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I. INTRODUCTION

It is commonly assumed (first argued by N. Wiener in

1914 [26] and analyzed in details in [10]) that any system

run (execution) that can be observed by a single observer

must be an interval order of event occurrences. This means

that the most precise observational semantics is defined in

terms of interval orders. Moreover, representing observations

as interval orders allows to capture behaviours that neither of

the standard semantics can really describe. However gener-

ating interval orders directly is problematic for most models

of concurrency, as the only feasible sequence representation

of interval order is by using Fishburn Theorem [6] and

appropriate sequences of beginnings and endings of events

involved (cf. [10]).
Elementary nets with inhibitor arcs [11] are very simple.

They are just classical elementary nets of [21], [24] extended

with inhibitor arcs. However they can model extremely

complicated behaviours [2], [4] that cannot easily (if not at

all) be represented by other models. For example they can

model the case when a simultaneous execution of events a
and b and the order a followed by b are allowed, but the

order b followed by a is forbidden, so called ‘a not after b’
case [9], [16]. This case cannot be represented by classical

Place/Transition Nets [16]. Hence, the elementary nets with

inhibitor arcs are an excellent medium for novel models of

behaviours.
Interval process semantics of elementary inhibitor Petri

nets has been proposed and analyzed in [3] and interval

traces have been introduced in [12] and further developed in

[13]. The interval processes of [3] are an extension and gen-

eralization of step-sequence process semantics of elementary

inhibitor Petri nets proposed in [11] and improved in [15];

while the interval traces are a generalization of classical

Mazurkiewicz traces [5], [18].
In this paper we introduce an interval traces semantics of

elementary inhibitor Petri nets and show that this semantics

is equivalent to the interval process semantics of [3].

�

�

�

�

�

�

�

a

b

c

d
<1

total

�

� �

�

�
�

��

�
�
��

�
�
��

�
�

��

a

b c

d
<2

stratified

�

�

�

�

�

............................................

{a}

{b,c}

{d}
�2

total

�

� �

�

�
�

��

�
�
��

�

a

b c

d
<3

interval

�
�
�
�
�
�
�
�

�

...................................................

�
�
�
�
�
�
�

B(a)
E(a)
B(b)
B(c)
E(b)
B(d)
E(c)
E(d)
�3

total

� �

� �� �

ba

dc

<4

not interval

Figure 1: Various types of partial orders (represented

as Hasse diagrams). The interval order <3 is (not
uniquely) represented by a sequence that represents �3, i.e.

B(a)E(a)B(b)B(c)E(b)B(d)E(c)E(d).

The process semantics as proposed in [3], i.e. in the style

of [15], [21], does not usually require much validation as

intuitively it is just a set of system unfoldings, so it is as

natural as any operational semantics. Hence, the results of

this paper can also be interpreted as a validation of the

interval traces semantics.

II. PARTIAL ORDERS AND MAZURKIEWICZ TRACES

In this section, we recall some known mathematical con-

cepts, notations and results that will be used frequently in

this paper.

A relation R ∈ X ×X is an equivalence relation, if it is

reflexive, symmetric and transitive, i.e. for all a,b,c ∈ X ,

aRa, aRb =⇒ bRa and aRbRc =⇒ aRc.

If R is an equivalence relation than for every x ∈ X , the

set [x]R = {y | xRy} is the equivalence class containing x.

For every relation R, the relation R∗ =
⋃∞

i=0 Ri, where R0

is the identity relation, is the reflexive and transitive closure
of R.

Definition 1. A relation <⊆X×X is a (strict) partial order
if it is irreflexive and transitive, i.e. for all a,c,b ∈ X, a �< a
and a < b < c =⇒ a < c. We also define:

a �< b
df⇐⇒ ¬(a < b)∧¬(b < a)∧a �= b,

a <� b
df⇐⇒ a < b∨a �< b.

Note that a �< b means a and b are incomparable (w.r.t.
<) elements of X.

Let < be a partial order on a set X . Then:
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1) < is total if �<= /0. In other words, for all a,b ∈ X ,

a < b ∨ b < a ∨ a = b. For clarity, we will reserve the

symbol � to denote total orders;

2) < is stratified if a �< b �< c =⇒ a �< c∨ a = c,

i.e., the relation �< ∪ idX , where idX is the identity

on X , is an equivalence relation on X ;

3) < is interval if for all a,b,c,d ∈ X , a < c ∧ b <
d =⇒ a < d ∨ b < c, i.e., < has no restriction that

is isomorphic to <4 from Figure 4.

It is clear from these definitions that every total order is

stratified and every stratified order is interval. The following

simple concept will often be used in this paper.

For every partial order <, we define

Total(<)
df
= {�⊆ X ×X |� is a total order and <⊆�}.

In other words, the set Total(<) consists of all the total
order extensions of <.

By Szpilrajn’s Theorem [25], we know that every partial

order < is uniquely represented by the the set Total(<).
Szpilrajn’s Theorem can be stated as follows:

Theorem 1 (Szpilrajn [25]). For every partial order <,
<=

⋂
�∈Total(<)� . �

For the interval orders, the name and intuition follow from

Fishburn’s Theorem:

Theorem 2 (Fishburn [6]). A partial order < on X is interval

iff there exists a total order � on some T and two mappings
B,E : X → T such that for all x,y ∈ X,

1. B(x)�E(x) 2. x < y ⇐⇒ E(x)�B(y) �

Usually B(x) is interpreted as the beginning and E(x)
as the end of an interval x. The intuition of Fishburn’s

theorem is illustrated in Figure 4 with <3 and �3. For all

x,y ∈ {a,b,c,d}, we have B(x)�3 E(x) and x <3 y ⇐⇒
E(x)�3 B(y). For better readability in the future we will

skip parentheses in B(x) and E(x), and just write Bx and

Ex.

Definition 2 ([5], [17], [18]). 1) Let Σ be a finite set and
let the relation ind ⊆ Σ × Σ be an irreflexive and
symmetric relation (called independency). The pair
(Σ, ind) is called a trace alphabet.

2) Let ≈∈ Σ∗ ×Σ∗ be a relation defined as follows:
x ≈ y ⇐⇒

∃x1,x2 ∈ Σ∗.∃(a,b) ∈ ind. x = x1abx2 ∧ y = x1bax2

3) Let ≡ind the reflexive and symmetric closure of ≈, i.e.
≡ind =≈∗. Clearly is an equivalence relation.

4) For every x ∈ Σ, the equivalence class [x]≡ins is called
a Mazurkiewicz trace, or just a trace. �

We will often write [x] or [x]ind instead of [x]≡Ind .

One may show that [x][y] = [x] ◦ [y] = [xy], where ◦ is a

concatenation of sets of sequences, a symbol that is usually

omitted [5], [18].

Formally, an algebra of Mazurkiewicz traces is a quotient

equational monoid over sequences [5], [17], [18].

Example 1. Let Σ = {a,b,c}, ind = {(b,c),(c,b)}. Given
three sequences s = abcbca, s1 = abc and s2 = bca, we can
generate the traces [s] = {abcbca, abccba, acbbca, acbcba,
abbcca, accbba}, [s1] = {abc,acb} and [s2] = {bca,cba}.
Note that [s] = [s1][s2] since [abcbca] = [abc][bca] =
[abc bca]. �

Each sequence of events represents a total order of enu-
merated events in a natural way. For precise definitions

see for example [11], here we will be using the following

notation.

1) For each set of events Σ, let Σ̂ = {a(i) | a ∈ Σ, i ≥ 1}.

2) For each sequence s ∈ Σ∗, let ŝ ∈ Σ̂∗ denote its enu-

merated representation. For example if s = abbaa then

ŝ = a(1)b(1)b(2)a(2)a(3).
3) For each sequence s ∈ Σ∗, Σ̂s denotes the set of all

enumerated events of s. For example

Σ̂abbaa = {a(1),a(2),a(3),b(1),b(2)}.

4) For each trace [s], we define Σ̂[s] = Σ̂s.

5) For ever s ∈ Σ∗, �s is a total order defined by the

enumerated sequence ŝ. Fore example

�abbaa = a(1) → b(1) → b(2) → a(2) → a(3).

Definition 3 ([18]). For every trace [x], the partial order
�

trace
[x] =

⋂
s∈[x]�s

is called the partial order generated by [x]. �

Example 2. For the trace [s] =
[abcbca] from Example 1, we have
Σ̂[s] =

{
a(1),b(1),c(1),b(2),c(2),a(2)

}
.

The partial order �
trace
[s] generated by

[s] is depicted as Hasse diagram on
the right. �
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b(1) b(2)

c(1) c(2)

III. INTERVAL TRACES

The interval traces, introduced in [12] and refined in [13],

stem from Mazurkiewicz traces [17], [18] and Fishburn’s

representation of interval orders [6].

Let Σ be a finite set (of events), and let

EΣ = {Ba | a ∈ Σ}∪{Ea | a ∈ Σ},

be the set of all beginnings and ends of events in Σ. We will

often just write E instead of EΣ. Every sequence from x∈ E ∗
defines a total order to(x), however not every such total order

can be interpreted as a representation of some interval order.

or example BaBcBb represents no interval order.

Let D ⊆ E and let s ∈ D∗. We standardly define the

projection of s onto D as: πD (ε) df
= ε , and

πD (sα)
df
=

{
πD (s)α if α ∈ D ,

πD (s) if α /∈ D .

For example π{Ba,Ea}(BbBaEbBaEaEc) = BaBaEa and

π{Ba,Ea,Bc,Ec}(BbBaEbBaEaEc) = BaBaEaEc.
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We say that a string x ∈ E ∗ is an interval sequence iff

∀Bt,Et ∈ E ∗. π{Bt,Et}(x) ∈ (BtEt)∗.

We will write InSeq(E ∗) to denote the set of all interval se-

quences of E ∗. For example BbBaEbBaEaEc /∈ InSeq(E ∗),
while BaBcBbEbEaEc ∈ InSeq(E ∗).

Definition 4 ([12]). Let x ∈ InSeq(E ∗
Σ ), and let �x be a

relation on Σ̂, defined by
a(i) �x b( j) ⇐⇒ Ea(i)�x Bb( j).

By Theorem 2, the relation �x is an interval order, and it
is called the interval order defined by the sequence x of

beginnings and ends. �

For example if x = BaEaBbBcEbBdEcEd then �x is the

interval order <3 from Figure 1.

Definition 5 ([12]). Let ind ⊆ E ×E be a symmetric and
irreflexive relation such that for all a,b ∈ Σ

1) (Ba,Ea) /∈ ind and (Ea,Ba) /∈ ind,
2) (Ba,Bb) ∈ ind and (Ea,Eb) ∈ ind.

The relation ind is called interval independency, and the
pair (E , ind) is called interval trace alphabet. �

The condition (1) above follows from the fact that in any

representation of any order, the beginning of an event always

precede the end so that cannot commute. The condition (2)

follows from the generalization of the observation that the

interval sequences BaBbEaEb, BbBaEaEb, BaBbEbEa, and

BbBaEbEa represent the same fact, namely that a and b are

simultaneous.

The interval traces are defined as a special distinctive class

Mazurkiewicz traces.

Definition 6 ([12]). A trace [x]ind over the interval trace
alphabet (E , ind) is called an interval trace if [x]ind ⊆
InSeq(E ∗). �

The soundness of the above definition follows from the

following non-trivial result.

Proposition 1 ([13]). Let (E , ind) be an interval trace
alphabet, and let x,y ∈ InSeq(E ∗).

1) For each x,y∈ E ∗, if x∈ InSeq(E ∗) and y∈ InSeq(E ∗)
then xy ∈ InSeq(E ∗).

2) For each s ∈ E ∗, we have:
s ∈ InSeq(E ∗) ⇐⇒ ∀x ∈ [s]ind . x ∈ InSeq(E ∗).

3) For each x,y ∈ E ∗,
if [x]ind ⊆ InSeq(E ∗) and [y]ind ⊆ InSeq(E ∗), then
[x]ind [y]ind = [xy]ind ⊆ InSeq(E ∗).

4) �x=�y =⇒ x ≡ind y. �

As a partial orders generator, each interval trace can be

interpreted twofold. First, it is also a Mazurkiewicz trace so

it generates a partial order by Definition 3, second, each

element of the interval trace is an interval sequence, so

the trace can also be interpreted as representing a set of

appropriate interval orders.

Definition 7. Let [x]⊆ InSeq(E ∗) be an interval trace.
1) The partial order �

trace
[x] defined as:

�
trace
[x] =

⋂
s∈[x]�s

is called canonical order defined by [x].
2) The set intervtrace([x]) = {�t | t ∈ [x]}

is the set of all interval orders defined by [x]. �

Both the canonical order and the interval orders defined

by an interval trace will be used to show the equivalence of

interval order semantics and interval process semantics for

elementary inhibitor nets.

IV. ELEMENTARY NETS WITH INHIBITOR ARCS

Inhibitor arcs allow a transition to check for an absence
of a token. They have been introduced in [2] to solve a

synchronization problem not expressible in classical Petri

nets. In principle they allow ‘test for zero’, an operator the

standard Petri nets do not have (c.f. [20], [23]). Activator
arcs (also called ‘read’, or ‘contextual’ arcs [4], [19]), for-

mally introduced in [11], [19], are conceptually orthogonal

to the inhibitor arcs, they allow a transition to check for a

presence of a token.

Elementary nets with inhibitor arcs [11] are very simple.

They are just classical elementary nets of [21], [24] extended

with inhibitor arcs. Nevertheless they can easily express

complex behaviours involving ‘not later than’ cases or non-

transitive simultaneity as illustrated in Figure 2.

Definition 8 ([2], [11]). An Elementary Net with Inhibitor
Arcs (ENI) is a tuple N= (P,T,F,Cinit , I) such that

• P and T are finite and disjoint sets of places and
transitions represented, respectively, as circles and rect-
angles;

• F ⊆ (P×T )∪ (T ×P) is the flow relation of N - repre-
sented as directed arcs between places and transitions;

• Cinit ⊆P is the initial marking of N (generally, any C ⊆P
is a marking); and

• I ⊆ P×T is a set of inhibitor arcs - represented as arcs
with small circles as arrowheads. �

The net N in Figure 2 is an example of ENI. For every

x ∈ P∪T we define, its input •x = {y | (y,x) ∈ F} and its

output x• = {y | (x,y) ∈ F}. We assume that for every t ∈ T ,
•t �= /0 �= t• and •t ∩ t• = /0. Moreover, for each t ∈ T , the set
◦t = {p | (p, t) ∈ I} is the set of places that are connected

with transition t by inhibitor arcs. We also standardly

define for any subset U of T : •U =
⋃

t∈U

•t, U• =
⋃

t∈U
t• and

◦U =
⋃

t∈U

◦t.

The operational semantics of ENI is defined through

the “token game" which simulates the occurrence of tran-

sitions and the changes of tokens in places. ENI differs

from ordinary elementary Petri nets only by introducing

a requirement that a transition cannot be enabled if there

is a token in a place to which it is connected by an
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Figure 2: Inhibitor nets N and Nio and all their behaviours

involving one occurrence of a, b and c. The net N gen-

erates <N
1,<

N
2,<

N
3,<

N
4, and two concurrent histories, while

Nio generates only an interval order <N
4. Partial orders are

represented by Hasse diagrams. The net Nio generates only

the interval order <N
4.

inhibitor arc. A transition t is enabled at a configuration

C if •t ⊆ C and (t• ∪ t◦)∩C = /0. An enabled transition t
can fire leading to a new configuration C′ = (C \ •t)∪ t•.
We denote this by C[t〉C′. We will also write C[t1 . . . tn〉C′ if

C[t1〉C1 . . .Cn−1[tn〉C′ for some configurations C1, . . . ,Cn−1.

There are two standard operational semantics for ENI, one

in terms of firing sequences and another in terms of firing
step sequences (c.f. [11]), however in this paper we will

only use the firing sequenc semantics.

Definition 9. A firing sequence of an ENI is any sequence of
transitions t1, . . . , tn for which there are markings C1, . . . ,Cn
satisfying:

Cinit [t1〉C1[t2〉C2 . . . [tn〉Cn. �

V. INTERVAL ELEMENTARY NET WITH INHIBITOR ARCS

Following [3] in this section we show how a given

inhibitor net can generate appropriate sequences of event

beginnings and ends, so we will be able to describe all

interval orders the net generates.

The basic idea of defining the set of firing interval

sequences for a given inhibitor net N is briefly presented

in Figure 3 as a transformation of N into N .

We assume that the events (transitions) are not instanta-
neous, on contrary, they are interpreted as representations of
activities whose completion takes some time. However, their
beginnings and ends are instantaneous.

In principle the transformation is based on the replacement

of a transition t by the net Bt Et�� �t as first

proposed in [27] and additionally taking into account specific

behaviours induced by inhibitor arcs.

Definition 10 ([3]). Let N = (P,T,F, I,Cinit) be an ENI
system. We define N = (P,T ,F ,I ,Cinit), its interval
representation as follows:

• P = P∪T
• T = {Bt | t ∈ T}∪{Et | t ∈ T}
• ∀ p ∈ P, t ∈ T. (p, t) ∈ F ⇐⇒ (p,Bt) ∈ F

• ∀ p ∈ P, t ∈ T. (t, p) ∈ F ⇐⇒ (Et, p) ∈ F
• ∀ t ∈ T. (Bt, t),(t,Et) ∈ F
• ∀ p ∈ P, t ∈ T. (p, t) ∈ I ⇐⇒

(p,Bt) ∈ I ∧ (∀r ∈ p•)(r,Bt) ∈ I . �

For the detailed arguments that the net N fully describes

the behaviour of the net N the reader is referred to [3].

The nets N and N in Figure 3 illustrate the above defini-

tion. Note that for example each of the following sequences

BaBcEaBbEbEc, BaBcEaBbEcEb, BcBaEaBbEbEc and

BcBaEaBbEcEb are firing sequences of N , and each of

them represents the interval order <N
4 from Figure 2 via

Fishburn Theorem (Theorem 2). This means that event b
follows event a and event c overlaps both events a and b in
the original net N.

Directly from the above definition we have:

Fact 1 ([3]). Let N = (P,T,F, I,Cinit) be an ENI system and
N = (P,T ,F ,I ,Cinit) its interval representation. Then
for each t ∈ T we have: •Bt = •t, Bt• = {t}, •Et = {t},
Et• = t•, Bt◦ = t◦ ∪ (t◦)•, and Et◦ = /0. �

Since N is just another inhibitor net, we may try to use

the standard definition of a firing sequence from Definition

9. We will write [[. . .〉〉 instead of [· · · 〉 to indicate firing in

N (or C N ) and not in N.

Definition 11 ([3]). Let N = (P,T ,F ,I ,Cinit) be an
interval ENI. A sequence x = α1 . . .αn ∈ T ∗ is an interval
firing sequence of N if there are markings C1, . . . ,Cn
satisfying:

Cinit [[t1〉〉C1[[t2〉〉C2 . . . [[tn〉〉Cn. �

The following result validates the above definition.

Proposition 2 ([3]). If x is an interval firing sequence of
N , then x ∈ InSeq(T ∗). �

Since all transitions of interval ENI’s are instantaneous,

simultaneous executions of any kind are are disallowed,

so the only operational semantics is the firing sequences

semantics. The firing step sequences, as in [11], [15] do not

make any sense in this case.

The net N from Figure 3 have ten interval

firing sequences that involve all elements of

T = {Ba,Ea,Bb,Eb,Bc,Ec}, namely BaEaBbEbBcEc
- which represents a total order <N

1 from Figure 2;

BcEcBaEaBbEb - which represents a total order <N
2;

BaBcEcEaBbEb, BaBcEaEcBbEb, BcBaEcEaBbEb,

BcBaEaEcBbEb - all four represent a stratified order

<N
3 of Figure 2; and BaBcEaBbEbEc, BaBcEaBbEcEb,

BcBaEaBbEbEc, BcBaEaBbEcEb - all four represent an

interval order <N
4 of Figure 2. It is important to stress that if

observations are not allowed to be recorded as interval firing

sequences, then <N
4 cannot be generated. It can neither be

generated by firing sequence nor by firing step-sequence.

This order is an interval order, but it is not stratified, so

6 Int'l Conf. Foundations of Computer Science |  FCS'15  |



Figure 3: An example of an inhibitor net, its interval representation, a process and a concurrent histories it generates.

step-sequences (as in [11], [15]) do not work.

It was shown in [3] that if all interval orders generated

by a net are stratified then observational semantics of this

model is equivalent to that of [11], [15].

The net Nio from Figure 2 can generate neither any firing

sequence nor any step-sequence. It can generate only the

interval order <N
4 (see [3], [13] for details).

VI. PROCESS SEMANTICS

In case of concurrent systems many of system

runs/executions are equivalent, but this aspect is difficult

to capture when only operational semantics is considered.

Abstractions of these equivalent executions are often called

concurrent histories, and, dependently on the assumptions

about systems and systems runs, are usually modelled by

partial orders [7], [21], stratified order structures or interval

order structures (c.f. [8]), or processes (c.f. [15]).

For the net N from Figure 2, the runs <N
2,<

N
3,<

N
4 are

equivalent as in all cases we have event c occurs no later

than event a, so N has two concurrent histories involving all

three events a,b,c. In <N
1, a and b occur before c, so <N

1

belongs to a different concurrent history1 (see [8], [9] for

details).

For Petri nets, processes are plain or modified unfoldings,

called occurrence nets. It was shown in [11], [15] that for

nets with inhibitors arcs, plain unfolding does not work,

since the absence of a token, unlike the presence of a token,

cannot be tested. Hence we have to replace inhibitor arcs by

appropriate activator arcs. The idea is that an inhibitor arc
which tests whether a place is empty, can be simulated by

an activator arc which tests whether its complement place
is not empty. To do such simulation, each inhibitor place

must have its complements, if it does not we can always

add it, as it does not change the net behaviour (c.f. [7], [11],

[15], [21]). This construction is illustrated in Figure 3, where

adding complement places changes N into C N . Clearly

1Concurrent history is a set of runs that agree on causality invariants as
“always earlier than” or “always not later than” (see [8], [9] for formal
arguments).

the behaviours of N and C N are identical (c.f. [11], [15],

[21] for details).

Definition 12 ([7], [15]). 1) Places p,q ∈ P are comple-
mentary (p is a complement of q and vice versa) if
p �= q, •p = q• and p• = •q, and |Cinit ∩{p,q}|= 1.

2) An elementary inhibitor net is complement closed if
every inhibitor place has its complement, i.e.
(p, t) ∈ I =⇒ p̃ ∈ P. �

If p and q are complementary we will write p = q̃,q = p̃,

and clearly p = ˜̃p,q = ˜̃q.

We define the processes generated by a firing sequence
y = t1 . . . tn as Py = Nn, where Nn is the last activator
occurrence net in the sequence N0, . . . ,Nn. Each net Nk =
(Bk,Ek,Rk,Ak),0 ≤ k ≤ n, is a net with activator arcs that

model an unfolding of the net N by the sequence t1 . . . tk.

The first three components of Nk correspond to places P,

transitions T , and flow relation F of the underlying ENI

system, while Ak ⊆Bk×Ek is the set of activator arcs derived

from inhibitors arcs I.

The elements of Bk∪Ek are of the form ri, where r ∈P∪T
and i ≥ 1. We will denote l(ri) = r and n(ri) = i. Moreover,

for every r ∈ P∪T and k ≤ n, Δr is the number of nodes of

Nk−1 labelled by r (i.e. the number of α ∈ Bk ∪Ek such that

l(α) = r.)

Algorithm 1 (Constructing Py, for y = t1 . . . tn, [11], [15]).
• Step 0. N0 = ({(p1) | p ∈Cinit}, /0, /0, /0)
• Step k. Given Nk−1, we define Nk in the following way:

– Bk = Bk−1 ∪{p1+Δp | p ∈ t•k }
– Ek = Ek−1 ∪{t1+Δtk

k }
– Rk = Rk−1 ∪{(pΔp, t1+Δtk

k ) | p ∈ •tk}
∪{(t1+Δtk

k , p1+Δp) | p ∈ t•k }
– Ak = Ak−1 ∪{(p̃Δ p̃, t1+Δtk

k ) | p ∈ t◦k } �

The above algorithm is illustrated in Figure 3 (a part from

C N to Px). When it is applied to the net C N with the

sequence x = BaBcEaEcBaBb it results in the process Px.

Intuitively it is just a plain unfolding of the net A N .
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Figure 4: An illustration of Definition 13(1) (top) and

Definition 13(2) (bottom).

An extension of Algorithm 1 to the case of firing step

sequence x=U1 . . .Un was first proposed in [11]) and refined

in [15] is rather straightforward, but in will not be discussed

here as it will not be used.

Algorithm 1 can be applied to any elementary net with

inhibitor arcs, however in this paper we will use it only

to complement closed interval representations, as C N in

Figure 3.

VII. INTERVAL PROCESSES

We will now introduce interval processes and show how

they represents interval runs/executions.

Let N = (P,T,F, I,Cinit) be an ENI system, C N =
(P,T ,F ,I ,Cinit) be its complement closed interval repre-

sentation and let x = α1 . . .αn be an interval firing sequence

of C N .

Assume that Algorithm 1 applied to C N with x =
α1 . . .αn produced a process (an occurrence net) Px.

Assume that Px =Nn = (Bn,En,Rn,An), where Nn is the

last step of Algorithm 1.

A partial order �
proc
x derived from the process Px is

defined as follows.

Definition 13 ([15]). Let Px = Nn = (Bn,En,Rn,An) be
the process generated by x. We define a canonical partial
order �

proc
x on En as follows:

1) For all α,β ∈ En,
α �

init
x β ⇐⇒
α(Rn ◦Rn)β ∨α(Rn ◦An)β ∨α(A −1

n ◦Rn)β ,
where ◦ is a composition of relations.

2) For all α,β ∈ En, α �
proc
x β ⇐⇒ α(�init

x )+β �

The above construction is illustrated in Figure 4. In most

cases many different x’s can generate the same process Px,

but the canonical partial order �
proc
x captures all the cases.

Proposition 3 ([3]). For each interval firing sequence x,
total(�proc

x ) = {�y | Px = Py}. �

We will now define formally interval orders and interval

order structures generated by interval firing sequences of N .

Definition 14. Define En = {t | Bt ∈ En ∧Et ∈ En}. Let x ∈
InSeq(T ∗), and let �x be a relation on En, defined by

ai �x bi ⇐⇒ Eai �x Bb j.
By Theorem 2 the relation �x is an interval order. �

Each Px is generated from N by an interval sequence

x and each interval sequence x defines an interval order �x.

The set of all interval orders that can be derived from Px
or �

proc
x is defined as follows.

Definition 15. For each interval firing sequence x, we define
intervord(�proc

x ) = intervproc(Px) = {�y| Px = Py}. �

For the example from Figure 3, intervord(�proc
x ) =

intervproc(Px) = {<N
2 ,<

N
3 ,<

N
4 }, i.e. the concurrent history

histN
2 from Figure 2. We will show that the same result is

obtained when the interval traces approach is used.

VIII. INTERVAL TRACE SEMANTICS OF INHIBITOR NETS

Let N= (P,T,F, I,Cinit) be an ENI system and let C N =
(P,T ,F ,I ,Cinit) be its complement closed interval rep-
resentation.

We define the interval trace independency relation

indC N ⊆ T ×T as follows.

Definition 16. For all distinct a,b ∈ T :
1) (Ba,Bb) ∈ indC N ∧ (Ea,Eb) ∈ indC N

2) (Ba,Eb) ∈ indC N ⇐⇒
[(Ba• ∪ •Ba)∩ (Eb• ∪ •Eb) = /0]∧
[(Ba◦ ∩ •Eb)∪ (Eb◦ ∩ •Ba) = /0]∧
[(Ba• ∩Eb◦)∪ (Eb• ∩Ba◦) = /0].

The interval trace alphabet is (T , indC N ). �

The relation indC N is a refinement of the similar relations

from [11], [15].

Definition 17. Let x = α1 . . .αn be an interval firing se-
quence of C N . The interval trace [x]indC N

is the interval
trace of C N generated by x. �

Proposition 2 and the result below prove the soundness of

the above definition.

Proposition 4. If x is an interval firing sequence of C N ,
Cinit [[x〉〉Cn for some n, and y ∈ [x]indC N

, then Cinit [[y〉〉Cn.

Proof. (sketch) It suffices to show it for |x|= 1, which can

be derived from the definition of [[. . .〉〉.
For the net C N of Figure 3 and x = BaBcEaEcBbEb,

the content of [x]indC N
consists of ten sequences analyzed

at the end of Section V and �
trace
[x] is the same as �

proc
x

from Figures 3 and 4. Moreover intervtrace([x]indC N
=

intervord(�proc
x ) = intervproc(Px) = {<N

2 ,<
N
3 ,<

N
4 }.

We will show this kind of relationship holds in all cases.
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IX. INTERVAL PROCESSES VS INTERVAL TRACES

We start with the formal statement of the main theoretical

result of this paper.

Theorem 3 (Equivalence of Process and Interval Traces

Semantics). Let N = (P,T,F, I,Cinit) be an ENI system,
C N = (P,T ,F ,I ,Cinit) be its complement closed inter-
val representation and let x = α1 . . .αn be an interval firing
sequence of C N . The the following equations hold:

1) �
trace
[x]indC N

= �
proc
x

2) intervtrace([x]indC N
)=intervord(�proc

x )=intervproc(Px)

Proof. (idea.) First note that due to Proposition 3, it is

relatively easy to show that (1)⇒(2), so proving (1) is

enough. The proof of (1) is by induction on the length of x.

The proof is long, tedious, non-trivial, and plenty of different

cases have to be considered.

The above theorem is an equivalent of similar seminal

results for step sequences (i.e. stratified orders) operational

semantics, comtraces and stratified orders process semantics

of [11], [15]. In principle it states that the in interval process

semantics and interval traces semantics are equivalent for

elementary inhibitor nets.

X. FINAL COMMENT

This paper deals with the case when all observa-

tions/system runs are represented by interval orders. This

is often regarded as a the most general case [10], [26].

We concentrated on elementary inhibitor Petri nets, applied

the interval traces semantics of [12], [13] to these kind

of nets, and showed that in this case the interval process

semantics proposed in [3] and the interval traces semantics

are equivalent. The results of this paper can be interpreted

as an extension of the ideas of [11], [15] to interval order

observations.

Since the process type semantics, which is based on the

concept of system unfolding, is very natural and usually does

not require justification, the results of this paper can also be

interpreted as some validation of the interval order semantics

for inhibitor nets.

Usually the concurrent histories involving interval or strat-

ified orders and “not later than” phenomenon are represented

by interval or stratified order structures (c.f. [3], [8], [11],

[12], [13], [15] and others). For our case the interval order

structures would be relevant. However this notion has not

been used in this paper. The main result of [1] show that the

canonical orders like �
proc
x and �

trace
[x] uniquely represent

appropriate interval order structures, so we do not have to

use them explicitly.

An extension to general Place/Transition nets (as [14] did

to some aspects of the model of [11], [15]) is a serious future

research project.
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Sets of non-Descending Cardinality  
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Abstract- Data structures have been around since the 
structured programming era. Algorithms often associate 
with data structures. An algorithm is a sequence of 
instructions that accomplishes a task in a finite time period. 
The algorithm receives zero or more inputs, produces at least 
one output, consists of clear and unambiguous instructions, 
terminates after a finite number of steps, and is basic enough 
that a person can carry out the algorithm using a pencil and 
paper. Algorithms for dividing objects into bins have long 
been invented. However, dividing objects in summation 
format is not received due attention. In this paper, objects 
are divided into n bins in such a way that the next bin will 
contain more than or equal number of objects than the 
preceding bin. 

 
Keywords: Data structure, algorithms, edge partition, 
integer partition, non-descending order partition. 
 

1. Introduction 
 

Computer science is often difficult to define. This is 
probably due to the unfortunate use of the word “computer” 
in the name. As you are perhaps aware, computer science is 
not simply the study of computers. Although computers play 
an important supporting role as a tool in the discipline, they 
are just that–tools. 

Computer science is the study of problems, problem-
solving, and the solutions that come out of the problem-
solving process. Given a problem, a computer scientist’s 
goal is to develop an algorithm, a step-by-step list of 
instructions for solving any instance of the problem that 
might arise. Algorithms are finite processes that if followed 
will solve the problem. Algorithms are solutions. 

Computer science emphasizes two important topics: data 
structures and algorithms. Those topics are important 
because the choices you make for a program's data structures 
and algorithms affect that program's memory usage  
(for data structures) and CPU time (for algorithms that 
interact with those data structures). 
This paper initiates a two-part series that explores data 
structures and algorithms. When choosing a data structure or 
algorithm, you sometimes discover an inverse relationship 

between memory usage and CPU time: the less memory a 
data structure uses, the more CPU time associated 
algorithms need to process the data structure’s data 
items, which are primitive type values or objects, via 
references. Also, the more memory a data structure uses, the 
less CPU time associated algorithms need to process the data 
items—and faster algorithms result. This paper begins with 
a presentation of basic concepts and continues with a tour of 
the array data structure. 
 

2. Approach 
 
Consider ‘m’ objects which have to be divided into ‘n’ bins 
in such a way that the next bin should not contain less objects 
than the previous bin. Suppose first bin contains 1 object then 
all other bins should contain at least 1 object. Similarly if the 
fourth bin contains 3 objects then all other bins after fourth 
bin should contain a minimum of 3 objects. This is the method 
of dividing objects in the form of steps into the bins.  
The number of ways of dividing m objects in n bins is 
represented as f (m, n). 
The number of objects that are being divided into the bins will 
remain same or in increasing order which is in the form of 
steps but never decreases. 
 

3. Method 
 

Let there be ‘m’ distinct objects say 1o, 2o, 3o, 4o………mo 
and ‘n’ distinct bins say 1b, 2b, 3b…….nb. Let the function 
of dividing ‘m’ objects into ‘n’ bins be f (m, n). The ‘m’ 
objects should be divided in ‘n’ bins by satisfying the 
following conditions: 

1. Each bin can contain any number of objects. 
2. The objects should be divided in such a way so that 

the successor bin should  

always have more than or equal number of objects than its 
predecessor bin. 

Example: Consider x contains y objects then (x+1) should 
contain  y objects. 

Example 
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Consider an example of dividing 8 objects in 3 bins. The 
objects can be divided in the following ways: 
  b1          b2        b3 
  0    0          8 
  0             1          7 
  0    2          6 
  0             3          5 
  0             4          4 
  1             1          6 
  1             2          5 
  1             3          4 
  2             2          4 
  2             3          3 
 
In the above example if the bin 0 is filled with one object 
then all other should be filled with a minimum of 0 object 
and not less than that. Then the function for remaining 
objects is represented as f (8, 3) which there are 10 ways that 
can be filled in 3 bins. 
Similarly if first bin is filled with 1 object then all other bins 
should be filled with a minimum of one object. The dividing 
process goes by following this condition till the last bin is 
filled with the last object. 
 

4. Generating an algorithm for dividing 
objects in non-descending order 

 
Partitioning an integer n is to divide it into its constituent 
parts which are all positive integers. Algorithms for 
enumerating all the partitions of an integer or only the  
partitions  with  a  restriction have long been invented [1,2]. 
Consider f(8,3) i.e dividing 8 objects into 3 bins. If bin1 
contains 0 objects then the function for dividing the other 
objects is f(8,2) which means 8 objects should be divided in 
2 bins. Similarly if bin1 contains 1 object then the function 
for dividing the other objects is f(5,2) which means 5 objects 
should be divided in 2 bins because if first bin is filled with 
one object then other two bins should also be filled with a 
minimum of one object. So the remaining objects to be filled 
are 8-3= 5. Similarly if bin1 and bin2 contains 2 object then 
the function for dividing the other objects is f(2,1) which 
means 1 objects should be divided in 1 bin because if first 
and second bean is filled with two objects then other beans 
should also be filled with a minimum of two objects. So the 
remaining objects to be filled are 8-6= 2. 
 
Let f(m,n) be the number of ways of dividing m objects into 
n bins with non-descending cardinality. Function f (m,n) for 
dividing m objects into n bins in this particular format is 
shown 
 
f (m,n)= f(m, n-1)     // first bin contains 0 objects 
             + f(m-n, n-1) // first bin contains 1 object 
             + f(m-2n, n-1)//first bin contains 2 objects 
             + f(m-3n, n-1)//first bin contains 3 objects 
              . 

              . 
              . 
              .             
             + f(m- └m/n┘*n, n-1)    // first bin contains 

└m/n┘objects. 
 

5. Partition Diagram 
 

   Algorithms for enumerating all the partitions of an integer 
or only the partitions with a restriction have been extensively 
studied [4], [5]. 
 
(17, 6) 
 
 
    (17, 5)       (11, 5)           (5, 5) 
 
 
    (17, 4)       (12,4)             (7,4)             (2,4) 
 
 
    (17, 3)    (14,3)      (9,3)     (5,3)      (1,3) 
 
 
    (17, 2)     (14,2)     (11,2)    (8,2)    (5,2)    (2,2) 
 
 
 (17, 1)(15,1)(13,1)(11,1)(9,1) (7,1) (5,1) (3,1)(1,1)    
 
Fig.1: Patition diagram needed to divide 17 objects into 6 
bins. The diagram represents a directed acyclic graph. 
 
A data structure called partition diagram for storing all the 
partitions of an integer is proposed in [3]. In Merca [6], [7] 
improvements are proposed which, to date, are the most 
adequate data structures for generating integer partitions. We 
use the data structure proposed by Merca to present an 
efficient algorithm for generating ascending compositions of 
an integer n in m parts. 
 
The partition diagram is a directed acyclic graph. Anode in 
the partition diagram is denoted by (m,n) where m is the 
number of objects and n denotes the number of bins. A node 
(m,n) that has no predecessor is called anchored node (root 
node) in a partition diagram. A node (m,n) which has no 
successor is called a terminal node. For example in the Fig. 
1 the node (17,6) is an anchored node and also internal node, 
whereas node (2,1) is a terminal node (leaf node). 
Given a partition diagram, a path from an anchored node to 
terminal node defines a unique partition in which m objects 
are divided into n bins. 
 
For example in Fig. 1 the path (17, 6) (17, 5) (7, 4) (5, 3) (2, 
2) defines a partition. 
If the number of objects in the first bin is ‘a’ then all bins 
should have at least ‘a’ objects. If we allocate ‘a’ objects to 

Int'l Conf. Foundations of Computer Science |  FCS'15  | 11



 

every bin then we have (m-na) objects left to be distributed 
in (n-1) bins.  So the process of dividing should continue till 
the value of m-n is greater than 0. 
 
When we format the algorithm we can assume two 
situations 

 The first bin is empty 
In this case m objects are to be  
distributed in (n-1) bins. 

 The first bin contains at least one object 
In this case we allocate one object to every bin. 
Thus we have (m-n) objects left to be distributed in 
n bins. 

 
                   Algorithm 
 
          function f(m, n) 
            { 
             )( nmif  
            { 
             )1(nif  return 1; 
             else return (f (m, n-1) +f (m-n, n)); 
            } 
          else return f(m, n-1); 
          } 
 
 
 
Lemma 1: ),1(),1(),( nmnfnmxfnmf , 
where x is the number of steps explained below. 
 
Consider m objects to be placed into n bins. Let x be the 
number of steps that are formed while arranging the objects.  
     
                                                           9 
                                                                           
                                                8 
                           5    6     7 
 
           3      4    
      
    2    
1 
 
Fig. 2: Different ways of arranging the objects 
If the successor bin contains more objects than the preceding 
bin then the objects are arranged in the form of steps in 
between the bins. For example in Fig. 2 shows a 
configuration in which bin 2 contains more number of 
objects than bin 1 so they are arranged as a step. Similarly 
bin 2 and bin 3, bin 4 and bin 5, bin 7 and bin 8, bin 8 and 
bin 9. If the successor bin contains the same number of 
objects as in the preceding bin then the arrangement is not 
formed as step. It remains at same level as they contain same 

number of objects. For example bin 3 and bin 4 contains 
same number of objects so they remain at same level. 
Similarly bin 5, bin 6 and bin 7 contain same number of 
objects. 
       
                 
 
 
                                                           9 
                                                                           
                                                8 
                           5    6     7 
            
            3      4   
     2  
        
1 
 
Fig.3: Different ways of adding an object in the above 
arrangement 
 
 
If we want to add an object in the configuration shown in 
Fig.2, the added object should not affect the configuration 
i.e. the object is to be added in non-descending cardinality. 
As shown in Fig.3, the added object can only be placed in 
the shaded portion. Therefore we can say that the number of 
arranging the objects in the predecessor bin is always less 
than or equal to the number of way of arranging the objects 
in the successor bin in the form of steps. When we have a 
configuration for f(m-1, n) then we can generate at most 
xf(m-1, n) configurations when we add an object, where ‘x’ 
is the number of steps in the configuration for f(m-1, n). 
Hence  ),1(),( nmxfnmf . Because nx thus  

).,1(),1(),( nmnfnmxfnmf � 
 
 

Lemma 2: ),1(2),( nmfmnmf  
 
From the above lemma we know that 

),1(),( nmxfnmf  where x is the number of steps. 
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Fig. 3: Arrangement of objects to achieve maximum steps 
 
Maximum number of steps can be obtained by placing the 
objects in the following way. Let there be many number of 
objects with many number of bins. Then the objects are 
placed in increasing way to obtain the maximum steps in the 
following way 
 0 objects in bin 1 
 1 object in bin 2 
 2 objects in bin 3 
 3 objects in bin 4 
 . 
 . 
 . 
 t objects in bin t+1. 
Let m be the total number of objects, then 
m= [ t ( t +1) ] / 2 

By solving this we get mt 2   

The maximum number of steps is m2  

Therefore ),1(2),( nmfmnmf  �

Algorithms which efficiently built these kind of integer 
partition combinations have long been studied, a survey can 
be found in Knuth [8]. Although the space and time needed 
to store either the partition diagram or the set of kernel 
strings is quadratic [9], our approach creates the most 
efficient data structure with space and time complexity 
O(mn). The space and time complexity is low enough to 
make possible for storing all the partitions of an integer up 
to several ten thousands. In [3] O(n2) storage is used for 
storing the partitions. Our  algorithm uses less space when 
m is smaller than n. The implication of this result is that, in 
practical applications, we can efficiently recover subsets for 
a given path graph as kernel strings are the base to generate 
combined strings. 
 

6. Second Approach 
 

Consider a case in which x0 contains 0 objects, x1 contains 1 
object, x2  contains 2 objects, x3 contains 3 objects……xa 
contains a objects.  
Let there be ‘m’ objects. Then we can say 
x00+x11+x22+x33+x44…+xaa=m  

 
Example: Consider an example of dividing 4 objects into 3 
bins such that x11+x22+x33=m 
The only case we have is 
x1= 1, x2= 0, x3= 1 
  
This method of partitioning the objects contains less number 
of ways than the method of partitioning objects in traditional 
method i.e x0+x1+x2+x3+x4……+xa=m. 
Now consider the same example of dividing 4 objects into 3 
bins such that x1+x2+x3=m 
The possible cases are follows 
 x1= 0, x2= 0, x3= 4 
 x1= 0, x2= 1, x3= 3 
 x1= 0, x2= 2, x3= 2 
 x1= 0, x2= 3, x3= 1 
 x1= 0, x2= 4, x3= 0 
 x1= 1, x2= 1, x3= 2 
 x1= 1, x2= 2, x3= 1 
 x1= 1, x2= 0, x3= 3 
 x1= 1, x2= 3, x3= 0 
 x1= 2, x2= 1, x3= 1 
 x1= 2, x2= 0, x3= 2 
 x1= 2, x2= 2, x3= 0 
 x1= 3, x2= 0, x3= 1 
 x1= 3, x2= 1, x3= 0 
 x1= 4, x2= 0, x3= 0 
 

7. Generating an algorithm for 
partitioning objects  

 
Initially consider there are m+n-1 positions out of which 
choose n-1 positions then you will be left with m objects to 
be partitioned into n bins. 
 
Example: 
 Consider the following 4 objects to be partitioned into 3 
bins. 
 

1. Initially consider m+n-1 positions i.e. 4+3-1=6 
 
 
 

 
2. Choose n-1 positions i.e. 3-1=2. The two positions 

can be taken in the following ways. 
 

 
 
Bin1 contains 0 objects 
Bin2 contains 0 objects 
Bin3 contains 4 objects                                     

 
 

  
Bin1 contains 0 objects 
Bin2 contains 1 objects 
Bin3 contains 3 objects                                     
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Bin1 contains 0 objects 
Bin2 contains 2 objects 
Bin3 contains 2 objects                                     
 
 

 
  
Bin1 contains 0 objects 
Bin2 contains 3 objects 
Bin3 contains 1 objects                                     
 

 
 
Bin1 contains 0 objects 
Bin2 contains 4 objects 
Bin3 contains 0 objects                                     
 

 
  
Bin1 contains 1 objects 
Bin2 contains 0 objects 
Bin3 contains 3 objects        

 
 

 
Bin1 contains 1 objects 
Bin2 contains 1 objects 
Bin3 contains 2 objects        
 

 
 
Bin1 contains 1 objects 
Bin2 contains 2 objects 
Bin3 contains 1 objects        
 

 
 
Bin1 contains 1 objects 
Bin2 contains 3 objects 
Bin3 contains 0 objects       
 

 
  
Bin1 contains 2 objects 
Bin2 contains 0 objects 
Bin3 contains 2 objects       
 

 
  
Bin1 contains 2 objects 
Bin2 contains 1 objects 
Bin3 contains 1 objects       
 

 
  

Bin1 contains 2 objects 
Bin2 contains 2 objects 
Bin3 contains 0 objects       
 

 
  
Bin1 contains 3 objects 
Bin2 contains 1 objects 
Bin3 contains 0 objects      
 

 
  
Bin1 contains 3 objects 
Bin2 contains 0 objects 
Bin3 contains 1 objects      
 

 
  
 
Bin1 contains 4 objects 
Bin2 contains 0 objects 
Bin3 contains 0 objects      
 
 
 
 
Partitioning m objects into a bins using the method 
x00+x11+x22+x33+…….xaa=m has definitely less number of 
steps than partitioning the objects in  x1+x2+x3+x4….xa=m. 
The space and time complexity for creating a linear structure 
or a partition tree is definitely less while compared to the 
traditional method. The ways of partitioning with 
x00+x11+x22+x33+…….xaa=m is always a subset of ways of 
partitioning objects using x1+x2+x3+x4….xa=m 
 
Now we consider partition of ‘m’ objects into bins such that a 
bin can contain atmost ‘a’ objects. The formula for this 
is1x1+2x2+3x3+……….axa=m which is less than the number 
of ways m can be partitioned into a bins by 

x1+x2+x3+………..xa=m which is 
1

1
a

am
            (1)                    

Then the equation will be  
xa+1(a+1)+xa+2(a+2)…………xbb=m 
 
Now consider the ways m objects can be partitioned into bins 
in such a way that each bin contains at least a objects. The 
number of bins is now restricted by m/(a+1). 
 
We first choose m/(a+1) positions among m positions with 

)1/(am
m

 ways                                                          (2) 

and then partition m objects in non-descending as 
maxaxax amaaa am )1/(21 )1/(21

...  

where a1<a2<a3<…. Compare this case with the method of 
partitioning m objects into m/(a+1) bins i.e. 
 x1+x2……………………xm/(a+1)=m 
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The number of ways of dividing m objects using the method  
x1+ x2……………………xm/a+1=m is 

1)1/(
1))1/((

am
amm

                                                   (3)    

                                                                   
The number of ways of dividing m objects using the method  

maxaxax amaaa am )1/(21 )1/(21
...  is 

1)1/(
1))1/((

am
amm

 

 
So the total number of ways of partitioning ‘m’ objects into 
‘m’ bins is less than the product of (1), (2) and (3), that is 

1
1

a
am

.
)1/(am

m
.

1)1/(
1))1/((

am
amm

 

 
(m/a)a am/aam/a  max[(m/a)3a, a3m/a] 

Therefore we let 
[m /a]a= am/a  

a log (m/a)=(m/a) log a 
[a2(log m- log a)]/log a=m 
a2=mlog a/log m 

mama log/log  

m .  
 

This gives about mm ways, while the number of ways of 
partitioning objects using the formula x1+x2+x3+x4….xm=m 

gives 
1

1
m

mm
 22m

 

 
 

8. Conclusion and Future work 
 

 
In this paper we have studied about partitioning a set into 
non-descending cardinality. The space and time  complexity  
for  creating  a linear structure or a partition tree is 
proportional to the number of partitions whereas the 
complexity for creating a partition diagram is only O(mn). 
This complexity allows us to create a partition diagram that 
can store all the partitions of an integer up to several ten 
thousands. 
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Abstract – Memory-mapped I/O (MMIO) tracing provides an 
effective means for analyzing and debugging I/O related 
functions since it allows us to observe and track the interplay 
between processors and I/O devices [1]. However, existing 
MMIO tracing techniques have a serious drawback in 
multicore systems. Current MMIO techniques commonly use a 
memory protection mechanism to detect access to an MMIO 
address area under consideration. Unfortunately, this 
approach may miss some I/O events and even lead to a data 
race condition due to inappropriate management of 
concurrent accesses to the MMIO address area. In this paper, 
we describe a novel MMIO tracing approach introducing the 
notion of shadow page table. We use a shadow page table to 
allow only one processor to have access to a MMIO address 
area while forbidding other processors’ access to the same 
MMIO address area. We show how the shadow page table 
approach can be efficiently implemented on a multiprocessor 
platform with dual core ARM Cortex A15 CPU. 

 

Keywords: Memory Mapped I/O (MMIO) Trace, Memory 
Protection, Page Fault, Shadow Page Table.

1 Introduction 
Memory-mapped I/O (MMIO) tracing provides an effective 
means for analyzing and debugging I/O related functions 
since it allows us to observe and track the interplay between 
processors and I/O devices. For example, to analyze and 
debug failures in device drivers, developers must be able to 
find out what data is sent to or received from the device. 
MMIO tracing can collect detailed information about I/O 
operations conducted between a processor and I/O devices, 
thus enabling us to track down the source of failures.

However, existing MMIO tracing techniques have a 
serious drawback in multicore systems. Current MMIO 
tracing techniques commonly use a system-wide address 
translation table, i.e. page table in processors with paging 
support, to set the MMIO address area under consideration as 
invalid and rely on memory access exceptions to detect any 
processor’s access to the protected MMIO address area. When 
an exception is generated by a read/write instruction, a 
specially designed exception handler collects information 

about the I/O access, enables access permission for the MMIO 
address area, re-executes the faulting memory access
instruction, and sets the access permission back to invalid.
Unfortunately, in multicore hardware, this may lead to 
missing some I/O events and even a data race condition since 
other processors can make writes simultaneously to the same 
address area during the time interval where the access to 
MMIO address area is enabled.

In this paper, we present a novel MMIO tracing method
introducing the notion of shadow page table. When a page 
fault occurs on a certain processor, we replace the page table 
seen by the exception handling processor with a shadow page 
table, while leaving other processors referencing the original 
page table. The shadow page allows only the exception 
handling processor to access the MMIO address area, but 
other processors’ access to the MMIO area is prohibited 
through the original page table. Therefore, this approach 
allows us to avoid the problem of missing I/O events and race 
conditions. We describe how the shadow page table approach 
can be efficiently implemented on a multiprocessor platform 
with dual core ARM Cortex A15 CPU.

This paper is organized as follows. Section 2 describes 
existing MMIO tracing techniques. Section 3 presents our 
shadow page table approach and Section 4 concludes this 
paper.

2 Background of MMIO Tracing 
2.1 Memory-mapped I/O (MMIO) 
MMIO requires a section of memory to allow a processor to 
communicate with I/O controllers. A processor with MMIO 
support reserves some part of its address space for a special 
I/O address range where I/O controllers’ registers are mapped 
to specific addresses in the designated I/O address range. 
Programs can access I/O registers through memory access 
instructions such as load and store, which is no different from 
read/write access to normal memory addresses [3].

MMIO tracing can be efficiently implemented using a
page table. A page table contains the mapping between virtual 
addresses and physical addresses and some additional 
information associated with each page table entry. One 
important piece of information is the access permission for 
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each page. By manipulating the access permission for each 
MMIO page, we can allow or prohibit the processor’s access 
to specific MMIO pages. MMIO tracing initially disables 
access permission for MMIO pages using the page table. 
Whenever a processor attempts to access a protected MMIO 
page, a page fault exception occurs. A special page fault
handler then collects information about the I/O access, enables
the access permission for the MMIO page, re-executes the 
faulting memory access instruction, and re-disables the access 
permission.

Figure 1. Address space of a Processor using MMIO.

Figure 2. Paging and translation scheme.

2.2 MMIO Tracing in Linux 
The Linux MMIO tracing tool uses a validity attribute 
associated with each page table entry to force page fault to 
occur when a processor accesses a memory mapped I/O
region even if the region exists in a valid page [5]. The tool 

records the MMIO accesses in the following way: First, the 
MMIO pages are marked as invalid. When a fault occurs due 
to an access to these pages, the page fault handler emulates
the faulting instruction by changing the attribute of the page 
as valid and starts logging the events. After the emulation
and logging the page fault handler again marks the page as 
invalid. Finally, the interrupted kernel code takes control 
again and executes the next instruction to the faulting
instruction.

While the page fault handler is emulating the faulting
instruction, the other processors can freely access the page 
containing the data which the faulting instruction wanted to 
access because that page is marked valid during this interval. 
In such situation, other processor’s access does not create a 
page fault which leads to event missing without notice.

Figure 3. Tracing control flow.

3 MMIO Tracing with a Shadow Page 
Table 

As mentioned earlier, existing MMIO tracing techniques 
based on a memory protection mechanism may fail to capture 
some concurrent I/O events on multiprocessors. The problem
is that other processors can make references to the same 
MMIO address area during the interval the memory access is
allowed. Those accesses cannot be detected as they do not 
trigger page fault exceptions and may even lead to data race 
conditions.

A plausible solution is freezing other processors during the 
page fault handling. When a page fault happens, we may stop 
other processors’ execution by sending a special inter-
processor interrupt (IPI) to other processors. This would 
prevent other processors from accessing the MMIO address 
area. However, sending and receiving IPIs also requires 
access to the interrupt controller’s MMIO addresses, which 
would entail the same problem. 
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Figure 4. Shadow Page Table.

In order to address the above problem, we propose the use 
of a shadow page table (SPT). When a page fault occurs, a 
shadow page table replaces the kernel’s original page table 
used by the fault handling processor. The use of shadow page 
table allows us to enable the access permission of the fault 
handling processor while other processors’ memory access is 
prohibited by the original kernel’s page table. Therefore, this 
approach can overcome the problem of missing I/O events and 
race conditions.

The shadow page table can be efficiently implemented in 
many operating systems that support paging-based memory 
management. We replicate the original kernel’s page table and 
modify the access rights to the MMIO address areas in the 
replicated shadow page table to enable access permission. 
When a page fault occurs, we change the page table base 
register of the processor so that it can refer to the shadow page 
table during the page fault handling. Since other processors 
still refer to the original page table, they are not allowed to 
make access to the MMIO address areas. Once logging 
MMIO I/O access information is done, we change the page 
table base register to point to the original page table. 
Afterwards, all the processors use the original page table.
There is a possibility that two more processors try to write 
access on a same MMIO address almost at the same time. It 
also leads to data race condition as two processors re-execute
the faulting memory access instructions. To prevent this 
problem, we need to protect fault handling as a critical section 
with a synchronization method such as spin lock.

Figure 5. Tracing control flow with SPT.

4 Conclusion 
In this paper, we have presented a novel MMIO tracing 
method introducing the notion of shadow page table. Letting a 
processor refer to shadow page table while it conducts MMIO 
tracing, we can solve a problem of missing another MMIO 
event by other processors as well as data race condition under 
multiprocessor platform.
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Abstract— The algorithm proposed in this paper accepts as 
input an arbitrary bipartite G and responds with 
corresponding chain sub-graph covers, if G is recognized as 
coverable by two or less chain sub-graphs and responds “no” 
otherwise.  The component ideas of a solution to the 2-CSC 
problem by Tze-Heng Ma and Jeremy Spinrad in 1994 are 
compiled into applicable steps and assembled to construct the 
proposed algorithm.  The time complexity is , where  is 
the number of vertices of G.  Related problems that can find 
this research useful are discussed in the conclusion.  

Keywords—2-CSC; chain; sub-graph; bipartite; recognition 

 

1. Introduction 

In this paper, we design an effective algorithm, which has 
time complexity , for obtaining more informative 
outcome from a previous solution to 2-chain subgraph cover 
(2-CSC) problem [1].  The input to the 2-CSC problem is any 
bipartite graph G, and the expected output  is a “yes” or “no’’ 
answer that responds to the question if G can be covered by 
two or one chain sub-graph.    

In many occasions, a “yes” output generated from the 2-
CSC problem is not informative enough, and we usually want 
to know the corresponding chain sub-graph covers as well.  
While most of the supporting properties and theorems enabling 
the discovering of the desired chain sub-graph covers are 
implied in the solution to the 2-CSC problem, an applicable 
algorithm has yet been designed.   

Thus, we look into the solution to the 2-CSC problem in 
detail.  Inspect supporting theorems and properties to each step 
for useful information to develop the algorithm discovering 
chain sub-graph covers.  At the beginning of the solution to 2-
CSC problem, a partial order P is derived from the input 
bipartite graph G.  Then, the algorithm examining if the 
dimension of a partial order is two is applied to P.  Since, by 
theorem, the dimension of P derived from G is the same as the 
minimum number of chain sub-graph covering of G [1], we can 
get the “yes” or “no” answer to a 2-CSC problem from the 
outcome of previous algorithm.  This paper intends to go 
beyond a “yes” answer and substantializes the useful 
information implied in the above computing process for the 
algorithmic steps to discover the corresponding chain sub-
graph covers.  

2. Definitions 

1. Graph  
Graph  is composed of set of vertices  and set of 

edges , expressed in   Assume For 
directed graph, edge  represents the connection from 

 to , which is a directed edge.  For undirected graph, edge 
 or  represents the connection between  and , 

which is an undirected edge. 

2. Bipartite graph 
Let  represent a bipartite graph.  What’s 

different from general graph is that  can be partitioned to two 
sets  and , and edge only exists between  and .  To 
distinguish from general graph, we use  to 
represent a bipartite graph, and every edge  (for directed 
graph, ), either  and  or  and

. 

3. Chain graph  
Chain graph is an undirected bipartite graph that its edge set 

doesn’t contain , which is two undirected edges  and , 
that either  and , or  and . 

4. K-CSC and 2-CSC problem  
K-CSC is abbreviation of “K-Chain Sub-graph Cover”.  K-

CSC problem is a problem about the question if an input 
bipartite graph can be covered by K chain sub-graphs.  It has 
been proved that when , K-CSC problem is NP-
complete.  When , K-CSC problem is a 2-CSC problem. 

5. ch(G)  
ch(G) is the smallest number K such that bipartite graph G 

is K-chain sub-graph coverable. 

6. Partial order [2]  
Partial order P defines the dominant relationship R between 

some pairs of elements in a group of elements X, expressed by 
  R is transitive and non-reflexive binary 

relationship on X.  For ,  indicates   
dominates , expressed by .  If either  or ,   
and  are comparable.  If neither   nor ,  and  
are non-comparable.  For , if  and

, it can be concluded, through the fact that R is transitive, 
that , but  may not be true. 
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7. Extension of a partial order  
For a partial order , its extension is another 

partial order , such that .   If every pair of 
elements of  is comparable in ,  is a linear extension of . 

8. Linear order(total order)  
If a partial order has no incomparable pair, it is called a 

linear order. 

9. Dimension of Partial Order 
Dushnik and Miller defined the dimension of a partial order 

P [2], dim(P), as “the minimum number of total orders whose 
intersection defines the partial order”.     

10. 2-Dimensional partial order problem 
This is a problem to determine if a given partial order 

whose dimension is two or less than two. 

11. Modular Decomposition of a DAG (Directed 
Acyclic Graph)  

DAG G = (V, E) is used to represent a partial order P = (V, 
R), such that for :  if and only if .    

 are related in DAG G, if  or .  
Otherwise,  are not related in DAG G.  Since R is 
transitive, DAG G is a transitive graph. 

1) Representation of a DAG:  The linear orders on V 
whose intersection is P construct the representation of the DAG 
G.    

2) Listing and Non-separating listing: Each linear order 
of the representation for a DAG G is called a listing.  Between 
two comparable elements   of P in a listing, if there is no 
element that is not comparable to both   and , the listing is a 
non-separating listing. 

3) Two dimensional partial order of a DAG G = (V, E): 
Each linear order of the representation for a DAG G is called a 
listing.  Between two comparable elements   of P in a 
listing, if there is no element that is not comparable to both   
and , the listing is a non-separating listing. 

4) Module M: Module M is a subset of V with the 
property that for , either  is related to every vertex 
in V or not at all. 

5) :  is the undirected graph that has M as vertex 
set, and for ,  is an edge in , if  are related in 
DAG G. 

6) :  , of  is the undirected graph that has M as 
vertex set, and for ,  is an edge in , if  are 
not related in DAG G.  and  are complementary to each 
other. 

7) Maximal submodule: A module M is said to be a 
maximal submodule of another module N, if  and no 
proper submodule of N contains M. 

8) Parallel module: If  is not connected, M is a 
parallel module.  The vertices of a parallel module can be 
partitioned into two subsets, so that none of the vertex in one 
subset is related to any vertex of the other.  

9) Series module: If  is not connected, M is a series 
module.  The vertices of a series module can be partitioned into 
two subsets, so that any of the vertexes in one subset is related 
to any vertex of the other. 

10) Neighborhood module: If both  and  are 
connected, M is a neighborhood module. 

 

3. Properties, algorithms and theorems 

Given a bipartite graph , 
}, a partial order  can be 

generated from  through the following steps [1] in sequence: 

Algorithm 1 Convert Bipartite Graph to Partial Order 
INPUT: 
        , } 
OUTPUT:  
        A partial order  
BEGIN 
1. Compute neighborhood of , , where . 
2. For those vertices having the same neighborhood, keep 

only one for the rest of steps. 
3. If , add . 
4. If , add . 
5. If , add  to . 
6. For let  and .  If  

, add . 
END 
 
And, an undirected bipartite graph

, where  and  can 
be generated from   above through the 
following steps [1]: 

Algorithm 2 Generate B(P) from P 
INPUT:  
OUTPUT:   
BEGIN 
1. For  and , if  in P, let . 
2. For  and , if  in P, let . 
END 
 
Lemma 1 [1] 

 
 
Lemma 2 [1] 
There is one-to-one mapping between the linear order of P and 
maximal chain sub-graph of . 
 

By lemma 1, if ,   By lemma 2, a 
maximal chain sub-graph of  
can be obtained from a linear order of .   We realize this fact 
by looking into the supporting logic to lemma 2 and design the 
following steps to compute the desired maximal chain sub-
graph. 
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Algorithm 3 Map Linear Order to Maximal Bipartite Graph 
BEGIN 
1. Given a linear order L on of  
2. Define the corresponding maximal bipartite graph

, where , if  in L. 
END 
 
Lemma 3 [1] 

 is a sub-graph of  
 induced by  and . 

 
Lemma 4  
There is one-to-one mapping between the maximal chain sub-
graph of G and the maximal chain sub-graph of . 

Proof: 
Assume There are k distinct maximal chain 
sub-graphs, , that can cover the 
edges and vertices of B(P).  By lemma 3, G is a sub-graph of 
B(P) induced by  and , so G can be covered by the sub-
graphs of  , induced by   and , 
too. And, all of the induced maximal chain sub-graphs are 
different, otherwise, , which is a contradiction to 
lemma 1. Q.E.D.   
 

By lemma 4, the maximal chain sub-graphs of G can be 
obtained from the maximal chain sub-graphs of B(P).  We 
realize this fact by looking into the supporting logic to lemma 4 
and design the following steps to compute the desired maximal 
chain sub-graphs for G. 

Algorithm 4 Compute Maximal Chain Sub-graph  
BEGIN 
1. Given B(P) with ch(B(P)) = k, assume the maximal chain 

sub-graphs that cover B(P) are 
. 

2. The maximal chain sub-graphs 
, that cover G can be obtained by generating sub-

graph induced by  and  on each of 
   

END 

Lemma 5 [3] 
 algorithm exists for checking if  is true, 

and when  producing two linear orders whose 
intersection is P. 
 
        The contribution in [3] is an algorithm for recognizing 
two dimensional partial orders.  The input is a partial order P.   
The output is “yes” and two linear orders with intersection as 
P, if P is two dimensional partial order, or “no”, if P is not a 
two dimensional partial order.   The steps of the recognition 
algorithm are listed in the appendix. 
 
Theorem 

Proof: 
The solution to 2-CSC [1] uses  time and two linear 
orders are generated, if P is two dimensional partial order.  
Let ,  be the two linear orders generated.  From lemma 1, 

.  From lemma 2, there is 
one-to-one mapping between the linear order of P and 
maximal chain sub-graph of , which is generated by 
Algorithm 2.  Thus, two maximal chain sub-graph covers of 
B(P) can be obtained by Algorithm 3. By lemma 4, there is 
one-to-one mapping between the maximal chain sub-graph of 
G and the maximal chain sub-graph of .  Thus, by 
Algorithm 4, two maximal chain sub-graphs of G can be 
discovered.   The complexity of Algorithms 2 – 4 are  .  
As a result, the assertion of the theorem,  algorithm 
exists for discovering two maximal chain sub-graphs of G 
corresponding to the 2-CSC problem, is proved. Q.E.D.
 
        Based on the above algorithms and theorem, we can 
design the algorithm listed in the following to compute the 
chain sub-graph covers for 2-CSC problem.  The major steps 
in the algorithm are: First, the bipartite graph, G, as input to 2-
CSC is converted to a partial order set, P; Second, P is used as 
input to a two dimensional POSET problem.  If P is two 
dimensional partial order set, two total orders are generated; 
Third, two maximal chain sub-graphs are derived from those 
two total orders.  
 
Algorithm 5 2-CSC and Chain Sub-graph Covers 
INPUT: Bipartite Graph , 

} 
OUTPUT: Yes, ch(G) = 2 and corresponding chain sub-graph 
covering, or No, ch(G) is not 2.  
BEGIN 
1. G is converted to a partial order set, P by applying 

Algorithm 1. 
2. B(P) is generated from P by applying Algorithm 2. 
3. P is used as input to a two dimensional POSET problem by 

applying Algorithm 6, which is listed in the appendix. 
4. IF P is two dimensional partial order set.  THEN Two total 

orders are generated. ELSE Output “ch(G) is not 2.” and 
Exit. 

5. Two maximal chain sub-graphs of B(P) are derived from 
those two total orders obtained in step 4 by applying 
Algorithm 3. 

6. Compute the maximal chain sub-graphs of G from the 
maximal chain sub-graphs of B(P) obtained in Step 5 by 
applying Algorithm 4.  Output “Yes, ch(G) is 2,” and 
corresponding chain sub-graph coverings. 

END 
 
        Steps 1-4 use Algorithms 1, 2 and 6, which depict the 
component activities in the  process to resolve 2-CSC 
problem [1].  So, the complexity of steps 1-4 is .  Step 5 
uses Algorithm 3, which takes  steps to identify E of the 
maximal bipartite graph according to linear order L on 

of .  Step 6 uses Algorithm 4 to compute each 
maximal chain sub-graph of G as a subset of a corresponding 
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maximal chain sub-graph of B(P), which takes   steps.  
As a result, the complexity of this algorithm (Algorithm 5) 
is .     

 

4. Example of Algorithm 5 

Step 1: 

 
Fig. 1. Bipartite graph G 

 
P=(X, R) 
X = {a, b, c, d, e, f}, R = { (b,f), (f,d), (d,c), (f,c), (c,a)} 

 
 
Step 2: 
 

 
                  Fig. 2. B(P) 

Step 3-4: 
 

 
                       Fig. 3. DAG of P 

 
    Fig. 4. Modular representation of the DAG of P 
 
Two total order L1, L2 

 
L1          b, f, d, c, e, a 
L2          b, f, e, a, d, c 

 
Step 5: 
 
Maximal Chain Sub-graphs for B(P):  ,  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
Step 6: 
 
Maximal chain sub-graphs for G 
 
 
 
 
 

 

 
  

             Fig. 5  mapped from L1 

 
              Fig. 6.  

 
Fig. 7. Extracted from  
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5. Conclusion and comparison with 

related work 

CONCLUSION AND COMPARISON WITH RELATED WORK 
        This paper relates the component ideas in the solution to 
2-CSC problem and shows the understanding that a more 
useful solution can be obtained.  After compiling the ideas into 
interrelated knowledge, we find the evidence to support a 
more exact solution beyond a “yes” answer to 2-CSC problem.  
The identified evidence is examined and utilized to design 
executable steps formulating the algorithm proposed in this 
paper.        
 
        The major steps in the algorithm are: First, the bipartite 
graph, G, as input to 2-CSC is converted to a partial order set, 

P; Second, P is used as input to a two dimensional POSET 
problem.  If P is two dimensional partial order set, two total 
orders are generated and ; Otherwise, the algorithm 
outputs “No” and stop. Third, two maximal chain sub-graphs 
for a bipartite graph  are derived from those two total 
orders.   Fourth, maximal chain sub-graphs of G, are derived 
from those of .  The proposed algorithm runs  in 
time, where  is the number of vertices of . 
        Once the chain sub-graphs can be identified, some 
problems reducible to 2-CSC can produce more exact answer 
from identified chain sub-graphs as a result in the same time 
complexity, too.  Those problems include: threshold number 2 
on split graphs, Ferrers dimension 2, biorder dimension 2 and 
interval dimension 2.  We can acquire, respectively, two 
threshold graphs covering the split graph, two Ferrer graphs 
covering the directed graph, two biorders with intersection 
being  the given biorder, two interval orders with intersection 
being the given interval order.    
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Appendix 

List of Algorithm for the Recognition of Two Dimensional Partial Order [3] 
Algorithm 6  Recognition of Two Dimensional Partial Order   
Step 0.  Given a partial order , represent it using a DAG, G, with vertex set , and an edge between two 
vertices  if . 
Step 1. Construct a modular representation for G. 

a. Consider the whole graph G as a module, M. 
Recursive(M) 

b. Choose any vertex u of M 
If u is related to every other vertex (no edge between u and  in ), 
 M is a series module, S, and partition M into three components: 

1. vertices dominate u, m0.  Call Recursive(m0). 
2. vertices dominated by u,m1.  Call Recursive(m1). 
3. u itself, m3.   An end node in the tree. 

        else//Some v exists which is unrelated to u. 
             Select a vertex  that is not related to u. 
             Find , the smallest module that contains u and v. 
                  Find , the set of vertices which are related to u and unrelated to v. 
                  Grow  by repeating the following process. 
                       Repeat until no more addition to  is possible 
                          Select a vertex  and add to  the vertices that are  

1. related to v and unrelated to w 
2. unrelated to v and related to w 

                       End 
                  If , grow  the same way as we do for . 
                      Find , the set of vertices which are related to v and unrelated to u. 
                      Grow  by repeating the following process. 

 
Fig. 8. Extracted from  
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                       Repeat until no more addition to  is possible 
                          Select a vertex  and add to  the vertices that are  

1. related to u and unrelated to w 
2. unrelated to u and related to w 

                       End 
                       If  and , 

1.   and modular representation of : 
 Root labeled P with  and  as children 

2.  Recursive( ), Recursive ( ) 
Decompose  
    Consider vertices of  only 
a. Let x be a vertex brought to  during the last stage of its growth. 
b. Find  like we did for , but considering vertices of  only.   Refine  and 

.  Consider vertices of  only. 
c. Let y be a vertex brought to  during the last stage of its growth. 
d.  Find  like we did for , but considering vertices of  only.   Refine  and 

. 
e.  … until  is a single vertex 
Decompose  
… (similar) 

3. Recursive( - )//u represents  in term of adjacency 
        If  and , exchange the role of u and v. Continue with the else. 
        else//  

1.  and the modular representation of :   
2. (neighborhood module)    
3. Decompose  

a. Partition  into two sets 
: containing all vertices that were added to  at the same time as . 

 
b. Refine  : so any two vertices in a partition relates in the same manner to all vertices of all other 

partitions. Every partition generated in this manner will be a submodule in the final 
decomposition (under current N) 
       Recursive(submodule) 

c. Recursive( ) 
4. Recursive( - )                  

Step 2. From the modular representation, we compute a non-separating list, , for G. 
Begin from leaf to construct the non-separating list.  Assume in obtaining the non-separating list for a module, the list of its 
submodule has been obtained. 

If M is a parallel module, its listing is computed by concatenating the listings for all of its children in any order. 
If M is a series module, the listing is obtained by concatenating the listings of its children, so that the listing for  
precedes the listing for  if and only if every vertex of  dominates every vertex of . 
If M is a neighborhood module, the children of M are maximal submodules of M. 
    Let these submodules . 
    Create set  
    (  is called the representative descendant of ) 
    Arrange the elements of D in a non-separating list called target listing. 
    Replace each v in the target listing by the non-separating listing for corresponding submodule. 
    The result is a non-separating list for M. 

Step 3. From , we compute a pair of listings, . 
 is used as .   is constructed in the following steps: 

        1. For each , find the value n that is the total number of vertices x in G, such that either v  
            dominates x, or x precedes v in  L and x, v are not related. 
        2.  is constructed by sorting the vertices in G according to the value n obtained in previous step.  
Step 4. Verify if  represent G as a two dimensional partial order DAG.  If yes, P is a two dimensional partial order, and 

 are two total orders on  with intersection being P.  If no, P is not a two dimensional partial order. 
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An Algorithm for Counting the Number of Edge Covers on Acyclic
Graphs

J. Raymundo Marcial-Romero1, Guillermo De Ita2, J. A. Hernández1 and R. M. Valdovinos1
1Facultad de Ingenierı́a, UAEM, Toluca, México

2Facultad de Ciencias de la Computación, BUAP, Puebla, México

Abstract— Counting the number of edge covers on graphs,
denoted as the #Edge Covers problem, is well known to be #P-
complete. In this paper, we present an algorithm that compute
the number of edge covers in polynomial time if and only if
the graph is acyclic. Our algorithm is based on a post-order
traversal of the spanning tree of the original graph.
Keywords: Counting the number of edge covers, efficient
counting algorithms.

1. Introduction
Counting problems besides of being theoretically interest-

ing, they also have a wide range of applicability on different

areas. As a matter of example, it can be mentioned that if

a propositional formula needs to be probabilistically tested

to be true or given a graph, estimates the probability that

it remains connected, in the case of a probability of failure

of an edge, the estimation of such probabilities becomes a

counting problem. Counting problems also arise naturally in

Artificial Intelligence Research, when some methods are used

in reasoning areas, such as computing the ‘degree of belief’

and ‘Bayesian belief networks’, which are computationally

equivalent to counting the number of models to a propositional

formula [4], [5], [11], [13].

Counting has become an important area in theoretical

computer science, although it has received less attention than

decision problems. There are few counting problems in graph

theory that can be solved exactly in polynomial time, indeed

an important line of research is to determine low-exponential

upper bounds for the time complexity of hard counting prob-

lems.

An edge cover set of a graph G is a subset of edges covering

all nodes of G. The problem of counting the number of edge

cover sets of a graph, denoted as #Edge Covers, is a #P

complete problem which has been proved via the reduction

from #Twice-SAT to #Edge Covers [1].

Although the time complexity to compute exactly the edge

cover sets on a graph is a hard problem, it is relevant to

cathegorize the class of instances where counting the number

of edge covers can be done in polynomial time. There is a

scarce literature about the design of procedures for computing

edge covers, and as far as the authors are aware, it is not

known which is the largest polynomial class of graphs for the

#Edge Covers problem.

In this work, the computation of #Edge Covers based on the

topological structure of the graph will be addressed. A method

for counting edge covers for acyclic graphs is presented via a

post-order traversal strategy.

In Section 2, it is briefly discussed the preliminaries of

the paper. In Section 3, the basic topologies of a graph

are presented, for which efficient procedures for solving the

#Edge Covers problem have been designed. In this direction,

it is shown that the #Edge Covers problem is solved in linear

time over the size of a graph when the graph does not have

cycles or it is acyclic. Those are topological cases for which a

bound can be estimated from the branch and bound algorithm.

In Section 4, an algorithm to compute edge covers for

acyclic graphs is described. A spanning tree of the original

algorithm is built followed by a post-order traversal. Finally,

in Section 5 the conclusions of the paper are presented.

2. Preliminaries
Let G = (V,E) be a simple graph (i.e. finite, undirected,

loop-less and without multiple edges). V (G) and E(G) are

also used to denote the set of vertices and edges, respectively,

of graph G. A vertex and an incident edge are said to cover
each other. The cardinality of a set A will be as usual denoted

by |A|.
The neighbourhood of a vertex v ∈ V is the set N(v) =

{w ∈ V : {v, w} ∈ E(G)}, and the closure neighbourhood of

v is N [v] = N(v)∪ {v}. The degree of a node v, denoted by

δ(v), is the number of neighbours it contains, that is δ(v) =
|N(v)|. A vertex v is said to be pendant if its neighbourhood

consists of exactly one vertex; analogously an edge e is said

to be pendant if one of its endpoints is a pendant vertex [10].

The degree of a graph G is Δ(G) = maxx∈V (G){δ(x)}.

Let G = (V,E) be a graph then S = (V ′, E′) is a subgraph

of G if V ′ ⊆ V and E′ contain edges {v, w} ∈ E such

that v, w ∈ V ′. If E′ contains every edge {v, w} ∈ E where

v, w ∈ V ′, then S is called the subgraph of G induced by S
and is denoted by G‖S. Let S be any subgraph, G − S will

denote the induced graph G‖(V −V ′). In the same way, G−v
for v ∈ V (G) denotes the induced subgraph G‖(V −{v}), and

G − e for e ∈ E(G) will denote the subgraph of G formed

by V (G) and E(G)− {e}.

Definition 1: Let G be a graph then G is said to be

connected if for each pair v, w ∈ V (G) there exists a path

from u to v. The path may consist of more than one edge

e ∈ E(G). A connected component of G is a maximal induced

subgraph of G, that is, a connected component is not a proper

subgraph of any other connected subgraph of G.
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For example, a tree graph is an acyclic connected graph. Let us

denote a complete graph, a simple path and a simple cycle by

Kn, Pn and Cn respectively, where n represents the number

of nodes in the graph.

Definition 2: A vertex cover for a graph G = (V,E) is a

subset of nodes U ⊆ V (G) that covers every edge of G; that

is, every edge has at least one endpoint in U . An edge cover

for a graph G = (V,E) is a subset of edges E ⊆ E(G) that

cover all node of G, that is, for each u ∈ V (G) there is a

v ∈ V (G) such that e = {u, v} ∈ E .

2.1 Statement of the problem
The statement of the problem that this paper is concerned

about can be established as follows: Let us consider a graph

G = (V,E) and let CE(G) = {E ⊆ E(G) : E is an edge cover

of G} be the set of edge covers for G. Let us also consider

NE(G) = |CE(G)| to be the number of edge covers of G, in

different words NE(G) is the cardinality of the set CE(G).
The problem of computing the number NE(G) for any graph

will be called the #Edge Covers problem.

3. Linear time Procedures for Counting
Edge Covers

NE(G) for any graph G, including the case when

G is a disconnected graph, is computed as: NE(G) =∏k
i=1 NE(Gi), where k is the cardinality of the set of

connected components of G and each Gi represents an element

of this set. The set of connected components of G can be

computed in linear time [1].

The edges of G appearing in all edge cover sets are called

fixed edges. When an edge cover E of G is being built, we

distinguish between two different states of a node u; we say

that u is free when it has not still been covered by any edge

of E , otherwise the node is covered. We begin designing

procedures for counting edge covers, considering the most

common topologies of a network.

Case A: The Bus Topology
Let Pn = G = (V,E) be a linear bus (a path graph). We

assume an order between vertices and edges in Pn, i.e. let

V = {v0, v1, . . . , vn} be the set of n + 1 vertices and let

ei = {vi−1, vi}, 1 ≤ i ≤ n be the n edges of Pn.

Let Gi = (Vi, Ei), i = 0, . . . , n be the subgraphs induced

by the first i nodes of V , i.e. G0 = ({v0}, ∅), G1 =
({v0, v1}, {e1}), . . . , Gn = Pn. Gi, i = 0, . . . , n is the family

of induced subgraphs of G formed by the first i nodes of V .

Let CE(Gi) be the set of edge covers of each subgraph Gi,

i = 0, . . . , n.

Each edge ei, i = 1, . . . , n in the bus has associated an

ordered pair (αi, βi) of integer numbers where αi carries

the number of edge cover sets of CE(Gi) where the edge ei
appears in order to cover the node vi−1, while βi conveys the

number of edge cover sets in CE(Gi) where the edge ei does

not appear.

By traversing Pn in depth-first search, each pair (αi, βi), i =
1, . . . , n is computed in accordance with the type of edge that

ei is. Pn has two fixed edges: e1 and en. The pair (1,0) is

assigned to (α1, β1) because e1 has to appear in all edge cover

of Pn.

If we know the values (αi−1, βi−1) for any 0 < i < n, then

we know the number of times where the edge ei−1 appears

or does not appear into the set of edge covers of Gi. When

the edge ei is being visited, the vertex vi−1 has to be covered

considering its two incident edges: ei−1 and ei. Any edge

cover of CE(Gi) containing the edge ei−1 (αi−1 cases) has

already covered vi−1 then the ocurrence of ei is optional. But

for the edge covers where ei−1 does not appear (βi−1 cases)

ei must appear in order to cover vi−1. This simple analysis

shows that the number of edge covers where ei appears is

αi−1 + βi−1 and that just in αi−1 edge covers the edge ei
does not appear. Thus, we compute (αi, βi) associated with

the edge ei, applying the Fibonacci recurrence relation.

αi = αi−1 + βi−1; βi = αi−1 (1)

When the search arrives to the last edge en of the linear

bus, we have already computed the pair (αn−1, βn−1); since

en is a fixed edge, it has to appear in all edge covers of Pn.

We call αn = αn−1 + βn−1 and βn = 0 the recurrence for
processing fixed edges (RPFE).

The pair associated with en is (αn, βn) = (αn−1+βn−1, 0).
The sum of the elements of this pair (αn, βn) yields the

number of edge covers: NE(Pn) = αn + βn. Notice that

NE(Pn) is computed in linear time over the number of edges

in Pn. In figure 1 we present an example where → denotes the

application of recurrence (1), and �→ denotes the application

of RPFE.

Edges : e1 e2 e3 e4 e5
(αi, βi) : (1, 0) → (1, 1) → (2, 1) → (3, 2) �→ (5, 0)

Fig. 1

COUNTING EDGE COVERS ON A LINEAR BUS

Recall that each Fibonacci number Fi can be bounded from

above and from below by φi−2 ≥ Fi ≥ φi−1, i ≥ 1, where

φ = 1
2 · (1 +√

(5)).
Theorem 3: The number of edge cover sets of a path of n

edges, is:

Fn = ClosestInteger

[
1√
5

(
1 +

√
5

2

)n]
.

Proof: The series (αi, βi), i = 1, . . . , n used for

computing NE(Pn), coincides with the Fibonacci numbers:

(F1, F0) → (F2, F1) → (F3, F2) → . . . → (Fn−1, Fn−2) �→
(Fn, 0). Then, we infer that (αi, βi) = (Fi, Fi−1) for i =
1, . . . , n − 1 and αn = Fn, βn = 0. Thus, NE(Pn) =
αn + βn = Fn.
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Case B: The Tree Topology
Let T = (V,E) be a rooted tree. Root-edges in T are the

edges with one endpoint in the root node; leaf-edges in T
are the edges with one endpoint in a leaf node of T . Given

any intermediate node v ∈ V , we call a child-edge of v
to the edge connecting v with any of its children nodes,

and the edge connecting v with its father node is called the

father-edge of v. NE(T ) is computed by traversing T in

post-oder and associating (αe, βe) with each edge e ∈ E,

except for the leaf edges.

Algorithm #Edge Covers for Trees(T )
1) Reduce the input tree T to another tree T ′ by prunning

all leaf nodes and leaf-edges from T , and by labeling as

covered all father nodes of the original leaf nodes of T
(see figure 3).

2) Traverse T ′ in post-order and associate a pair (αe, βe)
with each edge e in T ′. Such pairs are computed in the

following way:

a) (αe, βe) = (1, 1) if e is a leaf-edge of T ′, since its

children nodes have been covered.

b) if an internal node v is being visited and it has

a set of child-edges u1, u2, ..., uk, then each pair

(αuj
, βuj

), j = 1, . . . , k has already been com-

puted. Assume αu carries the number of different

combinations of the child-edges of v for covering

v, while βu gives the number of combinations

among the child-edges of v which do not cover

v. The pair (αu, βu), which we assume represents

an imaginary child-edge eu of v, is computed as:

αu =

k∏
j=1

(αuj + βuj )−
k∏

j=1

βuj ; βu =

k∏
j=1

βuj

(2)

The pair associated to the father-edge

ev of v is computed as:

(αv, βv) =

{
(αu + βu, αu) if v is free,

(αu + βu, αu + βu) otw

This step is iterated until it computes the pairs (αe, βe)
for all edge e ∈ T ′. If there are more than one root-

edges then one extra iteration of this step is applied in

order to obtain a final pair (αer , βer ) associated with

just one root-edge er.

3) NE(T ) is computed in accordance with the status of

the root node vr of T ; NE(T ) = αer + βer if vr is a

covered node, otherwise NE(T ) = αer .

The above procedure returns NE(T ) in time O(n + m)
which is the necessary time for traversing T in post-order.

Notice that this case includes the star topology network.

Example 4: Let T be the tree of figure 3a. T ′ is the reduced

tree from T where its covered nodes are marked by a black

point inside of the nodes (figure 3b). When T ′ is traversed

in post-order a pair (αe, βe) is associated with each edge.

The pairs for the child-edges of vr, are: (1,1), (4,3) and (6,3).

Those three edges are combined in only one edge er applying

recurrence ( 2): αer = (1+1)∗(4+3)∗(6+3)−1∗3∗3 = 117
and βer = 1 ∗ 3 ∗ 3 = 9. Since vr is the root node and it is

free, then NE(T ) = αer = 117.

Vr Vr
(1,1)

(1,1) (1,1)

(1,1)

(2,1)

(3,3)

(6,3)
(4,3)

a) Original input tree T b) An equivalent tree T’, NE(T)=NE(T’)

Fig. 2

COMPUTING THE NUMBER OF EDGE COVERS FOR A TREE

Case C: The Ring Topology
Let Cn = (V,E) be a simple ring with n edges. We assume

an order over the nodes and edges of Cn given by V =
{v1, . . . , vn} and E = {e1, . . . , en}, ei = {vi, vi+1}, i =
1, . . . , n−1, en = {vn, v1}. We call a computing thread or just

a thread to the series (α1, β1) → (α2, β2) → · · · → (αk, βk)
obtained by counting in an incremental way, applying the

recurrence ( 1), the number of edge covers of a path with

k edges.
Let Lp be the thread used for computing the series of pairs

associated to the n edges of Cn. The pair (α1, β1) = (1, 1) is

associated with e1 since Cn has not fixed edges. Traversing in

depth first search, the new pairs in Lp are computed applying

the Fibonacci recurrence ( 1) since all nodes in Cn have degree

two and they are free. After n applications of recurrence ( 1),

the pair (αn, βn) = (Fn+1, Fn) is obtained, Fi being the i-th
Fibonacci number.

Let NCn be the number of edge sets counted by Lp, i.e.

NCn = αn + βn = Fn+2. Lp counted the edge sets where

neither e1 nor en appear, since β1 = 1 and βn > 0. Due to

e1 or en or both have to be included in the edge cover sets of

Cn, in order to cover v1, we have to substract from NCn the

number of sets which does not cover v1.
Let Y be the number of edge sets which cover all nodes

of Cn except v1, then NE(Cn) = NCn − Y . In order to

compute Y a new thread L′
p = (α′

1, β
′
1) → · · · → (α′

n, β
′
n)

is computed. L′
p begins with the pair (α′

1, β
′
1) = (0, 1), i.e. it

begins counting the edge sets where e1 does not appear. After

n applications of recurrence ( 1) the last pair (α′
n, β

′
n) of L′

p

obtains (Fn−1, Fn−2).
The number of edge sets where neither e1 nor en appear is

β′
n = Fn−2, hence Y = Fn−2. Finally, NE(Cn) = NCn −

Y = Fn+2 − Fn−2. Then, we deduce the following theorem.
Theorem 5: The number of edge cover sets of a simple

cycle Cn with n edges, expressed in terms of Fibonacci

numbers, is: NE(Cn) = Fn+2 − Fn−2.
With � we denote the binary operation (αn, βn − β′

n)
between two pairs, and the result is assocciated with the last

edge en of the ring Cn (fig. 4). Notice that the computation of
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NE(Cn) is the order O(n) since we compute the two threads:

Lp and L′
p in parallel while the depth-first search is applied.

(α1, β1) → (α2, β2) → (α3, β3) → (α4, β4) →
(α5, β5) → (α6, β6)

Lp : (1, 1) → (2, 1) → (3, 2) → (5, 3) →
(8, 5) → (13, 8)

C ′
6 : (0, 1) → (1, 0) → (1, 1) → (2, 1) →

(3, 2) → (5, 3)
⇒ (13, 8) � (5, 3) = (13, 5)

Fig. 3

COUNTING THE NUMBER OF EDGES COVERS FOR A RING

Example 6: Let C6 be the ring illustrated in figure 4.

Applying theorem (4.3), we have that NE(C6) = F6+2 −
F6−2 = F8 − F4 = 21− 3 = 18.

The graphs which hold the topologies of the above cases (A)

to (C) englobe the most common topologies of a communica-

tion network. The linear time procedures designed here can be

included into a branch and bound algorithm which processes

any kind of topology of a network.

4. Counting edge covers for acyclic graphs
In [6] methods to compute the number of edge covers for

acyclic graphs and simple cycle graphs were presented. In

this section we present an algorithm which combine those

methods to compute the number of edge covers for graph

without intersecting cycles, e.g. acyclic or with independent

cycles graphs. The complexity of the method is polynomial

with respect to the number of vertices of the graph.

Let G be a graph a directed depth first search graph TG of

G is built as follows:

1) Built a depth first search graph G′ of G (it is well known

that the edges of TG are tree edges or back edges).

2) For each tree edge e = (u, v) ∈ G′, add the directed

edge e = u → v to TG if u is a child of v in G′.
3) For each back edge e = (u, v) ∈ G′ add the directed

edge e = u → v to TG if u is a descendant of v in G′.
Example 7: Consider the graph of figure 4. It can be notice

that it does not have intersecting cycles, just two independent

cycles. A depth first search of G is shown at the left of figure 6.

The dotted edges denote back edges and the solid edges denote

tree edges. At the right hand side of figure 6 the directed depth

first search graph of G is shown.

Definition 8: Let TG be a directed depth first search graph

and v ∈ V (TG) we define:

input(u) = |{v | v → u ∈ E(TG)}|
output(u) = |{v | u → v ∈ E(TG)}|

Definition 9: Let G be a directed depth first search graph,

and e = u → v ∈ E(G). A tuple (αe, βe) is associated to e

6 2 7 8

4 3 9 11

1 12

105

Fig. 4

A GRAPH WHICH DOES NOT HAVE INTERSECTING CYCLES

6

2

7

84

3

9

11

1

12
10

5

Fig. 5

A DEEP FIRST SEARCH OF THE GRAPH OF FIGURE 4. DOTTED EDGES

REPRESENT BACK EDGES AND SOLID EDGES REPRESENT TREE EDGES.

such that αe represents the number of edge covers of G where

e is considered to cover u. The number βe represents the edge

covers of G where e is not considered to cover u.

Algorithm 1 computes the number of edge covers of a

directed depth first search graph TG which does not have

intersecting cycles. Lines 1 and 2 states the required inputs

and output respectively. Line 3 states that a postorder traversal

of the tree nodes of TG is required. Line 4 states that a

computation of a pair (αe, β4) for each edge e during the

traversal is required (see Definition 9). From line 6 to 24

the different types of edges in non-intersecting graphs are

6

2

7

84

3

9

11

1

12
10

5

Fig. 6

A DIRECTED DEEP FIRST SEARCH OF THE GRAPH OF FIGURE 4
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(1,1)

(2,1) (1,0)

(3,3) → (6,4) 

(1,0) (1,0)

(1,1)

(1,1)

(2,1)

(6,5) → (11,7)

(180,152)

NE(G)=180

Fig. 7

COUNTING THE NUMBER OF EDGE COVERS ON THE DIRECTED DEPTH

FIRST SEARCH OF THE GRAPH OF FIGURE 4.

considered. Line 6 represents the case where the edge e =
u → v must be present in each edge cover of TG due to u is a

leaf and there is not another edge to cover u, so a pair (1,0) is

associated to these kind of edges. Line 9 represents the case

where there are two output edges from u, let say e = u → v
and e1 = u → w. It can be notice that in a non-intersecting-

cycle graph G, output(v) is either 0, 1 or 2 for each node

v ∈ G. That output(v) = 2 means that one is a tree edge and

the other a back edge (there are not two fathers for a child in

a tree). In this case a pair (1,1) can be associated to e since

removing e from an edge cover is valid iff e1 is contained.

From line 12 to 15, it is said how to compute (αe, βe) when

besides that e = u → v there is a back edge e1 = x → v (in

other words a symple cycle is reached). A detail explanation

is shown in [6]. From line 16 to 19 the formula to compute

the pair (αe, βe) for e = u → v taking into account the pairs

(αei , βei) where ei = xi → u is described. Finally, lines 20 to

22 it is said how to compute edge covers when the root node

is reached. Figure 7 shows the application of algorithm 1 to

the directed depth first search graph of figure 6.

5. Conclusions
Sound and correct algorithms have been presented to com-

pute the number of edge covers for graphs. It has been shown

that if a graph G has simple topologies: paths, trees and simple

cycles; then the number of edge covers can be computed in

linear time over the graph size.

With respect to cyclic graphs that have intersecting cycles, a

branch and bound procedure has been presented, it reduces the

number of intersecting cycles until basic graphs are produced.

It has been determined a pair of recurrence relations

that establish a bound on the time to compute the

number of edge covers on intersecting cycle graphs. It was

also designed the first ”low-exponential” algorithm for the

#Edge Covers problem whose upper bound in the worst case

is O(1.465571(m−n) ∗(m+n)),m and n being the number of

Algorithm 1 Procedure edge cover for G without intersecting

cycles

1: Input: TG: a directed depth-first search graph of G which

do not contain intersecting cycles.

2: Output: NE(G): the number of edge covers of G.

3: Traverse the nodes of G from the leaves to the root.

4: for each tree edge ei = u → v compute a pair (αei , βei)
{back edges do not have a pair}

5: switch (ei = u → v)

6: case u is a leaf node and output(v) == 1:
7: (αei , βei) = (1, 0); {there is no back edge from r}
8: break;

9: case u is a leaf node and output(v) == 2:
10: (αei , βei) = (1, 1); {there is a back edge from r}
11: break;

12: default:
13: if ej = x → v is a back edge and path(ei, ej) is a

cycle then
14: (αj , βj) = (αj + βj , αj + 1)
15: end if
16: let A = {e1, e2 . . . ej} be the set of edges such that

ek = x → u for any x,

17: if output(v) > 0 and each par (αej , βej ) for each edge

of A has been computed then
18: (αei , βei) =

(∏j
r=1(αer + βer ), T

)
; where T =∏j

r=1(αer +βer )−
∏j

r=1 βer{s is not the root node}
19: end if
20: if output(v) == 0 and and each par (αej , βej ) for each

edge of A has been computed then
21: (αi, βi) =

(∏j
r=1(αr + βr)−

∏j
r=1 βr,

∏j
r=1 βr

)
;

{s is the root node}
22: return αi;

23: end if
24: end switch

edges and nodes of the input graph respectively. In terms only

of the number of edges, our algorithm has an upper bound of

O((1.324718)m ∗ (m+ n)).
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Abstract - Lossless pixel value encrypted images still 
maintains the some properties of their respective original 
plain images. Ciphered Images that maintain the properties of 
their plain images of a given domain are very useful in certain 
applications where the conservation of pixel values but visual 
concealment is of a paramount concern. Medical images that 
have a fully reversible and recoverable process are of key 
importance in Medicine. Hence visually ciphered images 
stored or transmitted over secured or unsecured networks can 
also be analyzed in a forensic investigation to determine 
possible plain image equivalence. Digital Forensics processes 
have played crucial role in fighting crime both in society and 
cyberspace. In this paper, feature based cryptanalytic 
technique for digital forensics analysis of visual cryptographic 
digital image data based on formal concept analysis was 
proposed. Different techniques of visual cryptographic 
approaches were engaged in ciphering the plain image and 
our proposed approach was engaged in the cryptanalysis of 
the plain image after feature extractions from both the plain 
and the ciphered images. A lattice was generated which was 
then used authenticate and match the ciphered images to their 
respective ciphered plain images. At the end, the Galois lattice 
of both ciphered and plain image remained the same. 

Keywords: formal concept analysis, cryptanalysis, digital 
forensics, lattices, digital image, feature extraction, pixels  

 

1 Introduction 
  The high increase in multimedia image usage for data 
communications over secured and unsecured network was due 
to the digitization  of processes such as digital filing of 
documents, video conferencing, social media activities etc[1-
3]. Secret communications between two parties using 
multimedia can also involve communications of encrypted 
image [4]. The rise in crime and availability of approaches to 
securing data to the general public has created avenues for 
people to implement cryptographic approaches in securing 
and concealing image contents. These approaches hinder 

criminal investigative procedures and prevent easy analysis of 
digital evidences [5-7]. Cryptanalysis is an effective way of 
analyzing ciphers and encrypted data with the high hopes of 
decrypting the data or breaking the cipher. These approaches 
are very crucial in solving a range of issues in military 
communication applications and digital forensics toolkits. 
Cryptographers overtime have device the means of securing 
messages as well breaking codes [8-9]. 

Security in multimedia supplications is critical for the future. 
In this paper, we proposed a feature based cryptanalytic 
technique for digital forensics analysis of visual cryptographic 
digital image data based on formal concept analysis was 
proposed. Features were extracted from both plain and 
ciphered images and then lattices were built to help match 
plain images to their respected ciphered images.  At the end, 
the Galois lattice of both ciphered and plain image remained 
the same. The paper has the following structure; section II 
Related works, section III is Methodology, section IV Results 
and analysis, and section V concluded the paper.  

2 Literature Review 
 Forensics approaches cannot be effective in the presence 
of anti forensics procedures such as altering of content data 
during recovery process, incomplete evidence, encrypted data 
etc And as society has become increasingly reliant upon 
digital images to communicate visual information, a number 
of forensic techniques have been developed to verify the 
authenticity of digital images. Hence the digital forensics 
community requires new tools and strategies for the rapid 
turnaround of large forensic targets [10-13]. Alin C in their 
work described several statistical techniques for detecting 
traces of digital tampering in the absence of any digital 
watermark or signature. They quantify statistical correlations 
that result from specific forms of digital tampering, and devise 
detection schemes to reveal these correlations [14]. Dehnie, S 
proposed a digital image forensics for identifying computer 
generated and digital camera images [15]. Formal Concept 
analysis Formal is a field of applied mathematics based on the 
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mathematization of concept and conceptual hierarchy. It 
thereby activates mathematical thinking for conceptual data 
analysis and knowledge processing [16]. Its applications in 
forensics are normally in the domain of computer aided 
investigations. Where the data collected on crime re being 
analyzed using the approach[17-18]. In our approach we 
engaged feature based cryptanalytic technique for digital 
forensics analysis of visual cryptographic digital image data 
based on formal concept analysis was proposed. Different 
techniques of visual cryptographic approaches were engaged 
in ciphering the plain image and our proposed approach was 
engaged in the cryptanalysis of the plain image after feature 
extractions from both the plain and the ciphered images. 

3 Methodology 
Our method employed a cryptanalytic procedure by 

using features generated from digital images which were then 
used to construct a Galois lattice. The features were extracted 
in such a way that a change in pixel value can cause a change 
in concept of the lattice. This means that if there is no pixel 
expansion in the ciphering process of the image, a perfect 
match of its plain image can be obtained by using our 
proposed method. The overall process is indicated in figure 1 
below. 

 

 

Figure 1: Summary of the Entire process 

From figure 1: 
PI=Plain image 
g(PI)=function that operated on the plain image to pro- 
          duce the features 
n(f,a,s,e)=function of the features 
fe= the feature results 
f=sum of all frequency of each pixel in the image 
a=arithmetic mean of all the pixel values in the image 
s=standard deviation all the pixel value in the image 
e=entropy of all the pixel value the image 
x=a distinct chosen pixel value number 
x’=frequency of x 
f’=x’/f, a’=x’/a, s’=x’/s and e’=x’/e 
G =set objects extracted from the image 
M=sets attributes obtained from the image 
Concepts obtained are (G,M,I) 
r(G,M,I)=the function that operated on G,M an d I concept  
    to produce K 
ImC=the image encryption algorithm that operated on K  
  and Pi to produce CI 
3.1 The Feature Extraction 

Let I= an image=f (R, G, B) 
I is a color image of m x n x 3 arrays 
 
 
 
 
 

 
 
 
 
(R, G, B) =   m x n and  R, G, B  I  
(R o G) i j = (R) ij. (G) ij 
where r_11 = first value of R 
                r= [ri1] (i=1, 2… m) and 
 x  r_i1 : [a, b]= {x  I: a ≤ x ≥ b}  
                a=0, b=255 and R= r= I (m, n, 1) 
  where g_12 = first value of G  
                g= [gi2] (i=1, 2... m) and   
 x  g_i1: [a, b]= {x  I: a ≤ x ≥ b}  
             a=0 , b=255 and  G= g= I (m, n, 1)  
and      b_13 = first value of B  
                g= [bi3] (i=1, 2... m)   and 
 x  b_i1 : [a, b]= {x  I: a ≤ x ≥ b}  
             a=0, b=255 and B=b= I (m, n, 1)  
   Such that   R= r= I (m, n, 1) 
 
Let X=freq(x) which is the number of times x occurred  
    in r,g and b 
   
f   = 
 
 
 

fe=n(f,a,s,e)

(G,M,I)

FCA lattice

PI g(PI )=fe

M={f’,a’,s’,e’}G={x}

 

Feature
Generation

Process

 

Context
Creation

 

Lattice
Generation

R       G     B 
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a   = 

Where x  b_i1 : [a, b]= {x  I: a ≤ x ≥ b}  

s    = 

Entropy is defined as 
e = -∑η=0 

ε-1 Ψ (xi). log2 (Ψ (xi))                 
 

Where:  
δ= Entropy of image  
ε = Gray value of an input image (0-255).  
Ψ (η) = Probability of the occurrence of symbol η 

3.2 The Feature Classification using FCA 

Formal concept analysis (FCA) is a method of data analysis 
with growing popularity across various domains. FCA 
analyzes data which describe relationship between a particular 
set of objects and a particular set of attributes. 
If g  A and m  B then (g,m)  I ,or gIm. 
A formal context is a triple (G,M,I), where 
•G is a set of objects, 
• M is a set of attributes 
•and I is a relation between G and M. 
• (g,m)  I is read as „object g has attribute m. 
For A  G, we define 
A´:= {m  M | g  A:(g,m)  I }. 
For B  M, we define dually 
B´:= {g  G | m  B:(g,m) I }. 
For A, A1, A2  G holds: 
• A1  A2  A`2 A`1 
• A 1 A`` 
• A`= A``` 
For B, B1, B2  M holds: 
• B1  B2  B‗2  B‗1 
• B  B`` 
• B`= B``` 
A formal concept is a pair (A, B) where 
• A is a set of objects (the extent of the concept), 
• B is a set of attributes (the intent of the concept), 
•A`= B and B`= A. 
The concept lattice of a formal context (G, M, I) is the set of 
all formal concepts of (G, M, I), together with the partial 
Order (A1, B1) ≤ (A2, B2):  A1  A2 (  B1  B2) 
(Priss, U, 1997). 
The concept lattice is denoted by (G,M,I) . 
• Theorem: The concept lattice is a lattice, i.e. for two 
concepts 
(A1, B1) and (A2, B2), there is always 
•a greatest common sub-concept: (A1 A2, (B1  B2) ´´) 
•and a least common super-concept: ((A1  A2) ´´, B1 B2) 

More general, it is even a complete lattice, i.e. the greatest 
common sub-concept and the least common super-concept 
exist for all (finite and infinite) sets of concepts. 
Corollary: The set of all concept intents of a formal context 
is a closure system. The corresponding closure operator is 
h(X):= X``. 
An implication X→Y holds in a context, if every object 
having all attributes in X also has all attributes in Y. 
Def.: Let X M. The attributes in X are independent, if there 
are no trivial dependencies between them 
 

 

 

 

Figure 2: A table of attributes and properties 

The table above represents logical attributes represented by a 
triplet (X, Y, I), where I is a binary relation between X and Y. 
The elements of X are called objects and correspond to table 
rows, elements of Y are called attributes and correspond to 
table columns, and for x  X and y  Y , (x, y)  I indicates 
that object x has attribute y while (x, y)  I. 
From the image we chose our objects as a classified range of 
values of x, where x  b_i1 : [a, b]= {x  I: a ≤ x ≥ b} and 
a=0, b=255. G= {0-25, 26-50, 51-75, 76-100,101-125, 126-
150,151-175, 176-200,201-225, 256-255}. 
f’=j/f 
a’=j/a 
s’=j/s 
e’=j/e 
where j is the sum of all the frequencies of all numbers that 
fall within the range of each object. 
Where B= {f,,a’,s’,e’} Major attributes and f’ has {B_1, B_2, 
B_3 and B_4} as sub attributes. Therefore, a’,  s’ and e’ have 
the same sub attributes as f’.  But {B_1, B_2, B_3, B_4} maps 
directly and exactly on at least one element of {0-0.25, 0.26-
0.50, 0.51-0.75, 0.76-1.0}. 
4 Analysis and Results 
We chose a 24 bit depth image jpg of dimension 960 pixels by 
720 pixels with a horizontal resolution of 96 dpi and a vertical 
resolution of 96 dpi.  

 

 

 

 

Figure 3: Plain image 
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Figure 4: The graph of the normalized cross-correlation of 
the matrices of the plain image 

 

 

 

 

 

 

Figure 5: A graph of frequency of pixel values 

 

 

 

 

 

 

 

 

Figure 6: A Galois lattice generated from the plain image 

 
 
 
 
 
 
 
 
Figure 7: The ciphered image 

 
 
 
 
 
 
 
 
 

Figure 8: The graph of the normalized cross-correlation of 
the matrices of the ciphered image 

 

Figure 9: A Galois lattice generated from the ciphered image 

 
Table 1: Table Objects X and attributes  
G j f' a' s' 
0-25 16993

8 0.081953 1502.998 2343.901 
26-50 31651

7 0.152641 2799.4 4365.619 
51-75 23576

4 0.113698 2085.189 3251.819 
76-100 28914

9 0.139443 2557.347 3988.141 
101-125 31944

6 0.154054 2825.306 4406.018 
126-150 23575

8 0.113695 2085.136 3251.736 
151-175 14600

1 0.070409 1291.29 2013.746 
176-200 46113 0.022238 407.8414 636.0221 
201-225 31294 0.015092 276.7764 431.6283 
226-255 28362

0 0.136777 2508.446 3911.881 
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The graph of the normalized cross-correlation of the 
matrices of the plain image in figure 3 was plotted as shown in 
figure 4. The features f=2073600, a=113.066, s=72.5022 and 
e=7.1945 were extracted from the plain images. The 
frequencies of the pixel values of the plain image were plotted 
as shown in figure 5 and a Galois lattice was generated from 
the features extracted from the plain image based on table 1. 
Table two below showed six different techniques of visual 
cryptography applies to the image. The results for the features 
were constant even though the visual states of the 
encrypted images differ for the various approaches 
engaged.  

Table 2: Table Objects X and attributes  
Approaches f a s e 
1 2073600 113.066 72.5022  7.1945  

2 2073600 113.066 72.5022  7.1945  

3 2073600 113.066 72.5022  7.1945  

5 2073600 113.066 72.5022  7.1945  

6 2073600 113.066 72.5022  7.1945  

At the end all the graphs plotted and the concept lattices 
were the same for both the ciphered and the plain images. A 
set of encrypted images were tested against their 
corresponding ciphered images and the results were effective. 
This means that a plain image can be mapped directly to its 
corresponding ciphered image without decrypting the ciphered 
image for a given data set. 

5 Conclusion 
Based on the extracted features from both the plain and the 

ciphered images, a Galois lattice was constructed. We have 
realized that the Gallois lattice generated from the plain image 
as well as the features extracted from the plain image was the 
same as that of the ciphered image irrespective of pixel 
displacement that occurred. This was as a result of 
conservation of pixel values. This makes our approach a 
suitable forensics analysis of encrypted images based on visual 
cryptography or pixel displacement. Our results were very 
effective for different kind of approaches that engaged a non 
pixel expansion technique in ciphering the image. Our 
proposed method can help also in the indexing of images 
based on the extracted features and can help in evidence 
analysis of ciphered images based on visual cryptographic 
techniques that conserves pixel values. 
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Quantum codes derived from generalized Hadamard matrices

Chekad Sarami
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Abstract— This paper discusses constructions of quaternary
Hermition self-orthogonal codes and related quantum codes
obtained from Kroneker products of generalized Hadamard
matrices over to elementary Abelian group of order 4. We
have shown that the codes generated by these matrices
yeild large single error-correcting and single error-detecting
quantum codes.

1. Introduction

A generalized Hadamard matrix GH(μ, G) = (hij) over
a group G of order g is a gμ × gμ matrix with entries
from G with the property that for every i, j, 1 ≤ i < j ≤
gμ, the multi-set {hish−1js |1 ≤ s ≤ gμ} contains every
element of G exactly μ times. If H1 = GH(μ1, G) and
H2 = GH(μ2, G) are generalized Hadamard matrices over
the group G of order g, their Kronecker product H1⊗H2 is
a g2μ1μ2 × g2μ1μ2 generalized Hadamard matrix over G.

A Generalized Hadamard matrix H is normalized with
respect to row i and column j if all entries in the ith row
and jth row of H are equal to the unit element of G. Two
generalized Hadamard matrices of the same order over a
group G are said to be equivalent if one cab be obtained
from the other by permutations of rows and columns, and
multiplications of rows and columns with elements from G.

In this paper, we consider generalized Hadamard matrices
over the Abelian group of order 4,

EA(4) = {1, a, b, ab|a2 = b2 = (ab)2 = 1, ab = ba}.
For each of the orders 4, 8, and 12 there is one equivalence

class of generalized Hadamard matrices [10]. In [5], Harada,
Lam, and Tonchev enumerated all generalized Hadamard
matrices of 16 over EA(4), and studied the linear codes
of length 15 over the finite field F4 = {0, 1, w, w2} spanned
by the rows of 15 × 15 matrices obtained from normalized
generalized Hadamard matrices of order 16 by deleting
the constant row and constant column and replacing the
elements of EA(4) with the elements of the additive group
of F4, 1 ↔ 0, a ↔ 1, b ↔ w, ab ↔ w2, and replacing
multiplication in EA(4) by the addition in F4. Many of the
resulting codes turned out to be self-orthogonal with respect
to the Hermitian inner product:

(x, y) =

n

i=1

xiy
2
i ,

where, x = (x1, ..., xn) and y = (y1, ..., yn) ∈ F4,hence
yield quantum error-correcting codes via a known construc-
tion due to Calderbank, Rains, Shor, and Sloane [3]:

Proposition 1: (Shor, Calderbank, Rains, and Sloane [3]).
A linear Hermitian self-orthogonal F4-code C of length n
with dimension k and dual distance d⊥ (where C⊥ is the
Hermitian dual code of C) yields a quantum error-correcting
code with parameters [[n, n− 2k, d⊥]].

The theory of quantum error-correcting codes is a well-
known topic. We refer readers not familiar with the topic
to a thorough discussion of the principles of quantum error-
correcting codes given in [3]. In the aforementioned paper,
many examples of quantum codes are given, together with
tabulation of codes and bounds on the minimum distance
for length up to 30 quantum bits. We use the notation
[[n, k, d]] to refer to a quantum error-correcting code for n
quantum bits having 2k codewords and minimum distance
d. In 1996, Calderbandk and Shor showed existence of
good quantum codes [2] . In [11], Steane extended their
work and constructed quantum codes using binary BCH-
codes and extended BCH-codes. Quantum codes can be build
using combinatorial structures in various ways. In [9], Ruihu
Li and Xueliang Li construct quantum codes using Steane
construction of quantum codes [11]. In [6], Kim and Walker
offer construction of nonbinary quantum codes with various
length, dimensions, and minimum distances from algebraic
curves. In [7], Guo, Ma, and Feng construct quantum codes
from self-dual codes and maximal self-dual codes over F5.
In [4], Clark and Tonchev uses finite geometry over Fq
to construct q-ary quantum codes. In [6], Fugiwara and
Vandendriessche construct quantum synchronizable codes
via cyclic codes and finite geometries. In this paper, we
summarize the results of the computation of quaternary Her-
mitian self-orthogonal codes and the corresponding quantum
codes derived from generalized Hadamard matrices over
EA(4) of orders 64, 128, and 192 obtained from Kronecker
products of the unique matrices of order 4, 8 and 12 with
each matrices of order 16 of symmetric nets introduced in
[5]

2. Kronecker products of generalized
Hadamard matrices and their quantum
codes

The generalized Hadamard matrices of order 4,8, and 12
over EA(4) are unique up to equivalence [10]. Classification
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of generalized Hadamard matrices of order larger than 20
is infeasible for us due two large number of them. This
motivated us to compute the Kronecker sum of the unique
matrices of order 4, 8 and 12 by 226 generalized Hadamard
matrices (computed in [5]). In the following sections, we
have shown that the codes generated by these matrices yield
single error-correcting and single error-detecting codes. The
generalized Hadamard matrices of order 16 over EA(4), are
presented in [5] by means of 64× 64 (0, 1)-incidence ma-
trices of 226 combinatorial structures known as(4, 4)−nets.
The incidence matrices of (4, 4)−nets No. i (i = 1, ..., 226)
are available at

http://www.math.mtu.edu/~tonchev/Z2Z2nets.

We can obtain 226 generalized Hadamard matrices using
the following method. The 64× 64 (0, 1)−incidence matrix
A of a (4,4)-net with a group of automorphism being an
elementary Abelian group of order four, i.e. EA(4) is a block
matrix of 4×4 submatrices

I = I4 A =

⎡⎢⎢⎣
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎤⎥⎥⎦

B =

⎡⎢⎢⎣
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎤⎥⎥⎦ C =

⎡⎢⎢⎣
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎤⎥⎥⎦
These matrices form a multiplicative Abelian group

G = ({I, A,B,C = AB|
A2 = B2 = (AB)2 = I, AB = BA}, ·)

which is isomorphic to Abelian group of the finite filed F4.
we replace these these block matrices with the elements of
F4 = {0, 1, w, w2}, as follows:

I ↔ 0, A↔ 1, B ↔ w,C ↔ w2

to get a GH(4,4). Let’s denote the normalized generalized
Hadamard matrix that corresponds to the net No.i (i = 1,
..., 226) by Ti. Let Ui, Vi, and Wi, be the Kronecker sum
of generalized Hadamard matrices H4, H8, and H12 with Ti
(i = 1, ..., 226), respectively as follows:

Ui = H4 ⊕ Ti
Vi = H8 ⊕ Ti
Wi = H12 ⊕ Ti

where 1 ≤ i ≤ 226. Deleting the first all-zero row and
column from Ui, Vi, and Wi give 63 by 63, 127 by 127, and
191 by 191 matrices Ui , Vi and Wi , respectively. We denote
the F4-codes generated by the columns of the matrices Ui ,
Vi and Wi by Ai,Bi, and Ci, respectively. In the following

Table 1: Quantum codes obatined from codes Ai
Code Number Parameters

1 [[63, 53, 2]]
2, 3, 5, 6, 9, 10, 20, 26, 34, 36 [[63, 55, 2]]
4, 7, 8, 11, 12, 14, 15, 16, 19, 21, 22, 23, 24, 25, 27 [[63, 53, 2]]
28, 30, 31, 33, 35, 37, 38, 40, 42, 43, 44, 46, 47, 49
83, 84, 50, 51, 52, 65, 68, 69, 75, 76, 77, 78, 79, 80, 81
99, 100, 82, 85, 86, 87, 88, 91, 92, 93, 94, 95, 96, 97
98, 103, 104, 105, 107, 111, 113, 120, 121, 127, 128
131, 142, 143, 144, 145, 146, 147, 148, 149, 150
151, 181, 182, 192, 193, 194, 195, 196, 197, 198
211, 212, 213, 215, 218, 219, 220, 221, 224, 225, 226
13, 17, 18, 29, 32, 39, 41, 45, 48, 53, 54, 55, 56, 57, 66 [[63, 51, 2]]
67, 70, 71, 72, 73, 74, 89, 90, 101, 102
106, 108, 109, 110, 112, 114, 115, 116, 122, 129, 130
137, 138, 139, 140, 141, 152, 157, 158, 167, 168, 176
183, 184, 185, 187, 188, 190, 203
58, 59, 60, 61, 62, 63, 64, 117, 118, 119, 123, 124, 125 [[63, 49, 2]]
126, 132, 133, 134, 135, 136, 153, 154, 155, 159, 160
161, 162, 163, 164, 165, 166, 169, 170, 171, 172, 173
174, 175, 177, 178, 179, 180, 189, 191, 199, 200, 201
202, 204, 206, 207, 208, 209, 214, 216, 217, 222, 223
156, 205, 210 [[63, 47, 2]]

subsections we present the quantum codes obtained by these
F4-codes.

2.1 Quantum codes obtained from H4 ⊕ Ti
Let codes Ai be the F4-codes generated by the columns of

the matrices Ui . All 226 codes Ai are both self-orthogonal
and Hermitian self-orthogonal. Therefore, They yield quan-
tum codes of length n = 63 and d = 2 by Proposition 1.
We have computed the parameters of these quantum codes
using Magma[1] (Table 1).

2.2 Quantum codes obtained from H8 ⊕ Ti
Let codes Bi be the codes generated by the columns of

the matrices Vi . All 226 codes Bi are both self-orthogonal
and Hermitian self-orthogonal. This is easily verified with
computer. They yield quantum codes of length n = 127 and
d = 2, 3 by Proposition 1. We have computed the parameters
of these quantum codes using Magma (Table 2).

2.3 Quantum codes obtained from H12 ⊕ Ti
Let codes Ci be the codes generated by the columns of

the matrices Wi . All 226 codes Ci are both self-orthogonal
and Hermitian self-orthogonal. This is easily verified with
computer. They yield quantum codes of length n = 191 and
d = 2 by Proposition 1. We have computed the parameters
of these quantum codes using Magma (Table 3).

2.4 Acknowlegement
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Table 2: Quantum codes obatined from codes Bi
Code Number Parameters

1 [[127, 117, 2]]
2, 3, 5, 6, 9, 10, 20, 26, 34, 36 [[127, 115, 2]]
4, 7, 8, 11, 12, 14, 15, 16, 19, 21, 22, 23, 24, 25, 27 [[127, 113, 2]]
28, 30, 31, 33, 35, 37, 38, 40, 42, 43, 44, 46, 47, 49
50, 51, 52, 65, 68, 69, 75, 76, 77, 78, 79, 80, 81, 82,
83, 84, 85, 86, 87, 88, 91, 92, 93, 94, 95, 96, 97, 98
13, 17, 18, 29, 32, 39, 41, 45, 48, 53, 54, 55, 56 [[127, 111, 2]]
57, 66, 67, 70, 71, 72, 73, 74, 89, 90
58, 59, 60, 61, 62, 63, 64 [[127, 109, 2]]
99, 100, 103, 104, 105, 107, 111, 113, 120, 121, 127 [[127, 113, 3]]
128, 131, 142, 143, 144, 145, 146, 147, 148, 149, 150
151, 181, 182, 192, 193, 194, 195, 196, 197, 198, 211
212, 213, 215, 218, 219, 220, 221, 224, 225, 226
101, 102, 106, 108, 109, 110, 112, 114, 115, 116 [[127, 111, 3]]
122, 129, 130, 137, 138, 139, 140, 141, 152, 157, 158
167, 168, 176, 183, 184, 185, 186, 187, 188, 190, 203
117, 118, 119, 123, 124, 125, 126, 132, 133, 134 [[127, 109, 3]]
135, 136, 153, 154, 155, 159, 160, 161, 162, 163
164, 165, 166, 169, 170, 171, 172, 173, 174, 175
177, 178, 179, 180, 189, 191, 199, 200, 201, 202
204, 206, 207, 208, 209, 214, 216, 217, 222, 223
156, 205, 210 [[127, 107, 3]]

Table 3: Quantum codes obatined from codes Ci

Code Number Parameters
1 [[191, 177, 2]]
2, 3, 5, 6, 9, 10, 20, 26, 34, 36 [[191, 175, 2]]
4, 7, 8, 11, 12, 14, 15, 16, 19, 21, 22, 23, 24,25,27 [[191, 173, 2]]
28, 30, 31, 33, 35, 37, 38, 40, 42, 43, 44, 46, 47,49
50, 51, 52, 65, 68, 69, 75, 76, 77, 78, 79, 80, 81,82
83,84, 85, 86, 87, 88, 91, 92, 93, 94, 95, 96, 97, 98
99, 100,103, 104,105, 107, 111,113,120,121,127
128, 131,105, 107, 111, 113, 120, 121, 127, 128
131,182, 192, 193, 194, 195, 196, 197, 198,211
212, 213, 215, 218, 219, 220, 221, 224, 225, 226
13, 17, 18, 29, 32, 39, 41, 45, 48, 53, 54, 55, 56,57 [[191, 171, 2]]
66, 67, 70, 71, 72, 73, 74, 89, 90, 101, 102,106,108
109, 110,112, 114, 115, 116, 122, 129, 130, 137
138, 139, 140, 141,152, 157, 158, 167, 168
176, 183, 184, 185, 186, 187, 188, 190, 203
58, 59, 60, 61, 62, 63, 64, 117, 118, 119, 123 [[191, 169, 2]]
124, 125, 126, 132, 133, 134, 135, 136
153, 154, 155, 159, 160,161, 162, 163, 164
165, 166, 169, 170, 171, 172, 173, 174, 175
177, 178, 179, 180, 189, 191, 199, 200, 201,202
204, 206, 207, 208, 209, 214, 216, 217, 222, 223
156, 205, 210 [[191, 167, 2]]
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Abstract— In this paper, we discuss an efficient and effective index 
mechanism to support set intersections, which are important to 
evaluation of conjunctive queries by search engines. The main idea 
behind it is to decompose an inverted list associated with a word into 
a collection of disjoint sub-lists by arranging a set of word sequences 
into a trie structure. Then, by using a kind of tree encoding, we can 
replace each inverted list with a much shorter interval sequence. In 
this way, we can transform the comparison of document identifiers to 
the checking of interval containment by associating each interval 
with a sub-list. More importantly, for a sorted interval sequence the 
binary search can also be used. With the lowest common ancestors 
utilized to control the search, a better theoretical time complexity 
than any traditional method can be achieved. 

Key words: Search engine; inverted files; conjunctive queries; 
disjunctive queries. 

1. INTRODUCTION 
Indexing the Web for fast keyword search is among the 

most challenging applications for scalable data management. 
In the past several decades, different indexing methods have 
been developed to speed up text search, such as inverted files 
[14, 15], signature files and signature trees for indexing texts 
[1, 5, 6, 11, 12]; and suffix trees and tries [13] for string 
matching. Especially, different variants of inverted files have 
been used by the Web search engines to find pages satisfying 
conjunctive queries of the form: 
 w1  w2  …  wk.  

A document D is an answer to such a query if it contains 
every wi for 1  i  k. The algorithms developed to evaluate 
such a query typically use inverted lists, each of which 
comprises all those document identifiers containing a certain 
word. So, to find all the documents satisfying a query, set 
intersections have to be conducted. 

There has been considerable study on this topic, such as 
adaptive algorithms [9], melding algorithms [2], building 
additional data structures like skipping lists [32], treaps (a 
kind of balanced trees) [4], hash tables over sorted lists [3, 10], 
and so on. All of them can improve the time complexity at 
most by a constant factor, but none of them is able to break 
through the linear time bottleneck. 

In this work, we explore a different way to speed up the 
operation by constructing indexes, which are substantially 
different from any existing strategy. Concretely, our method 
works as follows.  
- Represent each document as a word sequence, sorted 

decreasingly by the word appearance frequency (referred to 
as a document word sequence, or simply a word sequence), 
and then construct a trie structure over all such sequences.    

- Associate each word with an interval sequence L, where 
each interval in L is created by applying a kind of tree 
encoding over the generated trie structure. 

- Associate each interval, rather than a word, with a set of 
document identifiers. In this way, we decompose an 
inverted list associated with a word into a collection of 
disjoint sub-lists, and transform the comparison of 
document identifiers to the checking of interval 
containment. 

- For each word w, instead of its interval sequence, we will 
construct a balanced binary tree over an even shorter 
interval sequence with each being an interval for a lowest 
common ancestor of some nodes labelled with w. The set 
intersection operation can then be done by searching a 
binary tree against a series of intervals.  

Let x and y be two inverted lists associated with two 
words x and y, respectively. Without loss of generality, 
assume that | x| < | y|. Up to now, the best comparison-based 

algorithm for intersecting Lx and Ly requires O(| x| log
||
||

x

y ) 

time. In contrast, our algorithm needs O(|Ly| log
|| y

x

L
) time, 

where Lx and Ly are the interval sequences created for Lx and 
Ly, respectively; and x is the size of a subset of nodes with 
each being a lowest common ancestor of some nodes labeled 
with x in the trie. Generally, we have |Ly| ≤ |Lx| ≤ | x| and x < 
| x|. This time complexity is significantly better than the 
traditional methods since an interval sequence can be much 
shorter than its corresponding inverted list. Especially, the 
larger an inverted list is, the smaller its corresponding interval 
sequence. Only for those very short inverted lists (associated 
with low frequent words), may the sizes of their 
corresponding interval sequences be near their sizes. In fact, 
we only care about the cases of very long inverted lists. When 
all the inverted lists involved in an operation is short, all the 
methods work fast. 
Finally, we indicate that our index structure can also be easily 
maintained. 

2. NEW INDEX STRUCTURE 
In this section, we mainly discuss our index structure, by 

which each word with high frequency will be assigned an 
interval sequence. We will then associate intervals, instead of 
words, with inverted sub-lists. To clarify this mechanism, we 
will first discuss interval sequences for words in 2.1. Then, in 
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2.2, how to associate inverted lists with intervals will be 
addressed. 

2.1 Interval sequences assigned to words 

Let D = {D1, ..., Dn} be a set of documents. Let Wi = 
{wi1, …, 

1ijw } (i = 1,…, n) be all of the words appearing in Di, 

to be indexed.  Denote W = n
i iW1 , called the vocabulary. For 

each word w  W, we will associate it with an inverted list 
containing all the document identifiers with each containing w. 
Thus, to answer a conjunctive query, a set intersection over 
some inverted lists has to be conducted. 

For the purpose of the new index structure, we will put 
all the words in a sorted sequence  = w1, w2, …, wm (m = |W |) 
such that for any two words w and w  if the frequency of w is 
higher than w  then w appears before w  in , denoted as w  
w . Then, each document can be represented as a subsequence 
of ; and over all these subsequences a trie structure can be 
established as illustrated in Fig. 1. 

 
In Fig. 1(a), we show a document database containing 11 

documents, their words, and their sorted sequences by the 
word frequency, where we use a character to represent a word 
for simplicity. In Fig. 1(b), we show the inverted lists for all 
the words in the database. The trie over all the sorted 
sequences is shown in Fig. 1(c). 

In this trie, v0 is a virtual root, labeled with an empty 
word  while any other node is labeled with a real word. 
Therefore, all the words on a path from the root to a leaf spell 
a sorted word sequence for a certain document. For instance, 
the path from v0 to v13 corresponds to the sequence: c, f, a, p, 
m. Then, to check whether two words w1 and w2 are in the 

same document, we need only to check whether there exist 
two nodes v1 and v2 such that v1 is labeled with w1, v2 with w2, 
and v1 and v2 are on the same path. This shows that the 
reachability needs to be checked for this task, by which we 
ask whether a node v can reach another node u through a path. 
If it is the case, we denote it as v u; otherwise, we denote it 

as v u. 
The reachability problem on tries can be solved very 

efficiently by using a kind of tree encoding [7][8], which 
labels each node v in a trie with an interval Iv = [αv, βv], where 
βv denotes the rank of v in a post-order traversal of the trie. 
Here the ranks are assumed to begin with 1, and all the 
children of a node are assumed to be ordered and fixed during 
the traversal. Furthermore, αv denotes the lowest rank for any 
node u in T[v] (the subtree rooted at v, including v). Thus, for 
any node u in T[v], we have Iu  Iv since the post-order 
traversal visits a node after all of its children have been 
accessed. In Fig. 1(c), we also show such a tree encoding on 
the trie, assuming that the children are ordered from left to 
right. It is easy to see that by interval containment we can 
check whether two nodes are on a same path. For example, v3 

v19, since
3vI  = [8, 19],

19vI = [12, 12], and [12, 12]  [8, 19]; 

but v2 v18, since 
2vI = [5, 7], 

18vI = [11, 11], and [11, 11]  
[5, 7]. 

Let I = [α, β] be an interval. We will refer to α and β as 
I[1] and I[2], respectively. 
Lemma 1 For any two intervals I and I  generated for two 
nodes in a trie, one of four relations holds: I  I , I   I, I[2] < 
I [1], or I [2] < I[1]. 
Proof. It is easy to prove. �� 

However, more than one node may be labeled with the 
same word, such as nodes v1, and v7 in Fig. 1(c). Both are 
labeled with word d. Therefore, a word may be associated 
with more than one node (or say, more than one node’s 
interval). Thus, to know whether two words are in the same 
document, multiple checkings may be needed. For example, to 
check whether d and b are in the same document, we need to 
check v1 and v7 each against both v11 and v19, by using the 
node’s intervals. 

In order to minimize such checkings, we associate each 
word w with an interval sequence of the form: Lw = 1

wI , 2
wI , …, 

k
wI , where k is the number of all those nodes labeled with w 

and each i
wI = [ i

wI [1], i
wI [2]] (1  i  k) is an interval 

associated with a certain node labeled with w. In addition, we 
can sort Lw by the interval’s first value such that for 1  i < j  
k we have i

wL [1] < j
wL [1], which will greatly reduce the time 

for the reachability checking. We illustrate this in Fig. 2, in 
which each word in Fig. 1(a) is associated with an interval 
sequence. 

From this figure, we can see that for any two intervals I 
and I  in Lw we must have I  I , and I   I since in any trie no 
two nodes on a path are labeled with the same word. 

v11 v15 v13[1, 1] 
v10 

[1, 20] 

e: 
d: 
f: 
a: 
c: 
b: 

v1 

d 

f 

a 

[1, 2] 

[1, 4] 

v0 

v4 

 

a 

(c) 

(b) 

[3, 3] 

v3 

[10, 10] 

[17, 17] 

v8 [8, 14] 

[10, 13] 

[11, 11] [12, 12] 

[9, 9] [8, 8] 

e [8, 19] 

v12 

c [15, 15] d 
v7 

f [16, 18] 
v9 

c f a a 

[16, 16] 

c 

a b c 

v14 

v17 v18 v19 

{3, 5, 6, 7, 8, 9, 10, 11} 
{1, 2, 3, 5, 6, 7, 8} 
{1, 4, 6, 7, 8, 10, 11} 
{1, 2, 3, 4, 7, 10} 
{5, 6, 9, 11} 
{4, 8} 

v6 

f 

a [5, 6] 

[5, 7] 
v2 

b [5, 5] 

v5 

v16 

Fig. 1: A trie and a set of sorted interval sequences 

Documents and word sequences: 

DocId 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

words 
a, f, d 
a, d 
a, e, d 
f, b, a 
c, d, e 
d, f, e, c 
f, d, e, a 
f, d, e, b 
e, c 
a, e, f 
f, e, c 

words 
d, f, a 
d, a 
e, d, a 
f, a, b 
e, d, c 
e, d, f, c 
e, d, f, a 
e, d, f, b 
e, c 
e, f, a 
e, f, c 

(a) 
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In addition, for any interval sequence L, we will use L[i] 
to refer to the ith interval in L, and L[i .. j] to the segment from 
the ith to the jth interval in L. 

 

2.2 Assignment of DocIDs to intervals 
Another important component of our index is to assign 

document identifiers to intervals. An interval I can be 
considered as a representative of some words, i.e., all those 
words appearing on a prefix in the trie, which is a path P from 
the root to a certain node that is labeled with I. Then, the 
document identifiers assigned to I should be those containing 
all the words on P. For example, the words appearing on the 
prefix: v0  v3  v7  v14 in the trie shown in Fig. 1(c) are 
words: , e, d, and f, represented by the interval [10, 13] 
associated with v14. So, the document identifiers assigned to 
[10, 13] should be {6, 7, 8}, indicating that documents D6, D7 
and D8 all contain those three words. See the trie shown in Fig. 
3 for illustration, in which each node v is assigned a set of 
document identifiers that is also considered to be the set 
assigned to the interval associated with v. 

 
Let v be the ending node of a prefix P, labeled with I. 

We will use I, interchangeably v, to represent the set of 
document identifiers containing the words appearing on P. 
Thus, we have, for example,

14v = [10, 13] = {6, 7, 8}. 
Concerning the decomposition of inverted lists, the following 
two lemmas can be easily proved. 
Lemma 1 Let T be a trie constructed over a set of word 
sequences (sorted by the appearance frequency) over W. Then, 
we have

Ww
w

Tv
v . 

Proof. Let v1, …, 
wlv be all the nodes labeled with a word w in 

T. Then w = 
w

i

l

i
v

1
. Since in T no node is labeled with more 

than one word, we have 
Ww

l

i Tv
vv

Ww
w

w

i
1

. �� 

Lemma 2 Let u and v be two nodes in a trie T. If u and v are 
not on the same path in T, then u and v are disjoint, i.e., u 

 v = . 
Proof. It is easy to prove. � 
Proposition 1 Assume that v1, v2, …, vj be all the nodes 
labeled with the same word w in T. Then, w, the inverted list 
of w (i.e., the list of all the documents identifiers containing 
w) is equal to 

1v 2v … 
jv , where represents disjoint 

union over disjoint sets that have no elements in common. 
Proof. Obviously, w is equal to 

1v  
2v … 

jv . Since 

v1, v2, …, vj are labeled with the same word, they definitely 
appear on different paths as no nodes on a path are labeled 
with the same word. According to Lemma 1, 

1v  
2v … 

jv is equal to 
1v 2v … 

jv . � 

As an example, see the nodes v1 and v7 in Fig. 2. Both are 
labeled with word d. So the inverted list of d is 

1v 7v = {1, 

2} {3, 5, 6, 7, 8} = {1, 2, 3, 5, 6, 7, 8}. 

3. BASIC QUERY EVALUATION 
Based on the new index structure, we design our basic 

algorithms.  
We first consider a query containing only two words w  

w  with w ≺ w . It is easy to see that any interval in Lw cannot 
be contained in any interval in Lw . Thus, to check whether w 
and w  are in the same document, we need only to check 
whether there exist I  Lw and I   Lw  such that I  I . 
Therefore, such a query can be evaluated by running a process, 
denoted as conj(Lw, Lw ), to find all those intervals in Lw  with 
each being contained in some interval in Lw, stored in a new 
sequence L. 

1. Let Lw = 1
wI , 2

wI , …, k
wI . Let Lw  = 1

wI , 2
wI , …, k

wI . L  . 

2. Step through Lw and Lw  from left to right. Let p
wI and q

wI be the 
intervals currently encountered. We will do one of the following 
checkings: 
i) If p

wI q
wI , append q

wI to the end of L. Move to 1q
wI if q < k  

(then, in a next step, we will check p
wI against 1q

wI ). If q = k , 
stop. 

ii) If p
wI [1] > q

wI [2], move to 1q
wI if q < k . If q = k , stop. 

iii) If p
wI [2] < q

wI [1], move to 1p
wI if p < k (then, in a next step, 

we will check 1p
wI against q

wI ).  If p = k, stop. �   

Assume that the result is L = I1, I2, …, Il (0 ≤ l ≤ k ). 
Then, for each 1 ≤ j ≤ l,   there exists an interval I  Lw such 
that Ij  I, and we can return 

1I … 
kI as the answer. In 

Fig. 4, we illustrate the working process on Ld and Lb shown 
in Fig. 2. 

e: 
d: 
f: 
a: 
c: 
b: 

[8,19] 
[1, 4][8, 14] 
[1, 2][5, 7][10, 13][16, 18] 
[1, 1][3, 3][5, 6][8, 8][11, 11][16, 16] 
[9, 9][10, 10][15, 15][17, 17] 
[5, 5][12, 12] 

Fig. 2: a set of interval sequences 

v13 

v17 

v0 

v3 

{11} 
v15 

{6} 

v8 
{3, 5, 6, 7, 8} 

{6, 7, 8} 

{7} {8} 

{5} {3} 

e {3, 5, 6, 7, 8, 9, 10, 11} 

v12 

c {9} d 
v7 

f {10, 11} 
v9 

c f a a {10} c 

a b c 

v14 v17 

v18 v19 

{4} 

{4} 

{4} 

{2} {1} 

{1} 
v10 

v

d 

f 

a 

{1, 2} 

v4 

 

a 
v6 

f 

a 

v2 

v11

b 

v5 

Fig. 3: Illustration for assignment of document IDs 

14vI = [10, 13]. The set {6, 7, 8} assigned to v14 can 

be considered as the set assigned to [10, 13].  
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In Fig. 4, we first notice that Ld = [1, 4][8, 14] and Lb = 

[5, 5][12, 12]. In the 1st step, we will check 1
dL = [1, 4] against 

1
bL = [5, 6]. Since 1

dL [2] = 4 < 1
bL [1] = 5, we will check 2

dL = 

[8, 14] against 1
bL  in a next step, and find 1

bL [2] = 5 < 2
dL [1] = 

8. So we will have to do the third step, in which we will check 
2
dL  against 2

bL  = [12, 12]. Since 2
dL   2

bL , we get to know that 
d and b are in the same document. 
Lemma 3 Let L = I1, …, Ik be the result of conj(Lw, Lw ). Then, 
for each Ij (1 ≤ j ≤ k), there must be an interval I  Lw such 
that I  Ij. For any interval I′  Lw′ but  L, it definitely does 
not belong to any interval in Lw. 
Proof. It is easy to prove. �� 

Since in this process, each interval in both Lw and Lw  is 
accessed only once, the time complexity of this process is 
bounded by O(|Lw| + |Lw |). In addition, the above approach can 
be easily extended to evaluate general queries of the form Q = 
w1  w2  …  wl with w1 ≺ w2 ≺ … ≺ wl and l  1 based on 
the transitivity of intervals: I  I′   I′′   I  I′′. 

What we need to do is to repeatedly apply conj( ) to the 
corresponding interval sequences associated with the query 
words one by one. The following is a formal description of the 
process. 

ALGORITHM conEvaluation(Q) 
begin 
1. let |Q| = l; assume that Q[1] ≺ Q[2] ≺ … ≺ Q[l]; 
2. L := Q[1]; 
3. for (j = 2 to l) do  
4. { L  conj(L, LQ[j]); } 
5. let L = I1, …, Ik; 
6. return 

1I … 
kI . 

end 

It is easy to see that the time complexity of the algorithm 
is bounded by O(

Qw
wL || ). 

Proposition 2 Let Q = w1  w2  …  wl with w1 ≺ w2 ≺ … 
≺ wl and l  1. The answer produced by algorithm 
conEvaluation(Q) is correct. 
Proof. Let L = I1, …, Ik be the interval sequence  produced by 
the main for-loop (line 3 – 4). Then, according to Lemma 3, 
for each Ij (1 ≤ j ≤ k), there must exist an interval sequence 1, 
2, …, l-1 such that i  

iwL (1 ≤ i ≤ l - 1) and 1  2  …  l-

1  Ii. Next, according to Proposition 1, we know that 
1I …  

kI  must be the correct answer. � 

Example 1 Consider Fig. 2 and 3. Let Q = d  f  a. Then, in 
the first iteration, we will get L = conj(Ld, Lf) = [1, 2][10, 13]. 
In the second iteration, we will get L = conj(L, Lp) = [1, 1][11, 
11].  The results is then R = [1, 1] [11, 11] = {1} {7} = {1, 
7}. �  

4. IMPROVEMENTS 
In this section, we discuss a new algorithm to improve 

the naïve method shown in the previous subsection. The main 
idea is to use lowest common ancestors (LCAs for short) of 
nodes (in T) to control a binary search process. First, in 4.1, 
we discuss the binary search of an Lw. Then, we show how to 
use LCAs to speed up such a search in 4.2.  

4.1 Set intersection based on binary search 
Each interval sequence is sorted. So we can do the 

conjunction of interval sequences based on binary search. 
Let Lo = 1

oI , 2
oI , …, m

oI  and Lw = 1
wI , 2

wI , …, n
wI  be two 

interval sequences with o ≺ w. Then, m = |Lo| ≤ n = |Lw|. 
By using the binary search technique, we need to work 

from the end to the start of Lw to incorporate the LCAs into the 
process. To this end, we design an algorithm different from 
conj(Lo, Lw), called conjB( ), which can be mostly easily 
described recursively. When m = 0, there is no conjunction to 
be done and the result is . Otherwise, we will first check 

m
oI against Lw. As with [46], let l = 

m
nlg . Then, 2l is the 

largest power of two not exceeding
m
n . Let t = n - 2l + 1. 

Compare m
oI  and t

wI . 

1. If m
oI [1] > t

wI [2], we should look for the intervals (in Lw) 

covered by m
oI somewhere to the right of t

wI . By using the 
traditional binary search, we try to find an interval I 
covered by m

oI  with l more comparisons. Around I, we 
will continually (by a simple linear search) find the left-
most interval x in Lw, which can be covered by m

oI ; and 
then with l more comparisons, we will find the right-most 
interval y covered by m

oI , in a similar way. Obviously, all 
the intervals between x and y, including x and y, can be 
covered by m

oI . (See Fig. 5(a).) This information allows us 
to reduce the problem to the situation illustrated in Fig. 
5(b). To complete the whole operation, it is sufficient to 
apply the above process to Lo  and Lw , where Lo  
= 1

oI , …, 1m
oI and Lw  = 1

wI , …, 1x
wI . 

2. If, on the other hand, m
oI [2] < t

wI [1], we should check the 

intervals to the left of t
wI , and the problem immediately 

reduces to the checking of Lo  = Lo against Lw  = Lw[1 .. t - 
1]. We can complete the operation by applying the above 
process to Lo  and Lw . 

p 

[1, 4][8, 14] 

q 

[5, 5][12, 12] 

p 

q 

 [1, 4][8, 14] 

[5, 5][12, 12] 

p 

q 

Lb: [5, 5][12, 12] 

Ld: [1, 4][8, 14] 

1st step: 2nd step: 3rd step: 

Fig. 4: Illustration 
for conj(Lw, Lw ) 
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However, Lo  may become larger than Lw . So in the 

recursive call to conjB( ), the roles of Lo  and Lw  may be 
reversed, by which we will check each interval I in Lw  against 
Lo  to find an interval I   in Lw   such that I   the last interval 
in Lo . See Fig. 6 for illustration. Assume that that the last 
interval 1x

wI in Lw  is covered by an interval j
oI   (1 ≤ j ≤ m - 2) 

in Lo . Then, by the next recursive call, we will check Lw  
= 1

wI , …, 2x
wI  and Lu  = 1

oI , …, 2j
oI . 

 
3. If m

oI  t
wI , we will check linearly 1t

wI , 2t
wI  , … until we 

meet a first interval x  which is to the left of t
wI and not 

covered by m
oI . Then, check 1t

wI , 2t
wI , … until a first 

interval y  which is to the right of t
wI and not covered by 

m
oI . All the encountered nodes, except x  and y , must be 

covered by m
oI . This reduces the problem to a checking of 

Lo  = Lo[1 .. m - 1] against Lw  = Lw[1 .. x ]. 

4. If m
oI  t

wI (we may have this case due to the roll 

interchange), we add m
oI to the result and the problem 

reduces to a checking Lo  = Lo[1 .. m - 1] against Lw  = Lw[1 
.. t]. 

According to the above discussion, we give the 
following recursive algorithm, which takes three inputs: Lo, 
Lw, b with |Lo| ≤ |Lw|, where b is a Boolean value used to 
indicate how m

oI is checked against Lw. If o  w, b = 0. 
Otherwise (w  o), b = 1. In addition, in the Algorithm a 
global variable R is used to store the result. 

ALGORITHM conjB(Lo, Lw, b) 
begin 
1. m  |Lo|; n  |Lw|; 
2. if m = 0 then return; 

3. l  
m
nlg ; t  n - 2l + 1; I m

oI ; 

4. if I[2] < t
wI [1] then {Lo   Lo; Lw   Lw[1 .. t - 1];} 

5. if I[1] > t
wI [2] 

6. then if b = 1 then z  binaryS-1(I, Lw[t + 1 .. n] 
7.   if z = 0 then {Lo   Lo[1..m-1]; Lw   Lw; } 
8. else R := R  {I}; 
9.  Lo   Lo[1 .. m - 1]; 
10.  Lw   Lw[1 .. t + z - 1]; 
11. else <x, y>  binaryS-2(I, Lw[t + 1 .. n]) 
12.   if x = 0 then {Lo   Lo[1 .. m - 1]; Lw   Lw; }  
13. else R  R  {all interval between x and y, including x 

and y}; 
14. Lo   Lo[1 .. m - 1]; Lw   Lw[1 .. x - 1]; 
15. if I  t

wI then <x, y>  linearSearch(I, Lw, t
wI ) 

16. Lo   Lo[1 .. m - 1]; Lw   Lw[1 .. x - 1]; 
17. R  R  {all interval between x and y, including 

x and y}; 
18. if I  t

wI then R := R  {I}; 
19.  Lo   Lo[1 .. m - 1]; Lw   Lw[1 .. t]; 
20. if |Lo | ≤ | Lw | then conjB(Lo , Lw , b) 
21. else conjB(Lw , Lo , b ); 
end  

The above algorithm can be divided into two parts. The 
first part consists of lines 1 – 10; and the second part lines 20 
– 21. In the first part, we will check the last interval m

oI in Lo 
against Lw. According to the above discussion, four 
cases are distinguished: m

oI [2] < t
wI [1] (line 4), m

oI [1] > 
t
wI [2] (lines 4 – 14), m

oI [1]  t
wI (lines 15 – 17), and m

oI [1] 

 t
wI (18 – 19). Special attention should be paid to the use of 

b, which indicates whether we check m
oI to find a covering 

interval in Lw (by calling binaryS-1( )) or to find all those 
intervals that can be covered by m

oI (by calling binaryS-2( ))). 
In the second part (lines 20 – 21), we make a recursive 
call to check Lo  and Lw , which are determined 
respectively from Lo and Lw during the execution of 
the first part. If |Lo | ≤ | Lw |, we simply call conjB(Lo , Lw , 
b) (see line 14.) Otherwise, the rolls of Lo and Lw should 
be interchanged and we will call conjB(Lw , Lo , b ), where 
b  represents the negation of b (see line 21.) 

It binaryS-1(I, L), we will find, by the binary search, an 
interval Iz in L which covers I. If z = 0, it shows that such an 
interval does not exist. 

FUNCTION binaryS-1(I, L) 
begin 
1. z  0; 
2. binary search of L to find an interval z, which covers I; 
3. return z; 
end  

In binaryS-2(I, L), we will first find a pair <x, y> such 
that Ix is the left-most interval in L, which can be covered by I; 
and Iy the right-most interval covered by I. Then, x = 0 
indicates that no interval in L is covered by I. 

Fig. 5: First comparison during an interval intersection 

Lo:

Lw:
t x y

Lo  

Lw  

(a) (b) 
t x y

Fig. 6: Illustration for interchanging rolls of Lw  and Lu  

Lo:

Lw:
t x y

Lo  

Lw  

x y
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FUNCTION binaryS-2(I, L) 
begin 
1. x  0; y  0; 
2. binary search of L to find an interval Iz which is covered by 

I; 
3. return linearSearch(I, L, Iz);  
end  

In linearSearch(I, L, I ), we will find a pair <x, y> such 
that Ix, Ix+1, …, I , …, Iy-1, Iy are all the intervals that can be 
covered by I.  

FUNCTION linearSearch(I, L, I ) 
begin 
1. Let I  be Iz; 
2. Search Iz-1, Iz-2, … until Ix such that Ix is covered by I, but 

Ix-1 not; 
3. Search Iz+1, Iz+2, … until Iy such that Iy is covered by I, 

but Iy+1 not; 
2. return <x, y>; 
end 
 
Example 2 Consider Ld = [1, 4][8, 14] and La = [1, 1][3, 3][5, 
6][8, 8][11, 11][16, 16]. By calling conjB(Lf, La, 0), the 
following operations will be conducted: 

Step 1: checking Ld[2] = [8, 14] against La. l = 
2
6lg = 1, t 

= n - 2l + 1= 6 – 2 + 1= 5, La[5] = [11, 11]. Since [11, 11]   
[8, 14], we will call linearSearch( ) to find x = 4 and y = 5. 

Step 2: checking Ld[1] = [1, 4] against La[1 .. 3]. l = 
1
3lg = 

1, t = 3 – 21 + 1 = 2, La[2] = [3, 3]. Since [3, 3]  [1, 4], we 
will will call linearSearch( ) to find x = 1 and y = 2. �� 

4.2 Search control by using LCAs  
The method discussed in 4.1 can be significantly 

improved by using LCAs. Given a word w, denote by Vw all 
the nodes labeled with w. All the LCAs of the nodes in Vw (in 
T), denoted as Vw′, can be efficiently recognized using a way 
to be discussed in Section 6. For example, for the set of nodes 
labeled with word a: Va = {v10, v5, v6, v12, v18, v15}, we can find 
another set of nodes: Va′ = {v1, v7, v2, v0} with v1 being LCA of 
{v10, v5}, v7 being LCA of {v12, v18}, v2 being LCA of {v6, v12, 
v18, v15}, and v0 being LCA of {v10, v5, v6, v12, v18, v15}. Now 
we construct a tree structure, called an LCA-tree and denoted 
as Tw, which contains all the nodes in Vw  Vw′. In Tw, there is 
arc from v1 to v2 iff there exists a path P from v1 to v2 in T and 
P does not pass any other node in Vw  Vw′. In Fig. 7(a), we 
show Ta for illustration. 

Replacing each node in Tw with the corresponding 
interval, we get another tree, denoted as ~

wT , in which each 
internal node v must be an interval that is the smallest interval 
covering all the intervals represented by the leaf nodes in 

~
wT [v] (the subtree rooted at v in ~

wT ). See ~
aT  shown in Fig. 

7(b) for illustration. From this, we can see that [1, 4] is the 

smallest interval covering [1, 1] and [3, 3]; [8, 14] is the 
smallest interval covering [8, 8] and [11, 11]; and [8, 19] is 
the smallest interval covering [8, 8], [11, 11] and [16, 16]. 
Finally, [1, 20] is the smallest interval covering all the 
intervals in La: [1, 1], [3, 3], [5, 6], [8, 8], [11, 11], [16, 16]. 

 
Here, our intention is to associate each interval j

wI  in Lw 

with a second interval j, which is the parent of j
wI  in ~

wT , and 
two  links, denoted as lj and rj, respectively pointing to two 
intervals in Lw, which are respectively the left-most and right-
most leaf nodes in ~

wT [ j]. Fig. 8 helps for illustration.  

 
In Fig. 8, 3

aI = [5, 6] is associated with an LCA interval 

3 = [8, 14], which is the parent of 3
aI  in the corresponding 

~
aT  shown in Fig. 7(b). In addition, l3 is a link pointing to 1

aI  

and r3 is a link pointing to 6
aI . They are respectively the laft-

most interval and the right-most interval covered by 3. In the 
same way, we can check all the other intervals and links 
shown in Fig. 8. 

In addition, we will keep a sequence w containing all 
the LCA intervals in the post-order of ~

wT . For example, a = 

1 4 6 3 = [1, 4][8, 14][8, 19][1, 20]. With such intervals and 
links, the binary search of Lw against a certain interval (in Lo) 
can be done much more efficiently by skipping over useless 
checkings. Concretely, the checking of m

oI against Lw will be 
done as follows. 

1. If m
oI [1] > t

wI [2], compare m
oI and t. If m

oI  t, explore 
Lw[rt + 1 .. n] by the binary search. Otherwise, explore Lw[t 
+1 .. rt]. 

2. If m
oI [2] < t

wI [1], compare m
oI and t. If m

oI  t, explore 

Lw[1 .. lt – 1]. Otherwise ( m
oI  t), explore Lw[lt .. t – 1]. 

3. If m
oI  t

wI , compare m
oI and t. If t m

oI , t
wI  must be the 

unique interval which can be covered by m
oI . Therefore, t

wI  
is the result and the search stops. The problem reduces to a 
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checking of Lo[1 .. m – 1] against Lw[1 .. t – 1] with w[1 .. 
k] to be used for control, where k is the position prior to t 
in u. If t = m

oI , we will return all those intervals between lt 
and rt, including both lt and rt. The search also stops and the 
problem reduces to a checking of Lo[1 .. m – 1] against Lw[1 
.. lt – 1] with w[1 .. k]. If t m

oI , we will search part of w 
to the right of t to find the right-most interval f covered 
by m

oI . Then, return all the intervals between lf and rf, 
including lf and rf, which allows us to reduce the problem  
to check Lo[1 .. m – 1] against Lw[1 .. lf – 1] with w[1 .. g], 
where g is the position prior to f in w. 

4. If m
oI  t

wI , the above data structure cannot be utilized to 
speed up the search. Thus, this case will be handled in the 
same way as described for conjB( ). 

Example 3 To see how the LCAs can be used to skip over 
useless checkings, we check several single intervals against La 
in Fig. 8 to show the working process.  
1. Assume that I = [5, 7] is compared with I5 = [11, 11] in La. 
Since [5, 7] is to the left of [11, 11], we will compare [5, 7] 
with 5 = [8, 14] and [5, 7]  [8, 14]. So we will check [5, 7] 
against La[1 .. l5  - 1] = La[1 .. 3] in a next step, instead of the 
sequence containing all the intervals to the left of I5. 
2. Assume that I = [10, 13] is compared with I4 = [8, 8] in La. 
Since [10, 13] is to the right of [8, 8], [10, 13] and 4 = [8, 14] 
will be compared and [10, 13]  [8, 14]. So, in the next step, 
we will check [10, 13] against La[4 + 1 .. r5] = La[5 .. 5], not 
the sequence containing all the intervals to the right of I4. 
3. Assume that I = [10, 13] is compared with I5 = [11, 11] in 
La. We have [10, 13]  [11, 11]. However, [10, 13]  5 = [8, 
14]. It shows that [11, 11] is the only interval in La, which can 
be covered by [10, 13]. No further search is necessary. 
4. Assume that I = [8, 14] is compared with I4 = [8, 8] in La. 
We have [8, 14]  [8, 8]. But we also have [8, 14] = 4. Then, 
we know immediately that only the intervals in La[l4 .. r4] = 
La[4 .. 5] can be covered by [8, 14]. �� 

By Example 3, we can clearly see that LCAs are quite 
useful to speed up the operation. However, all of them should 
be efficiently recognized. We will discuss this in the next 
Section. 

5. CONCLUSION 
In this paper, a new index structure is discussed. It 

associates each word w with a sequence of intervals, which 
partition the inverted list (w) into a set of disjoint subsets, 
and transform the evaluation of conjunctive queries to a series 
of checkings of interval containment. Especially, the intervals 
can be organized into a compact interval graph, which enables 
us to skip over any useless checking of interval containment. 
On average, to evaluate a two-word query, only O(logn) time 
is required, where n is the number of documents. This is much 
more efficient than any existing method for set intersection. 
Also, how to maintain such an index is described in great 
detail. Although the index is of a more complicated structure, 

the cost of maintaining it in the cases of addition and deletion 
of documents is (theoretically) comparable to the inverted file. 
Extensive experiments have been conducted, which show that 
our method outperformances the inverted file and the 
signature tree by an order of magnitude or more. 
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Abstract - For the past few years there has been an increase 
in the use of compute intensive applications running on high-
performance embedded systems based on multi-core platforms. 
These applications demand an absolute share of CPU 
bandwidth to guarantee a certain level of QoS (Quality of 
Service) and fulfil their timing constraints. Unfortunately, 
traditional proportional share or priority scheduling 
algorithms employed in general purpose operating systems 
are not able to provide an absolute share of processor 
resources for such time sensitive tasks. In this paper, we 
present an absolute bandwidth scheduling scheme which aims 
at providing an absolute share of CPU bandwidth to groups of 
soft real-time tasks regardless of the work load conditions and 
varying speeds of CPU. The proposed scheme provides a 
mechanism of CPU bandwidth allocation for groups of soft-
real time tasks by dynamically changing the overall weight of 
the group while maintaining the proportion of share of each 
task in the group. Our proposed approach works on top of a 
traditional proportional share scheduler and does not require 
any modifications to the kernel layer. To demonstrate the 
effectiveness and the correctness of our scheme, we have 
implemented a prototype using Linux cgroups and the existing 
completely fair scheduler (CFS). A series of experiments are 
conducted to prove that each soft real-time task in the group 
maintains its required absolute bandwidth. 

Keywords: Absolute bandwidth scheduling, group-based 
proportional share scheduling, dynamic weight management, 
QoS, soft real-time. 

 

1 Introduction 
 For the past few years there has been an increase in the 
use of compute intensive applications such as multimedia 
processing, online gaming and data encryption/decryption 
running on high-performance embedded systems based on 
multi-core platforms. These applications demand an absolute 
share of CPU bandwidth to guarantee a certain level of QoS 
(Quality of Service) and fulfil their timing constraints. For 
instance, a video application may require 30% of processor 
bandwidth at 1GHz to decode 30 frames per second for 
smooth playback. 

 Unfortunately, traditional proportional share or priority 
scheduling algorithms employed in general purpose operating 
systems are not able to provide an absolute share of CPU 
resources for time sensitive tasks. The proportional share 
algorithm aims at providing relative fairness to the tasks 
proportional to their weights, for distributing CPU bandwidth. 
As a result, the relative share of each task decreases as the 
system load increases.  

 The second hindrance in allocating a guaranteed share of 
CPU bandwidth is the assumption of fixed speed or 
performance of each CPU core. In a real world system, 
however, the speed of CPU may vary with new tasks being 
dynamically added to the CPU and the underlying DVFS 
(dynamic voltage and frequency scaling) policy. As a result, 
each task may generate a different utilization value depending 
upon the current speed of the CPU. Consider for example that 
a soft real-time task such as an HVEC (High Efficiency 
Video Coding) decoder demands 60% of CPU utilization on 
ARM Cortex A9 processor running at maximum frequency of 
1.5 GHz. If the task is scheduled on a CPU which is running 
at 1.0 GHz, HVEC may not meet its performance metrics 
because CPU utilization in that case should be 90%. This may 
adversely affect the resource allocation problem especially in 
multi-core environments where CPUs can run at varying 
speeds and task migration occurs frequently. Hence, to 
provide efficient CPU bandwidth allocation to tasks, the 
individual as well as overall computation performance of all 
the CPU resources in a system under a certain condition must 
be take into account.  

 In this paper we propose an absolute bandwidth 
scheduling (ABS) scheme to accomplish absolute bandwidth 
guarantees on top of an existing partitioned proportional share 
scheduler. The proposed scheme performs two important 
functions. First, it partitions tasks running on each processor 
into two groups, absolute bandwidth tasks that require 
absolute bandwidth guarantees and proportional share tasks 
that require traditional proportional share services. Second, it 
dynamically adapts the weights of absolute bandwidth task 
groups to satisfy their absolute bandwidth requirements 
taking into account the dynamic change in workload 
characteristics and varying processor speeds. We show 
through experimental evaluation that the proposed scheme 
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can efficiently achieve absolute bandwidth guarantees in 
conjunction with an existing proportional share scheduler. 

 The rest of this paper is organized as follows: section 2 
gives a brief review of the related work, section 3 elaborates 
our proposed scheme. In section 4 we give an implementation 
of the scheme, section 5 explains our experimental set up and 
finally we conclude with section 6.  

2 Related Work 
 Many researchers proposed resource reservation 
schemes to provide guaranteed allocation of resources to a 
group of tasks present in an application. For example, the 
processor capacity reserve scheme proposed by Mercer et al. 
[2] suggests using priority based scheduling to grant resource 
reservation to each application. Later a kernel module is used 
to keep track of the CPU usage of each application to 
implement the granted reservation.  A similar approach, 
called ACTORS [3], reserves resources for each application 
and readjust the assignment by using feedback from the 
application. This solution gives user a comprehensive control 
over resource allocation but the technique requires non-trivial 
modification to the kernel. 

 To provide a constant share of CPU bandwidth 
regardless of the workload conditions a fixed share 
scheduling (FSS) policy has been proposed in [4]. FSS 
enables a traditional proportional share scheduler to provide 
constant share of CPU bandwidth by dynamically modifying 
the weights of soft real-time tasks under changing workload 
conditions. However, FSS assumes that the speed or 
performance of the CPUs remains fixed over time. Note that 
the dynamic voltage frequency scaling (DVFS) mechanism 
implemented in modern computing systems scales up or 
down the speed of CPUs as new tasks arrive and/or depart. 
Hence, to provide absolute CPU bandwidth allocation to tasks, 
dynamic CPU speeds must be taken into account.  

3 Absolute Bandwidth Scheduling 
 There are two general approaches to multiprocessor 
scheduling, global scheduling and partitioned scheduling. The 
global scheduling approach maintains single task queue and 
schedules tasks selecting eligible tasks guided by a global 
scheduling policy and assigning them to appropriate 
processors. On the other hand, the partitioned scheduling 
approach maintains a separate task queue for each processor 
and schedules tasks in a way similar to distributed scheduling. 
In a partitioned scheduling system, tasks are first assigned to 
processors and each processor runs a separate scheduler 
instance to schedule them independently of other processors. 

 In this work, we consider partitioned scheduling systems 
with proportional share scheduling support.  In order to 
satisfy absolute processor bandwidth requirements in such 
partitioned proportional share scheduling systems, we present 

a group-based proportional scheduling scheme with dynamic 
weight management as described below 

3.1 Group-based Proportional Share 
Scheduling 

 The goal of group-based proportional scheduling 
schemes is to meet the performance requirements of a group 
of tasks within applications.  The key idea of group-based 
proportional share scheduling is to allocate resources to task 
groups relative to their weights such that the share of each 
group is defined by a proportional share with respect to the 
other groups present in the system. The share of each task 
within a group is defined by a proportional share of its parent 
group [4]. For example, let  be the weight of group  and 
let  be the set of all active groups at time , then the share 

 of a group  at time  is defined as below. 

 

 Let  be the weight of task  and  be the set of all 
active tasks included in group at time . The share  of 
a task  with weight at time  is defined as below. 

 

  

3.2 Dynamic Weight Management for Groups 

 

 
 

 In order to obtain absolute bandwidth allocation 
guarantees from the existing proportional share scheduler, we 
propose to add an absolute bandwidth allocator on top of it 
with a minimal impact on the existing system architecture. 
The primary goal of the absolute bandwidth allocator is to 

Figure 1. The absolute bandwidth scheduling model. 
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receive absolute bandwidth requirements from the soft real-
time tasks and changing the weights of groups of tasks by 
examining the run queue of each processor and its current 
speed.  

 Figure 1 shows the proposed absolute bandwidth 
scheduling model with an absolute bandwidth allocator 
running on top of an existing group-based proportional share 
scheduler on a multiprocessor platform. The platform consists 
of m processors P = . Each processor has 
identical maximum processing speed but can be 
operating on varying speeds depending on the workload 
conditions and DVFS (dynamic voltage and frequency scaling  
(DVFS) mechanism. Let us denote the current frequency of a 
processor by . 

 For the proposed model, we define a set of active tasks 
T =   running on the multiprocessor platform 
and divide these tasks into two groups such that  

 

where is a group of soft real-time tasks that require 
absolute bandwidth guarantees and is a group of best 
effort tasks that require proportional share bandwidth 
guarantees.  

 Each processor  has a separate task run queue  such 
that  

 

where is a group of soft real-time tasks allocated to 
processor  and is a group of best effort tasks allocated 
to processor . The best effort tasks are allocated bandwidth 
shares in proportion to their weights in accordance with the 
existing group-based proportional share scheduling scheme. 
We denote the weight of a best effort task  by 

so that the overall weight of the best effort group  
scheduled at  is given by 

 

 The goal of absolute bandwidth scheduling is to provide 
an absolute bandwidth to soft real-time tasks. This can be 
achieved by receiving a absolute bandwidth requirement from 
each task and then dynamically changing the weights of each 
soft real-time group to maintain the requested bandwidth 
requirements. We define the absolute bandwidth request by 
any software task  as CPU utilization required 
from a CPU when running at . In the proposed model 
each task with in may put such request through an 
application programming interface (API) 
request_absolute_bandwidth() as shown in Figure 2.  

 For a group of soft real-time tasks assigned to a 
processor , the absolute CPU utilization  is defined by  

 

 It is worth noting that when dispatching the tasks to a 
specific processor it is necessary that the sum of bandwidth 
requests   cannot be greater than 1. However, the 
resulting  can be greater than 1 in case when the current 
operating frequency  is less than the maximum speed  
of CPU. This will enable DVFS to increase the operating 
frequency of CPU as required. 

 Having obtained the absolute CPU utilization  of a 
soft real-time group, the weight of the group can be obtained 
as  

 

The group weight obtained from Equation (3) guarantees that 
each soft real-time task gets an absolute bandwidth allocation 
and the other best effort tasks present on the run queue are 
assigned a proportional share of the CPU bandwidth. 

   

 
 

 Figure 2 shows an example of the proposed absolute 
bandwidth scheduling model. Consider two sets of 
tasks  and =  running 
on a dual-processor platform. Maximum frequency of each 
processor,  is 10 GHz while current frequency of is 

 and current frequency of is  . 

 Soft real task  and  are allocated to processor  and 
have absolute bandwidth requirements of  and 

 at 10 GHz, and best effort task  and  are 
allocated to processor  and have weights  and 

. By applying Equation (2) to group of soft real-

Figure 2. Examples of absolute bandwidth scheduling 
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time tasks, we have   and by 

applying Eq. (3), we get 
. By using this weight value for the group we obtain the 

share of each soft real-time task present in the group as 
desired. We can verify the result by applying Equation (1):  

 and 

 and  and 

. 

 

 Soft real task  and  are allocated to processor  and 
have absolute bandwidth requirements of  and 

 at 10 GHz, and best efforts task  and  are 
allocated to processor  and have weights  and 

. By applying Equation (2) to group of soft real-
time tasks, we have    and by 

applying Eq. (3), we get
. Using this weight value we can verify the share of each 

soft real-time task by applying Equation (1): 
 and  

and  and

. 

4 Implementation 
 We have implemented a prototype of the proposed 
scheme on Linux kernel 3.18.3 using control groups 
(cgroups). Cgroups provide a mechanism to aggregate or 
partition tasks into hierarchical groups categorized by their 
peculiar behavior primarily for the purpose of efficient 
resource management among tasks.  

 To exploit the benefits of cgroups and to efficiently 
manage CPU resources we implemented the absolute 
bandwidth allocation scheduling using CPU subsystem of 
cgroups.  However, we add two new parameters to the 
existing CPU subsystem. The first parameter cpu.softRT is 
used to classify each task on the system as a soft real-time or 
best effort task. The other parameter cpu.absoluteBW is 
implemented as a structure and indicates absolute bandwidth 
requirement of each task in a group.  

 In order to provide absolute bandwidth allocation to soft 
real-time tasks we implemented dynamic weight management 
for groups on top of the existing Linux’s completely fair 
scheduler (CFS) [8]. Our addition of parameters in CPU 
subsystem of cgroups and the process of dynamic weight 
management does not modify the existing kernel 
implementation and has no impact on the existing system if 
newly defined parameters are not used. 

5 Experimental Evaluation 
 We evaluated the effectiveness and correctness of the 
implementation of absolute bandwidth scheduling scheme by 
conducting a series of experiments. These experiments were 
performed on an Intel Core i5-4690 CPU which has four 
cores with 3.50 GHz maximum speed, running on Linux 
3.18.3. Each set of experiments was conducted 10 times to 
ensure that the experiments and their results are repeatable.  

 In the first set of experiments, we observed the CPU 
utilization of soft real-time tasks under varying workload 
conditions. We used four target tasks   
with absolute bandwidth requirement 

 at 3.5 GHz. Each task used 
in this experiment is a busy-waiting task which consumes  
100% of CPU utilization when executed alone on a processor. 
Each processor was running on its maximum speed. We 
started adding new best efforts tasks at 1000 millisecond and 
noticed that the actual CPU utilization of target tasks is 
maintained to their demanded absolute bandwidth even 
though the number of running best efforts tasks on each CPU 
was dynamically changing. Notice that since the processors 
are running on their maximum frequency hence the actual 
CPU utilization and the absolute bandwidth utilization 
demanded by tasks is same. Figure 3 shows that actual 
utilization of target soft real-time task is maintained around 
absolute bandwidth even though the number of tasks varies 
dynamically. 

 

 
 

 In the second set of experiments, we observed the CPU 
utilization and job completion time of target soft real-time 
tasks under the assumption of varying CPU speeds. We 
created four soft real-time tasks   with 
absolute bandwidth requirement 

 at 3.5 GHz. Each task was 

Figure 3. CPU utilization of soft real-time tasks, number 
of running tasks in the proposed scheme 
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added to a separate group destined to schedule on a particular 
CPU using processor affinity. To simulate that two of the 
CPUs, CPU1 and CPU3 are running at slower speeds, we 
used a value of loop counter inversely proportional to the 
desired frequency in the busy-waiting loop of soft real-time 
tasks, such that the current frequency of CPU1 and CPU4 is 
3.5 GHz and 1.75 GHz for CPU1 and CPU3. 

 Table 1 shows that for CPU1 and CPU3, the actual 
utilization of soft real-time tasks at simulated current 
frequency is increased as a result of applying Equation (2). 
We then used this utilization value to recalculate the weights 
of the soft real-time task groups scheduled at CPU1 and 
CPU3 to maintain their initial absolute bandwidth request.  
The last row in Table 1 shows the relationship between the 
absolute bandwidth requirement and job-completion time of 
each task; for a given operating frequency, the smaller the 
absolute bandwidth request the longer it takes to complete the 
task.  

 

6 Conclusions 
 In this paper, we have presented an absolute bandwidth 
scheduling scheme which guarantees absolute bandwidth for 
a soft real-time tasks and proportional bandwidth allocation to 
best effort tasks. We implemented absolute bandwidth 
scheduling using the notion of group-based scheduling and by 
dynamically changing the weights of groups of soft real-time 
tasks on top of the existing Linux CFS scheduler. We 
demonstrated with our experiments that the soft real-time 
tasks maintain their required absolute bandwidth when more 
tasks were added on the system and even when the current 
speed of the underlying CPUs was changed.  
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ABSTRACT 
Warehouse operational costs are heavily influenced by the 
efficiency in which workers are able to traverse the 
warehouse and gather items on orders around the 
warehouse that must be shipped to customers; this action 
accounts for over 50% of warehouse operations expenses. 
The act of traversing the warehouse is greatly optimized 
by following a designated pick path; however, algorithms 
for pick path generation are complex and heavily 
unexplored by the industry. Generating pick paths 
involves solving two common place graph theory 
problems: the shortest path problem and the traveling 
salesperson problem. We will analyze algorithms used for 
solving both of these problems and discuss the feasibility 
of generating pick paths through the use of the algorithms. 
We also introduce a simplified implementation to 
illustrate the viability of the described approaches. 
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Warehouse Pick Path Optimization, Traveling 
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1. Introduction 
 
A common goal of nearly all businesses is to reduce man-
hours and increase the overall profit margin of the 
business. In warehouse related businesses, optimizing the 
efficiency of order picking can lend itself to great 
reductions in the time it takes orders to ship out, as well 
as, improving the overall effectiveness of its workers. Of 
all costs associated with warehouse operations, 55-65% of 
the operational funds are allocated towards order picking 
[1] [2], showing the importance of optimizing this phase 
of the warehouse process. 
To better understand the problem at hand, we will now 
describe a common scenario in a warehouse and show 
how order picking fits into the mix. First, a warehouse is 
comprised of 3 primary components: receiving, storage, 
and shipping [2], Receiving is responsible for checking 
things into the warehouse; this is the entryway for all 
items into the warehouse stock. Once items have been 
received, they must be put away and stored. Storage can 
be of any form, although large shelving units, gaylords, 
and/or pallets are traditional options. The storage area of a 
warehouse is quite important and should be well 
organized to create an advantageous environment for 
order pickers. The final area, shipping, is similar to 
receiving. This is the exit for all items leaving the 
warehouse; any items ordered by customers of the 
warehouse must pass through this area before arriving at 

the customer’s location [2]; a customer of the warehouse 
could be larger entities such as the operation of a large 
franchise storage warehouse, or a single customer that is 
ordering products from an online store. 
After understanding the layout of a warehouse, we must 
look at the tasks performed by a warehouse. Nearly all 
activities at a warehouse are centered on receiving orders 
from customers. As an order comes into the warehouse, 
an individual in the warehouse becomes responsible for 
the order; this is the order picker. The order picker is 
responsible for gathering all items on the order from 
around the warehouse, also known as picking, and then 
placing them in the shipping area. Once in shipping, the 
order will be packaged in a box or pallet and shipped to 
the customer. The picking process can be time consuming 
and by far is the biggest operational expense of any 
warehouse [2].  
Picking items for orders is the most costly part of the 
process, because order pickers must traverse the 
warehouse layout to find all items on the order, starting 
and ending in the shipping area; this is a pick path. For 
example, an order picker will print an order from the 
shipping area with 10 items on it. If there is a 20,000 
square foot warehouse, it can be expected to have at least 
500 unique storage locations throughout the warehouse 
defining where items are stored. This means, the order 
picker must determine an efficient route through the 500 
locations to get to the 10 locations identified on the order, 
where any location can be travelled to from any other 
location; we know this because any practical warehouse 
layout will not create any isolated, or pendant, storage 
area. After the order picker has found all 10 items in the 
warehouse, they must then bring the items back to the 
shipping area so the order can be shipped and the order 
picking process can be started fresh. 
Now to analysis this problem in terms of graph theory, 
finding a pick path involves solving two of the most 
common problems in graph theory; the Travelling 
Salesperson Problem (TSP) and the shortest path problem. 
The TSP is the problem of finding the shortest tour 
through n cities that visits every city exactly once, starting 
and ending in the same city [3]. Where in the case of pick 
path optimization, we want to visit every location on the 
order exactly once, generally starting and ending in 
shipping.  
The shortest path/route problem comes in five varieties, 
two of which pertain to the work accomplished by this 
paper. The first being, finding the shortest path between 
some vertex, x, and some other vertex in the graph, y [4]. 
Depending on the implementation and algorithms used to 
optimize warehouse pick paths, this scenario will come 
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into play such as, wanting to make it from some last 
location on the order back to the single shipping location. 
More often, it will be the case where the following 
shortest path is sought: the shortest path between some 
vertex and all others [4]. This is the shortest path most 
often sought during optimized pick path generation, as 
distances between the current vertex and all other 
locations on an order commonly need to be found. 
To summarize the TSP/Shortest Path problem 
encountered when solving the pick path problem: we are 
solving a TSP between all locations on an order; starting 
and ending in the shipping area (which is also defined by 
a vertex). Then as the TSP is being solved, at each 
location we encounter the further difficulty of finding the 
shortest paths between the current node and all remaining 
locations on the order. This occurs because we are solving 
a TSP which assumes a complete graph where all nodes 
are connected with one edge between them; however, this 
is not guaranteed to be the case in the warehouse layout. 
We are guaranteed all locations will be reachable from 
any location in the graph, so we must define the shortest 
path to each of these vertices. After finding these shortest 
paths, we can then treat the problem like a normal TSP, 
where all edges defining the path between nodes are 
treated as one edge with one minimum distance associated 
with it. 
Section 4 of this paper will focus on the algorithms and 
enhancements that can be used to find optimal pick paths 
by solving the TSP and shortest path problem. Section 5 
will offer insight into an implementation for finding an 
optimal pick path. 
 
2. Related Work 
 
There have been hundreds of papers published and dozens 
of algorithms developed around solving the shortest path 
problem alone, as a large number of mathematical 
optimization problems are mathematically equivalent to 
the shortest path problem [4]. In the same respect, the 
TSP has been analyzed by dozens of professions, 
researched to no end, and proved to be a member of the 
NP-Complete problem set, with numerous heuristics 
developed that present polynomial time solutions within a 
fair degree of accuracy [3].  
In contrast, there has been limited research completed 
around warehouse efficiency, and more specifically pick 
path optimization. There is some degree of research 
related to the business operations of warehouses [2]; 
however, there is almost no research related to the 
algorithms required to solve the problems of optimizing 
warehouse operations. This is the gap in research we have 
aimed to fill throughout the course of this paper. 
 
3. Contribution 
 
With an astonishing amount of research in solving 
shortest path problems and the travelling salesperson 
problem, we aim to explore popular algorithms for 

solving these problems, taking a closer look at how each 
algorithm works and the practicality of generating optimal 
pick paths with these algorithms. We will look at the role 
of each algorithm in solving the warehouse pick path 
optimization problem and evaluate the characteristics of 
the algorithm. We will look at the timing complexity of 
these algorithms, as well as, the flaws and potential 
concerns for implementing each algorithm. 
We also introduce a basic implementation used for 
solving the warehouse pick path problem. In this regard, 
we focus on the components of the implementation and 
the improvements that should be made before using the 
algorithm to generate optimized pick paths. 
 
4. Algorithms 
 
There are a plethora of shortest path and TSP algorithms 
available, this section will focus on a handful of popular 
algorithms used for solving these problems. We describe 
each algorithm and the way in which it works. We then 
make mention of its time complexity, closeness to the 
optimum solution, and give a brief analysis on whether 
the algorithm is practical for usage in generating 
optimized pick paths. 
 
4.1 Shortest Path Algorithms 
This section will focus on algorithms used to find the 
shortest path between some vertex and all others in the 
graph; algorithm enhancements will also be considered.  
 
4.1.1 Dijkstra’s 
Dijkstra’s algorithm is used to find the shortest distance 
between some starting vertex and all other vertices in the 
graph [5]. Dijkstra’s algorithm is quite popular for its 
performance, with a worst case performance of 

, where E = number of edges and V = number 
of vertices [3]. The algorithm is also easy to alter so that 
Dijkstra’s will not only return the distance of the shortest 
path to each vertex, but also the path to traverse.  
In pick path optimization, Dijkstra’s is quite useful as it 
can be used at each location to find the shortest distance 
between this location and all remaining locations on the 
order. This is quite practical and is often exactly what we 
need to solve in the process of generating an optimal pick 
path in the midst of solving the TSP portion of the 
problem.  
Section 4.1.3 further elaborates on enhancements that can 
be made to improve Dijkstra’s algorithm. 
 
4.1.2 Floyd’s 
Floyd’s algorithm is used to find the all-pairs shortest 
paths, meaning that in one run Floyd’s can find the 
shortest path between all vertices on a graph [3]. This can 
be seen as extremely advantageous to Dijkstra’s in finding 
pick paths, because the algorithm can be run once before 
solving the TSP end of the problem. By running the 
algorithm once, and storing the result to be referenced 
throughout the solving of the TSP, we are able to greatly 
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reduce the time spent determining the distance between 
the current location and all other locations on the order; 
however, we do not believe Floyd’s will always be more 
efficient than running Dijkstra’s at each location while 
solving the TSP, considering its worst case performance 
is  [5]. 
 
4.1.3 Dijkstra Enhancements 
The reliability, popularity, and speed of Dijkstra’s makes 
it a heavily implemented and researched algorithm, 
especially in the realm of map routing and GPS 
programming. Under this umbrella, there have been 
numerous algorithm enhancements suggested [6]. These 
enhancements can be used to potentially greatly reduce 
the time it takes Dijsktra’s to run.  
 
4.1.3.1 Subgraph Partitioning 
One of the most reasonable enhancements for pick path 
optimization is the idea of partitioning a graph into a 
subgraph, where the subgraph contains a limited number 
of unused/untraversed vertices [7]. For example, if a GPS 
were determining an optimal route from Washington, DC 
to New York City, it would not need to consider any 
vertices in California or Florida, as it is unreasonable to 
traverse that part of the graph when travelling from DC to 
NYC. This has a practical application to the pick path 
problem, as there is no need to look at the south side of 
the warehouse if no locations on an order pertain to that 
portion of the warehouse.  
The holdup with the subgraph concept is the fact that 
there must be an algorithm run to determine what 
subgraph should be looked at and then form that subgraph 
[8]. This can be a costly operation and it  can be difficult 
to predict what vertices should be dropped when 
developing a subgraph of the warehouse per order. It 
seems that in most circumstances, it would be more costly 
to determine what subgraph to send through Dijkstra’s 
rather than simply running Dijkstra’s algorithm on the 
entire graph.   
 
4.1.3.2 Bidriectional Search 
Bidirectional search is an extension of Dijkstra’s 
algorithm specifically targeting a two-node shortest path 
problem, when a starting vertex and target vertex are 
explicitly given [9]. When given these two points it is 
possible to create a mapping for the set of nodes and the 
set of edges such that Dijkstra’s algorithm can be adapted 
to start running from the start vertex and the target vertex 
simultaneously, where each thread will meet in the middle 
of the path, reducing the time taken to find the shortest 
path between two points using Dijkstra’s [9]. 
Bidirectional search initially seems like a practical 
enhancement for solving the pick path problem, although 
after considering the problem this is not the case. 
Dijkstra’s algorithm is run in order to determine the 
shortest distance between the current location node and 
all other locations on the order. The pick path problem 
does not typically involve finding the shortest path 
between the current vertex and one other location vertex 

in the graph, except if there is only one location on the 
order. It may be the case that some warehouses would 
find it advantageous to implement this Dijkstra’s 
enhancement for this special case but, in general, order 
pickers are able to efficiently find their own path to orders 
with less than three locations on them [2]. This 
enhancement is not recommended for use in pick path 
generation algorithms. 
 
4.2 Travelling Salesperson Algorithms 
This section will focus on algorithms used to find an exact 
optimized solution to the TSP, as well as, approximation 
algorithms that offer solutions within some guaranteed 
degree of closeness to the optimal solution. 
 
4.2.1 Exhaustive Search 
The exhaustive search algorithm offers the only 
implementation that can produce the guaranteed shortest 
tour to the TSP every time. This algorithm searches 
through all permutations of tours, computing the distance 
travelled by each; if a new shortest tour is found it is 
stored as such until all possible tours have been checked 
[3]. Exhaustive search will always produce the shortest 
path because it is looking at every possible tour that could 
be taken. This is ideal in terms of a guaranteed shortest 
path; however, the performance of the algorithm is quite 
awful; having a time complexity of  [3] [4]. This is 
not a recommended approach for generating optimized 
pick paths. 
 
4.2.2 Nearest-Neighbor 
The nearest-neighbor algorithm is a very simple algorithm 
to understand and implement. The algorithm starts at 
some random city, travelling to the city closest to the 
current city, until all cities have been visited. Once at the 
final city, come home. This algorithm cannot guarantee 
any degree of accuracy as to how close it will be to the 
optimum solution [3]. For this reason alone, we do not 
recommend using this when generating optimal pick 
paths. 
 
4.2.3 Multifragment-heuristic 
The multifragment-heuristic algorithm works by looking 
at the edges of the graph, rather than vertices. The 
algorithm approaches the problem by creating a 
minimally weighted set of edges that makes each vertex 
in the graph of degree 2 [3].  
The algorithm is as follows: first sort the set of edges by 
their weights and set the shortest distance set of edges to 
empty. Then, for the number of cities in the graph, add the 
shortest edge left in the set to the shortest distance set of 
edges, provided the addition of this edge does not make 
any vertex greater than of degree 2. After the loop has 
been completed, the shortest distance set of edges will 
contain the approximate shortest distance [3] [5]. 
This algorithm generally creates a more optimal result 
than the nearest-neighbor algorithm, but it also does not 
guarantee any degree of accuracy [3]. For this reason, this 
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algorithm is also not an ideal implementation for the pick 
path problem. 
 
4.2.4 Ant Colony Optimization  
For solving the TSP, there are a number of different ant 
colony solution algorithms available, many of which are 
based on genetic algorithms. These algorithms are 
modeled after the natural ability of an ant colony to find 
the shortest path to their food source [10]. When ants 
arrive at decision points in their travels, they have no 
knowledge of what lies ahead of them or what distance 
must be travelled based on their decision. Since the choice 
is random, it can be expected that when presented with 
two directional choices (both ending at the same point), 
half the ants will go right and the other half will go left. 
Eventually, ants will be travelling to-and-from this 
location so ants will be choosing direction when headed 
both directions to-and-from the food source. As the ants 
travel, they release pheromones. After the ants have been 
travelling for a short time, the pheromone will accumulate 
on both paths; eventually the shorter path will have a 
much higher accumulation and this will begin to attract all 
the new ants to this path. Ants are able to discover the 
shortest paths between their food sources by measuring 
the amount of pheromone deposited on each decision path 
[10] [12].  
One proposed Ant Colony algorithm for solving the TSP 
is the Ant Colony System (ACS) [10]. The algorithm’s 
primary feature is the use of agents as ants. These ants 
work in a threaded, parallel fashion, simultaneously 
searching for a good solution to the TSP. The ants 
communicate on a global level, as well as, indirect 
communication through pheromone release on the edges. 
Each ant acts independently searching for a solution, 
using pheromones as a form of memory and making 
iterative improvements on its path selection. In the end it 
is proposed that the shortest path can be found by 
examining the pheromones left on each edge and selecting 
the maximal pheromone-weighted edges in order to form 
an optimal solution [10].  
Dorigo presents numerous results of ACS tests in relation 
to other top-notch TSP algorithms [10]. Moreover, ACS 
presents accurate results for both small and large 
problems. The algorithm was able to produce the 
optimum tour in all tours with less than 100 cities in a 
minimal number of runs. For larger travelling salesperson 
problems (198 to 1577 cities), ACS was able to generate 
optimal paths within 3.5% error from the optimum [10]. 
This solution is recommended in terms of accuracy; 
however, it is not a practical implementation for many 
due to its degree of difficulty. 
 
4.2.5 Twice Around the Tree 
The twice-around-the-tree algorithm is a minimum 
spanning tree-based algorithm [3]. These types of 
algorithms leverage the connection between Hamiltonian 
circuits and spanning trees, where a Hamiltonian circuit 
minus one edge produces a spanning tree [3].  

The algorithm works by first constructing a minimum 
spanning tree of the graph. Then, starting at some random 
node, perform a walk around the spanning tree that was 
constructed (using a Depth First Search) and keeping 
track of vertices passed through. Then search the list of 
vertices that was generated; delete all repeats of nodes so 
that each vertex only appears once, except the start/end 
vertex. The start/end vertex should appear at both the 
beginning and end of the list. This produces a 
Hamiltonian circuit that is an approximation for the 
shortest path between all nodes [3].  
This algorithm can be performed in polynomial time, 
although its exact timing depends on the implementation 
of the first step, where a minimum spanning tree is 
constructed. An MST can be constructed using any 
popular algorithm such as Prim’s or Kruskal’s [3] [4].   
Another benefit of this approach is that, it is guaranteed 
that accuracy of the shortest tour generated by this 
algorithm is at most twice as long as the optimum tour.  
This algorithm is recommended based on its guaranteed 
upper bound and the fact that the algorithm is performed 
in polynomial time. 
 
4.2.6 Christofides’ Algorithm 
Christofides’ algorithm works similarly to the twice-
around-the-tree algorithm as it also works with minimum 
spanning trees. Christofides’ utilizes more advanced 
implementations of graph theory to form a guaranteed 
lower cost tour than the previously discussed algorithms 
[3] [4] [5] [11]. 
Christofides’ first creates a minimal spanning tree, T, 
using some known algorithm. Then create a set of all odd 
degree vertices, V. Then find a perfect matching, P, with 
the minimum weight of the graph over the vertices in V. 
This will create a set of minimally weighted edges 
without any common vertices from V. Then, add the 
edges from P and T to form a multigraph, M. A 
multigraph is simply a graph that allows parallel edges. 
Now form an Euler circuit from M, call it E. This will 
produce a circuit that visits every edge once. Now, 
remove edges that visit nodes more than once. This will 
create a Hamiltonian circuit, which as we previously 
defined is a solution to the TSP [3] [5] [11].  
Christofides’ algorithm can be performed in polynomial 
time and produces a minimal tour that is guaranteed to be 
within 1.5 times the optimum tour [11].  
This algorithm is highly recommended for 
implementation in finding an optimal pick path. 
 
5. Code 
 
Throughout the research of this paper, a small case study 
project was developed to show that the algorithms 
described could be implemented to create a usable pick 
path generator. The application is a C# Windows Form 
application that provides the basic implementation to 
create a warehouse layout in the form of a graph, save it, 
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and then use it to generate an optimal pick path based on a 
handful of algorithms described above. 
The initial step to use this application is the process of 
converting a warehouse layout into a graph. We will use 
Figure 5.1 as an example throughout this section. First we 
must define the components of this layout. All whitespace 
in the layout represents aisles in the warehouse that can be 
traversed to travel around the warehouse from location to 
location. The large rectangular gray square in the bottom 
of the layout is the shipping area of the warehouse. As 
described in Section 1, this is typically the start and end 
point of the pick path. All remaining gray squares are 
storage locations in the warehouse such as shelving units 
or pallets. It is also important to note, distances are 
associated with each aisle and the shelving units; this 
comes into play as we move through the transformation of 
the layout into a graph. 

 
Figure 5.1: Warehouse Layout 

 
After we have our layout defined, we can begin the 
process of turning this into a graph that can have 
traditional TSP and shortest path algorithms applied. The 
first step in this transformation is to create vertices at the 
intersection of all aisles, we do this because each aisle is 
an edge and the edges meet at intersections. Then draw 
each aisle as an edge. 
Now, it is time to assign weights, of a uniform unit, to 
each edge. These weights represent the distance from the 
middle of one aisle intersection to the center of the 
neighboring aisle intersection. After assigning weights, it 
is time to randomly and uniquely assign each vertex an 
ID. This is done so that the user is able to interact with the 
Windows Form application, because the vertex ID 
correlates to an application vertex name. With that said, 
the application presents nodes to the user in the naming 
convention of “v1” to “vMax#Vertices”, so for the sake of 
simplicity, we will name our layout graph vertices as 
such. After completing the process defined above, a graph 

similar to Figure 5.2 is developed. Note we must also 
select a vertex to represent the shipping area at this time. 

 
Figure 5.2 Warehouse Layout Graph 

 
It can be seen that the red dots represent our vertices; the 
blue represents the identities of our vertices. We see we 
have a total of 36 vertices in our layout. Next, create all of 
the edges and place the weight along each edge in green. 
It is recommended that a thorough comparison of Figure 
5.1 and Figure 5.2 be done to clearly see the figures 
represent the same warehouse layout. The entire reason 
for drawing this graph layout is to prepare all metadata 
that is collected by the application; planning and creating 
this image representation helps to reduce data entry errors 
and greatly reduce the time taken to turn the layout into a 
graph theory applicable problem. After our graph and its 
metadata are complete, we can begin using the 
application. 
At this point it is important to note that this graph is a 
representation of the warehouse layout that will allow us 
to traverse from any aisle intersection to any other aisle 
intersection in the warehouse. This is different from the 
pick path problem, as the pick path problem travels from 
storage location to storage location. We eliminated the 
location vertices from our graph, as the same algorithms 
and processes apply to a graph going from aisle 
intersection to aisle intersection as a graph traversing 
location to location. This is true, because locations are 
found in our storage units. Our storage units are 
represented by the edges in our graph (see Figure 5.2). 
This means if we want to work with locations, rather than 
aisle intersections, we turn one aisle edge into multiple 
location edges. For example, if (from Figure 5.2) the 
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storage unit between v18 and v27 contained 5 locations, 
we would add 5 vertices to the one edge of length 24. 
These 5 locations would then be joined by smaller-
portioned edges whose sum would add up to the original 
length of 24. This shows that by performing our analysis 
on the graph of aisle intersections, we are able to create 
simplified tests with fewer vertices without loss of 
generality for locations. As an example of a complete 
location graph see Figure 5.3; it shows pink dots that 
represent each location. It is easy to see that this graph has 
the same properties as Figure 5.2.  

 
Figure 5.3 Layout Graph with Location Vertices 

 
Now we must enter the graph from Figure 5.2 into the C# 
application. After launching the application, we first enter 
the number of vertices and select “Create Graph”, see 
Figure 5.4. 

 
Figure 5.4 Create Graph with Number of Vertices 

 
After selecting “Create Graph”, the application 
dynamically generates a form that is essentially an 
adjacency matrix. Each cell of the matrix has two input 
cells, we enter the distance between the vertices in the 
first input cell, ignoring the second. To fill this adjacency 
matrix form, we translate the metadata from our drawn 
layout graph in Figure 5.2 to the adjacency matrix, 
entering the distance weight for each edge as in Figure 
5.5.  

 
Figure 5.5 Fill Adjacency Matrix 

 
After entering all of the metadata from the graph, we need 
to “Save Graph” so we can use this graph to solve the 
pick path problem from another form. After saving the 
graph, go back to the form from Figure 5.4 and select 
“Load Graph”, select the graph that was just created and 
saved from the prior step. Now, enter the vertex that is the 
shipping area and the list of all vertices to visit as seen in 
Figure 5.6.   

 
Figure 5.6 Find a Tour 

 
After entering all information, select “TSP Find Shortest 
Path”. This generates an optimized pick path for the 
specified vertices using Dijkstra’s algorithm to find the 
closest neighboring vertex to each current vertex as we 
traverse the graph. The application uses the nearest-
neighbor approach for solving the TSP end of the pick 
path problem, and Dijkstra’s algorithm to find the shortest 
paths.  
After the optimal tour has been found using the above 
algorithms, it is displayed to the user. It is important to 
note that this form starts counting vertices at 0, rather than 
1 so all vertex names are decremented by a constant of 1. 
As Figure 5.7 shows, the form displays the vertices in the 
order in which they should be traversed, showing the 
exact path to get to each location as well as the path 
distance. All of these components make it easy to piece 
the tour together and present a usable path to the end 
users. 
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Figure 5.7 Pick Path Tour 

 
This application shows the feasibility of using the 
algorithms described in Section 4 to generate optimized 
pick paths using simple vertex and edge data structures. 
This application does not; however, implement a 
recommended TSP algorithm, as the nearest-neighbor 
approach does not guarantee any degree of accuracy in 
regard to the optimum tour [3]. With a TSP algorithm 
guaranteeing an upper bound, this application would be 
far more reliable and recommended for use. 
In short, we are able to demonstrate the practicality of 
using advanced TSP and shortest path algorithms for 
solving the optimized pick path, although further 
implementation is required to guarantee any degree of 
accuracy.  
 
6. Future Work 
 
It is our goal to implement an optimized pick path finder 
that implements a TSP solution with a guaranteed upper 
bound to the optimum tour. This will involve reworking 
the vertex and edge data structures, as well as storing 
them in a more optimal data structure than a list; 
preferably using a data structure that closely lends itself to 
finding a minimal spanning tree based on the fact that 
many upper bound TSP solutions first find a MST before 
solving the TSP. This will make it more efficient to 
implement algorithms such as Christofides’ or twice-
around-the-tree.  
 
7. Conclusion 
 
In conclusion, pick path optimization is a component of 
warehouse operations with much room for improvement 
in efficiency. To optimize the creation of pick paths, 
further research must be done in heuristics for solving the 
travelling salesperson problem with tight upper bound 
guarantees. The algorithms analyzed in this paper are 
capable of generating pick paths, although to guarantee 
any degree of accuracy to the optimum pick path tour, 
more advanced and complicated algorithms must be 
implemented such as Christofides’ or  twice-around-the-
tree. With the implementation of these algorithms, 
optimal pick paths can be reliably generated and used for 
directing order pickers.  
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Abstract – In proportional share scheduling, the different 
performances of CPUs can make running tasks unfair during 
a period. To make them fair in a system, we present a 
proportional share scheduling employing performance-aware 
virtual time (PVT) maintained globally. This PVT is the share 
of CPU time received by a task and increases at a rate 
proportional to the performance of CPU where the task is 
running on and inversely proportional to the weight of the task. 
The schedulers of CPUs, when they assign CPU time to a task, 
utilize PVT to make a decision which task and how long it 
should preempt CPU to minimize the difference of PVTs 
among tasks. We evaluated our approach experimentally on 
general purpose operating system in the homogeneous and 
heterogeneous multiprocessor (HMP) systems. On both 
systems, the results show the significant improvement that is 
near-perfect (around 99% better) fairness in the homogeneous 
multiprocessor system and much better (more than 60% better) 
in the HMP system. 

Keywords: Proportional share scheduler, virtual time, 
performance-aware, heterogeneous multiprocessor, fairness. 
 

 

1 Introduction 
Proportional share scheduling which provides 

abstractions for multiplexing resources among tasks allocates 
resources to a task proportional to its weight to guarantee the 
weighted fairness in a system. Unfortunately, generally this 
fairness cannot be completely achieved in practice because 
infinitesimal CPU quanta are required in theory. To minimize 
the difference of CPU time between a task ideally needed in 
theory and actually received, previous works have introduced 
various approaches such as [3] and [12]. These approaches, 
however, do not consider that the unfairness among tasks can 
arise also by the different performance of CPUs. In practice, 
the unfairness arises in the homogeneous multiprocessor 
system which has CPUs of different frequencies like x86-
based, and it is more obvious in case of heterogeneous 
multiprocessor (HMP) systems.  

The HMP system such as ARM big.LITTLE processor 
was introduced to make an energy-aware scheduling possible 
by processing tasks on the core of less energy consumed. In 
such a system, since each CPU has different capacity and 

frequency, unless schedulers consider the performance of 
CPUs, the unfairness could be amplified and more frequent 
than the homogeneous. Nevertheless, in HMP related works, 
most focus is on the performance optimization, energy-saving 
and showing the benefit of them [6]-[8], while not much 
effort is being given to guarantee the fairness among tasks. 

The fairness among tasks is significantly important 
factor to guarantee quality-of-service (QoS) of multi-program 
workloads [9], [10]. For example, applications such as 
immersive virtual environments and interactive multi-media 
can lead to unpredictable and undesirable result because they 
require real-time computation and communication services 
from the operating system on the assumption that all tasks 
make equal progress on CPUs. Yet, this expectation cannot 
be guaranteed in the case of that a task running on a big core 
(or the higher frequency of CPU) works more than the other 
on a small core (or the lower frequency of CPU). In this case, 
finally, the difference of work done among tasks should be 
minimized with the consideration about the performance of 
CPUs to guarantee QoS based on the fairness. 

To achieve this goal with considering about the 
frequency and capacity of CPUs as major factors of the 
performance, we present a proportional share scheduling 
employing performance-aware virtual time (PVT). PVT, a 
virtual time of a task maintained in a system widely, 
increases at a rate proportional to the performance of CPU 
where the task is running on and inversely proportional to the 
weight of the task based on CPU time received by the task. 
This PVT makes the unfairness among tasks traceable 
relatively, and schedulers utilize it when they assign CPU 
time to a task. By leveraging existing proportional share 
scheduler employing PVT, this work provides near-perfect 
fairness (more than 99%) in the homogeneous multiprocessor 
system and much better fairness (more than 60%) in the HMP 
system than the previous one. 

The remainder of this paper is composed of several 
sections as follows. Section 2 describes an existing 
proportional share scheduling and its limitation, and Section 3 
introduces PVT and how to utilize it in a system. In section 4, 
we show substantially improved results based on the 
completely fair scheduler (CFS) employing PVT in Linux as 
a representative fair scheduler in practice. Section 5 
concludes this paper with the consideration of future works. 
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2 Proportional Share Scheduler and 
Limitation 
 Proportional share scheduling which is able to provide 

abstractions for multiplexing resources among tasks is 
allocating resources to a task proportional to its weight to 
guarantee weighted fairness in a system [1]. Proportional 
share resource allocation is ideally generalized processor 
sharing (GPS) scheme [2]. A fluid-style resource and prefect 
fairness based on an infinitesimal fluid resource model are 
assumed, but actual system cannot provide resource 
infinitesimally in practice. Therefore, approximate scheduling 
scheme is being proposed like packet by packet GPS (PGPS) 
[4], and weighted fair queuing (WFQ) [2]. Figure 1 shows the 
ideal scheme and quantum-based scheduling which is able to 
be implemented to achieve proportional share scheduling in 
practice [11]. 
 

 

 
 Let  be the weight of task  and  be the set of all 

active tasks at time . The share  of a task  at time  is 
defined as follows. 
 

 

 
The share  is changeable in runtime because the number 
of tasks in a system can be changed dynamically. For 
example, if a new task is initialized, the total weight  
is increased and the share  of task  is decreased on the 
contrary. Therefore, a proportional share scheduler only 
guarantees a relative share of CPU time according to the total 
weight changes.  

To measure the difference of CPU time received by a 
task between the ideally needed and the actually received, 
virtual-time domain [1] can be utilized. In this domain, the 
virtual time is the share of CPU time received by a task. The 
share of CPU time is allocated to a task proportional to the 
weight of the task. Therefore, the virtual time can be 
computed as follows. 
 

 

 
Let  be the CPU time assigned to task by time t, and 
let  be the set of all tasks active at time . Because the 
virtual time increases at a rate proportional to the sum of 

weights of all tasks, if the total sum of weights increases, the 
virtual time of  increases faster and vice versa.  

Additionally, the lag is defined as the ideal CPU time 
which should be assigned to a task by subtracting the actual 
CPU time received by a task. Suppose that task  is active 
and have a fixed weight in the interval . Let  
denotes the CPU time received by the task  in  under a 
certain scheduling scheme A, and  denotes the 
CPU time under the Generalized Processor Sharing (GPS) 
scheme; an idealized scheduling model which achieves 
perfect fairness. The lag of task τ at time  ( , for 
any interval , is formally defined as 
 

 
 

However, in the case of proportional share schedulers 
based on partitioned scheduling, they have each run queue 
individually and try to guarantee the fairness with the 
consideration about the weights of tasks only within the run 
queue where the scheduler involved in. Although this 
approach has no problem in a system which has the same 
performance of CPUs, it can incur a problem in a system 
which has different performance of CPUs. In such a system, 
as well as the sum of weights of tasks on each CPU, the 
performance of each CPU can be different by the dynamic 
frequency changes or the static capacity of processors. 

In case of the different frequency of CPUs, for example, 
consider four tasks  and  which have the same 
weight value 100 individually on the dual-core processor 
which has CPUs 1 and 2. The frequency of CPU 1 is 1 GHz 
while it of CPU 2 is 2 GHz. They can operate as following 
scenarios. 
 

1. Four tasks  and  start simultaneously at time 0 
2. Execute  and  in CPU 1,  and  in CPU 2 during 

2 sec 
a.  moved to CPU 2 without delay 
b.  moved to CPU 1 without delay 

3. Execute  and  in CPU 1,  and  in CPU 2 during 
2 sec 
a.  moved to CPU 2 without delay 
b.  moved to CPU 1 without delay 

4. Execute  and  in CPU 1,  and  in CPU 2 during 
2 sec 

 
In this case, all of tasks can receive the same amount of CPU 
time; however, at the point of the amount of work done, it can 
be totally different result. If we consider the performance of 
CPUs, according to the proportion of performance of each 
CPU, we can describe the relative ratio of the amount of work 
done by each task based on CPU time like follows. The  
processed  of work in CPU 1,  processed 

 and  processed  in 
both CPUs while the  processed  
in CPU 2. Finally, the amount of work done by each task is in 
the order of . If the length of execution 

Figure 1. Proportional share scheduling. 
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time at the scenario 2, 3, and 4 could be manipulated properly, 
 and  can be fair while  is of the least work done and  

is of the most. Even though the total sum of weights in each 
CPU during execution is absolutely balanced, the result of 
work done among tasks can be totally different by the 
performance of CPUs and it eventually leads tasks to the 
unfairness. Finally to guarantee the fairness among tasks in a 
system, as well as the sum of weight of tasks, the 
performance of CPUs should be considered together.  

3 Performance-aware Virtual Time 
 In this section, we propose performance-aware virtual 

time (PVT) where the performance of CPU is defined using 
two major factors: frequency and capacity. PVT, as a virtual 
time of a task maintained globally, increases at a rate 
proportional to the performance of CPU where the task is 
running on and inversely proportional to the weight of the 
task based on CPU time received by the task. Additionally, 
we utilize PVT to monitor the fairness measure in a system. 
Basically our approach considers both systems homogeneous 
and heterogeneous multiprocessor (HMP), and each CPU 
individually has a dynamic voltage and frequency scaling 
(DVFS) which is efficient technology for dynamic power 
management (DPM). Therefore, PVT of task of weight  
in CPU P is calculated as follows. 
 

 

 
Let  and  be the maximum weight of a task and 
CPU frequency acceptable in a system, and  be 
the total amount of frequencies by time , and  ( ) 
is a constant value of CPU P which indicates the relative ratio 
of the performance among CPUs from the fastest ( ). 
This constant value can be determined depending upon the 
types of tasks running on a system based on the results of 
various benchmarks or some specific metrics reported by chip 
vendors also.  

Additionally, if we scale  and  as a same value 
to reduce a fraction, we finally can simplify equation as 
follows. 
 

 

 
All tasks in a system have their own PVT values. By utilizing 
these values, we are able to monitor the change of fairness in 
a system by the changes of results of periodic repeating 
follows.  
 

 

 
The maximum result of  should be maintained as 
a similar level. This means eventually that the results are 

always bounded into the specific value, and the level of 
fairness measure is being maintained in a system.  

The difference (lag) of CPU time received by the task  
between the ideally needed and the actually received by time t 
based on the performance of CPU P can be derived as follows. 
 

 

 
Let n be the number of CPUs in a system. When  is 
greater than zero,  received less time than the time ideally 
needed, and in case of zero the time was ideally received and 
the more time received in the other case; however, operating 
system cannot reclaim CPU time from a task that has already 
received. Therefore, we utilize PVT to find a task with the 
lower PVT and give more CPU time prior to the tasks with 
higher PVT in a system to minimize the difference of PVTs. 

 In case of a I/O intensive task or a task of starting, its 
PVT is revised exceptionally because PVT of a task out of 
run queue can be maintained as the lowest without system 
progression applied when they are coming back to run queue 
again. To make a decision of revision needed or not, we 
classifies two groups of tasks according to the state transition 
of task. In case of task transition between ready and running, 
tasks should be revised, and the other cases except for the 
first are not revised. Therefore, PVTs of I/O tasks of the latter 
case need to be revised by subtracting as much time as 
system progressed during being out of run queue. Finally 
PVTs of the tasks is revised to keep the previous position in a 
system widely as  
 

 

 
The I/O intensive task  is out from the run queue of CPU P 
at time  and inserted into the run queue of CPU  at time . 
In this case, the minimum PVT of each time  and  is 
subtracted and added to keep the previous level of fairness 
position in a system.  

4 Experimental Evaluation 
 Completely fair scheduler (CFS) is the most popular and 
the first fair scheduler applied to the general purpose 
operating system while the other operating systems like 
Windows and Linux of earlier version (before the version of 
2.6.23) are providing round-robin scheduling. By these 
reasons, to achieve our goal, we utilized existing CFS in 
Linux (after the version of 2.6.23) to employ performance-
aware virtual time (PVT). PVT of each task was also utilized 
to monitor the fairness measure in a system. To evaluate the 
effectiveness of our proposed approach, we considered two 
different environments both homogeneous multiprocessor 
system and heterogeneous multiprocessor (HMP) system. The 
characteristics of these are shown in Tables 1 and 2. 
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Hardware 
CPU Intel i7-4770 3.4 GHz Dual 

processor 
RAM 4 GB DDR3 SDRAM 

Software Operating 
System 

Ubuntu 14.04 (on VMWare), 
Linux Kernel Version : 3.18.2 

 

 

Hardware CPU Samsung Exynos5 Octa 
big.LITTLE processor 

RAM 2 GB LPDDR3 RAM 

Software Operating 
System 

Android 4.4.4 Kit Kat, 
Linux Kernel Version : 3.10.9 

 
To evaluate the fairness among tasks between operating 

systems the original version and the version of PVT employed 
in the system Table 1, we created simple application whose 
performance is mostly proportional to the frequency of CPU 
to make  simply be 1 in all CPUs. The execution time of 
each instance was compared to measure the fairness among 
tasks. This application just repeats infinite loop simply and 
print out the cumulative average time consumed at every 2.5 
billionth loop. This cumulative average execution time was 
approximately 1.3 sec in practice. Three instances of the 
application were executed concurrently in the system shown 
in Table 1, and we got the results 10 times per 1 min from the 
original version and our version of PVT applied in Linux 
kernel 3.18.2.  

Even though there is not a significant difference in the 
execution of three instances evaluated on the homogeneous 
dual-core processor, as depicted in Figure 2, the different 
execution time of tasks arises and being kept consistently. 
Interestingly, this experiment was evaluated in the one of 
most popular general purpose operating system and processors 
even though the type of application was not very common. 
 

 

 

 

 
CFS employing PVT in the version of inux kernel 3.18.2 
achieves near-perfect fairness among three tasks on the 
homogeneous dual-core processor as depicted in Figure 3 
while the unfairness arises obviously in Figure 2. When the 
time  is 100, Figure 4 shows that  of three tasks 
is bounded in 3 sec (of PVT) approximately. 
 

 

 
In case of the system in Table 2, we created a similar 

application, but the number of loop operation was changed to 
1 million, and a sleep code for 5ms was inserted after printing 
out (per about 850ms in practice) to simulate the effects of I/O 
operation together. Twelve instances of this application were 
created and executed concurrently, and we gathered the results 
10 times per 1 min.  
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Table 1. homogeneous multiprocessor environment 

Table 2. heterogeneous multiprocessor environment 

Figure 2. cumulative average time of cycles             
on Ubuntu 14.04 LTS of kernel 3.18.2 

Figure 3. cumulative average time of cycles after PVT applied 

Figure 4. Periodic repeats of MaxDiff(t) of 3 tasks in the 
homogeneous during 100 sec 

Figure 5. Cumulative average time of cycles            
on Android KitKat of  kernel 3.10.9 

Int'l Conf. Foundations of Computer Science |  FCS'15  | 73



 

 
Figure 5 shows the results when we measure the 

cumulative average time of each task using the existing kernel. 
There is a lot of variation among the execution times of tasks 
even though all tasks are identical. In Figure 6, when 
compared to Figure 5, the cumulative average time values of 
the twelve tasks are more narrowed down. Based on the 
results, the maximum deviation of the cumulative average 
time can be shown as Figure 7. 
 

 

 
Figure 7 shows that PVT applied kernel guarantees the 
fairness among tasks by giving at least 60% better than the 
original kernel in HMP system. During 600 sec,  
of the twelve tasks are bounded into 5 sec as shown in Figure 
8.  
 

 

 

Additionally, according to the each result of , the 
fairness among three tasks in the homogeneous is being 
guaranteed better than it of twelve tasks in the heterogeneous 
as described above results. 

5 Conclusion 
In this paper, we proposed a proportional share 

scheduling employing performance-aware virtual time (PVT) 
to guarantee and measure the fairness among tasks in a 
system. The proposed approach leads the fairness to the 
significantly improved than previous systems. We also 
introduced how to monitor the fairness by utilizing PVT to 
compare the level of fairness measure in a system. 

Additionally, if we consider the remaining 40% in the 
results of HMP system, there could be more factors such as 
the number of heterogeneous CPUs and migration, the type of 
tasks, miss-rate of cache, the policy of load balancer and so 
forth which may affect the fairness of tasks in a system. As a 
future goal, we plan to focus on the relationship between 
these factors and the fairness guarantees. As a future work, 
we also intend to determine the capacity of CPU which can 
affect the fairness measure. 
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Abstract— The aim of this study is the analysis of some
concepts of Computer Science in the light of Peircean
semiotics taken as a cognitive theory. Based on the main
principles of Peirce’s Phenomenology, it is possible to point
out new ways and approaches to a wide range of subjects,
that may go from Artificial Intelligence to Programming.
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1. Introduction
In 2011 Mihai Nadin [1] stated what seems to be common

sense among semioticians: semiotics is relevant to Computer

Science. He then further asks: why do computer scientists,

with few exceptions, continue to ignore semiotics? His rich

analysis presents some causes, among them a superficial

knowledge of semiotics. In the following pages I will outline

an account of what could result from the use of a Peircean

approach to Computer Science. The paper starts with a brief

introduction of Peirce’s semiotics and concepts then proceed

to an explanation of some elements that are part of Computer

Science in a Peircean perspective1.

2. Peircean Semiotics – some essentials
According to Lucia Santaella [3], Peircean semiotics is a

sign-based cognitive theory. Peirce says that “all thinking is

conducted in signs” (CP 6.338, 1909), therefore it is natural

that the science that studies signs also studies thoughts.

It is impossible to give a complete exposition of Peircean

semiotics —or cognitive theory, as it might be called—

in this article, so I will try to expose the concepts that

are most interesting for Computer Science in a way that,

albeit incomplete, I believe is more appropriate for computer

scientists.

2.1 Cartesian ⊂ Peircean
One important thing to keep in mind when we are talking

about the Peircean cognitive theory is that it differs from the

“usual” Cartesian dualist theory of cognition. Peirce strongly

disagrees with some Cartesian principles and conclusions.

But although he dismisses the Cartesian philosophy, he does

not dismiss logic thinking, but gives it an increased range:

Peircean semiotics gives us the tools that are supposed to

1Citations to the Collected Papers [2] are made within parenthesis in the
form “CP V.P, YYYY”, where V stands for the volume, P for the paragraph
number and YYYY for the year the text was probably written.

explain thinking (among other things). Peirce’s theory of

cognition should explain not only Cartesian dualist thinking,

but also its tools. There is no need to abandon the clarity and

precision that characterizes Cartesian thought: it is enough to

disregard a conclusion as true only because it is clear, precise

and derives from indubitable premises —it should also, for

instance, be verifiable, otherwise one may accept beliefs that

one is incapable of doubting but which are, nevertheless,

false.

One of the most interesting consequences of the rejection

of Cartesian dualism for computer scientists is that this

position eliminates the separation between mind and matter,

as Descartes postulates it in his Discourse on the Method
[4]. This is important because it allows us to place the phe-

nomena of semiosis —and thinking is a form of semiosis—

anywhere inside or outside our minds. Thus it is possible

to talk about such things as machine semiosis, disembodied

(or embodied) thoughts, and compare the various forms of

semiosis on a common ground.

The rejection of the dualism between mind and matter

reflects, according to Peirce, the fact that we, and our minds,

are consequences of natural evolution, and therefore cannot

present phenomena that do not already exist in nature. What

happens in our minds must also happen elsewhere. But

Peirce is also strongly opposed to any form of dualism;

he postulates the theory of Synechism, according to which

all that exists is continuous (cf., e.g. CP 1.172, 1897) —

which includes the continuity between mind and matter.

His thoughts are founded on a coherent philosophy that

begins with his Phenomenology; we will start with the

Peircean categories, but let us first remember that, opposed

to the Cartesian method —where complex thoughts may be

decomposed in simpler ones in order to be apprehended—,

these complex concepts loose much of their meaning if we

try to simplify them by decomposing them.

2.2 The Peircean categories
Here are Peirce’s views about the role of the categories

in his own words: “I essay an analysis of what appears

in the world. It is not metaphysics that we are dealing

with: only logic. Therefore, we do not ask what really is,

but only what appears to everyone of us in every minute

of our lives. I analyze experience, which is the cognitive

resultant of our past lives, and find in it three elements. I call

them Categories” (CP 2.84, 1902). And they are only three,

constituting all that there is in consciousness (CP 1.382,
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1890). Peirce called them firstness, secondness and thirdness.

Following one of Peirce’s presentation of his categories (CP

2.79-118, 1902: Partial Synopsis of a Proposed Work in
Logic), let us begin with the one that seems easiest from

the Cartesian background.

2.2.1 Secondness
In order to characterize secondness, Peirce used words

such as binarity, brute force (CP 2.84, 1902), struggle
(CP 1.322, 1903, CP 5.45, 1903), obsistence, “suggesting

obviate, object, obstinate, obstacle, insistence, resistance”

(CP 2.89, 1902). We can easily identify secondness on

whatever resists to us in a way that does not depend on

argumentation. Just like most of the immaterial world around

us: it persists, no matter what. This is typical secondness.

But it is not restricted to the so-called “existent” objects. If

you imagine a fictitious creature, say a dragon; imagine its

color. No matter what happens, the color you just imagined

will not change —although you could have imagined any

other color, and in spite of the fact that you can “change”

the color of the dragon just imagined, once the first dragon’s

color has been thought its memory will remain and cannot

be changed by your effort: this is also secondness. Another

example is the duality husband-wife: it is the husband that

makes the wife a wife, and the wife that makes the husband

a husband. So there is a form of reaction beyond the binary

form husband-wife. This is also secondness.
If we think about the computer as a real world device that

follows the laws of Physics and behaves according to the set

of electrical signals inside it that we call “bits”, then we have

a behavior that is prominently determined by secondness. It

is exactly the same when we think about an imaginary device

such as a Turing machine: its behavior, albeit imaginary, is

primarily determined by phenomena of secondness. And the

imaginary machine has a much more predictable behavior

than the real one since it is not composed of parts that may

malfunction.
Secondness always involves two elements, two relata,

which unavoidably impose themselves on each other. When

we “feel” secondness, it is because we are one of these relata.

Almost everything that is “evident”, “precise”, “clear” in a

Cartesian sense —even deductive ratiocination—, constitutes

or at least embeds a phenomenon that presents secondness.

A good remark that could be made now is: since there are

two more categories, it means that whatever is not “evident”

in a Cartesian sense can be so in two different ways. It is

possible to start thinking about it knowing that the names of

the categories are related to the number of related elements

in them.

2.2.2 Firstness
The question is: what is it that does not relate to any

other thing? Can it in any form be cognized? It cannot be

properly thought, although we could infer how it is like.

Peirce take as an example “what could appear as being in

the present instant were it utterly cut off from past and

future” and further speculates: “there might be a sort of

consciousness, or feeling, with no self; and this feeling might

have its tone” (CP 2.85, 1902). There could be no action,

and no binarity, neither continuity nor synthesis. He also

refuses to call it unity, since unity presupposes plurality. It

is what he calls “Firstness, Orience or Originality” (CP 2.85,

1902): whatever is without a reason or compulsion. It should

not be confounded with perception —see [3]. According to

Santaella, perception is a complex phenomenon that involves

the three Peircean categories. Roughly speaking, when we

perceive there is a sort of novelty present in it —and this

is the firstness component— but as soon as whatever is

perceived does not evanesce a strong secondness component

arises; thirdness will appear only in perceptual judgment.

In a general way, secondness contains a component of

firstness, but the opposite is not true. Firstness should not

also be confounded with the concept of quality. The mere

characterization of a quality presupposes that it presents

itself as secondness, although this also has a strong firstness

component.

It is natural to think that firstness cannot appear in the

realm of computer. But modern equipments have at their

disposal external sources of entropy, such as cameras and

microphones, or more sophisticated devices that generate

streams of truly unpredictable bits. These devices are sources

of manageable firstness that can be used with very interesting

consequences.

An interesting realm to study firstness is the one of mental

phenomena. The most interesting cases in which it appears

are (1) when we are considering possibilities —which are

a form of firstness—, (2) when we are observing mental

diagrams —here firstness appears in the observation itself,

for it allows us to find things in the diagram that were

not used in its construction— and (3) when we create new

hypotheses in what Peirce called abductive reasoning.

2.2.3 Thirdness
Peirce himself pointed out the apparent adequacy of these

two categories to describe the facts of experience (CP 1.359,

1890), but they are not, in fact, sufficient. The concept of

thirdness is essential, according to Peirce, to complement

the other two and explain all that appears to the mind. It

relates three elements, but this relation is not —although it

can be in some cases— determined by brute force, or by a

blind causal relation (secondness), or by chance (firstness).

In a brilliant explanation (CP 2.86, 1902), Peirce uses the

fact that the future affects us in mental forms, intentions and

expectations, but it does not do so directly, for it does not

exist yet: this is an example of thirdness.

A phenomenon of prominent thirdness in computers is

related not to what happens after the bits that will be

“run” are put in place, but before it: to define what people
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want the computer to do, or the intention behind the use

of the computer, is such a case. Some important ideas —

according to Peirce (CP 1.340, 1895)— are of prominent

thirdness: generality, infinity, continuity, diffusion, growth,

intelligence. But the easiest is the idea of sign.

2.3 Sign
As just stated above, a sign is an idea of predominant

thirdness. It relates three things: a representamen, which

is sometimes also called sign —in a narrower sense—, an

object and an interpretant. In Peirce’s words: “A Sign, or

Representamen, is a First which stands in such a genuine

triadic relation to a Second, called its Object, as to be capable

of determining a Third, called its Interpretant, to assume the

same triadic relation to its Object in which it stands itself

to the same Object. The triadic relation is genuine, that is

its three members are bound together by it in a way that

does not consist in any complexus of dyadic relations” (CP

2.274, 1903). And now we have to take the utmost care not

to oversimplify the concept and cause confusion. For we are

used to think about signs as things that work like words,

and tend to think of them as the word being the sign, what

it denotes being its object and the idea it imprints being

the interpretant. Although somehow true, this view of the

phenomenon obliterates its marvelous and useful complexity.

The sign is a triadic relation of which the first element

that appears, when it is functioning as a sign, is the rep-

resentamen (and that is why we also call it ’sign’). The

sign is determined by the object, and the interpretant is the

effect it (the sign) produces. So it is correct to say that the

object causes the interpretant, but this causation is indirect: it

happens mediated by the representamen in a process that is

called semiosis. Let us not loose generality here: first, when

we talk about the effects of a sign —the interpretant— we

are talking about something that is not very well defined

at this moment. We can be talking about the specific effect

of it in a mind at a defined moment, or we can be talking

about all the possible effects that it may produce, or even

about its long-term effect, for instance. Second, when we talk

about a mediated relation between interpretant and object,

let us not forget that it makes the object itself unreachable to

the interpreter —in the cases where there is an interpreter,

usually the mind affected by the interpretant. Of course, there

are different degrees of ‘unreachability’ of the object of the

sign, depending on various factors.

It sounds strange to think of signs being determined by

their objects. We are used to think about words being caused

by their utterers —and it is true, signs are determined by

their objects, although caused by their utterers. The uttering

of a word is an act of semiosis, where the interpretant is the

word uttered, the object is whatever the utterer wants to mean

by this word, and the representamen may be the specific

situation that made the utterer choose this meaning —and

no other—, which in its turn may also be an interpretant

of whatever causes such desire to communicate (signs can

“concatenate” in series of semiosis, possibly generating a

“train of thought”). And this is the first moment we talk

about “communication”, and let it be the last. For when a

paramecium finds a stimulus that makes it move towards a

source of food, it is perfectly clear that the stimulus worked

as a sign —a representamen of the source of food, which

is its object, having the movement as the interpretant. But

there is no “communication”.

One can always argue that in the example above the

paramecium’s movement is caused by a series of phenomena

that are of the nature of secondness, and the paramecium is

not conscious of the sign action. However, consciousness is

not a prerequisite for a triadic mediated relation to take place.

What we need to keep in mind, at least for the moment, is

that the sign is a triadic relation of mediation. This brings

us to the classification of the signs.

2.4 Types of sign
The only complete classification of signs —in ten classes–

that Peirce left us was regarded as incomplete by himself2.

What follows is the minimum necessary to understand some

concepts related to the process of reasoning and, albeit

poorly, the process of semiosis.

The principle of this classification is to classify the three

relata of the sign according to the categories. In Peirce’s

words, “signs are divisible by three trichotomies; first, ac-

cording as the sign in itself is a mere quality [firstness],

is an actual existent [secondness], or is a general law

[thirdness]; secondly, according as the relation of the sign

to its object consists in the sign’s having some character in

itself [firstness], or in some existential relation [secondness]

to that object, or in its relation to an interpretant [thirdness];

thirdly, according as its Interpretant represents it as a sign

of possibility [firstness] or as a sign of fact [secondness] or

a sign of reason [thirdness]” (CP 2.243, 1903). Therefore

there are three trichotomies, depicted in Table 1 that would

give rise to 33 = 27 classes of signs, but since some

of them are impossible, there are only ten of them. It

Table 1: Three thricotomies.

Trichotomy

Category Representamen Object Interpretant

Firstness Qualisign Icon Rheme
Secondness Sinsign Index Dicent
Thirdness Legisign Symbol Argument

happens due to some limitations: a qualisign cannot be an

index, and an icon cannot be a proposition, for instance.

2Peirce wrote a footnote (CP 4.536, 1905) about sixty-six classes of sign
and in a letter to Lady Welby (CP 8.343, 1908) he stated that the analysis
of the classes of the signs implied the analysis of 310, or 59.049 possible
configurations, reason why he left it for “future explorers”.
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For illustration purposes only, the ten possible classes of

sign are depicted in Table 2. There we can see that almost

imperceptible things such as a sensation, and very complex

ones such as arguments are signs. All can be so, according

to Peirce, including ourselves, the people. The fact that

Table 2: Ten classes of sign, adapted from CP 2.254-264

and [5].

Representamen Object Interpretant Example

Qualisign Icon Rheme A sensation of redness
Sinsign Icon Rheme An individual diagram
Sinsign Index Rheme A spontaneous cry
Sinsign Index Dicent A thermometer
Legisign Icon Rheme A traffic sign (“deers”)

in the traffic manual
Legisign Index Rheme A demonstrative pronoun
Legisign Index Dicent A traffic sign on the street
Legisign Symbol Rheme Any substantive
Legisign Symbol Dicent A proposition
Legisign Symbol Argument A syllogism

this classification is universal brings a common basis for

the analysis of complex phenomena, including the different

kinds of inference, derived from the last class of signs

showed above.

2.5 Types of argument
The three kinds of arguments related to Peirce’s categories

(CP 2.96, 1902) are:

• a Deduction is an argument where the facts stated in

the premises are an index of the fact stated in the

conclusion. One example is that if we have a bag full

of balls known to be of the same color and pull one of

them to verify that it is red, it is unavoidable to deduce

that all other balls in the bag are also red.

• an Abduction: here, the facts in the premises present a

similarity with the facts in the conclusion, what does

not regard the later to be true —and what makes the

premises an icon of the conclusion. It is the abductive

ratiocination that allows new hypothesis in science. For

example, if we have a bag full of red balls and we see

a red ball on the floor, we can (abductively) infer that

the ball on the floor came from the bag, which is a

conclusion to be investigated, namely a hypothesis.

• an Induction, in Peirce’s own words, “is an Argument

which sets out from a hypothesis, resulting from a pre-

vious Abduction, and from virtual predictions, drawn

by Deduction, of the results of possible experiments,

and having performed the experiments, concludes that

the hypothesis is true in the measure in which those

predictions are verified. [. . . ] Since the significance of

the facts stated in the premises depends upon their

predictive character, which they could not have had if

the conclusion had not been hypothetically entertained,

they satisfy the definition of a Symbol of the fact stated

in the conclusion” (CP 2.96, 1902). Example: pull a ball

from a bag full of balls. It is red. The second, and the

third, up to the, say, thirtieth are also red. This leads to

the conclusion that all remaining balls in the bag are

red, too.

Nevertheless, Peirce’s thought about reasoning and inference

go far beyond this mere classification.

2.6 Diagrammatic reasoning
Since diagrams are iconic signs whose semiosis is based

on firstness and deductions, including mathematical ones,

are signs based on secondness, we can appreciate the

observational nature of abstraction and mathematical rea-

soning taking Peirce’s own word: “As to that process of

abstraction, it is itself a sort of observation. The faculty

which I call abstractive observation is one which ordinary

people perfectly recognize, but for which the theories of

philosophers sometimes hardly leave room. It is a familiar

experience to every human being to wish for something quite

beyond his present means, and to follow that wish by the

question, ‘Should I wish for that thing just the same, if I

had ample means to gratify it?’ To answer that question, he

searches his heart, and in doing so makes what I term an

abstractive observation. He makes in his imagination a sort

of skeleton diagram, or outline sketch, of himself, considers

what modifications the hypothetical state of things would

require to be made in that picture, and then examines it, that

is, observes what he has imagined, to see whether the same

ardent desire is there to be discerned. By such a process,

which is at bottom very much like mathematical reasoning,

we can reach conclusions as to what would be true of signs

in all cases, so long as the intelligence using them was

scientific” (CP 2.227, 1897).

The complex processes that give rise to conclusions and

scientific evolution can then be observed in the light of

Peircean semiotics. What matters here is that it is possible

to distinguish, in published works in the field of Mathemat-

ics, these two components of diagrammatic reasoning: the

diagram, or diagrams, on which the ratiocination was based,

and the deductions themselves; and this may point some very

interesting consequences.

3. Some Computer Science concepts
We start with the famous decision problem and the solu-

tion given by Turing in [6].

3.1 Computable functions
Turing’s article was one of the first papers that defined

what is now known by effective procedure; it also gave a

solution to the decision problem, proving that it is impos-

sible to have an effective procedure capable of determining

the solution of any effective procedure. The definition of

effective procedure as a procedure that can be performed

by what we call now a Turing machine is well known. The
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Turing machine is in fact the diagram used by Turing in

his deduction; this work is a clear example of diagrammatic

reasoning: it cannot be denied that the paper fully adheres

to Peirce’s considerations about abstractive observation.

But there is an interesting possibility if we take a Peircean

semiotic approach to the decision problem. We have already

seen that the so-called effective procedures presented by

Turing are prominently “secondness-based”: once settled,

a Turing machine follows its way no matter what, blind

move after blind move. This is what makes them predictable,

mathematically describable, in a word: effective. Let us

notice only that it is the constructed effective procedures

that are “secondness-based”, not the process of constructing

such procedures.

The question formulated in the decision problem is if it

is possible to find an effective procedure (let’s call it P)

to decide the results of any effective procedure, including P
itself. Having determined that what characterizes an effective

procedure is the fact that it is secondness-based we can

infer that it is not possible for an effective procedure to

derive conclusions from a diagram if these conclusions are

not present at the construction of the diagram, because

these conclusions would demand some sort of firstness-based

iconic reasoning in order to take place3. In other words, P
cannot decide the results of a procedure whose results can

be derived only by diagrammatic reasoning.

So, in order to use Peircean semiotics to prove that the

decision problem has no solution it is sufficient to prove that

there is at least one effective procedure (let’s call it E) whose

results can be inferred only by diagrammatic reasoning. I

suspect that P has this characteristic, but I leave it open;

it is possible that any procedure that cannot be verified by

trial and error (e.g. a procedure that may show a result for

every input number) and that implements the consequences

of a theorem that can be proved only by contradiction fall

into this category. And this rises the suspicion that Peircean

semiotics may also give a ground for the discussions among

constructive and non-constructive Mathematics.

Of course the proof outlined above, if found, would lack

mathematical validity since a formal mathematical definition

of the concepts outlined is not given. But it seems to

be an interesting field of research. Peirce himself was a

mathematician, and one of his concerns was to find what

he called a theory of the plan of demonstration (CP 5.162,

1903), a task that he seemed to tackle with his existential

graphs, a work that he also left unfinished.

3.2 Computers
We have seen that if everything works well, it seems that

we could consider computers as secondness-based machines,

and we could think about them in terms of computable

3By “present at the construction of the diagram” I mean present in a
“secondness” way, not as an intention, for instance, nor as something that
may be observed in the diagram after, but not before, its construction.

functions —or in terms of “things that can be carried out by

Turing machines”—, which are a prominently secondness-

based form of ratiocination. But real computers are not only

secondness-based machines. What if we take into consid-

eration other categories? We tend to think that computers

have a very well defined behavior —some of us would say

that in fact they perform only computable actions—, and

if we think about computers as the machines depicted by

John von Neumann in his famous 1945 report [7], that are

practical versions of Turing Machines —as Turing himself

stated during a Lecture to the London Mathematical Society

on February, 20th, 1947— we can say that, apart from

some malfunctioning, there should not be a more predictable

machine in the world.

But let us first consider a little the concept of “pre-

dictability”. What is “predictable comportment”? The formal

definition of effective procedure is that of the computable

function, so the outcome of a computable function should

be the most predictable in a predictability scale. But there

are other degrees of predictability. In fact, predictability has

to do with what is habitual or general: it is a phenomenon

of thirdness. And as such, it can be extended to phenomena

that are not composed of secondness only. Take, for instance,

the instruction “throw a die and show the result”. Let’s call

it α. It has a predictable outcome, although not completely

predictable: we know that we will get an integer number

from 1 to 6, with an uniform probability of 1/6 each.

Which number will be the outcome of any particular cast,

no one knows. Nevertheless we can create a machine —

a secondness-based, mechanical one— that can perform α.

We can say that its behavior would be somewhat predictable,

albeit not computable. It is very different from the outcome

of instruction β: “perform one of any possible actions”. It has

completely unpredictable results, and it is hard to imagine a

mechanical device that performs β, whose outcome is neither

computable nor predictable.

Since modern computers, as any real object, presents the

three categories, let us see what happens if we inject some

controllable firstness into them, in the form of a proper

source of entropy. Thanks to this source, it is possible to

write programs that, in spite of the predictability of all its

steps, can have an unpredictable outcome, just as instruction

α. It suffices to take some of the bits of the unpredictable

stream that enters the machine, convert them in, say, integers

from 1 to 6, and show the results. These values will be

fully unpredictable and hence, not computable. And if we

combine this firstness with proper thirdness, in the form

of evil intentions, we can write a program that executes

instruction β: we take same unpredictable bits from the

incoming unpredictable stream, write them in a specific

memory address and order the CPU to execute the instruc-

tion written on that address: we end up with a computer

performing an equivalent to the instruction “perform one of

any possible actions”, a truly non-computable step with truly
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unpredictable outcome.

The only use of this program for now is to show that a

modern computer can be purposely programmed to perform

a non-predictable task. But it also brings attention to the

fact that computers can perform actions that are not of a

prominent secondness. The problem is that we are used to

think about computers with tools of prominent secondness:

computable functions, and it is very difficult to think about

phenomena of firstness and thirdness within the framework

of computable functions. Attaining ourselves to the pre-

dictability of prominent secondness-based tools may give

rise to gaps in the final outcomes.

3.3 Programming
The task of programming is one of those which would

benefit a lot from adopting a framework based on Peircean

semiotic. Computer programs, as they are seen today —

signs evolve with time—, are signs mediating between two

sign systems that are very different of each other. On the

one hand, programs have to fulfill their users expectations.

On the other, they must compile and generate software that

works, free of errors. The problem is that this second task

carries primarily secondness-based semiosis, which may be

very different of the categories needed for the first task.

Programs have to be written in what we call computer lan-

guages. The term “languages” here expresses badly what is

really happening. We expect languages to be able to describe

the world, or, as some may prefer, languages should enable

us to describe the world4. According to Peircean semiotic

scholars (see [8]) natural language is vague by its own

nature, and it is this vagueness that, at the bottom line, allows

them to describe everything, even those things that are yet to

come. There is no such a thing as a “perfect” or “universal”

language, capable of perfectly describe everything, leaving

no room for doubt. Computer languages today are far from

the vagueness of natural languages: they are mathematical

specifications of the valid sequences of a predefined alpha-

bet, created in order to allow the programmers to generate

texts that may be uniquely transformed in a set of “actions”

to be “performed” by a CPU, or as some may prefer, a set

of electrical signals that will act in a defined circuitry —in

a few words, a secondness-based tool.

This resolves some of the difficulties involved in writing

and reading programs in current programming languages:

unless the intentions behind the program can also be de-

scribed as a phenomenon of secondness, the program itself

does not contain what is necessary to express completely

what it is for. Programs within this context do not, and never

will, work like texts in natural language. So, depending on

4There is a very interesting discussion about languages and their limits
in the field of semiotics, but we are not going to enter it here —it suffices
to say that some believe that languages are composed of “signs” that have
“meanings”, forming pairs of “significants” and “signifieds”, which is not
the Peircean view.

the nature of the user’s specifications, there is nothing in

the program itself that allows us to verify whether it fulfills

them. The task of systems development can be seen as the

struggle to conform a general description, that embeds all

three Peircean categories, to programs that cannot be vague

from the machine’s point of view, for the machine itself

cannot deal with firstness or thirdness in a predictable way.

Notice that even when we have at hand both the user’s

specifications, in whichever language, and the program,

nothing written in the program language directly links it

to whatever may be vague in the specification. This fact

may unavoidably detach the final product of the activity of

programming from the reasons that led to it, specially if

these reasons cannot be described in a “secondness” way.

Careful observation of the landscape of computer ac-

tivities might show movements that seem to fulfill this

gap. We can see the desire to surpass the limitations of

“secondness-based” description in concepts like object ori-

entation, development frameworks —instead of development

languages— and gamification, not to mention that these

limitations may explain the CASE tools5 fiasco. There is

also a huge demand to empower common people and enable

them to broaden their control over their now ubiquitous

computers, and this empowerment demands other ways to

control the machine other than a thus limited framework.

Peircean semiotic analysis shows that the solution for the

blindness to the program’s purpose does not lie in the

creation of a new computer language in the same way others

have been constructed. So, the question is now: how to

control computers without using a programming language

that works in a so prominent “secondness” way?

3.4 Artificial Intelligence and beyond
The pursue for what we call Artificial Intelligence stum-

bles in the definition of what intelligence is. It does not

help that Turing had proposed, in [9], a way to check if

a behavior can be regarded as intelligent: it characterizes

intelligence without saying a word about how to achieve

it. The dream of a machine that “thinks” is earlier than the

advent of electronic computers. Peirce himself reminds us, in

[10] —a work about logical machines of his time— that the

theme already appears, in an ironic way, in Jonathan Swift’s

“Voyage to Laputa”. In the same paper Peirce reminds us that

we do not want a machine that behaves with the initiative

of a human being: we want them to stay submissive to our

will. Since it is possible to change the behavior of today’s

electronic computers in an unprecedented way, question is:

are they able to learn new behaviors without having to

be programmed in a modern computer language? And the

answer, in my opinion, is “yes”.

This will probably evolve in two directions. One is

through the improvement of machine learning. It has to

5Let us remember that one goal of these tools, when they were an-
nounced, was to eliminate the need of programming.
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do with making computers do something that has not

been programmed in advance. Maybe the most remarkable

examples are the so-called neural networks. This can be

improved: Peirce wrote about the process of learning as

a habit change governed by some characteristics properties

of the nervous system. Nevertheless these characteristics do

not work in a fully deterministic way —for if they were

completely deterministic, the act of learning would lack

thirdness: “it is essential that there should be an element

of chance” (CP 1.390). So, the proper implementation of

machine intelligence implies in the presence of thirdness in

a non-deterministic way in order to apply it to the process

of semiosis —an entirely new field of study, in spite of the

many ways that allows us to introduce indeterminacy in the

computer’s outcome.

The other direction is natural evolution: this is the slow

path that will naturally happen. Language is capable to deal

with the world as it is; but the understanding of symbols

relies on our collateral experience of their objects (CP

8.314, 1909, CP 8.183, undated). This collateral experience

is hard to achieve in an ever evolving environment as is the

computer landscape today. It lacks the stability necessary to

construct a common language. But it is slowly moving to a

more stable position: computers will became ever easier to

use and to program, and people will become more and more

savvy about them, to the point that it will not be necessary

any special knowledge beyond the ordinary expected at the

moment in order to make computers act as we would like

them to act. A symptom of this movement is the number

of study years needed to program a computer in the 60’s

compared to the same number today. This slow pace can be,

of course, accelerated by a comprehension of the Peircean

semiotic framework and its application to Computer Science.

4. Conclusion
Unlike many other texts that try to apply Peircean semi-

otics to Computer Science, this one has been written without

any new concept apart from Peirce’s theory. In spite of it,

it seems that this simple move gave rise to new interesting

ways to think about the foundations of Computer Science,

with possible consequences to Artificial Intelligence, Sys-

tems Development, Programming and maybe some concepts

in pure Mathematics.

I would like to thank Professor Winfried Nöth for his kind

review of this text, which allowed to avoid many mistakes.

The remaining mistakes are, of course, due only to the

author.
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Abstract— We present an algorithm for constructing a per-
fect hash function that takes O(n4 log n) time. This time is
independent of size of the integers or the number of bits in
the integers. Previous algorithms for constructing a perfect
hash function have time dependent on the number of the
bits in integers. Our result is achieved via an algorithm that
packs the extracted bits for each integer to O(n) bits in
O(n2 log2 n) time. Perfect hash function constructed using
our method allows a batch of n integers to be hashed in
O(n) time.
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1. Introduction
A perfect hash function is a hash function that has no

collision for the integers to be hashed. Previous known

perfect hash functions require construction time dependent

on the number of bits of integers to be hashed. Thus

when dealing with very large integers these perfect hash

functions are at disadvantage as when we are constructing a

perfect hash function for n integers the time for construction

cannot be bounded by a polynomial of n. Earlier Fredman

et al. provided a perfect hash function [1] which require

O(n3 logm) time to construct, where logm is the number

of bits in an integer (i.e. integers to be hashed are taken from

{0, 1, ...,m − 1}). Dietzfelbinger et al. gave a randomized

hash function in [3] and Raman showed [5] how to deran-

domize it to obtain a deterministic perfect hash function in

time O(n2 logm). Thus the construction time of these hash

functions depends on the number of bits of integers and

therefore cannot be classified exactly as polynomial time

algorithms.

In this paper we give an algorithm for converting n
integers of Ω(n2 log n) bits to O(n) bits integers in O(n)
time for hashing purpose. This conversion can be done after

we computed shift distances d1, d2, d3, ... (to be explained

in the following sections). These shift distances can be

computed in O(n2 log2 n) time. Because we require integers

having Ω(n2 log n) bits the construction time for a perfect

hash function from Raman’s algorithm can be bounded by

O(n2 logm + n2 log2 n) = O(n4 log n). In our method

hashing has to be done in batches of n integers and the

hash time for n integers is O(n).

We can reduce the time for computing the shift distances

to O(n2 log n). Then the conversion time for n integers has

to be increased to O(n log n). The hashing of n integers

would take O(n log n) time in this case.

After integers are converted to O(n) bits integers then

the construction of a perfect hash function in the algorithm

of Fredman et al. would require only O(n4) time and

the construction of a perfect hash function in Raman’s

algorithm would require O(n3) time. However because in

our algorithm we reuire integers having Ω(n2 log n) bits and

therefore the construction of a perfect hash function via the

algorithm of Fredman et al. requires O(n5 log n) time and

via Raman’s algorithm requires O(n4 log n) time.

Current integer sorting can be done in O(n log log n) time

[4]. The algorithms presented in this paper may help in the

search of an optimal algorithm for integer sorting.

2. Extracting Bits
To construct a perfect hash function for n integers we

will first sort these n integers in O(n log log n) time using

the current best integer sorting algorithm of Han [4]. Let

a0 < a1 < a2 < · · · < an−1 be the sorted integers (all

integers with the same value can be excluded except one).

Let msb(a) be the index of the most significant bit of a that

is 1, where index counts starting from least significant bit

at 0. We compute m(i) = msb(ai ⊕ ai+1), 0 ≤ i < n − 1,

where ⊕ is the bit-wise exclusive-or operation. We take all

the bits indexed in M = {m(i) | i = 0, 1, ..., n−2} for each

integer aj to form a′j , 0 ≤ j < n. Thus now each a′j has at

most n− 1 bits. If ai �= aj then a′i �= a′j .

Example 1: Let a0 = 0100001, a1 = 0100101, a2 =
0110000, then the most significant bit a0 and a1 differ is the

2nd bit (counting from the least significant bit) and the most

significant bit a1 and a2 differ is the 4th bit, thus M = {2, 4}
and a′0 = 00, a′1 = 01, a′2 = 10 (the 2nd and the 4th bits).

There are two problems here. The first problem is how to

obtain set M . The second problem is after bits are extracted

how do we pack them to n− 1 consecutive bits.

First we will not compute M but instead compute M ′ =
{2msb(ai⊕ai+1) | i = 0, 1, ..., n − 2}. In fact even M ′ is

difficult to compute and we will adapt our method.

The second problem will be solved in the following

sections.
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As we said that M ′ is difficult to compute. We will instead

use the least significant bit. Let lsb(a) be the index of the

least significant bit of a that is 1. Note that it will be easy to

extract the least significant bit that is 1. To extract the least

significant bit of a that is 1 simply do 2lsb(a) = (a⊕(a−1))+
1)/2. Next we will view each integer reverse-wards, that is,

we view the least significant bit as the most significant bit

and the most significant bit as the least significant bit. As will

be shown that we will use this order to sort the n integers. We

will call this order as the least significant bit order. Now the

approach we described earlier will work if we sorted integers

by the least significant bit order, i.e. say a′′0 , a
′′
1 , ..., a

′′
n−1 are

the integers sorted by the least significant bit order, then the

least significant bit that a′′i and a′′i+1 differ, i = 0, 1, ..., n−2,

will give us n − 1 bits that make integers differ between

each other. We let m′(i) = lsb(a′′i ⊕ a′′i+1). There are at

most n − 1 different values for m′(i), 0 ≤ i < n − 1.

Now to sort integers by the least significant bit order we

use comparison sorting and compare integers a and b by

examining (2lsb(a⊕b) ∨ a) == a and (2lsb(a⊕b) ∨ b) == b,
where ∨ is the bit-wise OR operation. If (2lsb(a⊕b) ∨ a) is

equal to a then a is “larger” than b in the least significant

bit order.

After we get a′′0 , a
′′
1 , ..., a

′′
n−1 we then compute Li =

2m
′(i) = 2lsb(a

′′
i ⊕a′′

i+1), i = 0, 1, ..., n − 2, to get the least

significant bits. Let L = ∨n−2
i=0 Li. L provides the mask for

us to extract out needed bits as we now do bi = ai ∧ L,

i = 0, 1, ..., n− 1, where ∧ is the bit-wise AND operation.

Note that no more than n − 1 bits will be extracted from

each integer.

3. Pack Bits
In the last section we showed how to extract at most

n − 1 bits from each integer. These extracted bits need to

be packed. In this section we will show how to pack into

O(n) bits with integers of Ω(n4) bits. We will compute shift

distances d1, d2, ...,. These shift distances can be computed

in O(n4) time. In the later sections we show how to improve

the algorithm to work with integers of Ω(n2 log n) bits.

Without loss of generality we assume that all Li’s are

different.

Note that in Fredman and Willard [2] Lemma 2 it was

shown that these extracted n − 1 bits (scattered bits of 1’s

among logm bits) can be packed to n4 bits by multiplying

a multiplier and this multiplier can be computed in O(n4)
time. However, the method in [2] requires that set M2 =
{m′(i) | i = 0, 1, ..., n− 1} be obtained. In the last section

we only obtained M1 = {2m′(i) | i = 0, 1, ..., n − 1}. To

obtain M2 from M1 we need to apply a logarithm which may

not be readily available. Fredman and Willard’s method do

have the advantage of hashing one integer at a time. Our

method requires the hashing of batches of n integers at a

time.

Because there are only n − 1 extracted bits there are

less than n2 different distances (the set of distances is

D = {|m′(i) − m′(j)|, 0 ≤ i, j ≤ n − 2}) among them.

By trying out n2 different distances n+1, n+2, ..., n+ n2

(the reason we have this additive n is because we want

to shift at least n bits) we will find a distance not in D.

Because we did not obtain M2 we check a distance d1,

d1 = n + 1, n + 2, ..., n + n2, by trying out (L ∨ (L →
d1))) == (L + (L → d1)), where → d1 is shift d1 bits to

the right. If it is equal then distance d1 is available (not in

D). Let bi = ai∧L contain the extracted bits. After we find

an available distance d1 we do bi/2 = bi ∨ (bi+1 → d1),
i = 0, 2, 4, .... We also do L′

0 = L0 ← d1, L′
1 = L0, Li =

Li ∨ (Li → d1), i = 0, 1, ..., n− 2, and L = L∨ (L → d1).
L′
i’s indicate the location of m′(0)’s and they will be used

later to extract the packed bits. Now we have n/2 integers

and each integer has 2(n−1) extracted bits. Therefore there

are no more than 4n2 distances among them. We pick an

available distance d2 among n+ 1, n+ 2, ..., n+ 4n2 using

the same method and then do bi/2 = bi ∨ (bi+1 → d2),
i = 0, 2, 4, .... Also L′

2 = L′
0, L′

0 = L′
0 ← d2, L′

3 = L′
1,

L′
1 = L′

1 ← d2, Li = Li ∨ (Li → d2), i = 0, 1, ..., n − 2,

and L = L ∨ (L → d2). After we do this log n times we

have all the n(n−1) extracted bits in all n integers ∨-ed into

one integer b0. The time spent is O(n4). We then extract the

m′(i)-th bits by doing mi = b0 ∧Li. Note that mi contains

the m′(i)-th bits of all aj , j = 0, 1, ..., n − 1. Note also

that the bit patterns in Li and Lj are exactly the same (i.e.

Lj can be obtained from Li by shifting Li log(Lj/Li) bits

(because logarithmic function is not readily available we can

substitutei shifting log(Lj/Li) bits by multiplying Lj/Li)).

Now we pack integers together by doing

for(i = 1; i <= n− 2; i++)

{
m0 = m0 ∨ (mi ∗ L0/(2

iLi));
}

Because we added an addend n when we do shifting

previously and therefore there will be enough space when

we pack integers here. After integers are packed we can then

obtain packed integer b′i (packed from bi) as L′′
i = (L′

i ←
1)− (L′

i → (n− 1)) (obtain mask and ← 1 is shift left by

1 bit) and b′i = m0 ∧L′′
i . Now to move extracted bits to the

least signigicant n− 1 bits do b′i = b′i/(L
′
i → (n− 1)).

Example 2: Let b0 = 000a0a00000aa0,

b1 = 000b0b00000bb0, b2 = 000c0c00000cc0,

b3 = 000d0d00000dd0, where a, b, c, d are extracted

bits. L0 = 00010000000000, L1 = 00000100000000,

L2 = 00000000000100, L3 = 00000000000010,

L = 00010100000110.

Take d1 = 5. Then do b0 = b0 ∨ (b1 →
5) = 000a0a00b0baa000bb0, b1 = b2 ∨ (b3 →
5) = 000c0c00d0dcc000dd0, L′

0 = L0 ← 5 =
0001000000000000000, L′

1 = L0 = 0000000010000000000
(thus L′

0 indicates the position of first a or c and L′
1
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indicates the position of first b or d). L0 = L0 ∨
(L0 → 5) = 0001000010000000000, L1 = L1 ∨
(L1 → 5) = 0000010000100000000, L2 = L2 ∨
(L2 → 5) = 0000000000010000100, L3 = L3 ∨ (L3 →
5) = 0000000000001000010, L = L ∨ (L → 5) =
0001010010111000110.

Take d2 = 15. Then do b0 = b0 ∨ (b1 → 15) =
000a0a00b0baa000bbc0c00d0dcc000dd0, L′

2 = L′
0 =

0000000000000000001000000000000000, L′
0 = L′

0 ←
15 = 0001000000000000000000000000000000, L′

3 =
L′
1 = 0000000000000000000000010000000000, L′

1 =
L′
1 ← 15 = 0000000010000000000000000000000000 (thus

L′
0 indicates the position of first a, L′

1 indicates the position

of first b, L′
2 indicates the position of first c, L′

3 indicates

the position of first d.) And

L0 = L0 ∨ (L0 → 15) =
0001000010000000001000010000000000,

L1 = L1 ∨ (L1 → 15) =
0000010000100000000010000100000000,

L2 = L2 ∨ (L2 → 15) =
0000000000010000100000000010000100,

L3 = L3 ∨ (L3 → 15) =
0000000000001000010000000001000010.

L = L ∨ (L → 15) =
0001010010111000111010010111000110.

Here we see that L0, L1, L2, L3 have the same pattern and

they differ by only a shift of bits.

Now compute

m0 = b0 ∧ L0 =
000a0a00b0baa000bbc0c00d0dcc000dd0∧
0001000010000000001000010000000000 =
000a0000b000000000c0000d0000000000,

m1 = b0 ∧ L1 =
000a0a00b0baa000bbc0c00d0dcc000dd0∧
0000010000100000000010000100000000 =
00000a0000b000000000c0000d00000000,

m2 = b0 ∧ L2 =
000a0a00b0baa000bbc0c00d0dcc000dd0∧
0000000000010000100000000010000100 =
00000000000a0000b000000000c0000d00,

m3 = b0 ∧ L3 =
000a0a00b0baa000bbc0c00d0dcc000dd0∧
0000000000001000010000000001000010 =
000000000000a0000b000000000c0000d0.

Now do

m0 = m0 ∨ (m1 ∗ L0/(2L1)) = m0 ∨ (m1 ∗ 2);
m0 = m0 ∨ (m2 ∗ L0/(4L2)) = m0 ∨ (m2 ∗ 26);
m0 = m0 ∨ (m3 ∗ L0/(8L3)) = m0 ∨ (m3 ∗ 26);

We get that m0 =
000aaaa0bbbb000000cccc0dddd0000000.

That is, bits for each integer are packed together.

Now do

L′′
0 = (L′

0 ← 1)− (L′
0 → 3 =

0010000000000000000000000000000000−
0000001000000000000000000000000000 =
0001111000000000000000000000000000 (obtain mask)

and

b′0 = m0 ∧ L′′
0 =

000aaaa0bbbb000000cccc0dddd0000000∧
0001111000000000000000000000000000 =
000aaaa000000000000000000000000000

Now do

b′0 = b′0/(L
′
0 → 3) = aaaa.

Similarly bbbb for b′1, cccc for b′2, dddd for b′3 can also be

extracted.

Theorem 1: The n− 1 bits with indices in

{m′(0),m′(1), ...,m′(n − 1)} can be packed to n − 1 bits

in O(n4) time for constructing a perfect hash function in

O(n2 logm+n4) = O(n6) time, thereafter the packing and

hashing of a batch of n integers take O(n) time.

Here logm = O(n4) because we require integers have

Ω(n4) bits.

Hashing takes O(n) time comes from the nature of the

constructed hash functions [1], [5].

Note that the time O(n4) in Theorem 1 is actually the time

for computing distances d1, d2, .... Thus this time affects the

time for constructing a perfect hash function as a perfect

hash function can be consutructed by first packing the

extracted bits to n− 1 bits and then use Raman’s algorithm

[5] to construct the perfect hash function in O(n2 logm) =
O(n3) time. After distanced d1, d2, ... have been computed

we can then pack the extracted bits for a batch of n integers

in O(n) time by the algorithm presented in this section.

The only requirement for packing is that integers have

Ω(n4) bits. Because of this the construction time for a

perfect hash function in Raman’s algorithm becomes O(n6).
Of course if integers have less than n4 bits then we can

directly construct a perfect hash function in O(n6) time

using Raman’s algorithm.

4. Construction in O(n2 log n) Time
In this section we show the improvement to pack the

extracted bits to O(n) bits in O(n2 log n) time.

First note that the time O(n4) for packing in the last

section can really be reduced to O(n3) time by a better

analysis. Note that after we ∨-ed b0, b1, ..., b2i−1 integers

into one integer b the number of possible distances in b
is much smaller than (2i(n − 1))2. This is because the
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distance in b between two bits can be represended as

±k+ δ1d1 + δ2d2 + · · ·+ δidi, where k is a distance taking

from the (n− 1)2 distances in a bj and each δj can assume

the value of 0 or 1. Thus the number of possible distances

is bounded by 2(n − 1)2 · 2i. This analysis will bound in

the the number of possible distances to O(n3) and therefore

the time complexity of the algorithm in Theorem 1 can be

reduced to O(n3).

In last section we first ∨-ed all bits into b0. This requires

O(n4) bits as there are a total of n(n−1) extracted bits and

therefore there are O(n4) possible distances among these

bits. Here we do this: we find an available distance d1 and

do bi/2 = bi ∨ (bi+1 → d1). We have 2 integers ∨-ed into 1

integer. Thus we have now n/2 integers remain. Instead of

continuing ∨-ing integers together we now extract half of the

bits corresponding to indices m′(i), i = 0, 1, ..., (n−1)/2−1
to one integer and another half of the bits corresponding

indices m′(i), i = (n−1)/2, (n−1)/2+1, ..., n−1 to another

integer. Before extracting the number of possible distances

in the integer is 2(n − 1)2. After extracting them into 2

integers each integer has the number of possible distances

2((n− 1)/2)2 = (n− 1)2/2 (each ∨-ed in integer has only

(n− 1)/2 bits now). The situation is basically the same as

the analysis we had for the O(n3) possible distances. This is

equivalent to say that we have put 2 integers into 2 integers

and the number of possible distances among bits decreased

from (n− 1)2 to (n− 1)2/2 for each integer. However, for

the further ∨-ing together integers we have now to pick a

d2 for (n− 1)/2 integers and pick another d′2 for the other

(n−1)/2 integers and thus the number of possible distances

is (n− 1)2/2 + (n− 1)2/2 = (n− 1)2. We can repeat this

log n times, each time ∨-ing 2 integers into 1 integer and

then extract out 2 integers from this integer. Every time we

extract 2 integers the number of m′(i)’s the bits corresponds

to in an integer is divided by 2. After log n times the number

of m′(i) the bits in an integer correspond to is reduced to 1,

i.e. the m′(i)-th bits of all integers are now in one integer and

the m′(j)-th bits of all integers for j �= i are now in another

integer. We repeated log n times and each time we have to

spend O(n2) time searching for di’s. Thus the overall time

of our algorithm is O(n2 log n).

Theorem 2: The n− 1 bits with indices in

{m′(0),m′(1), ...,m′(n−1)} can be packed to n−1 bits in

O(n2 log n) time for constructing a perfect hash function in

O(n2 logm+n2 log n) = O(n4) time, thereafter the packing

and hashing of a batch of n integers take O(n log n) time.

Note that although we packed the extracted bits to n− 1
bits and therefore it seems that logm = n−1 in Theorem 2.

However our algorithm assumed that integers having Ω(n2)
bits and this requirement sets logm = O(n2) in Theorem

2.

Note also that although Theorem 2 reduced the computing

time for finding d1, d2, ... to O(n2 log n) it has the disad-

vantage of packing and hashing a batch of n integers in

O(n log n) time instead of the O(n) time we have achieved

in the last section. In the next section we will show how

to reduce the time for computing d1, d2, ..., to O(n2 log2 n)
time while keep the packing and hashing time to O(n).

5. Achieving O(n) Packing Time with
O(n2 log2 n) Time for Construction

Here we first compute dj and do bi/2 = bi∨ (bi+1 → dj),
i = 0, 2, 4, ..., for j = 1, 2, ..., log log n. We have thus ∨-ed

log n integers into one integer and we have only n/ log n
integers remain. Now the number of possible distances in

each integer becomes (log n)(n−1)2. We now take over the

algorithm in last section. That is we will ∨ two integers into

one integer and then extract two integers from one integer.

We need to do this O(log n) times. In doing so the total

number of distances is kept at (log n)(n − 1)2 and each

time we do this we spent O(n/ log n) time as we have only

n/ log n integer. This makes the overall time for packing

become O(n). The time for computing distances d1, d2, ...
becomes O(n2 log2 n) as we repeated O(log n) times and

each time expending O(n2 log n) time.

Theorem 3: The n− 1 bits with indices in

{m′(0),m′(1), ...,m′(n−1)} can be packed to n−1 bits in

O(n2 log2 n) time for constructing a perfect hash function

in O(n2 logm + n2 log2 n) = O(n4 log n) time, thereafter

the packing and hashing of a batch of n integers take O(n)
time.

Here again we require that integers have Ω(n2 log n) bits.
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Abstract – (FCS’15) The convex hull of a set of 
points, Q, denoted by CH(Q), is the smallest convex 
polygon that encloses all the points of P.  Each point  
in the convex hull is either on the boundary of P or 
in its interior.  Traditional algorithms such as 
Graham's Scan, Jarvis March, and QuickHull use 
all the points in Q as input to obtain the CH(Q).  
This research developed a pre-processing “sieve” 
algorithm that reduces the number of points 
necessary to compute the CH(Q).  Given a set Q 
with integer coordinates, an O(n) sieve algorithm 
“filters” interior collinear points from Q into a 
reduced set of sieve points SP.  This reduces the 
number of points necessary to compute the CH(Q) 
and improves the overall performance of the 
traditional convex hull algorithms.  The sieve points 
remain a superset of the hull points; SP ⊃ CH(Q).  A 
program has been created to test the correctness of 
the sieve algorithm[4][8][9].  Using a uniform 
distribution of points, the program has shown that 
|SP| << |Q|. 
 
Keywords: Computational geometry, convex hull, 
sieve algorithms.  
 
 

1 Introduction 
Computing a convex hull of a set of points is a 

well-studied research topic in computational 
geometry.  A typical course in analysis of algorithms 
often covers traditional convex hull algorithms such 
as Graham Scan, Jarvis March, and QuickHull
[4][8][9].  It is widely known that the complexity of 
Graham Scan is O(n lg n) since the points must be 
sorted radially about the lowest-leftmost point.  Over 
the years, other algorithms and improvements to 
existing algorithms have been developed. 

Other improvements to existing convex hull 
involve heuristics such as the Akl-Toussaint 
heuristic that finds upper, lower, left-most, and 
right-most extreme points to form an irregular 
convex quadrilateral.  Points within this convex 
quadrilateral can safely be eliminated, thus reducing 
the number of points for subsequent convex hull 
algorithms.  Many of these improvements involve 
comparing two or more points together to satisfy 
some criterion.  It is the number of point-to-point 
comparisons that is used to measure the complexity 
of a convex hull algorithm. 

 
1.1 Research Overview 

Figure 1: Data flow of points through the 
sieving algorithm followed by computing the convex 
hull. 

 
This research presents a pre-processing 

algorithm that can be applied to a set of points prior 
to calling a traditional convex hull algorithm.  This 
research considers points with integer coordinates in 
the first quadrant.  This pre-processing step “sieves” 
or “filters” the interior collinear points to eliminate 
interior points prior to computing the convex hull 

Convex 
Hull Sieve 

Convex 
Hull Alg 

Q Points 

SP Sieve Points 

CH(Q) 
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using a traditional algorithm.  As shown in Figure 1, 
the output from this sieve is a set of points that are a 
superset of the convex hull points.  

The sieving algorithm uses a form of “bucket 
sort” that sort/organizes points with corresponding 
coordinates in the first dimension, then uses a 
second “bucket sort” in the second dimension to 
arrange the points in ascending order.  The sieving 
algorithm does not compare any point with any other 
point; i.e. no comparisons.  The complexity of the 
algorithm is O(n) and will be further explained later 
in this paper. 

 
1.2 Organization 

The organization of this paper is the 
following.  Section 2 will present some background 
information on sieving algorithms, traditional 
convex hull algorithms, and sorting in linear time 
using bucket sort.  Section 3 will present and explain 
our algorithm and discuss the program used to test 
its correctness and gather timing results.  Section 4 
will present results from our algorithm testing for 
varying number of points and point densities.  
Section 5 will present some conclusions and future 
work for this research. 

 

2 Background 
Numerous algorithms and algorithmic 

techniques were researched and explored.  The 
major components of this research are the concepts 
of sieving algorithms, traditional convex hull 
algorithms, and sorting in linear time using bucket 
sort. 

 
2.1 Sieving Algorithms 

A sieve, in the mathematical sense, is an 
algorithmic technique to filter or eliminate non-
essential data to achieve a desired result.  The classic 
sieving algorithm is the Sieve of Eratosthenes used 
to find all prime numbers less than or equal to some 
number n [4][6].  Named after the Greek 
mathematician, this prime number sieve algorithm 
repeatedly eliminates multiples of prime numbers 
(2p, 2p, 4p, …) until the value of np is less than the 
sqrt(n).  The overall complexity of the Sieve of 
Eratosthenes is O(lg lg n) [4]. 

A characteristic of sieve algorithms is that 
they often do not have to compare data values with 

other data values: no comparisons and few (if any) 
data dependencies. 

 
2.2 Traditional Convex Hull Algorithms 

There are many algorithms that compute the 
convex hull of a set of points.  Three classic 
algorithms are the Jarvis March (gift-wrapping) 
algorithm, Quickhull, and Graham Scan.  The Jarvis 
March algorithm was developed in 1970 by Chand 
and Kapur and also independently in 1973 by R. 
Jarvis. [7]  This algorithm begins with a known 
point on the hull, p0, and compares polar angles of 
other points.  It selects the next point on the hull that 
has the smallest polar coordinate and then the 
process repeats “wrapping” around the points to 
form the convex hull.  The complexity of Jarvis 
March is O(nh) where n is the number of points, and 
h is the number of hull points. 

The Quickhull algorithm was discovered by 
Eddy 1977 and also independently by Bykat in 1978. 
[1][9] It is analogous to the quicksort algorithm.  
The Quickhull algorithm finds two points with the 
minimum and maximum x coordinates to create a 
dividing line through the set of points creating an 
upper set and lower set of points.  It next finds a 
point in P that is a maximum distance from the 
dividing line.  All points lying in this triangle of 
points are excluded from the convex hull.  Then the 
process repeats until no other hull points are 
discovered.  The same procedure repeats for finding 
the lower convex hull.  Finally the two sets of points 
are combined.  The complexity of Quickhull is O(n 
ln n) in the average case and O(n2) in the worst case. 

The Graham scan algorithm first finds the 
lowest right-most point p0.  This point is on the 
convex hull.  Next, all points are sorted radially 
about p0.  Next, the first two points are pushed on a 
stack.  If the top two points on the stack and the next 
point considered make a counter-clockwise turn, 
then the new point is pushed on the stack.  If the 
points make a clockwise turn, then the top point on 
the stack is popped off.  This process repeats until 
the three points considered make a counter-
clockwise turn.  The complexity of Graham scan is 
bounded by sorting and has an overall complexity of 
O(n lg n).[4][5][9][11] 
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2.3 Sorting in Linear Time Using 
Bucket Sort 

Bucket sort is also known as bin sorting.[4]  It 
can sort a set of data by partitioning the input array 
into buckets.  Each bucket can then be sorted using a 
traditional sorting algorithm or recursively calling 
bucket sort again.  The complexity of bucket sort 
depends on the number of buckets.  If n is the input 
data size and M is the number of buckets, then the 
complexity of bucket sort is O(n+M). 
 
 

3 Methods 
This section will present an overview of the 

convex hull sieve describing major stages of the 
algorithm.  This section will also present a 
discussion of the full algorithm and implementation. 

 
3.1 Sieve Algorithm Overview 

For purposes of this discussion, the following 
example uses a set of 50 points.  All input points to 
this algorithm have integer coordinates and are in 
the first quadrant.  Figure 2 shows the initial set of 
points.  Notice the x-collinearities (which are points 
that share a common x-coordinate) and y-
collinearites (which are points that share a common 
y-coordinate).  The set of input points are in no 
particular order (random permutation of the list of 
points). 

Figure 2: Initial set of 50 points. 
 
The algorithm begins by first identifying y-

collinearties.  This is accomplished by traversing the 
list of points and placing each point in a common 
bucket if they share a common y-coordinate.  Again, 

because the initial list of points is random, the points 
in each “y-bucket” are also randomized (unsorted).  
The points in each y-bucket are passed to a bucket 
sort again and lexicographically ordered by x-
coordinate.  Any point between the first point and 
last point in each y-bucket is removed because it is 
an interior point and not on the convex hull.  Figure 
3 illustrates the y-collinear points in each bucket. 

The next stage of the algorithm then eliminates 
the x-collinearities.  The remaining points from the 
previous step are stored in respective “x-buckets” in 
lexicographic order.  Any point between the first 
point and last point in each x-bucket is removed 
because it is also an interior point and not on the 
convex hull.  Figure 4 illustrates the x-collinear 
points in each bucket.   

The output of the sieving algorithm is a set of 
candidate points that are on the outer boundaries of 
the initial set of points.  These points are either 
maxima or minima in each x and y directions.  
Figure 5 shows the resultant set of points with the x-
collinearities removed.  The output points are used 
as input points into a traditional convex hull 
algorithm and the convex hull points are determined.  
The final convex hull is also shown in Figure 5. 

 

 
Figure 3: Identifying and eliminating y-
collinearities. 
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Figure 4: Identifying and eliminating x-
collinearities. 
 
 

 
Figure 5:  Resultant points after sieving algorithm 
also showing the final convex hull. 
 
 
3.2 Detailed Sieve Algorithm 

Using these major steps, a detail algorithm 
was developed and shown in Figure 6. 

 
Algorithm SievePoints( Q ) returns SP 
1. Let y be a lists of lists with 

magnitude defined by the Range(Q) 
2. Let x be a list of lists with 

magnitude defined by Domain(Q) 
3. For each point p in Q Do: 
4.  y[p.y].append(p) 
5. For each bucket b in y Do: 
6.  b = sort_bucket(b) 
7.  If b.length > 0 Then 
8.   p = b[0] 

9.   x[p.x].append(p) 
10.  If b.length >= 2 Then 
11.   p = b[-1] 
12.   x[p.x].append(p) 
13. For each bucket in x Do: 
14.  Else If b.length > 0 Then 
15.   SP.append(b[0]) 
16.  If b.length >= 2 Then 
17.   SP.append(b[-1]) 
 

 
Figure 6: Detailed sieving algorithm. 
 
The algorithm has input a set of points Q and 

returns a set of points SP.  Steps 1 and 2 set up list of 
lists that are used temporarily store the points in 
buckets.  These will be used to sort the points in the 
“y-direction” and “x-direction” respectively.  Step 3 
and 4 scan through the list of points and assign them 
to a bucket based on their y-coordinate.  Then, in 
steps 5 and 6, each y-bucket is sorted using a stable 
sort such as bucket-sort.  Step 6 identifies buckets 
with size greater than zero.  In steps 7, 8, and 9, if a 
bucket size is found, then the first point is then 
reassigned to an x-bucket.  In steps 10, 11, and 12, if 
the number points in each y-bucket is greater than or 
equal to 2, then the last point is also reassigned to an 
x-bucket.  At this point in the algorithm all y-
collinearities have been removed. 

The second phase of the algorithm is similar to 
the first stage.  In steps 13, 14, 15, and 16, each x-
bucket is examined.  If the number of points in an x-
bucket is greater than 0, then the first point is copied 
to the sieve point list.  If the number of points in an 
x-bucket is greater than 2, then the last point in the 
x-bucket is copied to the sieve points list. 

  
3.3 Complexity of the Sieve Algorithm 

In terms of space complexity, the sieving 
algorithm clearly uses O(n) space where n is the 
number of points in Q.  In terms of time complexity, 
steps 3 and 4 can be computed in O(n) time.  Each 
bucket is sorted using the sort_bucket() algorithm.  
This sorting algorithm uses bucket-sort that is a form 
of radix-sort.  This is a stable-sort that can execute in 
O(n) time.  Also noted is that the input points to the 
sort are only those that are y-collinear or x-collinear 
and only analyzed once per bucket.  This reduces the 
time complexity significantly to ||y|| * O(||y.b||) 
where ||y|| is the number of buckets and ||y.b|| is the 
number of points in a given bucket.  The value ||y|| is 
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a constant determined at runtime. Therefore, steps 5 
through 12 run in O(n) time.  Steps 13 through 17 
run in O(n) time.  Overall the runtime complexity of 
the sieving 

 
 

4 Results and Analysis 
This section will present the results and analysis 

of an implementation of the convex hull sieve 
algorithm when combined with an execution of the 
Graham Scan algorithm to compute the actual 
convex hull.   

 
4.1 Test Suite 

As a proof of concept, this convex hull sieve 
algorithm has been implemented in Python.  Several 
sets of input points were used.  The data sets were a 
uniformly distributed set of points that varied 
number the domain space of input points as well as 
the density of points in the domain.  For example, 
for a domain space of 1000 x 1000, the total number 
possible points is 1 million points.  However, the 
density would then reduce the number maximum 
number of points.  With a density of 0.4, then a total 
of 400,000 points would be uniformly spaced in a 
domain of 1000 x 1000.  The Python Timeit module 
was used to record the execution times. 

4.2 Results for 10 x 10 Space 
Figure 7 is a plot of computation time in 

seconds for different point densities.  For this set the 
total number of unique points was 100.  The 
algorithm was tested for the density range of .1 to .8.  
The series in orange displays the time it takes to 
sieve plus the time it takes to compute the convex 
hull using one of the conventional convex hull 
algorithms.  From here, it is observed that at a 
density of 0.25 (25 points), the addition of a 
preprocessing step surpasses the performance of 
computing the convex hull of the entire set of points 
G. 

 
4.3 Results for 1000 x 1000 Space 

Table 1 shows sample data gathered for a 
1000 x 1000 space.  Time(sieve) is the time it took 
to transform P->SP.  Time(CH(SP)) is the time it 
took to compute the convex hull of the sieved points.  
Time(S+CH(SP)) is the sum of the first two 

columns.  Time CH(G)) is the time it took to sort the 
same points using Graham Scan without the sieving 
step.  G’ is the number of points after the sieve.  G is 
the original number of input points.  

  

 
Figure 6: Results from a 10 x 10 space with 

varying point densities. 
 
 

 
Figure 7: Sample execution times for a 1000 x 

1000 space with varying densities. 
 
 
The graph in Figure 7 is similar to Figure 6 

above and shows the time it takes to compute the 
convex hull using Graham’s Scan algorithm (O(n lg 
n)).   This Figure also displays the time it takes to 
compute the convex hull using Graham’s Scan with 
the addition of a preprocessing step.  Each series 
was tested with the same set of unique points 
starting at 100,000 points and increasing in 
increments of 100,000 until the total reaches 
800,000 (increasing densities from 0.1 to 0.8).  The 
addition of a preprocessing step drastically reduces 
the amount of time needed to compute the convex 
hull.  At 800,000 points the conventional algorithm 
took nearly 90 seconds to complete, while the 
algorithm in addition to the preprocessing step took 
under 1 second to compute the convex hull for the 
same set of points G. 

 

94 Int'l Conf. Foundations of Computer Science |  FCS'15  |



 
Figure 7: Results from a 1000 x 1000 space 

with varying point densities. 
 
 
Figure 8 verifies empirically that the convex 

hull sieving algorithm is a linear function with 
respect to the number of points: O(n). 

 

 
Figure 8: Algorithmic performance of the 

convex hull sieve algorithm. 
 
 
Figure 9 is a plot showing the efficiency of 

adding the convex hull sieve algorithm.  The 
efficiency of executing Graham Scan improves as 
the density of points increases.  As the density 
increases, so does the likely hood that it will be 
removed using the sieving algorithm.   

 

 
Figure 9: Efficiency of adding the 

preprocessing step. 

5 Conclusions and Future Work 
The research presented a technique to increase 

the performance of traditional convex hull 
algorithms.  This is accomplished by a preprocessing 
sieving algorithm that filters the points prior the 
execution of a convex hull algorithm.  The sieving 
algorithm repeatedly uses bucket-sort, which has 
complexity Θ(n), in the “x” and “y” directions, to 
remove interior collinear points.   

For the case of a 10 x 10 space, it is shown that 
the benefits of using the convex hull sieving 
algorithm begins at roughly 25 points.  For the case 
of 1000 x 1000, the performance improvement of 
using this convex hull sieving algorithm is 
significant.  In the case of 800000 points the 
execution time of the sieve algorithm and Graham’s 
Scan was approximately 1 second as compared to 90 
seconds using Graham’s Scan alone. 

Future directions for this research are 
numerous.  First, the test program is going to be 
converted from Python to C++ for more native and 
accurate timing analysis.  This may lead to a more 
accurate timing model for this algorithm.  Second, a 
variant of the algorithm is being developed for 3-
dimensional convex hulls.  This should be fairly 
straightforward extension, but will require 
significant testing and verification.  Finally, the 
sieving algorithm has opportunities for parallelism.  
Perhaps using threads, the buckets could 
independently be populated from the original list of 
points.  Using a portable thread library such as 
pthreads, would increase the portability of this 
algorithms to include hyper-threading processors 
and hardware accelerators.  
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Abstract - In the information era, the Internet provides an 
unlimited platform and supports the mobile and pervasive 
computing in everyone’s daily life, from oven, microwaver to 
the space craft. Today more and more users favorite the hand-
held devices, mobile in a computer aided environment. 
Pervasive computing is in our life everyday. Security 
education in academic has been raised to an unanticipated 
level due to the proliferation of hand-held devices and 
applications. In this paper, we will presented an 
implementation of integrating mobile and pervasive 
computing security projects to computer science curriculum. 
This is a collaborative effort implemented by faculties at two 
national recognized institutions – Alabama A&M University 
and University of Michigan at Dearborn. The research study 
has involved several classes in undergraduate and graduate 
level with over 50 students participated, and demonstrated 
very exciting results in both pedagogical and scientific aspects 
among participated institutions. The developed projects with 
regarding to the curriculum design are presented and 
discussed.  

Keywords: Mobile security, pervasive computing, 
information assurance, cyber security, information security 
education 

 

1 Introduction 
  In the information era, the Internet provides a unlimited 
platform and supports the mobile and pervasive computing in 
everyone’s daily life, from oven, microwaver to the space 
craft. Today more and more users favourites the hand-held 
devices, mobile in a computer aided environment. Pervasive 
computing is in our life everyday. Security education in 
academic has been raised to an unanticipated level due to the 
proliferation of hand-held devices and applications. According 
to [1], malware attacks to hand-held devices has increased by 
25 percent across all platforms since 2012. The McAfee Labs 
count of new suspect URLs set a three-month record with 
more than 18 million, a 19% increase over Q4 and the fourth 
straight quarterly increase. Among these attacks of various 
platforms, Android is the platform favorited by the most 
malware with most growth. 67.7% of host locations in North 
America. From mobile report of F-Secure [2], 91% new 
families or threats was identified, and among these new 

families of malware on mobile device 99% on Android 
platform. To reduce and mitigate the security threats and 
increase the defence capabilities of benign apps, traditional 
Intrusion Detection Systems (IDSs) has been shown 
inefficient. New behaviour-based IDSs are paid attention to by 
many mobile security researchers [3, 4]. In addition, a single 
or individual approach without the support of formal 
specification has been proved with more false positives in the 
results. The needs of formal specifications to provide the 
sound theories are more and more desired.    

From the side of the educational point of view, the needs of 
the security issues of mobile and pervasive computing fall in 
the requirements of stakeholders, expectations of users at 
industry and academic. The needs of cyber security job market 
has increased 3.5 times percent since 2012 among all IT and 
information jobs according to CIO report from The Journal of 
Wall Street [5].  In addition, salary of cyber security position 
is 17% more than average of IT positions. To teach and train 
the next generation of cyber security workforce is kind of first 
need of current education in computer and STEM curriculum. 
This is one of the ultimate goal of this NSF supported project 
which is aligned with one of objectives of NSF SaTC 
program.  

Two objectives of this NSF project are: First, enhancing the 
information security education through curriculum 
development. Second, enhancing students in the IA security 
through hands-on lab development. Before we illustrate the 
implementation towards these objectves, we will first 
introduce the current status of cyber security education in the 
institutions. After that, the course and lab development will be 
discussed in the next section. 

1.1 Current Cyber Security Education at AAMU 
 The computer science department at Alabama A&M 

University is one of the oldest department of Alabama state 
since 1960s’. The information security and forensics 
curriculum of computer science was included in 2009 to fulfill 
ABET requirements and satisfy the evaluation criteria. Both 
courses does not have programming language courses as 
prerequisite courses, students with any level can register. This 
attracts many students but increases the concerns of the 
learning results and teaching quality in the content of 
information security. In addition, due to short of faculties in 
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the area, our students cannot be exposed enough security in 
theories and short of hands-on labs.  

In 2011, driven by the needs of marketing, supported by 
Deans office, computer science annouced a cyber security 
concentration in undergraduate student curriculum. This cyber 
security concentration includes six courses: CMP 381 
Computer Organization, CMP 384 Operating Systems, CMP 
386 Cryptography, CMP 321 Principle of Information 
Security, CMP 414 Forensic Computing, CMP 421 Computer 
Security. Except for the core courses of CMP 381 and CMP 
384, the other four courses offered once per year, and the 
student number registered to other four courses per semester is 
around 14 to 25. The peak of registration was reached by 
2012. By the 2013 fall, the registration started to drop. These 
four courses are taught by 3 faculties and one adjunct 
professor. There is no pervasive computing and mobile 
courses offered in computer science curriculum.  

There are several reasons of the student number droped in 
these security courses. One of the reasons is lack of the 
interesting and research related, hands-on lab. Some of the 
new research findings and security detections are not included 
and exposed, nor well designed lab, short of security theory 
and design analysis in the lectures. Second reason, there is no 
new topics to feed current millimum era students. This 
generation of students are grown up with electronics and 
internet. Information and electronics are their whole life. 
Traditional teaching and content are far from enough to satisfy 
our current students. Last reason is due to the limited number 
of students, there are not enough students to register these 
courses. There is an obvious need of the security in the 
pervasive and mobile computing from current computer 
science curriculum.  

The paper is organized as follows. In the next section, we 
introduce the course design and curriculum development 
supported by this NSF program. In Section 3, the developed 
labs regarding to the mobile and pervasive computing are 
presented. Section 4 discusses the current evaluation by the 
survey in AAMU campus. In Section 5, a short discuss of 
pedagogical results will be described. Finally, we conclude 
our work in section 6. 

2 Applied Course and Design 
 In this section, we will present the courses that are 
integrated with the security contents and projects. 
Furthermore, a new course developed in UMD was presented 
here.  

Several courses that were updated with security and 
integrated with security projects in both AAMU and UMD 
campus. In AAMU campus, we have simply attempted 
security projects in software engineering (CS 401) and senior 
design classes (CS 403).  
 
2.1 Software Engineering Course (CS 401)  
 CS 401 is software engineering class which requires senior 
standing. This course is designed to explore the traditional 
approach to software development & construction life cycle, 

software crisis, and software characteristics. In the course 
description, it is to cover various software engineering 
paradigms, and the fundamental concepts of analysis, design, 
coding, testing and maintenance [6]. Besides, this course 
introduces various CASE tools that support these 
methodologies. 

Three student learning outcomes are covered from the 
current syllabus:  

a) Understand the traditional approach of software 
development process, software characteristics, 
software quality, ethics issues, crisis issues and 
software development cost and management. 

b) Understand and be able to use basic software 
engineering methodologies to solve large scale 
software/software-intensive system development. 
Understand and be knowledgable about existing 
tools of some software engineering methodologies. 
Understand and be able to design and implement 
cyber physical systems with critical concerns 
including security aspects.  

c) Be knowledgable of software testing strategies and 
be able to use basic software testing technologies 
to validate program. 

Security issues have brought a lot of attention of system 
analysts and software engineering. The earlier to detect and 
identify errors and faults, the more to reduce the cost of 
failure. It remains challenge to identify vulnerabilities in the 
software design models of systems and applications. To help 
students to understand how design level can help reduce the 
system crash due to malicious attack, we have updated the 
courses with two aspects – in lecture and in the hands-on 
projects, as follows:  
In lecture, UML sec was introduced to develop the model of 
the secure system. In addition, to identify the security 
properties of the applications, OCL (Object Constraints 
Language) was introduced to the class in three levels – the 
syntax, the semantics and practice questions. We have 
introduced complete set of OCL syntax by combining OCL 
security specification  with the UML diagram. To help student 
to have a better understanding, we introduce segment of 
systems based on the context and domains. The hands-on 
project selected is testing of SMS message passing on 
Android. This hands-on project will be introduced next 
section. 

2.2 Updated Senior Design Course (CS 403) 
 The senior design course is a core course for 

undergraduate students at AAMU that requires CS 401. The 
course aims at exposing students to various types of systems 
and development processes. Development and successful 
completion of a sponsored software development project. 
Specific objectives include the development of effective 
project management, communication, and technical skills, 
experience with the implementation and testing phases of a 
realistic product design cycle, and an ordered transition from a 
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classroom-oriented academic environment to a performance-
oriented professional environment. Student learning outcomes:  

1. Improve the ability to apply knowledge of 
computing, mathematics, science and engineering.  

2. Improve the ability to design, implement and 
validation a computer-based system, process, 
component, or program to meet desired needs.  

3. Enhance the ability to analyze a problem, and 
identify, formulate and use the appropriate computing 
and engineering requirements for obtaining its 
solution.  

4. To be understanding an understanding of 
professional, ethical, legal, security and social issues 
and responsibilities.   

5. Prompt the ability to use current techniques, skills, 
and tools necessary for computing and engineering 
practice.  

In the project designed in this course, we particularly 
increase the project pool with a couple of Android and 
security projects – including SMS message passing, testing on 
the cryptography algorithm in SMS app, Android app of 
AAMU faculty info. Students have shown great interest in the 
android apps and security projects. In the data collected, it 
shows that one group worked on Andriod app, and one group 
worked on the security testing of SMS app.  

In addition to the above two courses, we have designed and 
implemented other mobile security projects and used in the 
Object oriented design (CS521), and Software Engineering 
Methodology (CS561). The detailed project description will 
be presented in Section 3. 

2.3 New Course Development at UMD 
A new course of pervasive computing and mobile computing 
was developed by UMD last year. The course aims at 
integrating the latest research results in pervasive computing 
and mobile security to the current CS curriculum. In addition, 
this course is designed to a thorough analysis of the major 
trends in pervasive and mobile computing and explain the 
implications in terms of security and privacy. For every 
security and privacy issue, we will give a detailed description 
of the problem and a precise explanation of mainstream 
solutions wherever they exist, and of potential solutions 
otherwise. Tentatively, a total of nine topics were developed. 
A brief description of each topic is given as follows. 

Topic 1: Introduction to Pervasive & Mobile Computing. 
This topic covers the wireless communication and security & 
privacy risks.  

Topic 2: Wi-Fi LAN and cellular network security. This 
topic introduces network access security requirements, wifi 
security, cellular network security.  

Topic 3: RFID security and privacy. This topic exposes 
students with RFID technology and applications, security and 
privacy threats, defenses mechanism, and NFC & mobile 
payment systems.  

Topic 4: Smartphone security. This topic brings the current 
research study in smart phone systems, security models, 

attacks on android permission, smartphone malware detection, 
and BYOD security.  

Topic 5: Vehicle and vehicular Ad-Hoc (VANET) security 
and privacy. The cutting-edge research studies on the 
intelligent transportation systems, in-vehicle data & 
communication systems and vulnerabilities, IEEE 802.11p for 
wireless access in vehicular environments and IEEE 1609.2 
for VANET security are discussed.  

Topic 6: Secure device paring. This topic includes 
Bluetooth-enabled device pariting and other device pairing 
mechanisms through SMS, directory service, multiple antenna.  

Topic 7: Secure ranging. This topic covers the relay attack, 
relay attack defense.  

Topic 8: Secure neighbor discovery. The wormhole attack, 
centralized and decentralized approach for wormhole 
detection will be discussed.  
Topic 9: Secure localization and location privacy. This topic 
focuses on the device localization and vulnerability, secure 
localization based on own measurements, and location privacy 
in VANET. 

3 Project and Lab Design of Mobile 
Security and Pervasive Computing 
Design 

 In this section we will present the projects developed for 
mobile and pervasive computing project that were used to 
integrate with the updated courses and lab development. 
These projects are developed by two institutions in the past 
project year. 

3.1 Testing – SMS Encryption Algorithm 
SMS messaging [7] is a mobile and stronger version of “any 
time” and “any where” service. A switched-on mobile device 
is able to receive or send a message regardless of if a voice or 
data call is in progress. To secure the private data and ensure 
the correctness of the system implementation, this project is 
developed in three phases: I) develop a SMS app that is able 
to pass simple message with AES. Through this phase, student 
will be exposed to fundamental skills of Android apps, the 
simple AES algorithm (Fig.1. (b)). II) Develop a class diagram 
of the SMS message passing (Fig. 1 (a)). In addition, define 
the authentication security properties in OCL on the class 
model. Through this phase, students will be able to understand 
the software design methodology, security properties in a 
simple format (UML diagram). III) Install JUnit and run 
assertions on the OCL properties to demonstrate if the 
cryptographic algorithm implemented correctly by a set of 
properly designed security properties. By doing this, students 
will have a better understand of the system quality, crisis, how 
to ensure the correct implementation, and crash cost bring by 
the vulnerability. 
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3.2 WiFi Sniffing on Android 
Traffic monitoring is one of the key approaches in the 
network security to detect the potential vulnerabilities and/or 
attacks. Rooted on various types of methodologies, many 
tools are developed regarding to the monitoring aspects and 
flow strategy. One of the most powerful spying tools is 
Intercepter-NG [8].  It is a free application with unrestricted 
functionality and is virtually universal: works on Windows, 
Linux, Mac OSX, iPhone and Android.  It is a multifunctional 
network toolkit for various types of IT specialists [9].  It has 
functionality of several famous separate tools and more over 
offers a good unique alternative of wireshark for Android. 
After connected to the AAMU WiFi using Intercepter-NG, we 
can run the scan command to see all the devices with IP 
addresses that are connecting to AAMU WIFI. Result is 
shown in Fig. 2, where a list of AAMU WiFi address was 
recognized and displayed to the screen. 

 

 

3.3 Permission ID based Security Analysis 
The Android OS system runs each application under the 
privileges of different “user”. A unique user ID to each of 
them is assigned when the application request is coming. 
Applications are required to declare in a manifest that can 
take place in the course of execution [10]. This project is 
designed to expose the different security levels of permission 
ID in the Android systems, and if sensitive permission ID is 
required. It is straightforward to predicate that an application 
overprivileged needs to be suspected (Fig. 3). 

 

3.4 Man-in-the-middle Attack Exploiting 
Certificate Verification Flaws In 
Smartphone Apps 

On the smartphone app market, apps are developed by 
developers with various level of security knowledge and many 
of them are suspected to be flawed in certificate validation. In 
this project, a student is expected to conduct a serial of 
experiments to find flawed apps and further analyze the cause. 

Figure 3. Snapshot of permission ID based security analysis 

Figure 2. Snapshot of WiFi Sniffing – AAMU  WiFi 

Figure 1. The design and snapshot of Android security testing 

(b) 

Figure 1. The design and snapshot of Android security testing 
(a) 
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3.5 WebView Information Stealing 
Web applications relies on several TCB (trustworthy 
computing base) components to achieve security. One 
important TCB component is the use of trustworthy browsers. 
However, WebView (embedded browser for mobile 
apps) changes the picture of TCB for web security. The 
lacking of security support for cross-application interface 
embedding in mobile platforms allows a malicious host to 
eavesdrop on input intended for embedded interface only. In 
this lab, students are required to mount a password-grabbing 
attack by using JavaScript injection. 

4 Evaluation and Discussion 
Class evaluation is done regular each semester. Other the 

regular class evaluation, for CS 401 and 403 at AAMU, the 
instructor has developed pre and post set of questions to 
evaluate these courses.  

The pre/post test question for CS 401 is listed as following. 
The answer is given from 1(no knowledge) to 10 (very much 
know).  

a)     How much do you know about Software 
Engineering?  

b) How do you consider System quality is critical 
during software development process?  

c) Do you consider cyber attacks and security holes 
in the system as one of the key factors that cause 
software system crash and cost a lot?  

d) How much important do you evaluate security 
regarding to a quality software?  

e)     Do you think system design place a key role on 
the software quality? 

f)     How much do you know about software testing?  
For classes in Spring 2014, it was interviewed at 11 students 

in CS 401 and 15 CS 561. A statistic results regarding to 
questions are shown in Fig 4. It is clearly shown from both 
classes that many students do not consider the security and 
cyber attacks play a critical role in the reliability of the system 
development. After this class, the students had changed their 
mind and the collected data indicated that most considered the 

security is one of the key concerns of the reliable system 
design. For CS 561, we have shown the value of each answers 
pre- and post test, in addition to the line chart. Even some 
graduate students have shown the knowledge of reliability 
regarding to security in the system design at the software 
engineering aspect, there is still an increase of the value 
regarding to these questions.  

We also conducted the pre and post tests of CS 403 and CS 
521 (object oriented design and implementation). Since these 
two courses are less in common, the question sets are a little 
bit different. Due to the space, the pre/post test questions for 
CS 403 and CS 521 are not listed.  

 

(a) Pre test of CS 401 (c) Pre test of CS 561 

(b) Post test of CS 401 (d) Post test of CS 561 

Figure 4. Data collection for courses cs 401 and cs 561. 
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5 Pedagogical Issues 
 We summarize pedagogical significance regarding to the 

project – motivation. Motivation is a topic that remains to be 
challenge to all education researchers how to motivate 
students in different areas. Project based learning (PBL) is one 
of the traditional technology that has been proved effective in 
the student motivation, provided that the topics are very 
interesting and the ideas are novel, the skills is simple and the 
knowledge are not too much. On the contrary, students will be 
easily to loss interest and PBL will not make sense for the 
purpose of improve student learning outcomes. Regarding to 
these concerns, and our projects are designed in the large 
extent to maintain constant student interests on the point of 
this final results on the Android security is rooted in daily life 
and the topic is attractive. 
6 Conclusions and Future Works 
 In this paper, we presented a study of integrating 
pervasive and mobile computing to CS curriculum at AAMU 
and UMD in the past year. Several updated courses, one new 
developed course, and hands on lab were discussed. Student 
evaluation was presented. This work demonstrated that 
properly integrating new cutting edge research projects to CS 
curriculum can motivate students in pursuing higher degree or 
continue on the computer science study even if the CS market 
right now is not taking the lead position of all jobs. Students 
always love to see new research results and are exciting about 
the using and applying the ideas to a not complicated project. 
In the future, on top of current result, we expect to i) to 
develop more interesting projects that are rooted from current 
research study and is able to fit for CS or STEM curriculum; 
ii) conduct more study especially tracking students in the high 
level grade and/or graduate study. 
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Abstract— In this paper, we perform a mini review on statis-
tical network analysis. We survey recent papers in this field and
highlight those that are based on using statistical methods when
analyzing stuctural properties of complex networks.

I. INTRODUCTION

When analyzing complex networks, statistical techniques

such as resampling [11], bootstrapping [28], randomization

[31] have been proven useful. For instance, typical network

structures represent technical networks, biological networks,

and social networks. Technical networks appear for exam-

ple in communication technology, transportation, and energy.

In computational biology, several biological networks such

as gene networks have been investigated. Emmert-Streib et

al. [12], [6] found that biological networks are often non-

deterministic, that means they cannot be inferred deterministi-

cally. Therefore statistical methods to analyze such networks

have been crucial, see [12], [6].

In complex network analysis, there are several problems

to deal with. For example, it has been challenging to collect

network data properly such that statistical methods become

applicable. Another problem that has been often demanding

relates to visualize and analyze networks meaningfully [13].

To analyze networks, structural graph measures have been

often used, see, e.g., see [12], [6]. Examples are the clus-

tering coefficient, cohesion measures, connectivity measures

and other topological indices to map graphs to real numbers

[8]. The latter method relates to determine the complexity

of networks. By employing statistical methods, important

applications in network theory such as subgraph sampling and

link mining. Link mining techniques have been also applied

in Web Structure Mining [5] and related disciplines. Another

striking problem in statistical network analysis is network

inference [3].

In the age of big data, analyzing massive data sets become

more and more important. In case of structural data (networks),

tackling the complexity of the data sets has been often chal-

lenging. Either the networks are very large or one needs to deal

with a huge number of graphs, see [7]. In both cases, applying

statistical methods has been fruitful. The main contribution

of the paper is to survey recent work on statistical network

analysis. The survey aims to highlight the interdisciplinary

character of the field and, hence, the paper can be useful

for those who want to tackle problems in statistical network

analysis and related disciplines.

II. REVIEW

In the following we start surveying recent contributions.

We begin with a paper due to Eldardiry and Neville [11]

dealing with network sampling. Eldardiry and Neville [11]

proposed a novel subgraph resampling approach which cannot

only generate pseudo samples with sufficient global variance.

The method also maintains local relational dependencies and

link structures. The algorithm is based on a two-phase rela-

tional subgraph resampling technique. The first phase selects

subgraphs of same size from the original relational data, and

the second phase links up the selected subgraphs. Finally the

authors applied two different relational settings to evaluate the

resampling method.

In [9], Dehmer and Basak explored several statistical meth-

ods to analyze complex networks. Also, the book deals with

explaining machine learning methods for networks such as

graph classification. Importantly [9] shows that graph theory,

machine learning and statistical techniques have been applied

in an interdisciplinary manner.

It is known that bootstrapping is a well-known data-driven

approach used to create random pseudo samples with just

one empirical observation. In this context Tremblay et al.

[28] presented an approach for statistical resampling based on

bootstrapping of nodes under constraints. The whole network

was used to do the analysis and the aim of their study was to

design a statistical test and find acceptance intervals for various

null hypotheses concerning relevant observable features of

groups of nodes in a given network. They demonstrated the

performance of the network by using real data sets.

Detecting communities in graphs has been useful to identify

functional sub units of a system and to reveal the similarities

among vertices. In [15], Fortunato explored the problem of

community detection by defining the problem and discussing

issue regarding the significance of the method. This method

is mainly based on bayesian inference where the best fit is

obtained through the maximization of likelihood (generative

models). The observations are used by using Bayesian infer-

ence to estimate the probability to verify whether the given

hypothesis is true or false.
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Djidjev et al. [10] analyzed traffic patterns by using sta-

tistical network analysis. Djidjev represented large computer

traffic networks as time-labeled graphs and made use of tem-

poral characteristics to partition the graph in subgraphs where

they called them telescoping subgraphs. The statistical analysis

aimed to explore characteristics of the subgraphs statistically.

As statistical techniques, Djidjev et al. [10] applied methods

from supervised learning.

Lancichinetti et al. [20] introduced a new measure called

C-score aiming at quantifying the statistical significance of

communities in networks. The C-score is the probability of

occurrence of a community that has the same number of

nodes with the same degree sequence and the same internal

connections under two hypothesis: The first is that the nodes

are randomly connected in the network, and the second is that

the group is chosen. In order to predict the statistics associated

with individual clusters, statistical measures have been used.

The proposed measure of C-score has been successfully tested

on several networks such as the random graphs, artificial

networks and real networks.

Guillaume [17] studied p2p query graph by using statistical

graph analysis. To to so, Guillaume used complex network

analysis methods to analyze large traces of queries and ex-

changes processed in such p2p query systems. The authors

defined a labeled weighted bipartite graph called the query

graph representing the query information. In this query graph,

the time-evolution of degrees has been mainly studied. As

demonstrated in [17], degree distributions of query graph

follow power laws.

A similar analysis using randomization techniques have

been performed in [31]. In this paper, two edge-based random-

ization techniques have been introduced. More precisely, Ying

and Wu [31] developed spectrum preserving randomization

methods. The proposed method has been proven useful when

preserve graph properties meaningfully. In [31], Ying and

Wu mainly focused on two important eigenvalues of graph

spectrum, namely the largest eigenvalue of the adjacency

matrix and the second largest eigenvalue of the Laplacian

matrix respectively.

In [21], community structures have been explored too. Here,

the problem has been explored based on the local optimization

of a fitness function that expresses the statistical significance of

clusters. Also Lancichinetti et al. [21] the Order Statistics Lo-

cal Optimization method (OSLOM) to detect clusters in large

complex networks. In order to give evidence, mathematical

properties of OSLOM have been explored and the methods

have been demonstrated by employing real world data sets,

see [21].

Albert and Barabási [1] performed significant work in

statistical network analysis dealing with exploring dynamics of

complex networks. In [1], important network models are dis-

cussed which include random graphs, small-world networks,

scale-free networks and evolving networks. Those have been

analyzed statistically, see [1].

Simpson et al. [24] explored functional brain networks

statistically. First they performed a survey on the statisti-

cal methods to analyze these networks and for exploring

functional magnetic resonance imaging (fMRI) network data.

Moreover, they also discussed techniques for modeling and

inferring brain networks.

In order to model social networks by using statistical

models, exponential random graph models (ERGMs) have

been used. Snijders et al. [25] explored convergence problems

of estimation algorithms and inference problems using these

ERGMs. To tackle this problem they used new specifications

of ERGMs allowing to represent structural properties such as

transitivity and heterogeneity of complex social networks. As

result, they have demonstrated that their new model outper-

form classical techniques.

III. SUMMARY AND CONCLUSION

In this paper we performed a brief survey of the recent

literature on statistical analysis of networks. For instance, we

reviewed contributions dealing with statistical properties of

complex networks like the degree distribution, the clustering

coefficient, and other statistical analysis techniques such as

resampling, bootstrapping, randomization and so forth. We see

that those statistical techniques are suitable to investigate so-

called non-deterministic networks. That means, we refer to

networks that cannot be inferred deterministically as in graph

theory. Therefore we believe that these approaches comple-

ment classical ones meaningfully and, hence, we continue

doing research in this field.
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Abstract— Minimizing the power consumption is crucial for
embedded systems. Previous researches have successes for
power optimization with stateless components in embedded
processors. Recently, researches have started to design the
architecture in minimizing the supply voltage for stateful
components. However, lowering voltage also increases the
risks of reliability. In this paper, we present a dependable
language, which defines several expanded syntax rules. With
this language, developers can describe the region of critical
data and the region hoping for stored in low voltage region of
memories. The language provides ways for programmers to
participate in exploiting the variability and reliability issues
of hardware designs.

1. Introduction
Minimizing the power consumption is crucial for em-

bedded systems[1][2]. One method to reduce overall power

consumption is lowering the supply voltage. For example,

Abdel-Majeed et al.[3] propose a drowsy state which uses

retention voltage to keep data alive in a lower voltage.

While lowing supply voltage can save power consumption,

it also hurts the reliability of the system. To be exact,

the probability of error increases as the supply voltage is

lowered[4][5]. There are researches which are motivated to

detect soft error and present approaches to recover faults.

Gao et al.[6] proposes explicit output comparison to identify

faults. However, these researches are lack of flexibility, such

as deciding which parts of the programs should be executed

in low power mode or should be protected.

To enable programmers to participate in exploiting the

variability and reliability issues of hardware designs, we

propose a dependable language. By proposed pragma, pro-

grammer can decide whether the data/functions be protected,

or whether the data/functions be put in low power mode.

With cooperated architecture, our system can partially exe-

cute low power mode and guarantee the reliable of certain

instructions.

2. Syntax Rules for Dependable Lan-
guage

We propose several dependable pragma, which can sup-

port all kinds of data type, such as char, int, short, long.

Besides, they can also support several conditional statements,

such as for ,while, if, do. In the following, we introduce

proposed dependable language and their meanings.

• reliable
reliable means declared value/function needs to be

protected. Following are some examples:

reliable int value means the declared value is a

reliable integer type and it needs to be protected.

reliable for (...) means the declared for-loop is a

reliable for-loop, and all values in the loop scope need

to be protected.

reliable( output | count ) for (...) means variable

”output” and ”count” in the loop scope need to be

protected, and others remain normal.

• dllpRegion
dllpRegion means declared value/function would be

put in memory with low supply voltage or in certain

memory region. Following are some examples:

dllpRegion int value means the declared value is

a dllpRegion integer type, and it is stored with low

support voltage.

dllpRegion for (...) means the declared for-loop is a

reliable for-loop, and all values in loop scope would

be stored with low voltage.

dllpRegion( output | count > $r1 ) for (...) means

that, in the for loop, variable ”output” and ”count”

would be stored in assigned region, $r1.

• reliable dllpRegion
reliable dllpRegion means declared value/ function

would not only be put in certain memory (low voltage

region or other certain region) but also be protected.

For example:

reliable dllpRegion int value means the declared value

is a reliable dllpRegion integer type, and it needs to

be protected and be stored with low support voltage.

reliable dllpRegion for (...) means the declared

for-loop is a reliable dllpRegion for-loop, and all

values in loop scope needs to be protected and be

stored with low support voltage.

reliable( output | count ) dllpRegion( output | count
> $r1 ) for (...) means variable "output" and "count"

in the loop scope need to be protected and be stored

in region1 $r1.

reliable dllpRegion( output > $r0 | count > $r1 ) for
(...) means the declared for-loop is a reliable for-loop,

so all variables in the loop should be protected.

Also, variable "output" and "count" in the loop scope

need to be stored in region 0($r0) and region 1($r1)
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respectively.

reliable( output | count ) dllpRegion( count > $r1
| $other > $r0 ) for (...) means variable ”output”

and ”count” in the loop scope need to be protected.

Moreover, ”count” value should be stored in region

1($r1), and other values are stored in region 0($r0).

To illustrate how to use proposed language, we take a

Low Power Smart Trash as an example. The trash keeps

in sleep mode most of time. In sleep mode, the support

voltage of memory is kept low to save power. When people

throw the garbage to it, the trash occurs interrupt and

detects whether the trash is filled. The sample code of

smart trash is shown in Listing 1 and the interrupt function

is shown in Listing 2. In Listing 1, inPin0 and in Pin1
are the input ports of the trash(GPIO pins of sensor). We

should guarantee the accuracy of the input ports because

the system relies on it to get inputs. Since the input ports

of a system are frequently used and important, we put

them in regular memory. If inputs were put in low voltage

region of memory, the system is difficult to be recovered

when the error occurs. Threshold, declared in line 6, is the

value based on it the system judge whether the trash is

filled. We declare Threshold in dllpRegion type rather than

putting in the memory of regular voltage because it can be

recovered once the error occurs. While we also declare it in

reliable type because reliable promises the system would

detect errors, if any, and solve them. Without declaring in

reliable type, the systems never check the correctness of

the data. lightSensor and pressureSensor are the value of

current pressure and light. When people throw trash, the

interrupt is triggered (as shown in Listing 2). We have

lightSensor / pressureSensor get data from reading inPin0 /
inPin1. Since lightSensor and pressureSensor refresh every

time when calling interrupt function, they are relatively

less important than inPin0 / inPin1. Therefore we declare

them in dllpRegion type, so does the Text. By this example,

we present how to save energy without lose accuracy by

flexibly using proposed dependable language.

1 / * p u s h b u t t o n c o n n e c t e d t o d i g i t a l p i n 7 , 8 . * /
2

3 i n t i n P i n 0 = 7 ; i n t i n P i n 1 = 8 ;
4

5 / * The d e c l a r e d v a l u e needs p r o t e c t i o n , and i t i s
s t o r e d o t h e r r e g i o n . * /

6

7 r e l i a b l e d l l p R e g i o n i n t t h r e s h o l d = 8 0 ;
8

9 / * The d e c l a r e d v a l u e i s l o a d e d and s t o r e d o t h e r
r e g i o n . * /

10

11 d l l p R e g i o n i n t l i g h t S e n s o r , p r e s s u r e S e n s o r ;
12 d l l p R e g i o n c h a r Text [ 2 0 ] = " Trash i s f u l l " ;

Listing 1: Example of IoT Smart Trash

1 vo id i n t e r r u p t _ h a n d l e r ( ) {
2

3 / * r e a d t h e i n p u t p i n . * /
4 l i g h t S e n s o r = d i g i t a l R e a d ( i n P i n 0 ) ;
5 p r e s s u r e S e n s o r = d i g i t a l R e a d ( i n P i n 1 ) ;
6

7 i f ( p r e s s u r e S e n s o r > t h r e s h o l d
8 && l i g h t S e n s o r ) {
9 sendData ( Text ) ;

10 . . .
11 }
12 . . .
13 }

Listing 2: Interrupt function

3. Conclusion
We propose a prototype of the dependable language

which allows users to feasibly store data in low voltage

region of memories and protect critical data. We also use

an example of smart trash to demonstrate how to use

this language. The language is our attempt to provide

programmers ways to exploit the variability and reliability

issues of hardware designs.
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Abstract – The use of graphs to represent 
chronologically ordered events may be justified 
in several different applications. Two graphs 
from different sources representing the same 
sets of events may need to be compared to verify 
their similarities or correctness if one of the 
graphs is assumed to be the expected 
representation. This study discusses possible 
accuracy scoring systems that can be applied in 
such situations. 
 
Keywords: graph, similarity, accuracy, 
compassion, LCS. 
 
1 INTRODUCTION 
 
There are many scenarios and situations where 
the occurrence of events can be readily 
represented by graphs. In such graphs, edges are 
used to represent dependency between events. 
Consider for example a sequence of historical 
facts, beginning with Abraham Lincoln being 
elected president in 1860, his anti-slavery 
outlook caused South Carolina along with six 
other states to secede from the Union[8]. In the 
example, one event became the cause for the 
next that occurred. At the same time, other 
events may occur that are independent of one 
another.  For example, Lincoln becomes 
President; the Civil War takes place as a result 
of his presidency; and Lincoln invents a tool to 
lift riverboats stuck on sandbars [4]. 
 
Sometimes researchers involved with historical 
events have to estimate a sequence of events.  A 
comparison between these estimates and extant 
documentation may result in ascertaining the 
accuracy of the estimation.  A similar situation 
happens with a literary critic trying to find the 
evolutionary path of a text, going through 
different versions. In order to be able to 
determine the accuracy of the estimation 

method, a numerical scoring system has to be 
applied. 
 
2 BACKGROUND 
 
Woon and Wong proposed the use of a new 
scoring system for their study in text versions 
restricted to graphs consisting of a single linear 
path and establishing windows of comparison 
along such path, which allowed one correct 
result to be counted multiple times, according to 
the size of the window, when a node preceded 
any of its actual successors in the path [9]. In the 
field of Biology, comparison of tree structures is 
commonly applied to the analysis of the 
evolution of species [1]. Some of these 
algorithms address the graph or tree topology, 
focusing on leaf nodes organized in quartets: 
groups of four labeled nodes divided by two 
internal nodes [3].  
 
In the field of Applied Mathematics, a number 
of graph comparison techniques are focused on 
the node placement in the graph. Some of those 
methods are variations of the Levenshtein 
distance metric and the Hamming distance 
methodologies applied to strings representing a 
Depth-First traversal of the graph [2]. A more 
suitable algorithm for our problem, known as the 
Partition Metric, is also used in the field of 
Biology and considers both, topology and 
ordering of the nodes in a path, without 
requiring labeled edges [7]. 
 
3 SCORING ALGORITHMS 
 
In this study we evaluated a slightly modified 
version of the Partitioning Metric algorithm to 
measure the accuracy of the results of a version 
evolution estimator tool. The algorithm 
compares two graphs, which contain the same 
set of nodes, by searching for edges that create 
equal partitions of nodes in both graphs. A one 
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point score is awarded to every edge that creates 
matched partitions, basically measuring the 
similarity between the graphs.  
 
Table 1 shows the accuracy of the algorithm 
working with Kruskal’s Minimum Spanning 
Tree (MST) and a modified version of the 
Hamiltonian path, Single Path Evolution (SPE), 
options in the estimation of evolutionary 
versions of a text [6].  As it can be seen, under 
this scoring system the algorithm is able to 
correctly identify the sequence in several cases. 
However, some results seem to show a low 
accuracy, which is a problem already identified 
by other researchers with this scoring system 
where a single node mismatch may cause a high 
difference, low score, in the graph topology 
depending on its new placement [7]. Exploring 
the possibility of utilizing the solution based on 
the distance metric applied to strings 
representing a Depth-First traversal of the graph, 
a new scoring system can be developed where 
the similarity of the graphs could be measured 
by using the Longest Common Substring 
algorithm [2, 6].  
 
The scoring obtained through this method is less 
sensitive to single nodes mismatch and therefore 
closer to the actual measurement of the 
similarities of the graphs. The LCS algorithm 
produced exactly the same results for the test 
cases shown in Table 1. An extra test case based 
on William Shakespeare’s “Henry V”, which 
causes the mismatch node anomaly in the 
Partition method, gave LCS a better accuracy 
representation score. 
 
4 ANALYSIS AND CONCLUSION 
 
An in-depth analysis of the test case results with 
low accuracy showed that the lower results were 
a consequence of a backward path, preceded by 
a jump from the original to the last version.  
 
These works, in which the evolutionary 
sequence can be verified, allowed for the 
establishment of a benchmark in the discovery 
of evolutionary paths.  

 

Table 1 Partition Metric Results 
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Test 
Case 

Minimum 
Spanning 

Tree
SPE

EBB Child 100% 100%
EBB Bettine 66% 66%
EBB Sea 33% 33%
EBB Loved 100% 100%
EBB Clouds 100% 100%
EBB Dog 50% 50%
EBB Mitford 100% 100%
WW Leaves 100% 100%
WS Hamlet 66% 66%
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