
SESSION

EMBEDDED SYSTEMS AND NOVEL
APPLICATION + EMBEDDED

MICROCONTOLLERS + OPTIMIZATIONS

Chair(s)

TBA

Int'l Conf. Embedded Systems and Applications | ESA'15 | 1

2 Int'l Conf. Embedded Systems and Applications | ESA'15 |

FPGA Design and Implementation of Demodulator/Decoder
Module for the EU eCall In-Vehicle System

Majeed Nader and John Liu
Electrical and Computer Engineering Dept., Wayne State University, Detroit, Michigan, USA

Abstract— This paper presents the hardware design of a
demodulator and decoder chip module for the In-Vehicle
System (IVS) in the EU emergency call (eCall) system.
FPGA technology is used to design and implement the
demodulator/decoder module on a single chip. Xilinx ISE
tools and Verilog HDL are used to develop the Register
Transfer Level (RTL) of the module. The developed module
is compiled, synthesized, and simulated. A Virtex-5 FPGA
device is utilized to implement the developed system. The
employed algorithm and hardware interfaces of the module
is analyzed and discussed. A complete set of the input signals
are used to simulate and verify the functionality of the
module. The test and verification of the developed chip is
done for different frequencies.

Keywords: FPGA, EU eCall, in-vehicle system, demodulator,

decoder.

1. Introduction
More than one million people and billions of dollars are

lost in car accidents each year [1]. The automotive safety

systems are always critical in the automotive industry and

the automotive electronics industry. In the next few years,

the electronic components in car manufacturing, including

vehicular communication systems, will comprise of up to

40% of the total vehicle costs [2]. Utilizing telematics in

vehicle safety system can provide significant benefits to

automotive industry and road safety [2][3]. To reduce the

fatality of car incidents, the European Commission has

agreed to develop a telematics built-in emergency call (eCall)

system that is to be operable in all EU countries by October

1, 2017 [4].

Responding to car accidents in the first moments known

as the “golden hour” from the emergency centers to rescue

the involved people can reduce the death rate by 11% and

disability probability by 12% [1]. The EU eCall system

provides vital role in shortening the arrival time of the

emergency personnel in traffic accidents [5]. The system

activates a voice call and provides an in-band data channel

between an emergency center and the car involved in an

accident [5]. The activation can be done manually through

a specified button or automatically through the installed

sensors in the vehicle [6].

The three crucial components of the system are the In-

Vehicle System (IVS) that is to be designed and installed

in all new cars in EU countries, Public Safety Answering

Point (PSAP), and mobile telecommunication equipment.

The IVS collects data about the accident and the vehicle

to build the Minimum Set of Data (MSD)[5]. It also uses a

cellular module to activate a voice call with the PSAP. There

will be multiple stations of the PASP around EU countries.

The mobile carriers should provide a dedicated emergency

channel for the eCall system. Therefore, the system can use

the channel anytime [5].

As soon as the IVS activates the eCall uplink channel,

it monitors the downlink channel to receive the feedback

messages for the PSAP. The feedback messages are Ac-

knowledgment (ACK), Not Acknowledgment (NACK), and

START messages. The feedback messages control the status

of the IVS transmissions. The IVS uses a demodulation

technique and a BCH decoder to demodulate and decode

the downlink messages from the PSAP.

Developing the modem chip for the IVS is challenging

because each module processes sophisticated algorithms.

The Field Programmable Gate Array (FPGA) is a modern

approach to design the digital modules of the IVS modem.

In this paper, we present the design procedures of the

demodulator and decoder modules to be used in the IVS

and implement the developed module on an FPGA device.

We employ Verilog HDL to describe the Register Transfer

Level (RTL) of the modules. Utilizing a Xilinx synthesis

tool, the developed modules are designed, simulated, and

synthesized. We consider different clock frequencies to test

and verify the modules.

2. The EU eCall System
The Third Generation Partnership Project (3GPP) emer-

gency call system is a pan-European telematics system. The

goal of the project is to reduce the fatalities in car accidents.

It is expected that 3GPP eCall will greatly reduce the

losses of lives in vehicle accidents. The system activates an

emergency call and data transmission channel automatically

via the installed sensors in a vehicle or manually by an

occupant in the vehicle. The main parts of the eCall system

are IVS, PSAP, and public mobile network carriers. While

it is activated, the IVS collects the MSD containing infor-

mation about the vehicle such as the VIN number and GPS

coordinates. The information is sent to the most appropriate

PSAP through a public mobile communication carrier [4][7].

Int'l Conf. Embedded Systems and Applications | ESA'15 | 3

In the idle state, the IVS receiver can monitor the downlink

to receive a START message from the PSAP transmitter.

As soon as the START message is detected, the IVS starts

sending the MSD as uplink messages to the PSAP. After

sending the MSD, the IVS expects feedback messages from

the PSAP. If the IVS receives a NACK message from the

PSAP, it transmits the MSD continuously until it receives an

ACK message. The IVS also can reuse the downlink message

to activate the connection between the IVS and the PSAP.

In this case, the IVS uses the downlink message to push the

PSAP to send the START message and monitors the received

signals to detect the START message from the PSAP [5].

The IVS uses an emergency call (E112) through a cellular

communication network to contact the nearest and most

appropriate PSAP and provides the PSAP with the MSD.

As soon as the PSAP receives the MSD from the IVS, the

required emergency services will be sent to the location

of the accident to aid the people who are involved in the

accident and reorganize the traffic roads [6].

IVS is a built-in system in vehicles for emergency call

purposes. The IVS collects the MSD about the vehicle such

as the current geographical position of the car through a

GPS or a similar system, the severity of the accident, and

any other necessary information required for emergency

assistance [6]. Figure 1 shows the different modules of the

IVS.

Fig. 1: The IVS modem block diagram.

The Cyclic Redundancy Check (CRC) module performs

the CRC coding on the incoming data which is the MSD.

The MSD data consists of 1,120 bits. The CRC module

appends the input data with 28 bits of the CRC parity check

for error detection during the data transmission. Another

module is employed for encoding the MSD data which is

the turbo encoder module. The turbo encoder performs a

Forward Error Correction (FEC) coding technique. The code

rate is 1/3. The input to the turbo encoder is the MSD data

that is appended with the parity check bits. As the result of

the turbo encoding code rate and trellis bits, the output of

the turbo encoder is the encoded MSD data which consists

of 3,456 bits [5].

The modulator groups the encoded bit streams into symbols

and generates the corresponding waveform for each symbol.

Each symbol is represented by three bits, so there are eight

possible symbols. There are eight different uplink waveforms

for the eight different possible symbols. In both IVS and

PSAP modulators, the Bipolar Pulse Position Modulation

(BPPM) is used as the modulation scheme [6]. There are

three cyclic right shift versions of the positive or negative

basic waveform to represent the different symbols [5].

3. The Demodulator/Decoder Module
The feedback messages control the IVS transmission

status. the demodulator demodulates the downlink messages

that are transmitted by the PSAP. There are only four

feedback messages from the PSAP, which are: the START

message to trigger the IVS to start transmitting the MSD to

the PSAP, the NACK to signal IVS to continue to send the

MSD, the ACK to acknowledge that the MSD is received

by the PSAP, and one messages is reserved for future extra

functionality which is the Reserved message. [6].

The modulator of the PSAP can modulate 16 BCH encoded

messages. However, only four of them are utilized by the EU

eCall system. Denote BCH encoded data bits as b =
{
bk
}

,

k = 0, 1, ..., 59, and the demodulated symbols as S =
{
sl
}

,

l = 0, 1, ..., 14. Table 1 shows the feedback messages in

different formats. The feedback messages are represented by

60 bits [5][6]. The 60 bits of feedback messages are grouped

Table 1: The feedback messages.
Feedback Binary BCH (hexadecimal)
START 0000 A72 F298 41FA B376
NACK 0001 4C4 1FD6 6ED2 7179
ACK 0010 97A 8C41 FAB3 7693

Reserved 0011 DBE 9397 9461 07EA

into symbols by the PASP modulator, and each symbol

represents four bits. So each message is represented by 15

symbols as they are represented by 15 hexadecimal digits in

Table 1. The PSAP modulator modulates the symbols into

downlink waveforms. Denote the downlink waveform bits

as e =
{
el
}

, l = 0, 1, ..., 511, the downlink waveform as

SD(k), k = 0, 1, ..., 31 . The waveform is shown in Figure

2.

The downlink waveforms are represented by 32 samples

and each sample is represented by 16 signed bits. The

sampling rate is 8KHz, the modulation frame is 4 ms, and

the modulation rate is 1000 bits/s [5].

The downlink waveforms (SD) are mapped based on a

basic waveform, which is [5]:

SD(k) = (40,−200, 560,−991,−1400, 7636, 15000,
7636,−1400,−991, 560,−200, 40, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0).
Since each symbol represents 4 bits, there are 16 possible

symbols. Cyclic shift technique is employed to modulate all

the possible symbols in the PSAP modulator. The mapping

4 Int'l Conf. Embedded Systems and Applications | ESA'15 |

Fig. 2: The basic downlink waveform.

technique between the possible symbols and downlink wave-

forms are illustrated in Table 2. The 16 downlink waveforms

Table 2: The symbols and the corresponding downlink

waveforms.
Si SD(k), k = 0, 1, , 31

0000 SD(k)
0001 SD(k − 4)
0010 SD(k − 8)
0011 SD(k − 12)
0100 SD(k − 16)
0101 SD(k − 20)
0110 SD(k − 24)
0111 SD(k − 28)
1000 −SD(k − 28)
1001 −SD(k − 24)
1010 −SD(k − 20)
1011 −SD(k − 16)
1100 −SD(k − 12)
1101 −SD(k − 8)
1110 −SD(k − 4)
1111 −SD(k)

are simulated in Figure 3.

3.1 The Design Algorithm
The flowchart of the employed algorithm is illustrated in

Figure 4. The demodulator expects 16 different downlink

waveforms, and after receiving and demodulating them, it

generates the corresponding four bits of the symbols of the

received waveforms.

The BCH decoder receives the demodulated symbols and

stores multiple symbols. After storing 15 symbols, it builds

the 60 bits of the feedback message. As there are only

four feedback messages, they are stored in a ROM on the

Demod/Decod module. The decoder correlates the received

messages with the stored ones and generate the feedback

messages in binary form, see Table 1. As soon as the

feedback message is generated, the encoder module receives

Fig. 3: The simulated 16 possible downlink waveforms.

the message and performs a corresponding process in the

IVS. The system ends the process after decoding a feedback

message and restarts another round of message decoding by

demodulation another 15 downlink waveforms.

3.2 Hardware Interfaces

The IVS needs a proper input and output interfaces. To

receive the MSD data bits, the existing Controller Area

Network (CAN) in vehicles can be a good source. CAN

is a bus protocol in cars that can be used as an access to

construct information for the MSD [8].

As the modules send and receive the data stream bits

through a speech encoder/decoder, the interface between the

GSM module and IVS modem can be done through an

inter-IC sound (I2S) bus which is a vital solution for IC

manufactures to interface their ICs with other digital audio

processors [10].

The designed modules can interface with a GSM module

that supports I2S bus. The u-blox LEON-G200 GSM mod-

ule supports I2S bus for digital audio data transmission

[11][12]. It has four I2S wires, the clock source (SCK),

word select (WS), TX, and RX. Sampling frequency is 8

KHz, the word length is 16 bits, and the clock frequency is

256 KHz [12]. These parameters match our design modules.

The feedback messages consist of 15 symbols, and each

symbol is represented by a waveform that consists of 512

bit, e =
{
el
}

, l = 0, 1, ..., 1151; therefore, there are

15 × 512 = 7, 680 bits to be received through the I2S bus

for each feedback message demodulation. Considering the

GSM module clock frequency, a feedback message can be

received in 7680/256 = 30 ms regardless the chip delay of

few nanoseconds in our designs. Therefore, it can be verified

that the design follows the 3GPP eCall standards.

Int'l Conf. Embedded Systems and Applications | ESA'15 | 5

Fig. 4: The designed system flowchart.

4. FPGA Implementation
The designed system is simulated and implemented on a

FPGA hardware chip by using Xilinx ISE tool and a Xilinx

FPGA device [9]. Verilog HDL is employed to develop the

RTL of the module. The module is compiled, synthesized,

and simulated. Figure 5 shows the RTL architecture of the

developed module.

The module has three input ports and three output ports. The

Fig. 5: The developed RTL of the Demodulator/Decoder

module

“CLK” is the clock source input of the module, the “Dinp”

is the input port for the MSD data, and the “Reset” is used

to reset the module. The output ports are the FDBK[3:0],

SYMB[4:0], and DL. The FDBK [3:0] generates the four

bits of the feedback messages and they are the controlling

information of the IVS transmission status. The SYMB[4:0]

represents the four bits of the symbols, SYMB[3:0], and one

bit to indicate if the symbol is invalid, the Most Significant

Bit (MSB) of the SYMB. The DL port is designed to

generate the downlink waveforms for testing and verification

purposes. Both SYMB[4:0] and DL output ports are not

necessary for controlling the IVS transmission status, but

we designed the ports for research and test purposes. The

FDBK[3:0] is the results of decoding the demodulated

symbols.

4.1 Simulation
Verilog HDL is employed to design a test bench to

simulate the designed module. All the 16 possible downlink

waveforms are generated to build the 15 waveforms that

are necessary to modulate the feedback messages. Using the

Xilinx ISE simulator tool, the three feedback messages and

the reserved feedback message in Table 1 are generated in

the test bench and applied to the input of the module. The

simulation checks all the downlink waveforms of feedback

messages and the module demodulated the symbols and

generated the corresponding feedback messages accordingly.

The simulation of the four feedback messages and the effect

of the Reset input is shown in Figure 6.

Fig. 6: The simulated feedback messages and the Reset port.

The START feedback message is simulated and shown

in Figure 7. Note that the FDBK[3:0] represents the invalid

message, “1100”, until all the 15 waveforms of the START

messages are demodulated and decoded. As soon as the 15

waveforms are demodulated (compare the simulated symbols

in Figure 7 and START hexadecimal digits), the FDBK[3:0]

generates the START message, “0000”.

The ACK message is simulated and the result is shown

in Figure 8. In both cases, it can be seen the downlink

waveforms in trains of binary digits. The symbols are

demodulated based on the received downlink waveforms.

4.2 Hardware Implementation
The developed module is implemented on a Virtex-5

FPGA device. The OpenSPARC evaluation platform with an

6 Int'l Conf. Embedded Systems and Applications | ESA'15 |

Fig. 7: The simulated START message.

Fig. 8: The simulated ACK message.

installed Xilinx XUPV5-LX110T FPGA chip is employed

[13][14]. The utilized FPGA kit is shown in Figure 9. The

FPGA device have 69,120 slice registers and Look-Up Table

(LUTs).

The utilized logic cells to implement the developed module

Fig. 9: The utilized FPGA evaluation kit.

are optimized by using Xilinx ISE tool. Using the tool,

functions are realized for floor planing, placement, and

routing of the design implementation. The utilized logic

cells, LUTs, and flip flops are illustrated in Table 3.

Table 3: The logic cells utilization.
Logic Utilization Used Available Utilization

Slice Register 8680 69120 12 %
Used as Logic 21025 69120 30 %

Slice LUTs 21070 69120 30 %
Bonded IOBs 13 640 2 %

5. Test and Verification
The designed module is tested and verified. A complete

set of downlink waveforms are applied to the input of

the Demodulator/Decoder module. Using Verilog HDL

and FPGA technologies, a sub-module is designed to

generate the structure waveforms to transmit the feedback

messages in Table 1. The output of the sub-module, which

is the “DL” port, is connected to the input pin of the

Demodulator/Decoder module. Both generating downlink

waveforms sub-module and the Demodulator/Decoder

module work under the same clock frequency.

Two different frequencies are employed to test and verify

the functionality of the designed system. The clock sources

can be an external clock generator or an internal oscillator

on the utilized FPGA evaluation kit. Clock frequencies 27

MHz and 33 MHz are implemented. The evaluation kit is

of a built-in frequency generator for the two frequencies.

The extension ports of the FPGA evaluation board are

assigned as the input and output pins of the designed

module. A four channel oscilloscope is employed to study

the generated symbols and feedback messages. As the I2S
bus is employed to interface the designed module with a

GSM module, the downlink waveforms are applied to the

module in the binary form. The output of the module is

also in the binary form, which is the input data of the turbo

encoder module in the IVS.

The 27 MHz is used as the clock frequency to run the

implemented module on the FPGA device. Figure 10 shows

a sample of the demodulated symbols that are represented

by the received downlink waveforms. The four bits of the

SYMB[3:0] are shown in different colors (Yellow, Blue,

Purple, and Green respectively) and numbered as 4, 3, 2,

and 1 respectively.

Decoding each set of 15 demodulated symbols, the

Fig. 10: The demodulated symbols, 27 MHz.

module generates the feedback messages. The waveforms

of the feedback messages are applied to the input of the

designed module. The feedback messages are decoded and

represented by four bits. The FDBK [3:2] are zeros for all

the feedback messages and the FDBK [1:0] represents the

feedback messages. It can be seen that the START message

(0000), the ACK message (0010), the NACK (0001), and

the Reserved message (0011) are decoded and shown in

Int'l Conf. Embedded Systems and Applications | ESA'15 | 7

Figure 11. The two bits of the FDBK [1:0] are shown and

numbered as 2 and 1 respectively.

Fig. 11: The decoded feedback messages, the clock fre-

quency is 27 MHz.

In Figure 12, it can be seen that the feedback messages are

generated after decoding each 15 demodulated. The figure,

compares two bits of the modulated symbols, SYBL[3:2],

with the two bits of the feedback message, FDBK[1:0]. Note

that the feedback messages have a duration time of a set of

15 symbols.

The clock frequency is increased to 33 MHz to see the

Fig. 12: The decoded feedback messages and modulated

symbols, 27 MHz.

response of the module to a higher frequency. The 33 MHz

is also a dedicated output clock frequency on the utilized

FPGA evaluational platform. Figure 13 shows the demod-

ulated symbols with the higher frequency that is 33 MHz.

The feedback messages, the START message (0000), the

ACK message (0010), the NACK (0001), and the Reserved

message (0011), are also successfully decoded with 33 MHz

of the clock source frequency, as they are shown in Figure

14.

6. Conclusions
The demodulator and decoder modules of the in-vehicle

system (IVS) are developed on a single module by using

FPGA technologies. The hardware chip is designed, im-

plemented, tested, and verified. Two on board frequency

sources, 27 MHz and 33 MHz, on the FPGA evaluation

Fig. 13: The demodulated symbols, 33 MHz.

Fig. 14: The decoded feedback messages, 33 MHz.

platform have been tested. In order to modulate all feed-

back messages, a complete set of downlink waveforms are

generated and applied to the developed module. The output

feedback messages and modulated symbols are analyzed and

verified.

The hardware architecture and interfaces are proposed and

analyzed. The CAN bus can be employed as the interface

protocol for the IVS interface with the MSD sources. The

I2S protocol is proposed to interface the designed module

with a GSM module. It can be noted that in all cases for the

simulation and implementation of the developed module, the

feedback messages are decoded and generated accordingly.

References
[1] G. Biox, E., “Definition of a protocol of automatic identification and

notification of road accidents and development of an advanced eCall
system,” SAE Technical Paper 2014-01-2029, 2014, doi:10.4271/2014-
01-2029.

[2] G. Kiokes, et al. “Design and implementation of an OFDM system
for vehicular communication with FPGA technologies,” in IEEE 6th
International Conference on Design and Technology of Integrated
Systems in Nanoscale Era (DTIS), Athens, Greece, April 6-8, 2011,
pp. 1-6.

[3] C. Yao, et al. “VLSI implementation of a real-time vision based lane
departure warning systems,” in IEEE 12th International Conference on
ITS Telecommunication, Taipei, Taiwan, Nov. 5-8, 2012, pp. 170-174.

[4] Eroupean Commission, “Commission delegated regulation (EU)
305/2013,” Brussels, 26.11.2012.

[5] “eCall data transfer; in-band modem solution; general description,”
3GPP, Tech. Rep. TS26.267.

[6] M. Werner, et al. “Cellular in-band modem solution for eCall emer-
gency data transmission” in IEEE, Vehicular Technology Conference,
Barcelona, Spain, April 26-29, 2009, pp. 1-6.

[7] Eroupean Commission, “Vice-President Kallas Welcomes Parliament’s
Vote on 112 eCall,” Press Release, Brussels, April 15, 2014. website:
http : //europa.eu/rapid/press − release_IP − 14 −
438_en.htm.

8 Int'l Conf. Embedded Systems and Applications | ESA'15 |

[8] Xilinx, “Introduction to the controller area network (CAN),” Applica-
tion Report, SLOA101A, August 2002.

[9] Xilinx,“http://xilinx.com/tools/designtools.htm.”
[10] Texas Instruments, “Using the I2S audio interface of DS90Ux92x

FPD-Link III devices,” Application Report (SNLA221), June, 2013.
[11] u-blox AG, “LEON-G100/G200 - Data Sheet” GSM.G1-HW-09001-

B, 2009.
[12] u-blox AG, “Wireless modules, data and voice modules, AT com-

mands manual” WLS-SW-11000-2, 2011.
[13] Xilinx, “ML505/ML506/ML507 evaluation platform user guide”

UG347 (v3.1.2), May 16, 2011.
[14] Xilinx, “Virtex-5 family overview,” Product Specification DS100

(v5.0), February 6, 2009.

Int'l Conf. Embedded Systems and Applications | ESA'15 | 9

Memory Management and Optimization in
Lumousoft Visual Programming Language

Xianliang Lu
Lumousoft Inc.

Waterloo Ontario Canada
lu.x@lumousoft.com

Abstract— this paper presents memory management and
optimization in Lumousoft Visual Programming Language (VPL)
for microprocessor-based embedded system. Memory management
has impacts on cost and power consumption as well as program
performance, especially for the limited hardware resource of
microprocessors. Real time, Safety and reliability of current
complex and sophisticated electronic device are the most important
factors in the design. Based on Control Flow Graphs (CFG) and
Data Flow Graphs (DFG), variable liveness and a living list of
variable is discussed in consideration of flow and context sensitive
path as well as pointers. Following the rule that different variables
can be mapped to the same physical memory as long as they are
not alive at the same program path point, Lumousoft VPL can fully
recycle memory and eliminate reductant assignment code in the
static, safe and reliable approaches, resulting in lowering product
cost, reducing the latency of memory transformation and
decreasing power consumption and improving the real time
performance.

Keywords—VPL; memory ; optimization; pointer; CFG; DFG

1 Introduction
Embedded based electronic products play more and more
pivotal role in our daily life. Memory is one of the most
important factors to be considered on both sides of embedded
system designer and customer. The more memory means more
functions and flexibility. On the other hand, it also means more
power consumption [3,4] that becomes current portable
electronic design critical issue. Making full use of memory and
reduce reductant code are current compiler design trend [1].

Memory allocation approaches can be categorized into static
and dynamic memory allocation[1,8,9,10]. Static memory
allocation approach is to allocate memory during compilation.
On the other hand, dynamic memory allocation approach is to
allocate memory during running time. The static method is
very fast access, safe and reliable, while dynamic allocation
requires less memory but has latency, fragment and sometimes
may cause memory leakage and unstable. Most of compilers
adapt stack method to perform static memory allocation due to
relatively simple and safe with good memory hierarchy. The
stack method actually allows a variable first in and last out, it

requires more memory and still has latency to perform the
action of push and pop.

Data flow graphs (DFG) and control flow graphs (CFG)
technologies give a very efficient way to manage memory,
check the correctness, detect dead code and optimize process
schedule during the compiling period [6]. Since this technology
is complicated, it is hard to be found large-scale
implementation for memory allocation. Data overflow or
overlap should be avoided in embedded system design.
Microprocessors have limited hardware sources, especially for
data memory. If memory pool is not enough for heap or stack,
it will come up with memory overflow or overlap resulting in
unknown bugs.

The Lumousoft visual Programming language (VPL) [11]
allows the user to write code in the block environments. The
Lumousoft VPL program consists of sequential blocks. Each
variable in a module should have a unique name, in other
words, a variable cannot be declared more than twice unlike a
variable with the same name can be declared in the different
curly bracket in a textual language like c language. As we
know, most textual language compilers use the stack method
for the local memory arrangement when context switches like
call function, this method is simple and safe, however, it
requires more physical memory, and may cause stack memory
overflow or overlap. Furthermore, it requires time to perform
stack action like push and pop resulting in latency and
increasing code size.

Variable liveness analysis is time-consuming and expensive
activities, especially when the pointer [13] involved, it becomes
more complicated. Usually this technology is applied to partial
application in current compiler design. Data flow graph and
control flow graph offer an efficient approach to define
variable liveness. Therefore, we can efficiently allocate
physical memory to variable, and map the same memory to the
different variables if they are not alive at the same program
point. Sometimes assignment can be eliminated if the variable
on the right hand side of the assignment will be no longer used
in the future, and the variable on the left, which data type
requires no more than physical memories than the dead
variable does, can be directly assigned the same physical
memory of the dead variable. As a result, the assignment
statement can be eliminated and codes can be reduced. This is

10 Int'l Conf. Embedded Systems and Applications | ESA'15 |

very helpful for compilation optimization since the compiler
can reduce tons of intermediate assignments.

Lumousoft VPL is pointer based language in the block
environment. By flow-sensitive and context-sensitive path
analysis, the whole variable liveness and relationship at the
program path point can be identified, based on these liveness
and relationship, memory optimization can be reached.

2 CFG Equations
CFG analysis has two methods, backward and forward analysis.
Practically, backward method can be used to determine
liveness; while forward analysis is manipulated to determine
propagation, or reach definition. The equations at the entry and
the exit edge of node n are listed as below.

2.1 Backward equations

Where :
s - successor,

 in[n] –a set of variables at entry edge of node n
 out[n]- a set of variables at exit edge of node n

 def[n]- a set of variable is generated

2.2 Forward equations

 Where :
in[n],out[n] - the same as above Backward
Equations define.
def[n] - new definition
P1,…, Pk -- predecessors of n in CFG
Kill[n] – definition will no longer be used.

3 Pointer Analysis
A pointer is a variable whose value is the address of another
variable. Therefore, a variable cannot be simply killed, we have
to consider whether the address of this variable has been used
by a pointer, and so for the variable on the left hand side of
statement which cannot be simply considered to be generated
or defined. We can break variable V into two groups Vp
(pointer variable) and Vnp (non pointer variable).

Vp V, Vnp V (5)

Vp ∩ Vnp = Ø (7)

A pointer variable may point to many variables, for example, in
Figure 1 the pointer px points to x at node n3 and z at node n2.
When px flows to successive join node n4, px may point to x or

z. The below expression stands for that the pointer variable px
may point to one of the variables in the list in the application:

P(px)={x1,x2,…,xk} k=1,2,3,… (8)

At the entry edge of the node n, if px Vp ˄ px
out[p1]∩…∩out[pk] then

Where

Vp is a set of pointer variable

P(px) is point- to list of the pointer px

Pin[n](px) is a set of the variable that the pointer px may
point to at the entry edge of node n

Pout[n](px) is a set of the variable that the pointer px may
point to at the exit edge of node n

At the exit edge of node n, we need to consider three conditions.
First of all, when px is defined in a reference definition like
px=&x, the variable x is in the point-to list of px. Secondly,
when px is equal to other pointer py like px=py, the content of
point-to list of px is the same as py. Finally, if px is not defined,
px keeps the same point-to list as that at the entry edge. The
point-to list for each pointer variable px can be given as below:

Where

ref[n] -- a set of variable that present it as an address other
than its value in reference definition, like &x.

The following is an example of computation algorithm for the
point-to variable list by utilizing above equations.

foreach n
 foreach px
 Pin[n](px) ← Ø;

 Pout[n](px) ←Ø;
 First = true

Repeat
 Change = false
 foreach n
 foreach px
 If FirstRepeat ˅ (px Pout[p] ∩ Pin[n])
 Ptemp(px) = Pin[n](px) Pout[p](px)
 Else
 Ptemp(px) = Ø
 If Ptemp(px) ≠ Pin[n](px)
 Change = true

 Pin[n](px) ← Ptemp(px)
 If px ˄ ref[n] != Ø
 Pout[n](px) ← ref[n]
 Else if px def[n] ˄ py Vp
 Pout[n](px) ← Pout[n](py)
 Else

Int'l Conf. Embedded Systems and Applications | ESA'15 | 11

 Pout[n](px) ← Pin[n](px) Pout[p](px)
 First = false

until !Change

4 Liveness Analysis
Practically, the CFG backward approach can be

implemented to solve the problem variable livesness.
Lumousoft VPL is pointer based language, the variable
liveness should involve all variable including pointer variable.
In Lumousoft VPL it takes three steps to obtain variable
liveness.

1. Computes point-to variable list of each pointer variable at
both entry and exit edge of the node as previous mention

2. Using normal CFG backward to compute variable literal
liveness at both entry and exit edge of the node without
considering pointer after iteration. In other words, all
variables are assumed to be independent of each other
without any relationship to other variable. In this way we
can easily use normal backward method to compute
variable liveness through an iteration computation. If a
pointer variable is used to get the content of the address
that pointer variable point to, namely *p, this pointer
variable p use[n].

3. We can combine point-to variable list computed by step1
with the variable liveness by step2 to compute real
variable liveness as following expressions indicate at each
node:

Where

Realin[n],Realout[n] are the set of the variable at the entry
and exit edge of the node n respectively

in[n], out[n] are the set of the variable at the entry and exit
edge of the node n respectively derived in step 2.

5 Context Sensitive Analysis
5.1 Living List

Lumousoft visual programming language is specially
designed for microprocessors with limited hardware resource.
For the safety and reliability this language does not allow
recursion since the recursion may run the risk of using up stack
memory. Lumousoft VPL does not use stack approach to call
graph for context switch, instead, all local variable in the same
thread are put on the same list, and the living relationship of
variables can be clearly identified. The same physical memory
can be allocated to different variables as long as they are not
used at the same program path point. In this way, memory
recycles can be realized.

Call graph or function can be broken into inline and regular
call module function. As for inline module, we just duplicate
the inline module and insert where they are called. We can use

the normal flow sensitive approach to analyze. As for regular
module functions like f(x,*y), the parameter of module f can
be passed by a value like x and passed by a pointer like y.
When call graph or module function f in the form of f(a,&b),
the variable a pass its value to x, the liveness of the variable a
depends on whether it is used in the successor nodes, if the
successive nodes does not use the variable a anymore, it is
dead at the front edge of call module f and the memory released
by a can be used in the later process including intraprocedural
program. On the other hand, when the parameter is passed by
an address like the address of b that passesto y, if the variable b
will not be found usage in the successive nodes, the variable b
is still alive at the entry edge of this call graph or module, it
will die somewhere in the call module process. However, in
this case Lumousoft VPL supposes that the variable which
address is passed to the module will live through the module
process and die at the end edge of the call module if it is not
used in the successors.

In order to allocate memory efficiently and make memory
fully recycle, we need to identify all the living variables at each
program path node, these living variables at the same time
cannot share the same physical memory while those variable
that are not alive simultaneously can share the same physical
memory.

 A special list of variable needs to be introduced to facilitate
analysis. This list only concerns about which variable is alive
simultaneously.

Define a living list L consists of sets of variables that are alive
at the same time.

 L }

The symbol

simultaneously

The list has following features:

 Reduction: For a list }, if L1 L2 indicating
that the variables in the L2 including L1 are alive
simultaneously, so L1 can be eliminated in the list L.

L (15)

 Position exchange: for a list L { L1, L2 }, then

L { L1, L2 } L { L2, L1 } (16)

 Operation: For a list L { L1, L2 } and LL, then

LL∩L LL∩{ L1, L2 } {LL ∩ L1, LL ∩ L2} (17)

LL L LL { L1, L2 } {LL L1, LL L2} (18)

A module or function can collect all the living list of the nodes
to get a module living list as below:

ML(f) {L[1],L[2],….,L[i]} i {1,2,3,..} (19)

Where f MF , MF is a set of module or function

 ML(f) is a living list for the module function f

 L[i] is a iving list at the node i.

12 Int'l Conf. Embedded Systems and Applications | ESA'15 |

5.2 Living List at a Node
So far, we know there are two sets of variable (in [n] and

out [n]) at a node, they can be part of living list. However, if a
statement at the node contains call graph or module which in
turn needs some other variables to perform a module function
and these variables are generated and killed in the module
function, these variables cannot be indicated at both the entry
and exit edges of the node Therefore, we introduce a context
list to represent the relationship of current node variable and
variable used in the call module function.

If a node statement contains a call graph then

context[n]=((out[n] vm[n] cl(f)-cl(f)) mp(f) (20)

Where

vm[n] – a set of variables that pass its address to the
module parameter and not longer used in the successive nodes,
in the other words, the lives of these variables end at the exit
edge of call module f.

mp(f) –the living list of excutivable call graph or module f

cl(f) – the return variable of call graph. In lumousoft VPL
the call graph or module name is a variable. For example, in
Figure 1, f is a module name and a variable as well. Since the
value of module variable f is assigned during execution of the
module program, we render cl(f) def[n] and cl(f) .

The expression like module function (20) indicates that all
variables in the in[n], except those variables die at the front
edge of call graph or module, will live together with all
variables that are utilized in the call graph or module.

If the node statement does not contain call graph then

context[n]=Ø (21)

At the node n, the living list can be described as:

L[n] { in[n], def[n] out[n], context[n] } (22)

L[n] is the living variable list at the node n, it consists of
three parts: in[n] ,context[n] and def[n] out[n]. Here in[n] is
the variables at the entry edge of node; context[n] is the
variable living list in the call graph and it could be null if the
statement at this point does not contain a call graph; def[n]
out[n] means the collection of the variables that are defined and
flow out to successive nodes. Adding def[n] can prevent from
eliminating the variable that is defined but not used from the
living list.

5.3 Non-recursion of call graph
In general, most of the compiler does not allow recursion

for microprocessor application since microprocessor has very
limited memory resource to satisfy the huge stack memory
requirements for recursion. For this reason Lumousoft VPL
does not support recursion. If recursion happens, Lumousoft
VPL will give an error message.

For each module we can use the iterative computation
method to get variable liveness without considering call graph.
After we obtain each node entry and exit edge variable status,

we can start from the most inside module in which there is no
any call module to compute context[n], therefore, we get a
whole variable living list mp(f). Secondly, we move to the
module that involves that call graph with the derived variable
living list mp(f), and compute context[n]. Therefore, we get
the whole variable living list of this module. In this way we
move from the inside module to the outside, step by step, we
can compute the whole variable living list for every module.
From this list we can define which variable can share same
physical memory, which not. Using this static method we can
maximally use memory, and even a variable in one module can
share their physical memory with another variable in the other
module. The whole physical memory can be predicted and
allocated without memory confliction or overlap that may
cause embedded system failure. Furthermore, it can eliminate
the stack action resulting increase process speed without the
latency of stack action of push and pop up.

5.4 Recursion of Call module
In general, stack technology is implemented in recursion

method. When call graph takes place, it is unnecessary to push
all the variables into the stack, we can choose the variables that
live throgh the process of call graph or module to be pushed
into the statck. According to (20)we define

Vs = out[n] vm[n] cl(f)-cl(f) (23)

Vs stack (24)

Where

Vs – the set of variable that are pushed into the stack when
call graph.

Vstack – stack memory.

Now we treat the stack memory as a special variable and
put it into the living variable list. Rewriting (20), we got:

context[n] Vstatck mp(f)

{Vstack L[1], Vstack L[2],…, Vstack L[n]} (25)

Supposed at node k there exits a call graph ff in the module f

L[k] {in[k], def[k] out[k], context[k]} (26)

 context[k]=((out[k] vm[k] cl(ff)-cl(ff)) mp(ff)

 Vstack mp(ff) (27)

From(26) and (27) rewrite (25) considering (15) we obtain:

Vstatck mp(f) {Vstack L[1], Vstack L[2],.. ,

Vstack mp(ff) } (28)

We can keep replacing mp() by its living list until the
module is the one we have call before, namely f==ff.
Therefore

Vstatck mp(f) {Vstack L[1], Vstack L[2],… ,

Vstack mp(f) } (29)

Int'l Conf. Embedded Systems and Applications | ESA'15 | 13

Recursion cannot be performed forever, at some point it
must return, therefore we got:

Vstatck mp(fgiven) Vstatck

The variable living list of a module can be obtained, the
stack and variable can be put together to allocate memory. If
the stack is not used, its memory can be used for other variable
that will not cause confliction.
6 Memory allocation

During compiling, each variable must be assigned a
physical memory. According to variable living list we can map
physical memory to different variables as long as these
variables do not occur in the same item of variable living list. A
variable might have more than one life, during different life
span a different physical memory might map to it, this allows
the compiler easily to allocate memory seamlessly and
smoothly without gap and make usage of memory more
efficiently.

7 Assignment Elimination
When the variable on the right hand side of an assignment

statement is going to be dead, in the other words, it will be no
longer used in the successive nodes, its memory should release
for other variable usage. The variable on the left side is a new
born variable and needs an available physical memory to be
mapped to it. If the released memory is mapped to the new
generated variable, the assignment can be eliminated, as a
result, program code size can be reduced and speed up process.
However, we cannot always allocate a physical memory to
both side variables in the following case.

if the data type of the variable on the left hand side of
assignment requires more memory than the number of
memories that just release. For example the data type of the
variable on the left hand side is 4 byte variable, while the data
type of the variable on the right hand side is 2 byte. In this case,
if the released memory of 2 bytes from the variable on the right
hand side map to the variable on the left hand side of
assignment statement, the last 2 byte memory that following
the released memory might be occupied by other living
variable, the memory overlaps will occur and can lead to
program failure.

8 Example
Figure 1 is an executable graphic program for Lumousoft

VPL. The program consists of a main module from START to
END and a module function f. Here, The block in Figure 1is

considered to be the same as the node. Table 1 shows variable
set,point –to list of pinter and the living list at each node.

The column “Pointer to Variable List” in Table 1 lists the
pointer and the variables that the pointer may point to. They are
separated by a colon in the curly bracket. Because the module f
has a parameter “b” to be passed by a pointer, which variable
will be pointed to depends on where the module is called.
However, we know that when we call this module, the variable
the pointer point to is alive through the executing this module,
hence we can leave empty on the right hand side of the colon as
shown at node n13. The variable living list that a pointer point
to can be computed by the approach discussed in section 3.

The column “literal Livness after iteration” shows liveness
of a variable that is simply computed by the backward method
of CFG after iteration without considering pointer.

The column “liveness with considering pointer” shows
liveness of the variable with consideration of the pointer.
This column can be easily filled. Copy the content of the
column “literal Livness after iteration”, pick up a pointer, and
then add the corresponding variables that the pointer may point
to. For instance, at node n9 there is pointer px, the pointer may
point to x or z, we add x, z to the content of “liveness with
considering pointer” and row n9.

Before filling the column “Living List”, the living list of
any inside module needs to be computed out. The module f
living list can be filled first at each node, we get mp(f) {{a,
b},{f}}. With this module living list we can fill the main
module living list as shown in the table 1. The main module
living list can be derived from table1.

mp(main) { {y,z,s,x,py },{ z,s,x,f},{ z,px,x,s,k},{px,py,x,z},

{z,x,s,a,b},{px,x,z,a,b},{px,x,z,f}}

Based on this living list, each variable can be allocated by
physical memory efficiently.

Notice that the variable s has two living periods, if we use
different variable to replace variable s in each life span, this
will not affect the program performance, say we use s1 to
repace s in the first life span and s2 in the second life span, and
py1 and py2 to repace py for different life span. We got :

mp(main) { {y,z,s1,x,py1 },{y,z,s1,x,f},{ z,px,x,s1,k},

{px,py2,x,z},{z,x,s1,a,b},{px,x,z,a,b},{px,x,z,f},{ px,s2,x,z }}

Hence, the variable might have different address in the
different life span, this can allocate address more efficiently
and smoothly without gaps.

If a pointer point to only one address and this address is known
during compiling, the pointer variable can be considered to be
as a constant and does not need to be allocated a memory to
hold another variable address. For example py1 is the constant
and equals to the address of y which address is known after
allocation of memory.

Table 2 is a table of memory allocation generated by
Lumousoft VPL. There are some intermediate variables during
compiling. We have 13 variables in total, and only use 7

14 Int'l Conf. Embedded Systems and Applications | ESA'15 |

physical memory, this indicates that we reduce memory by 46%
by this memory management method.

Figure 1 Graphic program in Lumousoft VPL

Table 1 variable livenss, pointer to list,living list at each node

Node

Pointer
to

Variable
List

literal
Livness

after
iteration

liveness
with

considering
pointer

Living List

START
in Ø Ø
context Ø
out Ø y,z,s,x y,z,s,x y,z,s,x

n0
in Ø y,z,s,x y,z,s,x y,z,s,x
context Ø
out {py: y} y,z,s,x y,z,s,x y,z,s,x,py

n1
in {py: y} y,z,s,x y,z,s,x y,z,s,x
context Ø
out {py: y} y,z,s,x y,z,s,x y,z,s,x

n2

in {py: y} z,s,x z,s,x z,s,x
context Ø

out
{py: y},
{px:z} z,s,px,x z,s,px,x z,s,px,x

n3

in {py: y} z,s,x z,s,x z,s,x
context Ø

out
{py: y},
{px:x} z,s,x,px z,s,px,x z,s,px,x

n4
in

{py: y},
{px:x,z} z,s,x,px z,s,px,x z,s,px,x

context Ø

out
{py: y},
{px:x,z} z,px,x,s,k z,px,x,s,k z,px,x,s,k

n5
in

{py: y},
{px:x,z} z,px,x,s,k z,px,x,s,k z,px,x,s,k

context Ø

out
{py: y},
{px:x,z} z,px,x,s z,px,x,s z,px,x,s

Node

Pointer
to

Variable
List

literal
Livness

after
iteration

liveness
with

considering
pointer

Living List

n6
in

{py: y},
{px:x,z} z,px,x,s z,px,x,s z,px,x,s

context Ø

out
{py: y},
{px:x,z} z,px,x,s z,px,x,s z,px,x,s

n7

in
{py: y},
{px:x,z} z,px,x,s z,px,x,s z,px,x,s

context
{z,x,s,a,b},
{z,x,s,f}

out
{py: y},
{px:x,z} z,x,s,f z,x,s,f z,x,s,f

n8
in

{py: y},
{px:x,z} z,x,s,f z,x,s,f z,x,s,f

context Ø

out
{py: y},
{px:x,z} z,s,x,y z,s,x,y z,s,x,y

n9
in

{py: y},
{px:x,z} px px,x,z px,x,z

context Ø

out
{py: x,z},
{px:x,z} px,py px,py,x,z px,py,x,z

n10

in
{py: x,z},
{px:x,z} px,py px,py,x,z px,py,x,z

context
{px,x,z,a,b},
{px,x,z,f}

out
{py: x,y},
{px:x,z} px,f px,f,x,z px,f,x,z

n11
in

{py: x,y},
{px:x,z} px,f px,f,x,z px,f,x,z

context Ø

out
{py: x,y},
{px:x,z} px,s px,s,x,z px,s,x,z

n12
in

{py: x,y},
{px:x,z} px,s px,s,x,z px,s,x,z

context Ø

out
{py: x,y},
{px:x,z} Ø Ø Ø

END
in
context
out

Fun0
in Ø Ø Ø Ø
context Ø
out {b: } a,b a,b a,b

n13
in {b: } a,b a,b a,b
context Ø
out {b: } f f f

RET0
in f f f
context Ø
out f f f

In the table 2, the variable in a row separated by the
semicolon share the same address. While the variable in a
brackets indicates that the assignment is eliminated since the
left and right variable share the same address. For example, in
the row where the address is 0x9, the variables f, s, y, xx share
the same address 0x9, the assignment in node n11 and n8 can
be reduced, as a result, the process speed can be increased.

Int'l Conf. Embedded Systems and Applications | ESA'15 | 15

As we mentioned before the variable s has two life span.
During the first period, the variable s has an address of 0x0b
sharing with py2, while in the second life period, the address of
the variable is 0xa.

Table 2 memory allocation by lumousoft VPL.

Address Variable

0x7 :px(local, pointer(char)); temp(local, char)
0x8 :x(local, char)
0x9 :z(local, un char)[zz(local, un char)];
0xa :f(local, char)[s(local, char); y(local, un char);
 xx(local, un char)]; k(local, char)[zz(local, char)];
 temp(local, char)
0xb :py(local, pointer(char));
 s(local, char)[xx(local, char); xx(local, char)];
0xc :a(local, char)[zz(local, char)];
0xd :b(local, pointer(char))

__

9 Conclusion
Good memory management not only can reduce costs, but

also speed up the process, increase reliability of the system and
reduce power consumption as well. Lumousoft VPL adapts an
advanced static memory management technology to fully
recycle memory and eliminate reductant assignment codes,
avoid memory, overlapping resulting in increasing the safety
and reliability of the system.

Based on CFG and DFG technology, the variable liveness
is discussed in detail with consideration of pointer and context
switch situation. The variable living list of the recursion and
non-recursion is also presented here. With the variable living
list, the highly efficient memory allocation can be computed
out according to the rule that memory can be mapped those
variable who are not alive simultaneously. The copy
assignment code can be eliminated if the variables on the other
side of assignment statement share the same memory.

This memory management approach enables Lumousoft VPL
to tremendously reduce the impact on memory requirements,
increase safety and reliability of embedded system and
decrease latency of memory transformation.

10 References

[1] Dick Grune, Herri E.Bal, Ceriel J.H. Jacobs and Koen G.

Langendoen,”Modern Compiler Design”, John Wiley & Sons, Inc.,
New York, NY, USA, 2000.

[2] L. Qiang, T. Todman, W. Luk, “Combining Optimizations in
Automated Low Power Design,” in Proc. of Design, Automation and
Test Europe (DATE), 2010, pp. 1791-1796

[3] J. Cong, P. Zhang and Y. Zou, "Combined Loop Transformation and
Hierarchy Allocation in Data Reuse Optimization," in Proc. of the 2011
Int. Conf. on Computer-Aided Design (ICCAD), 2011, pp. 185-192

[4] R. Banakar, S. Steinke, B. Lee, “Scratchpad memory design alternative
for cache on-chip memory in embedded systems,” in Proc. of the 10th
Int. Symp. on Hardware/Software Codesign (CODES), 2002, pp. 73 -
78.

[5] M. Kandemir, J. Ramanujam, M.J. Irwin, et al, “A Compiler-Based
Approach for Dynamically Managing Scratch-Pad Memories in
Embedded Systems,” in IEEE Trans. on Computer-Aided Design of
Integrated Circuits and Systems (TCAD), 2004, pp. 243 - 260.

[6] J. M. Barth, “An interprocedural data flow analysis algorithm” In
Conference Record of the Fourth ACM Symposium on Principles of
Programming Languages, pages 119–131, January 1977.

[7] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and
F. Kenneth Zadeck, Efficiently computing static single assignment
form and the control dependence graph, ACM Trans. Program. Lang.
Syst. 13 (1991), 451–490.

[8] P. Briggs, K. D. Cooper, T. J. Harvey, and L. T. Simpson. Practical
improvements to the construction and destruction of static single
assignment form. Software—Practice and Experience, 28(8):859–881,
July 1998.

[9] I. Puaut. Real-Time Performance of Dynamic Memory Allocation
Algorithms. 14 th Euromicro Conference on Real-Time Systems
(ECRTS’02), page 41, 2002

[10] Dave Dice and Alex Garthwaite. Mostly lock-free malloc. In
Proceedings of the 2002 International Symposium on Memory
Management, pages 269–280, June 2002.

[11] Xianliang Lu, “Lumousoft Visual Programming Language and its
IDE”, The 2014 International Conference on Embedded Systems &
Applications, pages 3-9, July, 2014.

[12] Khedker, U.P., Karkare, B.: Efficiency, precision, simplicity, and
generality in interprocedural data flow analysis: Resurrecting the
classical call strings method. In: Proc. of CC’08. (2008) 213–228

[13] Uday P. Khedker1 , Alan Mycroft2 , and Prashant Singh Rawat1,
“Liveness-Based pointer analysis”, SAS'12 Proceedings of the 19th
international conference on Static Analysis, Pages 265-282,2012

16 Int'l Conf. Embedded Systems and Applications | ESA'15 |

Control of a Plotter with LabVIEW and Embedded
Microcontollers

Bassam Shaer, Teresa Frigon, Adam Ferguson, Darius Bethel
Electrical & Computer Engineering Department

University of West Florida
Fort Walton Beach, FL

bshaer@uwf.edu, tlf22@students.uwf.edu, alf25@student.uwf.edu, dtb5@students.uwf.edu

Abstract— The objective of this work is to present the design of
the control apparatus for a printed circuit board mill. A device with
the ability to make circuit boards in just a few minutes is the
electronic hobbyist’s dream. It will eliminate the need to build a
circuit on perforated boards, eradicate the need for the etching
methods that use harsh chemicals. It will also remove the need to
send Gerber files to a circuit board fabrication company. This
paper will explain our research of designing a controller using
LabVIEW and the myRIO, both made by National Instruments.
This system utilizes computer-aided design software to layout
complex images that can be printed using two brushless motors and
a servo. The system also employs graphical user interfaces that can
be used for system monitoring.

Keywords— LabVIEW; myRIO; FPGA; GUI; PCB; State
Machine; Plotter

1. INTRODUCTION

There are several different ways to fabricate custom circuit
designs. The use of a breadboard is a very effective method; it
is designed for quick prototyping of an electronic circuit;
however, the breadboard does not provide a permanent solution
for custom project building. It can be a source of unwanted
noise and can be difficult to maintain as the complexity to the
design increases. There are also strip and perforated boards, but
they can also be confusing to wire and very bulky to embed in
an enclosure. Chemically etching printed circuit boards (PCB)
is another quick fix to designing custom PCB’s, but it requires
using harsh chemicals. Lastly, the hobbyist can send the PCB
layout files to a PCB fabrication company that can make the
board for them, but this route is expensive for one-off designs
and can take a while to get the board in hand. The hobbyist
needs a new solution to this problem; hence the need for a PCB
mill, something that can use the files created on computer-
aided design (CAD) software and automatically produce a
PCB.

 Due to monetary constraints and time, it was decided that a
plotter could serve as the perfect prototype [1]. The plotter is
built on a larger scale, but still has the same design premise as
the mill. The plotter and the PCB mill both need a platform;
however the plotter designed for this research, uses an 8.5 X 11
sheet of plain white paper on which to draw an image, instead

of milling a PCB. The system also uses motors to move a pen.
Computer-aided manufacturing (CAM) software is needed to
produce a machine compatible programming language called,
g-code [2]. This is similar to the Gerber file, sent to PCB
fabrication companies. The g-code contains the coordinates for
each point that is plotted. Encoders are used to retrieve motor
position information [3]. Lastly a controller was needed to
control the operation of the plotter. LabVIEW is used as the
programming environment for this project. For hardware
control, a myRIO field programmable gate array (FPGA) is
provided. Both LabVIEW and the myRIO are by National
Instruments (NI). The purpose for this project is to explain the
control system behind such a machine.

The control system is modeled after a mealy finite state
machine. A custom interface communication protocol was
designed to communicate between the State Machine (SM) of
the myRIO and the microcontroller. The SM is responsible for
several things which include, parsing the g-code file generated
by the CAM software, turning the system on and off, system
calibration analytics, starting the plot, running the plot, system
shut down, sending and receiving messages, and fault
condition monitoring. The system will also have two graphical
user interfaces (GUI) that will be an integral part of the control
system, by way of user interaction for system monitoring,
emergency stopping, and system resets. There are other parts of
the system that will not be covered by this paper but are
included in the overall system, like a microcontroller used to
communicate to a motor controller [4]. The rest of the paper is
organized as follows. Section 2 discusses a brief review of
LabVIEW. Section 3 presents an overview of the myRIO.
Section 4, presents the formal description of the proposed
system and its operations. Section 5 presents the results of the
work. Section 6 ends the paper with concluding remarks.

2. LABVIEW OVERVIEW

LabVIEW provides the infrastructure to implement a
controller. Due to LabVIEW’s ability to operate in a parallel
state when executing its code, the plotter will be able to
perform multiple tasks at once i.e. track X and Y positions
simultaneously.

Int'l Conf. Embedded Systems and Applications | ESA'15 | 17

LabVIEW is a functional programming language that uses
a set of icons called virtual instruments (VI), similar to
functions in C. The system has several modules that give the
user access to different VIs. An operator of LabVIEW also has
the ability to create VI’s, and in effect every program written in
LabVIEW can be a VI [5].

3. MYRIO OVERVIEW

The National Instruments (NI) myRIO is an embedded
hardware device that is used much in the same way as any
standard FPGA. It can be programmed in several different
ways, C, C++, and LabVIEW. One can also import and reuse
Hardware Description Language (HDL) code to design real,
complex engineering systems. Wireless networking
capabilities are also built into the myRIO, which are used for
communications to both of the system’s GUIs. There are
unique benefits of FPGA-based hardware and LabVIEW
programming due to the dataflow paradigm and inherent
parallelism that they both utilize.

4. SYSTEM OVERVIEW

This overview covers all aspects of the controller, from
system power on, plotting an image, and eventually to system
shut down. The system is fully automated, with the exceptions
that the user needs to turn on the system, select a file to plot,
reset the system if a fault is detected, and to shut the system
off. When the system is turned on, it will automatically
calibrate both motors to the position origin. The origin is
preprogrammed in each g-code file. Once the system has been
calibrated, the file that will be plotted is parsed by a LabVIEW
VI. Figure 1 shows a sample g-code file. Once the file has
been parsed, information is sent to a microcontroller to begin
plotting the image. There are constant communications
between the myRIO and the microcontroller which includes
the system status and the desired plotting coordinates. Upon
completion of the plot, the user is given an option to plot
another image or turn the machine off. The user can repower
the system at any time and proceed with a new plot. In the
event that a fault condition is detected, system operations are
paused until the cause of the fault is removed and the fault
flags are cleared. Once the fault is removed and the fault flags
are cleared, the system resumes the plot. Figure 2 shows an
operational flow chart of the system.

Fig. 1. Sample G-code Format.

Plotter

Power on

Yes

Calibrate motors

Motors Calibrated

Yes

Parse G- code file

Pen at correct
position

Yes

Send Message

Yes

File done
plotting

Start new
PlotNoReceive

Message
System
Faulted

Yes

System Reset

System Off

System On

Yes

System started

Move pen to correct
position

Yes

No

Yes

No

No

No

No

Fig. 2. Control System Flowchart.

4.1 Off State
The “Off” state of the system is a continuous loop of the

SM that checks the status of the power button. While in this
loop, a message is printed to the screen letting the user know
the system is off. The g-code is parsed and redisplayed to the
PC’s GUI on every iteration of the off loop. Once the power
has been turned on, the system transitions from the “Off” state
to the “On” state.

4.2 On state
The “On” state of the system reads a g-code file that is

parsed and displays an “ON” message to the PC’s GUI for 5
seconds. When the 5 seconds are done, the motors are turned
on, and the system goes to the “Calibration” state.

4.3 Calibrate State
In the “Calibration” state the motors are calibrated one at a

time, first the X motor and then the Y motor. The system
calibrates the motors to a position known as origin. Once the
motors have been calibrated, the system is set to idle and
transitions to the “Start” state.

4.4 Start State
Once in the “Start” state, the file to be plotted is read and

parsed. The image that will be plotted is displayed on the PC’s
GUI for conformation. The image is displayed throughout the
duration of the plotting process. The initial motor parameters,
i.e. speed and direction, are saved, and then the system moves
to the “Run” state.

18 Int'l Conf. Embedded Systems and Applications | ESA'15 |

4.5 Run State
The “Run” state is the heart of the systems operation. It is

in the “Run” state that the system tracks the location of all
three motors. The “Run” state is initialized from the “Start”
state. This means that the motors are ready to plot data points;
however, in order to do this the system needs to calculate how
far it needs to travel to the next point. The system decides if
the next point is greater than, less than, or equal to its current
position. It also determines if the Z axis needs to be engaged
or not.

Figure 3 shows the test case for Y axis motor. This section
of the “Run” state, controls both the motors speed and
direction. This information is decided based on the motors
current position, and its desired position. If the motor’s current
position is less than the motor’s desired position a message is
sent to the motor controller to move the motor forward at the
desired speed. Moreover, if the motor’s current position is
greater that the desired position, then a message is sent to the
motor controller to move the motor in the reverse direction at
the desired speed. Once the motor is in its desired position, a
message is sent to the motor controller to stop or hold the
motor at its current position.

A closed loop system is utilized to accomplish this
process. The system does not try to execute the next line of g-
code until both motors have reached their chosen destination.
This procedure is executed in a loop until all of the g-code has
been processed.

Once the system has processed its last point, the system’s
user is given the option to select whether to continue with a
new plot or shut the system down. If the user decides to plot a
new image, the system will recalibrate before plotting the new
image. However if the user decides to end the system’s
operation, the system will return to the “OFF” state and
remain there until the system is powered on again. See Figure
4 for a flowchart description. Figure 5 gives a broader picture
of the overall functions of the “Run” state.

4.6 Send Message State
While the system is executing the “Run” state, it is

periodically transitioning in and out of the “Send Message”
state. This is the place in the system operation where messages
pertaining to the system’s current operations are packaged and
sent to the motor controller for processing. Figure 6 show an
example of the system motor position state packet sent to the
microcontroller. Figure 7 show a flowchart of the “Send
Message” state.

Once a packet is made and ready to be sent, a set of
checksums are included at the end of the packet. This step is
need to ensure the proper message is processed by the
microcontroller before going to a new state. The “Send
Message” state is responsible for computing which state it
should go to next after a message has been successfully sent.
If the power has been shut off, the system will switch to the
“Shutdown” state and shuts the system off. If the system has
not been calibrated properly, it will switch to the “Calibrate”
state where the system is then recalibrated. It goes without

saying, if the user has requested to plot a new image, then the
system returns to the start state and begins a new plot.
However, if the system is in full operation and is calibrated, it
will proceed to the “Receive Message” state. The “Send
Message” switch is turned off after each message is sent.

Y Test Case

Y Coordinate < Current
motor position

No

Y Coordinate > Current
motor position

System State:
“SEND MESSAGE”

Send motor
parameters

YesSet motor to rotate
in reverse

YesSet motor to rotate
forward

Set motor at idle

System State:
“RUN MACHINE”

No

Fig. 3. Run State, Y Motor Test Position Flowchart.

G-code Done Running

Plot Finished
Continue to test

cases in “RUN
MACHINE”

Yes

Process new file

System State:
“CALIBRATE”

System State:
“SHUT DOWN”

No

No

Yes

Fig. 4. Run State, G-code Done Running Flowchart.

Int'l Conf. Embedded Systems and Applications | ESA'15 | 19

RUN MACHINE
CASE

Determine next
location for motors
to move relative to

current position

Determine next
location for X
motor to move

relative to current
position

Determine next
location for Y
motor to move

relative to current
position

Next Position <
current position

Next position >
current position

Next position =
current position

Next position <
current position

Next position >
current position

Next position =
current position

Yes

Set “X Value Equal
To” to true

Yes

Set “X Value
Greater Than” to

true

Yes

Set “X Value Less
Than” to true

Yes

Set “Y Value Equal
To” to true

Yes

Set “Y Value Equal
To” to true

Yes

Set “Y Value Equal
To” to true

Determine next
location for Z
motor to move

relative to current
position

Set “X Value Equal
To” to false

Set “X Value Equal
To” to false

Set “X Value Equal
To” to false

Set “Y Value Equal
To” to false

Set “Y Value Equal
To” to false

Set “Y Value Equal
To” to false

NoNoNo No No No

No

Set “Z Engage” to
false

Yes

Set “Z Engage” to
true

 X made it to
next position

Y made it to
next position

No

Set “X Done” to
false

No

Set “Y Done” to
false

Yes Set “X Done” to
true

YesSet “Y Done” to
true

Determine if
system ready for
new coordinates

X and Y at
desired position

Increment to new
element of g-code

array
YesDetermine if plot

finished

Plot incomplete Yes X & Y Test cases Set motor speed
and direction

Shut system
down No

Yes

System State:
“SHUT DOWN”

System State:
“CALIBRATE”

“G-Code Done
Running” case is

true

No

Z position is
engaged

No

Fig. 5. Overall functions of the “Run” state.

20 Int'l Conf. Embedded Systems and Applications | ESA'15 |

4.7 Receive Message State
After messages are sent out from the myRIO via the “Send

Message” state, a message is then retrieved from the internal
message buffer of the myRIO, this is called the “Receive
Message” state.

A special VI was written to retrieve messages from the
message buffer, the flowchart of that VI can be seen in Figure
8. This algorithm is a pre-validation method used to ensure
that garbled messages are discarded as soon as possible to
make way for relevant messages. All messages begin with the
hexadecimal number “55” and therefore a “55” must be
received first, to indicate the beginning of a message. This lets
the systems special VI know when to start recording a
message to the buffer. The second section of a message should
be the packet type. The third section of the message tells the
size of the remaining message minus the checksums; the
checksums will be verified in another process. Once the entire
message is read, then the VI returns the message to the
“Receive Message” state.

Fig. 6. FPGA State Packet.

Send Message State

Send MessageNoSystem State:
“RUN MACHINE

Yes

Select packet

Add Checksum Values

Power On

Yes

System Calibrated

NoSystem State:
“OFF”

System State:
“CALIBRATE”

Start new plot

System State:
“START”

System State:
“RECEIVE MESSAGE”

Yes

No

Yes

No

Send Message

Fig. 7. Send Message State Flowchart.

The message is then parsed into an unsigned bit array. The
second element of this array is read to determine the packet
type. Once the packet type is determined, the checksum values
are verified. If the checksum values derived are not the same
as the ones receive in the message, a non-acknowledgment
(NAK) message is sent to the controller, and the myRIO
returns to the “Receive Message” state for the resubmission.
Upon getting a valid message, the contents of the message are
analyzed and the appropriate actions are taken.

There is prioritized data inside each message. If it is
determined that the system has an error, the system is
immediately moved to the “System Faulted” state, to be
discussed later. If all is ok with the system, the SM returns to
the “Run” state. See Figure 9 for a full view of the “Receive
Message” state

Receive Message

Receive message

Message value
“55”

No

Receive message / Start Message
count

Message count = 2

No

Yes

Obtain message length

Store value in String2

Last value received

No

Yes

System State:
“RECEIVE MESSAGE”

Yes

Store value in String2

Store value in String2

Fig. 8. Receive Message VI Flowchart.

Int'l Conf. Embedded Systems and Applications | ESA'15 | 21

4.8 System Faulted State
When a fault is detected, the system automatically moves

to the “System Faulted” state. The system stays in this state
until the condition that caused the fault is removed. When in
this state, user input is required to exit. The user has to click,
or press if using the tablet GUI, the “System Reset” button,
and all faults are cleared. The system does not return to the
“Run” state however, until it receives a new message stating
that no new fault conditions exist. If no new faults exist, the
system returns to “Run” state. If a new fault condition is
detected, the system returns to the “System Faulted” state.
Figure 10 shows the flowchart for the “System Faulted” state.

RECEIVE MESSAGE CASE

Receive Message

Parse Message into Unsigned
bit array

Determine Packet type

Checksum
Values Correct

Send Not
Acknowledge

System State:
“SEND

MESSAGE”

Yes

Analyze Data

System Faulted

System State:
“SYSTEM FAULTED”

System State:
“RUN MACHINE” No

Yes

No

Fig. 9. Receive Message state Flowchart.

4.9 Shutdown State
The “Shutdown” state is a soft off selection used to halt

system operations without damaging any equipment. Once it
has been verified that the user has requested that the system
needs to be shutdown, the system goes to the “Off” state
where the system is turned off.

4.10 GUI
The LabVIEW program is also incorporated into the

research to provide the software tools needed for system
control from a GUI. There are two GUIs with which the
system can be used. One is controlled from a PC, Figure 11
and the other from a tablet, Figure 12. Both of the GUIs
control the system remotely. The GUI’s are mentioned as part
of the control system because they do give the user the ability
to monitor and react to the system in real time. The GUI on
the PC provides graphics of the image being plotted. Both
GUI’s provide fault condition monitoring, battery voltage
monitoring, motor rpm, temperature of the motor controller,
limit switch monitoring, motor fault monitoring, and the
ability to restart the system.

Receive Message

Receive message

Message value
“55”

No

Receive message / Start Message
count

Message count = 2

No

Yes

Obtain message length

Store value in String2

Last value received

No

Yes

System State:
“RECEIVE MESSAGE”

Yes

Store value in String2

Store value in String2

Fig. 10. System Faulted state Flowchart.

Fig. 11. PC GUI for the Plotter.

Data Dashboard is a tool developed by NI that allows
custom creation of portable LabVIEW applications. In using
this software the team was able to create dashboards, or a
small GUI program, to display the values of network-
published shared variables and deployed LabVIEW Web
services on indicators, such as the fault conditions mentioned
above.

Fig. 12. Tablet GUI for the Plotter.

22 Int'l Conf. Embedded Systems and Applications | ESA'15 |

5. RESULTS

Initial system testing revealed several inaccuracies. The
problems however, were not due to the controller, but were
partly due to the encoders that were chosen. Moreover, the
platform bed had extra movements that were not accounted
for during the running of the system. These problems caused
overshoot and miscalculations. Figure 13 shows what the
image looked like originally as designed in the CAM
software, Figure 14 shows our initial plot, and Figure 15
shows the final plot of the system after adjustments that
streamlined the communications processes and various
tuning variables.

Fig. 13. Sync Function G-code Output.

Fig. 14. Initial Plot

Fig. 15. Final Plot.

6. CONCLUSION

The need for custom PCB’s will never wane and it is
time that a PCB mill is introduced to hobbyists around the
world. While this system is just a prototype of what is to
come, it provided the opportunity to see more clearly the
steps that need to be taken in order to achieve the goal of
having a PCB mill in every electrical engineer, student of
engineering, and hobbyist’s hands. The goal for the next
phase of this research is to build a smaller more stable
gantry and include smaller motors so that the system can be
built on a more realistic scale. There is also a need to get
encoders that provide more precise position measuring, not

enough attention was given to this beforehand; however,
this is a crucial piece of the project.

REFERENCES

[1] What is a plotter? HP Plotter explains, hp plotter HP
Printer & Plotter Specialists [Online] 2015
http://www.hpplotter.co.uk/what-is-a-plotter (Accessed:
January 20, 2015).

[2] Numerical control. wikipedia.org. [Online] Creative
Commons Attribution-ShareAlike License, November
5, 2014. [Cited: November 25, 2014.]
http://en.wikipedia.org/wiki/Numerical_control.

[3] Encoders, Anaheim Automation Inc.: ENC-
LKE51_Magnetic Linear. Anaheim Automation.com.
[Online] [Cited: March 4, 2014.]
http://www.anaheimautomation.com/products/encoder/l
inear-encoders-
item.php?sID=610&serID=1&pt=i&tID=1175&cID=54
6&dsID=611&tsID=666.

[4] Dorf, Richard C. and Bishop, Robert H. Modern
Control Systems. 12th. s.l.: Pearson Education, Inc,
2010.

[5] LabVIEW. wikipedia.org. [Online] Creative Commons
Attribution-ShareAlike License, December 5, 2014.
[Cited: January 23, 2015.]
http://en.wikipedia.org/wiki/LabVIEW.

Int'l Conf. Embedded Systems and Applications | ESA'15 | 23

GUI Implementation of a Vegetable Dryer using a Cortex-
M4 Processor

Wongi Kim1, Byoungchul Ahn1, and Yeonbo Kim2

1 Department of computer Engineering, Yeungnam University, Gyungsan, South Korea
2 School of Electronic and Electrical Engineering, Daegu University, Gyungsan, South Korea

Abstract - As semiconductor technology advances,
mechanical control systems have been replaced with
embedded systems to control machines easily. Most vegetable
dryers are controlled by simple electronic circuits and
mechanical switches, and their data are displayed very limited
information of dryers such as temperature, operation time and
etc. To extend functions of dryers, it is required to change
user interfaces to input many data and to monitor operations
of dryers. To improve these disadvantages, it is necessary to
design a system using a graphical user interface and touch
screen which monitor and control dryers and collect data and
process them statistically. This paper describes a software
design to control a dryer, which has IO interfaces,
temperature setting, dry-time adjustment and humanity
measurement by using a STM32F429 Cortex-M4 processor
with limited embedded graphics.

Keywords: Graphics, Embedded, User Interface, Touch
Interface, Control

1 Introduction
 As compared with the rapid growth of smart phones,
control units of many home appliances are controlled by
simple electronic circuits and mechanical switches to control
and monitor their status. They have mechanical switches,
simple LED indicators and seven-segment LEDs. They also
show very limited information compared with many functions
because of their internal space, cost, complex design and so
on. Some appliances have large touch screens and displays
but their retail prices are very expensive. Therefore it is
necessary to design a graphical user interface with an low
cost embedded processor.

 To improve these disadvantages, it is necessary to
design an embedded graphics system with low cost embedded
processors. The information to display and control embedded
systems is temperature, humidity, fan controls, camera
images, video and accumulated power usage, peak power and
so on. The information collected during operation can be
transmitted to a main server through the internet, stored and
analyzed data from remote distance. The main controls or
settings are saved from touch interfaces instead of mechanical
switches. The graphical user interface(GUI) provides users
with easy control as well as easy upgrade or modification.
Therefore, GUI can add values of a product and be updated
or corrected quickly from customer requests. In order to

implement the GUI interface and intelligent control functions,
it is required a lot of external memory space, fast processing
power for graphics and low cost.

 This paper proposes a low-cost graphics implementation
using a Cortex M4 processor, which is a ST32F429 chip from
ST Micronics. The proposed system uses the embedded
graphics hardware and a 4 GB NOR flash memory for image
data. The graphics resolution is 800x480 16-bit TFT
WVGA(Wide Video Graphics Array) display with a touch
interface. This paper presents the software implementation
techniques for embedded graphics to improve the GUI
interface.

 The rest of the paper is organized as follows. In section
II, related works for agricultural dryers are discussed.
Features and disadvantages of present dryer systems are
described. In section III and IV, limitations and
implementations are described to design the GUI software.
Section V summarizes the implementation.

2 Related work
 Before agricultural dryers have been introduced, sun
drying methods are used at many places. One advantage of
sun drying does not use fossil fuel during the drying process.
But it needs a lot of manpower and can affect quality
deterioration of agricultural product because of polluted dust,
bugs and birds[1][2]. Conventional agricultural drying
method takes a lot of time and drying time is affected by
weather condition and surrounding environment. For this
reason, dryer systems are developed by using a fossil fuel[3].

 Now, most dryers of mechanical and electronic dryers
use 8-bit microprocessors to control temperature and drying
time. Their purpose is not to interface user friendly and to
collect data but to control dryers. The existing mechanical
and electronic dryers provide users with a seven-segment for
display and three control switches, which are temperature, fan
control, automatic dry function. Such a system based on
mechanical methods is too difficult to control a dryer
precisely, but one advantage of existing dryer control systems
is easy to use because of simple design. Display interface
using seven-segment simply displays temperature, humidity
and drying time. Users can select automatic drying for control
but only one or two vegetable products can be set for the
automatic dry function. Therefore, most dryers have to

24 Int'l Conf. Embedded Systems and Applications | ESA'15 |

redesign their control panel to dry specific vegetable and they
cannot use for general dryers of agricultural products. For
such reasons, existing dryers have a limitation to modify and
change its settings. They cannot display all information of
dryers or operational errors, which are collected during
operations.

 It is worth to develop a low cost system with a graphical
user interface and an intelligent system to control, diagnose,
service dryers. As rapid growth of smartphones, GUI control
systems will get attention from farmers and be controlled by
smartphones. This paper presents a design and
implementation of GUI software by solving several issues
with low cost embedded graphics.

3 Software design limitations
 To design a low cost embedded system, we have
selected an ARM Cortex M4, which is a ST32F429 processor
from ST Micronics. It has an internal graphics processor to
process 16-bit graphic data for embedded applications. It
provides 2 MB dual-bank flash memory, 256 KB SRAM
including 64 KB of data RAM. It is possible to connect a
display to the parallel interfaces and take full advantage of
ST’s Chrom-ART Accelerator graphics accelerator
performing content creation twice as fast as the core alone[8].
This graphics accelerator supports efficient 2-D raw data
copy, as well as image blending or image format conversion
such as mixing and transparency. As a result, the Chrom-
ART Accelerator boosts graphics content creation and saves
processing bandwidth of the MCU core for the rest of the
application.

 But it has been designed to use the small screen size,
640x480 pixels. When this processor is applied to 800x480
pixels, several issues are solved to overcome graphics
processing performance. They are internal memory space for
graphics images, screen display time and external memory
access time.

3.1 Limited internal memory
 To display images fast on the screen, 2 MB NAND flash
memory in the processor must be used. However, the memory
capacity can store up to six 800x480 images with RGB 24-bit
natural color. This internal memory must store both
executable codes and images. Since the size of executable
codes is 1 MB, the space is left about 1MB space for images.
Memory capacity for image is very small because only 3
800x480 bitmap images can be stored in memory space.
There are more than 10 screen transitions and many small
sized images should be stored in the memory. Their estimated
size is 5 MB. Therefore, internal 2 MB flash memory should
be used efficiently for codes and images. The internal
memory is designated for small-size and frequently-used
images.

Figure 1. Access Time Comparison

Figure 1 shows the access times of the internal memory
and the external NOR flash memory. The access time of the
NOR flash memory is 9.5 times slower than that of the
internal memory. To solve this problem, the following three
options are considered.

Internal memory utilization
Typically the memory access time of the external NOR
flash memory is twice slower than that of the internal
memory. Most small and frequent used images must be
stored in the internal memory and other images are stored
in the external NOR memory. Therefore the display time
of graphics can be matched to the speed of external
memory access.

JPEG image compression
The file size of JPEG files can be reduced to one of tenth
of file size of bitmap images but they are required to
decode images to display on the screen. This decoding
operation requires additional time and memory for the
program. For fast display operation, image compression
method is not efficient for small embedded system.

Scaling method
Because the size of total bitmap images is about 4.8MB,
all images for the dryers cannot be stored in the internal
memory. To solve this problem, a scaling-down method,
which is reduced by half, is used. When images are
displayed to the screen, images are scaled-up by
duplicating method without losing processing speed and
image blurring. Figure 2 shows the scaling method.
Depend upon applications, images are scaled down to 1/4
or 1/16 of the original images. With this method, most
frequently-used images are stored in the internal memory.

Int'l Conf. Embedded Systems and Applications | ESA'15 | 25

Figure 2. Image Scaling Method

3.2 External NOR flash issue
 Unlike typical hard disks, NOR flash memory has
several things to be considered when implementing the FAT
file system. Since there are unit differences among writing
and reading, erasing blocks of the flash memory, it does not
support overwriting the same memory blocks after they are
erased.

 Flash memory devices of high-capacity and high-speed
such as SSD(Solid State Device) can immediately apply a file
system used in the existing hard disk using the FTL(Flash
Translation Layer). It would pay a lot of costs if FTL is
implemented in low-capacity-embedded devices without
operating systems[7]. To write data in small memory block
with low-performance, FAT file system is used for NOR
flash memory using block buffers.

 To implement the FAT file system in the flash memory,
FatFs module, which is a generic FAT file system for
embedded systems, is used. FatFs works on lower level I/O
layer, which reads a data of the physical device and store
them to block buffers. The hierarchical structure of FAT file
system module is shown in Figure 3.

Figure 3. Layers of Embedded File System

 In order to solve erase-before-write problem and
difference of read/write and erase unit on the NOR flash
memory, the block buffer is used. If a command of read/write
from FAT is requested, the block buffer loads data from a
corresponding block address on the flash memory. Then, the
block buffer sends data to FAT as the size of data requested
from the FAT. If the block buffer is dirty and a block address
requested from FAT and a block address of block buffer is
different, the block buffer writes to flash memory for write-
back. This algorithm is shown in Figure 4. Algorithm 1
explains read-data from the flash memory and passes data to
FAT. Algorithm 2 explains write-data from FAT and passes
data to the flash memory through the block buffer.

Algorithm 1: read from NOR flash memory for FAT
Before reading data from FAT: FAT reads data from
buffer Br
B: block buffer, N: address of B, Ra: block address of Br
1 Ra get block address from FAT
2 if N Ra and Dirty B is set then

// check for buffer change before overwrite block
buffer
3 write B to flash memory
4 B read data block of Ra from the flash memory
5 end if
6 Br copy data from B as size of Br

Algorithm 2: write to NOR flash memory for FAT
After writing data to FAT: FAT writes data to buffer Bw
Wa : block address of Bw
1 Wa get block address to write data from FAT
2 if N Wa and Dirty B is set then

// check for buffer change before overwrite block
buffer
3 write B to flash memory
4 B read data block of Wa from the flash memory
5 end if
6 B copy data from Bw
7 Set a dirty bit of B

Figure 4. Algorithms to Read and Write Data

3.3 Screen update method
 The screen resolution is 800x480 pixels. When images
are stored on the internal memory, their display speed is fast.
But display speed is slow when images are stored on the
external flash memory. When an 800x480 image in the
external NOR flash is displayed on the screen, it takes about
1.5 seconds on 7” screen.

 There are two kinds of screen updates. One is updating
full screen, which is 800x480 pixels. The other is partial
updates such as date, temperatures, popup windows, and so
on. To make update the screen fast and unperceived, it must
update the small area only. Instead of updating the full screen,

26 Int'l Conf. Embedded Systems and Applications | ESA'15 |

the section update of the frame buffer is implemented. The
section buffer can be divided into subsection areas again and
subsection areas are updated specific data only. For example,
when the system clock is updated, seconds can be updated in
the frame buffer instead of updating hours, minutes and
seconds. Figure 5 shows a process displaying time
information in seconds.

 Figure 5. Partial Screen Update

4 Software implementation
 The graphics software is implemented on a STM32F429
board with 7” Innolux TFT LCD and touch-screen. An
External 64 Mbit NOR flash(IS45S16400J) memory is
connected to store images and data storage.

4.1 GUI main screen
 Issues in Section 3 are solved and the implemented GUI
is shown in Figure 6. Since the LCD controller supports only
16-bit color, 24-bit color has been converted 16-bit color. The
background bitmap images are stored in the internal memory
after they are scaled down to 1/4 to 1/16. The displayed
image is shown in Figure 6.

Figure 6. Main Screen

4.2 Automatic operation
 Dryer can be operated by two modes. One is manual
operation mode and the other is automatic dryer. Since each
vegetable has its own drying time and control, automatic
operation is very useful to dry various vegetables. 40
vegetables are programmed for automatic dry cycles. They
are programmed for drying temperature, drying time,
humidity control and so on.

4.3 Information display
 While the dryer is operated, it collects drying data from
sensors, which are temperature, humidity, fan speeds,
electricity consumption, accumulated solar heat usage, and its
operation time. All data are saved in the external NOR flash
memory and are displayed information daily, weekly and
monthly. Figure 7 shows on statistics screen, which are
shown as a bar graph format for seven weeks.

Figure 7. Statistics Display

5 Conclusion
 This paper presents an implementation of low-cost
embedded graphics system for a vegetable dryer. For graphics
implementation, three issues are solved without losing
graphics speed with maintaining low cost. Especially, to
improve the speed of graphical representation, the scaling
method are used and small images are stored in the NOR
flash memory. To make fast screen update, two layers of the
frame buffer are implemented. In near future, we plan to
interface to 10” TFT screen for easy touch and large character
display for old famers.

Please address any questions related to this paper to
Yeonbo Kim by Email (ybkim@daegu.ac.kr).

Int'l Conf. Embedded Systems and Applications | ESA'15 | 27

6 References
[1] Munir, Anjum, Umair Sultan, and Muhammad Iqbal.
“Development and performance evaluation of a locally
fabricated portable solar tunnel dryer for drying of fruits,
vegetables and medicinal plants.” Pak J Agric Sci, Vol. 50,
pp. 493-498, 2013.

[2] Chaudhari, Ashish D., and Sanjay P. Salve. “A Review
of Solar Dryer Technologies.” IJRAT, Vol 2, No. 2, pp. 218-
232, Feb., 2014.

[3] Misha, S., et al. “Review on the application of a tray
dryer system for agricultural products.”World Applied
Sciences Journal, Vol. 22, No. 3, pp. 424-433, 2013.

[4] Parai, Manas Kumar, Banasree Das, and Gautam Das.
“An Overview of Microcontroller Unit: From Proper
Selection to Specific Application.” International Journal of
Soft Computing, Vol. 2, pp. 228-231, 2013.

[5] Lin, Yuanxin, et al. “Design and Implementation of
Remote/Short-range Smart Home Monitoring System Based
on ZigBee and STM32.” Journal of Applied Sciences,
Engineering and Technology, Vol. 5, pp. 2792-2798, 2013.

[6] Xiao, Haihong, and Jiming Luo. “Design of Electrical
Parameter Measurement System for Three Phase AC Motor
Based on STM32.” Sensors & Transducers, Vol. 174, No. 7,
pp. 205-210, 2014.

[7] Chung, Tae-Sun, et al. “A survey of flash translation
layer.” Journal of Systems Architecture, Vol. 55, No. 5, pp.
332-343, 2009.

[8] STM32F437 datasheet, ST Micronics, Jan 2014.

[9] http://elm-chan.org/fsw/ff/00index_e.html

28 Int'l Conf. Embedded Systems and Applications | ESA'15 |

SESSION

HPC + VIRTUAL MACHINES + FAULT
TOLERANT DEVICES

Chair(s)

TBA

Int'l Conf. Embedded Systems and Applications | ESA'15 | 29

30 Int'l Conf. Embedded Systems and Applications | ESA'15 |

A Standard Cell Based Power-Delay-Area Efficient
3-of-5 Majority Voter Design

P. Balasubramanian
School of Computer Engineering

Nanyang Technological University
50 Nanyang Avenue
Singapore 639798

H.R. Arabnia
Department of Computer Science

University of Georgia
415 Boyd Building

Georgia 30602-7404, USA

Abstract—This paper proposes a new standard cell based
design for the 3-of-5 majority voter meant for use in quintuple
modular redundant hardware. The voter can tolerate up to two
faulty or erroneous inputs, and when a majority of the inputs are
correct guarantees the production of the correct output. In
comparison with the existing design of the 3-of-5 majority voter,
the proposed design reports an increase in the figure-of-merit by
33.7%, where the figure-of-merit is defined as the inverse of the
product of power, delay, and area. The results are based upon
simulations, performed by targeting a 32/28nm CMOS process.

Keywords—Majority voter; Standard cells; Digital design;
Quintuple modular redundancy; Fault tolerance

I. INTRODUCTION

N-modular redundancy (NMR), where a majority M out of
N function modules are expected to operate correctly is a
scheme widely employed in the fault-tolerant hardware and
software designs of safety-critical circuits and systems [1]. In
this paper, we focus our attention on NMR as applied to fault-
tolerant hardware design. Among the generic NMR family,
triple modular redundancy (TMR), which is a 3-tuple version
of the NMR is well-known and widely used for numerous
safety-intensive systems applications [2]. However, in mission-
critical space and aerospace electronic circuits and systems,
besides the TMR [3], quintuple modular redundancy (QMR),
which is a 5-tuple version of the NMR, is also preferred [4] [5].
In TMR, 3 copies of the hardware are used and at least 2 out of
the 3 hardware units1 should operate correctly, while in the
case of QMR, 5 copies of the hardware are used and at least 3
out of the 5 hardware units should operate correctly. The TMR
scheme can cope with any arbitrary faulty hardware unit or
hardware unit failure whilst guaranteeing the correct operation
and the QMR scheme can tolerate any two faulty hardware
units or hardware unit failures which may occur at random
whilst providing the correct operation.

The block diagram of a typical NMR system is portrayed
by Figure 1. A hardware unit is duplicated (N – 1) times, and
the N identical hardware units are combined using a voting
element (voter) which produces a majority vote of the correctly
functioning hardware as shown in Figure 1. The hardware

1 The term ‘hardware unit’ is generically used in this paper to refer to any
circuit or system, which is duplicated as per need to form the NMR system.

units’ outputs viz. H1 to HN are given as inputs to the majority
voter whose output V reflects the majority of the input values.
Since the TMR system employs 3 hardware units, the majority
voter corresponding to the TMR can be called as ‘2-of-3
majority voter’ [6]. Likewise, since the QMR system deploys 5
hardware units, the majority voter corresponding to the QMR
can be called as ‘3-of-5 majority voter’.

Figure 1: Block schematic of the NMR system

The reliability of the typical NMR system (RNMR) is given
by the following binomial expression (1), where K varies from

0 to (N – M), and
K!K)!(N

N!
K
N . It is implied in the

equation that R = R(t), i.e. reliability is a function of time t. RH
signifies the reliability of the hardware unit used. Equation (1)
specifies that a majority M out of N available hardware units
are expected to maintain the correct operation to guarantee the
reliable operation of the NMR system, and that the faulty or
failure states of up to a maximum of K hardware units can be
accommodated by the system.

K
H

K-N
H

MN

0K
NMR)R1(R

K
N

R (1)

It is implicitly assumed in the above expression that the
majority voter is perfect since the voter is usually a small piece
of hardware compared to the hardware unit used in an NMR
system. Moreover, since identical hardware units are used to
compose the TMR and QMR systems, the reliabilities of the
hardware units are also assumed to be equivalent. Under these

Int'l Conf. Embedded Systems and Applications | ESA'15 | 31

assumptions, equation (1) is deduced, and the reliabilities of
simplex (non-redundant), TMR and QMR systems are plotted
in Figure 2 as a function of their hardware unit reliabilities.

Figure 2: Reliabilities of simplex, TMR and QMR systems
versus their hardware reliabilities

As seen in Figure 2, the simplex system reliability varies
linearly as a function of its hardware unit reliability since it
comprises just a single hardware. Up to RH < 0.5, the simplex
system features better reliability than the TMR and QMR
systems. However, in reality, RH tends to be equal to 0.9 or
greater. Hence for RH values ranging from 0.6 to 0.9, the TMR
system exhibits improvement in reliability than the simplex
system by 10% on average, and the QMR system exhibits an
increase in reliability by a further 4.6%. In other words, the
QMR system reports a mean enhancement in reliability by
15.1% compared to the simplex system for RH values in the
range of 0.6 to 0.9. Further, the TMR and QMR systems
incorporate fault/failure tolerance, which is usually absent in
the simplex system and the simplex system might constitute a
single point-of-failure [1] during critical fault occurrences. In
contrast, the TMR system is able to withstand up to 1 hardware
unit fault/failure, and the QMR system is able to cope with
double the number of hardware unit faults/failures compared to
the TMR.

II. MAJORITY VOTERS OF QMR SYSTEM

The existing 3-of-5 majority voter design corresponding to
the QMR system is first presented, followed by a description
of the proposed 3-of-5 majority voter design. The voters are
assumed to be perfect in the following discussions.

A. Existing majority voter design for QMR
The existing 3-of-5 majority voter design corresponding to

the QMR [7] is shown in Figure 3. Here, A, B, C, D and E
represent the five equivalent outputs of five identical hardware
units, which serve as the inputs to the majority voter, whose
output is indicated as Y. A full adder, a half adder, a 2-input
OR gate which combines the sum outputs of the full adder and
the half adder (viz. SUMFA and SUMHA), and an AO222 cell,
which determines the majority amongst incoming carry outputs
of the full adder, the half adder (viz. COUTFA and COUTHA),
and the OR-ed output of SUMFA and SUMHA are used in this
design. It should be noted that the full adder and the half adder

are indeed available as elements of a standard cell library [8],
and hence they may be treated on par with complex logic gates.

Figure 3: Existing design for the 3-of-5 majority voter

The logical expression of the 3-of-5 majority voter is given
below, which highlights all possible majority conditions.

Y = ABC + ABD + ABE + ACD + ACE + BCD + BCE

+ ADE + BDE + CDE + ABCD + ABCE

+ ABDE + ACDE + BCDE + ABCDE (2)

To explain the operation of the 3-of-5 majority voter shown
above, let us consider a majority of 1s output by the hardware
units for an illustration. Notice that the following illustration
would be equally applicable for a consideration of majority of
0s output by the hardware units as well.

When the first majority condition, i.e. ABC becomes true in
(2), SUMFA and COUTFA become 1, as a result the OR gate
outputs 1, and hence the AO222 gate produces 1 on Y since the
majority of its inputs are 1.

When any of the majority conditions from ABD up to BCE
in (2) becomes valid, SUMFA would evaluate to 0 but COUTFA
would evaluate to 1. Since the other voter input D or E is also 1
for any of these majority conditions at the same time, SUMHA
evaluates to 1 and COUTHA becomes 0. Therefore the OR gate
outputs 1 since one of its inputs (SUMHA) is 1. This again takes
us back to the previous situation where 2 out of 3 inputs to the
AO222 gate are 1, and hence the voter output Y equals 1.

When any of the majority conditions specified by ADE up
to CDE in (2) becomes valid, SUMHA = 0 and COUTHA = 1.
But since either A or B or C is also 1 simultaneously, SUMFA
equates to 1 and COUTFA equates to 0, which causes the OR
gate to output 1. Since COUTHA is also 1, the two inputs to the
AO222 gate are 1 and therefore it outputs 1 on Y.

If the majority conditions ABCD or ABCE in (2) become
valid, SUMFA, COUTFA and SUMHA would evaluate to 1, while
COUTHA alone would evaluate to 0. Again, the two inputs to
the AO222 gate are 1, and hence it produces the output Y = 1.

For any of the majority conditions ABDE or ACDE or
BCDE of (2) becoming valid, COUTFA and COUTHA become
equal to 1, while SUMFA and SUMHA would evaluate to 0 and
so the OR gate outputs 0. Since COUTFA and COUTHA serve as
the inputs to the AO222 gate, it subsequently produces the
output of Y = 1.

When the best-case condition i.e. ABCDE becomes valid in
(2), SUMFA = COUTFA = COUTHA = 1 and SUMHA = 0 results.

32 Int'l Conf. Embedded Systems and Applications | ESA'15 |

For this condition, all the inputs to the AO222 gate are 1, and
hence Y = 1 results.

B. Proposed majority voter design for QMR
The proposed design of the 3-of-5 majority voter depicted

by Figure 4(a) is based on the direct synthesis of (3). Equation
(3) is derived from (2) on the basis of the set theory based
factoring technique [9] [10]. Equation (3) is synthesized using
5 simple logic gates and 1 complex logic gate: three 3-input
OR gates (G1, G2 and G5), two 3-input AND gates (G3 and
G4), and one complex gate viz. the OA221 cell, shown in
Figure 4(a). The OA221 cell synthesizes (A + B) (D + E) C as
a single entity.

Z = (C + D + E) AB + (A + B) (D + E) C + (A + B + C) DE

(3)

G1
C
D
E
A
B

G2

G5 ZOA221

G3

G4

(a)

G1
C
D
E
A
B

G2

ZOA221

G3

G4

G5

(b)

Figure 4: Proposed design of the 3-of-5 majority voter
(a) Basic implementation, (b) Optimized implementation

To understand the operation of the proposed voter design
(Figure 4a); consider a majority of 1s output by the hardware
units for an illustration similar to that of the previous sub-
section. The following deliberations would equally apply for a
consideration of majority of 0s output by the hardware units.

When the majority condition (C + D + E) AB given in (3)
becomes valid, inputs A and B are 1 and any of the inputs C or
D or E is also 1 (at least). Given this, gates G1 and G3 output
1, and because one of the inputs to gate G5 is 1, a value of 1 is
produced on the voter output Z.

Alternatively, if the majority condition (A + B) (D + E) C
specified in (3) is upheld, the OA221 cell would output 1 and
the gate G5 would subsequently produce the output of Z = 1.

Lastly, provided the majority condition (A + B + C) DE of
(3) is true, since A or B or C is 1 (at least), gate G2 outputs 1.
As the remaining inputs D and E are also 1s simultaneously,
gate G4 outputs 1, and gate G5 also produces 1 at its output.

Notice that the above deliberations have in fact considered
majority clauses where as a minimum at least 3 out of 5 inputs
to the majority voter are 1s, in which case only one input of G5
is 1, which leads to Z = 1. However, if four or all of the voter
inputs are 1s, then more than one input to gate G5 becomes 1,
which eventually results in the output, Z = 1.

Figure 4(b) represents an optimized version of Figure 4(a),
where the AND-OR logic implemented by gates G3, G4, the
complex gate OA221, and the OR gate G5 are realized using
NAND-NAND logic. Figure 4(b) signifies the proposed 3-of-5
majority voter design which when physically realized leads to
optimization of design metrics, as discussed in the following
section. As per De Morgan’s theorem of Boolean algebra,
Figures 4(a) and 4(b) are logically equivalent.

III. SIMULATION RESULTS AND DISCUSSION

Two sample implementations of the QMR system has been
considered by treating the 4×4 array multiplier shown below in
Figure 5 as the example hardware unit. The multiplier module
consists of 8 primary inputs viz. A3 to A0 and B3 to B0, with A3
and B3 being the most significant bits, and A0 and B0 are the
least significant bits. The 8 primary outputs of the multiplier
are represented by the product bits P7 to P0, with P7 being the
most significant and P0 being the least significant bit. The 4×4
array multiplier is realized using a total of 8 full adders and 4
half adders, and the full adder and half adder logic are directly
synthesized using the corresponding elements of the digital cell
library [8]. For implementing the QMR system, 5 copies of the
4×4 array multiplier are used besides the 8 majority voters.

Figure 5: 4×4 Braun array multiplier used as the hardware unit

Int'l Conf. Embedded Systems and Applications | ESA'15 | 33

The simulation results (viz. power, delay, area) obtained for
the two QMR implementations incorporating different majority
voter designs are shown in Table 1. The structural integrity of
the majority voters and the multiplier shown in Figures 3, 4(b)
and 5 are preserved while performing the simulations. Given
that the 4×4 array multiplier is uniformly employed for the
hardware units, the two QMR implementations differ only in
terms of the majority voters used with the one embedding the
existing 3-of-5 majority voter and the other incorporating the
proposed 3-of-5 majority voter. The 4×4 array multiplier
consumes 84.38μm2 of Silicon when realized using a 32/28nm
CMOS process [8]. The area occupancies of the existing and
proposed 3-of-5 majority voter designs are found to be similar,
and are estimated to be 13.47μm2.

For power estimation, the 4×4 array multiplier used in the
QMR systems were supplied with all distinct input patterns viz.
256 inputs, which reflects the unique multiplication scenarios.
The input vectors were supplied at time intervals of 2.5ns
(400MHz) through test benches which represent the inputs
coming in from the outside world. The .vcd files generated for
the QMR system implementations, on the basis of the applied
input vectors, were subsequently used for power estimation
using Synopsys tool. The area and critical path delay metrics
were also estimated for the QMR system implementations and
are given in Table 1. The primary outputs of the QMR system
implementations have fanout-of-4 drive strength.

To holistically comment on the design parameters of the
two QMR system implementations, a figure-of-merit (FOM) is
defined as the inverse of the product of power, delay, and area.
Since minimum values of power, delay, and area metrics are
desirable, a lower power-delay-area product and thus a higher
FOM are preferable, and either of these could be considered to
be an indicator of optimized design.

Table 1: Power, delay, area, and FOM of the two QMR system
implementations incorporating different 3-of-5 majority voters

Design metric

legend

QMR system 1

(Existing voter)

QMR system 2

(Proposed voter)

Power (in μW) 133.8 118.5

Delay (in ns) 1.09 0.92

Area (in μm2) 529.64 529.64

FOM (× 106) 12.95 17.32

Notice that since similar hardware units have been used in
QMR system 1 and QMR system 2, they are different only in
terms of their majority voters. The QMR system 1 employs the
existing voter design, while the QMR system 2 incorporates
the proposed voter design. Hence the differences between the
power, delay, and area results obtained for the two QMR
systems can be duly attributed to the differences between the
existing and proposed majority voter designs. From Table 1 it
is clear that the QMR system 2 employing the proposed 3-of-5
majority voter reports greater FOM by 33.7% compared to the
QMR system 1 which embeds the existing voter design.

The propagation delay of the proposed voter is less than the
existing voter since the former has one 3-input OR gate and
two 3-input NAND gates in its critical path, while the latter
features a full adder, a 2-input OR gate and an AO222 gate in
its critical path. This explains the reason behind achieving a
considerable delay reduction of 15.6% in the case of QMR
system 2 compared to the QMR system 1. Since the proposed
majority voter occupies the same amount of Silicon as that of
the existing voter, when considering a QMR system
implementation, this translates into similar area occupancy for
both QMR systems 1 and 2. As a consequence, QMR system 2
may be expected to dissipate the same average power as that of
QMR system 1, but QMR system 2 is indeed found to dissipate
less power than QMR system 1 by 11.4%. Although this may
be surprising, the reason for the low power dissipation of QMR
system 2 vis-à-vis its counterpart (i.e. QMR system 1) is rather
intricate and is explained as follows.

Referring to (2), it can be observed that the percentage of
majority conditions which are specified by only 3 inputs out of
the 5 voter inputs is found to be 62.5% among the possible
majority conditions listed. As a consequence, if only 3 out of 5
inputs applied to the existing majority voter, portrayed by
Figure 3 are 1, it will result in the activation of the full adder
and/or half adder, the 2-input OR gate, as well as the activation
of the final AO222 gate with 2 of its 3 inputs being driven to 1.
On the other hand, for a similar consideration of only 3 out of 5
inputs applied to the proposed majority voter (depicted by
Figure 4b) are 1, it will cause the activation of either three
simple logic gates viz. G1, G3 and G5, or G2, G4 and G5, or
the activation of just the complex logic gate (OA221) and G5.
Hence, it may be understood that a less switching activity is
anticipated for the proposed voter compared to the existing
voter. This explains the reason why QMR system 2 is able to
achieve less total power dissipation than QMR system 1.
Further, this is construed to be the likely reason behind the less
peak power dissipation of QMR system 2 by 6.1% in relative
comparison with QMR system 1. The peak power dissipation
of QMR systems 1 and 2 are estimated to be 16.3mW and
15.3mW respectively through a time-based power analysis.

IV. CONCLUSION

With multiple faults and failures becoming more prominent
in the nanoscale electronics regime [11] – [13], the importance
of and the need for QMR as opposed to TMR is expected to
increase. In this backdrop, the design of an efficient 3-of-5
majority voter that forms an important constituent of the QMR
hardware is very relevant. In this context, a novel power-delay-
area efficient 3-of-5 majority voter design has been presented
in this paper. In comparison with the existing 3-of-5 voter, the
proposed 3-of-5 voter has led to optimization of design metrics
(measured in terms of FOM) by 33.7% for a sample QMR
system implementation that utilized a 4×4 array multiplier for
the hardware units.

REFERENCES

[1] B.W. Johnson, Design and Analysis of Fault-tolerant Digital Systems,
Addison-Wesley Publishing, 1989.

[2] I. Koren, C. Mani Krishna, Fault-Tolerant Systems, Morgan Kaufmann
Publishers, 2007.

34 Int'l Conf. Embedded Systems and Applications | ESA'15 |

[3] R.E. Lyons, W. Vanderkulk, “The use of triple-modular redundancy to
improve computer reliability,” IBM Journal of Research and
Development, vol. 6, no. 2, pp. 200-209, April 1962.

[4] J.R. Sklaroff, “Redundancy management technique for space shuttle
computers,” IBM Journal of Research and Development, vol. 20, no. 1,
pp. 20-28, January 1976.

[5] M.J. Azbug, E.E. Larrabee, Airplane Stability and Control: A History of
the Technologies That Made Aviation Possible, 2nd edition, Cambridge
University Press, 2002.

[6] P. Balasubramanian, N.E. Mastorakis, “A standard cell based voter for
use in TMR implementation,” Proc. 5th European Conference of Circuits
Technology and Devices, pp. 115-124, 2014.

[7] T.J. Dysart, “It’s all about the signal routing: Understanding the
reliability of QCA circuits and systems,” PhD thesis, University of
Notre Dame, Indiana, USA, pp. 23, July 2009.

[8] Synopsys Digital Standard Cell Library, SAED_EDK32/28_CORE
Databook, Revision 1.0.0, 2012.

[9] P. Balasubramanian, R. Arisaka, “A set theory based factoring technique
and its use for low power logic design,” International Journal of
Computer, Control, Quantum and Information Engineering, vol. 1, no.
3, pp. 702-712, 2007.

[10] P. Balasubramanian, B. Raghavendra, “Analysis of effect of pre-logic
factoring on cell based combinatorial logic synthesis,” Proc. World
Academy of Science, Engineering and Technology, vol. 2, pp. 577-582,
May 2008.

[11] D. Rossi et al., “Multiple transient faults in logic: An issue for next
generation ICs?,” Proc. 20th IEEE DFT Symp., pp. 352-360, 2005.

[12] H. Quinn et al., “Domain crossing errors: Limitations on single device
triple-modular redundancy circuits in Xilinx FPGAs,” IEEE Trans. on
Nuclear Science, vol. 54, no. 6, pp. 2037-2043, December 2007.

[13] N.Miskov-Zivanov, D. Marculescu, “Multiple transient faults in
combinational and sequential circuits: A systematic approach,” IEEE
Trans. CAD of Integrated Circuits and Systems, vol. 29, no. 10, pp.
1614-1627, October 2010.

Int'l Conf. Embedded Systems and Applications | ESA'15 | 35

Prototype of Light-weight Hypervisor for ARM Server
Virtualization

Young-Woo Jung, Song-Woo Sok, Gains Zulfa Santoso, Jung-Sub Shin, and Hag-Young Kim

Cloud Computing Research Department, ETRI, Daejeon, Republic of Korea

Abstract - As ARM CPUs become increasingly common in the
server world, virtualization technologies for mobile systems
need to be extended for ARM server systems. However,
because this system has the limited resources compared to the
traditional x86 server system, new virtualization technologies
should be considered to allow as many virtual machines as
possible to run efficiently and simultaneously on single ARM
server system. In this paper, we present the prototype of light-
weight hypervisor for ARM server system which can minimize
the performance degradation of the guest operating system
running on the hypervisor and provide full virtualization. We
explore how to achieve the light-weight ARM hypervisor by
describing and analyzing its detailed implementation.
Through a performance comparison between the native
operating system and the guest operating system running on
the proposed hypervisor, we show that the proposed ARM
hypervisor guarantees minimal virtualization overhead.

Keywords: ARM server, virtualization, ViMo-S, hypervisor,
virtual machine, light-weight

1 Introduction
 The number of ARM-based devices has grown
tremendously across smart phones, tablets, laptops, and
embedded devices. It is because ARM CPUs are more power-
efficient than any other CPUs in the market. Nowadays, ARM
CPUs also continue to increase performance and some of
them is now within the range of x86 CPU performance. This
drives the development of ARM-based microservers and
pushes ARM CPUs into the traditional server world.

 A microserver (also written as micro server or
MicroServer) is a small server appliance that Intel introduced
the concept around 2010. This inexpensive and energy-
efficient server can be squeezed onto a small system board to
obtain a blade system which may be smaller than the
conventional blade but still powerful enough for data
processing. [1] Although Intel has launched microserver
products based on Xeon or Atom processors on the market,
ARM CPUs have been also considered as another excellent
choice, because ARM based SoCs have a better performance
to build servers and clusters than x86 and Atom processors,
especially considering their performance per Watt relation. [2]

 On the other hand, virtualization has been adopted as an
important key technology in the x86 server systems for many
years and is now spreading to microservers. With ARM
beginning to enter the server world, virtualization support is
very critical and ARM CPUs of the ARMv7-A [3] and
ARMv8-A [4] architectures now include hardware support for
virtualization, ARM virtualization extensions, that lets
multiple virtualized OSes run efficiently and simultaneously.

 The current major hypervisor (also known as virtual
machine monitor) technologies using the hardware
virtualization extensions of ARM seem to be KVM/ARM [5]
and Xen on ARM [6]. However, KVM and Xen was the
original purpose of virtualizing x86 server systems, so both
basic structures have been optimized in x86 architecture, not
in ARM architecture. In the KVM/ARM approach which
supports a full virtualization, the host operating system (OS)
runs directly on top of the hardware, in which the hypervisor
is implemented as a kernel module, and then the guest OSes
run as processes on top of the host kernel. Although this
kernel component of KVM is included in mainline Linux,
KVM/ARM must leverage QEMU [7] in user space to
virtualize I/O devices and QEMU is a rather heavy program to
be installed in ARM server system which has restricted
resources. [8] Xen on ARM has been used as one of leading
para virtualization technologies for ARM-based devices. With
ARM providing virtualization extensions, Xen on ARM has
supported hardware virtual machine (HVM), rather than
paravirtual machine (PV). Although Xen is a very mature
virtualization technology, it has a very complex configuration
which is not easy for common user and it needs to modify the
guest OS which means its compatibility and portability is poor.

 In this paper, we present the prototype of light-weight
hypervisor for ARM server virtualization with ARM
virtualization extensions, which support full virtualization and
minimize the performance degradation of the guest OSes. On
the beginning stage of the design and implementation, we
focused only on the ARM architecture and have optimized it.

 This paper is organized as follows. Firstly, we give the
brief explanation about ARM virtualization extensions, which
is main technology to make the hypervisor more efficient and
light-weight. The detailed architecture of the proposed
hypervisor is introduced in Section 3, where we describe how
to virtualize each resource such as CPU, memory, interrupt,
and I/O devices. Section 4 briefly shows the experimental
results including the performance comparison between the

36 Int'l Conf. Embedded Systems and Applications | ESA'15 |

native OS and the OS running on the proposed hypervisor and
the porting to the prototype of ARM server system. Finally,
we conclude this paper and suggest some future works.

2 ARM Virtualization Extensions
 Similar to x86 architecture, ARM virtualization
extensions enable the efficient implementation of the
hypervisor for ARM compliant processors to the latest
ARMv7-A and ARMv8-A architectures. For example, the
ARM Cortex-A15 [9] is a core of ARMv7-A architecture and
ARM Cortex-A53/A57 [10, 11] are cores of ARMv8-A
architecture, respectively. In this section, we describe a brief
overview of ARM virtualization extensions

2.1 New privilege level for hypervisor
 As shown in Figure 1, ARMv7-A architecture includes a
new CPU mode called Hyp mode as well as TrustZone [12] as
Security Extensions. TrustZone splits the modes into two
worlds, secure and non-secure. A special mode, Monitor
mode, is provided to switch between the secure and non-
secure worlds. According to the typical booting sequences in
ARMv7-A, ARM CPUs power up by reset starting in ARM
secure SVC mode, execute boot and startup codes, and then
transition to ARM secure Monitor mode, by which ARM non-
secure Hyp mode for the hypervisor can be activated on.

Figure 1. ARMv7-A processor modes

 Hyp mode was introduced as trap-and-emulation
mechanism to support virtualization in the non-secure world.
It is more privileged than the existing non-secure kernel
modes, the kernel and user modes, and leaves the guest OSes
and applications unmodified. It has its own banked registers,
as well as additional registers, such as SP, SPSR, and ELR, in
which most of critical feature of hardware-assistant CPU
virtualization is executed. Using this register set, the
hypervisor software running in Hyp mode can configure
hardware to trap into Hyp mode on several sensitive
instructions and hardware interrupts.

2.2 Stage-2 translation
 Virtualization requires that the guest OS cannot access
to the hypervisor’s memory space. Without virtualization
extensions, a technique, for example, shadow page table

which is maintained by the hypervisor, are enforced. In this
technique, the guest OS kernel maintains its own page tables
but the hypervisor should keep this OS kernel from setting the
Memory Management Unit (MMU) registers. This approach
makes the hypervisor complicated and causes performance
overhead.

 In ARM virtualization extensions, ARM provides
hardware support to virtualize physical memory, two-stage
memory address translation. When a virtual machine (VM)
runs, the physical addresses managed by the VM are actually
Intermediate Physical Addresses (IPAs) (also known as guest
physical addresses) which are translated into physical
addresses (PAs) (also known as host physical addresses). For
the memory address translation in the guest OS, the stage-1
page tables using the translation table base register (TTBR)
translate the virtual addresses (VAs) into IPAs, then stage-2
page tables using the virtual translation table base register
(VTTBR) translates IPAs into PAs. This stage-2 translation
can be enabled and disabled in Hyp mode.

2.3 Virtual interrupts
 ARM defines the Generic Interrupt Controller (GIC)
architecture. The GIC routes interrupts from devices to CPUs
and CPUs discover the source of an interrupt through the GIC
interfaces. The GIC architecture consists of two parts, the
distributor and the CPU interfaces. There is only one
distributer in a system, and each CPU core has a GIC CPU
interface. The distributer is used to configure the GIC, for
example, to configure the mapping of an interrupt to the CPU
core, and the CPU interfaces are used to signal
acknowledgment (ACK) and End-Of-Interrupt (EOI) to the
corresponded interrupts.

 If all interrupts are configured to be handled by the
hypervisor, the hypervisor should generate virtual interrupts in
software to signal them to VMs. This causes the interrupt
processing in the hypervisor to be expensive, because even
ACKs and EOIs for all virtual interrupts must be processed in
the hypervisor. The next version of GIC introduced the
concept of virtual interrupts which is supported by new
hardware virtualization feature, virtual GIC (VGIC), which
includes the virtual distributer and the virtual CPU interface.
The virtual CPU interface can be mapped into the guest OS as
the CPU interface, and can be used by the guest OS to signal
ACKs and EOIs without trapping into the hypervisor,
reducing overhead for manipulating interrupts on a CPU. The
hypervisor generates virtual interrupts by writing to special
registers in the virtual distributor, the list registers, and the
virtual CPU interface signals these virtual interrupts directly
to the guest OS’s kernel mode. Nevertheless, the hypervisor
must still emulate the distributor and all accesses by a guest
OS will be trapped into the hypervisor.

Int'l Conf. Embedded Systems and Applications | ESA'15 | 37

2.4 Generic timer
 ARM generic timer architecture provides virtualization
support for physical timer resources by introducing virtual
timers and virtual counters that measure the passing of virtual
time, that is, the passing of time on a particular VM. While
the hypervisor is configured to use the physical timer, the VM
can be configured to use the virtual timer VMs can control
their own virtual timers without any trap to the hypervisor.
However, any access to the physical timer and counter by a
VM arises trap to Hyp mode, in which the hypervisor only can
control them.

3 Light-weight Hypervisor Architecture
 The proposed hypervisor, ViMo-S, targets the
virtualization of the ARM server system, which means it
should be light-weight enough to provide the reasonable
performance in the restricted resource environment.
Originally, ViMo [13] was implemented by ETRI for mobile
ARM processor, which doesn’t support hardware
virtualization extensions, so we expanded it for ARM server
system with virtualization extensions. ViMo-S supports VM
lifecycle management such as dynamic creation and
destruction of VMs, which may be mandatory in the server
virtualization. Another important feature of ViMo-S is to
support the full virtualization for which ViMo-S completely
virtualizes the physical hardware without any modification of
the guest OS codes.

Figure 2. ViMo-S system architecture

 As shown in Figure 2, ViMo-S runs in Hyp mode, with
supporting the virtualization of CPU, memory, interrupt, and
timer resources. It also supports Virtio-based I/O
virtualization for full virtualization and can schedule multiple
VMs at the same time. There are two kinds of domains
running in user mode and kernel mode. While an admin
domain knows the existence of the hypervisor and has

interfaces to ViMo-S through the hyper calls for VM
management and Virtio-based I/O operations, there is no
interface to ViMo-S in the guest domains, so that they run in
the same manner as the execution on the physical hardware.

 In the following sections, we will describe in detail each
core virtualization technology of ViMo-S.

3.1 CPU virtualization
 To virtualize the CPU, ViMo-S must ensure that the
guest OS running in the VM has the same access to the
registers as the OS running on the physical CPU, while the
hardware state controlled by the hypervisor is persistent
across running VMs. With ARM virtualization extensions, a
VM running in the kernel and user mode has same register
state as register state without the hypervisor, and ViMo-S
running in Hyp mode saves/restores the current VM context
in/from the Hyp stack when a VM switches to ViMo-S and
vice versa. ViMo-S configures all accesses to the other
sensitive states such as WFI/WFE instructions, stage-2 page
faults, and hyper calls for VM management and I/O
virtualization, to be trapped and emulated in ViMo-S.
Because trap-and-emulation may be expensive enough to
affect VM performance, ViMo-S reduces the frequency of
traps by leveraging ARM hardware virtualization support.

 ARM boot loaders typically transition to the non-secure
world at an early stage, which means there is no ways to
switch on Hyp mode in which ViMo-S will execute, because
Hyp mode can be activated only in secure Monitor mode.
What we need to do is to trap into Hyp mode before uboot
boots the guest kernel. In order to turn Hyp mode on, we used
secure software, e.g. boot loader, running on secure state in
which Monitor mode can activate Hyp mod. When uboot
jumps to the entry point of ViMo-S in Monitor mode, ViMo-S
performs the following actions in CPU core 0 to enable the
hypervisor: (1) enable hyper call and disable secure monitor
call, FIQ, IRQ and Abort of Monitor mode, (2) turn Hyp
mode on and transition to Hyp mode, (3) activate other cores
for SMP, (4) configure the exception vector table in Hyp
mode, (5) set up the page table for the hypervisor and enable
MMU by setting the page table base register of Hyp mode
(HTTBR), (6) activate the hypervisor, (7) configure the
distributor register (GICD), the CPU interface register
(GICC), and the virtual interface control register (GICH),
which are accessible only by the hypervisor, (8) configure the
hypervisor timer (also known as Hyp timer) of the generic
timer, then the hypervisor can receive the hypervisor timer
interrupt, and (9) wait for creating a VM.

 For the other CPU cores other than CPU core 0, after
transitioning Hyp mode and configuring the exception vector
table in Hyp mode, they wait for the event indicating that the
page table setup for the hypervisor is complete in the CPU
core 0, because all CPU cores share the page table for the
hypervisor which is created by CPU core 0. And then, they

38 Int'l Conf. Embedded Systems and Applications | ESA'15 |

perform the same actions as in the CPU core 0, only except
for configuration of GICD, because there is only one
distributor in a system.

 When ViMo-S creates a new VM by the request of the
admin domain through the hyper call, it performs the
following actions: (1) create and initialize the structure of the
VM, which contains virtual CPU (VCPU) context, Hyp stack,
MMU context including VTTBR, VGIC, virtual timer, vector
floating point (VFP), and other necessary values for the VM,
(2) allocate memory to the VM by unit of 2MB and configure
the page table including I/O memory mapping for stage-2
translation, (4) activate the VM which is now schedulable.
When the VM is scheduled, ViMo-S configures VTTBR and
VTCR to enable stage-2 translation for the VM, and returns to
the VM through ERET instruction, which performs the mode
change to SVC mode and the program counter (PC) change at
the same time.

 After the VM is created, it runs in PL0 and PL1, and is
trapped into ViMo-S only for the timer interrupts, the I/O
interrupts, and the specified hyper calls by a VM of the admin
domain.

3.2 Memory virtualization
 ViMo-S supports memory virtualization of stage-2
translation in order that a VM cannot access physical memory
belonging to ViMo-S or other VMs. ViMo-S controls all
physical memory accesses and allows a VM only to access the
memory regions allocated to it. If a VM tries to access the
other memory regions, it causes stage-2 page fault and traps
into ViMo-S. Actually we use this kind of stage-2 page fault
mechanism for Virtio-based I/O virtualization, which will be
explained in section 3.4. Since stage-2 page tables can be
configured only in Hyp mode, they are completely transparent
to each VM. When ViMo-S performs context-switching to the
VM, it enables stage-2 translation and configures the stage-2
page table base register, VTTBR, of the VM. On the other
hand, when switching back to ViMo-S, ViMo-S disables
stage-2 translation and translates VA directly into PA by using
HTTBR. After configuring stage-2 translation and the page
table base registers, all memory translations are performed by
the hardware without any intervention by ViMo-S, which
gives better performance to VMs.

3.3 Interrupt virtualization
 ViMo-S configures the CPU to trap all hardware
interrupts to Hyp mode by setting GICD register, which
enables the hypervisor to control hardware resources. While
Hyp timer interrupt is processed only in ViMo-S for VM
scheduling and maintenance, VMs must receive notification
for other interrupts in the form of virtual interrupts for
emulating devices. ViMo-S uses the VGIC to inject these
virtual interrupts to VMs and reduce the number of traps to
Hyp mode. Virtual interrupts are raised to VCPUs by

configuring the list registers of the virtual distributors through
GICH and VMs can access to the virtual CPU interfaces
without being trapped to Hyp mode.

 ViMo-S minimizes the execution of the interrupt hander
in Hyp mode, because long execution in the hypervisor can
affect the performance of the VM. For Hyp timer interrupt, it
saves only the banked registers into the Hyp stack, executes
its own jobs, and then transition to the VM. In the case of VM
context switching, it additionally save the other contexts in the
structure of the VM, such as MMU context, VGIC, virtual
timer, and so on, which was explained in section 3.1. For the
other interrupts, ViMo-S just injects the corresponded virtual
interrupts to the VM using VGIC.

3.4 Virtio-based I/O virtualization
 For the support of full virtualization, ViMo-S utilizes
Virtio [14], the de-facto standard for I/O virtualization, to
provide virtual devices in the guest domain. As described in
Figure 3, we provide three key components for Virtio-based
I/O virtualization; Virtio front-end, Virtio back-end, and
Virtio helper.

Figure 3. Virtio-based I/O virtualization

 The Virtio front-end is located in the guest domain and
considered as a normal device driver. There is no
distinguishable difference between the Virtio front-end device
drivers and other physical device drivers. Although the
implementation of the Virtio front-end driver depends on the
running OS of the guest domain, these drivers have been
already included in Windows or Linux, and we just used it in
the guest domain without any changes. That means ViMo-S
can support the full virtualization without changing the codes
of the guest OS. Through the configuration of the Virtio front-
end driver, the access to the memory area for the transport via
the memory-mapped I/O arises trap into ViMo-S, which can
emulate I/O operations.

 To serve I/O requests of the Virtio front-end, the Virtio
back-end driver is necessary in the admin domain. The Virtio
back-end driver leverages the already implemented
virtualization programs in the OS running on the admin

Int'l Conf. Embedded Systems and Applications | ESA'15 | 39

domain. As an example, in Linux, the Virtio back-end driver
uses TUN/TAP device to virtualize network devices for the
guest domains. The Virtio back-end doesn’t depend on the
guest OS. A Virtio back-end driver can virtualize devices for
multiple guest domains. The actions that can be done by the
Virtio back-end may be limited due to the reasons of security
and stability. For instance, the Virtio back-end cannot directly
access to the memory area of the guest domain for reading
and writing data. It means a module running on the hypervisor
should support such operations. ViMo-S provides the Virtio
helper which takes requests from the Virtio back-end as well
as the Virtio front-end and processes them as necessary.

 During the guest domain boots, the Virtio front-end asks
the Virtio helper for the type, features and status of the Virtio
device. After the Virtio helper gets the information from the
Virtio back-end and sends it to the Virtio front-end, the Virtio
front-end initializes the device accordingly. The initialization
includes the buffer creation. The information about the size
and location of the buffer is transferred to the Virtio helper
which then map this buffer to the memory region in the admin
domain, where the Virtio back-end driver can process the data
directly in this buffer. By this way of conduct, we can be sure
that all the virtual devices in the guest domain work under the
capabilities of the admin domain’s devices. As an example,
the virtual block device in the guest domain can support SCSI
device, as long as the admin domain supports it. Otherwise,
the SCSI support in the guest domain is turned off.

 For the Virtio operations, the Virtio front-end writes
data into its buffer and the Virtio back-end reads the buffer
and acts properly according to the request and the type of the
device. As for the detailed explanation of the Virtio
operations, please refer to [14]. There are several mechanisms
to interact between each component for Virtio operations. The
Virtio front-end interfaces with the Virtio helper through
memory trapping. The access to the memory-mapped I/O
region traps into ViMo-S where the Virtio helper handles it.
As for the Virtio back-end, it interfaces with the Virtio helper
through the hypervisor calls. The Virtio helper kicks both the
Virtio front-end and the Virtio back-end by injecting virtual
interrupts. The Virtio front-end and back-end drivers should
register handlers to manage virtual interrupts sent by the
Virtio helper. While the virtual interrupts injected to the
Virtio front-end depend on which virtual devices are used, we
use the virtual interrupt number 155 to be injected to the
Virtio back-end, because 155 is not used by ARM v7-A
architecture.

3.5 VM scheduling
 Currently, ViMo-S provides the simple Round-Robin
(RR) VM scheduler, which maintains its own VM queue on a
CPU core. When a VM is created, it allocates a time quantum
and the VM scheduler makes context-switching according to
the specified time quantum. In order to schedule VMs in
ViMo-S, ViMo-S always uses Hyp timer of ARM generic

timer. In each core, the VM scheduler decreases the time
quantum of a running VM whenever it receives the Hyp timer
interrupt, and makes the context-switching of VMs when the
remaining time quantum of the running VM is 0.

 When the current VM traps into ViMo-S by the Hyp
timer interrupt, the Hyp timer interrupt handler in ViMo-S
saves the current VM contexts, such as all general purpose
registers, R13 register of USR mode, and the banked registers
of SVC, ABT, UND, IRQ, and FIQ mode, into the Hyp stack.
In case of VM switching, ViMo-S additionally saves the
MMU control registers including VTTBR, VGIC-related
registers, virtual timer control registers, VFP registers, and
fault state registers, into the data structure of the current VM.
And, then it restores the saved registers and values from the
Hyp stack and the saved data structure of the next VM, and
traps into the next VM.

4 Experimental Results
 In this section, we present some experimental results that
can measure the performance of ViMo-S on ARM multicore
hardware, and show how many VMs can be provided in an
ARM server system. We evaluated the virtualization overhead
of ViMo-S compared to native execution by running the AIM
benchmark suite [15] within both a VM and directly on the
hardware. The results provide the real measurements of the
performance of ViMo-S with ARM hardware virtualization
support. Moreover, we show the construction of a 32-bit
ARM server system to run many VMs simultaneously on top
of ViMo-S.

4.1 Methodology and measurement
 For ViMo-S measurement, we used an Insignal Arndale
board [16] with a dual core 1.7GHz Cortex-A15 CPU on a
Samsung Exynos 5250 SoC, which has been the most widely
used and commercially available development board
supporting ARM virtualization extensions and multicore. It
supports onboard 100Mb Ethernet, 2Gbyte memory, eMMC
4.5, SDIO 3.0, and SD 2.0.

 We used the mainline Linux 3.8 kernel for our
experiments, with several patches on top of the source tree.
Although an OS running on ViMo-S was slightly modified to
provide the hyper calls, we kept the software environments of
both platforms as the same as possible to provide comparable
measurements. Our focus was not on measuring absolute
performance of ViMo-S, but rather the relative performance
degradation between virtualized and native execution of OS.
As the AIM benchmark suite, we used Re-AIM7 [17] open
source software which is a rework of the AIM benchmark
suite for the Linux community. Although it benchmarks
several workloads such as CPU, disk, file server, database,
and so on, we focused only on the measurement for CPU/disk-
intensive workloads, because these workloads may be the
important criteria to evaluate the virtualization environment.

40 Int'l Conf. Embedded Systems and Applications | ESA'15 |

 As shown in Figure 4, two Arndale boards are
connected to the desktop, using the serial ports. While one is
for evaluating the performance of the native OS, the other one
is for evaluating the performance of the guest OS running on
ViMo-S. We continually executed the Re-AIM7 benchmark
programs in both OSes by configuring the -g flag in order to
increase the number of users up to 10. For each number of
users, the Re-AIM7 runs until the maximum Job/Minute
(JPM) is reached. For the CPU and disk performance, we
repeated this benchmark in both OSes up to 10 times, and
produced the average of the results.

Figure 4. Test environment: native OS vs. OS on ViMo-S

For CPU-intensive workloads and disk-intensive
workload, Figure 5 and 6 show respectively normalized
performance for running application workloads in the VM
versus running directly on multicore. The horizontal axis is
essentially the number of simultaneous jobs (workloads), and
vertical axis is the overall rate at which the jobs complete
(throughput). Figure 5 shows that ViMo-S has minimum
virtualization overhead across CPU-intensive workloads,
despite the performance degradation of the maximum of 4.5%
and the average of 2%. Although Figure 6 shows the
substantial differences in virtualization overhead compared to
CPU-intensive workload, the overhead by ViMo-S is less than
4%. In this evaluation, we found that ARM virtualization
extensions significantly reduce complexity of ViMo-S and are
also likely to reduce virtualization overhead.

Figure 5. Re-AIM7 benchmark result - compute

Figure 6. Re-AIM7 benchmark result - disk

4.2 Prototype of ARM server system
 To evaluate ViMo-S as ARM server virtualization, we
developed the reference platform of 32-bit ARM server
system as shown in Figure 7, which consists of eight
computing nodes, HDD pool, and power supplier. The system
configuration may be very simple, but it is sufficient, because
each ARM computing board provides CPU, memory, Gigabit
Ethernet, USB 3.0, and so on. A computing board supports
the two CPU sockets based on Samsung Exynos 5250 SoC,
which is same as the CPU of the Insignal Arndale board.

Figure 7. Reference platform of 32-bit ARM server system

 In this single system, we generated and ran 64 VMs
simultaneously, including the admin domains and the guest
domains. The normal execution of each VM can be verified
through the remote SSH connection to the SSH daemon
running on each VM.

5 Conclusion and Future Works
 In this paper, we presented the prototype of the light-
weight hypervisor, ViMo-S, which targets the virtualization of
the ARM server system. With the benefits from ARM
hardware virtualization extensions, ViMo-S can minimize the

Int'l Conf. Embedded Systems and Applications | ESA'15 | 41

virtualization overhead on ARM multicore hardware. We also
presented in detail how to use ARM hardware virtualization
extensions to virtualize the hardware resources, such as CPU,
memory, and interrupt. ViMo-S supports the full
virtualization by using Virtio, the de-facto standard for I/O
virtualization. Our experimental results show that ViMo-S
incurs minimal performance impact and has modest
virtualization overhead, within 4% of direct native execution
on multicore hardware for CPU-intensive and disk-intensive
workloads.

 For the future works, we need to improve the
performance of the Virtio-based I/O virtualization, because all
I/O requests from the guest domains can be centralized into
the admin domain. And then, we will expand ViMo-S to 64-bt
ARM server system, for which we consider the X-Gene [18]
development board with an octa core 2.4 GHz Cortex-A5x
CPU on an Applied Micro APM883208 SoC, and the
development of the reference platform for 64-bit ARM server.

6 Acknowledgements
 This work was supported by the ICT R&D program of
MSIP/IITP [R0101-15-237, Development of General-Purpose
OS and Virtualization Technology to Reduce 30% of Energy
for High-density Servers based on Low-power Processors].

7 References
[1] Hsieh, Wen-Hsu, et al. "Energy-saving cloud computing
platform based on micro-embedded system." 2014 16th
International Conference on Advanced Communication
Technology (ICACT), 2014.

[2] Aroca, Rafael Vidal, and Luiz Marcos Garcia Gonçalves.
"Towards green data centers: A comparison of x86 and ARM
architectures power efficiency." Journal of Parallel and
Distributed Computing 72.12 (2012): 1770-1780.

[3] ARM Ltd. ARM Architecture Reference Manual
ARMv7-A DDI0406C.b, July 2012.

[4] ARM Ltd. ARM Architecture Reference Manual
ARMv8-A DDI0487A.a, Sept. 2013.

[5] Dall, Christoffer, and Jason Nieh. "KVM/ARM: The
design and implementation of the linux arm hypervisor."
Proceedings of the 19th international conference on
Architectural support for programming languages and
operating systems. ACM, 2014.

[6] Xenproject.org. ARM Hypervisor - Xen. http://www.xen
project.org/developers/teams/arm-hypervisor.html.

[7] Bellard, Fabrice. "QEMU open source processor
emulator." URL: http://www. qemu. org (2007).

[8] Minnich, Ronald G., and Don W. Rudish. "Ten Million
and One Penguins, or, Lessons Learned from booting millions
of virtual machines on HPC systems." Workshop on System-
level Virtualization for High Performance Computing in
conjunction with EuroSys. Vol. 10. 2009.

[9] ARM Ltd. ARM Cortex-A15 Technical Reference
Manual ARM DDI 0438C, Sept. 2011.

[10] ARM Ltd. ARM Cortex-A53 MPCore Processor
Technical Reference Manual ARM DDI 0500D, Feb. 2014.

[11] ARM Ltd. ARM Cortex-A57 MPCore Processor
Technical Reference Manual ARM DDI 0488C, Dec. 2013.

[12] Alves, Tiago, and Don Felton. "TrustZone: Integrated
hardware and software security." ARM white paper 3.4
(2004): 18-24.

[13] Oh, Soo-Cheol, et al. "ViMo (virtualization for mobile):
a virtual machine monitor supporting full virtualization for
ARM mobile systems." CLOUD COMPUTING 2010, The
First International Conference on Cloud Computing, GRIDs,
and Virtualization. 2010.

[14] Russell, Rusty. "virtio: towards a de-facto standard for
virtual I/O devices." ACM SIGOPS Operating Systems
Review 42.5 (2008): 95-103.

[15] Wikipedia website. http://en.wikipedia.org/wiki/AIM_
Multiuser_Benchmark.

[16] InSignal Co. ArndaleBoard.org. http://www.arndaleboa
rd.org.

[17] Sourceforge.net. Re-AIM_7. http://re-aim-7.sourcefor
ge.net.

[18] Applied Micro Circuits Co. X-Gene. https://www.ap
m.com/products/data-center/x-gene-family/x-gene/

42 Int'l Conf. Embedded Systems and Applications | ESA'15 |

Mapping the Conjugate Gradient Algorithm onto

High Performance Heterogeneous Computers

Anas M. Alfarra

Electrical & Computer Engineering Dept.

Jackson State University

Jackson, MS

alfarra.anas@gmail.com

Jamory D. Hawkins

Electrical & Computer Engineering Dept.

Jackson State University

Jackson, MS

jamoryhawkins@gmail.com

Gerald R. Morris

Information Technology Lab.

US Army Engineer

Research and Development Center

Vicksburg, MS

gerald.r.morris@us.army.mil

Khalid H. Abed

Electrical & Computer Engineering Dept.

Jackson State University

Jackson, MS

khalid.h.abed@jsums.edu

Abstract

Mapping scientific kernels onto high performance het-

erogeneous computers (HPHCs) must comply with cer-

tain rules of thumb or heuristics. Previous research by

Jackson State University’s (JSU) HPHC research group

has provided anecdotal evidence illustrating some of these

rules/heuristics. The research highlighted by this paper cor-

roborates the credibility of these rules. In particular, four

versions (two pairs) of a floating-point sparse matrix con-

jugate gradient (CG) iterative solver are presented. JSU’s

state-of-the-art HPHC utilizes general purpose processors

(GPPs) and heterogeneous computational hardware, in par-

ticular, a field programmable gate array (FPGA), to develop

the CG kernels. The first version of the pair executes strictly

on the GPP and the second uses both the GPP and FPGA to

map the entire CG algorithm onto hardware. For the second

pair, a refactored version of CG is used, which is statically

analyzed to determine where the most computationally ex-

pensive operation occurs. This operation is the sparse ma-

trix vector multiply (MVM) kernel. Based on this analysis,

the software version of CG is refactored to call MVM as a

subroutine. An FPGA version of the MVM algorithm is also

developed and a static analysis of that algorithm suggests a

speedup of the MVM kernel. All four version of CG are exe-

cuted using a specially designed set of sparse matrices and

the results demonstrate that adherence to the rules of thumb

and heuristics when mapping scientific kernels onto HPHC

can lead to significant speedups.

1. Introduction

HPHCs, such as field programmable gate array

(FPGA)-augmented reconfigurable computers (RC), can

sometimes outperform their general purpose processor

(GPP)-based counterparts. In the past, lack of support

for floating-point arithmetic within FPGA tool suites often

forced designers to use fixed-point or integer arithmetic [1].

Now, semiconductor technology scaling allows companies

such as Altera to fit floating-point intellectual property (IP)

cores onto contemporary FPGAs. As a result, there have

been some successes at mapping iterative solvers onto FP-

GAs [2, 3, 4]. For floating-point applications, FPGA-based

processors must satisfy several heuristics and rules of thumb

to achieve a speedup compared with their GPP counterparts.

This paper highlights the challenges in the computational

mapping process while simultaneously showing that such

mappings can result in significant speedups. The focus is

to show the importance of “the three P’s,” which expresses

the crucial relationship among performance, pipelining, and

parallelism as well as several of the other heuristics[5]. This

paper is organized as follows: Section 2 provides back-

ground on HPHC design considerations. Section 3 intro-

duces the conjugate gradient method and a high-level design

of the solver. Section 4 details the FPGA-based solver de-

sign. Section 5 describes the HPHC hardware and details the

implementation. Section 6 describes the experiments, com-

pares the runtime performance of the two conjugate gradient

versions, and provides an analysis of the results. Section 7

presents the conclusions.

Int'l Conf. Embedded Systems and Applications | ESA'15 | 43

2. HPHC Design Considerations

The JSU HPHC research group has developed a set of

heuristics to determine if a given algorithm is suitable for

mapping onto HPHCs [6, 7]. These include a) the three

p’s, b) resource utilization, c) control and memory intensive

vs. compute intensive, d) monolithicity of the algorithm,

e) available bandwidth, f) ability to reuse data, g) design sta-

bility of the algorithm, h) efficiency of the algorithm, and

i) memory access patterns. As an example, a common ap-

proach to estimate sp eedup is via Amdahl’s Law shown in

Equation 1,

so =
1

1− fe+ fe/se

, (1)

Based on earlier work, a conservative value is se ≈ 10 for

the CG algorithm. A profile of the software version of CG

showed matrix vector multiply (MVM) consumed nearly

67 percent of the runtime. By Amdahl’s Law, an overall

speedup so = 1/(0.33+ 0.67/10)= 2.5 is anticipated.

3. Conjugate Gradient

3.1. CG Algorithm

Discussions of the CG iterative method can be found

in many introductory numerical analysis textbooks includ-

ing [8, 9]. CG is typically used when A is a sparse matrix.

Sparse matrices are usually represented in a compressed for-

mat, which only stores the non-zero elements and provides

some bookkeeping mechanism for determining the row and

column number of each matrix entry. A representation of the

conjugate gradient algorithm (as implemented in software)

is shown in Figure 1 [10].

3.2. CG Operation

An arbitrary starting point x0 is selected, from which

the descent proceeds. The first A-orthogonal vector, p1, is a

search direction opposite to the gradient as depicted in line

2, therefore, the initial search direction is also the same as

the initial residual as illustrated on line 3. The next line is

a criteria for forcing the algorithm to enter the loop. Line

5 is part of the equation for calculating the residual. Rather

than continually computing this value, it is simply calculated

one time. At line 6, the body of the loop requires the dot

product of the current residual, rk, and the previous resid-

ual, rk−1. Instead of calculating two dot products within the

loop, the dot product from the previous iteration was reused,

i.e., rT
0 r0. Line 7 creates the iteration index, k, which is

also part of the criteria for the while loop to prevent infinite

looping. It can be shown that the matrix vector product is

needed twice within CG, however, it is computed once on

line 9 because it is an expensive O(n2) algorithm. The next

line computes the step size, αk, along the direction of the

1: algorithm CGSW(A,x,b)
2: p1 ← b−Ax0

3: r0 ← p1

4: Δ ← ε +1
5: overbnorm ← 1/‖b‖
6: rTrold ← rT

0 r0

7: k ← 1
8: while (Δ > ε) .AND. (k < kmax) do
9: vap ← Apk

10: αk ← rTrold/pT
k vap

11: xk ← xk−1 +αkpk

12: rk ← rk−1 −αkvap

13: rTrnew ← rT
k rk

14: βk ← rTrnew/rTrold

15: rTrold ← rTrnew

16: pk+1 ← rk +βkpk

17: Δ ←‖rk‖ · overbnorm

18: k++

19: end while
20: return (xk−1)
21: end algorithm

Figure 1. Software CG algorithm

CG. For line 11, the new approximation for x is calculated

by descending in the conjugate search direction a distance

of step size. Line 12 computes the new residual. Then the

dot product of the new residual, rTrnew is calculated, which

will be used in subsequent computations. Line 14 computes

the projection operator β which removes from the residual

all previous search directions. Since the dot product of the

previous residual is no longer needed and to prevent calcu-

lating the dot product at the next iteration, line 15 retains the

current residual for the next iteration. The new search direc-

tion can finally be calculated, by using the projection oper-

ator to remove the residual from all components along the

previous conjugate search directions, i.e., rk + βkpk. Line

17 computes the residual norm to check the algorithm for

convergence. Line 18 increments the iteration index. If the

algorithm has converged, the solution, xk−1, is returned.

4. CG Processor Detailed Designs

4.1. Two CG Versions

As mentioned above, two versions of CG were imple-

mented in hardware. The first (monolithic) version offloads

the entire CSR-based CG algorithm onto the FPGA with-

out regard to the heuristics that previous research has shown

to significantly impact performance. The second version of-

floads only the MVM kernel (which comprised some 67% of

the software run time). In the algorithms below, compressed

sparse row (CSR) format is used.

44 Int'l Conf. Embedded Systems and Applications | ESA'15 |

4.2. CG Hardware Design

A monolithic hardware version of CG, which was

mapped onto the FPGA hardware, is shown below. The

monolithic CG algorithm that was executed in software is

essentially the algorithm depicted in Figure 1.

1: algorithm CGHW(kval,kcol,kptr,b,b2,n,knz,x)
2: parBegin // only two GCM banks so
3: BUF DMAGCM1:OBM (kval, stripe-8)
4: BUF DMAGCM2:OBM (kcol, stripe-8)
5: parEnd
6: parBegin // parallel DMA limited to 2
7: STREAM DMAGCM1:BRAM (kptr)
8: STREAM DMAGCM2:BRAM (b)
9: parEnd

10: for i in [1,n] do // x(0) = 0 ∴ p(1) ← r(0) ← b
11: xi ← 0
12: pi ← ri ← bi

13: MAC(bi,bi,rTrold) // calculate r(0)
T

r(0)

14: end for
15: δ ← 0
16: repeat
17: p1 ← . . .← p11 ← p

18: parBegin // compute v ← Ap(δ)

p1: // dot8’s into VFIFO stream
19: for i in [1,knz] do
20: a8 ← (a1 · · ·a8) stripe-8 from kvali
21: j8 ← (j1 · · · j8) stripe-8 from kcoli
22: p8 ← (p1 j1 · · · p8 j8)

23: VFIFO ← a8
T p8

24: end for
p2: // # dot8’s per row into CFIFO stream

25: for i in [1,n] do
26: CFIFO ← kptri+1 −kptri

27: end for
p3: // n dot products into SFIFO

28: SFIFO ← ∑STREAM(VFIFO,CFIFO)

p4: // doti = aT
i p(δ)

29: for i in [1,n] do
30: vi ← SFIFO

31: MAC(vi, p9i, pT v) // calculate p(δ)T
v

32: end for
33: parEnd
34: α ← rTrold/pT v // step size
35: for i in [1,n] do

36: xi ← xi +α p10i // next point: x(δ)

37: ri ← ri −αvi // residual: r(δ)

38: MAC(ri,ri,rTrnew) // calculate r(δ)
T

r(δ)

39: end for
40: β ← rTrnew/rTrold // projection operator
41: rTrold ← rTrnew

42: for i in [1,n] do // new search direction: p(k+1)

43: pi ← ri +β p11i

44: end for
45: r2b2 ←√

rTrold ·b2 // ||r(δ)||=√
rTrold

46: δ ← δ +1
47: until (r2b2 ≤ ε .OR. δ > δmax)
48: BUF DMABRAM:GCM2

(x)
49: end algorithm

Figure 2. Monolithic hardware CG algorithm

4.3. MVM Hardware Design

Because of the significant speed degradation of using

multiple serialized multiply-accumulators (MACs) within

the hardware version of CG after the parallel sections finish,

a CSR-based MVM kernel was mapped onto the HPHC. All

other modules of CG are executed via the GPP. The prin-

ciple speedup is obtained via the four parallel sections p1

through p4, which communicate via a set of FIFO streams.

This hardware MVM algorithm is idealized in Figure 3 and

operates in three phases: input, compute, and output. During

1: algorithm MVMHW(kval,kcol,kptr,v,p,∗ f irst)

2: if (*first) then

3: parBegin // only two GCM banks so

4: BUF DMAGCM1:OBM (kval, stripe-8)

5: BUF DMAGCM2:OBM (kcol, stripe-8)

6: parEnd

7: parBegin // parallel DMA limited to 2

8: STREAM DMAGCM1:BRAM (kptr)
9: STREAM DMAGCM2:BRAM (p)

10: parEnd

11: else

12: STREAM DMAGCM2:BRAM (p)
13: end if

14: p1 ← . . .← p8 ← p

15: parBegin

p1: // feed values stream

16: for i in [1,knz] do

17: a ← (a1 · · ·a8) stripe-8 from kvali
18: j ← (j1 · · · j8) stripe-8 from kcoli
19: p ← (p1 j1 · · · p8 j8)
20: VFIFO ← dot8Tree (a,p)
21: end for

p2: // feed counts stream

22: for i in [1,n] do

23: CFIFO ← kptri+1 −kptri

24: end for

p3: // streaming accumulator

25: SFIFO ← ∑STREAM(VFIFO,CFIFO)
p4: // the dotN’s

26: for i in [1,n] do

27: vi ← SFIFO

28: end for

29: parEnd

30: STREAM DMABRAM:GCM2
(v)

31: end algorithm

Figure 3. Sparse MVM Hardware Algorithm

input, two parallel blocks use direct memory access (DMA)

to input the problem data from global common memory

(GCM). Lines 3–10 constitute the compute phase. Since the

FPGAs do not have multiport memory to support eight ad-

dress and data buses on a single memory bank, and since

parallel sections p1 . . .p3 operate simultaneously, indepen-

dent banks are needed to avoid a multicycle pipeline. There-

fore, line 14 creates eight copies of p for the dot product tree.

Int'l Conf. Embedded Systems and Applications | ESA'15 | 45

Parallel section p1 (lines 15–21) is a fully pipelined 8 ·8 dot

product unit. Each clock cycle it consumes the next eight

ai j values from kval and the matching eight values from p

and outputs the resulting partial dot products (dot8s) to the

VFIFO stream. Parallel section p2 (lines 22–24) calculates

the number of dot8s for each row and sends them to the

CFIFO stream. Parallel section p3 (line 25) is the streaming

accumulator that consumes the VFIFO and CFIFO streams,

computes the n dot products, dotNi = ∑ j ai j p j for all i, and

feeds the results into the SFIFO stream. Parallel section p4

(lines 26–29) consumes the dotNs from SFIFO and streams

the resultant vector into vi. During output, the resultant v is

then DMAed to GCM as shown on line 30.

5. Implementation

5.1. High-level CG Design

The high-level design for the CG solver is shown in Fig-

ure 4. It consists of four major components: a main rou-

tine and matrix support libraries; several symmetric posi-

tive definite sparse matrices, A1 . . .Am; the software or hard-

ware (FPGA-based) CG solver; and the output result and

statistics files, x1 . . .xm and θ1 . . .θm. The bi vectors are

shown as inputs, but for the experiments in this research

they are generated from a known x vector at runtime. The

Figure 4. High-level CG Design

main routine is a driver program, which essentially mea-

sures how long it takes for CG to solve each set of equa-

tions. The coordinate-format matrices are read in using the

Matrix Market I/O library [11] and converted to CSR for-

mat using Saad’s SPARSKIT library [12]. The software CG

kernel implementation is based on the algorithm shown in

Figure 1, and the FPGA-based CG kernel is based on the

algorithm shown in Figure 2.

A compile-time decision selects either the software or

FPGA-based version of CG. At runtime, main reads in each

coordinate-format matrix, converts it to CSR format, and

uses a known x vector to generate b. It then invokes the se-

lected CG kernel sending matrix, A (val,col, and ptr), start-

ing point x(0), and constant vector b. After convergence, CG

stores the result and returns. The main routine writes the so-

lution to the results file; it also writes the input matrix name,

number of iterations, and wall clock execution time to the

statistics file and then terminates.

5.2. High-level MVM Design

To recap, there were four CG algorithms that were

mapped onto the HPHC. The first pair was a monolithic ver-

sion which comprised of a software and hardware version.

The second pair also had a software and hardware version,

however, this kernel involved a subroutine call that imple-

mented MVM in software or hardware as illustrated in Fig-

ure 5. Macroscopically, the operation is similar to the op-

eration of the monolithic CG described in the previous sub-

section.

Figure 5. High-level MVM Design

5.3. Implementation Summary

The software and hardware CG designs described in

Section 5 were coded for the SRC-7 platform. The same

set of files were used in both implementations to ensure a

valid side-by-side comparison. The only difference was the

CG kernel. Most of the work involved implementing the

hardware modules. The k = 8 dot product width was lim-

ited by the available configurable logic on the FPGA. Thus,

only eight values per clock cycle are read from kval and

kcol. Since the kval and kcol CSR arrays are placed in

OBMs and each OBM holds about half a million entries,

the largest number of nonzero values that can be processed

is nzmax ≈ 4M. Lastly, as most of the BRAM stores the mul-

tiple copies of x needed to fully pipeline the loop, the largest

matrix was limited to nmax = 8,192.

46 Int'l Conf. Embedded Systems and Applications | ESA'15 |

Figure 6. Representative Run Time Comparison

6. Results

6.1. UFL Sparse Matrix Collection

The matrices used to test CG came from the Univer-

sity of Florida Sparse Matrix Collection, managed by Dr.

Tim Davis and Dr. Yifan Hu. This repository is a large

and actively growing set of sparse matrices widely used

by the numerical linear algebra community for the devel-

opment and performance evaluation of sparse matrix algo-

rithms [13] such as conjugate gradient. The collection cov-

ers a vast spectrum of domains ranging from mathemat-

ics and physics, to civil engineering and computer science.

With over 2547 matrices, UFL’s Sparse Matrix Collection

boasts its largest matrix as having a dimension of 118 mil-

lion with almost 2 billion nonzero entries.

6.2. Monolithic Results

As shown in table 1, the monolithic approach, which

ignored the heuristics developed by the JSU HPHC research

group, did not result in a speedup. In fact, it resulted in

a slowdown as depicted by the average of six samples of

matrices.

Table 1. Slowdown Using Monolithic Method

Matrix Name Size (NZ) tsw (μs) thw (μs) Slowdown
(

thw
tsw

)

fass1.128.mtx 438 66381 258797 3.89

fass2.500.mtx 2298 55247 435985 7.89

fass1.1024.mtx 4918 396983 286116 0.72

fass1.2048.mtx 10038 74304 300623 4

fass4.4096.mtx 26270 398214 3759980 9.4

fass1.8192.mtx 40758 150452 490218 3.25

Average 4.85

6.3. MVM-only Results

In contrast, following the heuristics discussed in Sec-

tion 2, it is possible to achieve a speedup. At the time we

were preparing this paper, our target platform was undergo-

ing upgrades at the vendor’s site so we do not yet have the

results of the refactored CG hardware mapping. However,

previous research mapping a Jacobi iterative solver via an

analogous set of scenarios [5] resulted in a 3-fold increase

in performance as illustrated in Figure 6. Given the slight

increase in algorithmic complexity of CG versus Jacobi, the

3-fold speedup seen for Jacobi is in excellent agreement with

the anticipated 2.5-fold speedup described in Section 2.

7. Conclusion

The research thus far has suggested strong evidence of

an overall speed up of conjugate gradient (CG) when the

rules and heuristics developed by the Jackson State Univer-

sity’s HPHC research group are adhered to. The negative

impact of performance has also been illustrated when these

rules and heuristics are ignored [14]. Finding the “sweet

spot” when mapping scientific kernels onto HPHCs has in-

deed helped in demonstrating the value of using the heuris-

tics developed by the JSU HPHC group during their the ex-

tensive research within the HPHC domain [15, 16, 17, 18].

Because our target platform was being upgraded from ARO

funds when this paper was drafted, we used the analogous

set of results from earlier research [5] as shown in Figure 6.

We plan to confirm our results at the earliest opportunity.

Acknowledgments

This work was supported in part by the Army Research

Office grant number W911NF-07-1-0527, and in part by the

U.S. Army Engineer Research and Development Center.

Int'l Conf. Embedded Systems and Applications | ESA'15 | 47

References

[1] Michael Parker. Taking advantage of advances in FPGA

floating-point IP cores, October 2009.

[2] Antonio Roldao and George A. Constatinides. A high

throughput FPGA-based floating point conjugate gradient im-

plementation for dense matrices. ACM Transactions on Re-

configurable Technology and Systems, 3(1):1–19, 2010.

[3] Gerald R. Morris and Viktor K. Prasanna. A hybrid ap-

proach for accelerating a sparse matrix Jacobi solver using

an FPGA-augmented reconfigurable computer. In Proceed-

ings of the 9th Military and Aerospace Programmable Logic

Devices Conference, Washington, DC, September 2006.

[4] Gerald R. Morris and Viktor K. Prasanna. Sparse matrix com-

putations on reconfigurable hardware. Computer, 40(3):58–

64, March 2007.

[5] Gerald R. Morris and Khalid H. Abed. Mapping a Jacobi

iterative solver onto a high performance heterogeneous com-

puter. IEEE Transactions on Parallel and Distributed Sys-

tems, 24(1):85 – 91, January 2013.

[6] Justin L. Rice, Khalid H. Abed, and Gerald R. Morris. De-

sign heuristics for mapping floating-point scientific computa-

tional kernels onto high performance reconfigurable comput-

ers. Journal of Computers, 4(6):542–553, June 2009.

[7] Khalid H. Abed and Gerald R. Morris. Improving perfor-

mance of codes with large/irregular stride memory access pat-

terns via high performance reconfigurable computers. In Pro-

ceedings of the High Performance Computing Modernization

Program Users Group Conference 2009, pages 422–429, San

Diego, CA, June 2009.

[8] David M. Young. Iterative Solution of Large Linear Systems.

Academic Press, 1971.

[9] Richard S. Varga. Matrix Iterative Analysis, Second Edition.

Springer, 2009.

[10] Gerald R. Morris. Conjugate gradient. Class notes for CPE

505 “Analysis of Algorithms” course., August 2013.

[11] NIST. Matrix Market. math.nist.gov/

MatrixMarket, June 2004.

[12] Yousef Saad. SPARSKIT: A basic tool-kit for sparse matrix

computations (version 2). www-users.cs.umn.edu/

˜saad/software/SPARSKIT, 2009.

[13] Tim Davis and Yifan Hu. The University of Florida Sparse

Matrix Collection. ACM Transactions on Mathematical Soft-

ware, 38(1):1 – 25, November 2011.

[14] Jamory D. Hawkins. Mapping The Conjugate Gradient Al-

gorithm Onto High Performance Heterogeneous Computers.

MSCE thesis, Jackson State University, Jackson, MS, May

2014.

[15] Justin L. Rice, Khalid H. Abed, and Gerald R. Morris. De-

sign heuristics for mapping floating-point scientific computa-

tional kernels onto high performance reconfigurable comput-

ers. JCP, 4(6):542–553, 2009.

[16] Justin L. Rice, Kevin C. Pace, Miguel D. Gates, Gerald R.

Morris, and Khalid H. Abed. High performance reconfig-

urable computer application design considerations. In Pro-

ceedings of the IEEE Southeast Conference 2008, pages 236–

243, Huntsville, AL, April 2008.

[17] Gerald R. Morris, Antoinette R. Silas, and Khalid H. Abed.

Analytical and measured bandwidth for an FPGA-based pro-

cessor. In Proceedings of the IEEE SoutheastCon 2012

(SoutheastCon’12), pages 1 – 7, Orlando, FL, March 2012.

[18] Gerald R. Morris. Mapping Sparse Matrix Scientific Applica-

tions onto FPGA-Augmented Reconfigurable Supercomput-

ers. Ph.D.E.E. dissertation, University of Southern Califor-

nia, Los Angeles, CA, December 2006.

48 Int'l Conf. Embedded Systems and Applications | ESA'15 |

UDP/IP Protocol Stack with PCIe Interface on FPGA

Burak Batmaz and Atakan Doğan
Department of Electrical-Electronics Engineering, Anadolu University, Eskişehir, Turkey

Abstract – Network packet processing in high data rates
has become a problem especially for the processors.
This work offers a solution to this problem by
implementing a hardware-accelerated UDP/IP protocol
stack on FPGA. Packets are processed by a UDP/IP
hardware on FPGA and UDP/IP communicates over
PCIe interface with the related application running on
PC. Consequently, a processor core only deals with the
data processing, while the proposed UDP/IP hardware
on FPGA takes care of the packet processing. The
design and implementation of UDP/IP stack are verified
on Xilinx XUVP5-LX110T board. Test results and area
utilization of our UDP/IP stack are presented as well.

Keywords: FPGA, UDP/IP, PCIe, Network Protocols

1 Introduction
 Nowadays many applications need high speed data

transfers. Encapsulation and decapsulation (packet
processing) processes for the high speed data transfers,
on the other hand, require considerable computing
power. Consequently, a processor (CPU) typically has to
split its computing power between the packet and data
processing tasks, which in turn adversely affects its
useful data processing performance. Fortunately, the
computing power of CPU spared for the packet
processing can be saved provided that the packet
processing tasks are offloaded to such a system that can
perform these tasks purely on hardware. Motivated by
this fact, in the present study, UDP/IP network protocol
stack is implemented completely on a FPGA hardware
and its error-free operation in terms of offloading
UDP/IP functions for data communication is proven by
means of Xilinx XUVP5-LX110T board.

In the literature, there are several examples of
design and implementation of UDP/IP and TCP/IP
protocol stacks on hardware. Löfgren et al. [1] presented
three IP cores as minimum, medium, and advanced. The
minimum IP core is similar to ours. However, this study
offers better throughput and bigger maximum packet
size than the minimum IP core. Alachiotis et al. [2]
presented a UDP/IP core design in order to provide PC-
FPGA communication over Ethernet. The main
difference between this work and ours is that PCIe
interface is used for PC-FPGA communication.
Alachiotis et al. [3] proposed an extended version of

their previous work. This extended version has a better
performance, but takes 56% more area. Herrmann et al.
[4] proposed a similar study with 1960 Mbps full duplex
throughput and area usage near to that of other works.
Dollas et al. [5] presented one of the most
comprehensive work in the literature which implements
TCP, UDP, ARP, ICMP, and IP protocols. However, our
UDP/IP design offers better throughput values than
theirs. Vishwanath et al. [6] proposed the most similar
work to ours in terms of the design goals. They
implemented a UDP/IP offload engine based on a
commercial TCP/IP Offload Engine and this work has
35% better performance as compared to a host-based
UDP/IP stack.

The remainder of this paper is organized as follows:
In Section 2, background information about the network
protocol stack is given. In Section 3, we present our
system design. Section 4 shows our UDP and IP
hardware components. The experimental results are in
Section 5. Finally, we present a conclusion in Section 6.

2 Network protocol stack
 Network protocol stack is composed of several
layers, while each layer has different responsibilities and
functionalities. These layers are elaborated by OSI
(Open System Interconnection) and TCP/IP reference
models in [7].

2.1 Physical layer
 Physical layer is the bottom layer of OSI reference
model and every network device has this layer.
Messages reach this layer as electrical signals, and then
they are converted to data bits and delivered to upper
layers, or vice versa.

2.2 Data link layer
 Data Link layer is the second layer of OSI
reference model, and it is composed of two sublayers,
namely Media Access Control and Logical Link
Control.

2.2.1 Media access control
 Media Access Control (MAC) sublayer is placed
between Physical layer and Logical Link Control
sublayer. This layer is primarily responsible for

Int'l Conf. Embedded Systems and Applications | ESA'15 | 49

providing a data communication channel among
network nodes that share a common medium. In order to
avoid collisions in the shared channel, MAC sublayer
runs a medium access control algorithm such as
CSMA/CD (Carrier Sense Multiple Access with
Collision Detection). In addition, MAC sublayer deals
with framing as well. Before sending a packet, MAC
layer appends a preamble, MAC source and destination
addresses, etc. at the start of packet and a CRC data
(cyclic redundancy check) at the end of packet. While
receiving packets, CRC is calculated for any received
packet and packet errors will be determined.

2.2.2 Logical link control
 Logical Link Control (LLC) sublayer is a bridge
between the network layer and Media Access Control
sublayer. LLC adds two bytes to the head of any packet
received from network layer to specify the packet type
(IP, ARP). These two bytes are known as LLC header.
For the packets that are received from MAC sublayer,
this part is controlled and they are delivered to the
appropriate protocol.

2.3 Network layer
 Network layer is the third layer of OSI reference
model. Forwarding, routing and logical addressing are
the main duties of this layer. The most commonly used
network protocol is IPv4 [8], and also preferred in this
study. Among its tasks are fragmentation of those
packets bigger than the maximum transmission unit
(MTU) and defragmentation of the received fragmented
packets. It should be noted here that
fragmentation/defragmentation is not supported by our
hardware-based IP layer. Thus, if a fragmented packet is
received, it will be dropped.

2.4 Transport layer
 Transport Layer is the fourth layer of OSI
reference model. Multiplexing/demultiplexing, end-to-
end reliable packet transmission, end-to-end flow
control, and end-to-end congestion control are the main
functions of this layer. Mostly used transport layer
protocols are Transmission Control Protocol (TCP) [9]
and User Datagram Protocol (UDP) [10]. TCP is a
reliable and connection oriented protocol. UDP is an
unreliable protocol and does not guarantee that packets
will be delivered to their destination network nodes.
Applications that require low latency packet
transmission such as Domain Name System (DNS),
Voice over IP (VoIP) use UDP protocol. In our work,
UDP protocol is preferred as the transport layer
protocol.

3 System design
 The system consist of three main parts: Xillybus

core for PC-FPGA communication over PCIe interface,
UDP/IP Sender and Receiver in order to account for the
transport and network layers, and Xilinx Ethernet MAC
(EMAC) [11] core for sending and receiving packets
over Ethernet.

Xillybus [12] uses Xilinx PCIe interface core for
the communication over a PCIe interface. Connected to
Xillybus IP core are two FIFO buffers. Xillybus core
writes any incoming data from PC to Application Send
FIFO and reads data from Application Receive FIFO
and sends them to PC.

 UDP-IP Sender and UDP-IP Receiver components
are the cores that have been designed and
implemented in this study. Basically, UDP-IP Sender
reads data from Application Send FIFO, encapsulates
them, and delivers them to EMAC core. UDP-IP
Receiver accepts incoming packets from EMAC core,
drops or accepts packets, writes any accepted packet into
Application Receive FIFO.

The third part of the system is Xilinx Ethernet
MAC core. This core basically takes care of the
functions briefly mentioned in Section 2.2.1.

 Xillybus, Application Send FIFO, Application
Receive FIFO, UDP-IP Sender and UDP-IP Receiver,
and Ethernet MAC core components are all
implemented on a FPGA. Physical layer for Ethernet
communication, on the other hand, is realized by
another chip on XUPV5 board.

3.1 Xillybus
 Xillybus is a DMA based solution for the data
transport between PC-FGPA over PCIe interface. On the
PC side, Xillybus has a driver that works with device
files. A user can write to or read from these device files
with simple functions like write() and read(). On the
FPGA side, there are two FIFOs connected to Xillybus
core, where one for PC-to-FPGA data transfers
(Application Send FIFO) and the other one for FPGA-
to-PC data transfers (Application Receive FIFO). Data
written to the sender device file are send to Application
Send FIFO and data written to Application Receive
FIFO are copied to the receiver device file. Thus,
Xillybus provides an easy-to-use interface to the
application logic over FIFO buffers.

 Xillybus core realized on Virtex-5 FPGA works
with a 100 MHz clock, so the maximum theoretical
achievable throughput is 800 Mbit/s with an 8-bit sender
device file. However, since Xillybus does not guarantee

50 Int'l Conf. Embedded Systems and Applications | ESA'15 |

a continuous stream of data, the maximum practical
achievable throughput falls to nearly 600 Mbit/s. In
order to achieve better throughput figures, in this study,
a 32-bit writer device file and 32-bit reader device file
are used.

 As explained above, Xillybus IP core works with a
100 MHz clock signal, and its write and read interfaces
are chosen to be 32-bit. However, UDP/IP Sender,
UDP/IP Receiver, and EMAC cores require a 125 MHz
clock signal, and they have 8-bit data I/O interfaces.
Consequently, Xillybus IP core and UDP/IP
components are interfaced over Application Send FIFO
and Application Receive FIFO, where they are
generated through Xilinx Core Generator. The write
interface of Application Send FIFO is 32-bit and runs at
100 MHz, and its read interface is 8-bit and runs at 125
MHz. As far as Application Receive FIFO is concerned,
it is the other way around as compared to Application
Send FIFO.

3.2 Xilinx Tri-Mode Ethernet MAC
 Xilinx EMAC core provides data communication

over Ethernet and realizes some of data link layer
operations. EMAC core runs at 125 MHz clock, and
provides an 8-bit application logic data interface by
means of its TxFIFO, which receives packets from IP
Sender to send them over Ethernet, and RxFIFO, which
provides the received Ethernet packets with IP Receiver.

EMAC communicates with PHY chip over a GMII
(Gigabit Media Independent Interface) interface. When
EMAC core receives a packet, it checks the CRC of
packet. If the packet is not corrupted, the core will
deliver it to UDP/IP Receiver. Otherwise, this packet is
dropped. The core, however, does not check for MAC
addresses.

3.3 Sender- and Receiver-Application
 Sender- and Receiver-Application run on a PC.
Sender-Application is basically a file transfer
application, which is develop to test whole system.
Specifically, Sender-Application first opens a text file to
be sent for reading and 32-bit sender device file in
binary mode for writing. Then, in each iteration, it
performs a 1472 byte read from the text file and writes
into the device file until it reaches the end of text file.

 Receiver-Application opens a 32-bit receiver
device file and allocates a related memory space. The
data received by Receiver-Application are initially
written to this memory space. When the receiver device
file is closed or the received data reach a predetermined
size, Receiver-Application opens a text file, and dumps
the data in memory into this text file.

4 UDP/IP hardware
 UDP and IPv4 protocols are implemented for the
transport layer and network layer in two separate
components, respectively.

4.1 UDP component
 In order to provide the same functionality as a
software-based UDP layer, UDP Sender and UDP
Receiver hardware components, whose designs are
given in detail below, are developed.

4.1.1 UDP Sender
 UDP header structure consist of four fields: Source
Port, Destination Port, Length, and Checksum. UDP
header together with Application Data form a UDP
segment. In our UDP Sender, Source Port is simply
hardcoded in FPGA; Destination Port is supplied by
Sender-Application; Length Field is calculated for each
UDP segment on the fly; Checksum field is not
supported and filled with all zeros.

 UDP Sender component design is based on a
FSMD (finite state machine with datapath) and two
FIFOs. Incoming data from Application Send FIFO are
written into the first FIFO, where the data consist of
Destination Port, Data Length, and Application Data.
FSMD controller repeats the following steps in an
unending loop: (i) It reads Destination Port from FIFO
and saves it to a datapath register. (ii) It fetches Data
Length, calculates Length by adding UDP header size (8
bytes) to Data Length, and saves it to another register.
(iii) Since UDP header now becomes ready, it starts
writing UDP header into the second FIFO. (iv) After
writing the header is finished, it lets the first FIFO to
write Application Data into the second FIFO, which will
complete the processing of a UDP segment by the
transport layer.

 In order to provide a pipelined system operation,
the second FIFO immediately starts forwarding a UDP
segment to the FIFO of IP Sender component as soon as
it receives the first byte of UDP segment.

4.1.2 UDP Receiver
 UDP Receiver, which is architecturally different
from UDP Sender, is basically a FSM, and it does not
have any FIFOs. When UDP Receiver receives a UDP
segment, it checks its destination port field. If the
received destination port field is equal to the built-in
source port field, UDP segment is sent to Application
Receive FIFO. Otherwise, it will drop the segment.

Int'l Conf. Embedded Systems and Applications | ESA'15 | 51

4.2 IP component
 Similar to the design of UDP component, IP
component is composed of two subcomponents, namely
IP Sender and IP Receiver, whose design details are
described below.

4.2.1 IP Sender
 IPv4 is the de-facto standard network layer
protocol. IPv4 Header Structure has many fields. Note
that IP header together with UDP segment forms an IP
packet. In IP Sender, Version, Header Length (IHL),
Time to Live (TTL), Protocol, Source (IP) Address, and
Destination (IP) Address fields are hardcoded in FPGA;
Type of Service (TOS) and Identification fields are
filled with zeros; Fragmentation is not supported, so
Flags and Fragment Offset fields are also filled with
zeros; Total Length and Header Checksum fields are
calculated on the fly.

 IP Sender is similar to UDP Sender in terms of its
architecture, which is based on a FSMD and two FIFOs.
Incoming UDP segment (UDP header and Application
Data) from UDP Sender is written into its first FIFO.
Then, its FSMD controller repeats the following steps in
an unending loop. (i) It writes the built-in Destination
MAC Address, Source MAC Address, and Packet Type
(set to IP packet) into the second FIFO so that EMAC
core can later use these information to form an Ethernet
frame accordingly. Meanwhile, Total Length (UDP
segment length plus twenty) and then Header Checksum
for the IP header are computed. (ii) It writes IP header
into the second FIFO. (iii) After writing the header is
finished, it lets the first FIFO to write UDP segment into
the second FIFO which will complete the processing of
an IP packet by the network layer.

 In order to provide a pipelined system operation,
the second FIFO immediately starts forwarding any IP
packet to TxFIFO of EMAC core as soon as it receives

the first byte of IP packet. In addition to forwarding IP
packets over an 8-bit data interface, the second FIFO
provides start of frame signal with the first byte and an
end of frame signal with the last byte of every IP packet
with Tx FIFO for one clock cycle.

4.2.2 IP Receiver
 IP Receiver does not include any FIFOs and
consists of only an FSM. When IP Receiver receives an
IP packet, it checks Total Length, Fragmentation Flags,
Protocol, and Destination Address fields. If Total
Length is bigger than 1500 bytes, or Fragmentation
Flags indicate a fragmented packet, or Protocol is not
UDP, or Destination Address is different from our IP
address, IP Receiver drops such a packet. Otherwise, the
UDP segment encapsulated by this packet is delivered to
UDP Receiver. Note that IP Receiver does not check
Header Checksum.

5 Experimental results
 UDP/IP core is verified by sending and receiving

files with different sizes as follows.

Verification of send functionality: XUPV5 board is
installed into 1xPCIe slot of our source PC on which
Sender-Application runs, and another PC is employed as
the destination so as to run Receiver-Application in the
same subnetwork. Then, Sender-Application is used to
send files of different sizes up to 250 MBytes. On the
destination, Receiver-Application writes the received
packets into a file and compares against the original one
in order to see if the send function of our UDP/IP system
works correctly.

Verification of receive functionality: For these tests,
Sender-Application running on a PC tries to transfer
different files to another PC with Receiver-Application
and XUPV5 board installed.

 We repeat each of these send and receive
verification tests as many as 100 times with different

Figure 1. UDP Sender Component Structure

52 Int'l Conf. Embedded Systems and Applications | ESA'15 |

files. We have observed that our UDP/IP architecture
have successfully sent and received our test files. During
these tests, the average throughput of 540 Mbit/s has
been achieved.

Table 1. Resource utilization and maximum speed of the
proposed UDP/IP system

Component Occupied
Slices BRAMs Fmax

(MHz)

Xillybus 2742 12 159,9

UDP/IP
Sender-
Receiver

420 6 244,1

EMAC 200 2 266,8

Table 1 represents the resource utilization and
maximum achievable clock frequency in Xilinx Virtex-5
LX110T-1. Overall design can work with a clock of
159,9 MHz; but, a 125 MHz clock is enough for the
gigabit operation.

 Since our UDP/IP design is based on FIFOs, our
FSM controllers in the related send and receive
components occupy a really small area. According to
Table 1, Xillybus core with PCIe endpoint block plus
[13] occupies the greatest area, followed by EMAC
core.

6 Conclusions
 In this study, we present a gigabit speed UDP/IP

stack with PCIe interface implemented on FPGA. Future
work will include implementing ARP, ICMP and DHCP
protocols in order to complement our UDP/IP core. In
addition, supporting multiple UDP streams on our
UDP/IP core will be considered.

7 References
[1] A. Lofgren, L. Lodesten, S. Sjoholm, and H.

Hansson, "An analysis of FPGA-based UDP/IP
stack parallelism for embedded Ethernet
connectivity," Norchip 2005, Proceedings, pp. 94-
97, 2005.

[2] N. Alachiotis, S. A. Berger, and A. Stamatakis,
"Efficient pc-fpga communication over gigabit
ethernet," in Computer and Information
Technology (CIT), 2010 IEEE 10th International
Conference on, 2010, pp. 1727-1734.

[3] N. Alachiotis, S. A. Berger, and A. Stamatakis, "A
Versatile UDP/IP based PC <-> FPGA

Communication Platform," 2012 International
Conference on Reconfigurable Computing and
Fpgas (Reconfig), 2012.

[4] F. L. Herrmann, G. Perin, J. P. J. de Freitas, R.
Bertagnolli, and J. B. dos Santos Martins, "A
gigabit udp/ip network stack in fpga," in
Electronics, Circuits, and Systems, 2009. 16th
IEEE International Conference on, 2009, pp. 836-
839.

[5] A. Dollas, I. Ermis, I. Koidis, I. Zisis, and C.
Kachris, "An open tcp/ip core for reconfigurable
logic," in Field-Programmable Custom Computing
Machines, Annual IEEE Symposium on, 2005, pp.
297-298.

[6] V. Vishwanath, P. Balaji, W.-c. Feng, J. Leigh, and
D. K. Panda, "A case for UDP offload engines in
LambdaGrids," in 4th International Workshop on
Protocols for Fast long-distance Networks
(PFLDnet’06), 2006, p. 5.

[7] A. S. Tanenbaum and D. J. Wetherall, Computer
Networks: Pearson New International Edition:
Pearson, 2013.

[8] J. Postel, "RFC 791: Internet protocol," 1981.
[9] J. Postel, "RFC 793: Transmission control

protocol, September 1981," Status: Standard, vol.
88, 2003.

[10] J. Postel, "RFC 768: User Datagram Protocol
(UDP)," Request for Comments, IETF, 1980.

[11] Virtex-5 Embedded Tri-mode Ethernet MAC
Wrapper.http://www.xilinx.com/products/intellectu
alproperty/v5_embedded_temac_wrapper.html
(last visited 16.III.2015)

[12] Xillybus, http://www.Xillybus.com (last visited:
03.02.2010)

[13] L. Xilinx and I. E. B. Plus, "v1. 9 for PCI Express
User Guide," ed: September, 2008.

Int'l Conf. Embedded Systems and Applications | ESA'15 | 53

54 Int'l Conf. Embedded Systems and Applications | ESA'15 |

SESSION

RESOURCE CONSTRAINED DEVICES

Chair(s)

TBA

Int'l Conf. Embedded Systems and Applications | ESA'15 | 55

56 Int'l Conf. Embedded Systems and Applications | ESA'15 |

Neural Cryptography for Secure Voice Communication
using Custom Instructions

C. H. Lin, B. C. Yang, C. B. Duanmu, B. W. Chen, De-Sheng Chen, Yiwen Wang

Department of Information Engineering and Computer Science

Feng Chia University,
No. 100 Wenhwa Rd., Seatwen, Taichung, Tawian

Abstract - Cryptography of resource constrained devices
represents a very active area of cryptographic research.
Custom instructions have been widely used to achieve the
conflicting demands between performance and flexibility. This
paper proposes a neural cryptography implementation for
secure voice communication using custom instructions to
achieve real-time performance on very low resource devices.
The experiments show that using only very limited hardware
to implement the CIs, the 40 speed-up can be saved to speed-
up the performance.

Keywords: Neural Cryptography; Custom Instruction (CI)

1 Introduction
The importance of cryptography on resource constrained

devices is related to the current trend of pervasive/ubiquitous
computing, which means an ever increasing demand for
computing capabilities in diverse, wireless and low-resource
scenarios, in both civilian and military applications, including
mobile phones, smart cards, toll collection, animal and cargo
tracking and electronic passports, and etc. Due to the low-
resource environments, cryptographic algorithms are typically
hardware-oriented, and designed to be particularly compact
and efficient. The balance between security, high
performance (in hardware), and low overall cost (throughput,
power consumption, area, price) in low-resource
environments represents a major challenge in cryptographic
acceleration.

The learning and classifying abilities of neural networks
can be used for different aspects of cryptography such as to
learn the inverse-function of any cryptographic algorithm in
cryptanalysis or to solve the key distribution problem in
public-key cryptography using neural network mutual
synchronization. The classical key exchange problem in
cryptography are mainly based on algebraic number theory,
but the synchronization phenomenon of interacting two
neural nets provides a new idea to solve this problem. Good

This research was supported by MOST grant 103-2221-E-035 -053.

reviews of neural cryptography can be found in [1, 2], for
analysis of neural learning rule and protocol dynamics.
Mislovaty et al. reported that ANN was secure against brute-
force attacks [3]

The custom instruction set extensions have been highly
successful such as Intel MMX and SSE, AMD 3DNow! and
DSP instructions for digital signal processors. A partially
customizable instruction-set which can be tuned towards the
specific requirements of applications by extending the basic
instruction set with dedicated custom instructions within
custom functional units (CFUs). By using a base processor,
the design process can focus on the CIs only, that
significantly reduces verification efforts and hence shortens
the design cycle by sharing development tools such as
compilers, debuggers, simulators. Commercial examples are
Tensilica Xtensa [4], Xilinx MicroBlaze [5], and Altera Nios
II [6]. The security support has been included in commercial
embedded processors such as ARM SecurCore [7],
STMicroelectronics SmartJ [8], and Atmel XMEGA [9].
However, most commercial cryptographic instruction
extensions did not release the detail implementation to the
public.

Various approaches to optimize or accelerate
feedforward neural nets for embedded systems [10, 11, 12].
Santos [13] proposed a custom instruction to approximate the
value of tanh() through the use of a range addressable lookup
table for the acceleration of a pre-trained feedforward
artificial neural network executing on a NIOS II processor.

The proposed neural cryptography for secure voice
communication is to derive a set of synaptic weights as a pair
of keys through the neural learning mechanism to achieve the
data encryption and decryption between two private neural
nets. The suitable "neural crypto instructions” are designed
and implemented as CIs of Altera Nios II/e, to achieve a
secure voice communication in real-time. The neural crypto
CIs may retain the flexibility of original embedded processors
to shorten design cost and time but increase performance as
well as lower energy consumption and hardware cost.

Int'l Conf. Embedded Systems and Applications | ESA'15 | 57

2 Methodology
In this paper, we combine approaches in [14], [15], [16]

and [17] to accelerate the neural cryptography computation
for secure voice communication on very low resource devices.

2.1 Neural Cryptography for Secure Voice
Communication

 A typical neural cryptography application for voice
communication is depicted in Fig.1. The voice is first pre-
processed, followed by a 512-point short-time Fourier
transform (STFT) of voice(t) with a 20-ms Hamming window
to obtain P(n, d), where n is the frequency bin sample index,
n =1,…,256, and d is the frame index, d=1,…D. The P(n, d)
will be the plain text as the input of the neural cryptography
encryption. The C(n, d) will be the cipher text of the output
and can be sent to the unsecure public communication
channels. Once the C(n, d) is received, it can be decrypted to
the plain text, P’(n, d), by the neural cryptography
decryption and converted to voice’(t) by inverse short-time
Fourier transform (ISTFT).

Fig. 1. A typical neural cryptography application for voice

communication.

A four stage multilayer feedforward neural network will
be used for neural cryptograph encryption and decryption as
shown in Fig. 2.

Fig. 2. A four stage multilayer feedforward neural network

for neural cryptograph.

The first two stages are consisted of one non-linear
function layer, tanh(), and one linear function layer to
perform the neural cryptography encryption. The last two
stages are still consisted of the same neural net structure to
perform the neural cryptography decryption. The random
and unpredictable initial values are used by the back-
propagation learning rule to train the four stage multilayer
feedforward neural network using the training set that the
desired target patterns are equivalent to the original input
patterns, P(n, d). Once the required minimum mean-square
error (MSE) between neural net outputs, P’(n, d), and the
desired targets, P(n, d), is achieved, the synaptic weights of
the first and last two stages will be the encryption key and the
decryption key correspondingly.

2.2 Custom Instruction
 Fig. 3 shows the block diagram of a typical custom
instruction processor. The interface between the base
processor and the custom functional unit (CFU) only includes
the control signals for the CI encoding and the
synchronization of multi-cycle custom instructions. The input
and output bandwidths of the data transfer buses are limited
by the number of read ports and write ports of the general
purpose register file (GPRF) of the base processor. This
simple interface keeps the base processor data-path
unchanged to simplify the CI implementation and to reduce
the design and verification cost.

Fig. 3. A typical custom instruction processor.

Typical multiply-accumulators (MACs) are
implemented as CIs to achieve parallel computation between
the synaptic weights and neuron output signals. The property
of non-linear hyperbolic tangent sigmoid function, tanh(), is
implemented as a single CI to approximate the value of tanh()
through the use of a hybrid range addressable lookup table to
store the mapping data from C code precision simulation
according the [15].

Several data movement CIs are implemented to
explicitly move additional input and output operands between
the base processor and the state registers in CFU so that the

58 Int'l Conf. Embedded Systems and Applications | ESA'15 |

performance of CIs will not be limited by the available data
bandwidth between the base processor and CFU. The CI
scheduling and state register assignment can be optimized
according to sequential ordering of data for better use of the
CIs to achieve a faster execution time.

3 Results
 Firstly, we use the MATLAB to determine the topology
parameters of feedforward neural networks and conduct the
cryptography feasibility analysis. Secondly, we use C++
programs to normalize the MATLAB double floating point
results to the correct range of the fixed point values as shown
in Fig. 4. The appropriate bit-precision of fixed point is then
selected for hardware implementation. Finally, we implement
the proposed neural cryptography on an embedded processor
with CIs to speed up the execution of secure voice
communication on very low resource embedded processors.

Fig. 4. Conversion from MATLAB results to C++ for the bit-
precision analysis.

3.1 MATLAB Results
Fig. 5 depicts the original voice(t) as well as the results

of STFT, abs(P(n, d)) and angle(P(n, d)), respectively.

Fig. 5. The original voice(t), abs(P(n, d)), and angle(P(n, d)).

Fig. 6 depicts the encrypted signals of voice(t) and the
encrypted cipher texts of Ca(n, d) and Cb(n, d), respectively.
Fig. 7 shows the decrypted voice’(t) as well as the decrypted
plain texts of abs(P(n, d)) and angle(P(n, d)), respectively.

Fig. 6. The original voice(t), abs(P(n, d)), and angle(P(n, d)).

Fig. 7. The original voice(t), abs(P(n, d)), and angle(P(n, d)).

The Equ. (1) is defined as the mean-square error (MSE)
of the four stage multilayer feedforward neural network to
measure the quality of learning results after the 1000
iterations of the back-propagation weight update equations.
Usually the smaller MSE obtains the better quality of neural
network representations.

 ……(1)

The total entropy is defined in Equ. (2) to measure the
discrepancy between the plain text and the cipher text. The
larger total entropy is the better effectiveness of the encrypted
voice.

….….. (2)

Int'l Conf. Embedded Systems and Applications | ESA'15 | 59

The Signal-to-Noise Ratio (SNR) of the received voice
is defined in Equ. (3) to evaluate the quality between the
original voice and the decrypted voice. The larger SNR is
the better quality of the decrypted voice.

……(3)

The MATLAB results are shown in Table 1~3 which are
used to conduct the feasibility analysis of neural
cryptography for secure voice communication and to
determine the neural network topology parameters according
to the number of hidden neurons and the number of bits for
data type representations. Table 1 shows the MSE results of
our proposed neural network after the 1000 iterations of the
back-propagation learning rules to train 400 randomly
generated data. Table 2 shows the total entropy and Table 3
shows the SNR for various numbers of hidden neurons with
respected to different data types. The larger number of hidden
neurons and the larger number of bits will result in the larger
hardware cost and the longer execution time.

Table 1. The MSE of our proposed neural net after learning.

Table 2. The total entropy between the plain and cipher texts.

Table 3. The SNRs of received voice from decrypted data.

3.2 Custom Instruction Results
 We choose the Altera Nios II/e as the very low resource
target base processor for the DE2-70 board run at 100Mhz.
Thus, the number of input and output ports for general
purpose register file is 2 and 1. The software cycle count of a
primitive instruction is estimated by the cycle count in the

execution stage of the Altera Nios II/e. The hardware cycle
count of a CI is estimated by synthesizing the corresponding
template using Altera Quartus II. The cycle count of data
transfers between the Nios II/e and the SR of CFU is single
cycle latency.

The matrix multiplications and additions are performed
by MAC CIs and data movement CIs. The CI block diagrams
of the 32-bit implementation is depicted in Fig. 8. The 16-bit
and 8-bit data types are shown in Fig. 9. Fig. 10 shows the
simulation results of the 8-bit tanh().

Fig. 8. The 32-bit data type implementation in CFU.

Fig. 9. The 16-bit and 8-bit data type implementations.

Fig. 10. The simulation results of the 8-bit tanh().

Table 4 shows the total number of execution cycles and
the total number of logic elements (LEs) for various CI
implementations of neural cryptography for secure voice
communication using 32 hidden neurons.

3.3 Performance analysis and discussion
Basically for the better sound quality and the more

security of the voice communication, we need the more
number of hidden neurons for the neural net and the more
number of bits for the arithmetic computations. The larger
numbers of neurons or bits will result in the more hardware
cost and the execution time. The desired sound quality can
be chosen using the SNR of received voice from Table 2 as

60 Int'l Conf. Embedded Systems and Applications | ESA'15 |

well as the desired security can be chosen using the total
entropy between the plain and cipher texts from Table 3.
However, the numbers of neurons or bits is not a linear
relationship with the quality and security.

From these experiments, we may suggest using the
number of bits to determine the desired sound quality and
using minimum number of neurons to decide the security.
Because of a lot of simple and low cost perturbation
algorithms for encryption and decryption can enhance the
desired security. Once the numbers of neurons and bits are
decided, the hardware cost of CI implementations will be
determined by using the Table 4 according to the overall
computation overheads of real-time applications, usually the
number of STFT points within a fixed latency Hamming
window.

Computational
Custom

Instructions

of
CIs

Total # of
LEs

Total
cycles

Total
reduced
cycles

None(16-bit) 0 700 53720416 0

Four 16-bit MACs

2 865 =700+
66(SR)+
99(MAC)

52393536 1326880

Four 16-bit MACs
Two 16-bit tanh()

3 19331=700+
66(SR)+

99(MAC)+
18466(tanh)

1327216 52393200

None(8-bit) 0 700 53720416 0

Eight 8-bit MACs

2 865 =700+
66(SR)+
99(MAC)

52393488 1326928

Eight 8-bit MACs
Four 8-bit tanh()

3 897 =700+
66(SR)+

99(MAC)+
32(tanh)

1327016 52393400

Table 4. The total numbers of execution cycles and logic
elements (LEs) for various CI implementations for neural
cryptograph using a four stage multilayer feedforward neural
network with 32 neurons.

4 Conclusions
 This paper presented an approach to implement neural

cryptography for secure voice communication in real-time.
Our approach took benefits from both software and hardware
to make flexible and scalable neural computation available on
resource limited embedded processors with good performance
for the neural cryptography. The experiments show that using
only very limited hardware to implement the CIs, the 300
speed-up can be saved to speed-up the performance. The
future work of this paper will be the continuous alternation
between theoretical investigation and practical
implementation of neural CIs to simutaneously achieve the
neural crypto, learning, classifying abilities of various
application programs running on the same embedded system.

5 References
[1] A. Adel, et al., "Survey Report on Cryptography Based on

Neural Network," International Journal of Emerging
Technology and Advanced Engineering, Volume 3, Issue
12, December 2013.

[2] Andreas Ruttor. Neural synchronization and cryptography.
Ph.D. Thesis, Bayerische Julius-Maximilians-Universitat,
Wurzburg, 2006.

[3] R. Mislovaty, E. Klein, I. Kanter ve W. Kinzel, “Security
of neural cryptography.” sign (hi) 1 (2004): 1.

[4] R. E. Gonzalez, “Xtensa: a configurable and extensible
processor,” IEEE Micro, pp. 60-70, 2000.

[5] Xilinx MicroBlaze Soft Processor Core
http://www.xilinx.com/tools/microblaze.htm

[6] A. N. I. Processor. Altera Nios II Processor.
http://www.altera.com/products/ip/processors/Nios II/.

[7] http://www.arm.com/products/
CPUs/families/SecurCoreFamily.html.

[8] http:// www.st.com/stonline/products/
families/smartcard/sc_sol_ics_st22.htm.

[9] http://www.atmel.com/dyn/resources/
prod_documents/doc7925.pdf

[10]S. Al-Kazzaz, et al., “FPGA implementation of artificial
neurons: Comparison study,” in Information and
Communication Technologies: From Theory to
Applications, 2008. ICTTA 2008. 3rd International
Conference on, 2008, pp. 1 –6.

[11]D. Shapiro, et al., "ASIPs for Artificial Neural Networks,"
6th IEEE International Symposium on Applied
Computational Intelligence and Informatics • May 19–21,
2011, Timişoara, Romania

[12]S. Ameen, et al., "FPGA Implementation of Neural
Networks Based Symmetric Cryptosystem," 6th
International Conference: Sciences of Electronic,
Technologies of Information and Telecommunications
May 12-15, 2011 – TUNISIA

[13]A. Namin, et al., “Efficient hardware implementation of
the hyperbolic tangent sigmoid function,” in Circuits and
Systems, 2009. ISCAS 2009. IEEE International
Symposium on, May 2009, pp. 2117 –2120.

[14] Santos, et al., "Artificial neural network acceleration on
FPGA using custom instruction," Electrical and Computer
Engineering (CCECE), 2011 24th Canadian Conference
on , vol., no., pp.450-455, 8-11 May 2011.

[15]M. A. Sartin and A. C. R. Silva, "Approximation of
hyperbolic tangent activation function using hybrid meth-
ods," in Reconfigurable Communication-centric Systems-
on-Chip (ReCoSoC), 8th International Workshop on, pp.
1–6, july. 2013.

[16]G. Li, C. Hung, D. Chen, and Y. Wang, "Application-
Specific Instruction sets Processor with Implicit Registers
to Improve Register Bandwidth," 2011 World Academy of
Science Engineering and Technology (WASET 2011),
Paris France, June, 2011

[17]C. Hung, H. Lin, D. Chen and Y. Wang, “ASIP
Instruction Selection with the Encoding-Space Constraint
for High Performance," 2012 International Workshop on
Highly-Efficient Accelerators and Reconfigurable
Technologies, Okinawa, Japan, May 30 - June 1, 2012.

Int'l Conf. Embedded Systems and Applications | ESA'15 | 61

Raspberry Pi Webserver
Max Runia1 , Kanwalinderjit Gagneja1

1Department of Computer Science, Southern Oregon University, Ashland, OR, USA

Abstract - We used a Raspberry Pi to configure and set up a
webserver with an IP address and port forwarding, which
would allow access from another source connected to a
network. The webserver will have minimal features; we were
focusing more on the development and configuration process
with a very fundamental format that makes it easy to
understand and simple to teach to someone who has little to
no experience setting up and configuring a webserver with a
Raspberry Pi. We end up using some basic SQL and a few
fundamental Unix/Linux commands and some SSH since the
webserver was setup on Linux and involved port forwarding
from another computer.

Keywords: Raspberry Pi, apache, web server, Linux, code
index;

1 Introduction
The raspberry pi was invented by Eben Upton. He

invented it to help the kids learn the coding in a simpler way.
Up to 5 million units of raspberry pi have been sold. This tiny
computer is just $35 and is sparking a revolution. There is a
large user community of Raspberry Pi, although, it was
launched just recently on February, 29th 2012. The Pi
enthusiasts are organizing community led events all over the
world. Such events are full of learning for the kids to code.

We planned to use a Raspberry Pi to configure and set
up a webserver with an IP address and port forwarding, which
would allow access from another source connected to a
network. The webserver will have minimal features; we were
focusing more on the development and configuration process
with a very fundamental format that makes it easy to
understand and simple to teach to someone who has little to
no experience setting up and configuring a webserver with a
Raspberry Pi. We end up using some basic SQL and a few
fundamental Unix/Linux commands and some SSH since the
webserver was setup on Linux and involved port forwarding
from another computer.

Now to elaborate on what a Raspberry Pi is, the
Raspberry Pi is a credit-card-sized single-board computer
developed in the UK by the Raspberry Pi Foundation with the
intention of promoting the teaching of basic computer science
in schools [6]. The Raspberry Pi sports a meager 256MB of
RAM and a 700MHz ARM-11 processor. The Model B also
contains two USB ports, an HDMI out and a 10/100 Ethernet
port. For audio it possesses a 3.5mm audio jack, the HDMI
output also supports audio transmission. The Raspberry Pi's
GPU boasts 1 Gpixel/s, 1.5 Gtexel/s or 24 GFLOPs of general
purpose compute power and is OpenGL 2.0 Compliant.

Nothing too fancy or complex, just a very simple machine
meant for learning and is shown in figure 1.

Figure 1: Raspberry Pi

There is one daunting question ‘What could you do with
such a small computer?’ The people are using it for various
purposes. For example, Picade Arcade Cabinet has put it into
practice like a arcade machine, which is very small but fully
functional [2]. Another inventor used a weather ballon to put
his camera attached with Raspberry Pi to the upper
enviornment to record what all is happening underneath. One
of the invertors used Raspberry Pi for streaming music, where
it is being used as a very low-cost wireless music streaming
equipment [5]. Another inovator prepared a Raspberry Pi
Keyboard Computer. This innovation presents a complete
computer packaged with a keyboard. One of the inovators
used Raspberry Pi as a Bitcoin Miner and named it as ‘Pi-
Powered Bitcoin Miner’. Therefore, this $35 tiny computer
allows you to take part in mining of Bitcoin that can give you
certain amount of monetary benefit [2].

The Raspberry Pi has a microcontroller. And this
microcontroller’s functions depend on specific timing.
However, the microcontroller is largely designed to work for
one purpose only. Therefore there are not operating system
overheads or there are no drivers’s to slow the system down.
So, this microcontroller uses exceptionally detailed clock
cycles to perform any task.

62 Int'l Conf. Embedded Systems and Applications | ESA'15 |

2 Process Followed
To begin the process of configuring a Raspberry Pi to

work as webserver, an Operating System of a Linux
Distribution, called Wheezy, specifically created for the
Raspberry Pi, was downloaded onto an SD memory card with
at least 4 GB of memory, via another computer, and inserted
into the Raspberry PI [8]. Details of the completed
installation can be viewed by opening the website [1] and
logging in with the correct user credentials. A Windows
Distribution or a Mac OS X can be installed instead, Linux
was a personal preference.

The Raspberry PI is then connected to a power source
through a micro USB power supply and an Ethernet network
outlet and requires a monitor and keyboard to view and give
the commands, since it is a Linux based OS we did not
require a mouse. With the SD card inserted and the physical
connections set up properly, a configuration window appears
on first boot, called raspi-config, from there the Raspberry PI
can then be setup through command prompts and an options
menu, as shown on page 4 in figure 2.

You can alter the local time or time zone and enable ssh,
as we did, but when you are finished you are going to select
the second command prompt "expand_rootfs" and press enter.
To put it simply, this will partition the OS of choice onto the
entire space of the SD card. Afterwards you will reboot the
Raspberry Pi by selecting “Finish” and pressing enter.

Now from here on there are many different methods to
finish the configuration and installations of your Raspberry Pi
to make it work as a webserver, we will stick to the methods
we used to accomplish this, if you are interested in other
methods they are easily found all over the internet. The rest
can be accomplished through following simple instructions or
tutorials online. Since we enabled ssh we were then able to
use to finish the setup and installations from a laptop [7]. We
used the cmd console to access the pi with ssh and used sudo
and Linux bash commands [4] to finish the configurations and
install apache webserver and php as shown in fig. 3.

These commands can be seen in the code appendix after
the Conclusion section of the paper. Other OS’s on the
Raspberry Pi may possess a GUI you can interact with
directly from the Raspberry Pi, being a Linux OS we had to
use the command console without any GUI.

Once the installation and configuration was finished we
needed to obtain a domain name for the server. We went to
noip.com [9] which allows us to use their domain name for
free; otherwise we would have to purchase a domain name.
With the noip domain name or server name is
rasppiserver.no-ip.org, the noip domain name is highlighted
for reference (fig 4.).

As mentioned earlier, we used port forwarding to access
the Raspberry PI from another source; another computer,
phone, etc. To do this, the source would have to attempt to
gain access through the router where the Raspberry Pi is
connected.

This can be accomplished by typing in the Public IP
address 75.142.152.19 and either port 80, 21, 22, or 23 into
the URL bar as so: 75.142.152.19:80. This will forward any
traffic attempting to access the Public IP address towards the
Local/Private IP address 192.168.1.6 of Raspberry PI, thus
granting us remote access to the Raspberry Pi and its contents
as shown in fig. 5.

2.1 Problems Faced

Over the course of the whole set up, we encountered a
few problems. Each of which required a little research to
solve. Following is a list of problems we encountered and a
few screen shots of the solutions we used. Here we were
having trouble getting phpmyadmin to show up at
rasppiserver.noip.org/phpmyadmin [1]. To solve this problem
we needed to make a short cut to phpmyadmin in the
apache2.conf file, so that apache knew where to include it
from. (Notice the last line added to the apache2.conf file as
shown in fig 6.)

Another problem we came across was not being able to
find a repository for the no-ip update program. First we tried
to install it using sudo apt-get install no-ip2 but it was not
available for the wheezy distribution. To solve this we had to
download a tar file directly from the no-ip server and compile
and install it ourselves. We used the command:

wget http://www.no-ip.com/client/linux/noip-duc-linux.tar.gz
to download the tar file.

We were able to get the Raspberry Pi configured and set
up with a Private IP address and port forwarding working. We
can access the Raspberry Pi from any computer through port
forwarding, using the local IP address of designated router
and a specified port [3]. The results conclude that using a
Raspberry Pi to configure a webserver is simple enough that
mostly anyone could accomplish it in a number of different
ways.

2.2 Lessons learnt

What we learnt from this work is how to configure a
webserver through the use of a Raspberry Pi. We learned how
port forwarding works with IP addresses. We gained some
basic familiarization with sudo commands in Linux. It can
also be acknowledged that webservers can host more than just
html or php webpages. They can be used for file storage and
organization among many more tasks with a number a uses.
As mentioned before, this is not the only way to configure a
Raspberry Pi, there are multiple procedures to accomplish the
goal of creating a webserver with any design the owner would

Int'l Conf. Embedded Systems and Applications | ESA'15 | 63

prefer. Also, this is not the only way to set up a webserver in
general, just a very fundamental method we used for this
project; there exist many more complicated methods with
varying methods and different results.

3 Conclusions
We were to setup a web server in very small budget. So

we planned to use a Raspberry Pi to configure and set up a
webserver with an IP address and port forwarding, which
would allow access from another source connected to a
network. In this case the given webserver has minimal
features. The main focus is more on the development and
configuration process with a very fundamental format that
makes it easy to understand and simple to teach to someone
who has little to no experience setting up and configuring a
webserver with a Raspberry Pi. We used very basic SQL
commands, some Linux fundamental commands, and some
SSH.

Code Appendix

Here is a list of the commands that we used from the laptop
through the command console after accessing the Raspberry
Pi with ssh.

154 cd /etc/network

155 ls

156 sudo nano interfaces

157 more interfaces

(edit interfaces file to make local ip static ip: 192.168.1.6)

160 sudo apt-get install apache2 php5 libapache2-mod-php5

162 sudo service apache2 restart

(install apache and php)

164 sudo apt-get install mysql-server mysql-client php5-
mysql

(install mysql)

171 sudo chown -R pi /var/www

(make user: pi the owner of /var/www -the root directory
where all files go for the website hosted on our server)

172 sudo apt-get install vsftpd

173 sudo nano /etc/vsftpd.conf

174 sudo service vsftpd restart

(install and edit the ftp program)

177 sudo apt-get install libapache2-mod-auth-mysql php5-
mysql phpmyadmin

(install phpMyAdmin)

181 sudo nano /etc/apache2/apache2.conf

182 sudo service apache2 restart

(edit the apache config file so that phpMyAdmin can be
accessed)

193 mkdir /home/pi/noip

194 cd ~/noip

196 wget http://www.no-ip.com/client/linux/noip-duc-
linux.tar.gz

197 tar vzxf noip-duc-linux.tar.gz

198 cd noip-2.1.9-1

199 sudo make

200 sudo make install

(install the noip update program)

202 sudo /usr/local/bin/noip2

(start the no-ip update program)

4 References
[1] rasppiserver.no-ip.org/phpmyadmin Last visited Feb.

2015.

[2] http://www.scribd.com/doc/255957808/Raspberry-Pi-
for-Beginners-Revised. Last visited March 26th 2015

[3] “Hacking Raspberry Pi” Timothy L. Warner, 2013.

[4] http://www.openvisionnetworks.com/dev/Learn%20Ras
pberry%20Pi%20with%20Linux.pdf last visited March
26th 2015.

[5] http://www.instructables.com/id/Raspberry-Pi-Projects/
Last visited April 3rd 2015.

[6] https://dev.windows.com/en-
us/featured/raspberrypi2support Last visited March 3rd
2015.

[7] http://elinux.org/RPi_Hub Last visited March 3rd 2015.

64 Int'l Conf. Embedded Systems and Applications | ESA'15 |

[8] “Learn Raspberry Pi with Linux”, Peter Membery and David
Hows

[9] noip.org

Figure2: Raspi-config window, information about the tool

Figure 3: installing apache webserver and PHP

Int'l Conf. Embedded Systems and Applications | ESA'15 | 65

Figure 4:NO-IP free member portal

Figure 5: Virtual server working

66 Int'l Conf. Embedded Systems and Applications | ESA'15 |

Figure 6: Modifications to apache.conf

Int'l Conf. Embedded Systems and Applications | ESA'15 | 67

68 Int'l Conf. Embedded Systems and Applications | ESA'15 |

SESSION

POWER AWARE COMPUTING AND ENERGY
MINIMIZATION + SUPPORTING TOOLS

Chair(s)

TBA

Int'l Conf. Embedded Systems and Applications | ESA'15 | 69

70 Int'l Conf. Embedded Systems and Applications | ESA'15 |

A Visualization Method of Inter-module Communications for
Profiling Energy Consumption of Android Applications

Hiroki Furusho1, Kenji Hisazumi2, Takeshi Kamiyama3, Hiroshi Inamura3, Shigemi Ishida1
and Akira Fukuda1

1Graduate School/Faculty of Information Science and Electrical Engineering, Kyushu Univ., Fukuoka,

Fukuoka, Japan
2System LSI Research Center, Kyushu Univ., Fukuoka, Fukuoka, Japan

3Research Laboratories, NTT DOCOMO INC., Yokosuka, Kanagawa, Japan

Abstract— We propose a method for visualizing the rela-
tionship between software modules of applications running
on the Android OS. Existing energy estimation methods
can analyze energy consumption for each modules of an
application. However, it is difficult for application developers
to choose a module as tuning target by the above profiling
result.

Our proposed method observes data modules communi-
cating each other, and visualizes the relationship between a
large energy-consuming module and other modules. In this
study, we analyzed a verification application with proposed
method and showed the relationship between these applica-
tion modules.

Keywords: Energy consumption, Profiling method, Mobile appli-

cation, Android

1. Introduction
An important task for Android application developers is

reducing the energy consumed by their Android app in order

to prolong the battery life of the Android smartphones.

Although this problem can be addressed at both hardware

and software levels, it is important to reduce the energy

consumption of individual applications that vary significantly

in behavior. Considering the foregoing, it is not sufficient

to identify modules to be tuned by individually visualizing

energy consumption for each module.

The simplest method for reducing the energy consumption

of smartphone applications is to eliminate problems such as

excessive creation instances, loop statement errors, commu-

nication process errors, and bugs. Energy-profiling methods

can identify the points at which the applications consume

excessive energy and determine methods to reduce their

overall consumption. Existing methods can estimate energy

consumption of the entire smartphone by using data obtained

from the OS (such as CPU time, amount of file system

access, and traffic). The authors have proposed a profiling

method that analyzes energy consumption of modules of an

application running on the Android OS [1].

However, a module that must be tuned might be different

from modules that consume energy excessively. For instance,

when module A consumes a large amount of energy, there

are two possible causes: module A itself consumes the

energy, or other modules use module A excessively. In the

latter case, it is not enough to visualize energy consumption

for each module individually to identify modules to tune.

Hence, we propose a method to visualize relationships be-

tween modules to assist developers in determining modules

that must be tuned. The proposed method is applied to a

simple application for testing.

The remainder of the paper is organized as follows. Sec-

tion 2 describes related work. Section 3 explains about the

type of communication monitored by our proposed method

and specifies the logging process. Experimental results are

reported in Section 4. Section 5 concludes with a summary

and specifies the direction of our future works.

2. Related Work
Most smartphone energy analysis methods employ model-

based estimation. The basic form of the energy-consumption

model can be represented by the following linear equation

Eestimate =
∑
m∈M

Cm · Vm (1)

Eestimate, M , Cm and Vm represent estimated energy, a set

of the factors related to energy consumption (such as CPU

time, data communication, access to storage and display),

usage of a factor m ∈ M , and its coefficient, respectively.

Cm is calculated by regression analysis of resource usage

and measured energy consumption.

Several researchers present methods that use a energy

model to estimate the energy consumption of the entire

device, using operating times of each part of the device

as parameters [2][3]. However, it is difficult to identify

the contribution of an application to the total energy con-

sumption because smartphones can run several processes

simultaneously.

An estimation method using values obtained from a Linux

process file system [4] overcomes the issue [5] because the

process file system records the device usage (hereinafter

referred to as "resource usage") for each process separately.

Mittal et al. proposed an energy consumption profiling

Int'l Conf. Embedded Systems and Applications | ESA'15 | 71

method for the CPU, wireless communication (3G, Wi-Fi)

and display[6]. The display energy is consumed by the

application because the interface of the application itself

usually occupies the smartphone display.

The authors have proposed profiling method that analyzes

energy consumption of modules of an application running

on the Android OS[1]. However, a module that must be

tuned might be different from modules that consume energy

excessively as mentioned above.

3. Profiling of relationships between
modules
3.1 Overview

This section describes the monitoring process of inter-

module communication. Our method provides application

developers with profiling result based on the actual usage

of users. Regardless of a developer’s understanding of an

application, the profiling results are helpful.

Our proposed method monitors behavior of an application

and records the behavior in the log file. To hook various

method in an application, we implemented the logging code

using AspectJ[7]. Fig. 1 depicts code weaving using AspectJ.

AspectJ includes an additional object named Aspect, which

is not a part of Java. The Aspect object contains the condi-

tions of the embedding point (pointcuts) in the source code

and the embedding codes (advice). When an application is

generated, Java bytecode, which generated from the advice,is

embedded into the application.

Fig. 1: Code embedding using AspectJ.

3.2 Inter-module communication of an An-
droid application

We classify communication type of Android application

modules. Table 1 shows monitoring target modules and call-

ing patterns of modules. The target modules are Activity
class, Service class, BroadcastReceiver class and

AlarmManager classes. Activity provides the GUI for the

functions of an application. Service runs longer than the

Activity class and performs background processing. These

application components call each other’s method with data

called Intent. Broadcast Intent is a kind of Intent.

Broadcast Intent is sent to all of modules that have a

particular attribute value. A BroadcastReceiver can receives

a Broadcast intent. AlarmManager sends an Intent in a

constant cycle.

Table 1: Calling pattern of Android module.
Activity class and Service class

• Normal calling
• Calling via AlarmManager

BroadcastReceiver class
• Calling from Android application
• Calling from Android system

3.2.1 Normal invocation

Fig. 2 shows the logging process of normal invocation

of an Activity. This case occurs when switching screen of

an application or using a function of Service. In Android

system, we send an Intent to invoke the Activity from other

Service or Activity. Our proposed method records commu-

nication log between sender module(Activity1) and receiver

module(Activity2). When an Intent instance is created, our

proposed method gives a hash value to the Intent, which

enables us to trace a sender from a receiver. After that, when

Intent is sent by startActivity() ,startService()
and bindService(), the sender module’s name and hash

value are recorded in the log file. The receiver module

receives the Intent and starts processing. Our proposed

method obtains the receiver module’s name and the hash

value given by sender and records them.

Fig. 2: Log collection of a normal invocation.

72 Int'l Conf. Embedded Systems and Applications | ESA'15 |

3.2.2 Periodic invocation
This section describes how to determine the periodic invo-

cation of services. AlarmManager sends Intents to Services

according to settings in advance. For energy saving, it is

important to identify which service received the intents from

AlarmManager and the number of times they were received.

Fig. 3 depicts a method to log such Intents from the Alarm-

Manager to Services. Our proposed method also gives a hash

value to the Intent as in the previous section. Our method

also gives a hash value to the Intent to trace the sender

and receiver in the same way as described in the previous

section. The Intent is used to create an instance of a Pending

Intent. Unlike in the Activity invocation case, we cannot

see the hash value of the sent Intent because we cannot

obtain the Intent instance from the Pending Intent. To

check the hash value of the sent Intent, our proposed method

collects the ID numbers of the Pending Intents when creating

and sending a Pending Intent. The ID number of Pending

Intent is a return value of java.lang.Object.hashCode()[8].

The receiver can log the same way that we mentioned in

Section 3.2.1.

Fig. 3: Log collection of a periodic invocation.

3.2.3 Invocation by Broadcast Intents
The Android system or applications send Broadcast In-

tents to applications to notify certain events. The application

can receive Broadcast Intent to implement BroadcastRe-

ceiver and specify a type of Intent that the application

wants to receive. The analysis method of this type of

communications determines whether frequency and type of

Broadcast Intent are appropriate.

Fig. 4 shows how to log for inter-application commu-

nication. The logger gives a hash value to an Intent and

logs it as a sender, as mentioned in Section 3.2.1. The

Android system calls the onReceive() method implemented

in BroadcastReceiver whenever the Broadcast Intent is sent.

We can hook the onReceive() method to identify the Intent.

Fig. 5 shows how to log for receiving a Broadcast Intent

from the Android system. We can annotate an attribute

called "action" to an Intent. We can distinguish whether the

Broadcast Intent is sent from the Android system because

a Broadcast Intent sent by the Android system has a value

that begins with a particular string, such as "android.action".

Fig. 4: Log collection of inter-application Broadcast Intent.

Fig. 5: Log collection of Broadcast Intent from the Android

system.

3.3 Log analysis for visualization
This section shows a method, which analyzes and visual-

izes the collected logs, as mentioned previously. Our method

generates a directed graph to visualize communication using

Intent between Activities, Services, and the Android system,

and annotates information such as energy consumption for

each module and frequency of communication for each edge.

The analyzer collects all necessary data from an Android

terminal. It classifies these logs according to type of module

and communication and totals them as shown as in Fig. 6.

The type of communication is mentioned in Table 1.

Int'l Conf. Embedded Systems and Applications | ESA'15 | 73

Fig. 6: Counting log files.

4. Evaluation
4.1 Environment

This section demonstrates the proposed method prelimi-

narily to apply to a simple application for evaluation. The

authors implemented a log collection function of our method

and analyzed applications that are running on a smartphone

with our method. Fig. 8 shows a screenshot of the application

for verification. The application has three Activity classes,

three Service classes, and one BroadcastReceiver class. Each

Activity class can transition to another Activity except

itself. There are three Service classes, and these classes

are: MyService, MyService2, and MyService3, invoked from

the Activity classes using startService(), setRepeating(), and

bindService(), respectively. The BroadcastReceiver imple-

mented in the application receives Intents from Service

classes and the Android system. We implemented the log

collection function of our method and analyzed applications

that are running on a smartphone with our method.

Fig. 7: Generating the DOT file.

4.2 Result
Fig. 9 shows relationships of the testing application mod-

ules. We generated this directed graph using the devel-

oped logging software and dot, which is a program in

Graphviz[9]. We collected a log, as mentioned in Section

3, and converted the log to the DOT language that dot

interprets. Black edges indicate normal invocation. Yellow

edges show periodic invocation and Broadcast Intents. The

numbers in the edge labels indicate the communication count

between pairs of modules. And line thickness of these edges

shows the percentage of communication count.

Fig. 8: Screenshot of the application for verification.

Android

SCREEN_OFF

MyReceiver

21

MainActivity

MainActivity3

1

MainActivity2

3

MyService2
6

MyService2

MyService35

1
2

6

3

3

1

2

1

4

138

22

Fig. 9: Relationship graph of the testing application modules.

4.3 Discussion

Eprocessing , energy consumption of processing, can be

estimated from information that integrates the call graph

and module’s energy consumption. A subgraph of call

graph indicates a processing of an application. Our proposed

method[1] can estimate energy consumptions of modules

themselves.

Eprocessing is represented by the summation of module’s

energy of a processing.

Eprocessing =
∑

m∈Ms

em (2)

Ms and em represent a set of module elements of a

processing and energy of m ∈ Ms, respectively.

74 Int'l Conf. Embedded Systems and Applications | ESA'15 |

5. Conclusion
In this paper, we presented a profiling method identi-

fying relationships between Android application modules.

Our method monitors and records communication between

modules in an Android application, and visualizes them. Our

proposed method helps application developers in identifying

hidden energy consumption problems that are caused by

communication in the application. We identified types of

communication that should be visualized in an Android

application. We also preliminarily demonstrated the method

using a simple application for verification and showed that

it can depict communications in the application in the form

of a directed graph.

Our future work will include planning to identify commu-

nication patterns in a more complicated module structure.

At present, we can identify relatively simple communica-

tion patterns. We will also demonstrate our method to be

applicable in real applications.

References
[1] H. Furusho, K. Hisazumi, T. Kamiyama, H. Inamura, T. Nakanishi and

A. Fukuda: Power Consumption Profiling Method based on Android
Application Usage,Lecture Notes in Electrical Engineering, Vol. 339,
pp.891–898, Springer Berlin Heidelberg(2015)

[2] L.T. Cignetti, K. Komarov and C.S. Ellis: Energy estimation tools for
the Palm, Proc. the 3rd ACM International Workshop on Modeling,
Analysis and Simulation of Wireless and Mobile Systems (MSWIM
’00), pp.96–103, ACM, New York, NY, USA(2000)

[3] L. Zhang, B. Tiwana, Z. Qian, et al: Accurate Online Power Esti-
mation and Automatic Battery Behavior Based Power Model Genera-
tion for Smartphones, Proc. the eighth IEEE/ACM/IFIP International
Conference on Hardware/Software Codesign and System Synthesis
(CODES/ISSS ’10), pp.105–114, ACM, New York, NY, USA(2010)

[4] T. J. Killian: Processes as Files, USENIX Summer Conf. Salt Lake
City(1984)

[5] Y. Kaneda, T. Okuhira, T. Ishihara, K. Hisazumi, T. Kamiyama and M.
Katagiri: A Run-Time Power Analysis Method using OS-Observable
Parameters for Mobile Terminals, 2010 International Conference on
Embedded Systems and Intelligent Technology (ICESIT 2010), Vol.1,
pp.39–44(2010)

[6] R. Mittal, A. Kansal and R. Chandra: Empowering Developers to
Estimate App Energy Consumption, Proc. the 18th Annual International
Conference on Mobile Computing and Networking (Mobicom ’12),
pp.317–328, ACM, New York, NY, USA(2012)

[7] The Eclipse Foundation, The AspectJ Project, available
from(http://www.eclipse.org/aspectj/) (accessed 2015-05-04)

[8] PendingIntent | Android Developers, http://
developer.android.com/reference/android/app/
PendingIntent.html#hashCode()(accessed 2015-05-10)

[9] Graphviz | Graphviz - Graph Visualization Software, http://www.
graphviz.org/(accessed 2015-05-10)

Int'l Conf. Embedded Systems and Applications | ESA'15 | 75

Task Mapping with Cache Reconfiguration and
Partitioning for Energy Minimization on Real-Time

Multicores

Zhihua Gan1,2, Zhimin Gu1
1School of Computer Science and Technology, Beijing Institute of Technology, Beijing 100081 ,China

 2Software School, Henan University, Kaifeng 475004 ,China

Abstract - In this paper, we investigate the problem of task
mapping with Dynamic Cache Reconfiguration (DCR) and
Cache Partitioning (CP) which are promising techniques to
alleviate cache energy consumption. Our goal is to obtain an
optimal task mapping, L1 cache configuration and L2 cache
partition factor on a target multi-core architecture such that
cache energy consumption is minimized while timing
constraints is satisfied. Two approaches are presented to solve
this problem: the first optimal approach is based on integer
linear programming (ILP), whereas the second approach is a
genetic algorithm (GA) that is near-optimal, but scalable.
Experimental results show that our ILP based approaches can
find the optimal task mapping, leading to significant energy
reduction, and the computation time is tolerable. Moreover,
our GA can also find a near-optimal solution with little time
overhead.

Keywords: Mulitcore system, energy consumption,cache,
task mapping.

1 Introduction
Multi-core architectures are becoming increasingly popul-

ar in real-time embedded systems. This is obvious from the
variety of multi-core processors available, such as ARM
Cortex-A15 [1] and MIPS32 74K [2]. Multi-core architectures
provide the flexibility of simple design, high performance and
low-cost implementations. One of the major challenges in
multi-core systems is task mapping. Task mapping need
determine which tasks should be allocated on which core.
Meanwhile, the task mapping is subject to the required
objectives, platform constraints and energy requirements.

Energy consumption is still a primary concern for real-
time embedded system, especially for battery-driven
embedded system. In multi-core platform, to alleviate the off-
chip memory access latency, it is usually equipped with multi-
level caches (e.g. private L1 cache and shared L2 cache).
Although caches effectively improve the system performance,
its energy consumption is a problem. Some researches [3] [20]
show that the energy consumption of the caches account for
up to 50% of the total system. Therefore, reducing the energy
consumption of cache is critical for prolonging the lifespan of
the system,

Dynamic cache reconfiguration (DCR) is a promising
technique to reduce cache energy consumption, which can
tune the cache configuration (e.g. cache size, line size and

associativity) at run time according to the cache requirement
of task, then significant energy saving can be achieved
without violating timing constraints. Cache partitioning is also
an active research field for reducing cache energy and
improving performance, which divides the shared L2 cache
into private region, each assigned to a different core or task.

There exist a lot of efforts [4, 5, 17, 27] on cache energy
saving for multi-core architecture. Most of works only focus
on shared cache partitioning technique, To the best of our
knowledge, [5] is only one research study, which jointly takes
into account cache partitioning and dynamic cache reconfigur-
ation. However their task mapping is predefined, leading to
the local-optimal energy saving. In fact, task-mapping
significantly influences energy consumption of cache on
multi-core platform. This is because different task-mapping
could lead to different scheme of cache partitioning and
dynamic cache reconfiguration. Changes of cache partitioning
and dynamic cache reconfiguration, in turn, affect cache
access behavior of the tasks and cache access energy.
Eventually, task mapping impact the energy consumption of
embedded systems. Therefore, task mapping is deeply related
to cache partition and dynamic cache reconfiguration, and
they should jointly be considered to optimize the cache energy
consumption.

Figure 1 shows the impact of task mapping on cache
energy consumption for a given task sets consisting of 4 tasks
(expint,qurt,prime,jfdcint) selected from MiBench [14], which
run on 2 homogeneous core architecture with 2-level cache.
Private L1 cache support DCR and shared L2 cache offer CP.
For this simple example, we can exhaustively enumerate all
the 16 possible task mappings. For each task mapping, we
determine the optimal L1 cache configuration and L2 cache

Figure1. Motivation example

76 Int'l Conf. Embedded Systems and Applications | ESA'15 |

partition factor, and then calculate the cache energy
consumption. As expected, different task mapping leads to
different energy consumption of caches. Therefore, if the
tasks are not pre-assigned to core, we can have chance to
reduce energy consumption by grouping such tasks and
mapping them to core. Meanwhile, an exhaustive search to
find optimal task mappings for reducing energy consumption
is not suitable for a large number of task sets. For example, if
it has 18 tasks to map 4 cores, the total number of task
mappings will be 418, for each task mapping, finding optimal
L1 cache configuration and L2 cache partition takes only
ms, the computation time for energy minimization takes
418 ms. Obviously, it is not acceptable. Therefore it is useful

to design an algorithm that can find the optimal task mapping
with little time overhead.

In this paper, we study the task mapping problem with
DCR and CP. We propose two approaches to solve it. This
paper makes the following contribution:
1) We propose integer linear programming (ILP) formulation
that can find the optimal task mapping, L1 cache
configuration and L2 cache partition factor, leading to the best
cache energy saving while guaranteeing all timing constraints,
and the computation time for finding the optimal solution is
tolerable.
2) We develop an effective genetic algorithm (GA) that can
find the near-optimal solution without violating timing
constraints, meanwhile, have very little time overhead.
3) We demonstrate that our ILP-based approach and GA-
based approach is very effective in reducing energy
consumption of caches.

The rest of this paper is organized as follows. Related
works are presented in Section 2. Section3 describes the
architecture model and problem formulation, Section 4
presents our ILP-based approach and GA-based approach.
Experimental evaluation is presented in Section 5. Section 6
concludes the paper.

2 Related Work
 Task mapping. Many research efforts have been
developed for task mapping on multi-core. Here, we only
present the task mapping considering cache behavior. In [10].
Li et al. illustrate a task mapping and cache partitioning
algorithm to improve the performance of heterogeneous
multi-core system. Their target is not to reduce energy
consumption and algorithm is not suitable for energy saving.
Calandrino et al. [11] aim to improve the performance of
shared caches by co-scheduling of groups of tasks and
avoiding co-scheduling groups that will thrash the cache.
Fedorova [12] propose a new cache-fair scheduling algorithm
that reduces co-runner-dependent performance variability and
addresses non-uniform cache allocation.

Reconfigurable cache. Numbers of reconfigurable cache
architectures are proposed in recent years. For example,
zhang et al. [20] proposed an efficient and highly
configurable cache architecture whose cache way could be
tuned via hardware register at runtime. In [7], a cache

architecture, which can be dynamically partitioned and
resized at run-time, is designed to improve the performance
of embedded systems. Yang et al. [13] propose a selective-
sets cache architecture which varies the number of cache sets.
Above work are devoted to the reconfigurable cache
simulation and the analysis of theoretical proposals.
Cache partitioning. Cache partitioning techniques are studied
for various targets in real-time embedded system. Bui et al.
[28] aim to minimize the system utilization based on static
cache partitioning. In [27], the author proposes a WCET-
aware cache partitioning algorithm to decrease the system’s
WCET. Reddy et al. [24] focus on eliminating inter-task cache
contention and reducing energy consumption of cache. Above
works are designed to single-core platform. For multi-core
platforms, Suh et al. [26] exploit cache partitioning to reduce
the average cache miss rate of the concurrent thread. Kim et al.
[16] care about fair cache sharing using both dynamic and
static cache partitioning. Liu et al. [19] propose a joint task
assignment and cache partitioning algorithms with cache
locking to minimize the WCRT.

3 Model and Problem Formulation
3.1 Architecture Model

 This paper considers an embedded multi-core architecture
composed of m identical cores. As shown in Figure 2. Each
core has private caches (e.g. private and separate L1
instruction and data caches). All the cores share an L2 cache
which is connected to main memory. Here, L1 instruction and
L1 data caches are highly reconfigurable in terms of cache
size, cache line and associativity. In other words, L1 cache is
DCR. This underlying reconfigurable caches we adopt are
based on the architecture described in [5][20], which requires
very simple hardware augmentation and minor overhead. We
use a way- based cache partitioning (CP) in the shared L2
caches. As show in Figure 3, the share L2 cache (here with an
8-way associalitivity) is partitioned in the ways. Each core is
allocated a portion of ways and will only access ways
allocated in all cache sets. We refer to the number of ways
allocated to each core as its partition factor. For example, the
L2 partition factor of core 2 in Figure 3 is 2.

Int'l Conf. Embedded Systems and Applications | ESA'15 | 77

3.2 Energy Model
Cache energy consumption are composed of dynamic

energy Edyn and static energy Esta[20]: E = Edyn + Esta. The
dynamic energy dissipation Edyn originates from cache
accesses and cache misses:

Edyn=Naccess·Eaccess+Nmiss·Emiss (1)
Where Naccess and Nmiss are the number of cache accesses and
misses, respectively. The cache access energy Eaccess is
constant according to cache specification. Emiss denotes the
energy dissipation of a cache miss and is computed as:

Emiss=Emem + EμPstall+ Eblock fill (2)
Where Emem is the energy dissipation of accessing the lower
levels memory, EμP_stall is the energy consumed when the core
is waiting for instruction or data from the lower levels
memory. They can be obtained from memory and processor
specification. Eblock_fill is the energy for filling a fetched data
into the cache. Esta is calculated as Esta =Psta·t , where Psta
represents the static power consumption of cache and t is the
total execution time of task. Note that the value of Eaccess,
Eblock_fill, and Psta highly depend on cache configuration, which
can be collected from CACTI [21].The access and miss
numbers Naccess and Nmiss can be obtained using SimpleScalar
[25].

3.3 Task Model
There are a set of independent n tasks 𝑇 = {𝑡ଵ, 𝑡ଶ, … 𝑡௡}

with common deadline D in the system. Each task has a
different execution time (ET) and energy consumption, which
depend on L2 partition factor allocated to the core it will be
running on and L1 cache configuration selected. In addition,
the set of tasks assigned to a core will execute sequentially on
that core.
3.4 Problem Formulation

The problem of task mapping with DCR and CP on
embedded multi-core processor to minimize the overall cache
energy consumption can be defined as follows.

Input: Given a set of independent n tasks 𝑇 = {𝑡ଵ, 𝑡ଶ, … 𝑡௡}
with common deadline D, an embedded multi-core processor
with m cores 𝑃 = {𝑝ଵ, 𝑝ଶ, … 𝑝௠}, every core has private L1
cache which support h different dynamic configurations, all
core share an s-way associative L2 cache which support way-
based cache partitioning.

Output: The goal of the problem is to design an assignment
for n tasks, a partition scheme for shared L2 cache and to
select a L1 cache configuration for each task so that the
energy of the cache is minimized while the timing constraint
D is satisfied.
4 Proposed Approach
4.1 ILP formulation for task mapping
 The section presents our ILP approach for task mapping
with DCR and CP. For our algorithm1, A given task set,
number of L1 cache configuration, number of L2 cache way
are required as input data. The algorithm iterates over all tasks
(line1), partitions each task for all L2 cache way (line 2) and

selects all possible L1 cache configurations (line 3).
Subsequently, the execution and energy consumption of task
for different cache configuration is determined by invoking
simulator (line 4-5) and stored. An ILP formulation is
generated (line 9-16) and solved in line 17. We will represent
ILP formulation for task mapping problem, which is the one
contribution of this paper. ILP formulation can be categorized
in four groups: objective function, core constraint, cache
constraint and task mapping constraint.
4.1.1 Core constraint formulations
 We model a task mapping decision using binary decision M୧,୨,
which is equal to 1 if task 𝑡௜ is mapped to core 𝑝௝ and 0
otherwise. A task can only be mapped one core, therefore,

 ∀task i ∑ Mi,j
m
j=1 =1 (3)

We define a binary decision variable 𝑄௜,௝,௥ , which is equal to
1, if task 𝑡௜ select jth L1 cache configuration and is mapped
the core with r ways of L2 cache. Otherwise, it is equal to 0.
The execution time and energy consumption of task 𝑡௜ are
bounded by

∀task i ET୧ = ∑ ∑ ET୧,୨,୰ ∙ 𝑄௜,௝,௥
୦
୨ୀଵ

ୱ
୰ୀଵ (4)

∀task i Energy୧ = ∑ ∑ Energy୧,୨,୰ ∙ 𝑄௜,௝,௥
୦
୨ୀଵ

ୱ
୰ୀଵ (5)

Where ET୧,୨,୰ and Energy୧,୨,୰ denote the execution time and
energy consumption of the task 𝑡௜ with jth L1 cache
configuration and r ways of L2 cache, which have been
recorded in the line 4 and 5.

Let 𝑆𝑡𝑎𝑟𝑡௜ and 𝐸𝑛𝑑௜ represent the starting time and the

completion time of task𝑡௜ , respectively. Obviously, Equation 6
and 7 must be hold. In addition, each task must be completed
before its deadline. Equation 8 describes the detail of this
constraint.

∀𝑡𝑎𝑠𝑘 𝑖 𝐸𝑛𝑑௜ = 𝑆𝑡𝑎𝑟𝑡௜ + 𝐸𝑇௜ (6)
 𝑆𝑡𝑎𝑟𝑡௜ ≥ 0 (7)

𝐸𝑛𝑑௜ ≤ 𝐷 (8)
4.1.2 Task mapping constraint formulations
 For task 𝑡௜ and 𝑡௝ , we need to indicate whether they are
mapped to the same core 𝑝௞ . A binary decision variable 𝑍௜,௝ is

Algorithm1: ILP based algorithm
Input: Set of core P, Set of task T, number of L1 cache configuration h, L2 cache
way s, deadline D
Output: the optimal task mapping, the L1 cache configuration, the L2 cache
partition factor.
1 for 𝑡௜ ∈ 𝑇do
2 for r=1 to s
3 for j=1 to h
4 ETi,j,r=determine_ET(ti,j,r)
5 Energyi,j,r=determine_Energy(ti,j,r)
6 end for
7 end for
8 end for
9 𝐼𝐿𝑃௢௕௝=setup_objective_function(T,Energy)
10 𝐼𝐿𝑃 = 𝐼𝐿𝑃 ∪ 𝐼𝐿𝑃௢௕௝
11 𝐼𝐿𝑃௖௢௥௘=setup_core_constraint(T,P,C,WCET,Energy,D)
12 𝐼𝐿𝑃 = 𝐼𝐿𝑃 ∪ 𝐼𝐿𝑃௖௢௥௘
13 𝐼𝐿𝑃௖௔௛௘=Setup_cache_constraint(T,P,C)
14 𝐼𝐿𝑃 = 𝐼𝐿𝑃 ∪ 𝐼𝐿𝑃௖௔௛௘
15 𝐼𝐿𝑃௧௔௦௞_௠௔௣௣௜௡௚=Setup_mapping_constraint(T,P,C)
16 𝐼𝐿𝑃 = 𝐼𝐿𝑃 ∪ 𝐼𝐿𝑃௧௔௦௞_௠௔௣௣௜௡௚
17 CPLEX_Solver(𝐼𝐿𝑃)

78 Int'l Conf. Embedded Systems and Applications | ESA'15 |

defined to describe this relationship. Let variable𝑍௜,௝ = 1, if
task 𝑡௜ and 𝑡௝ are mapped to same core 𝑝௞ and 0 otherwise. In
other words, only if variable 𝑀௜,௞ = 1 and 𝑀௝,௞ = 1 , variable
𝑍௜,௝ is equal to 1. This constraint can be expressed as following.

∀𝑡𝑎𝑠𝑘 𝑖 , 𝑗 ∀𝑐𝑜𝑟𝑒 𝑘 𝑀௜,௞ + 𝑀௝,௞ − 𝑍௜,௝ ≤ 1 (9)

 𝑀௜,௞ + 𝑀௝,௞ − 2 ∙ 𝑍௜,௝ ≥ 0 (10)

 All tasks mapped to the same core do not overlap, In other
words, they must not be executed on the same core at the
same time. In order to guarantee the non-overlapping constr-
aints, for each pair of task 𝑡௜ and 𝑡௝ , two binary variables 𝐵௜,௝
and 𝐵௝,௜ are defined. Let 𝐵௜,௝ =0 if task 𝑡௜ and task 𝑡௝ are
mapped to same core and task 𝑡௜ execute before task 𝑡௝ . Let
𝐵௝,௜=0, if task 𝑡௜ and task 𝑡௝ are allocated to same core and
task𝑡௜ execute after task 𝑡௝ . Then, the following constraints
must be hold. C is a larger constant.

∀𝑡𝑎𝑠𝑘 𝑖 , 𝑗 𝑖 ≠ 𝑗, 𝐵௜,௝ + 𝐵௝,௜ − 𝑍௜,௝ = 0 (11)

 𝑆𝑡𝑎𝑟𝑡௝ ≥ 𝐸𝑛𝑑௜ − 𝐶 ∙ (1 − 𝐵௜,௝) (12)

 𝑆𝑡𝑎𝑟𝑡௜ ≥ 𝐸𝑛𝑑௝ − 𝐶 ∙ (1 − 𝐵௝,௜) (13)
4.1.3 Cache constraint formulations

 We define a binary decision variable 𝐶𝑖,𝑗, which is equal
to 1 if task 𝑡௜ is assigned jth L1 cache configuration and 0
otherwise. Each task can only be assigned one of h different
L1 cache configurations. Therefore,

∀𝑡𝑎𝑠𝑘 𝑖 ∑ 𝐶௜,௝ = 1௛
௝ୀଵ (14)

 We define a binary decision variable 𝑊௝,௥ , which is equal
to 1 if r ways of L2 cache (i.e. partition factor) is partitioned to
core 𝑝௝ and 0 otherwise. Each core can only use one partition
factor.

∀𝑐𝑜𝑟𝑒 𝑗 ∑ 𝑊௝,௥ = 1௦
௥ୀ଴ (15)

The total sum of assigned ways of L2 cache for all cores
cannot exceed available the number of way of L2 cache.
Therefore,

∀𝑐𝑜𝑟𝑒 𝑗 ∑ 𝑝 ∙ ∑ 𝑊௝,௥
௦
௥ୀ଴ ≤ 𝑠௦

௣ୀ଴ (16)

 Each task can only select one of h different L1
configurations and one of s different L2 cache factor.

∀𝑡𝑎𝑠𝑘 𝑖 ∑ ∑ 𝑄௜,௝,௥
௛
௝ୀଵ = 1௦

௥ୀଵ (17)

 For each task 𝑡௜ , if it is mapped to core j and r ways of
L2 cache is assigned to core j .the following constraints
should be satisfied.

𝑄௜,௝,௥ = ൜
1, 𝑖𝑓 𝐶௜,௝ = 1 𝑎𝑛𝑑 𝑊௝,௥ = 1
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (18)

The above euqation can easily be linearized, due to space

limitions, this is omitted from this paper.
4.1.4 Objective function

Our objective is to minimize the cache energy
consumption. Therefore, objective function is defined as:

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒(∑ 𝐸𝑛𝑒𝑟𝑔𝑦௜
௡
௜ୀଵ) (19)

Solving the above ILP formulation, we can obtain the
optimal task mapping, L1 configuration and L2 cache
partition factors. The ILP-based approach can find an optimal
solution, and it has little time overhead compared to
exhaustive search method. But, as the number of tasks
increases, ILP formulation may take long time to obtain an
optimal solution. For example, when there are 8 tasks, it takes
less than 14 seconds. When there are 13 tasks, it takes more
than 5 minutes. To relieve this problem, we also develop an
approach based GA which has high efficient and near-optimal
solution for large number of task sets
4.2 Genetic algorithm for task mapping
 Genetic algorithm is probabilistic search method, which
simulates the Darwinian principles of natural selection and
the survival of the fittest. They can solve a large number of
complex optimization and design problems, and a lot of
researches have proven that the GA is superior to many
heuristic techniques available. Algorithm 2 illustrates the
major steps of our genetic algorithm. In step 2, we first
generate all feasible L2 partition schemes, and then GA will
perform for each L2 partition scheme. In step 4, the initial
population is filled with chromosomes that are generated at
random. Step 6 evaluates the fitness value of each
chromosome using the fitness measure in Equation 20. Step 8
to 19 generates the new population by selection, crossover,
mutation, Step 21 tests whether the termination condition is
reached. If so, the best chromosome in the current population
is returned as our solution. If the termination condition is not
satisfied, then a new generation is created by applying the
genetic operators, this process is repeated until the
termination condition is satisfied.Step 22 records the best
solution for all L2 cache partitioning scheme. This is achieved
by comparing the current solution with the latest solution and
preserving the best one of the two solutions.
4.2.1 Generate initial random population

In this step, we create randomly an initial population.
Each chromosome o୧ in the population is constructed by two
lists of genes Ф and Θ. The content in list Ф denotes the
mapping of task to core, the content in list Θ represents the L1
cache configuration of each task (using the L1 configuration
index instead of L1 configuration). Obviously, each
chromosome is a solution for our problem. Figure 4 shows a
chromosome. For each pair of genes of a task in figure 4, we
can obtain its task mapping and L1 cache configuration. For
example, task 2 is mapped to core 3 and use the 2th L1 cache
configuration.

4.2.2 Evaluation of each member of generation

In the population, all the chromosomes are evaluated and
a fitness value is assigned to them. This fitness value reflects
the ability of this chromosome to survive in current
environment. The greater fitness, the higher is the probability

Figure 4. chromosome

Int'l Conf. Embedded Systems and Applications | ESA'15 | 79

of survival of the chromosome during evolution. The fitness is
calculated through the following fitness function.

𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑜௜) = ൝
ଵ

ா(௢೔)
𝑇(𝑜௜) ≤ 𝐷

0 𝑇(𝑜௜) > 𝐷
 (20)

Where o୧ is a chromosome. T(o୧) is schedule length,
which are defined the maximum completion time of all cores
in a chromosome , E(o୧) is the sum of energy of all tasks in a
chromosome, D is the deadline of task sets. In this fitness
function, both the timing constraint T(o୧) and the energy
consumption E(O୧) are considered. If the schedule length T(o୧)
is greater than the deadline D, the fitness value of o୧ is equal
to 0. This indicates chromosome o୧ do not satisfy the timing
constraints and is an infeasible scheme, otherwise, its fitness
value is inversely proportional its total energy consump-
tion E(o୧).

4.2.3 Creation of new populations
This step is to form a new population by genetic

operators from current population with the aim of finding
better solutions, and the chromosome in new population is
slightly different from the chromosome in current population.
This is done by using three types of genetic operators as
follows:
Selection: The selection operators are used to select
chromosome through its fitness value from the current
population so that further genetic manipulation. In the
process of selection, all the chromosomes are given a
probability of selection which is proportional to the fitness
value assigned to the chromosome. The rationale is that the
chromosome with higher fitness value should have a higher
probability of surviving into the next generation. In our
approach, a simple selection method, but quite effective is
used from our experiment results. We sort all chromosomes

in the ascending order of fitness value, then, remove
chromosomes whose fitness value are smaller than the
average of fitness of all chromosomes. In this way, we can
guarantee that best chromosome is preserved

Crossover: The crossover operators are used to select genes
from parent chromosomes and generate offspring. In selection
stage, we have removed chromosomes whose fitness value is
smaller than the average value of fitness values of all
chromosomes. In this stage, we perform crossover on
preserved chromosome to generate new chromosome. Note
that the number of removed chromosomes is not same in each
generation due to different average of fitness values of
chromosomes. For each pair of chromosomes, the multi-dot
crossover is applied. We generate random number q for all
crossover points i from 1 to n, if q is equal to 0, then swap the
genes corresponding to crossover points of two parent
chromosomes to create new chromosomes. Algorithm3 shows

the procedure of the crossover operator, which takes two
parents as input and produces two children, and guarantees
that if parent chromosomes are feasible then their children
chromosomes are also feasible.
 Mutation: The mutation operator is used to help to search
beyond local optima by randomly changing allele values of
some genes. It creates new chances for finding the optimal
solution. In our approach, we perform mutation by randomly
selecting one task for each chromosome and change its L1
cache configuration and mapping of it to core. Algorithm 4
shows the procedure of the mutation operator.

4.2.4 Termination conditions check
 In order to terminate the algorithm, a finite number of
iterations are defined in advance as termination condition. If
the termination condition is met, the near-optimal
chromosome is returned in population. It should be mentioned
that algorithm may converge prior to defining the number of
iterations. In this case, the near-optimal chromosome (lowest

Algorithm4: Mutation Operator
Input : chromosomes P[1..n]
Output :chromosomes P[1..n]
1. i=random[1,n] //generate random mutation point between 1 and n
2. p= random[0,1] //generate random number between 0 and 1
3. If (p> mc) // mc is crossover probability
4. Assign P[i]’s the gene of task mapping at random in feasible mapping
5. Assign P[i]’s the gene of L1 cache configuration at random in feasible L1

configuration
6. end if

Algorithm3: Crossover Operator
Input : Parent P1[1..n], Parent P2[1..n] // n is the number of tasks
Output Children C1[1..n], Children C2[1..n]
1. p=random[0,1] //generate random number between 0 and 1
2. if (p> pC) // pC is crossover probability
3. for i=1 to n do
4. q= random{0,1} //generate random number 0 or 1
5. if (q==0) // pC is crossover probabilit
6. C1[i]= P2[i] // copy mapping task and L1 cache configuration in parent chromosome
7. C2[i]= P1[i]
8. else
9. C1[i]= P1[i]
10. C2[i]= P2[i]
11. end if
12. end for
13. return
14. end if

Algorithm2: The Genes algorithm
Input: Set of core P, Set of task T, number of L1 cache configuration h, L2 cache way
s, deadline D
Output: task mapping, L1 cache configuration, L2 cache partition factor.
1. Get the population size(Ps)
2. Generate all feasible L2 partition schemes.
3. for each schemes do
4. Generate initial random population.
5. for j =1 to Ps do
6. Evaluate the fitness value of chromosome based on Equation 20
7. end for
8. Sort all chromosomes in the ascending order of their fitness value.
9. Derive the average value of fitness Fitav of all chromosomes.
10. Remove chromosomes whose fitness values are smaller than Fitavg ,and
11. record R, which is the number of removed chromosomes
12. for j=1 to R do
13. Apply algorithm3 on preserved chromosomes to generate the new

chromosomes.
14. end for
15. Sort all chromosomes in the ascending order of their fitness value.
16. for j=2 to Ps do
17. Select a chromosome from current generation.
18. Perform algorithm4 to generate new chromosomes.
19. end for
20. Let the current chromosomes be chromosomes in the next generation
21. if the termination criteria is satisfied
22. Record chromosomes with the biggest fitness value in current L2 partition

scheme
23. else
24. Go to Step 7
25. end if
26. end for

80 Int'l Conf. Embedded Systems and Applications | ESA'15 |

energy consumption) in the current population is returned as
the optimal solution.

5 Experimental Evaluation

5.1 Experimental setup

 To evaluate our approaches, we use 18 benchmarks from
MRTC [18] in our experiment. These benchmarks have
different combinations listed in Table 1. We reduce input sets
of several benchmarks. Since these benchmarks with larger
input sets has an excessive execution time absolutely
dominating the deadline of task sets. The deadline D is set by
using the same way with [5] .i.e. it is a feasible L1 cache
assignment for every partition factor in each core.

We use the SimpleScalar cycle-accurate architectural
simulation platform [25].The cache model of which is
modified to support way-based L2 cache partitioning. In this
work, we use four core and two levels of caches architecture,

Groups # tasks Tasks

Set1 8 expint,qurt,prime,jfdcint,
insertsort,bs,fir,bssort100

Set2 9 expint,qurt,prime,jfdcint,
insertsort,bs,fir,bssort100,fibcall

Set3 10 st,fdct, prime,jfdcint, insertsort,fir
 fibcall,crc,cnt,select

Set4 11 crc,cnt,expint,qurt,prime,jfdcint,
insertsort,bs,fir, fiball,fdct

Set5 12 fdct, expint,qurt,prime,jfdcint, insertsort,
bs,fir,bssort100,fibcall,crc,cnt

Set6 13 qurt,jfdcint,insertsort,bssort100,crc,cnt,
select,ndes,ud,lms,matmult,st,fdct

where every core runs at 1GHz. The private L1 cache has a
base size of 256B. The shared L2 cache configuration is
assumed to be 4KB, 8-way associative with 32-byte lines. The
access latencies of L1 cache, L2 cache, and the main memory
are set to 1, 6, and 20 cycles, respectively, and the number of
cache accesses and misses, as well as the execution time are
obtained under different L1 cache configurations and way
based L2 partition. We collect the energy parameters of the
cache from CACTI [21] with 65 nm technology. We perform
the experiments on 3GHz processors with 4GB memory and
use CPLEX12.2 as ILP solver for our ILP approach [22].
5.2 Experiment results

In this section, we compare four approaches as follows:
1. ECP: Task mapping is determined by the minimal schedule
length. L1 Cache use base configuration and L2 cache is
equally partitioned among the different core. We use it as the
baseline.
2. ODCR+OCP: Task mapping is determined by the minimal
schedule length. L1 DCR and L2 CP are optimal based on
exhaustive search method.
3. Our approach: ILP based approach and GA based approach.

The simulation of genetic algorithm for all task sets use
the following parameters, population size (Ps) = 16, crossover
probability (pc) = 0.6, mutation probability (pm) = 0.32,
maximum number of iterations = 1200. Our experiments use

the following L1 base configuration: 256B with 2-way
associativity and 16-byte line size (256B_2W_16).

Figure 5 shows the energy consumption for ODCR+OCP,
ILP, GA normalized to ECP. Compared to the ODCR+OCP,
our ILP can achieve 10.6% energy savings on average and GA
can reach 9.4% energy savings.

5.3 Effect of deadline
In the section, we conduct experiments to show the effect

of deadline. Using the same example above, we vary the
deadline from 200 μs to 165 μs in step of 5μs. Figure 6 shows
the result for ODCR+OCP, ILP and GA. It is observed that a
decrease in deadline results in increase in energy consumption
of all approaches. However, we can also observe that energy
consumption of ODCR+OCP do not change from 200μs to
180μs, and then strongly increase with deadline decreasing
due to fixed task mapping. On the contrary,energy
consumption based on ILP and GA slightly increases from
200μs to 165μs by proper task mapping.
5.4 Time overhead

We cannot simply conclude that our approaches outper-
form ODCR+OCP since they only use the task mapping based
on the minimal schedule length. However, when they explore
the whole solution space of task-mapping for reducing energy
consumption, it has significantly time overhead. In this
subsection, we compare the time overhead of our approaches
with ODCR+OCP considering all possible task mapping, we
exhaustively test all possible task mappings and invoke the
ODCR+OCP algorithm. To achieve a fair comparison,
ODCR+OCP only need to find the task mapping solution
which was obtained by our ILP. In other words, we first
perform our approach to obtain the optimal task mapping.
Time overhead for ODCR+OCP is to find this optimal task
mapping from the whole solution space. Note that for the
same task mapping, three approaches can find an optimal L1
cache configuration and L2 cache partition factor due to small
solution space of L1 cache configuration and L2 cache
partition. Table 2 shows the time overheads for three
approaches. We can see that the time increases exponentially
for ODCR+OCP with number of tasks. Whereas the runtime

Figure 5. Cache energy saving for ODCR+OCP, ILP, GA normalized to ECP

Table 1 Task sets consisting of real benchmarks

Int'l Conf. Embedded Systems and Applications | ESA'15 | 81

of ILP based approach is within 347 seconds, and the runtime
of GA based approach is within 5 seconds.

Task
Sets

ILP based
approach

GA based
approach

ODCR+OCP
approach

Set1 0.54s 1.69s 0.13s
Set2 2.96s 1.97s 53.68s
Set3 6.47s 2.01s 411.30s
Set4 258.68s 4.13s 1238.61s
Set5 283.16s 3.89s 4891.85s
Set6 346.27s 4.91s 12517.43s

6 .Conclusion
This paper focuses on problem of task mapping for

energy optimization on multi-core system. The goal is to find
the optimal task mapping, L1 cache configuration and L2
cache partition factor. We present two approaches to solve
this problem. The ILP based approach can find the optimal
solution. The GA based approach is near-optimal compared to
ODCR+OCP. Meanwhile, two approaches are more efficient
in runtime compared to an exhaustive task mapping, which
invoke ODCR+OCP to produce optimal solution.
Acknowledgment

We are grateful to all the members of the Scalable
Computing Lab research group of Beijing Institute of
Technology for their contributions. We also thank the
anonymous reviewers. This work is supported by the National
Science Foundation of China (Grant No. 61370062).
References
[1] ARM Cortex-A15 serious. http://www.arm.com/products.
[2] MIPS, 2010. http://www.mips.com/
[3] A.Malik etal.,A low power unified cache architecture
providing power and performance flexibility,ISLPED, 2000.
[4] Gang Chen, Kai Huang et.al. Cache Partitioning and
Scheduling for Energy Optimization of Real-Time MPSoCs ,
2013.
[5]W.Wang,P.Mishra,andS.Ranka.Dynamic cache
reconfiguration and partitioning for energy optimization in real-
time multi-core systems,DAC, 2011
[6] P. Bentley, Evolutionary Design by Computers, Morgan
Kaufmann, 1999.

[7]M.Modarressi,S.Hessabi,andM.Goudarzi. A reconfigurable
cache architecture for object-oriented embedded systems.
CCECE, 2006.
[8]W.Wang et al.,Dynamic cache reconfiguration for soft real-
time systems, ACM TECS, 2011.
[9]W.Wang and P. Mishra, Dynamic reconfiguration of two-level
cache hierarchy in real-time embedded systems, J of Low Power
Electron, vol. 7, no 1, pages 28-38 , 2011.
[10]Yanbing Li and Wayne Wolf, A Task-Level Hierarchical
Memory Model for System Synthesis of Multiprocessors, DAC,
1997.
[11]John M. Calandrino and James H. Anderson, Cache-Aware
Real-Time Scheduling on Multicore Platforms:Heuristics and a
Case Study. In Proceedings of 2008 Euromicro Conferenceon
Real-Time Systems (ECRTS08), 2008.
[12]A.Fedorova, M. Seltzer, M.D. Smith, Cache-fair thread
scheduling for multicore processors, Technical Report TR-17-06,
Division of Engineering and Applied Sciences, Harvard
University, 2006.
[13]S.-H.Yang, B. Falsafi, M. D. Powell, K. Roy, and T. N.
Vijaykumar. An integrated circuit/architecture approach to
reducing leakage in deep submicron high-performance i-
caches,HPCA, 2001.
[14]MiBenc Benchmark http://www.eecs.umich.edu/mibench/
[15] R. Reddy and P. Petrov. Cache partitioning for energy-
efficient and interference-free embedded multitasking. ACM
Transactions on Embedded Computing Systems, Mar. 2010
[16] S. Kim et al., Fair cache sharing and partitioning in a chip
multiprocessor architecture, PACT, 2004.
[17] X. Fu, K. Kabir, and Xiaorui. Cache-aware utilization
control for energy efficiency in multi-core real-time systems.
ECRTS, 2011.
[18] J. Gustafsson, A. Betts, A. Ermedahl, and B. Lisper. The
Mälardalen WCET benchmarks – past, present and future. In
WCET, 2010.
 [19] T. Liu, Y. Zhao, M. Li, C.J. Xue, Task assignment with
cache partitioning and locking for wcet minimization on mpsoc,
in: Proceedings of the 39th International Conference on Parallel
Processing, ICPP 2010.
[20] C. Zhang, F. Vahid, and W. Najjar. A highly configurable
cache for low energy embedded systems.ACM Transactions on
Embedded Computing Systems, 2005.
[21] CACTI. http://www.hpl.hp.com/research/cacti
[22] IBM ILOG CPLEX. http://www.ibm.com/software/
[23] B. D. Bui, M. Caccamo, L. Sha, and J. Martinez. Impact of
cache partitioning on multi-tasking real time embedded systems.
RTCSA,2008.
[24] R. Reddy and P. Petrov. Cache partitioning for energy-
efficient and interference-free embedded multitasking, ACM
Transactions on Embedded Computing Systems, 2010.
[25] SimpleScalar LLC. http://www.simplescalar.com
[26] G.E. Suh, L. Rudolph, S. Devadas, Dynamic partitioning of
shared cachememory, Journal of Supercomputing, vol 2, no 8,
pages 7–26, 2004.
[27] Sascha Plazar, Paul Lokuciejewski Peter Marwedel, WCET-
aware software based on cache partitioning for multi-task real-
time systems, 2009.
[28] B. D. Bui, M. Caccamo, L. Sha, and J. Martinez. Impact of
cache partitioning on multi-tasking real time embedded systems,
RTCSA, 2008.

165170175180185190195200
2200

2300

2400

2500

2600

2700

2800

Deadline

E
ne

rg
y

C
on

su
m

pt
io

n(
nJ

)

ODCP+OCP
GA
ILP

Table 2 Time overhead comparison

Figure 6. Deadline effect on total energy consumption

82 Int'l Conf. Embedded Systems and Applications | ESA'15 |

SESSION

LATE BREAKING PAPERS: EMBEDDED
SYSTEMS AND ENERGY MANAGEMENT

METHODS

Chair(s)

TBA

Int'l Conf. Embedded Systems and Applications | ESA'15 | 83

84 Int'l Conf. Embedded Systems and Applications | ESA'15 |

A Comparative Study on the Energy Efficiency of 4th
Gen Intel ® Core ™ Processor vs 3rd Gen Intel ®

Core ™ Processor
Siti Nur Diana Muhd Azmi
School of Computing, Creative
Technologies, and Engineering,

Leeds Beckett University,
Leeds, UK

s.muhdazmi2847@student.leeds
beckett.ac.uk

Nazarudin Bujang
Intel Kulim, Perak

Malaysia

Ah-Lian Kor
School of Computing, Creative
Technologies, and Engineering,

Leeds Beckett University,
Leeds, UK

A.Kor@leedsbeckett.ac.uk

Colin Pattinson
School of Computing, Creative
Technologies, and Engineering,

Leeds Beckett University,
Leeds, UK

C.Pattinson@leedsbeckett.ac.uk

Abstract—This research aims to compare the energy
efficiency in between two generations Intel processors; the
4th Gen Intel ® Core ™ Processor and 3rd Gen Intel ®
Core ™ Processor. It also surveys the technologies that
provide better energy performance for both of the
processors. The methodology used for this research is a
physical experiment conducted in an Intel production plant.
The results obtained from the experiment show that the 4th

Gen Intel ® Core ™ Processor is more energy efficient than
the 3rd Gen Intel ® Core ™ Processor.

Keywords—energy consumption, energy efficiency, Intel
Processor, 3rd Gen Core Processor, 4th Gen Core Processor

I. INTRODUCTION

Statistics has shown an increasing trend of ICT use and its
growth rate could surpass that of the aviation industry.
Consequently, the ICT-related energy use is comparable to
that of the aviation industry (UK Parliamentary Office of
Science and Technology (2008)[1]. ICT’s substantial energy
consumption has a significant impact on GHG emissions
and climate change where 2% of global carbon emissions
come from manufacturing and using of Information and
Communication Technology (ICT)[2]. In Europe, ICT
equipment and services account for 2.5%-4% for EU’s
carbon emissions[3]. According to the Smart2020[4] report
by the Global e-Sustainability Initiative, GeSI (2008), the
ICT sector’s emissions are expected to increase, from 0.53
billion tonnes (Gt) carbon dioxide equivalent (CO2e) in
2002 to 1.43 GtCO2e in 2020 (in Business As Usual, BAU,
scenario). Figure 1 shows the estimated distribution of
global CO2emission for ICTs. The main contributors are
PCs and monitors (40%), telecommunications (31%),
followed by data centres (23%).

Figure 1: Estimated Distribution of GlobalCO2 emission for ICTs (extracted from
ITU,2009, p.4)[5]

ICTs play a significant role to limit and reduce GHG
emissions. According to the SMART2020 Report[6] there
is scope for reducing the carbon footprint of the ICT sector
by approximately 36% by 2020 (equivalent 770 Mt CO2eq)
using existing technologies. There are two ways to mitigate
ICT impact on climate change[7]. The first is a direct
mitigation which reduces the ICT sector’s own carbon
emissions and energy requirements while the second
concerns the exploitation of ICT for offering solutions to
reduce the carbon footprint of other sectors and to facilitate
efficient and low carbon development. Based on the
SMART2020 and SMARTer2020[8] Reports, employing
ICT-driven efficiency across the economy will deliver
emission savings. The latter demonstrates how the increased
use of ICT could reduce the projected 2020 global
greenhouse gas (GHG) emissions by 16.5% (equivalent to
9.1 GtCO2e) and this is more than seven times the ICT
sector’s emissions in the same period.

Int'l Conf. Embedded Systems and Applications | ESA'15 | 85

Murugesan’s (2013) [9] definition of Green IT is
environment sustainability-focused. It refers to
environmentally friendly computer, information systems,
applications, and practices which aim to improve energy
efficiency, lower GHG emissions, use of less toxic
materials, encouraging reuse and recycling. Greening of IT

aims to mitigate the environmental impact of ICT itself.
This encompasses energy efficient and environmental
sustainable designs, operations, use and disposal ICT
equipment, infrastructure and systems.
Since 2012, Intel has set their 2020 environmental goals[10]
which aim to reduce greenhouse gas emission and increase
energy efficiency of their products and operations.
Consequently, Intel has developed many energy-efficiency
products through their product innovation. Additionally,
they prioritise the minimisation of their products’
environmental footprint throughout their entire life cycle.
Intel (2015) is an innovation leader and has come up with
innovative technology and products in every two years
following Moore’s Law[11] (see Figure 2) which states that
computing would dramatically increase in power, and
decrease in relative cost, at an exponential pace.

In this research, we shall examine and compare the energy
efficiency in between 3rd and 4th Gen Intel ® Core ™
Processor. The energy consumption during standby and
active mode of both processors are measured and analysed.
The Ivy Bridge (Figure 3) 3rd generation processor is an
enhanced version of Sandy Bridge[12] 2nd generation
processor while Haswell (Figure 6) is the 4th generation
processor.

Rationale

Even though Intel continually innovate their product
architecture design, they ensure the innovation does not
compromise with the performance and energy efficiency of
new microprocessors. Hence, this study investigates the
reduction in processors’ energy consumption due to

innovative architecture design.

Based on Intel’s microprocessors history, their first
microprocessor was introduced to market in 1971 (Intel
4004) and the latest recently launched microprocessor by
Intel is the 5th generation processor, with the codename,
skylake. Intel has continuously improved on the processors’
clock speed and sizes where it ranges from 10 micron for
Intel 4004 up to 22-nanometer for Intel 4th generation
processor and finally, 14-nanometer for recently launched
5th generation processor [13].

Since energy efficiency is one of the greatest issues in ICT
and computer application in dealing with environmental
issues. Lower energy consumption could help to reduce
carbon footprint. Producing environmental friendly products
could give Intel a competitive advantage.

Aim and objectives

The aim of this research is to conduct an investigation on
the energy efficiency of the 4th Gen Intel ® Core ™ and 3rd

Gen Intel ® Core ™ Processors. The following is a set of
objectives to help achieve this aim.

i. To critically review literature on Intel ® Core ™
Processors, their performances and energy
efficiency;

ii. To conduct experiments to investigate the energy
consumption for both 3rd and 4th Intel ® Core ™

86 Int'l Conf. Embedded Systems and Applications | ESA'15 |

Processors in the following states: active and on
standby;

iii. To draw a comparison between 3rd and 4th Intel ®
Core ™ Processors using the following
parameters: performance (based on document
review); and energy consumption (states: active
and on standby).

II. LITERATURE REVIEW

A. 3rd Gen Intel ® Core ™ Processor (Ivy Bridge)

Figure 3: 3rd Generation Intel ® Core ™ Processor (Ivy Bridge)

According to Intel, the 3rd generation Intel® Core™
processor, is featured with smart technologies that allow
users to exploit it to meet their needs. It also incorporates
incredible visual built-in for visual enhancement where
users do not need additional graphics card or software to
experience a brilliant visual. Intel® HyperThreading
Technology1 further improves the performance and multi-
tasking capability to spped up workflow. In addition, the 3rd
generation Intel® Core™ processor improves energy
consumption and efficiency[14].

Officially launched in April 2012, Ivy Bridge is the
codename for the 3rd Generation Intel ® Core ™
Processor and is the successor to the Sandy Bridge the 2nd

Generation Intel ® Core ™ Processor. As a record, Ivy
bridge or 3rd Generation Intel ® Core ™ Processor carry 1.4
billion transistors on the chip compared to Sandy Bridge the
2nd Generation Intel ® Core ™ Processor carry 1.16 billion.
Ivy Bridge has a microarchitecture (see Figure 5) on a
processing die which shrinks from 32nm to 22nm. Ivy
Bridge is the first processor in the Intel family with a 22 nm
logic technology microprocessor that uses first high-volume
chip called Tri-Gate technology that provides significant
processing performance [15]. Tri-Gate technology allows
power consumption reduction and die size. Tri-Gate
technology is the world’s first 3-D transistor. According to
National Instrument [16], it is a technology that could boost
the performance by up to 37 percent compared to 32 nm
planar transistors, the traditional two-dimensional.
Subsequently, power reduction and energy usage by the
chips on board are made possible due to lower voltage and
lower leakage. However, according to Intel, 3-D planar
could perform at the same same level as 2-D planar
transistors with a reduction of 50 per cent power
consumption. Intel’s 3-D Tri-Gate transistor (see Figure 4)
employs three gates where, a single gate crosses on top of
the other two vertical gates which then form all three sides.

This formation allows electrons to travel three times on the
surface area that could give benefits to less power
consumption and greater current flow due to leakage
reduction effect from current control. This new transistor
designed by Intel brings about ultra-low power benefits for

handheld devices.

B. 4th Gen Intel ® Core ™ Processor (Haswell)
Haswell is the Codename for 4th Generation Intel® Core™
processor, a replacement to the Ivy Bridge. It is released in
2013 and Haswell is the extension of Intel advanced version
of 22nm Tri-gate process technology [17-18]. Haswell is a
combination of few building blocks; CPU, memory platform
controller hubs (PCHs) and graphics and media processing
engines that could create high-performance application. In
addition, several integrated technologies: FIVR – 5 platform
consolidated to 1; graphic performance improvement by on-
die eDRAM cache; optimized IO interfaces; lower-power
states; 256b SIMD integer and an Intel AVX2 instruction
set. Haswell is optimized by the 22nm process to reduce
leakage by 75% at Vmin and also reduce power
consumption[17]. Low power to enable smaller form factors
and platform integration are the main objectives for
Haswell.

Int'l Conf. Embedded Systems and Applications | ESA'15 | 87

The key comparisons between the 3rd and 4th gen processors
are[19]: the latter is the first System on Chip (SoC) which
integrates all major building blocks for a system onto a
single chip; enhanced battery life for the latter (9.1 hours
compared to 6 hours for HD video; 10-13 days on standby
power compared to 4.5 days); graphiocs performance on the
4th gen processor doubles its predecessor’s; enhancement of
power-performance efficiency. There are few techniques
that have been employed by Intel to improve power-
performance efficiency[20]. Firstly, low-level
implementation which involves the optimization of
manufacturing, process technology and circuits, optimize
microarchitecture and algorithms and finally optimization of

design and implementation. Secondly, high-level
architecture improvement in Haswell encompasses the use
of independent voltage-frequency domains (e.g. cores,
caches, graphics, system agent, etc…) which run on
dedicated, and individually controlled voltage-frequency
points. In order to maximize performance, a power control
unit (PCU) dynamically allocates power budget among
these domains. Lastly for the platform power management
operation, Intel has improved battery life by introducing
new active idle-power state, S0ix that could deliver 20 times
improvements in idle-power compared to 3rd gen processors
supported by fully integrated voltage regulator (FIVR) [18,
20].

III. METHODOLOGY

“Experimentation and data collection are the tools of
science for validating theories” [21]. This method is chosen
as according to Montgomery [22] in the book title “Design

and Analysis of Experiment” – ‘experimentation is a vital
part of the scientific (or engineering) method’ (p.2) and this

is the best method to evaluate a system performance.

A well-design experiment is crucial as the method selected
could affect the end result and conclusion drawn. Therefore,
these experiments were carried out at Intel Kulim, Malaysia
production plant (KM1 and KM2) as they could provide
appropriate tools and equipment for reliability and high
level of control. The experiment was conducted from 26th

January 2015 to 4th February 2015 by a certified and highly
qualified Intel’s operator due to safety purposes and high
precision requirements of the experiments. The entire
experiment was closely observed by the student.
Experiments were conducted to examine and investigate the
energy consumption for both 3rd and 4th Gen Intel ® Core ™
Processor during active and standby mode. However, in
order to obtain the energy consumption for both processors,
a series of tests had to be executed to verify and ensure all
the components perform well.

88 Int'l Conf. Embedded Systems and Applications | ESA'15 |

The first test undertaken was ‘Functional Test Level 1 and
2’. These procedures were carried out to verify and ensure
the motherboard and each of the components were
functioning in accordance to product specification. These
tests could be conducted using few methods which are; Auto
Test Process with Activated Test Platform (APSE) (Host
Control System (HSC) + Scan Terminal (ScanTer)) or
Manual Test with APSE or Manual Test Process with
PQIUHC. The entire process is depicted in Figure 7. The
method conducted during test was Auto test Process with
APSE (HSC) + ScanTer and the operating procedures are as
follows:

i. Motherboard was placed properly on the Base Plate
/ Carrier Plate of the (Standardized Test Hook
Interface (STHI);

ii. Motherboard was clamped with STHI Back Plane /
Control System. CPU, Memory cards and other
testing peripherals were also placed on the boards
according to operating manual provided;

iii. All the cards installed and toggle clamper was in
clamping down position. At this stage, it must be
ensured that the card was properly fully clamped
down which enabled proper contact;

iv. Next motherboard to be tested was removed from
the pick location of the incoming trolley;

v. Unit Under test (UUT) was examined for defects
according to the Quality manual requirement;

vi. UUT was then placed on the test station and tested
following the Motherboard testing procedure;

vii. Control system powered on and waited until the
control system was fully initialized (i.e. until LED
became green);

viii. Location Barcode on the ASTF (At Speed Test
Fixture) tester and motherboard serial number base

were scanned into HSC system which then
triggered the APSE/HSC software to execute the
test automatically;

ix. Screen for the UUT observed and on-screen
instruction was followed;

x. Test was completed by displaying a green screen
with prominent "PASS" message on the station
monitor. Power OFF the UUT and control system
MBPS3 switches. At this stage, it was ensured that
the control system was properly power OFF to
avoid APSE BLT content going missing;

xi. Waited until 5V stand by totally off (normally
until the green LED light disappeared);

xii. The motherboard moved from the station to the
passed conveyor or indicated trolley and ready for
the next test.

The following test to measure processors’ power
consumption could not be done right away after the

functional test had completed. The temperature of the board
needed to be released (until room temperature) as the heat
dissipated during previous test could affect the result
obtained.
Processor power consumption test for 3rd and 4th Gen was
executed at Intel KM1 production plant. 20 units of
processor from each generation were tested separately in 2
different modes (standby and active) in order to gain more
precise and accurate result.

The processor power consumption test operating procedures
are as follows:

i. 20 units of processor were placed properly on the
Base Plate / Carrier Plate of the (Standardized Test
Hook Interface (STHI);

ii. UUT then placed on the test station and tested
following the processor power testing procedure;

Int'l Conf. Embedded Systems and Applications | ESA'15 | 89

iii. Control system powered on and waited until the
control system fully initialized (normally until LED
became green);

iv. Location Barcode on the ASTF (At Speed Test
Fixture) tester and processors Serial Number base
scanned into HSC system followed by an automatic
test by the APSE/HSC software;

v. Screen for the UUT observed and on-screen
instruction followed;

vi. Test completed by displaying a green screen with
prominent “PASS” message on the station monitor.
Power OFF the UUT and control system MBPS3
switches. At this stage, it was ensured that the
control system was properly power OFF to avoid
APSE BLT content going missing;

vii. Waited until 5V stand by totally off until the green
LED light disappeared;

viii. The processors moved from the station to the
passed indicated trolley and ready for next test;

ix. Data from the test was then generated and
transferred to the station monitor.

IV. RESULTS AND DISCUSSION

A. Standby Mode
Table 1 below shows the energy reduction from the 3rd

generation to the 4th generation range between 1.2KJ and
2.064 KJ in the standby mode.

Figure 8 shows the energy consumption for both 3rd and 4th

Gen Intel ® Core ™ Processor during standby mode. It
shows that the 3rd Gen Intel ® Core ™ Processor consumes
more energy compared to 4th Gen Intel ® Core ™ Processor
during standby mode.

B. Active Mode
Table 2 shows the energy reduction for the 4th generation
processor and it ranges from 3.168KJ to 4.944 KJ in the
active mode.

Figure 9 shows the energy consumption for both 3rd and 4th

Gen Intel ® Core ™ Processor during active mode. It shows
that the 3rd Gen Intel ® Core ™ Processor consumes more
energy compared to 4th Gen Intel ® Core ™ Processor
during active mode.

Figure 10 shows the energy efficiency between 3rd and 4th

Gen Intel ® Core ™ Processor during standby mode during

processor standby mode. It shows that the efficiencies range
from 40.63% to 57.33% during standby mode.

Figure 11 shows the energy efficiency between 3rd and 4th

Gen Intel ® Core ™ Processor during active mode. It shows
that the efficiencies range from 61.54% to 77.7% during
active mode.

C. T-Test
T-Test is the experimental design to compare mean or
average values of two groups (are 4th Gen and 3rd Gen
processor). T-Test version employed in this study is an
independent-mean t-test because the experimental
conditions for the two groups are independent of each other.
Table 3 below shows the value of a two-tailed t-test with
repeated measures (at confidence level,) for the
energy consumption of the 3rd and 4th Gen Intel ® Core ™
Processors (N=20) during the standby mode. The result of
the analysis shows that the difference between the energy
consumption of the two types of processors during standby
mode is significantly different.

90 Int'l Conf. Embedded Systems and Applications | ESA'15 |

Table 4 below shows the value of a two-tailed t-test with
repeated measures (at confidence level,) for the
energy consumption of the 3rd and 4th Gen Intel ® Core ™
Processors (N=20) during the active mode. The result of the
analysis shows that the difference between the energy
consumption of the two types of processors during active
mode is significantly different.

V. CONCLUSIONS

The study aims to make comparisons of energy efficiency
for the 3rd Gen Intel ® Core ™ Processor and 4th Gen Intel
® Core ™ Processor. It reveals that the 4th Gen Intel ® Core
™ Processor consumes less energy than the 3rd Gen Intel ®
Core ™ Processor. The feature that distinguishes both
processors is the Fully Integrated Voltage Regulator (FIVR)
which helps the 4th Gen Intel ® Core ™ Processor reduce
energy consumption by the CPU and subsequently lower its
temperature. Other advanced technology in the 4th Gen Intel
® Core ™ Processor helps to accelerate the performance
which results in the reduction of energy consumption as it
helps users to speed up their application and reduce
execution time. Fully Integrated Voltage Regulator (FIVR),
the innovative technology for the 4th Gen Intel ® Core ™

Processor obviously helps 4th Gen Intel ® Core ™ Processor
to save energy.

The fact that the 4th Gen Intel ® Core ™ Processor is more
energy efficient than the 3rd Gen Intel ® Core ™ Processor
shows that product architecture design innovations by
Intel aims to boost up performance as well as decrease
energy consumption. However, Ivy Bridge, the 3rd Gen
Intel ® Core ™ Processor may not completely phase out
from the market in the near future as the 4th Gen Intel ®
Core ™ Processor seems to be more suited for high end
systems that require very powerful technologies.

Acknowledgment
A special thanks to Mr. Nazarudin Bujang and team from
Intel for the knowledge sharing, guidance and assistance
during Diana’s data collection at their production plant in
Intel Kulim, Perak, Malaysia.

References
[1]. http://www.parliament.uk/documents/post/postpn319.pdf
[2]. http://globalactionplan.org.uk/sites/gap/files/Green%20ICT%20Hand

book.pdf and http://www.gartner.com/newsroom/id/503867
[3]. http://ec.europa.eu/digital-agenda/en/pillar-vii-ict-enabled-benefits-

eu-society/action-69-assess-whether-ict-sector-has-complied-common
[4]. http://gesi.org/files/Reports/Smart%202020%20report%20in%20Engl

ish.pdf
[5]. http://www.itu.int/dms_pub/itu-

t/oth/06/0F/T060F00600C0004PDFE.pdf
[6]. http://www.smart2020.org/_assets/files/02_Smart2020Report.pdf
[7]. http://www.itu.int/dms_pub/itu-

t/oth/06/0F/T060F00600C0004PDFE.pdf
[8]. http://gesi.org/SMARTer2020
[9]. Murugesan, S. (2013). Harnessing Green IT: Principles and Practices

to be published by John Wiley.
[10]. http://newsroom.intel.com/community/intel_newsroom/blog/2012/05/

17/intel-sets-2020-environmental-goals
[11]. http://www.intel.com/content/www/us/en/silicon-innovations/moores-

law-technology.html
[12]. http://www.pcmag.com/article2/0,2817,2405317,00.asp
[13]. http://www.intel.com/content/www/us/en/processors/core/5th-gen-

core-processor-family.html
[14]. http://www.intel.com/content/dam/www/public/us/en/documents/prod

uct-briefs/3rd-gen-core-family-mobile-brief.pdf
[15]. Bohr, M. & Mistry, K. (2011). Intel’s Revolutionary 22 nm Transistor

Technology. Tech. rep., Intel, pp.1–28.
[16]. National Instrument (2013). 3rd Generation Intel ® Core TM

Processor Family Delivers Cutting-Edge Performance to the PXI
Platform. , pp.2–7.

[17]. Kurd, N. et al. (2014). 5.9 Haswell: A family of IA 22nm processors.
Digest of Technical Papers - IEEE International Solid-State Circuits
Conference, 57, pp.112–113.

[18]. Aswell, H. et al.(2014). The Fourth Generation Intel Core Processor. ,
pp.6–20.

[19]. https://software.intel.com/sites/default/files/introduction-to-intel-4th-
generation-core-processor.pdf

[20]. http://pages.cs.wisc.edu/~rajwar/papers/ieee_micro_haswell.pdf
[21]. Zelkowitz, M. V. & Wallace, D. (1997). Experimental validation in

software engineering. Information and Software Technology, 39(11),
pp.735–743.

[22]. Montgomery, D. (2001). Design and analysis of experiments. New
York: John Wiley.

T = 27.768

T = 19.873

Int'l Conf. Embedded Systems and Applications | ESA'15 | 91

Hybridized Energy Management Scheme
In Smart Homes

Fazal-e-Wahab, Azzam ul Asar, Wasim Habib, Sundas Anwar

Department of Electrical Engineering, CECOS University, Peshawar, Khyber Pukhtunkhwa, Pakistan

Abstract - A small scale hybridized Power system is very
important to overcome the energy crisis of the country without
any environmental problems. The Solar PV-Grid hybrid
system is the most suitable option to overcome country’s
energy crisis because of the easy implementation and
accessibility on local level of solar energy. In this system the
use of utility company supply is minimized by giving priority
to PV source instead of AC grid supply. An algorithm has
been developed to utilize the green energy more efficiently and
as first option in any possible case. The Proteus simulator has
been used to simulate the proposed system. The programming
of central controller is done in C language using Keil Micro
Vision.

To implement the whole system in said simulator, one central
controller has been used with other auxiliary components in
control circuitry. A monitoring system has also been included
to display the status of the system. The proposed smart hybrid
power system (SHPS) has many advantages over conventional
hybrid systems. The energy production of solar PV array
according to the solar irradiance of the site has been analyzed
using MATLAB software. Status of loads, sources during
different timings of a day and Cost of the system has also been
analyzed. The impact of SHPS on the peak demand and
reduction of load on the Utility Company has been analyzed
for the proposed site.

Keywords: Smart Home, PV Grid Hybrid System

1 Introduction
 With the increasing demands and needs of life, different
energy sources have been discovered, and with the passage of
time many new techniques and method have been developed
to utilize these energy sources easily and effectively [1-2].
The main emphasis of this research is to obtain a solution for
power management of grid hybrid power system. An
innovative predictive method is incorporated into the power
management strategy to improve the hybrid power system
operation. The power management strategy aims towards
utilizing solar power efficiently for meeting load requirements
in day time, designing a smart home keeping in view the life
style of consumer at various levels, and finding the impact of
electricity saving through smart energy management scheme
at utility and consumer levels.

2 Background
 Hybrid power systems is rapidly growing area of
research, not only domestic, commercial and industrial power
systems are studying to be switched to these systems but this
technology is also under research to be implemented
effectively in automobiles [3]. Renewable energy resources
are solar power, wind power, tidal power, geothermal power,
wave power and biomass. They are persistent, naturally
renewing themselves and environment friendly that is why are
called green energy resources. Conventional energy resources
slowly decrease with time, like petrol, coal, gas etc [4]. A lot
of research and development has been carried out in the area
of renewable energy resources and hybrid systems. Off-grid
alone hybrid systems have been designed and proposed for the
places where either sun or wind are available or both. But the
stand alone hybrid system is not reliable, therefore on-grid
hybrid system is proposed. In an on grid hybrid system, the
system is connected to the AC grid, so that renewable energy
helps the national grid in energy provision to the user [5].
Research and development has been made on the control and
management of on grid/off grid hybrid power system [6]. But
limited work has been done to make this technology handy to
the domestic user. Still further study and research are needed
to design, test and analyze the hybrid systems for domestic
use.

3 Design of the Proposed System

A hybrid solar PV system is designed to function along
with the AC main grid. This hybrid power system operates in
such a manner that for specific pre-determined load, the
maximum available solar power is utilized and the remaining
power is drawn from AC grid. The power generated by solar
panels is preferred over grid power so that the required total
load equals the sum of the two powers and thus the maximum
solar power is utilized. This system is suitable for operating
during daytime and provides the best possible economical use
of solar PV power with a lot of environmental benefits [7].

A general diagram of the designed Smart Hybrid Power

System is shown in Figure 1. The conversion and regulation
unit is shown in central block which further consists of
different components that includes the main circuitry and the
controller. The required source is connected to the load
through auxiliary and central control unit according to the

92 Int'l Conf. Embedded Systems and Applications | ESA'15 |

algorithm. The load has been distributed for ease of required
implementation but in the figure, it is shown as one unit.

Figure 1: Domestic Hybrid Power System

3.1 Description of Different Parts
 The block diagram of SHPS is shown in Figure 2. The
PV cell provides DC output which is first passed through DC-
DC Buck Converter which gives a constant output before
feeding it to the inverter. AC supply from the main grid
station is 220V (RMS) and 50Hz has been introduced in the
system for the continuous supply to the load. Microcontroller
is the main brain of this project. It will receive data,
manipulate and then will make a decision accordingly. Unlike
other systems, the main beauty of Smart Hybrid Power
System is that it uses only one microcontroller with several
conversions, regulation and control devices [4]. There are
many inputs and outputs in it. The controller gives different
outputs through C language coding fed in it on the basis of
various inputs.

Figure 2: Block Diagram of Proposed Smart Hybrid Power
System

In block diagram of system it can be seen that two power lines
“LG” and “LS” are coming from conventional and solar

sources respectively. The block diagram of the central
controller with corresponding inputs and outputs is shown in
Figure 3. The inputs which are given to the controller through
conversion devices such as ADC, Comparator etc. are known
as indirect inputs.

Figure 3: Inputs and outputs of a central controller

 Since all majority of the modern appliances run on AC
power, thus inverter is used to convert the DC power from
photovoltaic source into AC power. The power lines “LS” are
used to feed this AC power to the load through control
switches. The inverter output is represented by V[PV] in
whole work.

 Different equipment and devices used with
microcontroller or other parts of SHPS for conversion and
control are called Auxiliary components. As microcontroller
is a digital device it can only understand digital signals. In
order to operate practical analog devices for load selection
and management, certain auxiliary components such as ADC,
control switches etc. are required. The overall load has been
divided in six portions i.e. L1(50Watt), L2(100Watt),
L3(150Watt), L4(150watt), L5(200Watt) and L6(200Watt).
For efficient utilization of solar power, switching of selective
loads is based on the availability of solar power.

3.2 Proteus Model of the SHPS
The Proteus ISIS-8 Professional is used to simulate the
designed SHPS. The real time simulation of system is shown
in Figure 4, Appendix I. The library of simulator consists of
thousands of devices. To meet the design requirements of the
system, several components have been used which are
available and can be implemented at a practical level.

4 Interfacing Major Components
In this section major components of the system have

been explained used for simulation purpose. The LCD display
(659M4) is used to show the status of the system. As
microcontroller is a digital device and can only understand
digital signals. In order to perform the SHPS operations by

Int'l Conf. Embedded Systems and Applications | ESA'15 | 93

microcontroller, the continuous type input from the sensor is
converted to digital form using an ADC0808.

Lux readings are directly proportional to the energy that
is absorbed per square meter per second. For this purpose,
TSL251D optical sensor is used that converts light into
voltage. The microcontroller compares the instantaneous
values of lux with its predefined values and switches the load
between PV source and Grid according to available solar
power.

Current sensor is a device which senses the AC or DC
current in a conducting wire, and produces a proportional
voltage to it. A current sensor ACS-712 is used which consists
of linear Hall sensor circuit with a copper conduction path
located near the surface of the die. The ACS-712 continuously
senses the total load current and generates proportional
voltage which is fed to controller via ADC. When a load is
switched from grid to PV by controller, the current sensor will
detect the status of the load by measuring the total load
current. If the load is manually switched off, then there will be
no change in total current measured by current sensor. Hence,
controller will switch another load from grid to PV in order to
fully utilize the available solar power.

4.1 Control Switches Interfacing
 Six relays RL1, RL2, RL3, RL4, RL5 and RL6 have
been used for the purpose of load management which has two
possible connections; one has been used to connect the load to
V[PV] and the other to V[Grid]. A microcontroller is not able
to supply current required for the working of a relay.
ULN2003 IC is used to operate the load relays. Seven relays
can be connected using ULN2003.

4.2 Sources and Loads Interfacing
 Six loads L-1, L-2, L-3, L-4, L-5 and L-6, are connected
with sources V[PV] and V[Grid] by means of relays which
are driven through relay driver by the microcontroller. The
connections are made according to the block diagram and
algorithm explained in the following sections. According to
the given conditions the first priority is given to the V[PV]
source.

5 Flow Chart and Algorithm
 The microcontroller has been programmed according to
the effective, well defined and efficient algorithm to get
required goals. Priority has been given to the PV source over
V[Grid] The whole operation principle of the microcontroller
that is essential for the operation of the system is presented by
flow chart in Figure 5.

Figure 5: System representation via flow chart

 V [Grid] is off at the start. The status of Vs (light sensor
output) is continuously checked by central controller and
compares it with the reference voltage V1 which has a fixed
value of 1.8V. Similarly other reference voltages are V2=
1.69V, V3= 1.59V, V4=1.48V, V5=1.37V, V6=1.27V,
V7=1.16V, V8=1.06V, V9=0.95V, V10=0.85V, V11=0.74V,
V12=0.63V, V13=0.53V, V14=0.42V, V15=0.32V,
V16=0.21V, V17=0.11V and V18=0V. When Vs is greater or
equal to V1 (1.8V), this indicates that the power generated by
PV is enough to operate all the loads L1, L2, L3, L4, L5 and
L6. When Vs is greater than 1.69V and less than 1.8V, means
that now PV is not able to run all the loads. Hence, the Loads
L2, L3, L4, L5, and L6 are powered by V[PV] and L1 is
switched to V[Grid].

 When Vs becomes less than 0.11V, all the loads are
powered by V[Grid] till the moment PV power become
enough to supply power to at least one load. Vref represents
the voltages from V2 to V17 i.e. V17≤ Vref<V1. The
monitoring system is included in the system for constant
display of the sources status.

6 Solar Potentials: A Case Study
6.1 Site Information
 Hayatabad is a first planned and modern suburb of
Peshawar, the capital of Khyber Pukhtunkhwa, Pakistan. The
coordinates of the given site are 34°01′North and 71°35′East.
A significant amount of sunshine is received in Peshawar
throughout the year which provides a great opportunity to

94 Int'l Conf. Embedded Systems and Applications | ESA'15 |

overcome the shortage of power by using the SHPS for better
utilization of solar energy.

Figure 6: Monthly day length, no-sun and net sunshine hours
of Peshawar

Figure 6 shows the net sunshine hours of the whole year, in
which December and January has lowest averaged sunshine
hours with 8.3 and 8.4hr/day due to short winter days.
Average of annual net sunshine hours are 10.5 hour per day.
According to NASA’s data, the total cloudy days with no
sunshine hours (black hours) are 1.6hr/day and 1.7hr/day
consecutively.

6.2 Solar Irradiance of Peshawar
 The average monthly irradiance of Peshawar is shown in
Table1.

Table1: Monthly average irradiance of Peshawar

 Jan Feb Mar Apr May Jun

Solar
Irradiance
(kWh/m2/

day)

3.09 3.79 4.78 5.99 7.07 7.6
8

Jul Aug Sep Oct Nov Dec

6.96 6.19 5.69 4.86 3.72 2.8
8

6.3 Hourly Solar Irradiance of the Site
 The average hourly solar irradiance of an average day of
Peshawar for different months is given in Table2. The

information of the solar radiation intensity at a given location
is of essential for the development of solar energy based
projects and in the long term evaluation of the solar energy
conversion system performances. This information can be
used in the design, cost analysis and efficiency calculation of
project.

7 Simulation and Results
 In this Section, the Power Calculation, economic
analysis and impact of the proposed system on peak demands
are covered. The solar panel model is designed using
Simulink for the real time simulations and calculation of
output power at different irradiance for a day.

7.1 Modeling of Solar Panel in Matlab
Simulink

 The block diagram of the model of solar panel for
Simulink’s GUI environment is shown in Figure 7 (Appendix
I) along with voltage and current sensors. The last stage of the
model is the block that is composed of Solar panel model for
GUI. This block consists of sub-models and by connecting
these sub-models a final model is built. The solar panel
comprises of 72 solar cells which are connected in series to
get a required output voltage. The current sensor is shorted to
measure the solar panel’s short circuit current Isc. To measure
open circuit voltage (Voc) at peak irradiance the voltage sensor
is shorted to ground. Irradiance is taken as input to the panel
in order to analyze the effects of the solar radiation at
different levels. Different PV and VI graphs were taken by
changing the value of solar irradiance.

7.2 Hourly Power Calculation Using Matlab
Model

 The panel output at different irradiance values for
different months is given in Table 1. The average hourly
irradiance values of each month of the site given in Table 2
(Appendix I) are used to calculate the output power of Solar
Panel. The hourly irradiance value for an average day of June
has been considered. The calculation of percent shares of Grid
and Panel is shown in Table 3, Appendix I.

8 Economical Analysis of Smart Power
The economic analysis of photovoltaic solar system is

investigated in this section. The ‘Levelized cost of electricity’
(LCOE) and energy calculation of panel are two major parts
that are discussed.

8.1 Energy Calculation of solar Panel
 As the net sunshine hours vary during a year, the energy
produced by panel also varies. The sunshine hours in
Peshawar increase from January to July then decreases in
august till December. The month of June has highest sunshine

Int'l Conf. Embedded Systems and Applications | ESA'15 | 95

hours of 12.9hr/day due to long summer days and has highest
energy production.

The total energy produced in KWh/year by panel is
2435.77KWh. Figure 8 shows the graph of energy in
KWh/month produced by solar panel.

Figure 8: Overall energy production of the panel.

8.2 Levelized Cost of Electricity
For the economic assessment of Solar system, Levelized Cost
of Energy (LCOE) is the most common tool for finding the
cost of per unit generation from PV panel. Levelized Cost Of
Energy (LCOE) depends on the performance, costs of solar
power system, operation and maintenance over the life time of
system and cost of other equipment’s installation (i.e.
Inverter ,converter, racking ,wiring & labour) [8]. Equation
(3) represents the specific formula while equation (2)
represents the generalize formula of Levelized Cost of
Electricity (LCOE)

……..(2)

 …….…………(3)

Where LCOE Solar is Levelized Cost of Electricity for Solar
System (Rs/KWh), Cpanel is Cost of solar panel, CO&M is cost
of operation and maintenance, CCU is the Cost of Control
unit, Cinst is Cost of installation and Et is Annual energy
produced by panel

The price of polycrystalline solar panel varies from 110 to 120
PKR/watt.

Cpanel = 1050 * 120 = 126,000 PKR.

For less than 1.5 kilo watt the operation and maintenance cost
of solar power system up to 1kW is 0.27$/watt for total life
cycle of photovoltaic system [9]. In Pakistan it is almost Rs.
27/watt for total life cycle of solar system. So,

CO&M = 1050 * 27 = 28,350 PKR.

Cost of installation includes the wiring, rack (frame for solar
module) cost, labour cost and other auxiliary appliances such
as converter etc, required in the PV system.

Cisnt = 5000 PKR

The cost of control unit consists of Microcontroller, Load
Relays, sensors, DC-DC converter, inverter etc

CCU = 40,230 PKR

8.3 Total Energy Produced by Panel throughout its
Life

The total units of energy produced by solar panel per
annum are 2319KWh. According to the TATA BP Solar data
sheet the valuable life of panel is 25years but after 20 years
the output power of panel decreases

Et = 2319 * 20 + 0.8(2319 * 5)
= 48699 + 9276 = 57,975 KWh/25yrs

Now eq. (3) becomes

OR

Where 3.56 PKR/KWh is the cost of solar energy unit
produced by the panel during day time.

8.4 Cost of Energy using Utility Tariff
 The PV system produce 2,319 kWh per year, and the
total lifetime energy production of the panel is 57 975 units.
Using the utility tariff COEut , cost of energy can be obtain by
multiplying the average rate with the total units produced by
PV system.

COEut= 57,975* 13 = 753,675 PKR

The total average cost of 1050 watt Solar system is 167,883
PKR, while the total saving during the module life time is
753,675 PKR.

8.5 Payback Period
The Payback time provides the total recovery time

required to overcome the lifetime cost of the panel. The
payback period in years can be obtained by dividing the Total
life cycle cost of PV system by saving per year.

Payback period in years =

Saving per year= Average energy produced by panel per
annum * utility tariff:

Saving per year= 2319 * 13= 30,147 PKR/year
Payback period in years= /30,147 = 6.86 years

96 Int'l Conf. Embedded Systems and Applications | ESA'15 |

Duration of 6.86 years is required for the solar PV system to
recover the total investment made on it.
8.6 Impact of SHPS on Power Utility

Smart Hybrid Power System (SHPS) is the real solution
to overcome energy crisis. It can shave the peak loads in day
times and can help reduce load on WAPDA and as a result
load shedding will be reduced. So the problem of electricity
breakdown can be reduced or removed by using solar energy
in such a way that it provides continuous services of
electricity. The annual energy saving by installing the
proposed system in the area of hayatabad is given in Figure 9.

Figure 9: Energy saved by installing the proposed system

The total energy produced in Kilo-watt-hours per year in

Hayatabad is 5.33 *1010 kWh. By the implementation of
smart hybrid power system two benefits can be achieved. First,
by installing such system the consumer will pay 3.56
PKR/KWh which is much lower than the utility company’s
tariff. Secondly, at day time the burden on utility companies
will be greatly decreased and during the day time the utility
power can be saved.

9 Conclusions
To make the proposed SHPS cost effective, efficient and to
reduce electricity breakdown, different tasks have been are
performed. The whole system is simulated in Proteus
simulator ISIS 7 using a single central controller instead of
several controllers, which makes it more efficient and cost
effective. As the main idea of this project was to prioritize the
solar energy source, hence the highest priority has been given
to PV source. The system has been connected with the utility
company supply to make the system reliable for continuous
power supply. The utility supply has been kept on second
priority to minimize the cost of energy per unit and reduce
load on utility company.
There are plenty of reasons that equate to the advantages of
using Smart Hybrid Power System and are a real solution to

overcome energy crisis by reducing load on WAPDA. It has
been analyzed that 5.33 *1010 kWh energy per year can be
saved by installing the designed SHPS on the proposed site.
The electricity crisis can be completely remedied by
introducing this system in the whole country.

10 References
[1] Wicaksono, H; Rogalski, S; Kusnady, E. (2010).
Knowledge-based intelligent energy management using
building automation system. IPEC, 2010 Conference
Proceedings, Singapore, 2729 ,1140–1145.

[2] Yang, J.M; Wu, J; Dong, P ; Wang, B. (2004). The
study of the energy management system based-on fuzzy
control for distributed hybrid wind-solar power system. First
International Conference on Power Electronics Systems and
Applications, Hong Kong, 113-117

[3] Zhang, X., Chau, K., & Chan, C. (2009). Design and
implementation of a thermoelectric-photovoltaic hybrid
energy source for hybrid electric vehicles. World Electric
Vehicle Journal, 3, 1–11. European Association for
Battery,Hybrid and Fuel Cell Electric Vehicles (AVERE).

[4] Fesli, U., & Bayir, R.2009). Design and implementation
of a domestic solar-wind hybrid energy system. Electrical and
Electronics, 29-33.

[5] Ambial, M. N., Islam, K., Shoeb, A., Maruf, N. I., &
Mohsin, A. S. M. 2010. An Analysis & Design on Micro

[6] Generation of A Domestic Solar-Wind Hybrid Energy
System for Rural & Remote Areas - Perspective

[7] Bangladesh Solar Power Wind Power. Engineering,
2(Icmee), 107-110.

[8] Prasad, G., & Srinivasan, S. 2010. Hybrid Solar and
Wind Off-Grid System-Design and Control. International,

[9] Imtiaz Ashraf. 2004. “ Techno economic viability of
rooftop hybridized solar PV-AC grid assisted power system
for peak load management” Power Electronics, Machines and
Drives, 2004. (PEMD2004). Int Conf on Power Electronics,
Machines and drives.1(2): 442 – 446

[10] Cambell M, 2008, The Drivers of the Levelized Cost of
Electricity for Utility Scale Photovoltaic, Sunpower
Corportation

[11] [9] Paul E, D Bray, 2012, Evolution of Solar Operating
Practices: Advanced O&M Benefits from Module-Level
Monitoring, Solution Deployment Brief, Altaterra Research
Works.

Int'l Conf. Embedded Systems and Applications | ESA'15 | 97

Figure 4: Real time simulation of the system

Table 1: Monthly Average hourly solar radiation data for Peshawar

Hour Sep Oct Nov Dec Jan Feb Mar Apr May Jun July Aug
5 0 0 0 0 0 0 0 0 0 39 0 0
6 32 0 0 0 0 0 0 45 131 196 109 68
7 130 49 31 0 0 0 37 176 251 301 217 193
8 258 192 97 42 42 81 183 311 400 422 289 331
9 453 372 264 183 178 256 372 494 564 586 551 528
10 578 517 406 322 311 400 525 650 703 722 694 681
11 653 594 514 439 433 531 633 758 806 822 802 794
12 706 658 569 489 489 606 683 808 856 858 837 826
13 706 639 578 486 492 617 683 783 794 842 791 780
14 648 601 388 359 399 517 601 660 681 701 670 661
15 482 470 258 231 282 401 521 553 576 581 558 554
16 350 318 174 72 129 243 390 422 451 460 449 431
17 190 171 40 0 31 98 211 279 331 362 309 278
18 42 30 0 0 0 0 41 103 178 214 167 105
19 0 0 0 0 0 0 0 0 32 56 38 0

Table 3: Calculation of percent shares of Grid and Panel.

Time Irradiance
(W/m2)

Panel Power
(W)

Grid Power
(W)

Total
Connected

load (W)

Panel
%Share

Grid
%

Share

5 39 42 858 850 5 95
6 196 196 704 850 23 77
7 301 308 592 850 36 64
8 422 420 480 850 59 41
9 586 609 291 850 71 29

10 722 742 158 850 87 13
11 822 840 60 850 99 1

98 Int'l Conf. Embedded Systems and Applications | ESA'15 |

Table 3: Calculation of percent shares of Grid and Panel (Continued …)
12 858 896 4 850 100 0
13 842 875 25 850 100 0
14 701 714 186 850 84 16
15 581 602 298 850 71 29
16 460 441 459 850 52 48
17 362 350 550 850 41 59
18 214 210 690 850 25 75
19 56 56 844 850 7 93

Figure 7: Block diagram of 150 watt solar panel designed in MATLAB Simulink

Table 3: Percentage shares of Grid and Panel.
Time Irradiance

(W/m2)
Panel Power

(W)
Grid Power

(W)
Total

Connected
load (W)

Panel
%Share

Grid
%

Share

5 39 42 858 850 5 95
6 196 196 704 850 23 77
7 301 308 592 850 36 64
8 422 420 480 850 59 41
9 586 609 291 850 71 29

10 722 742 158 850 87 13
11 822 840 60 850 99 1
12 858 896 4 850 100 0
13 842 875 25 850 100 0
14 701 714 186 850 84 16
15 581 602 298 850 71 29
16 460 441 459 850 52 48
17 362 350 550 850 41 59
18 214 210 690 850 25 75
19 56 56 844 850 7 93

Int'l Conf. Embedded Systems and Applications | ESA'15 | 99

Microcontroller Based Embedded System for Vehicle
Plate Number Authentication and Verification Using

Radio Frequency

Nweke Chisom B1., Chukwugozie Ihekweaba2, Ogechi Linda Ihekweaba3

123Department of Computer Engineering Michael Okpara University of Agriculture, Umudike, Abia
State Nigeria

ABSTRACT-The loss of vehicles as well as proliferation
of traffic offenders has made it needful to develop a
mobile intelligent compact system for the authentication
and verification of the vehicle plate number. This paper
aims at presenting an embedded system for quick
identification and authenticity of vehicle plate number.
The proposed system uses a Radio Frequency (RF)
module interfaced to an 8051 microcontroller family.
The plate number, Engine Number, and Chassis
Number of the vehicle is programmed into the ROM of
the 8051 microcontroller and transmitted through the
RF. The received information will be compared with the
documents of the vehicle to determine the authenticity
of the car.

Keywords: Vehicle, RF, Plate, Engine, chase, number,
microcontroller

1.0 Introduction

Car theft has become the order of the day in

recent years, as no day passes without the news of

missing vehicle. It is most worrisome that many of such

vehicles pass police check points without being

identified. The thieves are so smart that once they lay

hand on these cars, they immediately change the

vehicle plate number and in most cases, remold the

engine number which makes it difficult for

identification. Many technologies that have been

developed towards tracking down these stolen vehicles

have proven ineffective. These are as a result of high

cost of the necessary devices. In Nigeria today, many

people are using government official plate numbers to

avert the law. A vehicle registration plate is a metal or

plastic plate attached to a motor vehicle for official

identification purposes. This plate is inscribed with a

numeric or alphanumeric code that uniquely identifies

this vehicle within the issuing region's database [1].

Vehicle registration numbers are a way of identifying

vehicles. It also serves as a legal license that permits

vehicle to ply the roads. The number plate remains the

principal vehicle identifier, despite the fact that it can

be deliberately altered or replaced in crime situations

[2]. Plates are designed to conform to standards with

regards to being read by the eye in the day or at night,

or by electronic equipment. To this end, there is an

urgent need to develop other alternative means of

preventing indiscriminate removal of vehicle plate

numbers by individuals without appropriate

authorization. The system presented in this work is an

embedded system for vehicle plate number (ESVPN)

based on the RF. The system will contain the vehicle

plate number, chassis number and engine number,

which makes it difficult for anyone to easily change his

or her plate number without following the appropriate

100 Int'l Conf. Embedded Systems and Applications | ESA'15 |

procedures. Radio-frequency identification (RF) is an

automatic identification method, relaying stored

information and remotely retrieving data using devices

called the RF or transponders [3]. This system if

adopted will deter those who specialize in removing

and replacing plate numbers for what so ever reasons.

Embedded system is now an emerging technology in
various fields, which is well known for its compact size
and processing speed. It is also playing a significant
role in security and process management [5]. In order to
prevent thefts, there exist many methods: Automatic
Identification and Data Capture (AIDC) such as
biometric systems, image processing
techniques like License Plate
Recognition(LPR)systems, Optical Character
Recognition (OCR), Virtual Barcodes, smart
cards, authentication methods such as one time
passwords (OTP) [6]. All these in no doubt have
served the purpose. As level of crime increases on
daily bases, it is imperative to adopt new measures
to assure security for vehicle owners.

License plates have been around since the invention of
automobiles. France was the first country to introduce
the license plate with the passage of the Paris Police
Ordinance on August 14, 1893, followed by Germany
in 1896 [3]. The Netherlands was the first country to
introduce a national license plate, called a "driving
permit", in 1898. The first licenses were plates with a
number, starting at 1. By August 8, 1899 the counter
was at 168. When the Netherlands chose a different
way to number the plates on January 15, 1906, the last
issued plate was 2001. Plate’s numbers are usually
fixed directly to a vehicle or to a plate frame that is
fixed to the vehicle [4]. Sometimes, the plate frames
contain advertisements inserted by the vehicle service
centre or the dealership from which the vehicle was
purchased. Fig 1 below shows a typical Vehicle plate
number.

Fig. 1: Vehicle Traditional Plate Number

2.0 Materials and Methods

On conceptualization, the following system
block diagram was realized. This system consists of a
Power supply, RF Module, Micro-controller, LCD, and
Keypad. Figure 2 below shows the complete block
diagram of the systems.

Fig. 2, System Block Diagram

The basic modules are then developed using the
relevant discrete random logic and integrated circuit
(IC) components. The ICs used involved include LSI,
MSI, and VLSI. The hardware is separately tested for
functionality. The system software is developed and
subsequently programmed into the system, soldering
guns, wires, breadboards; tweezers, etc were used to
develop the hardware. The functionality tests were
maintained by avometers, oscilloscopes and logic
analyzers. The assembler was used to develop and test
the system software.
On proof of operational readiness, the object code
derived from the assembler was blasted into the system
ROM using the Erasable Programmable Memory.

RF

Medium

Transmitter Receiver I/O Unit Processor

Power
Supply

Int'l Conf. Embedded Systems and Applications | ESA'15 | 101

3.0 System Hardware
Implementation

3.1 Power Supply

A Direct current (DC) power supply is used in
this system, both for the transmitter, receiver systems,
processors and Capacitors are connected in parallel to
act as a filter from the battery source. Then 7805 power
regulate is connected at the output of the filtered battery
to produce a constant and stable 5volts DC output.

Fig 4. Power supply circuit

3.2 The (RFID) Module

The RFID technology is based on the principle
of magnetic coupling. Here, electric current flowing in
one circuit induces current flow in another circuit
through a magnetic field generated in the space between
the circuits. The two major classes of RFID
transponders are active and passive. In passive RFID,
there are two major components; the reader and the
mobile tag. The reader has two main functions: the first
is to transmit a carrier signal, and the second is to
receive a response from any tags in close proximity to
the reader. A tag needs to receive the carrier signal,
modulate it with respect to the data on the card. It then
retransmits the modified response back to the reader. In
modern passive RFID devices, the tag consists of a
small integrated circuit (that performs the modulation)
and an antenna. The benefit of passive RFID is that it
requires no internal power source; the circuit on the tag
is actually powered by the carrier signal. Thus, the
carrier signal transmitted from the reader must be
considerably large so that the response can be read even
from the card. As shown in the above block diagram
RFID systems are classified according to the properties
of the data carrier called a transponder or tag.

Fig. 5 Radio transmitter and Receiver

3.4 Microcontroller

Microcontrollers are computers that are
designed to carry out specific functions. They are
embedded in any other computer or machine. They
carry out their functions by taking inputs from the
devices they are incorporated into. They have the
ability of turning the appliances ON and OFF based on
the SMS sent to the phone connected to the
microcontroller [4]. In this design, 8051 family of
micro-controller is employed. It comes in a 40-pin dual
in-line package (DIP) with internal peripherals. The 40
pins make it easier to use the peripherals as the
functions are spread out over the pins. Fig 6 shows the
8051 pin configuration of the microcontroller. The
microcontroller used in this work (AT89S52) It is a 40
pin DIP, 8 bit microcontroller with Complex Instruction
Set Computer (CISC) architecture. It has four ports P0
through P3 (port0 – port3). It has 16-bit
timers/counters, one serial port, 64K bytes of external
program memory (ROM) and 64K bytes of Data
memory (RAM), as well as on-chip oscillator. It
supports a power supply of 2.0-5V dc, which makes it
flexible, cost effective and most suitable for many
embedded system applications.

1
2
3
4
5
6
7
8
9
1 0
11
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
2 0

4 0
3 9
3 8
3 7
3 6
3 5
3 4
3 3
3 2
3 1
3 0
2 9
2 8
2 7
2 6
2 5
2 4
2 3
2 2
2 1

P 1. 0
P 1. 1
P 1. 2
P 1. 3
P 1. 4
P 1. 5
P 1. 6
P 1. 7
R S T

(RX D)P 3.0
(T XD)P 3.1

(T0)P 3.4
(T1)P 3.5

X TA L2
X TA L1

G ND

(IN T0)P 3.2
(IN T1)P 3.3

(R D)P 3.7
(W R)P 3.6

V cc
P 0.0 (A D0)
P 0.1 (A D1)
P 0.2 (A D2)
P 0.3 (A D3)
P 0.4 (A D4)
P 0.5 (A D5)
P 0.6 (A D6)
P 0.7 (A D7)
E A/V P P
A LE /P RO G
P SE N
P 2.7 (A 15)
P 2.6 (A 14)
P 2.5 (A 13)
P 2.4 (A 12)
P 2.3 (A 11)
P 2.2 (A 10)
P 2.1 (A 9)
P 2.0 (A 8)

8 0 51
(80 3 1)

Fig 6. The 8051 Microcontroller

102 Int'l Conf. Embedded Systems and Applications | ESA'15 |

3.3 The Liquid Crystal Display (LCD)

A liquid crystal display (LCD) is a thin, flat
panel used for electronically displaying information
such as text, images, and moving pictures. Its uses
include monitors for computers, televisions, instrument
panels, and other devices ranging from aircraft cockpit
displays, to every-day consumer systems such as video
players, gaming devices, calculators, and telephones.
Among its major features are its lightweight
construction, its portability, and its ability to be
produced in much larger screen sizes than are practical
for the construction of cathode ray tube (CRT) display
technology. Its low electrical power consumption
enables it to be used in battery-powered electronic
equipment. It is an electronically-modulated optical
device made up of many number of pixels filled with
liquid crystals and arrayed in front of a light source
(backlight) or reflector to produce images in color or
monochrome.

Fig. 7. Liquid Crystal Display (LCD)

3.4 Embedded Vehicle Plate Number

Transmitter.

The system is expected to be embedded to a
vechicle at the piont of registration. The system will be
programmed with the car details like, the vehicle plate
Number, chasiss Number, and Engine Number. This
will be transmitted at a request to the embedded plate
number receiver.

XTAL218

XTAL119

ALE30

EA31

PSEN29

RST9

P0.0/AD0 39

P0.1/AD1 38

P0.2/AD2 37

P0.3/AD3 36

P0.4/AD4 35

P0.5/AD5 34

P0.6/AD6 33

P0.7/AD7 32

P1.0/T21

P1.1/T2EX2

P1.23

P1.34

P1.45

P1.56

P1.67

P1.78

P3.0/RXD 10

P3.1/TXD 11

P3.2/INT0 12

P3.3/INT1 13

P3.4/T0 14

P3.7/RD 17P3.6/WR 16P3.5/T1 15

P2.7/A15 28

P2.0/A8 21

P2.1/A9 22

P2.2/A10 23

P2.3/A11 24

P2.4/A12 25

P2.5/A13 26

P2.6/A14 27

U1

AT89C52

C1

33pC2

33p

X1
CRYSTALC3

10u

R1
10k

DB[0..7]
A0

RES
CS

E(RD)
R/W(WR)

RF

RF Module

Fig 8. The embedded vehicle plate number circuit
diagram.

3.4 Embedded Vehicle Plate Number
Receiver

The receiver system has a transceiver which
enables it to send a requist to the Vehicle and receive
back the required information, which may be compared
with the physical Number plate, placed on the vehicle
and the ones on the vehicle particulars. This system in
no doubt will improve security of cars on our roads and
make it easier to be investigated in time of necessity.

XTAL218

XTAL119

ALE30

EA31

PSEN29

RST9

P0.0/AD0 39

P0.1/AD1 38

P0.2/AD2 37

P0.3/AD3 36

P0.4/AD4 35

P0.5/AD5 34

P0.6/AD6 33

P0.7/AD7 32

P1.0/T21

P1.1/T2EX2

P1.23

P1.34

P1.45

P1.56

P1.67

P1.78

P3.0/RXD 10

P3.1/TXD 11

P3.2/INT0 12

P3.3/INT1 13

P3.4/T0 14

P3.7/RD 17P3.6/WR 16
P3.5/T1 15

P2.7/A15 28

P2.0/A8 21

P2.1/A9 22

P2.2/A10 23

P2.3/A11 24

P2.4/A12 25

P2.5/A13 26

P2.6/A14 27

U1

AT89C52

C1

33pC2

33p

X1
CRYSTALC3

10u

R1
10k

D
7

14
D

6
13

D
5

12
D

4
11

D
3

10
D

2
9

D
1

8
D

0
7

E
6

RW
5

R
S

4

V
SS

1
V

D
D

2
V

EE
3

LM017L

DB[0..7]
A0

RES
CS

E(RD)
R/W(WR)

RFID

SMOKE SENSOR RFID

1 2 3

4 5 6

7 8 9

0 #

1 2 3

A

B

C

D

Fig.9 The hand held Receiver for the embedded Vehicle
plate number circuit diagram

4.0 Tests and Results

After careful design and integration of
different components of this system, the system was
power and the embedded system that will contain the
vehicle particulars programmed with these information
(engine number, chassis number, and plate number). A
query was sent from the receiver system and a feedback
immediately sent displaying the vehicle plate number,

Int'l Conf. Embedded Systems and Applications | ESA'15 | 103

engine number, and chassis number. The last 4 (four)
digits of the vehicle plate number was used for the
query. The idea of using the last four digits was based
on the fact that vehicle last four digits are unique.

5.0 Conclusion

Vehicle registration numbers must be correctly
displayed on number plates as set by the road safety
agency for easy identification. When this mark is not
there or has been deliberately removed, it makes it
almost difficult to identify vehicle. The proposed
system in this paper provides alternative means of
identifying vehicles even though the plate number has
been tampered with.

REFERENCES

[1].http://en.wikipedia.org/wiki/Vehicle_registration_pl
ate

[2]. Harpreet kaur, Naresh Kumar Garg “NUMBER
PLATE RECOGNITION” International Journal of
Computer Application and Technology (IJCAT) May -
2014, pp. 20-24

[3]. Robertson, Patrick (1974). The book of firsts. C. N.
Potter: distributed by Crown Publishers. p. 51.
Retrieved 07-09- 2014.
[4]. "License Plates of New Zealand".
Worldlicenseplates.com. Retrieved, 07-09-2014.
 [5] S. Dharanya and A. Umamakeswari, “Embedded
Based Conveyance Authentication and Notification
System” International Journal of Engineering and
Technology (IJET). Vol 5 No 1 Feb-Mar 2013
[6]. Nor Azlina , Bt Abd Rahman , Mohsen
Bafandehkar, Behzad Nazarbakhsh , Nurul Haniza Bt
Mohtar , “Ubiquitous Computing For Security
Enhancement Of Vehicles”, IEEE International
Conference on Vehicular Electronics and Safety
(ICVES) ,Beijing, pp: 113-118, 2011.

[7]. Orukpe, P. E. and Adesemowo A, 2012, “Digital
control of external devices through the parallel port of a
computer using Visual basic, Nigerian Journal of
Technology, Vol. 31, No. 3, pp. 261 – 267.

[9]. Kumar Parasuraman, P.Vasantha Kumar, “An
Efficient Method for Indian Vehicle License Plate
Extraction and Character Segmentation,” 2010 IEEE
International Conference on Computational Intelligence
and Computing Research.

Authors:

Nweke Chisom B. received his B.Sc. degree in
Computer Science from Michael Okpara University of
Agriculture, (MOUAU) Umudike, Abia State Nigeria in
2012.His currently running PGD in
electrical/electronics engineering from same
institutions. His research interests are in the fields of
Electronics Design and Embedded Systems, Computer
Programming; Microcontroller based System,
Communication, Computer hardware Maintenance,
security System design, Expert Systems, etc. Email:
Nweke_ncb@yahoo.com

 Ihekweaba, Chukwugoziem is an Associate
Professor and currently the Head, Department of
Computer Engineering, Michael Okpara University of
Agriculture, Umuahia, Abia State, Nigeria. His research
interests include Computer Hardware design and
maintenance, Security system design, Electronic and
communication systems, etc. Email:
ihekweaba.gozie@mouau.edu.ng,
gozihekwaba@yahoo.com

Ihekweaba Ogechikanma Linda is a lecturer in
Department of Computer Engineering, Michael Okpara
University of Agriculture, Umuahia, Abia State,
Nigeria. Her research interests include Computational
Intelligence , Security system design, Expert systems,
Design of Microcontroller and Microprocessor based
system, Electronic and Communication Systems and
other computer, etc. Email:
ogechi_ihekweaba@yahoo.co.uk

104 Int'l Conf. Embedded Systems and Applications | ESA'15 |

