mode (GF), and 2) perimeter forwarding mode. When GF 

mode fails, the perimeter mode is invoked. However when the 

network is large, the perimeter mode might give a very bad 

path.  

 The next approach is the Geocast Adaptive Mesh 

Environment for Routing (GAMER) [5]. GAMER uses a 

hybrid of the greedy and flooding protocols. This approach 

guarantees the data packets will reach the destination, because 

it uses the link duration of the feedback at each node to 

determine the appropriate direction for forwarding. However 

GAMER creates a redundancy of relay nodes in the 

forwarding area and a long end-to-end delay. Moreover, 

GAMER cannot complete the relay of data packets to D when 

a forwarder does not have neighbor nodes located in the same 

direction as D.   

   Finally, let us consider the Location-Aided Routing 

protocol (ILAR) [6].  ILAR uses a baseline that is a straight 

line between S and D for route discovery. When a route 

request packet is broadcast, the forwarder that is located in a 

request zone based on the baseline is chosen as the next 

forwarder. However ILAR has the same problem as GAMER. 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 551



If a forwarder lacks neighbor nodes in the requested zone, no 

route is found.  

 The problems of existing location-based routing 

protocols (SF, GPSR, GAMER, ILAR) can be summed up as: 

redundant packet transmission, low reachability, and long 

end-to-end delay. To solve these problems, we propose two 

algorithms to improve the choice of forwarders in route 

discovery based on location-aided two-hop neighbor 

information.  The first algorithm considers the minimum 

average distances between two-hop neighbors of S and D 

(CMAD). The second algorithm considers the relation 

between the distances of neighbors of the source to D and the 

number of neighbor nodes of neighbors (two hops from S) 

(CRDN). By improving the choice of forwarder, our 

proposals can reduce the amount of overhead, increase 

reachability, discover optimal path routes and reduce end-to-

end delay.  

  The rest of this paper is organized as follows. Section 2 

proposes route discovery based on location-aided two-hop 

information and our algorithms. Section 3 presents the 

performance evaluation and results. Section 4 concludes this 

paper. 

 

2 Location-Aided Route Discovery based 

on Tow-hop Neighbor Information and 

Proposed Algorithms 

  

2.1 Sharing the information on two-hop 

neighbors 

 

 In this section, we introduce a route discovery based on 

location-aided two-hop information. The Geocast algorithm, 

which uses two-hop information [7], has been proposed for 

static wireless sensor networks. The proposal shows how to 

optimize the number of forwarders by using two-hop 

information in forwarding the data packet to the multicast 

region. However, this algorithm is designed for a wireless 

sensor network, and the source node selects the forwarder 

with the largest number of neighbors and the greatest distance 

from S. To enhance this algorithm, we improved the method 

for choosing the forwarding node by using the relational 

information from each node.  To set the scene, we assume that 

a node is deployed in free space without loss of 

communication. Then all the mobile nodes exchange hello 

messages by broadcasting to their one-hop neighbors.    The 

initial hello message contains the location of the node. After 

receiving the first hellos, every node knows the identities, 

locations and density of its one-hop neighbors. 

u

u ‘s one-hop neighbor coverage v ‘s one-hop neighbor coverage

u ‘s Two-hop neighbor coverage

v D

Forwarder node (u)

s

Considered area of node (v)

i

j

kw

Baseline 2

Baseline 1

 

Fig. 1. Forwarder u considers one-hop information of v 

 Next, every node broadcasts the second hello message, 

which contains that information on its one-hop neighbors. 

After that, every node knows the identity and density of its 

two-hop neighbors (see Fig.1). Then all the nodes operate in 

the normal mode, in which each node periodically broadcasts 

the hello message to its one-hop neighbors. In the next step, 

we assume communication between node S and D, focusing 

on forwarder u, which needs to relay a packet to node D.  

Before forwarder u selects the next relay node, forwarder u 

must make a selection by computing the progress of nodes v 

and w. Let us consider node v, for which forwarder node u has 

the information about one-hop neighbors of node v (nodes i, j 

and k) that are located in the consideration area (to the right-

hand side of the vertical line at node v or in the right half of 

v’s radio region). The consideration is made for the right hand 

side of the vertical line (baseline 2) crossing baseline 1 at 

node v in Fig. 1 (same direction to node D). Similarly, node w 

also is taken into consideration by forwarder u.    

Let’s define the notations and parameters used are as 

follows: 

- n(u): the number of one-hop neighbors of u. 

- vx (x ∈{1, 2, 3,…, n(u)}): a one-hop neighbor of sender   
   node u 

- vx,y  ( y∈{1, 2, 3,…, n(vx)}):a one-hop neighbor of vx  

  (two-hop neighbor of node S). 

- n(vx): the number of a one-hop neighbor of vx . 

- d(vx,, D): the distance from vx, to D. 

- d(vx,y, D): the distance from vx,y to D. 

 

A baseline 1 is set between vx and the destination D. 

Then a base line 2 is drawn at 90 degree angles to baseline 1 

at vx. The two-hop neighbor nodes of vx to be considered as 

next relay nodes are located in the right hand side of baseline 

2 in Fig.2 and Fig.3. 

 

 

552 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



2.2  CMAD 

 The first approach we propose is optimizing the decision of 

a forwarder in route discovery based on two-hop neighbor 

information based on the minimum average distances to D 

from two-hop neighbors of u.   

 We can calculate the average distance from two-hop 

neighbors of u to D. To calculate the average distance from 

two-hop neighbors of S, we determine the average distance to 

D from two-hop neighbors of node u by using (1). 

( )

( )

,

1

1
( ) ( , )

xy

avg x x y

n v

xy y

d v d v D
n v =

= ∑                  (1) 

 In (1), where davg(vx) represents the average distance to 

D as shown in Fig. 2. Thus node vx  does not include node u  
when calculating the average distance, because node u is 

outside the considered area. Node u chooses the neighbor 

node that has the minimum average distance (2) as the next 

sender and sends a RREQ (Route REQuest). 

{ ( )}avg x
i

Select min d v
∀

=                    (2) 

u
D

xyv

xv

u ‘s Two-hop neighbor coverage

u ‘s one-hop neighbor coverage

,( , )x ydist v D

090

1Baseline

2Baseline

Consider area for node (vx)

 

Fig. 2. CMAD calculates the average distance of two-hop neighbors 

of u to D 

u
D

xyv

xv

u ‘s Two-hop neighbor coverage

u ‘s one-hop neighbor coverage

( , )xdist v D

090

1Baseline

2Baseline

Consider area for node (vx)

 

Fig. 3. CRDN: forwarder u considers one-hop information of v 

2.3  CRDN 

 The second proposal, we consider the probability index 

or the relation between the distance to D from neighbors of u 

and the number of neighbor nodes of neighbors of u. Just as in 

the first method (CMAD), a sender collects two-hop neighbor 

information, but this differs in the fact that u uses the distances 

from one-hop neighbors (vx) to D and their number of 

neighbors as shown in Fig. 3. 

 We find the probability (distance between node vx  and 

D) divided by the sum of d(vx,D) for all x (x=1,2,... n(u)) (total 

of distances from neighbor nodes of u to D), Let dt be the sum 

of d(vx,D) for all x∈{1, 2, 3,…, n(u)}. Whichever neighbor 
node of u is closest to D will get the lowest probability as (4).  

( )

1

( , )
n u

t x

x

d d v D
=

=∑                           (3) 

( , )
( ) x

avg x

t

d v D
p v

d
=                              (4) 

As the next step, we find the probability by considering 

the number of neighbors of each neighbor node of vx. Let nt be 

the summation of the n(vx) for all the x as (5). The probability 

index pn(vx) is calculated using (6), which considers the 

number of neighbors of each neighbor node of vx. The more 

pn(vx) is, the more likely vx is selected. 

 
( )

1

( )
n u

t x

x

n n v
=

=∑                            (5) 

( )
( ) x

n x

t

n v
p v

n
=                              (6) 

So if a neighbor of u (e.g., vx ) has the lowest number of 

neighbors, it will have the highest probability.  Finally, from 

(4) and (6), we get a probability that is a combination of the 

probabilities of distance and the probability regarding the 

neighbor node vx. 

 

 Definition (Probability Independent Events):  pavg(vx) 

and pn(vx) are considered mutually independent since the 

number of neighbors and their distances are independent of 

each other. Hence, we can get (7). 

 

( ) (1 ( )) ( )x avg x n xr v p v p vΡ = −                         (7) 

 Subsequently, node u can select the next neighbor node 

if the node has the highest probability Pr(vx). 

 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 553



3 Performance and Evaluation  

 Here, we analyze the performance of our proposals 

(CMAD, CRDN) by using a simulation to compare them with 

existing algorithms GAMER and ILAR in the static mesh 

network node. We assume all the nodes are static (no 

mobility), and each node is uniformly distributed in a 

rectangular area. The overhead (measured in packets), the 

packet delivery ratio, the average number of hops and the end-

to-end delay are used as the performance metrics. 

3.1 Assumption and network topology 

 In the static network topology, we show the simulation 

parameters in Table1. For each topology we assume a position 

for S is randomly selected 100 times for each topology of each 

number of nodes.  

 

Fig. 4. An example of network topology with S selected randomly 

Table 1. Simulation Paramiter 

Simulation Parameters Value 

Topology size 1000 m x 1000 m 

Number of nodes 30, 50, 100 and 150 

Transmission range 250 m 

Mac protocol IEEE 802.11b 

Packet size 512 bytes 

Time intervals broadcast messages 0.1s 

Pause time 2s 

Ad hoc routing protocol GAMER, ILAR, CMAD, CRDN 

Simulation time 900 s 

Simulation trials 1000 Topologies for each density 

 

3.2 Evaluation and results  

 In this section, we show the performance results from the 

simulation. Fig.4 shows an example route determined by each 

algorithm and our proposal. 

 The first result shows the number of overhead packets. 

The second result shows the average number of hops of relay 

nodes. Then, we show the packet delivery ratio, i.e. the ratio 

of arrived packets to all sent packets, and finally the average 

end-to-end delay. 

3.2.1 The overhead packets: 

 

 When counting the overhead packets, we included all 

combinations of packets, the nature of which depends on the 

algorithm  in use, i.e. flooding route discovery, route request, 

route response, two-hop beacon exchange message, hello 

message, location information query and location information 

response.  

 Fig. 5 shows the overheads of GAMER, ILAR and our 

approach CMAD and CRDN with different number of nodes. 

GAMER tries to minimize the number of transmitted nodes by 

determining the flooding area. However, the number of 

overheads in GAMER is greater than in ILAR and our 

algorithms CMAD and CRDN. The next approach is ILAR, 

which is better than GAMER because it determines the 

expected zone of D before it relays packets. The expected 

zone is advantageous when used to find D. However, the 

overhead of ILAR is also large because it sends many 

overhead packets into the expected zone. In contrast, in 

CMAD and CRDN, the overhead of packets increases very 

slowly and they are smaller than those used in the two 

previous algorithms. Computing only average distances, 

CMAD is not well suited to choose a relay node. CDRN is 

better than CMAD because it uses probability to select relay 

nodes. 

 

Fig. 5. Number of overhead packets vs. number of nodes 

554 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



 

Fig. 6. Number of hops vs. number of  node 

 

3.2.2 The number of Hops:  

 Fig. 6 shows how the number of hops of relay nodes 

varies with the number of nodes. The path length with 

GAMER is larger than with ILAR because each node relays 

packets throughout a forwarding area (directional flooding). 

The next approach is ILAR, which optimizes the average path 

length better than ALARM, but the average path length is 

increased in the multicast region or expected zone. CRDN 

gives shorter path lengths than the two previous algorithms.  

3.2.3 The packet delivery ratio:  

 The next result is the packet delivery ratio versus the 

number of nodes. To calculate the packet delivery ratio [8], 

we use (8).  

tx droprx
rx

tx tx

N NN
p

N N

−
= =                              (8) 

 Where prx represents the packet delivery ratio; Nrx  is the 

number of packets successfully delivered to D, Ntx is the 

number of packets sent from S, and Ndrop represents the 

number of packets dropped.  

 Fig. 7 plots the packet delivery ratio versus the number 

of nodes when S is chosen randomly. GAMER, ILAR, CMAD 

and CRDN all have very high ratios, that are 98%-100%, 

which means the packets are successfully received by D for all 

the cases of node numbers. CMAD scores lower than CRDN 

because the forwarder cannot relay the packet when no 

neighbors are located in same direction as the destination.  

However, Fig. 7 shows that GAMER does better in all number 

of nodes but GMAER consumes much overhead packets in 

previous performance.  

3.2.4 The end-to-end delay:  

 Next we consider the average end-to-end delay of data 

packets [9], which we can compute using (9). 

( ) ( )

1

( )
N

r i s i

i
delay

rx

t t

T
N

=

−

=
∑

                             (9) 

 Where N is the total number of packets delivered to D, 

tr(i)  represents the time when a packet arrives at D, and ts(i) 

represents the time when the packet was sent by S. We assume 

that the delay includes all the delays in route discovery, such 

as queuing. Fig. 8 shows the end-to-end delay. GAMER has 

high delay because the algorithm always needs to perform 

route discovery before sending a data packet. ILAR is better 

than GAMER because it encounters route discovery delay 

only at the first stage. However CMAD and CRDN are faster 

than ILAR because they dos not need to determine the 

expectation zone to find D, and CRDN is the fastest. 

 

 

Fig. 7. Packet delivery ratio vs. number of nodes 

 

 

Fig. 8. Average end-to-end delay vs. bumber of nodes 

 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 555



4 Conclusions 

 In this paper, we address the problem of efficient data 

transmission in a mobile ad hoc network. Selecting the best 

next node among neighbor nodes is very difficult in existing 

location-aided routing algorithms, requiring an increase in 

reachability, and reductions in overhead, delay, and number of 

hops. To overcome these problems, we proposed location-

aided route discovery algorithms (CMAD and CRDN) based 

on two-hop neighbor information about an ad hoc network 

inspired by geographic routing. Simulation results show how 

our proposals select the optimum relay nodes and improve 

several aspects of performance with different number of nodes 

and network topologies. Specifically, CRDN has the best 

performance in terms of low overhead, high delivery ratio, 

small number of hops and low latency, compared with 

existing methods. Future studies will perform more detailed 

evaluations, including mobility and power consumption. 

5 Acknowledgment  

 This work is partly supported by JSPS KAKENHI Grant 

Number 26420372. 

6 References 

 
[1]  S. Misra, I. Woungang and S. C. Misra, “Guide to 

Wireless ad Hoc Networks”, British Library Cataloguing 
in Publication Data, Springer-Verlag London Limited, 
2009. 

[2] S. Y. Ni, Y. C. Tseng, Y. S. Chen and J. P. Sheu, “The 
Broadcast Strom in a Mobile Ad Hoc Network,” 
Proceedings of the 5th annual ACM/IEEE international 
conference on Mobile computing and networking, ACM 
New York, USA, pp. 151–162, 1999. 

[3] B. Krap and H.T. Kung, “GPSR: Greedy perimeter 
stateless routing for wireless network,” in MobiCom ’00, 
New York, USA: ACM, 2000, pp. 243-254.  

[4] C. Maihofer, “A Survey of Geocast Routing Protocols,” 
IEEE Communication Surveys and Tutorial, Vol. 6, Issue. 
2, pp. 32-42, 2004. 

[5] T. Camp and Y. Liu, “An adaptive mesh-based protocol 
of geocast routing”, Journal of Parallel and Distributed 
computing, pp. 196-213, October 2002. 

[6] G. C.  Wang and S. M. Wang “An Efficient Location-
Aided Routing Protocol for Mobile Ad Hoc Networks,” 
Parallel and Distributed Systems, Proceedings. 11th 
International Conference, Vol. 1, pp. 335-341, July. 2005 

[7] Y. C. Shim and H. S. Kang, “An Efficient Geocast 
Algorithm using 2-hop Neigbour Knowledge in Sensor 
Networks”, International journal of latest trends in 
computing,Vol.2, 2011.     

[8] J. Zhao and R. Govindan, “Understanding packet delivery 
performance in dense wireless sensor networks”, in Proc. 
ACM SenSys’03, Los Angeles, CA, USA, Nov. 5–7, 
2003. 

[9] R. Groenevelt, P. Nain and G. Koole,” The message delay 
in mobile ad hoc networks” Elsevier’s Performance 
Evolution, Science Direct, August, 2005. 

 

556 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



Highly-Dependable and Long-Lifetime Data-Driven Networking
Processor with Energy Assurance Capability

Shuji SANNOMIYA and Hiroaki NISHIKAWA
Graduate School of Systems and Information Engineering, University of Tsukuba,

Tsukuba Science City, Ibaraki, Japan

Abstract— In addition to thrifty power consumption, failure
detection is one of the crucial issues to exploit large wire-
less network systems realized by battery-operated wireless
devices while keeping system maintenance cost acceptable.
CUE, a data-driven networking processor, exploits passive
and on-demand (data-driven) processing manner exhaus-
tively to its circuit implementation level and thus its power
consumption is reduced as low as essentially required. This
essential power consumption also results in strong correla-
tion between consumption current and processing load of the
CUE. By virtue of this strong correlation, failures changing
consumption current can be detected by comparing run-
time consumption current with a current range estimated
with a given typical processing load beforehand. In this
paper, a parallelized pipeline with shortcut to realize load
distribution is proposed to smooth the run-time processing
load in order to assure the estimation on the current range,
and its effectiveness is proven by circuit simulation.

Keywords: data-driven processor, real-time multiprocessing, self-
timed pipeline, sensor network, machine-to-machine, internet of
things

1. Introduction
Wireless network systems composed by battery-operated

wireless devices can be easily installed into existing con-
structions and infrastructures and thus they are one of
promising technologies to realize convenience and safety for
both human life and social infrastructure, compared with
wired systems. To exploit such systems largely, not only
long-lifetime but also high dependability are indispensable
because the power budget of battery is strictly limited and
doubtful devices make system maintenance cost unaccept-
able for large scale systems.

In order to realize highly dependable and long-lifetime
devices, the authors have studied a series of data-driven
networking processor, named CUE [1], which can provide
the wireless devices with not only ultra-low-power feature
but also unique observability resulting in autonomous detec-
tion of the doubtful devices. The CUE is an embodiment
of data-driven principle by which operation execution is
initiated on the arrival of input data as long as computational
resources (i.e. pipeline stages) are available. This passive
operation execution makes it possible to realize real-time

multiprocessing indispensable for networking under time-
constraints defined by communication protocols without ex-
trinsic program-execution overheads such as context switch-
ing and interrupt handling resulting in power dissipation.

The data-driven principle is also realized in the circuit im-
plementation of the CUE by using self-timed elastic pipeline
in which each pipeline stage autonomously transfers valid
data based on local negotiation between adjacent pipeline
stages. As a result of this local data transfer, pipeline stages
with valid data are exclusively driven in the CUE, and thus
switching power concentrates into the processing of valid
data naturally while the other empty pipeline stages are
powered off to reduce leakage power [2]. Moreover, the
supply-voltage of the self-timed pipeline without any global-
clock can be scaled anytime without suspends, and thus the
power consumption can be reduced as low as essentially
required by using run-time voltage scaling technique [2].
The ultra-low-power feature of the CUE has already been
demonstrated in our previous studies [3].

In addition to the ultra-low-power consumption, the es-
sential power consumption of the CUE provides direct
observability on the processing load through consumption
current because the power in the CUE is consumed only to
processing data and thus the consumption current has strong
correlation with the number of processing data (i.e. process-
ing load). By virtue of this strong correlation, consump-
tion current in operation is foresaw under a given typical
processing load, and thus the energy which dominates the
battery-operated lifetime of system devices can be estimated
before the installation of the devices. This foreseeability of
the lifetime leads to the drastic reduction of the system main-
tenance costs. For instance, the schedule of the replacement
of battery can be designed and optimized before the system
installation, and thus the working for battery replacement
each time the battery runs down becomes no longer required.

Moreover, the foreseeable consumption current makes it
possible to detect the failures of devices autonomously after
the system installation. This is because unexpected failures
resulting in the change of the consumption current can be de-
tected by measuring the consumption current and comparing
the measured result with the amount of consumption current
estimated before operation. For instance, the malfunction of
the peripheral units such as sensors changes the processing
load of the CUE and this change can be detected via the

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 557



��������

�	
�����

��������

�	
�����

��������

�	
����

�	����
�����������
������
�����������

��
������

��������	�����

����

��������������

�������	��

�	�	��
�����

�����
������
������
�����


���

������
�����������
��������

������
������

Fig. 1: An example: data-driven wireless sensor networking sytem.

consumption current of the CUE, and a wireless network
device which transfers unusual data changes the processing
load of the CUE in its circumjacent devices, and this
change can be also detected via consumption current. This
autonomous detection of the failures becomes indispensable
in the future wireless network systems because it becomes
especially difficult to find out a device with failure in
large scale systems especially in the era of Trillion Sensor
Universe advocated by Dr. Janusz Bryzek.

To assure the estimation of the consumption current in
operation, unpredictable changes of the consumption current
should be minimized. In this paper, a pipeline structure
implementing the CUE is designed to reduce the dynamic
change of the consumption current. The number of oper-
ations executed concurrently may change according to the
data arrival timing even when processing the same number of
data. In the CUE, the supply-voltage is regulated according
to the number of operations executed concurrently to realize
the ultra-low-power consumption. On the other hand, the
regulation of the supply-voltage may change the consump-
tion current significantly because the consumption current is
in proportion to the square of voltage. Unfortunately, it is
difficult to predict the arrival timing of all data precisely.
Under this practical constraint, to realize both the ultra-
low-power consumption and faithful estimation of the con-
sumption current in operation, a parallelized pipeline with
shortcut is proposed to realize load distribution at pipeline
stage level for smoothing the number of operations executed
concurrently. The effectiveness of the proposed pipeline is
evaluated through a concrete protocol processing.

2. Data-driven networking processor
In this section, the necessity of both ultra-low-power

consumption and failure detection is discussed with an ex-
planation of data-driven wireless sensor networking system
which is a wireless network system. Moreover, requirements
on data-driven networking processor are discussed.

2.1 Data-driven wireless sensor networking
system

Wireless sensor networking systems provide a variety
of services such as security, infrastructure monitoring, and
disaster prevention, by networking sensors spread on sensing
targets as shown in figure 1(a). Although the wireless sensor
networking systems can be easily installed because of the
absence of wiring, system maintenance cost to keep the
wireless devices alive and healthy may increase in large
scaled systems due to the replacement or charge of dis-
charged batteries and checking of the operation of every
device. Therefore the key to realize large scale wireless
networking systems is to reduce the frequency of the battery
replacement/charge and the work for operation checking as
low as possible.

As illustrated in figure 1(b), data-driven wireless sensor
networking system realizes ultra-low-power consumption
to save the batteries drastically and failure detection to
eliminate the need for operation checking, by introducing
ULP-DDCMP (Ultra-Low-Power Data-Driven Chip Multi-
processor) [4]. As shown in figure 2, the ULP-DDCMP
is a chip multiprocessor version of the CUE, and it is
realized by interconnecting a ultra-low-power version of the
CUE, named ULP-CUE by using a token router which is
a switch based multi-stage interconnection network whose
switch is realized by merge (M) stages which accept data
from two preceding stages in order of arrival and transfers
the accepted data to a succeeding stage and branch (B) stages
which transfer each data to one of two succeeding stages
selectively.

Figure 3 shows the ULP-CUE’s circular pipeline which is
indispensable to naturally realize the iteration of operation
execution in which operation result is transferred to the input
of the succeeding operation. The circular pipeline of the
ULP-CUE consists of matching memory (MM) to detect the
arrival of operands, program storage (PS) to fetch operations,
functional processing unit (FP) to execute the operations

558 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



���������������	
��
��

���

����

����

����

����

����

���	

����

���


��������	
����������	��
���	

�������
	����
������������
���	��

���������������

�

�

�

�

� �

� �

Fig. 2: Data-driven networking chip multiprocessor (an ex-
ample of 4-core).

��������

������	
�

���
�	�

������

�������

�������

��	
��	����

���
���	��

�	�

�����

������

�

���

��
�
�
�

�
�
��
�
�

� ��

�������������������������	�	������	�����
������ �!��"�#$

������������� �����
��$

Fig. 3: Circular pipeline to realize ULP-CUE.

and memory access (MA) to read and write data. With this
structure, the concurrent operations of target programs can
be naturally exploited over the circular pipeline as long as
the pipeline stage is available, as a result of data-driven
program execution, i.e. no context switching and scheduling
are required. Moreover, the circular pipeline is optimized
for protocol handling whose operations are mainly unary, by
providing shortcut to bypass the MM when unary operations
are executed [4].

To realize the passive and on-demand processing to the
circuit implementation, the whole stages are realized by us-
ing ultra-low-power self-timed elastic pipeline (ULP-STP).
In the ULP-STP, only pipeline stages with valid data are
driven exclusively as a consequence of the localized data
transfer called handshake. Figure 4 shows the structure of the
ULP-STP in which each stage consists of a data-latch (DL),
functional logic (FL) and transfer control unit (C). The ULP-
STP is a kind of asynchronous bundled data pipelines, and
it employs four-phased handshake [5]. Based on the four-
phased handshake, the valid data in the STP are transferred
between adjacent stages, as follows.

• Reset: After the assertion of the reset signal, the C
negates both its send signal representing transfer request
and ack signal representing acknowledge.

• The C asserts its ack signal after its send signal is
asserted.

• After the assertion of the ack signal, the preceding C
negates its send signal.

• After the negation of the send signal, the C asserts
both its gate open signal (cp) and its send signal and
it negates concurrently its ack signal, only if the ack
signal is negated. As a result, the data is latched in the

��

�

��

�

��

�

�� �� ��

��

�

��

�

�������������	����
���
����������������������������������

�����������������������������������	

�����

����

����	

���	

����


���


�����

����

��

�

��	 ��
 ���

�������������

����������

���

��

�

	
������������

��������������

���������

����
�������

�
�����

���

���

Fig. 4: Self-timed elastic pipeline with run-time voltage
scaling and power gating.

stage to which the C belongs.
• The succeeding C repeats the above steps similarly to

the C.

This handshake concentrates dynamic consumption cur-
rent into the pipeline stages with valid data naturally while
the power control and power switch power off the empty
pipeline stages to reduce the leakage current through the
empty stages. Moreover, the signal propagation delay of
the DL, FL and C are changed at equal rate according to
the supply-voltage, and thus the supply-voltage of the ULP-
STP can be scaled at run-time while the rate of change of
the voltage is moderate enough to guarantee the transistor
switching, i.e., the throughput and processing time of the
ULP-DDCMP can be changed during the execution of target
programs.

The ultra-low-power consumption of the ULP-DDCMP
realized by the ULP-STP has already been demonstrated [3].

2.2 Requirement for energy assurance
Figure 5 shows the measured values of the throughput

and current consumption of the ULP-CUE in a prototype
of the ULP-DDCMP. As a proof of the essential power
consumption of the ULP-DDCMP, both the throughput and
current consumption increase when the occupancy rate of
the ULP-STP increases, i.e. they increase when the amount
of processing load increases. Moreover, the consumption
current has strong correlation with the processing load. This
strong correlation makes it possible to estimate consumption
current in operation (I[A]) according to the processing load
in operation beforehand by using a system level simulator [6]
and to calculate battery-operated lifetime (T[sec.] = W/I)
of the wireless networking devices by using theI and a given
ampere-hour capacity (W [Ah]) before the start of the oper-
ation of the devices. This predictability on the lifetime leads
to the economical design of the battery replacement/charge
schedules.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 559



���

���

���

���

���

���

���

�� ��� ��� ��� ��� ���� ���� ����

�
�
��
�
��
�
	

�

�
��
�
�
�

����������		
���	�����������������

	
���
��

�����������������

�������

�	
���

	
���
��
�����������������

�����

����	
����
�������
����������������
���������������	����

����������������
����	�������������
�����

���
�	��
�����

Fig. 5: Direct correlation between throughput and consump-
tion current.

���

���

���

���

���

���

���

�� ��� ��� 	�� 
�� ���� ���� ����

�
�
��
�
�
�
�
�
�	

�
�
��


��
��
�
�

����������		
���	�����������������

��

�

�������

�	
���

���
�	��
�����

�����

����	
����
�������
����������������
���������������	����

����������������
����	�������������
�����

Fig. 6: Run-time scaling of throughput design target.

On the other hand, the processing load may change
in operation due to failures such as malfunction of the
sensors and also the consumption current may change due
to the change of the processing load as well as operating
environment changes such as the change of temperature.
Therefore, the actual battery-operated lifetime may differ
from the calculation. Fortunately, by virtue of the strong
correlation, such failures and contingencies in the data-
driven wireless networking system can be detected by mea-
suring the consumption current in operation. In particular,
ampere-hour capacity during a certain timet[sec.], which is
denoted byWt[Ah], can be calculated as explained above,
and discharge capacity (d[Ah]) which is the production of
the measured run-time consumption current within thet and
t is compared to theWt. The deviance of thed from the
the range of theWt means that the failures or contingencies
occur. In operation, devices whosed becomes out of the
Wt inform the failures/contingencies occurrence to the other
devices or the center of management with a request to
settle the failures/contingencies. This autonomous detection

��������

�	
��

������


������	

������������

����	������

����

�����

�	
��

���	��

��
�
�
�

�
�
��
�
�

� ��

��������

�	
��

������


������	

������������

����	������

����

�����

�	
��

���	��

��
�
�
�

�
�
��
�
�

� ��

�������������	
���	����	������������������	
���	����	�����

Fig. 7: Load distribution between two parallel pipelines.

of the failures leads to the elimination of the health checking
operations.

In addition to these energy assurance features, the ULP-
DDCMP provides a natural tolerance against the processing
load fluctuation. As shown in the figure 5, as a result of
the handshake, the throughput is kept at a maximum value
without any additional controls when the pipeline occupancy
rate exceeds the design target and reaches overload region
temporarily. However, the processing time increases when
the pipeline occupancy rate is in the overload region because
data transfer at some pipeline stages is postponed until
the succeeding stages completes the data processing and
becomes empty. To avoid this processing time increase, as
shown in figure 6, the supply-voltage is controlled according
to the pipeline occupancy rate observed through the con-
sumption current and it is increased to speed-up the ULP-
DDCMP before the observed pipeline occupancy rate falls
into the overload region.

This run-time supply-voltage control may change the con-
sumption current widely because the consumption current is
in proportion to the square of the supply-voltage. In order
to preserve the consumption current in operation within the
estimated range, dynamic processing load fluctuation should
be suppressed as possible from the viewpoint of the energy
assurance of ULP-DDCMP.

3. Fine-grain load distribution to en-
hance elasticity

In this section, the pipeline structure of the ULP-DDCMP
is redesigned to suppress the dynamic processing load fluc-
tuation. In chip multiprocessor structures, processing cores
share the processing load among them, and usually a set of
data is the unit of processing load distribution. For instance,
a packet is a unit to be assigned to one of the processing
cores in protocol handling. On the other hand, the actual

560 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



��������

�	����


���	����

����
����

��	

��	��

�
����

���
��

��

��	����

�
����

�������

�	����


���	����

����
����

��	

��	��

�
����

���
��

����� ������� ��� � �

� �

	
�����

������������

Fig. 8: ULP-CUE-P.

processing load of a unit may differ due to the amount and
value of the assigned data. To smooth the processing load
fluctuation finely, deeper load distribution should be realized.

3.1 Utilization of ULP-STP’s elasticity

Although the packet handling time is in the order of
hundredsµsec. according to the actual demonstration ex-
periments [4], it is practically difficult to estimate the arrival
timing of all packets in the hundredsµsec. order, and thus
the number of packets processed concurrently may differ
from the estimated value. Fortunately, in the ULP-STP, the
number of operations executed concurrently is temporally
smoothed as a result of the handshake and thus the pipeline
occupancy rate may be kept before the overload region
when the number of packets processed concurrently changes.
However, this elasticity of the ULP-STP is available when
the number of packets processed is within a certain value,
and therefore the run-time load distribution is necessary to
keep the elasticity of every ULP-STP available.

From the viewpoint of the fair sharing of the processing
load among ULP-CUE’s, the processing load should be
finely distributed, i.e. operation level load distribution is
preferable instead of conventional packet level load distri-
bution. However such fine grain load distribution results
in the increase of both power consumption and processing
time due to the intensive usage of the interconnection net-
work among the ULP-CUE’s because every data transferred
among the ULP-CUE’s goes through the interconnection
network shown in the figure 2. In this paper, the pipeline of
the ULP-DDCMP is restructured by integrating the operation
execution pipeline and the interconnection network to realize
operation level load distribution without overheads.

3.2 Parallelized self-timed elastic pipeline with
shortcut

The pipeline occupancy rate of each processing core,
ULP-CUE, of the ULP-DDCMP is determined by the num-
ber of operations executable concurrently, and thus sharing
the operations among the ULP-CUE’s fairly results in the
reduction of the pipeline occupancy rate of each ULP-
CUE. That is, the fair sharing of operations suppresses the
occurrence of the situation where the pipeline occupancy rate
falls into the overload region. To realize such fair sharing
of operations, the pipeline structure should be redesigned
to avoid the intensive usage of the MM, PS, FP, MA of a
specific processing core, as shown in figure 7.

To realize completely fair sharing of operations, all of
operations fetched in the PS should be assigned among all
of the FP, MA and MM fairly. In this paper, sharing is
studied among two ULP-CUE’s as a minimum configuration.
To make it possible to assign any of operations to both
ULP-CUE’s, the PS’s store the same target program. The
operations fetched in the PS’s are distributed in round-
robin fashion between two FP’s to realize fair sharing. To
realize this distribution, branch (B) stages whose output is
transferred to alternately upper path and lower path and
merge (M) stages to merge the outputs from the B’s are
added to provide shortcut for load distribution between two
parallel circular pipelines. As for the MM, the output data
is distributed in round-robin fashion as well as the fetched
operations.

Figure 8 illustrates the redesigned pipeline named ULP-
CUE-P (ULP-CUE with parallelized circular operation ex-
ecution pipeline). In the ULP-CUE-P, the MA’s share one
physical memory realized by 2-port RAM to preserve co-
herency of stored data. Moreover, the MM’s are unified as
one because binary operations are a minority in protocol
handling. For instance, the binary operations occupy only

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 561



��

���

��

��

���

��

���

��

���

�	

���

�	

���


�

���


�

���


�

���

��


���

��


���

� �

��

��

��

�� ��

��

��

��

���

��

���

�	

���

�	

���


�

���


�

���


�

���

�� ��

���

���

��� ���

���

���

�����

������

�����

������

Fig. 9: Designed circuit of ULP-CUE-P.

approximately 20% of UDP/IP handling program. With the
proposed pipeline structure, the operations are distributed
fairly between two parallel pipelines without transferring the
interconnection network between processing cores which are
essentially unnecessary to execute target operations.

3.3 Evaluation on load distribution

To evaluate the processing load distribution capability of
the proposed ULP-CUE-P, the circuit of the ULP-CUE-P
is simulated. The circuit of the ULP-CUE-P is described
at RTL (Register Transfer Level) by utilizing the RTL de-
scription and pipeline tact information of the ULP-DDCMP.
The circuit size of the ULP-CUE-P is comparable to that of
the two ULP-CUE’s, and thus the simulation result of the
ULP-CUE-P is compared with that of the two ULP’s.

To realize the proposed ULP-CUE-P, the merge and
branch stages described blow are added in addition to the
MM, PS, FP, MA and MM.

• Mi: a merge stage to accept input data
• Bs: a branch stage to realize the shortcut
• Ms: a merge stage to realize the shortcut
• Bb: a branch stage for binary operation and output
• Bp: a branch stage for distributing the binary operations
• Be: a branch stage for distributing the unary operations
• Mp: a merge stage for binary operations
• Me: a merge stage for unary operations
• Bl: a branch stage for sharing operations
• Ml: a merge stage for sharing operations

Figure 9 shows the circuit of the ULP-CUE-P. The branch
and merge stages of the lower pipeline are labeled with
"x" to distinguish those of the upper pipeline. The ULP-
CUE-P has only one MM, and thus a buffer stage named
BUF is added to compensate one of two MM’s existing
in the conventional two ULP-CUE’s. This is because the
reduction of the number of pipeline stages increases the
pipeline occupancy rate against the same processing load. To
annotate the signal propagation delay in the ULP-DDCMP to
the described circuit, the pipeline tact extracted through the
circuit simulation of the post-layout circuit of the prototype

LSI of the ULP-DDCMP which is shown in figure 10 is set
to every pipeline stage of the described circuit.

In the simulation, the conventional ULP-CUE is realized
by disabling the branch stages, Bp, Bl and Be for load
distribution. To confirm that the processing time increase
due to the processing load fluctuation is suppressed by the
ULP-CUE-P, the processing time of a protocol handling
program is measured through the simulation. As the pro-
tocol handling program, a data-driven program of UDP/IP
handling is used because its connection-less packet transfer
results in low-power consumption indispensable in battery-
operated wireless devices and thus it is one of the protocols
expected to be used in the wireless ad hoc networking
systems. Figure 11 shows the measured results of ULP-
CUE-P and two ULP-CUE’s. As shown in the result, the
processing time increase in the ULP-CUE-P (proposed) is
within approximately 4% when three packets are processed
simultaneously while approximately 18% processing time
increases in the two ULP-CUE’s (conventional). This is a
proof that the processing load fluctuation is suppressed by
the proposed pipeline structure.

4. Conclusions
This paper describes a parallelized self-timed pipeline

with shortcut to exploit the energy assurance capability of the
data-driven networking processor CUE, in order to preserve
the ultra-low-power consumption of the CUE and to assure
the estimation of the CUE’s energy and consumption current
in operation. The proposed pipeline is evaluated through an
RTL simulation with UDP/IP handling and it is proven that
the processing load fluctuation resulting in the change of
the consumption current in operation can be suppressed by
the operation level load distribution realized by the proposed
circuit.

The proposed circuit is an implementation of the operation
level load distribution for two circular pipelines (processing
cores), and its scalability for 4 or more pipelines should
be further studied because the multiport memory required
to preserve the stored data coherency is cannot be scaled
without overhead. On the other hand, the consumption

562 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



Fig. 10: Prototype of data-driven networking chip multiprocessor.

���

���

���

���

���

���

���

� � �

�
��
��
��
��
	

�
��

�


��
��
�
�

������������

����

���������������	�

	
�����������������������

����������������������

�
�����

������������

�����������	�

Fig. 11: Processing time of UDP/IP protocol handling.

current on a program can be easily estimated and observed
if the program is allocated to a processing cores group
different from the other groups which execute the other
programs in target application, and the proposed circuit
may be sufficient to become one of the processing cores
groups, i.e. the proposed circuit can be the unit of the
program allocation in chip multiprocessor. To examine this
possibility and demonstrate the practical effectiveness of the
proposed pipeline architecture, the proposed circuit is now
being evaluated through a system level simulation [6] of
an actual data-driven wireless sensor networking system.
The result of the further evaluation will be presented at the
conference.

Acknowledgement
Although it is impossible to give credit individually to all

those who organized and supported our project, the authors
would like to express their sincere appreciation to all the
colleagues in the project.

This research work was supported in part by START
program (Program for Creating Start-ups from Advanced
Research and Technology) of MEXT (Ministry of Education,
Culture, Sports, Science and Technology) and IS program
of Semiconductor Technology Academic Research Center
(STARC). The CAD tools for the evaluation in this work is
supported by VDEC (VLSI Design and Education Center),
the University of Tokyo in collaboration with Synopsys, Inc.

References
[1] Hiroaki Nishikawa, “Design Philosophy of a Networking-Oriented

Data-Driven Processor: CUE,” IEICE Transactions on Electronics,
Vol.E89-C No.3, pp.221-229, Mar. 2006.

[2] Kei Miyagi, Shuji Sannomiya, Makoto Iwata, and Hiroaki Nishikawa,
"Low-Powered Self-Timed Pipeline with Variable-Grain Power Gating
and Suspend-Free Voltage Scaling," in Proc. of PDPTA, pp.618-624,
July 2013.

[3] Kazuhiro Aoki, Hiroshi Ishii, Makoto Iwata, and Hiroaki Nishikawa,
“A Comprehensive Evaluation of ULP-DDNS by Platform Simulator,”
in Proc. of PDPTA, pp.445-451, July 2012.

[4] Shuji Sannomiya, Kazuhiro Aoki, Makoto Iwata, and Hiroaki
Nishikawa, “Power-Performance Verification of Ultra-Low-Power
Data-Driven Networking Processor: ULP-CUE,” in Proc. of PDPTA,
pp.465-471, July 2012.

[5] C. J. Myers, “Asynchronous circuit design,” Univ. of Utah John Wiley
& Sons, Inc., 2001.

[6] Kazuhiro Aoki, Shuji Sannomiya, and Hiroaki Nishikawa, “Data-
Driven Sensor Networking System Simulator,” in Proc. of PDPTA, July
2015.(to be published)

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 563



Data-Driven Sensor Networking System Simulator

Kazuhiro Aoki 1, Shuji Sannomiya2 and Hiroaki Nishikawa2

1Information Infrastructure Laboratory, Inc., Tsukuba Science City, Ibaraki, JAPAN
2Faculty of Engineering, Information and Systems, University of Tsukuba,

Tsukuba Science City, Ibaraki, JAPAN

Abstract— This paper describes an implementation of data-
driven sensor networking system simulator which is essential
to evaluate robust sensor networking system. Robustness
and self-diagnostic ability are important to realize sensor
networking system because it is difficult to maintain many
sensors in sensor network such as IoT. For keeping sen-
sor networking system available, it is crucial issue to de-
crease power consumption in sensor networking system. We
proposed Ultra-Low-Power Data-Driven Networking Sys-
tem (ULP-DDNS) and evaluated that ULP-DDNS achieved
1/180 power consumption to conventional network system in
ad hoc network. Furthermore, keeping constant load scheme
and self-diagnostic scheme which resolves trouble sensor by
monitoring sensors each other have been studied in order
to realize robust data-driven sensor networking system. In
this paper, we propose data-driven sensor networking system
simulator which can evaluate the effects of keeping constant
load scheme and self-diagnostic scheme include behavior of
network communication as extension of data-driven platform
simulator.

Keywords: data-driven, sensor, networking, low-power, simulator

1. Introduction

IoT (Internet of Things) is broadly discussed as an inter-
esting application of Internet [1]. Sensor network is essential
to implement IoT because sensors can be interface between
Internet and various things such as IC tag [2]. Then, it is
necessary for sensor network to be robust because a lot
of sensors must be kept available at all times. However,
maintenance of many sensors is difficult if they are fragile
and short life.

About lifetime, sensor network is mostly wireless net-
work. Therefore, it is necessary to study ultra-low-power
scheme for sensor network because power consumption is
generally crucial issue [3]-[5]. And it is desirable to detect
trouble of sensors by themselves in order to keep network
available. Thus, self-diagnostic scheme of sensor network
should be studied.

The authors have been studying an implementation of
Ultra-Low-Power Data-Driven Networking System (ULP-
DDNS) [6]. ULP-DDNS project has been aiming at develop-
ment of data-driven networking system which can achieve
ultra-low-power consumption. And we have evaluated that
ULP-DDNS can achieve 1/180 power consumption against
the present system.

ULP-DDNS project have applied mobile ad hoc network
[7] to ULP-DDNS. Ad hoc network is an infrastructureless
network and is a group of wireless devices that organize
themselves in a mesh topology to find routes and relay
packets from the hardware platform through the network
layer to application. The authors have proposed Load-aware
Dynamic Counter-based Flooding (LDCF) which is a flood-
ing scheme to reduce traffic for ultra-low-power [8]. And
Ultra-Low-Power Data-Driven Chip MultiProcessor (ULP-
DDCMP) which is our data-driven chip multiprocessor has
been applied to networking platform in order to reduce
power consumption [9].

The authors have started research about data-driven sen-
sor networking system based on ULP-DDNS. We aim at
applying data-driven sensor networking system to security
service and monitoring infrastructures such as bridge and
tunnel because it is difficult to monitor at all times by
manual. It is essential to evaluate power consumption as well
as performance in the whole data-driven sensor networking
system. Furthermore, we have proposed keeping constant
load scheme of protocol handling and self-diagnostic scheme
in order to realize long-lifetime of sensor networking system
[10]. Data-driven sensor networking system simulator is the
simulator which evaluates the effects in keeping constant
load scheme and self-diagnostic scheme.

In this paper, the authors introduces ULP-DDNS on
which data-driven sensor networking system is based. And
we discuss about keeping constant load scheme and self-
diagnostic scheme which utilize features of ULP-DDCMP.
Furthermore, this paper describes about data-driven sensor
networking system simulator which is added network sim-
ulation function to data-driven platform simulator. We also
estimate the precision of simulation on the data-driven sen-

564 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



sor networking system simulator. Finally, this paper shows
current status of this study and discusses about application
of data-driven sensor networking system.

2. Data-Driven Sensor Networking Sys-
tem

This section reports data-driven sensor networking system
by introduction of ULP-DDNS. Fig. 1 shows layer of
data-driven sensor networking system. Data-driven sensor
networking system is ULP-DDNS whose concrete applica-
tion is defined. Data-driven sensor networking system has
some platforms connected by network. Some platforms are
based on ULP-DDCMP. ULP-DDCMP is chip multiproces-
sor which has 4 processor core. And, the processor cores
are based on self-timed pipeline which is controlled by
handshake between pipeline stages. Handshake control is
the VLSI implementation by data-driven principle. Protocol
handling and flooding scheme are implementation on ULP-
DDCMP for ultra-low-power. On the data-driven sensor net-
working system, we have studied data-driven implementation
of sensor applications.

2.1 Ultra-Low-Power Data-Driven Networking
System

ULP-DDCMP is realized by data-driven VLSI implemen-
tation as shown in Sec. 2. Ultra-low-power features of ULP-
DDCMP are produced from utilization of characteristics
in the data-driven chip multiprocessor. For example, it is
popular to utilize dynamic voltage scaling (DVS) and power
gating (PG) for low power consumption of VLSI [11], [12].
The authors then proposed more effective utilization of them
by using characteristics of data-driven VLSI implementation.
Our DVS by PID controller realizes scaling on work by
utilizing handshake control of self-timed pipeline. And, fine-
grain power gating is implemented by utilizing self-timed
pipeline [13].

Furthermore, the authors studied mobile ad hoc network
as an applicable network architecture to disaster situation.
In disaster situation, it is essential for network to work
with low power consumption. And, effective information
discovery is also important. At a same time, effective secure
communication is needed [14]. They should be realized
under the effective data transfer on ad hoc network. We have
proposed these schemes in ultra low power consumption and
we have evaluated effects of these schemes in reducing traffic
and power consumption. The authors also studied load-aware
dynamic counter-based flooding (LDCF) for streaming data.
LDCF can achieve very low traffic and high reachability

Data-Driven Sensor 

Networking System

Network(PHY)

ULP-DDCMP

Processor Core

Self-Timed Pipeline

Protocol/Flooding Scheme

Sensor Applications

Fig. 1: Configuration of Data-Driven Sensor Networking
System

for streaming. As a result, the authors evaluated that ULP-
DDNS achieved 1/180 power consumption to conventional
network system in ad hoc network.

2.2 Self-Diagnostic Scheme on Data-Driven
Networking Platform

This section refers to self-diagnostic scheme on ULP-
DDNS platform which is based on ULP-DDCMP. ULP-
DDCMP has characteristics which are linearity between
power consumption and load as well as ultra-low-power
consumption. Therefore, the authors have studied load-
avoiding scheme which detects and avoids overload by
monitoring power consumption because power consumption
is proportional to load of ULP-DDCMP [9]. Besides, we
have proposed keeping load constant scheme of protocol
handling. And we have also studied lifetime estimation by
monitoring power consumption as an application of the
scheme. Furthermore, autonomous load distribution of data-
driven networking processor for high energy efficiency has
been studying [15].

As another application of the load-avoiding scheme,
we have proposed self-diagnostic scheme on data-driven
networking platform. Usually, sum of event detection by
sensors shows a tendency because many events are apt to
occur periodically. On the other hand, the sum of event is
proportional to the load on data-driven sensor networking

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 565



systemplatform because the sum of event is equal to the
sum of input to ULP-DDCMP. Besides, ULP-DDCMP can
be monitored its own load by measuring power consumption
because power consumption is proportional to load of ULP-
DDCMP. Therefore, we can estimate the amount of load of
ULP-DDCMP in each platform when sum of event detected
by each sensor is periodical.

Then, ULP-DDCMP can detect trouble of the sensor by
monitoring extraordinary power consumption which shows
unusual input from the sensor. Thus, ULP-DDCMP can
notify users of trouble of the sensor. The authors have started
evaluating the effectiveness of the self-diagnostic scheme
[10].

3. An Implementation of Data-Driven
Sensor Networking System Simulator

3.1 Data-Driven Platform Simulator to Evalu-
ate ULP-DDNS Platform

This subsection describes an implementation of data-
driven platform simulator to evaluate power consumption
of ULP-DDNS platform which applies ULP-DDCMP to
networking processor [16]. Data-driven platform simulator
has workspace which is a container of configuration of the
platform. The workspace has following information.

• Chip multiprocessor (CMP)
• Router

– Pipeline stages
– Connection between pipeline stages

• Processor core in CMP

– Pipeline stages
– Connection between pipeline stages

• Chip specification

– Ratio(power, area)
– Voltage specification

• Routing table
• Schedule table
• Parameters of PID controller

Data-driven platform simulator records events which are
sending/receiving packet and change voltage. A packet is
the implementation of a token in data-driven principle. Data-
driven platform simulator outputs time and power of each
event as a event data. Data-driven platform simulator has
an event scheduler. The event scheduler loads schedule
table which is set packet flow by user. Data-driven platform
simulator repeats following step until schedule in scheduler
is finished.

• The simulator progress time until most immediate event
time.

• The simulator process the event and add new event to
scheduler as needed.

The events are mainly sending/receiving packet and
change voltage in the schedule. this subsection explains
transition of packet on self-timed pipelines which compose
ULP-DDCMP. Fig. 2 is an example of self-timed pipeline
configuration including mergence of two pipeline stages:
S0 and S1. Fig. 3 shows sequence chart of handshaking
on the configuration in shown Fig. 2. Self-timed Pipeline
sends packets by handshaking between pipelines. In Fig.
3, pipeline stageS1 firstly receives a packet and sends
acknowledge(ACK) signal to former pipeline stage to hand-
shake with the pipeline. AndS0 also receives another packet
and sends ACK signal to former pipeline stage. Furthermore,
S1 sends SEND signal toS2 which is following and merging
stage ofS0 andS1. Then, status ofS2 is standby, therefore
S1 immediately sends the packet which exist onS1 to
S2, and S2 sends ACK signal toS1. Next, S0 sends
SEND signal toS2, but status ofS2 is active becauseS2
already received the packet fromS1 and didn’t send the
packet toS3 yet. Therefore,S0 keeps another packet until
status ofS2 become standby. WhenS2 sends SEND signal
and the packet toS3 and S2 receives ACK signal from
S3, S0 sends another packet toS2 and S2 sends ACK
signal to S0. Besides,S3 sends the packet to following
stage, and receives ACK signal from following stage. Then,
S2 can send another packet toS3 because status ofS3
become standby. Fig. 3 shows "ACK time" and "SEND
time". "ACK time" is time from receiving send signal to
sending ack signal on the same stage. On the other hand,
"SEND time" is time from receiving a packet to sending
the packet on the same stage. When status of the pipeline
stage is standby, a packet is received by the pipeline stage
as soon as receiving signal. Data-driven platform simulator
simulates the behavior of packet on the pipeline stages by
scheduling to send SEND/ACK signal including latency in
voltage at that time.

Data-driven platform simulator can simulate voltage con-
trol by PID controller. Table 1 shows parameters for voltage
control simulation. The simulator samples power consump-
tion and voltage of chip multiprocessor core as an input.
And the simulator output voltage which is calculated by
PID controller. Fig. 4 shows PID controller. Table 2 explains
functions in Fig. 4.

When input sampling time isti = i ·Tpidin, consumption
currentI is shown following equation:

566 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



Fig. 2: Topology of Merge on Self-Timed Pipeline

I(ti) =
P (ti)

V (ti)

Whentarget voltageVsp is

Vsp(ti) = min{VMAX ,max{VMIN , αI(ti) + β}}

voltage deviatione is shown following equation:

e(ti) =

{
0, i = 0

Vsp(ti)− V (ti), i > 0

Then, the output value of PID controllerVMV is shown
following equation:

VMP (ti) = Kpe(ti) +Ki

i∑
x=1

e(tx) +Kd(e(ti)− e(ti−1))

ṼMV (ti + Tpid) = min{Vstep, max{−Vstep, VMP (ti)}}

VMV (t) =

{
0, 0 ≤ t < t0 + Tpid

ṼMV (ti + Tpid), ti + Tpid ≤ t < ti+1 + Tpid

Then, output voltageVPV is shown following equation
when output sampling time istj = j · Tpidout:

ṼPV (tj) =

{
VMIN , j = 0

VPV (tj−1) + VMV (tj), j > 0

VPV (t) = ṼPV (tj), tj ≤ t < tj+1

3.2 Extension of Data-Driven Platform Simu-
lator to Evaluate Networking System

This subsection describes about extension of data-driven
platform simulator to evaluate sensor networking system.
The authors named the extended simulator "Data-driven
sensor networking system simulator". Data-driven sensor
networking system simulator adds the information of plat-
form network and network routing table to the workspace

Table 1: Parameters for Voltage Control

Parameter Unit Definition
Tpidin psec. Samplinginterval of input current
Tpidout psec. Samplinginterval of output current
Tpid psec. Latency of PID controller
Kp Gain of proportion in PID controller
Ki Gain of integral in PID controller
Kd Gain of derivation in PID controller
α Coefficient for target voltage
β Constantfor target voltage
VMIN V Minimum voltage in output voltage
VMAX V Maximum voltage in output voltage
Vstep V Maximum amount of variation by PID controller

Table 2: Functions of Voltage Calculation in PID Controller
Function Definition
P (t) Functionof power consumption in timet
V (t) Functionof voltage in timet
I(t) Functionof current in timet
VSP (t) Functionof target voltage in timet
VMV (t) Functionof output value in timet
VPV (t) Functionof output voltage in timet

as the simulator configuration. Fig. 5 shows an example of
platform network.

Platform is defined by CMP, chip specification, routing
table, and parameters of PID controller in the simulator. And,
connection between platforms is defined by selection of two
connected platforms. Then, the connection has communi-
cation latency. The communication latency is symmetrical
between connected platforms, and can be set by user in
simulation. Data-driven sensor networking system simulator
defines routing information of platform network in the
network routing table. Some routing can be defined in the
network routing table. Network packet flow is defined in the
routing information. Users selects following items in each
hop.

• Destination platform of the current hop
• Input network packet in the current hop

Elements of input network packet must be linked to
available pipeline packets which are defined in the routing
table of destination platform. Therefore, network routing can
be defined by pipeline packets. In the network routing table,
input of platform is defined receiving from out of network
in first hop, and output of platform is defined sending to out
of network in last hop.

The authors estimates the precision of power consumption
which is calculated by data-driven sensor networking system
simulator. Time slice of the simulator is 1psec. In the
configuration, SEND time and ACK time which are defined
is O(nsec.), and latency of network routing isO(msec.).

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 567



Fig. 3: Sequence of Self-Timed Elastic Pipeline

On the other hand, the order of power isO(mW ) in
the simulator. Therefore, the simulator can derives from
power consumption inO(mWsec.) at least. This precision
is enough to estimate lifetime of sensor networking system
because sensor networking system usually works for more
than a few years. The authors have been studying lifetime
prediction of data-driven sensor networking system platform
to schedule battery replacement or charge economically [10].
And the lifetime prediction scheme will be evaluated the
precision and the validity with data-driven sensor networking
system simulator.

4. Conclusion

This paper firstly introduced ULP-DDNS on which data-
driven sensor networking system is based. And we discuss
about keeping constant load scheme and self-diagnostic
scheme which utilize features of ULP-DDCMP. Further-
more, this paper described about data-driven platform sim-
ulator, and data-driven sensor networking system simulator
which is added platform network and network routing table
to data-driven platform simulator. Besides, we estimated the
precision of simulation on the data-driven sensor networking
system simulator.

The authors have been studying applications of data-
driven sensor networking system. Our colleagues have stud-

568 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



Fig. 4: Configuration of PID Control on Data-Driven Platform Simulator

Fig. 5: Configuration of Network Topology on Data-Driven Sensor Networking System Simulator

ied various communication systems, and they have evaluated
schemes for security service and ad hoc network [17]-[20].
Our colleagues have also studied self-timed pipeline circuit
for Fast Fourier Transform (FFT) because FFT is important
application to process image from sensor such as image
sensor [21]. On the other hand, the authors think data-driven
sensor networking system is suitable for the application
which require robustness and longlife to sensor networking
system. We will apply the system to monitoring infrastruc-
ture and machines in factories because it is essential for the
sensor networking system to be robustness and longlife.

Acknowledgments
Although it is impossible to give credit individually to all

those who organized and supported the CUE project and the
ULP-DDNS project, the authors would like to express their
sincere appreciation to all the colleagues in the project.

The CUE project and the ULP-DDNS project are par-
tially supported by Program for Creating STart-ups from
Advanced Research and Technology (START) and Core
Research for Evolutional Science and Technology (CREST),
Japan Science and Technology Agency, Strategic Infor-
mation and Communications R&D Promotion Programme
(SCOPE), Ministry of Internal Affairs and Communications,
Japan, and the Grants-in-Aid for Scientific Research of Japan
Society for the Promotion of Science and Semiconductor

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 569



Technology Academic Research Center (STARC). And, this
work is supported by VLSI Design and Education Cen-
ter(VDEC), the University of Tokyo in collaboration with
Synopsys, Inc. and Cadence Design Systems, Inc.

References

[1] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, "Internet of
Things (IoT): A vision, architectural elements, and future directions,"
Journal of Future Generation Computer Systems, Vol.29, Issue 7,
pp.1645–1660, Sep. 2013

[2] C. Alcaraz, P. Najera, J. Lopez, and R. Roman, "Wireless Sensor
Networks and the Internet of Things: Do We Need a Complete
Integration? ," 1st Int’l Workshop on the Security of the Internet of
Things (SecIoT’10), CD-ROM, Dec. 2010.

[3] T. Inagaki and S. Ishihara, "HGAF: A Power Saving Scheme for
Wireless Sensor Networks," IPSJ Journal Vol.50, No.10, pp. 2520–
2531, Oct. 2009.

[4] A. Keshavarz-Haddad and R. Riedi, "Bounds on the benefit of network
coding: Throughput and energy saving in wireless networks," IEEE
INFOCOM 2008, Phoenix, Arizona, USA, pp. 376–384, April 2008.

[5] L. Sukyoung, K. Laeyoung, and K. Hojin, "MIPv6-Based Power
Saving Scheme in Integrated WLAN and Cellular Networks," IEICE
transactions on communications Vol. E90-B, No. 10, pp. 2780–2783,
Oct. 2007.

[6] Hiroaki Nishikawa, Hiroshi Ishii, and Makoto Iwata, “Collaborative
Research Project on　 Ultra-Low-Power Data-Driven Networking
System,” Proc. of the 2008 Int’l Conf. on Parallel and Distributed
Processing Techniques and Applications, pp. 697–703, July 2008.

[7] Jie Wu, Ivan Stojmenovic, “Ad Hoc Networks,” IEEE Computer,
Vol.37, No.2, pp.29–31, Feb. 2004.

[8] Keisuke Utsu, Hiroaki Nishikawa, and Hiroshi Ishii, "Broadcast Voice
Streaming by Load-aware Flooding over Ad Hoc Networks achieving
Reduction of Traffic and Power Consumption," Proc. of the 2011
Int’l Conf. on Parallel and Distributed Processing Techniques and
Applications, pp.455–461, July 2011.

[9] Shuji Sannomiya, Yukikuni Nishida, Makoto Iwata, and Hiroaki
Nishikawa, "An Overload-Free Data-Driven Ultra-Low-Power Net-
working Platform Architecture, " Proc. of the 2013 Int’l Conf. on
Parallel and Distributed Processing Techniques and Applications,
pp.604–610, July 2013.

[10] Shuji Sannomiya and Hiroaki Nishikawa, "Highly-Dependable and
Long-Lifetime Data-Driven Networking Processor with Energy As-
surance Capability," Proc. of the 2015 Int’l Conf. on Parallel and
Distributed Processing Techniques and Applications, PDP7009, July
2015.

[11] Anantha P. Chandrakasan, Samuel Sheng, and Robert W. Brodersen,
“Low Power CMOS Digital Design,” IEEE Trans. on Solid-state
Circuits., vol. 27, No. 4, pp.473–483, Apr. 1992.

[12] Shin-ichiro Mutoh, Satoshi Shigematsu, Yoshinori Gotoh, and Shin-
suke Konaka, “Design Method of MTCMOS Power Switch for Low-
Voltage High-Speed LSIs,” Proc. of Asia and South Pacific Design
Automation Conference, Hong Kong, pp.113–116, Jan. 1999.

[13] Kei Miyagi, Shuji Sannomiya, Makoto Iwata, and Hiroaki Nishikawa,
"Low-Powered Self-Timed Pipeline with Variable-Grain Power Gating
and Suspend-Free Voltage Scaling," Proc. of the 2013 Int’l Conf.
on Parallel and Distributed Processing Techniques and Applications,
pp.618–624, July 2013.

[14] Hiroshi Ishii, Keisuke Utsu and Hiroaki Nishikawa “Integrated Eval-
uation on Effectiveness of ULP-DDNS Networking Layer,” Proc. of
the 2012 Int’l Conf. on Parallel and Distributed Processing Techniques
and Applications, pp.452–457, July 2012.

[15] Shuji Sannomiya and Hiroaki Nishikawa, "Energy Efficient Data-
Driven Networking Processor with Autonomous Load Distribution
Capability," Proc. of the 2014 Int’l Conf. on Parallel and Distributed
Processing Techniques and Applications, pp.514–520, July 2014.

[16] Kazuhiro Aoki, Shuji Sannomiya, Makoto Iwata, Hiroshi Ishii, and
Hiroaki Nishikawa, "An Implementation of Platform Simulator for
Congestion-Free Ultra-Low-Power Data-Driven Networking System,"
Proc. of the 2013 Int’l Conf. on Parallel and Distributed Processing
Techniques and Applications, pp.611–617, July 2013.

[17] Ayami Manaka, Akio Ogata, Hirohide Matsuzaka, Hayato Taniguchi,
Masaya Nomoto, Yasuhiro Nozawa, Minoru Fukuzaki, Hiroshi Ishii,
and Keisuke Utsu, "A Concept of Community Care System and
Community Information Network," Proc. of the 2015 Int’l Conf.
on Parallel and Distributed Processing Techniques and Applications,
PDP7005, July 2015.

[18] Ayami Manaka, Tomomi Itoh, Yasuhiro Nozawa, Chee Onn Chow,
Minoru Fukuzaki, Hiroshi Ishii, and Keisuke Utsu, "Performance
Evaluation of a Community Information Network for a Daily Life
Support System," Proc. of the 2015 Int’l Conf. on Parallel and
Distributed Processing Techniques and Applications, PDP7006, July
2015.

[19] Kei Kobayashi, Yosuke Totani, Keisuke Utsu, and Hiroshi Ishii,
"A Study on Secure Communication Method Using Secret Sharing
Schemes over MANET," Proc. of the 2015 Int’l Conf. on Parallel and
Distributed Processing Techniques and Applications, PDP7007, July
2015.

[20] Phonepadith Phounmmavong, Keisuke Utsu, Hiroaki Nishikawa, and
Hiroshi Ishii, "Efficient Location-aided Route Discovery Mechanism
for Ad-hoc networks," Proc. of the 2015 Int’l Conf. on Parallel and
Distributed Processing Techniques and Applications, PDP7008, July
2015.

[21] Norifumi Uno and Makoto Iwata, "Self-Timed MM-FFT Circuit and
its Performance Evaluation," Proc. of the 2015 Int’l Conf. on Parallel
and Distributed Processing Techniques and Applications, PDP7011,
July 2015.

570 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



Self-Timed MM-FFT Circuit and its Performance Evaluation

Norifumi UNO and Makoto IWATA
Graduate School of Engineering, Kochi University of Technology,

Kami, Kochi, 782-8502 Japan

Abstract— For realizing future heterogeneous wireless com-
munication systems, flexible and powerful fast Fourier trans-
form (FFT) circuit is indispensable. This paper presents
a basic configuration of multimode and multichannel FFT
(MM-FFT) circuit based on self-timed pipeline (STP). The
proposed circuit is designed by using 65 nm CMOS standard
cells and evaluated in terms of diverse conditions.

The evaluation results show that the proposed circuits
perform under the ideal pipeline efficiency as long as the
target FFT has enough parallelism for processing resource.
Furthermore, it is revealed that the proposed MM-FFT
circuit can support present heterogeneous wireless network
applications, e.g., 2.4 G sample/s for wireless personal area
network (WPAN), 2-channel 20 M sample/s for wireless local
area network (WLAN), and 2-channel 40 M sample/s for
mobile broadband wireless access (MBWA).

Keywords: heterogeneous wireless network, multimode and mul-
tichannel, FFT, self-timed pipeline

1. Introduction
The amount of data traffic on wireless network has been

increasing exponentially in recent years. Meanwhile, usage
of smart wireless devices has widely spread. To accommo-
date such huge traffic and provide uniform user experience
in ubiquitous environment, heterogeneous wireless network
(HetNet) has been investigated [1].

Our research project aims to establish a self-timed pipeline
(STP) implementation for the dependable wireless systems
(DWS) [2] supporting multimode and multiband interfaces
like HetNet. Since the self-timed pipeline (STP) circuit
inherently has a clockless passive operation mode [3], [4], it
can flexibly process any combination of signal streams even
if they are sampled at different frequencies.

The fast Fourier transform (FFT) is one of heaviest tasks
in wireless modem. In the heterogeneous wireless network,
FFT circuits are required to be high speed and low power
consumption but also flexible with heterogeneous wireless
channels. Although multimode FFT circuit with flexible
radix configuration has been proposed in [5], [6], and so
on. They are dedicated to single channel stream, i.e., they
cannot cope with multichannel signal streams at the same
time. In [7], a basic circular pipeline circuit for multimode
and multichannel FFT (MM-FFT) based on STP has been
proposed. It can operate multiple input signal streams be-
cause of asynchronous handshake behavior of the STP. Even

if their input signal streams are sampled at different rate,
this circuit accepts and processes them together without any
strict scheduling of processing time slots. However, pipeline
efficiency (occupancy) of this circuit was not optimized so
that it resulted in some degradation of pipeline throughput.
Suppose if the pipeline efficiency can be maximized, the
maximum performance was limited by the transistor speed.
Therefore, some parallelization technique is necessary for
faster wireless channel [8].

This paper proposes a basic self-timed MM-FFT circuit
as a modified version of previous proposal and discusses
its pipeline efficiency for every mode of FFT points. The
paper also proposes an expansion scheme of MM-FFT circuit
for faster wireless channel and discusses its efficiency in
multimode and multichannel configuration. After that, the
performance of the proposed circuit is evaluated based on
65 nm CMOS circuit design.

2. MM-FFT with Single-Circular STP
2.1 Basic Scheme of MM-FFT

Basic scheme of multimode and multichannel FFT is
organized to execute multiple butterfly operations in the
pipelined manner. As shown in Figure 1, it is constructed
by a single circular STP and consists of merge stage, buffer
memory stage, reconfigurable butterfly operation stage, and
ID handler stage. Each data set within all pipeline stages is
distinguished by its identifierID(ch, step, btf), wherech
denotes an identifier of input channel,step denotes a recur-
sive step to which the butterfly operation belongs, andbtf
denotes an identifier of a set of butterfly operations within
the step. In principle, since all the necessary parameters of
FFT such as the number of FFT points, indices of twiddle
factors, and so on can be derived fromID(ch, step, btf),
this scheme can accept multimode and multichannel input
streams where every stream can be calculated in different
mode, i.e., the number of FFT points or sampling rate.

In this scheme, the merge stage receivesNch input data
from a channelch consecutively. The input data reaching to
the buffer memory stage is written in a place associated with
indexi of the packet. The buffer memory stage reads a set of
r input data which includes multiple sets of radix-r butterfly
operands from dualr-way memory banks at the same time,
their corresponding twiddle factors are read from TF lookup
memory. The butterfly operation stage can be reconfigured
by adapting to a required radixrreq. In this stage, so-called

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 571



Input sequences

with ID(ch)

Output sequences

with ID(ch)

Buffer

TF

lookup

Read

Write

r-way

Memory banks

Dual r-way

memory banks

# of butterfly

instances: P

p

# of FFT 

points: N

ch

ID Handler

Instantiation of

single FFT

Prerelease

ID(ch, step, btf)

Issue

ID(ch, step, btf)

Reconfigurable 

Butterfly

: Data with ID : ID

Merge

Reconfigurable 

Radix-r

Butterfly

Reconfigurable 

Radix-r

Butterfly

Reconfigurable 

Radix-r

Butterfly

Radix-r

butterfly

Fig. 1: Basic scheme of MM-FFT.

data-parallel execution of multiple butterfly operations can
be realized. The number of butterfly operations executable
in parallel is decided byr/rreq. For example, if the butterfly
operation stage composed of 7 multipliers, i.e.,r = 8, four
radix-2 butterfly operations can be calculated in parallel,
whererreq is 2 andr/rreq is 4. In the context of parallel
processing,r can be associated with the degree of data
parallelismPd. After the butterfly operations, sets of their
resultant data will be intermediately stored at the buffer
memory stage. During this, the ID handler stage issues a new
identifier of next butterfly operation set as long as pipeline
processing resource is available. In the scheme, this pipeline
processing resource is abstracted as the degree of pipeline
parallelismPp.

If each pipeline processing stage in this scheme au-
tonomously behaves along with the processing requirement
receiving from its neighbor stages, the scheme must accept
different sampling rate signals and process them in the
pipeline. Therefore, a basic idea of an STP implementation
for MM-FFT was proposed in [7]. Figure 2 shows an
overview of an STP-based MM-FFT circuit. In this imple-
mentation, every pipeline stage is basically controlled by a
self-timed data-transfer control circuit C which handshakes
among adjacent C elements by using both data transfer
request signalsendi and acknowledge signalacki. CM
based on the basic C in the figure is a merging control circuit
from two pipelines and CB is a branching control circuit to
two pipelines.

However, previous STP implementation could not max-
imize its pipeline efficiency so that its performance was
limited. This was because the conventional merging control
circuit CM employed in the implementation arbitrated two
input data sets under the first-come-first-serviced (FCFS) ba-
sis and sequentially transferred them in the prioritized order.
This means that the pipeline throughput of the resultant data
of butterfly operations is degraded in almost half while input
data arrive at the merge stage.

In order to solve this throughput degradation issue in
the STP-based MM-FFT, a generalized C element proposed

CM

Buffer

Reconf.

Butterfly

ID

Handler

CB C C

Input

Output

send

in

send

buf

send

btf

send

ID

send

mrg

ack

out

ack

buf

ack

btf

ack

ID

ack

mrg

: Data

: Control signal

send

i

: Data transfer request signal

ack

i

: Data transfer acknowledge signal

Merge

Fig. 2: STP-based MM-FFT circuit.

in [4] is introduced in this paper. This C element circuit
supports all possible interaction between two pipelines so
that two sets of data flowing from two pipelines can be
packed into a set of data and it is transferred only if two sets
of input data arrive at the stage simultaneously. Otherwise,
this C circuit behaves as a conventional merging control
circuit with the FCFS basis.

2.2 Efficiency of Basic MM-FFT circuit
Basic handshake timing in the STP is shown in Figure 3.

In case of no congestion in the pipeline, pipeline throughput
and efficiency on the STP are defined as1/(Tf + Tr) and
Tf/(Tf + Tr) respectively, whereTf denotes forwarding
latency required to transfer valid data from one stage to its
neighbor stage andTr backward latency which is enough
to hold the data at the stage [3]. Thus, the maximum
number of butterfly instances executable within the STP can
be represented as(S ∗ Tf )/(Tf + Tr), where S denotes
the number of pipeline stages composing MM-FFT. Since
it indicates the potential pipeline processing resource, the
total number ofPp assigned for each channel must not be
exceeded.

T

f

T

r

T

f

T

r

send

i

ack

i

cp

i

send

i+1

ack

i+1

cp

i+1

T

f

: Forwarding latency T

r

: Backward latency

Fig. 3: Timing chart of self-timed pipeline.

To simplify the efficiency analysis of the basic self-
timed MM-FFT circuit, we suppose a single stream of
input signals. If the number of butterfly operation executable
in parallel is enough to consume the pipeline processing

572 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



resource,the processing time ofNch-point FFT is estimated
as following equation:

TFFT =
Nch⌈logr Nch⌉

rPp
STf (1)

where⌈logr Nch⌉/r indicates the number of steps for cal-
culatingNch-point FFT,Nch⌈logr Nch⌉/r is the number of
butterfly operation sets for the FFT, andSTf expresses one
circulation time when a set of data flows in the STP ring.

However, there are some data dependencies between
butterfly operations belonging to neighbor steps. In order
to guarantee these data dependencies, some pipeline stalls
occur. For example, in the case of 512-point FFT, r=8,
andPp=16, 8 stalls occur. Figure 4 illustrates the pipelined
execution timing of radix-8 butterfly operations. As shown
in this figure, the 56-th resultant data in the first step is
produced in the last 8-th butterfly operation so that the first
butterfly operation in the second step has to wait for it. In
this case, the number of butterfly operation executable in
parallel is limited to 8. This indicates that 8 stalls occur in
spite of available pipeline parallelismPp=16.

Time

・

・

・

448

384

64

0

・

・

・

449

385

65

1

・

・

・

504

440

120

56

・

・

・

505

441

121

57

・

・

・

510

446

126

62

・

・

・

511

447

127

63

・

・

・

497

433

113

49

・

・

・

496

432

112

48

・・・

・・・ ・・・

・

・

・

56

48

8

0

・

・

・

57

49

9

1

・

・

・

63

55

15

7

・

・

・

120

112

72

64

・・・

8 stalls

・

・

・

510

502

462

454

・

・

・

511

503

463

455

・・・

・

・

・

7

6

1

0

・

・

・

15

14

9

8

・

・

・

503

502

497

496

・

・

・

511

510

505

504

・・・

Step=0

Step=1

Step=2

P

p

=16

P

p

=16

Data 

dependency

Pipeline occupancy < P

p

Fig. 4: Timing chart of single MM-FFT (Nch=512).

In such case, the processing time of FFT is lengthened by
those pipeline stalls so that Equation (1) should be modified
as follow:

TFFT = (
Nch⌈logr Nch⌉

rPp
+

αstall

Pp
)STf (2)

Therefore, the throughput of the STP-based MM-FFT
circuit can be estimated by equation (3).

Throughput =
Nch

(Nch

r ⌈logr Nch⌉+ αstall)
STf

Pp

(3)

This equation indicates that it is important to choose
an optimal combination of radixes in order to achieve
the maximum throughput with minimizing pipeline stalls.
Therefore, we introduce following constraints for the radix
combination:

1) to minimize the number of recursive FFT steps.

2) to minimize pipeline stalls.

Based on these constraints, an optimal combination of
radixes for a specific FFT point,r, andPp can be designed
as shown in Table 1.

Table 1: Radix combination of MM-FFT (r=8, Pp=16).
# of FFT points Radix Efficiency

2048 8-8-8-4 1
1024 8-8-4-4 1
512 8-8-8 0.96
256 8-8-4 1
128 8-4-4 0.77

If any pipeline stall does not occur, the normalized effi-
ciency will become 1. Otherwise, the efficiency will be less
than 1. In case of 512 points FFT, 8 stalls occur so that the
efficiency will be degraded to 0.96. In case of 128 points
FFT, the number of radix-8 butterfly operations is 16 and 14
stalls happen so that the steady pipeline processing cannot
realized. In other cases, the proposed MM-FFT scheme
could work well without any pipeline stall and achieve the
maximum efficiency.

If the MM-FFT module has to accept multichannel sig-
nal streams, the logical pipeline parallelismPp should be
appropriately allocated to each channel within the physical
pipeline processing resource. This allocation task can be
conducted like the Table 1. If the physical pipeline resource
is not enough to accept all of the required input channels, the
throughput of the MM-FFT will be required to be improved
further as discussed in the following section.

3. Extended Configuration of MM-FFT
The basic MM-FFT circuit proposed in the previous

section has an upper limit of the throughput because the
throughput of STP is fixed by the circuitry parameters of the
STP,Tf andTr under the same CMOS process condition.
In order to achieve higher throughput than that of the single
MM-FFT circuit, it is necessary to introduce multiple MM-
FFT circuit modules. Therefore, in this section, an extended
configuration of MM-FFT is proposed to utilize macro-
scopic parallelism inherent in FFT’s recursive calculation
in terms of temporal and spatial parallelism. Furthermore,
the performance of the proposed MM-FFT configuration is
discussed with its throughput and pipeline efficiency under
the multimode environment.

3.1 Extended MM-FFT
FFT is recursively calculated by butterfly operations.

Butterfly operations belonging to a step can be executed
in concurrent. Therefore, FFT calculation structure can be
divided into both temporal and spatial directions. In this
viewpoint, the minimum configuration of multiple MM-FFT
circuit modules can be organized as 2×2 MM-FFT. Figure 5
shows a block diagram of the 2×2 MM-FFT.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 573



Radix2/4/8

MM-FFT

Radix2/4/8

MM-FFT

Radix2/4/8

MM-FFT

Radix2/4/8

MM-FFT

C

o

m

m

u

t

a

t

o

r

B

U

F

B

U

F

1st Input

2nd Input

1st Output

2nd Output

C

o

m

m

u

t

a

t

o

r

R

e

o

r

d

e

r

M

U

X

Fig. 5: Block diagram of 2×2 MM-FFT.

It consists of a multiplexer, two serial/parallel buffers, the
commutator of former and latter stages, four basic MM-
FFT modules, and a reorder module. At first, the multiplexer
receives two streams of input signals and transfers them to
either upper or lower input buffer. Each of them de-serializes
input signals, i.e., it packsr input signals into a packed
data. The packed data is transferred to the commutator.
The commutator of former or latter stage produces a set
of butterfly operands and sends it to either upper or lower
MM-FFT module. The commutator of the former stages
passes even and odd input data to the former stages. Another
commutator passes first and last part data to the latter stages.
Four MM-FFT modules execute a set of butterfly operations
as well as the basic MM-FFT. Finally, the resultant data are
reordered at the last stage. Thus, the 2×2 MM-FFT circuit
achieves about four times higher throughput compared to
that of the basic single MM-FFT circuit. But, this can be
realized in the ideal case. In the following subsection, the
efficiency of the proposed MM-FFT configuration will be
discussed in terms of various conditions.

3.2 Efficiency of Extended MM-FFT
At first, we consider the efficiency of 1×1 MM-FFT

circuit shown in Figure 6. It utilizes only temporal par-
allelism, i.e., pipelined parallelism inherent in the FFT
recursive calculation structure to improve the throughput. In
this configuration, the commutator between the former and
latter stages can be omitted because the buffer stage within
the basic MM-FFT plays the same role.

Radix2/4/8

MM-FFT

Radix2/4/8

MM-FFT

B

U

F

Input Output

Fig. 6: Block diagram of 1×1 MM-FFT.

In addition to the constraints on the radix combination
for the basic MM-FFT, the following constraints should be
adopted to allocate the FFT recursive structure into two MM-
FFT modules.

1) to minimize the total number of recursive FFT steps.
2) to equally allocate these steps to two MM-FFT mod-

ules.
3) to minimize pipeline stalls.
4) to maximize non-strict execution between two MM-

FFT modules, i.e., to minimize the total processing

time of FFT.
The additional constraints 2) and 4) are related to im-

prove macroscopic pipeline throughput. It is noted that the
achievable throughput is not proportional to the inverse of
the total FFT processing time. The equation (3) is applied to
each MM-FFT module and the lower throughput within them
decides the total throughput of the 1×1 MM-FFT circuit.

According to these constraints, the radix combinations can
be designed as listed in the Table 2. The table also shows the
efficiency of the 1×1 MM-FFT circuit in case ofPp = 16
andr = 8 and which MM-FFT module, former (F) or latter
(L), governs the total throughput.

Table 2: Radix combination of 1×1 MM-FFT.

# of FFT points
Radix Efficiency

Former Latter F/L

2048 8-8 4-8 F/L=1
1024 8-8 2-8 F/L=1
512 8 8-8 L=1
256 8 4-8 L=1
128 8 2-8 L=0.97

In this configuration, even if there are strict data de-
pendencies between two MM-FFT modules, any pipeline
stall will happen at all. This is because the latter MM-
FFT has the buffer stage which absorbs the waiting time
for operand availability and this latency can be hidden by
the pipeline processing of the previous set of input signals.
As a result, the efficiency of the latter MM-FFT can be kept
at 1. Therefore, in case of 512 points FFT, the efficiency
becomes 1 although it is 0.96 in the single MM-FFT circuit.

According to the above discussions, we will consider the
efficiency of the 2×2 MM-FFT circuit shown in Figure 5,
which utilizes the spatial parallelism of the FFT structure.
For example, the 2×2 MM-FFT with 512 point FFT,r=8,
andPp=16 behaves as shown in Figure 7.

In this configuration, butterfly operations in a step is
divided into half and each of them is allocated to the upper
or lower MM-FFT modules. Therefore, a stream of input
data is separated into odd and even signal sequences in front
of the former stage. Furthermore, the commutator between
the former and latter MM-FFT modules redistributes the
intermediate data to the following upper and lower MM-
FFT modules by classifying them into the first half and the
last half ofNch data set.

Because the number of butterfly operations per step al-
located to each MM-FFT module is reduced in half, the
pipelined instances executable at the same time also become
half. Compared with the case of the 1×1 MM-FFT, the risk
of pipeline stalls increases. Fortunately, in case of 512 points
FFT, there is no pipeline stalls as shown in the timing chart.
However, in case of 256 and 128 points FFT, the pipeline
stalls increase slightly.

In order to apply Equation (3) to the multiple MM-FFT
configurations, it should be modified as following equation.

574 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



P

p

=16

・

・

・

448

384

64

0

・

・

・

450

386

66

2

504

440

120

56

・

・

・

510

446

126

62

・

・

・

480

416

96

32

・

・

・

482

418

98

34

・・・

・・・ ・・・

Step=0

(Former)

Step=1

(Latter)

Step=2

(Latter)

312

・

・

・

318290288258256

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

449

385

65

1

・

・

・

451

387

67

3

505

441

121

57

・

・

・

511

447

127

63

・

・

・

481

417

97

33

・

・

・

483

419

99

35

・・・

・・・ ・・・

313

・

・

・

319291289259257

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

Even

Odd

・

・

・

56

48

8

0

・

・

・

57

49

9

1

254

246

206

198

・

・

・

255

247

207

199

・

・

・

63

55

15

7

・

・

・

120

112

72

64

・・・

・・・

・

・

・

506

442

122

58

314

・

・

・

・

・

・

507

443

123

59

315

・

・

・

・

・

・

・

・

・

312

304

264

256

・

・

・

313

305

265

257

510

502

462

454

・

・

・

511

503

463

455

・

・

・

319

311

271

263

・

・

・

376

368

328

320

・・・

・・・

・

・

・

First half

Last half

Time

・

・

・

7

6

1

0

・

・

・

15

14

9

8

・

・

・

247

246

241

240

・

・

・

255

254

249

248

・・・

・

・

・

263

262

257

256

・

・

・

271

270

265

264

・

・

・

503

502

497

496

・

・

・

511

510

505

504

・・・

First half

Last half

P

p

=16

Pipeline occupancy < P

p

184

176

136

128

・

・

・

440

432

392

384

・

・

・

・・・

・・・

185

177

137

129

・

・

・

441

433

393

385

・

・

・

Data 

dependency

No stall

Fig. 7: Timing chart of 2×2 MM-FFT (Nch=512,r=8).

Throughput =
Nch

(Nch

rPs
⌈logr Nch⌉+ αstall)

STf

Pp

(4)

wherePs denotesthe degree of spatial parallelism.
Based on the above discussion, Table 3 summarizes the

radix combination and the efficiency of the 2×2 MM-FFT
circuit.

Table 3: Radix combination of 2×2 MM-FFT.

# of FFT points
Radix Efficiency

Former Latter F/L

2048 8-8 4-8 F/L=1
1024 8-8 2-8 F/L=1
512 8 8-8 L=1
256 8 4-8 L=0.91
128 8 2-8 L=0.94

In case of 128 points FFT, the number of radix-8 butterfly
operations at a step is 16 and thus only 8 butterfly operations
per step are executed in the pipeline. This means that its
parallelism is not enough forPp=16. In cases of over 256
points, the parallelism of the FFT is enough forPp=16 and
the efficiency becomes 1 even if the butterfly operations are
distributed to the upper and lower MM-FFT modules. Hence,
it is necessary to decide pipeline parallelisms depending on
the number of pointsNch.

Although Table 3 shows the optimal radix combination
only for the single input channel, other radix combinations
may be better for multiple input channels in the hetero-
geneous wireless communication systems. Therefore, the
radix combination for each channel should be dynamically
determined depending on the required sampling rate and
the number of FFT points. Needless to say, the proposed
2×2 MM-FFT can be reorganized flexibly and dynamically.
For example, Figure 8 shows a reconfigured 2×2 MM-FFT
accepting two heterogeneous input channels.

1×2 MM-FFT

Single MM-FFT

Radix2/4/8

MM-FFT

Radix2/4/8

MM-FFT

Radix2/4/8

MM-FFT

Radix2/4/8

MM-FFT

C

o

m

m

u

t

a

t

o

r

B

U

F

B

U

F

1st Input

2nd Input

1st Output

2nd Output

C

o

m

m

u

t

a

t

o

r

R

e

o

r

d

e

r

M

U

X

Fig. 8: Reconfiguration of 2×2 MM-FFT.

In such a case,Pp and the butterfly operations at each step
should be appropriately allocated not only to achieve higher
efficiency and but also to balance the pipeline processing
load on each MM-FFT module. These dynamic scheduling
issues should be studied further by taking account of the
trade-off between optimality and overhead of scheduling
schemes.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 575



4. Evaluation
For the preliminary evaluation, an MM-FFT circuit with

a single circular STP was designed using a 65 nm CMOS
standard cell library. The specifications of this circuit are
shown in Table 4. The designed STP circuit was described
by Verilog-HDL and synthesized by Design Compiler, Syn-
opsys Inc.

Table 4: Specification of the designed MM-FFT circuit.
Process 65 nm CMOS
# of FFT points 64-1024
Radix 4
PipelineparallelismPp 1-16

Word length
Real 16
Imaginary 16

# of STP stagesS 30

Table 5 shows total cell area of single MM-FFT circuit.
In the designed circuit, the signal data and twiddle factors
are stored in SRAM modules: data mem. and TF mem. The
cell area of memory accounts for 70 % of the total cell area.

Table 5: Total cell area of the synthesized MM-FFT circuit.
Logic datamem. TF mem.

cell/bit 25865cells 64K bit 24K bit

area[mm2] 0.15 0.37 0.05

As for the performance of single MM-FFT circuit, RTL
simulation result revealed that equation (3) could estimate
the throughput as shown in Figure 9.

0

100

200

300

400

500

600

0 4 8 12 16

T

h

r

o

u

g

h

p

u

t

 

[

M

 

s

a

m

p

l

e

/

s

]

Degree of Pipeline Parallelism P

p

Estimation

Proposed

Previous

(a) Nch=256

0

100

200

300

400

500

600

0 4 8 12 16

Degree of Pipeline Parallelism P

p

Estimation

Proposed

Previous

(b) Nch=1024

Fig. 9: Performance of single MM-FFT (r=4, Tf=1ns).

In this figure, the horizontal axis denotes the degree of
pipeline parallelismPp and vertical axis indicates the max-
imum sampling rate (throughput) which can be achieved by
the designed circuit. The throughput estimated by equation
(3) is drawn by the solid line and the measured throughput
of the designed circuit is drawn by the dotted line. The
triangular denotes the measured throughput of the proposed
circuit introducing the generalized C element. The diamond

denotes the measured throughput of the previous circuit with
the conventional merge control circuit. As seen in Figure 9,
the throughput of the previous circuit is degraded due to
the arbitrative merge control. On the contrary, the proposed
MM-FFT circuit nearly achieves the theoretical throughput
of ideal condition. These results imply that equation (3)
estimates the actual throughput well.

Since the actual circuit design and simulation proves
accuracy of the equations defined in the paper, achievable
throughput of the 2×2 MM-FFT is estimated based on
equation (4) as shown in Table 6.

Table 6: Pipeline efficiency and throughput of MM-FFT.
2×2 Single

# of FFT points
Efficiency Throughput Throughput

F/L [G sample/s] [G sample/s]

2048 F/L=1 4.27 1.07
1024 F/L=1 4.07 1.07
512 L=1 4.27 1.37
256 L=0.91 3.90 1.42
128 L=0.94 2.01 1.10

Table 6 shows if the pipeline efficiency is maximum
value (pipeline efficiency=1), the extended MM-FFT circuit
achieves the upper limit throughput of ideal condition. Since
this circuit is designed to assume data transfer timeTf is
1 ns and eight data is simultaneously input, the maximum
input rate is limited up to 8.0 G sample/s in the case of single
input stream. Throughput of 2×2 MM-FFT circuit is 4 times
faster than single MM-FFT circuit in case ofNch=512, 1024,
and 2048.

As for the practical evaluation of 2×2 MM-FFT circuit,
the throughput corresponding toPp is estimated for a HetNet
application shown in Table 7. Figure 10 shows the estimation
results for this application condition.

Table 7: Example specifications of heterogeneous air inter-
faces.

Air interface WPAN WLAN MBWA

(Example) (IEEE802.11ad) (IEEE802.11n) (LTE)

# of FFT points 512 2048 128

Samplingrate
2.4 0.04 0.02

[G sample/s]

# of channels 1 2 2

In this figure, the horizontal axis denotes the degree
of pipeline parallelismPp and the vertical axis indicates
the maximum sampling rate which can be accepted by
the designed circuit. According to Figure 10, the 2×2
MM-FFT circuit is able to perform this configuration of
HetNet applications. In both cases ofPp=16 and =8 at
WLAN, the throughput is similar. In order to reduce the
pipeline processing resource,Pp=16 should not be chosen
for WLAN. Accordingly, the proposed 2×2 MM-FFT circuit

576 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

WPAN (Nch=512)×1 WLAN (Nch=128)×2 MBWA (Nch=2048)×2

T

h

r

o

u

g

h

p

u

t

 

[

G

 

s

a

m

p

l

e

/

s

]

Degree of Pipeline Parallelism P

p

P

p

=4 P

p

=8 P

p

=16

Fig. 10: 2×2 MM-FFT performance of heterogeneous wire-
less channels.

can share its pipeline processing resource with required
wireless channels by controlling eachPp.

5. Conclusions
In this paper, a basic scheme of multimode and multi-

channel FFT (MM-FFT) circuit with a single circular self-
timed pipeline (STP) is proposed. Furthermore, an extended
configuration of multiple MM-FFT modules is proposed to
improve the throughput. The performance of these proposed
circuits are evaluated based on 65 nm CMOS circuit design.
The evaluation results show that the proposed circuits per-
form under the ideal pipeline efficiency as long as the target
FFT has enough parallelism for processing resource.

Furthermore, the extended configuration of MM-FFT cir-
cuit based on STP will be feasible to the required perfor-
mance for current heterogeneous wireless communication,
e.g., 2.4 G sample/s for WPAN, 2-channel 20 M sample/s
for WLAN, 2-channel 40 M sample/s for MBWA. This
evaluated condition is assumed for a typical case of HetNet
so that benchmark evaluation in case of other usage scenario
should be further studied.

Since smart wireless devices and terminals have to operate
at low power consumption, the designed circuit must cooper-
ate with typical low power techniques, e.g., dynamic voltage
scaling (DVS) [9] and power gating (PG) [10]. Since the
degree of pipeline parallelismPp in the designed circuit can
be adjusted along with dynamically-scaled supply voltage,
the circuit could contribute to lower its power consumption.
Quantitative evaluation on such energy efficiency will be
reported in other article.

Acknowledgement
Although it is impossible to give credit individually to all

those who organized and supported our project, the authors
would like to express their sincere appreciation to all the
colleagues in the project.

This research work was supported in part by Core Re-
search for Evolutional Science and Technology (CREST),
Japan Science and Technology Agency (JST). The circuit

design work was supported by VLSI Design and Education
Center (VDEC), the University of Tokyo in collaboration
with Synopsys, Inc. and Cadence Design Systems, Inc.

References
[1] R. Q. Hu, Y. Qian, S. Kota, and G. Giambene, “HetNets - A New

Paradigm for Increasing Cellular Capacity and Coverage,” IEEE Com-
mun. Mag., Vol. 18, No. 3, pp. 8–9, June 2011.

[2] K. Tsubouchi, S. Kameda, and N. Suematsu, “Dependable Air,” IEICE
Trans. Electron., Vol. J95-C, No. 12, pp. 450–459, Dec. 2012 (in
Japanese).

[3] H. Terada, M. Iwata, and S. Miyata, “DDMP’s: Self-Timed Super-
Pipelined Data-Driven Multimedia Processors,” Proc. IEEE, Vol. 87,
No. 2, pp. 282–296, Feb. 1999.

[4] K. Komatsu, S. Sannomiya, M. Iwata, H. Terada, S. Kameda, and
K. Tsubouchi, “Interacting Self-Timed Pipelines and Elementary Cou-
pling Control Modules,” IEICE Trans. Fundamentals, Vol. E92-A,
No. 7, pp. 1642–1651, Jul. 2009.

[5] S. N. Tang, C. H. Liao, and T. Y. Chang, “An Area- and Enegy-Efficient
Multimode FFT Processor for WPAN/WLAN/WMAN Systems,” IEEE
J. Solid-State Circuits, vol. 47, No .6, pp. 1419–1435, June 2012.

[6] M. Garrido, J. Grajal, M. A. Sanchez, and O. Gustafsson, “Pipelined
Radix-2k Feedforward FFT Architectures,” IEEE Trans. VLSI Sys.,
Vol. 21, No. 1, pp. 23–32, Jan. 2013.

[7] R. Taguchi, H. Ohiso, K. Mendori, K. Miyagi, and M. Iwata, “Self-
Timed Single Circular Pipeline for Multiple FFTs,” Proc. The 2013
Int’l Conf. on Parallel and Distributed Processing Techniques and
Applications, pp. 625–630, July 2013.

[8] N. Uno, R Taguchi, and M. Iwata, “Spatial Parallelization of Self-Timed
FFT Circuit,” Proc. The 2014 Int’l Conf. on Parallel and Distributed
Processing Techniques and Applications, pp. 521–527, July 2014.

[9] K. Miyagi, S. Sannomiya, M. Iwata, and H. Nishikawa, “Low-Powered
Self-Timed Pipeline with Variable-Grain Power Gating and Suspend-
Free Voltage Scaling,” Proc. The 2013 Int’l Conf. on Parallel and
Distributed Processing Techniques and Applications, pp. 618–624, July
2013.

[10] K. Miyagi，M. Iwata，S. Sannomiya，and H. Nishikawa，“Self-Timed
Pipeline with Fine Grain Power Gating and Its Evaluation,” IEICE
Trans. on Fundamentals, Vol. J97-A, No. 8, pp.554–564, Aug. 2014
(in Japanese).

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 577



578 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



SESSION

CSTAW 2015 - 7TH HIGH PERFORMANCE
COMPUTING FOR COMPLEX SYSTEMS,

THEORY AND APPLICATIONS WORKSHOP

Chair(s)

Dr. Lou D'Alotto
Dr. Georgios Sirakoulis

Dr. William Spataro
Dr. Giuseppe A. Trunfio

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 579



580 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



 

Accelerating Lava Flows Simulations  

with GPGPU and OpenCL 
 

A. De Rango, M. Macrì, D. D’Ambrosio, W. Spataro 

Department of Mathematics and Computer Science, University of Calabria, Italy 

 

 

Abstract - The introduction of the GPU (graphics 

processing units) has marked a revolution in the field of 

Parallel Computing allowing to achieve computational 

performance unimaginable until a few years ago. Widely 

adopted in the Scientific Computing Field, this hardware 

has proven to be extremely reliable and suitable to simulate 

Cellular Automata (CA) models for modeling complex 

systems whose evolution can be described in terms of local 

interactions. This paper presents an effective 

implementation of a well-known numerical model for 

simulating lava flows on Graphical Processing Units 

(GPU) based on the OpenCL (Open Computing Language) 

standard. Carried out experiments show that significant 

performance improvements in terms of speedup are 

achieved, adopting also some original optimizations 

strategies, confirming the validity of OpenCL and both low-

cost and high-end graphics hardware as an alternative to 

expensive solutions for the simulation of CA models. 

Keywords: Cellular Automata, GPGPU, OpenCL, Parallel 

Software Tools, Modeling and Simulation. 

 

1 Introduction 

Numerical models are adopted in High Performance 

Computing (HPC) ([12]) for solving complex equation 

systems which rule the dynamics of complex systems as, for 

instance, a lava flow or a forest fire. In recent years, the 

introduction of the GPU (graphics processing units) has 

marked a revolution in the field of Parallel Computing 

allowing to achieve computational performance 

unimaginable until a few years ago. Nevertheless, GPU 

applications to the important field of Computational Fluid 

Dynamics (CFD) are increasing both for quantity and quality 

among the Scientific Community (e.g., [23], [11]). 

With GPGPU (General Purpose computing with GPU) it 

is possible to obtain computational performances of a 

theoretical order of teraflops (thousands of megaflops), still 

characterized by production costs that are extremely low 

compared to classical parallel systems. GPGPU adopts use 

of the GPU for operations different from graphics rendering, 

for which these devices were originally designed. This 

method has been particularly widespread in 2007 with the 

release of CUDA by Nvidia, who introduced software and 

hardware specialized for GPGPU computing. As Nvidia, 

other GPU manufacturers adapted their devices to this new 

methodology and have released software development 

environments for the realization of parallel programs. 

Hardware manufacturers have released APIs (Application 

Programming Interface) compatible only with their devices 

and this limited the development of portable software. 

However, in 2008 the standard OpenCL (Open Computing 

Language) was released for the implementation of parallel 

programs on heterogeneous systems. Gradually, all major 

manufacturers of GPU and CPU have released their 

implementation of OpenCL, providing developers an 

instrument capable of producing portable software on a large 

number of devices. Today we have reached the conclusion 

that hybrid systems based on CPU and GPU represent the 

future of supercomputing.  

Among the different methodologies used for modelling 

processes, such as numerical analysis, high order difference 

approximations and finite differences, Cellular Automata 

(CA) ([26]) has proven to be particularly suitable when the 

behaviour of the system to be modelled can be described in 

terms of local interactions. Originally introduced by von 

Neumann in the 1950s to study self-reproduction issues, CA 

are discrete computational models widely utilized for 

modeling and simulating complex systems. Regarding the 

modeling of natural complex phenomena, Crisci and co-

workers proposed a method based on an extended notion of 

homogeneous CA, firstly applied to the simulation of 

basaltic lava flow, which makes the modeling of spatially 

extended systems more straightforward and overcomes some 

unstated limits of the classical CA, such as having few states 

and look-up table transition functions. Mainly for this 

reason, the method is known as Complex Cellular Automata 

(CCA) (or Macroscopic Cellular Automata [9] or 

Multicomponent Cellular Automata [1]).  

This paper presents an implementation of a well-known, 

reliable and efficient CCA model adopted for lava flow risk 

assessment, namely the SCIARA model [22], in GPGPU 

environments. Tests performed on two types of GPU 

hardware, a AMD Sapphire 280x graphic card and a Tesla 

K40c computing processor, and by adopting difference 

implementation strategies, have shown the validity of this 

kind of approach.  

In the following sections, after a brief description of the 

basic version of the SCIARA CCA model for lava flows, a 

quick overview of GPGPU paradigm together OpenCL is 

presented. Subsequently, the specific model implementation 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 581



 

and performance analysis referred to benchmark simulations 

and of a real event are shown, while conclusions and 

possible outlooks are reported at the end of the paper. 

 

2 Cellular Automata and the SCIARA 

lava flow simulation model 

As previously stated, CA are dynamical systems, discrete 

in space and time. They can be thought as a regular n-

dimensional lattice of sites or, equivalently, as an n-

dimensional space (called cellular space) partitioned in cells 

of uniform size (e.g. square or hexagonal for n=2), each one 

embedding an identical finite automaton. The cell state 

changes by means of the finite automaton transition function, 

which defines local rules of evolution for the system, and is 

applied to each cell of the CA space at discrete time steps. 

The states of neighbouring cells (which usually includes the 

central cell) constitute the cell input. The CA initial 

configuration is defined by the finite automata states at time 

t=0. The global behaviour of the system emerges, step by 

step, as a consequence of the simultaneous application of the 

transition function to each cell of the cellular space. 

 When dealing with the modelling of spatial extended 

dynamical systems, CCA can represent a valid choice 

especially if their dynamics can be described in terms of 

local interaction at macroscopic level. Examples of 

successful applications of CCA include the simulation of 

lava flows [6], debris flows [16], density currents [20], water 

flux in unsaturated soils [17], soil erosion by rainfall [17] as 

well as pyroclastic flows [5], and forest fires [25]. 

 For the OpenCL parallelization of the CA, the release 

fv2 of the SCIARA numerical model for simulating lava 

flows was adopted. SCIARA is a family of bi-dimensional 

CCA lava flow models, successfully applied to the 

simulation of many real cases such as the 2001 Mt. Etna 

(Italy) Nicolosi lava flow [6] and the 1991 Valle del Bove 

(Italy) lava event [2], which occurred on the same volcano 

and was employed for risk mitigation. In formal terms, the 

SCIARA-fv2 model [22] is defined as:  

SCIARA-fv2= < R, L, X, Q, P, ,  > 

where: 

 R is the set of square cells covering the bi-dimensional 

finite region where the phenomenon evolves; 

 L  R specifies the lava source cells (i.e. craters); 

 X = {(0, 0), (0, 1), (-1, 0), (1, 0), (0, -1), (-1, 1), (-1,-1), 

(1, -1), (1, 1)} identifies the pattern of cells (Moore 

neighbourhood) that influence the cell state change; in the 

following we will refer to cells by indexes 0 (for the 

central cell) through 8; 

 Q = Qz × Qh × QT × Qf
8 is the finite set of states, 

considered as Cartesian product of “substates”. Their 

meanings are: cell altitude a.s.l., cell lava thickness, cell 

lava temperature, and lava thickness outflows (from the 

central cell toward the eight adjacent cells), respectively; 

 P={w, t, Tsol, Tvent, rTsol, rTvent, hcTsol, hcTvent, , , , , cv} 

is the finite set of parameters (invariant in time and space) 

which affect the transition function (please refer to [22] 

for their specifications); 

  : Q9 → Q is the cell deterministic transition function, 

divided in elementary processes and applied to each cell 

at each time step, which describes the dynamics of lava 

flows, such as cooling, solidification and lava outflows 

from the central cell towards neighbouring ones. In 

particular, In the fv2 version of SCIARA, the so called 

elementary processes [9] describing the cell’s transition 

function are: (i) σ1, which determines lava outflows based 

on an opportune version of the Minimisation Algorithm of 

Differences; (ii) σ2, which determines lava thickness 

computation; (iii) σ3, which determines lava temperature 

and (iv) σ4, which determines the eventual lava 

solidification.  

  : Qh × N → Qh specifies the emitted lava thickness from 

the source cells at each step k  N (N is the set of natural 

numbers). 

 

3 OpenCL and GPGPU programming 

In recent years, mainly due to the stimulus given by the 

increasingly demanding performance of gaming and 

graphics applications in general, graphic cards have 

undergone a huge technological evolution, giving rise to 

highly parallel devices, characterized by a multithreaded and 

multicore architecture and with very fast and large 

memories. A GPU can be seen as a computing device that is 

capable of executing an elevated number of independent 

threads in parallel. In general, a GPU consists in a number 

(e.g., 16) of SIMD (Single Instruction, Multiple Data) 

multiprocessors (or compute units) with a limited number of 

floating-point processors that access a common shared-

memory within the multiprocessor.  

OpenCL [21] is a framework that allows the user to 

perform tasks both on GPU than on CPU. The OpenCL 

routines can be performed on the GPU or CPU which are 

produced by major parallel computing brands, such as AMD, 

Nvidia, and Intel. Specifically OpenCL is nonproprietary, 

because it is based on a public standard, and can be freely 

downloaded. 

The goal of OpenCL is thus to unify the programming 

model software to run the code on heterogeneous devices. In 

fact, today OpenCL supports different platforms that include 

CPUs (e.g. Intel, AMD, ARM, etc), GPUs (e.g., AMD, Intel, 

Nvidia), besides FPGA and DSP (Digital Signal Processors). 

As known, in Parallel Computing developers can create and 

manipulate concurrent task. When developers need to 

program a solution in OpenCL, they must decompose the 

problem in different tasks. Parallel programming assigns 

computational task to multiple processing elements that are 

executed at the same time. In the OpenCL language, these 

tasks are called kernels. A kernel is a special function written 

in C99 that is intended to be performed by one or more 

OpenCL devices. The kernels are sent to the devices through 

the host program. The host program is written in C / C ++ 

582 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



 

and runs on the user’s development system. The host 

application manages the connected devices using a container 

called context. To create a kernel, the host selects a function 

from a container called program. Subsequently, it associates 

the kernel with its data and sends it to a structure called 

command queue. The command queue is the mechanism by 

which the host tells devices what to do and subsequently, 

when a kernel is queued, the device will perform the 

corresponding function. An OpenCL application can 

configure different devices to perform different tasks, and 

each task can operate on different data. OpenCL provides 

thus a full task-parallelism. Figure 1 shows the kernel 

distribution among OpenCL-compliant devices. 

 

Figure 1: Assignment of the kernel to the devices contained in 

the context structure (figure taken from [21]). 

 

Thus, in order to create an OpenCL application it is 

necessary to: 

 Create a host program to manage the available devices 

and assign them the kernels to be performed; 

 Create kernels, i.e. the routines to be performed on the 

selected devices from the host program. 

 

3.1 Creation of the host program 

The host program of an OpenCL application is written 

in C/C ++, but there are libraries created by third parties that 

allow to develop an application using the java and python 

languages [21]. The library defines six essential structures 

for the creation of the program host: platform, device, 

context, program, kernel, and command queue. 

To access the computing devices on the system, 

OpenCL defines three structures: platform, device and 

context. Every manufacturer that supports OpenCL releases 

an SDK (software development kit) which contains an 

implementation of OpenCL compatible with its devices. The 

structure platform provides access to the OpenCL 

implementations installed on the system and to use all 

devices of the manufacturer. For example, installing a Nvidia 

SDK, all Nvidia devices on the system can be accessed via 

its platform. Devices are represented by the device structure 

and to be used they must be inserted into a container called 

context. In the host program, several context instances 

containing more devices can be defined. However, devices 

belonging to different contexts cannot communicate with 

each other and cannot be inserted in the same context 

devices belonging to different platform (for example, one 

can not create a context containing a AMD and a Nvidia 

device). 

 

3.2 Kernel assignment and execution 

 

The structure that allows communication between the 

host program and OpenCL devices is the command queue. 

Through the command queue, not only a kernel is assigned 

to a device, but can also perform data transfer operations, 

between two devices or between a device and the host 

program. Moreover, thanks to this structure one can carry 

out synchronizations between different kernels and profiling 

operations. To assign a kernel to a device one needs to 

decide how the data should be partitioned and assigned to 

compute units. Depending on the partitioning chosen by the 

user, kernel instantiations called work-items are carried out. 

Each work-item (i.e., thread), represents an execution of the 

same kernel but on different portions of data (i.e., in a SIMD 

fashion). For the assignment of kernels, OpenCL provides 

two functions: 

clEnqueueTask. The task assigned by the host 

program to the device will run as a single work-item. 

clEnqueueNDRangeKernel. The task assigned by 

the host program to the device will be split into multiple 

work items that will be executed in parallel. 

The host program must therefore define the number of 

work items to be used and optionally may decide to divide 

the work items in groups called work-groups. The work 

items contained in a work-group have a shared memory 

block (local memory) which permits to access data much 

faster than the global memory shared by all the work items. 

Furthermore, the work items within a work-group can be 

synchronized. As expected, the latter of the two functions is 

fundamental, as it allows to perform tasks in parallel. 

 

3.3 Data Transfer 

Generally, the execution of a task includes the processing of 

data. From the moment the host program assigns a kernel to 

a device, it is necessary that the device has the data that is 

used to run the kernel. To send data to the device the 

function clSetKernelArg is used to allow the 

association of a data set to an argument of the kernel 

function. Basic data types that can be associated to the kernel 

are: 

Pointers to primitive data types Associates a given primitive 

type. 

Pointers to buffer object Associates a large set of data. A 

buffer object (represented by the structure cl_mem) can be 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 583



 

created using the function clCreateBuffer, but in order 

that data transfer takes place correctly, data must be stored 

on the host program contiguously. 

After a buffer object is associated to a kernel, it is possible to 

reuse the same structures to transfer data both between two 

devices, between a device and the host program, etc. 

 

3.4 Memory hierarchy 

As reported before, a kernel function can be associated 

to the data required for processing. The host program is 

responsible for transferring the data to the device. Each 

device has different memory spaces (cf. Figure 2) in which to 

store the data received from the host program: 

Global memory. Stores data accessible by all the work 

items for both reading and writing. 

Constant memory. Similar to the global memory but 

data can be accessed in read-only. 

Local memory. Stores data accessed by the work items 

contained in the same work-group. 

Private memory. Stores data accessible by a single 

work-item. 

All data from the host program is initially stored in the 

global/constant or private memory (the local memory can be 

allocated only by the host program but not initialized). The 

global/constant memory is larger than the others, but access 

to it is slower. Work items can indeed access the local 

memory much faster (100×) than that in the global/constant 

memory. Access to private memory is faster but its 

dimension is very small. With regards to constant memory, 

some devices have an apposite portion of memory, in other 

cases the constant memory space coincides with that of the 

global memory. To specify the memory space in which a 

given data must be stored the qualifiers __global, 

__constant, __local, __private are used. If 

omitted, data will be stored in private memory.  

 
Figure 2: The OpenCL Memory model (figure taken from 

[21]). 

 

3.5 Data Partitioning 

The function clEnqueueNDRangeKernel described in 

subparagraph 3.3 allows to perform a task in parallel. To use 

this feature, one must: 

 define on how many dimensions data is distributed (a two-

dimensional matrix, etc.); 

 define the number of work items for each dimension; 

 define the number of work items in a work-group for each 

dimension. 

To perform a task in parallel each work-item must be 

able to access the data portion that has been assigned to it. 

To each work-item is associated an ID that distinguishes it 

from all others, and generally these IDs are used to partition 

the data in a typical SPMD fashion. For example, suppose 

that the data consist of an array of n elements and also to 

have n work-items with their relative ID. Data can be 

partitioned by associating each work item to the array 

element with index corresponding to the ID. Moreover, for 

the work-items an ID that identifies them in a work-group is 

also associated. In this case, the purpose is to give the 

possibility to partition the data, even if here the partitioning 

occurs within a work-group. Other information that is 

accessible to the work items for the partitioning of data are: 

• the total number of work items for each dimension; 

• the total number of work-item contained in a work-group 

for each dimension; 

• the total number of work-group 

• the ID of the work-group to which the work-item belongs. 

 

4 Implementation of the Sciara model 

As previously stated, CA models, such as SCIARA, can 

be straightforwardly implemented on parallel computers due 

to their underlying parallel nature. In fact, since CA methods 

require only next neighbor interaction, they are very suitable 

and can be efficiently implemented even on GPUs. In 

literature, to our knowledge, few examples of Complex 

Cellular Automata modeling with GPUs are found, while 

some interesting CA-like implementations, such as Lattice 

Boltzmann kernels, are more frequent (e.g., [24], [15]). 

The approach here adopted resembles many approaches 

in the field: typically, the CA parallel implementation 

involves two memory regions, which will be called 

CAcurrent and CAupdated, representing the current 

and next states for the cells respectively. For each CA step, 

the neighbouring values from CAcurrent are read by the 

local transition function, which performs its computation and 

writes the new state value into the appropriate element of 

CAupdated. 

In accordance to the recent literature in the field (e.g., 

[3], [10]), in the GPGPU parallel implementation of the 

model, most of the automaton data (i.e. both the 

CAcurrent and CAupdated memory areas) was stored in 

the GPU global memory. In addition, the initialization of the 

CA (CAupdated) implies a copy from CPU to GPU. At the 

end of the computation, results from the device are copied 

back to the host through a GPU to CPU data transfer. In 

584 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



 

addition, at each step, in order to update the status of the 

previous step with the current one, a copy between the two 

CA data buffer memory areas on the device takes place. 

A crucial step is to identify the set of instructions (i.e. 

the elementary processes of the transition function) that can 

be performed independently on the cells of the CA space. 

The instructions will be invoked in parallel using a OpenCL 

kernel for each of elementary process. Note that at each step 

of the simulation, only a few cells of the entire cellular space 

are involved in the computation. Thus, a typical problem 

related to GPGPU parallelization (as reported later) which 

can affect the speedup of the model, can lead to an overuse 

of computationally inactive work-items.  

In particular, we will describe two different strategies 

that were adopted for an efficient parallelization of the 

SCIARA-fv2 simulation model. The first of these, defined as 

Whole Space Strategy (WS), is based on a naive approach to 

the problem consisting in the use of only global memory 

which is shared by the totality of work-items that make up 

the mapping grid. The second version, called Active Cells 

Strategy (AC), has a significant performance improvement of 

the algorithm, achieved thanks to the adoption of a data 

structure that manages the CA computationally active cells. 

In this strategy the computation takes place within a grid of 

work-items that adapts dynamically to the active cells. 

 

4.1 Naïve implementation 

The first strategy for the parallelization of the SCIARA-

fv2 model is based on a one work-item - one cell approach, 

where each cell in the cellular space is computed by OpenCL 

work-item. The Whole Space (WS) strategy version involves 

the use of global only memory, where each kernel runs on a 

grid of work-items divided into work-groups and mapped on 

the entire cellular space. Work items are thus executed in 

parallel and synchronized each time an elementary process 

ends. Importantly, the elementary processes must be defined 

in such a way that the work items are executed independently 

from each other and that each work-item accesses 

exclusively to the portion of data that it has been assigned, 

since OpenCL does not provide mechanisms for 

synchronization of work-item belonging to different work-

group [21]. The host program assigns the kernel to devices 

by sending them the CA model data (sub-states, type of 

neighborhood, size of the space cell, etc.). The execution 

cycle is then managed by the host program, while the 

transition function is performed on the devices. 

The following excerpt shows execution cycle: 
 

steps = 0; 

wiNum = ROWS * COLS; 

while (steps < maxStep) { // CA steps 

    // kernel execution for each elementary process 

clEnqueueNDRangeKernel(queue,updateVentsEmissi

on, dimNum, NULL, wiNum, NULL, 0, NULL, NULL); 

// update substates 

clEnqueueCopyBuffer(queue, CAupdated, 

CAcurrent, 0, 0, bufDim, 0, NULL, NULL); 

 

clEnqueueNDRangeKernel(queue, empiricalFlows, 

dimNum, NULL, wiNum, NULL, 0, NULL, NULL); 

clEnqueueCopyBuffer(queue, CAupdated, 

CAcurrent, 0, 0, bufDim, 0, NULL, NULL); 

 

clEnqueueNDRangeKernel(queue, width_update, 

dimNum, NULL, wiNum, NULL, 0, NULL, NULL); 

clEnqueueCopyBuffer(queue, CAupdated, 

CAcurrent, 0, 0, bufDim, 0, NULL, NULL); 

 

clEnqueueNDRangeKernel(queue, 

updateTemperature, dimNum, NULL, wiNum, NULL, 0, 

NULL, NULL); 

clEnqueueCopyBuffer(queue, CAupdated, 

CAcurrent, 0, 0, bufDim, 0, NULL, NULL); 

  

steps++; 

} 

 

As an example, the following excerpt reports the kernel 

definition for the empiricalFlows lava outflow 

computation elementary process (i.e., σ1). 
__kernel void empiricalFlows(__global double * 

SUBSTATES, Parameters parameters) { 

 
int i = get_global_id(0); 

int j = get_global_id(1); 

int SLT = 2; //lava thickness substate index 

int F = 3; //outflows substates index 

 

// check if cell contains lava 

if (SUBSTATES[ROWS*COLS*SLT +(i*ROWS + j)] > 0) { 

 double outflows[MOORE_NEIGHBORS]; 

 outflowsMin(SUBSTATES, i, j, outflows, 

parameters); //minimization algorithm application 

 

// update outflows substate 

for (int k = 1; k < MOORE_NEIGHBORS; k++) 

 if (outflows[k] > 0) 

SUBSTATES[ROWS*COLS*(F+k-1) +(i*ROWS + j)] 

= outflows[k]; 

 } 

} 

While a similar straightforward strategy has proven to 

be effective in other parallelizations and applications (e.g. 

[14], [8], [7]), the speedups here achieved were not quite 

positive, probably due to the excessive use of 

computationally inactive threads and overuse of global 

memory. At the contrary, the following approach has given 

more positive results and can be considered as a starting 

point for more sophisticated applications. 

 

4.2 Active cells optimization 

The active cells optimization strategy (AS) allows to 

apply the transition function only on the active cells, 

omitting those that are in a quiescent state. The active cells 

are contained within a list and elementary processes can add 

to the list new cells, or remove them. An array designed to 

contain all active cells is initially allocated. Specifically, for 

each active cell, a work-item is instantiated and can add new 

cells to the list, or remove them. However, to maintain the 

list in a consistent state, accesses must be performed by the 

work-item in an exclusive manner. Unfortunately, OpenCL 

doesn’t support exclusive accesses to global data, so an 

alternative approach was here adopted. In particular, each 

cell is associated with a Boolean value that indicates whether 

the cell is active or inactive. The work-item, in order to add 

or remove a cell, must change this value. This information is 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 585



 

used by a stream compaction algorithm to build the list of 

active cells. 

Stream compaction algorithms ([4], [18]) are used to 

remove unwanted items in a set of scattered data. In this 

case, data is located in an array of Boolean values whose 

elements correspond to the cells of the cellular space. Items 

with a true value correspond to the active cells, while false 

ones correspond to the inactive cells. The implemented 

stream compaction algorithm, adapted from [13] takes as 

input this array and computes an array containing only the 

active cells. Suppose we have p work-items and a Boolean 

array with n elements, with n> p. The array is divided into p 

equal parts. The algorithm consists of three phases: 

1. Each work-item counts the number of active cells in its 

part of the array. 

2. Each work-item computes the array index of the output 

array from which it can start entering the active cells 

contained in the portion of its array. 

3. Each work-item enters the active cells of its portion in 

the output array starting from the offset calculated in 

previous step. 

Figure 3 shows the functioning of the algorithm for a 

matrix representing a CA space size of 4×4 with 6 active 

cells highlighted in red. The array used to track active cells is 

given as input to the stream compaction algorithm that 

outputs the list with only the active cells. 

The second stage uses a two phase algorithm called 

prefix sum. Specifically, the algorithm takes as input the 

array calculated in the previous step containing the sum of 

the active cells calculated by each work-item. The array is 

seen as a balanced tree where its elements are the nodes of 

the tree. In the first phase, the tree is crossed from the leaves 

to the root calculating, for each level of the tree, the partial 

sums of the nodes of the previous level (by a parallel 

reduction pattern). In second phase, the tree is traversed from 

the root (containing the total number of active cells) to the 

leaves. At each iteration, each node sets the value of the right 

child to the sum of its value and the value of the left child. In 

addition, each node sets the value of its left child to its value. 

At the end of this phase, an array is created that specifies, at 

each location, the position from which each work-item can 

write its active cells in the global active cells output array.  

 

 

Figure 3: Stream compaction algorithm example 

referred to a 4 x 4 CA. 

5 TESTS AND PERFORMANCE 

RESULTS 

Two graphic devices were adopted for experiments: a 

NVIDIA high-end Tesla K40c and a AMD Sapphire 280x 

graphic card, both with a theoretical peak performance about 

3,5 GFLOPS. In particular, the Tesla computing processor 

has 2880 stream processors (i.e., CUDA cores) and 15 

compute units, 12 GB global memory and high-bandwidth 

communication between CPU and GPU, whereas the AMD 

graphic card has 2048 stream processors, 32 compute units 

and 3 GB global memory. The sequential SCIARA-fv2 

reference version was implemented on a 2.8 GHz Intel 

Quad-core Xeon based desktop computer. The sequential 

CPU version is identical to the versions that were developed 

for the GPUs, that is, at every step, the CA space array is 

scrolled and the transition function applied to each cell of the 

CA where lava is present. 

A first test regarded the simulation of well-known and 

documented real lava flow event, the Mt. Etna Nicolosi event 

[6] occurred in July, 2001. The simulation was carried out 

for 10000 steps, considering two craters for lava flow 

emission. In order to further stress the efficiency of the GPU 

version, further benchmarks experiments (stress test) were 

performed by considering 200 lava sources equally spaced 

over the area. Moreover, the two parallelizations (i.e., Whole 

Space and Active Cells strategies) reported in section 4 were 

considered. Table 1 reports the results of tests carried out for 

experiments, where the CA space is a 517 × 378 two-

dimensional grid. 

From all performed experiments, we can note that in all 

cases the versions using the active cells optimization are 

more efficient. As expected, this is due to the fact that the 

optimization does not apply the transition function to cells 

which are in a quiescent state, and thus many unnecessary 

calculations are not executed. Instead, in the standard 

implementation, there is an excessive use of computationally 

inactive threads and overuse of global memory.  

For the first series of tests, which takes into account 

only two sources lava, we can see that the WS parallel 

version reaches a speedup of 22× (23× for the Tesla K40c) 

compared to its sequential version. In the case of the parallel 

version with active cells (AS) optimization, performance 

reaches a maximum speedup of only 2× (3× for the Tesla 

K40c), with respect to its corresponding sequential active 

cells version. This is due to the fact that with only two 

sources of lava the active cells are relatively few and 

therefore also the sequential implementation results 

extremely efficient. Moreover, performance of the AMD 

Sapphire 280x GPU is unexpectedly comparable to that of 

the Nvidia GPU K40c for the standard WS version, probably 

due the high boost clock of the AMD hardware with respect 

to the lower GPU clock of the Nvidia card (1000 MHz vs 

745 MHz). However, performances related to the optimized 

AS version in terms of execution times are better for the 

Nvidia hardware, probably due to the higher number of 

586 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



 

streaming processors (i.e., 2880 vs 2048) that can be fully 

exploited. 

As for the stress test, we can observe a speed up of 41× 

(40× for the Tesla K40c) for the parallel version that is not 

optimized, and a speedup of 39× (41× for the Tesla K40c) 

for the parallel version with active cells optimization 

compared to the corresponding sequential versions. Here, we 

can see that the speedup of the versions with active cells 

optimization is comparable with the versions without 

optimizations, due to the relative equal (and elevated) 

number of cells involved in the stress test. Even in this case, 

both considered hardware give the same performance, as for 

the previous test. A likely explanation is due to the fact that 

on one hand the Nvidia hardware has a higher number of 

streaming processors while, on the other, the AMD card has 

more compute units, which basically compensate both 

hardware computing capabilities.  

 
Table 1: Execution times of experiments (in seconds) carried out 

for evaluating the performance the GPU version of the SCIARA 

CCA lava-flow model on the considered hardware. Experiments 

refer to the Whole Space (WS). 

 

CA dim / Device 
Xeon  

(sequential) 

K40c 

(WS) 

Sapphire 

(WS) 

517 ×378 

(2 craters) 
1122 49 52 

517 ×378 

(200 craters – Stress Test) 
2790 69 68 

 

Even if timings achieved for the single case simulation 

cannot be considered positive, the stress test experiments 

have revealed the full suitability of the parallel system for 

intensive computations like applications, such as for the 

construction of hazard maps (e.g., [7], [16]). Typically, the 

most general approach for computing a hazard map in a 

extended area consists of a Monte Carlo approach in which a 

high number (e.g. thousands) of different simulations are 

carried out and on geological-geomorphological field survey 

and statistical analysis.  
 

Table 2: Execution times of experiments (in seconds) carried out 

for evaluating the performance the GPU version of the SCIARA 

CCA lava-flow model on the considered hardware. Experiments 

refer to the Active Cells (AC) strategies (see text). 

CA dim / Device 
Xeon  

(sequential) 

K40c 

(AC) 

Sapphire 

(AC) 

517 ×378 

(2 craters) 
62 22 30 

517 ×378 

(200 craters – Stress Test) 
2005 49 51 

 

Eventually, to test if single-precision data can be 

considered sufficient for SCIARA simulations, tests were 

carried out on the 2001 lava flow event (10000 CA steps) 

and compared results produced by the GPU version with 

those produced by the CPU (sequential) version with double 

precision CPU implementation (i.e., double type 

variables). Comparison results were satisfactory, since the 

areal extensions of simulations resulted the same, except for 

few errors of approximation in a limited number of cells. In 

particular, comparing the GPU version with the CPU single-

precision version approximation differences at the third 

significant digit were only for 4% of cells, while differences 

were less for remaining cells. Differences were even minor 

compared to the previous case by considering the single 

precision GPU version and a CPU version which adopts 

double-precision variables. 

 

6 CONCLUSIONS 

This paper reports the implementation of a Complex 

Cellular Automata model using GPU architectures. As 

shown, the OpenCL technology, in combination with the an 

efficient memory management, can produce a very efficient 

version of the SCIARA-fv2 lava flow simulator. Several tests 

were carried out to evaluate the implemented 

parallelizations. In particular, tests using the GPU Sapphire 

280x show that the parallel version, without optimizations, 

achieved a 41× speedup compared to its sequential version. 

The parallel version with optimization active cells also 

reached a speedup of 41× compared to its corresponding 

sequential one. As expected, in all cases, versions using the 

active cells optimization have resulted to be more efficient 

than versions without the optimization.  

Future work will also regard the exploitation of graphic 

hardware for the construction of hazard maps, such as in [16] 

which are fundamental for determining locations that are 

subject to future events and their related risk. The positive 

performances obtained for the more intensive computations 

(stress test) will imply the extension of the AC strategy in a 

multi-simulation context, by using OpenCL to accelerate 

simultaneous concurrent SCIARA-fv2 lava flows 

simulations. 

The results obtained on the SCIARA model are 

therefore to be considered positive, but further testing should 

be performed to assess the functionality of the adopted 

strategies on other models and their ability to fruitfully 

exploit parallel systems resources.  

 

Acknowledgments - This research was partially funded by 

the UE POR FSE CALABRIA PIA 2010 “Laboratorio in 

Campo” Project DDG n. 17198. Authors also gratefully 

acknowledge the support of NVIDIA Corporation for this 

research. 

 

REFERENCES 

 

[1] M.V. Avolio, S. Di Gregorio, W. Spataro, G.A. 

Trunfio. “A theorem about the algorithm of minimization 

of differences for multicomponent cellular automata”. In: 

Sirakoulis GC, Bandini S, editors, ACRI. Springer, 

volume 7495 of Lecture Notes in Computer Science, 

289-298, 2012. 

[2] D. Barca, G.M. Crisci, Di Gregorio, S., Nicoletta, F. 

“Cellular Automata for simulating lava Flows: A method 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 587



 

and examples of the Etnean eruptions”. Transport 

Theory and Statistical Physics, 23, 195-232, 1994. 

[3] G. Bilotta, E. Rustico, A. Hérault, A. Vicari, G. Russo, 

C. Del Negro, G. Gallo. “Porting and optimizing 

MAGFLOW on CUDA”, Annals of Geophysics 5 (54), 

2011. 

[4] M. Billeter, O. Olsson, U. Assarsson U. “Efficient 

stream compaction on wide SIMD many-core 

architectures”. In: Proceedings of the Conference on 

High Performance Graphics 2009. ACM, 159–166, 

2009. 

[5] G.M. Crisci, S. Di Gregorio, R. Rongo, W. Spataro. 

“PYR: a Cellular Automata model for pyroclastic flows 

and application to the 1991 Mt. Pinatubo eruption”. 

Future Generation Computer Systems 21 (7), 1019-1032, 

2005. 

[6] G.M. Crisci, S. Di Gregorio, R. Rongo, W. Spataro.  

“The simulation model SCIARA: the 1991 and 2001 at 

Mount Etna”. Journal of Vulcanology and Geothermal 

Research, 132, 253-267, 2004. 

[7] D. D’Ambrosio, G. Filippone, D. Marocco, R. Rongo, 

W. Spataro. “Efficient application of GPGPU for lava 

flow hazard mapping”. The Journal of Supercomputing, 

vol. 65, no. 2, 630–644, 2013. 

[8] M. De La AsunciòN, J.M. Mantas, M.J. Castro, E. D. 

Fernàndez-Nieto. “A MPI-CUDA implementation of an 

improved Roe method for two-layer shallow water 

systems”. Journal of Parallel and Distributed Computing, 

72, 9, 1065–1072, 2012. 

[9] S. Di Gregorio, R. Serra. “An empirical method for 

modelling and simulating some complex macroscopic 

phenomena by cellular automata”. Fut. Gener. Comp. 

Syst., 16, 259–271, 1999. 

[10] S. Di Gregorio, G. Filippone, W. Spataro, G.A. 

Trunfio. “Accelerating wildfire susceptibility mapping 

through GPGPU”. Journal of Parallel and Distributed 

Computing 73: 1183 – 1194, 2013. 

[11] M. Domínguez Jose, J.C. Crespo Alejandro, Gómez-

Gesteira Moncho. “Optimization strategies for CPU and 

GPU implementations of a smoothed particle 

hydrodynamics method”. Computer Physics 

Communications, 184, 3, 617-627, 2013. 

[12] A. Grama, G. Karypis, V. Kumar, A Gupta. “An 

Introduction to Parallel Computing: Design and Analysis 

of Algorithms”, Second Edition. USA: Addison Wesley, 

2003. 

[13] M. Harris, S. Sengupta, J.D Owens. “Parallel prefix 

sum (scan) with CUDA”, GPU Gems 3 (39), 851-876, 

2007. 

[14] D. Jacobsen, J. C. Thibault, , I. Senocak. “An MPI-

CUDA implementation for massively parallel 

incompressible flow computations on Multi-GPU 

clusters”.  In: American Institute of Aeronautics and 

Astronautics (AIAA) 48th Aerospace Science Meeting 

Proceedings, 2010. 

[15] F. Kuznik, C. Obrecht, G. Rusaouen, J.J. Roux. “LBM 

based flow simulation using GPU computing processor”. 

Computers and Mathematics with Applications, 59, 

2380–2392, 2010. 

[16] F. Lucà, D. DAmbrosio, G. Robustelli, R. Rongo, and 

W. Spataro. “Integrating geomorphology, statistic and 

numerical simulations for landslide invasion hazard 

scenarios mapping: an example in the Sorrento peninsula 

(italy)”. Computers & Geosciences, vol. 67, 163–172, 

2014. 

[17] G. Mendicino, A. Senatore, G. Spezzano, S. Straface. 

“Three-dimensional unsaturated flow modeling using 

cellular automata”. Water Resources Research, 42, 2006. 

[18] H. Nguyen. Gpu Gems 3. First. Addison-Wesley 

Professional, 2007. 

[19] NVIDIA CUDA C Programming Guide, 2011a. 

Available from: http://docs.nvidia.com/cuda/cuda-c-

programming-guide/#axzz3a2J6b3gl [accessed May 

2015] 

[20] T. Salles, S. Lopez, M. Cacas, T. Mulder. “Cellular 

automata model of density currents”. Geomorphology, 

88: 1 – 20, 2007. 

[21] M. Scarpino. OpenCL in action. Manning Publications 

Co., 2012. 

[22] W. Spataro, M.V. Avolio, V. Lupiano, G.A. Trunfio, 

R. Rongo, D. D’Ambrosio. “The latest release of the lava 

flows simulation model sciara: First application to Mt 

Etna (Italy) and solution of the anisotropic flow direction 

problem on an ideal surface”. Procedia Computer 

Science 1: 17-26, 2010. 

[23] J.C. Thibault, I. Senocak. “Accelerating 

incompressible flow computations with a Pthreads-

CUDA implementation on small-footprint multi-GPU 

platforms”. The Journal of Supercomputing, 59, 2, 693 – 

719, 2012. 

[24] J. Tolke. “Implementation of a lattice Boltzmann 

kernel using the compute unified device architecture 

developed by NVIDIA”. Comput. Vis. Sci., 13 1, 29–39, 

2008. 

[25] G.A. Trunfio, D. D'Ambrosio, R. Rongo, W. Spataro, 

S. Di Gregorio. “A new algorithm for simulating wildfire 

spread through cellular automata”. ACM Transactions on 

Modeling and Computer Simulation (TOMACS), 22, 6, 

2011. 

[26] J. von Neumann (Edited and completed by A. Burks),. 

Theory of self-reproducing automata. USA: University 

of Illinois Press, 1966. 

588 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |

http://periodici.caspur.it/cgi-bin/sciserv.pl?collection=journals&journal=00104655&issue=v184i0003&article=617_osfcagoasphm
http://periodici.caspur.it/cgi-bin/sciserv.pl?collection=journals&journal=00104655&issue=v184i0003&article=617_osfcagoasphm
http://periodici.caspur.it/cgi-bin/sciserv.pl?collection=journals&journal=00104655&issue=v184i0003&article=617_osfcagoasphm


A Tool for Automatically Suggesting Source-Code 

Optimizations for Complex GPU Kernels 

 
Saeed Taheri

1
, Apan Qasem

2
, and Martin Burtscher

2
 

1Department of Computer Science, School of Computing, University of Utah, Salt Lake City, Utah 
2Department of Computer Science, Texas State University, San Marcos, Texas 

 
Abstract - Future computing systems, from handhelds to su-

percomputers, will undoubtedly be more parallel and heter-

ogeneous than today’s systems to provide more performance 

and energy efficiency. Thus, GPUs are increasingly being 
used to accelerate general-purpose applications, including 

applications with data-dependent, irregular control flow 

and memory access patterns. However, the growing com-

plexity, exposed memory hierarchy, incoherence, heteroge-

neity, and parallelism will make accelerator-based systems 

progressively more difficult to program. In the foreseeable 

future, the vast majority of programmers will no longer be 

able to extract additional performance or energy-savings 

from next-generation systems because the programming will 

be too difficult. Automatic performance analysis and optimi-

zation recommendation tools have the potential to avert this 

situation. They embody expert knowledge and make it avail-
able to software developers when needed. In this paper, we 

describe and evaluate such a tool. It quantifies performance 

characteristics of GPU code through profiling, employs ma-

chine learning models to estimate the suitability and benefit 

of several known source-code optimizations, ranks the opti-

mizations, and suggests the most promising ones to the user 

if the expected speedup is sufficiently high. 

1. Introduction 

There are two primary difficulties with using accelerators 

such as GPUs. First, they can only execute certain types of 

programs efficiently, in particular programs with enough 

parallelism, data reuse, and regularity in their control flow 

and memory access patterns. Second, it is harder to write ef-
fective software for accelerators than for CPUs because of 

architectural disparities such as wide parallelism, exposed 

memory hierarchies, lockstep execution, and memory access 

coalescing. Several new programming languages and exten-

sions have been proposed to hide these aspects to various 

degrees and thus make it easier to program accelerators [1]. 

We study the alternative approach of making the program-

ming and performance optimization easier for software de-

velopers who are not experts in GPU programming, specifi-

cally when it comes to complex irregular codes that are hard 

to parallelize. In particular, we describe a machine-learning-
based recommendation tool for GPU kernels that automati-

cally determines performance bottlenecks and suggests ap-

propriate source-code optimizations, if any. 

Several efficient GPU implementations of irregular algo-

rithms have been published, showing that GPUs are capable 

of accelerating rather complex codes if they are implemented 

in a GPU-friendly fashion [2, 3, 4]. However, most software 
developers have no formal education in parallel program-

ming, much less in accelerator programming, and could 

therefore greatly benefit from access to a performance/par-

allelism expert. Unfortunately, there are only relatively few 

such experts and each expert may only know a certain aspect 

or application domain. That raises the question of how to 

best deliver such expertise to programmers. 

We believe the best solution to be automatic program anal-

ysis and recommendation tools. They embody the know-

how of performance optimization experts and automatically 

determine where the bottlenecks lie and how to improve a 

given piece of code on a given system. Based on its analysis 
results, the tool recommends possible courses of action. Sec-

tion 2 describes our tool in more detail. 

Since the tool’s recommendation accuracy hinges on how 

well it predicts the expected speedup of the optimizations in 

its database if they were applied to user-provided code, we 

evaluate it by comparing its predicted speedups with the ac-

tual speedups obtained when truly incorporating the sug-

gested source-code optimizations. To make these compari-

sons possible, we wrote 64 versions each of two CUDA pro-

grams that include all possible combinations of six source-

code optimizations and use different subset of these imple-
mentations to train and test our tool. 

This paper makes the following contributions. 1) It de-

scribes how to build source-code recommendation tools that 

can automatically adapt to the underlying hardware and to 

changes in their optimization database. 2) We built such a 

tool for GPU programs and show that it delivers good rec-

ommendation accuracies on the platform and optimizations 

we tested, including on complex irregular CUDA code. 3) 

We study different scenarios to determine conditions that af-

fect the tool’s prediction accuracy. 

The rest of this paper is organized as follows. Section 2 

describes the design of our tool. Section 3 provides back-
ground information upon which the later sections are based. 

Section 4 discusses related tools and how they differ from 

our approach. Section 5 explains the experimental method-

ology. Section 6 presents the results and analyzes them. Sec-

tion 7 concludes with a summary and future work. 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 589



2. Tool Design 

Our tool employs a three-tiered design backed by an optimi-
zation database. The first tier performs code evaluation, the 

second tier analyzes the results, and the third tier handles the 

optimization selection. The tiers communicate through a 

simple interface. This makes it possible to design each tier 

independently and to easily replace any tier. 

Tier 1 is concerned with evaluating code behavior and pro-
ducing performance data. We refer to these data as feature 

vectors. They are produced using NVIDIA’s Visual Profiler 

[5]. It can measure a large number of hardware performance 

counter events such as instruction counts, cache hits/misses 

at different levels, etc. We normalize these features by the 

cycle count to make them independent of the runtime. The 

normalized features are then combined into a feature vector. 

It should be noted that our tool does not depend on any 

particular profile information. Rather, the accuracy of the 

recommendations simply improves with better profiling 

data. This makes the tool easy to port to platforms with dif-

ferent profilers or GPUs with other performance counters. 

Before we discuss the second tier, it is important to explain 

the content of the optimization database. The database is an 

unordered set of independent entries, where each entry rep-

resents an optimization, including a description with an ex-

ample that illustrates how to apply it as well as pairs of be-

fore and after code samples that do not and do include the 

optimization, respectively. Each code sample includes one 

or more inputs to run it with. 

A key feature of this database is that each entry is inde-

pendent, making it easy to delete unwanted entries, modify 

existing entries, and add new entries. Thus, anybody can 

contribute optimizations, in particular experts from different 

domains. This makes the database very flexible, simple to 

port, and customizable to include only optimizations for a 

specific domain or hardware component. 

Tier 2 analyzes the feature vector obtained from profiling 

the user’s application to determine the most appropriate op-

timizations. Before it can do so, it must train itself on the 

before and after code samples from the database. It does this 

upon installation or when the database is modified by run-

ning the code samples through Tier 1 to obtain before and 
after feature vectors. From these vectors, it learns to recog-

nize when a given optimization is needed and how much 

benefit it can deliver on the target platform. Tier 2 employs 

the ML algorithms listed in Section 3.4 for this purpose. 

Tier 3 collects the recommendations from the second tier 

and sorts them by expected benefit. It then outputs the top 
choices if their benefit is above a preset threshold. The user 

can select how many recommendations to maximally dis-

play, whether to include the explanations and/or examples in 

the output, etc. These user-interface aspects are relatively 

straightforward and not the focus of this paper. 

3. Background 

3.1 GPU Architecture 

This subsection provides a brief overview of the architec-

tural characteristics of the Kepler-based Tesla K20c com-

pute GPU we use and explains some of the features that 

make GPUs difficult to program. GPU programs require hi-

erarchical parallelization across threads as well as across 

thread blocks of up to 1024 threads. The K20c consists of 13 

streaming multiprocessors (SMs) to which the thread blocks 

are mapped. Each SM contains 192 processing elements 

(PEs) for executing the threads. Whereas each PE can run an 

individual thread of instructions, sets of 32 PEs are tightly 
coupled and must either execute the same instruction (with 

different data) in the same cycle or wait. This is tantamount 

to a SIMD instruction that conditionally operates on 32-ele-

ment vectors. The corresponding sets of 32 coupled threads 

are called warps. Warps in which not all threads can execute 

the same instruction are subdivided by the hardware into sets 

of threads such that all threads in a set execute the same in-

struction. The individual sets are serially executed, which is 

called branch divergence, until they re-converge. To maxim-

ize performance, branch divergence has to be minimized, but 

it is typically difficult to implement programs in a manner 
such that sets of 32 threads follow the same control flow. 

The memory subsystem is also built for warp-based pro-

cessing. If the threads in a warp simultaneously access words 

in main memory that lie in the same aligned 128-byte seg-

ment, the hardware merges the 32 reads or writes into one 

coalesced memory transaction, which is as fast as accessing 
a single word. Warps accessing multiple 128-byte segments 

result in correspondingly many individual memory transac-

tions that are executed serially. Hence, uncoalesced accesses 

are slower, but it is in general hard to write programs in such 

a way that sets of 32 threads access words from the same 

128-byte segment. Part of the main memory, called constant 

memory, can only be written by the CPU. GPU accesses to 

constant memory benefit from a special cache. 

The PEs within an SM share a pool of threads called 

thread block, synchronization hardware, and a software-con-

trolled data cache called shared memory. A warp can simul-

taneously access 32 words in shared memory as long as all 

words reside in different banks or all accesses within a bank 

request the same word. Barrier synchronization between the 

threads in an SM can take as little as a couple of cycles per 

warp. The SMs operate largely independently. They can only 

communicate through global memory (main memory in 

DRAM). The SMs support special instructions such as vot-
ing, where all threads in a warp compute a combined predi-

cate (i.e., a reduction and broadcast operation), and rsqrtf, 

which quickly computes an approximation of one over 

square root. However, programmers may not be aware of 

such features, which can drastically boost the performance. 

590 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



3.2 N-body Code and Barnes-Hut Algorithm 

To obtain test cases for evaluating our tool, we created 128 

different versions of two n-body simulation codes (64 each) 

[6]. The first code, called NB, is regular and has O(n2) com-

plexity. The second code, called BH, is irregular and has O(n 
log n) complexity. Both programs simulate the time evolu-

tion of a star cluster under gravitational forces for a given 

number of time steps. However, the underlying algorithm 

(see below) and the code base of the two implementations 

are completely different. n denotes the number of stars (aka 

bodies). Both of these codes have been written in such a way 

as there is essentially no execution taking place on the CPU. 

The direct NB algorithm performs precise force calcula-

tions based on the O(n2) pairs of bodies. Since identical com-

putations have to be performed for all bodies, the implemen-

tation is very regular and maps well to GPUs. The force cal-

culations are independent and can be performed in parallel. 

In each time step, the O(n2) force calculation is followed by 

an O(n) integration where each body’s position and velocity 

are updated based on the computed force. For the values of 

n we consider, the integration represents an insignificant 

fraction of the overall execution time. 

 

 
Figure 1: Pseudo code of Barnes-Hut algorithm 

 

The Barnes-Hut (BH) algorithm approximates the forces 

acting on each body [7]. It recursively partitions the volume 

around the n bodies into successively smaller cells and rec-

ords the resulting spatial hierarchy in an octree (the 3D 

equivalent of a binary tree). Each cell summarizes infor-

mation about the bodies it contains. For cells that are suffi-

ciently far away from a given body, the BH algorithm only 

performs one force calculation with the cell instead of one 

force calculation with each body inside the cell, which low-

ers the time complexity to O(n log n). However, different 
parts of the octree have to be traversed to compute the force 

acting on different bodies, making the control flow and 

memory-access patterns quite irregular. The force calcula-

tion is by far the most time consuming operation in BH, 

which is why we only consider source-code optimizations 

that affect this kernel. We use the BH implementation from 

the LonestarGPU suite [8]. It encompasses the algorithmic 

steps shown in Figure 1, each of which is implemented using 

different CUDA kernels. Since this implementation is irreg-

ular, we believe it is a good candidate for testing our tool. 

In summary, the NB code is relatively straightforward, 

has a high arithmetic intensity, regular control flow, and ac-

cesses memory in a strided fashion. In contrast, the BH code 

is quite complex (it repeatedly builds an unbalanced octree 

and performs various traversals on it), has a low arithmetic 

intensity, performs mostly pointer-chasing memory ac-

cesses, and has data-dependent control flow. Due to its lower 

time complexity, it is faster on a K20c GPU than the NB 

code when simulating more than about 15,000 stars. 

3.3 Source-Code Optimizations 

We modified our two test programs to make it possible to 

individually include or exclude all possible combinations of 

six source-code optimizations through conditional compila-

tion, i.e., to produce 64 different versions of each programs. 

In particular, there are 32 versions of each program that do 

not and 32 that do include a particular source-code optimi-

zation. This enables us to create different subsets of these 

versions for training (providing before and after code sam-
ples), testing, and evaluating our tool. 

For NB, we study the following six optimizations: 

 CONST copies immutable kernel parameters (i.e., 

most of the parameters) into the GPU’s constant 

memory rather than passing them every time a ker-

nel is called, i.e., it lowers the calling overhead. 

 FTZ is a compiler flag that allows the GPU’s float-

ing-point ALUs to flush denormal numbers to zero, 

which results in faster computations. While strictly 

speaking not a code optimization, the same effect 

can be achieved by using appropriate intrinsic func-

tions in the source code. 

 PEEL separates the innermost loop of the force cal-

culation into two consecutive loops, one of which 

has a known iteration count and can therefore pre-

sumably be better optimized by the compiler. The 

second loop performs the remaining iterations. 

 RSQRT calls the CUDA intrinsic “rsqrtf()” to 

quickly compute one over square root instead of us-
ing the slower but slightly more precise “1.0f / 

sqrtf()” expression. 

 SHMEM employs blocking, i.e., it preloads chunks 

of data into the shared memory, operates on this 

data, and then moves on to the next chunk. This re-

duces the number of global memory accesses. 

 UNROLL uses a pragma to request unrolling of the 

innermost loop(s). Unrolling often allows the com-

piler to schedule instructions better and to eliminate 

redundancies, thus improving performance. 

For BH, we study the following six optimizations. 

 FTZ is identical to its NB counterpart. 

 RSQRT is also identical to its NB counterpart. 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 591



 SORT approximately sorts the bodies by spatial 

distance to minimize the tree prefix that needs to be 

traversed during the force calculation. 

 VOLA copies some volatile variables into non-vol-

atile variables and uses those in code regions where 

it is known (due to lockstep execution of threads in 

a warp) that no other thread can have updated the 

value. This optimization reduces memory accesses. 

 VOTE employs thread voting instead of a shared-

memory-based code to perform reductions. 

 WARP switches from a thread- to a warp-based im-

plementation that is more efficient because it does 

not suffer from branch divergence and uses less 

memory as it records certain information per warp 

instead of per thread. 

3.4 Machine Learning Algorithms 

We utilize various subsets of the feature vectors from our 

test programs to train the Machine Learning (ML) methods 

in our tool such that they can learn how much speedup an 

optimization might provide under different conditions. The 

goal is to be able to predict by how much each of the opti-

mizations in the database will improve or hurt the perfor-

mance of a given CUDA kernel. Based on these predictions, 

the tool selects which optimizations to suggest. 

Machine learning approaches generally use data attributes 

as features to perform classification/prediction. Each data 

entry can be viewed as a point in N-dimensional space, 

where N is the number of attributes per data item. This al-

lows, for example, to place each training data point into an 

N-dimensional space so that any test data point can be clas-

sified based on “nearby” training data points. 

We examined three different ML approaches: linear and 

logistic regression, instance-based learners, and decision 

trees. Regression is concerned with modeling the relation-

ship between variables that is iteratively refined using a 

measure of error in the predictions made by the model. Re-

gression methods are important in statistics and have been 

cooped into statistical machine learning. 

The instance-based learning model is a decision problem 

with instances or examples of training data that are deemed 

important to or required by the model. Such methods typi-

cally build a database of examples and compare new data to 

the database using a similarity measure to find the best match 

and make a prediction. The focus is on the representation of 

the stored instances and the similarity measures used be-

tween instances. In our experiments we use IBK, which is an 

instance-based classifier that uses the k-nearest neighbor 

(KNN) method for classification. During training, all la-

belled instances are recorded. When invoked on a new test 
instance, the model attempts to find the k recorded instances 

that are most similar to the given test instance. Similarity is 

measured by the Euclidean distance between the feature vec-

tors of the test and training instances. The mode value of the 

label for the k nearest neighbors is used to predict the out-

come. Although we experimented with several different val-

ues of k, the results presented in this paper all use k = 10, 

which proved to be most effective. 

Decision tree methods construct a model of decisions 

made based on the values of the attributes in the data. Deci-

sions fork at each level in the tree until a leaf node is reached, 

where a prediction decision is made based on the training 
cases that reached the same leaf node. Decision trees are 

trained on data for classification and regression problems 

[9]. We employ M5P, a special type of decision-tree where 

each leaf node is a linear regression model. This model uti-

lizes the M5 technique proposed by Quinlan [10]. First, an 

induction algorithm is used to construct a standard decision 

tree. Then a multivariate regression model is constructed for 

each node in the tree. However, instead of using all features 

in the regression model, only the features that appear in the 

subtree that contains the node are used. Finally, the leaf 

nodes are replaced by the newly constructed regression mod-

els. Once this regression-based decision tree has been built, 
standard pruning and smoothing techniques are applied. 

4. Related Work 

Paradyn [11] is one of the first tools for automatic perfor-

mance analysis. It uses dynamic instrumentation to effi-
ciently obtain performance profiles of unmodified executa-

bles. KOJAK [12], Scalasca [13, 14], Vampir [15] and Vam-

pirTrace [16] are trace-based tools that support MPI, 

OpenMP, and hybrid codes. For instance, the highly scalable 

Scalasca tool employs TAU’s rich instrumentation capabili-

ties [17] and processes the trace data in parallel. It scores and 

summarizes the trace report and shows it on a GUI. 

Periscope [18] evaluates the performance while an appli-

cation is running and searches for previously specified per-

formance problems or properties. It is MPI-based and fo-

cused on efficient communication between cores/processors. 

TAU [17] is a portable tool for performance instrumentation, 
measurement, analysis, and visualization of large-scale par-

allel applications. Using the library wrapping benefit of 

TAU, TAUCuda [19] can measure GPU performance. It re-

quires no modification of the source or binary code. The re-

cently released Score-P tool [20] represents a portable infra-

structure for performance measurement tools. Each of the 

above tools utilizes a different measurement output format. 

For example, the output format Vampir is OTF and the out-

put format of Scalsca is EPILOG/CUBE. Score-P tries to in-

tegrate all of these tools into a unified measurement infra-

structure. HPCToolkit [21, 22] generates statistical profiles 

using interval timers and hardware-counter interrupts and 
evaluates both application binaries and source code. 

NVIDIA created tools such as the CUDA Performance 

Tools Interface (CUPTI) [23], Visual Profiler [24], and 

Nsight [25] that focus on GPU performance bottlenecks. 

Some tools, such as PAPI CUDA [26] and VTune Ampli-

fier XE [27], use hardware counters to measure the perfor-

mance. eeClust [28] determines relationships between the 

592 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



behavior of parallel programs and the energy consumption. 

Virtual Institute - High Productivity Supercomputing (VI-

HPS) [29] is a collaboration of several partner institutions 

for improving the quality and accelerating the development 

process of complex simulation codes in science and engi-

neering that are being designed to run on highly-parallel 

computer systems. Many well-known tools for parallel per-

formance and measurement such as TAU, Scalasca and 

Vampir are designed and created by the partners of this big 
project. They also have a couple of ongoing and completed 

projects in the field of productivity and performance to im-

prove their previous products. POINT, Score-P, SILC, 

HOPSA, PRIMA and LMAC are tools for integrating and 

improving the functionality of performance and measure-

ment tools such as TAU and Vampir. For instance, LMAC 

adds the functionality of automatically examining perfor-

mance dynamic for irregular behavior of parallel simulation 

codes to the established performance analysis tools Vampir, 

Scalasca, and Periscope. 

Machine learning methods have also been used in MILE-

POST GCC [30], a self-optimizing compiler that automati-

cally learns the best optimization heuristics based on the be-
havior of the platform. There are also model-driven auto-

tuning tools that are based on regression trees [31]. 

PerfExpert [32] is a tool that combines a simple user in-
terface with an analysis engine to detect probable core-, 

socket-, and node-level performance bottlenecks in each im-

portant procedure and loop of a CPU application. For each 

bottleneck, PerfExpert provides a concise performance as-

sessment. Unlike most of the tools described above, PerfEx-

pert suggests steps that can be taken by the programmer to 

improve performance. In particular, its AutoSCOPE 

backend provides automatic recommendations for perfor-

mance tuning, including compiler switches and optimization 

strategies with source-code examples [33]. It determines 

which suggestions to make by searching a manually anno-
tated database of optimizations for the closest matches to 

PerfExpert’s output metrics, which are derived from perfor-

mance-counter measurements. 

Our tool is most similar to that of PerfExpert/Auto-

SCOPE. We also use profiling based on hardware perfor-

mance counters and compute derived metrics that are then 

used to identify suitable optimizations to recommend. How-

ever, instead of CPU procedures, we target complex GPU 

kernels, which can be challenging to make efficient. More 

importantly, instead of hand-annotating optimizations, 

which is tedious, error prone, and not very portable, our ap-

proach automates this step using ML algorithms that are 

trained using sample codes for each optimization. This not 

only makes it easy to port our tool to other systems but also 
enables the tool to automatically adapt the recommendations 

it makes to the performance characteristics of each system. 

Moreover, it provides the ability to alter the recommendation 

database without having to worry about how this change in-

teracts with the remaining suggestions. 

5. Experimental Methodology 

We compiled the CUDA test programs using nvcc v6.0.1 with 

the -O3 -arch=sm_35 flags. Our GPU is a Kepler-based 0.7 
GHz Tesla K20c with 5 GB of main memory and 2496 

CUDA cores distributed over 13 SMXs. Each SMX has 64 

kB of fast memory that is split between the L1 data cache 

and the shared memory. The SMXs share a 1.5 MB L2 

cache. For the machine learning methods, our tool leverages 

the algorithms implemented in Weka [34]. 

For the profiling, i.e., generating the feature vectors, we 

used nvprof from the Visual Profiler v6.5. We profiled each 

of the 128 versions of BH and NB described in Section 3.3 

three times on the inputs shown in Table 1. Depending on 
the experiment, we use different subsets of the resulting fea-

ture vectors to train and test our tool. Table 2 lists the subsets 

used in each of the six experiments we performed. In exper-

iments 1 through 4, we trained and tested based on the BH 

code. In experiments 5 and 6, the tool is trained on BH/NB 

and tested on NB/BH, respectively. 

 

Table 1: Input sizes used for BH and NB 

NB BH 

Bodies Time 
steps 

Bodies Time 
steps 

50,000 2 125,000 2 

100,000 2 250,000 2 

100,000 5 250,000 5 

200,000 5 500,000 5 

- - 500,000 10 

- - 1,000,000 10 

Table 2: Experiments for evaluating the speedup predictions 

E
x
p
er

im
en

t 

T
ra

in
in

g
 d

a-

ta
se

t 

T
ra

in
in

g
  

en
tr

ie
s 

T
es

ti
n
g
  

d
at

as
et

 

T
es

ti
n
g
  

en
tr

ie
s 

T
es

ti
n
g
 i

n
-

cl
u
d
es

 t
ra

in
-

in
g
 d

at
as

et
 

T
ra

in
 a

n
d
 

te
st

 d
at

as
et

 

fr
o
m

 s
am

e 

p
ro

g
. 

in
p
u
t 

1 BH 64 BH 192 Yes Yes 

2 BH 64 BH 128 No Yes 

3 BH 128 BH 64 No Yes 

4 BH 192 BH 64 No No 

5 BH 192 NB 64 No No 

6 NB 192 BH 64 No No 

 

Since the tool sorts its recommendations by predicted 

speedup, our evaluation focuses on comparing the actual 

speedup of the tested optimizations with the predicted 

speedup. If the predicted speedup is reasonably close to the 

actual speedup, our tool is able to suggest the most useful 
optimization(s) to improve performance. 

The strategy we chose for evaluating the results after train-

ing the tool is the following. For each specific optimization, 

we removed all feature vectors from runs that included this 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 593



optimization, which always leaves 32 feature vectors from 

runs that do not include the optimization. Testing these fea-

ture vectors on the trained tool generates six predicted 

speedups, one for each of the studied optimizations. The pre-

dicted speedups are then compared to the actual (measured) 

speedup when truly including this optimization in the code. 

The ratio of the actual speedup (AC) over the expected 

speedup (EX) shows how close the prediction is to the true 

speedup. If the predictions are accurate, the tool can use 

them to rank the optimization, i.e., suggest the most promis-

ing optimizations (if any) to the user based on the expected 

speedup. To enhance readability, we show the AC/EX ratios 

in strip charts. A strip chart plots the data along a line with 

each data point represented by a star. The predictions do not 

have to be 100% accurate for our tool to work well. As long 

as the speedups are approximately correct, the tool will rec-
ommend the correct source-code optimizations, if any. 

6. Results 

This section presents the results of the prediction accuracy 

evaluations. We investigated three different machine learn-

ing methods to predict speedups: Logistic Regression, IBK, 

and M5P. Since the results of the logistic regression are sub-

stantially inferior to those of the other two methods, we only 

present results for IBK and M5P. 

6.1 Train and Test on Same Code 

When training and testing on the same program and input, 
the predictions are expected to be accurate. Instead of show-

ing detailed strip charts for these simple experiments, we 

only compare the actual with the predicted speedup to see if 

they both show an increase or both show a decrease in per-

formance. After all, if the predicted and the actual speedup 

are greater than one, it is correct for the recommendation tool 

to predict a performance gain. Similarly, if both the pre-

dicted and the actual speedup are less than one, using that 

optimization would hurt performance and not recommend-

ing the optimization is the correct behavior. 

In experiment 1, we trained the tool based on the 64 fea-

ture vectors from a single run and input and tested all 192 

feature vectors from the three runs of the same input, includ-

ing the training data. Using the IBK method, on average over 

97% of the predictions match the actual behavior, as shown 

in Table 3. The accuracy of the predicted behavior is signif-

icantly worse for M5P (86.4%). This reduced accuracy is 

largely due to M5P’s inability to predict the behavior of 

FTZ, where it only achieves 57% accuracy. Upon further in-

vestigation we found that, in many of the test instances, FTZ 

applied by itself had very little impact on performance. Since 

M5P uses regression in the leaf nodes, even a small mispre-
diction in the speedup can result in an incorrect final out-

come (improvement vs. degradation). IBK does not suffer 

from this problem because it stores all of the training in-

stances and is therefore able to predict the speedup of the 

training data exactly. IBK only enjoys this advantage if the 

training data include the test data. Next, we show how the 

accuracy of IBK is affected when we relax this assumption. 

 

Table 3: Accuracy of negative/positive speedup predictions 

for different experiments and two ML methods 

Experiment 
Accuracy 
IBK (%) 

Accuracy M5P 
(%) 

1 97.3 86.4 

2 96.0 86.4 

3 96.3 33.3 

4 92.0 81.6 

5 83.6 33.3 

6 55.7 60.1 

 

6.1.1 Non-overlapping Training and Test Data 

In experiment 2, we trained on the 64 feature vectors of a 
single run and tested on the 128 feature vectors from the 

other two runs. Although the training data are not included 

in the testing data, we still expect high accuracy because all 

feature vectors stem from the same program running the 

same input multiple times. The IBK results (96%) are almost 

identical to experiment 1 with just a slight decrease in accu-

racy due to excluding the training data from the testing da-

taset. The results for M5P are also very similar to those of 

experiment 1. M5P uses just a few features, so excluding the 

training data does not affect its prediction accuracy much. 

6.1.2 Impact of Sample Size 

In experiment 3, we trained the tool on 128 feature vectors 

and tested on the remaining 64 (experiment 2 uses the oppo-
site approach). The expectation is that using more training 

data will improve the results. The prediction accuracies are 

comparable to the results from the previous experiments. In-

terestingly, the tested ML methods tend to underestimate the 

speedup. Nevertheless, the range of the ratios is 0.95 to 1.05 

in all cases. These results show that adding more instances 

to the training data does not have a substantial impact on 

IBK. We note, however, that there is a significant drop in the 

accuracy of M5P. This is again explained by M5P’s inability 

to accurately predict the behavior of FTZ. Although not 

shown, the accuracy of M5P is better in practice when using 
our tool with a threshold, i.e., when not recommending opti-

mizations whose predicted speedup is below the threshold. 

Obtaining about 96% prediction accuracy in the first three 

experiments is expected because training and testing on al-

most identical data (different runs of the same program and 

input) makes it easy for the tool to be accurate. In the fol-
lowing experiments, the training program input is different 

from the testing input. 

6.1.3 Sensitivity to Program Input 

In experiment 4, we trained the tool with all 192 feature vec-

tors from the three runs on one program input and tested on 

64 feature vectors each from the other program inputs. Fig-

ure 2 shows the results of the VOTE optimization with the 

594 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



IBK method. The Y axis of the chart shows the ratio of the 

Actual Speedup (AC) over the Expected Speedup (EX). The 

closer the points are to 1.0 the more accurate the predictions 

are. The X axis represents different training and testing da-

taset combinations. Actually labeling the X axis resulted in 

illegible text, so we do not show the labels, which are not 
critical to the understanding. Note, however, that the input 

sizes increase from left to right and that the charts show sets 

of multiple strips for different runs of the same input size. 

Most of the ratios in Figure 2 are around 1.0, i.e., the pre-

dicted speedups are close to the actual speedups. Unlike in 

the previous three experiments, where most of the IBK ratios 

were above 1.0, in this experiment the ratios are distributed 

evenly above and below the line. This is also true for the 

other optimizations shown in Figure 3. The few outliers in 

Figure 2 stem from test cases using the smallest inputs, 

which result in poor feature vectors that throw off IBK. 

For WARP, SORT, and VOLA shown in Figure 3, the pre-
dictions on smaller inputs are also less accurate. The plotted 

ratios are denser close to the 1.0 line for all three optimiza-

tions because of the higher accuracy with larger inputs. 

 

 

Figure 2: Ratios (AC/EX) of VOTE, Experiment 4, IBK 

 

 

 

Figure 3: Ratios (AC/EX) of WARP, SORT, and VOLA, Experiment 4, IBK 

 

Figures 4 and 5 show the IBK ratios for FTZ and 

RSQRT, respectively. The results are good for both FTZ 

and RSQRT. As shown in Table 3, the accuracy of posi-
tive/negative speedup is still 92% on average in experiment 

4 for the IBK method. Clearly, training the tool on data 

from one input and testing on data from a different input 

does not hurt the tool’s performance much. However, the 

accuracy of the prediction behavior of M5P is lower than 

IBK’s (81.6%). This difference between absolute speedup 

prediction accuracy and behavior prediction accuracy, i.e., 

only predicting whether there will be a speedup, shows that 

the ratio of the actual speedup over the predicted speedup 

can be close to 1.0 yet the predicted speedup lies on the 

“other” side of the 1.0 line than the actual speedup. Fortu-
nately, such cases are easily avoided in the recommenda-

tion tool by only suggesting optimizations that result in a 

speedup above the user-defined threshold. 

6.2 Train and Test on Different Codes 

Training the tool on a set of before and after feature vectors 

from code that is not related to the test code is the ultimate 

test of our approach (and the expected use case). In exper-

iment 5, we trained on different versions of the BH code 

and used various versions of the NB code as test cases. In 
particular, this experiment shows results when we train the 

tool on data from an irregular GPU program and test it on 

a regular GPU program. Note that only the FTZ and 

RSQRT optimizations are common to both BH and NB. 

Hence, we can only compare the predicted and actual 

speedups of these two optimizations as we do not know the 

actual speedups of the remaining four BH optimizations 

when applied to NB. 

Figures 6 and 7 show the results of experiment 5 using 

IBK. Almost half of the ratios are below the 1.0 line. The 

range of the ratios for FTZ is 0.2 to 1.7, which shows that 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 595



the prediction accuracy of the speedup is not as close as it 

was in the previous experiments. For RSQRT, the ratios are 

spread even wider. As before, the prediction results for test 

cases with larger input sizes tend to be better. For each 

model, we tested all 64 feature vectors of each set of four 

inputs on the NB code. 

 

 

Figure 4: Ratios (AC/EX) of FTZ, Experiment 4, IBK 

 

 

Figure 5: Ratios (AC/EX) of RSQRT, Experiment 4, IBK 

 

Considering that we are training and testing on two dif-

ferent programs, the results are still good. The accuracy of 
the predictions for these two optimizations is almost 84%. 

The accuracy of the M5P method in this experiment for 

FTZ and RSQRT is only 33%. The reason for this low ac-

curacy is that M5P uses very few features for making deci-

sions. When the training and testing datasets stem from dif-

ferent programs, the possibility of accurate predictions 

based on just a few features is relatively low. 

Experiment 6 is identical to experiment 5 except we 

switched the training and testing datasets, that is, we 

trained the tool on the regular NB code and tested it on the 

irregular BH code. Interestingly, all of the predicted 

speedups for FTZ using the IBK method are lower than the 

actual speedups on the BH code as shown in Figure 8. 

RSQRT yields more accurate predictions as Figure 9 

shows. The range of the ratios is 0.78 to 1.45 and most of 

the ratios are close to 1.0. For smaller training and testing 

inputs, the tool tends to overestimate the speedups. 

 

 

Figure 6: Ratios (AC/EX) of FTZ, Experiment 5, IBK 

 

 

Figure 7: Ratios (AC/EX) of RSQRT, Experiment 5, IBK 

 

Comparing the IBK results of experiment 6 with the re-

sults from experiment 5 in Table 3, we find that more ac-

curate predictions are made when the tool is trained on ir-

regular codes and tested on regular codes, which makes 

sense as irregular codes tend to be more complex. 

In the first five experiments, the prediction accuracy of 

IBK is better than that of M5P. However, in experiment 6, 

the overall accuracy of M5P is better than that of IBK. 

Clearly, there is no ML model that is always the best for 

our tool. Apparently, M5P yields better performance be-
cause it narrows the features down to metrics that are sig-

nificant for both irregular and regular codes. However, in 

most experiments, IBK yields more accurate speedup pre-

dictions than the other methods. Hence, IBK is the ML 

method of choice for our tool. 

596 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



 

Figure 8: Ratios (AC/EX) of FTZ, Experiment 6, IBK 

 

 

Figure 9: Ratios (AC/EX) of RSQRT, Experiment 6, IBK 

7. Summary and Conclusion 

This paper describes and evaluates a tool to suggest source-

code optimizations to programmers in order to improve the 

efficiency of their GPU code, including complex irregular 

codes. The tool needs to be trained on profile data from 

different code samples that do and do not include certain 

source-code optimizations. During this training, the tool 

builds machine-learning models for each optimization in 

its database so that it can later estimate the speedup for each 

optimization when presented with profile data from other 

programs. To measure and quantify the prediction accu-

racy, we profiled differently optimized GPU codes with 
multiple inputs to gather a large set of performance data. 

The tool ranks the optimizations based on the predicted 

speedup and suggests the top optimizations to the user if 

the predicted speedup is above a preset threshold. To eval-

uate the accuracy of the predicted speedups, we compared 

them to the actual speedups obtained when truly adding the 

respective source-code optimizations. 

We performed six experiments of training models and 

predicting speedups. In the first four experiments, we 

trained and tested the tool on the BH code and obtained up 

to 97% prediction accuracy. In the remaining two experi-

ments, where we train on BH/NB and test on NB/BH, the 

tool delivers up to 82% accuracy, i.e., most of the sug-

gested source-code optimizations truly result in a speedup 

when they are implemented. 

Based on the results from Section 5, the predictions of 

our tool are more precise when training on data obtained 

with larger program inputs. This makes sense as larger in-

puts result in more profiling data and more stable-state uti-

lization of the GPU. Expectedly, training the tool with 
more data yields better predictions. 

When training on code that is different from the tested 

code, we found that training based on irregular codes and 

testing on regular codes seems to result in better predic-
tions than training on regular code and testing on irregular 

codes. This is likely a combination of two factors. First, 

regular codes are less complex, making them easier to pre-

dict in general. Second, the higher complexity of irregular 

codes probably provides more diverse training data, which 

yield better ML models for making the predictions. 

We studied three different machine learning methods. 

Our results show that there is no clear winner. However, 

IBK generally performs very well when predicting the 

likely speedup of source-code optimizations. Hence, we 

use IBK in out tool. 

We used differently optimized Barnes-Hut implementa-

tions as a representative irregular GPU code. Of course, us-

ing additional (irregular) codes for training would be bet-

ter. Also, we studied six source-code optimizations. Larger 

numbers of optimizations can and should be used to better 

test the accuracy of our approach. To verify portability, our 

study should be repeated on additional types of GPUs. For 

the machine learning phase, we investigated three different 

methods. Other types of ML methods could, of course, also 

be employed for predicting the speedups. 

8. References 

[1] http://www.hpcwire.com/2014/01/09/future-accelera-

tor-programming/ 

[2] M. Mendez-Lojo, M. Burtscher, and K. Pingali. A 

GPU Implementation of Inclusion-based Points-to 

Analysis. 17th ACM SIGPLAN Symposium on Prin-

ciples and Practice of Parallel Programming, pp. 107-

116. February 2012. 

[3] Duane G. Merrill, Michael Garland, and Andrew S. 

Grimshaw. Scalable GPU Graph Traversal. 17th ACM 

SIGPLAN Symposium on Principles and Practice of 

Parallel Programming. February 2012. 

[4] M. Burtscher, R. Nasre, and K. Pingali. A Quantitative 

Study of Irregular Programs on GPUs. 2012 IEEE In-

ternational Symposium on Workload Characterization, 

pp. 141-151. November 2012. 

[5] https://developer.nvidia.com/nvidia-visual-profiler 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 597

http://www.hpcwire.com/2014/01/09/future-accelerator-programming/
http://www.hpcwire.com/2014/01/09/future-accelerator-programming/
https://developer.nvidia.com/nvidia-visual-profiler


[6] http://en.wikipedia.org/wiki/N-body_problem 

[7] http://en.wikipe-

dia.org/wii/Barnes%E2%80%93Hut_simulation 

[8] http://iss.ices.utexas.edu/?p=projects/gal-

ois/lonestargpu 

[9] http://machinelearningmastery.com/a-tour-of-ma-

chine-learning-algorithms/ 

[10] Ross J. Quinlan, Learning with Continuous Classes, 

Proceedings of the 5th Australian Joint Conference on 

Artificial Intelligence, Singapore, 343-348, 1992. 

[11] B. P. Miller and J. K. Hollingsworth and M. D. Calla-

ghan, The Paradyn Performance Tools and PVM, Pro-
ceedings of the Second Workshop on Environments 

and Tools for Parallel Scientific Computing: Town-

send, TN, USA, 25–27 May 1994, pp. 201-210, Soci-

ety for Industrial and Applied Mathematics, 1994. 

[12] Bernd Mohr and Felix Wolf, KOJAK - a tool set for 

automatic performance analysis of parallel programs, 
Springer-Verlag, 2003. 

[13] Zoltán Szebenyi, Brian J. N. Wylie, Felix Wolf: SCA-

LASCA Parallel Performance Analyses of SPEC 

MPI2007 Applications. In Proc. of the 1st SPEC Inter-

national Performance Evaluation Workshop (SIPEW), 
Darmstadt, Germany, volume 5119 of Lecture Notes 

in Computer Science, pages 99-123, Springer, 2008. 

[14] Markus Geimer, Felix Wolf, Brian J. N. Wylie, Erika 

Ábrahám, Daniel Becker, Bernd Mohr: The SCA-

LASCA Performance Toolset Architecture. In Proc. of 

the International Workshop on Scalable Tools for 
High-End Computing (STHEC), Kos, Greece, pages 

51–65, June 2008. 

[15] W. E. Nagel and A. Arnold and M. Weber and H.-Ch. 

Hoppe and K. Solchenbach, VAMPIR: Visualization 

and Analysis of MPI Resources, 1996. 

[16] Matthias S. Müller and Andreas Knüpfer and Matthias 

Jurenz and Matthias Lieber and Holger Brunst and 

Hartmut Mixand Wolfgang E. Nagel, Developing 

Scalable Applications with Vampir, VampirServer and 

VampirTrace, PARCO, Advances in Parallel Compu-

ting, Vol. 15, pp. 637-644, IOS Press, 2007. 

[17] S. Shende and A. D. Malony, “The TAU Parallel Per-

formance System,” International Journal of High Per-

formance Computing Applications, SAGE Publica-

tions, 20(2):287-331, Summer 2006 

[18] Michael Gerndt, Karl Fürlinger, and Edmond Kereku, 

Periscope: Advanced Techniques for Performance 

Analysis, PARCO, John von Neumann Institute for 

Computing Series, Vol. 33, pp. 15-26, Central Institute 

for Applied Mathematics, Jülich, Germany, 2005. 

[19] Allen D. Malony, Scott Biersdorff, Wyatt Spear, and 

Shangkar Mayanglambam. 2010. An experimental ap-

proach to performance measurement of heterogeneous 

parallel applications using CUDA. In Proceedings of 

the 24th ACM International Conference on Supercom-

puting (ICS ‘10). ACM, New York, NY, USA, 127-

136. DOI=10.1145/1810085.1810105 

http://doi.acm.org/10.1145/1810085.1810105 

[20] http://www.vi-hps.org/projects/score-p/ 

[21] Laksono Adhianto and Sinchan Banerjee and Michael 

Fagan and Mark Krentel and Gabriel Marin and John 

Mellor-Crummey and Nathan Tallent, HPCToolkit: 

Performance tools for parallel scientific computing, 

SC’08 USB Key, ACM/IEEE, November 2008. 

[22] http://www.hpctoolkit.org 

[23] https://developer.nvidia.com/cuda-profiling-tools-in-

terface 

[24] https://developer.nvidia.com/nvidia-visual-profiler 

[25] http://www.nvidia.com/object/nsight.html 

[26] Browne, S., Deane, C., Ho, G., Mucci, P. “PAPI: A 

Portable Interface to Hardware Performance Coun-

ters,” Proceedings of Department of Defense HPCMP 

Users Group Conference, June, 1999. 

[27] http://software.intel.com/en-us/intel-vtune-amplifier-xe 

[28] Michael Knobloch and Timo Minartz and Daniel 

Molka and Stephan Krempel and Thomas Ludwig 
0002 andBernd Mohr, Electronic poster: eeclust: en-

ergy-efficient cluster computing, SC Companion, pp. 

99-100, ACM, 2011. 

[29] http://www.vi-hps.org/projects/ 

[30] Fursin, Grigori, Cupertino Miranda, Olivier Temam, 

Mircea Namolaru, Elad Yom-Tov, Ayal Zaks, Bilha 

Mendelson et al. “MILEPOST GCC: machine learning 

based research compiler.” In GCC Summit. 2008. 

[31] Bergstra, J.; Pinto, N.; Cox, D., “Machine learning for 

predictive auto-tuning with boosted regression trees, 

“Innovative Parallel Computing (InPar), 2012, vol., 

no., pp. 13-14 May 2011. 

[32] M. Burtscher, B.D. Kim, J. Diamond, J. McCalpin, L. 

Koesterke, and J. Browne. “PerfExpert: An Easy-to-

Use Performance Diagnosis Tool for HPC Applica-

tions.” SC 2010 Int. Conference for High-Performance 

Computing, Networking, Storage and Analysis. No-

vember 2010. 

[33] Olalekan Sopeju, Martin Burtscher, Ashay Rane, and 

James Browne. AutoSCOPE: Automatic suggestions 

for code optimizations using PerfExpert. 2011 Interna-

tional Conference on Parallel and Distributed Pro-

cessing Techniques and Applications, pages 19-25, 

July 2011. 

[34] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard 

Pfahringer, Peter Reutemann, Ian H. Witten, The 

WEKA Data Mining Software: An Update, SIGKDD 

Explorations, Volume 11, Issue 1, 2009.
 

 

598 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |

http://en.wikipedia.org/wiki/N-body_problem
http://en.wikipedia.org/wiki/Barnes%E2%80%93Hut_simulation
http://en.wikipedia.org/wiki/Barnes%E2%80%93Hut_simulation
http://iss.ices.utexas.edu/?p=projects/galois/lonestargpu
http://iss.ices.utexas.edu/?p=projects/galois/lonestargpu
http://machinelearningmastery.com/a-tour-of-machine-learning-algorithms/
http://machinelearningmastery.com/a-tour-of-machine-learning-algorithms/
http://liinwww.ira.uka.de/csbib?query=%2Bau:MillerBP*+%2Bau:Miller&maxnum=200&sort=year
http://liinwww.ira.uka.de/csbib?query=%2Bau:HollingworthJK*+%2Bau:Hollingworth&maxnum=200&sort=year
http://liinwww.ira.uka.de/csbib?query=%2Bau:CallaghanMD*+%2Bau:Callaghan&maxnum=200&sort=year
http://liinwww.ira.uka.de/csbib?query=%2Bau:CallaghanMD*+%2Bau:Callaghan&maxnum=200&sort=year
http://liinwww.ira.uka.de/csbib?query=%2Bau:MohrB*+%2Bau:Mohr&maxnum=200&sort=year
http://liinwww.ira.uka.de/csbib?query=%2Bau:WolfF*+%2Bau:Wolf&maxnum=200&sort=year
http://liinwww.ira.uka.de/csbib?query=%2Bau:NagelWE*+%2Bau:Nagel&maxnum=200&sort=year
http://liinwww.ira.uka.de/csbib?query=%2Bau:ArnoldA*+%2Bau:Arnold&maxnum=200&sort=year
http://liinwww.ira.uka.de/csbib?query=%2Bau:WeberM*+%2Bau:Weber&maxnum=200&sort=year
http://liinwww.ira.uka.de/csbib?query=%2Bau:HoppeHC*+%2Bau:Hoppe&maxnum=200&sort=year
http://liinwww.ira.uka.de/csbib?query=%2Bau:HoppeHC*+%2Bau:Hoppe&maxnum=200&sort=year
http://liinwww.ira.uka.de/csbib?query=%2Bau:SolchenbachK*+%2Bau:Solchenbach&maxnum=200&sort=year
http://liinwww.ira.uka.de/csbib?query=%2Bau:MullerMS*+%2Bau:Muller&maxnum=200&sort=year
http://liinwww.ira.uka.de/csbib?query=%2Bau:KnupferA*+%2Bau:Knupfer&maxnum=200&sort=year
http://liinwww.ira.uka.de/csbib?query=%2Bau:JurenzM*+%2Bau:Jurenz&maxnum=200&sort=year
http://liinwww.ira.uka.de/csbib?query=%2Bau:JurenzM*+%2Bau:Jurenz&maxnum=200&sort=year
http://liinwww.ira.uka.de/csbib?query=%2Bau:LieberM*+%2Bau:Lieber&maxnum=200&sort=year
http://liinwww.ira.uka.de/csbib?query=%2Bau:BrunstH*+%2Bau:Brunst&maxnum=200&sort=year
http://liinwww.ira.uka.de/csbib?query=%2Bau:MixH*+%2Bau:Mix&maxnum=200&sort=year
http://liinwww.ira.uka.de/csbib?query=%2Bau:NagelWE*+%2Bau:Nagel&maxnum=200&sort=year
http://liinwww.ira.uka.de/csbib?query=%2Bau:GerndtM*+%2Bau:Gerndt&maxnum=200&sort=year
http://liinwww.ira.uka.de/csbib?query=%2Bau:FurlingerK*+%2Bau:Furlinger&maxnum=200&sort=year
http://liinwww.ira.uka.de/csbib?query=%2Bau:KerekuE*+%2Bau:Kereku&maxnum=200&sort=year
http://doi.acm.org/10.1145/1810085.1810105
http://www.vi-hps.org/projects/score-p/
http://liinwww.ira.uka.de/csbib?query=%2Bau:AdhiantoL*+%2Bau:Adhianto&maxnum=200&sort=year
http://liinwww.ira.uka.de/csbib?query=%2Bau:BanerjeeS*+%2Bau:Banerjee&maxnum=200&sort=year
http://liinwww.ira.uka.de/csbib?query=%2Bau:FaganM*+%2Bau:Fagan&maxnum=200&sort=year
http://liinwww.ira.uka.de/csbib?query=%2Bau:FaganM*+%2Bau:Fagan&maxnum=200&sort=year
http://liinwww.ira.uka.de/csbib?query=%2Bau:KrentelM*+%2Bau:Krentel&maxnum=200&sort=year
http://liinwww.ira.uka.de/csbib?query=%2Bau:MarinG*+%2Bau:Marin&maxnum=200&sort=year
http://liinwww.ira.uka.de/csbib?query=%2Bau:%28%2bMellor%20%2bCrummeyJ%2a%29+%2Bau:Mellor-Crummey&maxnum=200&sort=year
http://liinwww.ira.uka.de/csbib?query=%2Bau:%28%2bMellor%20%2bCrummeyJ%2a%29+%2Bau:Mellor-Crummey&maxnum=200&sort=year
http://liinwww.ira.uka.de/csbib?query=%2Bau:TallentN*+%2Bau:Tallent&maxnum=200&sort=year
http://www.hpctoolkit.org/
https://developer.nvidia.com/cuda-profiling-tools-interface
https://developer.nvidia.com/cuda-profiling-tools-interface
https://developer.nvidia.com/nvidia-visual-profiler
http://www.nvidia.com/object/nsight.html
http://software.intel.com/en-us/intel-vtune-amplifier-xe
http://liinwww.ira.uka.de/csbib?query=%2Bau:KnoblochM*+%2Bau:Knobloch&maxnum=200&sort=year
http://liinwww.ira.uka.de/csbib?query=%2Bau:MinartzT*+%2Bau:Minartz&maxnum=200&sort=year
http://liinwww.ira.uka.de/csbib?query=%2Bau:MolkaD*+%2Bau:Molka&maxnum=200&sort=year
http://liinwww.ira.uka.de/csbib?query=%2Bau:MolkaD*+%2Bau:Molka&maxnum=200&sort=year
http://liinwww.ira.uka.de/csbib?query=%2Bau:KrempelS*+%2Bau:Krempel&maxnum=200&sort=year
http://liinwww.ira.uka.de/csbib?query=%2Bau:LudwigT*+%2Bau:Ludwig&maxnum=200&sort=year
http://liinwww.ira.uka.de/csbib?query=%2Bau:LudwigT*+%2Bau:Ludwig&maxnum=200&sort=year
http://liinwww.ira.uka.de/csbib?query=%2Bau:MohrB*+%2Bau:Mohr&maxnum=200&sort=year
http://www.vi-hps.org/projects/


 Proposal and Implementation of Mixed Finite Automata 

Optimization by Balancing Active States and Transitions 

Kosuke Nishimura+, Kenichi Takagiwa+, Hiroaki Nishi* 

Graduate School of Science and Technology, Keio University, Japan 
+{nishimura, takagiwa}@west.sd.keio.ac.jp, *west@sd.keio.ac.jp 

Abstract – A string matching program corresponding to a 

regular expression is implemented using two different finite 

automata: a nondeterministic finite automaton (NFA) and a 

deterministic finite automaton (DFA). However, these finite 

automata both have their own pros and cons. An NFA allows 

activating multiple states. It increases the access latency to the 

state memory because of frequent memory accesses, thereby 

degrading the processing throughput. In contrast, its memory 

footprint can be reduced. The memory footprint of a DFA 

becomes larger than an NFA. A DFA can improve the matching 

processing throughput and reduce the number of memory 

accesses because it always has one active state. In this paper, 

a mixed FA (MFA), a new automaton combining an NFA and a 

DFA, is proposed. An MFA combines an NFA and a DFA by 

changing their mixing ratio, and enables an adjustment of the 

memory footprint and the maximum number of active states. 

Keywords: Regular expressions, finite automata, string 

matching.  

 

1 Introduction 

A network intrusion detection system (NIDS) and an 

intrusion prevention system (IDS) are significant applications 

for cyberattack measures. An NIDS acquires packet data in a 

communication flow of a network, and provides intrusion 

detection or attack prevention by analyzing the flows in real 

time [1]. When an NIDS detects malformed data, it informs the 

arrival of the data to an administrator.  A well-known NIDS 

software is Snort [2] [3], which detects attacks by matching a 

dedicated database against the data flowing in the network. The 

database consists of signatures and rules generated according 

to the characteristics of various attack methods. 

An early NIDS only utilized single strings for describing 

the characteristics of viruses as their signatures. In recent years, 

an NIDS has been developed to use regular expression and 

extended regular expressions (Perl Compatible Regular 

Expression, PCRE [4]), instead of single strings. Regular 

expressions can describe a wide variety of patterns in a single 

string with special characters to detect diversified and 

sophisticated attacks, which are evolving into threats to newer 

computer systems. Therefore, it is natural that NIDS uses a 

regular expression for explaining complex strings of viruses 

and malformed attacks as their signatures or attacking 

processes for detecting them. Owing to the flexibility of regular 

expressions in describing these signatures and patterns, a 

regular expression is applied in various applications, such as 

content-based spam e-mail filters [5]. 

As a result of its many advantages, an NIDS with a 

matching function using a regular expression plays an 

important role in computer security, and its needs are 

increasing. However, the implementation of a regular 

expression as a computer software function has several 

problems, such as a large memory footprint in describing 

complex and massive expressions, and a reduction of the 

processing throughput caused by frequent memory accesses. 

This paper focuses on a string matching program that can 

detect complex strings using regular expressions. 

A string matching program based on regular expressions 

are conventionally implemented using two different finite 

automata: a nondeterministic finite automaton (NFA) and a 

deterministic finite automaton (DFA) [6]. These finite 

automata both have their own pros and cons. Because an NFA 

permits multiple transitions of states in a character-by-

character manner, various states can be activated. However, 

this characteristic degrades the processing throughput because 

it requires multiple memory accesses to step the matching 

process of one character to another. A DFA has a feature in 

which the number of state transitions is always limited one for 

each processing step of a character. This feature enables an 

acceleration of the processing throughput because one memory 

access is sufficient to step the matching process. Therefore, a 

DFA is faster than an NFA in its matching process throughput. 

However, a DFA increases the memory footprint in describing 

regular expressions because the number of states is 

exponentially increased according to the size and complexity 

of the given regular expressions. Hence, an NFA takes a longer 

time in match processing than a DFA [5].  

As mentioned, there is a trade-off between an NFA and a 

DFA in terms of memory footprint and processing throughput. 

As a method for breaking this tradeoff, a compression 

technique of state memory in a DFA has been proposed [5] [7] 

[8]. A dual FA [5] isolates the parts of the automata used for 

processing special characters of repeats and compresses the 

total memory usage by preventing an exponential enlargement 

of the repeat process. This straightforward technique can 

reduce the memory usage. However, it does not consider the 

trade-off of memory usage and processing throughput. If a 

given automaton is composed of only repeats, it generates an 

automaton equal only to an NFA. Hence, the processing 

throughput of a dual FA is drastically degraded. As another 

approach, Google developed the RE2 regular expression 

algorithm [9], which solves the memory exhaustion problem 

by switching from a DFA to an NFA when the memory 

footprint exceeds a certain amount of memory usage. However, 

RE2 does not consider the optimization of memory usage. The 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 599



available memory footprint is varied based on the application 

or implemented system. Namely, a new method is required that 

utilizes all of the available memory space efficiently to 

maximize the processing throughput of regular expression 

matching. 

In this paper, a mixed FA (MFA) is proposed, which 

considers this trade-off. It flexibly combines an NFA and a 

DFA according to the available memory footprint. An MFA 

changes the mixing ratio of an NFA and a DFA automatically 

to fit the best mixing ratio. Namely, as its novel feature, an 

MFA can balance the memory footprint and the maximum 

number of active states by maximizing the total performance 

under the limited memory space varied by the target 

applications. When there is a problem of required memory size 

in using a DFA, an MFA can optimize the required memory 

footprint. Although it degrades its processing throughput as a 

drawback, an MFA can provide a better performance than an 

NFA. 

2 Research Background 

2.1 Regular Expression 

A regular expression describes a set of strings. For 

example, the regular expression “[bc]ook” matches “book” and 

“cook.” A regular expression enables complex patterns to be 

searched efficiently. As an example, well-known applications 

such as grep text filter, vi text editor, and many kinds of script-

based programming languages support regular expressions.   

The matching string “[A-Q]” in a regular expression 

means it matches any character between A and Q. The wildcard 

character “.” means it matches any one character. Simple 

character repetitions can be described using the expressions “a?” 

meaning that “a” is repeated zero or one time, “a*”  meaning 

that “a” is repeated zero or any number of times, and “a+” 

meaning that “a” is repeated at least once. If repetition special 

characters of “?”, “+,” and “*” are used in a DFA, an increase 

in the number of states and transitions will occur. This problem 

should be solved, and a technique addressing the problem is 

described later in this paper.  

2.2 Finite automaton 

A finite automaton is a mathematical model with a discrete 

input and output. The destination state (in some cases the 

current state is same as the original state) is always unique in 

all states.  One of the states is the initial state. Some of the states 

are the final states. The input characters of a string are 

processed from the initial state. A state transits to another state 

in a one-by-one according to the input characters. This state 

transition process repeats until the state reaches the final state, 

or the input string is exhausted. 

2.2.1 Nondeterministic Finite Automaton 

An NFA and a DFA are pattern matching automata that 

handle a set of regular expressions. An NFA permits multiple 

state transitions. Namely, multiple states can be activated in an 

NFA when an input character is received. Fig. 1 shows the state 

transition graph of an NFA generated for processing the regular 

expressions “c(a|b)*a.” The circles and arrows in Fig. 1 

represent states and transitions, respectively. In this figure, 

state q0 is the initial state, and state q2 is the final state. In Fig. 

1, two arrows of “a” are output from q1. Therefore, if the 

character “a” is received as an input, the states of both q1 and 

q2 become active. 

 

Fig. 1: The NFA for “c(a|b)*a” 

The details of the activation process are as follows. When 

the NFA of “c(a|b)*a” of Fig. 1 processes the input text “cba,” 

this NFA executes the process of the state transition given as 

 (𝑞0)→
𝑐 (𝑞1)→

𝑏 (𝑞0, 𝑞1)→
𝑎 (𝑞0, 𝑞1, 𝑞2)  

In this case, the maximum number of active states is three. 

Theoretically, an NFA requires the widest bandwidth in 

accessing memory. This characteristic degrades the processing 

throughput because it requires multiple memory accesses to 

step the matching process one character to another, especially 

when processing complex regular expressions. This is a 

disadvantage of an NFA. However, an NFA has an advantage 

in that the memory footprint is smaller because the number of 

states and transitions is less than in a DFA. This phenomenon 

is clearly shown when comparing the state transition graphs of 

an NFA in Fig. 1 and a DFA in Fig. 2. 

2.2.2 Deterministic Finite Automaton 

 

Fig. 2: The DFA for “c(a|b)*a” 

The DFA for the regular expression “c(a|b)*a,” which is 

the same as the example for an NFA, is shown in Fig. 2. As a 

difference from an NFA, every state in a DFA has only one 

600 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



outgoing transition for each character. Therefore, the numbers 

of states and transitions of a DFA are larger than those of an 

NFA. In particular, a DFA consumes a larger memory footprint 

for processing repeat special characters because all possible 

states and transitions generated by the special characters 

should be stored in memory. This is a disadvantage of a DFA. 

However, a DFA always has only one active state because each 

state has one outgoing transition for each string. This feature is 

an advantage of a DFA in maximizing the matching process 

throughput and minimizing the processing time. 

2.2.3 Nondeterministic Finite Automaton with ε 

transitions 

An NFA allows a state transition by using null character 

ε as an extension of its function. An epsilon transition ε permits 

transitions without receiving an input string. Fig. 3 shows the 

ε-NFA transitions generated from a regular expression. These 

state transition graphs are atomic regular expressions. The 

filled-in circles in Fig. 3 represent the accepting state, where 

the state means that the input pattern matches the target regular 

expression. In the proposed MFA, this translation is 

accomplished first. 

 

Fig. 3: Conversion from the regular expression to an NFA 

with ε transitions 

3 Mixed Finite Automaton 

3.1  Purpose 

 As mentioned above, string matching algorithms for a 

regular expression are generally implemented using either an 

NFA or a DFA. However, these finite automata both have their 

own pros and cons. The characteristics of an NFA and a DFA 

can be summarized in Table 1. It is necessary to consider the 

trade-off between the memory footprint and the maximum 

number of active states, namely between the size and 

processing throughput.  

 

Table 1: Features of an NFA and a DFA 

 Space complexity Time complexity 

NFA Small Large 

DFA Large Small 

 The proposed MFA is adaptable to a variety of network 

applications. An MFA combines an NFA and a DFA flexibly 

according to the available memory footprint, and enables a 

change in the mixing ratio of both.  It is possible to balance the 

memory footprint and the maximum number of active states by 

mixing an NFA and a DFA. An MFA observes this strategy, 

and by using the following dedicated algorithm, can maximize 

the total performance under a limited and varying memory 

space based on the target applications.  

3.2 Algorithm 

This section describes the method for combining an NFA 

and a DFA in an MFA. Initially, a regular expression is divided 

into two groups of atomic regular expressions. The first group 

is converted into a DFA, and the other group is converted into 

an NFA. This conversion order is effective from the viewpoint 

of memory access throughput. The reason this order is effective 

can be described through a simple example. As an example, a 

regular expression consists of two atomic regular expressions. 

If the basic syntax of these two expressions is the same, there 

are any difference between a case converted into DFA+NFA 

and one converted into NFA+DFA. However, the number of 

activated states differs between them. For the DFA+NFA case, 

there is one active state of the first DFA part. The NFA part 

increases the number of active states. The total number of 

active states depends only on the last NFA group. For the 

NFA+DFA case, the first DFA part increases the number of 

active states. The last NFA part maintains the number of active 

states. Namely, the total number of active states is about twice 

that of the first DFA part. This is an approximate estimation. In 

fact, there is one active state in the initial state, and this number 

gradually increases. Even with this fact, the total number of 

active states is larger than DFA+NFA. This is proved using a 

simple birth process under a multidimensional Markov 

diffusion process.  

A regular expression “(a|b)*a(a|b)*a” is used as an 

example of MFA generation. To generate an MFA, this regular 

expression is separated into atomic regular expression parts. 

Each atomic regular expression is shown in Fig. 3. These 

atomic regular expressions can be converted into an NFA or a 

DFA. The given regular expression is divided into r1 = “(a|b)*,” 

r2 = “a,” r3 = “(a|b)*,” r4 = “a,” as atomic regular expression 

parts. In this case, these four atomic regular expressions are 

grouped into two DFA and NFA groups. 

An MFA can adjust the mixing ratio of an NFA and a DFA 

flexibly by controlling the boundary between NFA and DFA 

groups, as shown in Fig. 4. The variety of burden between an 

NFA group and a DFA group assures the flexibility of the 

mixing ratio of an NFA and a DFA in an MFA. An MFA can 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 601



maximize the processing throughput by considering the 

memory consumption under the given memory footprint. An 

application can use the optimized matching automata of the 

given regular expression using an MFA. 

 

Fig. 4: Characteristics of MFAs with a different boundaries 

between NFA and DFA groups 

3.3 Examples of Mixed FA 

This section describes an example of a generated MFA. 

As an input regular expression, “(a|b)*a(a|b)*a” is used as well 

as section 3.2. This regular expression is divided into four 

atomic regular expression parts, i.e., r1 through r6. As an 

example of an MFA, “r1r2r3” is converted into an NFA, and 

“r4r5r6” is converted into a DFA. 

 

Fig. 5: NFA for “(a|b)*a(a|b)*a” 

 

Fig. 6: DFA for “(a|b)*a(a|b)*a” 

Figs. 5 and 6 show automata of an NFA and a DFA 

generated from the given regular expression. Through Figs. 5 

and 6, the maximum number of active states of an NFA and a 

DFA can be counted. For an evaluation, the memory footprint 

is defined as the number of states and transitions. The NFA of 

Fig. 5 has three states and six transitions, whereas the DFA of 

Fig. 6 has five states and ten transitions. Hence, the memory 

footprint of a DFA is larger than that of an NFA in terms of the 

numbers of both the states and transitions. 

 

Fig. 7: MFA for “(a|b)*a(a|b)*a” 

  Fig. 7 shows an example of an MFA composed by 

combining the states and transitions of Figs. 5 and 6. In mixing 

the DFA and NFA, the composed MFA selects and mixes the 

dotted parts of the NFA of fig. 5 and DFA of fig. 6. The MFA 

of Fig. 7 supports the regular expression “(a|b)*a(a|b)*a.” 

In the composed MFA shown in Fig. 7, states q1 and q3 

become active states when character “a” is input twice. Namely, 

two states become active. In contrast, three states become 

active in the NFA of Fig. 5, and the number of active states is 

always one in a DFA. Hence, the size of the memory footprint 

and the number of active states of an MFA are smaller than 

those for a DFA and an NFA, respectively. An MFA can 

flexibly adjust the mixing ratio of an NFA and a DFA by 

controlling the boundary between NFA and DFA groups. The 

number of states, number of transitions and maximum number 

of active states are compared in Table 2.  

Table 2: Performance comparison of each automaton  

 
Number of 

states 

Number of 

transitions 

Maximum 

number of 

active states 

NFA 3 6 3 

MFA 4 7 2 

DFA 5 10 1 

q0

a

a

a

b

q1 q2

b

a

602 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



4  Evaluation 

7777Experimental environment 

In this evaluation, an NIDS application is used for 

evaluating an MFA for a comparison with an NFA and a DFA. 

Snort is a well-known application of NIDS, as described in 

section 1. Snort rule sets consist of regular expressions for 

detecting the signatures of malformed messages in a network 

so as to prevent security attacks. Hence, regular expressions 

used in Snort are an appropriate benchmark rule set for this 

evaluation. We extracted the benchmark rule sets from 

Snortrules-snapshot-2970 of Snort ver. 2.9 [2]. The regular 

expression “a{n}” means that n iterations of “a” is partially 

supported. When more than ten iterations are found, the 

character is changed to a regular expression character “+.” 

When fewer than ten iterations are found, it means these 

iterations were designed correctly. 

Programming language C++ is used in implementing the 

regular expression processor, and g++ Ver4.4.7 is used as a 

compiler. The regular expression processor used in this 
experiment can generate not only an MFA but also an NFA and 

a DFA as special cases of an MFA. The number of states and 

transitions, the maximum number of active states, the 

configuration time, and the computation time of each 

automaton were evaluated using the regular expression 

processor. The configuration time of the automata denotes the 

delay time in generating an MFA for a target regular expression. 

Table 3 shows an extracted pattern as a benchmark rule set 

from the Snort rule sets. These regular expression patterns are 

randomly selected from Snortules-snapshot-2970. The regular 

expression processor inputs these regular expressions one after 

another. The results are described in the next section. 

Table 3: Regular expression pattern extracted from Snortrules-

snapshot-2970 [2] 

(\s*|\s*\r?\n\s+) 

malware(\w|\s)*\d{10} 

.*Root\x2User-cgi\x2f.*\x2ecgi[a-z0-9]+ 

\s\w+\s\d+\r?\n[^\n]* 

(no|up|\d+\x2e\d+\x2e|d+\x2e\d+) 

.PHP[a-z]+[a-f0-9]+[a-z]+=.*[a-z]+=.*[a-z] 

\w+\x3b.*\x3b.*\x3b 

.*aspn\x2fvgi-bin\x2f.*\x2ecgi[a-z0-9]+ 

User-Agent[^\n]*\x2eDIAN 

Server\x3a[^\r\n]*Root{^\r\n]*Kit[^\r\n]*Scaner 

 

4.1 Experimental results 

Fig. 8 shows the number of states, the number of 

transitions, and the maximum number of active states of an 

NFA, a DFA, and an MFA. 

 

Fig. 8: The number of states and transitions, and the 

maximum number of active states of each automaton 

        As shown in Fig. 8, even in the case of Snort rules, the 

trends of the number of states and the number of transitions and 

maximum number of active states are the same with the cases 

of the simple examples shown in Figs. 5 and 6. Namely, the 

numbers of states and transitions of a DFA are larger than those 

of an NFA. In addition, the maximum number of active states 

of an NFA is larger than that of a DFA. In both cases, an MFA 

ranks between an NFA and a DFA. This result shows that the 

proposed MFA can provide the benefit of both an NFA and a 

DFA by considering the tradeoff between the size and the 

throughput. 

        Next, we will show that an MFA can adjust the memory 

footprint and the maximum number of active states. In this 

experiment, 100 KB of random text data was used. After 

dividing regular expression into ten, the regular expression 

processor of the MFA is inputted it. The configuration and 

computational time of the MFA are shown in Fig. 9. In the 

figure, the x axis indicates the mixing ratio of the DFA and 

NFA. A comparison of the number of states, the number of 

transitions, and the maximum number of active states in 

varying mixed rates of the NFA and DFA are shown in Fig. 10. 

0

50

100

150

200

250

Number of states Number of

transitions

Maximum

number of active

states
NFA MFA DFA

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 603



 

Fig. 9: Configuration and computation times of mixed FA 

when changing the ratio 

 

Fig. 10: The number of states and transitions, and the 

maximum number of active states of a mixed FA when 

changing the ratio 

  As shown in Fig. 9, the configuration time of the 

automaton was increased in association with the increase in the 

DFA ratio. In contrast, the computation time was reduced. As 

a result of the computational time, an MFA can vary the 

computation time. Fig. 10 demonstrates that the numbers of 

states and transitions were gradually increased corresponding 

to the increase in the DFA ratio. Namely, the memory footprint 

becomes larger in this case. In contrast, the maximum number 

of active states was reduced. Therefore, the computation time 

in Fig. 9 was improved.  

  Based on the above description, an MFA enables the 

memory footprint and the maximum number of active states to 

be adjusted for optimizing the total performance under the 

limited memory space available in a target application.  

 

5 Conclusion 

In this paper, an MFA, new automaton combining an NFA 

and a DFA, was proposed, implemented, and evaluated using 

the Snort rule set. An MFA combines the existing string 

matching programs of an NFA and a DFA by changing their 

mixing ratio. The results indicate that the proposed MFA can 

optimize the matching throughput under the required memory 

footprint size by combining an NFA and a DFA. An MFA 

enables a trade-off between the memory footprint and 

processing throughput, and varies both. Therefore, it can 

maximize the processing throughput while fulfilling the 

conditions of the memory size. An MFA has the potential to be 

applied to various applications owing to its flexibility. 

ACKNOWLEDGEMENT 

This work was partially supported by the funds of SECOM 

Science and Technology Foundation, and by MEXT/JSPS 

KAKENHI Grant (B) Number 24360230 and 25280033. 

6 References 

[1] S. Kumar, B. Chandrasekaran, and J. Turner, “Curing 

regular expressions matching algorithms from Insomnia, 

Amnesia, and Acalculia,” In Proc. of ANCS’07, pp. 155-

164.ACM. 

[2] Snort. http://www.snort.org 

[3] T.T. Hieu, T.N. Thin, T.H. Vu, S. Tomiyama, 

“Optimization of Regular Expression processing circuits for 

NIDS on FPGA,” Second International Conference on 

Networking and Computing, 2011 

[4] J. Shangjie, L. Mejian, “Research and Design of 

Preprocessor plugin based on PCRE under Snort Platform,” 

Control, Automation and Systems Engineering (CASE), 2011 

International Conference, IEEE, 30-31 July 2011 

[5] C.  Liu, J. Wu, “Fast Deep Packet Inspection with a Dual 

Finite Automata,” Computers, IEEE Transaction on (Volume 

62, Issue 2), Feb.2013 

[6] J.E. Hopcroft, J.D. Ullman, “Introduction to Automata 

Theory,” Addison Wesley, 1979 

[7] M. Becchi, P. Crowley, “A Hybrid Finite Automata for 

Practical Deep Packet Inspection,” CoNEXT 2007. 

178

179

180

181

182

183

184

185

186

187

2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3

C
o
m

p
u

ta
ti

o
n

 t
im

e
(μ

s)

C
o
n

fi
g
u

ra
ti

o
n

 
ti

m
e
 (

μ
s
)

Configuration  time of the automaton

Computation time of the automaton

0

5

10

15

20

25

30

35

40

45

N

N = Number of states

N = Number of transitions

N = Maximum number of active states

604 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



[8] J. Zhang, D. Zhang, K. Huang, “A Regular Expression 

Matching Algorithm Using Transition Merging,” 2009 15th 

IEEE Pacific Rim International Symposium on Dependable 

Computing, 

[9] RE2. https://github.com/google/re2 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 605



A Novel Distributed Arithmetic Multiplierless Approach 

for Computing Complex Inner Products 
 

Kevin N. Bowlyn
1
, and Nazeih M. Botros

2 

1. Ph.D. Candidate, Dept. of Electrical & Computer Engineering, Southern Illinois Univ., Carbondale, IL, USA 

2. Professor Emeritus, Dept. of Electrical & Computer Engineering, Southern Illinois Univ., Carbondale, IL, USA 

 

 
Abstract - In this paper we present a new integration ap-

proach for computing complex inner products using the 

Distributed Arithmetic (DA) technique and Complex Binary 

Number System (CBNS). By using the CBNS technique each 

complex number can be represented as one single unit in-

stead of two. Our extended goal is to apply the approach in 

designing Fast Fourier Transform and realize the design on 

field-programmable gate arrays (FPGAs). A DA look-up-

table (LUT) is used to store all linear combinations of coef-

ficients. Our results show that for a radix-2 FFT 

computation, the number of “N” point arithmetic calcula-

tions would be decreased by 75% and approximately 67 % 

for the total number of real adders when compared to the 

traditional radix-2 FFT computation. This proposed design 

is multiplierless.  The approach is implemented on a 3-tap 

filter; preliminary analysis shows a power consumption re-

duction of approximately 55% compared to the MAC 

approach.  

Keywords: Distributed arithmetic (DA), fast Fourier trans-

form (FFT), look-up-table (LUT), complex binary number 

system (CBNS), complex numbers 

1  Introduction 

 Most digital devices in today’s technology require Dig-

ital Signal Processing (DSP) for calculating the vector dot 

products between two vectors. Complex numbers are widely 

used within many DSP applications and are considered es-

sential for the different computer applications that are 

greatly dependent on the arithmetic use of complex numbers 

[1]. In spite of the fact that there is a great need for a better 

representation of complex numbers, as a single unit, espe-

cially with the FFT algorithm, today’s modern technology 

still relies heavily on the divide and conquer approach, 

where real and imaginary number parts are treated as two 

separate entities [1].  

1.1 Fast Fourier Transform 

 The traditional FFT algorithm which uses the vector 

dot products basically uses the divide and conquer approach 

by breaking up the Discrete Fourier Transform (DFT) com-

putation into two half lengths of even and odd indexes [2] 

[3]. This approach of splitting up the DFT is quite useful as 

the output from each stage of the butterfly structure becomes 

the input of the next consecutive stage [2]. Although this 

computational algorithm is fast and efficient, in calculating 

the DFT, which greatly reduces the number of multipliers 

from an order of N
2
 multiples to N/2 log2 N multiples, this 

Radix-2 DIT algorithm still requires an extensive number of 

multipliers which are quite costly [4].  

1.2 Distributed Arithmetic 

 The DA approach uses less hardware structure and 

computation without the use of any multiplier hardware 

structure [2]. The DA approach replaces the multiplier by 

using Look-up-tables (LUT). The LUT memory however, 

may grow exponentially in size from 2
K
 to 2

K+1
 words which 

is one of the major factors within this technique. For exam-

ple, a 256-k DA based tap filter would require a memory 

size of 2
257

 which is significant. However, there are several 

different algorithms such as the use of ROM decomposition, 

the use of modifying the adder to an adder/subtractor, and 

the use of offset binary coding in which the size of the ROM 

can be greatly reduced [5].  Overall, the DA approach has 

been designed and tested to become the efficient tool in 

computing the vector dot product without any dedicated 

multipliers. It also consumes far less power and time in 

computing the inner dot product between two vectors [6] [7].  

1.3 Complex Binary Number System 

 The CBNS algorithm uses far less arithmetic computa-

tions for computing complex numbers as each complex 

number is treated as a single entity instead of two.  Unlike 

the traditional approach of calculating complex numbers, 

this method does not rely on the divide and conquer ap-

proach. This algorithm was first introduced by Penney in 

1964 [8] [9] who developed a negative 4 base conversion for 

the complex number system. Later, in 1965, he introduced 

the (-1 + j) complex binary base algorithm in which  a com-

plex number is represented as a single entity in order to 

perform certain arithmetic computations such as addition, 

subtraction, and multiplication [1] [10]. Jamil [1]   reintro-

duced in 2000 an efficient (-1+j)-based algorithm for doing 

addition, subtraction, multiplication and division using com-

plex numbers [1] [11-16]. 

606 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



 
 

1.4 Aims/Objectives 

 The CBNS algorithm indicates the importance of hav-

ing a single unit representation for complex numbers as this 

will be a great benefit given 21
st
 century technology. Not 

only will it demonstrate a great advantage in computer ap-

plications but this algorithm will also result in superior 

performance in today’s computer designs. Integrating this 

algorithm with the DA approach will result in a 100% reduc-

tion in the hardware structure as no multipliers are used in 

computing the FFT structure which will result in a decrease 

in area size and cost, as multipliers occupy a large volume of 

hardware and they are fairly costly in implementing. 

1.5 Paper Structure 

 The remainder of this paper is organized as follows. 

Section 2 presents the proposed DA structure and ways on 

how to have the memory size reduced. A conversion of 

complex binary number system is presented in section 3. The 

results are presented in section 4. Work in progress is pre-

sented in section 5 and conclusion is presented in section 6. 

2   The Distributed Arithmetic (DA) 

 In DA, multiplications are reordered and mixed such 

that the arithmetic becomes “distributed” through the struc-

ture rather than being “lumped”.  DA is very effective in 

calculation of inner products without the use of multipliers.  

It relies on simple operations: adders, shifters and look up 

tables (LUT).  DA facilitates the mapping of these opera-

tions onto FPGAs. DA computes the inner products and 

stores all possible linear combinational sums in a LUT 

ROM. The inputs of the vector are two’s complement binary 

numbers between fixed and variable input data with the most 

significant bit, which is the sign bit located to the left of the 

binary point [17] [18] [19]. In explaining the DA technique, 

consider the sum of products from equation (1) 

 




K

k
KK xAy

1

 (1) 

where xK is a 2’s-complement binary number scaled such 

that |xK| < 1 (fixed point number) input data and Ak are fixed 

coefficient vectors. Therefore, xk can be expressed as  

 







1

1
0 2

N

n

n

knkk bbx  (2) 

where bk0 is the sign bit, bkn are bits 0 or 1, bk,N-1 is the least 

significant bit (LSB), and N is the word length of the input 

variable.  Substituting equation (2) into (1) and changing the 

order to express y in terms of the bits xk yields the following 

equations:  

                 

   

 



































K

k

N

n

n

knk

K

k
kk

K

k

n
N

n
knkk

bAAb

bbA

y

y

1

1

11
0

1

1

1
0

2

2
(3) 

This equation is the “conventional form of expressing the 

inner product. Direct mechanization of this equation defines 

‘lumped’ arithmetic computation” [12] as this calculation 

adds and multiplies the partial product of different shifts 

altogether before it is summed up to give a final result. By 

expanding equation (3) it yields the following equations: 

        











K

k

N
Nkkkkkk

K

k

kk bAbAbAAby

1

)1(
)1(

2
2

1
1

1

0 222 

 

 

         
         

         1
1

2
2

1
1

1
212

2
222

1
221

1
111

2
112

1
111

0220110

222

222

222
























N
KNKKKKK

N
N

N
N

KK

AbAbAb

AbAbAb

AbAbAb

AbAbAby











  (4) 

By regrouping each liked terms, the following sets of equa-

tions can be generated: 

             

 

      

      

           1
1212111

2
2222112

1
1221111

0220110

2

)5(2

2
















N
KNKNN

KK

KK

KK

AbAbAb

AbAbAb

AbAbAb

AbAbAby











 










1

1

221

1

0 2)(

N

n

n
KKnnkn

K

k

kk AbAbAbAby    

Consequently, by interchanging the order of summation, a 

more distributed arithmetic computation can be obtained. 

   2
1

1 11
0

n
N

n

K

k
knk

K

k
kk bAbAy




 

 













  (6) 

 As a result, in DA, the multiplication block is eliminat-

ed such that the arithmetic computation becomes discrete 

throughout the structure and not in a combined form [20] 

[21] [22]. With this equation it can be seen that the partial 

products of equal shifts are being added before being 

summed to the next partial product shift. 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 607



 
 

2.1 ROM-based Construction 

 ROM-based DA speeds up the multiplication process 

by pre-computing all possible values and storing them in the 

LUT ROM. The bits of input data {x0k, x1k,…xi,k} are used 

to form the ROM address directly in which an arithmetic 

accumulator feedback (scalar shift accumulator) is used to 

form successive scaling and shifting by the power of two. 

Multiplication by a power of two is no more than a bit shift 

and since this structure is being designed to multiply fixed 

point numbers, multiplication by a power of two will be no 

more than a bit shift to the right [17] [18] [20]. Take into 

consideration the square bracketed term from equation (6) 

shown below as equation (7). 

. 


















K

k
knk bA

1

 (7) 

Since bkn has two possible values, either 0 or 1, bkn may only 

have 2
K
 possible values. Therefore, from equation (7), these 

pre-calculated values can be stored in a LUT of 2
K
 word 

addresses.  These 2
K
 word addresses are used to directly ac-

cess the memory location of the LUT ROM that contains the 

pre-computed result to that address [17] [20]. Since the con-

stant coefficients Ak are known and bkn values are 2’s 

complement, either 0 or 1, each vector dot product is a result 

of the combination of each constant coefficient stored in the 

ROM.  

Evaluating equation (6), in order to accommodate the nega-

tive term of the first summation, one more address line needs 

to be added to the LUT called Ts. The result is a ROM size 

of 2
K+1

 where Ts is a control timing signal and equal to one 

during the sign bit time, but otherwise zero. This bit is very 

significant as it is required to determine when the final result 

is completed [17]. Figure 1 shown below is a 3-tap 2
K+1

 DA-

based implementation FIR filter 

 
Figure 1: 3-tap 2

K+1
 DA-based implementation FIR filter 

The size of the ROM however, can be reduced in three ways. 

This can be accomplished by the use of a ROM decomposi-

tion, by modifying the adder to an adder/subtractor, and by 

the use of offset binary coding (OBC). 

2.2 ROM Decomposition 

 As previously described, the size of the ROM increases 

rapidly according to the number of K-tap filters, however, 

these ROMs can be divided into smaller units of DA-LUT in 

which their output sums from each unit can be added to give 

the final result.  In other words, equation (6) can be broken 

into smaller “m” K-tap DA-based filters [19].  

The total memory bank is now equal to m x 2
K
 where m is 

the number of DA-LUT units and K is the number of tap 

filters.  For example, a 128-tap filter requires a LUT with 

2
128

 memory bank.  This memory bank, however, can be 

broken into 32 smaller DA-LUTs with 4-input taps for each 

unit allowing the memory component to decrease from 2
128 

to 32 x 2
4
 which would just comprise of only 512 memory 

entries [19] [20]. Figure 2 shows the implementation of a 

ROM decomposition 4-tap DA-based filter with m = 2 and K 

=2. The output y[n], however, is only available after the N + 

[log2 (m)] clock cycle. The additional logarithmic term is for 

the adder tree as shown in the figure below [19]. 

 
Figure 2: 4-tap DA-based filter with m = 2 and K =2 

 

2.3 Modifying the Distributed Arithmetic to 

an Adder/Subtractor 

In order to reduce the ROM size, certain aspects are needed 

to take into consideration. One such aspect is to modify the 

adder to an adder/subtractor allowing the memory size to be 

reduced to half of its size from 2
K+1

 to 2
K
 word ROM. This 

method is accomplished by using Ts, as the add/subtract-

control line and not as a direct input into the LUT [17] [22]. 

Figure 3 shows the modified 4-tap 2
K
 DA-based implemen-

tation FIR filter. 

608 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



 
 

 

Figure 3: 4-tap 2
K
 DA-based implementation FIR filter. 

2.4 Distributed Arithmetic using Offset       

Binary Coding (OBC) 

 It is possible to reduce the memory size from 2
K
 words 

to 2
K-1

 words by simply employing additional logics within 

its architectural structure. In order to do this, the input varia-

ble data are being read as an offset binary code of (-1, 1) and 

not in the usual conventional binary code form of (0, 1) [17] 

[22].  

 In analyzing the sum of product (SOP) from equation 

(1), which is shown below, 






K

k
KK xAy

1

 

recall that xk is the 2’s complement input variable data, 

therefore, in order to cast the data into an offset binary code 

of (-1, 1), xk can be rewritten as shown below. 

 )]([
2

1
kkk xxx     (8) 

The negative xk term can also be expressed in the 2’s com-

plement form (1’s complement plus 1) from equation (2) 

where the symbols with an overbar are the complements of 

its bit. 

 




 

1

1

)1(
0 22

N

n

Nn
knkk bbx  (9) 

Rewriting equation (8) by combining equation (2) with equa-

tion (9) and regrouping yields the following equation.  

    













 






1

1

)1(
00 22

2

1
N

n

Nn
knknkkk bbbbx  (10) 

Now the offset binary code ckn can be defined as follows 

with ckn being explicated as shown below. 

  }1,1{
0,

0,

)(









 kn

knkn

knkn
kn cwhere

n

n

bb

bb
c  (11) 

Equation (10) can now be rewritten as seen in the equation 

below. 

 














 






1

0

)1(22
2

1
N

n

Nn
knk cx  (12) 

Now by replacing xk from equation (12) into the sum of 

products equation (1) yields equation (13). 

  





 














K

k

Nn
kn

N

n

k cAy

1

)1(
1

0

22
2

1
 (13) 

Interchanging the order of summation produces equation 

(14), in which a more distributed arithmetic computation for 

the offset binary code implementation may be obtained. 

 
)1(

1

1

0 1

2
2

1
2

2

1 





 

    N
K

k

k

N

n

K

k

n
knk AcAy  (14) 

For simplicity, the first inner summation part of equation 

(14) may be written as a variable Q(bn) as shown in equation 

(15) 

   




K

k

knkKnnnn
cAcccQQ b

1

21
2

1
)(   (15) 

The latter summation part of equation (14) is an initial con-

dition constant register and this may be expressed as Q(0).  

 




K

k

kAQ

1
2

1
)0(  (16) 

Now equation (14) can be simplified to equation (16)  

    




 

1

0

)1( 022

N

n

Nn

n
QQy b  (17) 

 Table 1 is an example of a 2
K-1

 8-word DA-based ROM 

filter where K = 4, bkn are the input data memory addresses 

and ckn is the data set that is been cast as (-1, 1) instead of (0, 

1). It can also be depicted that the top half of the table, color-

coded red, is just a mirror image (inverse symmetry) of the 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 609



 
 

bottom half of the table, color-coded blue [22] and since Ts 

is not directory fed into the ROM LUT, only the top half of 

the table will be used. Figure 4 shows 4-tap 2
K-1

 DA-based 

implementation filter 

Table 1: 2
K-1

 8-word DA-based ROM filter where K = 4 

 
 

 
Figure 4: 4-tap 2

K-1
 DA-based implementation filters 

3 Conversion of Complex Binary     

Number System 

3.1 (-1 + j)-Based CBNS conversion algorithm 

 The binary complex number base (-1 + j) for fixed 

point numbers may be written in the form shown below,  

                                  

                          (19) 

where “a” is a complex binary number (0 or 1) scaled such 

that | a | < 1. This equation is similar to the traditional base 

power series but instead of the base being in the power of 2, 

it is instead (-1+j) [1]. In order to convert from base-10 to 

base (-1 + j), we first have to convert the fixed point number 

(F) into its appropriate form such that its power can be ex-

pressed in terms of power of ½ as shown below [12] [13], 

        
      

      
                       (20) 

where ri represents the remainder value and the coefficients 

of fi are binary numbers, either 0 or 1. According to Jamil 

and Ali, the steps to convert the complex number algorithm 

to CBNS fraction are as follows [12]: 

First step: 

 

If 2r0 – 1 < 0 then f1 = 0 and set r1 = 2r0 

or if 2r0 – 1  0 then f1 = 1 and set r1 =2ro – 1  

 

Second: 

If 2ri – 1 < 0 then fi+1 = 0 and ri+1 = 2ri 

or if 2ri – 1  0 then fi+1 = 1 and ri+1 = 2ri – 1 

 Just like the traditional way of computing fixed point 

numbers, this procedure will continue until the remainder ri 

= 0, which signifies that the fraction has been terminated or 

when the computer limitation has been attained [12] [13]. In 

order to represent 2
-i
 into its respective equivalent base of (-

1+j), we substitute 2
-i
 according to the table below, where i = 

4s + t, s is any positive integer, and 0  t  3 [11] [12]. Table 

3.1 shows the first four values of i and Table 3.2 shows the 

overall binary representation for any 2
-i
 power. 

Table 2: Representations for the First Four 2
-i
 Values in Base 

(-1+j) 

 

Table 3: Representations for all 2
-i
 Powers in Base (-1 + j) 

 

4 Results 

4.1 Power Consumption and Time within the 

DA approach 

 In comparing the power consumption between the 

modified adder/subtractor DA technique with the traditional 

MAC approach, a 3-tap DA based filter was designed and 

implemented. The DA consumes 0.118 mW compared to 

0.261 mW for the MAC approach which signifies that the 

610 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



 
 

DA approach uses far less power consumption than the tradi-

tional MAC technique by approximately 55%. Also, in terms 

of time, the maximum time delay for the DA approach was 

far less than that of the MAC approach by approximately 

52%. The maximum time delay for the DA approach was 

8.775 ns while for the traditional approach it was 18.237ns. 

A 3-tap DA-OBC was also implemented and its power con-

sumption amount was 0.340 mW but this is due to the extra 

logic that was needed to implement this design without the 

need of any multipliers. These techniques will be tested on a 

larger scale for computing the FFT structure and further be 

analyzed to see which technique will give the overall best 

power and time consumption.  

4.2 Savings between the CBNS and FFT 

Arithmetic Computation 

 Given the review on CBNS, above, this subsection will 

focus on how efficient the CBNS algorithm will be in com-

puting the radix-2 FFT calculations. With the CBNS 

represented as a single unit, this will reduce the arithmetic 

computations as seen in Table 4.  

Table 4: N-point comparison between DFT, Radix-2 FFT, 

and Radix-2 CBNS FFT 

 
 
   From Table 4 shown above, it is shown that the 

radix-2 CBNS FFT uses less multiplier hardware structures 

by 75% and adder by approximately 67% in comparison to 

the radix-2 FFT. It also shows that the radix-2 CBNS FFT 

uses less arithmetic computations than the DFT. 

5 Work in Progress 

 The flow chart shown in Figure 5 demonstrates how 

the CBNS N-point FFT will be implemented using the DA 

approach. Recall that a DA architecture is bit serial in nature 

and computes the SOP between two vectors: fixed and vari-

able input data.  In implementing this structure first, the 

fixed point complex numbers are converted into the (-1+j)-

base representation. After its conversion, this new varying 

input data now become x[n] and the twiddle factor    

   
  

  now becomes the fixed constant coefficient value.  

 

Figure 5:  CBNS N-point FFT Implementation 

 These data now become the driving input data for the 

butterfly structure. For each m-stage of the butterfly struc-

ture, the twiddle factor will be loaded into the LUT for each 

stage where the DA structure will calculate the partial prod-

ucts of equal shifts, which are then added before being 

summed to the next partial product shift. This process will 

continue for each m-stage until y[n] contains the final result. 

The final results will be outputted into the (-1+j)-base repre-

sentation which can then be reconverted using the algorithm 

described in section 3.1.   

 In this proposed design, the three DA Rom reductions 

discussed in sections II will be used in implementing the 

FFT structure using the DA approach. The outcome hard-

ware structure will have zero multipliers which is a 100% 

reduction as shown in Table 5, as no multipliers will be used 

in computing the FFT structure. The multiplication process 

is done by shifting and adding only. The total number of real 

adders, however, will change slightly as the total adders that 

are needed to design the DA and FFT structure will be com-

bined. The truth table for CBNS employed for the 

adder/subtraction technique and the (-1+j)-base structure, 

will be used instead of the conventional approach for adding 

and subtracting.  Currently, this design for implementing the 

FFT algorithm, using the CBNS and the DA approach algo-

rithm is in its initial stage of development. 

Table 5: Proposed DA CBNS FFT Structure 

 
 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 611



 
 

6 Conclusion  

 For a DIT butterfly structure, in calculating the radix-2 

FFT algorithm, the number of arithmetic computations for 

each butterfly structure will consist of four multiplications 

and six additions. In integrating the CBNS within the FFT 

algorithm, the arithmetic computations for each butterfly 

structure will be greatly reduced, due to the fact that each 

arithmetic operation is not based on the divide and conquer 

method as each complex number is represented as one single 

unit. Therefore, by treating each complex number as one 

entity, the arithmetic operations for each butterfly structure 

will consist of only one multiplication and two addi-

tions/subtractions. This will result in the number of “N” 

point calculations reduced by 75% for the multipliers and 

approximately 67% for the adder/subtractor. This proposed 

method will reduce the multiplier complexity by 100% and 

decrease the cost for implementing this structure compared 

to traditional ways of computing the algorithms. Given that 

there is a great demand for new and improved technology for 

DSP applications, in calculating the SOP, the methods dis-

cussed in this paper will be used in implementing the new 

radix-2 and radix-4 FFT structures employing DA. These 

three new methods will be compared with the traditional 

method to investigate which method will give the overall 

maximum performance in terms of its area size, speed, and 

timing  

7 References 

[1]  T. Jamil, "The complex binary number system,"IEEE 

Potentials, vol. 20, no. 5, pp. 39-41, 2002.  

[2]  R. G. Lyons, "FFT Software Programs," in Understanding 

Digital Signal Processing,Prentice Hall, 2004.  

[3]  N. Govil and S. R. Chowdhury, "High performance and 

low cost implementation of Fast Fourier Transform 

algorithm based on Hardware Software co-design," 2014 

IEEE Region 10 Symposium, pp. 403-407, 2014.  

[4]  R. Lyons, "Relationship of the FFT to the DFT," in 

Understanding Digital Signal Processing, 2nd ed., Prentice 

Hall, 2004.  

[5]  R. Guo, "Two high-performance adaptive filter 

implementation schemes using distributed arithmetic," 

IEEE transaction on Circuits and System ll, vol. 58, no. 

9,pp. 600-604, 2011.  

[6]  M. Jiang, B. Yang, R. Huang, T. Y. Zhang and Y. Y. 

Wang, "A multiplierless fast fourier transform 

architecture," Electronis Letters, vol. 43, no. 3, pp. 191-

192, 2007.  

[7]  V. K. Sharma, K. K. Mahapatra and U. C. Pati, "An 

efficient distributed arithmetic based VLSI architecture for 

DCT," International Conference on Devices and 

Communications, pp. 1-5, 2011.  

[8]  W. Penney, "A numerical system with a negative base," 

Mathematical Student Journal, pp. 1-2, 1964.  

[9]  W. Penney, "A binary system for complex numbers," 

Journal of the ACM, vol. 12, no. 2, pp. 247-248, 1965.  

[10]  H. Zaini and R. G. Deshmukh, "A novel method for 

arithmetic operations using complex binary number system 

and the reconversion of the result to the decimal complex 

number system," Proceedings of the IEEE SouthestCon 

2003, pp. 31-37, 2003.  

[11]  T. Jamil, "Impact of shift operations on (-1+j)-base 

complex binary numbers," Journal of Computers, vol. 3, 

no. 2, pp. 63-71, 2008.  

[12]  T. Jamil and U. Ali, "Effects of multiple-bit shift-right 

operations on complex binary numbers," Proceedings of 

IEEE SoutheastCon 2007, pp. 759-764, 2007.  

[13]  D. C. Blest and T. Jamil, "Efficient division in the binary 

representation of complex numbers," Proceedings of the 

IEEE SoutheastCon 2001, pp. 188-195, 2001.  

[14]  T. Jamil, "An introduction to complex binary number 

system," Fourth International Conference on Information 

and Computing, pp. 229-232, 2011.  

[15]  T. Jamil, N. Holmes and D. Blest, "Towards implemention 

of a binary number system for complex numbers," 

Proceedings of the IEEE SoutheastCon 2000, pp. 268-274, 

2000.  

[16]  J. Goode, T. Jamil and D. Callahan, "A simple circuit for 

adding complex numbers," WSEAS Transactions on 

Information Science and Applications, vol. 1, no. 1, pp. 61-

66, 2004.  

[17]  S. A. White, "Applications of distributed arithmetic to 

digital signal processing: A tutor review," IEEE ASSP 

Magazine, pp. 4-19, 1989.  

[18]  S. Ramprasad, N. R. Shanbhag and I. N. Hajj, "Low-power 

distributed arithmetic architectures using non-uniform 

memory partitioning," IEEE International Symposium on 

Circuits and Systems, vol. 3, pp. 470-473, 1999.  

[19]  W. Huang, "Implementation of adaptive digital FIR and 

reprogrammable mixed-signal filters using distributed 

arithmetic," PhD Thesis, Dept. Elect. & Comput. Eng., 

Georgia Institute of Tech., Atlanta, 2009. 

[20]  R. Guo and L. S. DeBrunner, "A novel adaptive filter 

implementation scheme using distributed arithmetic," 

Signals, System and Computers, pp. 160-164, 2011. 

[21]  R. M. Jiang, "An area-efficient FFT architecture for OFDM 

and digital video broadcasting," IEEE Transactions on 

Consumer Electronics, vol. 53, no. 4, pp. 1322-1326, 2007.  

[22]  S. Chandrasekaran and A. Amira, "Novel sparse OBC 

based distributed arithmeticarchitecture for matrix 

transforms," IEEE International Symposium on Circuits 

and Systems, pp. 3207-3210, 2007.  

 

612 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



Evaluation of an FPGA-Based Shortest-Path-Search Accelerator

Yasuhiro Takei, Masanori Hariyama and Michitaka Kameyama
Graduate School of Information Sciences, Tohoku University

Aoba 6-6-05, Aramaki, Aoba, Sendai, Miyagi, 980-8579, Japan
Email: {takei, hariyama, kameyama}@ecei.tohoku.ac.jp

Abstract— Shortest-path search over large scale
graphs is widely used in various applications. However,
shortest path algorithms such as Dijkstra’s algorithm
include complex processing. It is difficult for accel-
erators such as GPUs to accelerate these algorithms
efficiently. This paper presents an FPGA-based accel-
erator with SIMD architecture for the shortest-paths
algorithm. In the proposed architecture, processing of
the Dijkstra’s algorithm is done with a high degree of
parallelism, and the memory usage is reduced by the
replacement of the node data. According to the evalu-
ation, the processing time of the proposed architecture
is about a half of that of a CPU, and the amount of the
node data stored in on-chip memory is about one-third
of all nodes when the input graph is a lattice graph.

Keywords: Shortest-path search, Dijkstra’s algorithm, Sin-
gle instruction multiple data (SIMD), FPGA

1. Introduction

Recently, there is a huge demand of processing
large-scale graphs. Especially, finding the shortest-path
in large scale graphs is used in many applications
such as traffic simulation, social networking service
and bioinformatics. To solve the shortest-path problem,
various algorithms has been proposed. Dijkstra’s algo-
rithm [1] and Bellman-Ford algorithm [2] were pro-
posed to solve the single-source shortest-path problem
(SSSP). Warshall-Floyd Algorithm [3] was proposed to
solve the all-pair shortest-path problem (APSP).

To accelerate processing speed of solving shortest-
path problem, there have been many software-based
studies in terms of improving a data structure and
reducing a computational amount. In order to process
the shortest-path problem for large scale graphs, PC
clusters with many CPUs are often used [4] because of
their large memory capacity. However, these computing
systems need very large space and power consumption.

Some studies used GPUs for solving shortest-path
problem. Harish [5] and Katz [6] have implemented
shortest-path search on the GPU. GPUs are suitable
for simple and parallelized processing. However, it is
difficult to accelerate shortest-path searching efficiently
when the shortest-path algorithm includes serial and
complex data-flows.

Other studies used the FPGA-based accelerator for
solving shortest-path problem. FPGAs can implement
application-specific data-paths by reconfiguration af-
ter fabrication. Moreover, the power consumption of
FPGAs are less than one-tenth of that of CPUs and
GPUs. Tommiska [7], Fernandez [8], and Sridharan [9]
have designed the FPGA-based architecture for SSSP
with the Dijkstra’s algorithm. Bondhugula [10] has
designed the FPGA-based architecture for APSP with
the Warshall-Floyd algorithm. However, their works
did not consider processing large-scale graphs since the
memory usage of the input graph is not considered.

To solve these problems, we design an FPGA-based
accelerator for the Dijkstra’s algorithm on large scale
graphs. In order to accelerate processing and memory
access, we design the SIMD (single instruction mul-
tiple data) architecture. We explain how to search the
shortest path with a high degree of parallelism, and
how to replace the node data on a limited memory
space. In this paper, we implement the improved archi-
tecture from our previous work [11], and we evaluate
the memory usage and processing time of the shortest
path search.

2. Dijkstra’s algorithm and its imple-
mentation on an FPGA

The Dijkstra’s algorithm is one of the most popular
algorithms to solve SSSP. Because it is easy to im-
plement, this algorithm is used in various applications
such as analysis of the internet, traffic simulation and
so on. LetS be the node where we are starting. Let

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 613



d(y) be the distance fromS to nodey. The flow of
the Dijkstra’s algorithm is represented by the following
steps.

Step1: Assign to every node a tentative distance: set it
to zero forS, and to infinity for all other nodes. Mark
all nodes"unvisited".

Step2: Select theunvisitednode which has the smallest
tentative distance and make it the"current node".

Step3: For thecurrent node, consider all ofunvisited
neighbor nodes and update their tentative distance.
If the current nodeis A , and one of theunvisited
neighbor node isB, set the tentative distance ofB
(td(B)) to min(td(B), d(A) + lAB) ,wherelAB is the
length of the edge betweenA andB. When considering
all of unvisitedneighbor nodes of thecurrent node,
mark thecurrent node "visited".

Step4: Until all nodes are markedvisited, go back to
Step2.

The processing time of the Dijkstra’s algorithm de-
pends on searching the minimum distance in Step2 and
updating tentative distances in Step3. In these process-
ing, there are many comparison operations on multiple
node data. Hence, a parallelized architecture such as
the SIMD architecture is suitable for accelerating the
processing of the Dijkstra’s algorithm.

Since tentative distances and paths are read and
updated frequently, on-chip memory on an FPGA is
suitable for storing these data. However, the capacity
of the on-chip memory is small. The memory man-
agement is required for reducing the on-chip memory
usage and the total processing time. In the Dijkstra’s
algorithm, tentative distance of nodes that connects
current or visited nodes is only used in the processing.
As shown in Fig.1, the current node (C) and unvisited
nodes connected to current or visited nodes (D,E)
are only used in the processing until the next current
node is determined. As shown in Fig.2, after the next
current node (D) is determined, a previous current node
(C) data is unnecessary in the processing. Hence the
memory space for the previous current node data (C)
can be reused for the new node data (F).

�

��

��

�

���������	���


	������������������	���

����������	���

����������	�

	������������������	���
	�������������	���

Fig. 1: The current node (C) and unvisited nodes
connected to current or visited nodes (D,E)

�

��

��

�

���������	���


	������������������	���

����������	���

����������	�


	������������������	���
	�������������	���

Fig. 2: The current node (D) and unvisited nodes
connected to current or visited nodes (E,F)

3. Architecture

Figure 3 shows the overall architecture. This archi-
tecture consists of an external memory, a CPU core
and a Dijkstra module. An external memory such as a
DDR2 SDRAM stores the adjacency list of the input
graph. The Dijkstra module consists of processing
elements (PEs), selectors, a decoder, a current node
register, and an address generation unit (AGU). The
current node register stores the current node number
and the distance from the start to the current node.

Figure 4 shows the architecture of the processing
element in the Dijkstra module. This architecture con-
sists of a node memory, modules for searching for

614 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



��������	�
��	������

�������� ������
� ��
� ��
� ��
� �

���

��	
����� ��� �����		
��
������

��������
	
�
����

�������
�
�
���

�����
�
���
�

�����		
��
������

�����		
��
������

�����	
� �����

� �

���������� �������
����

�������

����

�����	�
��	����	

������

Fig. 3: Overall architecture

minimum distance, for matching the node number and
for updating the tentative distance. These modules
consist of comparators, registers and adders. The node
memory stores the values of node number, the tentative
distance and the previous node number of the shortest
path.

For updating the tentative distances in node memo-
ries, the neighbor node number is searched by matching
node modules in parallel as shown in Fig.5. In this case,
the node number 8 is searched for. Then the tentative
distance at node 8 is compared with the sum of the
distance at the current node 6 and the length of the edge
6 to 8 by the update module. If the sum of the distance
at the current node and the length the edge is smaller
than the tentative distance, the tentative distance and
the previous node number are updated as shown in
Fig.6.

For the searching for the minimum distance in node
memories, minimum distance modules and minimum
selector are connected as shown in Fig.7, and searching
in parallel. In this case, node 7 has the minimum
distance, and node 7 is selected as the new current
distance. When the minimum distance searching is
completed, the new minimum distance and the node
number are stored in the current node register.

After these data are stored in the current node
register, the memory space for the current node can
be overwritten to the first unvisited neighbor node data
that have not existed in node memories as shown in
Fig.8. If the number of these new neighbor nodes is
more than two, the empty space in node memories is
used for storing subsequent unvisited neighbor node
data.

���� ������������	

������������	
 ���������	
��

�������������


�
����
�����

���	
��

���������
���
 ���� ��
�

� ��� �
� ��� �
� ��� �

� � �

������

����
����	
 ������������	


�����
�����	
��		
�����
������

���������	
���
����
�����

Fig. 4: Architecture of the PE

���� ���� �	�

� � �

�

� �

�

���

���

���

��
��

��

��

����
������

������������	

������������	

�����
�����	


��������
	
�
���

����
������

������������	

������������	

�����
�����	


����

��������
��	�

� � �
� �� �
� �� �

� � �

����
������

������������	

������������	

�����
�����	


Fig. 5: Searching a node number data in node memories

4. Evaluation of the proposed architec-
ture

In this evaluation, we use the Terasic DE4 FPGA
board [12]. This board includes an Altera Stratix IV
GX EP4SGX530, and a DDR2 SDRAM (4GB). Altera
Quartus 13.1 is used for the FPGA implementation.
For a proto-type design, we implement the proposed
architecture with 8 PEs. 4,096 nodes can be processed
in the implemented architecture. NiosII soft-core pro-
cessor [13] is used for the CPU core as shown in Fig.3.
It is designed using Altera Qsys 13.1 and programmed
by C language using Nios II EDS 13.1. Table 1 shows
the resource usage of the proposed accelerator. The
usage of memory bits of NiosII is larger than that
of the Dijkstra module since the programming code
for storing the graph is large. Considering with the
resource usage of the on-chip memory, about 300,000
nodes can be implemented on the FPGA board if the
programming code on the NiosII is improved.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 615



���� ���� �	�

� � �

�

� �

�

���

�������

���

��
��

��

	�
����

������
������������	

������������	

�����
�����	


����
������

������������	

������������	

�����
�����	



��������������

��������
��	�

� � �
� �� �
� �� �

� � �

����
������

������������	

������������	

�����
�����	


Fig. 6: Updating node data in the node memory

����
������

������������	

������������	

�����
�����	


����
������

������������	

������������	

�����
�����	


����
������

������������	

������������	


�������
����	
��

�����
�
�����

�����
��

�

� �

�

���

���

���

��
��

��

��

��������
��	�

������ ������������	

�����
�����	


�����
��

Fig. 7: Searching the minimum distance in node mem-
ories

Let us compare the performance of the FPGA-based
accelerator with that of Intel Core2 Quad processor.
We implement the shortest-path problem on a lattice
graph as shown in Fig.9. The Dijkstra’s algorithm is
implemented on the Core2 Quad processor by using
C++ language. Microsoft Visual studio 2010 is used for
compiling. Table 2 shows the processing time compar-
ison. The processing time of the proposed architecture
is about half of the CPU. The performance of the
proposed architecture can increase when more PEs are
implemented on the FPGA. Moreover, FPGAs with
hard-core CPUs, such as Xilinx Zynq [14] and Altera
Cyclone V SoC [15] can be used in order to reduce
the control overhead. These FPGAs includes multicore
CPUs such as the ARM Cortex-A9. The performance
of these CPU cores is more than ten times as much as
that of the NiosII core.

Let us consider the memory usage of the node
memories. Table 3 shows the number of node data
in node memories in the processing of the Dijkstra’s

���� ���� �	�

� � �
� �� �
� �� �

� � �

�������������
��		���������

���� ���� �	�

� � �
� �� �
� �� �

� � �

Fig. 8: Overwriting the current data to a new node data
in the node memory

Fig. 9: Lattice graph

algorithm.　 According to the ratio of nodes in the
node memories to all nodes in the graph, the memory
usage is about one-third of the all nodes data when the
input graph is a lattice graph. As a result, about three
times nodes of the node memories can be processed on
the FPGA board when the input graph is as sparse as
the lattice graph, such as a map data. Memory usage
depends on a structure of the input graph. When the
input graph is sparse, usage of the node memories
becomes small. On the other hand, usage of the node
memories becomes at maximum when the start node
connects to all other nodes. In this case, (All nodes -
1) nodes are stored in the node memories.

5. Conclusions
We have proposed an FPGA-based accelerator for

shortest-path search. We designed for processing the
Dijkstra’s algorithm in parallel and we explained the
replacement of the node data to reduce the memory
usage. According to the evaluation, the processing time
of the proposed architecture is about half of the CPU,
and the usage of the on-chip memory is about one-third
of the all nodes when the input graph is a lattice graph.

The suitable architecture of the shortest-path-search
accelerator depends on the structure of a input graph.
The proposed architecture is suitable for sparse graphs.
However, this architecture is not suitable for dense
graphs since the usage of the node memories cannot
reduce so mach. Hence, we should design another

616 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



Table 1: Resource usage
LUT Register Memory bit DSP

Dijkstra module 1509 607 196608 0
NiosII (CPU) 9298 12507 1832318 4

Table 2: Processing time(ms)
FPGA Core2Quad

Input graph (50MHz) (2.83GHz)
1024Nodes,3968Edges 9.38 16.00
4096Nodes,16130Edges 50.40 94.00

architecturefor dense graphs, such as the GPU-like
architecture for processing an adjacency matrix.

Moreover, to process a very large scale graph, it is
important to reduce the bottleneck of the data-transfer
of the graph data from the external storages such as
SSDs to FPGA boards. We are going to implement the
framework for graph compressing such as WebGraph
[16] or Graphillion [17] on the FPGA board.

Acknowledgement
This work is supported by JSPS KAKENHI grant

number 24300013 and Grant-in-Aid for JSPS Fellows
grant number 15J04973.

References
[1] E. W. Dijkstra, "A Note on Two Problems in Connexion with

Graphs", Numerische Mathematik, 1(1): pp.269–271, 1959.
[2] R. Bellman, "On a Routing Problem", Technical report, DTIC

Document, 1956.
[3] R. W. Floyd, "Algorithm 97: Shortest Path", Commun. ACM,

5(6) pp.345–346, June 1962.
[4] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn,

N. Leiser, and G. Czajkowski. "Pregel: a System for Large-
Scale Graph Processing", In Proceedings of the 2010 ACM
SIGMOD International Conference on Management of data,
pp. 135–146, 2010.

[5] P. Harish, and P. J. Narayanan, "Accelerating large graph
algorithms on the GPU using CUDA", High performance
computing-HiPC 2007, Springer, pp.197-208, 2007.

[6] G. J. Katz and J. T. Kider Jr, "All-Pairs Shortest-Paths for
Large Graphs on the GPU", In Proceedings of the 23rd
ACM SIGGRAPH/EUROGRAPHICS symposium on Graph-
ics hardware, 2008.

[7] M. Tommiska and J.Skytta. "Dijkstra’s Shortest Paths Al-
gorithm in Reconfigurable Hardware", In Proc. Field Pro-
grammable Logic and Applications, pp. 653–657, 2001.

[8] I. Fernandez, J. Castillo, C. Pedraza, C. Sanchez, and J. I.
Martinez, "Parallel Implementation of the Shortest Path Al-
gorithm on FPGA" In Proc. 4th Southern Conf. on Pro-
grammable Logic., pp. 245–248, 2008.

[9] K. S. T.K.Priya and P. Kumar, "Hardware Architecture for
Finding Shortest Paths", In Proc. IEEE Region 10 Conf., pp.
1–5, 2009.

Table 3: The number of node data in node memories
All nodes in a graph 256 1024 4096

Nodesdata in node memories 87 316 1329
Ratio of the node data 0.340 0.309 0.324

[10] U. Bondhugula, A. Devulapalli, J. Fernando, P. Wyckoff,
and P. Sadayappan, "Parallel FPGA-Based All-Pairs Shortest-
Paths in a Directed Graph", In Proceedings of Parallel and
Distributed Processing Symposium, 2006.

[11] Y. Takei, M. Hariyama and M. Kameyama, "An SIMD Ar-
chitecture for Shortest-Path Search and Its FPGA Implemen-
tation ", International Conference on Parallel and Distributed
Processing Techniques and Applications (PDPTA), pp.53–56,
2014

[12] Terasic, "Altera DE4 Development and Education
Board", http://www.terasic.com.tw/cgi-bin/page/archive.pl?
Language=EnglishNo=501.

[13] Altera, "Nios II Processor", http://www.altera.com/
devices/processor/nios2/ni2-index.html.

[14] Xilinx, "Zynq-7000 All Programmable SoC",
http://www.xilinx.com/products/silicon-devices/soc/zynq-
7000/index.htm.

[15] Altera, "Cyclone V SoCs: Lowest System Cost and Power",
http://www.altera.com/devices/processor/ soc-fpga/cyclone-v-
soc/cyclone-v-soc.html.

[16] P. Boldi and S. Vigna. ,"The Webgraph Framework I: Com-
pression Techniques". In Proc. of the 13th international con-
ference on World Wide Web, pp. 595–602. ACM, 2004.

[17] T. Inoue, H. Iwashita, J. Kawahara, and S. Minato.
"Graphillion: Software Library for Very Large Sets of La-
beled Graphs", International Journal on Software Tools for
Technology Transfer, 2014.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 617



A Scalable Parallel Bisection Algorithm for
Symmetric Tridiagonal Eigenvalue Problem

Barok Imana
Department of Engineering

Trinity College
Hartford, CT 06106 USA

Email: barok.imana@trincoll.edu

Peter Yoon
Department of Computer Science

Trinity College
Hartford, CT 06106 USA

Email: peter.yoon@trincoll.edu

Abstract— Bisection method is a numerically stable algo-
rithm used to find the eigenvalues of symmetric tridiagonal
matrices. It is distinct from other methods in that it can be
used to compute a subset of eigenvalues with high accuracy.
However, the algorithm is significantly slow compared to
other methods when a large number of eigenvalues are
desired. Fortunately, the algorithm exhibits a high level
of parallelism when it is implemented on various types
of multiprocessors, including a single-GPU system. In this
paper, we describe a highly scalable implementation using
multi-GPU systems to accommodate large matrices. Our
approach exploits the latest memory management features
available on Nvidia Tesla K20c GPUs, including unified
memory architecture, peer-to-peer data transfer, and dy-
namic parallelism. Our implementation was at least 60 times
faster than a multi-core CPU system and exhibits a linear
speedup with respect to the number of GPUs in the system.

Keywords: Symmetric eigenvalue problem, bisection method,
parallel algorithm, general-purpose GPU computing

1. Introduction
Consider an n× n symmetric tridiagonal matrix T ,

T =



a1 b1
b1 a2 b2

b2 a3 b3
. . . . . . . . .

bn−2 an−1 bn−1

bn−1 an


Suppose that the eigenvalues of T are ordered so that

λ1 ≤ λ ≤ · · · ≤ λn

where each scalar λi, i = 1, 2, . . . , n, satisfies

Txi = λixi

for non-zero vector xi, i = 1, 2, . . . , n. Here, the vector xi
is called ith eigenvector of T associated with the eigenvalue
λi.

The solution to symmetric tridiagonal eigenvalue problem
is a critical part of computing eigenvalues and eigenvectors
of general symmetric matrices, where the matrix is first
reduced to symmetric tridiagonal form. In addition, the
computation of eigenvalues and eigenvectors of symmetric
tridiagonal matrices arises in many important applications
areas including structural dynamics, quantum chemistry,
oceanography, economics theory and control process.

Several approaches to computing eigenvalues of symmet-
ric tridiagonal matrices have been proposed, including the
QR iteration [1], the divide and conquer method [5], [6],
and the bisection method [8], [9], [11]. The QR iteration
has been considered the most efficient method to compute all
eigenvalues, only requiring O(n) operations for a tridiagonal
matrix, but, unfortunately, there are not efficient algorithms
which are amenable to various parallel architectures.

The divide and conquer method is the fastest now avail-
able if all eigenvalues and eigenvectors of a symmetric
tridiagonal matrix are desired. The method, implemented in
LAPACK [12], begins with dividing the original matrix into
two smaller symmetric tridiagonal matrices, computing the
eigenvalues of the submatrices, and combining the computed
eigenvalues using rank-one modifications [5]. Unlike the QR
iteration, the method has been successfully implemented on
several multiprocessors [6].

The bisection method may be used to find all eigenval-
ues or a subset of the eigenvalues, requiring only O(nk)
operations, where k is the number of eigenvalues desired.
Since each eigenvalue can be computed independent of one
another, the whole procedure can be made highly parallel.
Several parallel implementations of the method have been
proposed [9], [14]. In particular, as the use of general-
purpose GPUs for scientific computing has been dramatically
increasing in recent years, it has been noted that the GPUs
have an enormous potential in computing eigenvalues using
the bisection method.

The initial release of a GPU-accelerated bisection method
has been included in Nvidia CUDA SDK [16]. This imple-
mentation utilizes simple yet highly efficient data structures
for the division steps, but it suffers some issues such as over-
flow problems and its inability to deal with special structure

618 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



of the matrix. To that end, Volkov and Demmel [15] pro-
posed an improved version which overcomes architectural
limitations and delivers high performance and high accuracy
of the eigenvalues. However, neither implementations are
scalable to multiple GPUs in order to accommodate large
matrices.

In this paper, we focus on a highly scalable implemen-
tation of the bisection method which will be amenable to
multi-GPU systems. Our approach exploits the latest mem-
ory management features available on the Nvidia Tesla K20c
GPU, including unified memory architecture, peer-to-peer
data transfer, and dynamic parallelism. Our implementation
of the bisection method, which is entirely done on multiple
GPUs, runs at least 60x faster for large matrices, compared
to multi-core CPU versions and exhibits a linear speedup
with the number of GPUs used.

The remainder of the paper is organized as follows:
Section 2 briefly describes the bisection algorithm, Section
3 presents a detailed parallel implementation, Section 4
presents the experimental results followed by discussions
and future directions.

2. The Bisection Method
The main idea of the bisection method is based on

Sylvester’s Inertia Theorem [17], which states that the num-
ber of eigenvalues greater than λ is the same as the number
of positive eigenvalues of T − λI , that is, the matrix of the
form,

a1 − λ b1
b1 a2 − λ b2

b2 a3 − λ b3
. . . . . . . . .

bn−2 an−1 − λ bn−1

bn−1 an − λ


Let Inertia(T ) be the triplet (µ, ξ, π), where µ is the number
of negative eigenvalues of T , ξ is the number of zero
eigenvalues of T , and π is the number of positive eigenvalues
of T . Then, the theorem states that

Inertia(T ) = Inertia(UTTU),

where U is nonsingular. Furthermore, if T − λI can be
factorized to LDLT , where L is nonsingular and D diagonal,
then

Inertia(T − λI) = Inertia(D).

which leads to Algorithm 1 which computes the number of
negative elements of D, which is the same as the eigenvalues
of T that are less than λ.

In Algorithm 1, the function Count(T, λ), given a real
shift value λ, shifts matrix T by λ, and then performs
LDLT decomposition on the resulting matrix. By a careful
examination of the function, one can show that the number
of negative entries on the diagonal of D is the number

Algorithm 1 Count(T , λ)

1: count = 0
2: d = 1
3: for i = 1 to n do
4: d = ai − λ− b2i /d
5: if d < 0 then
6: count = count + 1
7: end if
8: end for

of eigenvalues of T that are less than λ. Note that the
function does not explicitly compute LDLT decomposition.
The bisection method uses Count(T, λ) function to calculate
the total number of eigenvalues in interval (a, b), which is
equivalent to Count(T, b) − Count(T, a).

The initial interval which contains all eigenvalues of T
is given by Gerschgorin Circle Theorem [1] for symmetric
tridiagonal matrix. The theorem states that all eigenvalues
of T is bounded by the spectrum λ(T ), such that

λ(T ) ∈
⋃

[ai − ri, ai + ri]

where

ri = bi + bi−1, i = 2, . . . n− 1

r1 = b1, rn = bn−1

Starting with a Gerschgorin interval, the bisection algorithm
iteratively divides the interval into smaller subintervals.
These subintervals are either discarded if they contain no
eigenvalues of T , or continued being subdivided until they
are sufficiently small, which is determined by a given
tolerance. Finally, the eigenvalues of T are approximated
by taking either bounds or midpoints of converged intervals.

3. Parallel Implementation
In this section, we describe a scalable parallel bisection

algorithm and its implementation on a multi-GPU system.
The use of GPUs in scientific computing applications has
risen dramatically in recent years mainly because of their
highly parallel architecture, energy efficiency and cost ef-
fectiveness. Unlike a CPU, a GPU consists of thousands of
small computing cores designed to run tens of thousands
of threads in parallel. Although each core may not be as
powerful as a single CPU core, together, the thousands of
cores produce higher throughput in applications that demand
a high-level of data parallelism.

3.1 CUDA
One of the most important aspects in designing algorithms

on GPUs is the memory structure. GPUs reside on an
external hardware and have no direct access to the main
memory of the CPU. Data residing on the main memory
of the CPU has to be copied to the GPUs via system bus

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 619



Fig. 1: Blocking for 2 GPUs with 8 threads per block

such as PCI Express. However, the PCI Express has limited
bandwidth and poses a bottleneck in many applications that
require frequent data transfer between CPUs and GPUs.

This is not the case for our implementation because most
of our data is small enough to fit on the dedicated memory
of individual GPUs. The only times we have to use the PCI
Express channel is when loading input data on the GPUs
and when transferring data between multiple GPUs. In the
latter case, where data has to be copied to another GPU, the
source GPU has to first copy the data to the main memory
of the CPU and only then can the CPU can copy that data
to another GPU. With newer GPUs such as Nvidia Tesla
K20c, however, a direct data transfer between the GPUs,
called peer-to-peer, is allowed to facilitate memory transfer
more efficiently.

For our multi-GPU implementation of the bisection algo-
rithm, we will be using CUDA, a parallel computing plat-
form developed by Nvidia for general-purpose computing
on GPUs [18]. In CUDA programming architecture, a CPU
is referred to as a host as it launches a kernel on the GPU
which is called the device. Once the kernel is completed, the
device copies back the results back to the host. The kernel is
run by means of threads organized into blocks. Each block
retains a copy of the kernel, and the threads in the same
block run the same code in parallel. Threads have their own
local memory and have access to a shared memory space
dedicated for the threads of the same block.

3.2 Single-GPU Implementations
Lessig [16] presented a single GPU implementation for

the bisection algorithm. In this implementation, at every
division stage, two kernels are launched: one for intervals
containing exactly 1 eigenvalue, another for intervals con-
taining more than 1. Their work was based on Tesla C870
with the peak throughput of 500 Gflops. Tesla K20c, on
which this work is based, achieves 1.17 Tflops for double
precision, and 3.52 Tflops for single precision.

Thus, by terminating the first kernel and reusing the
kernel for all non-empty intervals, we may achieve additional
speedup. In addition, the number of CUDA cores was also
increased to 2,496 on the Tesla K20c. These improvements
lead to significant increase in throughput to a point where
the overhead of running to separate kernels is no longer

justifiable. Therefore, all implementations in this paper will
not group non-empty intervals based on the number of
eigenvalues they contain.

Note that the Count(T, λ) function is called at each level
of the bisection tree by each child interval. It has been
shown in [15] that 90% of the computation time is spent
on the Count(T, λ) functions for n > 100. Hence, a hybrid
approach was proposed where a part of the function calls
for the Count(T, λ) function run on CPUs and part of them
on GPUs. However, in order to exploit the full capacity of
multiple GPUs, we will consider a GPU-only approach.

Algorithm 2 GPU-Based Bisection

1: procedure BISECT(S)
2: Let S be the collection of the four arrays:
3: s_left, s_right, s_left_count, s_right_count
4: tid← id of the current thread
5: for each I in S do
6: Divide I into I1 and I2
7: if I1 is not empty then
8: Store I1 in S[tid]
9: Store I2 in S[tid+N ]

10: else
11: Store I2 in S[tid]
12: end if
13: end for
14: Perfrom scan-compaction on S
15: return S
16: end procedure

3.3 Multi-GPU Implementation
A simple approach to a multi-GPU implementation is to

take advantage of the inherent parallelism in the division
stage. In this step, even though two kernels run one after
another, they operate on different groups of intervals and,
therefore, can be parallelized. Afterwards, we run these two
kernels concurrently on two separate GPUs and gain addi-
tional performance. We start with the Gerschgorin interval
which can be determined on a GPU, similar to the single-
GPU implementation.

620 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



Fig. 2: Generalized Multi-GPU algorithm

The biggest overhead in this approach compared to the
single-GPU implementation is data transfer. Unlike single-
GPU versions, we must transfer data between the GPUs
during the transition at the division stage. To minimize
this communication overhead, we can take advantage of the
way multi-GPU systems are designed. Data transfer can be
done via a peer-to-peer manner, which is much faster than
moving the data from device to host and then back to device.
Though this approach may achieve a significant speedup, this
implementation is limited to only two GPUs. In addition, as
mentioned earlier, two kernels launches are unnecessary in
most cases.

We now present a scalable approach that will ensure
an even workload among multiple GPUs. In the case of
bisection, workload has a direct dependency on the number
of eigenvalues a device has to compute. Therefore, ensuring
a balanced workload means ensuring that each device has to
compute about the same number of eigenvalues.

As in the case of single-GPU systems, the first step
in the bisection algorithm for multi-GPUs is calculating
Gerschgorin interval of a given matrix. An intuitive approach
for multi-GPUs is evenly dividing the computed Gerschgorin
interval among the available GPUs. But this does not ensure
a balanced workload because the spectrum of most matrices
does not follow a uniform distribution. Some of those child
intervals will likely contain more eigenvalues than the others.
Hence, this approach will introduce load imbalance among
the GPUs.

So, the approach we take is one that builds upon our
algorithm for a single GPU system. Our implementation for
a single GPU case begins by launching a bisection kernel to
further process the Gerschgorin interval. This pre-processing

step takes a constant time which involves bisecting the
Gerschgorin interval until the number of child intervals
exceeds the maximum number of threads available per block.
Our multi-GPU implementation also begins with the same
step as described below in more detail.

3.3.1 Pre-processing

In this step, we start with the Gerschgorin interval and
keep bisecting it until the number of eigenvalues exceeds
the maximum number of threads per block of the CUDA
device. This step involves launching a kernel with a grid size
of only one block. The results of the bisection are smaller
intervals with the known number of eigenvalues. We then
distribute these intervals using four arrays that are all stored
in the shared memory of the single block that we launch on
this kernel.

The left and right bounds of the intervals are, respectively,
stored on the s_left and s_right arrays while the result
of the Count(T, λ) function at those bounds are, respectively,
stored in the s_left_count and s_right_count ar-
rays. Note that all four arrays must be sorted. See Algorithms
2 and 3 for details.

3.3.2 Blocking Intervals

The second step which also takes place within the same
kernel can be understood as grouping intervals from the pre-
processing step into block. This involves grouping intervals
so that the number of eigenvalues in each block will not
exceed the maximum number of threads available in each
block. As observed in [16], the blocking of the intervals is
a particular instance of the knapsack problem that is known
to be NP-hard.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 621



Algorithm 3 Pre-processing

1: Let S be the collection of the four arrays:
2: s_left, s_right, s_left_count, s_right_count
3: maxThreads ← MAX_THREADS_BLOCK
4: [Gl, Gh]← computed Gerschgorin interval
5: N ← num of intervals
6: Store [Gl, Gh] in S
7: N = 1
8: while N ≤ maxThreads do
9: S = BISECT(S)

10: N = number of intevals in S
11: end while

To this end, we use a greedy algorithm that involves
scanning the four arrays. To illustrate this, we assume that
there are a maximum of eight threads per block. Let Cλ
represent the number of eigenvalues in an interval or a block.
As can be seen in Figure 1, our algorithm does not give the
optimal solution for interval blocking, but the blocks are
still constructed so that the computing power of the GPU
is utilized efficiently. The result of the blocking is stored in
another shared array called s_blocks. For this example,
s_blocks = [0, 3, 5, 6, 9]. Algorithm 4 gives a detailed
description of this step.

Algorithm 4 Blocking intervals

Let S be the collection of the four arrays:
2: s_left, s_right, s_left_count, s_right_count
size← size of current block

4: M ← num of blocks
for each I in S do

6: if size+ count(I) ≤ maxThreads then
size = size+ count(I)

8: else
M =M + 1

10: s_block[M ] = index of I in S
size = count(I)

12: end if
end for

3.3.3 Distribution of Intervals

The results from the previous step are then written to
global memory of the GPU and then copied to the host
memory. To this end, CPU threads are created for each GPU.
Each thread will determine the blocks to be assigned to the
GPU based on the number of available GPUs.

It is important to note that the number of blocks assigned
to each GPU is roughly the same. If the number of blocked
intervals is not evenly divisible by the number of GPUs, the
first GPUs will be assigned more blocks. Once the number
of block assigned to the GPU is determined, all the results

from the interval blocking step are copied to each GPU.
A kernel is then launched on each GPU with a grid size

corresponding to the number of blocked intervals assigned
to each GPU. For example, if there are only two GPUs, GPU
0 will be assigned block 0 and block 1, and GPU 1 will be
assigned block 2 and block 3. Each of these kernels will
run the bisection algorithm, described in Section 2, until the
desired precision level is reached. See Figure 2 for details.

3.3.4 Collecting Computed Eigenvalues
At this stage, all the converged eigenvalues are copied

back to the host CPU. All local lists of the eigenvalue from
each GPU are combined to generate a global list containing
all the eigenvalues. The whole reduction is done in parallel
and takes time that is proportional to the logarithm of the
number of blocks per grid.

Finally, the whole procedure on multi-GPU is given in the
following algorithm:

Algorithm 5 Bisection on multi-GPUs

Let S be the collection of the four arrays:
2: s_left, s_right, s_left_count, s_right_count

Let Smulti be each GPU’s version of S
4: K ← number of GPUs
M ← number of blocks

6: for i 1 to K − 1 do
start = s_blocks[i ∗ MK )]

8: end = = s_blocks[(i+ 1) ∗ MK − 1]
Smulti = S[start:end]

10: repeat
Smulti = BISECT(Smulti)

12: until all intervals converge
end for

4. Experimental Results and Discussion
Our CUDA implementation of the bisection algorithm was

tested on a machine which comprises a dual Intel Xeon E5-
2620 CPUs with 64 GB main memory, and four NVIDIA
Tesla K20c GPU, each with 5 GB global memory.

Table 1 shows the actual running time and the speedup
of our multi-GPU implementation with random matrices of
various size. Clearly, our multi-GPU implementation outper-
formed the full configuration of the CPU, which comprises
16 cores. When n is large, our implementation runs up to
57x faster than that of CPU with 16 cores. We observe a
more dramatic speedup when n > 16, 384. This is because
with large n the global GPU memory becomes saturated with
the entries of T and temporary data required by the division
steps.

It also shows how much faster the implementation is on
multiple GPUs compared to one GPU. Our implementation
achieves almost linear speedup with respect to the number of

622 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



Table 1: Performance Results on Random Matrices

Time (sec) Speedup

n 16 CPUs 1 GPU 2 GPUs 4 GPUs 16 CPUs / 4 GPUs 1 GPU / 2 GPUs 1 GPU / 4 GPUs

1024 0.1 0.045 0.049 0.052 2.08 0.92 0.86
2048 0.6 0.088 0.094 0.098 5.75 0.93 0.90
4096 2.1 0.181 0.194 0.198 10.83 0.93 0.91
8192 8.7 0.575 0.398 0.416 20.81 1.44 1.38

16384 35.1 1.65 1.193 0.782 44.77 1.38 2.11
32768 133.6 6.23 3.382 2.338 57.16 1.84 2.66

Table 2: Performance Results on Uniform Matrices

Time (sec) Speedup

n 16 CPUs 1 GPU 2 GPUs 4 GPUs 16 CPUs / 4 GPUs 1 GPU / 2 GPUs 1 GPU / 4 GPUs

1024 0.12 0.037 0.037 0.041 2.97 1.00 0.92
2048 0.38 0.074 0.077 0.080 4.73 0.95 0.92
4096 1.33 0.146 0.152 0.156 8.52 0.96 0.94
8192 5.15 0.523 0.302 0.306 16.84 1.73 1.71

16384 20.32 1.936 1.569 0.607 33.48 3.40 3.19
32768 77.54 6.380 2.114 1.143 67.84 3.02 5.58

GPUs, demonstrating the scalability of our implementation
on multi-GPU systems.

In addition, when the eigenvalues are uniformly dis-
tributed, we achieve a superlinear speedup as shown Table
2. This can be explained by the relationship between matrix
size and the number of multiprocessors available on the
K20c GPUs. We see that for matrix size up to 4,096, the
relationship between matrix size and run time is linear. How-
ever, for matrices that are larger than that, the relationship
becomes almost quadratic. A possible explanation for this
is that when the matrix size is 4,096, the GPU’s computing
capability is fully exhausted. Hence, for matrix sizes larger
than this threshold, not all eigenvalues can be computed in
parallel. A similar phenomenon exists in the case of two
GPUs. For the matrices smaller than 16,384, the relationship
is linear, but for larger matrices, the speedup becomes almost
quadratic.

Our implementation of the bisection algorithm in this
paper, however, has not taken full advantage of hardware
and software features that GPUs have to offer. We are
considering a hybrid approach that uses both CPU and
GPU to speed up the bisection algorithm even further. For
example, the Gerschgorin interval can be preprocessed on the
CPU. Furthermore, CPU can employ multi-section algorithm
instead of bisection, which means dividing a big interval
into multiple smaller intervals instead of only two ones. The
optimal number of subintervals in a multi-section algorithm
remains to be found.

Future work should also be able to accommodate out-of-

core cases. These situations may occur with very large matri-
ces because symmetric tridiagonal matrices are represented
by only two vectors for diagonal and off-diagonal elements.
Parallel out-of-core version of the bisection method should
be an interesting set of problems for creative solutions.

5. Acknowledgements
The authors would like to thank CUDA Teaching Center

Program, Nvidia Research and Student Research Program,
Trinity College for supporting this research. The authors
would also like to thank Nam Thai of Trinity College for his
contribution to a preliminary version of our implementation.

References
[1] G.H. Golub and C.F. Van Loan. Matrix Computations, 4th ed. Johns

Hopkins University Press, 2012.
[2] D. B. Kirk and W. W. Hwu, Programming Massively Parallel Pro-

cessors: A Hands-on Approach (Burlington, MA : Morgan Kaufmann
Publishers, 2010).

[3] NVIDIA, cuBLAS Library User Guide.
http://docs.nvidia.com/cuda/pdf/ CUBLAS_Library.pdf.

[4] NVIDIA, Profiler User’s Guide. http://docs.nvidia.com/cuda/pdf/
CUDA_Profiler_Users_Guide.pdf

[5] J.R. Bunch, C.P. Nielsen, and D.C. Sorensen, "Rank-one modification
of the symmetric eigenproblem," Numer. Math, vol. 31, pp. 31–48,
1978.

[6] J.J.M. Cuppen, A divide and conquer method for the symmetric
tridiagonal eigenproblem," SIAM J. Sci. Stat. Comp, vol. 2, pp. 139–
154, 1981.

[7] M. Gu, S.C. Eisenstat, A stable and efficient algorithm for the rank-one
modification of the symmetric eigenproblem, SIAM Journal on Matrix
Analysis and Applications, 15(4), 1994, 1266-1276

[8] G. Baker, "Accelerated bisection techniques for tri and quintadiagonal
matrices," Int. J. for Num. Meth in Eng., pp. 203–218, 1992.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 623



[9] R.H. Barlow nd D.J. Evans, "A parallel organization of the bisection
algorithm," Comp. J. , vol. 22, pp. 267–269, 1977.

[10] C. Vomel, S. Tomov and J. Dongarra, Divide and conquer on hy-
brid GPU-accelerated multicore systems, SIAM Journal on Scientific
Computing, 34(2), 2012, C70-C82

[11] W. Barth, R.S. Martin and J.H. Wilkinson, "Calculation of the
eigenvalues of a symmetric tridiagonal matrix by the bisection method,"
Numer. Math., vol. 9, pp. 386–393, 1967.

[12] E. Anderson, et al. LAPACK User’s Guide, 3rd ed. SIAM, 1999.
[13] D. S. Watkins, Fundamentals of Matrix Computations (New York:

John Wiley and Sons Incs., 1991).
[14] H.J. Bernstein and M. Goldstein, "Parallel implementation of bisection

for the calculation of eigenvalues of tridiagonal matrix," Computing,
vol. 37, pp. 85–91, 1986.

[15] V. Volkov and J. Demmel, "Using GPUs to accelerate the bisection
algorithm for finding eigenvalues of symmetric tridiagonal matrices,"
Technical Report, No. UCB/EECS-2007-179, 2007.

[16] C. Lessig, "Eigenvalue computation with CUDA," The Nvidia web-
site. [Online]. Available: http://developer.nvidia.com/cuda-zone

[17] J. Demmel. Applied Numerical Algebra SIAM, 1997.
[18] NVIDIA, "CUDA Toolkit v6.0" The Nvidia website. [Online]. Avail-

able: http://docs.nvidia.com/cuda
[19] NVIDIA, CUDA C Programming Guide.

624 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



Use of the SCIDDICA-SS3 model for predictive mapping of debris flow 
hazard: an example of application in the Peloritani Mountains area 

 

V. Lupiano1, D.J. Peres2, M.V. Avolio3, A. Cancelliere2, E. Foti2,  

W. Spataro3, L.M. Stancanelli2, S. Di Gregorio3 
1Dept. of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy 

2Dept. of Civil Engineering and Architecture, University of Catania, viale Doria 6, 95125 Catania, Italy 
3Dept. of Mathematics and Computer Science, University of Calabria, 87036 Rende, Italy 

 

Abstract: Extreme rainfall events and subsequent triggering 

of shallow landslides hit many regions worldwide, and 

climatic change increases the frequency of these 

phenomena, so that there is an increased need of 

appropriate risk mitigation tools. SCIDDICA-SS3 is a semi-

empirical Cellular Automata (CA) model for simulating the 

run-out of debris/mud flows. In this study, the model was 

initially calibrated by comparison with real events occurred 

in the Giampilieri area, of the Peloritani Mountains (Sicily) 

which was devastated on October 1st, 2009, by more than 

500 landslides, mostly debris flows, caused by extreme 

rainfall, causing more than  30 causalities and severe 

damage to roads, railway and buildings. Satisfying 

simulations of the six main debris flows in the Giampilieri 

area with appropriate values of SCIDDICA-SS3 

parameters, enables to transfer results in order to assess 

hazard scenarios in areas with similar geo-physical 

features. In particular, the Messina Sud tollgate of A18 

highway (Sicily, Italy) is an example case of CA simulation  

for hazard analysis, with detection of subareas of highest 

risk  and their possible protection works. 

Keywords: Debris flows, Cellular Automata, Modelling and 

Simulation, Natural Hazard. 

 

1 Introduction 
 The frequency of meteorological extreme catastrophic 

events has increased due to climatic change. Modelling 

complex dangerous phenomena by computer simulation can 

provide new tools, which may be an aid for natural hazard 

risk mitigation. On October 1st, 2009, the Peloritani 

Mountains (NE Sicily) was hit by an extreme 

meteorological event: 7 hours of high intensity rainfalls 

have triggered more than 500 landslides, mostly debris 

flows; catastrophic proportions were reached with 37 deaths 

and thousands of evacuated people in Messina area.  

 Debris flows are very complex systems, which involve 

many interacting processes; in summary, they start from soil 

detachments, that originate surface gravitational flows with 

mutable rheological properties, furthermore their passing 

causes soil erosion with inclusion of various matter and 

induction of secondary detachments. The complex dynamics 

of such phenomenon may be described in terms of local 

interactions [1], [2]. 

 Data about evolution of events of debris flows are 

usually partial and their reproduction in laboratory by mock-

up models cannot satisfy completely demands about 

variation of physical quantities. This limit of knowledge is 

important for conceiving predictive tools. Models based on 

PDE (Partial Differential Equations), that are related to 

fluid-dynamics equations and that approximate opportunely 

the various typologies of debris flow, were developed 

together with codes for computer simulation, e.g., 

TITAN2D [3], DAN3D [4], etc. 

 An alternative method to PDE methodologies is 

represented by Cellular Automata (CA), a computational 

paradigm for modelling complex dynamical systems, 

evolving mainly on the base of local interactions [5]. CA 

approach is based on the definition of “simple”, but 

fundamental local rules, that have to observe conservation 

physical laws in the context of space and time discretization. 

Such rules have to capture the significant interacting 

processes. The phenomenon evolution “emerges” by local 

interactions: simple rules can generate very complex 

realistic behaviors. Macroscopic Cellular Automata (MCA), 

are an extension of classical CA, were developed in order to 

model many natural events macroscopic that seem difficult 

to be modelled in other CA frames, e.g. the lattice 

Boltzmann method, [6], [7], just because they take place on 

a large space scale.  

SCIDDICA-SS3 [8], one of the last models of the 

SCIDDICA family, was applied for simulating 2009 debris 

flows in Giampilieri after an accurate examination of 

geological data of the zone, studies about pre- and post- 

event situations, data and features of landslides. Good 

simulations of past events permit reliable applications of the 

model, in areas with similar geomorphological and soil 

conditions, for hypothetical landslide detachments, 

according to accurate theoretical and field studies. This was 

performed for the small sensible area around the Messina 

tollgate of A18 highway in Sicily. An outline of 

computational approach together with basic characteristics 

of the model SCIDDICA-SS3 is introduced in the next 

section; the third section reports essential information about 

the model validation for zones with same geophysical 

features of Giampilieri Superiore area: preliminarily the 

geological setting, then the crucial simulation of debris flow, 

that flooded the village and permitted to tune parameters for 

characteristics of this area. The successive section examines 

the geophysical characteristics of area around the Messina 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 625



Sud tollgate of A18 and with hypothesized detachment 

points, from which landslides could be generated, and the 

results of simulations of possible debris flows reported. 

Eventually, a comparison with FLO-2D [9] simulations is 

performed, while at the end some comments and 

conclusions are considered. 

 

2. SCIDDICA-SS3 Approach 
 A CA can intuitively be seen as a regular tessellation, 

i.e. a space, partitioned in equal cells, each one embedding 

an identical input/output computing unit. Each cell is 

characterized by its state. Input for each cell is local and is 

given by the states of the neighboring cells, where the 

neighborhood conditions are given by a pattern invariant in 

time and space. At time 0, cells are in arbitrary states (initial 

conditions) and the CA evolves changing simultaneously the 

state at discrete times (steps), according to local rules 

(transition function), that are invariant in time and space. 

 CA modelling and simulating real complex systems 

implies that a time-space correspondence must be explicitly 

established between the model and the real world in order to 

compare phenomenon development with simulation 

progress: the cell corresponds to a precise space portion, the 

transition step corresponds to a time interval. Moreover, the 

cell state accounts for components, the “sub-states”, that are 

related to various characteristics of the space portion and the 

transition function, that accounts for a complexity of 

interrelating processes of similar or different nature is 

composed by “elementary processes”.  

 SCIDDICA-SS3 was developed by adopting the 

methodology of Multicomponent (or Macroscopic) Cellular 

Automata (MCA), that includes the previous instances and 

considerations. MCA approach addresses complex systems, 

evolving mainly on the base of local interactions, especially 

macroscopic phenomena that need many components both 

for the states and the transition function in order to describe 

local processes constituting the overall phenomenon.  

 A MCA step consists in the application of an ordered 

sequence of the elementary processes, every elementary 

process implies the MCA state updating [10], [11]. Besides, 

some parameters (e.g. cell dimension, temporal 

correspondence of a MCA step, etc.) are global to all the 

cellular space. Some model parameters, by taking into 

consideration the physical/empirical features of the complex 

system, have to be opportunely “tuned” for reproducing 

correct dynamical behaviors of the phenomenon. Sub-states 

permit to operate in three effective dimensions by two-

dimensions MCA, if all the quantities concerning the third 

dimension may be expressed as sub-states.  

 At the beginning of the simulation, cell states are 

initialized. By simultaneously applying the transition 

function, τ, to all cells and at discrete steps, states are 

changed and the evolution of the phenomenon can be 

simulated. 

 

2.1 SCIDDICA-SS3 Formal Outline 

SCIDDICA-SS3 is a hexagonal MCA model, where 

the third dimension is included into the set of states, 

formally defined as: 

 

SCIDDICA-SS3= <R, X, S, P, >                                      (1) 

 

• R is the set of regular hexagons covering the region, where 

the phenomenon evolves.  

• X identifies the geometrical pattern of cells, which 

influence any state change of the central cell: the central 

cell (index 0) itself and the six adjacent cells (indexes 

1,..,6). 

• S is the finite set of states of the finite automaton, 

embedded in the cell; it is equal to the Cartesian product of 

the sets of the considered sub-states: 

 

S = SA  SD  STH  SX  SY  SKH  SMx  SMy SE
6  SXE

6      

SYE
6  SKHE

6SI
6 SXI

6 SYI
6 SKHI

6 SD                             (2) 

 

where: 

o SA is the cell altitude, SD is the maximum depth of detrital 

cover, that could be transformed by erosion in landslide 

debris; 

o STH is the average thickness of landslide debris inside the 

cell, SX and SY are the co-ordinates of the debris 

barycentre with reference to the cell centre, SKH is the 

debris kinetic head, SMx and SMy; are the two components 

of the debris momentum. 

o SE is the part of debris flow, the so called “external 

flow”, (normalised to a thickness) that penetrates the 

adjacent cell from central cell, SXE and SYE are the co-

ordinates of the external flow barycentre with reference 

to the adjacent cell centre, SKHE is the debris kinetic 

head, (six components for all the sub-states); 

o SI is the part of debris flow toward the adjacent cell, the 

so called “internal flow”, (normalised to a thickness) 

that remains inside the central cell, SXI and SYI are the co-

ordinates of the internal flow barycentre with reference 

to the central cell centre, SKHI is the debris kinetic head, 

(six components for all the sub-states); 

o SS accounts for some soil conditions as the initial 

detachment area or transepts of detachment propagation. 

• P is the set of the global physical and empirical parameters, 

which account for the general frame of the model and the 

physical characteristics of the phenomenon:  

 

P={pa, pt, padh, pfc, ptd, ped, pmt, ppe}                                    (3) 

 

where: 

o pa is the cell apothem;  

o pt is the temporal correspondence of a CA step; 

o pfc is the friction coefficient for debris outflows; 

o ptd, ped are the parameters for energy dissipation by 

turbulence and by erosion; 

o ppe is the progressive erosion parameter;  

626 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



o padh is the adhesion values, i.e. the debris thickness, that 

may not be removed; 

o ptmt, is the activation threshold of the mobilisation for the 

transepts.  

• : S7S is the cell deterministic state transition. Four 

elementary processes are considered: 

o altitude, kinetic head, momentum and debris thickness 

variation by detrital cover mobilization; 

o kinetic head  and momentum variation by turbulence 

dissipation; 

o debris outflows (thickness, barycentre co-ordinates, 

kinetic head) determination and their shift deduced by 

the motion equations; 

o composition of debris inside the cell (remaining debris 

more inflows) and determination of new thickness, 

barycentre co-ordinates, kinetic head, momentum. 

 

3. Giampilieri Superiore debris 
flows simulations 
 Giampilieri Superiore village is located on the eastern 

slopes of the Peloritani Mountains on left side of 

Giampilieri River (Fig. 1). In this area, we find in 

outcropping the Kabilo-Calabride Units, formed by 

continental crust fragments derived from the European 

margin, and in particular by crystalline-schistose rocks with 

different metamorphic degree. A colluvium with thickness 

varying from some tens of centimeters to a few meters is 

detected on this altered substrate. The slopes have high 

gradients (30-60 degree) and are crossed by numerous, 

generally short path, streams with torrential regime. 

 
Fig. 1: October 2009 debris flows occurred in Giampilieri Superiore, 

obtained by interpretation of aerial photo. 

 The inhabited is placed on an alluvial fan at the base of 

Southern-East slope of Puntale S. Anna, and is crossed by 

various creeks, tributaries of the Giampilieri stream (Fig. 1). 

All of them are characterized by small catchments with 

extension ranging from 0.03km2 to 0.1km2 [12]. The 

riverbeds of these creeks, in the urban core, have been 

turned into streets with few or completely absent hydraulic 

works for regimentation and water disposal.  

 On the 1st October 2009, in the afternoon, fast moving 

debris flow phenomena which have produced most of 

damage on Giampilieri Superiore village (Fig. 1). Mud and 

debris, channeled in the streets (once river beds), inundated 

the urbanized area. The severity of the rainfall event was not 

the only cause of the disaster. A simple analysis of the 

phenomenon has to take into account also for a general 

neglected care of the lands beside the urbanized area once 

very well planted and managed from a hydraulic viewpoint 

and a diffused inadequacy of the urban drainage network 

[13]. In fact, for the alluvial case of Giampilieri, as also 

stressed by Ardizzone et al. [14], abandoned terraced slopes 

lacking proper drainage, and unmaintained dry walls were 

also related to slope failures.  

Sopra Urno debris flow caused the largest number of 

casualties and damages, because the flows crossed the 

village (Sopra Urno creek became Chiesa Street in the urban 

section).  

 
Fig. 2: a) comparison between Sopra Urno creek debris flows and 

simulated event; b) Regolith thickness used for simulation; c) 

maximum velocities reached by flows; d) maximum detrital 

thickness. 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 627



In such case, the mutual interaction between different, 

nearly simultaneous, debris flows produced dramatic effects 

in terms of loss of human lives and damages of buildings 

close to the hill (Fig. 1) and along the principal streams that 

cross the town. 

This debris flow was simulated by SCIDDICA-SS3 

model, outlined in the previous sections. Hexagonal cells, 

with apothem equal to 1m, were adopted. We used for 

simulation a pre-event DEM (Digital Elevation Model) with 

2m cell size and the debris cover thickness map available for 

the area (Fig. 2b). The simulation describes (Fig. 2a) quite 

well the debris run-out, in particular, in high zone of slope. 

In the urbanized area, differences are noted with path of the 

real event, especially in lateral streets, but the result can be 

considered acceptable. The likelihood between the area 

involved by the real landslide and the area involved in the 

simulation can be measured by the fitness function: 

 

f = ((RS)/(RS))                                                            (4) 

 

where R is the set of cells interested by the real landslide and 

S is the set of cells interested by the simulated landslide. 

This function returns values from 0 (completely wrong 

simulation) to 1 (perfect match); values greater than 0.7 are 

considered good results. Comparison of simulated and real-

event (Fig. 2a) return a value of fitness f = 0.74.  

  The maximum velocities reached by simulated flows 

(Fig. 2c) are high, as expected, in the steeper areas, and 

decrease gradually at the outlet in downstream. Figure 2d 

shows the maximum detrital thicknesses during the 

simulation.   

In order to validate the model, the same set of 

parameters was used to simulate other five debris flow run-

out in the nearby catchments [15]. In all considered cases, 

the application of equation (4) return values between 0.70 

and 0.78, and the path of the flows is adequately reproduced. 

Scenarios of A18 tollgate 
 The SCIDDICA-SS3 model, calibrated and validated 

on Giampilieri debris flows, was applied in order to produce 

susceptibility scenarios in the areas around A18 highway, 

Messina Sud tollgate, which presented similar soil 

characteristics and morphological conditions of slopes. This 

is a necessary condition in order to apply in other areas the 

SCIDDICA-SS3 validated parameters. 

 The carriageway is protected by a wall high about 

1.50 m, in correspondence of the tollgate is located a 

drainage channel that interrupts the continuity of the wall 

(Fig. 3). This introduces a source of risk for the highway. In 

fact, the tollgate area has been interested several times by 

debris inundation, due also to lack of appropriate maintaince 

of the channel. In fact, boulders and/or shrubs ripped along 

the path, from the flows, could obstruct the channel favoring 

the overflow of debris.  

A pre-event DEM with 2m cell size and for debris 

cover a uniform thickness of 0.5 m was used for simulation. 

This value seems to produce results that are consistent with 

the frequency of observed events.  

 

 
Fig. 3:  Two views of Messina Sud tollgate area of A/18 highway. 

 
Fig. 4: Susceptibility scenarios for 4 (a) and 5 (b) rain return 

period.  

A/18 HIGHWAY 

a) 

 

 

 

 

 

 

 

 

 

b) 

 

 

A/18 HIGHWAY 

DRAINAGE 

CHANNEL  

DRAINAGE 

CHANNEL 

MESSINA SUD 

TOLLGATE 

628 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



Sources were identified for debris flow triggering return 

period of 4 and 5 years. These are obtained through the areas 

of probable detachments, i.e., analysis of precipitation for 

the determination of the rainfall Intensity-Duration-

Frequency curves (IDF) [12], [16], [17]. In particular, the 

probabilistic rainfall analysis provides the rainfall input  

scenarios of different return periods, which are then used as 

input [16] to a model based of the USGS TRIGRS model to 

determine the corresponding trigged areas. TRIGRS [18], 

[19] developed for analyzing shallow landslide triggering is 

based on an analytical solution of linearized forms of the 

Richards’ infiltration equation and an infinite-slope stability 

calculation to estimate the timing and locations of slope 

failures.  

In Fig. 4a and 4b the results of simulations are shown, 

respectively for return period of 4 years and 5 years. 

Simulations (Fig. 4a and Fig. 4b) show that the flow is 

channeled and the debris invades the highway carriageway 

at the lowest point of the morphology, i.e., the drainage 

channel.  

Fig. 5: susceptibility scenarios for 4 (a) and  5 (b) rain return period 

with insertion of a wall. 

In order to verify whether the presence of a higher wall 

could prevent the invasion of the highway it was included in 

DEM a topographical alteration along the previous wall, that 

is raised by 2 meters. The added wall is imposed as 

“indestructible” in our simulations. Fig. 5a and 5b show the 

results of the simulations for the same return periods; such 

scenarios account for topographical alteration. The 

simulations show that such a wall is able to stem the flow 

completely for 4 years return period avoiding highway 

invasions and/or damage, while only small quantities of 

debris overcome the wall at the lowest point in the case of 5 

years return period. 

Preliminary simulations were performed by Flo-2D 

[16], [17], using the same detachment points and without 

topographical alteration as in some SCIDDICA-SS3 

simulations. Fig. 6 synthetizes the results with scenarios 

respectively of return periods of 4, 5, 10, 25 and 50 years. 

Comparison between simulations of SCIDDICA-SS3 and 

FLO-2D evidence a weak point, where debris flows could 

invade the highway. More severe scenarios were derived by 

FLO-2D.  

 
Fig. 6: FLO-2D scenarios. 

Conclusions 

 An example of application of the SCIDDICA-SS3 

model for predictive hazard mapping has been presented. 

The method we proposed starts with the calibration of the 

model, based on observed events. In our case, this has been 

carried out by simulating at best the debris flows occurred 

on October 1st, 2009 at Giampilieri Superiore.  

 An accurate study was performed in order to compare 

data of different sources and to obtain the most accurate 

reproduction of the observed event. The model behaviour 

was satisfactory in terms of reproducing global dynamic of 

the events, such as velocity, debris flow depth, thickness of 

deposit, and, in particular, the path of debris flows, that 

shown a good correspondence with the real events. Once the 

model has been calibrated, it has then been applied for 

predictive mapping in areas that may be considered similar 

from a geo-physical standpoint. In particular, an application 

was carried out to a creek which created risk to the Messina 

Sud tollgate of highway A/18 with very similar geological 

characteristics. On the basis of probabilistic rainfall analyses 

about hypothetical and probable detachment areas, source 

points were assessed for rain return period of 4 and 5 years.  

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 629



 Results of this complex study about the dangerous area 

of A18 Messina Sud tollgate has proved that the model is an 

aid for detection of potential debris-flow risk scenarios. The  

top of the wall, that is overlooking the drainage channel, is 

discontinuous in height with respect to the floor of the 

highway. The lowest point, where debris flows invade the 

highway in the simulation scenarios, corresponds to 

drainage channel. This is the weak point because a largest 

flow could be not drained and could pour into the tollgate 

zone. The wall would be opportunely extended and raised 

(or a new wall on the edge of highway) in order to protect 

the highway, without undermining the efficiency of draining 

channel. These are our concerns that are based on the 

interpretation of the scenarios developed by SCIDDICA-

SS3, together with more general considerations that derive 

from site surveys. 

Acknowledgments - This research was funded by PON 

Project No. 01_01503 “Integrated Systems for 

Hydrogeological Risk Monitoring, Early Warning and 

Mitigation Along the Main Lifelines”, CUP 

B31H11000370005, in the framework of the National 

Operational Programme for “Research and 

Competitiveness” 2007-2013. 

References 
[1] D. D’Ambrosio, S. Di Gregorio, G. Iovine, V. 

Lupiano, L. Merenda, R. Rongo, W.Spataro. Simulating the 

Curti-“Sarno debris flow through cellular automata: the 

model SCIDDICA (release S2)”, Physics And Chemistry Of 

The Earth, 2002, vol. 27 (36); p. 1577-1585, ISSN: 1474-

7065. 

[2] G. Iovine, S., Di Gregorio, V. Lupiano. “Debris Flows 

susceptibility assessment through Cellular Automata 

modeling: an example from the 15-16 December 1999 

disaster at Cervinara and San Martino Valle Caudina 

(Campania, southern Italy)”, Natural Hazards And Earth 

System Sciences, 2003, vol. 3; p. 457-468, ISSN: 1561-

8633. 

[3] S. McDougall, O. Hungr. “A model for the analysis of 

rapid landslide motion across three-dimensional terrain”, 

Can. Geotech. J., Vol.41, 2004, pp. 1084–1097. 

[4] E.B. Pitman, C.C. Nichita, A.K. Patra, A.C. Bauer, 

M.F. Sheridan, M. Bursik. “Computing Granular 

Avalanches and Landslides ”, Physics of Fluids, Vol.15, 

No.12, 2003, pp. 3646-3638. 

[5] B. Chopard, M. Droz. «Cellular Automata Modeling of 

Physical Systems», Cambridge University Press, 2005. 

[6] G.R. McNamara, G. Zanetti. “Use of the Boltzmann 

equation to simulate lattice-gas automata”; Physical Review 

Letters 61, 2332e2335, 1988. 

[7] S. Succi, R. Benzi, F. Higuera. “The lattice Boltzmann 

equation: a new tool for computational fluid dynamics”; 

Physica 47 (D), 219-230, 1991. 

[8] M.V. Avolio, V. Lupiano, P. Mazzanti, S. Di Gregorio. 

“SCIDDICA-SS3: A New Version of Cellular Automata 

Model for Simulating Fast Moving Landslides”, J. 

Supercomput., Vol. 65, 2013, pp. 682-696. 

[9] J. S. O'Brien, P. Y. Julien, and W. T. Fullerton. “Two-

dimensional water flood and mudflow simulation”, J. 

Hydraul. Eng., 119, 244-261, 1993. 

[10]  S. Di Gregorio, R. Serra. “An empirical method for 

modelling and simulating some complex macroscopic 

phenomena by cellular automata”; Future Generation 

Computer Systems, Vol. 16, 259–271, 1999. 

[11]  D. D'Ambrosio, S. Di Gregorio, S. Gabriele, and R. 

Gaudio, 2001. “A Cellular Automata Model for Soil Erosion 

by Water”. Physics and Chemistry of the Earth, 2001, Part 

B, 26(1), 33-40. 

[12] L.M. Stancanelli, V. Bovolin, E. Foti. “Application of 

a dilatant - viscous plastic debris flow model in a real 

complex situation, River, Coastal and Estuarine 

Morphodynamics”, RCEM2011, Tsinghua University Press, 

Beijing, 2001, pp 45-64. 

[13] B. Manfrè, C. La Rocca, V. Nicolosi, E. Foti, L. M. 

Stancanelli. “Socially participated decision making process 

for hydrogeological risk mitigation: Giampilieri, 1st October 

2009”, Comprehensive Flood Risk Management Research 

for Policy and Practice, Edited by Timo Schweckendiek 

CRC Press 2012 Print ISBN: 978-0-415-62144-1eBook 

ISBN: 978-0-203-37451-1 DOI: 10.1201/b13715-173. 

[14] F. Ardizzone, G. Basile, M. Cardinali, N. Casagli, S. 

Del Conte, C. Del Ventisette, F. Fiorucci, F. Garfagnoli, G. 

Gigli, F. Guzzetti, G. Iovine, A.C. Mondini, S. Moretti, M. 

Panebianco, F. Raspini, P. Reichenbach, M. Rossi, L. 

Tanteri, O. Terranova. “Landslide inventory map for the 

Briga and the Giampilieri catchments, NE Sicily, Italy”, 

Journal of Maps, 8 (2), 2012. pp. 176-180. 

[15] V. Lupiano, M.V. Avolio, S. Di Gregorio, D.J. Peres, 

L.M. Stancanelli. “Simulation of 2009 debris flows in the 

Peloritani Mountains area by SCIDDICA-SS3”, Proceeding 

of 7th WSEAS International Conference on Engineering 

Mechanics, Structures, Engineering Geology, Salerno 

(Italy), 2014pp. 53-61, ISBN: 978-960-474-376-6. 

[16] L. M. Stancanelli, D. J. Peres, L. Cavallaro, A. 

Cancelliere, E. Foti. “Debris flow hazard assessment by 

integrated modeling of landslide triggering and propagation: 

application to the Messina Province, Italy”, AGU Fall 

meeting Abstracts, 15-18 December 2014, San Francisco, 

2014.  

[17] L.M. Stancanelli, G. Rosatti, L. Begnudelli, A. 

Armanini, E. Foti. “Single or Two-Phase Modelling of 

Debris-Flow? A Systematic Comparison of the Two 

Approaches Applied to a Real Debris Flow in Giampilieri 

Village (Italy)”, Landslide Science and Practice, Vol.3, pp. 

277-283, Springer-Verlag Berlin, 2013. 

630 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



[18] R. L. Baum, W. Z. Savage, J. W and Godt. “TRIGRS – 

A FORTRAN program for transient rainfall infiltration and 

grid-based regional slope stability analysis, version 2.0”, US 

Geological Survey Open-File Report 2008-1159, 75 pp. 

2008. 

[19] R. L. Baum, J.W. Godt, and W. Z. Savage. “Estimating 

the timing and location of shallow rainfall-induced 

landslides using a model for transient, unsaturated 

infiltration”, Journal of Geophysical Research, Earth 

Surface. 2010, v. 115, F03013, doi:10.1029/2009JF00132. 

 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 631



632 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



SESSION

LATE BREAKING PAPERS: PARALLEL AND
DISTRIBUTED PROCESSING TECHNIQUES AND

APPLICATIONS

Chair(s)

TBA

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 633



634 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



VoxSurf: a Voxelized macromolecular Surface calculation program

Sebastian Daberdaku, Carlo Ferrari

Department of Information Engineering, University of Padova, Via Gradenigo 6/B, 35131 Padova, Italy

Abstract— We introduce VoxSurf, a Voxelized macromolecu-

lar Surface calculation program, which can produce discrete

representations of molecules at very high resolutions. By em-

ploying compact data-structures and implementing a spatial

slicing protocol, the proposed tool can calculate the three

main molecular surfaces at high resolutions even when the

available memory is limited.

The generation of the Solvent Excluded surface is achieved

by adopting an approximate Euclidean Distance Transform

algorithm based on a data-structure called Hierarchical

Queue. We show that the distance map values need to be

calculated only for a small subset of the overall voxels rep-

resenting the macromolecule by exploiting the geometrical

relationship between the Solvent Excluded and the Solvent

Accessible surfaces.

A parallel implementation of the slicing procedure is also

proposed and discussed.

Keywords: macromolecular surface, protein surface, high-
resolution surface, voxelization, Euclidean Distance Transform

1. Introduction
Different representations of the molecular surface can

capture diverse aspects of the three-dimensional geometry
of proteins and macromolecules in general. The currently
most used methodologies are: the van der Waals surface
(vdW) [1], the Solvent-Accessible surface (SAS) [2] and
the Solvent-Excluded surface (SES) or Connolly surface [3].
Since surface complementarity drives protein interactions,
accurate determination of protein surfaces is essential for un-
derstanding their biological roles in physiological processes.
As a consequence, protein surface calculations from given
three-dimensional structures have been used extensively in
modern molecular biology studies, and different methods
to compute the three macromolecular surfaces have been
proposed [3–9].

Among the explicit representations, the voxelized ones
(also known as dot-surface or grid-based representations) are
the most simple, and yet widely appreciated for their accu-
racy and applicability in various contexts. The Katchalski-
Katzir algorithm [10] is one of first employments of this kind
of surface representations in the modeling of the protein
docking process. Voxelized protein surfaces are currently
being employed in descriptor-based protein docking and
protein shape comparison. Kihara et al. propose protein
docking, shape comparison and interface identification meth-
ods based on 3D Zernike descriptors (3DZD) [11–18], which

are calculated over circular surface patches of voxelized
macromolecular surfaces. In [19], dot-surfaces are used in
the development of an invariant descriptor for the charac-
terization of protein surfaces, suitable for various analysis
tasks, such as protein functional classification or search and
retrieval of protein surfaces over a large database. Invariant
surface fingerprints have been introduced in [20] in order
to compare local protein surface similarities rapidly and
efficiently. The creations of these fingerprints employs a dot-
surface representation of the molecular surface. The vox-
elized representation of a molecular surface can describe the
molecule’s flexibility [15, 21] and physicochemical property
values, such as electrostatic potentials or hydrophobicity
[22]. Grid representations of protein surfaces have also been
used in cavity detection, binding-pockets identification and
evaluation techniques [23–26].

All the techniques and algorithms employing the vox-
elized representation of the molecular surface calculate the
latter on their own, usually from parametric surface rep-
resentations or from other explicit representations such as
triangle mesh surfaces. The triangulated protein surface is
placed on a 3D grid, and the voxels (grid points) intersected
by the mesh faces are marked as occupied (typically with
1, 0 otherwise). To the extent of our knowledge, there are
no tools available which can produce a voxelized molecular
surface representation starting from the data contained in
the molecule’s Protein Data Bank (PDB) [27] file. Thus,
the idea of developing a specific tool for the calculation of
voxelized macromolecular surfaces at arbitrary resolutions,
starting from the macromolecular structure data derived from
X-ray diffraction and NMR studies (PDB data).

In this paper we describe VoxSurf, a Voxelized macro-
molecular Surface calculation program, which can produce
discrete representations of molecules at very high resolutions
starting from the three-dimensional structural information
given by Protein Data Bank entries. By employing compact
data-structures for the 3D grid representation, and imple-
menting a spatial slicing strategy, this tool can calculate
the three main molecular surfaces at very high resolutions
with very little memory usage. The tool is available at:
http://www.dei.unipd.it/∼daberdak/VoxSurf.

2. Methods
The first step of the proposed methodology consists in

reading the three-dimensional representation of a macro-
molecule from its corresponding Protein Data Bank en-
try. The atomic coordinates of each atom composing the

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 635

http://www.dei.unipd.it/~daberdak/VoxSurf


macromolecule are extracted and stored in an apposite
data-structure. The algorithm calculates the axis-aligned
bounding-box enclosing the whole molecule by determining
the minimal and maximal coordinates of each of the atoms
in the molecule.

Given a desired grid resolution parameter, the dimen-
sions of the voxel grid which will contain the molecule,
are calculated. All atomic coordinates previously imported
are translated, scaled and quantized to the new coordinate
system defined by the voxel grid: each atom center is mapped
in its corresponding voxel in the voxel grid.

By implementing a space-filling algorithm, all voxels
surrounding a given atom center, are marked as occupied
by that atom if their distance from its center is less or
equal to the corresponding atomic radius. Based on the
desired surface (SAS, vdW or SES), different atomic radii
values must be used. After all the atoms composing the
macromolecule have been mapped into the grid, we obtain
a voxelized representation of what is known as CPK model
[28] (also known as calotte model or space-filling model).

To obtain the van der Waals or the Solvent Accessible
surfaces, we simply extract the surface voxels from the
voxelized representation of the CPK volumetric model of the
macromolecule. The Solvent Excluded surface is trickier to
calculate because it includes the re-entrant surface portions.
We have implemented three different algorithms to calculate
such surface. The first and most simple one is based on
the rolling-sphere representing the solvent molecule, which
“probes” the molecular surface. The other two implementa-
tions are based on the Euclidean Distance Transform (EDT)
algorithm for surface smoothing. They differ in the data-
structures employed, i.e. one uses speed-optimized data-
structures, instead of the memory-optimized structures im-
plemented in the other.

The resulting voxelized surface is exported in an output
file. We have chosen the Point Cloud Data file format (*.pcd)
[29] of the Point Cloud Library (PCL) [30], because of
its simplicity, compactness and compatibility with different
scientific visualization programs.

2.1 The voxel grid

In this work we employ cubic voxels only, and the
voxel grid is a regular axis-aligned cubic grid in the three-
dimensional space. The resolution of the grid is specified in
terms of a floating point parameter pres, so that the number
of voxels per cubic Ångström is given by p3res.

We have defined and implemented a compact representa-
tion for the voxel grid, by tightly packing multiple Boolean
variables in a single CPU word (32 or 64 depending on the
CPU architecture).

2.2 Macromolecular Surfaces

In the CPK volumetric model a molecule is represented
as a set of spheres that can overlap, each sphere representing

a single atom in the molecule. The sphere representing an
atom will have a radius equal to the van der Waals radius
of that particular atom. The union of these spheres gives
the CPK model for the molecule. For proteins and other
macromolecules it is clear that the most of their van der
Waals surface is buried in the inside of the molecules and
is not accessible to the solvent or possible ligands. Thus
the need to define the Solvent Accessible and the Solvent
Excluded surfaces.

The Solvent Accessible surface (SAS) is defined as the
geometric locus of the center of a probe sphere (representing
the solvent molecule) as it rolls over the Van der Waals
surface of the molecule.
The Solvent Excluded surface (SES) (or molecular surface

Fig. 1: The thick black line represents the van der Waals
surface while the dashed one represents the SAS.

or Connolly surface) is defined as the locus of the inward-
facing probe sphere as it rolls over the Van der Waals
surface of the molecule. This surface can be considered as a
continuous sheet consisting of two parts: the contact surface
and the re-entrant surface. The contact surface is part of the
van der Waals surface that is accessible to a probe sphere.
The re-entrant surface is the inward-facing surface of the
probe when it touches two or more atoms.

Fig. 2: The dashed line represents the SAS, the thick one
represents the SES, while the two small circles drawn in
gray represent the solvent probe-spheres.

There is a clear relation between the SAS and the SES,
as the Solvent Accessible surface is displaced outward from
the Solvent Excluded one by a distance equal to the probe
radius.

Given the vdW or SAS voxelized volumetric representa-
tion of a macromolecule inside a voxel grid, it is easy to

636 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



derive its surface representation. The Solvent Excluded sur-
face can be derived from the SAS exploiting the geometric
relation between them, as the latter is displaced outward
from the Solvent Excluded one by a distance equal to the
probe radius.

Macromolecules can have solvent-excluded cavities and
voids, which might generate spurious surfaces inside the
real molecular surface. To overcome this issue we have
implemented a simple three-dimensional flood-fill algorithm,
which “colors” the voxels on the outside of the most external
protein surface. The “coloring” process starts from one of
the eight vertices of the voxel grid.

Algorithm 1 Flood-fill

queue<voxel> Q← ∅ ! create an auxiliary empty queue
v0 ← starting voxel
Q.push(v0)
while not Q.empty() do

voxel v = Q.front()
Q.pop()
for all neighbors n of v do

if n is not occupied by any atom then
color n
Q.push(n)

end if
end for

end while

2.3 The Euclidean Distance Transform Method

In this section we will describe a method for the Solvent
Excluded Surface calculation based on the Euclidean Dis-
tance Transform (EDT). The employment of the Euclidean
Distance Transform for macromolecular surface calculation
was first introduced in [31].

A distance transform (also known as distance map or
distance field), is a derived representation of a digital image
(usually a binary image). Distance maps are images where
the value of each voxel (pixel if the image is 2D) of the
foreground is the distance to the nearest voxel (pixel) of
the background. A distance transform is qualified with the
chosen metric. For example, one may speak of Euclidean
distance transform, if the underlying metric is Euclidean
distance.

Let I be a generic binary image, let S be the set of all
background voxels of I (the set of all voxels set to 1) and
let Sc be the set of all foreground voxels of I (the set of
all voxels set to 0). Let d(x, y) be the Euclidean distance
between voxels x and y, where each voxel is identified by
three integer coordinates. The Euclidean Distance Transform
of I , EDT (I), is a digital (grayscale) image, with the
same dimensions as I , where each voxel v = (xi, yi, zi) in
EDT (I) contains the distance of voxel v∗ = (xi, yi, zi) ∈ I

from its nearest voxel in S, i.e. the distance from the nearest
background (surface) voxel of the corresponding voxel in I .
Clearly, all voxels of EDT (I) whose corresponding voxels
in I belong to S have a distance value of 0.

Let image I be the voxel grid, and the SAS the set of
all background voxels S, and let us consider the EDT of
the voxel grid EDT (SAS). Because the Solvent Accessible
surface is displaced outward from the Solvent Excluded one
by a distance equal to the probe radius, it is clear that the
SES can be obtained from the EDT (SAS) by extracting
all the voxels inside the Solvent Accessible volume with a
distance map value equal to the probe radius.

The generation of distance maps using the Euclidean
distance metric is a complex problem and several distance
transform algorithms have been proposed [32, 33], offering
various trade-offs between computation time and quality of
the approximation of the Euclidean metric. Reviews on the
different algorithms and techniques for the EDT calculation
can be found in [34–36].

2.3.1 Region-growing EDT

The first observation about the EDT-based method is that
we do not need the distance values for the whole voxel grid,
but only for a subset of the voxels composing the Solvent
Accessible volume. In particular, we only need the values
of the ones inside the Solvent Accessible volume, which
have a distance value smaller or equal to the probe-sphere
radius. This problem is better solved by an algorithm which
is progressive, in the sense that it can be stopped at any
time and provide a sensible result, either by computing only
within a certain distance, or improving the precision of the
map by increasing the number of iterations. This imple-
mentation of the Euclidean Distance Transform calculation
algorithm is based on the Region Growing method proposed
by Cuisenaire in [37].

The method we implemented uses masks like the Chamfer
DT (3×3×3 and 5×5×5 masks), but, instead of raster
scans, voxels are scanned by increasing distance value. This
is implemented with a data-structure called Hierarchical
Queues (HQ). Hierarchical Queues are made of a collection
of FIFO queues. In-going elements enter any of the queues,
outgoing elements are taken from the non-empty queue with
the smallest label. The queue labeled i in the HQ contains
the voxels for which i is the square of the distance to their
nearest boundary voxel, which is clearly an integer with an
Euclidean distance metric. For each voxel in the HQ, its
location and its nearest boundary voxel are stored. A map
data-structure is also created in order to store the squared
distances for each voxel. Algorithm 2 formally summarizes
this procedure.

2.4 The slicing procedure

To enable the computation of high resolution surfaces in
spite of memory limitations we have developed a slicing

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 637



Algorithm 2 Region-Growing EDT using two HQs

HQ1(0)← all voxels in the SAS
HQ1(i)← ∅, ∀i > 0
HQ2(i)← ∅, ∀i
map[v]← 0, ∀v ∈ SAS
map[v]←MAXINT, ∀v /∈ SAS
NBP (v)← v, ∀v ∈ SAS
while HQ1 '= ∅ do

Extract voxel w from HQ1

for all 3×3×3 neighbors n of
w : w∈SA volume do
d← dist2(NBP (w), n)
if d < map[n] then

map[n]← d
add n to HQ1(d)
NBP (n)← NBP (w)

end if
end for
// none of the neighbors of w was put in HQ1

if w is end && d ≥ 24 then
add w to HQ2(map[w])

end if
end while
while HQ2 '= ∅ do

Extract voxel v from HQ2

for all 5×5×5 neighbors n of
v : v∈SA volume do
d← dist2(NBP (v), n)
if d < map[n] then

map[n]← d
add n to HQ2(d)
NBP (n)← NBP (v)

end if
end for

end while

protocol for the macromolecule. The molecule is sliced in a
user-defined number of parts, and the surface is calculated
separately for each part, in a sequential fashion. The slicing
is done with planes perpendicular to the x-axis of the
Cartesian coordinate system specified by the PDB.

Atom coordinates parsed from the PDB file are translated,
scaled and quantized to the coordinate system defined by
each slice. For each slice, we subtract the slice-length to the
x coordinate of the translation vector k − 1 times, where k
is the current slice index (k = 1, 2, ..., n). The space filling
procedure is performed for each slice separately, also taking
into account any portions of atoms intersecting the slice
whose centers might be located outside the current slice.
Once the volumetric model for the current slice is created,
the surface calculation proceeds as previously described with
a few important differences.

2.4.1 Slice margin

For each slice we must consider some extra margin on the
x coordinate in order for the surface computation to yield
correct results.

Figure 3 depicts the calculation of the distance map for
an intra-slice border region with no margin. The light blue
squares represent the free voxels, the black squares represent
the voxels belonging to the SA surface (or boundary) and the
green squares correspond to the voxels inside the SA volume.
The values shown in the figure are the squared Euclidean
distances of the voxels from their Nearest Boundary Point.
Clearly, all surface voxels have a zero distance map value.
The dashed line represents the slicing plane, and the yellow
square represent a voxel with an erroneous squared distance
value, as the algorithm fails to correctly detect its Nearest
Boundary Point.

� � � � � �

� � � � �

� � � � � �

�

� � � �� � �

�

�

6OLFH�N�������������������������6OLFH�N��

7KH�UHDO�1%3�RI�WKH�
\HOORZ�YR[HO

�

Fig. 3: The yellow square represents a voxel with an erro-
neous Distance Map value.

To guarantee a correct calculation of the Distance Map
values for the voxels inside the slice volume, the margin
size must be greater than the scaled and quantized probe-
sphere radius.

2.4.2 Correct identification of cavities

The slicing protocol introduces another issue regarding
the correct identification of solvent excluded cavities. When
no slicing is applied, the proposed algorithm can correctly
identify solvent excluded cavities and voids, which might
lead to spurious surfaces. The slicing procedure complicates
this step in the algorithm, as one must distinguish pockets
from solvent excluded cavities when slicing planes passes
through them.

The tool extracts all surface voxels belonging to potential
pockets from each slice and store them in an apposite data-
structure. Starting from the first two slices, the border voxels
of the candidate pockets are matched against their neighbors
on the other slice. If the border voxels have free neighbors
on the adjacent slice, it means that the candidate pocket we
are examining is in fact a real pocket (because it is solvent
accessible), and thus its surface voxels must be conserved.
Otherwise, border voxels belonging to another candidate

638 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



Fig. 4: SES of 1GZX.pdb, calculated with 5 slices, 1.4 Å
probe-radius, 103 = 1000 voxels per Å3 resolution.

pocket on the next slice can be found. Because a pocket
could run through two or more slices in length, we cannot
discard these surface voxels yet. The procedure continues
with the matching of potential pocket borders on adjacent
slices in increasing index order.

After all slices have been scanned two-by-two in increas-
ing index order, candidate pockets are either recognized as
solvent accessible, or remain undetermined, as the same
pocket could run through multiple slices. Slices must also be
scanned in decreasing index order to resolve possible unde-
termined situations. When both the forward and backward
scans are completed, the candidate pockets that have not
been recognized as solvent accessible can be discarded, as
they surely belong to solvent excluded cavities.

3. Parallelization
The macromolecular surface calculation protocol with

slicing introduced in the previous sections suggests an imme-
diate parallelization scheme. The surface calculation for each
slice can be executed nearly-independently from the others,
as process synchronization and communication is required
only for the pocket-detection and extraction procedure, in
order to correctly identify pockets spanning between two or
more slices.

To obtain the best results in terms of speedup, the slicing
procedure should guarantee a uniform distribution of the
workload between processes. The volumetric model creation
and the Euclidean Distance Map calculation procedures both
depend on the number of atoms composing the molecule
and the resolution, while the surface extraction and internal
cavity filling procedures mainly depend on the voxel grid
size (which in turn depends on the size of the molecule and

Fig. 5: Slice 3 - SES of 1GZX.pdb - 5 slices calculation.
The pocket voxels of the fourth slice are correctly detected.
1.4 Å probe-radius, 103 = 1000 voxels per Å3

the resolution). We have experimentally determined that the
best speedup values are obtained with a uniform distribution
of the number of atoms per slice (i.e. variable-length slices),
instead of employing a constant slice length value.

We have run different tests on an IBM®Power®P770
Server with 6 IBM®Power7 CPU’s and 640Gb of RAM,
running SUSE Linux Enterprise 11, and experimentally
determined the speedup values for different input molecules
at various resolutions, while calculating the three molecular
surfaces.

The experimental speedup values that follow were calcu-
lated on the average execution time of different tests. The
same configuration (PDB entry, desired molecular surface,
resolution, probe radius, number of CPUs) has been executed
100 times, and the speedup was derived from the average
calculation time of these runs. We progressively increased
the number of processors (from 1 to 64 CPUs) and evaluated
the mean calculation time for each configuration.

For a given PDB entry, tests have shown that the calcula-
tion of the three molecular surfaces, at the same resolution,
wields different speedup values for each surface (figures
6 and 7). Figure 6 shows the speedup values obtained
while calculating the van der Waals and Solvent Excluded
surfaces of the 1GZX PDB entry (Crystal Structure of T
State Haemoglobin with Oxygen Bound At All Four Haems)
[38] at a resolution of 1000 voxels per Å3.

The vdW surface calculation has a higher speedup. The
CPK model (volumetric model) creation takes most of the
computation time in the vdW surface calculation, which
mainly depends on the number of atoms per slice. On
the other hand, in the SES calculation, the space-filling

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 639



�

�
�
�
�
�
�
�

�

�

�

�

�

��

��

��

��

��

���	�
�����
�����
�

� � � � � �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

���

���

Fig. 6: van der Waals and Solvent Excluded surface calculation speedup for 1GZX.pdb at 1000 voxels per Å3.
�

�
�
�
�
�
�
�

�

�

�

�

�

��

��

��

��

��

���	�
�����
�����
�

� � � � � �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

���

���

Fig. 7: van der Waals and Solvent Accessible surface calculation speedup for 2AEB.pdb [39] at 1000 voxels per Å3.

algorithm used in the solvent excluded cavity detection is the
most time consuming task, which mainly depends on the size
of the slice. The vdW surface calculation also has no cavity
detection step, and thus, no communications/synchronization
between processes is needed.

Another important characteristic that greatly affects the
speedup consists in the constant margin introduced in each
slice during the SES calculation. At some point, while
increasing the number of processors, the margin size will
eventually become comparable to the effective size of the
slice, thus vanishing the benefits of further parallelization.

4. Conclusion

We have effectively developed a tool which can produce
voxelized macromolecular surfaces at very hight resolutions,
even when faced with limited memory availability. For
instance, the calculation of the surface for 1GZX at a
resolution of 9000 voxels per Å3 and while dividing the
molecule in 10 slices, needs nearly 5GB of RAM, against the
2.6GB used while dividing the molecule in 20 slices (tests
were made on a desktop computer with an Intel®Core™i7
860 CPU and 8GB of RAM (4×2GB DDR3-1333 banks)
running Ubuntu 13.10 x64), which is an easily affordable
amount of memory nowadays in desktop computers. By tun-
ing the resolution and number-of-slices parameters various
memory utilization rates can be achieved, depending on the
users’ needs.

The parallel implementation introduces advantages in
terms of the overall speedup, however the uniform dis-
tribution of atoms per slice may not necessarily yield a

balanced workload between processes. On the other hand,
the constant slice margin represents the main limitation to
this parallelization scheme as it introduces constant overhead
regardless of the slice size. Addressing these issues in such
an approach remains challenging.

Acknowledgements

This work has been partially supported by the University
of Padova ex60% grant “Advanced Applications in Computer
Science”.

References
[1] D. Whitley, “Van der Waals surface graphs and molecular

shape,” J. Math. Chem., vol. 23, no. 3-4, pp. 377–397, 1998.
[2] B. Lee and F. Richards, “The interpretation of protein struc-

tures: Estimation of static accessibility,” J. Mol. Biol., vol. 55,
no. 3, pp. 379 – IN4, 1971.

[3] M. L. Connolly, “Analytical molecular surface calculation,”
J. Appl. Crystallogr., vol. 16, no. 5, pp. 548–558, Oct. 1983.

[4] ——, “The molecular surface package,” J. Mol. Graph.,
vol. 11, no. 2, pp. 139–141, 1993.

[5] M. F. Sanner, A. J. Olson, and J.-C. Spehner, “Fast and Robust
Computation of Molecular Surfaces,” in Proceedings of the
Eleventh Annual Symposium on Computational Geometry, ser.
SCG ’95. New York, NY, USA: ACM, 1995, pp. 406–407.

[6] K. Kinoshita and H. Nakamura, “Identification of the ligand
binding sites on the molecular surface of proteins,” Protein
Sci., vol. 14, no. 3, pp. 711–718, 2005.

[7] L.-P. Albou, B. Schwarz, O. Poch, J. M. Wurtz, and D. Moras,
“Defining and characterizing protein surface using alpha
shapes,” Proteins: Struct. Funct. Bioinform., vol. 76, no. 1,
pp. 1–12, 2009.

640 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



[8] J. C. Mitchell, R. Kerr, and L. F. T. Eyck, “Rapid atomic
density methods for molecular shape characterization,” J. Mol.
Graph. Model., vol. 19, no. 3-4, pp. 325–330, 2001.

[9] M. Bock, G. M. Cortelazzo, C. Ferrari, and C. Guerra,
“Identifying Similar Surface Patches on Proteins Using a
Spin-Image Surface Representation,” in Combinatorial Pat-
tern Matching, ser. Lecture Notes in Computer Science,
A. Apostolico, M. Crochemore, and K. Park, Eds. Springer
Berlin Heidelberg, 2005, vol. 3537, pp. 417–428.

[10] E. Katchalski-Katzir, I. Shariv, M. Eisenstein, A. A. Friesem,
C. Aflalo, and I. A. Vakser, “Molecular surface recognition:
Determination of geometric fit between proteins and their
ligands by correlation techniques,” Proc. Natl. Acad. Sci.
USA, vol. 89, no. 6, pp. 2195–2199, 1992.

[11] J. Esquivel-Rodriguez, V. Filos-Gonzalez, B. Li, and D. Ki-
hara, “Pairwise and Multimeric Protein-Protein Docking Us-
ing the LZerD Program Suite,” Protein Struct. Predict., vol.
1137, pp. 209–234, Apr. 2014.

[12] J. Esquivel-Rodriguez and D. Kihara, “Effect of conformation
sampling strategies in genetic algorithm for multiple protein
docking,” BMC Proc., vol. 6, no. Suppl 7, p. S4, 2012.

[13] ——, “Evaluation of multiple protein docking structures
using correctly predicted pairwise subunits,” BMC Bioinform.,
vol. 13, no. Suppl 2, p. S6, 2012.

[14] J. Esquivel-Rodriguez, Y. D. Yang, and D. Kihara, “Multi-
LZerD: Multiple protein docking for asymmetric complexes,”
Proteins: Struct. Funct. Bioinform., vol. 80, no. 7, pp. 1818–
1833, 2012.

[15] D. Kihara, L. Sael, R. Chikhi, and J. Esquivel-Rodriguez,
“Molecular Surface Representation Using 3D Zernike De-
scriptors for Protein Shape Comparison and Docking.” Curr.
Protein Pept. Sci., vol. 12, no. 6, pp. 520–533, 2011.

[16] B. Li and D. Kihara, “Protein docking prediction using
predicted protein-protein interface,” BMC Bioinform., vol. 13,
no. 1, p. 7, 2012.

[17] L. Sael and D. Kihara, “Improved protein surface comparison
and application to low-resolution protein structure data,” BMC
Bioinform., vol. 11, no. Suppl 11, p. S2, 2010.

[18] V. Venkatraman, Y. Yang, L. Sael, and D. Kihara, “Protein-
protein docking using region-based 3D Zernike descriptors,”
BMC Bioinform., vol. 10, no. 1, p. 407, 2009.

[19] Z. A. Deeb, D. A. Adjeroh, and B.-H. Jiang, “Protein Sur-
face Characterization Using an Invariant Descriptor,” Int. J.
Biomed. Imaging, vol. 2011, p. 15, 2011.

[20] S. Yin, E. A. Proctor, A. A. Lugovskoy, and N. V. Dokholyan,
“Fast screening of protein surfaces using geometric invariant
fingerprints,” Proc. Natl. Acad. Sci. USA, vol. 106, no. 39,
pp. 16 622–16 626, Sept. 2009.

[21] S. Grandison, C. Roberts, and R. J. Morris, “The Application
of 3D Zernike Moments for the Description of “Model-
Free” Molecular Structure, Functional Motion, and Structural
Reliability.” J. Comput. Biol., vol. 16, no. 3, pp. 487–500,
2009.

[22] L. Sael, D. La, B. Li, R. Rustamov, and D. Kihara,
“Rapid comparison of properties on protein surface.” Pro-
teins, vol. 73, no. 1, pp. 1–10, Oct. 2008.

[23] M. Weisel, E. Proschak, and G. Schneider, “PocketPicker:
analysis of ligand binding-sites with shape descriptors,”
Chem. Cent. J., vol. 1, no. 1, p. 7, 2007.

[24] D. G. Levitt and L. J. Banaszak, “POCKET: A computer
graphics method for identifying and displaying protein cav-
ities and their surrounding amino acids,” J. Mol. Graph.,
vol. 10, no. 4, pp. 229–234, 1992.

[25] M. Hendlich, F. Rippmann, and G. Barnickel, “LIGSITE:

Automatic and efficient detection of potential small molecule-
binding sites in proteins,” J. Mol. Graph. Model., vol. 15,
no. 6, pp. 359–363, 1997.

[26] B. Li, S. Turuvekere, M. Agrawal, D. La, K. Ramani, and
D. Kihara, “Characterization of local geometry of protein
surfaces with the visibility criterion,” Proteins: Struct. Funct.
Bioinform., vol. 71, no. 2, pp. 670–683, 2008.

[27] H. Berman, K. Henrick, and H. Nakamura, “Announcing
the worldwide Protein Data Bank,” Nat. Struct. Mol. Biol.,
vol. 10, no. 12, p. 980, Dec. 2003.

[28] R. B. Corey and L. Pauling, “Molecular Models of Amino
Acids, Peptides, and Proteins,” Rev. Sci. Instrum., vol. 24,
no. 8, pp. 621–627, 1953.

[29] Point Cloud Library Documentation, “The PCD (Point Cloud
Data) file format,” Accessed 29 March 2015. [Online].
Available: http://goo.gl/6tNW0P

[30] R. B. Rusu and S. Cousins, “3D is here: Point Cloud Library
(PCL),” in 2011 IEEE International Conference on Robotics
and Automation (ICRA), May 2011, pp. 1–4.

[31] D. Xu and Y. Zhang, “Generating Triangulated Macromolec-
ular Surfaces by Euclidean Distance Transform,” PLoS ONE,
vol. 4, no. 12, p. e8140, Dec. 2009.

[32] P.-E. Danielsson, “Euclidean Distance Mapping,” Comput.
Graph. Image Process., vol. 14, pp. 227–248, 1980.

[33] G. Borgefors, “Distance Transformations in Digital Images,”
Comput. Vis. Graph. Image Process., vol. 34, no. 3, pp. 344–
371, June 1986.

[34] O. Nilsson and A. Söderström, “Euclidean Distance
Transform Algorithms: A comparative study,” Linköping
University, Department of Science and Technology, The
Institute of Technology, Digital Media, Tech. Rep., 2007.
[Online]. Available: http://goo.gl/MYALj6

[35] R. Fabbri, L. D. F. Costa, J. C. Torelli, and O. M. Bruno, “2D
Euclidean Distance Transform Algorithms: A Comparative
Survey,” ACM Comput. Surv., vol. 40, no. 1, pp. 2:1–2:44,
Feb. 2008.

[36] G. Grevera, “Distance Transform Algorithms And Their Im-
plementation And Evaluation,” in Deformable Models, ser.
Topics in Biomedical Engineering. International Book Series.
Springer New York, 2007, pp. 33–60.

[37] O. Cuisenaire, “Region growing Euclidean distance trans-
forms,” in Image Analysis and Processing, ser. Lecture Notes
in Computer Science, A. Bimbo, Ed. Springer Berlin
Heidelberg, 1997, vol. 1310, pp. 263–270.

[38] M. Paoli, R. Liddington, J. Tame, A. Wilkinson, and G. Dod-
son, “Crystal Structure of T State Haemoglobin with Oxygen
Bound At All Four Haems,” J. Mol. Biol., vol. 256, no. 4, pp.
775–792, 1996.

[39] L. Di Costanzo, G. Sabio, A. Mora, P. C. Rodriguez, A. C.
Ochoa, F. Centeno, and D. W. Christianson, “Crystal structure
of human arginase I at 1.29-Å resolution and exploration of
inhibition in the immune response,” Proc. Natl. Acad. Sci.
USA, vol. 102, no. 37, pp. 13 058–13 063, 2005.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 641

http://goo.gl/6tNW0P
http://goo.gl/MYALj6


Distributed Two-Dimensional Guided Loop Self-
Scheduling for Heterogeneous Computer Systems  

 
Satish Penmatsa1 and Akash Laddha2 

1Department of Computer Science, Framingham State University, Framingham, MA, USA 
2Staples Inc., Framingham, MA, USA 

 
 

 

Abstract - Modern distributed computing systems like the grid 
and cloud computing systems are a viable and less expensive 
alternative to parallel computers for executing computation 
intensive scientific applications. The performance of these 
applications can be maximized by providing application-level 
load balancing of loops inside them which are one of the 
largest sources of parallelism. In this paper, we implement a 
distributed two-dimensional guided self-scheduling (DGSS-
2D) scheme whose objective is to efficiently schedule the loop 
iterations of an application for achieving a load balanced 
execution that minimizes the loop completion time. DGSS-2D 
is implemented and its performance evaluated using the 
Stampede high performance computing cluster at the Texas 
Advanced Computing Center of the University of Texas at 
Austin. Experimental results show that there is a substantial 
performance improvement in the loop execution time by using 
DGSS-2D when compared to the one-dimensional distributed 
guided self-scheduling scheme. 

Keywords: Loop scheduling, Distributed computing, 
Heterogeneous systems. 

 

1 Introduction 
  Computation intensive applications often consist of 
parallel code which when scheduled for concurrent execution 
can reduce the total execution of the application significantly. 
Parallel code can be in the form of loops with or without any 
dependencies between the loop iterations. Parallel loops with 
dependencies are commonly known as DOALL loops and 
loops with dependencies among the iterations are known as 
DO ACROSS loops [3]. Scheduling the loop iterations for 
concurrent execution requires multiple computing resources 
(processors).  

Parallel computers can be used for concurrent execution of an 
application. However, obtaining and maintaining them can be 
very expensive. Distributed computing systems are a viable 
and less expensive alternative to parallel computers. The 
performance of scientific applications on the underlying 
distributed system can be maximized by providing 
application-level load balancing of loops inside them.  

 

However, scheduling scientific applications in large-scale 
distributed systems for achieving a load balanced execution 
that minimizes the loop completion time is not 
straightforward. Factors such as the non-uniformity of iterate 
execution times, geographic distribution and heterogeneity of 
the computing and communication resources, communication 
and synchronization bottlenecks, failures such as processor or 
link failures, and sharing of the resources by multiple users 
lead to application performance degradation. 

Loop scheduling schemes which do not take the heterogeneity 
of a distributed system into account are called ‘simple’ 
schemes whereas the schemes that take the heterogeneity of 
the system into account are called ‘distributed’ schemes. Also, 
depending on when the scheduling decisions are made, loop 
scheduling can be categorized into ‘static’ and ‘dynamic’ [3, 
7]. Static scheduling schemes determine the task allocation to 
the processors prior to the execution of the application. 
Dynamic scheduling (or self-scheduling) is an automatic loop 
scheduling method in which idle processors request new loop 
iterations to be assigned to them during run time. 

Various loop scheduling schemes have been proposed and 
analyzed in the past. For example, please see [1 – 6, 14, 15] 
and references therein. Most of the previously studied loop 
scheduling schemes partition only the outermost loop of a 
program loop structure and assign tasks (chunks of iterations) 
to the processors. This is not efficient for multi-dimensional 
nested loops.  

Studies on two-dimensional (2D) loop scheduling can be 
found in [7, 9, 10] and references therein. Most of the 2D 
schemes do not take the heterogeneity of the system into 
account. A two-dimensional distributed trapezoid self-
scheduling scheme has been studied in [7] and a two-
dimensional distributed factoring self-scheduling scheme has 
been studied in [9]. In this paper, we implement a two-
dimensional distributed guided self-scheduling (DGSS-2D) 
scheme and compare its performance with one-dimensional 
distributed guided self-scheduling scheme (DGSS-1D). 

642 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



2 Two-Dimensional Distributed  Guided 
Self Scheduling (DGSS-2D) 

Guided Self – Scheduling (GSS) [4, 8] is a dynamic scheme 
with a non-linear chunk-size function. It assigns large chunks 
(set of iterations) initially, which implies reduced 
communication/scheduling overheads in the first scheduling 
steps. A modified version GSS(l) with minimum assigned 
chunk-size l attempts to improve on the weaknesses of GSS.  

One-Dimensional Distributed Guided Self-Scheduling scheme 
(DGSS-1D) partitions only the outermost loop of a nested 
loop construct. Two-Dimensional Distributed Guided Self-
Scheduling scheme (DGSS-2D) partitions both the outer loop 
and the inner loop of a two-level nested loop construct. The 
above schemes were implemented using Master-Worker 
architecture [3, 7].  

In the following, we present the DGSS-2D algorithm. The 
methodology for computing the two-dimensional chunks is 
similar to the one described in [7]. The two-dimensional 
chunks will be allocated to the worker processors (PEs) by the 
master PE based on the worker available powers [3]. A 
worker with higher available power will be allocated more 
chunks than compared to a worker with lower available 
power. 

 

ALGORITHM: Two-Dimensional Distributed Guided 
Self-Scheduling Scheme (DGSS-2D) 

MASTER 

1. (a) Receive processor speeds (Pj) from the worker PEs  
  (j = 1,…,p). 

    (b) Compute processor Available (Virtual) Powers, Vj using 
 worker PE workloads. 

    (c)  Send Vj to the worker PEs.  

2. (a) While there are unassigned iterations, if a request 
 comes, put it in a queue. 

     (b) Compute the rectangular chunks and istart1, istart2 [7] 
 using DGSS-1D. 

     (c) Pick a request from queue with virtual powers Vj and 
 assign next Vj rectangular chunk along same or adjacent 
 wavefront diagonals. 

 

 

WORKER 

1. (a) Send processor speed (Pj) to the Master PE. 

    (b) Receive Virtual Power (Vj) from Master PE 

2. Send a request for work (chunks of loop iterations). 

3. (a) Wait for a response from Master. 

 (b)  If more tasks arrive, compute the new task, and go to   
 Step 2.  Else, Terminate. 

 

3 Implementation and Results 
 

The scheduling schemes (DGSS-2D and DGSS-1D) were 
implemented using the Message Passing Interface [11] on the 
Stampede [13] high performance computing cluster at the 
Texas Advanced Computing Center of the University of 
Texas at Austin. Stampede is one of the largest computing 
systems in the world for open science research.  

The test problem used for the experiments is the Mandelbrot 
Computation [12]. The Mandelbrot Computation is a doubly-
nested loop without any dependencies. The schemes are 
implemented with the number of worker processors (PEs) 
ranging from 1 to 16 and the Mandelbrot computation sizes 
ranging from 16000 x 16000 to 32000 x 32000.  

To create a heterogeneous environment, we put an artificial 
load (one continuously running matrix multiplication process) 
in the background on half of the worker processors. The 
workers with one load in the background are assumed to have 
virtual power of 1 and the workers without any load are 
assumed to have virtual power of 2. Thus, we have half fast 
and half slow worker processors. 

In the following, we present the experimental results for 
various problem sizes and number of worker processors. Tp 
denotes the total (parallel) execution time (for a given 
problem size) measured on the master processor. The times 
presented for the worker processors are their total compute 
times for the iterations assigned to them by the master 
processor. The units used in the following are as follows - m: 
minutes; s: seconds; and ms: milliseconds. 

Table 1 presents the total execution time (Tp) for a problem 
size of 16000 × 16000 using only 1 worker PE. Since there is 
only one PE which does all the computation, the total time is 
almost the same for DGSS-1D and DGSS-2D (irrespective of 
the chunks computation and allocation by the scheduling 
schemes).  

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 643



Table 1:  Worker PEs: 1, Problem Size: 16000x16000 

 PE DGSS-1D DGSS-2D 
  1 1m 50s 173ms 1m 50s 139ms 
Tp 1m 50s 173ms 1m 50s 139ms 

 

Table 2 presents the Tp of DGSS-1D and DGSS-2D with 2 
worker PEs for a problem size of 16000 × 16000. The table 
also shows the computation times of each worker PE. It can 
be observed that the Tp achieved by DGSS-2D is much lower 
than that of DGSS-1D. It can also be observed that the worker 
computation times in the case of DGSS-2D are well balanced 
compared to DGSS-1D. In the case of DGSS-2D, each worker 
PE has a computation time of about 55s where as in the case 
of DGSS-1D, one worker computation time is about 30s and 
the other worker computation time is about 80s. 

Table 2:  Worker PEs: 2, Problem Size: 16000x16000 

PE DGSS-1D DGSS-2D 
1 30s 665ms 55s 83ms 
2 1m 19s 494ms 55s 83ms 
Tp 1m 19s 494ms 55s 83ms 

 

Table 3 presents the Tp and worker PE computation times of 
DGSS-1D and DGSS-2D for a problem size of 16000 × 
16000 with 4 worker PEs. It can be observed that the Tp 
achieved by DGSS-2D is much lower than that of DGSS-1D. 
Also, the worker computation times in the case of DGSS-2D 
are well balanced (ranging from about 23s to 32s) compared 
to DGSS-1D (ranging from about 16s to 39s).  

Table 3:  Worker PEs: 4, Problem Size: 16000x16000 

PE DGSS-1D DGSS-2D 
 1 23s 452ms 32s 761ms 
2 16s 559ms 30s 99ms 
3 30s 270ms 23s 636ms 
4 39s 880ms 23s 636ms 
Tp 39s 880ms 32s 761ms 

 

Table’s 4 and 5 present the Tp and worker PE computation 
times for problem sizes 24000 × 24000 and 32000 × 32000 
with 4 worker PEs. It can again be observed that the Tp in the 
case of DGSS-2D is lower than that of DGSS-1D and the 
worker PE computation times of DGSS-2D are better 
balanced than that of DGSS-1D.  

 

 

 

Table 4:  Worker PEs: 4, Problem Size: 24000x24000 

 

Table 5:  Worker PEs: 4, Problem Size: 32000x32000 

Table’s 6 through 12 present the Tp and worker PE 
computation times of DGSS-1D and DGSS-2D for problem 
sizes ranging from 16000 × 16000 to 32000 × 32000 with 
worker PEs ranging from 8 to 16. In all cases, it can be 
observed that the Tp in the case of DGSS-2D is lower than that 
of DGSS-1D and the worker PE computation times of DGSS-
2D are better balanced than that of DGSS-1D.  

 
Table 6:  Worker PEs: 8, Problem Size: 16000x16000 

PE DGSS-1D DGSS-2D 
 1 14s 830ms 15s 618ms 
2 11s 944ms 14s 979ms 
3 9s 20ms 14s 145ms 
4 9s 19ms 13s 466ms 
5 9s 19ms 12s 901ms 
6 17s 206ms 13s 321ms 
7 18s 799ms 12s 901ms 
8 20s 415ms 12s 999ms 
Tp 20s 416ms 15s 618ms 

 

Table 7:  Worker PEs: 8, Problem Size: 24000x24000 

PE DGSS-1D DGSS-2D 
 1 33s 298ms 35s 14ms 
2 26s 848ms 30s 174ms 
3 20s 267ms 34s 982ms 

4 20s 285ms 29s 484ms 

5 20s 286ms 29s 964ms 
6 38s 690ms 29s 484ms 
7 42s 281ms 29s 484ms 
8 45s 955ms 29s 484ms 
Tp 45s 959ms 35s 6ms 

PE DGSS-1D DGSS-2D 
 1 52s 768ms 1m 13s 715ms 

2 37s 250ms 1m 7s 717ms 

3 1m 8s 85ms 53s 169ms 

4 1m 29s 738ms 53s 169ms 

Tp 1m 29s 738ms 1m 13s 715ms 

PE DGSS-1D DGSS-2D 
 1 1m 33s 751ms 2m 11s 29ms 
2 1m 6s 213ms 2m 0s 404ms 
3 2m 1s 73ms 1m 34s 522ms 
4 2m 39s 554ms 1m 34s 522ms 

Tp 2m 39s 554ms 2m 11s 29ms 

644 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



Table 8:  Worker PEs: 8, Problem Size: 32000x32000 

PE DGSS-1D DGSS-2D 
 1 59s 234ms 1m 2s 223ms 
2 47s 745ms 53s 673ms 

3 36s 43ms 1m 2s 180ms 

4 36s 40ms 52s 346ms 
5 36s 40ms 53s 246ms 
6 1m 8s 743ms 52s 346ms 
7 1m 15s 104ms 52s 346ms 
8 1m 21s 729ms 52s 346ms 
Tp 1m 21s 729ms 1m 2s 220ms 

 

Table 9:  Worker PEs: 12, Problem Size: 16000x16000 

PE DGSS-1D DGSS-2D 
 1 10s 189ms 9s 466ms 
2 9s 90ms 9s 686ms 
3 7s 976ms 9s 335ms 
4 6s 108ms 9s 290ms 
5 6s 281ms 8s 839ms 
6 5s 864ms 9s 392ms 
7 5s 17ms 8s 839ms 
8 9s 319ms 8s 839ms 
9 11s 680ms 9s 399ms 

10 11s 874ms 8s 839ms 
11 13s 573ms 9s 195ms 
12 13s 529ms 9s 309ms 
Tp 13s 548ms 9s 680ms 

 

Table 10: Worker PEs: 12, Problem Size: 24000x24000 

PE DGSS-1D DGSS-2D 
 1 22s 890ms 19s 762ms 

2 20s 385ms 20s 389ms 

3 17s 884ms 21s 757ms 

4 13s 762ms 22s 324ms 

5 14s 81ms 20s 229ms 

6 13s 153ms 23s 545ms 

7 11s 261ms 20s 282ms 

8 20s 953ms 19s 762ms 

9 26s 228ms 19s 804ms 

10 26s 651ms 20s 708ms 

11 30s 477ms 19s 762ms 

12 30s 401ms 19s 762ms 

Tp 30s 480ms 23s 545ms 
 

 

 

Table 11: Worker PEs: 12, Problem Size: 32000x32000 

PE DGSS-1D DGSS-2D 
 1 40s 660ms 35s 92ms 
2 36s 228ms 36s 202ms 
3 31s 765ms 38s 674ms 
4 24s 417ms 39s 668ms 
5 24s 980ms 35s 957ms 
6 23s 355ms 41s 868ms 
7 19s 940ms 36s 47ms 

8 37s 153ms 35s 92ms 

9 46s 611ms 35s 223ms 
10 47s 340ms 36s 821ms 
11 54s 147ms 35s 92ms 
12 54s 38ms 35s 92ms 
Tp 54s 149ms 41s 868ms 

 

Table 12: Worker PEs: 16, Problem Size: 16000x16000 

PE DGSS-1D DGSS-2D 
 1 7s 791ms 6s 941ms 
2 6s 351ms 6s 726ms 
3 7s 223ms 7s 228ms 
4 5s 981ms 6s 726ms 
5 5s 76ms 7s 424ms 
6 4s 44ms 7s 186ms 
7 4s 766ms 7s 17ms 
8 4s 237ms 7s 402ms 
9 8s 641ms 6s 726ms 

10 9s 72ms 6s 788ms 
11 10s 886ms 6s 726ms 
12 4s 33ms 6s 726ms 
13 5s 560ms 6s 728ms 
14 9s 982ms 6s 726ms 
15 7s 843ms 6s 726ms 
16 8s 795ms 6s 726ms 
Tp 10s 889ms 7s 424ms 

 

 

 

 

 

 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 645



4 Conclusions  
In this paper, we implemented a distributed two-dimensional 
guided self-scheduling (DGSS-2D) scheme whose objective is 
to efficiently schedule the loop iterations of an application by 
considering the system heterogeneity for achieving a load 
balanced execution that minimizes the loop completion time. 
DGSS-2D is implemented and its performance evaluated 
using the Stampede high performance computing cluster. 
Results showed that DGSS-2D performs better compared to 
DGSS-1D and also present a more balanced load distribution 
of the workload among the computers in the cluster. 

 

5 References 
[1] I. Banicescu, V. Velusamy, and J. Devaprasad, “On the 
scalability of dynamic scheduling scientific applications with 
adaptive weighted factoring”, Cluster Computing, vol. 6, pp. 
215–226, 2003. 

[2] A. Kejariwal, A. Nicolau, and C. Polychronopoulos, 
“Historyaware self-scheduling”, in International Conference 
on Parallel Processing, Columbus OH, Aug 2006, pp. 185–
192. 

[3] A. T. Chronopoulos, S. Penmatsa, J. Xu, and S. Ali, 
“Distributed loop-scheduling schemes for heterogeneous 
computer systems,” Concurrency and Computation: Practice 
and Experience, vol. 18, no. 7, pp. 771–785, 2006. 

[4] C. D. Polychronopoulos and D. Kuck, “Guided self-
scheduling: A practical scheduling scheme for parallel 
supercomputers”, IEEE Transactions on Computers 1987; 
36:1425–1439. 

[5] F. M. Ciorba, I. Riakiotakis, T. Andronikos, G. 
Papakonstantinou, and A. T. Chronopoulos, “Enhancing self-
scheduling algoritms via synchronization and weighting,” 
Journal of Parallel and Distributed Computing, vol. 68, no. 2, 
pp. 246–264, 2008. 

[6] J. Herrera, E. Huedo, R. S. Montero, and I. M. Llorente, 
“Loosely-coupled loop scheduling in computational grids,” in 
Proc. of the 20th IEEE Intl. Parallel and Distributed 
Processing Symp., Rhodes Island, Greece, 2529 April 2006. 

[7] A. T. Chronopoulos, L. M. Ni, and S. Penmatsa, 
“Multidimensional dynamic loop scheduling algorithms,” in 
IEEE International Conference on Cluster Computing, Austin, 
TX, 17-20 Sept. 2007, pp. 241 – 248. 

[8] T. L. Freeman, D. J. Hancock, J. M. Bull, and R. W. Ford, 
“Feedback guided scheduling of nested loops”, Proceedings 
of the 5th International Applied Parallel Computing (PARA) 
Workshop, Bergen, Norway, 2000 (Lecture Notes in 

Computer Science, vol. 1947),  Springer: Berlin, 2001; 149–
159. 

[9] S. Penmatsa and A. Oji, “Performance Evaluation of Two-
Dimensional Distributed Factoring Self-Scheduling Scheme 
for Heterogeneous Computer Systems”, Proceedings of the 
19th International Conference on Parallel and Distributed 
Processing Techniques and Applications, Las Vegas, NV, 
USA, July 22-25, 2013. 

[10] S. Penmatsa, S. Grover, and G. S. Hura, “Load 
Distribution of Parallelizable Jobs in Computer Clusters”, 
Journal of Global Information Technology, Vol. 6, No. 1, pp. 
13-20, 2011. 

[11] P. Pachecho, Parallel Programming with MPI. Morgan 
Kauffman, 1997. 

[12] M. F. Bransley, R. L. Devaney, B. B. Mandelbrot, H. O. 
Peitgen, D. Saupe, R. F. Voss, Y. Fisher, and M. McGuire, 
The Science of Fractal Images. NY: Springer-Verlag, 1988. 

[13] www.tacc.utexas.edu/stampede 

[14] Y. Han and A. T. Chronopoulos, “A Resilient 
Hierarchical Distributed Loop Self-Scheduling Scheme for 
Cloud Systems”, IEEE 13th International Symposium on 
Network Computing and Applications, pp. 80 – 84, 2014. 

[15] Y. Han and A. T. Chronopoulos, “Distributed Loop 
Scheduling Schemes for Cloud Systems”, IEEE 27th  
International Parallel and Distributed Processing Symposium 
Workshops & PhD Forum (IPDPSW), pp. 955 - 962,  2013.  

  

646 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |

http://www.tacc.utexas.edu/stampede


GRALT: A MULTI-THREAD TOOL FOR TEXT 

VERSIONS ANALYSIS 
 

Katia Mayfield Ronald Marsh Crystal Alberts 

Dept. of Math, Computer and 

Natural Sciences, 

Department of Computer Science 

University of 

Department of English 

University of 

Athens State Univ., North Dakota, North Dakota, 

Athens, AL USA Grand Forks, ND USA Grand Forks, ND USA 

 

Abstract - The existence of multiple versions of a 

text, regardless of how they were created (in print or 

digital), and the possibility of using a computer as an 

analytical tool has led to the development of software 

systems used by textual criticism scholars. Following 

the tradition of this type of work from initial efforts 

by IBM to today’s Google, this study focuses on the 

multi-thread implementation of a tool supporting the 

study of text variations by textual critics. 

Keywords: multi-thread, wavefront, evolution, 

version, performance 

 

1 INTRODUCTION 

Textual critics examine changes caused by editing, 

authors’ modifications, and even printing errors to 

discover the evolution of text variants.  To 

distinguish between versions, scholars collate texts, 

which according to Williams and Abbot, is the 

process where one text is compared with another to 

discover textual variants [14].  Along with the 

comparison between texts, a scholar must also take 

into account that an author’s manuscripts may also 

have notations or marginalia, such as dates, numbers, 

biographical or historical events, that make the 

distinction between versions possible. When the texts 

do not provide a clear idea of such a sequence, then 

the textual critic may depend on bibliographical 

studies to provide extra information. Historical, 

analytical and descriptive bibliographical studies 

examine published documents, like a book, in order 

to identify several attributes of those publications.  

For example, analytical bibliographic scholars 

investigate various physical characteristics of a work, 

including manufacturing processes, ink components, 

and book binding techniques, to find significant 

information that will help them with their study. 

These studies can also be conducted with the goal of 

trying to establish a chronological sequence of 

document creation [14]. However, with the 

advancement of digital technology, new obstacles 

have surfaced in bibliographical studies. While 

digital technology leads to greater access to a 

manuscript’s content, its physical characteristics 

cannot be accessed in the digital realm, at least not in 

the same way. As such, digital tools for digital 

objects are necessary. Due to the amount of data to be 

analyzed and the target user, these tools require high 

performance solutions to be applicable to office 

solutions. A parallel implementation based on 

multithread techniques is therefore the basis of this 

study. 

2 BACKGROUND 

A series of recently developed investigative tools, 

complement Shillingsburg’s argument that a new set 

of characteristics need to be analyzed in documents 

that are represented in digital form, including 

hardware (from the processor to the monitor), the 

communication networks, the character sets, type 

fonts, mark-up, and formatting of the text [9]. Even 

blank spaces and printer paper--if the document is 

printed--become part of this analysis.  

 

Several scholars, Michael Wise among them, have 

conducted studies on textual variants concentrating in 

the area of plagiarism [15]. However in the study of 

plagiarism, the texts are compared in search of 

segments that are plagiarized. These studies do not 

consider the possibility of targeting versions of the 

same work, which is the goal of this research. 

 

Two well-known tools among humanists, the 

Versioning Machine, built by Susan Schreibman et 

al, and Juxta, created by the Applied Research in 

Patacriticism group at the University of Virginia, 

have been used in a number of projects [3, 12]. 

Scholars, such as Lara Vetter and Jarom McDonald 

in “Witnessing Dickinson’s Witness,” apply the 

Versioning Machine to demonstrate the complexity 

of Emily Dickinson’s work with respect to the 

number of published variants [13]. The text is 

displayed through the Versioning Machine to allow 

for a comparison between versions of Dickinson’s 

work and to show how Dickinson varied words, 

phrases, lines and stanzas. Juxta provides the user 

with histograms, which display the frequency of 

differences between the initial text to a specific 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 647



variant, allowing the users to identify sections of the 

text that have been heavily modified [3]. These tools 

provide a visualization of the differences between 

texts, but still require the manual intervention of the 

textual critic to establish the text evolution, which 

implies that even though the differences between 

documents can be seen by the critic, the tool does not 

provide any information on the evolution of the text.  

 

3 GRALT: A MULTI-THREADED 

TOOL 

This section presents GRALT, Graph Analyzer of 

Literary Text Versions, a multi-thread solution based 

on graph techniques, which has a polynomial time 

complexity. In order for GRALT to estimate the 

evolutionary sequence of the text versions, a text 

comparison graph is constructed to represent the 

differences between the texts [6, 7]. 

 

In order to measure the difference between texts, an 

editing metric technique is required. One of the most 

widely known text editing metrics is Levenshtein’s 

Distance [5]. It calculates the least number of 

operations that are required to modify a text, at 

character level, and obtain a new one. The 

Levenshtein’s algorithm shown in Figure 1, utilizes a 

dynamic programming technique in a two 

dimensional matrix to perform the required 

calculations. The texts being compared are aligned 

with the rows and columns of the matrix. The matrix 

is then populated from the upper left corner to the 

bottom right corner. The number found in the lower 

right corner is the Levenshtein distance between the 

documents.  

 

The first approach to finding the evolutionary 

sequence by using graph traversal algorithms is based 

on concepts associated with a Hamiltonian path. Such 

graph nodes represent the text variants while the 

edges indicate the differences found in the text.  In 

this study, it is assumed that the user has enough 

information to establish which node corresponds to 

the original (first draft) of the text, and then a greedy 

algorithm named Single Path Evolution (SPE), shown 

in Figure 2, is applied to the graph, adding edges to 

the solution path in a single direction. The algorithm 

assumes that the graph is fully connected. 

 

A second approach involves the use of a Minimum 

Spanning Tree algorithm. Two common algorithms 

used to find a MST are the Kruskal’s algorithm and 

the Prim’s algorithm [8].  A simple pseudo code 

representation of the Kruskal’s algorithm is shown in 

Figure 3. 

 

Levenshtein’s Algorithm: 

input: text1 and text2 

output: Levenshtein’s distance 

lev[0][j]=j for  0≤j≤ length(text2) 

lev[i][0]=i for  0≤i≤ length(text1) 

for (i = 1; i ≤ length(text1); i++) 

{  

  for (j = 1; j ≤ length(text2); j++) 

 { 

      if( text1 [ i -1] == text2 [ j-1 ] ) 

      {   

 lev[ i ] [ j ] = lev [ i – 1] [ j – 1] 

       } 

        else 

       { 

       lev[i ] [ j ] = minimum(lev[i-1][j],  

                         lev[i][j-1], lev[i-1][j-1]) + 1 

} 

  } 

} 

return lev[length(text1) ] [ length(text2)] 

 

Figure 1 Levenshtein’s Algorithm 

 

SPE Algorithm 

input:  graph G=(V,E, W), original node s 

output: shortest Hamiltonian path, H = (M, D) 

DØ 

M {s}  

V V - {s} 

end_of_M  s 

While V ≠ Ø 

      select v in V with minimum weight 

from end_of_M 

      D  D   {(end of M - v)} 

      MM   {v} 

      V V - {v} 

      end_of_M  v 

 

Figure 2 SPE algorithm 

  

Kruskal Algorithm  

input:  graph G=(V,E, W), original node s 

output: Minimum Spanning Tree F=(M,T) 

// create a forest (unconnected graph) F such that F= 

(M,T) 

TØ 

M V 

sort E into non-decreasing order by weight w 

for each (u, v)  E taken from the sorted list 

if (u,v) connects 2 different trees in F  

then T  T   {(u, v)} 

Return MST F = (V,T) 

 

Figure 3 Kruskal’s MST algorithm 

648 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



The combined functionality of a modified 

Levenshtein algorithm and the version sequence 

estimation available through the SPE path and the 

MST algorithms, results in the GRALT algorithm 

shown in Figure 4.  The algorithm produces an 

undirected graph and considering the assumption that 

the original is known, it can be transformed into a 

direct graph, introducing the directions necessary to 

obtain the estimated version evolution. 

 

4 MULTI-THREAD DESIGN 

Significant computer programming challenges, 

involving memory utilization and computational 

time, exist in the implementation of GRALT. It is 

important to implement a multithreaded version of 

the algorithm with dynamic memory allocation to 

support the different needs of data storage.  The 

comparison of two texts using the modified 

Levenshtein’s method requires the execution of a 

nested pair of loops whose total number of iterations 

may result in a very long execution time. In this 

study, given the size of some of the problems that are 

investigated, multi-thread programming based on a 

technique proposed by Lamport in 1974 to improve 

the execution of nested loops is used [4]. 

GRALT algorithm 

Input: list of texts L, original text s   L 

Output: estimated evolutionary sequence of L 

// build complete graph G=(V,E,W) 

VL 

EØ 

For all v   V 

E  E   {(v u)| u  (V-{v}}) 

// compute editing distance between texts 

For all vi  V 

       For all vj  V, j>i 

              W(vj vi) Levenshtein(vi,vj) 

// find the SPE path of G 

Estimated sequence  SPE (G, s) 

// or find the minimum spanning tree 

Estimated sequence  Kruskal (G,s) 

 

Figure 4 GRALT Algorithm 

 

This technique, known as the wavefront approach, 

uses a hyperplane concept to identify parallel code in 

uniform nested loops [4]. In particular, the modified 

Levenshtein’s algorithm has a double nested loop 

equivalent to a two-dimensional space. Usually, the 

execution of such loop iterations follows a row-wise 

or column-wise sequence. In the modified 

Levenshtein’s algorithm, each iteration depends on 

three values previously calculated: the first value is 

found in the same column and a previous row, the 

second on the same row and a previous column and 

the third in a diagonal, as represented by the arrows 

seen in Figure 5.  The few values that are shown in 

the matrix are examples of the calculated distance 

based on the modified Levenshtein’s algorithm.  

 

 
 

Figure 5 Levenshtein algorithm dependencies 

 

In the Levenshtein’s algorithm, it is clear that after 

iteration (1,1) has been completed, iterations (2,1) 

and (1,2) could be run in parallel, followed by 

iterations (3,1), (2,2), and (1,3). In this study, 

considering the synchronization required by the 

iterations (to obtain data previously computed), any 

attempt to parallelize individual iterations might 

cause undesirable overhead. A better solution is to 

apply this concept to groups of iterations as 

represented in Figure 6.  A single thread runs the first 

block of iterations; the second and third blocks are 

assigned to two threads that will run concurrently, 

and depending on the number of threads available, 

the number of concurrent executions will increase. In 

a simple solution, as seen in Figure 9, if six threads 

are available, the rows would be split in 6 blocks, and 

each block of columns would be assigned to one of 

the threads. Therefore, when getting to the third 

hyperplane, the group (X3,Y1) would run concurrent 

with (X2,Y2) and (X1,Y3). 

 

Another computational problem is the amount of 

memory required by the modified Levenshtein’s 

algorithm. In a simple example, two texts of size 

Y1 Y2 Y3 Y4 Y5 Y6

X1 0 1 2 3 4 5

X2 1 0 1

X3 2 1 1

X4 3 2 2

X5 4

X6 5

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 649



200,000 characters being compared would require a 

matrix of 200,000 by 200,000 integer values or 

40,000,000,000 integer values or approximately 160 

Gbytes of memory. Well beyond the typical physical 

memory available in current desktop computers. 

 

 
 

Figure 6 Parallel execution using threads 

 

A simple solution was adopted by using dynamic 

allocation of a pool of memory, where just a few 

rows of the matrix are initially allocated, as seen in 

Figure 7, and the low index rows are reutilized as the 

wavefront advances through the array. In other 

words, when row X8 in Figure 7 needs to run, it 

reutilizes the memory initially allocated for row X1, 

since the results for X1 have already been propagated 

to row X2, and X1 is no longer needed. In the 

example mentioned earlier, involving 200,000 

character documents, and assuming six threads 

running in parallel the initial memory allocation 

requirement becomes only 6.4 Mbytes. A larger 

number of threads will require more memory and 

synchronization while increasing the parallelism and 

reducing computational time.  

 

5 EXPERIMENTS 

To be able to properly test the proposed solution in 

this research, it was very important that the test 

data results could be verified, according to its known 

evolutionary sequence. Unfortunately, textual 

evolution has usually been recorded based on when 

the variant became public by being published or 

inscribed in some document, such as a letter to a 

friend or a dated draft kept in the author’s files, and 

not work modification. Therefore, the most recently 

dated version must always be considered a version of 

one that was dated before it.  Most of the dates used 

are those in which the literary documents were 

published or recorded in some publication or digital 

archive. 

 

Considering that the main focus of this research is in 

the field of textual criticism, the sources chosen were 

of a literary nature and a realistic representation of 

works that would be studied by a literary scholar. 

These sources can be categorized in three 

different groups. The first group is comprised of 

documents, specifically poems, that were written and 

published in books and later digitized for Internet 

accessibility, obtained through the Elizabeth Barrett 

Browning (EBB) project at the University of North 

Dakota (UND), accessible online through UND’s 

implementation of the Versioning Machine [10, 12]. 

These test cases range between having three to four 

versions beyond the original.   The sizes of these 

poems are in a range of 508 to 2,699 characters each. 

 

   
 

Figure 7 Memory allocation, row X8 reutilizes row 

X1 

Y1 Y2 Y3 Y4 Y5 Y6

X1
Time 1

 Thread 1

Time 2

Thread 2

Time 3

Thread 3
Time 4 Time 5 Time 6

X2
Time 2

Thread 1

Time 3 

Thread 2
Time 4 Time 5 Time 6 Time 7

X3
Time 3 

Thread 1
Time 4 Time 5 Time 6 Time 7 Time 8

X4 Time 4 Time 5 Time 6 Time 7 Time 8 Time 9

X5 Time 5 Time 6 Time 7 Time 8 Time 9 Time 10

X6 Time 6 Time 7 Time 8 Time 9 Time 10 Time 11 Y1 Y2 Y3 Y4 Y5 Y6

X1
Time 1

 Thread 1

Time 2

Thread 2

Time 3

Thread 3

Time 4

Thread 4

Time 5

Thread 5

Time 6

Thread 6

X2
Time 2

Thread 1

Time 3 

Thread 2
Time 4 Time 5 Time 6 Time 7

X3
Time 3 

Thread 1
Time 4 Time 5 Time 6 Time 7 Time 8

X4 Time 4 Time 5 Time 6 Time 7 Time 8 Time 9

X5 Time 5 Time 6 Time 7 Time 8 Time 9 Time 10

X6 Time 6 Time 7 Time 8 Time 9 Time 10 Time 11

X7 Time 7 Time 8 Time 9 Time 10 Time 11 Time 12

X8 Time 8 Time 9 Time 10 Time 11 Time 12 Time 13

X9 Time 9 Time 10 Time 11 Time 12 Time 13 Time 14

650 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



The second data set, represented as “WS” for 

William Shakespeare in Table 1, was obtained from 

the Internet Shakespeare Editions (ISE) website that 

is supported by the University of Victoria, Friends of 

ISE, and the Social Sciences and Humanities 

Research Council of Canada [2]. This dataset is made 

up of the quartos, folios and modern published 

versions of writings by William Shakespeare.  This 

dataset consists of documents that range in size from 

2,812 to 144,878 characters each. In particular, the 

data set labeled Hamlet was redefined in four 

different subsets to allow for an in-depth examination 

of the obstacles to establishing the evolutionary 

sequence of the text.  The original Hamlet set 

contains 7 texts, while the remaining subsets contain 

only 3 to 5 files.   

 

Lastly, a third test set is the poem “Song of Myself” 

found in the collection of poetry, Leaves of Grass, 

written by Walt Whitman and found in the Walt 

Whitman Archive housed by the University of 

Nebraska, Lincoln [11]. The reason of using this third 

case was to have a second set of data with more than 

five files.  This dataset consists of documents that 

range in size from 70,239 to 73,473 characters each.   

Below is a discussion of the computational time 

results associated with running the sequential and the 

multithreaded algorithms with the use of four threads 

in the parallel implementation.  Table 1 shows the 

significant performance improvement obtained by the 

multithreaded configuration. The most significant 

gain, due to the size of the test case, was registered 

when running the William Shakespeare Henry V test 

case, which showed a speed up factor of 3.95 on the 

total execution time of the algorithm when compared 

to the sequential execution [1].  The smaller test 

cases showed minor improvements. In such cases, the 

overhead of activating the threads added to the 

synchronization delays between threads resulted in 

the smaller reduction of the execution time when 

compared to the sequential cases.  

 

One of the main goals of this experiment was to 

verify that this technique can be used as a guide to 

determine the evolutionary sequence of versions of 

documents.  In order to be able to determine the 

accuracy of the proposed method, a numerical 

scoring system had to be applied.  Woon and Wong 

proposed the use of a new scoring system, restricted 

to graphs consisting of a single linear path and 

establishing windows of comparison along such path, 

which allowed one correct result to be counted 

multiple times according to the size of the window 

when a node preceded any of its actual successors in 

the path [16].  

In this study, a window of size one was assumed, 

where an original is checked only against its 

immediate succeeding version, so a one point score is 

awarded to every edge that correctly matches the 

order of the actual text dates and zero points to those 

edges that fail the match. Table 2 shows the accuracy 

of the GRALT algorithm working with the MST and 

the SPE path options in the benchmark tests. 

 

Table 1 Computational time for each test case. 

 

 
 

Table 2 Accuracy of GRALT with MST and SPE 

implementations 

 

 

Test Case 

Sequential 

Processing 

Time

 (in seconds)

Multi-

thread 

Processing 

Time 

Multi-

thread/Sequ

ential 

Processing 

Speedup

EBB Child 0.898 0.515 1.74

EBB Bettine 0.566 0.343 1.65

EBB Sea 0.766 0.421 1.82

EBB Loved 1.092 0.390 2.80

EBB Clouds 1.282 0.609 2.11

EBB Dog 1.045 0.390 2.68

EBB Mitford 0.237 0.109 2.17

WW Leaves 1599.000 432.734 3.70

WS Hamlet 7224.080 2247.050 3.21

WS Henry IV Part I 3.354 0.905 3.71

WS Henry V 13.354 3.385 3.95

WS Richard II 4.321 1.201 3.60

WS Richard III 2.371 0.687 3.45

WS Romeo & Juliet 1.950 0.686 2.84

WS Troilus and Cressida 4.462 1.233 3.62

Test 

Case 

Minimum 

Spanning Tree
SPE

EBB Child 100% 100%

EBB Bettine 66% 66%

EBB Sea 33% 33%

EBB Loved 100% 100%

EBB Clouds 100% 100%

EBB Dog 50% 50%

EBB Mitford 100% 100%

WW Leaves 100% 100%

WS Hamlet 66% 66%

WS Hamlet (exclude 

Quarto 1 files & Modern 

versions) 100% 100%

WS Hamlet (exclude 

Modern Versions) 66% 66%

WS Hamlet (exclude 

Quarto 1 & Modern 

Quarto 1) 75% 50%

WS Henry IV Part I 100% 66%

WS Henry V 66% 66%

WS Richard II 100% 100%

WS Richard III 100% 100%

WS Romeo & Juliet 100% 100%

WS Troilus and Cressida 100% 100%

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 651



6 CONCLUSION 

In the analysis of literary works from the same 

author, it is important to know the evolutionary 

sequence, or versioning sequence, of the texts. In 

many situations, the actual sequence is unknown. The 

result of this study was the design and 

implementation of a system that can automatically 

make an estimation of the evolutionary sequence of 

digitized data that has not had its evolutionary 

derivation information recorded. The solution was 

based on the use of graph theory, in particular by 

embedding modified implementations of the 

Kruskal’s Minimum Spanning Tree (MST) and 

Hamiltonian path (SPE for Single Path Evolution) 

algorithms to make the final determinations, which 

resulted in the design of the GRALT algorithm. The 

graph techniques were applied, resulting in a 

complete system design, which utilized a parallel 

wavefront implementation of a modified 

Levenshtein’s algorithm to calculate text editing 

distances. The experiments showed a significant 

improvement on execution time when running a 

multithreaded implementation. There are still other 

approaches to be further investigated, including the 

improvement of the algorithm implementation 

computational time, which may be accomplished by 

increasing the number of threads and the number of 

processing elements or running on a distributed 

computer system. 

 

7 REFERENCES 

1. Hennesy, J.L., and Patterson, D.A., Computer 

Organization and Design The 

Hardware/Software Interface, Morgan Kaufmann 

Publishers Inc., San Francisco, CA, 1994. 

 

2. (2013, March). Internet Shakespeare Editions 

[Online]. Available: internetshakespeare.uvic.ca. 

 

3. (2013, June). Juxta[Online].  Available:http:// 

www.juxtasoftware.org. 

 

4. Lamport, L. “The Parallel Execution of DO 

Loops,” in the Communications of the ACM 

Special Interest Group on Programming 

Languages, February 1974, pp. 82-93 

 

5. Levenshtein, V. I. (1966). Binary codes capable 

of correcting deletions, insertions, and reversals. 

Soviet Physics Doklady, 10(8):707–710. 

 

6. Mayfield, K., Grant, E., Alberts, C. 

“Determining the Evolutionary Sequence of 

Versions of a Text with the Minimum spanning 

Tree Algorithm,” Proceedings: 25th International 

Conference on Computer Applications in 

Industry and Engineering, 2012. 

 

7. Mayfield, K. Alberts, C. “GRALT: Graphical 

Analyzer of Literary Text Versions,” in the 

North Dakota Quarterly, Vol. 79, No 1, 2014. 

 

8. Neapolitan, R., Naimipour, K. “Foundations of 

Algorithms Using C++ Pseudocode,” Jones and 

Bartlett, Inc., New York, 2004.  

 
9. Shillingsburg, Peter L. From Gutenberg to 

Google: Electronic Representations of Literary 

Texts. Cambridge, UK: Cambridge University 

Press, 2006.  

 

10. (2011, November 15). The University of North 

Dakota: Elizabeth Barrett Browning Project 

[Online]. Available: http://und.edu/instruct/ 

sdonaldson/index.html. 

 

11. (December 2013). The Walt Whitman Archive 

[Online]. Available: http://www.whitman 

archive.org/. 

 

12. (2013, January 15). Versioning Machine v.4.0 

(2011)[Online]. Available: http://v-

machine.org/index.php. 

 

13. Vetter, L., and McDonald, J. “Witnessing 

Dickinson’s Witnesses,” in Literary and 

Linguistic Computing, Vol. 18, No 2, 2003, pp. 

151-165.  

 
14. Williams, W.P., Abbott, C.S., “An Introduction 

to Bibliographical and Textual Studies.” The 

Modern Language Association of America, New 

York, 1985. 

 

15. Wise, M. “YAP3: Improved Detection of 

Similarities in Computer Program and Other 

Texts,” in the Proceedings of the ACM Special 

Interest Group on Computer Science Education, 

1996, pp. 130-134. 

 

16. Woon, W.L., Wong, K.D. “String Alignment for 

Automated Document Versioning,” Knowledge 

Information Systems, 2009, pp. 293-309. 

652 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



I/O performance evaluation of parallel scientific applications in a
Cloud Environment

Pilar Gomez-Sanchez1, Sandra Méndez2, Dolores Rexachs1 and Emilio Luque1
1Computer Architecture and Operating Systems Department, Universitat Autònoma de Barcelona (UAB),

Bellaterra (Barcelona), Spain
2High Performance Systems Division, Leibniz Supercomputing Centre (LRZ),

Garching (Munich), Germany

Abstract— Performance evaluation of parallel application
plays an important role on High Performance Computing
(HPC), in cloud computing as well as in the classical sys-
tems. As the scientific community selects the cloud environ-
ment to access resources of HPC, performance evaluation
brings new challenges such as defining methods to analyze
the performance on a more configurable environment than
traditional cluster computers. In this paper, we present a
methodology to evaluate the I/O performance of parallel
application over the Virtual Clusters in a cloud environment.
We represent the I/O requirements of the parallel application
in an I/O model and define a percentage required of the
memory and storage to determine if the application is
I/O intensive. If the application is I/O intensive, we define
boundaries for the data transfer rate to identify if the appli-
cation is limited by the I/O subsystem. We have evaluated
on different Virtual Clusters configurations for the kernels
of scientific applications S3DIO and BT-IO. Experimental
results show that our methodology allows us to identify when
an application is I/O intensive and to evaluate if it is limited
by the I/O subsystem.

Keywords: Parallel I/O System, Access Pattern, I/O Configura-
tion, I/O Modeling, I/O phases

1. Introduction
The increasing interest in cloud computing by the High

Performance Computing (HPC) community offers new chal-
lenges for the users of HPC. Efficient use of the Virtual
Cluster on Cloud (VCC) is crucial because the user must
pay fees based on use of resources and services. Due to
the configurability and elasticity of cloud environments, the
user can create and configure a VCC that meets the needs
of their parallel application by avoiding the unnecessary
resources use. Parallel applications that use parallel I/O need
to be evaluated to know if the I/O subsystem is limiting
the application performance. This allows the user to identify
possible bottleneck in the I/O subsystem which provides
guidelines to change the configuration of the I/O subsystem
to reduce or avoid the effect of the bottlenecks.

In this paper, we present a methodology to evaluate the
expected performance in a new VCC quickly taking into

account the I/O subsystem configuration and the application
behavior on cloud computing. The methodology has the
following steps: 1) Application Parallel I/O Characterization.
The I/O model, which characterizes the application behavior,
is used to identify if the application performance is limited
by the selected I/O system configuration. 2) Virtual Clusters
I/O Characterization. 3) Performance Evaluation on the Vir-
tual Clusters for the application I/O model. 4) Performance
Analysis based on the relation of the I/O Time-Cost.

We show the results to apply the proposal methodology
in different configurations VCC for the kernels of parallel
application S3D-IO and BT-IO with different inputs and
number of processes.

The cloud platform selected is Amazon EC2 because this
is the leading Infrastructure-as-a-Service (IaaS) provider.The
tool selected to create a Virtual Cluster on Amazon EC2 is
StarCluster [1]. To facilitate the I/O configuration, we have
implemented a tool for configuration and installation of the
parallel filesystem PVFS2.

The rest of this article is organized as follows; in Section
2, we review the related work, Section 3 introduces our
methodology. In Section 4, we present the experimental
results. Finally, in Section 5, we present the conclusions and
future work.

2. Related Work
The cloud platform introduces a new level system, virtu-

alization. This level increases the complexity of computing,
networking and I/O system. There are several studies that
focus on performance evaluation. Noorshams et al. present
in [2] an I/O performance modeling approach for virtualized
storage systems based on queueing theory. Sivathanu et al.
in [3] present a measurement study of I/O performance.
They focused on the influence of careful disk provisioning
and placement on I/O performance workload interference
and the implications of virtualization on different types of
workloads. In [4], [5], [6], the storage subsystem on the
Amazon EC2 platform is evaluated using different instances
type to analyze if cloud platform is convenient for scientific
applications with high I/O performance requirements.

Unlike the previous authors, we present a methodology
that defines the I/O requirements of the parallel application

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 653



Fig. 1: The phase concept used by the I/O model to represent
the global access pattern of the parallel scientific applications

based on an I/O model and in the I/O characteristics of the
VCC. This allows the user to determine if his I/O intensive
application is limited by the I/O subsystem of the VCC.

3. Methodology of Analysis
In this section, we present a methodology for the I/O

performance evaluation of the parallel scientific applications
on a cloud environment. Next, we explain the steps of our
methodology.

3.1 Application Parallel I/O Characterization
The I/O characteristics of the parallel application is

expressed by an I/O model which is extracted with the
tool PAS2P-IO [7]. The application model is defined by
three characteristics: meta-data, spatial global pattern and
temporal global pattern. The concept of I/O phase is defined
to represent a global pattern, both temporal and spatial, for
each file of the parallel application. Figure 1 shows the I/O
phase concept for the model.

An I/O phase is represented by:
• direct values extracted from the application,

– IdPh, identifier of a phase.
– np, number of processes that composes the phase.
– The I/O pattern of the phase that is composed of

the request size (rs), the type of operation (w/r)
and the number of I/O operations (#iop).

– Number of repetitions rep of the phase IdPh.
• indirect values,

– Data Volumen: weight(IdPh) for the phase IdPh.
This represents the data transferred during the
phase, it is expressed in Bytes and it is calculated
by expression 1.

weight(IdPh) = np× rs× rep (1)

A file of the application is represented by:
• A set of identifiers of phases.

• Memory required per process: this represents the mem-
ory required (expression 2) for the I/O operations per
process. This includes the I/O operations of the phases
(Num_Phs) in which the process takes part.

MRxP =
Num_Phs∑

i=1

rsi ×#iopi × repi (2)

• Access Mode: Strided, Sequential and Random.
• Access Type: Unique (a file per process) or Shared (a

shared File between the processes).
• Metadata: this is associated to positioning, synchro-

nism, and coordination of the data access operations
defined for MPI-IO.

• File Size: for the I/O files and output files, the size
is calculated by expression 3 where phs_write is the
number of phases with write operations at different
offsets of the file, and for input files by expression
4 where phs_read is the number of phases of read
operations.

IOFSize =

phs_write∑
i=1

weighti (3)

INFSize =

phs_read∑
i=1

weighti (4)

Finally, the number of files (nf ) and the storage ca-
pacity required by the application are added to the I/O
characteristics. The storage capacity (STapp) is calculated
by expression 5, where nf_IOF is the number of I/O files,
nf_INF is the number of input files.

STapp =

nf_IOF∑
i=1

IOFSizei +

nf_INF∑
i=1

INFSizei (5)

3.2 Characterization of the Virtual Clusters
For the cluster selection of components for the VCC, we

have applied the methodology presented in [8]. We apply
IOzone[9] benchmark in a node of the VCC to obtain the
average transfer rate at local filesystem level. IOzone is a
filesystem benchmark tool that generates and measures a
variety of file operations. It is used in automatic mode with
a file size equal to double RAM size, minimum request size
(rs) equal to 4 KB and a maximum request size equal to 1
GB or 2 GB, depending on the network performance. We
have selected only write/rewrite and read/reread operations.
From this, we obtain the average transfer rate (Avg_ST_bw)
for request sizes between minimum and maximum. IOzone
supplies us with the dynamic characteristics for the nodes of
Clusters. It allows us to evaluate the instance variability that
will depend on date and hour, and thus what we can expect
for a specific application.

From the IOzone measures, we calculate the storage
bandwidth (ST_BW) for the global file system of the VCC.

654 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



This is calculated by expression 6, where Num_DFs is the
number of data servers of the global filesystem.

ST_BW = Avg_ST_bw ×Num_DFs (6)

3.3 Performance Evaluation on the Virtual
Clusters for the application I/O model

We represent, in Figure 2, the I/O requirements of the
parallel application in an I/O model and we define a percent-
age required of the memory and storage to determine if the
application is I/O intensive. Below, the steps are described
to evaluate the performance on each VCC.

• Percentage calculation of I/O Requirements: The per-
centage of the memory and storage capacity required is
calculated to determine the application I/O requirements
on a specific system. We consider that a parallel appli-
cation with less than 15% of the memory and storage
requirements is not I/O intensive in I/O system of the
VCC. Applications with more than 20% are considered
I/O intensive. The equation 7 is applied to calculate the
percentage of memory required for the I/O operations
per compute node.

%Mem.Req.CN =
(NPxCN ×MRxP )× 100

RAM(CN)
(7)

Where NPxCN is the number of processes (np) per
compute node (CN ), MRxP is the memory required
for the I/O operations per process, and the RAM(CN)
is the RAM size of the compute node.
The percentage of the storage capacity required by the
application is calculated by expression 8.

%ST.Req =
STapp × 100

ParallelStorageCapacity
(8)

Where ParallelStorageCapacity is the capacity of
global filesystem configured in the VCC.

• I/O Evaluation: To reduce the time consumed in this
step and the associated cost, we use an I/O Time pre-
diction. For that we obtain the transfer rate (BW(CH))
expressed in MB/sec, and I/O time considering the
application behavior obtained in the model. To do this,
we can use 1) a synthetic program that represents the
I/O model or 2) an benchmark that can be configured
for the I/O model parameters. In this paper, we use the
second option. We apply IOR[10] benchmark to execute
the I/O model of a parallel application on a specific I/O
system.
We have defined the input parameters IOR by repre-
senting the I/O model with the following values:

– Access Mode (Strided, Sequential and Random).
∗ Sequential: for np = np(IdPh) processes, s = 1,

b = weight(IdPh) and t = rs(IdPh)

∗ Strided: for np = np(IdPh) processes, s = rep,
b = rs(IdPh) and t = rs(IdPh).

Fig. 2: Performance Evaluation on the Virtual Clusters for
the application I/O model

– Access Type: Unique −F (1-file-per-process) or
Shared default (shared-file between the pro-
cesses).

– I/O library: mpiio, −c for the MPI with Collective
I/O, and posix. Collective I/O is performed at user
level through the ROMIO.

– Storage Capacity required: nf , number of files.
The storage capacity required for the parallel ap-
plication is calculated by

∑nf
i=1 si × bi × npi.

• Analysis of the I/O intensive application: in Figure
2, the relation between the I/O requirements can be
observed, as well as I/O time and the storage bandwidth
to evaluate when an application can be limited by the
I/O system. We analyze the I/O impact on the parallel
application performance by considering the storage
bandwidth defined in the VCC characterization. To do
this, we define the following rules for the transfer rate
(BW) obtained, storage bandwidth (ST_BW) and the I/O
requirements (IO_Req):

– If (BW >80% of ST_BW) then the I/O is no a
limiting factor for the application in that system.

– If (50% of ST_BW< BW <80% of ST_BW)
and (20%< %IO_Req <80%) then I/O is being
used appropriately.

– If (20% of ST_BW< BW <50% of ST_BW)
and (50%< %IO_Req <80%) then the
application is limited by I/O.

– If (20% of ST_BW< BW <50% of ST_BW)
and (20%< %IO_Req <50%) then I/O
performance can be improved.

– If (BW< 20% of ST_BW) and (20%<
%IO_Req <100%) then selected configuration
not is appropriate for application requirements.

3.4 Performance Analysis based on the relation
of the I/O Time-Cost.

Measures obtained with IOR for the application I/O model
are used to calculate the utilization cost of I/O system. The
total cost for a specific VCC is composed of a variable cost
(cost_var) and a fixed cost (cost_fix). This is computed

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 655



by (9).
cost_tot = cost_fix+ cost_var (9)

The metric selected for IOR is the transfer rate (BW(CH)),
expressed in MB/sec. The variable cost estimated for the
application I/O model is calculated by (10). This variable
is proportional to utilization time of I/O, and hence to the
quantity of transfered data. The billing is per utilized hours.

cost_var =

phases∑
i=1

cost(phase[i])× num_inst (10)

Where num_inst is the number of instances used for the
execution, the cost(phase[i]) is calculated by (11), costinst
is the cost per hour for the instance type (inst) and EBS
which represents the persistent storage per month. This last
parameter is optional, but if you can’t execute the application
with temporal storage you can add the persistent to increases
the storage capacity or simply to have the storage persistent.

cost(phase[i]) = costphase[i] + [EBS] (11)

costphase[i] = (
weight(phase[i])

BW(CH)(phase[i])
/3600)× costinst

(12)
The time-cost relation of the different VCCs is calculated

by the equation 13.

perf_costci =
Timeci
costci

(13)

Where Time is expressed in sec, ci represent one VCC,
and i ∈ {1..NumV CC} where NumV CC is the total
number of distinct configurations of VCCs to analyze.

To compare the Cluster ck and Cluster cj, we can say
ck has a more efficient performance-cost relation than cj, if
perf_costck is higher than perf_costcj .

4. Experimental Results
In this section, we present the performance evaluation and

the cost analysis for two well-known scientific applications
I/O kernels, NAS BTIO[11] and S3D-IO[12], that present
different I/O access patterns. We work with the S3D-IOv1.1,
blocking API’s and without restart.

BT-IO and S3DIO have been traced using PAS2P-IO to
extract their I/O models.This process was carried out in
physical computer clusters Finisterrae of the Centre of Su-
percomputing of Galicia(CESGA)[13] and Supernova of the
Wroclaw Centre for Networking and Supercomputing[14].

We have selected two instance types from Amazon EC2
[15], taking into account the I/O requirements of application
and the instance price. The Amazon instances selected are
shown in Table 1. The C3 instances are compute-optimized
instances, featuring the highest performing processors and
the lowest price/compute performance in EC2. The M3
instance types provides a balance of compute, memory, and

Table 1: Characteristics of the Amazon’s Instances Selected
Instances Processor RAM Storage Network $xHora

Intel Xeon (GB) (GB)
c3.xlarge 4 Cores; 7.5 2x40 Moderate 0.210

E5-2680 v2 SSD
2.8 GHz

m3.xlarge 4 Cores; 15 2x40 High 0.280
E5-2670 v2 SSD

2.5 GHz

Table 2: Descriptive Characteristics of the Virtual Clusters
on cloud (VCC) configured equal for the experiments.

I/O components VCC 1 VCC 2
Instance Type c3.xlarge m3.xlarge
Number of Instances 10 10
Storage Type Temporal Ephemeral Ephemeral
Storage Type Persistent EBS EBS
Device Type Temporal SSD SSD
Device Type Persistent HDD HDD
Capacity of Persistent Storage 16GB 16GB
File system Local ext3 ext3
File system Global PVFS2 PVFS2
Parallel Storage Capacity 320GB 320GB
Number of data servers 8 8
Number of Metadata Server 1 1
Stripe Size 64KB 64KB
MPI library mpich2-1.5 mpich2-1.5
I/O library pnetcdf 1.4.1 pnetcdf 1.4.1

network resources. Using the instances of Table 1, we have
created two VCCs and Table 2 shows the components of the
VCCs.

4.1 BT-IO Charaterization
The BTIO benchmark performs large collective MPI-IO

writes and reads of a nested strided datatype, and it repre-
sents a significant workload test to evaluate the performance
that a system can provide for non-contiguous workloads.

We have obtained the following meta-data of NAS BT-IO
in the FULL subtype with our tool PAS2P-IO: Explicit off-
set, Blocking I/O operations, Collective operations, Strided
access mode, Shared access type and a shared File accessed
by all the MPI processes.

Table 3 presents the I/O phases for the I/O model using 25
and 36 processes for the classes C and D. We also present the
storage capacity required by BT-IO for the different classes
and memory required for each process.

4.2 S3D-IO Charaterization
S3D-IO uses parallel NetCDF for checkpointing. A check-

point is performed at regular intervals, and its data consist
of 8-byte three-dimensional arrays. We have obtained the
following metadata for the S3D-IO with our tool PAS2P-
IO: Collective write, Individual file pointer, Blocking I/O
operations, Strided access mode, Shared access type and five
Shared files accessed by all MPI processes.

656 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



Table 3: I/O phases for the BT-IO model using 25 and 36 processes for the classes C and D
Class IdPh np Operation rs rep weight(IdPh)MB weight(app) STapp(GB) MRxP Files

(MB) (rep× np × rs) (MB)

C
1 to 40 25 Write_at_all 6.49 1 1× 25× 6.49 12.9GB 6.4 518 1

41 25 Read_at_all 6.49 40 40× 25× 6.49 1

C
1 to 40 36 Write_at_all 4.50 1 1× 36× 4.50 12.9GB 6.4 360 1

41 36 Read_at_all 4.50 40 40× 36× 4.50 1

D
1 to 50 36 Write_at_all 72 1 1× 36× 72 259.2GB 129.6 7,196 1

51 36 Read_at_all 72 50 50× 36× 72 1

Table 4 presents the I/O phases for the I/O model using
16 and 32 processes for the workloads 200x3 and 400x3.
In addition, we show the storage capacity required by the
application and memory required for each process.

4.3 Characterization of the Virtual Clusters
Considering that we have two clusters with the parallel

file system PVFS2, because the two benchmarks selected
use shared files for all MPI processes. We execute IOzone
to evaluate the storage bandwidth for transfer rate provided
by the ephemeral disk for one node. We only evaluate
the ephemerals used for the PVFS2 parallel file system.
The PVFS2 was configured with a metadata server (MDS),
8 datafiles (DF) and a 64KB stripe size. The number of
compute node is 9 for the BT-IO and 8 for S3D-IO. In both
cases, nodes 1 to 8 perform I/O and compute. In total 10
instances are used on each VCC, where the master node
is used as MDS server, with the objective being to have
different performance behavior and cost, some intensive and
others not. The nodes are sharing compute and I/O.

We evaluate transfer rate of write and read operations
for request sizes from 64KB to 1GB. Table 5 presents the
storage bandwidth, the operation average and the deviation
standard for the two VCCs.

4.4 BT-IO Performance Evaluation
Table 6 shows the I/O requirement for BT-IO on VCC

1 and VCC 2. We can observe that the Class C on two
VCCs requires less than 10% of memory and storage ca-
pacity. The I/O performance expected could overcome the
storage bandwidth defined in Table 5. Class D, in Table 6,
presents memory requirement higher than 80%, and a storage
capacity greater than 20%, which is the umbral to consider
this application as a candidate to be I/O intensive.

Figure 3 shows the transfer rate for IOR and write oper-
ation, configured for the BT-IO, on VCC 1 (c3.xlarge) and
VCC 2 (m3.xlarge). The values correspond to the average
and standard deviation to consider the variability of the
cloud environments in the evaluation. The tests run 3 times
consecutively. It can be observed that Class C overcomes the
write operation storage bandwidth of VCC 1 and is near to
the write operation storage bandwidth of the VCC 2.

Class D, Figure 3, as was expected, is I/O intensive in
two VCCs. The variability is higher for the VCC 1 and is
using around 75% of storage bandwidth, which is indicating

Fig. 3: IOR Transfer rate tuned for the I/O model parameters
of the BT-IO on VCC1 (c3.xlarge) and VCC2 (m3.xlarge).

an appropriate use of the I/O system. For the VCC 2, the
transfer rate reported is near to 60%, a value sufficient to be
considered not I/O limited.

Although, the BT-IO presents both write phases as read,
the application performance is more affected for the write
operations due to the write phases being 40 times more than
read phases for Class C and 50 times more for Class D.

4.5 S3D-IO Performance Evaluation
Table 7 shows the I/O requirement for S3D-IO on VCC

1 and VCC 2. In this case, the I/O requirements are focused
on the memory required because storage required, in both
VCCs, is less than 20%.

In Table 7, it can be observed that S3DIO with a workload
200x3 is not I/O intensive due to that its memory required
and storage represent less than 20%.

To analyze the memory required impact, we evaluate the
I/O model of S3DIO using IOR. Figure 4 shows the transfer
rate on VCC 1 (c3.xlarge) and VCC 2 (m3.xlarge).

The S3DIO memory requirements for the 400x3 workload
(I/O Amount = 39 GB) represent 64% of the RAM per
compute node on VCC 1 and 32% on VCC 2. In VCC 1,
the value is greater than 50%, which could avoid to take
advantage of the performance capacity of the I/O system. In
Figure 4, it can be observed for the I/O amount of 39 GB
(workload 400x3) that VCC 2 has 20% more performance
than VCC 1. This shows that the application obtained more
performance in the VCC 2, where the memory required is
32% which is a 50% less than on VCC 1.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 657



Table 4: I/O phases for the S3D-IO model using 16 and 32 processes for the workloads 200x3 and 400x3.
Workload IdPh np Operation rs rep weight(IdPh)MB weight(app) STapp(GB) MRxP Files

(MB) (rep × np × rs) (MB)

200x3
1 to 5 16 write_all 61 1 976 4.8GB 4.8GB 305 1 per IdPh
1 to 5 32 write_all 30.5 1 976 4.8GB 4.8GB 153 1 per IdPh

400x3
1 to 5 16 write_all 488 1 7808 39GB 39GB 2,442 1 per IdPh
1 to 5 32 write_all 244 1 7808 39GB 39GB 1,221 1 per IdPh

Table 5: Storage bandwidth calculated from IOzone mea-
sures for Virtual Clusters on cloud (VCC) with different
sizes.

Cluster Avg.Write Std Write Avg.Read Std Read
Virtual (MB/s) (MB/s) (MB/s) (MB/s)
VCC 1 774 6 2,253 12
VCC 2 945 14 2,167 20

Fig. 4: IOR Transfer rate tuned for the I/O model parameters
of the S3DIO on VCC1 (c3.xlarge) and VCC2 (m3.xlarge).

Finally, we compare the execution time of the BT-IO and
S3D-IO application and their I/O models. In Figure 5, we
show execution time for the IOR and BTIO. Figure 6 depicts
time execution for S3D-IO and its version IOR. We can
observe that the time for the I/O models are less than the
execution time of real application both BTIO as S3DIO.
As we pay per used instance and per used hour, the cost
will be minor. In this way, we provide a method to evaluate
performance for the I/O pattern of the application in less
time and with less cost.

5. Conclusions
The performance evaluation is an important issue for the

analysis of the HPC application, in cloud computing as well
as in the classical HPC systems.

Parallel applications, which use I/O, need to have some
additional information to determine when the application
will be limited by the I/O system of VCCs. We have pre-
sented a methodology that represents the I/O characteristics
of the application and the VCCs to determine when an
application is I/O intensive and to evaluate if this is limited
by the I/O subsystem.

Experimental results show cases for different patterns
that reflect how the I/O performance can be affected, both
by the percentage of storage required as by the memory
requirement. Due to the elasticity of the cloud environment,
the user is provided with information that can help to define
the distribution MPI processes on the compute nodes consid-
ering the memory used per the I/O processes. Furthermore,
for the I/O intensive applications, the user can reduce the
percentage of storage required by adding more data servers
to reduce the impact of the I/O utilized.

As future work, we are analyzing the implementation of
the synthetic program that replicates complex I/O patterns
that IOR cannot represent appropriately. Furthermore, we
will continue analyzing the impact of the different compo-
nents for the VCC configuration on cost and performance.
Moreover, we will work with different file systems and
other cloud platforms to evaluate the applicability of our
methodology.

Acknowledgment
This research has been supported by the MINECO (MICINN) Spain

under contract TIN2011-24384. The research position of the PhD student
P. Gomez has been funded by a research collaboration agreement, with the
"Fundación Escuelas Universitarias Gimbernat".

Appreciation to The Centre of Supercomputing of Galicia (CESGA)
under the Science and Technology Infrastructures program (in spanish
ICTS) and The Wroclaw Centre for Networking and Supercomputing
(WCSS), Poland.

References
[1] StarCluster. (2014) An Open Source Cluster-Computing Toolkit

for Amazon’s Elastic Compute Cloud (EC2). [Online]. Available:
http://star.mit.edu/cluster/

[2] Q. Noorshams, S. Kounev, and R. Reussner, “Experimental Evalu-
ation of the Performance-Influencing Factors of Virtualized Storage
Systems,” in Computer Performance Engineering. 9th European Work-
shop, EPEW 2012, Munich, Germany, July 30, 2012, and 28th UK
Workshop, UKPEW 2012, Edinburgh, UK, July 2, 2012, Revised Se-
lected Papers, ser. Lecture Notes in Computer Science, M. Tribastone
and S. Gilmore, Eds. Springer Berlin Heidelberg, 2013, vol. 7587,
pp. 63–79.

[3] S. Sivathanu, L. Liu, M. Yiduo, and X. Pu, “Storage management in
virtualized cloud environment,” in Cloud Computing (CLOUD), 2010
IEEE 3rd International Conference on, July 2010, pp. 204–211.

[4] G. Juve, E. Deelman, G. B. Berriman, B. P. Berman, and P. Maechling,
“An Evaluation of the Cost and Performance of Scientific Workflows
on Amazon EC2,” J. Grid Comput., vol. 10, no. 1, pp. 5–21, Mar.
2012.

[5] M. Liu, J. Zhai, Y. Zhai, X. Ma, and W. Chen, “One Optimized I/O
Configuration Per HPC Application: Leveraging the Configurability
of Cloud,” in Proceedings of the Second Asia-Pacific Workshop on
Systems, ser. APSys ’11. New York, NY, USA: ACM, 2011, pp.
15:1–15:5.

658 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



Table 6: I/O requirement for BT-IO on VCC 1 (c3.xlarge) and VCC 2 (m3.xlarge). Eight nodes perform compute and I/O.
MetaData Server (MDS) and Number of DataFiles(DF)

Class Number of Compute Processes Mem.Req. %Mem.Req. %Mem.Req. MDS+DF Filesystem %Storage
Processes Nodes (CN) x CN x CN (MB) x CN (VCC 1) x CN (VCC 2) Capacity(GB) Used

C 25 9 3 721 9% 5% 1+8 320 2%
C 36 9 4 721 9% 5% 1+8 320 2%
D 36 9 4 14394 187% 94% 1+8 320 40%

Table 7: I/O requirement for S3DIO on VCC 1 (c3.xlarge) and VCC 2 (m3.xlarge). Eight nodes perform compute and I/O.
MetaData Server (MDS) and Number DataFiles(DF)

Class Number of Compute Processes Mem.Req. %Mem.Req. %Mem.Req. MDS+DF Filesystem %Storage
Processes Nodes (CN) x CN x CN (MB) x CN (VCC 1) x CN (VCC 2) Capacity(GB) Used

200x3 16 8 2 610 8% 4% 1+8 320 1%
400x3 16 8 2 4883 64% 32% 1+8 320 12%
200x3 32 8 4 610 8% 4% 1+8 320 1%
400x3 32 8 4 4883 64% 32% 1+8 320 12%

Fig. 5: Time Comparison between BT-IO and its IOR version on VCC 1 and 2

Fig. 6: Time Comparison between S3D-IO and its IOR version on VCC 1 and 2

[6] R. Expósito, G. Taboada, S. Ramos, J. González-Domínguez,
J. Touriño, and R. Doallo, “Analysis of I/O Performance on an
Amazon EC2 Cluster Compute and High I/O Platform,” Journal of
Grid Computing, vol. 11, no. 4, pp. 613–631.

[7] S. Méndez, J. Panadero, A. Wong, D. Rexachs, and E. Luque, “A
New approach for Analyzing I/O in Parallel Scientific Applications,”
in CACIC 12, Congreso Argentino de Ciencias de la Computación,
2012, pp. 337–346.

[8] P. Gomez-Sanchez, S. Méndez, D. Rexachs, and E. Luque, “Hopes
and facts in evaluating the performance of HPC-I/O on a cloud
environment,” Journal of Computer Science & Technology, vol. 15,
no. 1, pp. 23–29, 2015.

[9] W. D. Norcott. (2006) IOzone Filesystem Benchmark. [Online].
Available: http://www.iozone.org/

[10] W. Loewe, T. McLarty, and C. Mor-
rone. (2012) IOR Benchmark. [Online]. Available:

https://github.com/chaos/ior/blob/master/doc/USER_GUIDE
[11] P. Wong and R. F. V. D. Wijngaart, “Nas parallel benchmarks

i/o version 2.4,” Computer Sciences Corporation, NASA Advanced
Supercomputing (NAS) Division, Tech. Rep., 2003.

[12] J. H. Chen, A. Choudhary, B. de Supinski, M. DeVries, E. R.
Hawkes, S. Klasky, W. K. Liao, K. L. Ma, J. Mellor-Crummey,
N. Podhorszki, R. Sankaran, S. Shende, and C. S. Yoo, “Terascale
direct numerical simulations of turbulent combustion using S3D,”
Computational Science & Discovery, vol. 2, no. 1, p. 015001, 2009.

[13] CESGA. (2014) Finisterrae of the centre of supercomputing of
galicia (CESGA). [Online]. Available: https://www.cesga.es

[14] WCSS. (2014) Supernova of the Wroclaw Centre for Networking and
Supercomputing (WCSS). [Online]. Available: https://www.wcss.pl

[15] AWS-EC2. (2014) Amazon Elastic Compute Cloud, Instance
Types. [Online]. Available: http://docs.aws.amazon.com/AWSEC2-
/latest/UserGuide/Instances.html

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 659



Analysis of Fault Injection Approaches in Apache Hadoop

P. P. Barcelos, A. S. Charão, R. Boufleuer, J. C. Lima
Dept of Languages and Computing Systems, Federal University of Santa Maria, Santa Maria, RS, Brazil

{pitthan, andrea, rboufleuer, caio}@inf.ufsm.br

Abstract – The  Hadoop  platform  has  been  claimed  as  a
solution for distributed processing of big data. This platform
provides some fault tolerance mechanisms and there are a lot
of studies that aim to improve them. Fault tolerance is a key
feature of  Hadoop,  and  it  is  essential  to  test  the Hadoop´s
dependability. In this context,  validation mechanisms, which
use  fault  injection  techniques  implemented  through
instrumentation  code,  arise as a need.  This paper  analyses
some  fault  injection  alternatives  available  in  Hadoop
platform.  The  results  fit  out  as  support  for  future  work
involving fault tolerance on this platform.

Keywords: Fault Tolerance, Validation, Fault Injection, Big
Data, Hadoop, MapReduce.

1 Introduction
 Apache  Hadoop  [6]  is  an  open-source  distributed
computing  platform, developed in Java  and  targeted  to  the
processing  of  large  volumes  of  data.  Hadoop  comprises  a
distributed  file  system  (HDFS  -  Hadoop  Distributed  File
System), which can store data on a large number of servers
and  implements  the  MapReduce  programming  model  [9],
which  easily  enforces  parallel  operations  on  a  set  of
distributed data.

This  platform aims  to  employ computer  clusters  in  a
realiable,  scalable  and  fault  tolerant  way.  Both  HDFS and
MapReduce are designed to support and handle failures in the
cluster  nodes  of  the  execution  environment.  Even  though,
Hadoop has been target of research papers whose goal is to
improve its fault tolerance characteristics [5, 13].

In fault  tolerant  systems, it  is  necessary to ensure  the
system's  ability  to  provide  the  specified  service.  Validation
provides  this guarantee  as  a  goal  [2].  To test  a  system we
must submit it to certain states to ensure that some execution
ways are achieved. Besides, the system may be submitted to a
behavior that under normal conditions would not occur. These
are the main goals to use validation techniques [8].

Fault injection is a widely used validation technique. It
consists on the introduction of  a failure in the system in a
controlled way to observe its behavior [12].  This technique
accelerates  the  occurrence  of  failures  in  a  system.  Thus,
rather  than  waiting  for  the  spontaneous  occurrence  of
failures,  we can intentionally introduce them by controlling
the type, location and duration of the failures [10].

In  this  work,  we  analyse  the  features  and  response
provided by Hadoop to fault injection. This is an exploratory
research,  based  on  literature  review  and  practical
experimentation in order to deeply know the possibilities of

fault injection in the platform. The remainder of this paper is
organized as follows: section 2 introduces Apache Hadoop,
describing  its  architecture,  its  processes  and  the  fault
tolerance  mechanisms  implemented  in  the  platform.  The
section  3  describes  the  two  fault  injection  approaches
explored in this work for Hadoop platform. Section 4 shows
the  experimentation  realized  with  the  fault  injection  tools
described  in  Section  3.  Finally,  Section  5  presents  some
conclusions and final considerations about the work.

2 Apache Hadoop
The  Apache Hadoop Project achievement is due largely

to MapReduce  Programming Model  [9].  This  programming
model was originally presented by Google and has as main
goals the processing and analysis of big data distributed over
large  scale  computing  system.  Besides  Google,  a  growing
number  of  companies  uses  MapReduce  to  analyse  the data
generate by several applications, such as social networks, data
mining,  machine  learning,  log  processing,  and  business
intelligence [6].

Programs  written  in  this  functional  style  are
automatically distributed and are able to execute on a large
cluster  of  commodity machines.  The run-time system takes
care of the details of partitioning the input data, scheduling
the program's execution  across  a  set  of  machines,  handling
machine  failures,  and  managing  the  required  inter-machine
communication.  This  allows  programmers  without  any
experience  with  parallel  and  distributed  systems  to  easily
utilize the resources of a large distributed system [9].

The  MapReduce  model  abstracts  details  such  as
parallelization,  fault  tolerance,  data  distribution  and  load
balancing  of  the  application.  The  model  allows  to  easily
express  computations  which  must  be  performed  in parallel
over a large volume of data. The input data are splitted into
different  tuples  (key,  value),  which  are  submitted  to  a
mapping function (Map) that generates an intermediate set of
pairs (key, value). The intermediate pairs are then submitted
to a reduction function (Reduce), responsible for processing
all the values of a same key, creating a new final set of pairs
(key, value) [9].

The  development  of  the  Apache  Hadoop  platform  is
inspired  by  the  original  publication  of  the  Google
MapReduce technology. The platform architecture is based on
two main components: the Hadoop Distributed File System
(HDFS) [3], which provides a distributed storage layer, and
the  Hadoop  MapReduce  [4],  which  provides  a  distributed
execution layer. These components are described in the next
paragraphs.

660 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



2.1 Hadoop Architecture

Figure  1,  adapted  from [6]  and  [11],  shows  how  the
processes of the Hadoop architecture are interrelated. Initially
notice  a  separation  of  processes  between  master  and  slave

nodes.  The  master  node  contains  the  NameNode,  the
JobTracker  and  the SecondaryNameNode.  Each  slave  node
includes a TaskTracker and a DataNode linked respectively to
JobTracker and NameNode of the master node.

Figure 1: The Hadoop Processes (adapted from [6] and [11])

A client of an application connects to the master node
and  calls  for  execution.  At  this  point,  the  JobTracker
creates an execution plan and determines what, when and
how  often  the  slaves  will  process  the  application  data.
Meanwhile,  the NameNode, based on parameters  already
defined,  is  responsible  of  storing  and  managing
information from the files being processed. On the slave
side,  the  TaskTracker  executes  the  tasks  assigned  to  it,
which can be map or reduce tasks, and the DataNode stores
one or more file blocks.  During the execution,  the slave
node  also  needs  to  communicate  with  the  master  node,
sending information about its local situation.

Alongside all this running, the SecondaryNameNode
records checkpoints  of  NameNode in log files,  useful  in
case of NameNode faults. These components are detailed
in the next section.

2.2 Hadoop Processes Description

As  we  said  in  previous  section,  a Hadoop  cluster
follows a master-slave architecture where each node runs
some  processes  that  execute  HDFS  or  MapReduce
features.  These  processes  are  NameNode,  DataNode,
JobTracker and  TaskTracker.  NameNode and  JobTracker
run  on  a  master  node,  while  DataNode and  JobTracker
processes mainly run on slave nodes.

An HDFS cluster consists of a single NameNode,
a  master  server  that  manages  the file  system namespace
and regulates access to files by clients [3]. The NameNode
in Hadoop is the node where Hadoop stores all the location
information of the files in HDFS. In other words, it holds
the metadata for HDFS. Whenever a file is placed in the

cluster, a corresponding entry of its location is maintained
by the NameNode.

In  addition,  there  are  a  number  of  DataNodes,
usually one per node in the cluster, which manage storage
attached to the nodes where they run on. HDFS exposes a
file system namespace and allows user data to be stored in
files. Internally, a file is split into one or more blocks and
these  blocks  are  stored  in  a  set  of  DataNodes.  The
NameNode executes file system namespace operations like
opening, closing, and renaming files and directories. It also
determines  the  mapping  of  blocks  to  DataNodes.  The
DataNodes are  responsible  for  serving  read  and  write
requests from the file system’s clients. The DataNodes also
perform  block  creation,  deletion  and  replication  upon
instruction from the NameNode [3].

The  JobTracker  is  responsible  for  taking  in
requests  from  a  client  and  assigning  TaskTrackers  with
tasks to be performed. The JobTracker tries to assign tasks
to  the  TaskTracker  on  the  DataNode  where  the  data  is
locally present. If that is not possible, it will at least try to
assign tasks to  TaskTrackers  within the same rack. If for
some reason the node fails, the JobTracker assigns the task
to another TaskTracker where the replica of the data exists
since the data blocks are replicated across the DataNodes.
This ensures that the job does not fail even if a node fails
within the cluster.

The  TaskTracker  is  a daemon that  accepts  tasks
(Map, Reduce and Shuffle tasks) from the JobTracker. The
TaskTracker  keeps  sending  a  heart  beat  message  to  the
JobTracker to notify that it is alive. TaskTracker starts and
monitors the Map and Reduce tasks and sends progress or
status information back to the JobTracker.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 661



2.3 Fault Tolerance in Hadoop 

Hadoop  can  achieve  fault  tolerance  through  the
restart  of  the  TaskTracker and  JobTracker tasks.
TaskTrackers  are  always  communicating  with  the  main
node  system, the  JobTracker.  In  case  of  communication
failure,  the  JobTracker assumes  that  the  TaskTracker
failed.  As  JobTracker knows  which  Map/Reduce  tasks
were assigned to each  TaskTracker process,  if  the job is
still in the Map/Reduce phase, then other TaskTrackers will
be assigned to re-execute all Map/Reduce tasks previously
performed by the TaskTracker failed.

Once completed, Reduce tasks are written in HDFS.
Thus,  if  a  TaskTracker finishes  some  of  these  Reduce
tasks,  only  the  tasks  not  yet  completed  need  to  be
executed. With respect to Map tasks, it occurs in a different
way.  Even if  a  node has  completed a certain  amount  of
Map tasks, the nodes that execute Reduce may not have
copied the Map tasks outputs to their entries. In this case,
the failure of a Map process makes unavailable its output.
So, completed Map tasks must be re-executed in order to
make available their results to other reducing processes.

Another  way  to  achieve  fault  tolerance  is  through
HDFS,  which  implements  redundancy  through  file
replication over several  DataNodes. The  DataNodes store
and retrieve data blocks. The mapping of file to blocks is
kept by NameNode, which also controls the block mapping
in  DataNodes.  The  HDFS  standard  replication  factor  is
three, which means that the data blocks are replicated three
times.  Moreover,  every  three  seconds,  the  existing
DataNode processes  send  “heartbeat”  messages  to
NameNode. Faulty nodes are detected after the absence of
heartbeat  messages  during  some time.  In  this  case,  data
blocks in the faulty node are identified, recovered from an
operational  node  and  then  replicated  to  another  cluster
node.  The corruption  of  data  blocks  is  detected  through
checksums.  At  this  rate,  the  failures  are  reported  to
NameNode,  which  triggers  the  replication  of  these  data
blocks. Considered a single point of failure, the NameNode
has  a  Secondary  NameNode,  whose  goal  is  to  log  the
NameNode operations.

3 Hadoop Fault Injection
This  work  deals  with  fault  injection  in  Hadoop

through code instrumentation techniques. One of the main
concerns  of  code  instrumentation  for  fault  injection
approaches is to avoid significant changes in the code of
the target application.

Code  instrumentation  consists  of  inserting  auxiliary
code  in  the  target  application,  allowing  to  observe  the
behavior  of  the  application  and  to  get  information  or
measures concerning its implementation. 

In  latest  stable  Hadoop  versions,  we  found  two
different  means to inject  failures  on Hadoop,  using code
instrumentation. The first resides on the MRReliabilityTest,
a  progam to  test  the  reliability  of  the  MapReduce.  The
second is the Fault Injection (FI) Framework, which aims
to  support  the  development  of  fault  injectors  on  the
platform. These tools will be described in the next sections.

3.1 MRReliabilityTest

As Hadoop is an open-source platform developed by
a community, there is a strong concern to maintain a set of
tests to help the validation of the platform features. These
tests are distributed with the tool and comprise two types:
unit testing and integration and system testing. Unit tests
are intended to check individual classes, while integration
and system tests aim to verify the operation of one or more
modules that interact with each other.  

Concerning  to  fault  tolerance,  we  found  only  one
system  test  to  verify  the  platform  reliability.  This  test,
called  MRReliabilityTest, is available since version 0.20.0
(launched  in  2009),  and  aims  to  run  some  synthetic
MapReduce applications under  faults.  The test  runs  in a
distributed  environment  (with  several  nodes)  or  in  a
pseudo-distributed environment (with several processes on
a  node).  It  was  necessary  to  analyse  the source  code  to
understand  its  operation,  as  we  have  no  additional
documentation.  

To  verify  the  system  behavior,  MRReliabilityTest
injects faults in the nodes that execute the applications. The
operation  is  as  follow:  initially  the  test  triggers  jobs
(objects  of  Job  class)  whose  tasks  are  spread  on  every
available node.  These  tasks correspond to Map phase of
the MapReduce paradigm. Then, the test injects faults in
some of these tasks using the own interface of the objects
whose  represents  the tasks  under  execution  (RunningJob
class from Hadoop platform). The platform must restart the
tasks that fail. Further, the test causes failures in processes
of  TaskTracker  class,  through  'kill'  operating  system
command.  Thus,  the platform must re-schedule the tasks
which run in the nodes whose  TaskTrackers failed. These
operations are repeated for three task types attached in the
Sort job sample of the platform (RandomWriter, Sort and
SortValidator tasks). All tasks must successfully complete
even after the failures.

3.2 Fault Injection (FI) Framework

The Fault Injection (FI) Framework arises in 2010 on
Haddop platform, in order to support the development of
fault  injection  code  [1].  This  framework  is  based  on
AspectJ, an aspect-oriented programming (AOP) tool built
in  Java  [7].  The  aspect-oriented  programming  easily
separates the fault injection code from the implementation
target, the original code. Instead of writing the code for a
fault  tolerance  mechanism as  part  of  the  target  program
functions, it is written as independent code segments called
advices.

The Aspect-Oriented Programming (AOP) has  been
an interesting approach to fault  injection, since the AOP
paradigm allows methods to be intercepted and changed at
runtime, without interference in the application code under
test. The instrumentation code for AOP allows classes of
elements  to  be  intercepted  and  instrumented,  requiring
only knowledge of their APIs.

Through  encapsulation  of  the  fault  injection  using
aspects, the fault injection reaches several modules of the

662 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



target  application,  which may affect  methods executed in
different classes of the application under test.

 The  failures  emulated  with  FI  Framework  are  no
deterministic,  that  is,  no  one  previously  knows  when  a
failure  will  occur.  Besides,  the  failure  occurrence  is
controlled by a classical probabilistic model, in which we
set  a  probability  of  a  fault  occurrence.  To ensure  that  a
failure will really occur during an execution, it is advised
to set the probability percentage to 100%.

To develop a fault injection, we must create an aspect
in AspectJ (file .aj). This aspect must import the framework
class  of  the  probability  model  (org.apache.hadoop.fi.
ProbabilityModel)  and  must  define  where  and  how  the
failure  will  occur.  The  fault  location  is  defined  by  a
pointcut in AspectJ, which selects the points of the original
code which will be intercepted during the execution. For
these points of the code we define advices in  AspectJ to
specify  the  additional  code  to  be  executed  when  the
interception occurs. The fault injection examples provided
by the fault injection framework often use the advice called
before.  This advice executes just before the execution of
the selected point of the code. The fault itself is specified
in  this  part  of  the  aspect,  and  usually  consists  on  an
exception trigger.

4 Experimental Analysis
The  mechanisms  described  in  the  previous  section

were  analyzed  in  detail  and  tested.  The  following
subsections  present  an evaluation  and  validation  through
MRReliabilityTest and FI Framework tools.

4.1 MRReliabilityTest Experimentation

To  MRReliabilityTest  experimentation,  we  use  a
Hadoop stable version  (0.20.203.0).  In  this  test,  Hadoop
was configured  to operate in a pseudo-distributed mode,
running in a server of the Computer Systems Laboratory
(LSC-UFSM).  The  test  resides  in  a  .jar  file  for  testing
MapReduce and the applications executed by the test were
in the set of examples of MapReduce. We notice that the
test jobs were divided into four parts, in which each part
was  subsequently  divided  into  other  four  parts  and
executed in pairs, totaling four jobs in the Map and one in
the Reduce phases.

At first,  there  was a stage in which the tasks were
forced  to  fail,  with  tasks  being  abruptly  terminated  and
later  recovered by the Hadoop fault  tolerant  mechanism.
We notice, as expected, that the tasks were aborted once a
run and recovered.

Secondly, there was a stage in which the TaskTracker
processes  were  forced  to  fail.  In  the  beginning  of  this
phase,  some  jobs  could  not  be  recovered  and  the
replication  causes  an  excessive  use  of  processing  and
storage,  leading to locking the machine running the test.
The  process  had  to  be  manually  aborted  to  contain  the
attempts of the system to further replicate the tasks that had

been aborted. It was concluded that, in this case, the test
can  not  be  totally  used  to  determine  the  MapReduce
reliability, since only one of the four jobs had success in
ending and tasks recovering.

4.2 FI Framework Experimentation

This  experimentation  aims  to  explore  the  FI
Framework, seeking to corroborate the instructions in its
documentation  to  identify  fault  injection  opportunities
provided by the tool and to find limitations in its use. For
this, we must first know the Apache Hadoop development
details  (source  code,  compilation  environment  and
available tests). Next, we develop and test fault injection
features in the four main components of Apache Hadoop:
DataNode, NameNode, TaskTracker and JobTracker.

For the experiments, we considered two versions of
Apache Hadoop: 0.21, a development version, in which FI
Framework was originally included; and 1.0.3, a Hadoop
stable  version.  Both  versions  were  obtained  from  the
repository  to  Hadoop  developers.  The  phases  of  each
experiment  were:  (i)  analysis  of  the  component  source
code,  in  order  to  define  the  fault  injection  point;  (ii)
definition of an exception to characterize the failure; (iii)
selection of a test potentially affected by the failure; and
(iv) execution of the test with and without fault injection,
observing the component behavior. For reasons explained
below, it was only possible to test the fault injection in the
DataNode and in the NameNode. The tests were performed
using the Hadoop pseudo-distributed mode (one machine
running  all  processes).  Moreover,  we  use  the  original
compilation environment of the tool (original configuration
present in build.xml file of each version). 

4.2.1 Fault Injection in DataNode and NameNode

The first aspect created focused on fault injection at
startup of a DataNode. From what we know of the Hadoop
architecture,  this  type  of  failure  is  not  suported  in  the
failure model of HDFS. However, we decided to emulate it
to observe the behavior of the tool in this unrecoverable
situation.  Analyzing  the  source  code  of  the  DataNode
class,  we  found  a  method,  called  startDataNode,
responsible to its  initialization.  So, we created  an aspect
file  (DataNodeStart.aj),  located  at  tests  directory,  which
collects all files “.aj” to weave with the original code in the
compilation step.  Seeking to emulate a software external
failure, the aspect adds an exception in the code signaling a
memory failure  (OutOfMemoryError)  (Figure  2).  To test
the  injection  of  the  failure,  we  choose  the
TestFileCreation.java  program,  which  considers  several
test cases during the creation of a file in HDFS. With this
failure injected, we notice that Hadoop can not handle such
error,  causing  a  widespread  failure  (the  program  test
remains trying to run operations on DataNode, which does
not exist, and thus, the errors accumulate, resulting in the
application interruption). 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 663



privileged public aspect DataNodeStart {
   public static final Log LOG =
         LogFactory.getLog(DataNodeStart.class);
  
   pointcut execstartDataNode():
         execution(* startDataNode(..));
   before() throws OutOfMemoryError :
         execstartDataNode() {

        throw new OutOfMemoryError("FI:" + " OutOfMemoryError");
         }

}

Figure 2: Fault injection aspect related to DataNode

The second aspect created was focused on  NameNode,
at the point where this component allocates blocks in the file
system (allocateBlock method from  FSNamesystem
class). We know that failures in NameNode are not supported
by  the  tool.  We  have  emulated  a  concurrency  problem,

provided  on  HDFS  protocol  (org.apache.hadoop.hdfs.
protocol.AlreadyBeingCreatedException), in which it detects
that a block is already being created (Figure 3). We choose an
HDFS  test  program,  called  TestLoadGenerator.java,  which
tests the balancing of replicas of a file. The test execution had
also produced results as expected.

privileged public aspect NameNodeAllocate {
   public static final Log LOG =

LogFactory.getLog(NameNodeAllocate.class);

   pointcut execallocateBlock():
   execution(* allocateBlock(..));

   before() throws IOException : execallocateBlock() {
      throw new AlreadyBeingCreatedException("FI:" + "Failure inserted in " +
                  thisJoinPoint.getStaticPart().getSourceLocation());
   }

}

Figure 3: Fault injection aspect related to NameNode

4.2.2 Fault Injection in TaskTracker and JobTracker

The  third  and  fourth  aspects  developed  focused  on
TaskTracker and  JobTracker respectively.  For  TaskTracker,
we focused  on  a  new task  initialization,  where  it  needs  to
initialize  a  directory  to  the  task  (localizeJob  method
from  TaskTracker  class).  The  aspect  was  created
following the same steps  described  above,  but  at  this time
producing  an  exception  of  type  IOException,  emulating  an
input failure during a directory creation. For JobTracker, we
focused  on  the  initialization  of  the  process  itself
(startTracker method from JobTracker class), also
producing  an  exception  of  type  IOException.  To  test  both
aspects, the experiment chosen was ReliabilityTest.java. This
experiment executes several reliability tests on the platform,
causing the ending of the execution processes. 

The  tests  with  the  third  and  fourth  aspects  were  not
performed because their source codes were not weaved with
the  original  code  as  expected.  Analyzing  the  original
configuration of the compilation environment (build.xml)

from version 0.21, we notice that it have no targets prevision
to compiling fault injection on MapReduce, only on HDFS.
As  we  analyze,  FI  Framework  could  be  used  in  any  of
Hadoop  components,  but  we  notice  that  the  weaving  of
aspects  in  MapReduce  layer  would  require  significant
changes  in  build.xml,  mainly  to  solve  dependency
problems.

Analyzing  subsequent  stable  versions  of  Apache
Hadoop platform, we notice that FI Framework continued to
be distributed,  but many of  the examples of  fault  injection
were removed. It was found that the examples of version 0.21
were related to classes that had been removed or changed in
the stable version. In addition, we notice that the compilation
environment was updated on the stable version, adding new
compilation  targets  to  fault  injection,  which  have  no
information in FI Framework documentation. However, with
this  new  compilation  environment,  it  was  not  possible  to
inject  the  failures  developed  in  this  work,  as  none  of  the
compilation targets had weaved the aspects with the source
code. This problem occurs in all versions of Apache Hadoop

664 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



after 0.21. We tried to modify the file  build.xml to solve
this  problem,  but  we  didn't  succed  given  the  lack  of
documentation.   

5 Conclusions
In  this  work,  we  analyze  two  alternatives  to  test  the

behavior  of  Apache  Hadoop  in  face  of  failures.  The  first
alternative  causes  failures  accessing  processes  and  objects
involved in the implementation of  MapReduce (JobTracker
and  TaskTracker).  Analyzing  the  MRReliabilityTest source
code, it is possible to understand how the failures are injected
in the components. However, this solution is difficult to reuse
to inject  failures  in  other  components,  since  the tests were
only targeted to MapReduce.

The  second  alternative,  the  FI  Framework,  allows  to
inject  failures  in  a  systematic  way.  It  allows  to  develop
aspects  that  inject  failures  in  any  class  of  the  platform.
However, we notice that some files originally distributed with
the framework (such as examples of aspects  and some test
programs using classes with injected failures) are missing in
newer  versions  of  Hadoop,  apparently  due  to  interface
changes of some classes. 

The  experiments  have  shown  advantages  in  the  FI
framework use, arising out of aspect-oriented programming.
The fault injection source code is completely separated from
the tool source code and can be combined with this in due
course. In addition, we can reuse existing tests, changing its
behavior through aspects, allowing easily create new tests not
included into the platform. 

However,  unlike  the  documentation  describes,  FI
Framework is not perfectly integrated into the platform. An
example  of  this  is  that  its  documentation  is  not  fully
consistent  with  the  stable  version  of  Apache  Hadoop.  We
believe that these problems may be overcome by the easiness
introduced by the framework, so we intend to continue this
work,  first  adjusting  the compilation environment  and then
creating new fault injection tests.
   The  results  of  the  experiments  described  here  do  not
demonstrate  the lack of  reliability of the mechanisms, only
indicate  that  the  solution  available  to  fault  injection  on
Hadoop  are  not  so  easily  applicable.  Indeed,  the
documentation available for  both tools is  rather  scarce  and
present  some  inconsistencies  between  the  documentation
itself and the source code distributed in the stable version of
Hadoop.  Further  tests  with  log  analysis  and  source  code
analysis are needed to explain the errors presented here.  

Finally, it is worth noting that this work focus attention
only on the features available by the platform itself. Another
approach, which can be explored in future works, would be to
use external tools to cause failures in Hadoop components.

6 References
[1] Apache Software Foundation. Fault injection framework
and  development  guide.  Available:
https://hadoop.apache.org/docs/r2.4.1/hadoop-project-
dist/hadoop-hdfs/FaultInjectFramework.html

[2] A.  Avizienis,  J.-C.  Laprie,  B.  Randell,  and  C.  E.
Landwehr. Basic Concepts and Taxonomy of Dependable and
Secure  Computing.  IEEE  Transactions  on  Dependable  and
Secure Computing, vol. 1, no. 1, pp. 11-33, 2004.

[3] Apache  Software  Foundation.   HDFS  Architecture
Guide. http://hadoop.apache.org/docs/r1.2.1/hdfs_design.html

[4]  Apache  Software  Foundation.  MapReduce  Tutorial.
Available:
http://hadoop.apache.org/docs/r1.2.1/mapred_tutorial.html

[5] A.  N.  Bessani,  V.  V.  Cogo,  M.  Correia,  P.  Costa,  M.
Pasin, F. Silva, L. Arantes, O. Marin, P. Sens, and J. Sopena.
Making  Hadoop  MapReduce  byzantine  fault-tolerant.  In:
Proceedings of the International Conference on Dependable
Systems and Networks, 2010.

[6] A.  S.  Foundation.  Welcome  to  Hadoop!  Available:
http://hadoop.apache.org

[7] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V.
Lopes,  J.  M.  Loingtier,  and  J.  Irwing.  Aspect-Oriented
Programming. In: ECOOP – European Conference on Object-
Oriented  Programming,  Finland:  Springer,  pp.  220-242,
1997.   

[8] J. A. Clark and D. K. Pradhan. Fault injection: a method
for validating computer-system dependability. Computer, vol.
28, pp. 47–56, 1995.

[9] J. Dean and S. Ghemawat. MapReduce: Simplified Data
Processing  on  Large  Clusters.  In:  OSDI  –  USENIX
Symposium  on  Operating  Systems  Design  and
Implementation. San Francisco, California: ACM Press, 2004,
pp. 137-149.

[10] K. Echtle and M. Leu. Test of fault tolerant distributed
systems by fault injection. In  FTPDS – Workshop on Fault-
Tolerant  Parallel  and Distributed Systems.  IEEE, 1994,  pp.
244-251. 

[11] A. Goldman, F. Kon, F. Pereira Junior, I. Polato, R. F.
Pereira.  Apache Hadoop:  theoretical  and practical  concepts,
developments  and  new possibilities.  In:  XXXI  Jornadas  de
Atualização em Informática (in portuguese), 2012. 

[12] Paul D. Marinescu and George Candea. 2011. Efficient
Testing of Recovery Code Using Fault Injection. ACM Trans.
Comput. Syst., vol. 29, n. 4, pp. 1-38, 2011.

[13] A.  Sangroya,  D.  Serrano  and  S.  Bouchenak.  MRBS:
Towards  Dependability  Benchmarking  for  Hadoop
MapReduce.  In:  Workshop  on  Big  Data  Management  in
Clouds (BDMC). Rhodes Island, Greece, Aug. 2012. 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 665

http://hadoop.apache.org/
http://hadoop.apache.org/docs/r1.2.1/mapred_tutorial.html
http://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
https://hadoop.apache.org/docs/r2.4.1/hadoop-project-dist/hadoop-hdfs/FaultInjectFramework.html
https://hadoop.apache.org/docs/r2.4.1/hadoop-project-dist/hadoop-hdfs/FaultInjectFramework.html


Architecture of a Java-Based 
Simulation System  

 
 Ray Kresman  

   
 

 Department of Computer Science  
 Bowling Green State University  
 Bowling Green, OH 43403  
 {kresman}@bgsu.edu  

 

 

ABSTRACT 

This paper presents the architecture of a system for distributed simulation where the user problem is 
modeled and implemented in Java. The native platform, however, is a C++ based distributed simulation 
engine, BGTW, that employs optimistic approach to the time management of the simulation events. An 
intermediate layer, Java Time Warp, provides access to the simulation engine for users programs written in 
Java. The hardware layer is a cluster of networked workstations. The MPI library is used as the 
communication layer between the compute nodes. This layered architecture facilitates reusability of the 
native engine and provides a portable platform for the user programs. Our API handles the transparency 
issue. This approach can be extended to provide a distributed web-based simulation platform.     

1. Introduction 

This paper suggests a layered architecture where each layer handles one or more of the three issues of 
portability, reusability and transparency. At the first layer BGTW, Bowling Green Time Warp [1, 2] 
furnishes a distributed simulation engine using Time Warp synchronization scheme [3]. This layer is 
implemented in C++ over a MPICH [4] communication layer and supports transparency through its 
Application Program Interference (API) which hides the parallel programming synchronizations and 
details.  

User's application program can be modeled and implemented in one of two ways: directly on top of BGTW 
using C++ based API of the engine, or on top of a new Java Time Warp (JTW) middleware using Java 
based API. Using the former, the portability is limited by C++ and the MPICH. We chose the latter 
approach as it enhances portability through Java and its virtual machine. The JTW layer connects BGTW to 
the application layers and provides the functionalities needed for the Java programmer to model their 
problem in a distributed simulation platform. Reusability issues are handled by the object-oriented 
programming paradigm of the platform.     

A number of distributed simulation technologies have been proposed in the literature. Discrete Event 
System Specification (DEVS) formalism [5] provides a solution to an ideal distributed simulation 
environment when implemented over middleware technologies. Distributed simulations based on DEVS 
include many systems, for example DEVS/CORBA [6]. Agent-Based system uses a distributed discrete 
event simulation model in the simulation of multi-agent systems [7]. Simulation-specific standard such as 
HLA and test-range specific middleware such as the Test and Training Enabling Architecture (TENA) [8] 
provide higher levels of dedicated support for distributed simulation. For reusability, several distributed 
simulation framework utilize CORBA [9], Source Content Object Resource Model (SCORM) [10]. 
Muralidhar et al [11] proposes a Java-based architecture for web-based interactive distributed simulation. 
They both use Java Proxies, sockets and HTML for interaction. Other examples of Java-based distributed 
engine include IDES [12], JiST [13], DSOL [14], Jane [15], DEVS/RMI [16], and a Java-based 
conservative distributed simulation [17].     

666 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



2. A Layered Abstraction 

This paper concerns a distributed simulation environment with an underlying Message Passing 
Communication (MPC) architecture. Exchange of messages between Processing Elements (PEs) requires 
an easy to use message passing system. The peer to peer communication between PEs is captured by the 
Message Passing Interface standard (MPI) [18]. MPI allows asynchronous and synchronous type of 
computation. MPI library is easy to use and is available for most processor architectures. Though the MPI 
standard specification is language independent, software support for MPI includes primarily Fortran, C and 
C++.   

There have been some efforts at providing support for Java binding and to provide a standardized MP 
binding for Java, MPJ [19]. A pure java message passing system is attractive because of its portability, 
support for object oriented programming and modular architecture. MPJ when fully developed, will provide 
advanced features of the MPI specifications including derived-data types, virtual topologies, different 
communication models including group communications. mpiJava [20] provides JNI wrappers to native 
MPI software. mpiJava relies on the platform-dependent native MPI implementation for the PE.  The java 
interface, through the JNI, invokes these underlying native methods that are implemented in another 
language (C or C++). The implementation generally works well though some run time issues have been 
reported due to the evolving nature of the Java language itself. An alternate approach is to implement the 
MPI functionality, ground up, in Java. Couple of approaches in this category include MPIJ.  MPIJ is 
implemented within DOGMA system and communication uses native marshaling of primitive Java types. 
Communication speeds of MPIJ are comparable to native MPI implementations. Though Java interface for 
MPI involves issues beyond the plain description of language bindings,  there is light at the end of the 
tunnel since the Java language and the  original MPI specification are both object based. A pure java based 
MPI was not ready for prime time, a few years ago, and even now not all issues have been resolved with a 
pure java based MPI.  

MPICH [4] is an implementation of the Message-Passing Interface (MPI) in C++. It provides an MPI 
implementation for platforms, including clusters, SMPs, and massively parallel processors. MPICH is 
robust and works nicely in a cluster computing configuration, such a Beowulf Cluster. Our simulation 
platform is implemented in a Beowulf Cluster with 16 compute nodes, a 1 Gbps Ethernet switch, and a 
server. We use MPICH as the communication paradigm in this environment. 

On top of the MPICH communication layer, we use BGTW distributed simulation engine [1, 2]. The engine 
is implemented in C++. By having both the communication layer and the engine in the same language we 
avoid many of the language binding issues that one would encounter.  

The central question is how Java users can access the simulation engine. Given the maturity of MPICH and 
perhaps some Java based hybrids one can envision two approaches, as illustrated in Figures 1 and 2.  

In approach 1 (Figure 1), a middle layer, Java Time Warp, acts as a Java wrapper for BGTW. The real 
simulation work is done by BGTW which in turn uses MPICH for communication.  JTW is responsible for 
object management and information exchange between end user Java application and BGTW. JTW uses 
Java Native interface (JNI) to interact with the native (BGTW) code, the same way mpiJava interacts with 
the native MPI library. 

In approach 2 (Figure 2), Java Time Warp sits below mpiJava; mpiJava together with MPICH act as the 
communication layer.  However, one needs to build a distributed simulation engine as part of JTW before 
JTW can provide a Java based simulation interface to end users. 

Approach 1 is preferred for many reasons: 

1. Cleaner Interface. By separating the simulation engine from the mechanics of providing a Java 
interface to end users, one can concentrate on the service being provided to end users rather than 
simulation issues. 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 667



2. Consistency. JTW provides a set of consistent and transparent interface to Java users. As BGTW 
continues to evolve, JTW can immediately benefit from the gained improvements. 

3. Less complexity. Redesigning a parallel simulation engine from the scratch is a complex and 
expensive undertaking. Complicated algorithms should be considered for. Building a Java wrapper 
for an existing simulation engine using JNI is much easier and controllable. 

4. Similar performance. As we can see, both the approaches have JNI that helps in the interaction 
between native code and Java program. The only difference is JNI appears in different places. Thus, 
one would expect the two approaches to have a similar performance. 

In summary, our design of JTW uses BGTW simulation engine and makes it available to end user programs 
written in Java. In the next section, we provide an overview of BGTW. 

3. BGTW Simulation Engine 

This section provides an overview of the BGTW. More complete details can be found in [1, 2]. The design 
of the simulation engine, BGTW, is guided by some basic principles. The platform should handle 
transparency of the underlying parallel complexities. The user of this system may not be familiar with 
parallel programming or distributed simulation. Further, the engine should have a small, well defined, and 
easily understandable user interface. Additionally, the engine should be amenable to future extension. For 
example, it should support implement a new synchronization algorithm or other PDES algorithms. This 
requirement was a key design issue and concerned modularity of the engine’s components.   

Thus we wanted to have a modular design with a small set of core functions and a set of APIs. There is a 
small kernel running on each PE, called Process. To ensure that only one process is running on a compute 
node we use the Singleton design pattern. The process knows all other processes in the simulation and 
additionally knows where the user defined Logical Processes (LPs) are running. Each kernel process is 
responsible for a distinct subset of the user LPs; the mapping is statically for now, but easily can be 
modified to a more sophisticated mapping algorithm advised by a partitioning scheme.  

BGTW uses an optimistic approach to time management. Time management is based on the time warp 
mechanism developed by Jefferson [3]. The Time Warp protocol is transparent from the application 
program. The rollback mechanism, error correction of Time Warp, and GVT (Global Virtual Time) 
calculations are completely invisible from the users. To maintain correctness of the simulation, the users 
are required to register state-variables of any user defined simulation entities (i.e. LPs).   

The kernel process uses basically four other modules to delegate the work to: a GVT module, a Message 
Handler, a Memory Manager, and a Queue. Additionally, a Thread class is defined to ease pthread.  

The messages are represented by the Msg Class. This is the base class for the user defined message types. 
The template Message derives from Msg and the user defines its Messages by using this template with 
his/her payload class. 

To define an LP the user derives their class from an abstract LP class, e.g. twlp, and implements the virtual 
functions run(), init(), and finish(). The first one is called when a message for that LP is processed and the 
other two are to initialize and finalize the LP, respectively. 

The user has to write the main method where the process is initialized and the LPs are registered to the 
engine. The simulation starts by calling simulate() method of the kernel process. Finally, finalize() is called 
before exiting the program. The output is written to files, one for each process. Optionally a debug output is 
produced to trace the internals of the simulation engine. 

4. Design Overview of JTW 

668 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



We note that BGTW provides two major functionalities to the end user: process and twlp. Class process is 
responsible for the steps necessary to configure and execute a simulation task. Class twlp is used to declare 
and implement the behavior of each logical process in the underlying simulation. Distributed simulation 
partitions the simulation task into several logical processes. Each computing node normally house more 
than one logical process. Note also from Section 3 that the main behavior of one logical process “twlp” 
consists of initialization, run and finish phase which are provided in BGTW as three abstract functions: 
init(), run() and finish() for the user to define and implement the behavior of each logical process. By 
implementing these functions the user specifies the mechanics of the actual simulation. Our goal is to 
provide the same interface to Java users, through JTW. 

JTW communicates with BGTW through BGTW's Applications Programming Interface (API). It’s 
implemented in C++ and communicates with the Java interface through Java Native Interface. As a 
wrapper, JTW provides similar functionalities as BGTW: jtwlp and jprocess for Java user. In addition, JTW 
provides the same abstract interface in Java side for users to implement their task. The main functionality 
of these three BGTW abstract functions was implemented inside JTW to exchange simulation data between 
Java and C++ program through JNI. 

Like BGTW, JTW has four major components: message processing, object management, logical process 
implementation and data exchange (Figure 3).  

The workflow between user space and the backend simulation engine is captured in JTW, as illustrated in 
Figure 4. First, a “process” instance is created and initialized through the corresponding JNI function call. 
Several “twlp” instances are created and registered to this “process” instance. All the c++ object 
information is recorded in Java side for later use. Then the simulation task starts execution. The simulation 
process continues to loop through “run” phase until the end simulation time is reached. For each “run” 
iteration (the boxed item of Figure 4), any “twlp” object instance may receive simulation messages from 
other logical process and pass message data with other simulation data to “jtwlp” instance. Then “jtwlp” 
instance perform simulation actions which is defined by the user on simulation data, and finally passes 
newly computed simulation data back to “twlp” instance for update. Finally, the finalize() function is called 
from Java side to C++ side which ends the simulation. 

User interface consists of two main Java classes: Jprocess and Jtwlp. Each class has a set of predefined 
native methods provided to the users for their simulation application. Native method means real 
implementation of this method is in another language; it only has a prototype defined on the Java side with 
no real implementation. Class Jprocess is designed for configuring and executing a simulation task, class 
Jtwlp is designed for declaring and implementing behavior of each LP; user’s LP should inherit from this 
class.  

5. Concluding Remarks 

In this paper we have provided a design view of our layered architecture for a Java-based distributed 
simulation. Where applicable we have used existing technologies and applications. It is our hope that this 
modular design helps in accelerating the development process. Our approach permits Java users to access 
an existing distributed simulation engine. The interfaces are well designed and native methods in C++ are 
available to Java users using the mechanisms of Java Native Interface.  

Reference 
[1] Rajaei, H. Ehmmer, M., and Roeck, H., "BGTW: A Clustered-Based Distributed Simulation Platform" to appear In 

Proceedings of 2006 SCS International Conference and Simulation - Methodology, Tools, Software Applications, M&S-
MTSA06, August, Calgary, Canada.  

[2] Ehammer, M, and Roeck, H., "Bowling Green Time Warp", Department of Computer Science, Bowling Green State 
University, OH, Technical Document, August 2004. 

[3]  D. R. Jefferson. Virtual time. ACM Trans. Program. Lang. Syst., 7(3):404–425, 1985. 

[4]  MPICH--a portable implementation of MPI. http://www.mcs.anl.gov/mpi/mpich/ 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 669



[5]  Bernard P.Zeigler, Tag Gon Kim and Herbert Praehofer, “Theory of Modeling and Simulation”, Academic Press, 2000. 

[6] Bernard P.Zeigler, Doohwan Kim, Stephen J. Buckley, “Distributed supply chain simulation in a DEVS/CORBA execution 
environment”, December 1999 Proceedings of the 31st conference on Winter simulation: Simulation---a bridge to the future 
- Volume 2. 

[7]  Logan, B., Theodoropoulos, G. "The Distributed Simulation of Agent-Based Systems", IEEE Proceedings Journal, Special 
Issue on Agent-Oriented Software Approaches in Distributed Modeling and Simulation, February 2001. 

[8] TENA-- Test and Training Enabling Architecture, https://www.tena-sda.org/  

[9] Chan, A. and Spracklen, T,, "Web-Based Distributed Object Simulation Framework", In proceedings of 1999 SCS Summer 
Simulation Conference. 

[10] SCORM-- Source Content Object Resource Model, http://www.adlnet.gov/scorm/index.cfm 

[11] Muralidhar, R., Kaur, S., and Parashar, M., "An Archituecture for web-based  Interaction and Steering of Adaptive 
Parallel/Distributed Application", in Proceedings of EuroPar  2000 

[12] Nicol, D., Johnson, M., Yoshimura, A, and Goldsby, M, "A Java-based Distributed Simulation Engine", in Proceedings of 
Sixth IEEE International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunications, 
Systems (MASCOTS'98) 

[13] Barr, R., Haas, Z., and Renesse, R. "JiST: Embedding Simulation Time into a Virtual Machine", In Proceedings of EuroSim 
04, September 2004. 

[14] Lang, N., Jacobs, P., and Verbraeck, A., "Distributed, Open Simulation Model Development with DSOL Services", in 
Proceedings of the 15th European Simulation Symposium, ESS 2003 

[15] Perumalla, K., and Fujimoto, R,. "Jane: An Architecture for Interactive Parallel Simulations", in Proceedings of Web-based 
Modeling and Simulation (WEBSIM) 1999 conference. 

[16]  Ming Zhang, Bernard P.Zeigler, and Phillip Hammonds "DEVS/RMI—An Auto-Adaptive and Reconfigurable Distributed 
Simulation Environment for Engineering Studies. 

[17] Ferscha, A., and Richter, A., "Java Based Conservative Distributed Simulation", In Proceedings of 1997 Winter Simulation 
Conference, WSC97. 

[18] MPI-- Message Passing Interface standard, http://www.mpi-forum.org/ 

[19]  Mark Baker and Bryan Carpenter.  MPJ: A proposed Java message-passing API and environment for high performance 
computing.  International Workshop on Java for Parallel and Distributed Computing, Cancun, Mexico, May 2000 

[20]  Mark Baker, Bryan Carpenter, Geoffrey Fox, Sung Hoon Ko, and Xinying Li.  mpiJava: A Java interface to MPI.  First UK 
Workshop on Java for High Performance Network Computing, September 1998. 

670 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



  

 
Figure 1: Approach 1 - Java Time Warp is a Wrapper to the Simulation Engine 

 
Figure 2: Approach 2 - Java Time Implements A Distributed Simulation 

 

Figure 3: Design Layout of JTW Components 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 671



 

 
Figure 4: Communication Between the Simulation Engine and User Space 

 

672 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



MPI Communications Management in Cloud

Laura Espínola1, Daniel Franco1, and Emilio Luque1
1Computer Architecture and Operating System Department

Universidad Autónoma de Barcelona (UAB)
Barcelona - Spain

Abstract— Cloud computing is an important branch in
computer science and HPC, currently many distributed
computing tasks can be performed on virtual machines
that are parts of clouds public or private, and all of this
without needing physical cluster. For this reason several
distributed computing tasks such as scientific applications
are being moved from clusters to clouds. MPI (Message
Passing Interface) is a key component in common and
distributed computing tasks. The virtualized environment
hides the network topology information of the users, and
existing optimizations based on network topology for MPI
applications are no longer viable in the cloud environment,
so that improvements are needed regarding these factors.
Our proposal is studying the feasibility of improved latency
and network traffic for parallel applications running on a
cloud environment. In addition we present a study of the
behavior of MPI communications in Amazon EC2 public
cloud. After analyzing the current situation, we design a
method called MPI Communications Management (MCM).

Keywords: Cloud Computing, MPI communications, HPC, par-
allel applications.

1. Introduction
Cloud Computing has become a popular paradigm for

many distributed and parallel applications. Especially con-
sidering basic concepts such as the facility to acquire
computing resources on demand, scalability and a business
model in which the criterion of Pay-Per-Use is used [1] [2].

This paradigm is currently applied in scientific applica-
tions and data analysis. It is used especially in the world
of High Performance Computing (HPC) for the scalability
offered. Many HPC Applications are deployed in public
clouds like Amazon’s Elastic Compute Cloud (EC2)1 with
good results, but the efficiency of networks communications
in virtualized environments is still affected the quality of its
services.

Message Passing Interface (MPI) is a common standard
software component used in distributed and parallel appli-
cations in HPC. A critical factor for MPI applications on
a cloud environment are the communications between the
nodes [3]. In this research we design a method to improve

1Successful use cases are found in http://aws.amazon.com/
solutions/case-studies/#hpc

MPI communications, providing a dynamic management in
cloud computing environments.

In early days, algorithms developed to optimize the perfor-
mance of parallel applications, including MPI applications
are those with knowledge of network topology and com-
munication patterns, specifically when it comes to a cluster
environment. In clusters the execution of parallel applica-
tions reveal a repetitive behavior of their communication
patterns, this is useful to develop adaptive routing algorithms
that reduce and maintain low latency values enhancing the
communications [4].

In a cloud environment, network topology is not a relevant
fact, moreover, normally is not available. Virtualization
technique is used on clouds and it handles the management
of computing resources. Virtualization typically hides the
network topology from users, providing an uniform inter-
face, without exposing the underlying hardware and software
configurations. Another key factor by which the topology
is hidden lays on the fact that when virtual machines are
created, its network flows are dynamically configured [5].

Our research presents a methodology that provide dy-
namic management of MPI communications in cloud en-
vironments. MPI Communications Management (MCM).
MCM is based on Predictive and Distributed Routing
Balance(PR-DRB) method, it proposes an alternative path
distribution considering the latency and possible congestion
but keeping in mind the characteristics of the cloud.

This paper is organized as follows: in section 2, we realize
a brief introduction above the state of the art; in section 3, we
detail our design method with its parts and phases; in section
4, we present the experimental environment; in section 5, we
present experiment results and our analysis; in section 6, we
conclude this paper with some ideas remarks.

2. Related Work
Today the scalability of HPC in a Cloud environment

depends largely on the effective support of network com-
munications in virtualized environments.

A series of studies are analysed in the research area, in
this section we introduce some of the main topics related to
our study.

2.1 Cloud Computing and HPC
Cloud Computing is the long-held dream of computing as

a utility, it has the potential to transform a large part of the

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 673



IT industry, changing the way IT hardware is designed and
purchased [6]. The elasticity that it provide makes it even
more attractive for HPC users.

The insertion of HPC in cloud environments has been
growing over the past few years. Cloud Computing have
attractive features for HPC, like: availability, computational
power, performances improve and elasticity. Many HPC
applications are deployed in public clouds, and provides to
users facilities in the installation and maintenance of physical
resources, users only pay for the services used on demand.

HPC in cloud also have some key challenges, the lack ef-
ficient communication support in virtualized network is one.
This problem inhibit parallel applications to take advantage
of high performance networks [7]. One experiment in MPI
applications that verified this as showed in Fig. 1, the end-
to-end delay of many clouds are worse in magnitude than
NCSA cluster [8] [9].

Fig. 1: MPI message latency in clouds

Inefficiency in virtualized networks can not be afford
with traditional method of optimization like topology aware
algorithms because this information is in underlying layers,
and is hide from users.

There are many techniques of topology aware algorithms,
in this section we want to introduce one of them that is
significant for our approach. An effective method to control
network efficient in clusters called Predictive and Distributed
Routing Balance, it controls network congestion based on
paths expansion, traffic distribution, applications patterns and
speculative adaptive routing [10].

PR-DRB looks better response time using cached com-
munications and alternatives path. Its model has four basic
procedures:

• Monitoring: It includes the tasks of latency values
accumulation and contending flows identification, per-
formed at intermediate routers.

• Notification: It is initiated at destination end nodes. An
Acknowledge (ACK) message with path information is
created and sent back to the source.

• Path Configuration: This part involves the configura-
tion of new alternative paths (Metapath Configuration)

according to latency values, also performed at source
nodes. If there are saved solutions for a congestion
situation, the paths are taken from the saved solution
database. Otherwise, new alternative paths are created.

• Path Selection: when new messages are injected into
the network, selection procedures distribute messages
among the paths configured in previous task.

Our work extract the main idea of PR-DRB and design a
methodology that are specifically for MPI Communications
Management in cloud, with the problems that virtualization
impose. .

2.2 Amazon EC2 Cloud platform
For this research we select one of the most popular cloud

computing platform, Amazon EC2. Because it has been
the target platform for numerous academic and commercial
applications [9].

In Amazon EC2, the leased virtual machine instances
provide to the user a highly customizable operating system
environment. The users have complete control of their in-
stances, they have root access to each instance, and they can
interact with them as they would.

This characteristics allowing users run applications of
distributed data analysis, scientific simulations and HPC.
Recently, some large physics experiments such as STAR [8]
have also experimented with building virtual-machine-based
clusters using Amazon EC2 for scientific computation.

Amazon provides to the users the choice of multiple
instance types, operating systems, and software packages.
Amazon EC2 allows to select a configuration of memory,
CPU, instance storage, and the boot partition size optimal
for their choice of operating system and application. The
relative processing performance is given in Elastic Compute
Units (ECU) where one ECU corresponds roughly to the
equivalent CPU capacity of a 1.0 - 1.2 GHz 2007 Opteron
or 2007 Xeon processor. The smallest machine can be
instantiated with 1.7 GB RAM and Gbit Ethernet and has
a single virtual core with a compute power of 1 ECU; the
largest machine offers 60 GB RAM, 10 Gbit Ethernet and
88 ECUs, based on the actual dual eight-core Intel Xeon
CPU systems [11].

These features took us to select Amazon EC2 as case of
study to understand the network performance in the public
cloud environment. We use the instance t2.micro, because it
is a lowest-cost for general purpose instance. It has balance
of compute, memory, and network resources that can be
useful for our research.

2.3 MPI Communications
MPI is a widely used standard in HPC for message

passing applications. It have been used for around two
decades. Point to point and collective communications are
provided to processes by this interface. Although, the net-
work communications are abstracted from the processes,

674 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



hence applications have not control or information about the
underlying network.

When the MPI processes of an application are launched,
they communicate through a Communicator, which is part
of the MPI implementation. The standard MPI message
transmission model is illustrated in Fig. 2.

Fig. 2: MPI message transmission

Generally these processes communicate in a not uniform
way, allowing unbalance of link usage. This problem de-
creases available bandwidth between nodes and generate
performance degradation of MPI applications [12].

Most of the optimized algorithms for MPI operations
implemented for a cloud environment are specialized either
for latency or throughput, considering groups of virtual
machines and the distance between them, but do not work
for the manage of the message [13].

For this reason we propose a method that capture MPI
communications and forward them, trying to balance the
communications and achieve a better performance in this
kind of applications.

3. MPI Communications Management
We design a communications management method for

MPI based in the study of communication latencies between
processes. The core of MCM is a daemon which captures
sent and received messages between processes in order to
compute alternative paths avoiding congested routes. After
the selection of the better path is made, the message is
forwarded through the calculated path. In this section we
introduce MCM showed in Fig. 3.

Our approach initiates with the topology discovery, be-
cause it is based in PR-DRB, an algorithm in which the
topology data is one of the essential inputs. This information
is not available in clouds, so we need to find out similar
data input. We have to discover information relevant to

Fig. 3: MPI communications Management Design

the topology. Thereby, we analyse the MPI communication
between all pairs of virtual machines forming a cluster
mounted in a Cloud. The network performance of processes
in MPI applications is related to the network performance
of their corresponding virtual machines. This allow us to
know how the communications are carried out. Then this
information have to saved in a repository for its posterior
usage, because it is relevant for the selection of paths in
MCM.

Messages routing decision take place when a message
is sent or is received in a process of an MPI application.
We propose to capture the message and alter the normal
course of its communication. This message first is stored
in a message queue. Then we analyse and decompose the
message header to evaluate its source and destination.

When the capture is from a send instruction, we perform a
calculation of path using the meta path configuration which
uses the path repository to select the best route. After the best
route is found, message is forwarded through this path. The
latency is recorded in every hop in the path of the message,
also, the verification of threshold is made. In another hand,
when the capture is from a receive instruction, we send
an ACK notification to the original source and deliver the
message to the receiver process.

The capture of an ACK message, generates the update of
the latency information for the corresponding route into the
path repository.

During the initialization process, early messages are send
through they normal path, but information about latency is

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 675



stored in the path repository. In further communications the
evaluation of the path is made.

Repetitive communication behavior allow us to compute
better routes. When a repetitive pattern appear we verify if
the latency of the link is in the range accepted by a threshold.
When the latency is acceptable we send the message using
the standard route. If the latency in the current path is not
acceptable, we compute a better path and store it in the
path repository. Our approach creates a database with source-
destination latency pairs, thereby, future messages can use it.
Figure 4, show how MPI applications interacts with MCM
in a cluster environment in Amazon EC2.

Fig. 4: Cluster Diagram in Amazon EC2

3.1 Fundamental components
• Thresholds: identifies the moment when an action must

be taken. We select three areas, one with low latency,
another with medium latency (where congestion is
raising but network can handle), and finally one with
high latency (with extreme congestion). Like PR-DRB
in low and medium latency areas we do not open new
paths, but when a transition to medium and high latency
occurs, our approach searches a new path.

• Path Selection: This component handles the selection
of path from the repository, also detects new paths solu-
tions and stores them in the repository. The selection of
path from the repository will be taken probabilistically.

4. Experimental Environment
4.1 Hardware Configuration

To analyze the functionality of our proposal, we conducted
a series of experiments evaluating the latency of MPI com-
munication in cloud Computing, Table 1 describes the main
components and configurations of the system.

4.2 Software Configuration
To perform the experiments different types of software

were used. Since from the lowest layer to the highest. We

Table 1: Experimental Setup
Component Cluster Amazon EC2

Instance t2.micro

Memory 1 GiB

Storage(GB) EBS

Network Performance Low to Moderate

Physical Processor High Frequency Intel Xeon
Processors operating at
2.5GHz with Turbo up to
3.3GHz

Clock Speed (GHz) 2.5 GHz

vCPU 1 vCPU

launch our instance from StarCluster, this is an open source
cluster-computing toolkit for Amazon EC2.

Each instance are Hardware-assisted virtual machine
(HVM), this virtualization type provides the ability to run
an operating system directly on top of a virtual machine
without any modification, as if it were run on the bare-metal
hardware. All the instances are acquired from US East (N.
Virginia) data center of Amazon and their operative system
is Ubuntu 10.11.

The measurement of point to point MPI communications
latencies and bandwidth are obtained using OpenMPI, which
is a High Performance Message Passing Library [?]. We
measure the latency and the bandwidth as two key network
performance metrics.

The program that realize the measures is BWLAT, this
tool is open source and is part of the enovance project on
clouds. They build and delivery solutions with open cloud.

4.3 Applications
We also have experiments running the NAS parallel

benchmark. We select Conjugate Gradient (CG) with class
B, it has many communications between nodes. Class B is
a problem with:

• Numbers of rows: 75000.
• Numbers of iterations: 75.
• Eigenvalue shift: 60.
• Numbers of nonzeros: 13.

5. Results
In order to prove the method designed we expose a

series of experiments, in which the existing latency of sent
messages between nodes is one of the most relevant data
which confirms that MCM can obtain good results in the
management of MPI communications.

In each experiments for N virtual machines, we need
N iterations of evaluation in order to get all pair-to-pair

676 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



Fig. 5: Latency of Communication Message Size = 1MB in day 1

Fig. 6: Latency of Communication Message Size = 1MB day 2

performance. In each iteration, N
2 pairs are measured with

MPI Send in both directions. When the number of instances
is 20, the total evaluation overhead is usually smaller than
30 seconds.

For all of our experiments the hardware and software
configuration is the same, we evaluate the impact of mes-
sages sizes for our technique and the selection of news path
for communications between process of NAS-CG parallel
benchmark.

In order to catch system variability, we run several ex-
periments on different days and message sizes. Initially, we
evaluate the latency with a message of 1 MegaByte. The
result of the latency between nodes is showed in Fig. 5, in
this graphic we can see that sending a message of 1 mega
from node 3 to node 8 has a latency of more than 2500
microseconds, but this is not the only way to perform this
communication because in this type of cluster we find that
all nodes are interconnected. MCM proposes the selection
of path with low latency, i.e.: instead of sending directly to
the node 8, we can select the node 5 to send the message
through it to node 8, and the sum of latency from node 3 to
node 10 and then to node 8 will be approximate 50% lowest

than through the first path. Due to space limitations, not all
the communication between nodes are exposed.

Second we run the same experiment every 10 minutes for
1 hour and the results of one of it are in Fig 6. In this figure
we can detect communications that can have lowest latency
like the previous experiment, but also the variability of the
network in cloud. We can observed with this two figures that
according to an specific period the latency time of messages
can be balanced or unbalanced.

Also we measure the latency with messages of 64KB to
prove the behavior with smaller message. The results are
showed in the Fig. 7. In this scenario, latency is maintained
between 125 and 225 microseconds, for this reason, our
technique have to avoid the selection of new path, because
it will add more latency time.

Another type of experiments that we performed is with
NAS-CG parallel benchmark Class B and the ping pong
message calibration between every pair of virtual machine,
running both in parallel, in sixteen process. The results are
the following and are shown in Fig. 9 and Fig 8.

• For Message Communication in the NAS-CG Class B,
between node 0 to node 1, we measure a total latency of

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 677



Fig. 7: Latency of Communication Message Size = 64KB

Fig. 8: Latency of Communication Message Size = 1 MegaByte in parallel with NAS-CG

Fig. 9: Latency of NAS-CG Communication in parallel with
Message Ping Pong between pairs of nodes

179.782 microseconds for the message size predefined
for the application.
We also execute the ping pong calibration of commu-

nications between all the virtual machines at the same
time, sending message of 1 MegaByte. In this scheme
from node 0 to node 1 we measure a latency of 993,456
microseconds with the ping pong calibration. If we
change the route, for example node 0 to node 7 to node
1 the latency will be 867,081 microseconds.
This means that if we use the same technique with the
message sent by the NAS between the same nodes the
total latency of its message will be decreased around
12,7%, because both applications are running at the
same time and the virtual network conditions its equals
for both of each.

• For Message Communication in the NAS-CG Class
B, between node 7 to node 5 we measure a latency
of 119.819,88. Like the first one we also have the
ping pong calibrations measures, sending message of
1 MegaByte between all pairs of processes.
From node 7 to node 5 we measure a latency of 897,992
microseconds. If we change the route, for example node

678 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



7 to node 16 to node 5 the latency will be 635,302
microseconds. In this case our method also will be
working with the NAS message between those nodes,
the latency will be decreased around 29,26%.

• For Message Communication in the NAS-CG Class
B, between node 2 to node 0 we measure a total
latency of 192.729,95 microseconds. And then finally
send message of 1 MegaByte from node 2 to node 0
have a latency of 200,403 microseconds with the ping
pong calibration. In this case we do not have to change
the path of the message sent, because there are not
betters routes analyzing the behaviour of the network
with message of 1 MegaByte.

With all the experiments we realize that our technique can
work, decreasing the traffic congestion and the latency, but
also can properly add overhead specially in the application
runtime.

6. Conclusions
Cloud computing is a new paradigm that has been created

as a dynamic model for distributed computing, with this type
of environment the goal is to avoid the grid architecture
problems. But over the years still have not been able to get
the same results. For example in the world of HPC are many
challenges.

The main areas of current study on HPC Cloud is based
on improving the performance of the MPI communications
offering better routing messages through packet routing in a
virtual network or modifying MPI sentences [12].

We notice that one of the principals problems of running
MPI application in cloud is that network communication
does not have efficient support in virtualized environments.

For this reason we propose MCM, this technique search
alternative path under hot spot situation, considering the vari-
ability of cloud networks and the dynamic traffic behavior.
MCM try to manage the message communication between
process and with this inquiry betters times of latencies.

The future work is to implement this technique and prove
is with benchmark applications and scientific applications,
to observe the real behaviour in publics cloud like Amazon
EC2. Also we want to investigate how to obtained infor-
mation about the actual state of the network, the system
overhead and the determination of thresholds.

7. Acknowledgment
This research has been supported by the MINECO

(MICINN) Spain.
Also, we would like to thank to Sebastian Badia, from

Enovance project of Red Hat Technologies, for providing us
BWLAT, a tool that measures the latency and message flow.

References
[1] P. Mell and T. Grance, “The nist definition of cloud computing rec-

ommendations of the national institute of standards and technology.”
[2] S. Azodolmolky, P. Wieder, and R. Yahyapour, “Cloud computing

networking: challenges and opportunities for innovations,” IEEE Com-
munications Magazine, vol. 51, no. 7, pp. 54–62, 7 2013.

[3] K. Dashdavaa, S. Date, H. Yamanaka, and E. Kawai, “Architecture of
a high-speed mpi bcast leveraging software-defined network,” 2013
IEEE Symposium on Computers and Communications (ISCC), pp.
885–894, 2014.

[4] C. N. Castillo, D. Lugones, D. Franco, and E. Luque, “Predictive and
distributed routing balancing on high-speed cluster networks,” 2011
23rd International Symposium on Computer Architecture and High
Performance Computing, vol. 1, no. 1, pp. 72–79, 10 2011.

[5] Y. Gong, B. He, and J. Zhong, “An overview of cmpi : Network
performance aware mpi in the cloud,” Proceedings of the 17th
ACM SIGPLAN symposium on Principles and Practice of Parallel
Programming ACM SIGPLAN Notices - PPOPP ’12, vol. 47, no. 8,
pp. 297–298, 2012.

[6] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwin-
ski, G. Lee, D. Patterson, A. Rabkin, and I. Stoica, “A view of cloud
computing,” Magazine Communications of the ACM, vol. 53, no. 4,
2010.

[7] R. R. Expósito, G. L. Taboada, S. Ramos, J. Touriño, and R. Doallo,
“Performance analysis of hpc applications in the cloud,” Future
Generation Computer Systems, vol. 29, no. 1, pp. 218–229, 1 2013.

[8] E. Walker, “benchmarking amazon ec2 for high-performance scientific
computing,” Program, pp. 18–23, 2008.

[9] Q. He, S. Zhou, B. Kobler, D. Duffy, and T. McGlynn, “Case study
for running hpc applications in public clouds - p395-he.pdf,” 2010.

[10] D. Lugones, D. Franco, E. Luque, and N. Carlos, “Predictive and
distributed routing balancing , an application-aware approach,” Cluster
Computing (CLUSTER), 2011 IEEE International Conference on,
vol. 00, 2011.

[11] V. Mauch, M. Kunze, and M. Hillenbrand, “High performance cloud
computing,” Future Generation Computer Systems, vol. 29, no. 6, pp.
1408–1416, 2013.

[12] K. Takahashi, D. Khureltulga, Y. Watashiba, Y. Kido, S. Date, and
S. Shimojo, “Performance evaluation of sdn-enhanced mpi allreduce
on a cluster system with fat-tree interconnect,” 2014 International
Conference on High Performance Computing & Simulation (HPCS),
pp. 784–792, 7 2014.

[13] Y. Gong, B. He, and J. Zhong, “Network performance aware mpi
collective communication operations in the cloud,” IEEE Transactions
on Parallel and Distributed Systems, pp. 1–1, 2013.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 679



Intra-cloud and inter-cloud Load balancing based on 
interaction between mobile agent and web service 

 
            Abir KHALDI 1, Kamel KAROUI 1, Henda BEN GHEZALA 1 

1 RIADI Laboratory ENSI, University of Manouba, Manouba, Tunisia 

Abstract- Cloud computing is becoming the most important 
model to provide services to clients through internet. So to 
attract more customers, cloud providers should ensure a 
high quality service essentially highly available and 
efficient. Load balancing is one of the most relevant 
techniques used to increase service availability. This 
technique can be used in cloud environment to prove its 
added value. In this paper, a load balancing metric is 
defined to select a cloud service. So, we will propose a 
framework based on the triangulation of mobile agents, web 
service and load balancing. 

Keywords:  cloud, availability, load balancing, mobile 
agent, web service, security 

 

1. Introduction . 
In clouds, the availability is one of the most critical 

requirements that cloud providers should ensure. As a 
technique, load balancing is used across different data 
centers to ensure network and service availability. Thus, 
computer hardware and software failures are kept to a 
minimum. 

In this work, we will focus on cloud service high 
availability using load balancing. A dynamic load balancing 
algorithm based on interaction between mobile agents and 
web service will be proposed and applied within intra-cloud 
and inter-clouds. 

This paper is organized as follows: section 2 introduces a 
literature review. Section 3 presents the related work. In 
section 4, we propose a load balancing framework to 
increase the cloud service high availability. Section 5, load 
balancing will be expanded to cover inter-clouds 
architecture. Section 6 is a case study. The proposed 
framework is evaluated in section 7. Finally, section 8 
concludes and recommends future trends. 

 

2. Literature view 
2.1 Cloud computing 

NIST [1] defines Cloud computing as a “model for 
enabling ubiquitous, convenient, on demand network access 
to a shared pool of configurable computing resources that 
can be rapidly provisioned and delivered with minimal 
managerial effort or service provider interaction” . 

The essential characteristics of cloud computing are [1]: 
On-demand self-service , Broad network access, Resource 
Pooling, Rapid elasticity, Measured service. 

The service models of cloud computing are [1]:  
- Software as a Service (SaaS) : The capability 

provided to the consumer is to use  the provider’s 
applications running on a cloud infrastructure. 

- Platform as a Service (PaaS) : The capability 
provided to the consumer is to deploy onto the 
cloud infrastructure consumer - created or acquired 
applications created using programming languages, 
libraries, services, and tools supported by the 
provider. 

- Infrastructure as a Service (IaaS) :The capability 
provided to the consumer is to provision  
processing, storage, networks, and other 
fundamental computing resources where the 
consumer is able to deploy and run arbitrary 
software, which can include operating  systems and 
applications. 

The deployment models of cloud computing are [1]: 
- Public cloud : The cloud infrastructure is 

provisioned for open use by  the general public. 
- Private cloud: The cloud infrastructure is 

provisioned for exclusive use by a single  
organization comprising multiple consumers. 

- Hybrid cloud : The cloud infrastructure is a 
composition of two or more distinct  cloud 
infrastructures (public, private, or community). 

- Community cloud : The cloud infrastructure is  
provisioned for exclusive use by a specific 
community of consumers from organizations that 
have shared concerns. 

2.2 Mobile agent 
Mobile Agent (MA) is a programming paradigm used in 

distributed applications [2]. It makes the implementation of 
applications dynamically adaptable easier and facilitates the 
development of distributed applications on large networks. 
This covers many domains such as e-commerce; 
telecommunications, workflow applications, remote 
maintenance and park administration [3]. 

Mobile agents are execution programs that can migrate 
from one host in a network to another in order to satisfy 
requests made by their clients. The state of the running 

680 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



program is saved, transported to the new host and restored, 
allowing the program to continue where it left off. 

2.3 Web service 
A Web Service is a method of communication between 

two electronic devices over a network. It is a software 
function provided at a network address over the web with the 
service always on, as in the concept of utility computing. The 
W3C defines a Web service generally as a software system 
designed to support interoperable machine-to-machine 
interaction over a network. 

The W3C Web Services Architecture Working Group 
defined a Web Services Architecture, requiring a specific 
implementation of a "web service." In this: “a web service 
has an interface described in a machine-processable format 
(specifically WSDL). Other systems interact with the Web 
service in a manner prescribed by its description using SOAP 
(Simple Object Access Protocol) messages, typically 
conveyed using HTTP with an XML serialization in 
conjunction with other Web-related standards”[4]. 

2.4 Load balancing 
Load balancing is a relatively new technique that 

facilitates networks and resources by providing a maximum 
throughput with minimum response time [5]. Dividing the 
traffic between servers, data can be sent and received without 
major delay. Different kinds of algorithms are available to  
help traffic getting  loaded between available servers. A 
basic example of load balancing in our daily life can be 
related to websites. Without load balancing, users could 
experience delays, timeouts and possible long system 
responses.  

Load balancing solutions usually apply redundant servers 
which help a better distribution of the communication traffic 
so that the website availability is conclusively settled. 

There are many different kinds of load balancing 
algorithms available, which can be categorized mainly into 
two groups. The following section will discuss these two 
main categories of load balancing algorithms: 

- Static algorithms divide the traffic equivalently 
between servers. By this approach, the traffic on 
the servers will be disdained easily and 
consequently it will make the situation more 
imperfect. This algorithm, which divides the traffic 
equally, is announced as round robin algorithm. 
However, there were lots of problems reported 
within this algorithm. Therefore, weighted round 
robin was defined to improve the critical 
challenges associated with round robin. In this 
algorithm each server has been assigned a weight,  
accordingly,  the highest weight  will  receive more 
connections. In the situation that all the weights are 
equal, servers will receive balanced traffic [5]. 

- Dynamic algorithms will attribute  proper weights 
to  servers and by searching through the whole 
network, the server with the  minimum weight will 
be chosen  in order  to balance the traffic on. 
However, selecting the most adequate server  will  

need  real time communication with the network, 
which will lead to an extra added traffic on the 
system. 

 Comparing  the  two algorithms [5], dynamic algorithm 
could predict queries that can be made frequently on servers, 
but sometimes prevailed traffic will prevent these queries to 
be answered, and correspondingly more added overhead can 
be distinguished on network. 
 

3. Related Work 
Availability is a critical requirement in cloud computing 

services. Many studies attempt to balance high availability 
(HA), based on cloud system performance and cost.  

Jung [6] studied a replication technique to guarantee HA 
while maximizing performance on a certain number of 
resources. Replication of software components is used to 
provide HA. In case of hardware failure, they used 
component redundancy and regenerated the software 
components into the remaining resources to achieve HA and 
optimize performance. It is based on a queuing model with 
different “mean time between failure” (MTBF) and “mean 
time to repair” (MTTR). 

In [7],  Thanakornworakij and al proposed a HA-OSCAR 
open source framework to increase availability.it aims to 
improve HA of any Linux-based cloud computing platform. 
they enhance the load balancing between just two servers.  

In [8], Chaczko and al use  Message oriented architecture 
to ensure load balancing in distributed networks. Based on 
messaging techniques XMPP allowed resources to be 
monitored and provide availability of cloud resources. 

In [9], Hemant and al proposed a prototype system based 
on a governance body which will handle all the transactions 
from the user to the actual server from which the user is 
requesting. They introduced routing table at each end server 
and middle server (Governance server).  

In the table bellow, we discuss the different works in load 
balancing in the cloud based on 5 criterion: cloud 
architecture, load balancing algorithm, using a middleware, 
service type, hypervisor  metric and security metric. 

 
TABLE 1. COMPARING PROPERTIES OF PREVIOUS RELATED WORK  

Related 

work 

Cloud 

Architecture 

Load 

balancing 

algorithm 

Using a 

middelware 

Service 

type 

Hypervisor’s 

metric 

Security’s 

metric 

[6] Public/ 
Private 

Dynamic NO Any No  No 

[7] Public/ 
Private 

Static Yes Any No No 

[8] Distributed Dynamic Yes Data 
base 

No No 

[9] Public Dynamic Yes Any No No 

 
In our proposed framework, we will try to apply a 

dynamic, operating system independent and secure  load 
balancing algorithm to cover all clouds models. 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 681



4. Proposed framework  for load 
balancing intra-cloud 

In this section, we will describe our framework aiming to 
improve the cloud service  performance. As follow, we will 
divide the framework  description into 4 parts   : 

4.1 Global Framework architecture 
In [10], we proposed a secure cloud architecture design 

based on 4 zones and we specified a DMZ zone to deploy 
different cloud servers. In fact, we didn’t implemented  in 
this previous work [10] a method to ensure the  high 
availability. We will continue in this work to increase the 
availability of each server in the DMZ zone.  So, we will 
propose a cloud DMZ zone managed by a master virtual 
machine named DMZManager. The DMZManager will be a 
middleware between cloud customer and cloud service. 

So, the DMZManager as a cloud  middleware will receive 
the customer requests and automatically forward them  to the 
appropriate server in order to fulfill the request (figure 1). 

 

 
 

4.2 Framework components 
The proposed framework ensures the communication 

between 6 principal components which are responsible of   
load balancing through a dynamic algorithm. These 
components are as follows:  

- DMZManager : It is a virtual machine (VM) 
located in the DMZ Zone as a  middleware 
between cloud customer and cloud service. It 
selects the best efficient service using a proposed 
dynamic load balancing technique (section 4.3). 

- VM servers : VM deploying public or private 
service such as web server, FTP server, Voip 
server, etc.  

- Mobile agent platform : It is a platform based on 
intercommunication between 3 agents :  

o Static Manager Agent (SMA) : is 
located on the DMZManager to select the 
efficient service for the customer. 

o Static Server Agent (SSA) : is located on 
the VM server to receive mobile agent and 
to ensure secure communication.  

o Mobile Agent (MA):    The SMA  
dispatches a MA to each server in order to 
apply the proposed load balancing 
technique (section 4.3). The SSA receives 
the MA to do its job if it is authenticated. 

- Web service:  when invocated by the MA, it 
responds by the requested information. It is the 
middleware between the MA and the local VM 
server resources (CPU, RAM, database,etc). 

- Data base : it is located in the DMZManager 
containing those attributes : 

o ServerType: It is the service type offered 
by the server (web, ftp, voip, etc). 

o Ip_address: The ip address of the VM 
server. 

o LB (Si).: the calculated load balancing 
metric of the service i. 

-  Intrusion detection system : It is a host intrusion 
detection system (HIDS) used to measure the 
number of intrusions detected in a second. 

Those components will intercommunicate to ensure 
load balancing within the proposed technique following 
some specific metrics. 

 

4.3 Load balancing technique proposed 
We propose applying a dynamic load balancing 

technique based on an  indicator for each service named 
LB(Si). The LB(Si) is calculated using those following  
metrics related to each service in a VM server: 

• CPU: The CPU  usage for a specific service  in a 
VM server.   

• RAM : The memory usage for a specific service in a 
VM server. 

• Number of incoming requests per second (NRIn): 
It is the number of requests for a  specific service 
received by a VM server per second . 

• Number of outgoing requests per second (NROut) 
: It is the number of request  issued from a specific 
service in a VM server per second. 

• Number of intrusions per second (NIntru): It is the 
number of intrusions aiming a specific service 
detected per second in a VM server. It is considered 
as a security metric to choose a secure service. 

The proposed dynamic load balancing algorithm is based 
on 3 steps: 

• Step1 : Transforming metric value  into a binary 
metric  

 Metric values are so heterogeneous which complicates 
the calculation of the LB(Si). Our idea is to transform each 
metric value into a binary value composed of 2 bits.  

This binary value  will be  reflecting the metric value 
importance. Each metric belongs to one of the  4 metric’s 
classes. 

Figure 1. Global Load balancing Framework 

682 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



- Low class: it represents the class of the very high 
metric value. For example, when the value of one of 
those metrics (CPU percentage, RAM percentage, 
NRIn, NROut, NIntru)  is very high  so it belongs to 
the low class. The low class is represented by a word 
composed of 2 bits  equals to 11. 

- Medium class: It represents the class of the medium 
metric value. For example, when the value of one of 
those metrics (CPU percentage, RAM percentage, 
NRIn, NROut, NIntru)  is medium  so it belongs to 
the medium class. The medium class is represented 
by a word of 2 bits  equals to 10. 

- Good class: it represents the class of the medium 
metric value. For example, when the value of one of 
those metrics (CPU percentage, RAM percentage, 
NRIn, NROut, NIntru)  is low  so it belongs to the 
good class. The good class is represented by a word 
of 2 bits  equals to 01. 

- Excellent class: it represents the class of the very 
low metric value. For example, when the value of 
one of those metrics (CPU percentage, RAM 
percentage, NRIn, NROut, Nintru) is very low  so it 
belongs to the excellent class. The excellent class is 
represented by a binary word equal to 00.  

We resume the transforming of a metric value in a binary 
word in table 2 using CPU metric as an example. 

 
TABLE 1.  CPU METRIC VALUE TRANSFORMATION AND 

CLASSIFICATION  
 

CPU 
(%) 

 

Low class Medium 
Class 

Good class Excellent 
class 

Metric 
value 

[100%,50%] [49%,30%] [29%,10%] [9%,1%]  

Binary 
word  

11 10 01 00 

 
 

• Step2:  Calculating LB(Si) 

The LB(Si) is calculated by using concatenation based on 
priority. This method consists to gather all metrics binary 
words in a unique sequence.  

The sequence is composed on its first part of the metric 
of the strongest priority (figure 1). We propose that every 
metric has a priority Pi which helps to constitute the LB(Si). 
In our case, we have 5 metrics (CPU percentage, RAM 
percentage, NRIn, NROut, Nintru) so we define 5 priority 
level from 0 to 4 when 4 is the lowest priority value and 0 is 
the highest.  

Metric’s priority is set by the cloud provider based on 
cloud environment and its variables. Sometimes the most 
efficient VMserver for the cloud provider is the server using 
the minimum percentage of CPU so the lowest priority value 
(P=0) is for CPU metric.  For that, we sort the metrics 
according to their priority to get the LB(Si) (figure 2). 

 
 
 

The LB(Si) is composed of 10 bits. It reveals  the 
importance of all the metrics value due to their priority. So 
LB(Si) value is in [0,1024]. 
For example : In  VM server, for a specific service (Si) , we 
have  CPU=00, RAM=01, NRIn = 01 , NROut = 01 and 
NRIntru=10. So according to their priority (figure 3), we get 
LB(Si)=0010010101 
 

 
 

 
The MA takes charge of step 1 and step 2 of the proposed 

dynamic load balancing technique. 
 

• Step3:  Classifying  LB(Si) 

After calculating LB(Si), the SMA can classify LB(Si) 
into 4 class (see table 3): 

- When     0 ≤ LB(Si) ≤ 255 , it belongs to the 
Excellent class due to its low value. In this case the 
VM service is highly available.   

- When    256 ≤ LB(Si) ≤ 511 it belongs to the good 
class and the VM service is well available.   

- When    512 ≤ LB(Si) ≤767, it belongs to the 
medium class and the VM service is moderately 
available.   

- When   768≤ LB(Si) ≤1024, it belongs to the low 
class and the VM service is not enough available. 

 
TABLE 2. LB(Si)  CLASSIFICATION  OF METRIC ’S VALUES 
 
 
 

 
Low class 

 
Medium 

Class 

 
Good 
class 

 
Excellent 

class 

LB(Si)  
value 

 
[768,1024] 

 
[512,767] 

 
[256,511] 

 
[0,255] 

 
 

Figure 3. Example of  LB(Si) calculation 

Figure 2. LB(Si) calculated using metric’s priority 
 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 683



• Step4:   Choosing  LB(Si) 

The LB(Si) classification helps SMA 
decision for choosing the most available VM
method is very useful mainly when applying  load balancin
between more than two service. It is important to forward the 
customer request to the most available VMserver having the  
lowest LB(Si) value. 

4.4 Framework function  

We will describe the different steps followed to apply 
the cloud high availability  load balancing algorithm 
4): 

- Step1 : The cloud customer request a service from 
the DMZManager. The SMA receives the request 
and searches in its data base the different ip 
addresses of the appropriate servers which can 
offer the service.   

- Step2: The  SMA dispatches a 
using its ip address. The MA migrates to
through the cloud network. 

- Step3: The SSA receives the MA. The SSA asked 
the MA a password  in order to accept it. If the MA 
is correctly authenticated it can continue its work. 

- Step4: The MA invokes the web se
the following metrics : NRIn, NROut, NIntru, 
CPU. 

- Step5: The web service analyses the HIDS log to 
determine NRIn, NROut, NIntru and demands to 
the system the CPU used. 
 

 

- Step6: The web service response
MA calculate the LBi. 

- Step7: The MA calculates the LB(Si) as described 
in step1 and step 2 in section 4.3 and  
to the DMZManager. The MA

Figure 4. Load balancing Framework Function

SMA to make the best 
decision for choosing the most available VM service. This 
method is very useful mainly when applying  load balancing  

. It is important to forward the 
er request to the most available VMserver having the  

We will describe the different steps followed to apply 
load balancing algorithm (Figure 

The cloud customer request a service from 
the DMZManager. The SMA receives the request 
and searches in its data base the different ip 
addresses of the appropriate servers which can 

a MA to each server 
ts ip address. The MA migrates to the server 

The SSA receives the MA. The SSA asked 
the MA a password  in order to accept it. If the MA 
is correctly authenticated it can continue its work.  

The MA invokes the web service to collect 
the following metrics : NRIn, NROut, NIntru, 

The web service analyses the HIDS log to 
determine NRIn, NROut, NIntru and demands to 

 
 

service responses the MA. The 

calculates the LB(Si) as described 
in step1 and step 2 in section 4.3 and  returns back 
to the DMZManager. The MA is received by the 

SMA to gives it the LB(Si) calculated. The SM
saves in the database the LB(Si) for the appropriate 
service using its ip address.

- Step8: The SMA compares the different 
appropriate LB(Si) 
ip address for the server having the best LB(Si)

- Step9: The SMA forward th
the service selected and gives him the response.
 

In fact, the MA migration to calculate different LB(Si)
isn’t  happening each time the customer requests a service 
because it will consume much more time to response. So, 
dispatch is done periodically 
DMZManager.  Thus, when a customer requests a service
the SMA consults its data bas
at  that time. 

 

5. Proposed framework 
balancing inter-
In the previous section, we have propos

for intra-cloud load balancing whether it is a public cloud or 
a private cloud.  

In the following section w
load balancing solution get expanded to ens
load balancing. 

The solution is to ensure an
between different SMA in 
Every cloud has a metric related to the performance of its 
hypervisor. For that, it is important to introduce the metric of 
the cloud hypervisor (Cj) named H(Cj).
 We propose an hypervi
those metrics: 

• CPU: The  usage of CPU by the Cj hypervisor.

• RAM : The usage of RAM by the Cj hypervisor.

• Number of intrusion/second(NIntru):
number of intrusions aiming a specific hypervisor 
detected per second.

 Those metrics are represented as a word composed 
of 2 bits like metric’s representation  in section 4.3 

 So the H(Cj) is calculated by the  DMZAgent 
deployed in the DMZManager using the concatenation based 
on metric’s priority defined by the cloud provider

 

. Load balancing Framework Function 

Figure 5. Calculating Load balancing metric inter

SMA to gives it the LB(Si) calculated. The SMA 
he database the LB(Si) for the appropriate 

using its ip address. 
The SMA compares the different 

 in the data base and selects the 
the server having the best LB(Si).  

The SMA forward the customer request to 
selected and gives him the response. 

ation to calculate different LB(Si) 
each time the customer requests a service 

because it will consume much more time to response. So, 
dispatch is done periodically to fulfill the data base in the 
DMZManager.  Thus, when a customer requests a service, 
the SMA consults its data base to select the efficient service 

Proposed framework for load  
-cloud 

In the previous section, we have proposed a framework 
cloud load balancing whether it is a public cloud or 

In the following section we’re going to explain how our 
solution get expanded to ensure inter-clouds 

The solution is to ensure an intercommunication 
 DMZManager in each cloud. 

Every cloud has a metric related to the performance of its 
hypervisor. For that, it is important to introduce the metric of 

(Cj) named H(Cj). 
We propose an hypervisor’s metric H(Cj) based on 

: The  usage of CPU by the Cj hypervisor. 

: The usage of RAM by the Cj hypervisor. 

Number of intrusion/second(NIntru): It is the 
number of intrusions aiming a specific hypervisor 
detected per second. 

metrics are represented as a word composed 
c’s representation  in section 4.3 . 

So the H(Cj) is calculated by the  DMZAgent 
deployed in the DMZManager using the concatenation based 
on metric’s priority defined by the cloud provider (figure 5). 

 
 Calculating Load balancing metric inter-cloud 

684 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |



The  LB(Cj,Si) is represented in 16 bits (See table 4) and 
can be classified into 4 class as we do for LB(Si) .   

- When     0 ≤ LB(Cj,Si)  ≤ 16383 , it belongs to the 
Excellent class due to its low value. In this case the 
VM service is highly available.   

- When    16384≤ LB(Cj,Si) ≤32767  it belongs to 
the good class and the VM service is good 
available.   

- When    32768≤ LB(Cj,Si) ≤49151, it belongs to 
the medium class and the VM service is 
moderately available.   

- When   49152≤ LB(Cj,Si) ≤65536, it belongs to the 
low class and the VM service is not enough 
available.  

TABLE 3. LB(CJ,SI)  CLASSIFICATION  OF METRIC ’S VALUES 
 
 
 

Low 
class 

Medium 
class 

Good 
class 

Excellent 
class 

LB(Cj,Si) 
 value 

[49152, 
65536] 

[32768, 
49151] 

[16384, 
32767] 

[0,16383] 

 
The LB(Cj,Si) is stored in the appropriate LBdatabase’s  

table in each DMZManager.  
The DMZAgent communicates the lowest value of 

LB(Cj,Si) to another cloud DMZAgent  for choosing the best 
performing VM service. 

The different cloud’s DMZManagers communicate 
through their LBDBAgents. 

The new metric of the cloud load balancing LB(Cj,Si) 
for each server is the concatenation between the H(Cj) and 
the LB(Si). The H(Cj) will constitute the first and the most 
significant part of the LB(Cj,Si) (Figure 5). 

 

6. Case study : Apache load balancing 
In this study, we focus on load balancing intra-cloud. 

We‘ve chosen proxmox [11] as a cloud hypervisor because 
it supports Graphical User Interface (GUI) so that the 
installation and configuration becomes easier than other 
platforms using the command Line Interface (CLI). Then, 
we deploy 3 virtual machines on proxmox hypervisor. In 
each one, we deploy an Apache web server. 

By default the three apache web server had the same 
LB(Si) metrics.  

Bee-Gent Mobile Agent has been used for 
implementation. Bee-Gent technology was first released in 
1999 by Toshiba [12], as a new type of pure agent 
development framework for the advanced network society. 
Its communication framework is based on the multi-agents 
model. The Bee-gent framework is comprised of two types 
of agents: agent wrappers and mediation agents: 

- Agent Wrappers are used to ‘agentify’ existing 
applications. The agent wrappers manage the states 
of the applications, which are wrapped around, and 
invoke the applications when necessary. 

- Mediation Agents support inter-application co-
ordination by handling all communications among 
applications. The mediation agents move from the 
site of an application to another where they interact 
with the remote agent wrappers. 

For the IDS, we deployed SNORT[13] in each VM to 
monitor the system and the network intrusions.  

We configured snort to save alerts in its mysql database 
to deal with analyzed phase by the web service. 

We tested our proposed load balancing framework 
through two test cases  (table 5): 
 

TABLE 5. LOAD BALANCING INTRA -CLOUD TESTCASES 
 Initial 

Condition 
Testcase 1 Testcase 2 

 
Apache1 
192.168.233.152 

CPU 10% 12% 12% 

RAM 3% 3% 3% 

NRint 1000 1000 1000 

NRout 1000 1000 1000 

NIntru 0 0 0 

 
Apache2 
192.168.233.153 

CPU 10% 10% 10% 
RAM  3% 3% 3% 
NRint 1000 1000 1000 
NRout 1000 1000 1000 
NIntru 0 0 1 

 
Apache3 
192.168.233.154 

CPU 10% 15% 15% 
RAM 3% 3% 3% 
NRint 10 1000 1000 
NRout 10 1000 1000 
NIntru 0 0 0 

 
Selected  Server  

 
Apache1 

 
Apache 2 

 
Apache 1 
 

 
- Testcase 1: One of the three apache web server consumes 
less CPU than the others. So the traffic will be redirected to 
this server. (see figure 6). 
 

 
 
 
- Testcase 2: One of the three apache web server used less 
CPU but it is attacked by a DOS attack (see figure 6). So the 
traffic will be redirected to the server using less CPU. 
 

Figure 6. Traffic redirection for load balancing 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  | 685



 
 
 

7. Proposed Load balancing Framework  

Evaluation 
The most important advantages of our proposed load 

balancing framework are : 
- We benefit from the advantages of the mobile 

agent in a previous work to detect and repair 
intrusions in an hybrid cloud [14]. So in this work,  
the load balancing  with Mobile Agent approach 
uses also less network load compared to the 
client/server approach, by shipping code to data 
instead of shipping data to code. 

- The Bee-Gent mobile agent approach offers an 
important feature: it is an authenticated and 
encrypted agent intercommunication: 

- Security is an integrated part of the load balancing 
indicator proposed which is not done in previous 
works. The proposed load balancing algorithm 
chooses the most secure service given the use of  
the Number of intrusion detected per second as a 
metric in the LB indicator.  

- The hypervisor metric H(Cj) is a new metric 
proposed to select the most efficient hypervisor 
inter-cloud.   

      

8. Conclusion 

The high availability is an important factor for Cloud 
service providers to ensure service quality. Our proposed 
load balancing framework using mobile agents  and web 
service interaction aims to improve the cloud service 
availability intra-cloud and inter-cloud.  

The load balancing algorithm chooses  the most 
efficient and secure service to fulfill customers request. This 
algorithm cuts down costs  in terms of network load, 
enhances  balancing execution and secures communication 
due to the mobile agent approach.  
We plan to explore additional ways to expand the cloud 
service  availability, robustness and reliability. 
 

9. References 
[1] Mell, P. &Grance, T., 2011, “The NIST Definition of 
Cloud Computing”, NIST Special Publication 800-145 
(Draft). Retrieved 2013-10-11) 

[2] Lange, D. and  Oshima, M.,1999. Seven Good 
Reasons for Mobile Agents - Dispatch your agents; shut off 
your machine. Communications of the ACM Issue. 

[3] Guttman, R. et al., 1998. Agent-mediated electronic 
commerce: a survey. Knowledge Engineering Review. 
13(2):143-147. 

[4] "Web Services Glossary". W3C. February 11, 2004. 
Retrieved 2015-03-22. 

[5] R. Shimonski. Windows 2000 & Windows Server 2003 
Clustering and Load Balancing. Emeryville. McGraw-Hill 
Professional Publishing, CA, USA (2003), p 2, 2003. 

[6] Jung, G., Joshi, K.R., Hiltunen, M.A.: Performance 
and Availability Aware Regeneration for Cloud Based 
Multitier Application. In: Dependable Systems and 
Networks (DSN), pp. 497–506 (2010)  

[7] Thanakornworakij, T., Sharma, R., Scroggs, B., 
Greenwood, Z. D., Riteau, P., & Morin, C. (2012, January). 
High availability on cloud with HA-OSCAR. In Euro-Par 
2011: Parallel Processing Workshops (pp. 292-301). 
Springer Berlin Heidelberg. 

[8] Chaczko, Z., Mahadevan, V., Aslanzadeh, S., & 
Mcdermid, C. (2011, September). Availability and load 
balancing in cloud computing. In International Conference 
on Computer and Software Modeling, Singapore (Vol. 14). 

[9] Hemant, P., Chawande, N. P., Sonule, A., & Wani, H. 
(2011, September). Development of servers in cloud 
computing to solve issues related to security and backup. In 
Cloud Computing and Intelligence Systems (CCIS), 2011 
IEEE International Conference on (pp. 158-163). IEEE. 

[10] Khaldi Abir., Karoui, K., Tanabène, N., & Ghzala, H. 
B. (2014, April). A secure cloud computing architecture 
design. In Mobile Cloud Computing, Services, and 
Engineering (MobileCloud), 2014 2nd IEEE International 
Conference on (pp. 289-294). IEEE. 

[11] Proxmox. (2015). VE. Retrieved 02  13, 2015, from 
Proxmox Virtual Environment: 
http://www.proxmox.com/products/proxmox-ve 

[12] Bee-Gent,Online: 
http://flylib.com/books/en/4.4.1.92/1/ (January 2015) 

[13] Snort, Online: http://www.snort.org/, (March 2015). 

[14] KHALDI Abir, Kamel KAROUI, and Henda BEN 
GHEZALA. "Framework to detect and repair distributed 
intrusions based on mobile agent in hybrid cloud." 

Figure 7. DOS attack to Apache server 

686 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'15  |




