
SESSION

MODELING, SIMULATION, AND RELATED
ALGORITHMS + DATA STRUCTURES +

OPERATING SYSTEMS

Chair(s)

TBA

Int'l Conf. Foundations of Computer Science | FCS'15 | 1

2 Int'l Conf. Foundations of Computer Science | FCS'15 |

On Modeling Inhibitor Nets with Interval
Processes and Interval Traces

Mohammed Alqarni and Ryszard Janicki
Computing and Software Department, McMaster University, Hamilton, Ontario, Canada

alqarnma@mcmaster.ca, janicki@mcmaster.ca

Abstract—Two interval semantics for elementary inhibitor
Petri nets, interval process semantics and interval trace se-
mantics are discussed and proved equivalent.

Keywords: inhibitor Petri nets, interval processes, interval traces,

semantics

I. INTRODUCTION

It is commonly assumed (first argued by N. Wiener in

1914 [26] and analyzed in details in [10]) that any system

run (execution) that can be observed by a single observer

must be an interval order of event occurrences. This means

that the most precise observational semantics is defined in

terms of interval orders. Moreover, representing observations

as interval orders allows to capture behaviours that neither of

the standard semantics can really describe. However gener-

ating interval orders directly is problematic for most models

of concurrency, as the only feasible sequence representation

of interval order is by using Fishburn Theorem [6] and

appropriate sequences of beginnings and endings of events

involved (cf. [10]).
Elementary nets with inhibitor arcs [11] are very simple.

They are just classical elementary nets of [21], [24] extended

with inhibitor arcs. However they can model extremely

complicated behaviours [2], [4] that cannot easily (if not at

all) be represented by other models. For example they can

model the case when a simultaneous execution of events a
and b and the order a followed by b are allowed, but the

order b followed by a is forbidden, so called ‘a not after b’
case [9], [16]. This case cannot be represented by classical

Place/Transition Nets [16]. Hence, the elementary nets with

inhibitor arcs are an excellent medium for novel models of

behaviours.
Interval process semantics of elementary inhibitor Petri

nets has been proposed and analyzed in [3] and interval

traces have been introduced in [12] and further developed in

[13]. The interval processes of [3] are an extension and gen-

eralization of step-sequence process semantics of elementary

inhibitor Petri nets proposed in [11] and improved in [15];

while the interval traces are a generalization of classical

Mazurkiewicz traces [5], [18].
In this paper we introduce an interval traces semantics of

elementary inhibitor Petri nets and show that this semantics

is equivalent to the interval process semantics of [3].

�

�

�

�

�

�

�

a

b

c

d
<1

total

�

� �

�

�
�

��

�
�
��

�
�
��

�
�

��

a

b c

d
<2

stratified

�

�

�

�

�

..

{a}

{b,c}

{d}
�2

total

�

� �

�

�
�

��

�
�
��

�

a

b c

d
<3

interval

�
�
�
�
�
�
�
�

�

...

�
�
�
�
�
�
�

B(a)
E(a)
B(b)
B(c)
E(b)
B(d)
E(c)
E(d)
�3

total

� �

� �� �

ba

dc

<4

not interval

Figure 1: Various types of partial orders (represented

as Hasse diagrams). The interval order <3 is (not
uniquely) represented by a sequence that represents �3, i.e.

B(a)E(a)B(b)B(c)E(b)B(d)E(c)E(d).

The process semantics as proposed in [3], i.e. in the style

of [15], [21], does not usually require much validation as

intuitively it is just a set of system unfoldings, so it is as

natural as any operational semantics. Hence, the results of

this paper can also be interpreted as a validation of the

interval traces semantics.

II. PARTIAL ORDERS AND MAZURKIEWICZ TRACES

In this section, we recall some known mathematical con-

cepts, notations and results that will be used frequently in

this paper.

A relation R ∈ X ×X is an equivalence relation, if it is

reflexive, symmetric and transitive, i.e. for all a,b,c ∈ X ,

aRa, aRb =⇒ bRa and aRbRc =⇒ aRc.

If R is an equivalence relation than for every x ∈ X , the

set [x]R = {y | xRy} is the equivalence class containing x.

For every relation R, the relation R∗ =
⋃∞

i=0 Ri, where R0

is the identity relation, is the reflexive and transitive closure
of R.

Definition 1. A relation <⊆X×X is a (strict) partial order
if it is irreflexive and transitive, i.e. for all a,c,b ∈ X, a �< a
and a < b < c =⇒ a < c. We also define:

a �< b
df⇐⇒ ¬(a < b)∧¬(b < a)∧a �= b,

a <� b
df⇐⇒ a < b∨a �< b.

Note that a �< b means a and b are incomparable (w.r.t.
<) elements of X.

Let < be a partial order on a set X . Then:

Int'l Conf. Foundations of Computer Science | FCS'15 | 3

1) < is total if �<= /0. In other words, for all a,b ∈ X ,

a < b ∨ b < a ∨ a = b. For clarity, we will reserve the

symbol � to denote total orders;

2) < is stratified if a �< b �< c =⇒ a �< c∨ a = c,

i.e., the relation �< ∪ idX , where idX is the identity

on X , is an equivalence relation on X ;

3) < is interval if for all a,b,c,d ∈ X , a < c ∧ b <
d =⇒ a < d ∨ b < c, i.e., < has no restriction that

is isomorphic to <4 from Figure 4.

It is clear from these definitions that every total order is

stratified and every stratified order is interval. The following

simple concept will often be used in this paper.

For every partial order <, we define

Total(<)
df
= {�⊆ X ×X |� is a total order and <⊆�}.

In other words, the set Total(<) consists of all the total
order extensions of <.

By Szpilrajn’s Theorem [25], we know that every partial

order < is uniquely represented by the the set Total(<).
Szpilrajn’s Theorem can be stated as follows:

Theorem 1 (Szpilrajn [25]). For every partial order <,
<=

⋂
�∈Total(<)� . �

For the interval orders, the name and intuition follow from

Fishburn’s Theorem:

Theorem 2 (Fishburn [6]). A partial order < on X is interval

iff there exists a total order � on some T and two mappings
B,E : X → T such that for all x,y ∈ X,

1. B(x)�E(x) 2. x < y ⇐⇒ E(x)�B(y) �

Usually B(x) is interpreted as the beginning and E(x)
as the end of an interval x. The intuition of Fishburn’s

theorem is illustrated in Figure 4 with <3 and �3. For all

x,y ∈ {a,b,c,d}, we have B(x)�3 E(x) and x <3 y ⇐⇒
E(x)�3 B(y). For better readability in the future we will

skip parentheses in B(x) and E(x), and just write Bx and

Ex.

Definition 2 ([5], [17], [18]). 1) Let Σ be a finite set and
let the relation ind ⊆ Σ × Σ be an irreflexive and
symmetric relation (called independency). The pair
(Σ, ind) is called a trace alphabet.

2) Let ≈∈ Σ∗ ×Σ∗ be a relation defined as follows:
x ≈ y ⇐⇒

∃x1,x2 ∈ Σ∗.∃(a,b) ∈ ind. x = x1abx2 ∧ y = x1bax2

3) Let ≡ind the reflexive and symmetric closure of ≈, i.e.
≡ind =≈∗. Clearly is an equivalence relation.

4) For every x ∈ Σ, the equivalence class [x]≡ins is called
a Mazurkiewicz trace, or just a trace. �

We will often write [x] or [x]ind instead of [x]≡Ind .

One may show that [x][y] = [x] ◦ [y] = [xy], where ◦ is a

concatenation of sets of sequences, a symbol that is usually

omitted [5], [18].

Formally, an algebra of Mazurkiewicz traces is a quotient

equational monoid over sequences [5], [17], [18].

Example 1. Let Σ = {a,b,c}, ind = {(b,c),(c,b)}. Given
three sequences s = abcbca, s1 = abc and s2 = bca, we can
generate the traces [s] = {abcbca, abccba, acbbca, acbcba,
abbcca, accbba}, [s1] = {abc,acb} and [s2] = {bca,cba}.
Note that [s] = [s1][s2] since [abcbca] = [abc][bca] =
[abc bca]. �

Each sequence of events represents a total order of enu-
merated events in a natural way. For precise definitions

see for example [11], here we will be using the following

notation.

1) For each set of events Σ, let Σ̂ = {a(i) | a ∈ Σ, i ≥ 1}.

2) For each sequence s ∈ Σ∗, let ŝ ∈ Σ̂∗ denote its enu-

merated representation. For example if s = abbaa then

ŝ = a(1)b(1)b(2)a(2)a(3).
3) For each sequence s ∈ Σ∗, Σ̂s denotes the set of all

enumerated events of s. For example

Σ̂abbaa = {a(1),a(2),a(3),b(1),b(2)}.

4) For each trace [s], we define Σ̂[s] = Σ̂s.

5) For ever s ∈ Σ∗, �s is a total order defined by the

enumerated sequence ŝ. Fore example

�abbaa = a(1) → b(1) → b(2) → a(2) → a(3).

Definition 3 ([18]). For every trace [x], the partial order
�

trace
[x] =

⋂
s∈[x]�s

is called the partial order generated by [x]. �

Example 2. For the trace [s] =
[abcbca] from Example 1, we have
Σ̂[s] =

{
a(1),b(1),c(1),b(2),c(2),a(2)

}
.

The partial order �
trace
[s] generated by

[s] is depicted as Hasse diagram on
the right. �

�

�

�

�

�

��
���

	
		
 �

�

�
���

	
		
a(1) a(2)

b(1) b(2)

c(1) c(2)

III. INTERVAL TRACES

The interval traces, introduced in [12] and refined in [13],

stem from Mazurkiewicz traces [17], [18] and Fishburn’s

representation of interval orders [6].

Let Σ be a finite set (of events), and let

EΣ = {Ba | a ∈ Σ}∪{Ea | a ∈ Σ},

be the set of all beginnings and ends of events in Σ. We will

often just write E instead of EΣ. Every sequence from x∈ E ∗
defines a total order to(x), however not every such total order

can be interpreted as a representation of some interval order.

or example BaBcBb represents no interval order.

Let D ⊆ E and let s ∈ D∗. We standardly define the

projection of s onto D as: πD (ε) df
= ε , and

πD (sα)
df
=

{
πD (s)α if α ∈ D ,

πD (s) if α /∈ D .

For example π{Ba,Ea}(BbBaEbBaEaEc) = BaBaEa and

π{Ba,Ea,Bc,Ec}(BbBaEbBaEaEc) = BaBaEaEc.

4 Int'l Conf. Foundations of Computer Science | FCS'15 |

We say that a string x ∈ E ∗ is an interval sequence iff

∀Bt,Et ∈ E ∗. π{Bt,Et}(x) ∈ (BtEt)∗.

We will write InSeq(E ∗) to denote the set of all interval se-

quences of E ∗. For example BbBaEbBaEaEc /∈ InSeq(E ∗),
while BaBcBbEbEaEc ∈ InSeq(E ∗).

Definition 4 ([12]). Let x ∈ InSeq(E ∗
Σ), and let �x be a

relation on Σ̂, defined by
a(i) �x b(j) ⇐⇒ Ea(i)�x Bb(j).

By Theorem 2, the relation �x is an interval order, and it
is called the interval order defined by the sequence x of

beginnings and ends. �

For example if x = BaEaBbBcEbBdEcEd then �x is the

interval order <3 from Figure 1.

Definition 5 ([12]). Let ind ⊆ E ×E be a symmetric and
irreflexive relation such that for all a,b ∈ Σ

1) (Ba,Ea) /∈ ind and (Ea,Ba) /∈ ind,
2) (Ba,Bb) ∈ ind and (Ea,Eb) ∈ ind.

The relation ind is called interval independency, and the
pair (E , ind) is called interval trace alphabet. �

The condition (1) above follows from the fact that in any

representation of any order, the beginning of an event always

precede the end so that cannot commute. The condition (2)

follows from the generalization of the observation that the

interval sequences BaBbEaEb, BbBaEaEb, BaBbEbEa, and

BbBaEbEa represent the same fact, namely that a and b are

simultaneous.

The interval traces are defined as a special distinctive class

Mazurkiewicz traces.

Definition 6 ([12]). A trace [x]ind over the interval trace
alphabet (E , ind) is called an interval trace if [x]ind ⊆
InSeq(E ∗). �

The soundness of the above definition follows from the

following non-trivial result.

Proposition 1 ([13]). Let (E , ind) be an interval trace
alphabet, and let x,y ∈ InSeq(E ∗).

1) For each x,y∈ E ∗, if x∈ InSeq(E ∗) and y∈ InSeq(E ∗)
then xy ∈ InSeq(E ∗).

2) For each s ∈ E ∗, we have:
s ∈ InSeq(E ∗) ⇐⇒ ∀x ∈ [s]ind . x ∈ InSeq(E ∗).

3) For each x,y ∈ E ∗,
if [x]ind ⊆ InSeq(E ∗) and [y]ind ⊆ InSeq(E ∗), then
[x]ind [y]ind = [xy]ind ⊆ InSeq(E ∗).

4) �x=�y =⇒ x ≡ind y. �

As a partial orders generator, each interval trace can be

interpreted twofold. First, it is also a Mazurkiewicz trace so

it generates a partial order by Definition 3, second, each

element of the interval trace is an interval sequence, so

the trace can also be interpreted as representing a set of

appropriate interval orders.

Definition 7. Let [x]⊆ InSeq(E ∗) be an interval trace.
1) The partial order �

trace
[x] defined as:

�
trace
[x] =

⋂
s∈[x]�s

is called canonical order defined by [x].
2) The set intervtrace([x]) = {�t | t ∈ [x]}

is the set of all interval orders defined by [x]. �

Both the canonical order and the interval orders defined

by an interval trace will be used to show the equivalence of

interval order semantics and interval process semantics for

elementary inhibitor nets.

IV. ELEMENTARY NETS WITH INHIBITOR ARCS

Inhibitor arcs allow a transition to check for an absence
of a token. They have been introduced in [2] to solve a

synchronization problem not expressible in classical Petri

nets. In principle they allow ‘test for zero’, an operator the

standard Petri nets do not have (c.f. [20], [23]). Activator
arcs (also called ‘read’, or ‘contextual’ arcs [4], [19]), for-

mally introduced in [11], [19], are conceptually orthogonal

to the inhibitor arcs, they allow a transition to check for a

presence of a token.

Elementary nets with inhibitor arcs [11] are very simple.

They are just classical elementary nets of [21], [24] extended

with inhibitor arcs. Nevertheless they can easily express

complex behaviours involving ‘not later than’ cases or non-

transitive simultaneity as illustrated in Figure 2.

Definition 8 ([2], [11]). An Elementary Net with Inhibitor
Arcs (ENI) is a tuple N= (P,T,F,Cinit , I) such that

• P and T are finite and disjoint sets of places and
transitions represented, respectively, as circles and rect-
angles;

• F ⊆ (P×T)∪ (T ×P) is the flow relation of N - repre-
sented as directed arcs between places and transitions;

• Cinit ⊆P is the initial marking of N (generally, any C ⊆P
is a marking); and

• I ⊆ P×T is a set of inhibitor arcs - represented as arcs
with small circles as arrowheads. �

The net N in Figure 2 is an example of ENI. For every

x ∈ P∪T we define, its input •x = {y | (y,x) ∈ F} and its

output x• = {y | (x,y) ∈ F}. We assume that for every t ∈ T ,
•t �= /0 �= t• and •t ∩ t• = /0. Moreover, for each t ∈ T , the set
◦t = {p | (p, t) ∈ I} is the set of places that are connected

with transition t by inhibitor arcs. We also standardly

define for any subset U of T : •U =
⋃

t∈U

•t, U• =
⋃

t∈U
t• and

◦U =
⋃

t∈U

◦t.

The operational semantics of ENI is defined through

the “token game" which simulates the occurrence of tran-

sitions and the changes of tokens in places. ENI differs

from ordinary elementary Petri nets only by introducing

a requirement that a transition cannot be enabled if there

is a token in a place to which it is connected by an

Int'l Conf. Foundations of Computer Science | FCS'15 | 5

�

�

�

�

�

�

�

�

b

a

c

�

�

�

�

�

�

s1

s3

s5

s2

s4

N

�

�

�

�

�

a

b

c
<N

1

histN1

.
..
..
..
..
..
..
.......................

�

�

�

�

�

c

a

b
<N

2

� �

�
��
 ���

<N
3

a c

b

�

�
�

�

<N
4

a

b

c

. ...
..
..
..
..
..
..
.. ..

..

..

..

..

..

..

.

histN2

�

a
c

b
time

example of
intervals that
define <N

4
�

�

�

�

�

�

�

�

b

a

c

�

�

�

�

�

�

�

�

�
�
�
�
���

�

�
�
�
�

s1

s3

s5

s2

s4

Nio

Figure 2: Inhibitor nets N and Nio and all their behaviours

involving one occurrence of a, b and c. The net N gen-

erates <N
1,<

N
2,<

N
3,<

N
4, and two concurrent histories, while

Nio generates only an interval order <N
4. Partial orders are

represented by Hasse diagrams. The net Nio generates only

the interval order <N
4.

inhibitor arc. A transition t is enabled at a configuration

C if •t ⊆ C and (t• ∪ t◦)∩C = /0. An enabled transition t
can fire leading to a new configuration C′ = (C \ •t)∪ t•.
We denote this by C[t〉C′. We will also write C[t1 . . . tn〉C′ if

C[t1〉C1 . . .Cn−1[tn〉C′ for some configurations C1, . . . ,Cn−1.

There are two standard operational semantics for ENI, one

in terms of firing sequences and another in terms of firing
step sequences (c.f. [11]), however in this paper we will

only use the firing sequenc semantics.

Definition 9. A firing sequence of an ENI is any sequence of
transitions t1, . . . , tn for which there are markings C1, . . . ,Cn
satisfying:

Cinit [t1〉C1[t2〉C2 . . . [tn〉Cn. �

V. INTERVAL ELEMENTARY NET WITH INHIBITOR ARCS

Following [3] in this section we show how a given

inhibitor net can generate appropriate sequences of event

beginnings and ends, so we will be able to describe all

interval orders the net generates.

The basic idea of defining the set of firing interval

sequences for a given inhibitor net N is briefly presented

in Figure 3 as a transformation of N into N .

We assume that the events (transitions) are not instanta-
neous, on contrary, they are interpreted as representations of
activities whose completion takes some time. However, their
beginnings and ends are instantaneous.

In principle the transformation is based on the replacement

of a transition t by the net Bt Et�� �t as first

proposed in [27] and additionally taking into account specific

behaviours induced by inhibitor arcs.

Definition 10 ([3]). Let N = (P,T,F, I,Cinit) be an ENI
system. We define N = (P,T ,F ,I ,Cinit), its interval
representation as follows:

• P = P∪T
• T = {Bt | t ∈ T}∪{Et | t ∈ T}
• ∀ p ∈ P, t ∈ T. (p, t) ∈ F ⇐⇒ (p,Bt) ∈ F

• ∀ p ∈ P, t ∈ T. (t, p) ∈ F ⇐⇒ (Et, p) ∈ F
• ∀ t ∈ T. (Bt, t),(t,Et) ∈ F
• ∀ p ∈ P, t ∈ T. (p, t) ∈ I ⇐⇒

(p,Bt) ∈ I ∧ (∀r ∈ p•)(r,Bt) ∈ I . �

For the detailed arguments that the net N fully describes

the behaviour of the net N the reader is referred to [3].

The nets N and N in Figure 3 illustrate the above defini-

tion. Note that for example each of the following sequences

BaBcEaBbEbEc, BaBcEaBbEcEb, BcBaEaBbEbEc and

BcBaEaBbEcEb are firing sequences of N , and each of

them represents the interval order <N
4 from Figure 2 via

Fishburn Theorem (Theorem 2). This means that event b
follows event a and event c overlaps both events a and b in
the original net N.

Directly from the above definition we have:

Fact 1 ([3]). Let N = (P,T,F, I,Cinit) be an ENI system and
N = (P,T ,F ,I ,Cinit) its interval representation. Then
for each t ∈ T we have: •Bt = •t, Bt• = {t}, •Et = {t},
Et• = t•, Bt◦ = t◦ ∪ (t◦)•, and Et◦ = /0. �

Since N is just another inhibitor net, we may try to use

the standard definition of a firing sequence from Definition

9. We will write [[. . .〉〉 instead of [· · · 〉 to indicate firing in

N (or C N) and not in N.

Definition 11 ([3]). Let N = (P,T ,F ,I ,Cinit) be an
interval ENI. A sequence x = α1 . . .αn ∈ T ∗ is an interval
firing sequence of N if there are markings C1, . . . ,Cn
satisfying:

Cinit [[t1〉〉C1[[t2〉〉C2 . . . [[tn〉〉Cn. �

The following result validates the above definition.

Proposition 2 ([3]). If x is an interval firing sequence of
N , then x ∈ InSeq(T ∗). �

Since all transitions of interval ENI’s are instantaneous,

simultaneous executions of any kind are are disallowed,

so the only operational semantics is the firing sequences

semantics. The firing step sequences, as in [11], [15] do not

make any sense in this case.

The net N from Figure 3 have ten interval

firing sequences that involve all elements of

T = {Ba,Ea,Bb,Eb,Bc,Ec}, namely BaEaBbEbBcEc
- which represents a total order <N

1 from Figure 2;

BcEcBaEaBbEb - which represents a total order <N
2;

BaBcEcEaBbEb, BaBcEaEcBbEb, BcBaEcEaBbEb,

BcBaEaEcBbEb - all four represent a stratified order

<N
3 of Figure 2; and BaBcEaBbEbEc, BaBcEaBbEcEb,

BcBaEaBbEbEc, BcBaEaBbEcEb - all four represent an

interval order <N
4 of Figure 2. It is important to stress that if

observations are not allowed to be recorded as interval firing

sequences, then <N
4 cannot be generated. It can neither be

generated by firing sequence nor by firing step-sequence.

This order is an interval order, but it is not stratified, so

6 Int'l Conf. Foundations of Computer Science | FCS'15 |

Figure 3: An example of an inhibitor net, its interval representation, a process and a concurrent histories it generates.

step-sequences (as in [11], [15]) do not work.

It was shown in [3] that if all interval orders generated

by a net are stratified then observational semantics of this

model is equivalent to that of [11], [15].

The net Nio from Figure 2 can generate neither any firing

sequence nor any step-sequence. It can generate only the

interval order <N
4 (see [3], [13] for details).

VI. PROCESS SEMANTICS

In case of concurrent systems many of system

runs/executions are equivalent, but this aspect is difficult

to capture when only operational semantics is considered.

Abstractions of these equivalent executions are often called

concurrent histories, and, dependently on the assumptions

about systems and systems runs, are usually modelled by

partial orders [7], [21], stratified order structures or interval

order structures (c.f. [8]), or processes (c.f. [15]).

For the net N from Figure 2, the runs <N
2,<

N
3,<

N
4 are

equivalent as in all cases we have event c occurs no later

than event a, so N has two concurrent histories involving all

three events a,b,c. In <N
1, a and b occur before c, so <N

1

belongs to a different concurrent history1 (see [8], [9] for

details).

For Petri nets, processes are plain or modified unfoldings,

called occurrence nets. It was shown in [11], [15] that for

nets with inhibitors arcs, plain unfolding does not work,

since the absence of a token, unlike the presence of a token,

cannot be tested. Hence we have to replace inhibitor arcs by

appropriate activator arcs. The idea is that an inhibitor arc
which tests whether a place is empty, can be simulated by

an activator arc which tests whether its complement place
is not empty. To do such simulation, each inhibitor place

must have its complements, if it does not we can always

add it, as it does not change the net behaviour (c.f. [7], [11],

[15], [21]). This construction is illustrated in Figure 3, where

adding complement places changes N into C N . Clearly

1Concurrent history is a set of runs that agree on causality invariants as
“always earlier than” or “always not later than” (see [8], [9] for formal
arguments).

the behaviours of N and C N are identical (c.f. [11], [15],

[21] for details).

Definition 12 ([7], [15]). 1) Places p,q ∈ P are comple-
mentary (p is a complement of q and vice versa) if
p �= q, •p = q• and p• = •q, and |Cinit ∩{p,q}|= 1.

2) An elementary inhibitor net is complement closed if
every inhibitor place has its complement, i.e.
(p, t) ∈ I =⇒ p̃ ∈ P. �

If p and q are complementary we will write p = q̃,q = p̃,

and clearly p = ˜̃p,q = ˜̃q.

We define the processes generated by a firing sequence
y = t1 . . . tn as Py = Nn, where Nn is the last activator
occurrence net in the sequence N0, . . . ,Nn. Each net Nk =
(Bk,Ek,Rk,Ak),0 ≤ k ≤ n, is a net with activator arcs that

model an unfolding of the net N by the sequence t1 . . . tk.

The first three components of Nk correspond to places P,

transitions T , and flow relation F of the underlying ENI

system, while Ak ⊆Bk×Ek is the set of activator arcs derived

from inhibitors arcs I.

The elements of Bk∪Ek are of the form ri, where r ∈P∪T
and i ≥ 1. We will denote l(ri) = r and n(ri) = i. Moreover,

for every r ∈ P∪T and k ≤ n, Δr is the number of nodes of

Nk−1 labelled by r (i.e. the number of α ∈ Bk ∪Ek such that

l(α) = r.)

Algorithm 1 (Constructing Py, for y = t1 . . . tn, [11], [15]).
• Step 0. N0 = ({(p1) | p ∈Cinit}, /0, /0, /0)
• Step k. Given Nk−1, we define Nk in the following way:

– Bk = Bk−1 ∪{p1+Δp | p ∈ t•k }
– Ek = Ek−1 ∪{t1+Δtk

k }
– Rk = Rk−1 ∪{(pΔp, t1+Δtk

k) | p ∈ •tk}
∪{(t1+Δtk

k , p1+Δp) | p ∈ t•k }
– Ak = Ak−1 ∪{(p̃Δ p̃, t1+Δtk

k) | p ∈ t◦k } �

The above algorithm is illustrated in Figure 3 (a part from

C N to Px). When it is applied to the net C N with the

sequence x = BaBcEaEcBaBb it results in the process Px.

Intuitively it is just a plain unfolding of the net A N .

Int'l Conf. Foundations of Computer Science | FCS'15 | 7

t1

p

t2

(a) t1 �init
x t2

t1

p

t2

(b) t1 �init
x t2

t1

p

t2

(c) t1 �init
x t2

s1
1

s1
2

s̃3
1

b̃1

Ba1

a1

Ea1

s1
3

Bb1

b1

Eb1

s1
5

s̃3
2 b̃2

Bc1

c1

Ec1

s1
4

Px

�

�

�

�

�

�

�

�

� �
�

��
�
�
�
��

Ec1

Bc1Ba1

Ea1

Bb1

Eb1

�
init
x

�

�

�

�

�

�

�

�

� �
�

��
�
�
�
��

�
�
�
�
�
����

Ec1

Bc1Ba1

Ea1

Bb1

Eb1

�
proc
x

Figure 4: An illustration of Definition 13(1) (top) and

Definition 13(2) (bottom).

An extension of Algorithm 1 to the case of firing step

sequence x=U1 . . .Un was first proposed in [11]) and refined

in [15] is rather straightforward, but in will not be discussed

here as it will not be used.

Algorithm 1 can be applied to any elementary net with

inhibitor arcs, however in this paper we will use it only

to complement closed interval representations, as C N in

Figure 3.

VII. INTERVAL PROCESSES

We will now introduce interval processes and show how

they represents interval runs/executions.

Let N = (P,T,F, I,Cinit) be an ENI system, C N =
(P,T ,F ,I ,Cinit) be its complement closed interval repre-

sentation and let x = α1 . . .αn be an interval firing sequence

of C N .

Assume that Algorithm 1 applied to C N with x =
α1 . . .αn produced a process (an occurrence net) Px.

Assume that Px =Nn = (Bn,En,Rn,An), where Nn is the

last step of Algorithm 1.

A partial order �
proc
x derived from the process Px is

defined as follows.

Definition 13 ([15]). Let Px = Nn = (Bn,En,Rn,An) be
the process generated by x. We define a canonical partial
order �

proc
x on En as follows:

1) For all α,β ∈ En,
α �

init
x β ⇐⇒
α(Rn ◦Rn)β ∨α(Rn ◦An)β ∨α(A −1

n ◦Rn)β ,
where ◦ is a composition of relations.

2) For all α,β ∈ En, α �
proc
x β ⇐⇒ α(�init

x)+β �

The above construction is illustrated in Figure 4. In most

cases many different x’s can generate the same process Px,

but the canonical partial order �
proc
x captures all the cases.

Proposition 3 ([3]). For each interval firing sequence x,
total(�proc

x) = {�y | Px = Py}. �

We will now define formally interval orders and interval

order structures generated by interval firing sequences of N .

Definition 14. Define En = {t | Bt ∈ En ∧Et ∈ En}. Let x ∈
InSeq(T ∗), and let �x be a relation on En, defined by

ai �x bi ⇐⇒ Eai �x Bb j.
By Theorem 2 the relation �x is an interval order. �

Each Px is generated from N by an interval sequence

x and each interval sequence x defines an interval order �x.

The set of all interval orders that can be derived from Px
or �

proc
x is defined as follows.

Definition 15. For each interval firing sequence x, we define
intervord(�proc

x) = intervproc(Px) = {�y| Px = Py}. �

For the example from Figure 3, intervord(�proc
x) =

intervproc(Px) = {<N
2 ,<

N
3 ,<

N
4 }, i.e. the concurrent history

histN
2 from Figure 2. We will show that the same result is

obtained when the interval traces approach is used.

VIII. INTERVAL TRACE SEMANTICS OF INHIBITOR NETS

Let N= (P,T,F, I,Cinit) be an ENI system and let C N =
(P,T ,F ,I ,Cinit) be its complement closed interval rep-
resentation.

We define the interval trace independency relation

indC N ⊆ T ×T as follows.

Definition 16. For all distinct a,b ∈ T :
1) (Ba,Bb) ∈ indC N ∧ (Ea,Eb) ∈ indC N

2) (Ba,Eb) ∈ indC N ⇐⇒
[(Ba• ∪ •Ba)∩ (Eb• ∪ •Eb) = /0]∧
[(Ba◦ ∩ •Eb)∪ (Eb◦ ∩ •Ba) = /0]∧
[(Ba• ∩Eb◦)∪ (Eb• ∩Ba◦) = /0].

The interval trace alphabet is (T , indC N). �

The relation indC N is a refinement of the similar relations

from [11], [15].

Definition 17. Let x = α1 . . .αn be an interval firing se-
quence of C N . The interval trace [x]indC N

is the interval
trace of C N generated by x. �

Proposition 2 and the result below prove the soundness of

the above definition.

Proposition 4. If x is an interval firing sequence of C N ,
Cinit [[x〉〉Cn for some n, and y ∈ [x]indC N

, then Cinit [[y〉〉Cn.

Proof. (sketch) It suffices to show it for |x|= 1, which can

be derived from the definition of [[. . .〉〉.
For the net C N of Figure 3 and x = BaBcEaEcBbEb,

the content of [x]indC N
consists of ten sequences analyzed

at the end of Section V and �
trace
[x] is the same as �

proc
x

from Figures 3 and 4. Moreover intervtrace([x]indC N
=

intervord(�proc
x) = intervproc(Px) = {<N

2 ,<
N
3 ,<

N
4 }.

We will show this kind of relationship holds in all cases.

8 Int'l Conf. Foundations of Computer Science | FCS'15 |

IX. INTERVAL PROCESSES VS INTERVAL TRACES

We start with the formal statement of the main theoretical

result of this paper.

Theorem 3 (Equivalence of Process and Interval Traces

Semantics). Let N = (P,T,F, I,Cinit) be an ENI system,
C N = (P,T ,F ,I ,Cinit) be its complement closed inter-
val representation and let x = α1 . . .αn be an interval firing
sequence of C N . The the following equations hold:

1) �
trace
[x]indC N

= �
proc
x

2) intervtrace([x]indC N
)=intervord(�proc

x)=intervproc(Px)

Proof. (idea.) First note that due to Proposition 3, it is

relatively easy to show that (1)⇒(2), so proving (1) is

enough. The proof of (1) is by induction on the length of x.

The proof is long, tedious, non-trivial, and plenty of different

cases have to be considered.

The above theorem is an equivalent of similar seminal

results for step sequences (i.e. stratified orders) operational

semantics, comtraces and stratified orders process semantics

of [11], [15]. In principle it states that the in interval process

semantics and interval traces semantics are equivalent for

elementary inhibitor nets.

X. FINAL COMMENT

This paper deals with the case when all observa-

tions/system runs are represented by interval orders. This

is often regarded as a the most general case [10], [26].

We concentrated on elementary inhibitor Petri nets, applied

the interval traces semantics of [12], [13] to these kind

of nets, and showed that in this case the interval process

semantics proposed in [3] and the interval traces semantics

are equivalent. The results of this paper can be interpreted

as an extension of the ideas of [11], [15] to interval order

observations.

Since the process type semantics, which is based on the

concept of system unfolding, is very natural and usually does

not require justification, the results of this paper can also be

interpreted as some validation of the interval order semantics

for inhibitor nets.

Usually the concurrent histories involving interval or strat-

ified orders and “not later than” phenomenon are represented

by interval or stratified order structures (c.f. [3], [8], [11],

[12], [13], [15] and others). For our case the interval order

structures would be relevant. However this notion has not

been used in this paper. The main result of [1] show that the

canonical orders like �
proc
x and �

trace
[x] uniquely represent

appropriate interval order structures, so we do not have to

use them explicitly.

An extension to general Place/Transition nets (as [14] did

to some aspects of the model of [11], [15]) is a serious future

research project.

ACKNOWLEDGMENTS

Mohammed Alqarni acknowledges the full support by

Ministry of Education in Saudi Arabia through The Saudi

Arabian Cultural Bureau in Canada, and Ryszard Janicki ac-

knowledges the partial support by NSERC grant of Canada.

REFERENCES

[1] Abraham, U., Ben-David, S., Magidor, M.: On global-time and inter-
process communication. In Semantics for Concurrency, Workshops in
Computing, pp. 311–323, Springer (1990)

[2] Agerwala, T., Flynn, M.: Comments on capabilities, limitations and
“correctness” of Petri nets, Computer Architecture News 4 (2), 81-86
(1973).

[3] Alqarni, M., Janicki, R.: On Interval Process Semantics of Petri Nets
with Inhibitor Arcs, Proc. of ICATPN’2015, Lecture Notes in Computer
Science, 2015, to appear

[4] Baldan, P., Busi, N., Corradini, A., and Pinna, G. M.: Domain and
event structure semantics for Petri nets with read and inhibitor arcs,
Theoretical Computer Science 323, 129-189 (2004)

[5] Diekert V., Rozenberg, G. (eds.): The Book of Traces. World Scientific,
Singapore (1995)

[6] Fishburn, P. C.: Intransitive indifference with unequal indifference
intervals. Journal of Mathematical Psychology 7, 144–149 (1970).

[7] Goltz, U. and Reisig, W.: The non-sequential behaviour of Petri nets.
Information and Control, 57(2):125–147, 1983.

[8] Janicki, R.: Relational Structures Model of Concurrency. Acta
Informatica 45, 279–320 (2008)

[9] Janicki, R., Kleijn, J., Koutny, M.: Quotient Monoids and Concurrent
Behaviours. In Martin-Vide, C. (ed.), Scientific Applications of Lan-
guage Methods, pp. 311-385, Imperial College Press, London (2010)

[10] Janicki, R., Koutny, M.: Structure of Concurrency. Theoretical
Computer Science 112, 5–52 (1993)

[11] Janicki, R., Koutny, M.: Semantics of Inhibitor Nets. Information and
Computation 123(1), 1–16 (1995)

[12] Janicki, R., Yin, X., Zubkova, N.: Modeling Interval Order Structures
with Partially Commutative Monoids. In Proc. of CONCUR’2012,
Lecture Notes in Computer Science, vol. 7454, pp. 425-439 (2012)

[13] Janicki, R., Yin, X.: Modeling Concurrency with Interval Orders,
Information and Computation, submitted

[14] Juhás, G., Lorenz, R., Mauser, S.: Complete Process Semantics for
Inhibitor Nets, Proc. of ICATPN’2007 Lecture Notes in Computer
Science, vol. 4546, pp 184-203 (2007)

[15] Kleijn, J., Koutny, M.: Process Semantics of General Inhibitor Nets.
Information and Computation 190, 18–69 (2004)

[16] Kleijn, J., Koutny, M.: Formal Languages and Concurrent Behaviour.
Studies in Computational Intelligence 113, 125–182 (2008).

[17] Mazurkiewicz, A.: Concurrent Program Schemes and Their Interpre-
tation. TR DAIMI PB-78, Comp. Science Depart., Aarhus University
(1977)

[18] Mazurkiewicz, A.: Introduction to Trace Theory. In [5], pp. 3–42.
[19] Montanari, U., Rossi, F.: Contextual nets, Acta Informatica 32 (6),

545–596 (1995).
[20] Murata T.: Petri nets: Properties, analysis and applications, Proc. of

IEEE 77 (4), 541-579 (1989)
[21] Nielsen, M., Rozenberg, G., Thiagarajan, P. S.: Behavioural Notions

for Elementary Net Systems. Distributed Computing 4, 45–57 (1990)
[22] Ochmański, E., Recognizable Trace Languages, in [5], pp. 167-204.
[23] Peterson, J. L.: Petri nets theory and the modelling of systems,

Prentice-Hall, 1981
[24] Rozenberg, G. Engelfriet, J.: Elementary Net Systems, in Lectures on

Petri Nets I: Basic models, Lecture Notes in Computer Science, vol
1492, pp. 12–121 (1998)

[25] Szpilrajn, E.: Sur l’extension de l’ordre partiel. Fundam. Mathemati-
cae 16, 386–389 (1930)

[26] Wiener, N.: A contribution to the theory of relative position, Proc. of
the Cambridge Philosophical Society 17, 441–449 (1914)

[27] Zuberek, W. M.: Timed Petri nets and preliminary performance eval-
uation. In Proc. of the 7-th Annual Symp. on Computer Architecture,
pp. 89–96, La Baule, France (1980)

Int'l Conf. Foundations of Computer Science | FCS'15 | 9

Data Structures and Algorithms for Partitioning a Set into
Sets of non-Descending Cardinality

Oshani Titti, Yijie Han

School of Computing and Engineering
University of Missouri at Kansas City

Kansas City, MO 64110

Abstract- Data structures have been around since the
structured programming era. Algorithms often associate
with data structures. An algorithm is a sequence of
instructions that accomplishes a task in a finite time period.
The algorithm receives zero or more inputs, produces at least
one output, consists of clear and unambiguous instructions,
terminates after a finite number of steps, and is basic enough
that a person can carry out the algorithm using a pencil and
paper. Algorithms for dividing objects into bins have long
been invented. However, dividing objects in summation
format is not received due attention. In this paper, objects
are divided into n bins in such a way that the next bin will
contain more than or equal number of objects than the
preceding bin.

Keywords: Data structure, algorithms, edge partition,
integer partition, non-descending order partition.

1. Introduction

Computer science is often difficult to define. This is
probably due to the unfortunate use of the word “computer”
in the name. As you are perhaps aware, computer science is
not simply the study of computers. Although computers play
an important supporting role as a tool in the discipline, they
are just that–tools.

Computer science is the study of problems, problem-
solving, and the solutions that come out of the problem-
solving process. Given a problem, a computer scientist’s
goal is to develop an algorithm, a step-by-step list of
instructions for solving any instance of the problem that
might arise. Algorithms are finite processes that if followed
will solve the problem. Algorithms are solutions.

Computer science emphasizes two important topics: data
structures and algorithms. Those topics are important
because the choices you make for a program's data structures
and algorithms affect that program's memory usage
(for data structures) and CPU time (for algorithms that
interact with those data structures).
This paper initiates a two-part series that explores data
structures and algorithms. When choosing a data structure or
algorithm, you sometimes discover an inverse relationship

between memory usage and CPU time: the less memory a
data structure uses, the more CPU time associated
algorithms need to process the data structure’s data
items, which are primitive type values or objects, via
references. Also, the more memory a data structure uses, the
less CPU time associated algorithms need to process the data
items—and faster algorithms result. This paper begins with
a presentation of basic concepts and continues with a tour of
the array data structure.

2. Approach

Consider ‘m’ objects which have to be divided into ‘n’ bins
in such a way that the next bin should not contain less objects
than the previous bin. Suppose first bin contains 1 object then
all other bins should contain at least 1 object. Similarly if the
fourth bin contains 3 objects then all other bins after fourth
bin should contain a minimum of 3 objects. This is the method
of dividing objects in the form of steps into the bins.
The number of ways of dividing m objects in n bins is
represented as f (m, n).
The number of objects that are being divided into the bins will
remain same or in increasing order which is in the form of
steps but never decreases.

3. Method

Let there be ‘m’ distinct objects say 1o, 2o, 3o, 4o………mo
and ‘n’ distinct bins say 1b, 2b, 3b…….nb. Let the function
of dividing ‘m’ objects into ‘n’ bins be f (m, n). The ‘m’
objects should be divided in ‘n’ bins by satisfying the
following conditions:

1. Each bin can contain any number of objects.
2. The objects should be divided in such a way so that

the successor bin should

always have more than or equal number of objects than its
predecessor bin.

Example: Consider x contains y objects then (x+1) should
contain y objects.

Example

10 Int'l Conf. Foundations of Computer Science | FCS'15 |

Consider an example of dividing 8 objects in 3 bins. The
objects can be divided in the following ways:
 b1 b2 b3
 0 0 8
 0 1 7
 0 2 6
 0 3 5
 0 4 4
 1 1 6
 1 2 5
 1 3 4
 2 2 4
 2 3 3

In the above example if the bin 0 is filled with one object
then all other should be filled with a minimum of 0 object
and not less than that. Then the function for remaining
objects is represented as f (8, 3) which there are 10 ways that
can be filled in 3 bins.
Similarly if first bin is filled with 1 object then all other bins
should be filled with a minimum of one object. The dividing
process goes by following this condition till the last bin is
filled with the last object.

4. Generating an algorithm for dividing
objects in non-descending order

Partitioning an integer n is to divide it into its constituent
parts which are all positive integers. Algorithms for
enumerating all the partitions of an integer or only the
partitions with a restriction have long been invented [1,2].
Consider f(8,3) i.e dividing 8 objects into 3 bins. If bin1
contains 0 objects then the function for dividing the other
objects is f(8,2) which means 8 objects should be divided in
2 bins. Similarly if bin1 contains 1 object then the function
for dividing the other objects is f(5,2) which means 5 objects
should be divided in 2 bins because if first bin is filled with
one object then other two bins should also be filled with a
minimum of one object. So the remaining objects to be filled
are 8-3= 5. Similarly if bin1 and bin2 contains 2 object then
the function for dividing the other objects is f(2,1) which
means 1 objects should be divided in 1 bin because if first
and second bean is filled with two objects then other beans
should also be filled with a minimum of two objects. So the
remaining objects to be filled are 8-6= 2.

Let f(m,n) be the number of ways of dividing m objects into
n bins with non-descending cardinality. Function f (m,n) for
dividing m objects into n bins in this particular format is
shown

f (m,n)= f(m, n-1) // first bin contains 0 objects
 + f(m-n, n-1) // first bin contains 1 object
 + f(m-2n, n-1)//first bin contains 2 objects
 + f(m-3n, n-1)//first bin contains 3 objects
 .

 .
 .
 .
 + f(m- └m/n┘*n, n-1) // first bin contains

└m/n┘objects.

5. Partition Diagram

 Algorithms for enumerating all the partitions of an integer
or only the partitions with a restriction have been extensively
studied [4], [5].

(17, 6)

 (17, 5) (11, 5) (5, 5)

 (17, 4) (12,4) (7,4) (2,4)

 (17, 3) (14,3) (9,3) (5,3) (1,3)

 (17, 2) (14,2) (11,2) (8,2) (5,2) (2,2)

 (17, 1)(15,1)(13,1)(11,1)(9,1) (7,1) (5,1) (3,1)(1,1)

Fig.1: Patition diagram needed to divide 17 objects into 6
bins. The diagram represents a directed acyclic graph.

A data structure called partition diagram for storing all the
partitions of an integer is proposed in [3]. In Merca [6], [7]
improvements are proposed which, to date, are the most
adequate data structures for generating integer partitions. We
use the data structure proposed by Merca to present an
efficient algorithm for generating ascending compositions of
an integer n in m parts.

The partition diagram is a directed acyclic graph. Anode in
the partition diagram is denoted by (m,n) where m is the
number of objects and n denotes the number of bins. A node
(m,n) that has no predecessor is called anchored node (root
node) in a partition diagram. A node (m,n) which has no
successor is called a terminal node. For example in the Fig.
1 the node (17,6) is an anchored node and also internal node,
whereas node (2,1) is a terminal node (leaf node).
Given a partition diagram, a path from an anchored node to
terminal node defines a unique partition in which m objects
are divided into n bins.

For example in Fig. 1 the path (17, 6) (17, 5) (7, 4) (5, 3) (2,
2) defines a partition.
If the number of objects in the first bin is ‘a’ then all bins
should have at least ‘a’ objects. If we allocate ‘a’ objects to

Int'l Conf. Foundations of Computer Science | FCS'15 | 11

every bin then we have (m-na) objects left to be distributed
in (n-1) bins. So the process of dividing should continue till
the value of m-n is greater than 0.

When we format the algorithm we can assume two
situations

 The first bin is empty
In this case m objects are to be
distributed in (n-1) bins.

 The first bin contains at least one object
In this case we allocate one object to every bin.
Thus we have (m-n) objects left to be distributed in
n bins.

 Algorithm

 function f(m, n)
 {
)(nmif
 {
)1(nif return 1;
 else return (f (m, n-1) +f (m-n, n));
 }
 else return f(m, n-1);
 }

Lemma 1:),1(),1(),(nmnfnmxfnmf ,
where x is the number of steps explained below.

Consider m objects to be placed into n bins. Let x be the
number of steps that are formed while arranging the objects.

 9

 8
 5 6 7

 3 4

 2
1

Fig. 2: Different ways of arranging the objects
If the successor bin contains more objects than the preceding
bin then the objects are arranged in the form of steps in
between the bins. For example in Fig. 2 shows a
configuration in which bin 2 contains more number of
objects than bin 1 so they are arranged as a step. Similarly
bin 2 and bin 3, bin 4 and bin 5, bin 7 and bin 8, bin 8 and
bin 9. If the successor bin contains the same number of
objects as in the preceding bin then the arrangement is not
formed as step. It remains at same level as they contain same

number of objects. For example bin 3 and bin 4 contains
same number of objects so they remain at same level.
Similarly bin 5, bin 6 and bin 7 contain same number of
objects.

 9

 8
 5 6 7

 3 4
 2

1

Fig.3: Different ways of adding an object in the above
arrangement

If we want to add an object in the configuration shown in
Fig.2, the added object should not affect the configuration
i.e. the object is to be added in non-descending cardinality.
As shown in Fig.3, the added object can only be placed in
the shaded portion. Therefore we can say that the number of
arranging the objects in the predecessor bin is always less
than or equal to the number of way of arranging the objects
in the successor bin in the form of steps. When we have a
configuration for f(m-1, n) then we can generate at most
xf(m-1, n) configurations when we add an object, where ‘x’
is the number of steps in the configuration for f(m-1, n).
Hence),1(),(nmxfnmf . Because nx thus

).,1(),1(),(nmnfnmxfnmf �

Lemma 2:),1(2),(nmfmnmf

From the above lemma we know that

),1(),(nmxfnmf where x is the number of steps.

12 Int'l Conf. Foundations of Computer Science | FCS'15 |

Fig. 3: Arrangement of objects to achieve maximum steps

Maximum number of steps can be obtained by placing the
objects in the following way. Let there be many number of
objects with many number of bins. Then the objects are
placed in increasing way to obtain the maximum steps in the
following way
 0 objects in bin 1
 1 object in bin 2
 2 objects in bin 3
 3 objects in bin 4
 .
 .
 .
 t objects in bin t+1.
Let m be the total number of objects, then
m= [t (t +1)] / 2

By solving this we get mt 2

The maximum number of steps is m2

Therefore),1(2),(nmfmnmf �

Algorithms which efficiently built these kind of integer
partition combinations have long been studied, a survey can
be found in Knuth [8]. Although the space and time needed
to store either the partition diagram or the set of kernel
strings is quadratic [9], our approach creates the most
efficient data structure with space and time complexity
O(mn). The space and time complexity is low enough to
make possible for storing all the partitions of an integer up
to several ten thousands. In [3] O(n2) storage is used for
storing the partitions. Our algorithm uses less space when
m is smaller than n. The implication of this result is that, in
practical applications, we can efficiently recover subsets for
a given path graph as kernel strings are the base to generate
combined strings.

6. Second Approach

Consider a case in which x0 contains 0 objects, x1 contains 1
object, x2 contains 2 objects, x3 contains 3 objects……xa
contains a objects.
Let there be ‘m’ objects. Then we can say
x00+x11+x22+x33+x44…+xaa=m

Example: Consider an example of dividing 4 objects into 3
bins such that x11+x22+x33=m
The only case we have is
x1= 1, x2= 0, x3= 1

This method of partitioning the objects contains less number
of ways than the method of partitioning objects in traditional
method i.e x0+x1+x2+x3+x4……+xa=m.
Now consider the same example of dividing 4 objects into 3
bins such that x1+x2+x3=m
The possible cases are follows
 x1= 0, x2= 0, x3= 4
 x1= 0, x2= 1, x3= 3
 x1= 0, x2= 2, x3= 2
 x1= 0, x2= 3, x3= 1
 x1= 0, x2= 4, x3= 0
 x1= 1, x2= 1, x3= 2
 x1= 1, x2= 2, x3= 1
 x1= 1, x2= 0, x3= 3
 x1= 1, x2= 3, x3= 0
 x1= 2, x2= 1, x3= 1
 x1= 2, x2= 0, x3= 2
 x1= 2, x2= 2, x3= 0
 x1= 3, x2= 0, x3= 1
 x1= 3, x2= 1, x3= 0
 x1= 4, x2= 0, x3= 0

7. Generating an algorithm for
partitioning objects

Initially consider there are m+n-1 positions out of which
choose n-1 positions then you will be left with m objects to
be partitioned into n bins.

Example:
 Consider the following 4 objects to be partitioned into 3
bins.

1. Initially consider m+n-1 positions i.e. 4+3-1=6

2. Choose n-1 positions i.e. 3-1=2. The two positions

can be taken in the following ways.

Bin1 contains 0 objects
Bin2 contains 0 objects
Bin3 contains 4 objects

Bin1 contains 0 objects
Bin2 contains 1 objects
Bin3 contains 3 objects

Int'l Conf. Foundations of Computer Science | FCS'15 | 13

Bin1 contains 0 objects
Bin2 contains 2 objects
Bin3 contains 2 objects

Bin1 contains 0 objects
Bin2 contains 3 objects
Bin3 contains 1 objects

Bin1 contains 0 objects
Bin2 contains 4 objects
Bin3 contains 0 objects

Bin1 contains 1 objects
Bin2 contains 0 objects
Bin3 contains 3 objects

Bin1 contains 1 objects
Bin2 contains 1 objects
Bin3 contains 2 objects

Bin1 contains 1 objects
Bin2 contains 2 objects
Bin3 contains 1 objects

Bin1 contains 1 objects
Bin2 contains 3 objects
Bin3 contains 0 objects

Bin1 contains 2 objects
Bin2 contains 0 objects
Bin3 contains 2 objects

Bin1 contains 2 objects
Bin2 contains 1 objects
Bin3 contains 1 objects

Bin1 contains 2 objects
Bin2 contains 2 objects
Bin3 contains 0 objects

Bin1 contains 3 objects
Bin2 contains 1 objects
Bin3 contains 0 objects

Bin1 contains 3 objects
Bin2 contains 0 objects
Bin3 contains 1 objects

Bin1 contains 4 objects
Bin2 contains 0 objects
Bin3 contains 0 objects

Partitioning m objects into a bins using the method
x00+x11+x22+x33+…….xaa=m has definitely less number of
steps than partitioning the objects in x1+x2+x3+x4….xa=m.
The space and time complexity for creating a linear structure
or a partition tree is definitely less while compared to the
traditional method. The ways of partitioning with
x00+x11+x22+x33+…….xaa=m is always a subset of ways of
partitioning objects using x1+x2+x3+x4….xa=m

Now we consider partition of ‘m’ objects into bins such that a
bin can contain atmost ‘a’ objects. The formula for this
is1x1+2x2+3x3+……….axa=m which is less than the number
of ways m can be partitioned into a bins by

x1+x2+x3+………..xa=m which is
1

1
a

am
 (1)

Then the equation will be
xa+1(a+1)+xa+2(a+2)…………xbb=m

Now consider the ways m objects can be partitioned into bins
in such a way that each bin contains at least a objects. The
number of bins is now restricted by m/(a+1).

We first choose m/(a+1) positions among m positions with

)1/(am
m

 ways (2)

and then partition m objects in non-descending as
maxaxax amaaa am)1/(21)1/(21

...

where a1<a2<a3<…. Compare this case with the method of
partitioning m objects into m/(a+1) bins i.e.
 x1+x2……………………xm/(a+1)=m

14 Int'l Conf. Foundations of Computer Science | FCS'15 |

The number of ways of dividing m objects using the method
x1+ x2……………………xm/a+1=m is

1)1/(
1))1/((

am
amm

 (3)

The number of ways of dividing m objects using the method

maxaxax amaaa am)1/(21)1/(21
... is

1)1/(
1))1/((

am
amm

So the total number of ways of partitioning ‘m’ objects into
‘m’ bins is less than the product of (1), (2) and (3), that is

1
1

a
am

.
)1/(am

m
.

1)1/(
1))1/((

am
amm

(m/a)a am/aam/a max[(m/a)3a, a3m/a]

Therefore we let
[m /a]a= am/a

a log (m/a)=(m/a) log a
[a2(log m- log a)]/log a=m
a2=mlog a/log m

mama log/log

m .

This gives about mm ways, while the number of ways of
partitioning objects using the formula x1+x2+x3+x4….xm=m

gives
1

1
m

mm
 22m

8. Conclusion and Future work

In this paper we have studied about partitioning a set into
non-descending cardinality. The space and time complexity
for creating a linear structure or a partition tree is
proportional to the number of partitions whereas the
complexity for creating a partition diagram is only O(mn).
This complexity allows us to create a partition diagram that
can store all the partitions of an integer up to several ten
thousands.

9. Reference

[1] D. Stanton and D. White. Constructive
 Combinatorics. Springer-Verlag, Berlin, 1986.
[2]. C. L. Liu. Introduction to Combinatorial
 Mathematics. Mcgraw-Hill College, 1968.
[3] R.-B. Lin, “Efficient data structure for storing the

 partitions of integers,” The 22nd Workshop on
 Combinatorics and Computation Theory, pp. 349–354,
 2005.
[4]D. Stanton and D. White, “Constructive
 combinatorics,” SpringerVerlang, Berling, 1986.
 [5]C. L. Liu, “Introduction to combinatorial
 mathematics,” MacGraw-Hill College, 1986.
[6] M. Merca, “Binary diagrams for storing ascending
 compositions,” The Computer Journal Advance
 Access, 2012.
[7] ——, “Fast algorithm for generating ascending
 compositions,” Journal of Mathematical Modelling and
 Algorithms, vol. 11, pp. 89–104, 2012. [Online].
 Available:http://dx.doi.org/10.1007/s10852-011-9168-y
[8] D. E. Knuth, The Art of Computer Programming,
 Volume 4A: Combinatorial Algorithms, Part 1.
 Addison Wesley, 2011.
[9] J. Raymundo Marcial-Romero, J. A. Hernández
 Vianney Muñoz-Jiménez and Héctor A. Montes-
 Venegas Generating edge covers of path graphs. In
 Peoceedings of 2013 WORLDCOMP.

Int'l Conf. Foundations of Computer Science | FCS'15 | 15

Multiprocessor MMIO Tracing via Memory Protection
and a Shadow Page Table

Myoungjae Kim1, Hyunmin Yoon2, Minkwan Choi1, Shakaiba Majeed1, and Minsoo Ryu1*
1Department of Computer Science and Engineering, Hanyang University, Seoul, Korea
2Department of Electronics Computer Engineering, Hanyang University, Seoul, Korea

{mjkim, hmyoon, mkchoi, shakaiba}@rtcc.hanyang.ac.kr, msryu@hanyang.ac.kr

Abstract – Memory-mapped I/O (MMIO) tracing provides an
effective means for analyzing and debugging I/O related
functions since it allows us to observe and track the interplay
between processors and I/O devices [1]. However, existing
MMIO tracing techniques have a serious drawback in
multicore systems. Current MMIO techniques commonly use a
memory protection mechanism to detect access to an MMIO
address area under consideration. Unfortunately, this
approach may miss some I/O events and even lead to a data
race condition due to inappropriate management of
concurrent accesses to the MMIO address area. In this paper,
we describe a novel MMIO tracing approach introducing the
notion of shadow page table. We use a shadow page table to
allow only one processor to have access to a MMIO address
area while forbidding other processors’ access to the same
MMIO address area. We show how the shadow page table
approach can be efficiently implemented on a multiprocessor
platform with dual core ARM Cortex A15 CPU.

Keywords: Memory Mapped I/O (MMIO) Trace, Memory
Protection, Page Fault, Shadow Page Table.

1 Introduction
Memory-mapped I/O (MMIO) tracing provides an effective
means for analyzing and debugging I/O related functions
since it allows us to observe and track the interplay between
processors and I/O devices. For example, to analyze and
debug failures in device drivers, developers must be able to
find out what data is sent to or received from the device.
MMIO tracing can collect detailed information about I/O
operations conducted between a processor and I/O devices,
thus enabling us to track down the source of failures.

However, existing MMIO tracing techniques have a
serious drawback in multicore systems. Current MMIO
tracing techniques commonly use a system-wide address
translation table, i.e. page table in processors with paging
support, to set the MMIO address area under consideration as
invalid and rely on memory access exceptions to detect any
processor’s access to the protected MMIO address area. When
an exception is generated by a read/write instruction, a
specially designed exception handler collects information

about the I/O access, enables access permission for the MMIO
address area, re-executes the faulting memory access
instruction, and sets the access permission back to invalid.
Unfortunately, in multicore hardware, this may lead to
missing some I/O events and even a data race condition since
other processors can make writes simultaneously to the same
address area during the time interval where the access to
MMIO address area is enabled.

In this paper, we present a novel MMIO tracing method
introducing the notion of shadow page table. When a page
fault occurs on a certain processor, we replace the page table
seen by the exception handling processor with a shadow page
table, while leaving other processors referencing the original
page table. The shadow page allows only the exception
handling processor to access the MMIO address area, but
other processors’ access to the MMIO area is prohibited
through the original page table. Therefore, this approach
allows us to avoid the problem of missing I/O events and race
conditions. We describe how the shadow page table approach
can be efficiently implemented on a multiprocessor platform
with dual core ARM Cortex A15 CPU.

This paper is organized as follows. Section 2 describes
existing MMIO tracing techniques. Section 3 presents our
shadow page table approach and Section 4 concludes this
paper.

2 Background of MMIO Tracing
2.1 Memory-mapped I/O (MMIO)
MMIO requires a section of memory to allow a processor to
communicate with I/O controllers. A processor with MMIO
support reserves some part of its address space for a special
I/O address range where I/O controllers’ registers are mapped
to specific addresses in the designated I/O address range.
Programs can access I/O registers through memory access
instructions such as load and store, which is no different from
read/write access to normal memory addresses [3].

MMIO tracing can be efficiently implemented using a
page table. A page table contains the mapping between virtual
addresses and physical addresses and some additional
information associated with each page table entry. One
important piece of information is the access permission for

16 Int'l Conf. Foundations of Computer Science | FCS'15 |

each page. By manipulating the access permission for each
MMIO page, we can allow or prohibit the processor’s access
to specific MMIO pages. MMIO tracing initially disables
access permission for MMIO pages using the page table.
Whenever a processor attempts to access a protected MMIO
page, a page fault exception occurs. A special page fault
handler then collects information about the I/O access, enables
the access permission for the MMIO page, re-executes the
faulting memory access instruction, and re-disables the access
permission.

Figure 1. Address space of a Processor using MMIO.

Figure 2. Paging and translation scheme.

2.2 MMIO Tracing in Linux
The Linux MMIO tracing tool uses a validity attribute
associated with each page table entry to force page fault to
occur when a processor accesses a memory mapped I/O
region even if the region exists in a valid page [5]. The tool

records the MMIO accesses in the following way: First, the
MMIO pages are marked as invalid. When a fault occurs due
to an access to these pages, the page fault handler emulates
the faulting instruction by changing the attribute of the page
as valid and starts logging the events. After the emulation
and logging the page fault handler again marks the page as
invalid. Finally, the interrupted kernel code takes control
again and executes the next instruction to the faulting
instruction.

While the page fault handler is emulating the faulting
instruction, the other processors can freely access the page
containing the data which the faulting instruction wanted to
access because that page is marked valid during this interval.
In such situation, other processor’s access does not create a
page fault which leads to event missing without notice.

Figure 3. Tracing control flow.

3 MMIO Tracing with a Shadow Page
Table

As mentioned earlier, existing MMIO tracing techniques
based on a memory protection mechanism may fail to capture
some concurrent I/O events on multiprocessors. The problem
is that other processors can make references to the same
MMIO address area during the interval the memory access is
allowed. Those accesses cannot be detected as they do not
trigger page fault exceptions and may even lead to data race
conditions.

A plausible solution is freezing other processors during the
page fault handling. When a page fault happens, we may stop
other processors’ execution by sending a special inter-
processor interrupt (IPI) to other processors. This would
prevent other processors from accessing the MMIO address
area. However, sending and receiving IPIs also requires
access to the interrupt controller’s MMIO addresses, which
would entail the same problem.

Int'l Conf. Foundations of Computer Science | FCS'15 | 17

Figure 4. Shadow Page Table.

In order to address the above problem, we propose the use
of a shadow page table (SPT). When a page fault occurs, a
shadow page table replaces the kernel’s original page table
used by the fault handling processor. The use of shadow page
table allows us to enable the access permission of the fault
handling processor while other processors’ memory access is
prohibited by the original kernel’s page table. Therefore, this
approach can overcome the problem of missing I/O events and
race conditions.

The shadow page table can be efficiently implemented in
many operating systems that support paging-based memory
management. We replicate the original kernel’s page table and
modify the access rights to the MMIO address areas in the
replicated shadow page table to enable access permission.
When a page fault occurs, we change the page table base
register of the processor so that it can refer to the shadow page
table during the page fault handling. Since other processors
still refer to the original page table, they are not allowed to
make access to the MMIO address areas. Once logging
MMIO I/O access information is done, we change the page
table base register to point to the original page table.
Afterwards, all the processors use the original page table.
There is a possibility that two more processors try to write
access on a same MMIO address almost at the same time. It
also leads to data race condition as two processors re-execute
the faulting memory access instructions. To prevent this
problem, we need to protect fault handling as a critical section
with a synchronization method such as spin lock.

Figure 5. Tracing control flow with SPT.

4 Conclusion
In this paper, we have presented a novel MMIO tracing
method introducing the notion of shadow page table. Letting a
processor refer to shadow page table while it conducts MMIO
tracing, we can solve a problem of missing another MMIO
event by other processors as well as data race condition under
multiprocessor platform.

5 Acknowledgment
This work was supported partly by Seoul Creative Human
Development Program (HM120006), and partly by the
National Research Foundation of Korea(NRF) grant funded
by the Korea government(MEST) (NRF-2011-0015997), and
partly the MSIP(Ministry of Science, ICT and Future
Planning), Korea, under the C-ITRC(Convergence
Information Technology Research Center) (IITP-2015-
H8601-15-1005) supervised by the IITP(Institute for
Information & communications Technology Promotion).

6 References
[1] Wikipedia, “Memory-mapped I/O,” [Online]. Available:
http://en.wikipedia.org/wiki/Memory-mapped_I/O

[2] A. Kadav and M. M. Swift, "Understanding modern
device drivers," ACM SIGARCH Computer Architecture
News, vol. 40, pp. 87-98, 2012.

[3] D. P. Bovet and M. Cesati, Understanding the Linux
kernel: " O'Reilly Media, Inc.", 2005

[4] Wikipedia, “Virtual memory,” [Online]. Available:
http://en.wikipedia.org/wiki/Virtual_memory

[5] LWN, “Tracing memory-mapped I/O operations,”
[Online]. Available: https://lwn.net/Articles/270939/

18 Int'l Conf. Foundations of Computer Science | FCS'15 |

SESSION

GRAPH AND NETWORK BASED ALGORITHMS +
FORMAL METHODS AND APPLICATIONS +

QUANTUM COMPUTING AND RELATED ISSUES

Chair(s)

TBA

Int'l Conf. Foundations of Computer Science | FCS'15 | 19

20 Int'l Conf. Foundations of Computer Science | FCS'15 |

Beyond the Solution to 2-CSC:
 Algorithm to Discover Corresponding Chain Sub-

graph Covers

Wei-Da Hao1 and Lin-Yu Tseng2
1 Electrical Engineering and Computer Science, Texas A&M University – Kingsville, Kingsville, TX 78363, USA

2 Computer Science and Communication Engineering, Providence University, Taichung 43301, ROC

Abstract— The algorithm proposed in this paper accepts as
input an arbitrary bipartite G and responds with
corresponding chain sub-graph covers, if G is recognized as
coverable by two or less chain sub-graphs and responds “no”
otherwise. The component ideas of a solution to the 2-CSC
problem by Tze-Heng Ma and Jeremy Spinrad in 1994 are
compiled into applicable steps and assembled to construct the
proposed algorithm. The time complexity is , where is
the number of vertices of G. Related problems that can find
this research useful are discussed in the conclusion.

Keywords—2-CSC; chain; sub-graph; bipartite; recognition

1. Introduction

In this paper, we design an effective algorithm, which has
time complexity , for obtaining more informative
outcome from a previous solution to 2-chain subgraph cover
(2-CSC) problem [1]. The input to the 2-CSC problem is any
bipartite graph G, and the expected output is a “yes” or “no’’
answer that responds to the question if G can be covered by
two or one chain sub-graph.

In many occasions, a “yes” output generated from the 2-
CSC problem is not informative enough, and we usually want
to know the corresponding chain sub-graph covers as well.
While most of the supporting properties and theorems enabling
the discovering of the desired chain sub-graph covers are
implied in the solution to the 2-CSC problem, an applicable
algorithm has yet been designed.

Thus, we look into the solution to the 2-CSC problem in
detail. Inspect supporting theorems and properties to each step
for useful information to develop the algorithm discovering
chain sub-graph covers. At the beginning of the solution to 2-
CSC problem, a partial order P is derived from the input
bipartite graph G. Then, the algorithm examining if the
dimension of a partial order is two is applied to P. Since, by
theorem, the dimension of P derived from G is the same as the
minimum number of chain sub-graph covering of G [1], we can
get the “yes” or “no” answer to a 2-CSC problem from the
outcome of previous algorithm. This paper intends to go
beyond a “yes” answer and substantializes the useful
information implied in the above computing process for the
algorithmic steps to discover the corresponding chain sub-
graph covers.

2. Definitions

1. Graph
Graph is composed of set of vertices and set of

edges , expressed in Assume For
directed graph, edge represents the connection from

 to , which is a directed edge. For undirected graph, edge
 or represents the connection between and ,

which is an undirected edge.

2. Bipartite graph
Let represent a bipartite graph. What’s

different from general graph is that can be partitioned to two
sets and , and edge only exists between and . To
distinguish from general graph, we use to
represent a bipartite graph, and every edge (for directed
graph,), either and or and

.

3. Chain graph
Chain graph is an undirected bipartite graph that its edge set

doesn’t contain , which is two undirected edges and ,
that either and , or and .

4. K-CSC and 2-CSC problem
K-CSC is abbreviation of “K-Chain Sub-graph Cover”. K-

CSC problem is a problem about the question if an input
bipartite graph can be covered by K chain sub-graphs. It has
been proved that when , K-CSC problem is NP-
complete. When , K-CSC problem is a 2-CSC problem.

5. ch(G)
ch(G) is the smallest number K such that bipartite graph G

is K-chain sub-graph coverable.

6. Partial order [2]
Partial order P defines the dominant relationship R between

some pairs of elements in a group of elements X, expressed by
 R is transitive and non-reflexive binary

relationship on X. For , indicates
dominates , expressed by . If either or ,
and are comparable. If neither nor , and
are non-comparable. For , if and

, it can be concluded, through the fact that R is transitive,
that , but may not be true.

Int'l Conf. Foundations of Computer Science | FCS'15 | 21

7. Extension of a partial order
For a partial order , its extension is another

partial order , such that . If every pair of
elements of is comparable in , is a linear extension of .

8. Linear order(total order)
If a partial order has no incomparable pair, it is called a

linear order.

9. Dimension of Partial Order
Dushnik and Miller defined the dimension of a partial order

P [2], dim(P), as “the minimum number of total orders whose
intersection defines the partial order”.

10. 2-Dimensional partial order problem
This is a problem to determine if a given partial order

whose dimension is two or less than two.

11. Modular Decomposition of a DAG (Directed
Acyclic Graph)

DAG G = (V, E) is used to represent a partial order P = (V,
R), such that for : if and only if .

 are related in DAG G, if or .
Otherwise, are not related in DAG G. Since R is
transitive, DAG G is a transitive graph.

1) Representation of a DAG: The linear orders on V
whose intersection is P construct the representation of the DAG
G.

2) Listing and Non-separating listing: Each linear order
of the representation for a DAG G is called a listing. Between
two comparable elements of P in a listing, if there is no
element that is not comparable to both and , the listing is a
non-separating listing.

3) Two dimensional partial order of a DAG G = (V, E):
Each linear order of the representation for a DAG G is called a
listing. Between two comparable elements of P in a
listing, if there is no element that is not comparable to both
and , the listing is a non-separating listing.

4) Module M: Module M is a subset of V with the
property that for , either is related to every vertex
in V or not at all.

5) : is the undirected graph that has M as vertex
set, and for , is an edge in , if are related in
DAG G.

6) : , of is the undirected graph that has M as
vertex set, and for , is an edge in , if are
not related in DAG G. and are complementary to each
other.

7) Maximal submodule: A module M is said to be a
maximal submodule of another module N, if and no
proper submodule of N contains M.

8) Parallel module: If is not connected, M is a
parallel module. The vertices of a parallel module can be
partitioned into two subsets, so that none of the vertex in one
subset is related to any vertex of the other.

9) Series module: If is not connected, M is a series
module. The vertices of a series module can be partitioned into
two subsets, so that any of the vertexes in one subset is related
to any vertex of the other.

10) Neighborhood module: If both and are
connected, M is a neighborhood module.

3. Properties, algorithms and theorems

Given a bipartite graph ,
}, a partial order can be

generated from through the following steps [1] in sequence:

Algorithm 1 Convert Bipartite Graph to Partial Order
INPUT:
 , }
OUTPUT:
 A partial order
BEGIN
1. Compute neighborhood of , , where .
2. For those vertices having the same neighborhood, keep

only one for the rest of steps.
3. If , add .
4. If , add .
5. If , add to .
6. For let and . If

, add .
END

And, an undirected bipartite graph

, where and can
be generated from above through the
following steps [1]:

Algorithm 2 Generate B(P) from P
INPUT:
OUTPUT:
BEGIN
1. For and , if in P, let .
2. For and , if in P, let .
END

Lemma 1 [1]

Lemma 2 [1]
There is one-to-one mapping between the linear order of P and
maximal chain sub-graph of .

By lemma 1, if , By lemma 2, a
maximal chain sub-graph of
can be obtained from a linear order of . We realize this fact
by looking into the supporting logic to lemma 2 and design the
following steps to compute the desired maximal chain sub-
graph.

22 Int'l Conf. Foundations of Computer Science | FCS'15 |

Algorithm 3 Map Linear Order to Maximal Bipartite Graph
BEGIN
1. Given a linear order L on of
2. Define the corresponding maximal bipartite graph

, where , if in L.
END

Lemma 3 [1]

 is a sub-graph of
 induced by and .

Lemma 4
There is one-to-one mapping between the maximal chain sub-
graph of G and the maximal chain sub-graph of .

Proof:
Assume There are k distinct maximal chain
sub-graphs, , that can cover the
edges and vertices of B(P). By lemma 3, G is a sub-graph of
B(P) induced by and , so G can be covered by the sub-
graphs of , induced by and ,
too. And, all of the induced maximal chain sub-graphs are
different, otherwise, , which is a contradiction to
lemma 1. Q.E.D.

By lemma 4, the maximal chain sub-graphs of G can be
obtained from the maximal chain sub-graphs of B(P). We
realize this fact by looking into the supporting logic to lemma 4
and design the following steps to compute the desired maximal
chain sub-graphs for G.

Algorithm 4 Compute Maximal Chain Sub-graph
BEGIN
1. Given B(P) with ch(B(P)) = k, assume the maximal chain

sub-graphs that cover B(P) are
.

2. The maximal chain sub-graphs
, that cover G can be obtained by generating sub-

graph induced by and on each of

END

Lemma 5 [3]
 algorithm exists for checking if is true,

and when producing two linear orders whose
intersection is P.

 The contribution in [3] is an algorithm for recognizing
two dimensional partial orders. The input is a partial order P.
The output is “yes” and two linear orders with intersection as
P, if P is two dimensional partial order, or “no”, if P is not a
two dimensional partial order. The steps of the recognition
algorithm are listed in the appendix.

Theorem

Proof:
The solution to 2-CSC [1] uses time and two linear
orders are generated, if P is two dimensional partial order.
Let , be the two linear orders generated. From lemma 1,

. From lemma 2, there is
one-to-one mapping between the linear order of P and
maximal chain sub-graph of , which is generated by
Algorithm 2. Thus, two maximal chain sub-graph covers of
B(P) can be obtained by Algorithm 3. By lemma 4, there is
one-to-one mapping between the maximal chain sub-graph of
G and the maximal chain sub-graph of . Thus, by
Algorithm 4, two maximal chain sub-graphs of G can be
discovered. The complexity of Algorithms 2 – 4 are .
As a result, the assertion of the theorem, algorithm
exists for discovering two maximal chain sub-graphs of G
corresponding to the 2-CSC problem, is proved. Q.E.D.

 Based on the above algorithms and theorem, we can
design the algorithm listed in the following to compute the
chain sub-graph covers for 2-CSC problem. The major steps
in the algorithm are: First, the bipartite graph, G, as input to 2-
CSC is converted to a partial order set, P; Second, P is used as
input to a two dimensional POSET problem. If P is two
dimensional partial order set, two total orders are generated;
Third, two maximal chain sub-graphs are derived from those
two total orders.

Algorithm 5 2-CSC and Chain Sub-graph Covers
INPUT: Bipartite Graph ,

}
OUTPUT: Yes, ch(G) = 2 and corresponding chain sub-graph
covering, or No, ch(G) is not 2.
BEGIN
1. G is converted to a partial order set, P by applying

Algorithm 1.
2. B(P) is generated from P by applying Algorithm 2.
3. P is used as input to a two dimensional POSET problem by

applying Algorithm 6, which is listed in the appendix.
4. IF P is two dimensional partial order set. THEN Two total

orders are generated. ELSE Output “ch(G) is not 2.” and
Exit.

5. Two maximal chain sub-graphs of B(P) are derived from
those two total orders obtained in step 4 by applying
Algorithm 3.

6. Compute the maximal chain sub-graphs of G from the
maximal chain sub-graphs of B(P) obtained in Step 5 by
applying Algorithm 4. Output “Yes, ch(G) is 2,” and
corresponding chain sub-graph coverings.

END

 Steps 1-4 use Algorithms 1, 2 and 6, which depict the
component activities in the process to resolve 2-CSC
problem [1]. So, the complexity of steps 1-4 is . Step 5
uses Algorithm 3, which takes steps to identify E of the
maximal bipartite graph according to linear order L on

of . Step 6 uses Algorithm 4 to compute each
maximal chain sub-graph of G as a subset of a corresponding

Int'l Conf. Foundations of Computer Science | FCS'15 | 23

maximal chain sub-graph of B(P), which takes steps.
As a result, the complexity of this algorithm (Algorithm 5)
is .

4. Example of Algorithm 5

Step 1:

Fig. 1. Bipartite graph G

P=(X, R)
X = {a, b, c, d, e, f}, R = { (b,f), (f,d), (d,c), (f,c), (c,a)}

Step 2:

 Fig. 2. B(P)

Step 3-4:

 Fig. 3. DAG of P

 Fig. 4. Modular representation of the DAG of P

Two total order L1, L2

L1 b, f, d, c, e, a
L2 b, f, e, a, d, c

Step 5:

Maximal Chain Sub-graphs for B(P): ,

Step 6:

Maximal chain sub-graphs for G

 Fig. 5 mapped from L1

 Fig. 6.

Fig. 7. Extracted from

24 Int'l Conf. Foundations of Computer Science | FCS'15 |

5. Conclusion and comparison with

related work

CONCLUSION AND COMPARISON WITH RELATED WORK
 This paper relates the component ideas in the solution to
2-CSC problem and shows the understanding that a more
useful solution can be obtained. After compiling the ideas into
interrelated knowledge, we find the evidence to support a
more exact solution beyond a “yes” answer to 2-CSC problem.
The identified evidence is examined and utilized to design
executable steps formulating the algorithm proposed in this
paper.

 The major steps in the algorithm are: First, the bipartite
graph, G, as input to 2-CSC is converted to a partial order set,

P; Second, P is used as input to a two dimensional POSET
problem. If P is two dimensional partial order set, two total
orders are generated and ; Otherwise, the algorithm
outputs “No” and stop. Third, two maximal chain sub-graphs
for a bipartite graph are derived from those two total
orders. Fourth, maximal chain sub-graphs of G, are derived
from those of . The proposed algorithm runs in
time, where is the number of vertices of .
 Once the chain sub-graphs can be identified, some
problems reducible to 2-CSC can produce more exact answer
from identified chain sub-graphs as a result in the same time
complexity, too. Those problems include: threshold number 2
on split graphs, Ferrers dimension 2, biorder dimension 2 and
interval dimension 2. We can acquire, respectively, two
threshold graphs covering the split graph, two Ferrer graphs
covering the directed graph, two biorders with intersection
being the given biorder, two interval orders with intersection
being the given interval order.

6. References
[1] Tze-Heng Ma and Jeremy P. Spinrad, “On the 2-Chain Subgraph Cover

and Related Problems”, Journal of Algorithm 17, pp 251 – 268, 1994.
[2] B. Dushnik, E.W. Miller, “Partially Ordered Sets”, American Journal of

Mathematics, vol. 63, pp. 600-610, 1941.
[3] J. Spinrad, Two Dimensional Partial Orders, Ph.D. Thesis, Department

of Electrical Engineering and Computer Sciences, Princeton University,
1982.

Appendix

List of Algorithm for the Recognition of Two Dimensional Partial Order [3]
Algorithm 6 Recognition of Two Dimensional Partial Order
Step 0. Given a partial order , represent it using a DAG, G, with vertex set , and an edge between two
vertices if .
Step 1. Construct a modular representation for G.

a. Consider the whole graph G as a module, M.
Recursive(M)

b. Choose any vertex u of M
If u is related to every other vertex (no edge between u and in),
 M is a series module, S, and partition M into three components:

1. vertices dominate u, m0. Call Recursive(m0).
2. vertices dominated by u,m1. Call Recursive(m1).
3. u itself, m3. An end node in the tree.

 else//Some v exists which is unrelated to u.
 Select a vertex that is not related to u.
 Find , the smallest module that contains u and v.
 Find , the set of vertices which are related to u and unrelated to v.
 Grow by repeating the following process.
 Repeat until no more addition to is possible
 Select a vertex and add to the vertices that are

1. related to v and unrelated to w
2. unrelated to v and related to w

 End
 If , grow the same way as we do for .
 Find , the set of vertices which are related to v and unrelated to u.
 Grow by repeating the following process.

Fig. 8. Extracted from

Int'l Conf. Foundations of Computer Science | FCS'15 | 25

 Repeat until no more addition to is possible
 Select a vertex and add to the vertices that are

1. related to u and unrelated to w
2. unrelated to u and related to w

 End
 If and ,

1. and modular representation of :
 Root labeled P with and as children

2. Recursive(), Recursive ()
Decompose
 Consider vertices of only
a. Let x be a vertex brought to during the last stage of its growth.
b. Find like we did for , but considering vertices of only. Refine and

. Consider vertices of only.
c. Let y be a vertex brought to during the last stage of its growth.
d. Find like we did for , but considering vertices of only. Refine and

.
e. … until is a single vertex
Decompose
… (similar)

3. Recursive(-)//u represents in term of adjacency
 If and , exchange the role of u and v. Continue with the else.
 else//

1. and the modular representation of :
2. (neighborhood module)
3. Decompose

a. Partition into two sets
: containing all vertices that were added to at the same time as .

b. Refine : so any two vertices in a partition relates in the same manner to all vertices of all other

partitions. Every partition generated in this manner will be a submodule in the final
decomposition (under current N)
 Recursive(submodule)

c. Recursive()
4. Recursive(-)

Step 2. From the modular representation, we compute a non-separating list, , for G.
Begin from leaf to construct the non-separating list. Assume in obtaining the non-separating list for a module, the list of its
submodule has been obtained.

If M is a parallel module, its listing is computed by concatenating the listings for all of its children in any order.
If M is a series module, the listing is obtained by concatenating the listings of its children, so that the listing for
precedes the listing for if and only if every vertex of dominates every vertex of .
If M is a neighborhood module, the children of M are maximal submodules of M.
 Let these submodules .
 Create set
 (is called the representative descendant of)
 Arrange the elements of D in a non-separating list called target listing.
 Replace each v in the target listing by the non-separating listing for corresponding submodule.
 The result is a non-separating list for M.

Step 3. From , we compute a pair of listings, .
 is used as . is constructed in the following steps:

 1. For each , find the value n that is the total number of vertices x in G, such that either v
 dominates x, or x precedes v in L and x, v are not related.
 2. is constructed by sorting the vertices in G according to the value n obtained in previous step.
Step 4. Verify if represent G as a two dimensional partial order DAG. If yes, P is a two dimensional partial order, and

 are two total orders on with intersection being P. If no, P is not a two dimensional partial order.

26 Int'l Conf. Foundations of Computer Science | FCS'15 |

Int'l Conf. Foundations of Computer Science | FCS'15 | 27

28 Int'l Conf. Foundations of Computer Science | FCS'15 |

Int'l Conf. Foundations of Computer Science | FCS'15 | 29

30 Int'l Conf. Foundations of Computer Science | FCS'15 |

Int'l Conf. Foundations of Computer Science | FCS'15 | 31

32 Int'l Conf. Foundations of Computer Science | FCS'15 |

Int'l Conf. Foundations of Computer Science | FCS'15 | 33

An Algorithm for Counting the Number of Edge Covers on Acyclic
Graphs

J. Raymundo Marcial-Romero1, Guillermo De Ita2, J. A. Hernández1 and R. M. Valdovinos1
1Facultad de Ingenierı́a, UAEM, Toluca, México

2Facultad de Ciencias de la Computación, BUAP, Puebla, México

Abstract— Counting the number of edge covers on graphs,
denoted as the #Edge Covers problem, is well known to be #P-
complete. In this paper, we present an algorithm that compute
the number of edge covers in polynomial time if and only if
the graph is acyclic. Our algorithm is based on a post-order
traversal of the spanning tree of the original graph.
Keywords: Counting the number of edge covers, efficient
counting algorithms.

1. Introduction
Counting problems besides of being theoretically interest-

ing, they also have a wide range of applicability on different

areas. As a matter of example, it can be mentioned that if

a propositional formula needs to be probabilistically tested

to be true or given a graph, estimates the probability that

it remains connected, in the case of a probability of failure

of an edge, the estimation of such probabilities becomes a

counting problem. Counting problems also arise naturally in

Artificial Intelligence Research, when some methods are used

in reasoning areas, such as computing the ‘degree of belief’

and ‘Bayesian belief networks’, which are computationally

equivalent to counting the number of models to a propositional

formula [4], [5], [11], [13].

Counting has become an important area in theoretical

computer science, although it has received less attention than

decision problems. There are few counting problems in graph

theory that can be solved exactly in polynomial time, indeed

an important line of research is to determine low-exponential

upper bounds for the time complexity of hard counting prob-

lems.

An edge cover set of a graph G is a subset of edges covering

all nodes of G. The problem of counting the number of edge

cover sets of a graph, denoted as #Edge Covers, is a #P

complete problem which has been proved via the reduction

from #Twice-SAT to #Edge Covers [1].

Although the time complexity to compute exactly the edge

cover sets on a graph is a hard problem, it is relevant to

cathegorize the class of instances where counting the number

of edge covers can be done in polynomial time. There is a

scarce literature about the design of procedures for computing

edge covers, and as far as the authors are aware, it is not

known which is the largest polynomial class of graphs for the

#Edge Covers problem.

In this work, the computation of #Edge Covers based on the

topological structure of the graph will be addressed. A method

for counting edge covers for acyclic graphs is presented via a

post-order traversal strategy.

In Section 2, it is briefly discussed the preliminaries of

the paper. In Section 3, the basic topologies of a graph

are presented, for which efficient procedures for solving the

#Edge Covers problem have been designed. In this direction,

it is shown that the #Edge Covers problem is solved in linear

time over the size of a graph when the graph does not have

cycles or it is acyclic. Those are topological cases for which a

bound can be estimated from the branch and bound algorithm.

In Section 4, an algorithm to compute edge covers for

acyclic graphs is described. A spanning tree of the original

algorithm is built followed by a post-order traversal. Finally,

in Section 5 the conclusions of the paper are presented.

2. Preliminaries
Let G = (V,E) be a simple graph (i.e. finite, undirected,

loop-less and without multiple edges). V (G) and E(G) are

also used to denote the set of vertices and edges, respectively,

of graph G. A vertex and an incident edge are said to cover
each other. The cardinality of a set A will be as usual denoted

by |A|.
The neighbourhood of a vertex v ∈ V is the set N(v) =

{w ∈ V : {v, w} ∈ E(G)}, and the closure neighbourhood of

v is N [v] = N(v)∪ {v}. The degree of a node v, denoted by

δ(v), is the number of neighbours it contains, that is δ(v) =
|N(v)|. A vertex v is said to be pendant if its neighbourhood

consists of exactly one vertex; analogously an edge e is said

to be pendant if one of its endpoints is a pendant vertex [10].

The degree of a graph G is Δ(G) = maxx∈V (G){δ(x)}.

Let G = (V,E) be a graph then S = (V ′, E′) is a subgraph

of G if V ′ ⊆ V and E′ contain edges {v, w} ∈ E such

that v, w ∈ V ′. If E′ contains every edge {v, w} ∈ E where

v, w ∈ V ′, then S is called the subgraph of G induced by S
and is denoted by G‖S. Let S be any subgraph, G − S will

denote the induced graph G‖(V −V ′). In the same way, G−v
for v ∈ V (G) denotes the induced subgraph G‖(V −{v}), and

G − e for e ∈ E(G) will denote the subgraph of G formed

by V (G) and E(G)− {e}.

Definition 1: Let G be a graph then G is said to be

connected if for each pair v, w ∈ V (G) there exists a path

from u to v. The path may consist of more than one edge

e ∈ E(G). A connected component of G is a maximal induced

subgraph of G, that is, a connected component is not a proper

subgraph of any other connected subgraph of G.

34 Int'l Conf. Foundations of Computer Science | FCS'15 |

For example, a tree graph is an acyclic connected graph. Let us

denote a complete graph, a simple path and a simple cycle by

Kn, Pn and Cn respectively, where n represents the number

of nodes in the graph.

Definition 2: A vertex cover for a graph G = (V,E) is a

subset of nodes U ⊆ V (G) that covers every edge of G; that

is, every edge has at least one endpoint in U . An edge cover

for a graph G = (V,E) is a subset of edges E ⊆ E(G) that

cover all node of G, that is, for each u ∈ V (G) there is a

v ∈ V (G) such that e = {u, v} ∈ E .

2.1 Statement of the problem
The statement of the problem that this paper is concerned

about can be established as follows: Let us consider a graph

G = (V,E) and let CE(G) = {E ⊆ E(G) : E is an edge cover

of G} be the set of edge covers for G. Let us also consider

NE(G) = |CE(G)| to be the number of edge covers of G, in

different words NE(G) is the cardinality of the set CE(G).
The problem of computing the number NE(G) for any graph

will be called the #Edge Covers problem.

3. Linear time Procedures for Counting
Edge Covers

NE(G) for any graph G, including the case when

G is a disconnected graph, is computed as: NE(G) =∏k
i=1 NE(Gi), where k is the cardinality of the set of

connected components of G and each Gi represents an element

of this set. The set of connected components of G can be

computed in linear time [1].

The edges of G appearing in all edge cover sets are called

fixed edges. When an edge cover E of G is being built, we

distinguish between two different states of a node u; we say

that u is free when it has not still been covered by any edge

of E , otherwise the node is covered. We begin designing

procedures for counting edge covers, considering the most

common topologies of a network.

Case A: The Bus Topology
Let Pn = G = (V,E) be a linear bus (a path graph). We

assume an order between vertices and edges in Pn, i.e. let

V = {v0, v1, . . . , vn} be the set of n + 1 vertices and let

ei = {vi−1, vi}, 1 ≤ i ≤ n be the n edges of Pn.

Let Gi = (Vi, Ei), i = 0, . . . , n be the subgraphs induced

by the first i nodes of V , i.e. G0 = ({v0}, ∅), G1 =
({v0, v1}, {e1}), . . . , Gn = Pn. Gi, i = 0, . . . , n is the family

of induced subgraphs of G formed by the first i nodes of V .

Let CE(Gi) be the set of edge covers of each subgraph Gi,

i = 0, . . . , n.

Each edge ei, i = 1, . . . , n in the bus has associated an

ordered pair (αi, βi) of integer numbers where αi carries

the number of edge cover sets of CE(Gi) where the edge ei
appears in order to cover the node vi−1, while βi conveys the

number of edge cover sets in CE(Gi) where the edge ei does

not appear.

By traversing Pn in depth-first search, each pair (αi, βi), i =
1, . . . , n is computed in accordance with the type of edge that

ei is. Pn has two fixed edges: e1 and en. The pair (1,0) is

assigned to (α1, β1) because e1 has to appear in all edge cover

of Pn.

If we know the values (αi−1, βi−1) for any 0 < i < n, then

we know the number of times where the edge ei−1 appears

or does not appear into the set of edge covers of Gi. When

the edge ei is being visited, the vertex vi−1 has to be covered

considering its two incident edges: ei−1 and ei. Any edge

cover of CE(Gi) containing the edge ei−1 (αi−1 cases) has

already covered vi−1 then the ocurrence of ei is optional. But

for the edge covers where ei−1 does not appear (βi−1 cases)

ei must appear in order to cover vi−1. This simple analysis

shows that the number of edge covers where ei appears is

αi−1 + βi−1 and that just in αi−1 edge covers the edge ei
does not appear. Thus, we compute (αi, βi) associated with

the edge ei, applying the Fibonacci recurrence relation.

αi = αi−1 + βi−1; βi = αi−1 (1)

When the search arrives to the last edge en of the linear

bus, we have already computed the pair (αn−1, βn−1); since

en is a fixed edge, it has to appear in all edge covers of Pn.

We call αn = αn−1 + βn−1 and βn = 0 the recurrence for
processing fixed edges (RPFE).

The pair associated with en is (αn, βn) = (αn−1+βn−1, 0).
The sum of the elements of this pair (αn, βn) yields the

number of edge covers: NE(Pn) = αn + βn. Notice that

NE(Pn) is computed in linear time over the number of edges

in Pn. In figure 1 we present an example where → denotes the

application of recurrence (1), and �→ denotes the application

of RPFE.

Edges : e1 e2 e3 e4 e5
(αi, βi) : (1, 0) → (1, 1) → (2, 1) → (3, 2) �→ (5, 0)

Fig. 1

COUNTING EDGE COVERS ON A LINEAR BUS

Recall that each Fibonacci number Fi can be bounded from

above and from below by φi−2 ≥ Fi ≥ φi−1, i ≥ 1, where

φ = 1
2 · (1 +√

(5)).
Theorem 3: The number of edge cover sets of a path of n

edges, is:

Fn = ClosestInteger

[
1√
5

(
1 +

√
5

2

)n]
.

Proof: The series (αi, βi), i = 1, . . . , n used for

computing NE(Pn), coincides with the Fibonacci numbers:

(F1, F0) → (F2, F1) → (F3, F2) → . . . → (Fn−1, Fn−2) �→
(Fn, 0). Then, we infer that (αi, βi) = (Fi, Fi−1) for i =
1, . . . , n − 1 and αn = Fn, βn = 0. Thus, NE(Pn) =
αn + βn = Fn.

Int'l Conf. Foundations of Computer Science | FCS'15 | 35

Case B: The Tree Topology
Let T = (V,E) be a rooted tree. Root-edges in T are the

edges with one endpoint in the root node; leaf-edges in T
are the edges with one endpoint in a leaf node of T . Given

any intermediate node v ∈ V , we call a child-edge of v
to the edge connecting v with any of its children nodes,

and the edge connecting v with its father node is called the

father-edge of v. NE(T) is computed by traversing T in

post-oder and associating (αe, βe) with each edge e ∈ E,

except for the leaf edges.

Algorithm #Edge Covers for Trees(T)
1) Reduce the input tree T to another tree T ′ by prunning

all leaf nodes and leaf-edges from T , and by labeling as

covered all father nodes of the original leaf nodes of T
(see figure 3).

2) Traverse T ′ in post-order and associate a pair (αe, βe)
with each edge e in T ′. Such pairs are computed in the

following way:

a) (αe, βe) = (1, 1) if e is a leaf-edge of T ′, since its

children nodes have been covered.

b) if an internal node v is being visited and it has

a set of child-edges u1, u2, ..., uk, then each pair

(αuj
, βuj

), j = 1, . . . , k has already been com-

puted. Assume αu carries the number of different

combinations of the child-edges of v for covering

v, while βu gives the number of combinations

among the child-edges of v which do not cover

v. The pair (αu, βu), which we assume represents

an imaginary child-edge eu of v, is computed as:

αu =

k∏
j=1

(αuj + βuj)−
k∏

j=1

βuj ; βu =

k∏
j=1

βuj

(2)

The pair associated to the father-edge

ev of v is computed as:

(αv, βv) =

{
(αu + βu, αu) if v is free,

(αu + βu, αu + βu) otw

This step is iterated until it computes the pairs (αe, βe)
for all edge e ∈ T ′. If there are more than one root-

edges then one extra iteration of this step is applied in

order to obtain a final pair (αer , βer) associated with

just one root-edge er.

3) NE(T) is computed in accordance with the status of

the root node vr of T ; NE(T) = αer + βer if vr is a

covered node, otherwise NE(T) = αer .

The above procedure returns NE(T) in time O(n + m)
which is the necessary time for traversing T in post-order.

Notice that this case includes the star topology network.

Example 4: Let T be the tree of figure 3a. T ′ is the reduced

tree from T where its covered nodes are marked by a black

point inside of the nodes (figure 3b). When T ′ is traversed

in post-order a pair (αe, βe) is associated with each edge.

The pairs for the child-edges of vr, are: (1,1), (4,3) and (6,3).

Those three edges are combined in only one edge er applying

recurrence (2): αer = (1+1)∗(4+3)∗(6+3)−1∗3∗3 = 117
and βer = 1 ∗ 3 ∗ 3 = 9. Since vr is the root node and it is

free, then NE(T) = αer = 117.

Vr Vr
(1,1)

(1,1) (1,1)

(1,1)

(2,1)

(3,3)

(6,3)
(4,3)

a) Original input tree T b) An equivalent tree T’, NE(T)=NE(T’)

Fig. 2

COMPUTING THE NUMBER OF EDGE COVERS FOR A TREE

Case C: The Ring Topology
Let Cn = (V,E) be a simple ring with n edges. We assume

an order over the nodes and edges of Cn given by V =
{v1, . . . , vn} and E = {e1, . . . , en}, ei = {vi, vi+1}, i =
1, . . . , n−1, en = {vn, v1}. We call a computing thread or just

a thread to the series (α1, β1) → (α2, β2) → · · · → (αk, βk)
obtained by counting in an incremental way, applying the

recurrence (1), the number of edge covers of a path with

k edges.
Let Lp be the thread used for computing the series of pairs

associated to the n edges of Cn. The pair (α1, β1) = (1, 1) is

associated with e1 since Cn has not fixed edges. Traversing in

depth first search, the new pairs in Lp are computed applying

the Fibonacci recurrence (1) since all nodes in Cn have degree

two and they are free. After n applications of recurrence (1),

the pair (αn, βn) = (Fn+1, Fn) is obtained, Fi being the i-th
Fibonacci number.

Let NCn be the number of edge sets counted by Lp, i.e.

NCn = αn + βn = Fn+2. Lp counted the edge sets where

neither e1 nor en appear, since β1 = 1 and βn > 0. Due to

e1 or en or both have to be included in the edge cover sets of

Cn, in order to cover v1, we have to substract from NCn the

number of sets which does not cover v1.
Let Y be the number of edge sets which cover all nodes

of Cn except v1, then NE(Cn) = NCn − Y . In order to

compute Y a new thread L′
p = (α′

1, β
′
1) → · · · → (α′

n, β
′
n)

is computed. L′
p begins with the pair (α′

1, β
′
1) = (0, 1), i.e. it

begins counting the edge sets where e1 does not appear. After

n applications of recurrence (1) the last pair (α′
n, β

′
n) of L′

p

obtains (Fn−1, Fn−2).
The number of edge sets where neither e1 nor en appear is

β′
n = Fn−2, hence Y = Fn−2. Finally, NE(Cn) = NCn −

Y = Fn+2 − Fn−2. Then, we deduce the following theorem.
Theorem 5: The number of edge cover sets of a simple

cycle Cn with n edges, expressed in terms of Fibonacci

numbers, is: NE(Cn) = Fn+2 − Fn−2.
With � we denote the binary operation (αn, βn − β′

n)
between two pairs, and the result is assocciated with the last

edge en of the ring Cn (fig. 4). Notice that the computation of

36 Int'l Conf. Foundations of Computer Science | FCS'15 |

NE(Cn) is the order O(n) since we compute the two threads:

Lp and L′
p in parallel while the depth-first search is applied.

(α1, β1) → (α2, β2) → (α3, β3) → (α4, β4) →
(α5, β5) → (α6, β6)

Lp : (1, 1) → (2, 1) → (3, 2) → (5, 3) →
(8, 5) → (13, 8)

C ′
6 : (0, 1) → (1, 0) → (1, 1) → (2, 1) →

(3, 2) → (5, 3)
⇒ (13, 8) � (5, 3) = (13, 5)

Fig. 3

COUNTING THE NUMBER OF EDGES COVERS FOR A RING

Example 6: Let C6 be the ring illustrated in figure 4.

Applying theorem (4.3), we have that NE(C6) = F6+2 −
F6−2 = F8 − F4 = 21− 3 = 18.

The graphs which hold the topologies of the above cases (A)

to (C) englobe the most common topologies of a communica-

tion network. The linear time procedures designed here can be

included into a branch and bound algorithm which processes

any kind of topology of a network.

4. Counting edge covers for acyclic graphs
In [6] methods to compute the number of edge covers for

acyclic graphs and simple cycle graphs were presented. In

this section we present an algorithm which combine those

methods to compute the number of edge covers for graph

without intersecting cycles, e.g. acyclic or with independent

cycles graphs. The complexity of the method is polynomial

with respect to the number of vertices of the graph.

Let G be a graph a directed depth first search graph TG of

G is built as follows:

1) Built a depth first search graph G′ of G (it is well known

that the edges of TG are tree edges or back edges).

2) For each tree edge e = (u, v) ∈ G′, add the directed

edge e = u → v to TG if u is a child of v in G′.
3) For each back edge e = (u, v) ∈ G′ add the directed

edge e = u → v to TG if u is a descendant of v in G′.
Example 7: Consider the graph of figure 4. It can be notice

that it does not have intersecting cycles, just two independent

cycles. A depth first search of G is shown at the left of figure 6.

The dotted edges denote back edges and the solid edges denote

tree edges. At the right hand side of figure 6 the directed depth

first search graph of G is shown.

Definition 8: Let TG be a directed depth first search graph

and v ∈ V (TG) we define:

input(u) = |{v | v → u ∈ E(TG)}|
output(u) = |{v | u → v ∈ E(TG)}|

Definition 9: Let G be a directed depth first search graph,

and e = u → v ∈ E(G). A tuple (αe, βe) is associated to e

6 2 7 8

4 3 9 11

1 12

105

Fig. 4

A GRAPH WHICH DOES NOT HAVE INTERSECTING CYCLES

6

2

7

84

3

9

11

1

12
10

5

Fig. 5

A DEEP FIRST SEARCH OF THE GRAPH OF FIGURE 4. DOTTED EDGES

REPRESENT BACK EDGES AND SOLID EDGES REPRESENT TREE EDGES.

such that αe represents the number of edge covers of G where

e is considered to cover u. The number βe represents the edge

covers of G where e is not considered to cover u.

Algorithm 1 computes the number of edge covers of a

directed depth first search graph TG which does not have

intersecting cycles. Lines 1 and 2 states the required inputs

and output respectively. Line 3 states that a postorder traversal

of the tree nodes of TG is required. Line 4 states that a

computation of a pair (αe, β4) for each edge e during the

traversal is required (see Definition 9). From line 6 to 24

the different types of edges in non-intersecting graphs are

6

2

7

84

3

9

11

1

12
10

5

Fig. 6

A DIRECTED DEEP FIRST SEARCH OF THE GRAPH OF FIGURE 4

Int'l Conf. Foundations of Computer Science | FCS'15 | 37

6

2

7

84

3

9

11

1

12
10

5

(1,1)

(2,1) (1,0)

(3,3) → (6,4)

(1,0) (1,0)

(1,1)

(1,1)

(2,1)

(6,5) → (11,7)

(180,152)

NE(G)=180

Fig. 7

COUNTING THE NUMBER OF EDGE COVERS ON THE DIRECTED DEPTH

FIRST SEARCH OF THE GRAPH OF FIGURE 4.

considered. Line 6 represents the case where the edge e =
u → v must be present in each edge cover of TG due to u is a

leaf and there is not another edge to cover u, so a pair (1,0) is

associated to these kind of edges. Line 9 represents the case

where there are two output edges from u, let say e = u → v
and e1 = u → w. It can be notice that in a non-intersecting-

cycle graph G, output(v) is either 0, 1 or 2 for each node

v ∈ G. That output(v) = 2 means that one is a tree edge and

the other a back edge (there are not two fathers for a child in

a tree). In this case a pair (1,1) can be associated to e since

removing e from an edge cover is valid iff e1 is contained.

From line 12 to 15, it is said how to compute (αe, βe) when

besides that e = u → v there is a back edge e1 = x → v (in

other words a symple cycle is reached). A detail explanation

is shown in [6]. From line 16 to 19 the formula to compute

the pair (αe, βe) for e = u → v taking into account the pairs

(αei , βei) where ei = xi → u is described. Finally, lines 20 to

22 it is said how to compute edge covers when the root node

is reached. Figure 7 shows the application of algorithm 1 to

the directed depth first search graph of figure 6.

5. Conclusions
Sound and correct algorithms have been presented to com-

pute the number of edge covers for graphs. It has been shown

that if a graph G has simple topologies: paths, trees and simple

cycles; then the number of edge covers can be computed in

linear time over the graph size.

With respect to cyclic graphs that have intersecting cycles, a

branch and bound procedure has been presented, it reduces the

number of intersecting cycles until basic graphs are produced.

It has been determined a pair of recurrence relations

that establish a bound on the time to compute the

number of edge covers on intersecting cycle graphs. It was

also designed the first ”low-exponential” algorithm for the

#Edge Covers problem whose upper bound in the worst case

is O(1.465571(m−n) ∗(m+n)),m and n being the number of

Algorithm 1 Procedure edge cover for G without intersecting

cycles

1: Input: TG: a directed depth-first search graph of G which

do not contain intersecting cycles.

2: Output: NE(G): the number of edge covers of G.

3: Traverse the nodes of G from the leaves to the root.

4: for each tree edge ei = u → v compute a pair (αei , βei)
{back edges do not have a pair}

5: switch (ei = u → v)

6: case u is a leaf node and output(v) == 1:
7: (αei , βei) = (1, 0); {there is no back edge from r}
8: break;

9: case u is a leaf node and output(v) == 2:
10: (αei , βei) = (1, 1); {there is a back edge from r}
11: break;

12: default:
13: if ej = x → v is a back edge and path(ei, ej) is a

cycle then
14: (αj , βj) = (αj + βj , αj + 1)
15: end if
16: let A = {e1, e2 . . . ej} be the set of edges such that

ek = x → u for any x,

17: if output(v) > 0 and each par (αej , βej) for each edge

of A has been computed then
18: (αei , βei) =

(∏j
r=1(αer + βer), T

)
; where T =∏j

r=1(αer +βer)−
∏j

r=1 βer{s is not the root node}
19: end if
20: if output(v) == 0 and and each par (αej , βej) for each

edge of A has been computed then
21: (αi, βi) =

(∏j
r=1(αr + βr)−

∏j
r=1 βr,

∏j
r=1 βr

)
;

{s is the root node}
22: return αi;

23: end if
24: end switch

edges and nodes of the input graph respectively. In terms only

of the number of edges, our algorithm has an upper bound of

O((1.324718)m ∗ (m+ n)).

References
[1] Bubley R., Dyer M., Graph Orientations with No Sink and an Approxi-

mation for a Hard Case of #SAT, Proc. of the Eight Annual ACM-SIAM
Symp. on Discrete Algorithms, 1997, pp. 248-257.

[2] Bubley R., Dyer M., Greenhill C., Jerrum M., On approximately
counting colourings of small degree graphs, SIAM Jour. on Computing,
29, (1999), pp. 387-400.

[3] Bubley R., Randomized Algorithms: Approximation, Generation, and
Counting, Distinguished dissertations Springer, 2001.

[4] Darwiche Adnan, On the Tractability of Counting Theory Models and
its Application to Belief Revision and Truth Maintence, Jour. of Applied
Non-classical Logics,11 (1-2),(2001), 11-34.

[5] Dahllöf V., Jonsson P., Wahlström M., Counting Satisfying Assignments
in 2-SAT and 3-SAT, LNCS 2387, pp. 535-543, 2002.

[6] De Ita G., Marcial-Romero J. Raymundo, Montes-Venegas Héctor.,
Counting the number of edge covers on common network topologies,
Electronic Notes in Discrete Mathematics, Vol. 36, pp. 247-254, 2010.

[7] Dyer M., Greenhill C., Some #P-completeness Proofs for Colourings and
Independent Sets, Research Report Series, University of Leeds, 1997.

38 Int'l Conf. Foundations of Computer Science | FCS'15 |

[8] Garey M., Johnson D., Computers and Intractability a Guide to the
Theory of NP-Completeness, W.H. Freeman and Co., 1979.

[9] Greenhill Catherine, The complexity of counting colourings and inde-
pendent sets in sparse graphs and hypergraphs”, Computational Com-
plexity, 9(1): 52-72, 2000.

[10] Levit V.E., Mandrescu E., The independence polynomial of a graph - a
survey, To appear, Holon Academic Inst. of Technology, 2005.

[11] Roth D., On the hardness of approximate reasoning, Artificial Intelli-
gence 82, (1996), pp. 273-302.

[12] Tarjan R., Depth-First Search and Linear Graph Algorithms, SIAM
Journal on Computing, Vol. 1, pp.146-160, 1972.

[13] Vadhan Salil P., The Complexity of Counting in Sparse, Regular, and
Planar Graphs, SIAM Journal on Computing, Vol. 31, No.2, pp. 398-427,
2001.

Int'l Conf. Foundations of Computer Science | FCS'15 | 39

Feature Based Cryptanalytic Technique for Digital
Forensics Analysis of Visual Cryptographic Digital Image

Data Based on Formal Concept Analysis

Quist-Aphetsi Kester 1,2,3, Laurent Nana1, Anca Christine Pascu1, Sophie Gire1,Jojo M. Eghan3, Nii
Narku Quaynor3

1 Lab-STICC (UMR CNRS 6285), European University of Brittany, University of Brest, France
 Kester.quist-aphetsi@univ-bret.fr / kquist@ieee.org

2 Faculty of Informatics, Ghana Technology University College
3Department of Computer Science and Information Technology, University of Cape Coast

Abstract - Lossless pixel value encrypted images still
maintains the some properties of their respective original
plain images. Ciphered Images that maintain the properties of
their plain images of a given domain are very useful in certain
applications where the conservation of pixel values but visual
concealment is of a paramount concern. Medical images that
have a fully reversible and recoverable process are of key
importance in Medicine. Hence visually ciphered images
stored or transmitted over secured or unsecured networks can
also be analyzed in a forensic investigation to determine
possible plain image equivalence. Digital Forensics processes
have played crucial role in fighting crime both in society and
cyberspace. In this paper, feature based cryptanalytic
technique for digital forensics analysis of visual cryptographic
digital image data based on formal concept analysis was
proposed. Different techniques of visual cryptographic
approaches were engaged in ciphering the plain image and
our proposed approach was engaged in the cryptanalysis of
the plain image after feature extractions from both the plain
and the ciphered images. A lattice was generated which was
then used authenticate and match the ciphered images to their
respective ciphered plain images. At the end, the Galois lattice
of both ciphered and plain image remained the same.

Keywords: formal concept analysis, cryptanalysis, digital
forensics, lattices, digital image, feature extraction, pixels

1 Introduction
 The high increase in multimedia image usage for data
communications over secured and unsecured network was due
to the digitization of processes such as digital filing of
documents, video conferencing, social media activities etc[1-
3]. Secret communications between two parties using
multimedia can also involve communications of encrypted
image [4]. The rise in crime and availability of approaches to
securing data to the general public has created avenues for
people to implement cryptographic approaches in securing
and concealing image contents. These approaches hinder

criminal investigative procedures and prevent easy analysis of
digital evidences [5-7]. Cryptanalysis is an effective way of
analyzing ciphers and encrypted data with the high hopes of
decrypting the data or breaking the cipher. These approaches
are very crucial in solving a range of issues in military
communication applications and digital forensics toolkits.
Cryptographers overtime have device the means of securing
messages as well breaking codes [8-9].

Security in multimedia supplications is critical for the future.
In this paper, we proposed a feature based cryptanalytic
technique for digital forensics analysis of visual cryptographic
digital image data based on formal concept analysis was
proposed. Features were extracted from both plain and
ciphered images and then lattices were built to help match
plain images to their respected ciphered images. At the end,
the Galois lattice of both ciphered and plain image remained
the same. The paper has the following structure; section II
Related works, section III is Methodology, section IV Results
and analysis, and section V concluded the paper.

2 Literature Review
 Forensics approaches cannot be effective in the presence
of anti forensics procedures such as altering of content data
during recovery process, incomplete evidence, encrypted data
etc And as society has become increasingly reliant upon
digital images to communicate visual information, a number
of forensic techniques have been developed to verify the
authenticity of digital images. Hence the digital forensics
community requires new tools and strategies for the rapid
turnaround of large forensic targets [10-13]. Alin C in their
work described several statistical techniques for detecting
traces of digital tampering in the absence of any digital
watermark or signature. They quantify statistical correlations
that result from specific forms of digital tampering, and devise
detection schemes to reveal these correlations [14]. Dehnie, S
proposed a digital image forensics for identifying computer
generated and digital camera images [15]. Formal Concept
analysis Formal is a field of applied mathematics based on the

40 Int'l Conf. Foundations of Computer Science | FCS'15 |

mathematization of concept and conceptual hierarchy. It
thereby activates mathematical thinking for conceptual data
analysis and knowledge processing [16]. Its applications in
forensics are normally in the domain of computer aided
investigations. Where the data collected on crime re being
analyzed using the approach[17-18]. In our approach we
engaged feature based cryptanalytic technique for digital
forensics analysis of visual cryptographic digital image data
based on formal concept analysis was proposed. Different
techniques of visual cryptographic approaches were engaged
in ciphering the plain image and our proposed approach was
engaged in the cryptanalysis of the plain image after feature
extractions from both the plain and the ciphered images.

3 Methodology
Our method employed a cryptanalytic procedure by

using features generated from digital images which were then
used to construct a Galois lattice. The features were extracted
in such a way that a change in pixel value can cause a change
in concept of the lattice. This means that if there is no pixel
expansion in the ciphering process of the image, a perfect
match of its plain image can be obtained by using our
proposed method. The overall process is indicated in figure 1
below.

Figure 1: Summary of the Entire process

From figure 1:
PI=Plain image
g(PI)=function that operated on the plain image to pro-
 duce the features
n(f,a,s,e)=function of the features
fe= the feature results
f=sum of all frequency of each pixel in the image
a=arithmetic mean of all the pixel values in the image
s=standard deviation all the pixel value in the image
e=entropy of all the pixel value the image
x=a distinct chosen pixel value number
x’=frequency of x
f’=x’/f, a’=x’/a, s’=x’/s and e’=x’/e
G =set objects extracted from the image
M=sets attributes obtained from the image
Concepts obtained are (G,M,I)
r(G,M,I)=the function that operated on G,M an d I concept
 to produce K
ImC=the image encryption algorithm that operated on K
 and Pi to produce CI
3.1 The Feature Extraction

Let I= an image=f (R, G, B)
I is a color image of m x n x 3 arrays

(R, G, B) = m x n and R, G, B I
(R o G) i j = (R) ij. (G) ij
where r_11 = first value of R
 r= [ri1] (i=1, 2… m) and
 x r_i1 : [a, b]= {x I: a ≤ x ≥ b}
 a=0, b=255 and R= r= I (m, n, 1)
 where g_12 = first value of G
 g= [gi2] (i=1, 2... m) and
 x g_i1: [a, b]= {x I: a ≤ x ≥ b}
 a=0 , b=255 and G= g= I (m, n, 1)
and b_13 = first value of B
 g= [bi3] (i=1, 2... m) and
 x b_i1 : [a, b]= {x I: a ≤ x ≥ b}
 a=0, b=255 and B=b= I (m, n, 1)
 Such that R= r= I (m, n, 1)

Let X=freq(x) which is the number of times x occurred
 in r,g and b

f =

fe=n(f,a,s,e)

(G,M,I)

FCA lattice

PI g(PI)=fe

M={f’,a’,s’,e’}G={x}

Feature
Generation

Process

Context
Creation

Lattice
Generation

R G B

Int'l Conf. Foundations of Computer Science | FCS'15 | 41

a =

Where x b_i1 : [a, b]= {x I: a ≤ x ≥ b}

s =

Entropy is defined as
e = -∑η=0

ε-1 Ψ (xi). log2 (Ψ (xi))

Where:
δ= Entropy of image
ε = Gray value of an input image (0-255).
Ψ (η) = Probability of the occurrence of symbol η

3.2 The Feature Classification using FCA

Formal concept analysis (FCA) is a method of data analysis
with growing popularity across various domains. FCA
analyzes data which describe relationship between a particular
set of objects and a particular set of attributes.
If g A and m B then (g,m) I ,or gIm.
A formal context is a triple (G,M,I), where
•G is a set of objects,
• M is a set of attributes
•and I is a relation between G and M.
• (g,m) I is read as „object g has attribute m.
For A G, we define
A´:= {m M | g A:(g,m) I }.
For B M, we define dually
B´:= {g G | m B:(g,m) I }.
For A, A1, A2 G holds:
• A1 A2 A`2 A`1
• A 1 A``
• A`= A```
For B, B1, B2 M holds:
• B1 B2 B‗2 B‗1
• B B``
• B`= B```
A formal concept is a pair (A, B) where
• A is a set of objects (the extent of the concept),
• B is a set of attributes (the intent of the concept),
•A`= B and B`= A.
The concept lattice of a formal context (G, M, I) is the set of
all formal concepts of (G, M, I), together with the partial
Order (A1, B1) ≤ (A2, B2): A1 A2 (B1 B2)
(Priss, U, 1997).
The concept lattice is denoted by (G,M,I) .
• Theorem: The concept lattice is a lattice, i.e. for two
concepts
(A1, B1) and (A2, B2), there is always
•a greatest common sub-concept: (A1 A2, (B1 B2) ´´)
•and a least common super-concept: ((A1 A2) ´´, B1 B2)

More general, it is even a complete lattice, i.e. the greatest
common sub-concept and the least common super-concept
exist for all (finite and infinite) sets of concepts.
Corollary: The set of all concept intents of a formal context
is a closure system. The corresponding closure operator is
h(X):= X``.
An implication X→Y holds in a context, if every object
having all attributes in X also has all attributes in Y.
Def.: Let X M. The attributes in X are independent, if there
are no trivial dependencies between them

Figure 2: A table of attributes and properties

The table above represents logical attributes represented by a
triplet (X, Y, I), where I is a binary relation between X and Y.
The elements of X are called objects and correspond to table
rows, elements of Y are called attributes and correspond to
table columns, and for x X and y Y , (x, y) I indicates
that object x has attribute y while (x, y) I.
From the image we chose our objects as a classified range of
values of x, where x b_i1 : [a, b]= {x I: a ≤ x ≥ b} and
a=0, b=255. G= {0-25, 26-50, 51-75, 76-100,101-125, 126-
150,151-175, 176-200,201-225, 256-255}.
f’=j/f
a’=j/a
s’=j/s
e’=j/e
where j is the sum of all the frequencies of all numbers that
fall within the range of each object.
Where B= {f,,a’,s’,e’} Major attributes and f’ has {B_1, B_2,
B_3 and B_4} as sub attributes. Therefore, a’, s’ and e’ have
the same sub attributes as f’. But {B_1, B_2, B_3, B_4} maps
directly and exactly on at least one element of {0-0.25, 0.26-
0.50, 0.51-0.75, 0.76-1.0}.
4 Analysis and Results
We chose a 24 bit depth image jpg of dimension 960 pixels by
720 pixels with a horizontal resolution of 96 dpi and a vertical
resolution of 96 dpi.

Figure 3: Plain image

42 Int'l Conf. Foundations of Computer Science | FCS'15 |

Figure 4: The graph of the normalized cross-correlation of
the matrices of the plain image

Figure 5: A graph of frequency of pixel values

Figure 6: A Galois lattice generated from the plain image

Figure 7: The ciphered image

Figure 8: The graph of the normalized cross-correlation of
the matrices of the ciphered image

Figure 9: A Galois lattice generated from the ciphered image

Table 1: Table Objects X and attributes
G j f' a' s'
0-25 16993

8 0.081953 1502.998 2343.901
26-50 31651

7 0.152641 2799.4 4365.619
51-75 23576

4 0.113698 2085.189 3251.819
76-100 28914

9 0.139443 2557.347 3988.141
101-125 31944

6 0.154054 2825.306 4406.018
126-150 23575

8 0.113695 2085.136 3251.736
151-175 14600

1 0.070409 1291.29 2013.746
176-200 46113 0.022238 407.8414 636.0221
201-225 31294 0.015092 276.7764 431.6283
226-255 28362

0 0.136777 2508.446 3911.881

Int'l Conf. Foundations of Computer Science | FCS'15 | 43

The graph of the normalized cross-correlation of the
matrices of the plain image in figure 3 was plotted as shown in
figure 4. The features f=2073600, a=113.066, s=72.5022 and
e=7.1945 were extracted from the plain images. The
frequencies of the pixel values of the plain image were plotted
as shown in figure 5 and a Galois lattice was generated from
the features extracted from the plain image based on table 1.
Table two below showed six different techniques of visual
cryptography applies to the image. The results for the features
were constant even though the visual states of the
encrypted images differ for the various approaches
engaged.

Table 2: Table Objects X and attributes
Approaches f a s e
1 2073600 113.066 72.5022 7.1945

2 2073600 113.066 72.5022 7.1945

3 2073600 113.066 72.5022 7.1945

5 2073600 113.066 72.5022 7.1945

6 2073600 113.066 72.5022 7.1945

At the end all the graphs plotted and the concept lattices
were the same for both the ciphered and the plain images. A
set of encrypted images were tested against their
corresponding ciphered images and the results were effective.
This means that a plain image can be mapped directly to its
corresponding ciphered image without decrypting the ciphered
image for a given data set.

5 Conclusion
Based on the extracted features from both the plain and the

ciphered images, a Galois lattice was constructed. We have
realized that the Gallois lattice generated from the plain image
as well as the features extracted from the plain image was the
same as that of the ciphered image irrespective of pixel
displacement that occurred. This was as a result of
conservation of pixel values. This makes our approach a
suitable forensics analysis of encrypted images based on visual
cryptography or pixel displacement. Our results were very
effective for different kind of approaches that engaged a non
pixel expansion technique in ciphering the image. Our
proposed method can help also in the indexing of images
based on the extracted features and can help in evidence
analysis of ciphered images based on visual cryptographic
techniques that conserves pixel values.

. Acknowledgments. This work was supported by Lab-
STICC (UMR CNRS 6285) at UBO France, AWBC Canada,
Ambassade de France-Institut Français-Ghana and the
DCSIT-UCC, and also Dominique Sotteau (formerly directeur
de recherche, Centre national de la recherche scientifique
(CNRS) in France and head of international relations, Institut
national de recherche en informatique et automatique, INRIA)
and currently the Scientific counselor of AWBC.

References
[1] Yadav, R., Gupta, R. K., & Singh, A. P. (2015). A Survey of Image

Compression using Neural Network and Wavelet Transformation.
International Journal of Research, 2(1), 301-305.

[2] Yen, N. Y., Zhang, C., Waluyo, A. B., & Park, J. J. (2015). Social
Media Services and Technologies Towards Web 3.0. Multimedia Tools
and Applications, 1-7.

[3] Roy, S. D., & Zeng, W. (2015). Revelations from Social Multimedia
Data. In Social Multimedia Signals (pp. 135-142). Springer
International Publishing.

[4] Nguyen, K. T., Laurent, M., & Oualha, N. (2015). Survey on secure
communication protocols for the Internet of Things. Ad Hoc Networks.

[5] Hashem, F. S., & Sulong, G. (2015). Passive Aproaches for Detecting
Image Tampering: A Review. Jurnal Teknologi, 73(2).

[6] Cao, Y., Gao, T., Sheng, G., Fan, L., & Gao, L. (2015). A New
Anti forensic Scheme Hiding the Single JPEG Compression Trace
for Digital Image. Journal of forensic sciences, 60(1), 197-205.

[7] Wang, X. G. (2015, January). Research on digital forensics and its
relevant problems. In Electronics, Information Technology and
Intellectualization: Proceedings of the International Conference EITI
2014, Shenzhen, 16-17 August 2014 (p. 43). CRC Press.

[8] Yap, W. S., Phan, R. C. W., Yau, W. C., & Heng, S. H. (2015).
Cryptanalysis of a new image alternate encryption algorithm based on
chaotic map. Nonlinear Dynamics, 80(3), 1483-1491.

[9] Ahmad, M., Khan, I. R., & Alam, S. (2015, January). Cryptanalysis of
Image Encryption Algorithm Based on Fractional-Order Lorenz-Like
Chaotic System. In Emerging ICT for Bridging the Future-Proceedings
of the 49th Annual Convention of the Computer Society of India CSI
Volume 2 (pp. 381-388). Springer International Publishing.

[10] Kessler, G. C. (2007, March). Anti-forensics and the digital
investigator. In Australian Digital Forensics Conference (p. 1).

[11] Harris, R. (2006). Arriving at an anti-forensics consensus: Examining
how to define and control the anti-forensics problem. digital
investigation, 3, 44-49.

[12] Stamm, M. C., & Liu, K. R. (2011). Anti-forensics of digital image
compression. Information Forensics and Security, IEEE Transactions
on, 6(3), 1050-1065.

[13] Richard III, G. G., & Roussev, V. (2006). Next-generation digital
forensics. Communications of the ACM, 49(2), 76-80.

[14] Popescu, A. C., & Farid, H. (2005, January). Statistical tools for digital
forensics. In Information Hiding (pp. 128-147). Springer Berlin
Heidelberg.

[15] Dehnie, S. (2006, October). Digital image forensics for identifying
computer generated and digital camera images. In Image Processing,
2006 IEEE International Conference on (pp. 2313-2316). IEEE.

[16] Ganter, B., & Wille, R. (2012). Formal concept analysis: mathematical
foundations. Springer Science & Business Media.

[17] Kester, Q. A. (2013). Criminal Geographical Profiling: Using FCA for
Visualization and Analysis of Crime Data. arXiv preprint
arXiv:1310.0864.

[18] Kester, Q. A. (2013). Visualization and analysis of geographical crime
patterns using formal concept analysis. arXiv preprint arXiv:1307.8112.

[19] Poelmans, J., Elzinga, P., Dedene, G., Viaene, S., & Kuznetsov, S. O.
(2011). A concept discovery approach for fighting human trafficking
and forced prostitution. In Conceptual Structures for Discovering
Knowledge (pp. 201-214). Springer Berlin Heidelberg.

44 Int'l Conf. Foundations of Computer Science | FCS'15 |

Quantum codes derived from generalized Hadamard matrices

Chekad Sarami
Department of Mathematics and Computer Science, Fayetteville State University, Fayetteville, NC, USA

Abstract— This paper discusses constructions of quaternary
Hermition self-orthogonal codes and related quantum codes
obtained from Kroneker products of generalized Hadamard
matrices over to elementary Abelian group of order 4. We
have shown that the codes generated by these matrices
yeild large single error-correcting and single error-detecting
quantum codes.

1. Introduction

A generalized Hadamard matrix GH(μ, G) = (hij) over
a group G of order g is a gμ × gμ matrix with entries
from G with the property that for every i, j, 1 ≤ i < j ≤
gμ, the multi-set {hish−1js |1 ≤ s ≤ gμ} contains every
element of G exactly μ times. If H1 = GH(μ1, G) and
H2 = GH(μ2, G) are generalized Hadamard matrices over
the group G of order g, their Kronecker product H1⊗H2 is
a g2μ1μ2 × g2μ1μ2 generalized Hadamard matrix over G.

A Generalized Hadamard matrix H is normalized with
respect to row i and column j if all entries in the ith row
and jth row of H are equal to the unit element of G. Two
generalized Hadamard matrices of the same order over a
group G are said to be equivalent if one cab be obtained
from the other by permutations of rows and columns, and
multiplications of rows and columns with elements from G.

In this paper, we consider generalized Hadamard matrices
over the Abelian group of order 4,

EA(4) = {1, a, b, ab|a2 = b2 = (ab)2 = 1, ab = ba}.
For each of the orders 4, 8, and 12 there is one equivalence

class of generalized Hadamard matrices [10]. In [5], Harada,
Lam, and Tonchev enumerated all generalized Hadamard
matrices of 16 over EA(4), and studied the linear codes
of length 15 over the finite field F4 = {0, 1, w, w2} spanned
by the rows of 15 × 15 matrices obtained from normalized
generalized Hadamard matrices of order 16 by deleting
the constant row and constant column and replacing the
elements of EA(4) with the elements of the additive group
of F4, 1 ↔ 0, a ↔ 1, b ↔ w, ab ↔ w2, and replacing
multiplication in EA(4) by the addition in F4. Many of the
resulting codes turned out to be self-orthogonal with respect
to the Hermitian inner product:

(x, y) =

n�
i=1

xiy
2
i ,

where, x = (x1, ..., xn) and y = (y1, ..., yn) ∈ F4,hence
yield quantum error-correcting codes via a known construc-
tion due to Calderbank, Rains, Shor, and Sloane [3]:

Proposition 1: (Shor, Calderbank, Rains, and Sloane [3]).
A linear Hermitian self-orthogonal F4-code C of length n
with dimension k and dual distance d⊥ (where C⊥ is the
Hermitian dual code of C) yields a quantum error-correcting
code with parameters [[n, n− 2k, d⊥]].

The theory of quantum error-correcting codes is a well-
known topic. We refer readers not familiar with the topic
to a thorough discussion of the principles of quantum error-
correcting codes given in [3]. In the aforementioned paper,
many examples of quantum codes are given, together with
tabulation of codes and bounds on the minimum distance
for length up to 30 quantum bits. We use the notation
[[n, k, d]] to refer to a quantum error-correcting code for n
quantum bits having 2k codewords and minimum distance
d. In 1996, Calderbandk and Shor showed existence of
good quantum codes [2] . In [11], Steane extended their
work and constructed quantum codes using binary BCH-
codes and extended BCH-codes. Quantum codes can be build
using combinatorial structures in various ways. In [9], Ruihu
Li and Xueliang Li construct quantum codes using Steane
construction of quantum codes [11]. In [6], Kim and Walker
offer construction of nonbinary quantum codes with various
length, dimensions, and minimum distances from algebraic
curves. In [7], Guo, Ma, and Feng construct quantum codes
from self-dual codes and maximal self-dual codes over F5.
In [4], Clark and Tonchev uses finite geometry over Fq
to construct q-ary quantum codes. In [6], Fugiwara and
Vandendriessche construct quantum synchronizable codes
via cyclic codes and finite geometries. In this paper, we
summarize the results of the computation of quaternary Her-
mitian self-orthogonal codes and the corresponding quantum
codes derived from generalized Hadamard matrices over
EA(4) of orders 64, 128, and 192 obtained from Kronecker
products of the unique matrices of order 4, 8 and 12 with
each matrices of order 16 of symmetric nets introduced in
[5]

2. Kronecker products of generalized
Hadamard matrices and their quantum
codes

The generalized Hadamard matrices of order 4,8, and 12
over EA(4) are unique up to equivalence [10]. Classification

Int'l Conf. Foundations of Computer Science | FCS'15 | 45

of generalized Hadamard matrices of order larger than 20
is infeasible for us due two large number of them. This
motivated us to compute the Kronecker sum of the unique
matrices of order 4, 8 and 12 by 226 generalized Hadamard
matrices (computed in [5]). In the following sections, we
have shown that the codes generated by these matrices yield
single error-correcting and single error-detecting codes. The
generalized Hadamard matrices of order 16 over EA(4), are
presented in [5] by means of 64× 64 (0, 1)-incidence ma-
trices of 226 combinatorial structures known as(4, 4)−nets.
The incidence matrices of (4, 4)−nets No. i (i = 1, ..., 226)
are available at

http://www.math.mtu.edu/~tonchev/Z2Z2nets.

We can obtain 226 generalized Hadamard matrices using
the following method. The 64× 64 (0, 1)−incidence matrix
A of a (4,4)-net with a group of automorphism being an
elementary Abelian group of order four, i.e. EA(4) is a block
matrix of 4×4 submatrices

I = I4 A =

⎡⎢⎢⎣
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎤⎥⎥⎦

B =

⎡⎢⎢⎣
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎤⎥⎥⎦ C =

⎡⎢⎢⎣
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎤⎥⎥⎦
These matrices form a multiplicative Abelian group

G = ({I, A,B,C = AB|
A2 = B2 = (AB)2 = I, AB = BA}, ·)

which is isomorphic to Abelian group of the finite filed F4.
we replace these these block matrices with the elements of
F4 = {0, 1, w, w2}, as follows:

I ↔ 0, A↔ 1, B ↔ w,C ↔ w2

to get a GH(4,4). Let’s denote the normalized generalized
Hadamard matrix that corresponds to the net No.i (i = 1,
..., 226) by Ti. Let Ui, Vi, and Wi, be the Kronecker sum
of generalized Hadamard matrices H4, H8, and H12 with Ti
(i = 1, ..., 226), respectively as follows:

Ui = H4 ⊕ Ti
Vi = H8 ⊕ Ti
Wi = H12 ⊕ Ti

where 1 ≤ i ≤ 226. Deleting the first all-zero row and
column from Ui, Vi, and Wi give 63 by 63, 127 by 127, and
191 by 191 matrices U �i , V �i and W �

i , respectively. We denote
the F4-codes generated by the columns of the matrices U �i ,
V �i and W �

i by Ai,Bi, and Ci, respectively. In the following

Table 1: Quantum codes obatined from codes Ai
Code Number Parameters

1 [[63, 53, 2]]
2, 3, 5, 6, 9, 10, 20, 26, 34, 36 [[63, 55, 2]]
4, 7, 8, 11, 12, 14, 15, 16, 19, 21, 22, 23, 24, 25, 27 [[63, 53, 2]]
28, 30, 31, 33, 35, 37, 38, 40, 42, 43, 44, 46, 47, 49
83, 84, 50, 51, 52, 65, 68, 69, 75, 76, 77, 78, 79, 80, 81
99, 100, 82, 85, 86, 87, 88, 91, 92, 93, 94, 95, 96, 97
98, 103, 104, 105, 107, 111, 113, 120, 121, 127, 128
131, 142, 143, 144, 145, 146, 147, 148, 149, 150
151, 181, 182, 192, 193, 194, 195, 196, 197, 198
211, 212, 213, 215, 218, 219, 220, 221, 224, 225, 226
13, 17, 18, 29, 32, 39, 41, 45, 48, 53, 54, 55, 56, 57, 66 [[63, 51, 2]]
67, 70, 71, 72, 73, 74, 89, 90, 101, 102
106, 108, 109, 110, 112, 114, 115, 116, 122, 129, 130
137, 138, 139, 140, 141, 152, 157, 158, 167, 168, 176
183, 184, 185, 187, 188, 190, 203
58, 59, 60, 61, 62, 63, 64, 117, 118, 119, 123, 124, 125 [[63, 49, 2]]
126, 132, 133, 134, 135, 136, 153, 154, 155, 159, 160
161, 162, 163, 164, 165, 166, 169, 170, 171, 172, 173
174, 175, 177, 178, 179, 180, 189, 191, 199, 200, 201
202, 204, 206, 207, 208, 209, 214, 216, 217, 222, 223
156, 205, 210 [[63, 47, 2]]

subsections we present the quantum codes obtained by these
F4-codes.

2.1 Quantum codes obtained from H4 ⊕ Ti
Let codes Ai be the F4-codes generated by the columns of

the matrices U �i . All 226 codes Ai are both self-orthogonal
and Hermitian self-orthogonal. Therefore, They yield quan-
tum codes of length n = 63 and d = 2 by Proposition 1.
We have computed the parameters of these quantum codes
using Magma[1] (Table 1).

2.2 Quantum codes obtained from H8 ⊕ Ti
Let codes Bi be the codes generated by the columns of

the matrices V �i . All 226 codes Bi are both self-orthogonal
and Hermitian self-orthogonal. This is easily verified with
computer. They yield quantum codes of length n = 127 and
d = 2, 3 by Proposition 1. We have computed the parameters
of these quantum codes using Magma (Table 2).

2.3 Quantum codes obtained from H12 ⊕ Ti
Let codes Ci be the codes generated by the columns of

the matrices W �
i . All 226 codes Ci are both self-orthogonal

and Hermitian self-orthogonal. This is easily verified with
computer. They yield quantum codes of length n = 191 and
d = 2 by Proposition 1. We have computed the parameters
of these quantum codes using Magma (Table 3).

2.4 Acknowlegement

This research was partially supported by NSF grant,
HBCU-UP #1036257.

46 Int'l Conf. Foundations of Computer Science | FCS'15 |

Table 2: Quantum codes obatined from codes Bi
Code Number Parameters

1 [[127, 117, 2]]
2, 3, 5, 6, 9, 10, 20, 26, 34, 36 [[127, 115, 2]]
4, 7, 8, 11, 12, 14, 15, 16, 19, 21, 22, 23, 24, 25, 27 [[127, 113, 2]]
28, 30, 31, 33, 35, 37, 38, 40, 42, 43, 44, 46, 47, 49
50, 51, 52, 65, 68, 69, 75, 76, 77, 78, 79, 80, 81, 82,
83, 84, 85, 86, 87, 88, 91, 92, 93, 94, 95, 96, 97, 98
13, 17, 18, 29, 32, 39, 41, 45, 48, 53, 54, 55, 56 [[127, 111, 2]]
57, 66, 67, 70, 71, 72, 73, 74, 89, 90
58, 59, 60, 61, 62, 63, 64 [[127, 109, 2]]
99, 100, 103, 104, 105, 107, 111, 113, 120, 121, 127 [[127, 113, 3]]
128, 131, 142, 143, 144, 145, 146, 147, 148, 149, 150
151, 181, 182, 192, 193, 194, 195, 196, 197, 198, 211
212, 213, 215, 218, 219, 220, 221, 224, 225, 226
101, 102, 106, 108, 109, 110, 112, 114, 115, 116 [[127, 111, 3]]
122, 129, 130, 137, 138, 139, 140, 141, 152, 157, 158
167, 168, 176, 183, 184, 185, 186, 187, 188, 190, 203
117, 118, 119, 123, 124, 125, 126, 132, 133, 134 [[127, 109, 3]]
135, 136, 153, 154, 155, 159, 160, 161, 162, 163
164, 165, 166, 169, 170, 171, 172, 173, 174, 175
177, 178, 179, 180, 189, 191, 199, 200, 201, 202
204, 206, 207, 208, 209, 214, 216, 217, 222, 223
156, 205, 210 [[127, 107, 3]]

Table 3: Quantum codes obatined from codes Ci

Code Number Parameters
1 [[191, 177, 2]]
2, 3, 5, 6, 9, 10, 20, 26, 34, 36 [[191, 175, 2]]
4, 7, 8, 11, 12, 14, 15, 16, 19, 21, 22, 23, 24,25,27 [[191, 173, 2]]
28, 30, 31, 33, 35, 37, 38, 40, 42, 43, 44, 46, 47,49
50, 51, 52, 65, 68, 69, 75, 76, 77, 78, 79, 80, 81,82
83,84, 85, 86, 87, 88, 91, 92, 93, 94, 95, 96, 97, 98
99, 100,103, 104,105, 107, 111,113,120,121,127
128, 131,105, 107, 111, 113, 120, 121, 127, 128
131,182, 192, 193, 194, 195, 196, 197, 198,211
212, 213, 215, 218, 219, 220, 221, 224, 225, 226
13, 17, 18, 29, 32, 39, 41, 45, 48, 53, 54, 55, 56,57 [[191, 171, 2]]
66, 67, 70, 71, 72, 73, 74, 89, 90, 101, 102,106,108
109, 110,112, 114, 115, 116, 122, 129, 130, 137
138, 139, 140, 141,152, 157, 158, 167, 168
176, 183, 184, 185, 186, 187, 188, 190, 203
58, 59, 60, 61, 62, 63, 64, 117, 118, 119, 123 [[191, 169, 2]]
124, 125, 126, 132, 133, 134, 135, 136
153, 154, 155, 159, 160,161, 162, 163, 164
165, 166, 169, 170, 171, 172, 173, 174, 175
177, 178, 179, 180, 189, 191, 199, 200, 201,202
204, 206, 207, 208, 209, 214, 216, 217, 222, 223
156, 205, 210 [[191, 167, 2]]

References
[1] W. Bosma, J. Cannon and C. Playoust, "The Magma algebra system.

I. The user language", J. Symbolic Comput., 24 (1997), 235–265
[2] A. R. Calderbank, and P. W. Shor. "Good quantum error-correcting

codes exist." Physical Review A 54.2 (1996): 1098.
[3] A.R. Calderbank, et al. "Quantum error correction via codes over GF

(4)." Information Theory. 1997. Proceedings., 1997 IEEE International
Symposium on. IEEE.

[4] D. Clark, and V. D. Tonchev. "Nonbinary quantum codes derived from
finite geometries." Finite Fields and Their Applications 18.1 (2012):
63-69.

[5] M. Harada, C. Lam, and V. D. Tonchev. "Symmetric (4, 4)-nets and
generalized Hadamard matrices over groups of order 4." Designs,
Codes and Cryptography 34.1 (2005): 71-87.

[6] F. Fujiwara, and P. Vandendriessche. "Quantum synchronizable codes
from finite geometries." Information Theory, IEEE Transactions
60.11(2013).

[7] L. Guo, Y. Ma, and Y. Feng. "Quantum Codes Constructed from Self-
Dual Codes and Maximal Self-Orthogonal Codes Over F5." Procedia
Engineering 29 (2012): 3448-3453.

[8] J. Kim and J. Walker. "Nonbinary quantum error-correcting codes
from algebraic curves." Discrete Mathematics 308.14 (2008): 3115-
3124.

[9] R. Li, and X. Li. "Binary construction of quantum codes of minimum
distances five and six." Discrete Mathematics 308.9 (2008): 1603-
1611.

[10] C. Sarami, "Topics in Coding Thoery and Combintaorial Structures",
PhD Dissertation, Michigan Technological University, 2004.

[11] A. M. Steane, . "Enlargement of calderbank-shor-steane quantum
codes." Information Theory, IEEE Transactions 45.7 (1999): 2492-
2495.

Int'l Conf. Foundations of Computer Science | FCS'15 | 47

48 Int'l Conf. Foundations of Computer Science | FCS'15 |

SESSION

OPTIMIZATION METHODS + SEARCH AND
INDEXING ALGORITHMS + REAL-TIME

SYSTEMS AND HPC + APPLICATIONS

Chair(s)

TBA

Int'l Conf. Foundations of Computer Science | FCS'15 | 49

50 Int'l Conf. Foundations of Computer Science | FCS'15 |

On the Intersection of Inverted Lists
Yangjun Chen1 and Weixin Shen2

Dept. Applied Computer Science, University of Winnipeg, Canada
1y.chen@uwinnipeg.ca, 2wxshen1985@gmail.com

Abstract— In this paper, we discuss an efficient and effective index
mechanism to support set intersections, which are important to
evaluation of conjunctive queries by search engines. The main idea
behind it is to decompose an inverted list associated with a word into
a collection of disjoint sub-lists by arranging a set of word sequences
into a trie structure. Then, by using a kind of tree encoding, we can
replace each inverted list with a much shorter interval sequence. In
this way, we can transform the comparison of document identifiers to
the checking of interval containment by associating each interval
with a sub-list. More importantly, for a sorted interval sequence the
binary search can also be used. With the lowest common ancestors
utilized to control the search, a better theoretical time complexity
than any traditional method can be achieved.

Key words: Search engine; inverted files; conjunctive queries;
disjunctive queries.

1. INTRODUCTION
Indexing the Web for fast keyword search is among the

most challenging applications for scalable data management.
In the past several decades, different indexing methods have
been developed to speed up text search, such as inverted files
[14, 15], signature files and signature trees for indexing texts
[1, 5, 6, 11, 12]; and suffix trees and tries [13] for string
matching. Especially, different variants of inverted files have
been used by the Web search engines to find pages satisfying
conjunctive queries of the form:
 w1 w2 … wk.

A document D is an answer to such a query if it contains
every wi for 1 i k. The algorithms developed to evaluate
such a query typically use inverted lists, each of which
comprises all those document identifiers containing a certain
word. So, to find all the documents satisfying a query, set
intersections have to be conducted.

There has been considerable study on this topic, such as
adaptive algorithms [9], melding algorithms [2], building
additional data structures like skipping lists [32], treaps (a
kind of balanced trees) [4], hash tables over sorted lists [3, 10],
and so on. All of them can improve the time complexity at
most by a constant factor, but none of them is able to break
through the linear time bottleneck.

In this work, we explore a different way to speed up the
operation by constructing indexes, which are substantially
different from any existing strategy. Concretely, our method
works as follows.
- Represent each document as a word sequence, sorted

decreasingly by the word appearance frequency (referred to
as a document word sequence, or simply a word sequence),
and then construct a trie structure over all such sequences.

- Associate each word with an interval sequence L, where
each interval in L is created by applying a kind of tree
encoding over the generated trie structure.

- Associate each interval, rather than a word, with a set of
document identifiers. In this way, we decompose an
inverted list associated with a word into a collection of
disjoint sub-lists, and transform the comparison of
document identifiers to the checking of interval
containment.

- For each word w, instead of its interval sequence, we will
construct a balanced binary tree over an even shorter
interval sequence with each being an interval for a lowest
common ancestor of some nodes labelled with w. The set
intersection operation can then be done by searching a
binary tree against a series of intervals.

Let x and y be two inverted lists associated with two
words x and y, respectively. Without loss of generality,
assume that | x| < | y|. Up to now, the best comparison-based

algorithm for intersecting Lx and Ly requires O(| x| log
||
||

x

y)

time. In contrast, our algorithm needs O(|Ly| log
|| y

x

L
) time,

where Lx and Ly are the interval sequences created for Lx and
Ly, respectively; and x is the size of a subset of nodes with
each being a lowest common ancestor of some nodes labeled
with x in the trie. Generally, we have |Ly| ≤ |Lx| ≤ | x| and x <
| x|. This time complexity is significantly better than the
traditional methods since an interval sequence can be much
shorter than its corresponding inverted list. Especially, the
larger an inverted list is, the smaller its corresponding interval
sequence. Only for those very short inverted lists (associated
with low frequent words), may the sizes of their
corresponding interval sequences be near their sizes. In fact,
we only care about the cases of very long inverted lists. When
all the inverted lists involved in an operation is short, all the
methods work fast.
Finally, we indicate that our index structure can also be easily
maintained.

2. NEW INDEX STRUCTURE
In this section, we mainly discuss our index structure, by

which each word with high frequency will be assigned an
interval sequence. We will then associate intervals, instead of
words, with inverted sub-lists. To clarify this mechanism, we
will first discuss interval sequences for words in 2.1. Then, in

Int'l Conf. Foundations of Computer Science | FCS'15 | 51

2.2, how to associate inverted lists with intervals will be
addressed.

2.1 Interval sequences assigned to words

Let D = {D1, ..., Dn} be a set of documents. Let Wi =
{wi1, …,

1ijw } (i = 1,…, n) be all of the words appearing in Di,

to be indexed. Denote W = n
i iW1 , called the vocabulary. For

each word w W, we will associate it with an inverted list
containing all the document identifiers with each containing w.
Thus, to answer a conjunctive query, a set intersection over
some inverted lists has to be conducted.

For the purpose of the new index structure, we will put
all the words in a sorted sequence = w1, w2, …, wm (m = |W |)
such that for any two words w and w if the frequency of w is
higher than w then w appears before w in , denoted as w
w . Then, each document can be represented as a subsequence
of ; and over all these subsequences a trie structure can be
established as illustrated in Fig. 1.

In Fig. 1(a), we show a document database containing 11

documents, their words, and their sorted sequences by the
word frequency, where we use a character to represent a word
for simplicity. In Fig. 1(b), we show the inverted lists for all
the words in the database. The trie over all the sorted
sequences is shown in Fig. 1(c).

In this trie, v0 is a virtual root, labeled with an empty
word while any other node is labeled with a real word.
Therefore, all the words on a path from the root to a leaf spell
a sorted word sequence for a certain document. For instance,
the path from v0 to v13 corresponds to the sequence: c, f, a, p,
m. Then, to check whether two words w1 and w2 are in the

same document, we need only to check whether there exist
two nodes v1 and v2 such that v1 is labeled with w1, v2 with w2,
and v1 and v2 are on the same path. This shows that the
reachability needs to be checked for this task, by which we
ask whether a node v can reach another node u through a path.
If it is the case, we denote it as v u; otherwise, we denote it

as v u.
The reachability problem on tries can be solved very

efficiently by using a kind of tree encoding [7][8], which
labels each node v in a trie with an interval Iv = [αv, βv], where
βv denotes the rank of v in a post-order traversal of the trie.
Here the ranks are assumed to begin with 1, and all the
children of a node are assumed to be ordered and fixed during
the traversal. Furthermore, αv denotes the lowest rank for any
node u in T[v] (the subtree rooted at v, including v). Thus, for
any node u in T[v], we have Iu Iv since the post-order
traversal visits a node after all of its children have been
accessed. In Fig. 1(c), we also show such a tree encoding on
the trie, assuming that the children are ordered from left to
right. It is easy to see that by interval containment we can
check whether two nodes are on a same path. For example, v3

v19, since
3vI = [8, 19],

19vI = [12, 12], and [12, 12] [8, 19];

but v2 v18, since
2vI = [5, 7],

18vI = [11, 11], and [11, 11]
[5, 7].

Let I = [α, β] be an interval. We will refer to α and β as
I[1] and I[2], respectively.
Lemma 1 For any two intervals I and I generated for two
nodes in a trie, one of four relations holds: I I , I I, I[2] <
I [1], or I [2] < I[1].
Proof. It is easy to prove. ��

However, more than one node may be labeled with the
same word, such as nodes v1, and v7 in Fig. 1(c). Both are
labeled with word d. Therefore, a word may be associated
with more than one node (or say, more than one node’s
interval). Thus, to know whether two words are in the same
document, multiple checkings may be needed. For example, to
check whether d and b are in the same document, we need to
check v1 and v7 each against both v11 and v19, by using the
node’s intervals.

In order to minimize such checkings, we associate each
word w with an interval sequence of the form: Lw = 1

wI , 2
wI , …,

k
wI , where k is the number of all those nodes labeled with w

and each i
wI = [i

wI [1], i
wI [2]] (1 i k) is an interval

associated with a certain node labeled with w. In addition, we
can sort Lw by the interval’s first value such that for 1 i < j
k we have i

wL [1] < j
wL [1], which will greatly reduce the time

for the reachability checking. We illustrate this in Fig. 2, in
which each word in Fig. 1(a) is associated with an interval
sequence.

From this figure, we can see that for any two intervals I
and I in Lw we must have I I , and I I since in any trie no
two nodes on a path are labeled with the same word.

v11 v15 v13[1, 1]
v10

[1, 20]

e:
d:
f:
a:
c:
b:

v1

d

f

a

[1, 2]

[1, 4]

v0

v4

a

(c)

(b)

[3, 3]

v3

[10, 10]

[17, 17]

v8 [8, 14]

[10, 13]

[11, 11] [12, 12]

[9, 9] [8, 8]

e [8, 19]

v12

c [15, 15] d
v7

f [16, 18]
v9

c f a a

[16, 16]

c

a b c

v14

v17 v18 v19

{3, 5, 6, 7, 8, 9, 10, 11}
{1, 2, 3, 5, 6, 7, 8}
{1, 4, 6, 7, 8, 10, 11}
{1, 2, 3, 4, 7, 10}
{5, 6, 9, 11}
{4, 8}

v6

f

a [5, 6]

[5, 7]
v2

b [5, 5]

v5

v16

Fig. 1: A trie and a set of sorted interval sequences

Documents and word sequences:

DocId
1
2
3
4
5
6
7
8
9
10
11

words
a, f, d
a, d
a, e, d
f, b, a
c, d, e
d, f, e, c
f, d, e, a
f, d, e, b
e, c
a, e, f
f, e, c

words
d, f, a
d, a
e, d, a
f, a, b
e, d, c
e, d, f, c
e, d, f, a
e, d, f, b
e, c
e, f, a
e, f, c

(a)

52 Int'l Conf. Foundations of Computer Science | FCS'15 |

In addition, for any interval sequence L, we will use L[i]
to refer to the ith interval in L, and L[i .. j] to the segment from
the ith to the jth interval in L.

2.2 Assignment of DocIDs to intervals
Another important component of our index is to assign

document identifiers to intervals. An interval I can be
considered as a representative of some words, i.e., all those
words appearing on a prefix in the trie, which is a path P from
the root to a certain node that is labeled with I. Then, the
document identifiers assigned to I should be those containing
all the words on P. For example, the words appearing on the
prefix: v0 v3 v7 v14 in the trie shown in Fig. 1(c) are
words: , e, d, and f, represented by the interval [10, 13]
associated with v14. So, the document identifiers assigned to
[10, 13] should be {6, 7, 8}, indicating that documents D6, D7
and D8 all contain those three words. See the trie shown in Fig.
3 for illustration, in which each node v is assigned a set of
document identifiers that is also considered to be the set
assigned to the interval associated with v.

Let v be the ending node of a prefix P, labeled with I.

We will use I, interchangeably v, to represent the set of
document identifiers containing the words appearing on P.
Thus, we have, for example,

14v = [10, 13] = {6, 7, 8}.
Concerning the decomposition of inverted lists, the following
two lemmas can be easily proved.
Lemma 1 Let T be a trie constructed over a set of word
sequences (sorted by the appearance frequency) over W. Then,
we have

Ww
w

Tv
v .

Proof. Let v1, …,
wlv be all the nodes labeled with a word w in

T. Then w =
w

i

l

i
v

1
. Since in T no node is labeled with more

than one word, we have
Ww

l

i Tv
vv

Ww
w

w

i
1

. ��

Lemma 2 Let u and v be two nodes in a trie T. If u and v are
not on the same path in T, then u and v are disjoint, i.e., u

 v = .
Proof. It is easy to prove. �
Proposition 1 Assume that v1, v2, …, vj be all the nodes
labeled with the same word w in T. Then, w, the inverted list
of w (i.e., the list of all the documents identifiers containing
w) is equal to

1v 2v …
jv , where represents disjoint

union over disjoint sets that have no elements in common.
Proof. Obviously, w is equal to

1v
2v …

jv . Since

v1, v2, …, vj are labeled with the same word, they definitely
appear on different paths as no nodes on a path are labeled
with the same word. According to Lemma 1,

1v
2v …

jv is equal to
1v 2v …

jv . �

As an example, see the nodes v1 and v7 in Fig. 2. Both are
labeled with word d. So the inverted list of d is

1v 7v = {1,

2} {3, 5, 6, 7, 8} = {1, 2, 3, 5, 6, 7, 8}.

3. BASIC QUERY EVALUATION
Based on the new index structure, we design our basic

algorithms.
We first consider a query containing only two words w

w with w ≺ w . It is easy to see that any interval in Lw cannot
be contained in any interval in Lw . Thus, to check whether w
and w are in the same document, we need only to check
whether there exist I Lw and I Lw such that I I .
Therefore, such a query can be evaluated by running a process,
denoted as conj(Lw, Lw), to find all those intervals in Lw with
each being contained in some interval in Lw, stored in a new
sequence L.

1. Let Lw = 1
wI , 2

wI , …, k
wI . Let Lw = 1

wI , 2
wI , …, k

wI . L .

2. Step through Lw and Lw from left to right. Let p
wI and q

wI be the
intervals currently encountered. We will do one of the following
checkings:
i) If p

wI q
wI , append q

wI to the end of L. Move to 1q
wI if q < k

(then, in a next step, we will check p
wI against 1q

wI). If q = k ,
stop.

ii) If p
wI [1] > q

wI [2], move to 1q
wI if q < k . If q = k , stop.

iii) If p
wI [2] < q

wI [1], move to 1p
wI if p < k (then, in a next step,

we will check 1p
wI against q

wI). If p = k, stop. �

Assume that the result is L = I1, I2, …, Il (0 ≤ l ≤ k).
Then, for each 1 ≤ j ≤ l, there exists an interval I Lw such
that Ij I, and we can return

1I …
kI as the answer. In

Fig. 4, we illustrate the working process on Ld and Lb shown
in Fig. 2.

e:
d:
f:
a:
c:
b:

[8,19]
[1, 4][8, 14]
[1, 2][5, 7][10, 13][16, 18]
[1, 1][3, 3][5, 6][8, 8][11, 11][16, 16]
[9, 9][10, 10][15, 15][17, 17]
[5, 5][12, 12]

Fig. 2: a set of interval sequences

v13

v17

v0

v3

{11}
v15

{6}

v8
{3, 5, 6, 7, 8}

{6, 7, 8}

{7} {8}

{5} {3}

e {3, 5, 6, 7, 8, 9, 10, 11}

v12

c {9} d
v7

f {10, 11}
v9

c f a a {10} c

a b c

v14 v17

v18 v19

{4}

{4}

{4}

{2} {1}

{1}
v10

v

d

f

a

{1, 2}

v4

a
v6

f

a

v2

v11

b

v5

Fig. 3: Illustration for assignment of document IDs

14vI = [10, 13]. The set {6, 7, 8} assigned to v14 can

be considered as the set assigned to [10, 13].

Int'l Conf. Foundations of Computer Science | FCS'15 | 53

In Fig. 4, we first notice that Ld = [1, 4][8, 14] and Lb =

[5, 5][12, 12]. In the 1st step, we will check 1
dL = [1, 4] against

1
bL = [5, 6]. Since 1

dL [2] = 4 < 1
bL [1] = 5, we will check 2

dL =

[8, 14] against 1
bL in a next step, and find 1

bL [2] = 5 < 2
dL [1] =

8. So we will have to do the third step, in which we will check
2
dL against 2

bL = [12, 12]. Since 2
dL 2

bL , we get to know that
d and b are in the same document.
Lemma 3 Let L = I1, …, Ik be the result of conj(Lw, Lw). Then,
for each Ij (1 ≤ j ≤ k), there must be an interval I Lw such
that I Ij. For any interval I′ Lw′ but L, it definitely does
not belong to any interval in Lw.
Proof. It is easy to prove. ��

Since in this process, each interval in both Lw and Lw is
accessed only once, the time complexity of this process is
bounded by O(|Lw| + |Lw |). In addition, the above approach can
be easily extended to evaluate general queries of the form Q =
w1 w2 … wl with w1 ≺ w2 ≺ … ≺ wl and l 1 based on
the transitivity of intervals: I I′ I′′ I I′′.

What we need to do is to repeatedly apply conj() to the
corresponding interval sequences associated with the query
words one by one. The following is a formal description of the
process.

ALGORITHM conEvaluation(Q)
begin
1. let |Q| = l; assume that Q[1] ≺ Q[2] ≺ … ≺ Q[l];
2. L := Q[1];
3. for (j = 2 to l) do
4. { L conj(L, LQ[j]); }
5. let L = I1, …, Ik;
6. return

1I …
kI .

end

It is easy to see that the time complexity of the algorithm
is bounded by O(

Qw
wL ||).

Proposition 2 Let Q = w1 w2 … wl with w1 ≺ w2 ≺ …
≺ wl and l 1. The answer produced by algorithm
conEvaluation(Q) is correct.
Proof. Let L = I1, …, Ik be the interval sequence produced by
the main for-loop (line 3 – 4). Then, according to Lemma 3,
for each Ij (1 ≤ j ≤ k), there must exist an interval sequence 1,
2, …, l-1 such that i

iwL (1 ≤ i ≤ l - 1) and 1 2 … l-

1 Ii. Next, according to Proposition 1, we know that
1I …

kI must be the correct answer. �

Example 1 Consider Fig. 2 and 3. Let Q = d f a. Then, in
the first iteration, we will get L = conj(Ld, Lf) = [1, 2][10, 13].
In the second iteration, we will get L = conj(L, Lp) = [1, 1][11,
11]. The results is then R = [1, 1] [11, 11] = {1} {7} = {1,
7}. �

4. IMPROVEMENTS
In this section, we discuss a new algorithm to improve

the naïve method shown in the previous subsection. The main
idea is to use lowest common ancestors (LCAs for short) of
nodes (in T) to control a binary search process. First, in 4.1,
we discuss the binary search of an Lw. Then, we show how to
use LCAs to speed up such a search in 4.2.

4.1 Set intersection based on binary search
Each interval sequence is sorted. So we can do the

conjunction of interval sequences based on binary search.
Let Lo = 1

oI , 2
oI , …, m

oI and Lw = 1
wI , 2

wI , …, n
wI be two

interval sequences with o ≺ w. Then, m = |Lo| ≤ n = |Lw|.
By using the binary search technique, we need to work

from the end to the start of Lw to incorporate the LCAs into the
process. To this end, we design an algorithm different from
conj(Lo, Lw), called conjB(), which can be mostly easily
described recursively. When m = 0, there is no conjunction to
be done and the result is . Otherwise, we will first check

m
oI against Lw. As with [46], let l =

m
nlg . Then, 2l is the

largest power of two not exceeding
m
n . Let t = n - 2l + 1.

Compare m
oI and t

wI .

1. If m
oI [1] > t

wI [2], we should look for the intervals (in Lw)

covered by m
oI somewhere to the right of t

wI . By using the
traditional binary search, we try to find an interval I
covered by m

oI with l more comparisons. Around I, we
will continually (by a simple linear search) find the left-
most interval x in Lw, which can be covered by m

oI ; and
then with l more comparisons, we will find the right-most
interval y covered by m

oI , in a similar way. Obviously, all
the intervals between x and y, including x and y, can be
covered by m

oI . (See Fig. 5(a).) This information allows us
to reduce the problem to the situation illustrated in Fig.
5(b). To complete the whole operation, it is sufficient to
apply the above process to Lo and Lw , where Lo
= 1

oI , …, 1m
oI and Lw = 1

wI , …, 1x
wI .

2. If, on the other hand, m
oI [2] < t

wI [1], we should check the

intervals to the left of t
wI , and the problem immediately

reduces to the checking of Lo = Lo against Lw = Lw[1 .. t -
1]. We can complete the operation by applying the above
process to Lo and Lw .

p

[1, 4][8, 14]

q

[5, 5][12, 12]

p

q

 [1, 4][8, 14]

[5, 5][12, 12]

p

q

Lb: [5, 5][12, 12]

Ld: [1, 4][8, 14]

1st step: 2nd step: 3rd step:

Fig. 4: Illustration
for conj(Lw, Lw)

54 Int'l Conf. Foundations of Computer Science | FCS'15 |

However, Lo may become larger than Lw . So in the

recursive call to conjB(), the roles of Lo and Lw may be
reversed, by which we will check each interval I in Lw against
Lo to find an interval I in Lw such that I the last interval
in Lo . See Fig. 6 for illustration. Assume that that the last
interval 1x

wI in Lw is covered by an interval j
oI (1 ≤ j ≤ m - 2)

in Lo . Then, by the next recursive call, we will check Lw
= 1

wI , …, 2x
wI and Lu = 1

oI , …, 2j
oI .

3. If m

oI t
wI , we will check linearly 1t

wI , 2t
wI , … until we

meet a first interval x which is to the left of t
wI and not

covered by m
oI . Then, check 1t

wI , 2t
wI , … until a first

interval y which is to the right of t
wI and not covered by

m
oI . All the encountered nodes, except x and y , must be

covered by m
oI . This reduces the problem to a checking of

Lo = Lo[1 .. m - 1] against Lw = Lw[1 .. x].

4. If m
oI t

wI (we may have this case due to the roll

interchange), we add m
oI to the result and the problem

reduces to a checking Lo = Lo[1 .. m - 1] against Lw = Lw[1
.. t].

According to the above discussion, we give the
following recursive algorithm, which takes three inputs: Lo,
Lw, b with |Lo| ≤ |Lw|, where b is a Boolean value used to
indicate how m

oI is checked against Lw. If o w, b = 0.
Otherwise (w o), b = 1. In addition, in the Algorithm a
global variable R is used to store the result.

ALGORITHM conjB(Lo, Lw, b)
begin
1. m |Lo|; n |Lw|;
2. if m = 0 then return;

3. l
m
nlg ; t n - 2l + 1; I m

oI ;

4. if I[2] < t
wI [1] then {Lo Lo; Lw Lw[1 .. t - 1];}

5. if I[1] > t
wI [2]

6. then if b = 1 then z binaryS-1(I, Lw[t + 1 .. n]
7. if z = 0 then {Lo Lo[1..m-1]; Lw Lw; }
8. else R := R {I};
9. Lo Lo[1 .. m - 1];
10. Lw Lw[1 .. t + z - 1];
11. else <x, y> binaryS-2(I, Lw[t + 1 .. n])
12. if x = 0 then {Lo Lo[1 .. m - 1]; Lw Lw; }
13. else R R {all interval between x and y, including x

and y};
14. Lo Lo[1 .. m - 1]; Lw Lw[1 .. x - 1];
15. if I t

wI then <x, y> linearSearch(I, Lw, t
wI)

16. Lo Lo[1 .. m - 1]; Lw Lw[1 .. x - 1];
17. R R {all interval between x and y, including

x and y};
18. if I t

wI then R := R {I};
19. Lo Lo[1 .. m - 1]; Lw Lw[1 .. t];
20. if |Lo | ≤ | Lw | then conjB(Lo , Lw , b)
21. else conjB(Lw , Lo , b);
end

The above algorithm can be divided into two parts. The
first part consists of lines 1 – 10; and the second part lines 20
– 21. In the first part, we will check the last interval m

oI in Lo
against Lw. According to the above discussion, four
cases are distinguished: m

oI [2] < t
wI [1] (line 4), m

oI [1] >
t
wI [2] (lines 4 – 14), m

oI [1] t
wI (lines 15 – 17), and m

oI [1]

 t
wI (18 – 19). Special attention should be paid to the use of

b, which indicates whether we check m
oI to find a covering

interval in Lw (by calling binaryS-1()) or to find all those
intervals that can be covered by m

oI (by calling binaryS-2())).
In the second part (lines 20 – 21), we make a recursive
call to check Lo and Lw , which are determined
respectively from Lo and Lw during the execution of
the first part. If |Lo | ≤ | Lw |, we simply call conjB(Lo , Lw ,
b) (see line 14.) Otherwise, the rolls of Lo and Lw should
be interchanged and we will call conjB(Lw , Lo , b), where
b represents the negation of b (see line 21.)

It binaryS-1(I, L), we will find, by the binary search, an
interval Iz in L which covers I. If z = 0, it shows that such an
interval does not exist.

FUNCTION binaryS-1(I, L)
begin
1. z 0;
2. binary search of L to find an interval z, which covers I;
3. return z;
end

In binaryS-2(I, L), we will first find a pair <x, y> such
that Ix is the left-most interval in L, which can be covered by I;
and Iy the right-most interval covered by I. Then, x = 0
indicates that no interval in L is covered by I.

Fig. 5: First comparison during an interval intersection

Lo:

Lw:
t x y

Lo

Lw

(a) (b)
t x y

Fig. 6: Illustration for interchanging rolls of Lw and Lu

Lo:

Lw:
t x y

Lo

Lw

x y

Int'l Conf. Foundations of Computer Science | FCS'15 | 55

FUNCTION binaryS-2(I, L)
begin
1. x 0; y 0;
2. binary search of L to find an interval Iz which is covered by

I;
3. return linearSearch(I, L, Iz);
end

In linearSearch(I, L, I), we will find a pair <x, y> such
that Ix, Ix+1, …, I , …, Iy-1, Iy are all the intervals that can be
covered by I.

FUNCTION linearSearch(I, L, I)
begin
1. Let I be Iz;
2. Search Iz-1, Iz-2, … until Ix such that Ix is covered by I, but

Ix-1 not;
3. Search Iz+1, Iz+2, … until Iy such that Iy is covered by I,

but Iy+1 not;
2. return <x, y>;
end

Example 2 Consider Ld = [1, 4][8, 14] and La = [1, 1][3, 3][5,
6][8, 8][11, 11][16, 16]. By calling conjB(Lf, La, 0), the
following operations will be conducted:

Step 1: checking Ld[2] = [8, 14] against La. l =
2
6lg = 1, t

= n - 2l + 1= 6 – 2 + 1= 5, La[5] = [11, 11]. Since [11, 11]
[8, 14], we will call linearSearch() to find x = 4 and y = 5.

Step 2: checking Ld[1] = [1, 4] against La[1 .. 3]. l =
1
3lg =

1, t = 3 – 21 + 1 = 2, La[2] = [3, 3]. Since [3, 3] [1, 4], we
will will call linearSearch() to find x = 1 and y = 2. ��

4.2 Search control by using LCAs
The method discussed in 4.1 can be significantly

improved by using LCAs. Given a word w, denote by Vw all
the nodes labeled with w. All the LCAs of the nodes in Vw (in
T), denoted as Vw′, can be efficiently recognized using a way
to be discussed in Section 6. For example, for the set of nodes
labeled with word a: Va = {v10, v5, v6, v12, v18, v15}, we can find
another set of nodes: Va′ = {v1, v7, v2, v0} with v1 being LCA of
{v10, v5}, v7 being LCA of {v12, v18}, v2 being LCA of {v6, v12,
v18, v15}, and v0 being LCA of {v10, v5, v6, v12, v18, v15}. Now
we construct a tree structure, called an LCA-tree and denoted
as Tw, which contains all the nodes in Vw Vw′. In Tw, there is
arc from v1 to v2 iff there exists a path P from v1 to v2 in T and
P does not pass any other node in Vw Vw′. In Fig. 7(a), we
show Ta for illustration.

Replacing each node in Tw with the corresponding
interval, we get another tree, denoted as ~

wT , in which each
internal node v must be an interval that is the smallest interval
covering all the intervals represented by the leaf nodes in

~
wT [v] (the subtree rooted at v in ~

wT). See ~
aT shown in Fig.

7(b) for illustration. From this, we can see that [1, 4] is the

smallest interval covering [1, 1] and [3, 3]; [8, 14] is the
smallest interval covering [8, 8] and [11, 11]; and [8, 19] is
the smallest interval covering [8, 8], [11, 11] and [16, 16].
Finally, [1, 20] is the smallest interval covering all the
intervals in La: [1, 1], [3, 3], [5, 6], [8, 8], [11, 11], [16, 16].

Here, our intention is to associate each interval j

wI in Lw

with a second interval j, which is the parent of j
wI in ~

wT , and
two links, denoted as lj and rj, respectively pointing to two
intervals in Lw, which are respectively the left-most and right-
most leaf nodes in ~

wT [j]. Fig. 8 helps for illustration.

In Fig. 8, 3

aI = [5, 6] is associated with an LCA interval

3 = [8, 14], which is the parent of 3
aI in the corresponding

~
aT shown in Fig. 7(b). In addition, l3 is a link pointing to 1

aI

and r3 is a link pointing to 6
aI . They are respectively the laft-

most interval and the right-most interval covered by 3. In the
same way, we can check all the other intervals and links
shown in Fig. 8.

In addition, we will keep a sequence w containing all
the LCA intervals in the post-order of ~

wT . For example, a =

1 4 6 3 = [1, 4][8, 14][8, 19][1, 20]. With such intervals and
links, the binary search of Lw against a certain interval (in Lo)
can be done much more efficiently by skipping over useless
checkings. Concretely, the checking of m

oI against Lw will be
done as follows.

1. If m
oI [1] > t

wI [2], compare m
oI and t. If m

oI t, explore
Lw[rt + 1 .. n] by the binary search. Otherwise, explore Lw[t
+1 .. rt].

2. If m
oI [2] < t

wI [1], compare m
oI and t. If m

oI t, explore

Lw[1 .. lt – 1]. Otherwise (m
oI t), explore Lw[lt .. t – 1].

3. If m
oI t

wI , compare m
oI and t. If t m

oI , t
wI must be the

unique interval which can be covered by m
oI . Therefore, t

wI
is the result and the search stops. The problem reduces to a

[3, 3] [16, 16]

[8, 8]

[1, 1]

[5, 6]

[11, 11]

v1 v5

v1

v1 v1

v7

v6

v1

v2

v0

[1, 4]

[1, 20]

[8, 14]

Fig. 7: Illustration for Tw and ~
wT

[8, 19]

(a) (b)

Tw: :~
wT

Fig. 8: Illustration for links associated with intervals in Lw

[1, 1]

[1, 4]

[3, 3]

[1, 4]

[5, 6]

[1, 20]

[8, 8]

[8, 14]

[11, 11]

[8, 14]

[16, 16]

[8, 19]

1

2
3

4

5
6

Ia
1 Ia

2 Ia
3 Ia

4 Ia
5 Ia

6

56 Int'l Conf. Foundations of Computer Science | FCS'15 |

checking of Lo[1 .. m – 1] against Lw[1 .. t – 1] with w[1 ..
k] to be used for control, where k is the position prior to t
in u. If t = m

oI , we will return all those intervals between lt
and rt, including both lt and rt. The search also stops and the
problem reduces to a checking of Lo[1 .. m – 1] against Lw[1
.. lt – 1] with w[1 .. k]. If t m

oI , we will search part of w
to the right of t to find the right-most interval f covered
by m

oI . Then, return all the intervals between lf and rf,
including lf and rf, which allows us to reduce the problem
to check Lo[1 .. m – 1] against Lw[1 .. lf – 1] with w[1 .. g],
where g is the position prior to f in w.

4. If m
oI t

wI , the above data structure cannot be utilized to
speed up the search. Thus, this case will be handled in the
same way as described for conjB().

Example 3 To see how the LCAs can be used to skip over
useless checkings, we check several single intervals against La
in Fig. 8 to show the working process.
1. Assume that I = [5, 7] is compared with I5 = [11, 11] in La.
Since [5, 7] is to the left of [11, 11], we will compare [5, 7]
with 5 = [8, 14] and [5, 7] [8, 14]. So we will check [5, 7]
against La[1 .. l5 - 1] = La[1 .. 3] in a next step, instead of the
sequence containing all the intervals to the left of I5.
2. Assume that I = [10, 13] is compared with I4 = [8, 8] in La.
Since [10, 13] is to the right of [8, 8], [10, 13] and 4 = [8, 14]
will be compared and [10, 13] [8, 14]. So, in the next step,
we will check [10, 13] against La[4 + 1 .. r5] = La[5 .. 5], not
the sequence containing all the intervals to the right of I4.
3. Assume that I = [10, 13] is compared with I5 = [11, 11] in
La. We have [10, 13] [11, 11]. However, [10, 13] 5 = [8,
14]. It shows that [11, 11] is the only interval in La, which can
be covered by [10, 13]. No further search is necessary.
4. Assume that I = [8, 14] is compared with I4 = [8, 8] in La.
We have [8, 14] [8, 8]. But we also have [8, 14] = 4. Then,
we know immediately that only the intervals in La[l4 .. r4] =
La[4 .. 5] can be covered by [8, 14]. ��

By Example 3, we can clearly see that LCAs are quite
useful to speed up the operation. However, all of them should
be efficiently recognized. We will discuss this in the next
Section.

5. CONCLUSION
In this paper, a new index structure is discussed. It

associates each word w with a sequence of intervals, which
partition the inverted list (w) into a set of disjoint subsets,
and transform the evaluation of conjunctive queries to a series
of checkings of interval containment. Especially, the intervals
can be organized into a compact interval graph, which enables
us to skip over any useless checking of interval containment.
On average, to evaluate a two-word query, only O(logn) time
is required, where n is the number of documents. This is much
more efficient than any existing method for set intersection.
Also, how to maintain such an index is described in great
detail. Although the index is of a more complicated structure,

the cost of maintaining it in the cases of addition and deletion
of documents is (theoretically) comparable to the inverted file.
Extensive experiments have been conducted, which show that
our method outperformances the inverted file and the
signature tree by an order of magnitude or more.

REFERENCES
[1] V.N. Anh and A. Moffat: Inverted index compression

using word-alinged binary codes, Kluwer Int. Journal of
Information Retrieval 8, 1, pp. 151-166, 2005.

[2] J. Barbay, A. López-Ortiz, T. Lu, A. Salinger: An
experimental investigation of set intersection algorithms
for text searching, ACM Journal of Experimental
Algorithmics 14: (2009).

[3] P. Bille, A. Pagh, and R. Pagh. Fast-Evaluation of Union-
Intersection Expression. In ISAAC, pp. 739-750, 2007.

[4] G.E. Blelloch and M. Reid-Miller. Fast Set Operations
using Treaps. In ACM SPAA, pp. 16-26, 1998.

[5] Y. Chen, Y.B. Chen: On the Signature Tree Construction
and Analysis, IEEE TKDE, Sept. 2006, Vol.18, No. 9, pp
1207 – 1224.

[6] Y. Chen: Building Signature Trees into OODBs, Journal
of Information Science and Engineering, 20, 275-304
(2004).

[7] Y. Chen and Y.B. Chen: An Efficient Algorithm for An-
swering Graph Reachability Queries, in Proc. 24th Int.
Conf. on Data Engineering (ICDE 2008), IEEE, April
2008, pp. 892-901.

[8] Y. Chen and Y.B. Chen: Decomposing DAGs into
spanning trees: A new way to compress transitive
closures, in Proc. 27th Int. Conf. on Data Engineering
(ICDE 2011), IEEE, April 2011, pp. 1007-1018.

[9] K.D. Demaine, A. LÓpez-Ortiz, and J.I. Munro: Adaptive
set intersections, unions, and differences, in Proc. 11th
ACM-SIAM Symposium on Discrete Algorithms,
Philadelphia, 743-752, 2000.

[10] B. Ding, A.C. König, Fast set intersection in memory,
Proc. of the VLDB Endowment, v.4 n.4, p.255-266,
January 2011.

[11] C. Faloutsos: Access Methods for Text, ACM Computing
Surveys, vol. 17, no. 1, pp. 49-74, 1985.

[12] C. Faloutsos and R. Chan: Fast Text Access Methods for
Optical and Large Magnetic Disks: Designs and
Performance Comparison, Proc. 14th Int’l Conf. Very
Large Data Bases, pp. 280-293, Aug. 1988.

[13] D.E. Knuth, The Art of Computer Programming, Vol. 3,
Massachusetts, Addison-Wesley Publish Com., 1975.

[14] J. Zobel and A. Moffat: Inverted Files for Text Search
Engines, ACM Computing Surveys, 38(2):1-56, July
2006.

[15] J. Zobel, A. Moffat, and K. Ramamohanarao: Inverted
Files Versus Signature Files for Text Indexing, in ACM
Trans. Database Syst., 1998, pp.453-490.

Int'l Conf. Foundations of Computer Science | FCS'15 | 57

Absolute Bandwidth Scheduling via Group-based
Partitioned Proportional Share Scheduling and Dynamic
Weight Management on Varying-Speed Multiprocessors

Sangwon Shin, Shakaiba Majeed, and Minsoo Ryu*

Department of Computer Science and Engineering, Hanyang University, Seoul, Korea
{swshin, shakaiba}@rtcc.hanyang.ac.kr, msryu@hanyang.ac.kr

Abstract - For the past few years there has been an increase
in the use of compute intensive applications running on high-
performance embedded systems based on multi-core platforms.
These applications demand an absolute share of CPU
bandwidth to guarantee a certain level of QoS (Quality of
Service) and fulfil their timing constraints. Unfortunately,
traditional proportional share or priority scheduling
algorithms employed in general purpose operating systems
are not able to provide an absolute share of processor
resources for such time sensitive tasks. In this paper, we
present an absolute bandwidth scheduling scheme which aims
at providing an absolute share of CPU bandwidth to groups of
soft real-time tasks regardless of the work load conditions and
varying speeds of CPU. The proposed scheme provides a
mechanism of CPU bandwidth allocation for groups of soft-
real time tasks by dynamically changing the overall weight of
the group while maintaining the proportion of share of each
task in the group. Our proposed approach works on top of a
traditional proportional share scheduler and does not require
any modifications to the kernel layer. To demonstrate the
effectiveness and the correctness of our scheme, we have
implemented a prototype using Linux cgroups and the existing
completely fair scheduler (CFS). A series of experiments are
conducted to prove that each soft real-time task in the group
maintains its required absolute bandwidth.

Keywords: Absolute bandwidth scheduling, group-based
proportional share scheduling, dynamic weight management,
QoS, soft real-time.

1 Introduction
 For the past few years there has been an increase in the
use of compute intensive applications such as multimedia
processing, online gaming and data encryption/decryption
running on high-performance embedded systems based on
multi-core platforms. These applications demand an absolute
share of CPU bandwidth to guarantee a certain level of QoS
(Quality of Service) and fulfil their timing constraints. For
instance, a video application may require 30% of processor
bandwidth at 1GHz to decode 30 frames per second for
smooth playback.

 Unfortunately, traditional proportional share or priority
scheduling algorithms employed in general purpose operating
systems are not able to provide an absolute share of CPU
resources for time sensitive tasks. The proportional share
algorithm aims at providing relative fairness to the tasks
proportional to their weights, for distributing CPU bandwidth.
As a result, the relative share of each task decreases as the
system load increases.

 The second hindrance in allocating a guaranteed share of
CPU bandwidth is the assumption of fixed speed or
performance of each CPU core. In a real world system,
however, the speed of CPU may vary with new tasks being
dynamically added to the CPU and the underlying DVFS
(dynamic voltage and frequency scaling) policy. As a result,
each task may generate a different utilization value depending
upon the current speed of the CPU. Consider for example that
a soft real-time task such as an HVEC (High Efficiency
Video Coding) decoder demands 60% of CPU utilization on
ARM Cortex A9 processor running at maximum frequency of
1.5 GHz. If the task is scheduled on a CPU which is running
at 1.0 GHz, HVEC may not meet its performance metrics
because CPU utilization in that case should be 90%. This may
adversely affect the resource allocation problem especially in
multi-core environments where CPUs can run at varying
speeds and task migration occurs frequently. Hence, to
provide efficient CPU bandwidth allocation to tasks, the
individual as well as overall computation performance of all
the CPU resources in a system under a certain condition must
be take into account.

 In this paper we propose an absolute bandwidth
scheduling (ABS) scheme to accomplish absolute bandwidth
guarantees on top of an existing partitioned proportional share
scheduler. The proposed scheme performs two important
functions. First, it partitions tasks running on each processor
into two groups, absolute bandwidth tasks that require
absolute bandwidth guarantees and proportional share tasks
that require traditional proportional share services. Second, it
dynamically adapts the weights of absolute bandwidth task
groups to satisfy their absolute bandwidth requirements
taking into account the dynamic change in workload
characteristics and varying processor speeds. We show
through experimental evaluation that the proposed scheme

58 Int'l Conf. Foundations of Computer Science | FCS'15 |

can efficiently achieve absolute bandwidth guarantees in
conjunction with an existing proportional share scheduler.

 The rest of this paper is organized as follows: section 2
gives a brief review of the related work, section 3 elaborates
our proposed scheme. In section 4 we give an implementation
of the scheme, section 5 explains our experimental set up and
finally we conclude with section 6.

2 Related Work
 Many researchers proposed resource reservation
schemes to provide guaranteed allocation of resources to a
group of tasks present in an application. For example, the
processor capacity reserve scheme proposed by Mercer et al.
[2] suggests using priority based scheduling to grant resource
reservation to each application. Later a kernel module is used
to keep track of the CPU usage of each application to
implement the granted reservation. A similar approach,
called ACTORS [3], reserves resources for each application
and readjust the assignment by using feedback from the
application. This solution gives user a comprehensive control
over resource allocation but the technique requires non-trivial
modification to the kernel.

 To provide a constant share of CPU bandwidth
regardless of the workload conditions a fixed share
scheduling (FSS) policy has been proposed in [4]. FSS
enables a traditional proportional share scheduler to provide
constant share of CPU bandwidth by dynamically modifying
the weights of soft real-time tasks under changing workload
conditions. However, FSS assumes that the speed or
performance of the CPUs remains fixed over time. Note that
the dynamic voltage frequency scaling (DVFS) mechanism
implemented in modern computing systems scales up or
down the speed of CPUs as new tasks arrive and/or depart.
Hence, to provide absolute CPU bandwidth allocation to tasks,
dynamic CPU speeds must be taken into account.

3 Absolute Bandwidth Scheduling
 There are two general approaches to multiprocessor
scheduling, global scheduling and partitioned scheduling. The
global scheduling approach maintains single task queue and
schedules tasks selecting eligible tasks guided by a global
scheduling policy and assigning them to appropriate
processors. On the other hand, the partitioned scheduling
approach maintains a separate task queue for each processor
and schedules tasks in a way similar to distributed scheduling.
In a partitioned scheduling system, tasks are first assigned to
processors and each processor runs a separate scheduler
instance to schedule them independently of other processors.

 In this work, we consider partitioned scheduling systems
with proportional share scheduling support. In order to
satisfy absolute processor bandwidth requirements in such
partitioned proportional share scheduling systems, we present

a group-based proportional scheduling scheme with dynamic
weight management as described below

3.1 Group-based Proportional Share
Scheduling

 The goal of group-based proportional scheduling
schemes is to meet the performance requirements of a group
of tasks within applications. The key idea of group-based
proportional share scheduling is to allocate resources to task
groups relative to their weights such that the share of each
group is defined by a proportional share with respect to the
other groups present in the system. The share of each task
within a group is defined by a proportional share of its parent
group [4]. For example, let be the weight of group and
let be the set of all active groups at time , then the share

 of a group at time is defined as below.

 Let be the weight of task and be the set of all
active tasks included in group at time . The share of
a task with weight at time is defined as below.

3.2 Dynamic Weight Management for Groups

 In order to obtain absolute bandwidth allocation
guarantees from the existing proportional share scheduler, we
propose to add an absolute bandwidth allocator on top of it
with a minimal impact on the existing system architecture.
The primary goal of the absolute bandwidth allocator is to

Figure 1. The absolute bandwidth scheduling model.

Int'l Conf. Foundations of Computer Science | FCS'15 | 59

receive absolute bandwidth requirements from the soft real-
time tasks and changing the weights of groups of tasks by
examining the run queue of each processor and its current
speed.

 Figure 1 shows the proposed absolute bandwidth
scheduling model with an absolute bandwidth allocator
running on top of an existing group-based proportional share
scheduler on a multiprocessor platform. The platform consists
of m processors P = . Each processor has
identical maximum processing speed but can be
operating on varying speeds depending on the workload
conditions and DVFS (dynamic voltage and frequency scaling
(DVFS) mechanism. Let us denote the current frequency of a
processor by .

 For the proposed model, we define a set of active tasks
T = running on the multiprocessor platform
and divide these tasks into two groups such that

where is a group of soft real-time tasks that require
absolute bandwidth guarantees and is a group of best
effort tasks that require proportional share bandwidth
guarantees.

 Each processor has a separate task run queue such
that

where is a group of soft real-time tasks allocated to
processor and is a group of best effort tasks allocated
to processor . The best effort tasks are allocated bandwidth
shares in proportion to their weights in accordance with the
existing group-based proportional share scheduling scheme.
We denote the weight of a best effort task by

so that the overall weight of the best effort group
scheduled at is given by

 The goal of absolute bandwidth scheduling is to provide
an absolute bandwidth to soft real-time tasks. This can be
achieved by receiving a absolute bandwidth requirement from
each task and then dynamically changing the weights of each
soft real-time group to maintain the requested bandwidth
requirements. We define the absolute bandwidth request by
any software task as CPU utilization required
from a CPU when running at . In the proposed model
each task with in may put such request through an
application programming interface (API)
request_absolute_bandwidth() as shown in Figure 2.

 For a group of soft real-time tasks assigned to a
processor , the absolute CPU utilization is defined by

 It is worth noting that when dispatching the tasks to a
specific processor it is necessary that the sum of bandwidth
requests cannot be greater than 1. However, the
resulting can be greater than 1 in case when the current
operating frequency is less than the maximum speed
of CPU. This will enable DVFS to increase the operating
frequency of CPU as required.

 Having obtained the absolute CPU utilization of a
soft real-time group, the weight of the group can be obtained
as

The group weight obtained from Equation (3) guarantees that
each soft real-time task gets an absolute bandwidth allocation
and the other best effort tasks present on the run queue are
assigned a proportional share of the CPU bandwidth.

 Figure 2 shows an example of the proposed absolute
bandwidth scheduling model. Consider two sets of
tasks and = running
on a dual-processor platform. Maximum frequency of each
processor, is 10 GHz while current frequency of is

 and current frequency of is .

 Soft real task and are allocated to processor and
have absolute bandwidth requirements of and

 at 10 GHz, and best effort task and are
allocated to processor and have weights and

. By applying Equation (2) to group of soft real-

Figure 2. Examples of absolute bandwidth scheduling

60 Int'l Conf. Foundations of Computer Science | FCS'15 |

time tasks, we have and by

applying Eq. (3), we get
. By using this weight value for the group we obtain the

share of each soft real-time task present in the group as
desired. We can verify the result by applying Equation (1):

 and

 and and

.

 Soft real task and are allocated to processor and
have absolute bandwidth requirements of and

 at 10 GHz, and best efforts task and are
allocated to processor and have weights and

. By applying Equation (2) to group of soft real-
time tasks, we have and by

applying Eq. (3), we get
. Using this weight value we can verify the share of each

soft real-time task by applying Equation (1):
 and

and and

.

4 Implementation
 We have implemented a prototype of the proposed
scheme on Linux kernel 3.18.3 using control groups
(cgroups). Cgroups provide a mechanism to aggregate or
partition tasks into hierarchical groups categorized by their
peculiar behavior primarily for the purpose of efficient
resource management among tasks.

 To exploit the benefits of cgroups and to efficiently
manage CPU resources we implemented the absolute
bandwidth allocation scheduling using CPU subsystem of
cgroups. However, we add two new parameters to the
existing CPU subsystem. The first parameter cpu.softRT is
used to classify each task on the system as a soft real-time or
best effort task. The other parameter cpu.absoluteBW is
implemented as a structure and indicates absolute bandwidth
requirement of each task in a group.

 In order to provide absolute bandwidth allocation to soft
real-time tasks we implemented dynamic weight management
for groups on top of the existing Linux’s completely fair
scheduler (CFS) [8]. Our addition of parameters in CPU
subsystem of cgroups and the process of dynamic weight
management does not modify the existing kernel
implementation and has no impact on the existing system if
newly defined parameters are not used.

5 Experimental Evaluation
 We evaluated the effectiveness and correctness of the
implementation of absolute bandwidth scheduling scheme by
conducting a series of experiments. These experiments were
performed on an Intel Core i5-4690 CPU which has four
cores with 3.50 GHz maximum speed, running on Linux
3.18.3. Each set of experiments was conducted 10 times to
ensure that the experiments and their results are repeatable.

 In the first set of experiments, we observed the CPU
utilization of soft real-time tasks under varying workload
conditions. We used four target tasks
with absolute bandwidth requirement

 at 3.5 GHz. Each task used
in this experiment is a busy-waiting task which consumes
100% of CPU utilization when executed alone on a processor.
Each processor was running on its maximum speed. We
started adding new best efforts tasks at 1000 millisecond and
noticed that the actual CPU utilization of target tasks is
maintained to their demanded absolute bandwidth even
though the number of running best efforts tasks on each CPU
was dynamically changing. Notice that since the processors
are running on their maximum frequency hence the actual
CPU utilization and the absolute bandwidth utilization
demanded by tasks is same. Figure 3 shows that actual
utilization of target soft real-time task is maintained around
absolute bandwidth even though the number of tasks varies
dynamically.

 In the second set of experiments, we observed the CPU
utilization and job completion time of target soft real-time
tasks under the assumption of varying CPU speeds. We
created four soft real-time tasks with
absolute bandwidth requirement

 at 3.5 GHz. Each task was

Figure 3. CPU utilization of soft real-time tasks, number
of running tasks in the proposed scheme

Int'l Conf. Foundations of Computer Science | FCS'15 | 61

added to a separate group destined to schedule on a particular
CPU using processor affinity. To simulate that two of the
CPUs, CPU1 and CPU3 are running at slower speeds, we
used a value of loop counter inversely proportional to the
desired frequency in the busy-waiting loop of soft real-time
tasks, such that the current frequency of CPU1 and CPU4 is
3.5 GHz and 1.75 GHz for CPU1 and CPU3.

 Table 1 shows that for CPU1 and CPU3, the actual
utilization of soft real-time tasks at simulated current
frequency is increased as a result of applying Equation (2).
We then used this utilization value to recalculate the weights
of the soft real-time task groups scheduled at CPU1 and
CPU3 to maintain their initial absolute bandwidth request.
The last row in Table 1 shows the relationship between the
absolute bandwidth requirement and job-completion time of
each task; for a given operating frequency, the smaller the
absolute bandwidth request the longer it takes to complete the
task.

6 Conclusions
 In this paper, we have presented an absolute bandwidth
scheduling scheme which guarantees absolute bandwidth for
a soft real-time tasks and proportional bandwidth allocation to
best effort tasks. We implemented absolute bandwidth
scheduling using the notion of group-based scheduling and by
dynamically changing the weights of groups of soft real-time
tasks on top of the existing Linux CFS scheduler. We
demonstrated with our experiments that the soft real-time
tasks maintain their required absolute bandwidth when more
tasks were added on the system and even when the current
speed of the underlying CPUs was changed.

Acknowledgment
 This work was supported partly by Seoul Creative
Human Development Program (HM120006), partly by the
National Research Foundation of Korea(NRF) grant funded
by the Korea government(MEST) (NRF-2011-0015997), and
partly the MSIP(Ministry of Science, ICT and Future
Planning), Korea, under the C-ITRC(Convergence
Information Technology Research Center) (IITP-2015-
H8601-15-1005) supervised by the IITP(Institute for
Information & communications Technology Promotion).

References
[1] S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A.

Varvel, "Proportionate progress: A notion of fairness
in resource allocation," Algorithmica, vol. 15, pp.
600-625, 1996.

[2] C. W. Mercer, S. Savage, and H. Tokuda, "Processor
capacity reserves: Operating system support for
multimedia applications," in Multimedia Computing
and Systems, 1994., Proceedings of the International
Conference on, 1994, pp. 90-99.

[3] E. Bini, G. Buttazzo, J. Eker, S. Schorr, R. Guerra, G.
Fohler, et al., "Resource management on multicore
systems: The ACTORS approach," IEEE Micro, vol.
31, pp. 72-81, 2011.

[4] H. Kim, H. Yoon, P. Wu, and M. Ryu, "Fixed Share
Scheduling via Dynamic Weight Adjustment in
Proportional Share Scheduling Systems."

[5] P. Holman and J. H. Anderson, "Group-based pfair
scheduling," Real-Time Systems, vol. 32, pp. 125-168,
2006.

[6] J. Kay and P. Lauder, "A fair share scheduler,"
Commun. ACM, vol. 31, pp. 44-55, 1988.

[7] S. Mittal, "A survey of techniques for improving
energy efficiency in embedded computing systems,"
International Journal of Computer Aided
Engineering and Technology, vol. 6, pp. 440-459,
2014.

[8] C. S. Pabla, "Completely fair scheduler," Linux
Journal, vol. 2009, p. 4, 2009.

Table 1. CPU utilization and job completion time of each soft
real-time groups

62 Int'l Conf. Foundations of Computer Science | FCS'15 |

Warehouse Pick Path Optimization Algorithm Analysis

Ryan Key Anurag Dasgupta
 Edinboro University of Pennsylvania Edinboro University of Pennsylvania

 rk096065@scots.edinboro.edu adasgupta@edinboro.edu

ABSTRACT
Warehouse operational costs are heavily influenced by the
efficiency in which workers are able to traverse the
warehouse and gather items on orders around the
warehouse that must be shipped to customers; this action
accounts for over 50% of warehouse operations expenses.
The act of traversing the warehouse is greatly optimized
by following a designated pick path; however, algorithms
for pick path generation are complex and heavily
unexplored by the industry. Generating pick paths
involves solving two common place graph theory
problems: the shortest path problem and the traveling
salesperson problem. We will analyze algorithms used for
solving both of these problems and discuss the feasibility
of generating pick paths through the use of the algorithms.
We also introduce a simplified implementation to
illustrate the viability of the described approaches.

KEY WORDS
Warehouse Pick Path Optimization, Traveling
Salesperson Problem, Shortest Path, Algorithm
Comparison

1. Introduction

A common goal of nearly all businesses is to reduce man-
hours and increase the overall profit margin of the
business. In warehouse related businesses, optimizing the
efficiency of order picking can lend itself to great
reductions in the time it takes orders to ship out, as well
as, improving the overall effectiveness of its workers. Of
all costs associated with warehouse operations, 55-65% of
the operational funds are allocated towards order picking
[1] [2], showing the importance of optimizing this phase
of the warehouse process.
To better understand the problem at hand, we will now
describe a common scenario in a warehouse and show
how order picking fits into the mix. First, a warehouse is
comprised of 3 primary components: receiving, storage,
and shipping [2], Receiving is responsible for checking
things into the warehouse; this is the entryway for all
items into the warehouse stock. Once items have been
received, they must be put away and stored. Storage can
be of any form, although large shelving units, gaylords,
and/or pallets are traditional options. The storage area of a
warehouse is quite important and should be well
organized to create an advantageous environment for
order pickers. The final area, shipping, is similar to
receiving. This is the exit for all items leaving the
warehouse; any items ordered by customers of the
warehouse must pass through this area before arriving at

the customer’s location [2]; a customer of the warehouse
could be larger entities such as the operation of a large
franchise storage warehouse, or a single customer that is
ordering products from an online store.
After understanding the layout of a warehouse, we must
look at the tasks performed by a warehouse. Nearly all
activities at a warehouse are centered on receiving orders
from customers. As an order comes into the warehouse,
an individual in the warehouse becomes responsible for
the order; this is the order picker. The order picker is
responsible for gathering all items on the order from
around the warehouse, also known as picking, and then
placing them in the shipping area. Once in shipping, the
order will be packaged in a box or pallet and shipped to
the customer. The picking process can be time consuming
and by far is the biggest operational expense of any
warehouse [2].
Picking items for orders is the most costly part of the
process, because order pickers must traverse the
warehouse layout to find all items on the order, starting
and ending in the shipping area; this is a pick path. For
example, an order picker will print an order from the
shipping area with 10 items on it. If there is a 20,000
square foot warehouse, it can be expected to have at least
500 unique storage locations throughout the warehouse
defining where items are stored. This means, the order
picker must determine an efficient route through the 500
locations to get to the 10 locations identified on the order,
where any location can be travelled to from any other
location; we know this because any practical warehouse
layout will not create any isolated, or pendant, storage
area. After the order picker has found all 10 items in the
warehouse, they must then bring the items back to the
shipping area so the order can be shipped and the order
picking process can be started fresh.
Now to analysis this problem in terms of graph theory,
finding a pick path involves solving two of the most
common problems in graph theory; the Travelling
Salesperson Problem (TSP) and the shortest path problem.
The TSP is the problem of finding the shortest tour
through n cities that visits every city exactly once, starting
and ending in the same city [3]. Where in the case of pick
path optimization, we want to visit every location on the
order exactly once, generally starting and ending in
shipping.
The shortest path/route problem comes in five varieties,
two of which pertain to the work accomplished by this
paper. The first being, finding the shortest path between
some vertex, x, and some other vertex in the graph, y [4].
Depending on the implementation and algorithms used to
optimize warehouse pick paths, this scenario will come

Int'l Conf. Foundations of Computer Science | FCS'15 | 63

into play such as, wanting to make it from some last
location on the order back to the single shipping location.
More often, it will be the case where the following
shortest path is sought: the shortest path between some
vertex and all others [4]. This is the shortest path most
often sought during optimized pick path generation, as
distances between the current vertex and all other
locations on an order commonly need to be found.
To summarize the TSP/Shortest Path problem
encountered when solving the pick path problem: we are
solving a TSP between all locations on an order; starting
and ending in the shipping area (which is also defined by
a vertex). Then as the TSP is being solved, at each
location we encounter the further difficulty of finding the
shortest paths between the current node and all remaining
locations on the order. This occurs because we are solving
a TSP which assumes a complete graph where all nodes
are connected with one edge between them; however, this
is not guaranteed to be the case in the warehouse layout.
We are guaranteed all locations will be reachable from
any location in the graph, so we must define the shortest
path to each of these vertices. After finding these shortest
paths, we can then treat the problem like a normal TSP,
where all edges defining the path between nodes are
treated as one edge with one minimum distance associated
with it.
Section 4 of this paper will focus on the algorithms and
enhancements that can be used to find optimal pick paths
by solving the TSP and shortest path problem. Section 5
will offer insight into an implementation for finding an
optimal pick path.

2. Related Work

There have been hundreds of papers published and dozens
of algorithms developed around solving the shortest path
problem alone, as a large number of mathematical
optimization problems are mathematically equivalent to
the shortest path problem [4]. In the same respect, the
TSP has been analyzed by dozens of professions,
researched to no end, and proved to be a member of the
NP-Complete problem set, with numerous heuristics
developed that present polynomial time solutions within a
fair degree of accuracy [3].
In contrast, there has been limited research completed
around warehouse efficiency, and more specifically pick
path optimization. There is some degree of research
related to the business operations of warehouses [2];
however, there is almost no research related to the
algorithms required to solve the problems of optimizing
warehouse operations. This is the gap in research we have
aimed to fill throughout the course of this paper.

3. Contribution

With an astonishing amount of research in solving
shortest path problems and the travelling salesperson
problem, we aim to explore popular algorithms for

solving these problems, taking a closer look at how each
algorithm works and the practicality of generating optimal
pick paths with these algorithms. We will look at the role
of each algorithm in solving the warehouse pick path
optimization problem and evaluate the characteristics of
the algorithm. We will look at the timing complexity of
these algorithms, as well as, the flaws and potential
concerns for implementing each algorithm.
We also introduce a basic implementation used for
solving the warehouse pick path problem. In this regard,
we focus on the components of the implementation and
the improvements that should be made before using the
algorithm to generate optimized pick paths.

4. Algorithms

There are a plethora of shortest path and TSP algorithms
available, this section will focus on a handful of popular
algorithms used for solving these problems. We describe
each algorithm and the way in which it works. We then
make mention of its time complexity, closeness to the
optimum solution, and give a brief analysis on whether
the algorithm is practical for usage in generating
optimized pick paths.

4.1 Shortest Path Algorithms
This section will focus on algorithms used to find the
shortest path between some vertex and all others in the
graph; algorithm enhancements will also be considered.

4.1.1 Dijkstra’s
Dijkstra’s algorithm is used to find the shortest distance
between some starting vertex and all other vertices in the
graph [5]. Dijkstra’s algorithm is quite popular for its
performance, with a worst case performance of

, where E = number of edges and V = number
of vertices [3]. The algorithm is also easy to alter so that
Dijkstra’s will not only return the distance of the shortest
path to each vertex, but also the path to traverse.
In pick path optimization, Dijkstra’s is quite useful as it
can be used at each location to find the shortest distance
between this location and all remaining locations on the
order. This is quite practical and is often exactly what we
need to solve in the process of generating an optimal pick
path in the midst of solving the TSP portion of the
problem.
Section 4.1.3 further elaborates on enhancements that can
be made to improve Dijkstra’s algorithm.

4.1.2 Floyd’s
Floyd’s algorithm is used to find the all-pairs shortest
paths, meaning that in one run Floyd’s can find the
shortest path between all vertices on a graph [3]. This can
be seen as extremely advantageous to Dijkstra’s in finding
pick paths, because the algorithm can be run once before
solving the TSP end of the problem. By running the
algorithm once, and storing the result to be referenced
throughout the solving of the TSP, we are able to greatly

64 Int'l Conf. Foundations of Computer Science | FCS'15 |

reduce the time spent determining the distance between
the current location and all other locations on the order;
however, we do not believe Floyd’s will always be more
efficient than running Dijkstra’s at each location while
solving the TSP, considering its worst case performance
is [5].

4.1.3 Dijkstra Enhancements
The reliability, popularity, and speed of Dijkstra’s makes
it a heavily implemented and researched algorithm,
especially in the realm of map routing and GPS
programming. Under this umbrella, there have been
numerous algorithm enhancements suggested [6]. These
enhancements can be used to potentially greatly reduce
the time it takes Dijsktra’s to run.

4.1.3.1 Subgraph Partitioning
One of the most reasonable enhancements for pick path
optimization is the idea of partitioning a graph into a
subgraph, where the subgraph contains a limited number
of unused/untraversed vertices [7]. For example, if a GPS
were determining an optimal route from Washington, DC
to New York City, it would not need to consider any
vertices in California or Florida, as it is unreasonable to
traverse that part of the graph when travelling from DC to
NYC. This has a practical application to the pick path
problem, as there is no need to look at the south side of
the warehouse if no locations on an order pertain to that
portion of the warehouse.
The holdup with the subgraph concept is the fact that
there must be an algorithm run to determine what
subgraph should be looked at and then form that subgraph
[8]. This can be a costly operation and it can be difficult
to predict what vertices should be dropped when
developing a subgraph of the warehouse per order. It
seems that in most circumstances, it would be more costly
to determine what subgraph to send through Dijkstra’s
rather than simply running Dijkstra’s algorithm on the
entire graph.

4.1.3.2 Bidriectional Search
Bidirectional search is an extension of Dijkstra’s
algorithm specifically targeting a two-node shortest path
problem, when a starting vertex and target vertex are
explicitly given [9]. When given these two points it is
possible to create a mapping for the set of nodes and the
set of edges such that Dijkstra’s algorithm can be adapted
to start running from the start vertex and the target vertex
simultaneously, where each thread will meet in the middle
of the path, reducing the time taken to find the shortest
path between two points using Dijkstra’s [9].
Bidirectional search initially seems like a practical
enhancement for solving the pick path problem, although
after considering the problem this is not the case.
Dijkstra’s algorithm is run in order to determine the
shortest distance between the current location node and
all other locations on the order. The pick path problem
does not typically involve finding the shortest path
between the current vertex and one other location vertex

in the graph, except if there is only one location on the
order. It may be the case that some warehouses would
find it advantageous to implement this Dijkstra’s
enhancement for this special case but, in general, order
pickers are able to efficiently find their own path to orders
with less than three locations on them [2]. This
enhancement is not recommended for use in pick path
generation algorithms.

4.2 Travelling Salesperson Algorithms
This section will focus on algorithms used to find an exact
optimized solution to the TSP, as well as, approximation
algorithms that offer solutions within some guaranteed
degree of closeness to the optimal solution.

4.2.1 Exhaustive Search
The exhaustive search algorithm offers the only
implementation that can produce the guaranteed shortest
tour to the TSP every time. This algorithm searches
through all permutations of tours, computing the distance
travelled by each; if a new shortest tour is found it is
stored as such until all possible tours have been checked
[3]. Exhaustive search will always produce the shortest
path because it is looking at every possible tour that could
be taken. This is ideal in terms of a guaranteed shortest
path; however, the performance of the algorithm is quite
awful; having a time complexity of [3] [4]. This is
not a recommended approach for generating optimized
pick paths.

4.2.2 Nearest-Neighbor
The nearest-neighbor algorithm is a very simple algorithm
to understand and implement. The algorithm starts at
some random city, travelling to the city closest to the
current city, until all cities have been visited. Once at the
final city, come home. This algorithm cannot guarantee
any degree of accuracy as to how close it will be to the
optimum solution [3]. For this reason alone, we do not
recommend using this when generating optimal pick
paths.

4.2.3 Multifragment-heuristic
The multifragment-heuristic algorithm works by looking
at the edges of the graph, rather than vertices. The
algorithm approaches the problem by creating a
minimally weighted set of edges that makes each vertex
in the graph of degree 2 [3].
The algorithm is as follows: first sort the set of edges by
their weights and set the shortest distance set of edges to
empty. Then, for the number of cities in the graph, add the
shortest edge left in the set to the shortest distance set of
edges, provided the addition of this edge does not make
any vertex greater than of degree 2. After the loop has
been completed, the shortest distance set of edges will
contain the approximate shortest distance [3] [5].
This algorithm generally creates a more optimal result
than the nearest-neighbor algorithm, but it also does not
guarantee any degree of accuracy [3]. For this reason, this

Int'l Conf. Foundations of Computer Science | FCS'15 | 65

algorithm is also not an ideal implementation for the pick
path problem.

4.2.4 Ant Colony Optimization
For solving the TSP, there are a number of different ant
colony solution algorithms available, many of which are
based on genetic algorithms. These algorithms are
modeled after the natural ability of an ant colony to find
the shortest path to their food source [10]. When ants
arrive at decision points in their travels, they have no
knowledge of what lies ahead of them or what distance
must be travelled based on their decision. Since the choice
is random, it can be expected that when presented with
two directional choices (both ending at the same point),
half the ants will go right and the other half will go left.
Eventually, ants will be travelling to-and-from this
location so ants will be choosing direction when headed
both directions to-and-from the food source. As the ants
travel, they release pheromones. After the ants have been
travelling for a short time, the pheromone will accumulate
on both paths; eventually the shorter path will have a
much higher accumulation and this will begin to attract all
the new ants to this path. Ants are able to discover the
shortest paths between their food sources by measuring
the amount of pheromone deposited on each decision path
[10] [12].
One proposed Ant Colony algorithm for solving the TSP
is the Ant Colony System (ACS) [10]. The algorithm’s
primary feature is the use of agents as ants. These ants
work in a threaded, parallel fashion, simultaneously
searching for a good solution to the TSP. The ants
communicate on a global level, as well as, indirect
communication through pheromone release on the edges.
Each ant acts independently searching for a solution,
using pheromones as a form of memory and making
iterative improvements on its path selection. In the end it
is proposed that the shortest path can be found by
examining the pheromones left on each edge and selecting
the maximal pheromone-weighted edges in order to form
an optimal solution [10].
Dorigo presents numerous results of ACS tests in relation
to other top-notch TSP algorithms [10]. Moreover, ACS
presents accurate results for both small and large
problems. The algorithm was able to produce the
optimum tour in all tours with less than 100 cities in a
minimal number of runs. For larger travelling salesperson
problems (198 to 1577 cities), ACS was able to generate
optimal paths within 3.5% error from the optimum [10].
This solution is recommended in terms of accuracy;
however, it is not a practical implementation for many
due to its degree of difficulty.

4.2.5 Twice Around the Tree
The twice-around-the-tree algorithm is a minimum
spanning tree-based algorithm [3]. These types of
algorithms leverage the connection between Hamiltonian
circuits and spanning trees, where a Hamiltonian circuit
minus one edge produces a spanning tree [3].

The algorithm works by first constructing a minimum
spanning tree of the graph. Then, starting at some random
node, perform a walk around the spanning tree that was
constructed (using a Depth First Search) and keeping
track of vertices passed through. Then search the list of
vertices that was generated; delete all repeats of nodes so
that each vertex only appears once, except the start/end
vertex. The start/end vertex should appear at both the
beginning and end of the list. This produces a
Hamiltonian circuit that is an approximation for the
shortest path between all nodes [3].
This algorithm can be performed in polynomial time,
although its exact timing depends on the implementation
of the first step, where a minimum spanning tree is
constructed. An MST can be constructed using any
popular algorithm such as Prim’s or Kruskal’s [3] [4].
Another benefit of this approach is that, it is guaranteed
that accuracy of the shortest tour generated by this
algorithm is at most twice as long as the optimum tour.
This algorithm is recommended based on its guaranteed
upper bound and the fact that the algorithm is performed
in polynomial time.

4.2.6 Christofides’ Algorithm
Christofides’ algorithm works similarly to the twice-
around-the-tree algorithm as it also works with minimum
spanning trees. Christofides’ utilizes more advanced
implementations of graph theory to form a guaranteed
lower cost tour than the previously discussed algorithms
[3] [4] [5] [11].
Christofides’ first creates a minimal spanning tree, T,
using some known algorithm. Then create a set of all odd
degree vertices, V. Then find a perfect matching, P, with
the minimum weight of the graph over the vertices in V.
This will create a set of minimally weighted edges
without any common vertices from V. Then, add the
edges from P and T to form a multigraph, M. A
multigraph is simply a graph that allows parallel edges.
Now form an Euler circuit from M, call it E. This will
produce a circuit that visits every edge once. Now,
remove edges that visit nodes more than once. This will
create a Hamiltonian circuit, which as we previously
defined is a solution to the TSP [3] [5] [11].
Christofides’ algorithm can be performed in polynomial
time and produces a minimal tour that is guaranteed to be
within 1.5 times the optimum tour [11].
This algorithm is highly recommended for
implementation in finding an optimal pick path.

5. Code

Throughout the research of this paper, a small case study
project was developed to show that the algorithms
described could be implemented to create a usable pick
path generator. The application is a C# Windows Form
application that provides the basic implementation to
create a warehouse layout in the form of a graph, save it,

66 Int'l Conf. Foundations of Computer Science | FCS'15 |

and then use it to generate an optimal pick path based on a
handful of algorithms described above.
The initial step to use this application is the process of
converting a warehouse layout into a graph. We will use
Figure 5.1 as an example throughout this section. First we
must define the components of this layout. All whitespace
in the layout represents aisles in the warehouse that can be
traversed to travel around the warehouse from location to
location. The large rectangular gray square in the bottom
of the layout is the shipping area of the warehouse. As
described in Section 1, this is typically the start and end
point of the pick path. All remaining gray squares are
storage locations in the warehouse such as shelving units
or pallets. It is also important to note, distances are
associated with each aisle and the shelving units; this
comes into play as we move through the transformation of
the layout into a graph.

Figure 5.1: Warehouse Layout

After we have our layout defined, we can begin the
process of turning this into a graph that can have
traditional TSP and shortest path algorithms applied. The
first step in this transformation is to create vertices at the
intersection of all aisles, we do this because each aisle is
an edge and the edges meet at intersections. Then draw
each aisle as an edge.
Now, it is time to assign weights, of a uniform unit, to
each edge. These weights represent the distance from the
middle of one aisle intersection to the center of the
neighboring aisle intersection. After assigning weights, it
is time to randomly and uniquely assign each vertex an
ID. This is done so that the user is able to interact with the
Windows Form application, because the vertex ID
correlates to an application vertex name. With that said,
the application presents nodes to the user in the naming
convention of “v1” to “vMax#Vertices”, so for the sake of
simplicity, we will name our layout graph vertices as
such. After completing the process defined above, a graph

similar to Figure 5.2 is developed. Note we must also
select a vertex to represent the shipping area at this time.

Figure 5.2 Warehouse Layout Graph

It can be seen that the red dots represent our vertices; the
blue represents the identities of our vertices. We see we
have a total of 36 vertices in our layout. Next, create all of
the edges and place the weight along each edge in green.
It is recommended that a thorough comparison of Figure
5.1 and Figure 5.2 be done to clearly see the figures
represent the same warehouse layout. The entire reason
for drawing this graph layout is to prepare all metadata
that is collected by the application; planning and creating
this image representation helps to reduce data entry errors
and greatly reduce the time taken to turn the layout into a
graph theory applicable problem. After our graph and its
metadata are complete, we can begin using the
application.
At this point it is important to note that this graph is a
representation of the warehouse layout that will allow us
to traverse from any aisle intersection to any other aisle
intersection in the warehouse. This is different from the
pick path problem, as the pick path problem travels from
storage location to storage location. We eliminated the
location vertices from our graph, as the same algorithms
and processes apply to a graph going from aisle
intersection to aisle intersection as a graph traversing
location to location. This is true, because locations are
found in our storage units. Our storage units are
represented by the edges in our graph (see Figure 5.2).
This means if we want to work with locations, rather than
aisle intersections, we turn one aisle edge into multiple
location edges. For example, if (from Figure 5.2) the

Int'l Conf. Foundations of Computer Science | FCS'15 | 67

storage unit between v18 and v27 contained 5 locations,
we would add 5 vertices to the one edge of length 24.
These 5 locations would then be joined by smaller-
portioned edges whose sum would add up to the original
length of 24. This shows that by performing our analysis
on the graph of aisle intersections, we are able to create
simplified tests with fewer vertices without loss of
generality for locations. As an example of a complete
location graph see Figure 5.3; it shows pink dots that
represent each location. It is easy to see that this graph has
the same properties as Figure 5.2.

Figure 5.3 Layout Graph with Location Vertices

Now we must enter the graph from Figure 5.2 into the C#
application. After launching the application, we first enter
the number of vertices and select “Create Graph”, see
Figure 5.4.

Figure 5.4 Create Graph with Number of Vertices

After selecting “Create Graph”, the application
dynamically generates a form that is essentially an
adjacency matrix. Each cell of the matrix has two input
cells, we enter the distance between the vertices in the
first input cell, ignoring the second. To fill this adjacency
matrix form, we translate the metadata from our drawn
layout graph in Figure 5.2 to the adjacency matrix,
entering the distance weight for each edge as in Figure
5.5.

Figure 5.5 Fill Adjacency Matrix

After entering all of the metadata from the graph, we need
to “Save Graph” so we can use this graph to solve the
pick path problem from another form. After saving the
graph, go back to the form from Figure 5.4 and select
“Load Graph”, select the graph that was just created and
saved from the prior step. Now, enter the vertex that is the
shipping area and the list of all vertices to visit as seen in
Figure 5.6.

Figure 5.6 Find a Tour

After entering all information, select “TSP Find Shortest
Path”. This generates an optimized pick path for the
specified vertices using Dijkstra’s algorithm to find the
closest neighboring vertex to each current vertex as we
traverse the graph. The application uses the nearest-
neighbor approach for solving the TSP end of the pick
path problem, and Dijkstra’s algorithm to find the shortest
paths.
After the optimal tour has been found using the above
algorithms, it is displayed to the user. It is important to
note that this form starts counting vertices at 0, rather than
1 so all vertex names are decremented by a constant of 1.
As Figure 5.7 shows, the form displays the vertices in the
order in which they should be traversed, showing the
exact path to get to each location as well as the path
distance. All of these components make it easy to piece
the tour together and present a usable path to the end
users.

68 Int'l Conf. Foundations of Computer Science | FCS'15 |

Figure 5.7 Pick Path Tour

This application shows the feasibility of using the
algorithms described in Section 4 to generate optimized
pick paths using simple vertex and edge data structures.
This application does not; however, implement a
recommended TSP algorithm, as the nearest-neighbor
approach does not guarantee any degree of accuracy in
regard to the optimum tour [3]. With a TSP algorithm
guaranteeing an upper bound, this application would be
far more reliable and recommended for use.
In short, we are able to demonstrate the practicality of
using advanced TSP and shortest path algorithms for
solving the optimized pick path, although further
implementation is required to guarantee any degree of
accuracy.

6. Future Work

It is our goal to implement an optimized pick path finder
that implements a TSP solution with a guaranteed upper
bound to the optimum tour. This will involve reworking
the vertex and edge data structures, as well as storing
them in a more optimal data structure than a list;
preferably using a data structure that closely lends itself to
finding a minimal spanning tree based on the fact that
many upper bound TSP solutions first find a MST before
solving the TSP. This will make it more efficient to
implement algorithms such as Christofides’ or twice-
around-the-tree.

7. Conclusion

In conclusion, pick path optimization is a component of
warehouse operations with much room for improvement
in efficiency. To optimize the creation of pick paths,
further research must be done in heuristics for solving the
travelling salesperson problem with tight upper bound
guarantees. The algorithms analyzed in this paper are
capable of generating pick paths, although to guarantee
any degree of accuracy to the optimum pick path tour,
more advanced and complicated algorithms must be
implemented such as Christofides’ or twice-around-the-
tree. With the implementation of these algorithms,
optimal pick paths can be reliably generated and used for
directing order pickers.

References

[1] Theys, C., Braysy, O., Dullaert, W., Raa, B., 2010.

Using a TSP heuristic for routing order pickers in
warehouses. European Journal of Operational
Research 200 (3), 755–763.

[2] Bartholdi, J.J., Hackman, S.T., 2006. Warehouse and
Distribution Science. Release 0.96.

[3] A. Levitin, The design and analysis of algorithms 3rd
Edition (Upper Saddle River, NY: Addison-Wesley,
2012).

[4] N. Deo, Graph theory with applications to
engineering and computer science (Englewood
Cliffs, NJ: Prentice-Hall, 1974).

[5] T. Cormen, C. Leiserson, R. Rivest, & C. Stein,
Introduction to algorithms (Cambridge, MA: MIT
Press, 1990).

[6] F. Zhan, “Three Fastest Shortest Path Algorithms on
Real Road Networks: Data Structures and
Procedures,” Journal of Geographic Information and
Decision Analysis, Vol.1, No.1, pp. 69-82, 1998.

[7] Q. Song, X. Wang. Partitioning Graphs to Speed Up
Point-to-Point Shortest Path Computations. Decision
and Control and European Control Conference
(CDC-ECC), 2011 50th IEEE Conference on. IEEE,
2011.

[8] R. Möhring, H. Schilling, B. Schütz, D. Wagner, and
T. Willhalm. Partitioning graphs to speed up
Dĳkstra’s algorithm. 4th International Workshop on
Efficient and Experimental Algorithms (WEA), pages
189–202, 2005.

[9] Pohl. I. Bi-directional search. In B. Meltzer and D.
Michie (Eds.). Machine Intelligence 6 (American
Elsevier. New York. 1971) 127-140.

[10] Dorigo, M., & Gambardella, L. M. (1997). Ant
colony system: A cooperative learning approach to
the traveling salesman problem. IEEE Transactions
on Evolutionary Computation, 1 (1), 53-66.

[11] CHRISTOFIDES, N. 1976. Worst-case analysis of a
new heuristic for the traveling salesman problem.
Symposium on New Directions and Recent Results in
Algorithms and Complexity, J. F. Traub, ed.
Academic Press, Orlando, Fla., p. 441.

[12] F. Chen, H. Wang, C. Qi, and Y. Xie, “An ant colony
optimization routing algorithm for two order pickers
with congestion consideration,” Computers &
Industrial Engineering, vol. 66, no. 1, pp. 77–85,
2013.

Int'l Conf. Foundations of Computer Science | FCS'15 | 69

Proportional Share Scheduling employing Performance-
aware Virtual Time in Multiprocessor Systems

Munseok Kim1, Hyunmin Yoon2, and Minsoo Ryu1

1Department of Computer Science and Engineering, Hanyang University, Seoul, Korea
2Department of Electronics Computer Engineering, Hanyang University, Seoul, Korea

{mskim, hmyoon}@rtcc.hanyang.ac.kr, msryu@hanyang.ac.kr

Abstract – In proportional share scheduling, the different
performances of CPUs can make running tasks unfair during
a period. To make them fair in a system, we present a
proportional share scheduling employing performance-aware
virtual time (PVT) maintained globally. This PVT is the share
of CPU time received by a task and increases at a rate
proportional to the performance of CPU where the task is
running on and inversely proportional to the weight of the task.
The schedulers of CPUs, when they assign CPU time to a task,
utilize PVT to make a decision which task and how long it
should preempt CPU to minimize the difference of PVTs
among tasks. We evaluated our approach experimentally on
general purpose operating system in the homogeneous and
heterogeneous multiprocessor (HMP) systems. On both
systems, the results show the significant improvement that is
near-perfect (around 99% better) fairness in the homogeneous
multiprocessor system and much better (more than 60% better)
in the HMP system.

Keywords: Proportional share scheduler, virtual time,
performance-aware, heterogeneous multiprocessor, fairness.

1 Introduction
Proportional share scheduling which provides

abstractions for multiplexing resources among tasks allocates
resources to a task proportional to its weight to guarantee the
weighted fairness in a system. Unfortunately, generally this
fairness cannot be completely achieved in practice because
infinitesimal CPU quanta are required in theory. To minimize
the difference of CPU time between a task ideally needed in
theory and actually received, previous works have introduced
various approaches such as [3] and [12]. These approaches,
however, do not consider that the unfairness among tasks can
arise also by the different performance of CPUs. In practice,
the unfairness arises in the homogeneous multiprocessor
system which has CPUs of different frequencies like x86-
based, and it is more obvious in case of heterogeneous
multiprocessor (HMP) systems.

The HMP system such as ARM big.LITTLE processor
was introduced to make an energy-aware scheduling possible
by processing tasks on the core of less energy consumed. In
such a system, since each CPU has different capacity and

frequency, unless schedulers consider the performance of
CPUs, the unfairness could be amplified and more frequent
than the homogeneous. Nevertheless, in HMP related works,
most focus is on the performance optimization, energy-saving
and showing the benefit of them [6]-[8], while not much
effort is being given to guarantee the fairness among tasks.

The fairness among tasks is significantly important
factor to guarantee quality-of-service (QoS) of multi-program
workloads [9], [10]. For example, applications such as
immersive virtual environments and interactive multi-media
can lead to unpredictable and undesirable result because they
require real-time computation and communication services
from the operating system on the assumption that all tasks
make equal progress on CPUs. Yet, this expectation cannot
be guaranteed in the case of that a task running on a big core
(or the higher frequency of CPU) works more than the other
on a small core (or the lower frequency of CPU). In this case,
finally, the difference of work done among tasks should be
minimized with the consideration about the performance of
CPUs to guarantee QoS based on the fairness.

To achieve this goal with considering about the
frequency and capacity of CPUs as major factors of the
performance, we present a proportional share scheduling
employing performance-aware virtual time (PVT). PVT, a
virtual time of a task maintained in a system widely,
increases at a rate proportional to the performance of CPU
where the task is running on and inversely proportional to the
weight of the task based on CPU time received by the task.
This PVT makes the unfairness among tasks traceable
relatively, and schedulers utilize it when they assign CPU
time to a task. By leveraging existing proportional share
scheduler employing PVT, this work provides near-perfect
fairness (more than 99%) in the homogeneous multiprocessor
system and much better fairness (more than 60%) in the HMP
system than the previous one.

The remainder of this paper is composed of several
sections as follows. Section 2 describes an existing
proportional share scheduling and its limitation, and Section 3
introduces PVT and how to utilize it in a system. In section 4,
we show substantially improved results based on the
completely fair scheduler (CFS) employing PVT in Linux as
a representative fair scheduler in practice. Section 5
concludes this paper with the consideration of future works.

70 Int'l Conf. Foundations of Computer Science | FCS'15 |

2 Proportional Share Scheduler and
Limitation
 Proportional share scheduling which is able to provide

abstractions for multiplexing resources among tasks is
allocating resources to a task proportional to its weight to
guarantee weighted fairness in a system [1]. Proportional
share resource allocation is ideally generalized processor
sharing (GPS) scheme [2]. A fluid-style resource and prefect
fairness based on an infinitesimal fluid resource model are
assumed, but actual system cannot provide resource
infinitesimally in practice. Therefore, approximate scheduling
scheme is being proposed like packet by packet GPS (PGPS)
[4], and weighted fair queuing (WFQ) [2]. Figure 1 shows the
ideal scheme and quantum-based scheduling which is able to
be implemented to achieve proportional share scheduling in
practice [11].

 Let be the weight of task and be the set of all

active tasks at time . The share of a task at time is
defined as follows.

The share is changeable in runtime because the number
of tasks in a system can be changed dynamically. For
example, if a new task is initialized, the total weight
is increased and the share of task is decreased on the
contrary. Therefore, a proportional share scheduler only
guarantees a relative share of CPU time according to the total
weight changes.

To measure the difference of CPU time received by a
task between the ideally needed and the actually received,
virtual-time domain [1] can be utilized. In this domain, the
virtual time is the share of CPU time received by a task. The
share of CPU time is allocated to a task proportional to the
weight of the task. Therefore, the virtual time can be
computed as follows.

Let be the CPU time assigned to task by time t, and
let be the set of all tasks active at time . Because the
virtual time increases at a rate proportional to the sum of

weights of all tasks, if the total sum of weights increases, the
virtual time of increases faster and vice versa.

Additionally, the lag is defined as the ideal CPU time
which should be assigned to a task by subtracting the actual
CPU time received by a task. Suppose that task is active
and have a fixed weight in the interval . Let
denotes the CPU time received by the task in under a
certain scheduling scheme A, and denotes the
CPU time under the Generalized Processor Sharing (GPS)
scheme; an idealized scheduling model which achieves
perfect fairness. The lag of task τ at time (, for
any interval , is formally defined as

However, in the case of proportional share schedulers
based on partitioned scheduling, they have each run queue
individually and try to guarantee the fairness with the
consideration about the weights of tasks only within the run
queue where the scheduler involved in. Although this
approach has no problem in a system which has the same
performance of CPUs, it can incur a problem in a system
which has different performance of CPUs. In such a system,
as well as the sum of weights of tasks on each CPU, the
performance of each CPU can be different by the dynamic
frequency changes or the static capacity of processors.

In case of the different frequency of CPUs, for example,
consider four tasks and which have the same
weight value 100 individually on the dual-core processor
which has CPUs 1 and 2. The frequency of CPU 1 is 1 GHz
while it of CPU 2 is 2 GHz. They can operate as following
scenarios.

1. Four tasks and start simultaneously at time 0
2. Execute and in CPU 1, and in CPU 2 during

2 sec
a. moved to CPU 2 without delay
b. moved to CPU 1 without delay

3. Execute and in CPU 1, and in CPU 2 during
2 sec
a. moved to CPU 2 without delay
b. moved to CPU 1 without delay

4. Execute and in CPU 1, and in CPU 2 during
2 sec

In this case, all of tasks can receive the same amount of CPU
time; however, at the point of the amount of work done, it can
be totally different result. If we consider the performance of
CPUs, according to the proportion of performance of each
CPU, we can describe the relative ratio of the amount of work
done by each task based on CPU time like follows. The
processed of work in CPU 1, processed

 and processed in
both CPUs while the processed
in CPU 2. Finally, the amount of work done by each task is in
the order of . If the length of execution

Figure 1. Proportional share scheduling.

Int'l Conf. Foundations of Computer Science | FCS'15 | 71

time at the scenario 2, 3, and 4 could be manipulated properly,
 and can be fair while is of the least work done and

is of the most. Even though the total sum of weights in each
CPU during execution is absolutely balanced, the result of
work done among tasks can be totally different by the
performance of CPUs and it eventually leads tasks to the
unfairness. Finally to guarantee the fairness among tasks in a
system, as well as the sum of weight of tasks, the
performance of CPUs should be considered together.

3 Performance-aware Virtual Time
 In this section, we propose performance-aware virtual

time (PVT) where the performance of CPU is defined using
two major factors: frequency and capacity. PVT, as a virtual
time of a task maintained globally, increases at a rate
proportional to the performance of CPU where the task is
running on and inversely proportional to the weight of the
task based on CPU time received by the task. Additionally,
we utilize PVT to monitor the fairness measure in a system.
Basically our approach considers both systems homogeneous
and heterogeneous multiprocessor (HMP), and each CPU
individually has a dynamic voltage and frequency scaling
(DVFS) which is efficient technology for dynamic power
management (DPM). Therefore, PVT of task of weight
in CPU P is calculated as follows.

Let and be the maximum weight of a task and
CPU frequency acceptable in a system, and be
the total amount of frequencies by time , and ()
is a constant value of CPU P which indicates the relative ratio
of the performance among CPUs from the fastest ().
This constant value can be determined depending upon the
types of tasks running on a system based on the results of
various benchmarks or some specific metrics reported by chip
vendors also.

Additionally, if we scale and as a same value
to reduce a fraction, we finally can simplify equation as
follows.

All tasks in a system have their own PVT values. By utilizing
these values, we are able to monitor the change of fairness in
a system by the changes of results of periodic repeating
follows.

The maximum result of should be maintained as
a similar level. This means eventually that the results are

always bounded into the specific value, and the level of
fairness measure is being maintained in a system.

The difference (lag) of CPU time received by the task
between the ideally needed and the actually received by time t
based on the performance of CPU P can be derived as follows.

Let n be the number of CPUs in a system. When is
greater than zero, received less time than the time ideally
needed, and in case of zero the time was ideally received and
the more time received in the other case; however, operating
system cannot reclaim CPU time from a task that has already
received. Therefore, we utilize PVT to find a task with the
lower PVT and give more CPU time prior to the tasks with
higher PVT in a system to minimize the difference of PVTs.

 In case of a I/O intensive task or a task of starting, its
PVT is revised exceptionally because PVT of a task out of
run queue can be maintained as the lowest without system
progression applied when they are coming back to run queue
again. To make a decision of revision needed or not, we
classifies two groups of tasks according to the state transition
of task. In case of task transition between ready and running,
tasks should be revised, and the other cases except for the
first are not revised. Therefore, PVTs of I/O tasks of the latter
case need to be revised by subtracting as much time as
system progressed during being out of run queue. Finally
PVTs of the tasks is revised to keep the previous position in a
system widely as

The I/O intensive task is out from the run queue of CPU P
at time and inserted into the run queue of CPU at time .
In this case, the minimum PVT of each time and is
subtracted and added to keep the previous level of fairness
position in a system.

4 Experimental Evaluation
 Completely fair scheduler (CFS) is the most popular and
the first fair scheduler applied to the general purpose
operating system while the other operating systems like
Windows and Linux of earlier version (before the version of
2.6.23) are providing round-robin scheduling. By these
reasons, to achieve our goal, we utilized existing CFS in
Linux (after the version of 2.6.23) to employ performance-
aware virtual time (PVT). PVT of each task was also utilized
to monitor the fairness measure in a system. To evaluate the
effectiveness of our proposed approach, we considered two
different environments both homogeneous multiprocessor
system and heterogeneous multiprocessor (HMP) system. The
characteristics of these are shown in Tables 1 and 2.

72 Int'l Conf. Foundations of Computer Science | FCS'15 |

Hardware
CPU Intel i7-4770 3.4 GHz Dual

processor
RAM 4 GB DDR3 SDRAM

Software Operating
System

Ubuntu 14.04 (on VMWare),
Linux Kernel Version : 3.18.2

Hardware CPU Samsung Exynos5 Octa
big.LITTLE processor

RAM 2 GB LPDDR3 RAM

Software Operating
System

Android 4.4.4 Kit Kat,
Linux Kernel Version : 3.10.9

To evaluate the fairness among tasks between operating

systems the original version and the version of PVT employed
in the system Table 1, we created simple application whose
performance is mostly proportional to the frequency of CPU
to make simply be 1 in all CPUs. The execution time of
each instance was compared to measure the fairness among
tasks. This application just repeats infinite loop simply and
print out the cumulative average time consumed at every 2.5
billionth loop. This cumulative average execution time was
approximately 1.3 sec in practice. Three instances of the
application were executed concurrently in the system shown
in Table 1, and we got the results 10 times per 1 min from the
original version and our version of PVT applied in Linux
kernel 3.18.2.

Even though there is not a significant difference in the
execution of three instances evaluated on the homogeneous
dual-core processor, as depicted in Figure 2, the different
execution time of tasks arises and being kept consistently.
Interestingly, this experiment was evaluated in the one of
most popular general purpose operating system and processors
even though the type of application was not very common.

CFS employing PVT in the version of inux kernel 3.18.2
achieves near-perfect fairness among three tasks on the
homogeneous dual-core processor as depicted in Figure 3
while the unfairness arises obviously in Figure 2. When the
time is 100, Figure 4 shows that of three tasks
is bounded in 3 sec (of PVT) approximately.

In case of the system in Table 2, we created a similar

application, but the number of loop operation was changed to
1 million, and a sleep code for 5ms was inserted after printing
out (per about 850ms in practice) to simulate the effects of I/O
operation together. Twelve instances of this application were
created and executed concurrently, and we gathered the results
10 times per 1 min.

1295

1300

1305

1310

1315

1320

1 2 3 4 5 6 7 8 9 10

Γ1

Γ2

Γ3

1295

1300

1305

1310

1315

1320

1 2 3 4 5 6 7 8 9 10

Γ1

Γ2

Γ3

Table 1. homogeneous multiprocessor environment

Table 2. heterogeneous multiprocessor environment

Figure 2. cumulative average time of cycles
on Ubuntu 14.04 LTS of kernel 3.18.2

Figure 3. cumulative average time of cycles after PVT applied

Figure 4. Periodic repeats of MaxDiff(t) of 3 tasks in the
homogeneous during 100 sec

Figure 5. Cumulative average time of cycles
on Android KitKat of kernel 3.10.9

Int'l Conf. Foundations of Computer Science | FCS'15 | 73

Figure 5 shows the results when we measure the

cumulative average time of each task using the existing kernel.
There is a lot of variation among the execution times of tasks
even though all tasks are identical. In Figure 6, when
compared to Figure 5, the cumulative average time values of
the twelve tasks are more narrowed down. Based on the
results, the maximum deviation of the cumulative average
time can be shown as Figure 7.

Figure 7 shows that PVT applied kernel guarantees the
fairness among tasks by giving at least 60% better than the
original kernel in HMP system. During 600 sec,
of the twelve tasks are bounded into 5 sec as shown in Figure
8.

Additionally, according to the each result of , the
fairness among three tasks in the homogeneous is being
guaranteed better than it of twelve tasks in the heterogeneous
as described above results.

5 Conclusion
In this paper, we proposed a proportional share

scheduling employing performance-aware virtual time (PVT)
to guarantee and measure the fairness among tasks in a
system. The proposed approach leads the fairness to the
significantly improved than previous systems. We also
introduced how to monitor the fairness by utilizing PVT to
compare the level of fairness measure in a system.

Additionally, if we consider the remaining 40% in the
results of HMP system, there could be more factors such as
the number of heterogeneous CPUs and migration, the type of
tasks, miss-rate of cache, the policy of load balancer and so
forth which may affect the fairness of tasks in a system. As a
future goal, we plan to focus on the relationship between
these factors and the fairness guarantees. As a future work,
we also intend to determine the capacity of CPU which can
affect the fairness measure.

6 Acknowledgment
This work was supported partly by Seoul Creative Human
Development Program (HM120006), partly by the National
Research Foundation of Korea (NRF) grant funded by the
Korea government (MEST) (NRF-2011-0015997), and partly
the MSIP (Ministry of Science, ICT and Future Planning),
Korea, under the C-ITRC (Convergence Information
Technology Research Center) (IITP-2015-H8601-15-1005)
supervised by the IITP(Institute for Information &
communications Technology Promotion).

7 References
[1] NIEH, Jason; VAILL, Christopher; ZHONG, Hua.
Virtual-Time Round-Robin: An O (1) Proportional Share
Scheduler. In: USENIX Annual Technical Conference,
General Track. 2001. p. 245-259.

[2] MARKATOS, Evangelos P.; LEBLANC, Thomas J.
Using processor affinity in loop scheduling on shared-
memory multiprocessors. Parallel and Distributed Systems,
IEEE Transactions on, 1994, 5.4: 379-400.

[3] CHANDRA, Abhishek, et al. Surplus fair scheduling: A
proportional-share CPU scheduling algorithm for symmetric
multiprocessors. In: Proceedings of the 4th conference on
Symposium on Operating System Design & Implementation-
Volume 4. USENIX Association, 2000. p. 4-4.

[4] PAREKH, Abhay Kumar; GALLAGER, Robert G. A
generalized processor sharing approach to flow control in
integrated services networks-the single node case. In:

0
20
40
60
80

100
120
140
160
180

1 2 3 4 5 6 7 8 9 10

kernel
3.10.9
PVT
applied

Figure 6. Cumulative average time of cycles after PVT
applied

Figure 7. maximum deviation of cumulative average time

Figure 8. Periodic repeats of MaxDiff(t) of 12 tasks in the HMP
system during 600 sec

74 Int'l Conf. Foundations of Computer Science | FCS'15 |

INFOCOM'92. Eleventh Annual Joint Conference of the IEEE
Computer and Communications Societies, IEEE. IEEE, 1992.
p. 915-924.

[5] KUMAR, Rakesh, et al. Single-ISA heterogeneous
multi-core architectures: The potential for processor power
reduction. In: Microarchitecture, 2003. MICRO-36.
Proceedings. 36th Annual IEEE/ACM International
Symposium on. IEEE, 2003. p. 81-92.

[6] KOUFATY, David; REDDY, Dheeraj; HAHN, Scott.
Bias scheduling in heterogeneous multi-core architectures. In:
Proceedings of the 5th European conference on Computer
systems. ACM, 2010. p. 125-138.

[7] SHELEPOV, Daniel, et al. HASS: a scheduler for
heterogeneous multicore systems. ACM SIGOPS Operating
Systems Review, 2009, 43.2: 66-75.

[8] GREENHALGH, Peter. Big. little processing with arm
cortex-a15 & cortex-a7. ARM White paper, 2011.

[9] OGRAS, Umit Y.; MARCULESCU, Radu. " It's a small
world after all": NoC performance optimization via long-
range link insertion. Very Large Scale Integration (VLSI)
Systems, IEEE Transactions on, 2006, 14.7: 693-706.

[10] BONALD, Thomas; MASSOULIÉ, Laurent. Impact of
fairness on Internet performance. In: ACM SIGMETRICS
Performance Evaluation Review. ACM, 2001. p. 82-91.

[11] KIM, Hyungwoo, et al. Fixed Share Scheduling via
Dynamic Weight Adjustment in Proportional Share
Scheduling Systems.

[12] D. Ok, B. Song, H. Yoon, P. Wu, J. Lee, J. Park, and M.
Ryu, “Lag-Based Load Balancing for Linux-based Multicore
Systems,” The 2013 International Conference on
Foundations of Computer Science, July 2013.

Int'l Conf. Foundations of Computer Science | FCS'15 | 75

76 Int'l Conf. Foundations of Computer Science | FCS'15 |

SESSION

FOUNDATION OF COMPUTER SCIENCE,
COMPUTATIONAL SCIENCE AND NOVEL

CONCEPTS + EDUCATION

Chair(s)

TBA

Int'l Conf. Foundations of Computer Science | FCS'15 | 77

78 Int'l Conf. Foundations of Computer Science | FCS'15 |

Peircean Semiotics: Perspectives in Computer Science

Ricardo Maciel Gazoni1
1TIDD – Technologies of Intelligence and Digital Design,

PUC – Pontifícia Universidade Católica, São Paulo, Brazil

Abstract— The aim of this study is the analysis of some
concepts of Computer Science in the light of Peircean
semiotics taken as a cognitive theory. Based on the main
principles of Peirce’s Phenomenology, it is possible to point
out new ways and approaches to a wide range of subjects,
that may go from Artificial Intelligence to Programming.

Keywords: Charles S. Peirce, Computer Science, Semiotic

1. Introduction
In 2011 Mihai Nadin [1] stated what seems to be common

sense among semioticians: semiotics is relevant to Computer

Science. He then further asks: why do computer scientists,

with few exceptions, continue to ignore semiotics? His rich

analysis presents some causes, among them a superficial

knowledge of semiotics. In the following pages I will outline

an account of what could result from the use of a Peircean

approach to Computer Science. The paper starts with a brief

introduction of Peirce’s semiotics and concepts then proceed

to an explanation of some elements that are part of Computer

Science in a Peircean perspective1.

2. Peircean Semiotics – some essentials
According to Lucia Santaella [3], Peircean semiotics is a

sign-based cognitive theory. Peirce says that “all thinking is

conducted in signs” (CP 6.338, 1909), therefore it is natural

that the science that studies signs also studies thoughts.

It is impossible to give a complete exposition of Peircean

semiotics —or cognitive theory, as it might be called—

in this article, so I will try to expose the concepts that

are most interesting for Computer Science in a way that,

albeit incomplete, I believe is more appropriate for computer

scientists.

2.1 Cartesian ⊂ Peircean
One important thing to keep in mind when we are talking

about the Peircean cognitive theory is that it differs from the

“usual” Cartesian dualist theory of cognition. Peirce strongly

disagrees with some Cartesian principles and conclusions.

But although he dismisses the Cartesian philosophy, he does

not dismiss logic thinking, but gives it an increased range:

Peircean semiotics gives us the tools that are supposed to

1Citations to the Collected Papers [2] are made within parenthesis in the
form “CP V.P, YYYY”, where V stands for the volume, P for the paragraph
number and YYYY for the year the text was probably written.

explain thinking (among other things). Peirce’s theory of

cognition should explain not only Cartesian dualist thinking,

but also its tools. There is no need to abandon the clarity and

precision that characterizes Cartesian thought: it is enough to

disregard a conclusion as true only because it is clear, precise

and derives from indubitable premises —it should also, for

instance, be verifiable, otherwise one may accept beliefs that

one is incapable of doubting but which are, nevertheless,

false.

One of the most interesting consequences of the rejection

of Cartesian dualism for computer scientists is that this

position eliminates the separation between mind and matter,

as Descartes postulates it in his Discourse on the Method
[4]. This is important because it allows us to place the phe-

nomena of semiosis —and thinking is a form of semiosis—

anywhere inside or outside our minds. Thus it is possible

to talk about such things as machine semiosis, disembodied

(or embodied) thoughts, and compare the various forms of

semiosis on a common ground.

The rejection of the dualism between mind and matter

reflects, according to Peirce, the fact that we, and our minds,

are consequences of natural evolution, and therefore cannot

present phenomena that do not already exist in nature. What

happens in our minds must also happen elsewhere. But

Peirce is also strongly opposed to any form of dualism;

he postulates the theory of Synechism, according to which

all that exists is continuous (cf., e.g. CP 1.172, 1897) —

which includes the continuity between mind and matter.

His thoughts are founded on a coherent philosophy that

begins with his Phenomenology; we will start with the

Peircean categories, but let us first remember that, opposed

to the Cartesian method —where complex thoughts may be

decomposed in simpler ones in order to be apprehended—,

these complex concepts loose much of their meaning if we

try to simplify them by decomposing them.

2.2 The Peircean categories
Here are Peirce’s views about the role of the categories

in his own words: “I essay an analysis of what appears

in the world. It is not metaphysics that we are dealing

with: only logic. Therefore, we do not ask what really is,

but only what appears to everyone of us in every minute

of our lives. I analyze experience, which is the cognitive

resultant of our past lives, and find in it three elements. I call

them Categories” (CP 2.84, 1902). And they are only three,

constituting all that there is in consciousness (CP 1.382,

Int'l Conf. Foundations of Computer Science | FCS'15 | 79

1890). Peirce called them firstness, secondness and thirdness.

Following one of Peirce’s presentation of his categories (CP

2.79-118, 1902: Partial Synopsis of a Proposed Work in
Logic), let us begin with the one that seems easiest from

the Cartesian background.

2.2.1 Secondness
In order to characterize secondness, Peirce used words

such as binarity, brute force (CP 2.84, 1902), struggle
(CP 1.322, 1903, CP 5.45, 1903), obsistence, “suggesting

obviate, object, obstinate, obstacle, insistence, resistance”

(CP 2.89, 1902). We can easily identify secondness on

whatever resists to us in a way that does not depend on

argumentation. Just like most of the immaterial world around

us: it persists, no matter what. This is typical secondness.

But it is not restricted to the so-called “existent” objects. If

you imagine a fictitious creature, say a dragon; imagine its

color. No matter what happens, the color you just imagined

will not change —although you could have imagined any

other color, and in spite of the fact that you can “change”

the color of the dragon just imagined, once the first dragon’s

color has been thought its memory will remain and cannot

be changed by your effort: this is also secondness. Another

example is the duality husband-wife: it is the husband that

makes the wife a wife, and the wife that makes the husband

a husband. So there is a form of reaction beyond the binary

form husband-wife. This is also secondness.
If we think about the computer as a real world device that

follows the laws of Physics and behaves according to the set

of electrical signals inside it that we call “bits”, then we have

a behavior that is prominently determined by secondness. It

is exactly the same when we think about an imaginary device

such as a Turing machine: its behavior, albeit imaginary, is

primarily determined by phenomena of secondness. And the

imaginary machine has a much more predictable behavior

than the real one since it is not composed of parts that may

malfunction.
Secondness always involves two elements, two relata,

which unavoidably impose themselves on each other. When

we “feel” secondness, it is because we are one of these relata.

Almost everything that is “evident”, “precise”, “clear” in a

Cartesian sense —even deductive ratiocination—, constitutes

or at least embeds a phenomenon that presents secondness.

A good remark that could be made now is: since there are

two more categories, it means that whatever is not “evident”

in a Cartesian sense can be so in two different ways. It is

possible to start thinking about it knowing that the names of

the categories are related to the number of related elements

in them.

2.2.2 Firstness
The question is: what is it that does not relate to any

other thing? Can it in any form be cognized? It cannot be

properly thought, although we could infer how it is like.

Peirce take as an example “what could appear as being in

the present instant were it utterly cut off from past and

future” and further speculates: “there might be a sort of

consciousness, or feeling, with no self; and this feeling might

have its tone” (CP 2.85, 1902). There could be no action,

and no binarity, neither continuity nor synthesis. He also

refuses to call it unity, since unity presupposes plurality. It

is what he calls “Firstness, Orience or Originality” (CP 2.85,

1902): whatever is without a reason or compulsion. It should

not be confounded with perception —see [3]. According to

Santaella, perception is a complex phenomenon that involves

the three Peircean categories. Roughly speaking, when we

perceive there is a sort of novelty present in it —and this

is the firstness component— but as soon as whatever is

perceived does not evanesce a strong secondness component

arises; thirdness will appear only in perceptual judgment.

In a general way, secondness contains a component of

firstness, but the opposite is not true. Firstness should not

also be confounded with the concept of quality. The mere

characterization of a quality presupposes that it presents

itself as secondness, although this also has a strong firstness

component.

It is natural to think that firstness cannot appear in the

realm of computer. But modern equipments have at their

disposal external sources of entropy, such as cameras and

microphones, or more sophisticated devices that generate

streams of truly unpredictable bits. These devices are sources

of manageable firstness that can be used with very interesting

consequences.

An interesting realm to study firstness is the one of mental

phenomena. The most interesting cases in which it appears

are (1) when we are considering possibilities —which are

a form of firstness—, (2) when we are observing mental

diagrams —here firstness appears in the observation itself,

for it allows us to find things in the diagram that were

not used in its construction— and (3) when we create new

hypotheses in what Peirce called abductive reasoning.

2.2.3 Thirdness
Peirce himself pointed out the apparent adequacy of these

two categories to describe the facts of experience (CP 1.359,

1890), but they are not, in fact, sufficient. The concept of

thirdness is essential, according to Peirce, to complement

the other two and explain all that appears to the mind. It

relates three elements, but this relation is not —although it

can be in some cases— determined by brute force, or by a

blind causal relation (secondness), or by chance (firstness).

In a brilliant explanation (CP 2.86, 1902), Peirce uses the

fact that the future affects us in mental forms, intentions and

expectations, but it does not do so directly, for it does not

exist yet: this is an example of thirdness.

A phenomenon of prominent thirdness in computers is

related not to what happens after the bits that will be

“run” are put in place, but before it: to define what people

80 Int'l Conf. Foundations of Computer Science | FCS'15 |

want the computer to do, or the intention behind the use

of the computer, is such a case. Some important ideas —

according to Peirce (CP 1.340, 1895)— are of prominent

thirdness: generality, infinity, continuity, diffusion, growth,

intelligence. But the easiest is the idea of sign.

2.3 Sign
As just stated above, a sign is an idea of predominant

thirdness. It relates three things: a representamen, which

is sometimes also called sign —in a narrower sense—, an

object and an interpretant. In Peirce’s words: “A Sign, or

Representamen, is a First which stands in such a genuine

triadic relation to a Second, called its Object, as to be capable

of determining a Third, called its Interpretant, to assume the

same triadic relation to its Object in which it stands itself

to the same Object. The triadic relation is genuine, that is

its three members are bound together by it in a way that

does not consist in any complexus of dyadic relations” (CP

2.274, 1903). And now we have to take the utmost care not

to oversimplify the concept and cause confusion. For we are

used to think about signs as things that work like words,

and tend to think of them as the word being the sign, what

it denotes being its object and the idea it imprints being

the interpretant. Although somehow true, this view of the

phenomenon obliterates its marvelous and useful complexity.

The sign is a triadic relation of which the first element

that appears, when it is functioning as a sign, is the rep-

resentamen (and that is why we also call it ’sign’). The

sign is determined by the object, and the interpretant is the

effect it (the sign) produces. So it is correct to say that the

object causes the interpretant, but this causation is indirect: it

happens mediated by the representamen in a process that is

called semiosis. Let us not loose generality here: first, when

we talk about the effects of a sign —the interpretant— we

are talking about something that is not very well defined

at this moment. We can be talking about the specific effect

of it in a mind at a defined moment, or we can be talking

about all the possible effects that it may produce, or even

about its long-term effect, for instance. Second, when we talk

about a mediated relation between interpretant and object,

let us not forget that it makes the object itself unreachable to

the interpreter —in the cases where there is an interpreter,

usually the mind affected by the interpretant. Of course, there

are different degrees of ‘unreachability’ of the object of the

sign, depending on various factors.

It sounds strange to think of signs being determined by

their objects. We are used to think about words being caused

by their utterers —and it is true, signs are determined by

their objects, although caused by their utterers. The uttering

of a word is an act of semiosis, where the interpretant is the

word uttered, the object is whatever the utterer wants to mean

by this word, and the representamen may be the specific

situation that made the utterer choose this meaning —and

no other—, which in its turn may also be an interpretant

of whatever causes such desire to communicate (signs can

“concatenate” in series of semiosis, possibly generating a

“train of thought”). And this is the first moment we talk

about “communication”, and let it be the last. For when a

paramecium finds a stimulus that makes it move towards a

source of food, it is perfectly clear that the stimulus worked

as a sign —a representamen of the source of food, which

is its object, having the movement as the interpretant. But

there is no “communication”.

One can always argue that in the example above the

paramecium’s movement is caused by a series of phenomena

that are of the nature of secondness, and the paramecium is

not conscious of the sign action. However, consciousness is

not a prerequisite for a triadic mediated relation to take place.

What we need to keep in mind, at least for the moment, is

that the sign is a triadic relation of mediation. This brings

us to the classification of the signs.

2.4 Types of sign
The only complete classification of signs —in ten classes–

that Peirce left us was regarded as incomplete by himself2.

What follows is the minimum necessary to understand some

concepts related to the process of reasoning and, albeit

poorly, the process of semiosis.

The principle of this classification is to classify the three

relata of the sign according to the categories. In Peirce’s

words, “signs are divisible by three trichotomies; first, ac-

cording as the sign in itself is a mere quality [firstness],

is an actual existent [secondness], or is a general law

[thirdness]; secondly, according as the relation of the sign

to its object consists in the sign’s having some character in

itself [firstness], or in some existential relation [secondness]

to that object, or in its relation to an interpretant [thirdness];

thirdly, according as its Interpretant represents it as a sign

of possibility [firstness] or as a sign of fact [secondness] or

a sign of reason [thirdness]” (CP 2.243, 1903). Therefore

there are three trichotomies, depicted in Table 1 that would

give rise to 33 = 27 classes of signs, but since some

of them are impossible, there are only ten of them. It

Table 1: Three thricotomies.

Trichotomy

Category Representamen Object Interpretant

Firstness Qualisign Icon Rheme
Secondness Sinsign Index Dicent
Thirdness Legisign Symbol Argument

happens due to some limitations: a qualisign cannot be an

index, and an icon cannot be a proposition, for instance.

2Peirce wrote a footnote (CP 4.536, 1905) about sixty-six classes of sign
and in a letter to Lady Welby (CP 8.343, 1908) he stated that the analysis
of the classes of the signs implied the analysis of 310, or 59.049 possible
configurations, reason why he left it for “future explorers”.

Int'l Conf. Foundations of Computer Science | FCS'15 | 81

For illustration purposes only, the ten possible classes of

sign are depicted in Table 2. There we can see that almost

imperceptible things such as a sensation, and very complex

ones such as arguments are signs. All can be so, according

to Peirce, including ourselves, the people. The fact that

Table 2: Ten classes of sign, adapted from CP 2.254-264

and [5].

Representamen Object Interpretant Example

Qualisign Icon Rheme A sensation of redness
Sinsign Icon Rheme An individual diagram
Sinsign Index Rheme A spontaneous cry
Sinsign Index Dicent A thermometer
Legisign Icon Rheme A traffic sign (“deers”)

in the traffic manual
Legisign Index Rheme A demonstrative pronoun
Legisign Index Dicent A traffic sign on the street
Legisign Symbol Rheme Any substantive
Legisign Symbol Dicent A proposition
Legisign Symbol Argument A syllogism

this classification is universal brings a common basis for

the analysis of complex phenomena, including the different

kinds of inference, derived from the last class of signs

showed above.

2.5 Types of argument
The three kinds of arguments related to Peirce’s categories

(CP 2.96, 1902) are:

• a Deduction is an argument where the facts stated in

the premises are an index of the fact stated in the

conclusion. One example is that if we have a bag full

of balls known to be of the same color and pull one of

them to verify that it is red, it is unavoidable to deduce

that all other balls in the bag are also red.

• an Abduction: here, the facts in the premises present a

similarity with the facts in the conclusion, what does

not regard the later to be true —and what makes the

premises an icon of the conclusion. It is the abductive

ratiocination that allows new hypothesis in science. For

example, if we have a bag full of red balls and we see

a red ball on the floor, we can (abductively) infer that

the ball on the floor came from the bag, which is a

conclusion to be investigated, namely a hypothesis.

• an Induction, in Peirce’s own words, “is an Argument

which sets out from a hypothesis, resulting from a pre-

vious Abduction, and from virtual predictions, drawn

by Deduction, of the results of possible experiments,

and having performed the experiments, concludes that

the hypothesis is true in the measure in which those

predictions are verified. [. . .] Since the significance of

the facts stated in the premises depends upon their

predictive character, which they could not have had if

the conclusion had not been hypothetically entertained,

they satisfy the definition of a Symbol of the fact stated

in the conclusion” (CP 2.96, 1902). Example: pull a ball

from a bag full of balls. It is red. The second, and the

third, up to the, say, thirtieth are also red. This leads to

the conclusion that all remaining balls in the bag are

red, too.

Nevertheless, Peirce’s thought about reasoning and inference

go far beyond this mere classification.

2.6 Diagrammatic reasoning
Since diagrams are iconic signs whose semiosis is based

on firstness and deductions, including mathematical ones,

are signs based on secondness, we can appreciate the

observational nature of abstraction and mathematical rea-

soning taking Peirce’s own word: “As to that process of

abstraction, it is itself a sort of observation. The faculty

which I call abstractive observation is one which ordinary

people perfectly recognize, but for which the theories of

philosophers sometimes hardly leave room. It is a familiar

experience to every human being to wish for something quite

beyond his present means, and to follow that wish by the

question, ‘Should I wish for that thing just the same, if I

had ample means to gratify it?’ To answer that question, he

searches his heart, and in doing so makes what I term an

abstractive observation. He makes in his imagination a sort

of skeleton diagram, or outline sketch, of himself, considers

what modifications the hypothetical state of things would

require to be made in that picture, and then examines it, that

is, observes what he has imagined, to see whether the same

ardent desire is there to be discerned. By such a process,

which is at bottom very much like mathematical reasoning,

we can reach conclusions as to what would be true of signs

in all cases, so long as the intelligence using them was

scientific” (CP 2.227, 1897).

The complex processes that give rise to conclusions and

scientific evolution can then be observed in the light of

Peircean semiotics. What matters here is that it is possible

to distinguish, in published works in the field of Mathemat-

ics, these two components of diagrammatic reasoning: the

diagram, or diagrams, on which the ratiocination was based,

and the deductions themselves; and this may point some very

interesting consequences.

3. Some Computer Science concepts
We start with the famous decision problem and the solu-

tion given by Turing in [6].

3.1 Computable functions
Turing’s article was one of the first papers that defined

what is now known by effective procedure; it also gave a

solution to the decision problem, proving that it is impos-

sible to have an effective procedure capable of determining

the solution of any effective procedure. The definition of

effective procedure as a procedure that can be performed

by what we call now a Turing machine is well known. The

82 Int'l Conf. Foundations of Computer Science | FCS'15 |

Turing machine is in fact the diagram used by Turing in

his deduction; this work is a clear example of diagrammatic

reasoning: it cannot be denied that the paper fully adheres

to Peirce’s considerations about abstractive observation.

But there is an interesting possibility if we take a Peircean

semiotic approach to the decision problem. We have already

seen that the so-called effective procedures presented by

Turing are prominently “secondness-based”: once settled,

a Turing machine follows its way no matter what, blind

move after blind move. This is what makes them predictable,

mathematically describable, in a word: effective. Let us

notice only that it is the constructed effective procedures

that are “secondness-based”, not the process of constructing

such procedures.

The question formulated in the decision problem is if it

is possible to find an effective procedure (let’s call it P)

to decide the results of any effective procedure, including P
itself. Having determined that what characterizes an effective

procedure is the fact that it is secondness-based we can

infer that it is not possible for an effective procedure to

derive conclusions from a diagram if these conclusions are

not present at the construction of the diagram, because

these conclusions would demand some sort of firstness-based

iconic reasoning in order to take place3. In other words, P
cannot decide the results of a procedure whose results can

be derived only by diagrammatic reasoning.

So, in order to use Peircean semiotics to prove that the

decision problem has no solution it is sufficient to prove that

there is at least one effective procedure (let’s call it E) whose

results can be inferred only by diagrammatic reasoning. I

suspect that P has this characteristic, but I leave it open;

it is possible that any procedure that cannot be verified by

trial and error (e.g. a procedure that may show a result for

every input number) and that implements the consequences

of a theorem that can be proved only by contradiction fall

into this category. And this rises the suspicion that Peircean

semiotics may also give a ground for the discussions among

constructive and non-constructive Mathematics.

Of course the proof outlined above, if found, would lack

mathematical validity since a formal mathematical definition

of the concepts outlined is not given. But it seems to

be an interesting field of research. Peirce himself was a

mathematician, and one of his concerns was to find what

he called a theory of the plan of demonstration (CP 5.162,

1903), a task that he seemed to tackle with his existential

graphs, a work that he also left unfinished.

3.2 Computers
We have seen that if everything works well, it seems that

we could consider computers as secondness-based machines,

and we could think about them in terms of computable

3By “present at the construction of the diagram” I mean present in a
“secondness” way, not as an intention, for instance, nor as something that
may be observed in the diagram after, but not before, its construction.

functions —or in terms of “things that can be carried out by

Turing machines”—, which are a prominently secondness-

based form of ratiocination. But real computers are not only

secondness-based machines. What if we take into consid-

eration other categories? We tend to think that computers

have a very well defined behavior —some of us would say

that in fact they perform only computable actions—, and

if we think about computers as the machines depicted by

John von Neumann in his famous 1945 report [7], that are

practical versions of Turing Machines —as Turing himself

stated during a Lecture to the London Mathematical Society

on February, 20th, 1947— we can say that, apart from

some malfunctioning, there should not be a more predictable

machine in the world.

But let us first consider a little the concept of “pre-

dictability”. What is “predictable comportment”? The formal

definition of effective procedure is that of the computable

function, so the outcome of a computable function should

be the most predictable in a predictability scale. But there

are other degrees of predictability. In fact, predictability has

to do with what is habitual or general: it is a phenomenon

of thirdness. And as such, it can be extended to phenomena

that are not composed of secondness only. Take, for instance,

the instruction “throw a die and show the result”. Let’s call

it α. It has a predictable outcome, although not completely

predictable: we know that we will get an integer number

from 1 to 6, with an uniform probability of 1/6 each.

Which number will be the outcome of any particular cast,

no one knows. Nevertheless we can create a machine —

a secondness-based, mechanical one— that can perform α.

We can say that its behavior would be somewhat predictable,

albeit not computable. It is very different from the outcome

of instruction β: “perform one of any possible actions”. It has

completely unpredictable results, and it is hard to imagine a

mechanical device that performs β, whose outcome is neither

computable nor predictable.

Since modern computers, as any real object, presents the

three categories, let us see what happens if we inject some

controllable firstness into them, in the form of a proper

source of entropy. Thanks to this source, it is possible to

write programs that, in spite of the predictability of all its

steps, can have an unpredictable outcome, just as instruction

α. It suffices to take some of the bits of the unpredictable

stream that enters the machine, convert them in, say, integers

from 1 to 6, and show the results. These values will be

fully unpredictable and hence, not computable. And if we

combine this firstness with proper thirdness, in the form

of evil intentions, we can write a program that executes

instruction β: we take same unpredictable bits from the

incoming unpredictable stream, write them in a specific

memory address and order the CPU to execute the instruc-

tion written on that address: we end up with a computer

performing an equivalent to the instruction “perform one of

any possible actions”, a truly non-computable step with truly

Int'l Conf. Foundations of Computer Science | FCS'15 | 83

unpredictable outcome.

The only use of this program for now is to show that a

modern computer can be purposely programmed to perform

a non-predictable task. But it also brings attention to the

fact that computers can perform actions that are not of a

prominent secondness. The problem is that we are used to

think about computers with tools of prominent secondness:

computable functions, and it is very difficult to think about

phenomena of firstness and thirdness within the framework

of computable functions. Attaining ourselves to the pre-

dictability of prominent secondness-based tools may give

rise to gaps in the final outcomes.

3.3 Programming
The task of programming is one of those which would

benefit a lot from adopting a framework based on Peircean

semiotic. Computer programs, as they are seen today —

signs evolve with time—, are signs mediating between two

sign systems that are very different of each other. On the

one hand, programs have to fulfill their users expectations.

On the other, they must compile and generate software that

works, free of errors. The problem is that this second task

carries primarily secondness-based semiosis, which may be

very different of the categories needed for the first task.

Programs have to be written in what we call computer lan-

guages. The term “languages” here expresses badly what is

really happening. We expect languages to be able to describe

the world, or, as some may prefer, languages should enable

us to describe the world4. According to Peircean semiotic

scholars (see [8]) natural language is vague by its own

nature, and it is this vagueness that, at the bottom line, allows

them to describe everything, even those things that are yet to

come. There is no such a thing as a “perfect” or “universal”

language, capable of perfectly describe everything, leaving

no room for doubt. Computer languages today are far from

the vagueness of natural languages: they are mathematical

specifications of the valid sequences of a predefined alpha-

bet, created in order to allow the programmers to generate

texts that may be uniquely transformed in a set of “actions”

to be “performed” by a CPU, or as some may prefer, a set

of electrical signals that will act in a defined circuitry —in

a few words, a secondness-based tool.

This resolves some of the difficulties involved in writing

and reading programs in current programming languages:

unless the intentions behind the program can also be de-

scribed as a phenomenon of secondness, the program itself

does not contain what is necessary to express completely

what it is for. Programs within this context do not, and never

will, work like texts in natural language. So, depending on

4There is a very interesting discussion about languages and their limits
in the field of semiotics, but we are not going to enter it here —it suffices
to say that some believe that languages are composed of “signs” that have
“meanings”, forming pairs of “significants” and “signifieds”, which is not
the Peircean view.

the nature of the user’s specifications, there is nothing in

the program itself that allows us to verify whether it fulfills

them. The task of systems development can be seen as the

struggle to conform a general description, that embeds all

three Peircean categories, to programs that cannot be vague

from the machine’s point of view, for the machine itself

cannot deal with firstness or thirdness in a predictable way.

Notice that even when we have at hand both the user’s

specifications, in whichever language, and the program,

nothing written in the program language directly links it

to whatever may be vague in the specification. This fact

may unavoidably detach the final product of the activity of

programming from the reasons that led to it, specially if

these reasons cannot be described in a “secondness” way.

Careful observation of the landscape of computer ac-

tivities might show movements that seem to fulfill this

gap. We can see the desire to surpass the limitations of

“secondness-based” description in concepts like object ori-

entation, development frameworks —instead of development

languages— and gamification, not to mention that these

limitations may explain the CASE tools5 fiasco. There is

also a huge demand to empower common people and enable

them to broaden their control over their now ubiquitous

computers, and this empowerment demands other ways to

control the machine other than a thus limited framework.

Peircean semiotic analysis shows that the solution for the

blindness to the program’s purpose does not lie in the

creation of a new computer language in the same way others

have been constructed. So, the question is now: how to

control computers without using a programming language

that works in a so prominent “secondness” way?

3.4 Artificial Intelligence and beyond
The pursue for what we call Artificial Intelligence stum-

bles in the definition of what intelligence is. It does not

help that Turing had proposed, in [9], a way to check if

a behavior can be regarded as intelligent: it characterizes

intelligence without saying a word about how to achieve

it. The dream of a machine that “thinks” is earlier than the

advent of electronic computers. Peirce himself reminds us, in

[10] —a work about logical machines of his time— that the

theme already appears, in an ironic way, in Jonathan Swift’s

“Voyage to Laputa”. In the same paper Peirce reminds us that

we do not want a machine that behaves with the initiative

of a human being: we want them to stay submissive to our

will. Since it is possible to change the behavior of today’s

electronic computers in an unprecedented way, question is:

are they able to learn new behaviors without having to

be programmed in a modern computer language? And the

answer, in my opinion, is “yes”.

This will probably evolve in two directions. One is

through the improvement of machine learning. It has to

5Let us remember that one goal of these tools, when they were an-
nounced, was to eliminate the need of programming.

84 Int'l Conf. Foundations of Computer Science | FCS'15 |

do with making computers do something that has not

been programmed in advance. Maybe the most remarkable

examples are the so-called neural networks. This can be

improved: Peirce wrote about the process of learning as

a habit change governed by some characteristics properties

of the nervous system. Nevertheless these characteristics do

not work in a fully deterministic way —for if they were

completely deterministic, the act of learning would lack

thirdness: “it is essential that there should be an element

of chance” (CP 1.390). So, the proper implementation of

machine intelligence implies in the presence of thirdness in

a non-deterministic way in order to apply it to the process

of semiosis —an entirely new field of study, in spite of the

many ways that allows us to introduce indeterminacy in the

computer’s outcome.

The other direction is natural evolution: this is the slow

path that will naturally happen. Language is capable to deal

with the world as it is; but the understanding of symbols

relies on our collateral experience of their objects (CP

8.314, 1909, CP 8.183, undated). This collateral experience

is hard to achieve in an ever evolving environment as is the

computer landscape today. It lacks the stability necessary to

construct a common language. But it is slowly moving to a

more stable position: computers will became ever easier to

use and to program, and people will become more and more

savvy about them, to the point that it will not be necessary

any special knowledge beyond the ordinary expected at the

moment in order to make computers act as we would like

them to act. A symptom of this movement is the number

of study years needed to program a computer in the 60’s

compared to the same number today. This slow pace can be,

of course, accelerated by a comprehension of the Peircean

semiotic framework and its application to Computer Science.

4. Conclusion
Unlike many other texts that try to apply Peircean semi-

otics to Computer Science, this one has been written without

any new concept apart from Peirce’s theory. In spite of it,

it seems that this simple move gave rise to new interesting

ways to think about the foundations of Computer Science,

with possible consequences to Artificial Intelligence, Sys-

tems Development, Programming and maybe some concepts

in pure Mathematics.

I would like to thank Professor Winfried Nöth for his kind

review of this text, which allowed to avoid many mistakes.

The remaining mistakes are, of course, due only to the

author.

References
[1] M. Nadin, “Processos semióticos e de informação: a semiótica da

computação,” TECCOGS - Revista Digital de Tecnologias Cognitivas,
vol. 5, pp. 89–121, 2011.

[2] C. S. Peirce, The Collected Papers of Charles Sanders Peirce,
C. Hartshorne, P. Weiss, A. W. Burks, Eds. Cambridge, MA, USA:
Harvard University Press, 1931-1958.

[3] L. Santaella, Percepção: fenomenologia, ecologia, semiótica, São
Paulo, Brazil: Cengage Learcning, 2012.

[4] R. Descartes, Discurso do Método, Porto Alegre, Brazil: L&PM,
2004.

[5] W. Nöth and L. Santaella, Introdução à Semiótica, Unpublished São
Paulo, Brazil, 2015.

[6] A. Turing, “On Computable Numbers, with an Application to the
Entscheidungsproblem,” Proceedings of the London Mathematical So-
ciety, vol. 2, pp. 230–265, 1936.

[7] J. von Neumann, “First draft of a report on the EDVAC,” Annals of the
History of Computing, IEEE, vol. 15, pp. 27–75, 1993.

[8] W. Nöth and L. Santaella, Meanings and the vagueness of their em-
bodiements, in: T. Thellefsen, B. Sørensen and P. Cobley (Eds.) From
First to Third via Cybersemiotics – A Festschrift Honoring Professor
Søren Brier on the Occasion of his 60th Birthday. Copenhagen: SL
Forlagene, 2011. p. 247–282.

[9] A. Turing, “Computing Machinery and Intelligence,” Mind,
vol. 59(236), pp. 433–460, 1950.

[10] C. S. Peirce, “Logical Machines,” American Journla of Psychology,
vol. 1(1), pp. 165–170, 1887.

Int'l Conf. Foundations of Computer Science | FCS'15 | 85

Construct a Perfect Hash Function in Time Independent of the Size
of Integers

Yijie Han1

1School of Computing and Engineering, University of Missouri at Kansas City, Kansas City, Missouri 64110, USA

Abstract— We present an algorithm for constructing a per-
fect hash function that takes O(n4 log n) time. This time is
independent of size of the integers or the number of bits in
the integers. Previous algorithms for constructing a perfect
hash function have time dependent on the number of the
bits in integers. Our result is achieved via an algorithm that
packs the extracted bits for each integer to O(n) bits in
O(n2 log2 n) time. Perfect hash function constructed using
our method allows a batch of n integers to be hashed in
O(n) time.

Keywords: Hashing, perfect hash functions, integers.

1. Introduction
A perfect hash function is a hash function that has no

collision for the integers to be hashed. Previous known

perfect hash functions require construction time dependent

on the number of bits of integers to be hashed. Thus

when dealing with very large integers these perfect hash

functions are at disadvantage as when we are constructing a

perfect hash function for n integers the time for construction

cannot be bounded by a polynomial of n. Earlier Fredman

et al. provided a perfect hash function [1] which require

O(n3 logm) time to construct, where logm is the number

of bits in an integer (i.e. integers to be hashed are taken from

{0, 1, ...,m − 1}). Dietzfelbinger et al. gave a randomized

hash function in [3] and Raman showed [5] how to deran-

domize it to obtain a deterministic perfect hash function in

time O(n2 logm). Thus the construction time of these hash

functions depends on the number of bits of integers and

therefore cannot be classified exactly as polynomial time

algorithms.

In this paper we give an algorithm for converting n
integers of Ω(n2 log n) bits to O(n) bits integers in O(n)
time for hashing purpose. This conversion can be done after

we computed shift distances d1, d2, d3, ... (to be explained

in the following sections). These shift distances can be

computed in O(n2 log2 n) time. Because we require integers

having Ω(n2 log n) bits the construction time for a perfect

hash function from Raman’s algorithm can be bounded by

O(n2 logm + n2 log2 n) = O(n4 log n). In our method

hashing has to be done in batches of n integers and the

hash time for n integers is O(n).

We can reduce the time for computing the shift distances

to O(n2 log n). Then the conversion time for n integers has

to be increased to O(n log n). The hashing of n integers

would take O(n log n) time in this case.

After integers are converted to O(n) bits integers then

the construction of a perfect hash function in the algorithm

of Fredman et al. would require only O(n4) time and

the construction of a perfect hash function in Raman’s

algorithm would require O(n3) time. However because in

our algorithm we reuire integers having Ω(n2 log n) bits and

therefore the construction of a perfect hash function via the

algorithm of Fredman et al. requires O(n5 log n) time and

via Raman’s algorithm requires O(n4 log n) time.

Current integer sorting can be done in O(n log log n) time

[4]. The algorithms presented in this paper may help in the

search of an optimal algorithm for integer sorting.

2. Extracting Bits
To construct a perfect hash function for n integers we

will first sort these n integers in O(n log log n) time using

the current best integer sorting algorithm of Han [4]. Let

a0 < a1 < a2 < · · · < an−1 be the sorted integers (all

integers with the same value can be excluded except one).

Let msb(a) be the index of the most significant bit of a that

is 1, where index counts starting from least significant bit

at 0. We compute m(i) = msb(ai ⊕ ai+1), 0 ≤ i < n − 1,

where ⊕ is the bit-wise exclusive-or operation. We take all

the bits indexed in M = {m(i) | i = 0, 1, ..., n−2} for each

integer aj to form a′j , 0 ≤ j < n. Thus now each a′j has at

most n− 1 bits. If ai �= aj then a′i �= a′j .

Example 1: Let a0 = 0100001, a1 = 0100101, a2 =
0110000, then the most significant bit a0 and a1 differ is the

2nd bit (counting from the least significant bit) and the most

significant bit a1 and a2 differ is the 4th bit, thus M = {2, 4}
and a′0 = 00, a′1 = 01, a′2 = 10 (the 2nd and the 4th bits).

There are two problems here. The first problem is how to

obtain set M . The second problem is after bits are extracted

how do we pack them to n− 1 consecutive bits.

First we will not compute M but instead compute M ′ =
{2msb(ai⊕ai+1) | i = 0, 1, ..., n − 2}. In fact even M ′ is

difficult to compute and we will adapt our method.

The second problem will be solved in the following

sections.

86 Int'l Conf. Foundations of Computer Science | FCS'15 |

As we said that M ′ is difficult to compute. We will instead

use the least significant bit. Let lsb(a) be the index of the

least significant bit of a that is 1. Note that it will be easy to

extract the least significant bit that is 1. To extract the least

significant bit of a that is 1 simply do 2lsb(a) = (a⊕(a−1))+
1)/2. Next we will view each integer reverse-wards, that is,

we view the least significant bit as the most significant bit

and the most significant bit as the least significant bit. As will

be shown that we will use this order to sort the n integers. We

will call this order as the least significant bit order. Now the

approach we described earlier will work if we sorted integers

by the least significant bit order, i.e. say a′′0 , a
′′
1 , ..., a

′′
n−1 are

the integers sorted by the least significant bit order, then the

least significant bit that a′′i and a′′i+1 differ, i = 0, 1, ..., n−2,

will give us n − 1 bits that make integers differ between

each other. We let m′(i) = lsb(a′′i ⊕ a′′i+1). There are at

most n − 1 different values for m′(i), 0 ≤ i < n − 1.

Now to sort integers by the least significant bit order we

use comparison sorting and compare integers a and b by

examining (2lsb(a⊕b) ∨ a) == a and (2lsb(a⊕b) ∨ b) == b,
where ∨ is the bit-wise OR operation. If (2lsb(a⊕b) ∨ a) is

equal to a then a is “larger” than b in the least significant

bit order.

After we get a′′0 , a
′′
1 , ..., a

′′
n−1 we then compute Li =

2m
′(i) = 2lsb(a

′′
i ⊕a′′

i+1), i = 0, 1, ..., n − 2, to get the least

significant bits. Let L = ∨n−2
i=0 Li. L provides the mask for

us to extract out needed bits as we now do bi = ai ∧ L,

i = 0, 1, ..., n− 1, where ∧ is the bit-wise AND operation.

Note that no more than n − 1 bits will be extracted from

each integer.

3. Pack Bits
In the last section we showed how to extract at most

n − 1 bits from each integer. These extracted bits need to

be packed. In this section we will show how to pack into

O(n) bits with integers of Ω(n4) bits. We will compute shift

distances d1, d2, ...,. These shift distances can be computed

in O(n4) time. In the later sections we show how to improve

the algorithm to work with integers of Ω(n2 log n) bits.

Without loss of generality we assume that all Li’s are

different.

Note that in Fredman and Willard [2] Lemma 2 it was

shown that these extracted n − 1 bits (scattered bits of 1’s

among logm bits) can be packed to n4 bits by multiplying

a multiplier and this multiplier can be computed in O(n4)
time. However, the method in [2] requires that set M2 =
{m′(i) | i = 0, 1, ..., n− 1} be obtained. In the last section

we only obtained M1 = {2m′(i) | i = 0, 1, ..., n − 1}. To

obtain M2 from M1 we need to apply a logarithm which may

not be readily available. Fredman and Willard’s method do

have the advantage of hashing one integer at a time. Our

method requires the hashing of batches of n integers at a

time.

Because there are only n − 1 extracted bits there are

less than n2 different distances (the set of distances is

D = {|m′(i) − m′(j)|, 0 ≤ i, j ≤ n − 2}) among them.

By trying out n2 different distances n+1, n+2, ..., n+ n2

(the reason we have this additive n is because we want

to shift at least n bits) we will find a distance not in D.

Because we did not obtain M2 we check a distance d1,

d1 = n + 1, n + 2, ..., n + n2, by trying out (L ∨ (L →
d1))) == (L + (L → d1)), where → d1 is shift d1 bits to

the right. If it is equal then distance d1 is available (not in

D). Let bi = ai∧L contain the extracted bits. After we find

an available distance d1 we do bi/2 = bi ∨ (bi+1 → d1),
i = 0, 2, 4, We also do L′

0 = L0 ← d1, L′
1 = L0, Li =

Li ∨ (Li → d1), i = 0, 1, ..., n− 2, and L = L∨ (L → d1).
L′
i’s indicate the location of m′(0)’s and they will be used

later to extract the packed bits. Now we have n/2 integers

and each integer has 2(n−1) extracted bits. Therefore there

are no more than 4n2 distances among them. We pick an

available distance d2 among n+ 1, n+ 2, ..., n+ 4n2 using

the same method and then do bi/2 = bi ∨ (bi+1 → d2),
i = 0, 2, 4, Also L′

2 = L′
0, L′

0 = L′
0 ← d2, L′

3 = L′
1,

L′
1 = L′

1 ← d2, Li = Li ∨ (Li → d2), i = 0, 1, ..., n − 2,

and L = L ∨ (L → d2). After we do this log n times we

have all the n(n−1) extracted bits in all n integers ∨-ed into

one integer b0. The time spent is O(n4). We then extract the

m′(i)-th bits by doing mi = b0 ∧Li. Note that mi contains

the m′(i)-th bits of all aj , j = 0, 1, ..., n − 1. Note also

that the bit patterns in Li and Lj are exactly the same (i.e.

Lj can be obtained from Li by shifting Li log(Lj/Li) bits

(because logarithmic function is not readily available we can

substitutei shifting log(Lj/Li) bits by multiplying Lj/Li)).

Now we pack integers together by doing

for(i = 1; i <= n− 2; i++)

{
m0 = m0 ∨ (mi ∗ L0/(2

iLi));
}

Because we added an addend n when we do shifting

previously and therefore there will be enough space when

we pack integers here. After integers are packed we can then

obtain packed integer b′i (packed from bi) as L′′
i = (L′

i ←
1)− (L′

i → (n− 1)) (obtain mask and ← 1 is shift left by

1 bit) and b′i = m0 ∧L′′
i . Now to move extracted bits to the

least signigicant n− 1 bits do b′i = b′i/(L
′
i → (n− 1)).

Example 2: Let b0 = 000a0a00000aa0,

b1 = 000b0b00000bb0, b2 = 000c0c00000cc0,

b3 = 000d0d00000dd0, where a, b, c, d are extracted

bits. L0 = 00010000000000, L1 = 00000100000000,

L2 = 00000000000100, L3 = 00000000000010,

L = 00010100000110.

Take d1 = 5. Then do b0 = b0 ∨ (b1 →
5) = 000a0a00b0baa000bb0, b1 = b2 ∨ (b3 →
5) = 000c0c00d0dcc000dd0, L′

0 = L0 ← 5 =
0001000000000000000, L′

1 = L0 = 0000000010000000000
(thus L′

0 indicates the position of first a or c and L′
1

Int'l Conf. Foundations of Computer Science | FCS'15 | 87

indicates the position of first b or d). L0 = L0 ∨
(L0 → 5) = 0001000010000000000, L1 = L1 ∨
(L1 → 5) = 0000010000100000000, L2 = L2 ∨
(L2 → 5) = 0000000000010000100, L3 = L3 ∨ (L3 →
5) = 0000000000001000010, L = L ∨ (L → 5) =
0001010010111000110.

Take d2 = 15. Then do b0 = b0 ∨ (b1 → 15) =
000a0a00b0baa000bbc0c00d0dcc000dd0, L′

2 = L′
0 =

0000000000000000001000000000000000, L′
0 = L′

0 ←
15 = 0001000000000000000000000000000000, L′

3 =
L′
1 = 0000000000000000000000010000000000, L′

1 =
L′
1 ← 15 = 0000000010000000000000000000000000 (thus

L′
0 indicates the position of first a, L′

1 indicates the position

of first b, L′
2 indicates the position of first c, L′

3 indicates

the position of first d.) And

L0 = L0 ∨ (L0 → 15) =
0001000010000000001000010000000000,

L1 = L1 ∨ (L1 → 15) =
0000010000100000000010000100000000,

L2 = L2 ∨ (L2 → 15) =
0000000000010000100000000010000100,

L3 = L3 ∨ (L3 → 15) =
0000000000001000010000000001000010.

L = L ∨ (L → 15) =
0001010010111000111010010111000110.

Here we see that L0, L1, L2, L3 have the same pattern and

they differ by only a shift of bits.

Now compute

m0 = b0 ∧ L0 =
000a0a00b0baa000bbc0c00d0dcc000dd0∧
0001000010000000001000010000000000 =
000a0000b000000000c0000d0000000000,

m1 = b0 ∧ L1 =
000a0a00b0baa000bbc0c00d0dcc000dd0∧
0000010000100000000010000100000000 =
00000a0000b000000000c0000d00000000,

m2 = b0 ∧ L2 =
000a0a00b0baa000bbc0c00d0dcc000dd0∧
0000000000010000100000000010000100 =
00000000000a0000b000000000c0000d00,

m3 = b0 ∧ L3 =
000a0a00b0baa000bbc0c00d0dcc000dd0∧
0000000000001000010000000001000010 =
000000000000a0000b000000000c0000d0.

Now do

m0 = m0 ∨ (m1 ∗ L0/(2L1)) = m0 ∨ (m1 ∗ 2);
m0 = m0 ∨ (m2 ∗ L0/(4L2)) = m0 ∨ (m2 ∗ 26);
m0 = m0 ∨ (m3 ∗ L0/(8L3)) = m0 ∨ (m3 ∗ 26);

We get that m0 =
000aaaa0bbbb000000cccc0dddd0000000.

That is, bits for each integer are packed together.

Now do

L′′
0 = (L′

0 ← 1)− (L′
0 → 3 =

0010000000000000000000000000000000−
0000001000000000000000000000000000 =
0001111000000000000000000000000000 (obtain mask)

and

b′0 = m0 ∧ L′′
0 =

000aaaa0bbbb000000cccc0dddd0000000∧
0001111000000000000000000000000000 =
000aaaa000000000000000000000000000

Now do

b′0 = b′0/(L
′
0 → 3) = aaaa.

Similarly bbbb for b′1, cccc for b′2, dddd for b′3 can also be

extracted.

Theorem 1: The n− 1 bits with indices in

{m′(0),m′(1), ...,m′(n − 1)} can be packed to n − 1 bits

in O(n4) time for constructing a perfect hash function in

O(n2 logm+n4) = O(n6) time, thereafter the packing and

hashing of a batch of n integers take O(n) time.

Here logm = O(n4) because we require integers have

Ω(n4) bits.

Hashing takes O(n) time comes from the nature of the

constructed hash functions [1], [5].

Note that the time O(n4) in Theorem 1 is actually the time

for computing distances d1, d2, Thus this time affects the

time for constructing a perfect hash function as a perfect

hash function can be consutructed by first packing the

extracted bits to n− 1 bits and then use Raman’s algorithm

[5] to construct the perfect hash function in O(n2 logm) =
O(n3) time. After distanced d1, d2, ... have been computed

we can then pack the extracted bits for a batch of n integers

in O(n) time by the algorithm presented in this section.

The only requirement for packing is that integers have

Ω(n4) bits. Because of this the construction time for a

perfect hash function in Raman’s algorithm becomes O(n6).
Of course if integers have less than n4 bits then we can

directly construct a perfect hash function in O(n6) time

using Raman’s algorithm.

4. Construction in O(n2 log n) Time
In this section we show the improvement to pack the

extracted bits to O(n) bits in O(n2 log n) time.

First note that the time O(n4) for packing in the last

section can really be reduced to O(n3) time by a better

analysis. Note that after we ∨-ed b0, b1, ..., b2i−1 integers

into one integer b the number of possible distances in b
is much smaller than (2i(n − 1))2. This is because the

88 Int'l Conf. Foundations of Computer Science | FCS'15 |

distance in b between two bits can be represended as

±k+ δ1d1 + δ2d2 + · · ·+ δidi, where k is a distance taking

from the (n− 1)2 distances in a bj and each δj can assume

the value of 0 or 1. Thus the number of possible distances

is bounded by 2(n − 1)2 · 2i. This analysis will bound in

the the number of possible distances to O(n3) and therefore

the time complexity of the algorithm in Theorem 1 can be

reduced to O(n3).

In last section we first ∨-ed all bits into b0. This requires

O(n4) bits as there are a total of n(n−1) extracted bits and

therefore there are O(n4) possible distances among these

bits. Here we do this: we find an available distance d1 and

do bi/2 = bi ∨ (bi+1 → d1). We have 2 integers ∨-ed into 1

integer. Thus we have now n/2 integers remain. Instead of

continuing ∨-ing integers together we now extract half of the

bits corresponding to indices m′(i), i = 0, 1, ..., (n−1)/2−1
to one integer and another half of the bits corresponding

indices m′(i), i = (n−1)/2, (n−1)/2+1, ..., n−1 to another

integer. Before extracting the number of possible distances

in the integer is 2(n − 1)2. After extracting them into 2

integers each integer has the number of possible distances

2((n− 1)/2)2 = (n− 1)2/2 (each ∨-ed in integer has only

(n− 1)/2 bits now). The situation is basically the same as

the analysis we had for the O(n3) possible distances. This is

equivalent to say that we have put 2 integers into 2 integers

and the number of possible distances among bits decreased

from (n− 1)2 to (n− 1)2/2 for each integer. However, for

the further ∨-ing together integers we have now to pick a

d2 for (n− 1)/2 integers and pick another d′2 for the other

(n−1)/2 integers and thus the number of possible distances

is (n− 1)2/2 + (n− 1)2/2 = (n− 1)2. We can repeat this

log n times, each time ∨-ing 2 integers into 1 integer and

then extract out 2 integers from this integer. Every time we

extract 2 integers the number of m′(i)’s the bits corresponds

to in an integer is divided by 2. After log n times the number

of m′(i) the bits in an integer correspond to is reduced to 1,

i.e. the m′(i)-th bits of all integers are now in one integer and

the m′(j)-th bits of all integers for j �= i are now in another

integer. We repeated log n times and each time we have to

spend O(n2) time searching for di’s. Thus the overall time

of our algorithm is O(n2 log n).

Theorem 2: The n− 1 bits with indices in

{m′(0),m′(1), ...,m′(n−1)} can be packed to n−1 bits in

O(n2 log n) time for constructing a perfect hash function in

O(n2 logm+n2 log n) = O(n4) time, thereafter the packing

and hashing of a batch of n integers take O(n log n) time.

Note that although we packed the extracted bits to n− 1
bits and therefore it seems that logm = n−1 in Theorem 2.

However our algorithm assumed that integers having Ω(n2)
bits and this requirement sets logm = O(n2) in Theorem

2.

Note also that although Theorem 2 reduced the computing

time for finding d1, d2, ... to O(n2 log n) it has the disad-

vantage of packing and hashing a batch of n integers in

O(n log n) time instead of the O(n) time we have achieved

in the last section. In the next section we will show how

to reduce the time for computing d1, d2, ..., to O(n2 log2 n)
time while keep the packing and hashing time to O(n).

5. Achieving O(n) Packing Time with
O(n2 log2 n) Time for Construction

Here we first compute dj and do bi/2 = bi∨ (bi+1 → dj),
i = 0, 2, 4, ..., for j = 1, 2, ..., log log n. We have thus ∨-ed

log n integers into one integer and we have only n/ log n
integers remain. Now the number of possible distances in

each integer becomes (log n)(n−1)2. We now take over the

algorithm in last section. That is we will ∨ two integers into

one integer and then extract two integers from one integer.

We need to do this O(log n) times. In doing so the total

number of distances is kept at (log n)(n − 1)2 and each

time we do this we spent O(n/ log n) time as we have only

n/ log n integer. This makes the overall time for packing

become O(n). The time for computing distances d1, d2, ...
becomes O(n2 log2 n) as we repeated O(log n) times and

each time expending O(n2 log n) time.

Theorem 3: The n− 1 bits with indices in

{m′(0),m′(1), ...,m′(n−1)} can be packed to n−1 bits in

O(n2 log2 n) time for constructing a perfect hash function

in O(n2 logm + n2 log2 n) = O(n4 log n) time, thereafter

the packing and hashing of a batch of n integers take O(n)
time.

Here again we require that integers have Ω(n2 log n) bits.

References
[1] M. L. Fredman, J. Komlós, E. Szemerédi. Storing a sparse table with

O(1) worst case access time. J. ACM, Vol. 31, No. 3, 538-544(1984).
[2] M. L. Fredman, D. E. Willard. BLASTING through the information

theoretic barrier with FUSION TREES. Proc. 1990 ACM Symp. on
Theory of Computing, 1-7(1990)

[3] M. Dietzfelbinger, T. Hagerup, J. Katajainen, M. Penttonen. A reliable
randomized algorithm for the closest-pair problem. Journal of Algo-
rithms 25, 19-51(1997).

[4] Y. Han. Deterministic sorting in O(n log logn) time and linear space.
Journal of Algorithms, 50, 96-105(2004).

[5] R. Raman. Priority queues: small, monotone and trans-dichotomous.
Proc. 1996 European Symp. on Algorithms, Lecture Notes in Computer
Science 1136, 121-137(1996).

Int'l Conf. Foundations of Computer Science | FCS'15 | 89

Sieving Interior Collinear Points for Convex Hull Algorithms

Dr. Michael Scherger
Department of Computer Science

Texas Christian University
Fort Worth, TX, 76129, USA
Email: m.scherger@tcu.edu

Mr. Estaban Kleckner
Department of Computer Science

Texas Christian University
Fort Worth, TX, 76129, USA
Email: e.kleckner@tcu.edu

Abstract – (FCS’15) The convex hull of a set of
points, Q, denoted by CH(Q), is the smallest convex
polygon that encloses all the points of P. Each point
in the convex hull is either on the boundary of P or
in its interior. Traditional algorithms such as
Graham's Scan, Jarvis March, and QuickHull use
all the points in Q as input to obtain the CH(Q).
This research developed a pre-processing “sieve”
algorithm that reduces the number of points
necessary to compute the CH(Q). Given a set Q
with integer coordinates, an O(n) sieve algorithm
“filters” interior collinear points from Q into a
reduced set of sieve points SP. This reduces the
number of points necessary to compute the CH(Q)
and improves the overall performance of the
traditional convex hull algorithms. The sieve points
remain a superset of the hull points; SP ⊃ CH(Q). A
program has been created to test the correctness of
the sieve algorithm[4][8][9]. Using a uniform
distribution of points, the program has shown that
|SP| << |Q|.

Keywords: Computational geometry, convex hull,
sieve algorithms.

1 Introduction
Computing a convex hull of a set of points is a

well-studied research topic in computational
geometry. A typical course in analysis of algorithms
often covers traditional convex hull algorithms such
as Graham Scan, Jarvis March, and QuickHull
[4][8][9]. It is widely known that the complexity of
Graham Scan is O(n lg n) since the points must be
sorted radially about the lowest-leftmost point. Over
the years, other algorithms and improvements to
existing algorithms have been developed.

Other improvements to existing convex hull
involve heuristics such as the Akl-Toussaint
heuristic that finds upper, lower, left-most, and
right-most extreme points to form an irregular
convex quadrilateral. Points within this convex
quadrilateral can safely be eliminated, thus reducing
the number of points for subsequent convex hull
algorithms. Many of these improvements involve
comparing two or more points together to satisfy
some criterion. It is the number of point-to-point
comparisons that is used to measure the complexity
of a convex hull algorithm.

1.1 Research Overview

Figure 1: Data flow of points through the
sieving algorithm followed by computing the convex
hull.

This research presents a pre-processing

algorithm that can be applied to a set of points prior
to calling a traditional convex hull algorithm. This
research considers points with integer coordinates in
the first quadrant. This pre-processing step “sieves”
or “filters” the interior collinear points to eliminate
interior points prior to computing the convex hull

Convex
Hull Sieve

Convex
Hull Alg

Q Points

SP Sieve Points

CH(Q)

90 Int'l Conf. Foundations of Computer Science | FCS'15 |

using a traditional algorithm. As shown in Figure 1,
the output from this sieve is a set of points that are a
superset of the convex hull points.

The sieving algorithm uses a form of “bucket
sort” that sort/organizes points with corresponding
coordinates in the first dimension, then uses a
second “bucket sort” in the second dimension to
arrange the points in ascending order. The sieving
algorithm does not compare any point with any other
point; i.e. no comparisons. The complexity of the
algorithm is O(n) and will be further explained later
in this paper.

1.2 Organization

The organization of this paper is the
following. Section 2 will present some background
information on sieving algorithms, traditional
convex hull algorithms, and sorting in linear time
using bucket sort. Section 3 will present and explain
our algorithm and discuss the program used to test
its correctness and gather timing results. Section 4
will present results from our algorithm testing for
varying number of points and point densities.
Section 5 will present some conclusions and future
work for this research.

2 Background
Numerous algorithms and algorithmic

techniques were researched and explored. The
major components of this research are the concepts
of sieving algorithms, traditional convex hull
algorithms, and sorting in linear time using bucket
sort.

2.1 Sieving Algorithms

A sieve, in the mathematical sense, is an
algorithmic technique to filter or eliminate non-
essential data to achieve a desired result. The classic
sieving algorithm is the Sieve of Eratosthenes used
to find all prime numbers less than or equal to some
number n [4][6]. Named after the Greek
mathematician, this prime number sieve algorithm
repeatedly eliminates multiples of prime numbers
(2p, 2p, 4p, …) until the value of np is less than the
sqrt(n). The overall complexity of the Sieve of
Eratosthenes is O(lg lg n) [4].

A characteristic of sieve algorithms is that
they often do not have to compare data values with

other data values: no comparisons and few (if any)
data dependencies.

2.2 Traditional Convex Hull Algorithms

There are many algorithms that compute the
convex hull of a set of points. Three classic
algorithms are the Jarvis March (gift-wrapping)
algorithm, Quickhull, and Graham Scan. The Jarvis
March algorithm was developed in 1970 by Chand
and Kapur and also independently in 1973 by R.
Jarvis. [7] This algorithm begins with a known
point on the hull, p0, and compares polar angles of
other points. It selects the next point on the hull that
has the smallest polar coordinate and then the
process repeats “wrapping” around the points to
form the convex hull. The complexity of Jarvis
March is O(nh) where n is the number of points, and
h is the number of hull points.

The Quickhull algorithm was discovered by
Eddy 1977 and also independently by Bykat in 1978.
[1][9] It is analogous to the quicksort algorithm.
The Quickhull algorithm finds two points with the
minimum and maximum x coordinates to create a
dividing line through the set of points creating an
upper set and lower set of points. It next finds a
point in P that is a maximum distance from the
dividing line. All points lying in this triangle of
points are excluded from the convex hull. Then the
process repeats until no other hull points are
discovered. The same procedure repeats for finding
the lower convex hull. Finally the two sets of points
are combined. The complexity of Quickhull is O(n
ln n) in the average case and O(n2) in the worst case.

The Graham scan algorithm first finds the
lowest right-most point p0. This point is on the
convex hull. Next, all points are sorted radially
about p0. Next, the first two points are pushed on a
stack. If the top two points on the stack and the next
point considered make a counter-clockwise turn,
then the new point is pushed on the stack. If the
points make a clockwise turn, then the top point on
the stack is popped off. This process repeats until
the three points considered make a counter-
clockwise turn. The complexity of Graham scan is
bounded by sorting and has an overall complexity of
O(n lg n).[4][5][9][11]

Int'l Conf. Foundations of Computer Science | FCS'15 | 91

2.3 Sorting in Linear Time Using
Bucket Sort

Bucket sort is also known as bin sorting.[4] It
can sort a set of data by partitioning the input array
into buckets. Each bucket can then be sorted using a
traditional sorting algorithm or recursively calling
bucket sort again. The complexity of bucket sort
depends on the number of buckets. If n is the input
data size and M is the number of buckets, then the
complexity of bucket sort is O(n+M).

3 Methods
This section will present an overview of the

convex hull sieve describing major stages of the
algorithm. This section will also present a
discussion of the full algorithm and implementation.

3.1 Sieve Algorithm Overview

For purposes of this discussion, the following
example uses a set of 50 points. All input points to
this algorithm have integer coordinates and are in
the first quadrant. Figure 2 shows the initial set of
points. Notice the x-collinearities (which are points
that share a common x-coordinate) and y-
collinearites (which are points that share a common
y-coordinate). The set of input points are in no
particular order (random permutation of the list of
points).

Figure 2: Initial set of 50 points.

The algorithm begins by first identifying y-

collinearties. This is accomplished by traversing the
list of points and placing each point in a common
bucket if they share a common y-coordinate. Again,

because the initial list of points is random, the points
in each “y-bucket” are also randomized (unsorted).
The points in each y-bucket are passed to a bucket
sort again and lexicographically ordered by x-
coordinate. Any point between the first point and
last point in each y-bucket is removed because it is
an interior point and not on the convex hull. Figure
3 illustrates the y-collinear points in each bucket.

The next stage of the algorithm then eliminates
the x-collinearities. The remaining points from the
previous step are stored in respective “x-buckets” in
lexicographic order. Any point between the first
point and last point in each x-bucket is removed
because it is also an interior point and not on the
convex hull. Figure 4 illustrates the x-collinear
points in each bucket.

The output of the sieving algorithm is a set of
candidate points that are on the outer boundaries of
the initial set of points. These points are either
maxima or minima in each x and y directions.
Figure 5 shows the resultant set of points with the x-
collinearities removed. The output points are used
as input points into a traditional convex hull
algorithm and the convex hull points are determined.
The final convex hull is also shown in Figure 5.

Figure 3: Identifying and eliminating y-
collinearities.

92 Int'l Conf. Foundations of Computer Science | FCS'15 |

Figure 4: Identifying and eliminating x-
collinearities.

Figure 5: Resultant points after sieving algorithm
also showing the final convex hull.

3.2 Detailed Sieve Algorithm

Using these major steps, a detail algorithm
was developed and shown in Figure 6.

Algorithm SievePoints(Q) returns SP
1. Let y be a lists of lists with

magnitude defined by the Range(Q)
2. Let x be a list of lists with

magnitude defined by Domain(Q)
3. For each point p in Q Do:
4. y[p.y].append(p)
5. For each bucket b in y Do:
6. b = sort_bucket(b)
7. If b.length > 0 Then
8. p = b[0]

9. x[p.x].append(p)
10. If b.length >= 2 Then
11. p = b[-1]
12. x[p.x].append(p)
13. For each bucket in x Do:
14. Else If b.length > 0 Then
15. SP.append(b[0])
16. If b.length >= 2 Then
17. SP.append(b[-1])

Figure 6: Detailed sieving algorithm.

The algorithm has input a set of points Q and

returns a set of points SP. Steps 1 and 2 set up list of
lists that are used temporarily store the points in
buckets. These will be used to sort the points in the
“y-direction” and “x-direction” respectively. Step 3
and 4 scan through the list of points and assign them
to a bucket based on their y-coordinate. Then, in
steps 5 and 6, each y-bucket is sorted using a stable
sort such as bucket-sort. Step 6 identifies buckets
with size greater than zero. In steps 7, 8, and 9, if a
bucket size is found, then the first point is then
reassigned to an x-bucket. In steps 10, 11, and 12, if
the number points in each y-bucket is greater than or
equal to 2, then the last point is also reassigned to an
x-bucket. At this point in the algorithm all y-
collinearities have been removed.

The second phase of the algorithm is similar to
the first stage. In steps 13, 14, 15, and 16, each x-
bucket is examined. If the number of points in an x-
bucket is greater than 0, then the first point is copied
to the sieve point list. If the number of points in an
x-bucket is greater than 2, then the last point in the
x-bucket is copied to the sieve points list.

3.3 Complexity of the Sieve Algorithm

In terms of space complexity, the sieving
algorithm clearly uses O(n) space where n is the
number of points in Q. In terms of time complexity,
steps 3 and 4 can be computed in O(n) time. Each
bucket is sorted using the sort_bucket() algorithm.
This sorting algorithm uses bucket-sort that is a form
of radix-sort. This is a stable-sort that can execute in
O(n) time. Also noted is that the input points to the
sort are only those that are y-collinear or x-collinear
and only analyzed once per bucket. This reduces the
time complexity significantly to ||y|| * O(||y.b||)
where ||y|| is the number of buckets and ||y.b|| is the
number of points in a given bucket. The value ||y|| is

Int'l Conf. Foundations of Computer Science | FCS'15 | 93

a constant determined at runtime. Therefore, steps 5
through 12 run in O(n) time. Steps 13 through 17
run in O(n) time. Overall the runtime complexity of
the sieving

4 Results and Analysis
This section will present the results and analysis

of an implementation of the convex hull sieve
algorithm when combined with an execution of the
Graham Scan algorithm to compute the actual
convex hull.

4.1 Test Suite

As a proof of concept, this convex hull sieve
algorithm has been implemented in Python. Several
sets of input points were used. The data sets were a
uniformly distributed set of points that varied
number the domain space of input points as well as
the density of points in the domain. For example,
for a domain space of 1000 x 1000, the total number
possible points is 1 million points. However, the
density would then reduce the number maximum
number of points. With a density of 0.4, then a total
of 400,000 points would be uniformly spaced in a
domain of 1000 x 1000. The Python Timeit module
was used to record the execution times.

4.2 Results for 10 x 10 Space
Figure 7 is a plot of computation time in

seconds for different point densities. For this set the
total number of unique points was 100. The
algorithm was tested for the density range of .1 to .8.
The series in orange displays the time it takes to
sieve plus the time it takes to compute the convex
hull using one of the conventional convex hull
algorithms. From here, it is observed that at a
density of 0.25 (25 points), the addition of a
preprocessing step surpasses the performance of
computing the convex hull of the entire set of points
G.

4.3 Results for 1000 x 1000 Space

Table 1 shows sample data gathered for a
1000 x 1000 space. Time(sieve) is the time it took
to transform P->SP. Time(CH(SP)) is the time it
took to compute the convex hull of the sieved points.
Time(S+CH(SP)) is the sum of the first two

columns. Time CH(G)) is the time it took to sort the
same points using Graham Scan without the sieving
step. G’ is the number of points after the sieve. G is
the original number of input points.

Figure 6: Results from a 10 x 10 space with

varying point densities.

Figure 7: Sample execution times for a 1000 x

1000 space with varying densities.

The graph in Figure 7 is similar to Figure 6

above and shows the time it takes to compute the
convex hull using Graham’s Scan algorithm (O(n lg
n)). This Figure also displays the time it takes to
compute the convex hull using Graham’s Scan with
the addition of a preprocessing step. Each series
was tested with the same set of unique points
starting at 100,000 points and increasing in
increments of 100,000 until the total reaches
800,000 (increasing densities from 0.1 to 0.8). The
addition of a preprocessing step drastically reduces
the amount of time needed to compute the convex
hull. At 800,000 points the conventional algorithm
took nearly 90 seconds to complete, while the
algorithm in addition to the preprocessing step took
under 1 second to compute the convex hull for the
same set of points G.

94 Int'l Conf. Foundations of Computer Science | FCS'15 |

Figure 7: Results from a 1000 x 1000 space

with varying point densities.

Figure 8 verifies empirically that the convex

hull sieving algorithm is a linear function with
respect to the number of points: O(n).

Figure 8: Algorithmic performance of the

convex hull sieve algorithm.

Figure 9 is a plot showing the efficiency of

adding the convex hull sieve algorithm. The
efficiency of executing Graham Scan improves as
the density of points increases. As the density
increases, so does the likely hood that it will be
removed using the sieving algorithm.

Figure 9: Efficiency of adding the

preprocessing step.

5 Conclusions and Future Work
The research presented a technique to increase

the performance of traditional convex hull
algorithms. This is accomplished by a preprocessing
sieving algorithm that filters the points prior the
execution of a convex hull algorithm. The sieving
algorithm repeatedly uses bucket-sort, which has
complexity Θ(n), in the “x” and “y” directions, to
remove interior collinear points.

For the case of a 10 x 10 space, it is shown that
the benefits of using the convex hull sieving
algorithm begins at roughly 25 points. For the case
of 1000 x 1000, the performance improvement of
using this convex hull sieving algorithm is
significant. In the case of 800000 points the
execution time of the sieve algorithm and Graham’s
Scan was approximately 1 second as compared to 90
seconds using Graham’s Scan alone.

Future directions for this research are
numerous. First, the test program is going to be
converted from Python to C++ for more native and
accurate timing analysis. This may lead to a more
accurate timing model for this algorithm. Second, a
variant of the algorithm is being developed for 3-
dimensional convex hulls. This should be fairly
straightforward extension, but will require
significant testing and verification. Finally, the
sieving algorithm has opportunities for parallelism.
Perhaps using threads, the buckets could
independently be populated from the original list of
points. Using a portable thread library such as
pthreads, would increase the portability of this
algorithms to include hyper-threading processors
and hardware accelerators.

6 References

[1] Barber, C. Bradford, Dobkin, David P.,
Huhdanpaa, Hannu, “The quickhull algorithm
for convex hulls”, ACM Transactions on
Mathematical Software, Vol. 22, No. 4, pp. 469-
483.

[2] Corwin, E., Logar, A., “Sorting in linear time –
variations on the bucket sort”, Journal of the
Computing Sciences in Colleges, Vol. 20, No. 1,
pp. 197-202, October 2004.

Int'l Conf. Foundations of Computer Science | FCS'15 | 95

[3] De Berg, Mark, van Kreveld, Marc, Overmars,
Mark, and Schwarzkopf, Otfried, Computational
Geometry, 2nd ed., Springer-Verlag, 2001.

[4] Cormen, T. A., Leiserson, C. E., Rivest, R. L.,
and Stein, C., Introduction to Algorithms, 3rd ed.
MIT Press, 2009.

[5] Graham, R. L, “An Efficient Algorithm for

Determining the Convex Hull of a Finite Planar
Set”, Information Processing Letters, Vol. 1, pp.
132-133.

[6] Horsley, Rev. Samuel, The Sieve of

Eratosthenes, Philosophical Transactions, Vol.
62, 1772, pp. 327-347.

[7] Jarvis, R. A., “On the identification of the

convex hull of a finite set of points in the plane”,
Information Processing Letters, Vol. 2, pp. 18-
21, 1973.

[8] Laszlo, M. J., Computational Geometry and

Computer Graphics in C++, Prentice Hall,
1996.

[9] O’Rourke, J., Computational Geometry in C, 2nd

ed. Cambridge University Press, 2005.

[10] O’Neill, Melissa E., “The Genuine Sieve of

Eratosthenes”, Journal of Functional
Programming, Cambridge University Press,
Oct., 2008.

[11] Preparata, Franco P., Hong, S. J., “Convex

Hulls of Finite Sets of Points in Two and Three
Dimensions”, CACM, Vol. 20, No. 2, pp. 87-93,
1977.

96 Int'l Conf. Foundations of Computer Science | FCS'15 |

Applying Mobile and Pervasive Computing Security
Projects in CS Courses

Yujian Fu1, Di Ma2

1Department of EE & CS, Alabama A&M University, Huntsville, AL, USA
2Department Computer Science, University Of Michigan at Dearborn, Dearborn, Mi, USA

Abstract - In the information era, the Internet provides an
unlimited platform and supports the mobile and pervasive
computing in everyone’s daily life, from oven, microwaver to
the space craft. Today more and more users favorite the hand-
held devices, mobile in a computer aided environment.
Pervasive computing is in our life everyday. Security
education in academic has been raised to an unanticipated
level due to the proliferation of hand-held devices and
applications. In this paper, we will presented an
implementation of integrating mobile and pervasive
computing security projects to computer science curriculum.
This is a collaborative effort implemented by faculties at two
national recognized institutions – Alabama A&M University
and University of Michigan at Dearborn. The research study
has involved several classes in undergraduate and graduate
level with over 50 students participated, and demonstrated
very exciting results in both pedagogical and scientific aspects
among participated institutions. The developed projects with
regarding to the curriculum design are presented and
discussed.

Keywords: Mobile security, pervasive computing,
information assurance, cyber security, information security
education

1 Introduction
 In the information era, the Internet provides a unlimited
platform and supports the mobile and pervasive computing in
everyone’s daily life, from oven, microwaver to the space
craft. Today more and more users favourites the hand-held
devices, mobile in a computer aided environment. Pervasive
computing is in our life everyday. Security education in
academic has been raised to an unanticipated level due to the
proliferation of hand-held devices and applications. According
to [1], malware attacks to hand-held devices has increased by
25 percent across all platforms since 2012. The McAfee Labs
count of new suspect URLs set a three-month record with
more than 18 million, a 19% increase over Q4 and the fourth
straight quarterly increase. Among these attacks of various
platforms, Android is the platform favorited by the most
malware with most growth. 67.7% of host locations in North
America. From mobile report of F-Secure [2], 91% new
families or threats was identified, and among these new

families of malware on mobile device 99% on Android
platform. To reduce and mitigate the security threats and
increase the defence capabilities of benign apps, traditional
Intrusion Detection Systems (IDSs) has been shown
inefficient. New behaviour-based IDSs are paid attention to by
many mobile security researchers [3, 4]. In addition, a single
or individual approach without the support of formal
specification has been proved with more false positives in the
results. The needs of formal specifications to provide the
sound theories are more and more desired.

From the side of the educational point of view, the needs of
the security issues of mobile and pervasive computing fall in
the requirements of stakeholders, expectations of users at
industry and academic. The needs of cyber security job market
has increased 3.5 times percent since 2012 among all IT and
information jobs according to CIO report from The Journal of
Wall Street [5]. In addition, salary of cyber security position
is 17% more than average of IT positions. To teach and train
the next generation of cyber security workforce is kind of first
need of current education in computer and STEM curriculum.
This is one of the ultimate goal of this NSF supported project
which is aligned with one of objectives of NSF SaTC
program.

Two objectives of this NSF project are: First, enhancing the
information security education through curriculum
development. Second, enhancing students in the IA security
through hands-on lab development. Before we illustrate the
implementation towards these objectves, we will first
introduce the current status of cyber security education in the
institutions. After that, the course and lab development will be
discussed in the next section.

1.1 Current Cyber Security Education at AAMU
 The computer science department at Alabama A&M

University is one of the oldest department of Alabama state
since 1960s’. The information security and forensics
curriculum of computer science was included in 2009 to fulfill
ABET requirements and satisfy the evaluation criteria. Both
courses does not have programming language courses as
prerequisite courses, students with any level can register. This
attracts many students but increases the concerns of the
learning results and teaching quality in the content of
information security. In addition, due to short of faculties in

Int'l Conf. Foundations of Computer Science | FCS'15 | 97

the area, our students cannot be exposed enough security in
theories and short of hands-on labs.

In 2011, driven by the needs of marketing, supported by
Deans office, computer science annouced a cyber security
concentration in undergraduate student curriculum. This cyber
security concentration includes six courses: CMP 381
Computer Organization, CMP 384 Operating Systems, CMP
386 Cryptography, CMP 321 Principle of Information
Security, CMP 414 Forensic Computing, CMP 421 Computer
Security. Except for the core courses of CMP 381 and CMP
384, the other four courses offered once per year, and the
student number registered to other four courses per semester is
around 14 to 25. The peak of registration was reached by
2012. By the 2013 fall, the registration started to drop. These
four courses are taught by 3 faculties and one adjunct
professor. There is no pervasive computing and mobile
courses offered in computer science curriculum.

There are several reasons of the student number droped in
these security courses. One of the reasons is lack of the
interesting and research related, hands-on lab. Some of the
new research findings and security detections are not included
and exposed, nor well designed lab, short of security theory
and design analysis in the lectures. Second reason, there is no
new topics to feed current millimum era students. This
generation of students are grown up with electronics and
internet. Information and electronics are their whole life.
Traditional teaching and content are far from enough to satisfy
our current students. Last reason is due to the limited number
of students, there are not enough students to register these
courses. There is an obvious need of the security in the
pervasive and mobile computing from current computer
science curriculum.

The paper is organized as follows. In the next section, we
introduce the course design and curriculum development
supported by this NSF program. In Section 3, the developed
labs regarding to the mobile and pervasive computing are
presented. Section 4 discusses the current evaluation by the
survey in AAMU campus. In Section 5, a short discuss of
pedagogical results will be described. Finally, we conclude
our work in section 6.

2 Applied Course and Design
 In this section, we will present the courses that are
integrated with the security contents and projects.
Furthermore, a new course developed in UMD was presented
here.

Several courses that were updated with security and
integrated with security projects in both AAMU and UMD
campus. In AAMU campus, we have simply attempted
security projects in software engineering (CS 401) and senior
design classes (CS 403).

2.1 Software Engineering Course (CS 401)
 CS 401 is software engineering class which requires senior
standing. This course is designed to explore the traditional
approach to software development & construction life cycle,

software crisis, and software characteristics. In the course
description, it is to cover various software engineering
paradigms, and the fundamental concepts of analysis, design,
coding, testing and maintenance [6]. Besides, this course
introduces various CASE tools that support these
methodologies.

Three student learning outcomes are covered from the
current syllabus:

a) Understand the traditional approach of software
development process, software characteristics,
software quality, ethics issues, crisis issues and
software development cost and management.

b) Understand and be able to use basic software
engineering methodologies to solve large scale
software/software-intensive system development.
Understand and be knowledgable about existing
tools of some software engineering methodologies.
Understand and be able to design and implement
cyber physical systems with critical concerns
including security aspects.

c) Be knowledgable of software testing strategies and
be able to use basic software testing technologies
to validate program.

Security issues have brought a lot of attention of system
analysts and software engineering. The earlier to detect and
identify errors and faults, the more to reduce the cost of
failure. It remains challenge to identify vulnerabilities in the
software design models of systems and applications. To help
students to understand how design level can help reduce the
system crash due to malicious attack, we have updated the
courses with two aspects – in lecture and in the hands-on
projects, as follows:
In lecture, UML sec was introduced to develop the model of
the secure system. In addition, to identify the security
properties of the applications, OCL (Object Constraints
Language) was introduced to the class in three levels – the
syntax, the semantics and practice questions. We have
introduced complete set of OCL syntax by combining OCL
security specification with the UML diagram. To help student
to have a better understanding, we introduce segment of
systems based on the context and domains. The hands-on
project selected is testing of SMS message passing on
Android. This hands-on project will be introduced next
section.

2.2 Updated Senior Design Course (CS 403)
 The senior design course is a core course for

undergraduate students at AAMU that requires CS 401. The
course aims at exposing students to various types of systems
and development processes. Development and successful
completion of a sponsored software development project.
Specific objectives include the development of effective
project management, communication, and technical skills,
experience with the implementation and testing phases of a
realistic product design cycle, and an ordered transition from a

98 Int'l Conf. Foundations of Computer Science | FCS'15 |

classroom-oriented academic environment to a performance-
oriented professional environment. Student learning outcomes:

1. Improve the ability to apply knowledge of
computing, mathematics, science and engineering.

2. Improve the ability to design, implement and
validation a computer-based system, process,
component, or program to meet desired needs.

3. Enhance the ability to analyze a problem, and
identify, formulate and use the appropriate computing
and engineering requirements for obtaining its
solution.

4. To be understanding an understanding of
professional, ethical, legal, security and social issues
and responsibilities.

5. Prompt the ability to use current techniques, skills,
and tools necessary for computing and engineering
practice.

In the project designed in this course, we particularly
increase the project pool with a couple of Android and
security projects – including SMS message passing, testing on
the cryptography algorithm in SMS app, Android app of
AAMU faculty info. Students have shown great interest in the
android apps and security projects. In the data collected, it
shows that one group worked on Andriod app, and one group
worked on the security testing of SMS app.

In addition to the above two courses, we have designed and
implemented other mobile security projects and used in the
Object oriented design (CS521), and Software Engineering
Methodology (CS561). The detailed project description will
be presented in Section 3.

2.3 New Course Development at UMD
A new course of pervasive computing and mobile computing
was developed by UMD last year. The course aims at
integrating the latest research results in pervasive computing
and mobile security to the current CS curriculum. In addition,
this course is designed to a thorough analysis of the major
trends in pervasive and mobile computing and explain the
implications in terms of security and privacy. For every
security and privacy issue, we will give a detailed description
of the problem and a precise explanation of mainstream
solutions wherever they exist, and of potential solutions
otherwise. Tentatively, a total of nine topics were developed.
A brief description of each topic is given as follows.

Topic 1: Introduction to Pervasive & Mobile Computing.
This topic covers the wireless communication and security &
privacy risks.

Topic 2: Wi-Fi LAN and cellular network security. This
topic introduces network access security requirements, wifi
security, cellular network security.

Topic 3: RFID security and privacy. This topic exposes
students with RFID technology and applications, security and
privacy threats, defenses mechanism, and NFC & mobile
payment systems.

Topic 4: Smartphone security. This topic brings the current
research study in smart phone systems, security models,

attacks on android permission, smartphone malware detection,
and BYOD security.

Topic 5: Vehicle and vehicular Ad-Hoc (VANET) security
and privacy. The cutting-edge research studies on the
intelligent transportation systems, in-vehicle data &
communication systems and vulnerabilities, IEEE 802.11p for
wireless access in vehicular environments and IEEE 1609.2
for VANET security are discussed.

Topic 6: Secure device paring. This topic includes
Bluetooth-enabled device pariting and other device pairing
mechanisms through SMS, directory service, multiple antenna.

Topic 7: Secure ranging. This topic covers the relay attack,
relay attack defense.

Topic 8: Secure neighbor discovery. The wormhole attack,
centralized and decentralized approach for wormhole
detection will be discussed.
Topic 9: Secure localization and location privacy. This topic
focuses on the device localization and vulnerability, secure
localization based on own measurements, and location privacy
in VANET.

3 Project and Lab Design of Mobile
Security and Pervasive Computing
Design

 In this section we will present the projects developed for
mobile and pervasive computing project that were used to
integrate with the updated courses and lab development.
These projects are developed by two institutions in the past
project year.

3.1 Testing – SMS Encryption Algorithm
SMS messaging [7] is a mobile and stronger version of “any
time” and “any where” service. A switched-on mobile device
is able to receive or send a message regardless of if a voice or
data call is in progress. To secure the private data and ensure
the correctness of the system implementation, this project is
developed in three phases: I) develop a SMS app that is able
to pass simple message with AES. Through this phase, student
will be exposed to fundamental skills of Android apps, the
simple AES algorithm (Fig.1. (b)). II) Develop a class diagram
of the SMS message passing (Fig. 1 (a)). In addition, define
the authentication security properties in OCL on the class
model. Through this phase, students will be able to understand
the software design methodology, security properties in a
simple format (UML diagram). III) Install JUnit and run
assertions on the OCL properties to demonstrate if the
cryptographic algorithm implemented correctly by a set of
properly designed security properties. By doing this, students
will have a better understand of the system quality, crisis, how
to ensure the correct implementation, and crash cost bring by
the vulnerability.

Int'l Conf. Foundations of Computer Science | FCS'15 | 99

3.2 WiFi Sniffing on Android
Traffic monitoring is one of the key approaches in the
network security to detect the potential vulnerabilities and/or
attacks. Rooted on various types of methodologies, many
tools are developed regarding to the monitoring aspects and
flow strategy. One of the most powerful spying tools is
Intercepter-NG [8]. It is a free application with unrestricted
functionality and is virtually universal: works on Windows,
Linux, Mac OSX, iPhone and Android. It is a multifunctional
network toolkit for various types of IT specialists [9]. It has
functionality of several famous separate tools and more over
offers a good unique alternative of wireshark for Android.
After connected to the AAMU WiFi using Intercepter-NG, we
can run the scan command to see all the devices with IP
addresses that are connecting to AAMU WIFI. Result is
shown in Fig. 2, where a list of AAMU WiFi address was
recognized and displayed to the screen.

3.3 Permission ID based Security Analysis
The Android OS system runs each application under the
privileges of different “user”. A unique user ID to each of
them is assigned when the application request is coming.
Applications are required to declare in a manifest that can
take place in the course of execution [10]. This project is
designed to expose the different security levels of permission
ID in the Android systems, and if sensitive permission ID is
required. It is straightforward to predicate that an application
overprivileged needs to be suspected (Fig. 3).

3.4 Man-in-the-middle Attack Exploiting
Certificate Verification Flaws In
Smartphone Apps

On the smartphone app market, apps are developed by
developers with various level of security knowledge and many
of them are suspected to be flawed in certificate validation. In
this project, a student is expected to conduct a serial of
experiments to find flawed apps and further analyze the cause.

Figure 3. Snapshot of permission ID based security analysis

Figure 2. Snapshot of WiFi Sniffing – AAMU WiFi

Figure 1. The design and snapshot of Android security testing

(b)

Figure 1. The design and snapshot of Android security testing
(a)

100 Int'l Conf. Foundations of Computer Science | FCS'15 |

3.5 WebView Information Stealing
Web applications relies on several TCB (trustworthy
computing base) components to achieve security. One
important TCB component is the use of trustworthy browsers.
However, WebView (embedded browser for mobile
apps) changes the picture of TCB for web security. The
lacking of security support for cross-application interface
embedding in mobile platforms allows a malicious host to
eavesdrop on input intended for embedded interface only. In
this lab, students are required to mount a password-grabbing
attack by using JavaScript injection.

4 Evaluation and Discussion
Class evaluation is done regular each semester. Other the

regular class evaluation, for CS 401 and 403 at AAMU, the
instructor has developed pre and post set of questions to
evaluate these courses.

The pre/post test question for CS 401 is listed as following.
The answer is given from 1(no knowledge) to 10 (very much
know).

a) How much do you know about Software
Engineering?

b) How do you consider System quality is critical
during software development process?

c) Do you consider cyber attacks and security holes
in the system as one of the key factors that cause
software system crash and cost a lot?

d) How much important do you evaluate security
regarding to a quality software?

e) Do you think system design place a key role on
the software quality?

f) How much do you know about software testing?
For classes in Spring 2014, it was interviewed at 11 students

in CS 401 and 15 CS 561. A statistic results regarding to
questions are shown in Fig 4. It is clearly shown from both
classes that many students do not consider the security and
cyber attacks play a critical role in the reliability of the system
development. After this class, the students had changed their
mind and the collected data indicated that most considered the

security is one of the key concerns of the reliable system
design. For CS 561, we have shown the value of each answers
pre- and post test, in addition to the line chart. Even some
graduate students have shown the knowledge of reliability
regarding to security in the system design at the software
engineering aspect, there is still an increase of the value
regarding to these questions.

We also conducted the pre and post tests of CS 403 and CS
521 (object oriented design and implementation). Since these
two courses are less in common, the question sets are a little
bit different. Due to the space, the pre/post test questions for
CS 403 and CS 521 are not listed.

(a) Pre test of CS 401 (c) Pre test of CS 561

(b) Post test of CS 401 (d) Post test of CS 561

Figure 4. Data collection for courses cs 401 and cs 561.

Int'l Conf. Foundations of Computer Science | FCS'15 | 101

5 Pedagogical Issues
 We summarize pedagogical significance regarding to the

project – motivation. Motivation is a topic that remains to be
challenge to all education researchers how to motivate
students in different areas. Project based learning (PBL) is one
of the traditional technology that has been proved effective in
the student motivation, provided that the topics are very
interesting and the ideas are novel, the skills is simple and the
knowledge are not too much. On the contrary, students will be
easily to loss interest and PBL will not make sense for the
purpose of improve student learning outcomes. Regarding to
these concerns, and our projects are designed in the large
extent to maintain constant student interests on the point of
this final results on the Android security is rooted in daily life
and the topic is attractive.
6 Conclusions and Future Works
 In this paper, we presented a study of integrating
pervasive and mobile computing to CS curriculum at AAMU
and UMD in the past year. Several updated courses, one new
developed course, and hands on lab were discussed. Student
evaluation was presented. This work demonstrated that
properly integrating new cutting edge research projects to CS
curriculum can motivate students in pursuing higher degree or
continue on the computer science study even if the CS market
right now is not taking the lead position of all jobs. Students
always love to see new research results and are exciting about
the using and applying the ideas to a not complicated project.
In the future, on top of current result, we expect to i) to
develop more interesting projects that are rooted from current
research study and is able to fit for CS or STEM curriculum;
ii) conduct more study especially tracking students in the high
level grade and/or graduate study.

Acknowledgements
The research work was supported by National Science
Foundation of USA under Grant No. 1419295 and Grant No.
1419280.

7 References

[1] MacFee Report. Mobile Malware Report. June 2014.
[2] F-Secure Report. Mobile Malware Report. June 2014.
[3] Mu Zhang, Yue Duan, Heng Yin, and Zhiruo Zhao.

“Semantics-Aware Android Malware Classification using
Weighted Contextual API Dependency Graphs”, In
Proceedings of the 21st ACM Conference on Computer
and Communications Security (CCS'14), November 2014.

[4] Mu Zhang and Heng Yin, “AppSealer: Automatic
generation of vulnerability-specific patches for preventing
component hijacking attacks in Android applications”, In

Proceedings of the 21st Annual Network and Distributed
System Security Symposium (NDSS'14), February 2014.

[5] Steve Rosenbush. Demand for Cyber Security Jobs is
Soaring. March 2013. CIO Journal. The Wall Street
Journal. Retrieved From:
http://blogs.wsj.com/cio/2013/03/04/demand-for-cyber-
security-jobs-is-soaring/

[6] Ye Wu, Mei-Hwa Chen, and Jeff Offutt. “UML-based
Integration Testing for Component-based Software”.
Proceedings of the Second International Conference on
COTS-Based Software Systems, Lecture Notes In
Computer Science; Vol. 2580, pages: 251 – 260, 2003.

[7] Sagheer, A.M.; Abdulhameed, A.A.; AbdulJabbar, M.A.,
"SMS Security for Smartphone," In proceedings of
The Sixth International Conference on Developments in
eSystems Engineering (DeSE), 2013, pp.281-285, 16-18
Dec. 2013

[8] Intercepter-NG. Available from: http://intercepter.nerf.ru/
[9] XDA Developers Forum. Available from:

http://forum.xda-
developers.com/showthread.php?p=35159281

[10] Z. Aung, and W. Zaw. “Permission-Based Android
Malware Detection.” International Journal of Scientific
and Technology Research, Vol. 2, Issue 3, March 2013.

102 Int'l Conf. Foundations of Computer Science | FCS'15 |

Int'l Conf. Foundations of Computer Science | FCS'15 | 103

104 Int'l Conf. Foundations of Computer Science | FCS'15 |

Int'l Conf. Foundations of Computer Science | FCS'15 | 105

106 Int'l Conf. Foundations of Computer Science | FCS'15 |

Int'l Conf. Foundations of Computer Science | FCS'15 | 107

108 Int'l Conf. Foundations of Computer Science | FCS'15 |

Int'l Conf. Foundations of Computer Science | FCS'15 | 109

A Short Survey on Statistical Network Analysis

Matthias Dehmer
Universität der Bundeswehr München

Department of Computer Science

Werner-Heisenberg-Weg 39

85577 Neubiberg, Germany

matthias.dehmer@unibw.de

Stefan Pickl
Universität der Bundeswehr München

Department of Computer Science

Werner-Heisenberg-Weg 39

85577 Neubiberg, Germany

stefan.pickl@unibw.de

Zhonglin Wang
Universität der Bundeswehr München

Department of Computer Science

Werner-Heisenberg-Weg 39

85577 Neubiberg, Germany

zhonglin.wang@unibw.de

Abstract— In this paper, we perform a mini review on statis-
tical network analysis. We survey recent papers in this field and
highlight those that are based on using statistical methods when
analyzing stuctural properties of complex networks.

I. INTRODUCTION

When analyzing complex networks, statistical techniques

such as resampling [11], bootstrapping [28], randomization

[31] have been proven useful. For instance, typical network

structures represent technical networks, biological networks,

and social networks. Technical networks appear for exam-

ple in communication technology, transportation, and energy.

In computational biology, several biological networks such

as gene networks have been investigated. Emmert-Streib et

al. [12], [6] found that biological networks are often non-

deterministic, that means they cannot be inferred deterministi-

cally. Therefore statistical methods to analyze such networks

have been crucial, see [12], [6].

In complex network analysis, there are several problems

to deal with. For example, it has been challenging to collect

network data properly such that statistical methods become

applicable. Another problem that has been often demanding

relates to visualize and analyze networks meaningfully [13].

To analyze networks, structural graph measures have been

often used, see, e.g., see [12], [6]. Examples are the clus-

tering coefficient, cohesion measures, connectivity measures

and other topological indices to map graphs to real numbers

[8]. The latter method relates to determine the complexity

of networks. By employing statistical methods, important

applications in network theory such as subgraph sampling and

link mining. Link mining techniques have been also applied

in Web Structure Mining [5] and related disciplines. Another

striking problem in statistical network analysis is network

inference [3].

In the age of big data, analyzing massive data sets become

more and more important. In case of structural data (networks),

tackling the complexity of the data sets has been often chal-

lenging. Either the networks are very large or one needs to deal

with a huge number of graphs, see [7]. In both cases, applying

statistical methods has been fruitful. The main contribution

of the paper is to survey recent work on statistical network

analysis. The survey aims to highlight the interdisciplinary

character of the field and, hence, the paper can be useful

for those who want to tackle problems in statistical network

analysis and related disciplines.

II. REVIEW

In the following we start surveying recent contributions.

We begin with a paper due to Eldardiry and Neville [11]

dealing with network sampling. Eldardiry and Neville [11]

proposed a novel subgraph resampling approach which cannot

only generate pseudo samples with sufficient global variance.

The method also maintains local relational dependencies and

link structures. The algorithm is based on a two-phase rela-

tional subgraph resampling technique. The first phase selects

subgraphs of same size from the original relational data, and

the second phase links up the selected subgraphs. Finally the

authors applied two different relational settings to evaluate the

resampling method.

In [9], Dehmer and Basak explored several statistical meth-

ods to analyze complex networks. Also, the book deals with

explaining machine learning methods for networks such as

graph classification. Importantly [9] shows that graph theory,

machine learning and statistical techniques have been applied

in an interdisciplinary manner.

It is known that bootstrapping is a well-known data-driven

approach used to create random pseudo samples with just

one empirical observation. In this context Tremblay et al.

[28] presented an approach for statistical resampling based on

bootstrapping of nodes under constraints. The whole network

was used to do the analysis and the aim of their study was to

design a statistical test and find acceptance intervals for various

null hypotheses concerning relevant observable features of

groups of nodes in a given network. They demonstrated the

performance of the network by using real data sets.

Detecting communities in graphs has been useful to identify

functional sub units of a system and to reveal the similarities

among vertices. In [15], Fortunato explored the problem of

community detection by defining the problem and discussing

issue regarding the significance of the method. This method

is mainly based on bayesian inference where the best fit is

obtained through the maximization of likelihood (generative

models). The observations are used by using Bayesian infer-

ence to estimate the probability to verify whether the given

hypothesis is true or false.

110 Int'l Conf. Foundations of Computer Science | FCS'15 |

Djidjev et al. [10] analyzed traffic patterns by using sta-

tistical network analysis. Djidjev represented large computer

traffic networks as time-labeled graphs and made use of tem-

poral characteristics to partition the graph in subgraphs where

they called them telescoping subgraphs. The statistical analysis

aimed to explore characteristics of the subgraphs statistically.

As statistical techniques, Djidjev et al. [10] applied methods

from supervised learning.

Lancichinetti et al. [20] introduced a new measure called

C-score aiming at quantifying the statistical significance of

communities in networks. The C-score is the probability of

occurrence of a community that has the same number of

nodes with the same degree sequence and the same internal

connections under two hypothesis: The first is that the nodes

are randomly connected in the network, and the second is that

the group is chosen. In order to predict the statistics associated

with individual clusters, statistical measures have been used.

The proposed measure of C-score has been successfully tested

on several networks such as the random graphs, artificial

networks and real networks.

Guillaume [17] studied p2p query graph by using statistical

graph analysis. To to so, Guillaume used complex network

analysis methods to analyze large traces of queries and ex-

changes processed in such p2p query systems. The authors

defined a labeled weighted bipartite graph called the query

graph representing the query information. In this query graph,

the time-evolution of degrees has been mainly studied. As

demonstrated in [17], degree distributions of query graph

follow power laws.

A similar analysis using randomization techniques have

been performed in [31]. In this paper, two edge-based random-

ization techniques have been introduced. More precisely, Ying

and Wu [31] developed spectrum preserving randomization

methods. The proposed method has been proven useful when

preserve graph properties meaningfully. In [31], Ying and

Wu mainly focused on two important eigenvalues of graph

spectrum, namely the largest eigenvalue of the adjacency

matrix and the second largest eigenvalue of the Laplacian

matrix respectively.

In [21], community structures have been explored too. Here,

the problem has been explored based on the local optimization

of a fitness function that expresses the statistical significance of

clusters. Also Lancichinetti et al. [21] the Order Statistics Lo-

cal Optimization method (OSLOM) to detect clusters in large

complex networks. In order to give evidence, mathematical

properties of OSLOM have been explored and the methods

have been demonstrated by employing real world data sets,

see [21].

Albert and Barabási [1] performed significant work in

statistical network analysis dealing with exploring dynamics of

complex networks. In [1], important network models are dis-

cussed which include random graphs, small-world networks,

scale-free networks and evolving networks. Those have been

analyzed statistically, see [1].

Simpson et al. [24] explored functional brain networks

statistically. First they performed a survey on the statisti-

cal methods to analyze these networks and for exploring

functional magnetic resonance imaging (fMRI) network data.

Moreover, they also discussed techniques for modeling and

inferring brain networks.

In order to model social networks by using statistical

models, exponential random graph models (ERGMs) have

been used. Snijders et al. [25] explored convergence problems

of estimation algorithms and inference problems using these

ERGMs. To tackle this problem they used new specifications

of ERGMs allowing to represent structural properties such as

transitivity and heterogeneity of complex social networks. As

result, they have demonstrated that their new model outper-

form classical techniques.

III. SUMMARY AND CONCLUSION

In this paper we performed a brief survey of the recent

literature on statistical analysis of networks. For instance, we

reviewed contributions dealing with statistical properties of

complex networks like the degree distribution, the clustering

coefficient, and other statistical analysis techniques such as

resampling, bootstrapping, randomization and so forth. We see

that those statistical techniques are suitable to investigate so-

called non-deterministic networks. That means, we refer to

networks that cannot be inferred deterministically as in graph

theory. Therefore we believe that these approaches comple-

ment classical ones meaningfully and, hence, we continue

doing research in this field.

IV. ACKNOWLEDGEMENTS

We gratefully acknowledge financial support from the German

Federal Ministry of Education and Research (BMBF) (project

RiKoV, Grant No. 13N12304).

REFERENCES

[1] Réka Albert and Albert-László Barabási. Statistical mechanics of
complex networks. Reviews of modern physics, 74(1):47, 2002.

[2] Jeffrey D Allen, Yang Xie, Min Chen, Luc Girard, and Guanghua
Xiao. Comparing statistical methods for constructing large scale gene
networks. PloS one, 7(1):e29348, 2012.

[3] Gökmen Altay and Frank Emmert-Streib. Inferring the conservative
causal core of gene regulatory networks. BMC Systems Biology, 4:132,
2010.

[4] Vladimir Boginski, Sergiy Butenko, and Panos M Pardalos. Statistical
analysis of financial networks. Computational statistics & data analysis,
48(2):431–443, 2005.

[5] M. Dehmer. Strukturelle Analyse web-basierter Dokumente. Multimedia
und Telekooperation. Deutscher Universitäts Verlag, Wiesbaden, 2006.

[6] M. Dehmer, F. Emmert-Streib, A. Graber, and A. Salvador, editors.
Applied Statistics for Network Biology. Quantitative and Network
Biology. Wiley-Blackwell, 2011.

[7] M. Dehmer, M. Grabner, A. Mowshowitz, and F. Emmert-Streib. An
efficient heuristic approach to detecting graph isomorphism based on
combinations of highly discriminating invariants. Advances in Compu-
tational Mathematics, 39:311–325, 2012.

[8] M. Dehmer, M. Grabner, and K. Varmuza. Information indices with
high discriminative power for graphs. PLoS ONE, 7:e31214, 2012.

[9] Matthias Dehmer and Subhash C Basak. Statistical and machine
learning approaches for network analysis. Wiley Online Library, 2012.

[10] Hristo Djidjev, Gary Sandine, Curtis Storlie, and Scott Vander Wiel.
Graph based statistical analysis of network traffic. In Proceedings of
the Ninth Workshop on Mining and Learning with Graphs, 2011.

Int'l Conf. Foundations of Computer Science | FCS'15 | 111

[11] Hoda Eldardiry and Jennifer Neville. A resampling technique for
relational data graphs. In Proceedings of the 2nd SNA workshop, 14th
ACM SIGKDD conference on knowledge discovery and data mining,
2008.

[12] F. Emmert-Streib and M. Dehmer. Analysis of Microarray Data: A
Network-Based Approach. Wiley-VCH, 2008. Weinheim, Germany.

[13] F. Emmert-Streib, R. De Matos Simoes, S. Tripathi, G. V. Glazko, and
M. Dehmer. Bayesian analysis of the chromosome architecture of human
disorders by integrating reductionist data. Scientific Reports (Nature
Publishing), 2, 2012.

[14] James Fairbanks, David Ediger, Rob McColl, David A Bader, and Eric
Gilbert. A statistical framework for streaming graph analysis. In
Advances in Social Networks Analysis and Mining (ASONAM), 2013
IEEE/ACM International Conference on, pages 341–347. IEEE, 2013.

[15] Santo Fortunato. Community detection in graphs. Physics Reports,
486(3):75–174, 2010.

[16] Anna Goldenberg, Alice X Zheng, Stephen E Fienberg, and Edoardo M
Airoldi. A survey of statistical network models. Foundations and
Trends R© in Machine Learning, 2(2):129–233, 2010.

[17] Jean-Loup Guillaume, Matthieu Latapy, and Stevens Le-Blond. Sta-
tistical analysis of a p2p query graph based on degrees and their
time-evolution. In Distributed Computing-IWDC 2004, pages 126–137.
Springer, 2005.

[18] Steve Hanneke, Wenjie Fu, Eric P Xing, et al. Discrete temporal models
of social networks. Electronic Journal of Statistics, 4:585–605, 2010.

[19] Mark Huisman and Tom AB Snijders. Statistical analysis of longitudinal
network data with changing composition. Sociological methods &
research, 32(2):253–287, 2003.

[20] Andrea Lancichinetti, Filippo Radicchi, and José J Ramasco. Statis-
tical significance of communities in networks. Physical Review E,
81(4):046110, 2010.

[21] Andrea Lancichinetti, Filippo Radicchi, José J Ramasco, and Santo
Fortunato. Finding statistically significant communities in networks.
PloS one, 6(4):e18961, 2011.

[22] Sang Hoon Lee, Pan-Jun Kim, and Hawoong Jeong. Statistical properties
of sampled networks. Physical Review E, 73(1):016102, 2006.

[23] Constantine Manikopoulos and Symeon Papavassiliou. Network intru-
sion and fault detection: a statistical anomaly approach. Communications
Magazine, IEEE, 40(10):76–82, 2002.

[24] Sean L Simpson, F DuBois Bowman, and Paul J Laurienti. Analyzing
complex functional brain networks: fusing statistics and network science
to understand the brain. Statistics surveys, 7:1, 2013.

[25] Tom AB Snijders, Philippa E Pattison, Garry L Robins, and Mark S
Handcock. New specifications for exponential random graph models.
Sociological methodology, 36(1):99–153, 2006.

[26] Augustin Soule, Kavé Salamatian, and Nina Taft. Combining filtering
and statistical methods for anomaly detection. In Proceedings of the 5th
ACM SIGCOMM conference on Internet Measurement, pages 31–31.
USENIX Association, 2005.

[27] Marina Thottan and Chuanyi Ji. Anomaly detection in ip networks.
Signal Processing, IEEE Transactions on, 51(8):2191–2204, 2003.

[28] Nicolas Tremblay, Alain Barrat, Cary Forest, Mark Nornberg, Jean-
François Pinton, and Pierre Borgnat. Bootstrapping under constraint for
the assessment of group behavior in human contact networks. Physical
Review E, 88(5):052812, 2013.

[29] JR Van Dorp and MR Duffey. Statistical dependence in risk analysis
for project networks using monte carlo methods. International Journal
of Production Economics, 58(1):17–29, 1999.

[30] Biao Xing and Mark J van der Laan. A statistical method for
constructing transcriptional regulatory networks using gene expression
and sequence data. Journal of Computational Biology, 12(2):229–246,
2005.

[31] Xiaowei Ying and Xintao Wu. Randomizing social networks: A
spectrum preserving approach. In SDM, volume 8, pages 739–750.
SIAM, 2008.

112 Int'l Conf. Foundations of Computer Science | FCS'15 |

SESSION

POSTER PAPERS

Chair(s)

TBA

Int'l Conf. Foundations of Computer Science | FCS'15 | 113

114 Int'l Conf. Foundations of Computer Science | FCS'15 |

A Dependable Language for Low Power Embedded Systems

Yuan-Ming Chang, Chia-Chen Hsu, and Jenq-Kuen Lee
Department of Computer Science, National Tsing-Hua University, Taiwan

Abstract— Minimizing the power consumption is crucial for
embedded systems. Previous researches have successes for
power optimization with stateless components in embedded
processors. Recently, researches have started to design the
architecture in minimizing the supply voltage for stateful
components. However, lowering voltage also increases the
risks of reliability. In this paper, we present a dependable
language, which defines several expanded syntax rules. With
this language, developers can describe the region of critical
data and the region hoping for stored in low voltage region of
memories. The language provides ways for programmers to
participate in exploiting the variability and reliability issues
of hardware designs.

1. Introduction
Minimizing the power consumption is crucial for em-

bedded systems[1][2]. One method to reduce overall power

consumption is lowering the supply voltage. For example,

Abdel-Majeed et al.[3] propose a drowsy state which uses

retention voltage to keep data alive in a lower voltage.

While lowing supply voltage can save power consumption,

it also hurts the reliability of the system. To be exact,

the probability of error increases as the supply voltage is

lowered[4][5]. There are researches which are motivated to

detect soft error and present approaches to recover faults.

Gao et al.[6] proposes explicit output comparison to identify

faults. However, these researches are lack of flexibility, such

as deciding which parts of the programs should be executed

in low power mode or should be protected.

To enable programmers to participate in exploiting the

variability and reliability issues of hardware designs, we

propose a dependable language. By proposed pragma, pro-

grammer can decide whether the data/functions be protected,

or whether the data/functions be put in low power mode.

With cooperated architecture, our system can partially exe-

cute low power mode and guarantee the reliable of certain

instructions.

2. Syntax Rules for Dependable Lan-
guage

We propose several dependable pragma, which can sup-

port all kinds of data type, such as char, int, short, long.

Besides, they can also support several conditional statements,

such as for ,while, if, do. In the following, we introduce

proposed dependable language and their meanings.

• reliable
reliable means declared value/function needs to be

protected. Following are some examples:

reliable int value means the declared value is a

reliable integer type and it needs to be protected.

reliable for (...) means the declared for-loop is a

reliable for-loop, and all values in the loop scope need

to be protected.

reliable(output | count) for (...) means variable

”output” and ”count” in the loop scope need to be

protected, and others remain normal.

• dllpRegion
dllpRegion means declared value/function would be

put in memory with low supply voltage or in certain

memory region. Following are some examples:

dllpRegion int value means the declared value is

a dllpRegion integer type, and it is stored with low

support voltage.

dllpRegion for (...) means the declared for-loop is a

reliable for-loop, and all values in loop scope would

be stored with low voltage.

dllpRegion(output | count > $r1) for (...) means

that, in the for loop, variable ”output” and ”count”

would be stored in assigned region, $r1.

• reliable dllpRegion
reliable dllpRegion means declared value/ function

would not only be put in certain memory (low voltage

region or other certain region) but also be protected.

For example:

reliable dllpRegion int value means the declared value

is a reliable dllpRegion integer type, and it needs to

be protected and be stored with low support voltage.

reliable dllpRegion for (...) means the declared

for-loop is a reliable dllpRegion for-loop, and all

values in loop scope needs to be protected and be

stored with low support voltage.

reliable(output | count) dllpRegion(output | count
> $r1) for (...) means variable "output" and "count"

in the loop scope need to be protected and be stored

in region1 $r1.

reliable dllpRegion(output > $r0 | count > $r1) for
(...) means the declared for-loop is a reliable for-loop,

so all variables in the loop should be protected.

Also, variable "output" and "count" in the loop scope

need to be stored in region 0($r0) and region 1($r1)

Int'l Conf. Foundations of Computer Science | FCS'15 | 115

respectively.

reliable(output | count) dllpRegion(count > $r1
| $other > $r0) for (...) means variable ”output”

and ”count” in the loop scope need to be protected.

Moreover, ”count” value should be stored in region

1($r1), and other values are stored in region 0($r0).

To illustrate how to use proposed language, we take a

Low Power Smart Trash as an example. The trash keeps

in sleep mode most of time. In sleep mode, the support

voltage of memory is kept low to save power. When people

throw the garbage to it, the trash occurs interrupt and

detects whether the trash is filled. The sample code of

smart trash is shown in Listing 1 and the interrupt function

is shown in Listing 2. In Listing 1, inPin0 and in Pin1
are the input ports of the trash(GPIO pins of sensor). We

should guarantee the accuracy of the input ports because

the system relies on it to get inputs. Since the input ports

of a system are frequently used and important, we put

them in regular memory. If inputs were put in low voltage

region of memory, the system is difficult to be recovered

when the error occurs. Threshold, declared in line 6, is the

value based on it the system judge whether the trash is

filled. We declare Threshold in dllpRegion type rather than

putting in the memory of regular voltage because it can be

recovered once the error occurs. While we also declare it in

reliable type because reliable promises the system would

detect errors, if any, and solve them. Without declaring in

reliable type, the systems never check the correctness of

the data. lightSensor and pressureSensor are the value of

current pressure and light. When people throw trash, the

interrupt is triggered (as shown in Listing 2). We have

lightSensor / pressureSensor get data from reading inPin0 /
inPin1. Since lightSensor and pressureSensor refresh every

time when calling interrupt function, they are relatively

less important than inPin0 / inPin1. Therefore we declare

them in dllpRegion type, so does the Text. By this example,

we present how to save energy without lose accuracy by

flexibly using proposed dependable language.

1 / * p u s h b u t t o n c o n n e c t e d t o d i g i t a l p i n 7 , 8 . * /
2

3 i n t i n P i n 0 = 7 ; i n t i n P i n 1 = 8 ;
4

5 / * The d e c l a r e d v a l u e needs p r o t e c t i o n , and i t i s
s t o r e d o t h e r r e g i o n . * /

6

7 r e l i a b l e d l l p R e g i o n i n t t h r e s h o l d = 8 0 ;
8

9 / * The d e c l a r e d v a l u e i s l o a d e d and s t o r e d o t h e r
r e g i o n . * /

10

11 d l l p R e g i o n i n t l i g h t S e n s o r , p r e s s u r e S e n s o r ;
12 d l l p R e g i o n c h a r Text [2 0] = " Trash i s f u l l " ;

Listing 1: Example of IoT Smart Trash

1 vo id i n t e r r u p t _ h a n d l e r () {
2

3 / * r e a d t h e i n p u t p i n . * /
4 l i g h t S e n s o r = d i g i t a l R e a d (i n P i n 0) ;
5 p r e s s u r e S e n s o r = d i g i t a l R e a d (i n P i n 1) ;
6

7 i f (p r e s s u r e S e n s o r > t h r e s h o l d
8 && l i g h t S e n s o r) {
9 sendData (Text) ;

10 . . .
11 }
12 . . .
13 }

Listing 2: Interrupt function

3. Conclusion
We propose a prototype of the dependable language

which allows users to feasibly store data in low voltage

region of memories and protect critical data. We also use

an example of smart trash to demonstrate how to use

this language. The language is our attempt to provide

programmers ways to exploit the variability and reliability

issues of hardware designs.

Acknowledgment
The work is supported in part by III and by Taiwan MOST.

References
[1] Yi-Ping You, Chung-Wen Huang, and Jenq Kuen Lee, "Compilation

for Compact Power-Gating Controls, "ACM Transactions on Design
Auto-mation of Electronic Systems, Vol. 12, Issue 4, Article 51, ACM,
New York, September 2007.

[2] Wen-Li Shih, Yi-Ping You, Chung-Wen Huang, and Jenq-Kuen Lee,
"Compiler Optimization for Re-ducing Leakage Power in Multi-thread
BSP Programs, "ACM Transactions on Design Automation of Elec-
tronic Systems, Vol. 20, Issue 1, Article 9, November, 2014.

[3] Mohammad Abdel-Majeed, Murali Annavaram, "Warped Register File:
A Power Efficient Register File for GPGPUs ,"HPCA ’13 Proceedings
of the 2013 IEEE 19th International Symposium on High Performance
Computer Architecture (HPCA), 2013.

[4] Mark Gottscho, Abbas BanaiyanMofrad, Nikil Dutt, Alex Nicolau,
Puneet Gupta,"Power / Capacity Scaling:Energy Savings With Simple
Fault-Tolerant Caches, "DAC ’14 Proceedings of the 51st Annual
Design Automation Conference Pages 1-6 ACM New York, NY, USA
2014

[5] Nikil Dutt, Puneet Gupta, Alex Nicolau, Abbas BanaiyanMofrad, Mark
Gottscho, Majid Shoushtari, "Multi-Layer Memory Resiliency, "DAC
’14: Proceedings of the 51st Annual Design Automation Conference,
June 2014

[6] Gao. Yue, Gupta. Sandeep K, Breuer. Melvin A, "Using Explicit
Output Comparisons for Fault Tolerant Scheduling (FTS) on Modern
High- Performance Processors, "Design, Automation & Test in Europe
Conference & Exhibition (DATE), 2013

116 Int'l Conf. Foundations of Computer Science | FCS'15 |

COMPARING GRAPHS REPRESENTING
CHRONOLOGICALLY ORDERED EVENTS

Katia Mayfield
Department of Mathematics, Computer and Natural Sciences, Athens State Univ., Athens, AL USA

Abstract – The use of graphs to represent
chronologically ordered events may be justified
in several different applications. Two graphs
from different sources representing the same
sets of events may need to be compared to verify
their similarities or correctness if one of the
graphs is assumed to be the expected
representation. This study discusses possible
accuracy scoring systems that can be applied in
such situations.

Keywords: graph, similarity, accuracy,
compassion, LCS.

1 INTRODUCTION

There are many scenarios and situations where
the occurrence of events can be readily
represented by graphs. In such graphs, edges are
used to represent dependency between events.
Consider for example a sequence of historical
facts, beginning with Abraham Lincoln being
elected president in 1860, his anti-slavery
outlook caused South Carolina along with six
other states to secede from the Union[8]. In the
example, one event became the cause for the
next that occurred. At the same time, other
events may occur that are independent of one
another. For example, Lincoln becomes
President; the Civil War takes place as a result
of his presidency; and Lincoln invents a tool to
lift riverboats stuck on sandbars [4].

Sometimes researchers involved with historical
events have to estimate a sequence of events. A
comparison between these estimates and extant
documentation may result in ascertaining the
accuracy of the estimation. A similar situation
happens with a literary critic trying to find the
evolutionary path of a text, going through
different versions. In order to be able to
determine the accuracy of the estimation

method, a numerical scoring system has to be
applied.

2 BACKGROUND

Woon and Wong proposed the use of a new
scoring system for their study in text versions
restricted to graphs consisting of a single linear
path and establishing windows of comparison
along such path, which allowed one correct
result to be counted multiple times, according to
the size of the window, when a node preceded
any of its actual successors in the path [9]. In the
field of Biology, comparison of tree structures is
commonly applied to the analysis of the
evolution of species [1]. Some of these
algorithms address the graph or tree topology,
focusing on leaf nodes organized in quartets:
groups of four labeled nodes divided by two
internal nodes [3].

In the field of Applied Mathematics, a number
of graph comparison techniques are focused on
the node placement in the graph. Some of those
methods are variations of the Levenshtein
distance metric and the Hamming distance
methodologies applied to strings representing a
Depth-First traversal of the graph [2]. A more
suitable algorithm for our problem, known as the
Partition Metric, is also used in the field of
Biology and considers both, topology and
ordering of the nodes in a path, without
requiring labeled edges [7].

3 SCORING ALGORITHMS

In this study we evaluated a slightly modified
version of the Partitioning Metric algorithm to
measure the accuracy of the results of a version
evolution estimator tool. The algorithm
compares two graphs, which contain the same
set of nodes, by searching for edges that create
equal partitions of nodes in both graphs. A one

Int'l Conf. Foundations of Computer Science | FCS'15 | 117

point score is awarded to every edge that creates
matched partitions, basically measuring the
similarity between the graphs.

Table 1 shows the accuracy of the algorithm
working with Kruskal’s Minimum Spanning
Tree (MST) and a modified version of the
Hamiltonian path, Single Path Evolution (SPE),
options in the estimation of evolutionary
versions of a text [6]. As it can be seen, under
this scoring system the algorithm is able to
correctly identify the sequence in several cases.
However, some results seem to show a low
accuracy, which is a problem already identified
by other researchers with this scoring system
where a single node mismatch may cause a high
difference, low score, in the graph topology
depending on its new placement [7]. Exploring
the possibility of utilizing the solution based on
the distance metric applied to strings
representing a Depth-First traversal of the graph,
a new scoring system can be developed where
the similarity of the graphs could be measured
by using the Longest Common Substring
algorithm [2, 6].

The scoring obtained through this method is less
sensitive to single nodes mismatch and therefore
closer to the actual measurement of the
similarities of the graphs. The LCS algorithm
produced exactly the same results for the test
cases shown in Table 1. An extra test case based
on William Shakespeare’s “Henry V”, which
causes the mismatch node anomaly in the
Partition method, gave LCS a better accuracy
representation score.

4 ANALYSIS AND CONCLUSION

An in-depth analysis of the test case results with
low accuracy showed that the lower results were
a consequence of a backward path, preceded by
a jump from the original to the last version.

These works, in which the evolutionary
sequence can be verified, allowed for the
establishment of a benchmark in the discovery
of evolutionary paths.

Table 1 Partition Metric Results

5 REFERENCES

1. Albright, E., Hessel, J., Hiranuma, N., Wan, C.,

Goings, S. “A Comparative Analysis of Popular
Phylogenetic Reconstruction Algorithm,” MICS
2014 Proceedings, 2014.

2. Cao, B., Li, Y., Yin, J. “Measuring Similarity
between Graphs Based on the Levenshtein
Distance,” Appl. Math, Inf. Sci., pp 169-175,
2013.

3. Christiansen, C., Mailund, T., Pedersen, C.N.,
Randers, M. “Computing the quartet distance
between trees of arbitrary degree,” Springer,
2005.

4. Edwards, O. “Abraham Lincoln: the Ingenious
Inventor,” Smithsonian Magazine, October 2006.

5. Irace, K O., The First Quarto of “Hamlet.”
Cambridge: Cambridge University Press (The
New Cambridge Shakespeare), 1998.

6. Neapolitan, R., Naimipour, K. “Foundations of
Algorithms Using C++ Pseudocode,” Jones and
Bartlett, Inc., New York, 2004.

7. Penny, D., Hendy, M.D., “The Use of Tree
Comparison Metrics,” Systematic Zoology, vol.
34, No. 1, March 1985, pp. 75-82.

8. (2014, May).Saving America’s Civil War
Battlefields: Civil War Trust [Online] available:
http://www.civilwar.org/

9. Woon, W.L., Wong, K.D. “String alignment for
automated document versioning,” Knowledge
Information Systems, 2009, pp. 293-309.

Test
Case

Minimum
Spanning

Tree
SPE

EBB Child 100% 100%
EBB Bettine 66% 66%
EBB Sea 33% 33%
EBB Loved 100% 100%
EBB Clouds 100% 100%
EBB Dog 50% 50%
EBB Mitford 100% 100%
WW Leaves 100% 100%
WS Hamlet 66% 66%

118 Int'l Conf. Foundations of Computer Science | FCS'15 |

